
IBM i
7.3

Database
Db2 for i SQL Reference

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
2011.

This edition applies to IBM i 7.3 (product number 5770-SS1) and to all subsequent releases and modifications until
otherwise indicated in new editions. This version does not run on all reduced instruction set computer (RISC) models nor
does it run on CISC models.

This document may contain references to Licensed Internal Code. Licensed Internal Code is Machine Code and is
licensed to you under the terms of the IBM License Agreement for Machine Code.
© Copyright International Business Machines Corporation 1998, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About SQL reference... xix
Standards compliance...xix
Assumptions relating to examples of SQL statements... xx
How to read the syntax diagrams..xxi
Conventions used in this book...xxiii
SQL accessibility.. xxiii

PDF file for SQL reference...xxv

What's new for IBM i 7.3...xxvii

Chapter 1. Concepts.. 1
Relational database... 1
Structured Query Language... 2
Schemas... 4
Tables... 4

Keys...5
Constraints..5

Unique constraints.. 6
Referential constraints..6
Check constraints..8

Indexes... 8
Triggers... 9

Views.. 11
User-defined types.. 11
Aliases.. 12
Packages and access plans... 12
Routines... 12
Sequences..14
Authorization, privileges and object ownership..15
Catalog... 17
Application processes, concurrency, and recovery.. 17

Locking, commit, and rollback... 19
Unit of work.. 20
Rolling back work... 21
Threads...22

Isolation level...23
Repeatable read... 25
Read stability..25
Cursor stability... 26
Uncommitted read..26
No commit.. 26
Comparison of isolation levels... 26

Storage Structures... 28
Character conversion...28

Character sets and code pages..31
Coded character sets and CCSIDs... 32
Default CCSID...32

Collating sequence.. 33
Distributed relational database...35

 iii

Application servers...36
CONNECT (type 1) and CONNECT (type 2)..37
Remote unit of work... 37
Application-directed distributed unit of work... 38
Data representation considerations.. 41

Chapter 2. Language elements... 43
Characters..43
Tokens.. 44
Identifiers...46

SQL identifiers.. 46
System identifiers...46
Host identifiers... 47

Naming conventions.. 48
SQL path... 57
Qualification of unqualified object names... 57

Unqualified alias, constraint, external program, index, mask, nodegroup, package,
permission, sequence, table, trigger, view, and XSR object names... 57

Unqualified function, procedure, specific name, type, and variables... 59
SQL names and system names: special considerations... 59

Aliases.. 60
Authorization IDs and authorization names... 61
Procedure resolution... 63
Data types.. 65

Nulls..66
Numbers... 66

Subnormal numbers and underflow...68
Character strings.. 69
Character encoding schemes...70
Graphic strings... 71
Graphic encoding schemes..72
Binary strings..72
Large objects.. 73

Limitations on use of strings...74
Datetime values..74

Date... 74
Time...75
Timestamp.. 75
Datetime variables..75
String representations of datetime values...75

Date strings..75
Time strings... 77
Timestamp strings...79

XML Values... 80
DataLink values.. 81
Row ID values...82
User-defined types...82

Promotion of data types.. 84
Casting between data types.. 86
Assignments and comparisons... 89

Numeric assignments...90
String assignments...92

Binary string assignments.. 93
Character and graphic string assignments...93

Datetime assignments... 95
XML assignments..96
DataLink assignments.. 96

iv

Row ID assignments...97
Distinct type assignments..98
Array type assignments..99
Assignments to LOB locators... 99
Numeric comparisons.. 99
String comparisons.. 100
Datetime comparisons...102
XML comparisons... 103
DataLink comparisons..103
Row ID comparisons.. 103
Distinct type comparisons... 103
Array type comparisons... 104

Rules for result data types.. 105
Conversion rules for operations that combine strings..110
Constants... 112

Integer constants... 112
Decimal constants..112
Floating-point constants..112
Decimal floating-point constants.. 112
Character-string constants.. 113
Graphic-string constants... 114
Binary-string constants..115
Datetime constants..116
Decimal point... 116
Delimiters... 117

Special registers.. 119
CURRENT CLIENT_ACCTNG...121
CURRENT CLIENT_APPLNAME..121
CURRENT CLIENT_PROGRAMID... 121
CURRENT CLIENT_USERID..122
CURRENT CLIENT_WRKSTNNAME.. 122
CURRENT DATE.. 123
CURRENT DEBUG MODE..123
CURRENT DECFLOAT ROUNDING MODE.. 124
CURRENT DEGREE... 125
CURRENT IMPLICIT XMLPARSE OPTION..125
CURRENT PATH.. 126
CURRENT SCHEMA.. 127
CURRENT SERVER..127
CURRENT TEMPORAL SYSTEM_TIME... 127
CURRENT TIME.. 128
CURRENT TIMESTAMP...129
CURRENT USER..129
CURRENT TIMEZONE...129
SESSION_USER..130
SYSTEM_USER..130
USER... 130

Column names... 131
Qualified column names.. 131
Correlation names..131
Column name qualifiers to avoid ambiguity.. 133

Table designators... 133
Avoiding undefined or ambiguous references... 134

Column name qualifiers in correlated references...135
Unqualified column names in correlated references..136

Variables.. 137
Global variables..137
References to host variables... 139

 v

Variables in dynamic SQL...141
References to LOB or XML variables..142

References to LOB or XML locator variables..142
References to LOB or XML file reference variables..143

References to XML variables..143
Host structures...144
Host structure arrays... 145

Functions... 147
Types of functions.. 147
Function invocation..148
Function resolution.. 149
Determining the best fit... 150
Best fit considerations... 156

Expressions..158
Without operators.. 159
With arithmetic operators..159

Two integer operands... 159
Integer and decimal operands... 160
Two decimal operands... 160
Decimal arithmetic in SQL.. 160
Floating-point operands... 161
Decimal floating-point operands..161
General arithmetic operation rules for DECFLOAT.. 162
Distinct type operands... 163

With the concatenation operator...163
Scalar fullselect..165
Datetime operands and durations... 165
Datetime arithmetic in SQL..167

Date arithmetic... 167
Time arithmetic...169
Timestamp arithmetic.. 170

Precedence of operations.. 171
ARRAY constructor .. 172
ARRAY element specification.. 173
CASE expression.. 174
CAST specification... 176
OLAP specifications... 181
ROW CHANGE expression..192
Sequence reference... 193
XMLCAST specification.. 197

Predicates.. 198
Basic predicate...199
Quantified predicate.. 201
BETWEEN predicate...203
DISTINCT predicate... 204
EXISTS predicate... 206
IN predicate..207
IS JSON predicate..209
JSON_EXISTS predicate.. 211

sql-json-path-expression... 213
LIKE predicate..215
NULL predicate...219
REGEXP_LIKE predicate...220
Trigger event predicates.. 226

Search conditions.. 227

Chapter 3. Built-in global variables.. 229

vi

CLIENT_HOST.. 230
CLIENT_IPADDR.. 231
CLIENT_PORT.. 232
JOB_NAME...233
PACKAGE_NAME... 234
PACKAGE_SCHEMA... 235
PACKAGE_VERSION.. 236
PROCESS_ID..237
ROUTINE_SCHEMA... 238
ROUTINE_SPECIFIC_NAME..239
ROUTINE_TYPE... 240
SERVER_MODE_JOB_NAME... 241
THREAD_ID..242

Chapter 4. Built-in functions.. 243
Aggregate functions...258

ARRAY_AGG... 259
AVG... 261
CORR or CORRELATION... 262
COUNT.. 263
COUNT_BIG..264
COVARIANCE or COVAR... 265
COVAR_SAMP or COVARIANCE_SAMP..266
GROUPING... 267
JSON_ARRAYAGG.. 268
JSON_OBJECTAGG...273
LISTAGG... 277
MAX...280
MEDIAN.. 281
MIN... 282
PERCENTILE_CONT..283
PERCENTILE_DISC.. 285
Regression functions..287
STDDEV_POP or STDDEV... 290
STDDEV_SAMP... 291
SUM...292
VAR_POP or VARIANCE or VAR... 293
VAR_SAMP or VARIANCE_SAMP... 294
XMLAGG..295
XMLGROUP... 297

Scalar functions... 300
ABS or ABSVAL...301
ACOS...302
ADD_MONTHS.. 303
ANTILOG...305
ARRAY_MAX_CARDINALITY..306
ARRAY_TRIM.. 307
ASCII.. 308
ASIN..309
ATAN... 310
ATANH...311
ATAN2... 312
BASE64_DECODE...313
BASE64_ENCODE.. 314
BIGINT..315
BINARY...317
BITAND, BITANDNOT, BITOR, BITXOR, and BITNOT... 318

 vii

BIT_LENGTH...320
BLOB... 321
BSON_TO_JSON... 322
CARDINALITY...323
CEILING or CEIL...324
CHAR...325
CHARACTER_LENGTH or CHAR_LENGTH... 331
CHR...332
CLOB... 333
COALESCE.. 338
COMPARE_DECFLOAT..339
CONCAT.. 340
CONTAINS.. 341
COS... 344
COSH...345
COT... 346
CURDATE.. 347
CURTIME.. 348
DATABASE.. 349
DATAPARTITIONNAME.. 350
DATAPARTITIONNUM.. 351
DATE... 352
DAY... 354
DAYNAME... 355
DAYOFMONTH..356
DAYOFWEEK...357
DAYOFWEEK_ISO...358
DAYOFYEAR..359
DAYS... 360
DBCLOB.. 361
DBPARTITIONNAME.. 367
DBPARTITIONNUM.. 368
DECFLOAT...369
DECFLOAT_FORMAT...371
DECFLOAT_SORTKEY... 373
DECIMAL or DEC...374
DECRYPT_BIT, DECRYPT_BINARY, DECRYPT_CHAR and DECRYPT_DB.. 377
DEGREES.. 380
DIFFERENCE.. 381
DIGITS.. 382
DLCOMMENT.. 383
DLLINKTYPE... 384
DLURLCOMPLETE... 385
DLURLPATH.. 386
DLURLPATHONLY... 387
DLURLSCHEME...388
DLURLSERVER.. 389
DLVALUE... 390
DOUBLE_PRECISION or DOUBLE..392
ENCRYPT_AES..394
ENCRYPT_RC2 or ENCRPYT...397
ENCRYPT_TDES.. 400
EXP... 403
EXTRACT...404
FLOAT..408
FLOOR...409
GENERATE_UNIQUE.. 410
GET_BLOB_FROM_FILE... 411

viii

GET_CLOB_FROM_FILE... 412
GET_DBCLOB_FROM_FILE.. 413
GET_XML_FILE...414
GETHINT...415
GRAPHIC.. 416
GREATEST...421
HASH.. 422
HASHED_VALUE... 423
HEX... 424
HEXTORAW...425
HOUR.. 426
HTTP_DELETE...427
HTTP_GET...428
HTTP_PATCH.. 432
HTTP_POST.. 433
HTTP_PUT...434
IDENTITY_VAL_LOCAL...435
IFNULL..439
INSERT... 440
INTEGER or INT... 442
INTERPRET...444
INSTR..448
JSON_ARRAY... 449
JSON_OBJECT..453
JSON_QUERY... 457
JSON_TO_BSON... 462
JSON_VALUE.. 463
JULIAN_DAY...467
LAND...468
LAST_DAY... 469
LCASE... 470
LEAST..471
LEFT.. 472
LENGTH.. 474
LN..476
LNOT... 477
LOCATE... 478
LOCATE_IN_STRING..480
LOG10...482
LOR... 483
LOWER.. 484
LPAD... 485
LTRIM..488
MAX...490
MAX_CARDINALITY... 491
MICROSECOND.. 492
MIDNIGHT_SECONDS..493
MIN... 494
MINUTE.. 495
MOD.. 496
MONTH... 498
MONTHNAME... 499
MONTHS_BETWEEN.. 500
MQREAD... 502
MQREADCLOB.. 504
MQRECEIVE..506
MQRECEIVECLOB...508
MQSEND... 510

 ix

MULTIPLY_ALT..512
NEXT_DAY.. 514
NORMALIZE_DECFLOAT.. 516
NOW..517
NULLIF..518
NVL... 519
OCTET_LENGTH... 520
OVERLAY...521
PI.. 524
POSITION... 525
POSSTR...527
POWER or POW.. 529
QUANTIZE.. 530
QUARTER..532
RADIANS.. 533
RAISE_ERROR..534
RANDOM or RAND..535
REAL... 536
REGEXP_COUNT... 538
REGEXP_INSTR.. 540
REGEXP_REPLACE... 542
REGEXP_SUBSTR... 544
REPEAT... 546
REPLACE...548
RID..550
RIGHT... 551
ROUND..553
ROUND_TIMESTAMP.. 555
ROWID.. 558
RPAD...559
RRN...562
RTRIM... 563
SCORE...565
SECOND.. 568
SIGN... 570
SIN..571
SINH... 572
SMALLINT...573
SOUNDEX... 574
SPACE... 575
SQRT... 576
STRIP..577
STRLEFT... 578
STRPOS...579
STRRIGHT.. 580
SUBSTR...581
SUBSTRING..583
TABLE_NAME... 585
TABLE_SCHEMA... 586
TAN... 587
TANH...588
TIME... 589
TIMESTAMP..590
TIMESTAMP_FORMAT.. 592
TIMESTAMP_ISO.. 597
TIMESTAMPDIFF..598
TO_CHAR.. 601
TO_CLOB... 602

x

TO_DATE...603
TO_NUMBER...604
TO_TIMESTAMP..605
TOTALORDER..606
TRANSLATE.. 607
TRIM... 609
TRIM_ARRAY..611
TRUNCATE or TRUNC... 612
TRUNC_TIMESTAMP.. 614
UCASE...615
UPPER...616
URL_DECODE... 617
URL_ENCODE... 618
VALUE... 619
VARBINARY.. 620
VARBINARY_FORMAT.. 621
VARCHAR..623
VARCHAR_BIT_FORMAT..628
VARCHAR_FORMAT..629
VARCHAR_FORMAT_BINARY...637
VARGRAPHIC..638
VERIFY_GROUP_FOR_USER.. 644
WEEK.. 646
WEEK_ISO..647
WRAP..648
XMLATTRIBUTES... 650
XMLCOMMENT... 651
XMLCONCAT... 652
XMLDOCUMENT... 654
XMLELEMENT... 655
XMLFOREST..658
XMLNAMESPACES..661
XMLPARSE.. 663
XMLPI... 664
XMLROW...665
XMLSERIALIZE... 667
XMLTEXT...671
XMLVALIDATE...672
XOR... 676
XSLTRANSFORM...677
YEAR... 682
ZONED.. 683

Table functions.. 686
BASE_TABLE...687
HTTP_DELETE_VERBOSE...689
HTTP_GET_VERBOSE... 690
HTTP_PATCH_VERBOSE.. 691
HTTP_POST_VERBOSE...692
HTTP_PUT_VERBOSE... 693
JSON_TABLE...694
MQREADALL... 704
MQREADALLCLOB.. 706
MQRECEIVEALL..708
MQRECEIVEALLCLOB...711
XMLTABLE...714

Chapter 5. Procedures... 723

 xi

CREATE_WRAPPED..724
XDBDECOMPXML...726
XSR_ADDSCHEMADOC..728
XSR_COMPLETE...730
XSR_REGISTER..732
XSR_REMOVE.. 734

Chapter 6. Queries...735
Authorization... 735
subselect..736

select-clause.. 737
Select list notation..737
Applying the select list... 738
Null attributes of result columns..739
Names of result columns..740
Data types of result columns..740

from-clause.. 742
table-reference...742
joined-table...750

Hierarchical queries... 753
hierarchical-query-clause.. 754
pseudo columns... 757
CONNECT_BY_ROOT.. 758
PRIOR..759
SYS_CONNECT_BY_PATH... 761

where-clause..762
group-by-clause... 763
having-clause... 776
order-by-clause..777
offset-clause.. 779
fetch-clause... 780
Examples of a subselect.. 781

fullselect.. 783
Examples of a fullselect... 787

select-statement... 789
common-table-expression.. 790

Recursion example: bill of materials..793
update-clause.. 796
read-only-clause.. 797
optimize-clause..798
isolation-clause..799
concurrent-access-resolution-clause... 801
Examples of a select-statement..802

Chapter 7. Statements... 805
How SQL statements are invoked... 812

Embedding a statement in an application program.. 812
Dynamic preparation and execution..813
Static invocation of a select-statement...813
Dynamic invocation of a select-statement..814
Interactive invocation.. 814

SQL diagnostic information... 814
Detecting and processing error and warning conditions in host language applications....................... 814
SQL comments...815
ALLOCATE CURSOR... 817
ALLOCATE DESCRIPTOR..818
ALTER FUNCTION (external scalar).. 820

xii

ALTER FUNCTION (external table)..825
ALTER FUNCTION (SQL scalar)... 830
ALTER FUNCTION (SQL table)...837
ALTER MASK.. 845
ALTER PERMISSION.. 847
ALTER PROCEDURE (external).. 849
ALTER PROCEDURE (SQL)... 854
ALTER SEQUENCE..864
ALTER TABLE..869
ALTER TRIGGER...920
ASSOCIATE LOCATORS..923
BEGIN DECLARE SECTION..928
CALL... 930
CLOSE...938
COMMENT.. 940
COMMIT... 950
compound (dynamic)...953
CONNECT (type 1)... 962
CONNECT (type 2)... 967
CREATE ALIAS... 971
CREATE FUNCTION... 975
CREATE FUNCTION (external scalar)..980
CREATE FUNCTION (external table)... 1000
CREATE FUNCTION (sourced)...1018
CREATE FUNCTION (SQL scalar)...1028
CREATE FUNCTION (SQL table).. 1042
CREATE INDEX.. 1055
CREATE MASK..1064
CREATE PERMISSION... 1070
CREATE PROCEDURE.. 1074
CREATE PROCEDURE (external)..1075
CREATE PROCEDURE (SQL).. 1090
CREATE SCHEMA...1103
CREATE SEQUENCE...1108
CREATE TABLE...1115
CREATE TRIGGER..1170
CREATE TYPE...1187
CREATE TYPE (array)... 1188
CREATE TYPE (distinct)... 1193
CREATE VARIABLE.. 1200
CREATE VIEW.. 1206
DEALLOCATE DESCRIPTOR...1214
DECLARE CURSOR...1215
DECLARE GLOBAL TEMPORARY TABLE..1223
DECLARE PROCEDURE..1244
DECLARE STATEMENT...1254
DECLARE VARIABLE..1256
DELETE...1259
DESCRIBE.. 1266
DESCRIBE CURSOR... 1271
DESCRIBE INPUT.. 1273
DESCRIBE PROCEDURE.. 1276
DESCRIBE TABLE...1282
DISCONNECT...1286
DROP..1288
END DECLARE SECTION..1303
EXECUTE..1304
EXECUTE IMMEDIATE... 1309

 xiii

FETCH.. 1311
FREE LOCATOR.. 1318
GET DESCRIPTOR..1319
GET DIAGNOSTICS..1332
GRANT (function or procedure privileges)..1357
GRANT (package privileges)..1365
GRANT (schema privileges).. 1368
GRANT (sequence privileges)... 1371
GRANT (table or view privileges).. 1374
GRANT (type privileges).. 1382
GRANT (variable privileges).. 1385
GRANT (XML schema privileges).. 1388
HOLD LOCATOR... 1391
INCLUDE.. 1393
INSERT...1395
LABEL...1407
LOCK TABLE... 1416
MERGE... 1418
OPEN..1429
PREPARE..1435
REFRESH TABLE.. 1453
RELEASE (connection)...1455
RELEASE SAVEPOINT..1457
RENAME...1458
REVOKE (function or procedure privileges).. 1461
REVOKE (package privileges)..1467
REVOKE (schema privileges)...1469
REVOKE (sequence privileges)..1471
REVOKE (table or view privileges)...1473
REVOKE (type privileges).. 1476
REVOKE (variable privileges).. 1478
REVOKE (XML schema privileges)...1480
ROLLBACK..1482
SAVEPOINT..1486
SELECT...1488
SELECT INTO... 1489
SET CONNECTION... 1492
SET CURRENT DEBUG MODE..1495
SET CURRENT DECFLOAT ROUNDING MODE.. 1497
SET CURRENT DEGREE... 1499
SET CURRENT IMPLICIT XMLPARSE OPTION..1502
SET CURRENT TEMPORAL SYSTEM_TIME..1504
SET DESCRIPTOR.. 1505
SET ENCRYPTION PASSWORD..1510
SET OPTION...1512
SET PATH... 1531
SET RESULT SETS.. 1534
SET SCHEMA..1537
SET SESSION AUTHORIZATION... 1540
SET TRANSACTION... 1543
SET transition-variable..1546
SET variable... 1548
SIGNAL.. 1551
TAG...1554
TRANSFER OWNERSHIP... 1555
TRUNCATE... 1558
UPDATE..1561
VALUES.. 1572

xiv

VALUES INTO...1573
WHENEVER.. 1576

Chapter 8. SQL procedural language (SQL PL)... 1579
SQL control statements...1579
References to SQL parameters and SQL variables... 1581
References to SQL condition names... 1582
References to SQL cursor names..1583
References to SQL labels.. 1584
Summary of ′name′ scoping in nested compound statements.. 1585
SQL-procedure-statement.. 1586
assignment-statement.. 1590
CALL statement... 1593
CASE statement...1595
compound-statement... 1597
FOR statement...1605
GET DIAGNOSTICS statement..1607
GOTO statement..1615
IF statement.. 1617
INCLUDE statement.. 1619
ITERATE statement... 1622
LEAVE statement... 1624
LOOP statement.. 1625
PIPE statement..1626
REPEAT statement...1628
RESIGNAL statement.. 1630
RETURN statement..1634
SIGNAL statement...1637
WHILE statement.. 1641

Appendix A. SQL limits.. 1643

Appendix B. Characteristics of SQL statements...1651
Actions allowed on SQL statements... 1652
SQL statement data access classification for routines.. 1655
Considerations for using distributed relational database.. 1658

CONNECT (type 1) and CONNECT (type 2) differences.. 1662

Appendix C. SQLCA (SQL communication area)... 1665
Field descriptions.. 1665
INCLUDE SQLCA declarations... 1671

Appendix D. SQLDA (SQL descriptor area)...1675
Field descriptions in an SQLDA header...1676
Field descriptions in an occurrence of SQLVAR..1681
SQLTYPE and SQLLEN... 1685
CCSID values in SQLDATA or SQLNAME... 1688
Unrecognized and unsupported SQLTYPES..1688
INCLUDE SQLDA declarations...1689

Appendix E. CCSID values..1695

Appendix F. Db2 for i catalog views.. 1709
IBM i catalog tables and views..1712

SYSCATALOGS..1714
SYSCHKCST.. 1715

 xv

SYSCOLAUTH... 1716
SYSCOLUMNS...1717
SYSCOLUMNS2...1725
SYSCOLUMNS2_SESSION... 1736
SYSCOLUMNSTAT...1737
SYSCONTROLS... 1740
SYSCONTROLSDEP.. 1742
SYSCST... 1743
SYSCSTCOL.. 1745
SYSCSTDEP.. 1746
SYSDUMMY1.. 1747
SYSFIELDS... 1748
SYSFILES..1752
SYSFUNCS.. 1753
SYSHISTORYTABLES..1758
SYSINDEXES.. 1759
SYSINDEXSTAT.. 1761
SYSJARCONTENTS...1769
SYSJAROBJECTS..1770
SYSKEYCST...1771
SYSKEYS... 1772
SYSMQTSTAT..1773
SYSPACKAGE..1777
SYSPACKAGEAUTH.. 1779
SYSPACKAGESTAT... 1780
SYSPACKAGESTMTSTAT.. 1786
SYSPARMS..1788
SYSPARTITIONDISK.. 1792
SYSPARTITIONINDEXDISK... 1794
SYSPARTITIONINDEXES... 1796
SYSPARTITIONINDEXSTAT..1803
SYSPARTITIONMQTS...1809
SYSPARTITIONSTAT.. 1813
SYSPERIODS.. 1817
SYSPROCS.. 1818
SYSPROGRAMSTAT.. 1821
SYSPROGRAMSTMTSTAT...1831
SYSREFCST...1833
SYSROUTINEAUTH.. 1834
SYSROUTINEDEP... 1835
SYSROUTINES..1836
SYSSCHEMAAUTH..1842
SYSSCHEMAS... 1843
SYSSEQUENCEAUTH..1844
SYSSEQUENCES... 1845
SYSTABAUTH... 1847
SYSTABLEDEP.. 1848
SYSTABLEINDEXSTAT..1849
SYSTABLES...1854
SYSTABLESTAT...1858
SYSTRIGCOL.. 1861
SYSTRIGDEP.. 1862
SYSTRIGGERS.. 1863
SYSTRIGUPD.. 1867
SYSTYPES...1868
SYSUDTAUTH... 1872
SYSVARIABLEAUTH... 1873
SYSVARIABLEDEP..1874

xvi

SYSVARIABLES.. 1875
SYSVIEWDEP..1881
SYSVIEWS.. 1883
SYSXSROBJECTAUTH.. 1885
XSRANNOTATIONINFO..1886
XSROBJECTCOMPONENTS..1887
XSROBJECTHIERARCHIES..1888
XSROBJECTS..1889

ODBC and JDBC catalog views..1891
SQLCOLPRIVILEGES.. 1892
SQLCOLUMNS...1893
SQLFOREIGNKEYS... 1903
SQLFUNCTIONCOLS.. 1904
SQLFUNCTIONS... 1913
SQLPRIMARYKEYS...1914
SQLPROCEDURECOLS... 1915
SQLPROCEDURES.. 1924
SQLSCHEMAS...1925
SQLSPECIALCOLUMNS.. 1926
SQLSTATISTICS..1932
SQLTABLEPRIVILEGES.. 1934
SQLTABLES...1935
SQLTYPEINFO.. 1936
SQLUDTS.. 1944

ANS and ISO catalog views... 1946
AUTHORIZATIONS...1947
CHARACTER_SETS...1948
CHECK_CONSTRAINTS..1949
COLUMN_PRIVILEGES...1950
COLUMNS... 1951
INFORMATION_SCHEMA_CATALOG_NAME... 1956
PARAMETERS...1957
REFERENTIAL_CONSTRAINTS..1961
ROUTINES.. 1962
ROUTINE_PRIVILEGES..1971
SCHEMATA... 1972
SEQUENCES... 1973
SQL_FEATURES..1974
SQL_LANGUAGES.. 1975
SQL_SIZING...1976
TABLE_CONSTRAINTS...1977
TABLE_PRIVILEGES...1978
TABLES... 1979
UDT_PRIVILEGES...1980
USAGE_PRIVILEGES..1981
USER_DEFINED_TYPES... 1982
VARIABLE_PRIVILEGES.. 1986
VIEWS...1987

Appendix G. Text search argument syntax.. 1989
Examples: Simple text search...1991
Advanced text search operators... 1992
Example: Using the CONTAINS function and SCORE function...1993
XML text search... 1995

XML text search grammar..1995
Examples: XPath text search...1997

Text search language options..1999

 xvii

Appendix H. Terminology differences... 2001

Appendix I. Reserved schema names and reserved words................................ 2003
Reserved schema names.. 2003
Reserved words... 2004

Appendix J. Related information.. 2009

Notices..2011
Programming interface information..2012
Trademarks..2012
Terms and conditions.. 2013

Index.. 2015

xviii

About SQL reference

This book defines Structured Query Language (SQL) as supported by Db2® for IBM® i. It contains reference
information for the tasks of system administration, database administration, application programming,
and operation. This manual includes syntax, usage notes, keywords, and examples for each of the SQL
statements used on the system.

Standards compliance
Db2 for i conforms with IBM and industry SQL Standards.

Distributed relational database architecture
• Open Group Publications: DRDA V5 Vol. 1: Distributed Relational Database Architecture(DRDA), at

https://publications.opengroup.org/c112
• Open Group Publications: DRDA V5 Vol. 2: Formatted Data Object Content Architecture(FD:OCA), at

https://publications.opengroup.org/c113
• Open Group Publications: DRDA V5 Vol. 3: Distributed Data Management Architecture (DDM), at https://

publications.opengroup.org/c114

Character data representation architecture
• Character Data Representation Architecture Reference and Registry, at http://www-01.ibm.com/

software/globalization/cdra/

Unicode standard
• The Unicode Standard, at http://www.unicode.org

SQL standards
Db2 for i conforms with the following industry standards for SQL:

• ISO/IEC 9075-1:2016, Information technology - Database languages - SQL - Part 1: Framework (SQL/
Framework)

• ISO/IEC 9075-2:2016, Information technology - Database languages - SQL - Part 2: Foundation (SQL/
Foundation)

• ISO/IEC 9075-3:2016, Information technology - Database languages - SQL - Part 3: Call-Level Interface
(SQL/CLI)

• ISO/IEC 9075-4:2016, Information technology - Database languages - SQL - Part 4: Persistent Stored
Modules (SQL/PSM)

• ISO/IEC 9075-10:2016, Information technology - Database languages - SQL - Part 10: Object Language
Bindings (SQL/OLB)

• ISO/IEC 9075-11:2016, Information technology - Database languages - SQL - Part 11: Information and
Definition Schemas (SQL/Schemata)

• ISO/IEC 9075-14:2016, Information technology - Database languages - SQL - Part 14: XML-Related
Specifications (SQL/XML)

Db2 for i conforms with the following industry technical report for SQL:

• ISO/IEC TR 19075-6:2016, Information technology - Database languages - SQL Technical Reports - Part
6: SQL support for JavaScript Object Notation (JSON)

© Copyright IBM Corp. 1998, 2015 xix

https://publications.opengroup.org/c112
https://publications.opengroup.org/c113
https://publications.opengroup.org/c114
https://publications.opengroup.org/c114
http://www-01.ibm.com/software/globalization/cdra/
http://www-01.ibm.com/software/globalization/cdra/
http://www.unicode.org

For strict adherence to the standards, consider using the standards options. Standards options can be
specified through the following interfaces:

Table 1. Standards Option Interfaces

SQL Interface Specification

Embedded SQL SQLCURRULE(*STD) parameter on the Create SQL Program
(CRTSQLxxx) commands. The SET OPTION statement can also be
used to set the SQLCURRULE values.

(For more information about CRTSQLxxx commands, see Embedded
SQL Programming.)

Run SQL Statements SQLCURRULE(*STD) parameter on the Run SQL Statements
(RUNSQLSTM) command.

(For more information about the RUNSQLSTM command, see SQL
Programming.)

Call Level Interface (CLI) on the server SQL_ATTR_HEX_LITERALS connection attribute

(For more information about CLI, see SQL Call Level Interfaces
(ODBC).)

JDBC or SQLJ on the server using IBM IBM
Developer Kit for Java™

Translate Hex connection property object

(For more information about JDBC and SQLJ, see IBM Developer Kit
for Java.)

ODBC on a client using the IBM i Access
Family ODBC Driver

Hex Parser Option in ODBC Setup

(For more information about ODBC, see IBM i Access.)

OLE DB on a client using the IBM i Access
Family OLE DB Provider

Hex Parser Option Connection Object Properties

(For more information about OLE DB, see IBM i Access.)

ADO .NET on a client using the IBM i Access
Family ADO .NET Provider

HexParserOption in Connection Object Properties

(For more information about ADO .NET, see IBM i Access.)

JDBC on a client using the IBM Toolbox for
Java

Interpret SQL hexadecimal constants as binary data in JDBC Setup

(For more information about JDBC, see IBM i Access.)

(For more information about the IBM Toolbox for Java, see IBM
Toolbox for Java.)

Assumptions relating to examples of SQL statements
The examples of SQL statements shown in this guide assume the following.

• SQL keywords are highlighted.
• Table names used in the examples are the sample tables provided in the SQL Programming topic

collection. Table names that are not provided in that appendix should use schemas that you create. You
can create a set of sample tables in your own schema by issuing the following SQL statement:

CALL QSYS.CREATE_SQL_SAMPLE ('your-schema-name')

Some examples use tables containing XML data. You can create these tables in your own schema by
issuing the following SQL statement:

xx About SQL reference

CALL QSYS.CREATE_XML_SAMPLE ('your-schema-name')

• The SQL naming convention is used.
• For COBOL examples, the APOST and APOSTSQL precompiler options are assumed (although they are

not the default in COBOL). Character-string constants within SQL and host language statements are
delimited by apostrophes (').

• A collating sequence of *HEX is used.

Whenever the examples vary from these assumptions, it is stated.

How to read the syntax diagrams
The following rules apply to the syntax diagrams used in this book.

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The ►►─── symbol indicates the beginning of the syntax diagram.

The ───► symbol indicates that the syntax is continued on the next line.

The ►─── symbol indicates that the syntax is continued from the previous line.

The ───►◄ symbol indicates the end of the syntax diagram.

Diagrams of syntactical units start with the |─── symbol and end with the ───| symbol.
• Required items appear on the horizontal line (the main path).

required_item

• Optional items appear below the main path.

required_item

optional_item

If an item appears above the main path, that item is optional, and has no effect on the execution of the
statement and is used only for readability.

required_item

optional_item

• If more than one item can be chosen, they appear vertically, in a stack.

If one of the items must be chosen, one item of the stack appears on the main path.

required_item required_choice

required_choice

If choosing one of the items is optional, the entire stack appears below the main path.

required_item

optional_choice

optional_choice

If one of the items is the default, it will appear above the main path and the remaining choices will be
shown below.

About SQL reference xxi

required_item

default_choice

optional_choice

optional_choice

If an optional item has a default when it is not specified, the default appears above the main path.

required_item

optional_choice

default_choice

required_choice

required_choice

optional_choice

• An arrow returning to the left, above the main line, indicates an item that can be repeated.

required_item repeatable_item

If the repeat arrow contains a comma, you must separate repeated items with a comma.

required_item

,

repeatable_item

A repeat arrow above a stack indicates that the items in the stack can be repeated.
• Keywords appear in uppercase (for example, FROM). They must be spelled exactly as shown. Variables

appear in all lowercase letters (for example, column-name). They represent user-supplied names or
values.

• If punctuation marks, parentheses, arithmetic operators, or other such symbols are shown, you must
enter them as part of the syntax.

• The syntax diagrams only contain the preferred or standard keywords. If nonstandard synonyms are
supported in addition to the standard keywords, they are described in the Notes sections instead of the
syntax diagrams. For maximum portability, use the preferred or standard keywords.

• Sometimes a single variable represents a larger fragment of the syntax. For example, in the following
diagram, the variable parameter-block represents the whole syntax fragment that is labeled
parameter-block:

required_item parameter-block

parameter-block
parameter1

parameter2 parameter3

parameter4

xxii About SQL reference

Conventions used in this book
This section specifies some conventions which are used throughout this manual.

Highlighting conventions
Bold Indicates SQL keywords used in examples and when introducing descriptions involving

the keyword.

Italics Indicates one of the following:

• Variables that represent items from a syntax diagram.
• The introduction of a new term.
• A reference to another source of information.

Conventions for describing mixed data values
When mixed data values are shown in the examples, the following conventions apply:

sbcs-string

dbcs-string

shift-out

shift-in

Represents the EBCDIC control character (X’ ’)

Represents the EBCDIC control character (X’ ’)

Represents a string of zero or more single-byte characters

Represents a string of zero or more double-byte characters

Represents a DBCS apostrophe (EBCDIC X’ ’)

Represents a DBCS G (EBCDIC X’ ’)

0E

0F

427D

42C7

Convention Meaning

Conventions for describing mixed data values description
Conventions for describing mixed data values. Shift-out character represented by X' 0E', shift-in
characters represented by X' 0F', single-byte characters represented by sbcs-string, double-byte
characters represented by dbcs-string, DBCS apostrophe represented by EBCDIC X' 427D, and DBCS
G represented by EBCDIC X' 42C7.

Conventions for describing Unicode data
When a specific Unicode UTF-16 code point is referenced, it can be expressed as U+n, where n is 4 to 6
hexadecimal digits. Leading zeros are omitted, unless the code point has fewer than 4 hexadecimal digits.
For example, the following values are valid representations of a UTF-16 code point:

 U+00001 U+0012 U+0123 U+1234 U+12345 U+123456

SQL accessibility
IBM is committed to providing interfaces and documentation that are easily accessible to the disabled
community.

For general information about IBM's Accessibility support visit the Accessibility Center at http://
www.ibm.com/able.

SQL accessibility support falls in two main categories.

About SQL reference xxiii

http://www.ibm.com/able

• System i® Navigator is graphical user interface to the IBM i operating system and Db2 for i. For
information about the Accessibility features supported in Windows graphical user interfaces, see
Accessibility in the Windows Help Index.

• Online documentation, online help, and prompted SQL interfaces can be accessed by a Windows Reader
program such as the IBM Home Page Reader. For information about the IBM Home Page Reader and
other tools, visit the Accessibility Center .

The IBM Home Page Reader can be used to access all descriptive text in this book, all articles in the SQL
Information Center, and all SQL messages. Due to the complex nature of SQL syntax diagrams, however,
the reader will skip syntax diagrams. Two alternatives are provided for better ease of use:

• Interactive SQL and Query Manager

Interactive SQL and Query Manager are traditional file interfaces that provide prompting for SQL
statements. These are part of the IBM DB2® Query Manager and SQL Development Kit for i. For more
information about Interactive SQL and Query Manager, see the SQL Programming and Query Manager

Use topics.
• SQL Assist

SQL Assist is a graphical user interface that provides a prompted interface to SQL statements. This
is part of System i Navigator. For more information, see the System i Navigator online help and the
Information Center.

xxiv IBM i: Db2 for i SQL Reference

http://www.ibm.com/able
http://public.dhe.ibm.com/systems/power/docs/systemi/v6r1/en_US/sc415212.pdf
http://public.dhe.ibm.com/systems/power/docs/systemi/v6r1/en_US/sc415212.pdf

PDF file for SQL reference

Use this to view and print a PDF of this information.

To view or download the PDF version of this document, select SQL reference.

Saving PDF files
To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF link in your browser.
2. Click the option that saves the PDF locally.
3. Navigate to the directory in which you want to save the PDF.
4. Click Save.

Downloading Adobe Reader
You need Adobe Reader installed on your system to view or print these PDFs. You can download a free
copy from the Adobe Web site (http://get.adobe.com/reader/) .

© Copyright IBM Corp. 1998, 2015 xxv

http://get.adobe.com/reader/

xxvi IBM i: Db2 for i SQL Reference

What's new for IBM i 7.3

This topic highlights the changes made to this topic collection for IBM i 7.3.

The major new features covered in this book include:

• System-period temporal tables
• Attach and detach partitions for a table
• Additional OLAP functions
• Additional aggregate functions
• PROCESS_ID and THREAD_ID built-in global variables
• Enhancements to ROUND, TRUNCATE, TIMESTAMP_FORMAT, and VARCHAR_FORMAT scalar functions
• Inlining for SQL table functions
• Support for the EXTIND option in SET OPTION for SQL functions, procedures, and triggers
• Required Db2 PTF Group level tracking added for static statements to SYSPROGRAMSTMTSTAT
• Increase maximum number of parameters for scalar functions and table functions to 2000
• Increase number of return columns for table functions to 8000

In addition, the following enhancements are new since 7.2:

• JOB_NAME and SERVER_MODE_JOB_NAME built-in global variables
• REGEXP_xxx scalar functions and REGEXP_LIKE predicate for regular expression handling
• OVERLAY and LOCATE_IN_STRING scalar functions
• VARBINARY_FORMAT and VARCHAR_FORMAT_BINARY scalar functions
• LIMIT and OFFSET support for queries
• REPLACE option for CREATE TABLE
• System name for CREATE VARIABLE
• Support for PIPE statement in SQL table functions
• Increase maximum number of indexes on a table to approximately 15000

What's new as of May 2022
• HTTP_PATCH and HTTP_PATCH_VERBOSE functions have been added in QSYS2: “HTTP_PATCH” on

page 432 and “HTTP_PATCH_VERBOSE” on page 691

What's new as of September 2021
• New HTTP functions in QSYS2 can make HTTP requests that use web services. These functions use

the HTTP Transport support provided by the AXISC APIs: “HTTP_DELETE” on page 427, “HTTP_GET”
on page 428, “HTTP_POST” on page 433, “HTTP_PUT” on page 434, “HTTP_DELETE_VERBOSE”
on page 689, “HTTP_GET_VERBOSE” on page 690, “HTTP_POST_VERBOSE” on page 692,
“HTTP_PUT_VERBOSE” on page 693

What's new as of April 2021
• SYSCOLUMNS2 view returns attributes for DDS created files: “SYSCOLUMNS2” on page 1725
• SYSPACKAGESTAT returns an indication that the package contains single use statements:

“SYSPACKAGESTAT” on page 1780

© Copyright IBM Corp. 1998, 2015 xxvii

What's new as of October 2020
• For CREATE FUNCTION, an external name that is a service program name does not require a library
qualifier when the string form of the name is used. “Naming conventions” on page 48

• The SELECTIVITY clause allows user hints for individual predicates: “Search conditions” on page 227
• CREATE SEQUENCE supports the FOR SYSTEM NAME clause: “CREATE SEQUENCE” on page 1108
• DROP supports the IF EXISTS clause: “DROP” on page 1288
• The WHENEVER statement can call an internal procedure when a monitored condition is encountered:

“WHENEVER” on page 1576
• SYSCOLUMNS2_SESSION view returns columns in QTEMP: “SYSCOLUMNS2_SESSION” on page 1736

What's new as of April 2020
• The language used to define SQL functions, procedures, and triggers is referred to as SQL PL (SQL

Procedural Language)
• Synonyms for existing functions: “ARRAY_MAX_CARDINALITY” on page 306 and “ARRAY_TRIM” on

page 307
• INTERPRET function assigns a data type to binary data: “INTERPRET” on page 444
• JSON_TABLE, JSON_QUERY, JSON_VALUE, JSON_TO_BSON, and BSON_TO_JSON have been modified

to support a JSON expression that is an array: “JSON_TABLE” on page 694, “JSON_QUERY” on page
457, “JSON_VALUE” on page 463, “JSON_TO_BSON” on page 462, “BSON_TO_JSON” on page 322

• Extended indicators can be used in OPEN and EXECUTE to allow omitting host variables from the USING
list: “OPEN” on page 1429, “EXECUTE” on page 1304

• TAG statement added to complement WHENEVER statement for fully free form ILE RPG: “TAG” on page
1554

• Extended indicators supported in SQL PL: “assignment-statement” on page 1590
• Documented table SYSDUMMY1: “SYSDUMMY1” on page 1747
• Variable length segment and blocked insert information added to SYSPARTITIONSTAT and

SYSTABLESTAT views: “SYSPARTITIONSTAT” on page 1813, “SYSTABLESTAT” on page 1858

What's new as of October 2019
• ISNULL and NOTNULL are synonyms for the IS NULL and IS NOT NULL predicates: “NULL predicate” on

page 219
• Synonyms for existing functions: NVL, POW, RANDOM, STRLEFT, STRRIGHT, STRPOS, TO_CLOB: “NVL”

on page 519, “POWER or POW” on page 529, “RANDOM or RAND” on page 535, “STRLEFT” on page
578, “STRRIGHT” on page 580, “STRPOS” on page 579, and “TO_CLOB” on page 602

• CREATE FUNCTION (SQL scalar), CREATE_FUNCTION (SQL table), and CREATE PROCEDURE (SQL)
support the PROGRAM NAME clause to allow the program or service program name to be specified:
“CREATE FUNCTION (SQL scalar)” on page 1028, “CREATE FUNCTION (SQL table)” on page 1042, and
“CREATE PROCEDURE (SQL)” on page 1090

• CREATE FUNCTION (external scalar), CREATE_FUNCTION (external table), and CREATE PROCEDURE
(external) removed the limit of 32 routine attributes that can be saved in the associated program or
service program object.

• Additional index invalidation information added to SYSINDEXSTAT, SYSPARTITIONINDEXES, and
SYSPARTITIONINDEXSTAT: “SYSINDEXSTAT” on page 1761, “SYSPARTITIONINDEXES” on page 1796,
and “SYSPARTITIONINDEXSTAT” on page 1803

What's new as of April 2019
• CREATE INDEX allows index columns to be renamed: “CREATE INDEX” on page 1055
• INSERT a row containing only default values: “INSERT” on page 1395

xxviii What's new for IBM i 7.3

What's new as of August 2018
• The table correlation name for nested table expressions, table functions, JSON_TABLE, XMLTABLE, and

UNNEST is optional: “table-reference” on page 742
• DECFLOAT_FORMAT scalar function: “DECFLOAT_FORMAT” on page 371
• JSON_OBJECT and JSON_OBJECTAGG have a new option for duplicate key behavior. The default is to

allow duplicate keys: “JSON_OBJECT” on page 453 and “JSON_OBJECTAGG” on page 273
• JSON_TABLE, JSON_QUERY, and JSON_VALUE tolerate duplicate keys: “JSON_TABLE” on page 694,

“JSON_QUERY” on page 457, and “JSON_VALUE” on page 463
• EXTRACT function has more options: “EXTRACT” on page 404
• NOW function allows optional precision: “NOW” on page 517
• VARCHAR_FORMAT supports 2 new timestamp format string elements for microseconds and

milliseconds: “VARCHAR_FORMAT” on page 629
• Unqualified functions, variables, and types within an SQL procedure or function will record a value of

CURRENT PATH in SYSROUTINEDEP: “CREATE PROCEDURE (SQL)” on page 1090, “CREATE FUNCTION
(SQL scalar)” on page 1028, and “CREATE FUNCTION (SQL table)” on page 1042

• SYSPARTITIONSTAT returns information about partial transactions: “SYSPARTITIONSTAT” on page 1813

What's new as of October 2017
• JSON publishing and scalar functions: “JSON_ARRAYAGG” on page 268, “JSON_OBJECTAGG” on page

273, “JSON_ARRAY” on page 449, “JSON_OBJECT” on page 453, “JSON_QUERY” on page 457, and
“JSON_VALUE” on page 463

• LIMIT and OFFSET restrictions removed: “fetch-clause” on page 780 and “offset-clause” on page 779
• DELETE and UPDATE allow ORDER BY, FETCH, and OFFSET: “DELETE” on page 1259 and “UPDATE” on

page 1561
• GRANT and REVOKE on schemas: “GRANT (schema privileges)” on page 1368 and “REVOKE (schema

privileges)” on page 1469

What's new as of March 2017
• IS JSON and JSON_EXISTS predicates
• LISTAGG aggregate function
• LTRIM and RTRIM functions support a second argument
• CREATE TRIGGER allows dynamic statements to use 3-part names

What's new as of October 2016
• New OLAP function: PERCENT_RANK
• REPLACE function's third argument is optional
• JSON_TABLE table function
• Functions can be defined as STATEMENT DETERMINISTIC
• INCLUDE statement supported for SQL procedures, functions, and triggers
• SYSPARTITIONSTAT returns the TEXT value
• SYSPROGRAMSTAT returns module name

How to see what's new or changed
To help you see where technical changes have been made, this information uses:

• The image to mark where new or changed information begins.
• The image to mark where new or changed information ends.

What's new for IBM i 7.3 xxix

To find other information about what's new or changed this release, see the Memo to users.

xxx IBM i: Db2 for i SQL Reference

Chapter 1. Concepts
This chapter provides a high-level view of concepts that are important to understand when using
Structured Query Language (SQL). The reference material contained in the rest of this manual provides a
more detailed view.

Relational database
A relational database is a database that can be perceived as a set of tables and can be manipulated in
accordance with the relational model of data. The relational database contains a set of objects used to
store, access, and manage data. The set of objects includes tables, views, indexes, aliases, user defined
types, functions, procedures, sequences, variables, and packages.

There are three types of relational databases a user can access from an IBM i.

system relational database
There is one default relational database on an IBM i. The system relational database is always local to
that IBM i. It consists of all the database objects that exist on disk attached to the IBM i that are not
stored on independent auxiliary storage pools. For more information on independent auxiliary storage
pools, see the System Management category of the IBM i Information Center.

The name of the system relational database is, by default, the same as the IBM i system name.
However, a different name can be assigned through the use of the ADDRDBDIRE (Add RDB Directory
Entry) command or System i Navigator.

user relational database
The user may create additional relational databases on an IBM i by configuring independent auxiliary
storage pools on the system. Each primary independent auxiliary storage pool is a relational database.
It consists of all the database objects that exist on the independent auxiliary storage pool disks.
Additionally, all database objects in the system relational database of the IBM i product to which the
independent auxiliary storage pool is connected are logically included in a user relational database.
Thus, the name of any schema created in a user relational database must not already exist in that user
relational database or in the associated system relational database.

Although the objects in the system relational database are logically included in a user relational
database, certain dependencies between the objects in the system relational database and the user
relational database are not allowed:

• A view must be created into a schema that exists in the same relational database as its referenced
tables and views, except that a view created into QTEMP can reference tables and views in the user
relational database.

• An index must be created into a schema that exists in the same relational database as its referenced
table.

• A trigger or constraint must be created into a schema that exists in the same relational database as
its base table.

• The parent table and dependent table in a referential constraint must both exist in the same
relational database.

• Any object in the system relational database can only reference functions, procedures, and types
in the same system relational database. However, objects in the user relational database may
reference functions, procedures, and types in the system relational database or the same user
relational database. However, operations on such an object may fail if the other relational database
is not available. For example, if a user relational database is varied off and then varied on to another
system.

A user relational database is local to an IBM i while the independent auxiliary storage pool is varied
on. Independent auxiliary storage pools can be varied off on one IBM i and then varied on to another
IBM i. Hence, a user relational databases may be local to a given IBM i at one point in time and

© Copyright IBM Corp. 1998, 2015 1

remote at a different point in time. For more information on independent auxiliary storage pools, see
the System Management category of the IBM i Information Center.

The name of the user relational database is, by default, the same as the independent auxiliary storage
pool name. However, a different name can be assigned through the use of the ADDRDBDIRE (Add RDB
Directory Entry) command or System i Navigator.

remote relational database
Relational databases on other IBM i and non-IBM i products can be accessed remotely. These
relational databases must be registered through the use of the ADDRDBDIRE (Add RDB Directory
Entry) command or System i Navigator.

The database manager is the name used generically to identify the IBM i Licensed Internal Code and the
Db2 for i portion of the code that manages the relational database.

Structured Query Language
Structured Query Language (SQL) is a standardized language for defining and manipulating data in a
relational database. In accordance with the relational model of data, the database is perceived as a set of
tables, relationships are represented by values in tables, and data is retrieved by specifying a result table
that can be derived from one or more base tables.

SQL statements are executed by a database manager. One of the functions of the database manager is
to transform the specification of a result table into a sequence of internal operations that optimize data
retrieval. This transformation occurs when the SQL statement is prepared. This transformation is also
known as binding.

All executable SQL statements must be prepared before they can be executed. The result of preparation is
the executable or operational form of the statement. The method of preparing an SQL statement and the
persistence of its operational form distinguish static SQL from dynamic SQL.

Static SQL
The source form of a static SQL statement is embedded within an application program written in a host
language such as COBOL, C, or Java. The statement is prepared before the program is executed and the
operational form of the statement persists beyond the execution of the program.

A source program containing static SQL statements must be processed by an SQL precompiler before it
is compiled. The precompiler checks the syntax of the SQL statements, turns them into host language
comments, and generates host language statements to call the database manager.

The preparation of an SQL application program includes precompilation, the preparation of its static SQL
statements, and compilation of the modified source program.

Dynamic SQL
Programs containing embedded dynamic SQL statements must be precompiled like those containing
static SQL, but unlike static SQL, the dynamic SQL statements are constructed and prepared at run time.
The source form of the statement is a character or graphic string that is passed to the database manager
by the program using the static SQL PREPARE or EXECUTE IMMEDIATE statement. A statement prepared
using the PREPARE statement can be referenced in a DECLARE CURSOR, DESCRIBE, or EXECUTE
statement. The operational form of the statement persists for the duration of the connection or until
the last SQL program leaves the call stack.

SQL statements embedded in a REXX application are dynamic SQL statements. SQL statements
submitted to the interactive SQL facility and to the Call Level Interface (CLI) are also dynamic SQL
statements.

Extended Dynamic SQL
An extended dynamic SQL statement is neither fully static nor fully dynamic. The QSQPRCED API provides
users with extended dynamic SQL capability. Like dynamic SQL, statements can be prepared, described,

2 IBM i: Db2 for i SQL Reference

and executed using this API. Unlike dynamic SQL, SQL statements prepared into a package by this API
persist until the package or statement is explicitly dropped. For more information, see the Database and
File APIs information in the Programming category of the IBM i Information Center.

Interactive SQL
An interactive SQL facility is associated with every database manager. Essentially, every interactive SQL
facility is an SQL application program that reads statements from a workstation, prepares and executes
them dynamically, and displays the results to the user. Such SQL statements are said to be issued
interactively.

The interactive facilities for Db2 for i are invoked by the STRSQL command, the STRQM command, or the
Run SQL Script support of System i Navigator. For more information about the interactive facilities for

SQL, see the SQL Programming and Query Manager Use books.

SQL Call Level Interface and Open Database Connectivity
The DB2 Call Level Interface (CLI) is an application programming interface in which functions are provided
to application programs to process dynamic SQL statements. DB2 CLI allows users of any of the ILE
languages to access SQL functions directly through procedure calls to a service program provided by
Db2 for i. CLI programs can also be compiled using an Open Database Connectivity (ODBC) Software
Developer's Kit, available from Microsoft or other vendors, enabling access to ODBC data sources. Unlike
using embedded SQL, no precompilation is required. Applications developed using this interface may
be executed on a variety of databases without being compiled against each of the databases. Through
the interface, applications use procedure calls at execution time to connect to databases, to issue SQL
statements, and to get returned data and status information.

The DB2 CLI interface provides many features not available in embedded SQL. For example:

• CLI provides function calls which support a consistent way to query and retrieve database system
catalog information across the DB2 family of database management systems. This reduces the need to
write application server specific catalog queries.

• Stored procedures called from application programs written using CLI can return result sets to those
programs.

For a complete description of all the available functions, and their syntax, see SQL Call Level Interfaces
(ODBC) book.

Java DataBase Connectivity (JDBC) and embedded SQL for Java (SQLJ) programs
Db2 for i implements two standards-based Java programming APIs: Java Database Connectivity (JDBC)
and embedded SQL for Java (SQLJ). Both can be used to create Java applications and applets that access
DB2.

JDBC calls are translated to calls to DB2 CLI through Java native methods. You can access Db2 for i
databases through two JDBC drivers: IBM Developer Kit for Java driver or IBM Toolbox for Java JDBC
driver. For specific information about the IBM Toolbox for Java JDBC driver, see IBM Toolbox for Java.

Static SQL cannot be used by JDBC. SQLJ applications use JDBC as a foundation for such tasks as
connecting to databases and handling SQL errors, but can also contain embedded static SQL statements
in the SQLJ source files. An SQLJ source file has to be translated with the SQLJ translator before the
resulting Java source code can be compiled.

For more information about JDBC and SQLJ applications, refer to the Developer Kit for Java book.

OLE DB and ADO (ActiveX Data Object)
IBM i Access for Windows includes OLE DB Providers, along with the Programmer's Toolkit to allow DB2
client/server application development quick and easy from the Windows client PC. For more information,
refer to the IBM i Access for Windows OLE DB provider in the IBM i Information Center.

Chapter 1. Concepts 3

http://public.dhe.ibm.com/systems/power/docs/systemi/v6r1/en_US/sc415212.pdf

.NET
IBM i Access for Windows include a .NET Provider to allow DB2 client/server application development
quick and easy from the Windows client PC. For more information, refer to the IBM i Access for
Windows .NET provider in the IBM i Information Center.

Schemas
The objects in a relational database are organized into sets called schemas. A schema provides a logical
classification of objects in a relational database.

A schema name is used as the qualifier of SQL object names such as tables, views, indexes, and triggers.
A schema is also called a collection or library.

A schema has a name and may have a different system name. The system name is the name used by
the IBM i operating system. Either name is acceptable wherever a schema-name is specified in SQL
statements.

A schema is distinct from, and should not be confused with, an XML schema, which is a standard that
describes the structure and validates the content of XML documents.

Each database manager supports a set of schemas that are reserved for use by the database manager.
Such schemas are called system schemas. The schema SESSION and all schemas that start with 'SYS' and
'Q' are system schemas.

User objects must not be created in system schemas, other than SESSION. SESSION is always used as the
schema name for declared temporary tables. Users should not create schemas that start with 'SYS' or 'Q'.

A schema is also an object in the relational database. It is explicitly created using the CREATE SCHEMA
statement.1 For more information, see “CREATE SCHEMA” on page 1103.

An object that is contained in a schema is assigned to the schema when the object is created. The schema
to which it is assigned is determined by the name of the object if specifically qualified with a schema
name or by the default schema name if not qualified.

For example, a user creates a schema called C:

 CREATE SCHEMA C

The user can then issue the following statement to create a table called X in schema C:

 CREATE TABLE C.X (COL1 INT)

Tables
Tables are logical structures maintained by the database manager. Tables are made up of columns and
rows. There is no inherent order of the rows within a table. At the intersection of every column and row is
a specific data item called a value. A column is a set of values of the same type. A row is a sequence of
values such that the nth value is a value of the nth column of the table.

There are three types of tables:

• A base table is created with the CREATE TABLE statement and is used to hold persistent user data. For
more information see “CREATE TABLE” on page 1115.

A base table has a name and may have a different system name. The system name is the name used
by the IBM i operating system. Either name is acceptable wherever a table-name is specified in SQL
statements.

1 A schema can also be created using the CRTLIB CL command, however, the catalog views and journal and
journal receiver created by using the CREATE SCHEMA statement will not be created with CRTLIB.

4 IBM i: Db2 for i SQL Reference

A column of a base table has a name and may have a different system column name. The system
column name is the name used by the IBM i operating system. Either name is acceptable wherever
column-name is specified in SQL statements. For more information see “CREATE TABLE” on page 1115.

A materialized query table is a base table created with the CREATE TABLE statement and used to
contain data that is derived (materialized) from a select-statement. A source table is a base table, view,
table expression, or user-defined table function. The select-statement specifies the query that is used to
refresh the data in the materialized query table.

Materialized query tables can be used to improve the performance of SQL queries. If the database
manager determines that a portion of a query could be resolved by using the data in a materialized
query table, the query may be rewritten by the database manager to use the materialized query table.
For more information about creating materialized query tables, see “CREATE TABLE” on page 1115.

A temporal table associates time-based state information with every change to the data in the table. The
database stores the historical rows (deleted rows or the original values of rows that have been updated)
in a history table so you can query the past state of your data. For more information about creating
temporal tables, see “ADD VERSIONING USE HISTORY TABLE history-table-name” on page 902.

A partitioned table is a table whose data is contained in one or more local partitions (members). There
are two mechanisms that can be specified to determine into which partition a specific row will be
inserted. Range partitioning allows a user to specify different ranges of values for each partition. When a
row is inserted, the values specified in the row are compared to the specified ranges to determine which
partition is appropriate. Hash partitioning allows a user to specify a partitioning key on which a hash
algorithm is used to determine which partition is appropriate. The partitioning key is a set of one or more
columns in a partitioned table that are used to determine in which partition a row belongs.

A distributed table is a table whose data is partitioned across a nodegroup. A nodegroup is an object that
provides a logical grouping of a set of two or more systems. The partitioning key is a set of one or more
columns in a distributed table that are used to determine on which system a row belongs. For more
information about distributed tables, see the DB2 Multisystem book.

• A result table is a set of rows that the database manager selects or generates from a query. For
information on queries, see Chapter 6, “Queries,” on page 735.

• A declared temporary table is created with a DECLARE GLOBAL TEMPORARY TABLE statement and is
used to hold temporary data on behalf of a single application. This table is dropped implicitly when the
application disconnects from the database.

Keys
A key is one or more expressions that are identified as such in the description of an index, unique
constraint, or a referential constraint. The same expression can be part of more than one key.

A composite key is an ordered set of expressions of the same base table. The ordering of the expressions
is not constrained by their ordering within the base table. The term value when used with respect to a
composite key denotes a composite value. Thus, a rule such as "the value of the foreign key must be
equal to the value of the primary key" means that each component of the value of the foreign key must be
equal to the corresponding component of the value of the primary key.

Constraints
A constraint is a rule that the database manager enforces.

There are three types of constraints:

• A unique constraint is a rule that forbids duplicate values in one or more columns within a table. Unique
and primary keys are the supported unique constraints. For example, a unique constraint can be defined
on the supplier identifier in the supplier table to ensure that the same supplier identifier is not given to
two suppliers.

• A referential constraint is a logical rule about values in one or more columns in one or more tables. For
example, a set of tables shares information about a corporation's suppliers. Occasionally, a supplier's ID
changes. You can define a referential constraint stating that the ID of the supplier in a table must match

Chapter 1. Concepts 5

a supplier ID in the supplier information. This constraint prevents insert, update, or delete operations
that would otherwise result in missing supplier information.

• A check constraint sets restrictions on data added to a specific table. For example, a check constraint
can ensure that the salary level for an employee is at least $20 000 whenever salary data is added or
updated in a table containing personnel information.

Unique constraints
A unique constraint is the rule that the values of a key are valid only if they are unique. A key that is
constrained to have unique values is called a unique key. A unique constraint is enforced by using a unique
index. The unique index is used by the database manager to enforce the uniqueness of the values of the
key during the execution of INSERT and UPDATE statements.

There are two types of unique constraints:

• Unique keys can be defined as a primary key using a CREATE TABLE or ALTER TABLE statement. A base
table cannot have more than one primary key. A CHECK constraint will be added implicitly to enforce the
rule that the NULL value is not allowed in the columns that make up the primary key. A unique index on
a primary key is called a primary index.

• Unique keys can be defined using the UNIQUE clause of the CREATE TABLE or ALTER TABLE statement.
A base table can have more than one set of UNIQUE keys. Multiple null values are allowed.

A unique key that is referenced by the foreign key of a referential constraint is called the parent key.
A parent key is either a primary key or a UNIQUE key. When a base table is defined as a parent in a
referential constraint, the default parent key is its primary key.

The unique index that is used to enforce a unique constraint is implicitly created when the unique
constraint is defined. Alternatively, it can be defined by using the CREATE UNIQUE INDEX statement.

For more information about defining unique constraints, see “ALTER TABLE” on page 869 or “CREATE
TABLE” on page 1115.

Referential constraints
Referential integrity is the state of a database in which all values of all foreign keys are valid. A foreign key
is a key that is part of the definition of a referential constraint.

A referential constraint is the rule that the values of the foreign key are valid only if:

• They appear as values of a parent key, or
• Some component of the foreign key is null.

The base table containing the parent key is called the parent table of the referential constraint, and the
base table containing the foreign key is said to be a dependent of that table.

Referential constraints are optional and can be defined in CREATE TABLE statements and ALTER TABLE
statements. Referential constraints are enforced by the database manager during the execution of
INSERT, UPDATE, and DELETE statements. The enforcement is effectively performed at the completion of
the statement except for delete and update rules of RESTRICT which are enforced as rows are processed.

Referential constraints with a delete or update rule of RESTRICT are always enforced before any other
referential constraints. Other referential constraints are enforced in an order independent manner. That is,
the order does not affect the result of the operation. Within an SQL statement:

• A row can be marked for deletion by any number of referential constraints with a delete rule of
CASCADE.

• A row can only be updated by one referential constraint with a delete rule of SET NULL or SET DEFAULT.
• A row that was updated by a referential constraint cannot also be marked for deletion by another

referential constraint with a delete rule of CASCADE.

The rules of referential integrity involve the following concepts and terminology:

6 IBM i: Db2 for i SQL Reference

Parent key
A primary key or unique key of a referential constraint.

Parent row
A row that has at least one dependent row.

Parent table
A base table that is a parent in at least one referential constraint. A base table can be defined as a
parent in an arbitrary number of referential constraints.

Dependent table
A base table that is a dependent in at least one referential constraint. A base table can be defined as
a dependent in an arbitrary number of referential constraints. A dependent table can also be a parent
table.

Descendent table
A base table is a descendent of base table T if it is a dependent of T or a descendent of a dependent of
T.

Dependent row
A row that has at least one parent row.

Descendent row
A row is a descendent of row p if it is a dependent of p or a descendent of a dependent of p.

Referential cycle
A set of referential constraints such that each table in the set is a descendent of itself.

Self-referencing row
A row that is a parent of itself.

Self-referencing table
A base table that is a parent and a dependent in the same referential constraint. The constraint is
called a self-referencing constraint.

The insert rule of a referential constraint is that a nonnull insert value of the foreign key must match some
value of the parent key of the parent table. The value of a composite foreign key is null if any component
of the value is null.

The update rule of a referential constraint is specified when the referential constraint is defined. The
choices are NO ACTION and RESTRICT. The update rule applies when a row of the parent or dependent
table is updated. The update rule of a referential constraint is that a nonnull update value of a foreign
key must match some value of the parent key of the parent table. The value of a composite foreign key is
treated as null if any component of the value is null.

The delete rule of a referential constraint is specified when the referential constraint is defined. The
choices are RESTRICT, NO ACTION, CASCADE, SET NULL or SET DEFAULT. SET NULL can be specified only
if some column of the foreign key allows null values.

The delete rule of a referential constraint applies when a row of the parent table is deleted. More
precisely, the rule applies when a row of the parent table is the object of a delete or propagated
delete operation (defined below) and that row has dependents in the dependent table of the referential
constraint. Let P denote the parent table, let D denote the dependent table, and let p denote a parent row
that is the object of a delete or propagated delete operation. If the delete rule is:

• RESTRICT or NO ACTION, an error is returned and no rows are deleted
• CASCADE, the delete operation is propagated to the dependents of p in D
• SET NULL, each nullable column of the foreign key of each dependent of p in D is set to null
• SET DEFAULT, each column of the foreign key of each dependent of p in D is set to its default value

Each referential constraint in which a table is a parent has its own delete rule, and all applicable delete
rules are used to determine the result of a delete operation. Thus, a row cannot be deleted if it has
dependents in a referential constraint with a delete rule of RESTRICT or NO ACTION, or if the deletion
cascades to any of its descendants that are dependents in a referential constraint with the delete rule of
RESTRICT or NO ACTION.

Chapter 1. Concepts 7

The deletion of a row from parent table P involves other tables and may affect rows of these tables:

• If table D is a dependent of P and the delete rule is RESTRICT or NO ACTION, D is involved in the
operation but is not affected by the operation.

• If D is a dependent of P and the delete rule is SET NULL, D is involved in the operation, and rows of D
may be updated during the operation.

• If D is a dependent of P and the delete rule is SET DEFAULT, D is involved in the operation, and rows of D
may be updated during the operation.

• If D is a dependent of P and the delete rule is CASCADE, D is involved in the operation and rows of D
may be deleted during the operation.

If rows of D are deleted, the delete operation on P is said to be propagated to D. If D is also a parent
table, the actions described in this list apply, in turn, to the dependents of D.

Any base table that may be involved in a delete operation on P is said to be delete-connected to P. Thus, a
base table is delete-connected to base table P if it is a dependent of P or a dependent of a base table to
which delete operations from P cascade.

For more information on defining referential constraints, see “ALTER TABLE” on page 869 or “CREATE
TABLE” on page 1115.

Check constraints
A check constraint is a rule that specifies which values are allowed in every row of a base table. The
definition of a check constraint contains a search condition that must not be FALSE for any row of the base
table.

Each column referenced in the search condition of a check constraint on a table T must identify a column
of T. For more information about search conditions, see “Search conditions” on page 227.

A base table can have more than one check constraint. Each check constraint defined on a base table is
enforced by the database manager when either of the following occur:

• A row is inserted into that base table.
• A row of that base table is updated.

A check constraint is enforced by applying its search condition to each row that is inserted or updated in
that base table. An error is returned if the result of the search condition is FALSE for any row.

For more information about defining check constraints, see “ALTER TABLE” on page 869 or “CREATE
TABLE” on page 1115.

Indexes
An index is a set of pointers to rows of a base table. Each index is based on the values of data in one or
more table columns. An index is an object that is separate from the data in the table. When an index is
created, the database manager builds this structure and maintains it automatically.

An index has a name and may have a different system name. The system name is the name used by
the IBM i operating system. Either name is acceptable wherever an index-name is specified in SQL
statements. For more information, see “CREATE INDEX” on page 1055.

The database manager uses two types of indexes:

• Binary radix tree index

Binary radix tree indexes provide a specific order to the rows of a table. The database manager uses
them to:

– Improve performance. In most cases, access to data is faster than without an index.
– Ensure uniqueness. A table with a unique index cannot have rows with identical keys.

• Encoded vector index

8 IBM i: Db2 for i SQL Reference

Encoded vector indexes do not provide a specific order to the rows of a table. The database manager
only uses these indexes to improve performance.

An encoded vector access path works with the help of encoded vector indexes and provides access to
a database file by assigning codes to distinct key values and then representing these values in an array.
The elements of the array can be 1, 2, or 4 bytes in length, depending on the number of distinct values
that must be represented. Because of their compact size and relative simplicity, encoded vector access
paths provide for faster scans that can be more easily processed in parallel.

An index is created with the CREATE INDEX statement. For more information about creating indexes, see
“CREATE INDEX” on page 1055.

For more information about indexes, see IBM Db2 for i indexing methods and strategies .

Triggers
A trigger defines a set of actions that are executed automatically whenever a delete, insert, or update
operation occurs on a specified table or view. When such an SQL operation is executed, the trigger is said
to be activated.

The set of actions can include almost any operation allowed on the system. A few operations are not
allowed, such as:

• Commit or rollback (if the same commitment definition is used for the trigger actions and the triggering
event)

• CONNECT, SET CONNECTION, DISCONNECT, and RELEASE statements
• SET SESSION AUTHORIZATION

For a complete list of restrictions, see “CREATE TRIGGER” on page 1170 and the Database Programming
book.

Triggers can be used along with referential constraints and check constraints to enforce data integrity
rules. Triggers are more powerful than constraints because they can also be used to cause updates to
other tables, automatically generate or transform values for inserted or updated rows, or invoke functions
that perform operations both inside and outside of database manager. For example, instead of preventing
an update to a column if the new value exceeds a certain amount, a trigger can substitute a valid value
and send a notice to an administrator about the invalid update.

Triggers are a useful mechanism to define and enforce transitional business rules that involve different
states of the data (for example, salary cannot be increased by more than 10 percent). Such a limit
requires comparing the value of a salary before and after an increase. For rules that do not involve more
than one state of the data, consider using referential and check constraints.

Triggers also move the application logic that is required to enforce business rules into the database,
which can result in faster application development and easier maintenance because the business rule is
no longer repeated in several applications, but one version is centralized to the trigger. With the logic in
the database, for example, the previously mentioned limit on increases to the salary column of a table,
database manager checks the validity of the changes that any application makes to the salary column. In
addition, the application programs do not need to be changed when the logic changes.

For more information about creating triggers, see “CREATE TRIGGER” on page 1170. 2

Triggers are optional and are defined using the CREATE TRIGGER statement or the Add Physical File
Trigger (ADDPFTRG) CL command. Triggers are dropped using the DROP TRIGGER statement or the
Remove Physical File Trigger (RMVPFTRG) CL command. For more information about creating
triggers, see the CREATE TRIGGER statement. For more information about triggers in general, see the
“CREATE TRIGGER” on page 1170 statement or the SQL Programming and the Database Programming
books.

2 The ADDPFTRG CL command also defines a trigger, including triggers that are activated on any read
operation.

Chapter 1. Concepts 9

https://www-304.ibm.com/partnerworld/wps/servlet/ContentHandler/stg_ast_sys_wp_db2_i_indexing_methods_strategies

There are a number of criteria that are defined when creating a trigger which are used to determine when
a trigger should be activated.

• The subject table (also known as the triggering table) defines the table or view for which the trigger is
defined.

• The trigger event defines a specific SQL operation that modifies the subject table. The operation could
be delete, insert, or update.

• The trigger activation time defines whether the trigger should be activated before or after the trigger
event is performed on the subject table.

The statement that causes a trigger to be activated will include a set of affected rows. These are the rows
of the subject table that are being deleted, inserted or updated. The trigger granularity defines whether
the actions of the trigger will be performed once for the statement or once for each of the rows in the set
of affected rows.

The trigger action consists of an optional search condition and a set of SQL statements that are executed
whenever the trigger is activated. The SQL statements are only executed if no search condition is
specified or the specified search condition evaluates to true.

The triggered action may refer to the values in the set of affected rows. This is supported through the use
of transition variables. Transition variables use the names of the columns in the subject table qualified by
a specified name that identifies whether the reference is to the old value (prior to the update) or the new
value (after the update). The new value can also be changed using the SET transition-variable statement
in before update or insert triggers. Another means of referring to the values in the set of affected rows is
using transition tables. Transition tables also use the names of the columns of the subject table but have
a name specified that allows the complete set of affected rows to be treated as a table. Transition tables
can only be used in after triggers. Separate transition tables can be defined for old and new values.

Multiple triggers can be specified for a combination of table, event, or activation time. The order in which
the triggers are activated is the same as the order in which they were created. Thus, the most recently
created trigger will be the last trigger activated.

The activation of a trigger may cause trigger cascading. This is the result of the activation of one trigger
that executes SQL statements that cause the activation of other triggers or even the same trigger again.
The triggered actions may also cause updates as a result of the original modification, which may result in
the activation of additional triggers. With trigger cascading, a significant chain of triggers may be activated
causing significant change to the database as a result of a single delete, insert or update statement.

The actions performed in the trigger are considered to be part of the operation that caused the trigger to
be executed. Thus, when the isolation level is anything other than NC (No Commit) and the trigger actions
are performed using the same commitment definition as the trigger event:

• The database manager ensures that the operation and the triggers executed as a result of that
operation either all complete or are backed out. Operations that occurred prior to the triggering
operation are not affected.

• The database manager effectively checks all constraints (except for a constraint with a RESTRICT delete
rule) after the operation and the associated triggers have been executed.

A trigger has an attribute that specifies whether it is allowed to delete or update a row that has already
been inserted or updated within the SQL statement that caused the trigger to be executed.

• If ALWREPCHG(*YES) is specified when the trigger is defined, then within an SQL statement:

– The trigger is allowed to update or delete any row that was inserted or already updated by that same
SQL statement. This also includes any rows inserted or updated by a trigger or referential constraint
caused by the same SQL statement.

• If ALWREPCHG(*NO) is specified when the trigger is defined, then within an SQL statement:

– A row can be deleted by a trigger only if that row has not been inserted or updated by that same SQL
statement. If the isolation level is anything other than NC (No Commit) and the trigger actions are
performed using the same commitment definition as the trigger event, this also includes any inserts
or updates by a trigger or referential constraint caused by the same SQL statement.

10 IBM i: Db2 for i SQL Reference

– A row can be updated by a trigger only if that row has not already been inserted or updated by that
same SQL statement. If the isolation level is anything other than NC (No Commit) and the trigger
actions are performed using the same commitment definition as the trigger event, this also includes
any inserts or updates by a trigger or referential constraint caused by the same SQL statement.

All triggers created by using the CREATE TRIGGER statement implicitly have the ALWREPCHG(*YES)
attribute.

Views
A view provides an alternative way of looking at the data in one or more tables.

A view is a named specification of a result table. The specification is a SELECT statement that is
effectively executed whenever the view is referenced in an SQL statement. Thus, a view can be thought of
as having columns and rows just like a base table. For retrieval, all views can be used just like base tables.
Whether a view can be used in an insert, update, or delete operation depends on its definition.

An index cannot be created for a view. However, an index created for a table on which a view is based may
improve the performance of operations on the view.

When the column of a view is directly derived from a column of a base table, that column inherits any
constraints that apply to the column of the base table. For example, if a view includes a foreign key of its
base table, INSERT and UPDATE operations using that view are subject to the same referential constraints
as the base table. Likewise, if the base table of a view is a parent table, DELETE operations using that view
are subject to the same rules as DELETE operations on the base table. A view also inherits any triggers
that apply to its base table. For example, if the base table of a view has an update trigger, the trigger is
fired when an update is performed on the view.

A view has a name and may have a different system name. The system name is the name used by the IBM
i operating system. Either name is acceptable wherever a view-name is specified in SQL statements.

A column of a view has a name and may have a different system column name. The system column name
is the name used by the IBM i operating system. Either name is acceptable wherever column-name is
specified in SQL statements.

A view is created with the CREATE VIEW statement. For more information about creating views, see
“CREATE VIEW” on page 1206.

User-defined types
A user-defined type is a data type that is defined to the database using a CREATE statement.

There are two types of user-defined data type:

• Distinct type
• Array type

A distinct type is a user-defined type that shares its internal representation with a built-in data type
(its source type), but is considered to be a separate and incompatible data type for most operations.
A distinct type is created with an SQL CREATE TYPE (Distinct) statement. A distinct type can be used
to define a column of a table, or a parameter of a routine. For more information, see “CREATE TYPE
(distinct)” on page 1193 and “User-defined types” on page 82.

An array type is a user-defined type that defines a one column array of a built-in data type. An array type
is created with an SQL CREATE TYPE (Array) statement. An array type can be used as a parameter of
a procedure or scalar function and as a variable in an SQL procedure or SQL scalar function. For more
information, see “CREATE TYPE (array)” on page 1188 and “User-defined types” on page 82.

Chapter 1. Concepts 11

Aliases
An alias is an alternate name for a table or view.

An alias can be used to reference a table or view in cases where an existing table or view can be
referenced.3 However, the option of referencing a table or view by an alias is not explicitly shown in
the syntax diagrams or mentioned in the description of SQL statements. Like tables and views, an alias
may be created, dropped, and have a comment or label associated with it. No authority is necessary to
use an alias. Access to the tables and views that are referred to by the alias, however, still requires the
appropriate authorization for the current statement.

An alias has a name and may have a different system name. The system name is the name used by the
IBM i operating system. Either name is acceptable wherever an alias-name is specified in SQL statements.

An alias is created with the CREATE ALIAS statement. For more information about creating aliases, see
“CREATE ALIAS” on page 971.

Packages and access plans
A package is an object that contains control structures used to execute SQL statements.

Packages are produced during distributed program preparation. The control structures can be thought of
as the bound or operational form of SQL statements.4 All control structures in a package are derived from
the SQL statements embedded in a single source program.

In this book, the term access plan is used in general for packages, procedures, functions, triggers,
and programs or service programs that contain control structures used to execute SQL statements. For
example, the description of the DROP statement says that dropping an object also invalidates any access
plans that reference the object (see “DROP” on page 1288). This means that any packages, procedures,
functions, triggers, and programs or service programs containing control structures referencing the
dropped object are invalidated.

An invalidated access plan will be implicitly rebuilt the next time its associated SQL statement is
executed. For example, if an index is dropped that is used in an access plan for a SELECT INTO statement,
the next time that SELECT INTO statement is executed, the access plan will be rebuilt.

A package can also be created by the Process Extended Dynamic SQL (QSQPRCED) API. Packages
created by the Process Extended Dynamic SQL (QSQPRCED) API can only be used by the Process
Extended Dynamic SQL (QSQPRCED) API. They cannot be used at an application server through
DRDA protocols. For more information, see the Database and File APIs information in the Programming
category of the IBM i Information Center.

The QSQPRCED API is used by IBM i Access for Windows to create packages for caching SQL statements
executed via ODBC, JDBC, SQLJ, OLD DB, and .NET interfaces.

Routines
A routine is an executable SQL object.

There are two types of routines.

Functions
A function is a routine that can be invoked from within other SQL statements and returns a value or a
table. For more information, see “Functions” on page 147.

3 You cannot use an alias in all contexts. For example, an alias that refers to an individual member of a
database file cannot be used in most SQL schema statements. For more information, see “CREATE ALIAS”
on page 971.

4 For non-distributed SQL programs, non-distributed service programs, SQL functions, and SQL procedures,
the control structures used to execute SQL statements are stored in the associated space of the object.

12 IBM i: Db2 for i SQL Reference

Functions are classified as either SQL functions or external functions. SQL functions are written using SQL
statements, which are also known collectively as SQL procedural language, SQL PL. External functions
reference a host language program which may or may not contain SQL statements.

A function is created with the CREATE FUNCTION statement. For more information about creating
functions, see “CREATE FUNCTION” on page 975.

Procedures
A procedure (sometimes called a stored procedure) is a routine that can be called to perform operations
that can include both host language statements and SQL statements.

Procedures are classified as either SQL procedures or external procedures. SQL procedures are written
using SQL statements, which are also known collectively as SQL procedural language, SQL PL. External
procedures reference a host language program which may or may not contain SQL statements.

A procedure is created with the CREATE PROCEDURE statement. For more information about creating
procedures, see “CREATE PROCEDURE” on page 1074.

Procedures in SQL provide the same benefits as procedures in a host language. That is, a common piece
of code need only be written and maintained once and can be called from several programs. Both host
languages and SQL can call procedures that exist on the local system. However, SQL can also call a
procedure that exists on a remote system. In fact, the major benefit of procedures in SQL is that they can
be used to enhance the performance characteristics of distributed applications.

Assume that several SQL statements must be executed at a remote system. There are two ways this can
be done. Without procedures, when the first SQL statement is executed, the application requester will
send a request to an application server to perform the operation. It then waits for a reply that indicates
whether the statement is executed successfully or not and optionally returns results. When the second
and each subsequent SQL statement is executed, the application requester will send another request and
wait for another reply.

If the same SQL statements are stored in a procedure at an application server, a CALL statement can be
executed that references the remote procedure. When the CALL statement is executed, the application
requester will send a single request to the current server to call the procedure. It will then wait for a single
reply that indicates whether the procedure executed successfully or not and optionally returns results.

The following two figures illustrate the way stored procedures can be used in a distributed application
to eliminate some of the remote requests. Figure 1 on page 13 shows a program making many remote
requests.

Figure 1. Application Without Remote Procedure

Chapter 1. Concepts 13

Figure 2. Application With Remote Procedure

Sequences
A sequence is a stored object that simply generates a sequence of numbers in a monotonically ascending
(or descending) order. Sequences provide a way to have the database manager automatically generate
unique integer and decimal primary keys, and to coordinate keys across multiple rows and tables.

A sequence can be used to exploit parallelization, instead of programmatically generating unique
numbers by locking the most recently used value and then incrementing it.

Sequences are ideally suited to the task of generating unique key values. One sequence can be used for
many tables, or a separate sequence can be created for each table requiring generated keys. A sequence
has the following properties:

• Can have guaranteed, unique values, assuming that the sequence is not reset and does not allow the
values to cycle.

• Can have increasing or decreasing values within a defined range.
• Can have an increment value other than 1 between consecutive values (the default is 1).
• Is recoverable.

Values for a given sequence are automatically generated by the database manager. Use of a sequence in
the database avoids the performance bottleneck that results when an application implements sequences
outside the database. The counter for the sequence is incremented (or decremented) independently from
the transaction.

In some cases, gaps can be introduced in a sequence. A gap can occur when a given transaction
increments a sequence two times. The transaction may see a gap in the two numbers that are generated
because there may be other transactions concurrently incrementing the same sequence. A user may not
realize that other users are drawing from the same sequence. Furthermore, it is possible that a given
sequence can appear to have generated gaps in the numbers, because a transaction that may have
generated a sequence number may have rolled back. Updating a sequence is not part of a transaction's
unit of recovery.

A sequence is created with a CREATE SEQUENCE statement. A sequence can be referenced using a
sequence-reference. A sequence reference can appear most places that an expression can appear. A
sequence reference can specify whether the value to be returned is a newly generated value, or the
previously generated value. For more information, see “Sequence reference” on page 193 and “CREATE
SEQUENCE” on page 1108.

Although there are similarities, a sequence is different than an identity column. A sequence is an object,
whereas an identity column is a part of a table. A sequence can be used with multiple tables, but an
identity column is part of a single table.

14 IBM i: Db2 for i SQL Reference

Authorization, privileges and object ownership
Users (identified by an authorization ID) can successfully execute SQL statements only if they have the
authority to perform the specified function. To create a table, a user must be authorized to create tables;
to alter a table, a user must be authorized to alter the table; and so forth.

The two forms of authorization are administrative authority and privileges.

Administrative authority
The holder of an administrative authority is charged with the task of managing the relational database and
is responsible for the safety and integrity of the data.
database administrator authority

The database administrator authority provides a user with the ability to create and manage all objects
in a relational database. Those with database administrator authority implicitly have all privileges on
all objects in the relational database.

The security officer and all users with *ALLOBJ authority have database administrator authority.

security administrator authority
The security administrator authority provides a user the ability to manage security in a relational
database. The security administrator authority possesses the ability to grant and revoke all
relational database privileges and authorities and transfer ownership of objects. Those with security
administrator authority also manage security policies by enforcing row and column access control for
tables that contain sensitive data.

The security administrator authority has no inherent privilege to access data stored in tables.

Users with the function usage QIBM_DB_SECADM have security administrator authority.

Privileges
Privileges are those activities that a user is allowed to perform. Authorized users can create objects, have
access to objects they own, and can pass on privileges on their own objects to other users by using the
GRANT statement.

Privileges may be granted to specific users or to PUBLIC. PUBLIC specifies that a privilege is granted to
a set of users (authorization IDs). The set consists of those users (including future users) that do not
have privately granted privileges on the table or view. This affects private grants. For example, if SELECT
has been granted to PUBLIC, and UPDATE is then granted to HERNANDZ, this private grant prevents
HERNANDZ from having the SELECT privilege.

The REVOKE statement can be used to REVOKE previously granted privileges. A revoke of a privilege from
an authorization ID revokes the privilege granted by all authorization IDs. Revoking a privilege from an
authorization ID will not revoke that same privilege from any other authorization IDs that were granted
the privilege by that authorization ID.

Row permissions and column masks
A row permission expresses an access control rule for a row of a specific table. A row permission is in the
form of a search condition that describes to which rows users have access. Row permissions are applied
after table privileges (like SELECT or INSERT) are checked.

A column mask expresses an access control rule for a specific column in a table. A column mask is in the
form of a CASE expression that describes to which column values users have access. Column masks are
applied after table privileges (like SELECT or INSERT) are checked.

Row permissions and column masks can be created, changed, and dropped only by those with Database
Security Administrator authority by using the CREATE MASK, CREATE PERMISSION, ALTER MASK, ALTER
PERMISSION, and DROP statements. The definition of a permission or a mask can reference other
objects. Those with Database Security Administrator authority do not need additional privileges to
reference those objects, such as SELECT privilege to retrieve from a table or EXECUTE privilege to invoke

Chapter 1. Concepts 15

a user-defined function, in the definition of the row permission or column mask. Multiple row permissions
and column masks can be created for a table. Only one column mask can be created for each column
in a table. A row permission or a column mask can be created before row or column access control is
enforced for a table. The definition of the row permission and the column mask is stored in the Db2
catalog. However, the permission and the mask do not take effect until the ALTER TABLE statement with
the ACTIVATE ROW ACCESS CONTROL clause is used to enforce row access control or the ACTIVATE
COLUMN ACCESS CONTROL clause is used to enforce column access control on the table.

When an ALTER TABLE statement is used to explicitly activate row access control for a table, a default
row permission is implicitly created for the table which prevents all access to the table. After row access
controls have been activated for a table, if the table is referenced explicitly in a data change statement
and if multiple row permissions are defined for the table, a row access control search condition is derived
by using the logical OR operator with the search condition of each defined row permission.

When an ALTER TABLE statement is used to explicitly activate column access control for a table, access to
the table is not restricted. However, if the table is referenced in an SQL statement, all column masks that
have been created for the table are applied to mask the column values that are referenced in the output of
the queries or to determine the column values that are used in the data change statements.

The authorization ID for the SQL statement that references a table with row permissions or column masks
does not need authority to reference objects that are specified in the definitions of those row permissions
or column masks.

Ownership
When an object is created, the authorization ID of the statement must have the privilege to create objects
in the implicitly or explicitly specified schema. The authorization ID of a statement has the privilege to
create objects in the schema if:

• it is the owner of the schema, or
• it has the CREATEIN privilege on the schema.

When an object is created, one authorization ID is assigned ownership of the object. Ownership gives
the user complete control over the object, including the privilege to drop the object. The privileges on
the object can be granted by the owner, and can be revoked from the owner. In this case, the owner
may temporarily be unable to perform an operation that requires that privilege. Because he is the owner,
however, he is always allowed to grant the privilege back to himself.

When an object is created:

• If SQL names were specified, the owner of the object is the user profile with the same name as the
schema into which the object is created, if a user profile with that name exists. Otherwise, the owner of
the object is the user profile or group user profile of the thread executing the statement.

• If system names were specified, the owner of the object is the user profile or group user profile of the
thread executing the statement.

Authority granted to *PUBLIC on SQL objects depends on the naming convention that is used at the time
of object creation. If *SYS naming convention is used, *PUBLIC acquires the create authority (CRTAUT)
of the library into which the object was created. If *SQL naming convention is used, *PUBLIC acquires
*EXCLUDE authority.

In the Authorization sections of this book, it is assumed that the owner of an object has not had any
privileges revoked from that object since it was initially created. If the object is a view, it is also assumed
that the owner of the view has not had the system authority *READ revoked from any of the tables or
views that this view is directly or indirectly dependent on. The owner has system authority *READ for
all tables and views referenced in the view definition, and if a view is referenced, all tables and views
referenced in its definition, and so forth. For more information about authority and privileges, see Security
Reference.

16 IBM i: Db2 for i SQL Reference

Catalog
The database manager maintains a set of tables containing information about objects in the database.
These tables and views are collectively known as the catalog. The catalog tables contain information
about objects such as tables, views, indexes, packages, and constraints.

Tables and views in the catalog are similar to any other database tables and views. Any user that has the
SELECT privilege on a catalog table or view can read the data in the catalog table or view. A user cannot
directly modify a catalog table or view, however. The database manager ensures that the catalog contains
accurate descriptions of the objects in the database at all times.

The database manager provides a set of views that provide more consistency with the catalog views of
other IBM SQL products and another set of catalog views that provide compatibility with the catalog views
of the ANSI and ISO standard (called Information Schema in the standard).

If a schema is created using the CREATE SCHEMA statement, the schema will also contain a set of views
that only contain information about objects in the schema.

For more information about catalog tables and views, see Appendix F, “Db2 for i catalog views,” on page
1709.

Application processes, concurrency, and recovery
All SQL programs execute as part of an application process. In the IBM i operating system, an application
process is called a job. In the case of ODBC, JDBC, OLE DB, .NET, and DRDA, the application process ends
when the connection ends even though the job they are using does not end and may be reused.

An application process is made up of one or more activation groups. Each activation group involves the
execution of one or more programs. Programs run under a non-default activation group or the default
activation group. All programs except those created by ILE compilers run under the default activation
group. For example, LANGUAGE JAVA external functions run under the default activation group.

For more information about activation groups, see the book ILE Concepts .

An application process that uses commitment control can run with one or more commitment definitions.
A commitment definition provides a means to scope commitment control at an activation group level or
at a job level. At any given time, an activation group that uses commitment control is associated with only
one of the commitment definitions.

A commitment definition can be explicitly started through the Start Commitment Control (STRCMTCTL)
command. If not already started, a commitment definition is implicitly started when the first SQL
statement is executed under an isolation level different than COMMIT(*NONE). More than one activation
group can share a job commitment definition.

Figure 3 on page 18 shows the relationship of an application process, the activation groups in that
application process, and the commitment definitions. Activation groups A and B run with commitment
control scoped to the activation group. These activation groups have their own commitment definitions.
Activation group C does not run with any commitment control and does not have a commitment definition.

Chapter 1. Concepts 17

Activation
Group A

Activation
Group B

Activation
Group C

Commitment
Definition

Application Process
Without Job-Level Commitment Definition

Commitment
Definition

RV3F004-0

Figure 3. Activation Groups without Job Commitment Definition

Figure 4 on page 19 shows an application process, the activation groups in that application process,
and the commitment definitions. Some of the activation groups are running with the job commitment
definition. Activation groups A and B are running under the job commitment definition. Any commit or
rollback operation in activation group A or B affects both because the commitment control is scoped
to the same commitment definition. Activation group C in this example has a separate commitment
definition. Commit and rollback operations performed in this activation group only affect operations
within C.

18 IBM i: Db2 for i SQL Reference

Activation Activation Activation
Group A Group B Group C

With Job-Level Commitment Control
Application Process

RV2W931-1

Job
Commitment
Definition

Commitment
Definition

Figure 4. Activation Groups with Job Commitment Definition

For more information about commitment definitions, see the Commitment control topic.

Locking, commit, and rollback
Application processes and activation groups that use different commitment definitions can request
access to the same data at the same time. Locking is used to maintain data integrity under such
conditions. Locking prevents such things as two application processes updating the same row of data
simultaneously.

The database manager acquires locks to keep the uncommitted changes of one activation group
undetected by activation groups that use a different commitment definition. Object locks and other
resources are allocated to an activation group. Row locks are allocated to a commitment definition.

When an activation group other than the default activation group ends normally, the database manager
releases all locks obtained by the activation group. A user can also explicitly request that most locks be
released sooner. This operation is called commit. Object locks associated with cursors that remain open
after commit are not released.

The recovery functions of the database manager provide a means of backing out of uncommitted changes
made in a commitment definition. The database manager may implicitly back out uncommitted changes
under the following situations:

• When the application process ends, all changes performed under the commitment definition associated
with the default activation group are backed out. When an activation group other than the default
activation group ends abnormally, all changes performed under the commitment definition associated
with that activation group are backed out.

• When using Distributed Unit of Work and a failure occurs while attempting to commit changes on
a remote system, all changes performed under the commitment definition associated with remote
connection are backed out.

• When using Distributed Unit of Work and a request to back out is received from a remote system
because of a failure at that site, all changes performed under the commitment definition associated
with remote connection are backed out.

Chapter 1. Concepts 19

A user can also explicitly request that their database changes be backed out. This operation is called
rollback.

Locks acquired by the database manager on behalf of an activation group are held until the unit of work is
ended. A lock explicitly acquired by a LOCK TABLE statement can be held past the end of a unit of work if
COMMIT HOLD or ROLLBACK HOLD is used to end the unit of work.

A cursor can implicitly lock the row at which the cursor is positioned. This lock prevents:

• Other cursors associated with a different commitment definition from locking the same row.
• A DELETE or UPDATE statement associated with a different commitment definition from locking the

same row.

Unit of work
A unit of work (also known as a transaction, logical unit of work, or unit of recovery) is a recoverable
sequence of operations. Each commitment definition involves the execution of one or more units of work.
At any given time, a commitment definition has a single unit of work.

A unit of work is started either when the commitment definition is started, or when the previous unit
of work is ended by a commit or rollback operation. A unit of work is ended by a commit operation, a
rollback operation, or the ending of the activation group. A commit or rollback operation affects only the
database changes made within the unit of work that the commit or rollback ends. While changes remain
uncommitted, other activation groups using different commitment definitions running under isolation
levels COMMIT(*CS), COMMIT(*RS), and COMMIT(*RR) cannot perceive the changes. The changes can be
backed out until they are committed. Once changes are committed, other activation groups running in
different commitment definitions can access them, and the changes can no longer be backed out.

The start and end of a unit of work defines points of consistency within an activation group. For example,
a banking transaction might involve the transfer of funds from one account to another. Such a transaction
would require that these funds be subtracted from the first account, and added to the second. Following
the subtraction step, the data is inconsistent. Only after the funds are added to the second account is
consistency established again. When both steps are complete, the commit operation can be used to end
the unit of work. After the commit operation, the changes are available to activation groups that use
different commitment definitions.

Figure 5. Unit of Work with a Commit Statement

20 IBM i: Db2 for i SQL Reference

Rolling back work
The database manager can back out all changes made in a unit of work or only selected changes. Only
backing out all changes results in a point of consistency.

Rolling back all changes
The SQL ROLLBACK statement without the TO SAVEPOINT clause causes a full rollback operation. If
such a rollback operation is successfully executed, database manager backs out uncommitted changes
to restore the data consistency that it assumes existed when the unit of work was initiated. That is, the
database manager undoes the work, as shown in the diagram below:

Figure 6. Unit of Work with a Rollback Statement

Rolling back selected changes using savepoints
A savepoint represents the state of data at some particular time during a unit of work. An application
process can set savepoints within a unit of work, and then as logic dictates, roll back only the changes
that were made after a savepoint was set. For example, part of a reservation transaction might involve
booking an airline flight and then a hotel room. If a flight gets reserved but a hotel room cannot be
reserved, the application process might want to undo the flight reservation without undoing any database
changes made in the transaction prior to making the flight reservation. SQL programs can use the SQL
SAVEPOINT statement to set savepoints, the SQL ROLLBACK statement with the TO SAVEPOINT clause
to undo changes to a specific savepoint or the last savepoint that was set, and the RELEASE SAVEPOINT
statement to delete a savepoint.

Figure 7. Unit of Work with a Rollback Statement and a Savepoint Statement

Chapter 1. Concepts 21

Threads
In the IBM i operating system, an application process can also consist of one or more threads. By default,
a thread shares the same commitment definitions and locks as the other threads in the job. Thus, each
thread can operate on the same unit of work so that when one thread commits or rolls back, it can commit
or rollback all changes performed by all threads. This type of processing is useful if multiple threads are
cooperating to perform a single task in parallel.

In other cases, it is useful for a thread to perform changes independent from other threads in the job.
In this case, the thread would not want to share commitment definitions or lock with the other threads.
Furthermore, a job can use SQL server mode in order to take more fine grain control of multiple database
connections and transaction information. A typical multi-threaded job may require this control. There are
several ways to accomplish this type of processing:

• Make sure the programs running in the thread use a separate activation group (be careful not to use
ACTGRP(*NEW)).

• Make sure that the job is running in SQL server mode before issuing the first SQL statement. SQL server
mode can be activated for a job by using one of the following mechanisms before data access occurs in
the application:

– Use the ODBC API, SQLSetEnvAttr() and set the SQL_ATTR_SERVER_MODE attribute to SQL_TRUE
before doing any data access.

– Use the Change Job API, QWTCHGJB(), and set the 'Server mode for Structured Query Language' key
before doing any data access.

– Use JAVA to access the database via JDBC. JDBC automatically uses server mode to preserve
required semantics of JDBC.

When SQL server mode is established, all SQL statements are passed to an independent server job that
will handle the requests. Server mode behavior for SQL behavior includes:

• For embedded SQL, each thread in a job implicitly gets one and only one connection to the database
(and thus its own commitable transaction).

• For ODBC/CLI, JDBC, OLE DB, and .NET, each connection represents a stand-alone connection to the
database and can be committed and used as a separate entity.

For more information, see SQL Call Level Interface (ODBC).

The following SQL support is not threadsafe:

• Remote access through DRDA
• ALTER FUNCTION
• ALTER PROCEDURE
• ALTER SEQUENCE
• ALTER TABLE
• COMMENT
• CREATE ALIAS
• CREATE FUNCTION
• CREATE INDEX
• CREATE PROCEDURE
• CREATE SCHEMA
• CREATE SEQUENCE
• CREATE TABLE
• CREATE TRIGGER
• CREATE TYPE
• CREATE VARIABLE

22 IBM i: Db2 for i SQL Reference

• CREATE VIEW
• DECLARE GLOBAL TEMPORARY TABLE
• DROP
• GRANT
• LABEL
• REFRESH TABLE
• RENAME
• REVOKE

For more information, see Multithreaded applications in the Programming topic of the IBM i Information
Center.

Isolation level
The isolation level used during the execution of SQL statements determines the degree to which the
activation group is isolated from concurrently executing activation groups.

Thus, when activation group P executes an SQL statement, the isolation level determines:

• The degree to which rows retrieved by P and database changes made by P are available to other
concurrently executing activation groups.

• The degree to which database changes made by concurrently executing activation groups can affect P.

The isolation level can be explicitly specified on a DELETE, INSERT, SELECT INTO, UPDATE, or select-
statement. If the isolation level is not explicitly specified, the isolation level used when the SQL statement
is executed is the default isolation level.

Db2 for i provides several ways to specify the default isolation level:

Table 2. Default Isolation Level Interfaces

SQL Interface Specification

Embedded SQL COMMIT parameter on the Create SQL Program (CRTSQLxxx)
commands. The SET OPTION statement can also be used to
set the COMMIT values.

(For more information about CRTSQLxxx commands, see
Embedded SQL Programming.)

SQL functions and procedures Static SQL statements in SQL functions and procedures
use the isolation level that was in effect at the time the
SQL function or procedure was created. The SET OPTION
statement (COMMIT) can be used to set the isolation level.

Run SQL Statements COMMIT parameter on the Run SQL Statements
(RUNSQLSTM) command.

(For more information about the RUNSQLSTM command, see
SQL Programming.)

Chapter 1. Concepts 23

Table 2. Default Isolation Level Interfaces (continued)

SQL Interface Specification

SET TRANSACTION SQL statement Overrides the default isolation level within a unit of work.
When the unit of work ends, the isolation level returns to
the value it had at the beginning of the unit of work. This
statement overrides any other specification of isolation level
for static and dynamic SQL statements in the unit of work.

(For more information about the SET TRANSACTION
statement, see “SET TRANSACTION” on page 1543.)

isolation-clause The isolation-clause on the SELECT, SELECT INTO, INSERT,
UPDATE, DELETE, and DECLARE CURSOR statements
overrides the default isolation level for a specific statement
or cursor. The isolation level is in effect only for the execution
of the statement containing the isolation-clause and has no
effect on any pending changes in the current unit of work.

(For more information about the isolation-clause, see
“isolation-clause” on page 799.)

Call Level Interface (CLI) on the server SQL_ATTR_COMMIT or SQL_TXN_ISOLATION environment
variable or connection options

(For more information about CLI, see SQL Call Level
Interfaces (ODBC).)

JDBC or SQLJ on the server using IBM
IBM Developer Kit for Java

transaction isolation property object

(For more information about JDBC and SQLJ, see IBM
Developer Kit for Java.)

ODBC on a client using the IBM i Access
Family ODBC Driver

Commit Mode in ODBC Setup

(For more information about ODBC, see IBM i Access.)

JDBC on a client using the IBM Toolbox
for Java

Isolation Level in JDBC Setup

(For more information about JDBC, see IBM i Access.)

(For more information about the IBM Toolbox for Java, see
IBM Toolbox for Java.)

OLE DB on a client using the IBM i
Access Family OLE DB Provider

IsolationLevel Connection Object Property

(For more information about OLE DB, see IBM i Access.)

ADO .NET on a client using the IBM i
Access Family ADO .NET Provider

IsolationLevel in Connection Object Properties

(For more information about ADO .NET, see IBM i Access.)

These isolation levels are supported by automatically locking the appropriate data. Depending on the
type of lock, this limits or prevents access to the data by concurrent activation groups that use different
commitment definitions. Each database manager supports at least two types of locks:

24 IBM i: Db2 for i SQL Reference

Share
Limits concurrent activation groups that use different commitment definitions to read-only operations
on the data.

Exclusive
Prevents concurrent activation groups using different commitment definitions from updating or
deleting the data. Prevents concurrent activation groups using different commitment definitions
that are running COMMIT(*RS), COMMIT(*CS), or COMMIT(*RR) from reading the data. Concurrent
activation groups using different commitment definitions that are running COMMIT(*UR) or
COMMIT(*NC) are allowed to read the data.

The following descriptions of isolation levels refer to locking data in row units. Individual implementations
can lock data in larger physical units than base table rows. However, logically, locking occurs at the
base-table row level across all products. Similarly, a database manager can escalate a lock to a higher
level. An activation group is guaranteed at least the minimum requested lock level.

For a detailed description of record lock durations, see the discussion and table in the Commitment
control topic of the SQL Programming topic collection.

Db2 for i supports five isolation levels. For all isolation levels except No Commit, the database manager
places exclusive locks on every row that is inserted, updated, or deleted. This ensures that any row
changed during a unit of work is not changed by any other activation group that uses a different
commitment definition until the unit of work is complete.

Repeatable read
The Repeatable Read (RR) isolation level ensures:

• Any row read during a unit of work is not changed by other activation groups that use different
commitment definitions until the unit of work is complete.5

• Any row changed (or a row that is currently locked with an UPDATE row lock) by another activation
group using a different commitment definition cannot be read until it is committed.

In addition to any exclusive locks, an activation group running at level RR acquires at least share locks
on all the rows it reads. Furthermore, the locking is performed so that the activation group is completely
isolated from the effects of concurrent activation groups that use different commitment definitions.

In the SQL 2003 Core standard, Repeatable Read is called Serializable.

Db2 for i supports repeatable read through COMMIT(*RR). Repeatable read isolation level is supported by
locking the tables containing any rows that are read or updated.

Read stability
Like level RR, level Read Stability (RS) ensures that:

• Any row read during a unit of work is not changed by other activation groups that use different
commitment definitions until the unit of work is complete. 6

• Any row changed (or a row that is currently locked with an UPDATE row lock) by another activation
group using a different commitment definition cannot be read until it is committed.

Unlike RR, RS does not completely isolate the activation group from the effects of concurrent activation
groups that use a different commitment definition. At level RS, activation groups that issue the same
query more than once might see additional rows. These additional rows are called phantom rows.

For example, a phantom row can occur in the following situation:

1. Activation group P1 reads the set of rows n that satisfy some search condition.

5 For WITH HOLD cursors, these rules apply to when the rows were actually read. For read-only WITH HOLD
cursors, the rows may have actually been read in a prior unit of work.

6 For WITH HOLD cursors, these rules apply to when the rows were actually read. For read-only WITH HOLD
cursors, the rows may have actually been read in a prior unit of work.

Chapter 1. Concepts 25

2. Activation group P2 then INSERTs one or more rows that satisfy the search condition and COMMITs
those INSERTs.

3. P1 reads the set of rows again with the same search condition and obtains both the original rows and
the rows inserted by P2.

In addition to any exclusive locks, an activation group running at level RS acquires at least share locks on
all the rows it reads.

In the SQL 2003 Core standard, Read Stability is called Repeatable Read.

Db2 for i supports read stability through COMMIT(*ALL) or COMMIT(*RS).

Cursor stability
Like levels RR and RS, level Cursor Stability (CS) ensures that any row that was changed (or a row that
is currently locked with an UPDATE row lock) by another activation group using a different commitment
definition cannot be read until it is committed. Unlike RR and RS, level CS only ensures that the current
row of every updatable cursor is not changed by other activation groups using different commitment
definitions. Thus, the rows that were read during a unit of work can be changed by other activation groups
that use a different commitment definition. In addition to any exclusive locks, an activation group running
at level CS may acquire a share lock for the current row of every cursor.

In the SQL 2003 Core standard, Cursor Stability is called Read Committed.

Db2 for i supports cursor stability through COMMIT(*CS).

Uncommitted read
For a SELECT INTO, a FETCH with a read-only cursor, subquery, or fullselect used in an INSERT statement,
level Uncommitted Read (UR) allows:

• Any row read during the unit of work to be changed by other activation groups that run under a different
commitment definition.

• Any row changed (or a row that is currently locked with an UPDATE row lock) by another activation
group running under a different commitment definition to be read even if the change has not been
committed.

For other operations, the rules of level CS apply.

In the SQL 2003 Core standard, Uncommitted Read is called Read Uncommitted.

Db2 for i supports uncommitted read through COMMIT(*CHG) or COMMIT(*UR).

No commit
For all operations, the rules of level UR apply to No Commit (NC) except:

• Commit and rollback operations have no effect on SQL statements. Cursors are not closed, and LOCK
TABLE locks are not released. However, connections in the release-pending state are ended.

• Any changes are effectively committed at the end of each successful change operation and can be
immediately accessed or changed by other application groups using different commitment definitions.

Db2 for i supports No Commit through COMMIT(*NONE) or COMMIT(*NC).

Note: (For distributed applications.) When a requested isolation level is not supported by an application
server, the isolation level is escalated to the next highest supported isolation level. For example, if RS is
not supported by an application server, the RR isolation level is used.

Comparison of isolation levels
The following table summarizes information about isolation levels.

26 IBM i: Db2 for i SQL Reference

 NC UR CS RS RR

Can the application see uncommitted changes
made by other application processes?

Yes Yes No2 No2 No

Can the application update uncommitted changes
made by other application processes?

No No No No No

Can the re-execution of a statement be affected by
other application processes? See phenomenon P3
(phantom) below.

Yes Yes Yes Yes No

Can “updated” rows be updated by other
application processes?

Yes No No No No

Can “updated” rows be read by other application
processes that are running at an isolation level
other than UR and NC?

Yes No No No No

Can “updated” rows be read by other application
processes that are running at the UR or NC isolation
level?

Yes Yes Yes Yes Yes

Can “accessed” rows be updated by other
application processes?

For RS, “accessed rows” typically means
rows selected. For RR, see the product-
specific documentation. See phenomenon P2
(nonrepeatable read) below.

Yes Yes Yes No No

Can “accessed” rows be read by other application
processes?

Yes Yes Yes Yes Yes

Can “current” row be updated or deleted by other
application processes? See phenomenon P1 (dirty-
read) below.

See Note
1

See Note
1

See Note
1

No No

Note 1: This depends on whether the cursor that is positioned on the “current” row is updatable:

• If the cursor is updatable, the current row cannot be updated or deleted by other application
processes

• If the cursor is not updatable,

– For UR or NC, the current row can be updated or deleted by other application processes.
– For CS, the current row may be updatable in some circumstances.

Note 2: The USE CURRENTLY COMMITTED clause should be used. In addition, when a query is
implemented using a table scan, use the QAQQINI option CONCURRENT_ACCESS_BEHAVIOR with a
value of *STRICTSCAN.

Chapter 1. Concepts 27

 NC UR CS RS RR

Examples of Phenomena:
P1

Dirty Read. Unit of work UW1 modifies a row. Unit of work UW2 reads that row before UW1 performs
a COMMIT. UW1 then performs a ROLLBACK. UW2 has read a nonexistent row.

P2
Nonrepeatable Read. Unit of work UW1 reads a row. Unit of work UW2 modifies that row and
performs a COMMIT. UW1 then re-reads the row and obtains the modified data value.

P3
Phantom. Unit of work UW1 reads the set of n rows that satisfies some search condition. Unit of work
UW2 then INSERTs one or more rows that satisfies the search condition. UW1 then repeats the initial
read with the same search condition and obtains the original rows plus the inserted rows.

Storage Structures
The IBM i product is an object-based system. All database objects in Db2 for i (tables and indexes
for example) are objects in the IBM i operating system. The single-level storage manager manages all
storage of objects of the database, so database specific storage structures (for example, table spaces) are
unnecessary.

A distributed table allows data to be spread across different database partitions. The partitions included
are determined by the nodegroup specified when the table is created or altered. A nodegroup is a group of
one or more IBM i products. A partitioning map is associated with each nodegroup. The partitioning map
is used by the database manager to determine which system from the nodegroup will store a given row of
data. For more information about nodegroups and data partitioning see the DB2 Multisystem book.

A table can also include columns that register links to data that are stored in external files. The
mechanism for this is the DataLink data type. A DataLink value which is recorded in a regular table points
to a file that is stored in an external file server.

The Db2 File Manager on a file server works in conjunction with Db2 to provide the following optional
functionality:

• Referential integrity to ensure that files currently linked to Db2 are not deleted or renamed.
• Security to ensure that only those with suitable SQL privileges on the DataLink column can read the files

linked to that column.

The DataLinker comprises the following facilities:

DataLinks File Manager
Registers all the files in a particular file server that are linked to Db2.

DataLinks Filter
Filters file system commands to ensure that registered files are not deleted or renamed. Optionally,
filters commands to ensure that proper access authority exists.

Character conversion
A string is a sequence of bytes that may represent characters. Within a string, all the characters are
represented by a common coding representation. In some cases, it might be necessary to convert
these characters to a different coding representation. The process of conversion is known as character
conversion.

Character conversion can occur when an SQL statement is executed remotely.7 Consider, for example,
these two cases:

7 Character conversion, when required, is automatic and is transparent to the application when it is
successful. A knowledge of conversion is, therefore, unnecessary when all the strings involved in a

28 IBM i: Db2 for i SQL Reference

• The values of variables sent from the application requester to the current server.
• The values of result columns sent from the current server to the application requester.

In either case, the string could have a different representation at the sending and receiving systems.
Conversion can also occur during string operations on the same system.

Note that SQL statements are strings and are therefore subject to character conversion.

The following list defines some of the terms used when discussing character conversion.

character set
A defined set of characters. For example, the following character set appears in several code pages:

• 26 non-accented letters A through Z
• 26 non-accented letters a through z
• digits 0 through 9
• . , : ; ? () ' " / - _ & + = < >

code page
A set of assignments of characters to code points. In EBCDIC, for example, "A" is assigned code point
X'C1' and "B" is assigned code point X'C2'. Within a code page, each code point has only one specific
meaning.

code point
A unique bit pattern that represents a character within a code page.

coded character set
A set of unambiguous rules that establish a character set and the one-to-one relationships between
the characters of the set and their coded representations.

encoding scheme
A set of rules used to represent character data. For example:

• Single-byte EBCDIC
• Single-byte ASCII
• Double-byte EBCDIC
• Mixed single- and double-byte ASCII8

• Unicode (UTF-8, UCS-2, and UTF-16 universal coded character sets).

substitution character
A unique character that is substituted during character conversion for any characters in the source
coding representation that do not have a match in the target coding representation.

Unicode
A universal encoding scheme for written characters and text that enables the exchange of data
internationally. It provides a character set standard that can be used all over the world. It uses a
16-bit encoding form that provides code points for more than 65,000 characters and an extension
called UTF-16 that allows for encoding as many as a million more characters. It provides the ability
to encode all characters used for the written languages of the world and treats alphabetic characters,
ideographic characters, and symbols equivalently because it specifies a numeric value and a name
for each of its characters. It includes punctuation marks, mathematical symbols, technical symbols,
geometric shapes, and dingbats. Three encoding forms are supported:

• UTF-8: Unicode Transformation Format, a 8-bit encoding form designed for ease of use with existing
ASCII-based systems. UTF-8 data is stored in character data types. The CCSID value for data in
UTF-8 format is 1208.

statement’s execution are represented in the same way. Thus, for many readers, character conversion
may be irrelevant.

8 UTF-8 unicode data is also mixed data. In this book, however, mixed data refer to mixed single- and
double-byte data.

Chapter 1. Concepts 29

A UTF-8 character can be 1,2,3 or 4 bytes in length. A UTF-8 data string can contain any
combination of SBCS and DBCS data, including surrogates and combining characters.

• UCS-2: Universal Character Set coded in 2 octets, which means that characters are represented in
16-bits per character. UCS-2 data is stored in graphic data types. The CCSID value for data in UCS-2
format is 13488.

UCS-2 is a subset of UTF-16. UCS-2 is identical to UTF-16 except that UTF-16 also supports
combining characters and surrogates. Since UCS-2 is a simpler form of UTF-16, UCS-2 data will
typically perform better than UTF-16.9

• UTF-16: Unicode Transformation Format, a 16-bit encoding form designed to provide code values
for over a million characters. UTF-16 data is stored in graphic data types. The CCSID value for data
in UTF-16 format is 1200.

Both UTF-8 and UTF-16 data can contain combining characters. Combining character support allows
a resulting character to be comprised of more than one character. After the first character, hundreds
of different non-spacing accent characters (umlauts, accents, etc.) can follow in the data string.
The resulting character may already be defined in the character set. In this case, there are multiple
representations for the same character. For example, in UTF-16, an é can be represented either by
X'00E9' (the normalized representation) or X'00650301' (the non-normalized combining character
representation).

Since multiple representations of the same character will not compare equal, it is usually not
a good idea to store both forms of the characters in the database. Normalization is a process
that replaces the string of combining characters with equivalent characters that do not include
combining characters. After normalization has occurred, only one representation of any specific
character will exist in the data. For example, in UTF-16, any instances of X'00650301' (the non-
normalized combining character representation of é) will be converted to X'00E9' (the normalized
representation of é).10

In order to properly handle UTF-8 in predicates, normalization may occur.

Both UTF-8 and UTF-16 can contain 4 byte characters called surrogates. Surrogates are 4 byte
sequences that can address one million more characters than would be available in a 2 byte
character set.

9 UCS-2 can contain surrogates and combining characters, however, they are not recognized as such. Each
16–bits is considered to be a character.

10 Since normalization can significantly affect performance (from 2.5 to 25 percent extra CPU), the default in
column definitions is NOT NORMALIZED.

30 IBM i: Db2 for i SQL Reference

Character sets and code pages
The following example shows how a typical character set might map to different code points in two
different code pages.

Even with the same encoding scheme there are many different coded character sets, and the same
code point can represent a different character in different coded character sets. Furthermore, a byte in
a character string does not necessarily represent a character from a single-byte character set (SBCS).
Character strings are also used for mixed data (a mixture of single-byte characters and double-byte
characters) and for data that is not associated with any character set (called bit data). This is not the
case with graphic strings; the database manager assumes that every pair of bytes in every graphic string
represents a character from a double-byte character set (DBCS) or universal coded character set (UCS-2
or UTF-16).

A coded character set identifier (CCSID) in a native encoding scheme is one of the coded character sets in
which data may be stored at that site. A CCSID in a foreign encoding scheme is one of the coded character
sets in which data cannot be stored at that site. For example, Db2 for i can store data in a CCSID with an
EBCDIC encoding scheme, but not in an ASCII encoding scheme.

A variable containing data in a foreign encoding scheme (other than Unicode) is always converted to
a CCSID in the native encoding scheme when the variable is used in a function or in the select-list. A
variable containing data in a foreign encoding scheme is also effectively converted to a CCSID in the
native encoding scheme when used in comparison or in an operation that combines strings. Which CCSID
in the native encoding scheme the data is converted to is based on the foreign CCSID and the default
CCSID.

For details on character conversion, see:

• “Conversion rules for assignments” on page 94
• “Conversion rules for comparison:” on page 101

Chapter 1. Concepts 31

• “Conversion rules for operations that combine strings” on page 110
• “Data representation considerations” on page 41.

Coded character sets and CCSIDs
IBM's Character Data Representation Architecture (CDRA) deals with the differences in string
representation and encoding. The Coded Character Set Identifier (CCSID) is a key element of this
architecture. A CCSID is a 2-byte (unsigned) binary number that uniquely identifies an encoding scheme
and one or more pairs of character sets and code pages.

A CCSID is an attribute of strings, just as length is an attribute of strings. All values of the same string
column have the same CCSID.

Character conversion is described in terms of CCSIDs of the source and target. Each database manager
provides support to identify valid source and target combinations and to perform the conversion from
one coded character set to another. In some cases, no conversion is necessary even though the strings
involved have different CCSIDs.

Different types of conversions may be supported by the database manager. Round-trip conversions
attempt to preserve characters in one CCSID that are not defined in the target CCSID so that if the
data is subsequently converted back to the original CCSID, the same original characters result. Enforced
subset match conversions do not attempt to preserve such characters. For more information, see IBM's
Character Data Representation Architecture (CDRA).

Default CCSID
Every application server and application requester has a default CCSID (or default CCSIDs in installations
that support DBCS data).

The CCSID of the following types of strings is determined at the current server:

• String constants (including string constants that represent datetime values) when the CCSID of the
source is in a foreign encoding scheme

• Special registers with string values (such as USER and CURRENT SERVER)
• CAST specifications where the result is a character or graphic string
• Results of CHAR, DATAPARTITIONNAME, DAYNAME, DBPARTITIONNAME, DIGITS, HEX, MONTHNAME,

SOUNDEX, SPACE, and VARCHAR_FORMAT scalar functions
• Results of DECRYPT_CHAR, DECRYPT_DB, CHAR, GRAPHIC, VARCHAR, and VARGRAPHIC scalar

functions when a CCSID is not specified as an argument
• Results of the CLOB and DBCLOB scalar functions when a CCSID is not specified as an argument11

• String columns defined by the CREATE TABLE or ALTER TABLE statements when an explicit CCSID is not
specified for the column11

• String columns defined by the DECLARE GLOBAL TEMPORARY TABLE statement when an explicit CCSID
is not specified for the column11

• Distinct types when the source type is a character or graphic string type
• String parameters defined by CREATE FUNCTION or CREATE PROCEDURE statements when an explicit

CCSID is not specified for the parameter 11

If one of the types of strings above is used in a CREATE VIEW statement, the default CCSID is determined
at the time the view is created.

11 If the default CCSID is 65535, the CCSID used will be the value of the DFTCCSID job attribute (or an
associated CCSID of the DFTCCSID). If there is no associated mixed data CCSID,

• the CCSID used when FOR MIXED DATA is specified will be 65535,
• the CCSID for GRAPHIC and VARGRAPHIC will be 65535, and
• the CCSID for DBCLOB will be 1200.

32 IBM i: Db2 for i SQL Reference

In a distributed application, the default CCSID of variables is determined by the application requester.
In a non-distributed application, the default CCSID of variables is determined by the application server.
On the IBM i operating system, the default CCSID is determined by the CCSID job attribute. For more
information about CCSIDs, see the Work with CCSIDs topic in the Globalization topic collection.

Collating sequence
A collating sequence (also called a sort sequence) defines how characters in a character set relate to each
other when they are compared and ordered.

Different collating sequences are useful for those who want their data ordered for a specific language. For
example, lists can be ordered as they are normally seen for a specific language. A collating sequence can
also be used to treat certain characters as equivalent, for instance, a and A. A collating sequence works
on all comparisons that involve:

• SBCS character data (including bit data)
• the SBCS portion of mixed data
• Unicode data (UTF-8, UCS-2, or UTF-16).

SBCS collating sequence support is implemented using a 256-byte table. Each byte in the table
corresponds to a code point or character in a SBCS code page. Because the collating sequence is
applicable to character data, a CCSID must be associated with the table. The bytes in the collating
sequence table are set based on how each code point is to compare to other code points in that code
page. For example, if the characters a and A are to be treated as equivalents for comparisons, the bytes in
the collating sequence table for their code points contain the same value, or weight.

UCS-2 collating sequence support is implemented using a multi-byte table. A pair of bytes within the
table corresponds to a character in the UCS-2 code page. Only a subset of the thousands of characters in
UCS-2 are typically represented in the table. Only those characters that are to compare differently (and
possibly other characters in the same ward) will be represented in the table. The bytes in the collating
sequence table are set based on how each character is to compare with other characters in UCS-2.

When two or more bytes (or pair of bytes for UCS-2) in a collating sequence table have the same
value, the collating sequence is a shared-weight collating sequence. If every byte (or pair of bytes for
UCS-2) in a collating sequence table has a unique value, the collating sequence is a unique-weight
collating sequence. For many languages, unique- and shared-weight collating sequences are shipped on
the system as part of the operating system. If you need collating sequences for other languages or needs,
you define them using the Create Table (CRTTBL) command.

UTF-8 and UTF-16 collating sequence support is implemented using ICU (International Components for
Unicode). This is a standard API to sort Unicode. The API produces the same result for normalized and
non-normalized data and returns a sort weight based on language specific rules. The IBM i operating
system supports ICU 2.3.1, ICU 3.4, and ICU 4.0 collating sequences, but ICU 3.4 or ICU 4.0 should be
used. The ICU collating sequence table I34en_us (United States locale) will sort data differently than
I34fr_FR (French locale).

If ICU is used, the LIKE predicate and the LOCATE, POSITION, POSSTR, and POSITION scalar functions
are not supported.

If ICU 2.3.1 is used, the query cannot contain:

• EXCEPT or INTERSECT operations,
• VALUES in a fullselect,
• OLAP specifications,
• recursive common table expressions,
• ORDER OF,
• scalar fullselects (scalar subselects are supported),
• full outer join,
• LOBs in a GROUP BY,

Chapter 1. Concepts 33

• grouping sets or super groups,
• ORDER BY or FETCH clause in a subselect,
• OFFSET clause, or FETCH clause with a variable for N rows,
• CORRELATION, COVARIANCE, COVARIANCE_SAMP, LISTAGG, MEDIAN, PERCENTILE_CONT,

PERCENTILE_DISC, or Regression aggregate functions,
• VERIFY_GROUP_FOR_USER, LOCATE_IN_STRING, LTRIM or RTRIM with 2 arguments, EXTRACT

function with EPOCH,
• BSON_TO_JSON, JSON_ARRAY, JSON_ARRAYAGG, JSON_OBJECT, JSON_OBJECTAGG, JSON_QUERY,

JSON_TABLE, JSON_TO_BSON, and JSON_VALUE functions, and the IS JSON and JSON_EXISTS
predicates,

• CONTAINS or SCORE functions,
• XMLAGG, XMLATTRIBUTES, XMLCOMMENT, XMLCONCAT, XMLDOCUMENT, XMLELEMENT, XMLFOREST,

XMLGROUP, XMLNAMESPACES, XMLPI, XMLROW, or XMLTEXT functions,
• default values for user defined functions,
• global variables, or
• references to arrays.

An ICU collating sequence table will generally produce results that are more culturally correct, however:

• The performance of SQL statements that use an ICU collating sequence table will generally perform
worse than when using either an SBCS or UCS-2 collating sequence table. Indexes can be created with
an ICU collating sequence table, however, to improve performance. In this case, the index key values
will contain the ICU weighted value which will greatly reduce the number of times the system's ICU
support is called.

• The storage necessary for indexes that use an ICU collating sequence table will generally be greater
than when using either an SBCS or UCS-2 collating sequence table. The key values can be up to 3 times
longer than the length of SBCS data used to produce the key and up to 6 times longer than the length of
DBCS data used to produce the key.

It is important to remember that the data itself is not altered by the collating sequence. Instead, a
weighted representation of the data is used for the comparison. In SQL, a collating sequence is specified
on the CRTSQLxxx, STRSQL, and RUNSQLSTM commands. The SET OPTION statement can be used to
specify the collating sequence within the source of a program containing embedded SQL. The collating
sequence applies to all character comparisons performed in the SQL statements. The default collating
sequence on the system is the internal sequence that occurs when the hexadecimal representation of
characters are used. This is the sequence you get when the SRTSEQ(*HEX) is specified. For programs
precompiled with a release of the product that is earlier than Version 2 Release 3, the collating sequence
is *HEX.

Collating sequences do not apply to FOR BIT DATA or binary string columns.

The collating sequence is not allowed for an index or unique constraint that contains a key column with a
field procedure.

The collating sequence is explicitly specified through the following interfaces:

Table 3. Collating Sequence Interfaces

SQL Interface Specification

Embedded SQL SRTSEQ parameter on the Create SQL Program (CRTSQLxxx)
commands. The SET OPTION statement can also be used to
set the SRTSEQ values.

(For more information about CRTSQLxxx commands, see
Embedded SQL Programming.)

34 IBM i: Db2 for i SQL Reference

Table 3. Collating Sequence Interfaces (continued)

SQL Interface Specification

Run SQL Statements SRTSEQ parameter on the Run SQL Statements (RUNSQLSTM)
command.

(For more information about the RUNSQLSTM command, see
SQL Programming.)

Call Level Interface (CLI) on the server SQL_ATTR_JOB_SORT_SEQUENCE environment variable

(For more information about CLI, see SQL Call Level
Interfaces (ODBC).)

JDBC or SQLJ on the server using IBM
IBM Developer Kit for Java

job.sort.sequence property object

(For more information about JDBC and SQLJ, see IBM
Developer Kit for Java.)

ODBC on a client using the IBM i Access
Family ODBC Driver

Sort Type in ODBC Setup

(For more information about ODBC, see IBM i Access.)

JDBC on a client using the IBM Toolbox
for Java

Sort Sequence Table in JDBC Setup

(For more information about JDBC, see IBM i Access.)

(For more information about the IBM Toolbox for Java, see
IBM Toolbox for Java.)

OLE DB on a client using the IBM i
Access Family OLE DB Provider

Sort Sequence Connection Object Properties

(For more information about OLE DB, see IBM i Access.)

ADO .NET on a client using the IBM i
Access Family ADO .NET Provider

SortSequence in Connection Object Properties

(For more information about ADO .NET, see IBM i Access.)

For more information about CCSIDs, see the Work with CCSIDs topic in the Globalization section of the
IBM i Information Center. For more information about collating sequences and the sequences shipped
with the system, see the DB2 and SQL collating sequence topic in the IBM i Information Center.

Distributed relational database
A distributed relational database consists of a set of tables and other objects that are spread across
different but interconnected computer systems or logical partitions on the same computer system.
Each computer system has a relational database manager that manages the tables in its environment.
The database managers communicate and cooperate with each other in a way that allows a database
manager to execute SQL statements on another computer system.

Distributed relational databases are built on formal requester-server protocols and functions. An
application requester supports the application end of a connection. It transforms a database request
from the application into communication protocols suitable for use in the distributed database network.
These requests are received and processed by an application server at the other end of the connection.12

Working together, the application requester and application server handle the communication and

12 This is also known as a an application server.

Chapter 1. Concepts 35

location considerations so that the application is isolated from these considerations and can operate
as if it were accessing a local database. A simple distributed relational database environment is illustrated
in Figure 8 on page 36.

Figure 8. A Distributed Relational Database Environment

For more information about Distributed Relational Database Architecture™ (DRDA) communication
protocols, see Open Group Publications: DRDA Vol. 1: Distributed Relational Database Architecture
(DRDA)

Application servers
An activation group must be connected to the application server of a database manager before SQL
statements can be executed.

A connection is an association between an activation group and a local or remote application server. A
connection is also known as a session or an SQL session. Connections are managed by the application.
The CONNECT statement can be used to establish a connection to an application server and make that
application server the current server of the activation group.

An implicit CONNECT operation may also establish a connection to the application server:

• An implicit CONNECT operation may occur when invoking a program, service program, or the STRSQL
command. The application server is determined by the RDB parameter on the CRTSQLxxx and STRSQL
commands.

In these cases, the implicit CONNECT operation will not occur if an implicit or explicit CONNECT
operation has already successfully or unsuccessfully occurred in the activation group. Thus, an
activation group cannot be implicitly connected to an application server more than once.

• An implicit CONNECT operation may occur when using a three-part object name or an alias that is
defined to reference a three-part name of a table or view.

In these cases, an implicit CONNECT operation is only allowed if all the objects referenced in the SQL
statement refer to the same relational database. The only exceptions are:

– The target table of an INSERT statement may be in one relational database and the tables referenced
in the select-statement of the INSERT may be in another relational database.

– The new table for a CREATE TABLE or DECLARE GLOBAL TEMPORARY TABLE statement may be
in one relational database and the tables referenced in the select-statement may be in another
relational database.

The implicit CONNECT changes the current server for the statement. At the end of the statement the
connection is set back to the prior current server.

• When creating three-part qualified SQL stored procedures or SQL functions, objects in the procedure
body must exist on both the DRDA client and DRDA server. If the procedure body objects do not exist,
object not found errors may be signalled.

An application server can be local to, or remote from, the environment where the activation group is
started. (An application server is present, even when distributed relational databases are not used.)
This environment includes a local directory that describes the application servers that can be identified

36 IBM i: Db2 for i SQL Reference

https://collaboration.opengroup.org/dbiop/
https://collaboration.opengroup.org/dbiop/

in a CONNECT statement. For more information about the directory, see the relational database
folders in System i Navigator or the directory commands (ADDRDBDIRE, CHGRDBDIRE, DSPRDBDIRE,
RMVRDBDIRE, and WRKRDBDIRE) in the following IBM i Information Center topics:

• SQL Programming
• Distributed Database Programming
• CL commands

To execute a static SQL statement that references tables or views, an application server uses the bound
form of the statement. This bound statement is taken from a package that the database manager
previously created through a bind operation. The appropriate package is determined by the combination
of:

• The name of the package specified by the SQLPKG parameter on the CRTSQLxxx commands. See
Embedded SQL Programming for a description of the CRTSQLxxx commands.

• The internal consistency token that makes certain the package and program were created from the
same source at the same time.

A Db2 relational database product may support a feature that is not supported by the version of the Db2
product that is connecting to the application server. Some of these features are product-specific, and
some are shared by more than one product.

For the most part, an application can use the statements and clauses that are supported by the database
manager of the application server to which it is currently connected, even though that application is
running via the application requester of a database manager that does not support some of those
statements and clauses. Restrictions are listed in Appendix B, “Characteristics of SQL statements,” on
page 1651.

CONNECT (type 1) and CONNECT (type 2)
There are two types of CONNECT statements with the same syntax but different semantics. CONNECT
(type 1) is used for remote unit of work. CONNECT (type 2) is used for distributed unit of work.

See “CONNECT (type 1) and CONNECT (type 2) differences” on page 1662 for a summary of the
differences.

Remote unit of work
The remote unit of work facility provides for the remote preparation and execution of SQL statements. An
activation group at computer system A can connect to an application server at computer system B. Then,
within one or more units of work, that activation group can execute any number of static or dynamic SQL
statements that reference objects at B. After ending a unit of work at B, the activation group can connect
to an application server at computer system C, and so on.

Most SQL statements can be remotely prepared and executed with the following restrictions:

• All objects referenced in a single SQL statement must be managed by the same application server.
• All of the SQL statements in a unit of work must be executed by the same application server.

Remote unit of work connection management
An activation group is in one of three states at any time:

• Connectable and connected
• Unconnectable and connected
• Connectable and unconnected

The following diagram shows the state transitions:

Chapter 1. Concepts 37

Figure 9. Remote Unit of Work Activation Group Connection State Transition

The initial state of an activation group is connectable and connected.

The connectable and connected state
An activation group is connected to an application server and CONNECT statements can be executed.
The activation group enters this state when it completes a rollback or successful commit from the
unconnectable and connected state, or a CONNECT statement is successfully executed from the
connectable and unconnected state.

The unconnectable and connected state
An activation group is connected to an application server, but a CONNECT statement cannot be
successfully executed to change application servers. The activation group enters this state from the
connectable and connected state when it executes any SQL statement other than CONNECT, COMMIT, or
ROLLBACK.

The connectable and unconnected state
An activation group is not connected to an application server. The only SQL statement that can be
executed is CONNECT.

The activation group enters this state when:

• The connection was previously released and a successful COMMIT is executed.
• The connection is disconnected using the SQL DISCONNECT statement.
• The connection was in a connectable state, but the CONNECT statement was unsuccessful.

Consecutive CONNECT statements can be executed successfully because CONNECT does not remove the
activation group from the connectable state. A CONNECT to the application server to which the activation
group is currently connected is executed like any other CONNECT statement. CONNECT cannot execute
successfully when it is preceded by any SQL statement other than CONNECT, COMMIT, DISCONNECT, SET
CONNECTION, RELEASE, or ROLLBACK (unless running with COMMIT(*NC)). To avoid an error, execute a
commit or rollback operation before a CONNECT statement is executed.

Application-directed distributed unit of work
The application-directed distributed unit of work facility also provides for the remote preparation and
execution of SQL statements in the same fashion as remote unit of work. Like remote unit of work, an
activation group at computer system A can connect to an application server at computer system B and
execute any number of static or dynamic SQL statements that reference objects at B before ending the

38 IBM i: Db2 for i SQL Reference

unit of work. All objects referenced in a single SQL statement must be managed by the same application
server. However, unlike remote unit of work, any number of application servers can participate in the
same unit of work. A commit or rollback operation ends the unit of work.

Distributed unit of work is fully supported for APPC and TCP/IP connections.

Application-directed distributed unit of work connection management

At any time:

• An activation group is always in the connected or unconnected state and has a set of zero or
more connections. Each connection of an activation group is uniquely identified by the name of the
application server of the connection.

• An SQL connection is always in one of the following states:

– Current and held
– Current and release-pending
– Dormant and held
– Dormant and release-pending

Initial state of an activation group:

An activation group is initially in the connected state and has exactly one connection. The initial state of a
connection is current and held.

The following diagram shows the state transitions:

Figure 10. Application-Directed Distributed Unit of Work Connection and Activation Group Connection State
Transitions

Connection states

Chapter 1. Concepts 39

If an application process successfully executes a CONNECT statement:

• The current connection is placed in the dormant state and held state.
• The server name is added to the set of connections and the new connection is placed in the current and

held state.

If the server name is already in the set of existing connections of the activation group, an error is returned.

A connection in the dormant state is placed in the current state using the SET CONNECTION statement.
When a connection is placed in the current state, the previous current connection, if any, is placed in the
dormant state. No more than one connection in the set of existing connections of an activation group can
be current at any time. Changing the state of a connection from current to dormant or from dormant to
current has no effect on its held or release-pending state.

A connection is placed in the release-pending state by the RELEASE statement. When an activation
group executes a commit operation, every release-pending connection of the activation group is ended.
Changing the state of a connection from held to release-pending has no effect on its current or dormant
state. Thus, a connection in the release-pending state can still be used until the next commit operation.
There is no way to change the state of a connection from release-pending to held.

Activation group connection states

A different application server can be established by the explicit or implicit execution of a CONNECT
statement. The following rules apply:

• An activation group cannot have more than one connection to the same application server at the same
time.

• When an activation group executes a SET CONNECTION statement, the specified location name must be
an existing connection in the set of connections of the activation group.

• When an activation group executes a CONNECT statement, the specified server name must not be an
existing connection in the set of connections of the activation group.

If an activation group has a current connection, the activation group is in the connected state. The
CURRENT SERVER special register contains the name of the application server of the current connection.
The activation group can execute SQL statements that refer to objects managed by that application
server.

An activation group in the unconnected state enters the connected state when it successfully executes a
CONNECT or SET CONNECTION statement.

If an activation group does not have a current connection, the activation group is in the unconnected
state. The CURRENT SERVER special register contents are equal to blanks. The only SQL statements that
can be executed are CONNECT, DISCONNECT, SET CONNECTION, RELEASE, COMMIT, and ROLLBACK.

An activation group in the connected state enters the unconnected state when its current connection is
intentionally ended or the execution of an SQL statement is unsuccessful because of a failure that causes
a rollback operation at the current server and loss of the connection. Connections are intentionally ended
when an activation group successfully executes a commit operation and the connection is in the release-
pending state, or when an application process successfully executes the DISCONNECT statement.

When a connection is ended
When a connection is ended, all resources that were acquired by the activation group through the
connection and all resources that were used to create and maintain the connection are deallocated.
For example, if application process P has placed the connection to application server X in the application
server state, all cursors of P at X will be closed and deallocated when the connection is ended during the
next commit operation.

40 IBM i: Db2 for i SQL Reference

A connection can also be ended as a result of a communications failure in which case the activation group
is placed in the unconnected state. All connections of an activation group are ended when the activation
group ends.

Data representation considerations
Different systems represent data in different ways. When data is moved from one system to another,
data conversion must sometimes be performed. Products supporting DRDA will automatically perform
any necessary conversions at the receiving system.

With numeric data, the information needed to perform the conversion is the data type and the sending
system's environment type. For example, when a floating-point variable from a Db2 for i application
requester is assigned to a column of a table at an z/OS® application server, the number is converted from
IEEE format to System/370* format.

With character and graphic data, the data type and the environment type of the sending system are not
sufficient. Additional information is needed to convert character and graphic strings. String conversion
depends on both the coded character set of the data and the operation to be done with that data. String
conversions are done in accordance with the IBM Character Data Representation Architecture (CDRA).
For more information about character conversion, refer to the book Character Data Representation
Architecture Reference and Registry, SC09-2190.

Chapter 1. Concepts 41

42 IBM i: Db2 for i SQL Reference

Chapter 2. Language elements
This section defines the basic syntax of SQL and language elements that are common to many SQL
statements.

Characters
The basic symbols of keywords and operators in the SQL language are single-byte characters that are part
of all character sets supported by the IBM relational database products.

Characters of the language are classified as letters, digits, or special characters.13

A letter is any of the 26 uppercase (A through Z) and 26 lowercase (a through z) letters of the English
alphabet. 14

A digit is any of the characters 0 through 9.

A special character is any of the characters listed below:

space or blank - minus sign

" quotation mark or double-quote or double
quotation mark

. period

% percent / slash

& ampersand : colon

' apostrophe or single quote or single
quotation mark

; semicolon

(left parenthesis < less than

) right parenthesis = equals

* asterisk > greater than

+ plus sign ? question mark

, comma _ underline or underscore

| vertical bar16 ‸ caret

! exclamation mark15 [left bracket

{ left brace] right bracket

} right brace ¬ not 15

13 Note that if the SQL statement is encoded as Unicode data, all characters of the statement except for
string constants will be converted to single-byte characters prior to processing. Tokens representing string
constants may be processed as UTF-16 graphic strings without conversion to single-byte.

14 Letters also include three code points reserved as alphabetic extenders for national languages (#, @,
and $ in the United States). These three code points should be avoided because they represent different
characters depending on the CCSID.

15 Using the not symbol (¬) and the exclamation point symbol (!) might inhibit code portability between IBM
relational database products. Avoid using them because they are variant characters. Instead of ¬= or != use
<>. Instead of ¬> or !> use <=. Instead of ¬< or !< use >=.

16 Using the vertical bar (|) character might inhibit code portability between IBM relational database products.
Use the CONCAT operator instead of the concatenation operator (||).

© Copyright IBM Corp. 1998, 2015 43

Tokens
The basic syntactical units of the language are called tokens. A token consists of one or more characters,
excluding blanks, control characters, and characters within a string constant or delimited identifier.
(These terms are defined later.)

Tokens are classified as ordinary or delimiter tokens:

• An ordinary token is a numeric constant, an ordinary identifier, a host identifier, or a keyword.

Examples

 1 .1 +2 SELECT E 3

• A delimiter token is a string constant, a delimited identifier, an operator symbol, or any of the special
characters shown in the syntax diagrams. A question mark (?) is also a delimiter token when it serves as
a parameter marker, as explained under “PREPARE” on page 1435.

Examples

 , 'Myst Island' "fld1" = .

Spaces:
A space is a sequence of one or more blank characters.

Control Characters:
A control character is a special character that is used for string alignment. The following table contains the
control characters that are handled by the database manager:

Table 4. Control Characters

Control Character EBCDIC Hex Value UTF-8 Hex Value
UCS-2 and UTF-16 Hex
Value

Tab 05 09 U+0009

Form Feed 0C 0C U+000C

Carriage Return 0D 0D U+000D

New Line 15 C285 U+0085

Line Feed (New line) 25 0A U+000A

DBCS Space — — U+3000

Tokens, other than string constants and certain delimited identifiers, must not include a control character
or space. A control character or space can follow a token. A delimiter token, a control character, or
a space must follow every ordinary token. If the syntax does not allow a delimiter token to follow
an ordinary token, then a control character or a space must follow that ordinary token. The following
examples illustrate the rule that is stated in this paragraph.

Here are some examples of combinations of the above ordinary tokens that, in effect, change the tokens:

 1.1 .1+2 SELECTE .1E E3 SELECT1

This demonstrates why ordinary tokens must be followed by a delimiter token or a space.

Here are some examples of combinations of the above ordinary tokens and the above delimiter tokens
that, in effect, change the tokens:

 1. .3

44 IBM i: Db2 for i SQL Reference

The period (.) is a delimiter token when it is used as a separator in the qualification of names. Here the
dot is used in combination with an ordinary token of a numeric constant. Thus, the syntax does not allow
an ordinary token to be followed by a delimiter token. Instead, the ordinary token must be followed by a
space.

If the decimal point has been defined to be the comma, as described in “Decimal point” on page 116, the
comma is interpreted as a decimal point in numeric constants. Here are some examples of these numeric
constants:

 1,2 ,1 1, 1,e1

If '1,2' and '1,e1' are meant to be two items, both the ordinary token (1) and the delimiter token (,) must
be followed by a space, to prevent the comma from being interpreted as a decimal point. Although the
comma is usually a delimiter token, the comma is part of the number when it is interpreted as a decimal
point. Therefore, the syntax does not allow an ordinary token (1) to be followed by a delimiter token (,).
Instead, an ordinary token must be followed by a space.

Comments:
Dynamic SQL statements can include SQL comments. Static SQL statements can include host language
comments or SQL comments. Comments may be specified wherever a space may be specified, except
within a delimiter token or between the keywords EXEC and SQL. In Java, SQL comments are not allowed
within embedded Java expressions. There are two types of SQL comments:

simple comments
Simple comments are introduced by two consecutive hyphens (--). Simple comments cannot continue
past the end of the line. For more information, see “SQL comments” on page 815.

bracketed comments
Bracketed comments are introduced by /* and end with */. A bracketed comment can continue past
the end of the line. For more information, see “SQL comments” on page 815.

Uppercase and Lowercase:
Any token in an SQL statement may include lowercase letters, but a lowercase letter in an ordinary
token is folded to uppercase, except for variables in the C and Java languages, which have case-sensitive
identifiers. Delimiter tokens are never folded to uppercase. Thus, the statement:

 select * from EMP where lastname = 'Smith';

is equivalent, after folding, to:

 SELECT * FROM EMP WHERE LASTNAME = 'Smith';

Chapter 2. Language elements 45

Identifiers
An identifier is a token used to form a name. An identifier in an SQL statement is an SQL identifier, a
system identifier, or a host identifier.

Note: $, @, #, and all other variant characters should not be used in identifiers because the code points
used to represent them vary depending on the CCSID of the string in which they are contained. If they are
used, unpredictable results may occur. For more information about variant characters, see the DB2 and
SQL sort sequence topic.

SQL identifiers
There are two types of SQL identifiers: ordinary identifiers and delimited identifiers.

• An ordinary identifier is an uppercase letter followed by zero or more characters, each of which is an
uppercase letter, a digit, or the underscore character. Note that ordinary identifiers are converted to
uppercase. An ordinary identifier should not be a reserved word. See Appendix I, “Reserved schema
names and reserved words,” on page 2003 for a list of reserved words. If a reserved word is used as an
identifier in SQL, it should be specified in uppercase and should be a delimited identifier or specified in a
variable.

• A delimited identifier is a sequence of one or more characters enclosed within SQL escape characters.
The sequence must consist of one or more characters. Leading blanks in the sequence are significant.
Trailing blanks in the sequence are not significant. The length of a delimited identifier does not include
the two SQL escape characters. Note that delimited identifiers are not converted to uppercase. The
escape character is the quotation mark (") except in the following cases where the escape character is
the apostrophe ('):

– Interactive SQL when the SQL string delimiter is set to the quotation mark in COBOL syntax checking
statement mode

– Dynamic SQL in a COBOL program when the CRTSQLCBL or CRTSQLCBLI parameter
OPTION(*QUOTESQL) specifies that the string delimiter is the quotation mark (")

– COBOL application program when the CRTSQLCBL or CRTSQLCBLI parameter OPTION(*QUOTESQL)
specifies that the string delimiter is the quotation mark (")

The following characters are not allowed within delimited identifiers:

– X'00' through X'3F' and X'FF'

System identifiers
A system identifier is used to form the name of system objects in the IBM i operating system. There are
two types of system identifiers: ordinary identifiers and delimited identifiers.

• The rules for forming a system ordinary identifier are identical to the rules for forming an SQL ordinary
identifier.

• The rules for forming a system delimited identifier are identical to those for forming SQL delimited
identifiers, except:

– The following special characters are not allowed in a delimited system identifier:

- A blank (X'40')
- An asterisk (X'5C')
- An apostrophe (X'7D')
- A question mark (X'6F')
- A quotation mark (X'7F')

– The bytes required for the escape characters are included in the length of the identifier unless the
characters within the delimiters would form an ordinary identifier.

46 IBM i: Db2 for i SQL Reference

For example, “PRIVILEGES” is in uppercase and the characters within the delimiters form an ordinary
identifier; therefore, it has a length of 10 bytes and is a valid system name for a column. Alternatively,
“privileges” is in lowercase, has a length of 12 bytes, and is not a valid system name for a column
because the bytes required for the delimiters must be included in the length of the identifier.

Examples

 WKLYSAL WKLY_SAL "WKLY_SAL" "UNION" "wkly_sal"

See “Naming conventions” on page 48 for information on the maximum length of identifiers.

Host identifiers
A host-identifier is a name declared in the host program.

The rules for forming a host-identifier are the rules of the host language; except that DBCS characters
cannot be used. For example, the rules for forming a host-identifier in a COBOL program are the same as
the rules for forming a user-defined word in COBOL. Names beginning with the characters 'SQ', 'SQL', 'sql',
'RDI', or 'DSN' should not be used because precompilers generate host variables that begin with these
characters. In Java, do not use names beginning with '__sJT_'.

See Table 5 on page 55 for the limits on the maximum size of the host identifier name imposed by Db2
for i.

17 'SQ' is allowed in C, COBOL, and PL/I; it should not be used in RPG.

Chapter 2. Language elements 47

Naming conventions
The rules for forming a name depend on the type of the object designated by the name and the naming
option (*SQL or *SYS). The naming option is specified on the CRTSQLxxx, RUNSQLSTM, and STRSQL
commands. The SET OPTION statement can be used to specify the naming option within the source of a
program containing embedded SQL. The syntax diagrams use different terms for different types of names.

The following list defines these terms.

alias-name
A qualified or unqualified name that designates an alias. The qualified form of an alias-name depends
on the naming option. For SQL naming, the qualified form is a schema-name followed by a period (.)
and an SQL identifier. For system naming, the qualified form is a schema-name followed by a slash (/)
followed by an SQL identifier18.

The unqualified form of an alias-name is an SQL identifier. The unqualified form is implicitly qualified
based on the rules specified in “Qualification of unqualified object names” on page 57.

An alias-name can specify either the name of the alias or the system object name of the alias.

array-type-name
A qualified or unqualified name that designates an array type. The qualified form of a array-type-name
depends upon the naming option. For SQL naming, the qualified form is a schema-name followed by a
period (.) and an SQL identifier. For system naming, the qualified form is a schema-name followed by a
slash (/) followed by an SQL identifier18.

The unqualified form of a array-type-name is an SQL identifier. The unqualified form is implicitly
qualified based on the rules specified in “Qualification of unqualified object names” on page 57.

For system naming, array-type-names cannot be qualified when used in a parameter data type of an
SQL routine or in an SQL variable declaration in an SQL procedure.

authorization-name
A system identifier that designates a user or group of users. An authorization-name is a user profile
name on the server. It must not be a delimited identifier that includes lowercase letters or special
characters. See “Authorization IDs and authorization names” on page 61 for the distinction between
an authorization-name and an authorization ID.

column-name
A qualified or unqualified name that designates a column of a table or a view. The unqualified form of
a column-name is an SQL identifier. The qualified form is a qualifier followed by a period and an SQL
identifier. The qualifier is a table name, a view name, or a correlation name.

For system naming, column names can be qualified using the form schema-name/table-name.column-
name when the name is used in the COMMENT and LABEL statements. If column names need to
be qualified and correlation names are allowed in the statement, a correlation name can be used to
qualify the column. The period form of qualification can also be used.

A column-name can specify either the column name or the system column name of a column of a
table or view. If a column-name is delimited, the delimiters are considered to be part of the name
when determining the length of the name.

constraint-name
A qualified or unqualified name that designates a constraint on a table. The qualified form of a
constraint-name depends on the naming option. For SQL naming, the qualified form is a schema-name
followed by a period (.) and an SQL identifier. For system naming, the qualified form is a schema-name
followed by a slash (/) followed by an SQL identifier18.

The unqualified form of a constraint-name is an SQL identifier. The unqualified form is implicitly
qualified based on the rules specified in “Qualification of unqualified object names” on page 57.

The implicit or explicit qualifier must be the same as the schema name of the table.

18 For system naming, the qualified form that uses a period is also accepted.

48 IBM i: Db2 for i SQL Reference

correlation-name
An SQL identifier that designates a table, a view, or individual rows of a table or view.

cursor-name
An SQL identifier that designates an SQL cursor.

descriptor-name
A variable name or string constant that designates an SQL descriptor area (SQLDA). A variable
that designates an SQL descriptor area must not have an indicator variable. The form :host-
variable:indicator-variable is not allowed. See “References to host variables” on page 139 for a
description of a variable.

distinct-type-name
A qualified or unqualified name that designates a distinct type. The qualified form of a distinct-type-
name depends upon the naming option. For SQL naming, the qualified form is a schema-name
followed by a period (.) and an SQL identifier. For system naming, the qualified form is a schema-name
followed by a slash (/) followed by an SQL identifier18.

The unqualified form of a distinct-type-name is an SQL identifier. The unqualified form is implicitly
qualified based on the rules specified in “Qualification of unqualified object names” on page 57.

For system naming, distinct-type-names cannot be qualified when used in a parameter data type of an
SQL routine or in an SQL variable declaration in an SQL function, SQL procedure, or trigger.

external-program-name
A qualified name, unqualified name, or a character string that designates an external program. The
qualified form of an external-program-name depends on the naming option. For SQL naming, the
qualified form is a system-schema-name followed by a period (.) and a system identifier. For system
naming, the qualified form is a system-schema-name followed by a slash (/) followed by a system
identifier18.

The unqualified form of an external-program-name is a system identifier. The unqualified form is
implicitly qualified based on the rules specified in “Qualification of unqualified object names” on page
57.

For a service program name, the qualified form depends on the naming option. For SQL naming the
qualified form is a system-schema-name followed by a period (.), followed by a system identifier
for the service program name, followed by a left parenthesis, followed by an IBM i entry-point-
name, followed by a right parenthesis (library-name.service-program-name(entry-point-name)). For
system naming, the qualified form is a system-schema-name followed by a slash (/) followed by a
system identifier for the service program name, followed by a left parenthesis, followed by an IBM
i entry-point-name, followed by a right parenthesis (library-name/service-program-name(entry-point-
name))18. If the entry point name contains lowercase characters, it must be enclosed in quotes.

The unqualified form of an service program name is a system identifier followed by a left parenthesis,
followed by an IBM i entry-point-name, followed by a right parenthesis. The unqualified form is
implicitly qualified based on the rules specified in “Qualification of unqualified object names” on page
57.

The format of the character string form is either:

• A IBM i qualified program name ('library-name/program-name').
• A IBM i qualified source file name, followed by a left parenthesis, followed by an IBM i member

name, and a right parenthesis ('library-name/source-file-name(member-name)'). This form is only
valid when calling a REXX procedure.

• A IBM i qualified or unqualified service program name, followed by a left parenthesis, followed
by an IBM i entry-point-name, followed by a right parenthesis ('library-name/service-program-
name(entry-point-name)' or 'service-program-name(entry-point-name)').

• In Java, an optional jar-name, followed by a class identifier, followed by an exclamation point or
period, followed by a method identifier ('class-id!method-id' or 'class-id.method-id').

Chapter 2. Language elements 49

jar-name :

class-id !
.

method-id

jar-name
The jar-name is a case-sensitive string that identifies the jar schema when it was installed in
the database. It can be either a simple identifier, or a schema qualified identifier. Examples are
'myJar' and 'myCollection.myJar'.

class-id

The class-id identifies the class identifier of the Java object. If the class is part of a Java
package, the class identifier must include the complete Java package prefix. For example, if the
class identifier is 'myPackage.StoredProcs', the Java virtual machine will look in the following
directory for the StoredProcs class:

 '/QIBM/UserData/OS400/SQLLib/
 Function/myPackage/StoredProcs/'

method-id

The method-id identifies the method name of the public, static Java method to be invoked.

This form is only valid for Java procedures and Java functions.

function-name
A qualified or unqualified name that designates a user-defined function, a cast function that was
generated when a distinct type was created, or a built-in function. The qualified form of a function-
name depends upon the naming option. For SQL naming, the qualified form is a schema-name
followed by a period (.) and an SQL identifier. For system naming, the qualified form is a schema-name
followed by a slash (/) followed by an SQL identifier18.

In a CREATE, COMMENT, DROP, GRANT, or REVOKE statement, the schema-name can be qualified
with a server-name. In all other contexts, a server-name is not allowed.

The unqualified form of a function-name is an SQL identifier. The unqualified form is implicitly
qualified based on the rules specified in “Qualification of unqualified object names” on page 57.

For system naming, functions names can only be qualified in the form schema-name/function-name
when the name is used in a CREATE, COMMENT, DROP, GRANT, or REVOKE statement. The period
form of qualification can be used in an expression.

host-label
A token that designates a label in a host program.

host-variable
A sequence of tokens that designates a host variable. A host-variable includes at least one host-
identifier, as explained in “References to host variables” on page 139.

index-name
A qualified or unqualified name that designates an index. The qualified form of an index-name
depends upon the naming option. For SQL naming, the qualified form is a schema-name followed
by a period (.) and an SQL identifier. For system naming, the qualified form is a schema-name followed
by a slash (/) followed by an SQL identifier18.

The unqualified form of an index-name is an SQL identifier. The unqualified form is implicitly qualified
based on the rules specified in “Qualification of unqualified object names” on page 57.

mask-name
A qualified or unqualified name that designates a column mask. The qualified form of a mask-name
depends upon the naming option. For SQL naming, the qualified form is a schema-name followed by a
period (.) and an SQL identifier. For system naming, the qualified form is a schema-name followed by a
slash (/) followed by an SQL identifier18.

50 IBM i: Db2 for i SQL Reference

The unqualified form of a mask-name is an SQL identifier. The unqualified form is implicitly qualified
based on the rules specified in “Qualification of unqualified object names” on page 57.

member-name
An identifier that designates a member of a database file. A member is also a partition of a partitioned
table. A member name is a system identifier.

nodegroup-name
A qualified or unqualified name that designates a nodegroup. A nodegroup is a group of IBM i
products across which a table will be distributed. For more information about distributed tables and
nodegroups, see DB2 Multisystem.

The qualified form of a nodegroup-name depends on the naming option. For SQL naming, the qualified
form is a schema-name followed by a period (.) and a system identifier. For system naming, the
qualified form is a schema-name followed by a slash (/) followed by a system identifier18.

The unqualified form of a nodegroup-name is a system identifier. The unqualified form is implicitly
qualified based on the rules specified in “Qualification of unqualified object names” on page 57.

package-name
A qualified or unqualified name that designates a package. The qualified form of a package-name
depends upon the naming option. For SQL naming, the qualified form is a schema-name followed by a
period (.) and a system identifier. For system naming, the qualified form is a schema-name followed by
a slash (/) followed by a system identifier18.

The unqualified form of a package-name is a system identifier. The unqualified form is implicitly
qualified based on the rules specified in “Qualification of unqualified object names” on page 57.

parameter-name
An SQL identifier that designates a parameter for a function or procedure. If the parameter-name is for
a procedure, the identifier may be preceded by a colon.

partition-name
An identifier that designates a partition of a partitioned table. A partition name is a system identifier.

permission-name
A qualified or unqualified name that designates a row permission. The qualified form of a permission-
name depends upon the naming option. For SQL naming, the qualified form is a schema-name
followed by a period (.) and an SQL identifier. For system naming, the qualified form is a schema-name
followed by a slash (/) followed by an SQL identifier18.

The unqualified form of a permission-name is an SQL identifier. The unqualified form is implicitly
qualified based on the rules specified in “Qualification of unqualified object names” on page 57.

procedure-name
A qualified or unqualified name that designates a procedure. The qualified form of a procedure-name
depends upon the naming option. For SQL naming, the qualified form is a schema-name followed by a
period (.) and an SQL identifier. For system naming, the qualified form is a schema-name followed by a
slash (/) followed by an SQL identifier18.

The unqualified form of a procedure-name is an SQL identifier. The unqualified form is implicitly
qualified based on the rules specified in “Qualification of unqualified object names” on page 57.

savepoint-name
An SQL identifier that designates a savepoint.

schema-name
A qualified or unqualified name that provides a logical grouping for SQL objects. A schema name is
used as a qualifier of the name of a table, view, index, procedure, function, trigger, sequence, variable,
constraint, alias, type, or package. The unqualified form of a schema-name is a system identifier. The
qualified form of a schema-name depends on the naming option.

For SQL naming, the unqualified schema name in an SQL statement is implicitly qualified by the
server-name. The qualified form is a server-name followed by a (.) and a system identifier.

Chapter 2. Language elements 51

For system naming, the unqualified schema name in an SQL statement is implicitly qualified by the
server-name. The qualified form is a server-name followed by a slash (/) and an SQL identifier18.

If the server-name is used to qualify the name of the schema, the server-name may identify any
supported remote server. Otherwise, the schema name is implicitly qualified with the current server.

Note: schema-name refers to either a schema created by the CREATE SCHEMA statement or to an
IBM i library.

sequence-name
A qualified or unqualified name that designates a sequence. The qualified form of a sequence-name
depends upon the naming option. For SQL naming, the qualified form is a schema-name followed by a
period (.) and an SQL identifier. For system naming, the qualified form is a schema-name followed by
a slash (/) followed by an SQL identifier18. For system naming, a sequence-name cannot be qualified
with a slash when used in a NEXT VALUE or PREVIOUS VALUE expression (the slash-qualified form
is only allowed in SQL schema statements). The period form of qualification can be used in a NEXT
VALUE or PREVIOUS VALUE expression.

The unqualified form of a sequence-name is an SQL identifier. The unqualified form is implicitly
qualified based on the rules specified in “Qualification of unqualified object names” on page 57.

A sequence-name can specify either the name of the sequence or the system object name of the
sequence.

server-name
An SQL identifier that designates an application server. The identifier must start with a letter and must
not include lowercase letters or special characters.

A server-name may be the actual name of the relational database or a relational database alias. For
more information see the Add RDB Directory Entry (ADDRDBDIRE) CL command. If a three-part name
is specified directly in an SQL statement (other than the base table specified in a CREATE ALIAS
statement) it can use either the actual relational database name or the relational database alias
name.

For example, if the actual name of the relational database is ABC and a relational database alias name
of MYABC also references ABC:

 SELECT * FROM ABC.SCHEMA1.T1 -- This is valid.

 SELECT * FROM MYABC.SCHEMA1.T1 -- This is also valid.

specific-name
A qualified or unqualified name that uniquely identifies a procedure or function. The qualified form
of a specific-name depends upon the naming option. For SQL naming, the qualified form is a schema-
name followed by a period (.) and an SQL identifier. For system naming, the qualified form is a
schema-name followed by a slash (/) followed by an SQL identifier18.

The unqualified form of a specific-name is an SQL identifier. The unqualified form is implicitly qualified
based on the rules specified in “Qualification of unqualified object names” on page 57.

SQL-condition-name
An SQL identifier that designates a condition in an SQL procedure, SQL function, or trigger body.

SQL-descriptor-name
A variable name or character or graphic string constant that designates an SQL descriptor that was
allocated using the ALLOCATE DESCRIPTOR statement.

If a variable is used to designate the SQL descriptor:

• The variable must not be a CLOB or DBCLOB.
• If the variable is a graphic string, it must be a Unicode graphic string.

52 IBM i: Db2 for i SQL Reference

• The length of the contents of the variable must not exceed the maximum length for an SQL-
descriptor-name.

• An indicator variable must not be specified. The form :host-variable:indicator-variable is not
allowed.

• The contents of the variable are case-sensitive and are not converted to uppercase.

Leading and trailing blanks are trimmed from the variable or string. See “References to host variables”
on page 139 for a description of a variable.

If a string constant is used to designate the SQL descriptor, the length of the constant must not
exceed the maximum length for an SQL-descriptor-name.

SQL-label
An SQL name that designates a label in an SQL procedure, SQL function, or trigger body.

SQL-parameter-name
A qualified or unqualified name that designates a parameter in an SQL routine body. The unqualified
form of an SQL-parameter-name is an SQL identifier. The qualified form is a procedure-name followed
by a period (.) and an SQL identifier.

SQL-variable-name
A qualified or unqualified name that designates a variable in an SQL routine body. The unqualified
form of an SQL-variable-name is an SQL identifier. The qualified form is an SQL-label followed by a
period (.) and an SQL identifier.

statement-name
An SQL identifier that designates a prepared SQL statement.

system-column-name
A name that designates the IBM i column name of a table or a view. A system-column-name is a
system identifier. System-column-names can be delimited identifiers, but the characters within the
delimiters must not include lowercase letters or special characters.

system-object-name
A name that designates the IBM i name of a table, view, index, sequence, variable, or alias. A
system-object-name is a system identifier.

If the unqualified name of the table, view, index, sequence, variable, or alias is a valid system
identifier, the system-object-name of the table, view, index, sequence, variable, or alias is the
unqualified name of the table, view, index, sequence, or alias.

system-schema-name
A name that designates the IBM i name of a schema. A system-schema-name is a system identifier.

If the unqualified name of the schema is a valid system identifier, the system-schema-name of the
schema is the unqualified name of the schema.

table-name
A qualified or unqualified name that designates a table. The qualified form of a table-name depends
upon the naming option. For SQL naming, the qualified form is a schema-name followed by a period (.)
and an SQL identifier. For system naming, the qualified form is a schema-name followed by a slash (/)
followed by an SQL identifier18.

The unqualified form of a table-name is an SQL identifier. The unqualified form is implicitly qualified
based on the rules specified in “Qualification of unqualified object names” on page 57.

A table-name can specify either the name of the table or the system object name of the table.

trigger-name
A qualified or unqualified name that designates a trigger on a table. The qualified form of a trigger-
name depends on the naming option. For SQL naming, the qualified form is a schema-name followed
by a period (.) and a system identifier. For system naming, the qualified form is a schema-name
followed by a slash (/) followed by an SQL identifier18.

The unqualified form of a trigger-name is an SQL identifier. The unqualified form is implicitly qualified
based on the rules specified in “Qualification of unqualified object names” on page 57.

Chapter 2. Language elements 53

variable-name
A qualified or unqualified name that designates a global variable. The qualified form of a variable-
name depends upon the naming option. For SQL naming, the qualified form is a schema-name
followed by a period (.) and an SQL identifier. For system naming, the qualified form is a schema-name
followed by a slash (/) followed by an SQL identifier18. For system naming, a variable-name cannot
be qualified with a slash when used in an expression (the slash-qualified form is only allowed in SQL
schema statements). The period form of qualification can be used in an expression.

The unqualified form of a variable-name is an SQL identifier. The unqualified form is implicitly
qualified based on the rules specified in “Qualification of unqualified object names” on page 57.

A variable-name can specify either the name of the variable or the system object name of the variable.

version-id
An identifier of 1 to 64 characters that is assigned to a package when the package is created. A
version-id is only assigned when packages are created from a server other than Db2 for i.

view-name
A qualified or unqualified name that designates a view. The qualified form of a view-name depends
upon the naming option. For SQL naming, the qualified form is a schema-name followed by a period (.)
and an SQL identifier. For system naming, the qualified form is a schema-name followed by a slash (/)
followed by an SQL identifier18.

The unqualified form of a view-name is an SQL identifier. The unqualified form is implicitly qualified
based on the rules specified in “Qualification of unqualified object names” on page 57.

A view-name can specify either the name of the view or the system object name of the view.

xsrobject-name
A qualified or unqualified name that designates an object in the XML schema repository. The qualified
form of an xsrobject-name depends upon the naming option. For SQL naming, the qualified form is a
schema-name followed by a period (.) and an SQL identifier. For system naming, the qualified form is a
schema-name followed by a slash (/) followed by an SQL identifier18.

The unqualified form of an xsrobject-name is an SQL identifier. The unqualified form is implicitly
qualified based on the rules specified in “Qualification of unqualified object names” on page 57.

54 IBM i: Db2 for i SQL Reference

Table 5. Identifier Length Limits (in bytes)

Identifier Type Maximum Length

Longest authorization name19 10

Longest correlation name 128

Longest cursor name 128

Longest external program name (string form) 279

Longest external program name (unqualified form)20 10

Longest host identifier 64

Longest package version-id 64

Longest partition name 10

Longest savepoint name 128

Longest schema name 128

Longest server name 18

Longest SQL condition name 128

Longest SQL descriptor name 128

Longest SQL label 128

Longest statement name 128

Longest unqualified alias name 128

Longest unqualified array type name 128

Longest unqualified column name 128

Longest unqualified constraint name 128

Longest unqualified distinct type name 128

Longest unqualified function name 128

Longest unqualified index name 128

Longest unqualified mask name 128

Longest unqualified nodegroup name 10

Longest unqualified package name 10

Longest unqualified permission name 128

Longest unqualified procedure name 128

Longest unqualified sequence name 128

Longest unqualified specific name 128

Longest unqualified SQL parameter name 128

Longest unqualified SQL variable name 128

Longest unqualified system column name 10

Longest unqualified system object name 10

Longest unqualified system schema name 10

Chapter 2. Language elements 55

Table 5. Identifier Length Limits (in bytes) (continued)

Identifier Type Maximum Length

Longest unqualified table and view name 128

Longest unqualified trigger name 128

Longest unqualified variable name 128

Longest unqualified XSR object name 128

19 As an application requester, the system can send an authorization name of up to 255 bytes.
20 For REXX procedures, the limit is 33.

56 IBM i: Db2 for i SQL Reference

SQL path
The SQL path is an ordered list of schema names. The database manager uses the path to resolve the
schema name for unqualified type names (built-in types, distinct types, and array types), function names,
variable names, and procedure names that appear in any context other than as the main object of an
ALTER, CREATE, DROP, COMMENT, LABEL, GRANT, or REVOKE statement.

For example, if the SQL path is SMITH, XGRAPHIC, QSYS, QSYS2 and an unqualified distinct type name
MYTYPE was specified, database manager looks for MYTYPE first in schema SMITH, then XGRAPHIC, and
then QSYS and QSYS2.

The SQL path used depends on the SQL statement:

• For static SQL statements (except for a CALL variable statement), the path used is the value of the
SQLPATH parameter on the CRTSQLxxx command. The SQLPATH can also be set using the SET OPTION
statement.

The path stored in programs, modules, service programs, routines, and triggers, is composed entirely of
the system-schema-names associated with the schema names in the path. If the system-schema-name
of a schema is renamed, it may be necessary to recreate these objects if they use SQL statements that
depend on the path.

• For dynamic SQL statements (and for a CALL variable statement), the path used is the value of the
CURRENT PATH special register. For more information about the CURRENT PATH special register, see
“CURRENT PATH” on page 126.

If the SQL path is not explicitly specified, the SQL path is the system path followed by the run-time
authorization ID of the statement.

For more information about the SQL path for dynamic SQL, see “CURRENT PATH” on page 126.

Qualification of unqualified object names
Unqualified object names are implicitly qualified. The rules for qualifying a name differ depending on the
type of object that the name identifies.

Unqualified alias, constraint, external program, index, mask, nodegroup,
package, permission, sequence, table, trigger, view, and XSR object names
Unqualified alias, constraint, external program, index, mask, nodegroup, package, permission, sequence,
table, trigger, view, and XSR object names are implicitly qualified by the default schema.

The default schema is specified as follows:

• For static SQL statements:

– If the DFTRDBCOL parameter is specified on the CRTSQLxxx command (or with the SET OPTION
statement), the default schema is the schema-name that is specified for that parameter.

– In all other cases, the default schema is based on the naming convention.

- For SQL naming, the default schema is the authorization identifier of the statement.
- For system naming, the default schema is the job library list (*LIBL).

• For dynamic SQL statements the default schema depends on whether a default schema has been
explicitly specified. The mechanism for explicitly specifying this depends on the interface used to
dynamically prepare and execute SQL statements.

– If a default schema is not explicitly specified:

- For SQL naming, the default schema is the run-time authorization identifier.
- For system naming, the default schema is the job library list (*LIBL).

– The default schema is explicitly specified through the following interfaces:

Chapter 2. Language elements 57

Table 6. Default Schema Interfaces

SQL Interface Specification

Embedded SQL DFTRDBCOL parameter and DYNDFTCOL(*YES) on the
Create SQL Program (CRTSQLxxx) and Create SQL Package
(CRTSQLPKG) commands. The SET OPTION statement can
also be used to set the DFTRDBCOL and DYNDFTCOL
values.

(For more information about CRTSQLxxx commands, see
Embedded SQL Programming.)

Run SQL Statements DFTRDBCOL parameter on the Run SQL Statements
(RUNSQLSTM) command.

(For more information about the RUNSQLSTM command,
see SQL Programming.)

Call Level Interface (CLI) on the server SQL_ATTR_DEFAULT_LIB or
SQL_ATTR_DBC_DEFAULT_LIB environment or connection
variables

(For more information about CLI, see SQL Call Level
Interfaces (ODBC).)

JDBC or SQLJ on the server using IBM
IBM Developer Kit for Java

libraries property object

(For more information about JDBC and SQLJ, see IBM
Developer Kit for Java.)

ODBC on a client using the IBM i
Access Family ODBC Driver

SQL Default Schema in ODBC Setup

(For more information about ODBC, see IBM i Access.)

JDBC on a client using the IBM
Toolbox for Java

SQL Default Schema in JDBC Setup

(For more information about JDBC, see IBM i Access.)

(For more information about the IBM Toolbox for Java, see
IBM Toolbox for Java.)

OLE DB on a client using the IBM i
Access Family OLE DB Provider

DefaultCollection in Connection Object Properties

(For more information about OLE DB, see IBM i Access.)

ADO .NET on a client using the IBM i
Access Family ADO .NET Provider

DefaultCollection in Connection Object Properties

(For more information about ADO .NET, see IBM i Access.)

All interfaces SET SCHEMA or QSQCHGDC (Change Dynamic Default
Collection) API

(For more information about QSQCHGDC, see the File APIs
category.)

58 IBM i: Db2 for i SQL Reference

Unqualified function, procedure, specific name, type, and variables
The qualification of function, procedure, specific name, type (built-in types, distinct types, and array
types), and variables, depends on the SQL statement in which the unqualified name appears.

• If an unqualified name is the main object of an ALTER, CREATE, COMMENT, LABEL, DROP, GRANT, or
REVOKE statement, the name is implicitly qualified using the same rules as for qualifying unqualified
table names (See “Unqualified alias, constraint, external program, index, mask, nodegroup, package,
permission, sequence, table, trigger, view, and XSR object names” on page 57).

• Otherwise, the implicit schema name is determined as follows:

– For type names, database manager searches the SQL path and selects the first schema in the path
such that the data type exists in the schema.

– For variable names, database manager searches the SQL path and selects the first schema in the
path such that the schema contains an authorized variable with the same name

– For procedure names, database manager searches the SQL path and selects the first schema in the
path such that the schema contains an authorized procedure with the same name and number of
parameters.

– For function names, database manager uses the SQL path in conjunction with function resolution, as
described under “Function resolution” on page 149.

– For specific names specified for sourced functions, see “CREATE FUNCTION (sourced)” on page 1018.

SQL names and system names: special considerations
The CL command Override Database File (OVRDBF) can be specified to override an SQL or system
name with another object name for local data manipulation SQL statements. Overrides are ignored for
data definition SQL statements and data manipulation SQL statements executing at a remote relational
database.

See the Database file management topic for more information about the override function.

Chapter 2. Language elements 59

Aliases
An alias can be thought of as an alternative name for a table, partition of a table, view, or member of
a database file. A table or view in an SQL statement can be referenced by its name or by an alias. An
alias can refer to a table, partition of a table, view, or database file member within the same or a remote
relational database.

An alias can be used wherever a table or view name can be used, except:

• Do not use an alias name where a new table or view name is expected, such as in the CREATE TABLE or
CREATE VIEW statements. For example, if an alias name of PERSONNEL is created, then a subsequent
statement such as CREATE TABLE PERSONNEL will cause an error.

• An alias that refers to an individual partition of a table or member of a database file can only be used in
a select statement, CREATE INDEX, DELETE, INSERT, MERGE, SELECT INTO, SET variable, UPDATE, or
VALUES INTO statement.

Aliases can also help avoid using file overrides. Not only does an alias perform better than an override, but
an alias is also a permanent object that only need be created once.

An alias can be created even though the object that the alias refers to does not exist. However, the object
must exist when a statement that references the alias is executed. A warning is returned if the object does
not exist when the alias is created. An alias cannot refer to another alias.

Statements that use three-part names and refer to distributed data, result in DRDA access to the remote
relational database. When an application program uses three-part name aliases for remote objects and
DRDA access, the application program must be bound at each location that is specified in the three-part
names. Also, each alias needs to be defined at the local site. An alias at a remote site can refer to yet
another server as long as a referenced alias eventually refers to a table or view.

The option of referring to a table, partition of a table, view, or database file member by an alias name is
not explicitly shown in the syntax diagrams or mentioned in the description of the SQL statements.

A new alias cannot have the same fully-qualified name as an existing table, view, index, file, or alias.

The effect of using an alias in an SQL statement is similar to that of text substitution. The alias, which
must be defined before the SQL statement is executed, is replaced at statement preparation time by
the qualified base table, partition of a table, view, or database file member name. For example, if
PBIRD.SALES is an alias for DSPN014.DIST4_SALES_148, then at statement run time:

 SELECT * FROM PBIRD.SALES

effectively becomes

 SELECT * FROM DSPN014.DIST4_SALES_148

The effect of dropping an alias and recreating it to refer to another table depends on the statement that
references the alias.

• SQL Data or SQL Data Change statements that refer to that alias will be implicitly rebound when they are
next run.

• Indexes that reference the alias are not affected.
• Materialized query tables or views that reference the alias are not affected.

For syntax toleration of existing Db2 for z/OS applications, SYNONYM can be used in place of ALIAS in the
CREATE ALIAS and DROP ALIAS statements.

60 IBM i: Db2 for i SQL Reference

Authorization IDs and authorization names
An authorization ID is a character string that is obtained by the database manager when a connection is
established between the database manager and either an application process or a program preparation
process. It designates a set of privileges. It may also designate a user or a group of users, but this
property is not controlled by the database manager.

After a connection has been established, the authorization ID may be changed using the SET SESSION
AUTHORIZATION statement.

Authorization ID's are used by the database manager to provide authorization checking of SQL
statements.

When the authorization ID of the statement is the owner of the program or service program, that is known
as adopted authority. The authorization ID adopts and uses the authority of the program owner in addition
to the runtime authorization ID.

Multiple levels of adopted authority are possible when nested calls occur to programs or service programs
that use the owner of the program as the statement authorization ID. Adopted authority is tracked at the
thread level. The CURRENT USER special register can be used to return the authorization ID of the most
recently adopted authority. The enforcement of statement authorization requirements will consider all
levels of adopted authority. When a dynamic SQL statement is executed with DYNUSRPRF value of *USER,
all levels of adopted authority are suppressed.

An authorization ID applies to every SQL statement. The authorization ID that is used for authorization
checking for a static SQL statement depends on the USRPRF value specified on the precompiler
command:

• If USRPRF(*OWNER) is specified, or if USRPRF(*NAMING) is specified and SQL naming mode is used,
the authorization ID of the statement is the owner of the non-distributed SQL program. For distributed
SQL programs, it is the owner of the SQL package.

• If USRPRF(*USER) is specified, or if USRPRF(*NAMING) is specified and system naming mode is used,
the authorization ID of the statement is the authorization ID of the user running the non-distributed SQL
program. For distributed SQL programs, it is the authorization ID of the user at the current server.

The authorization ID that is used for authorization checking for a dynamic SQL statement also depends on
where and how the statement is executed:

• If the statement is prepared and executed from a non-distributed program:

– If the USRPRF value is *USER and the DYNUSRPRF value is *USER for the program, the authorization
ID that applies is the ID of the user running the non-distributed program. This is called the run-time
authorization ID.

– If the USRPRF value is *OWNER and the DYNUSRPRF value is *USER for the program, the
authorization ID that applies is the ID of the user running the non-distributed program.

– If the USRPRF value is *OWNER and the DYNUSRPRF value is *OWNER for the program, the
authorization ID that applies is the ID of the owner of the non-distributed program.

• If the statement is prepared and executed from a distributed program:

– If the USRPRF value is *USER and the DYNUSRPRF value is *USER for the SQL package, the
authorization ID that applies is the ID of the user running the SQL package at the current server.
This is also called the run-time authorization ID.

– If the USRPRF value is *OWNER and the DYNUSRPRF value is *USER for the SQL package, the
authorization ID that applies is the ID of the user running the SQL package at the current server.

– If the USRPRF value is *OWNER and the DYNUSRPRF value is *OWNER for the SQL package, the
authorization ID that applies is the ID of the owner of the SQL package at the current server.

• If the statement is issued interactively, the authorization ID that applies is the ID of the user that issued
the Start SQL (STRSQL) command.

Chapter 2. Language elements 61

• If the statement is executed from the RUNSQLSTM command, the authorization ID that applies is the ID
of the user that issued the RUNSQLSTM command.

• If the statement is executed from REXX, the authorization ID that applies is the ID of the user that
issued the STRREXPRC command.

On the IBM i operating system, the run-time authorization ID is the user profile of the thread.

An authorization-name specified in an SQL statement should not be confused with the authorization ID
of the statement. An authorization-name is an identifier that is used in GRANT and REVOKE statements
to designate a target of the grant or revoke. The premise of a grant of privileges to X is that X will
subsequently be the authorization ID of statements which require those privileges. A group user profile
can also be used when checking authority for an SQL statement. For information about group user
profiles, see Security Reference.

Example

Assume SMITH is your user ID; then SMITH is the authorization ID when you execute the following
statement interactively:

 GRANT SELECT ON TDEPT TO KEENE

SMITH is the authorization ID of the statement. Thus, the authority to execute the statement is checked
against SMITH.

KEENE is an authorization-name specified in the statement. KEENE is given the SELECT privilege on
SMITH.TDEPT.

62 IBM i: Db2 for i SQL Reference

Procedure resolution
Given a procedure invocation, Db2 must decide which of the possible procedures with the same name to
execute.

• Let A be the number of arguments in a procedure invocation.
• Let P be the number of parameters in a procedure signature.
• Let N be the number of parameters without a default.

Candidate procedures for resolution of a procedure invocation are selected based on the following
criteria:

• Each candidate procedure has a matching name and an applicable number of parameters. An applicable
number of parameters satisfies the condition N ≤ A ≤ P.

• Each candidate procedure has parameters such that for each named argument in the CALL statement
there exists a parameter with a matching name that does not already correspond to a positional (or
unnamed) argument.

• Each parameter of a candidate procedure that does not have a corresponding argument in the CALL
statement, specified by either position or name, is defined with a default.

• Each candidate procedure from a set of one or more schemas has the EXECUTE privilege associated
with the authorization ID of the CALL statement. The authorities of any objects referenced in a default
expression are not considered.

In addition, the set of candidate procedures depends on how the procedure name is qualified.

• If the procedure name is unqualified, procedure resolution is done as follows:

Search all procedures with a schema in the SQL path for candidate procedures. If one or more candidate
procedures are found in the schemas of the SQL path, then these candidate procedures are included
in the candidate list. If there is a single candidate procedure in the list, resolution is complete. If there
are multiple candidate procedures, choose the procedure whose schema is earliest in the SQL path. If
there are still multiple candidate procedures, select the candidate procedure with the lowest number of
parameters.

If there are no candidate procedures, an error is returned.
• If the procedure name is qualified, procedure resolution is done as follows:

Search within the schema specified by the qualifier for candidate procedures. If a single candidate
procedure exists, resolution is complete. If there are multiple candidate procedures, choose the
candidate procedure with the lowest number of parameters and resolution is complete. If the schema
does not exist or there are no authorized candidate procedures, an error is returned.

Example 1: There are six FOO procedures, in four different schemas, registered as follows (note that not
all required keywords appear):

 CREATE PROCEDURE AUGUSTUS.FOO (INT) SPECIFIC FOO_1 ...
 CREATE PROCEDURE AUGUSTUS.FOO (DOUBLE, DECIMAL(15, 3)) SPECIFIC FOO_2 ...
 CREATE PROCEDURE JULIUS.FOO (INT) SPECIFIC FOO_3 ...
 CREATE PROCEDURE JULIUS.FOO (INT, INT, INT) SPECIFIC FOO_4 ...
 CREATE PROCEDURE CAESAR.FOO (INT, INT) SPECIFIC FOO_5 ...
 CREATE PROCEDURE NERO.FOO (INT,INT) SPECIFIC FOO_6 ...

The procedure reference is as follows (where I1 and I2 are INTEGER values):

 CALL FOO(I1, I2)

Assume that the application making this reference has an SQL path established as:

 "JULIUS", "AUGUSTUS", "CAESAR"

Following through the algorithm, the procedure with specific name FOO_6 is eliminated as a candidate,
because the schema "NERO" is not included in the SQL path. FOO_1, FOO_3, and FOO_4 are eliminated

Chapter 2. Language elements 63

as candidates, because they have the wrong number of parameters. The remaining candidates are
considered in order, as determined by the SQL path. Note that the types of the arguments and parameters
are ignored. The parameters of FOO_5 exactly match the arguments in the CALL, but FOO_2 is chosen
because "AUGUSTUS" appears before "CAESAR" in the SQL path.

Example 2: The following examples illustrate procedure resolution using named parameters in the CALL
statement:

 CREATE PROCEDURE p1(i1 INT)...
 CREATE PROCEDURE p1(i1 INT DEFAULT 0, i2 INT DEFAULT 0)...

CALL p1(i2=>1)

Since the argument names are taken into consideration during the candidate selection process, only the
second version of p1 will be considered a candidate. Furthermore, it can be successfully called because i1
in this version of p1 is defined with a default, so only specifying i2 on the call to p1 is valid. The procedure
will be passed a value of 0 for parameter i1.

 CREATE PROCEDURE p2(i1 INT, i2 INT DEFAULT 0)...
 CREATE PROCEDURE p2(i1 INT DEFAULT 0, i2 INT DEFAULT 0, i3 INT DEFAULT 0)...

 CALL p2(i2=>1)

One of the criteria for a procedure parameter which does not have a corresponding argument in the CALL
statement (specified by either position or name) is that the parameter is defined with a default value.
Therefore, the first version of p2 is not considered a candidate since parameter i1 does not have a default
defined. The second version of p2 will be selected and the default values for the first and third parameters
will be passed.

64 IBM i: Db2 for i SQL Reference

Data types
The smallest unit of data that can be manipulated in SQL is called a value.

How values are interpreted depends on the attributes of their source, which includes the data type,
length, precision, scale, and CCSID. The sources of values are:

• Columns
• Constants
• Expressions
• Functions
• Special registers
• Variables (such as host variables, SQL variables, global variables, parameter markers and parameters of

routines)

The Db2 relational database products support both built-in data types and user-defined data types. This
section describes the built-in data types. For a description of distinct types, see “User-defined types” on
page 82.

The following figure illustrates the various built-in data types supported by Db2 for i.

Chapter 2. Language elements 65

For information about specifying the data types of columns, see “CREATE TABLE” on page 1115.

Nulls
All data types include the null value. Distinct from all non-null values, the null value is a special value that
denotes the absence of a (non-null) value.

Except for grouping operations, a null value is also distinct from another null value. Although all data types
include the null value, some sources of values cannot provide the null value. For example, constants and
columns that are defined as NOT NULL cannot contain null values, the COUNT and COUNT_BIG functions
cannot return a null value, and ROWID columns cannot store a null value although a null value can be
returned for a ROWID column as the result of a query.

Numbers
The numeric data types are binary integer, decimal, decimal floating-point, and floating-point.

The numeric data types are categorized as follows:

66 IBM i: Db2 for i SQL Reference

• Exact numerics: binary integer and decimal
• Decimal floating-point
• Approximate numerics: floating-point

Binary integer includes small integer, large integer, and big integer. Binary numbers are exact
representations of integers. Decimal numbers are exact representations of numbers with a fixed precision
and scale. Binary and decimal numbers are considered exact numeric types.

Decimal floating-point numbers can have a precision of 16 or 34. Decimal floating-point supports both
exact representations of real numbers and approximations of real numbers and so is not considered
either an exact numeric type or an approximate numeric type.

Floating-point includes single precision and double precision. Floating-point numbers are approximations
of real numbers and are considered approximate numeric types.

All numbers have a sign, a precision, and a scale. For all numbers except decimal floating-point, if a
column or expression is zero, the sign is positive. Decimal floating-point numbers include negative and
positive zeros. Decimal floating-point has distinct values for a number and the same number with various
exponents (for example: 0.0, 0.00, 0.0E5, 1.0, 1.00, 1.0000). The precision is the total number of digits
excluding the sign. The scale is the total number of digits to the right of the decimal point. If there is no
decimal point, the scale is zero.

Small integer
A small integer is a binary number composed of 2 bytes with a precision of 5 digits. The range of small
integers is -32 768 to +32 767.

For small integers, decimal precision and scale are supported by COBOL, RPG, and IBM i system files. For
information concerning the precision and scale of binary integers, see the DDS Reference topic.

Large integer
A large integer is a binary number composed of 4 bytes with a precision of 10 digits. The range of large
integers is -2 147 483 648 to +2 147 483 647.

For large integers, decimal precision and scale are supported by COBOL, RPG, and IBM i system files. For
information concerning the precision and scale of binary integers, see the DDS Reference topic.

Big integer
A big integer is a binary number composed of 8 bytes with a precision of 19 digits. The range of big
integers is -9 223 372 036 854 775 808 to +9 223 372 036 854 775 807.

Decimal
A decimal value is a packed decimal or zoned decimal number with an implicit decimal point. The position
of the decimal point is determined by the precision and the scale of the number. The scale, which is the
number of digits in the fractional part of the number, cannot be negative or greater than the precision. The
maximum precision is 63 digits.

All values of a decimal column have the same precision and scale. The range of a decimal variable or the
numbers in a decimal column is -n to +n, where the absolute value of n is the largest number that can be
represented with the applicable precision and scale.

The maximum range is negative 1063+1 to 1063 minus 1.

Floating-point
A single-precision floating-point number is a 32-bit approximate representation of a real number. The
range of magnitude is approximately 1.17549436 × 10-38 to 3.40282356 × 1038.

Chapter 2. Language elements 67

A double-precision floating-point number is a IEEE 64-bit approximate representation of a real number.
The range of magnitude is approximately 2.2250738585072014 × 10-308 to 1.7976931348623158 ×
10308.

Single-precision floating-point is generally accurate to 7 digits of precision. Double-precision floating-
point is generally accurate to 15 digits of precision.

Decimal floating-point
A decimal floating-point number is an IEEE 754R number with a decimal point. The position of the
decimal point is stored in each decimal floating-point value. The maximum precision is 34 digits. The
range of a decimal floating-point number is either 16 or 34 digits of precision, and an exponent range of
10-383 to 10384 or 10-6143 to 106144 respectively.

The minimum exponent, Emin, for DECFLOAT values is -383 for DECFLOAT(16) and -6143 for
DECFLOAT(34). The maximum exponent, Emax, for DECFLOAT values is 384 for DECFLOAT(16) and 6144
for DECFLOAT(34).

In addition to the finite numbers, decimal floating-point numbers can also represent the following three
special values (see “Decimal floating-point constants” on page 112 for more information):

• Infinity - A value that represents a number whose magnitude is infinitely large.
• Quiet NaN - A value that represents undefined results which does not cause an invalid number warning.
• Signaling NaN - A value that represents undefined results which will cause an invalid number warning if

used in any numerical operation.21

When a number has one of these special values, its coefficient and exponent are undefined. The sign of
an infinity is significant (that is, it is possible to have both positive and negative infinity). The sign of a NaN
has no meaning for arithmetic operations.

See Table 128 on page 1644 for more information.

Numeric variables
Small and large binary integer variables can be used in all host languages. Big integer variables can only
be used in C, C++, ILE COBOL, and ILE RPG. Floating-point variables can be used in all host languages
except RPG/400® and COBOL/400. Decimal variables can be used in all supported host languages.
Decimal floating-point variables can only be used in C.

String representations of numeric values
When a decimal, decimal floating-point, or floating-point number is cast to a string (for example, using a
CAST specification) the implicit decimal point is replaced by the default decimal separator character in
effect when the statement was prepared. When a string is cast to a decimal, decimal floating-point, or
floating-point value (for example, using a CAST specification), the default decimal separator character in
effect when the statement was prepared is used to interpret the string.

Subnormal numbers and underflow
The decimal floating-point data type has a set of non-zero numbers that fall outside the range of normal
decimal floating-point values. These numbers are called subnormal.

Non-zero numbers whose adjusted exponents are less than Emin (-6143 for DECFLOAT(34) or -383 for
DECFLOAT(16)), are called subnormal numbers. These subnormal numbers are accepted as operands
for all operations and may result from any operation. If a result is subnormal before any rounding, the
subnormal warning is returned.22

21 The warning is only returned if *YES is specified for the SQL_DECFLOAT_WARNINGS query option.
22 The warning is only returned if *YES is specified for the SQL_DECFLOAT_WARNINGS query option.

68 IBM i: Db2 for i SQL Reference

For a subnormal result, the minimum value of the exponent becomes Emin- (precision - 1), called Etiny,
where precision is the precision of the decimal floating-point number. Hence, the smallest value of the
exponent Etiny = -6176 for DECFLOAT(34) and -398 for DECFLOAT(16). As the exponent Etiny gets smaller,
the number of digits available in the mantissa also decreases. The number of digits available in the
mantissa for subnormal numbers is (precision - (- Etiny + Emin).

The result will be rounded, if necessary, to ensure that the exponent is no smaller than Etiny. If, during this
rounding, the result becomes inexact, an underflow warning is returned.22 A subnormal result does not
always return the underflow warning but will always return the subnormal warning.

When a number underflows to zero during a calculation, its exponent will be Etiny. The maximum value of
the exponent is unaffected.

The maximum value of the exponent for subnormal numbers is the same as the minimum value of the
exponent which can arise during operations that do not result in subnormal numbers. This occurs where
the length of the coefficient in decimal digits is equal to the precision.

Character strings
A character string is a sequence of bytes. The length of the string is the number of bytes in the sequence.
If the length is zero, the value is called the empty string. The empty string should not be confused with the
null value.

Fixed-length character strings
When fixed-length character string distinct types, columns, and variables are defined, the length attribute
is specified and all values have the same length. For a fixed-length character string, the length attribute
must be between 1 through 32766 inclusive. See Appendix A, “SQL limits,” on page 1643 for more
information.

Varying-length character strings
The types of varying-length character strings are:

• VARCHAR
• CLOB

A Character Large OBject (CLOB) column is useful for storing large amounts of character data, such as
documents written using a single character set.

Distinct types, columns, and variables all have length attributes. When varying-length character-string
distinct types, columns, and variables are defined, the maximum length is specified and this becomes
the length attribute. Actual values may have a smaller length. For a varying-length character string, the
length attribute must be between 1 through 32 740 inclusive. For a CLOB string, the length attribute must
be between 1 through 2 147 483 647 inclusive. See Appendix A, “SQL limits,” on page 1643 for more
information.

For the restrictions that apply to the use of long varying-length strings, see “Limitations on use of strings”
on page 74.

Character-string variables

• Fixed-length character-string variables can be used in all host languages except REXX and Java. (In C or
C++, fixed-length character-string variables are limited to a length of 1.)

• VARCHAR varying-length character-string variables can be used in C, C++, COBOL, PL/I, REXX, and RPG:

– In PL/I, REXX, and ILE RPG, there is a varying-length character-string data type.
– In COBOL, C, and C++ varying-length character strings are represented as structures.

Chapter 2. Language elements 69

– In C and C++, varying-length character-string variables can also be represented by NUL-terminated
strings.

– In RPG/400, varying-length character-string variables can only be represented by VARCHAR columns
included as a result of an externally described data structure.

• CLOB varying-length character-string variables can be defined in all host languages except REXX, RPG/
400, and COBOL/400.

– In ILE RPG, a CLOB varying-length character string is declared using the SQLTYPE keyword.
– In all other languages, an SQL TYPE IS CLOB clause is used.

Character encoding schemes
Each character string is further defined as one of four types.

Bit data
Data that is not associated with a coded character set and is therefore never converted. The CCSID for
bit data is 65535.

Note: Bit data is a form of character data. The pad character is a blank for assignments to bit data; the
pad character is X'00' for assignments to binary data. It is recommended that the binary data type be
used instead of character for bit data.

SBCS data
Data in which every character is represented by a single byte. Each SBCS data character string has an
associated CCSID. If necessary, an SBCS string is converted before it is used in an operation with a
character string that has a different CCSID.

Mixed data
Data that may contain a mixture of characters from a single-byte character set (SBCS) and a double-
byte character set (DBCS). Each mixed string has an associated CCSID. If necessary, a mixed data
character string is converted before an operation with a character string that has a different CCSID. If
mixed data contains a DBCS character, it cannot be converted to SBCS data.

Unicode data
Data that contains characters represented by one or more bytes. Each Unicode character string is
encoded using UTF-8. The CCSID for UTF-8 is 1208.

The database manager does not recognize subclasses of double-byte characters, and it does not assign
any specific meaning to particular double-byte codes. However, if you choose to use mixed data, then two
single-byte EBCDIC codes are given special meanings:

• X'0E', the “shift-out” character, is used to mark the beginning of a sequence of double-byte codes.
• X'0F', the “shift-in” character, is used to mark the end of a sequence of double-byte codes.

In order for the database manager to recognize double-byte characters in a mixed data character string,
the following condition must be met:

• Within the string, the double-byte characters must be enclosed between paired shift-out and shift-in
characters.

The pairing is detected as the string is read from left to right. The code X'0E' is recognized as a shift
out character if X'0F' occurs later; otherwise, it is invalid. The first X'0F' following the X'0E' that is on a
double-byte boundary is the paired shift-in character. Any X'0F' that is not on a double-byte boundary is
not recognized.

There must be an even number of bytes between the paired characters, and each pair of bytes is
considered to be a double-byte character. There can be more than one set of paired shift-out and
shift-in characters in the string.

The length of a mixed data character string is its total number of bytes, counting two bytes for each
double-byte character and one byte for each shift-out or shift-in character.

When the job CCSID indicates that DBCS is allowed, CREATE TABLE will create character columns as
DBCS-Open fields, unless FOR BIT DATA, FOR SBCS DATA, or an SBCS CCSID is specified. The SQL user

70 IBM i: Db2 for i SQL Reference

will see these as character fields, but the system database support will see them as DBCS-Open fields.
For a definition of a DBCS-Open field, see the Database programming topic collection.

Graphic strings
A graphic string is a sequence of double-byte characters. The length of the string is the number of its
characters. Like character strings, graphic strings can be empty.

Fixed-length graphic strings
When fixed-length graphic-string distinct types, columns, and variables are defined, the length attribute is
specified and all values have the same length. For a fixed-length graphic string, the length attribute must
be between 1 through 16 383 inclusive. See Appendix A, “SQL limits,” on page 1643 for more information.

Varying-length graphic strings
• The types of varying-length graphic strings are:
• VARGRAPHIC
• DBCLOB

A Double-Byte Character Large OBject (DBCLOB) column is useful for storing large amounts of double-byte
character data, such as documents written using a double-byte character set.

Distinct types, columns, and variables all have length attributes. When varying-length graphic-string
distinct types, columns, and variables are defined, the maximum length is specified and this becomes the
length attribute. Actual values may have a smaller length. For a varying-length graphic string, the length
attribute must be between 1 through 16 370 inclusive. For a DBCLOB string, the length attribute must
be between 1 through 1 073 741 823 inclusive. See Appendix A, “SQL limits,” on page 1643 for more
information.

For the restrictions that apply to the use of long varying-length strings, see “Limitations on use of strings”
on page 74.

Graphic-string variables
• Fixed-length graphic-string variables can be defined in C, C++, ILE COBOL, and ILE RPG. (In C and C++,
fixed-length graphic-string variables are limited to a length of 1.)

Although fixed-length graphic-string variables cannot be defined in PL/I, COBOL/400, and RPG/400, a
character-string variable will be treated like a fixed-length graphic-string variable if it was generated in
the source from a GRAPHIC column in the external definition of a file.

• VARGRAPHIC varying-length graphic-string variables can be defined in C, C++, ILE COBOL, REXX, and
ILE RPG.

– In REXX and ILE RPG, there is a varying-length graphic-string data type.
– In C, C++, and ILE COBOL, varying-length graphic strings are represented as structures.
– In C and C++, varying-length graphic-string variables can also be represented by NUL-terminated

graphic strings.
– Although varying-length graphic-string variables cannot be defined in PL/I, COBOL/400, and RPG/

400, a character-string variable will be treated like a varying-length graphic-string variable if it was
generated in the source from a VARGRAPHIC column in the external definition of a file.

• DBCLOB varying-length character-string variables can be defined in all host languages except REXX,
RPG/400, and COBOL/400.

– In ILE RPG, a DBCLOB varying-length character string is declared using the SQLTYPE keyword.
– In all other languages, an SQL TYPE IS DBCLOB clause is used.

Chapter 2. Language elements 71

Graphic encoding schemes
Each graphic string is further defined as one of two types.

DBCS data
Data in which every character is represented by a character from the double-byte character set
(DBCS) that does not include the shift-out or shift-in characters.

Every DBCS graphic string has a CCSID that identifies a double-byte coded character set. If necessary,
a DBCS graphic string is converted before it is used in an operation with a DBCS graphic string that has
a different DBCS CCSID.

Unicode data
Data that contains characters represented by two or more bytes. Each Unicode graphic string is
encoded using either UCS-2 or UTF-16. UCS-2 is a subset of UTF-16. The CCSID for UCS-2 is 13488.
The CCSID for UTF–16 is 1200.

NCHAR, NVARCHAR, and NCLOB are synonyms for Unicode graphic data with a CCSID of 1200.

When graphic-string variables are not explicitly tagged with a CCSID, the associated DBCS CCSID for the
job CCSID is used. If no associated DBCS CCSID exists, the variable is tagged with 65535. A graphic-string
variable is never implicitly tagged with a UTF-16 or UCS-2 CCSID. See the DECLARE VARIABLE statement
for information on how to tag a graphic variable with a CCSID.

Binary strings
A binary string is a sequence of bytes. Unlike a character string which usually contains text data, a binary
string is used to hold non-traditional data such as pictures. The length of a binary string is the number of
bytes in the sequence. A binary string has a CCSID of 65535. Only character strings of FOR BIT DATA are
compatible with binary strings.

Fixed-length binary strings
When fixed-length binary-string distinct types, columns, and variables are defined, the length attribute is
specified and all values have the same length. For a fixed-length binary string, the length attribute must
be between 1 through 32 766 inclusive. See Appendix A, “SQL limits,” on page 1643 for more information.

Varying-length binary strings
The types of varying-length binary strings are:

• VARBINARY
• BLOB

A Binary Large OBject (BLOB) column is useful for storing large amounts of noncharacter data, such as
pictures, voice, and mixed media. Another use is to hold structured data for exploitation by distinct types
and user-defined functions.

Distinct types, columns, and variables all have length attributes. When varying-length binary-string
distinct types, columns, and variables are defined, the maximum length is specified and this becomes
the length attribute. Actual values may have a smaller length. For a varying-length binary string, the
length attribute must be between 1 through 32 740 bytes inclusive. For a BLOB string, the length attribute
must be between 1 through 2 147 483 647 inclusive. See Appendix A, “SQL limits,” on page 1643 for more
information.

Binary-string variables
A variable with a binary string type can be defined in all host languages except REXX, RPG/400, and
COBOL/400.

• BINARY fixed-length binary-string variables can be defined in all host languages except REXX, RPG/400,
and COBOL/400.

72 IBM i: Db2 for i SQL Reference

– In ILE RPG, a BINARY fixed-length binary-string variable is declared using the SQLTYPE keyword.
– In all other languages, an SQL TYPE IS BINARY clause is used.

• VARBINARY varying-length binary-string variables can be defined in all host languages except REXX,
RPG/400, and COBOL/400.

– In ILE RPG, a VARBINARY varying-length binary-string variable is declared using the SQLTYPE
keyword.

– In all other languages, an SQL TYPE IS VARBINARY clause is used.
• BLOB varying-length binary-string variables can be defined in all host languages except REXX, RPG/400,

and COBOL/400.

– In ILE RPG, a BLOB varying-length binary-string variable is declared using the SQLTYPE keyword.
– In all other languages, an SQL TYPE IS BLOB clause is used.

Large objects
The term large object and the generic acronym LOB are used to refer to any CLOB, DBCLOB, or BLOB data
type.

Manipulating large objects with locators
Since LOB values can be very large, the transfer of these values from the database server to client
application program variables can be time consuming. Also, application programs typically process LOB
values a piece at a time, rather than as a whole. For these cases, the application can reference a LOB
value via a large object locator (LOB locator). 23 When using a LOB locator, the application must be run
under commitment control.

A large object locator or LOB locator is a variable with a value that represents a single LOB value in the
database server. LOB locators were developed to provide users with a mechanism by which they could
easily manipulate very large objects in application programs without requiring them to store the entire
LOB value on the client machine where the application program may be running.

For example, when selecting a LOB value, an application program could select the entire LOB value and
place it into an equally large variable (which is acceptable if the application program is going to process
the entire LOB value at once), or it could instead select the LOB value into a LOB locator. Then, using
the LOB locator, the application program can issue subsequent database operations on the LOB value
by supplying the locator value as input. The resulting output of the locator operation, for example the
amount of data assigned to a client variable, would then typically be a small subset of the input LOB value.

LOB locators may also represent more than just base values; they can also represent the value associated
with a LOB expression. For example, a LOB locator might represent the value associated with:

 SUBSTR(lob_value_1 CONCAT lob_value_2 CONCAT lob_value_3, 42, 6000000)

For non-locator-based host variables in an application program, when a null value is selected into that
host variable, the indicator variable is set to -1, signifying that the value is null. In the case of LOB
locators, however, the meaning of indicator variables is slightly different. Since a LOB locator host variable
itself can never be null, a negative indicator variable value indicates that the LOB value represented by the
LOB locator is null. The null information is kept local to the client by virtue of the indicator variable value
-- the server does not track null values with valid LOB locators.

It is important to understand that a LOB locator represents a value, not a row or location in the database.
Once a value is selected into a LOB locator, there is no operation that one can perform on the original row
or table that will affect the value which is referenced by the LOB locator. The value associated with a LOB
locator is valid until the transaction ends, or until the LOB locator is explicitly freed, whichever comes first.

23 There is no ability within a Java application to distinguish between a CLOB or BLOB that is represented by a
LOB locator and one that is not.

Chapter 2. Language elements 73

A LOB locator is only a mechanism used to refer to a LOB value during a transaction; it does not persist
beyond the transaction in which it was created. Also, it is not a database type; it is never stored in the
database and, as a result, cannot participate in views or check constraints. However, since a locator is a
representation of a LOB type, there are SQLTYPEs for LOB locators so that they can be described within an
SQLDA structure that is used by FETCH, OPEN, CALL, and EXECUTE statements.

For the restrictions that apply to the use of LOB strings, see “Limitations on use of strings” on page 74.

Limitations on use of strings
Some varying-length string data types cannot be referenced in certain contexts.

The following varying-length string data types cannot be referenced in certain contexts:

• for character strings, any CLOB string
• for graphic strings, any DBCLOB string
• for binary strings, any BLOB string.

Table 7. Contexts for limitations on use of varying-length strings

Context of usage LOB (CLOB, DBCLOB, or BLOB)

The CREATE INDEX statement Not allowed

The definition of primary, unique, and foreign keys Not allowed

Parameters of built-in functions Some functions that allow varying-length character
strings, varying-length graphic strings, or both
types of strings as input arguments do not support
CLOB or DBCLOB strings, or both as input. See the
description of the individual functions in Chapter 4,
“Built-in functions,” on page 243 for the data types
that are allowed as input to each function.

Datetime values
Although datetime values can be used in certain arithmetic and string operations and are compatible with
certain strings, they are neither strings nor numbers.

However, strings can represent datetime values; see “String representations of datetime values” on page
75.

Date
A date is a three-part value (year, month, and day) designating a point in time under the Gregorian
calendar, which is assumed to have been in effect from the year 1 A.D.

The range of the year part is 0001 to 9999.24 The date formats *JUL, *MDY, *DMY, and *YMD can only
represent dates in the range 1940 through 2039. The range of the month part is 1 to 12. The range of the
day part is 1 to x, where x is 28, 29, 30, or 31, depending on the month and year.

The internal representation of a date is a string of 4 bytes that contains an integer. The integer (called the
Scaliger number) represents the date.

The length of a DATE column as described in the SQLDA is 6, 8, or 10 bytes, depending on which format is
used. These are the appropriate lengths for string representations for the value.

24 Note that historical dates do not always follow the Gregorian calendar. Dates between 1582-10-04 and
1582-10-15 are accepted as valid dates although they never existed in the Gregorian calendar.

74 IBM i: Db2 for i SQL Reference

Time
A time is a three-part value (hour, minute, and second) designating a time of day using a 24-hour clock.

The range of the hour part is 0 to 24, while the range of the minute and second parts is 0 to 59. If the hour
is 24, the minute and second specifications are both zero.

The internal representation of a time is a string of 3 bytes. Each byte consists of two packed decimal
digits. The first byte represents the hour, the second byte the minute, and the last byte the second.

The length of a TIME column as described in the SQLDA is 8 bytes, which is the appropriate length for a
string representation of the value.

Timestamp
A timestamp is a six or seven part value (year, month, day, hour, minute, second, and optional fractional
second) that represents a date and time.

The time portion of a timestamp value can include a specification of fractional seconds. The number of
digits in the fractional seconds is specified using an attribute in the range from 0 to 12 with a default of 6

The internal representation of a timestamp is a string of between 7 and 13 bytes. The first 4 bytes
represent the date, the next 3 bytes the time, and the last 0 to 6 bytes the fractional seconds.

Datetime variables
Character string variables are normally used to contain date, time, and timestamp values.

The ILE RPG and ILE COBOL precompilers support datetime variables.

Date, time, and timestamp variables can also be specified in Java as java.sql.Date, java.sql.Time, and
java.sql.Timestamp, respectively.

String representations of datetime values
Values whose data types are DATE, TIME, or TIMESTAMP are represented in an internal form that is
transparent to the user of SQL. Dates, times, and timestamps, however, can also be represented by
character or Unicode graphic strings.

To be retrieved, a datetime value can be assigned to a string variable. The format of the resulting string
will depend on the default date format and the default time format in effect when the statement was
prepared. The default date and time formats are set based on the date format (DATFMT), the date
separator (DATSEP), the time format (TIMFMT), and the time separator (TIMSEP) parameters.

When a valid string representation of a datetime value is used in an operation with an internal datetime
value, the string representation is converted to the internal form of the date, time, or timestamp before
the operation is performed. The default date format and default time format specifies the date and time
format that will be used to interpret the string. If the CCSID of the string represents a foreign encoding
scheme (for example, ASCII), it is first converted to the coded character set identified by the default
CCSID before the string is converted to the internal form of the datetime value.

The following sections define the valid string representations of datetime values.

Date strings
A string representation of a date is a character or a Unicode graphic string that starts with a digit and
has a length of at least 6 characters. Trailing blanks can be included. Leading zeros can be omitted from
the month and day portions when using the IBM SQL standard formats. Each IBM SQL standard format is
identified by name and includes an associated abbreviation (for use by the CHAR function). Other formats
do not have an abbreviation to be used by the CHAR function. The separators for two-digit year formats
are controlled by the date separator (DATSEP) parameter.

Valid string formats for dates are listed in Table 8 on page 76.

The database manager recognizes the string as a date when it is in one of the following formats:

Chapter 2. Language elements 75

• In the format specified by the default date format
• In one of the IBM SQL standard date formats
• In the unformatted Julian format

Table 8. Formats for String Representations of Dates

Format Name Abbreviation Date Format Example

International Standards Organization
(*ISO)

ISO 'yyyy-mm-dd' '1987-10-12'

IBM USA standard (*USA) USA 'mm/dd/yyyy' '10/12/1987'

IBM European standard (*EUR) EUR 'dd.mm.yyyy' '12.10.1987'

Japanese industrial standard Christian era
(*JIS)

JIS 'yyyy-mm-dd' '1987-10-12'

Unformatted Julian – 'yyyyddd' '1987285'

Julian (*JUL) – 'yy/ddd' '87/285'

Month, day, year (*MDY) – 'mm/dd/yy' '10/12/87'

Day, month, year (*DMY) – 'dd/mm/yy' '12/10/87'

Year, month, day (*YMD) – 'yy/mm/dd' '87/12/10'

The default date format can be specified through the following interfaces:

Table 9. Default Date Format Interfaces

SQL Interface Specification

Embedded SQL The DATFMT and DATSEP parameters are specified on
the Create SQL Program (CRTSQLxxx) commands. The SET
OPTION statement can also be used to specify the DATFMT
and DATSEP parameters within the source of a program
containing embedded SQL.

(For more information about CRTSQLxxx commands, see the
Embedded SQL programming topic collection.)

Interactive SQL and Run SQL Statements The DATFMT and DATSEP parameters on the Start SQL
(STRSQL) command or by changing the session attributes. The
DATFMT and DATSEP parameters on the Run SQL Statements
(RUNSQLSTM) command.

(For more information about STRSQL and RUNSQLSTM
commands, see SQL programming.)

Call Level Interface (CLI) on the server SQL_ATTR_DATE_FMT and SQL_ATTR_DATE_SEP
environment or connection variables

(For more information about CLI, see SQL Call Level
Interfaces (ODBC).)

JDBC or SQLJ on the server using IBM
IBM Developer Kit for Java

Date Format and Date Separator connection property

(For more information about JDBC and SQLJ, see IBM
Developer Kit for Java.)

76 IBM i: Db2 for i SQL Reference

Table 9. Default Date Format Interfaces (continued)

SQL Interface Specification

ODBC on a client using the IBM i Access
Family ODBC Driver

Date Format and Date Separator in the Advanced Server
Options in ODBC Setup

(For more information about ODBC, see IBM i Access.)

JDBC on a client using the IBM Toolbox
for Java

Format in JDBC Setup

(For more information about JDBC, see IBM i Access.)

(For more information about the IBM Toolbox for Java, see
IBM Toolbox for Java.)

Time strings
A string representation of a time is a character or a Unicode graphic string that starts with a digit and
has a length of at least 4 characters. Trailing blanks can be included; a leading zero can be omitted from
the hour part of the time and seconds can be omitted entirely. If you choose to omit seconds, an implicit
specification of 0 seconds is assumed. Thus, 13.30 is equivalent to 13.30.00.

Valid string formats for times are listed in Table 10 on page 77. Each IBM SQL standard format is
identified by name and includes an associated abbreviation (for use by the CHAR function). The other
format (*HMS) does not have an abbreviation to be used by the CHAR function. The separator for the
*HMS format is controlled by the time separator (TIMSEP) parameter.

The database manager recognizes the string as a time when it is in one of the following formats:

• In the format specified by the default time format
• In one of the IBM SQL standard time formats

Table 10. Formats for String Representations of Times

Format Name Abbreviation Time Format Example

International Standards Organization
(*ISO)

ISO 'hh.mm.ss' 25 '13.30.05'

IBM USA standard (*USA) USA 'hh:mm AM' (or PM) '1:30 PM'

IBM European standard (*EUR) EUR 'hh.mm.ss' '13.30.05'

Japanese industrial standard Christian era
(*JIS)

JIS 'hh:mm:ss' '13:30:05'

Hours, minutes, seconds (*HMS) – 'hh:mm:ss' '13:30:05'

The following additional rules apply to the USA time format:

• The hour must not be greater than 12 and cannot be 0 except for the special case of 00:00 AM.
• A single space character exists between the minutes portion of the time of day and the AM or PM.
• The minutes can be omitted entirely. If you choose to omit the minutes, an implicit specification of 0

minutes is assumed.

In the USA format, using the ISO format of the 24-hour clock, the correspondence between the USA
format and the 24-hour clock is as follows:

25 This is an earlier version of the ISO format. JIS can be used to get the current ISO format.

Chapter 2. Language elements 77

Table 11. USA Time Format

USA Format 24-Hour Clock

12:01 AM through 12:59 AM 00.01.00 through 00.59.00

01:00 AM through 11:59 AM 01:00.00 through 11:59.00

12:00 PM (noon) through 11:59 PM 12:00.00 through 23.59.00

12:00 AM (midnight) 24.00.00

00:00 AM (midnight) 00.00.00

The default time format can be specified through the following interfaces:

Table 12. Default Time Format Interfaces

SQL Interface Specification

Embedded SQL The TIMFMT and TIMSEP parameters are specified on
the Create SQL Program (CRTSQLxxx) commands. The SET
OPTION statement can also be used to specify the TIMFMT
and TIMSEP parameters within the source of a program
containing embedded SQL.

(For more information about CRTSQLxxx commands, see the
Embedded SQL programming topic collection.)

Interactive SQL and Run SQL Statements The TIMFMT and TIMSEP parameters on the Start SQL
(STRSQL) command or by changing the session attributes. The
TIMFMT and TIMSEP parameters on the Run SQL Statements
(RUNSQLSTM) command.

(For more information about STRSQL and RUNSQLSTM
commands, see the SQL programming topic collection.)

Call Level Interface (CLI) on the server SQL_ATTR_TIME_FMT and SQL_ATTR_TIME_SEP
environment or connection variables

(For more information about CLI, see the SQL Call Level
Interfaces (ODBC) topic collection.)

JDBC or SQLJ on the server using IBM
IBM Developer Kit for Java

Time Format and Time Separator connection property object

(For more information about JDBC and SQLJ, see the IBM
Developer Kit for Java topic collection.)

ODBC on a client using the IBM i Access
Family ODBC Driver

Time Format and Time Separator in the Advanced Server
Options in ODBC Setup

(For more information about ODBC, see the IBM i Access
Family topic collection.)

JDBC on a client using the IBM Toolbox
for Java

Format in JDBC Setup

(For more information about the IBM Toolbox for Java, see
IBM Toolbox for Java topic collection.)

78 IBM i: Db2 for i SQL Reference

Timestamp strings
A string representation of a timestamp is a character or a Unicode graphic string that starts with a digit
and has a length of at least 14 characters.

The complete string representation of a timestamp has one of the following forms:

Table 13. Formats for String Representations of Timestamps

Format Name Time Format Example

ISO timestamp 'yyyy-mm-dd hh:mm:ss.nnnnnnnnnnnn' '1990-03-02 08:30:00.010000000000'

IBM SQL 'yyyy-mm-dd-hh.mm.ss.nnnnnnnnnnnn' '1990-03-02-08.30.00.010000000000'

14-26 character
form

'yyyymmddhhmmssnnnnnnnnnnnn' '19900302083000'

The following rules apply:

• Leading blanks are not allowed.
• Trailing blanks can be included.
• Leading zeros can be omitted from the month, day, hour, minute, and second part of the timestamp

when using the timestamp form with separators. An implicit specification of 0 is assumed for any digit
that is omitted.

• The hour can be 24 if the minutes, seconds, and any fractional seconds are all zeros.
• Trailing zeros can be truncated or omitted entirely from fractional seconds.
• The number of digits of fractional seconds can vary from 0 to 12. An implicit specification of 0 is

assumed if fractional seconds are omitted.
• The separator character that follows the seconds element can be omitted if fractional seconds are not

included.

If a string representation of a timestamp is implicitly cast to a value with a TIMESTAMP data type,
the timestamp precision of the result of the cast is determined by the operation. Digits in the string
beyond the timestamp precision of the cast are truncated or any missing digits needed to reach the
timestamp precision of the cast are assumed to be zeros. For example 1990-3-2-8.30.00 is equivalent
to 1990-03-02-8.30.00.000000000000. A string representation of a timestamp can be given a different
timestamp precision by explicitly casting the value to a timestamp with a specified precision. In the case
of a constant, the precision can be maintained by preceding the string with the TIMESTAMP keyword. For
example, TIMESTAMP ’2007-03-28-14.50.35.123’ has the TIMESTAMP(3) data type.

Chapter 2. Language elements 79

XML Values
An XML value represents well-formed XML in the form of an XML document, XML content, or an XML
sequence.

An XML value that is stored in a table as a value of a column defined with the XML data type must
be a well-formed XML document. XML values are processed in an internal representation that is not
comparable to any string value including another XML value. The only predicate that can be applied to the
XML data type is the IS NULL predicate.

An XML value can be transformed into a serialized string value representing an XML document using the
XMLSERIALIZE function. Similarly, a string value that represents an XML document can be transformed
into an XML value using the XMLPARSE function. An XML value can be implicitly parsed or serialized when
exchanged with application string and binary data types.

The XML data type has no defined maximum length. It does have an effective maximum length when
treated as a serialized string value that represents XML which is the same as the limit for LOB data values.
Like LOBs, there are also XML locators and XML file reference variables.

Restrictions when using XML values: With a few exceptions, you can use XML values in the same
contexts in which you can use other data types. XML values are valid in:

• CAST a parameter marker, XML, or NULL to XML
• XMLCAST a parameter marker, XML, or NULL to XML
• IS NULL predicate
• COUNT and COUNT_BIG aggregate functions
• COALESCE, IFNULL, HEX, LENGTH, CONTAINS, and SCORE scalar functions
• XML scalar functions
• A SELECT list without DISTINCT
• INSERT VALUES clause, UPDATE SET clause, and MERGE
• SET and VALUES INTO
• Procedure parameters
• User-defined function arguments and result
• Trigger correlation variables
• Parameter marker values for a dynamically prepared statement

XML values cannot be used directly in the following places. Where expressions are allowed, an XML value
can be used, for example, as the argument of XMLSERIALIZE:

• A SELECT list containing the DISTINCT keyword
• A GROUP BY clause
• An ORDER BY clause
• A subselect of a fullselect that is not UNION ALL
• A basic, quantified, BETWEEN, DISTINCT, IN, or LIKE predicate
• An aggregate function with the DISTINCT keyword
• A primary, unique, or foreign key
• A check constraint
• An index column

No host languages have a built-in data type for the XML data type.

For information on the XML data model and XML values, see SQL XML programming.

80 IBM i: Db2 for i SQL Reference

Determining the CCSID for XML
XML data can be defined with any EBCDIC single byte or mixed CCSID or a Unicode CCSID of 1208, 1200,
or 13488. 65535 is not allowed as a CCSID for XML data. The CCSID can be explicitly specified when
defining an XML data type. If it is not explicitly specified, the CCSID will be assigned using the value of the
SQL_XML_DATA_CCSID QAQQINI file option. If this value has not been set, the default is 1208 (UTF-8).

The CCSID will be established for XML data types used in SQL schema statements when the statement is
run.

XML host variables that do not have a DECLARE VARIABLE that assigns a CCSID will have their CCSID
assigned as follows:.

• If it is XML AS DBCLOB, the CCSID will be 1200.
• If it is XML AS CLOB and the SQL_XML_DATA_CCSID QAQQINI value is 1200 or 13488, the CCSID will

be 1208.
• Otherwise, the SQL_XML_DATA_CCSID QAQQINI value will be used as the CCSID.

Since all implicit and explicit XMLPARSE functions are performed using UTF-8 (1208) defining data in this
CCSID removes the need to convert the data to UTF-8.

DataLink values
A DataLink value is an encapsulated value that contains a logical reference from the database to a file
stored outside the database.

The attributes of this encapsulated value are as follows:

link type
The currently supported type of link is a URL (Uniform Resource Locator).

scheme
For URLs, this is a value such as HTTP or FILE. The value, no matter what case it is entered in, is
stored in the database in upper case.

file server name
The complete address of the file server. The value, no matter what case it is entered in, is stored in the
database in upper case.

file path
The identity of the file within the server. The value is case sensitive and therefore it is not converted to
upper case when stored in the database.

access control token
When appropriate, the access token is embedded within the file path. It is generated dynamically and
is not a permanent part of the DataLink value that is stored in the database.

comment
Up to 254 bytes of descriptive information. This is intended for application specific uses such as
further or alternative identification of the location of the data.

The characters used in a DataLink value are limited to the set defined for a URL. These characters include
the uppercase (A through Z) and lower case (a through z) letters, the digits (0 through 9) and a subset of
special characters ($, -, _, @, ., &, +, !, *, ", ', (,), =, ;, /, #, ?, :, space, and comma).

The first four attributes are collectively known as the linkage attributes. It is possible for a DataLink value
to have only a comment attribute and no linkage attributes. Such a value may even be stored in a column
but, of course, no file will be linked to such a column.

It is important to distinguish between these DataLink references to files and the LOB file reference
variables described in “References to LOB or XML file reference variables” on page 143. The similarity is
that they both contain a representation of a file. However:

• DataLinks are retained in the database and both the links and the data in the linked files can be
considered as a natural extension of data in the database.

Chapter 2. Language elements 81

• File reference variables exist temporarily and they can be considered as an alternative to a host
program buffer.

Built-in scalar functions are provided to build a DataLink value (DLVALUE) and to extract the
encapsulated values from a DataLink value (DLCOMMENT, DLLINKTYPE, DLURLCOMPLETE, DLURLPATH,
DLURLPATHONLY, DLURLSCHEME, DLURLSERVER).

Row ID values
A row ID is a value that uniquely identifies a row in a table. A column or a variable can have a row ID data
type. A ROWID column enables queries to be written that navigate directly to a row in the table.

Each value in a ROWID column must be unique. The database manager maintains the values permanently,
even across table reorganizations. When a row is inserted into the table, the database manager generates
a value for the ROWID column unless one is supplied. If a value is supplied, it must be a valid row ID value
that was previously generated by either Db2 for z/OS or Db2 for i.

The internal representation of a row ID value is transparent to the user. The value is never subject to
CCSID conversion because it is considered to contain BIT data. The length attribute of a ROWID column is
40.

User-defined types
A user-defined type is a data type that is defined to the database using a CREATE TYPE statement. There
are two types of user-defined type: distinct types and array types.

Distinct types
A distinct type is a user-defined data type that shares its internal representation with a built-in data type
(its "source type"), but is considered to be a separate and incompatible type for most operations. For
example, the semantics for a picture type, a text type, and an audio type that all use the built-in data type
BLOB for their internal representation are quite different. A distinct type is created using “CREATE TYPE
(distinct)” on page 1193.

For example, the following statement creates a distinct type named AUDIO:

 CREATE TYPE AUDIO AS BLOB (1M)

Although AUDIO has the same representation as the built-in data type BLOB, it is considered to be a
separate type that is not comparable to a BLOB or to any other type. This inability to compare AUDIO to
other data types allows functions to be created specifically for AUDIO and assures that these functions
cannot be applied to other data types (such as pictures or text).

The name of a distinct type is qualified with a schema name. The implicit schema name for an unqualified
name depends upon the context in which the distinct type appears. If an unqualified distinct type name is
used:

• In a CREATE TYPE statement or the object of the DROP, COMMENT, LABEL, GRANT, or REVOKE
statement, the database manager uses the normal process of qualification by authorization ID to
determine the schema name. For more information about qualification rules, see “Unqualified function,
procedure, specific name, type, and variables” on page 59.

• In any other context, the database manager uses the SQL path to determine the schema name. The
database manager searches the schemas in the path, in sequence, and selects the first schema that has
a distinct type that matches. For a description of the SQL path, see “SQL path” on page 57.

A distinct type does not automatically acquire the functions and operators of its source type, since these
may not be meaningful. (For example, the LENGTH function for an AUDIO type might return the length
of its object in seconds rather than in bytes.) Instead, distinct types support strong typing. Strong typing
ensures that only the functions and operators that are explicitly defined for a distinct type can be applied
to that distinct type. However, a function or operator of the source type can be applied to the distinct
type by creating an appropriate user-defined function. The user-defined function must be sourced on

82 IBM i: Db2 for i SQL Reference

the existing function that has the source type as a parameter. For example, the following series of SQL
statements shows how to create a distinct type named MONEY based on data type DECIMAL(9,2), how to
define the + operator for the distinct type, and how the operator might be applied to the distinct type:

CREATE TYPE MONEY AS DECIMAL(9,2) WITH COMPARISONS
CREATE FUNCTION "+"(MONEY,MONEY)
 RETURNS MONEY
 SOURCE "+"(DECIMAL(9,2),DECIMAL(9,2))
CREATE TABLE SALARY_TABLE
 (SALARY MONEY,
 COMMISSION MONEY)
SELECT "+"(SALARY, COMMISSION) FROM SALARY_TABLE

A distinct type is subject to the same restrictions as its source type. For example, a table can only have
one ROWID column. Therefore, a table with a ROWID column cannot also have a column with distinct type
that is sourced on a row ID.

The comparison operators are automatically generated for distinct types, except for distinct types that are
sourced on a DataLink. In addition, the database manager automatically generates functions for a distinct
type that support casting from the source type to the distinct type and from the distinct type to the source
type. For example, for the AUDIO type created above, these are the generated cast functions:

Name of generated cast
function

Parameter list Returns data type

schema-name.BLOB schema-name.AUDIO BLOB

schema-name.AUDIO BLOB schema-name.AUDIO

Array types
An array is a structure that contains an ordered collection of data elements. All elements in an array have
the same data type. The cardinality of the array is equal to the number of elements in the array.

The entire array can be referenced or an individual element of the array can be referenced by its ordinal
position in the collection. If N is the cardinality of an array, the ordinal position associated with each
element is an integer value greater than or equal to 1 and less than or equal to N.

An array type is a user-defined data type that is defined as an array. An SQL variable or SQL parameter can
be defined as a user-defined array data type. Additionally, the result of an invocation of the TRIM_ARRAY
function, or the result of a CAST specification, can be a user-defined array data type. An element of a
user-defined array type can be referenced anywhere an expression returning the same data type as an
element of that array can be used.

An unnamed array type is an array without an associated user-defined data type. The result of an
invocation of the ARRAY_AGG aggregate function or an ARRAY constructor is an array without an
associated user-defined data type. An element of an array without an associated user-defined array type
cannot be directly referenced.

An array value can be empty (cardinality zero), null, or the individual elements in the array can be null or
not null. An empty array is different than an array value of null, or an array for which all elements are the
null value.

An array value cannot be stored in the database or be returned to an external application other than Java.

Chapter 2. Language elements 83

Promotion of data types
Data types can be classified into groups of related data types. Within such groups, an order of precedence
exists where one data type is considered to precede another data type. This precedence enables the
database manager to support the promotion of one data type to another data type that appears later in
the precedence ordering. For example, the data type CHAR can be promoted to VARCHAR; INTEGER can
be promoted to DOUBLE PRECISION; but CLOB is NOT promotable VARCHAR.

The database manager considers the promotion of data types when:

• performing function resolution (see “Function resolution” on page 149)
• casting distinct types (see “Casting between data types” on page 86)
• assigning distinct types to built-in data types (see “Distinct type comparisons” on page 103)

For each data type, Table 14 on page 84 shows the precedence list (in order) that the database manager
uses to determine the data types to which each data type can be promoted. The table indicates that the
best choice is the same data type and not promotion to another data type. Note that the table also shows
data types that are considered equivalent during the promotion process. For example, CHARACTER and
GRAPHIC are considered to be equivalent data types.

Table 14. Data Type Precedence Table

Data Type Data Type Precedence List (in best-to-worst order)

SMALLINT SMALLINT, INTEGER, BIGINT, decimal, real, double, DECFLOAT

INTEGER INTEGER, BIGINT, decimal, real, double, DECFLOAT

BIGINT BIGINT, decimal, real, double, DECFLOAT

decimal decimal, real, double, DECFLOAT

real real, double, DECFLOAT

double double, DECFLOAT

DECFLOAT DECFLOAT

CHAR or GRAPHIC CHAR or GRAPHIC, VARCHAR or VARGRAPHIC, CLOB or DBCLOB

VARCHAR or
VARGRAPHIC

VARCHAR or VARGRAPHIC, CLOB or DBCLOB

CLOB or DBCLOB CLOB or DBCLOB

CHAR FOR BIT
DATA

CHAR, VARCHAR, CLOB, BINARY, VARBINARY, BLOB

VARCHAR FOR BIT
DATA

VARCHAR, CLOB, VARBINARY, BLOB

BINARY BINARY, VARBINARY, BLOB, CHAR FOR BIT DATA, VARCHAR FOR BIT DATA

VARBINARY VARBINARY, BLOB, VARCHAR FOR BIT DATA

BLOB BLOB

DATE DATE, TIMESTAMP

TIME TIME

TIMESTAMP TIMESTAMP

DATALINK DATALINK

ROWID ROWID

84 IBM i: Db2 for i SQL Reference

Table 14. Data Type Precedence Table (continued)

Data Type Data Type Precedence List (in best-to-worst order)

XML XML

ARRAY ARRAY

udt same udt

Note:

The lower case types above are defined as follows:
decimal

= DECIMAL(p,s) or NUMERIC(p,s)
real

= REAL or FLOAT(n) where n is a specification for single precision floating point
double

= DOUBLE, DOUBLE PRECISION, FLOAT or FLOAT(n) where n is a specification for double precision
floating point

udt
= a user-defined type

Shorter and longer form synonyms of the data types listed are considered to be the same as the
synonym listed.

Character and graphic strings are only compatible for Unicode data.

Chapter 2. Language elements 85

Casting between data types
There are many occasions when a value with a given data type needs to be cast (changed) to a different
data type or to the same data type with a different length, precision, or scale.

Data type promotion, as described in “Promotion of data types” on page 84, is one example of when a
value with one data type needs to be cast to a new data type. A data type that can be changed to another
data type is castable from the source data type to the target data type.

The casting of one data type to another can occur implicitly or explicitly. The cast functions or CAST
specification (see “CAST specification” on page 176) can be used to explicitly change a data type. The
database manager might implicitly cast data types during assignments that involve a distinct type (see
“Distinct type assignments” on page 98). In addition, when you create a sourced user-defined function,
the data types of the parameters of the source function must be castable to the data types of the function
that you are creating (see “CREATE FUNCTION (sourced)” on page 1018).

If truncation occurs when a character or graphic string is cast to another data type, a warning occurs
if any non-blank characters are truncated. This truncation behavior is similar to retrieval assignment of
character or graphic strings (see “Retrieval assignment:” on page 94).

If truncation occurs when a binary string is cast to another data type, a warning occurs. This truncation
behavior is similar to retrieval assignment of binary strings (see “Retrieval assignment” on page 93).

For casts that involve an array type, the source and target data type must both be the same array type.

For casts that involve a distinct type as either the data type to be cast to or from, Table 15 on page
86 shows the supported casts. For casts between built-in data types, Table 16 on page 87 shows the
supported casts.

Table 15. Supported Casts When a Distinct Type is Involved

Data Type ... Is Castable to Data Type ...

Distinct type DT Source data type of distinct type DT

Source data type of distinct type DT Distinct type DT

Distinct type DT Distinct type DT

Data type A
Distinct type DT where A is promotable to the source data type of distinct
type DT (see “Promotion of data types” on page 84)

INTEGER Distinct type DT if DT's source type is SMALLINT

DOUBLE Distinct type DT if DT's source data type is REAL

VARCHAR Distinct type DT if DT's source data type is CHAR or GRAPHIC

VARGRAPHIC Distinct type DT if DT's source data type is GRAPHIC or CHAR

VARBINARY Distinct type DT if DT's source data type is BINARY

Character and graphic strings are only compatible for Unicode data. Character bit data and graphic strings
are not compatible.

When a distinct type is involved in a cast, a cast function that was generated when the distinct type
was created is used. How the database manager chooses the function depends on whether function
notation or the CAST specification syntax is used. For details, see “Function resolution” on page 149, and
“CAST specification” on page 176. Function resolution is used for both. However, in a CAST specification,
when an unqualified distinct type is specified as the target data type, the database manager resolves the
schema name of the distinct type and then uses that schema name to locate the cast function.

86 IBM i: Db2 for i SQL Reference

The following table describes the supported casts between built-in data types.

Table 16. Supported Casts Between Built-In Data Types

Target Data Type →

Source Data Type ↓

 S
M

AL
LI

N
T

 I
N

TE
G

ER

 B
IG

IN
T

 D
EC

IM
AL

 N
UM

ER
IC

 R
EA

L
 D

O
UB

LE

 D
EC

FL
OA

T

 C
H

AR
 V

AR
CH

AR
 C

LO
B

 G
RA

PH
IC

 V
AR

G
RA

PH
IC

 D
BC

LO
B

 B
IN

AR
Y

 V
AR

BI
N

AR
Y

 B
LO

B D
AT

E

 T
IM

E

 T
IM

ES
TA

M
P

 R
OW

ID

 D
AT

AL
IN

K

 X
M

L

SMALLINT Y Y Y Y Y Y Y Y1 — — — — — — —

INTEGER Y Y Y Y Y Y Y Y1 — — — — — — —

BIGINT Y Y Y Y Y Y Y Y1 — — — — — — —

DECIMAL Y Y Y Y Y Y Y Y1 — — — — — — —

NUMERIC Y Y Y Y Y Y Y Y1 — — — — — — —

REAL Y Y Y Y Y Y Y Y1 — — — — — — —

DOUBLE Y Y Y Y Y Y Y Y1 — — — — — — —

DECFLOAT Y Y Y Y Y Y Y Y1 — — — — — — —

CHAR Y Y Y Y Y Y Y Y1 Y Y Y Y Y — —

VARCHAR Y Y Y Y Y Y Y Y1 Y Y Y Y Y — —

CLOB Y Y Y Y Y Y Y Y1 Y Y Y Y Y — —

GRAPHIC Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y — Y1 Y1 Y1 — — —

VARGRAPHIC Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y — Y1 Y1 Y1 — — —

DBCLOB Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y — Y1 Y1 Y1 — — —

BINARY — — — — — — Y — Y — — — — — —

VARBINARY — — — — — — Y — Y — — — — — —

BLOB — — — — — — Y — Y — — — — — —

DATE — Y Y Y — — Y Y1 — Y — Y — — —

TIME — Y Y Y — — Y Y1 — — Y Y — — —

TIMESTAMP — — Y Y — — Y Y1 — Y Y Y — — —

ROWID — — — — — — Y — Y — — — Y — —

DATALINK — — — — — — — — — — — — — Y —

XML — — — — — — — — — — — — — — Y

Notes:
1 Conversion is only supported for Unicode graphic. If the other data type is FOR BIT DATA, conversion is not supported.

Chapter 2. Language elements 87

The following table describes the rules for casting to a data type:

Table 17. Rules for Casting to a Data Type

Target Data Type Rules

SMALLINT See “SMALLINT” on page 573.

INTEGER See “INTEGER or INT” on page 442.

BIGINT See “BIGINT” on page 315.

DECIMAL See “DECIMAL or DEC” on page 374.

NUMERIC See “ZONED” on page 683.

REAL See “REAL” on page 536.

DOUBLE See “DOUBLE_PRECISION or DOUBLE” on page 392.

DECFLOAT See “DECFLOAT” on page 369

CHAR See “CHAR” on page 325.

VARCHAR See the “VARCHAR” on page 623.

CLOB See “CLOB” on page 333.

GRAPHIC If the source data type is a character string, see the rules for string assignment to a
variable in “Assignments and comparisons” on page 89.

Otherwise, see “GRAPHIC” on page 416.

VARGRAPHIC If the source data type is a character string, see the rules for string assignment to a
variable in “Assignments and comparisons” on page 89.

Otherwise, see “VARGRAPHIC” on page 638.

DBCLOB See “DBCLOB” on page 361.

BINARY See “BINARY” on page 317.

VARBINARY See “VARBINARY” on page 620.

BLOB See “BLOB” on page 321.

DATE See “DATE” on page 352.

TIME See “TIME” on page 589.

TIMESTAMP See “TIMESTAMP” on page 590, using the precision of the target data type as the
second argument.

If the source data type is a DATE, the timestamp is composed of the specified date
and a time of 00:00:00.

If the source data type is a TIME, the timestamp is composed of the
CURRENT_DATE and the specified time.

DATALINK
See the rules for DataLink assignments in “Assignments and comparisons” on page
89.

ROWID See “ROWID” on page 558.

XML
See the rules for XML assignments in “Assignments and comparisons” on page
89.

88 IBM i: Db2 for i SQL Reference

Assignments and comparisons
The basic operations of SQL are assignment and comparison. Assignment operations are performed
during the execution of CALL, INSERT, UPDATE, FETCH, SELECT, SET variable, and VALUES INTO
statements. Comparison operations are performed during the execution of statements that include
predicates and other language elements such as MAX, MIN, DISTINCT, GROUP BY, and ORDER BY.

The basic rule for both operations is that the data type of the operands involved must be compatible.
The compatibility rule also applies to UNION, EXCEPT, INTERSECT, concatenation, CASE expressions, and
the CONCAT, VALUE, COALESCE, IFNULL, MIN, and MAX scalar functions. The compatibility matrix is as
follows:

Table 18. Data Type Compatibility

Operands

 B
in

ar
y

In
te

ge
r

 D
ec

im
al

 N
um

be
r

 F
lo

at
in

g
Po

in
t

 D
ec

im
al

 F
lo

at
in

g
Po

in
t

 C
ha

ra
ct

er
 S

tr
in

g

 G
ra

ph
ic

 S
tr

in
g

 B
in

ar
y

St
rin

g

 D
at

e

 T
im

e

 T
im

es
ta

m
p

 D
at

aL
in

k

 R
ow

 ID

 X
M

L
7

 U
se

r-
de

fin
ed

 T
yp

e

Binary Integer Y Y Y Y Y 1 — — — — — — — 3

Decimal
Number 4

Y Y Y Y Y 1 — — — — — — — 3

Floating Point Y Y Y Y Y 1 — — — — — — — 3

Decimal
Floating-Point

Y Y Y Y Y 1 — — — — — — — 3

Character
String

Y Y Y Y Y 1 2 — — — — — — 3

Graphic String 1 1 1 1 1 Y — 1 1 1 — — — 3

Binary String — — — — 2 — Y — — — — — — 3

Date — — — — — 1 — Y — Y — — — 3

Time — — — — — 1 — — Y — — — — 3

Timestamp — — — — — 1 — Y — Y — — — 3

DataLink — — — — — — — — — — 5 — — 3

Row ID — — — — — — — — — — — 6 — 3

XML 7 — — — — — — — — — — — — Y 3

User-defined
Type

3 3 3 3 3 3 3 3 3 3 3 3 3 3

Chapter 2. Language elements 89

Table 18. Data Type Compatibility (continued)

Operands

 B
in

ar
y

In
te

ge
r

 D
ec

im
al

 N
um

be
r

 F
lo

at
in

g
Po

in
t

 D
ec

im
al

 F
lo

at
in

g
Po

in
t

 C
ha

ra
ct

er
 S

tr
in

g

 G
ra

ph
ic

 S
tr

in
g

 B
in

ar
y

St
rin

g

 D
at

e

 T
im

e

 T
im

es
ta

m
p

 D
at

aL
in

k

 R
ow

 ID

 X
M

L
7

 U
se

r-
de

fin
ed

 T
yp

e

Notes:

1. Only Unicode graphic strings are compatible. Unicode and FOR BIT DATA are not compatible.
2. Character strings, except those with FOR BIT DATA, are not compatible with binary strings. FOR BIT DATA

character strings and binary strings are considered compatible and any padding is performed based on the
data type of the target. For example, when assigning a FOR BIT DATA column value to a fixed-length binary
variable, any necessary padding uses a pad byte of X'00'.

3. A value with a distinct type is comparable only to a value that is defined with the same distinct type. In
general, the database manager supports assignments between a distinct type value and its source data
type. For additional information, see “Distinct type assignments” on page 98.

A value with an array type is comparable only to a value that is defined with the same array type. A value
with an array type can be assigned to an array of the same type. For additional information, see “Array type
assignments” on page 99.

4. Decimal refers to both packed and zoned decimal.
5. A DataLink operand can only be assigned to another DataLink operand and cannot be compared to any data

type.
6. A ROWID operand can only be assigned to another ROWID operand and cannot be compared to any data

type.
7. Character and graphic strings can be assigned to XML columns. However, XML cannot be assigned to

a character or graphic string column. For comparisons, XML can only be compared using the IS NULL
predicate.

A basic rule for assignment operations is that a null value cannot be assigned to:

• a column that cannot contain null values
• a host variable that does not have an associated indicator variable
• a Java host variable that is a primitive type.

See “References to host variables” on page 139 for a discussion of indicator variables.

For any comparison that involves null values, see the description of the comparison operation for
information about the specific handling of null values.

Numeric assignments
For numeric assignments, overflow is not allowed.

• When assigning to an exact numeric data type, overflow occurs if any digit of the whole part of the
number would be eliminated. If necessary, the fractional part of a number is truncated.

• When assigning to an approximate numeric data type or decimal floating-point number, overflow occurs
if the most significant digit of the whole part of the number is eliminated. For floating-point and
decimal floating-point numbers, the whole part of the number is the number that would result if the
floating-point or decimal floating-point number were converted to a decimal number with unlimited
precision. If necessary, rounding may cause the least significant digits of the number to be eliminated.

90 IBM i: Db2 for i SQL Reference

For decimal floating-point numbers, truncation of the whole part of the number is allowed and results in
infinity with a warning if *YES is specified for the SQL_DECFLOAT_WARNINGS query option.

For floating-point numbers, underflow is also not allowed. Underflow occurs for numbers between 1 and
-1 if the most significant digit other than zero would be eliminated. For decimal floating point, underflow
is allowed and depending on the rounding mode, results in zero or the smallest positive number or
the largest negative number that can be represented. A warning is returned if *YES is specified for the
SQL_DECFLOAT_WARNINGS query option.

For information about the decimal floating-point rounding mode, see “CURRENT DECFLOAT ROUNDING
MODE” on page 124.

An overflow or underflow warning is returned instead of an error if an overflow or underflow occurs on
assignment to a host variable with an indicator variable. In this case, the number is not assigned to the
host variable and the indicator variable is set to negative 2.

Assignments to integer
When a decimal, floating-point, or decimal floating-point number is assigned to a binary integer column
or variable, the fractional part of the number is eliminated. As a result, a number between 1 and -1 is
reduced to 0.

Assignments to decimal
When an integer is assigned to a decimal column or variable, the number is first converted to a temporary
decimal number and then, if necessary, to the precision and scale of the target. The precision and scale of
the temporary decimal number is 5,0 for a small integer, 11,0 for a large integer, or 19,0 for a big integer.

When a decimal number is assigned to a decimal column or variable, the number is converted, if
necessary, to the precision and the scale of the target. The necessary number of leading zeros is added,
and in the fractional part of the decimal number the necessary number of trailing zeros is added, or the
necessary number of trailing digits is eliminated.

When a floating-point number is assigned to a decimal column or variable, the number is first converted
to a temporary decimal number of precision 63 and scale of 63 - (p-s) where p and s are the precision
and scale of the decimal column or variable. Then, if necessary, the temporary number is truncated to the
precision and scale of the target. As a result, a number between 1 and -1 that is less than the smallest
positive number or greater than the largest negative number that can be represented in the decimal
column or variable is reduced to 0.

When a decimal floating-point number is assigned to a decimal column or variable, the number is rounded
to the precision and scale of the decimal column or variable. As a result, a number between 1 and
-1 that is less than the smallest positive number or greater than the largest negative number that can
be represented in the decimal column or variable is reduced to 0 or rounded to the smallest positive
or largest negative value that can be represented in the decimal column or variable, depending on the
rounding mode.

Note: Decimal refers to both packed and zoned decimal. A binary integer with scale follows the rules for a
assignments to decimal.

Note: When fetching decimal data from a file that was not created by an SQL CREATE TABLE statement, a
decimal field may contain data that is not valid. In this case, the data will be returned as stored, without
any warning or error message being issued. A table that is created by the SQL CREATE TABLE statement
does not allow decimal data that is not valid.

Assignments to floating-point
Floating-point numbers are approximations of real numbers. Hence, when an integer, decimal, floating-
point, or decimal floating-point number is assigned to a floating-point column or variable, the result may
not be identical to the original number. The number is rounded to the precision of the floating-point
column or variable using floating-point arithmetic.

Chapter 2. Language elements 91

Assignments to decimal floating-point
When an integer number is assigned to a decimal floating-point column or variable, the number is first
converted to a temporary decimal number and then to a decimal floating-point number. The precision and
scale of the temporary decimal number is 5,0 for a small integer, 11,0 for a large integer, or 19,0 for a big
integer. Rounding may occur when assigning a BIGINT to a DECFLOAT(16) column or variable.

When a decimal number is assigned to a decimal floating-point column or variable, the number is
converted to the precision (16 or 34) of the target. Leading zeros are eliminated. Depending on the
precision and scale of the decimal number and the precision of the target, the value might be rounded.

When a floating-point number is assigned to a decimal floating-point column or variable, the number
is first converted to a temporary string representation of the floating-point number. The string
representation of the number is then converted to decimal floating-point.

When a DECFLOAT(16) number is assigned to a DECFLOAT(34) column or variable, the resulting value is
identical to the DECFLOAT(16) number.

When a DECFLOAT(34) number is assigned to a DECFLOAT(16) column or variable, the exponent of
the source is converted to the corresponding exponent in the result format. The mantissa of the
DECFLOAT(34) number is rounded to the precision of the target. For more information about the decimal
floating-point rounding mode, see “CURRENT DECFLOAT ROUNDING MODE” on page 124.

Assignments to COBOL and RPG integers
Assignment to COBOL and RPG small or large integer host variables takes into account any scale specified
for the host variable. However, assignment to integer host variables uses the full size of the integer.
Thus, the value placed in the COBOL data item or RPG field might be larger than the maximum precision
specified for the host variable.

Examples:

• In COBOL, assume that COL1 contains a value of 12345. The following SQL statement results in the
value 12345 being placed in A, even though A has been defined with only 4 digits:

 01 A PIC S9999 BINARY.
 EXEC SQL SELECT COL1
 INTO :A
 FROM TABLEX
 END-EXEC.

• Notice, however, that the following COBOL statement results in 2345 (and not 12345) being placed in A:

 MOVE 12345 TO A.

Assignments from strings to numeric
When a string is assigned to a numeric data type, it is converted to the target numeric data type using the
rules for a CAST specification. For more information, see “CAST specification” on page 176.

String assignments
There are two types of string assignments.

• Storage assignment is when a value is assigned to a column, a parameter of a function or procedure, or a
transition variable.

• Retrieval assignment is when a value is assigned to a variable (but not a parameter or transition
variable).26

26 If assigning to an SQL-variable or SQL-parameter and the standards option is specified, storage assignment
rules apply. For information about the standards option, see “Standards compliance” on page xix.

92 IBM i: Db2 for i SQL Reference

Binary string assignments
The following rules apply when the assignment target is a binary string.

Storage assignment
The basic rule is that the length of a string assigned to a column, parameter of a function or procedure,
or transition variable must not be greater than the length attribute of the column or parameter. If the
string is longer than the length attribute of that column, parameter, or transition variable, an error is
returned. Trailing hexadecimal zeroes (X'00') are normally included in the length of the string. For storage
assignments, however, trailing hexadecimal zeroes are not included in the length of the string.

When a string is assigned to a fixed-length binary-string column, parameter, or transition variable and the
length of the string is less than the length attribute of the target, the string is padded on the right with the
necessary number of hexadecimal zeroes.

Retrieval assignment
The length of a string assigned to a variable (but not a parameter or transition variable) can be greater
than the length attribute of the variable. When a string is assigned to a variable and the string is longer
than the length attribute of the variable, the string is truncated on the right by the necessary number of
bytes. When this occurs, an SQLSTATE of '01004' is assigned to the RETURNED_SQLSTATE condition area
item in the SQL Diagnostics Area (or the value 'W' is assigned to the SQLWARN1 field of the SQLCA).

When a string is assigned to a fixed-length binary-string variable and the length of the string is less
than the length attribute of the target, the string is padded on the right with the necessary number of
hexadecimal zeroes.

When a string of length n is assigned to a varying-length string variable with a maximum length greater
than n, the bytes after the nth byte of the variable are undefined.

Character and graphic string assignments
The following rules apply when the assignment target is a string.

When a datetime data type is involved, see “Datetime assignments” on page 95. For the special
considerations that apply when a distinct type is involved in an assignment, especially to a variable,
see “Distinct type assignments” on page 98.

Assignments from numeric to strings
When a number is assigned to a string data type, it is converted to the target string data type using the
rules for a CAST specification. For more information, see “CAST specification” on page 176.

Storage assignment:
The basic rule is that the length of a string assigned to a column, parameter of a function or procedure, or
transition variable must not be greater than the length attribute of the column or parameter. If the string
is longer than the length attribute of that column , parameter, or transition variable, an error is returned.
Trailing blanks are normally included in the length of the string. For storage assignments, however, trailing
blanks are not included in the length of the string.

When a string is assigned to a fixed-length string column, parameter, or transition variable and the length
of the string is less than the length attribute of the target, the string is padded on the right with the
necessary number of single-byte, double-byte, or UTF-16 or UCS-2 blanks.27 The pad character is always
a blank, even for bit data.

27 UTF-16 or UCS-2 defines a blank character at code point X'0020' and X'3000'. The database manager pads
with the blank at code point X'0020'. The database manager pads UTF-8 with a blank at code point X'20'

Chapter 2. Language elements 93

Retrieval assignment:
The length of a string assigned to a variable (but not a parameter or transition variable) can be greater
than the length attribute of the variable. When a string is assigned to a variable and the string is longer
than the length attribute of the variable, the string is truncated on the right by the necessary number of
characters. When this occurs, an SQLSTATE of '01004' is assigned to the RETURNED_SQLSTATE condition
area item in the SQL Diagnostics Area (or the value 'W' is assigned to the SQLWARN1 field of the
SQLCA). Furthermore, if an indicator variable is provided, it is set to the original length of the string.
If only the NUL-terminator is truncated for a C NUL-terminated host variable and the *NOCNULRQD
option was specified on the CRTSQLCI or CRTSQLCPPI command (or CNULRQD(*NO) on the SET OPTION
statement), an SQLSTATE of '01004' is assigned to the RETURNED_SQLSTATE condition area item in the
SQL Diagnostics Area (or the value of 'N' is assigned to the SQLWARN1 field of the SQLCA) and a NUL is
not placed in the variable.

When a string is assigned to a fixed-length variable and the length of the string is less than the length
attribute of the target, the string is padded on the right with the necessary number of single-byte,
double-byte, or UTF-16 or UCS-2 blanks.27 The pad character is always a blank, even for bit data.

When a string of length n is assigned to a varying-length string variable with a maximum length greater
than n, the characters after the nth character of the variable are undefined.

Assignments to mixed strings:
If a string contains mixed data, the assignment rules may require truncation within a sequence of double-
byte codes. To prevent the loss of the shift-in character that ends the double-byte sequence, additional
characters may be truncated from the end of the string, and a shift-in character added. In the truncated
result, there is always an even number of bytes between each shift-out character and its matching shift-in
character.

Assignments to C NUL-terminated strings:
When a string of length n is assigned to a C NUL-terminated string variable with a length greater than n+1:

• If the *CNULRQD option was specified on the CRTSQLCI or CRTSQLCPPI command (or CNULRQD(*YES)
on the SET OPTION statement), the string is padded on the right with x-n-1 blanks where x is the length
of the variable. The padded string is then assigned to the variable and the NUL-terminator is placed in
the next character position.

• If the *NOCNULRQD precompiler option was specified on the CRTSQLCI or CRTSQLCPPI command (or
CNULRQD(*NO) on the SET OPTION statement), the string is not padded on the right. The string is
assigned to the variable and the NUL-terminator is placed in the next character position.

Conversion rules for assignments
A string assigned to a column, variable, or parameter is first converted, if necessary, to the coded
character set of the target. Character conversion is necessary only if all of the following are true:

• The CCSIDs are different.
• Neither CCSID is 65535.
• The string is neither null nor empty.
• Conversion between the two CCSIDs is required. For more information, see “Coded character sets and

CCSIDs” on page 32.

An error occurs if:

• Conversion between the pair of CCSIDs is not defined. For more information, see “Coded character sets
and CCSIDs” on page 32.

• A character of the string cannot be converted, and the operation is assignment to a column or
assignment to a host variable without an indicator variable. For example, a double-byte character
(DBCS) cannot be converted to a column or host variable with a single-byte character (SBCS) CCSID.

94 IBM i: Db2 for i SQL Reference

A warning occurs if:

• A character of the string is converted to the substitution character.
• A character of the string cannot be converted, and the assignment is not to a column or to a host

variable without an indicator variable. For example, a DBCS character cannot be converted to a host
variable with an SBCS CCSID. In this case, the string is not assigned to the host variable and the
indicator variable is set to -2.

Datetime assignments
A value that is assigned to a date, time, or timestamp column or variable must be a date, time, or
timestamp or a valid string representation of a date, a time, or a timestamp.

A value assigned to a DATE column or a DATE variable must be a date or timestamp or a valid string
representation of a date or timestamp. When a timestamp value is assigned to a DATE data type, the date
portion is extracted and the time portion is ignored. A date can be assigned only to a DATE or TIMESTAMP
column, a string column, a DATE or TIMESTAMP variable, or a string variable.

A value assigned to a TIME column or a TIME variable must be a time or timestamp or a valid string
representation of a time or timestamp. When a timestamp value is assigned to a TIME data type, the date
portion is ignored and the time portion is extracted with the fractional seconds truncated. A time can be
assigned only to a TIME column, a string column, a TIME variable, or a string variable.

A value assigned to a TIMESTAMP column or a TIMESTAMP variable must be a date or timestamp or a
valid string representation of a date or timestamp. If a string representation of a date or timestamp is
used, it is implicitly cast to a timestamp with the same precision as the target timestamp. When a date
value is assigned to a TIMESTAMP data type, the missing time information is assumed to be all zeros.
A timestamp can be assigned to a DATE, TIME, or TIMESTAMP column, a string column, a DATE, TIME,
or TIMESTAMP variable, or a string variable. When a timestamp value is assigned to a timestamp with
lower precision, the excess fractional seconds are truncated. When a timestamp value is assigned to a
timestamp with higher precision, missing digits are assumed to be zeros.

When a datetime value is assigned to a string variable or column, it is converted to its string
representation. Leading zeros are not omitted from any part of the date, time, or timestamp. The required
length of the target varies depending on the format of the string representation. If the length of the target
is greater than required, it is padded on the right with blanks. If the length of the target is less than
required, the result depends on the type of datetime value involved and on the type of target.

• If the target is a string column, truncation is not allowed. The following rules apply:

DATE

– The length attribute of the column must be at least 10 if the date format is *ISO, USA, *EUR, or *JIS.
If the date format is *YMD, *MDY, or *DMY, the length attribute of the column must be at least 8. If
the date format is *JUL, the length of the variable must be at least 6.

TIME

– The length attribute of the column must be at least 8.

TIMESTAMP

– The length attribute of the column must be at least 19 for TIMESTAMP(0) and 20+p for
TIMESTAMP(p).

• When the target is a variable, the following rules apply:

DATE

– The length of the variable must be at least 10 if the date format is *ISO, *USA, *EUR, or *JIS. If the
date format is *YMD, *MDY, or *DMY, the length of the variable must be at least 8. If the date format is
*JUL, the length of the variable must be at least 6.

TIME

Chapter 2. Language elements 95

– If the *USA format is used, the length of the variable must not be less than 8. This format does not
include seconds.

– If the *ISO, *EUR, *JIS, or *HMS time format is used, the length of the variable must not be less than
5. If the length is 5, 6, or 7, the seconds part of the time is omitted from the result, and SQLWARN1
is set to 'W'. In this case, the seconds part of the time is assigned to the indicator variable if one
is provided, and, if the length is 6 or 7, blank padding occurs so that the value is a valid string
representation of a time.

TIMESTAMP

– The length of the variable must not be less than 19. If the length is between 19 and 31, the
timestamp is truncated like a string, causing the omission of one or more digits of fractional seconds.
If the length is 20, the trailing decimal point is replaced by a blank so that the value is a valid string
representation of a timestamp with a precision of 0.

XML assignments
The following rules apply when the assignment target is XML.

The general rule for XML assignments is that only an XML value can be assigned to an XML column or an
XML variable. There are exceptions to this rule as follows:

• Processing of input XML variables: This is a special case of the XML assignment rule because the
variable is based on a string value. To make the assignment to XML within SQL, the string value is
implicitly parsed into an XML value using the setting of the CURRENT IMPLICIT XMLPARSE OPTION
special register. This determines whether to preserve or to strip whitespace, unless the variable is an
argument of the XMLVALIDATE function which always strips unnecessary whitespace.

• Assigning strings to input parameter markers of data type XML: If an input parameter marker has an
implicit or explicit data type of XML, the value assigned to that parameter marker could be a character
string variable, graphic string variable, or binary string variable. In this case, the string value is implicitly
parsed into an XML value using the setting of the CURRENT IMPLICIT XMLPARSE OPTION special
register. This determines whether to preserve or to strip whitespace, unless the parameter marker is an
argument of the XMLVALIDATE function which always strips unnecessary whitespace.

• Assigning strings directly to XML columns in data change statements: If assigning directly to a
column of type XML in a data change statement, the assigned expression can also be a character string,
a graphic string, or a binary string. In this case, the result of XMLPARSE (DOCUMENT expression STRIP
WHITESPACE) is assigned to the target column. The supported string data types are defined by the
supported arguments for the XMLPARSE function. This exception also applies to SQL parameters of type
XML.

• Assigning XML to strings on retrieval: If retrieving XML values into variables using a FETCH or SELECT
INTO in embedded SQL, the data type of the variable can be CLOB, DBCLOB, or BLOB. The XML value is
implicitly serialized to a string encoded in the variable's CCSID. If using other application programming
interfaces (such as CLI, JDBC, or .NET), XML values can be retrieved into the character, graphic, or
binary string types that are supported by the application programming interface. In all these cases, the
XML value is implicitly serialized to a string encoded in the CCSID determined by the QAQQINI file as
described in “XML Values” on page 80.

For the FETCH, SELECT INTO, SET, and VALUES INTO statements, character string, graphic string, or
binary string values cannot be retrieved into XML variables. For the INSERT, UPDATE, MERGE, SET,
VALUES INTO, and CALL statements, values in XML variables cannot be assigned to columns, SQL
variables, or SQL parameters of a character, graphic, or binary string data type.

DataLink assignments
The assignment of a value to a DataLink column results in the establishment of a link to a file unless the
linkage attributes of the value are empty or the column is defined with NO LINK CONTROL. In cases where
a linked value already exists in the column, that file is unlinked. Assigning a null value where a linked
value already exists also unlinks the file associated with the old value.

96 IBM i: Db2 for i SQL Reference

If the application provides the same data location as already exists in the column, the link is retained.
There are two reasons that this might be done:

• the comment is being changed
• if the table is placed in link pending state, the links in the table can be reinstated by providing linkage

attributes identical to the ones in the column.

A DataLink value may be assigned to a column by using the DLVALUE scalar function. The DLVALUE scalar
function creates a new DataLink value which can then be assigned a column. Unless the value contains
only a comment or the URL is exactly the same, the act of assignment will link the file.

When assigning a value to a DataLink column, the following error conditions can occur:

• Data Location (URL) format is invalid
• File server is not registered with this database
• Invalid link type specified
• Invalid length of comment or URL

Note that the size of a URL parameter or function result is the same on both input or output and
is bound by the length of the DataLink column. However, in some cases the URL value returned
has an access token attached. In situations where this is possible, the output location must have
sufficient storage space for the access token and the length of the DataLink column. Hence, the actual
length of the comment and URL in its fully expanded form provided on input should be restricted to
accommodate the output storage space. If the restricted length is exceeded, this error is raised.

When the assignment is also creating a link, the following errors can occur:

• File server not currently available.
• File does not exist.
• Referenced file cannot be accessed for linking.
• File already linked to another column.

Note that this error will be raised even if the link is to a different relational database.

In addition, when the assignment removes an existing link, the following errors can occur:

• File server not currently available.
• File with referential integrity control is not in a correct state according to the Db2 DataLinks File

Manager.

A DataLink value may be retrieved from the database through the use of scalar functions (such as
DLLINKTYPE and DLURLPATH). The results of these scalar functions can then be assigned to variables.

Note that usually no attempt is made to access the file server at retrieval time. 28It is therefore possible
that subsequent attempts to access the file server through file system commands might fail.

A warning may be returned when retrieving a DataLink value because the table is in link pending state.

Row ID assignments
A row ID value can only be assigned to a column, parameter, or variable with a row ID data type. For the
value of the ROWID column, the column must be defined as GENERATED BY DEFAULT or OVERRIDING
SYSTEM VALUE must be specified. A unique constraint is implicitly added to every table that has a ROWID
column that guarantees that every ROWID value is unique. The value that is specified for the column must
be a valid row ID value that was previously generated by Db2 for z/OS or Db2 for i.

28 It may be necessary to access the file server to determine the prefix name associated with a path. This can
be changed at the file server when the mount point of a file system is moved. First access of a file on a
server will cause the required values to be retrieved from the file server and cached at the database server
for the subsequent retrieval of DataLink values for that file server. An error is returned if the file server
cannot be accessed.

Chapter 2. Language elements 97

Distinct type assignments
The rules that apply to the assignments of distinct types to variables are different than the rules for all
other assignments that involve distinct types.

Assignments to variables
The assignment of a distinct type to a variable is based on the source data type of the distinct type.
Therefore, the value of a distinct type is assignable to a variable only if the source data type of the distinct
type is assignable to the variable.

Example:

Assume that distinct type AGE was created with the following SQL statement:

 CREATE TYPE AGE AS SMALLINT WITH COMPARISONS

When the statement is executed, the following cast functions are also generated:

 AGE (SMALLINT) RETURNS AGE
 AGE (INTEGER) RETURNS AGE
 SMALLINT (AGE) RETURNS SMALLINT

Next, assume that column STU_AGE was defined in table STUDENTS with distinct type AGE. Now,
consider this valid assignment of a student's age to host variable HV_AGE, which has an INTEGER data
type:

 SELECT STU_AGE INTO :HV_AGE FROM STUDENTS WHERE STU_NUMBER = 200

The distinct type value is assignable to the host variable HV_AGE because the source data type of the
distinct type (SMALLINT) is assignable to the host variable (INTEGER).

Assignments other than to variables
A distinct type can be either the source or target of an assignment. Assignment is based on whether the
data type of the value to be assigned is castable to the data type of the target. “Casting between data
types” on page 86 shows which casts are supported when a distinct type is involved. Therefore, a distinct
type value can be assigned to any target other than a variable when:

• the target of the assignment has the same distinct type, or
• the distinct type is castable to the data type of the target.

Any value can be assigned to a distinct type when:

• the value to be assigned has the same distinct type as the target, or
• the data type of the assigned value is castable to the target distinct type.

Example:

Assume that the source data type for distinct type AGE is SMALLINT:

 CREATE TYPE AGE AS SMALLINT WITH COMPARISONS

Next, assume that two tables TABLE1 and TABLE2 were created with four identical column descriptions:

 AGECOL AGE
 SMINTCOL SMALLINT
 INTCOL INTEGER
 DECCOL DEC(6,2)

98 IBM i: Db2 for i SQL Reference

Using the following SQL statement and substituting various values for X and Y to insert values into various
columns of TABLE1 from TABLE2, Table 19 on page 99 shows whether the assignments are valid.

 INSERT INTO TABLE1 (Y) SELECT X FROM TABLE2

Table 19. Assessment of various assignments (for example on INSERT)

TABLE2.X TABLE1.Y Valid Reason

AGECOL AGECOL Yes Source and target are same distinct type

SMINTCOL AGECOL Yes SMALLINT can be cast to AGE (because
AGE's source type is SMALLINT)

INTCOL AGECOL Yes INTEGER can be cast to AGE (because
AGE's source type is SMALLINT)

DECCOL AGECOL No DECIMAL cannot be cast to AGE

AGECOL SMINTCOL Yes AGE can be cast to its source type
SMALLINT

AGECOL INTCOL No AGE cannot be cast to INTEGER

AGECOL DECCOL No AGE cannot be cast to DECIMAL

Array type assignments
For array types, the validity of an assignment to an SQL array variable or parameter is determined
according to the following rules:

• If the right hand side of the assignment is an SQL array variable or parameter, the TRIM_ARRAY
function, or a CAST expression, then its type must be the same type as the SQL array variable or
parameter on the left hand side of the assignment.

• If the right hand side of the assignment is an array constructor or the ARRAY_AGG function, then it is
implicitly cast to the type of the SQL array variable or parameter on the left hand side.

Assignments to LOB locators
When a LOB locator is used, it can refer to any string data. If a LOB locator is used for the first fetch of a
cursor and the cursor is on a remote server, LOB locators must be used for all subsequent fetches unless
the *NOOPTLOB precompile option is used.

Numeric comparisons
Numbers are compared algebraically; that is, with regard to sign. For example, –2 is less than +1.

If one number is an integer and the other number is decimal, the comparison is made with a temporary
copy of the integer that has been converted to decimal.

When decimal or nonzero scale binary numbers with different scales are compared, the comparison is
made with a temporary copy of one of the numbers that has been extended with trailing zeros so that its
fractional part has the same number of digits as the other number.

If one number is floating point and the other is integer, decimal, or single-precision floating point, the
comparison is made with a temporary copy of the second number converted to a double-precision
floating-point number. However, if a single-precision floating-point column is compared to a constant and
the constant can be represented by a single-precision floating-point number, the comparison is made
with a single-precision form of the constant.

Two floating-point numbers are equal only if the bit configurations of their normalized forms are identical.

Chapter 2. Language elements 99

If one number is DECFLOAT and the other number is integer, decimal, single precision floating-point, or
double precision floating-point, the comparison is made with a temporary copy of the second number
converted to DECFLOAT.

If one number is DECFLOAT(16) and the other is DECFLOAT(34), the DECFLOAT(16) value is converted to
DECFLOAT(34) before the comparison.

The DECFLOAT data type supports both positive and negative zero. Positive and negative zero have
different binary representations, but the equal (=) predicate will return true for comparisons of positive
and negative zero.

The DECFLOAT data type allows for multiple bit representations of the same number. For example, 2.00
and 2.0 are two numbers that are numerically equal but have different bit representations. The = (equal)
predicate will return true for a comparison of 2.0 = 2.00. Given that 2.0 = 2.00 is true, 2.0 < 2.00 is
false. The behavior that is described here holds true for all comparisons of DECFLOAT values (such as for
UNION, SELECT DISTINCT, COUNT DISTINCT, basic predicates, IN predicates, MIN, MAX, and so on.) For
example:

 SELECT 2.0 FROM SYSIBM.SYSDUMMY
 UNION
 SELECT 2.00 FROM SYSIBM.SYSDUMMY

yields one row of data. For this query, the value (2.0 or 2.00) that is returned is arbitrary.

The functions COMPARE_DECFLOAT and TOTALORDER can be used to perform comparisons at a binary
level. For example, for a comparison of 2.0<>2.00. With these functions, decimal floating-point values are
compared in the following order: -NaN < -sNaN < -Infinity < -0.10 <-0.100 < -0 < 0 < 0.100 < 0.10 <
Infinity < sNaN < NaN

The DECFLOAT data type also supports the specification of positive and negative NaN (quiet and
signaling), and positive and negative Infinity. From an SQL perspective, infinity = infinity, NaN = NaN,
and sNaN = sNaN.

The DECFLOAT data type also supports the specification of positive and negative NaN (quiet and
signaling), and positive and negative infinity.

The following rules are the comparison rules for these special values:

• Infinity compares equal only to infinity of the same sign (positive or negative)
• NaN compares equal only to NaN of the same sign (positive or negative)
• sNaN compares equal only to sNaN of the same sign (positive or negative)

When string and numeric data types are compared, the string is converted to the numeric data type with
the same precision and scale, and must contain a valid string representation of a number.

String comparisons
There are two different types of string comparisons.

Binary string comparisons
Binary string comparisons always use a collating sequence of *HEX and the corresponding bytes of each
string are compared. Additionally, two binary strings are equal only if the lengths of the two strings
are identical. If the strings are equal up to the length of the shorter string length, the shorter string is
considered less than the longer string even when the remaining bytes in the longer string are hexadecimal
zeros. Note that binary strings cannot be compared to character strings unless the character string is cast
to a binary string.

Character and graphic string comparisons
Character and Unicode graphic string comparisons use the collating sequence in effect when the
statement is executed for all SBCS data and the single-byte portion of mixed data. If the collating

100 IBM i: Db2 for i SQL Reference

sequence is *HEX, the corresponding bytes of each string are compared. For all other collating sequences,
the corresponding bytes of the weighted value of each string are compared.

If the strings have different lengths, a temporary copy of the shorter string is padded on the right with
blanks before comparison. The padding makes each string the same length. The pad character is always
a blank, regardless of the collating sequence. For bit data, the pad character is also a blank. For DBCS
graphic data, the pad character is a DBCS blank (x'4040'). For Unicode graphic data, the pad character is a
UTF-16 blank. 29

Two strings are equal if any of the following are true:

• Both strings are empty.
• A *HEX collating sequence is used and all corresponding bytes are equal.
• A collating sequence other than *HEX is used and all corresponding bytes of the weighted value are

equal.

An empty string is equal to a blank string. The relationship between two unequal strings is determined
by a comparison of the first pair of unequal bytes (or bytes of the weighted value) from the left end of
the string. This comparison is made according to the collating sequence in effect when the statement is
executed.

In an application that will run in multiple environments, the same collating sequence (which depends on
the CCSIDs of the environments) must be used to ensure identical results. The following table illustrates
the differences between EBCDIC, ASCII, and the Db2 LUW default collating sequence for United States
English by showing a list that is sorted according to each one.

Table 20. Collating Sequence Differences

ASCII and Unicode EBCDIC Db2 LUW Default

0000 @@@@ 0000

9999 co-op 9999

@@@@ coop @@@@

COOP piano forte co-op

PIANO-FORTE piano-forte COOP

co-op COOP coop

coop PIANO-FORTE piano forte

piano forte 0000 PIANO-FORTE

piano-forte 9999 piano-forte

Two varying-length strings with different lengths are equal if they differ only in the number of trailing
blanks. In operations that select one value from a set of such values, the value selected is arbitrary.
The operations that can involve such an arbitrary selection are DISTINCT, MAX, MIN, UNION, EXCEPT,
INTERSECT, and references to a grouping column. See “group-by-clause” on page 763 for more
information about the arbitrary selection involved in references to a grouping column.

Conversion rules for comparison:
When two strings are compared, one of the strings is first converted, if necessary, to the coded character
set of the other string. Character conversion is necessary only if all of the following are true:

• The CCSIDs of the two strings are different.
• Neither CCSID is 65535.

29 UTF-16 defines a blank character at code point X'0020' and X'3000'. The database manager pads with the
blank at code point X'0020'.

Chapter 2. Language elements 101

• The string selected for conversion is neither null nor empty.
• Conversion between the two CCSIDs is required. For more information, see “Coded character sets and

CCSIDs” on page 32.

If two strings with different encoding schemes are compared, any necessary conversion applies to the
string as follows:

Table 21. Selecting the Resulting Encoding Scheme for Character Conversion

First Operand

Second Operand

SBCS Data DBCS Data Mixed Data
Unicode
Graphic Data

SBCS Data see below second second second

DBCS Data first see below second second

Mixed Data first first see below second

Unicode Graphic Data first first first see below

Otherwise, the string selected for conversion depends on the type of each operand. The following table
shows which operand is selected for conversion, given the operand types:

Table 22. Selecting the Operand for Character Conversion

First Operand

Second Operand

Column
Value

Derived
Value

Special
Register Constant Variable

Column Value second second second second second

Derived Value first second second second second

Special Register first first second second second

Constant first first first second second

Variable first first first first second

A variable that contains data in a foreign encoding scheme is always effectively converted to the native
encoding scheme before it is used in any operation. The above rules are based on the assumption that
this conversion has already occurred.

An error is returned if a character of the string cannot be converted or if the conversion between the pair
of CCSIDs is not defined. For more information, see “Coded character sets and CCSIDs” on page 32. A
warning occurs if a character of the string is converted to the substitution character.

Datetime comparisons
A DATE, TIME, or TIMESTAMP value can be compared either with another value of the same data type, a
datetime constant of the same data type, or with a string representation of that data type. A date value
or a string representation of a date can also be compared with a TIMESTAMP, where the missing time
information for the date value is assumed to be all zeros. All comparisons are chronological, which means
the farther a point in time is from January 1, 0001, the greater the value of that point in time.

Comparisons involving TIME values and string representations of time values always include seconds. If
the string representation omits seconds, zero seconds are implied. The time 24:00:00 compares greater
than the time 00:00:00.

Comparisons involving TIMESTAMP values are evaluated according to the following rules:

102 IBM i: Db2 for i SQL Reference

• When comparing timestamp values with different precisions, the higher precision is used for the
comparison and any missing digits for fractional seconds are assumed to be zero.

• When comparing a timestamp value with a string representation of a timestamp, the string
representation is first converted to TIMESTAMP(12).

• Timestamp comparisons are chronological without regard to representations that might be considered
equivalent. Thus, the following predicate is true:

 TIMESTAMP('1990-02-23-00.00.00') > '1990-02-22-24.00.00'

XML comparisons
The XML data type cannot be compared to any data type, including the XML data type.

DataLink comparisons
A DATALINK operand cannot be directly compared to any data type. The DLCOMMENT, DLLINKTYPE,
DLURLCOMPLETE, DLURLPATH, DLURLPATHONLY, DLURLSCHEME, and DLURLSERVER scalar functions
can be used to extract character string values from a datalink which can then be compared to other
strings.

Row ID comparisons
A ROWID operand cannot be directly compared to any data type. To compare the bit representation of a
ROWID, first cast the ROWID to a character string.

Distinct type comparisons
A value with a distinct type can be compared only to another value with exactly the same distinct type.

For example, assume that distinct type YOUTH and table CAMP_DB2_ROSTER table were created with the
following SQL statements:

 CREATE TYPE YOUTH AS INTEGER WITH COMPARISONS

 CREATE TABLE CAMP_DB2_ROSTER
 (NAME VARCHAR(20),
 ATTENDEE_NUMBER INTEGER NOT NULL,
 AGE YOUTH,
 HIGH_SCHOOL_LEVEL YOUTH)

The following comparison is valid because AGE and HIGH_SCHOOL_LEVEL have the same distinct type:

 SELECT * FROM CAMP_DB2_ROSTER
 WHERE AGE > HIGH_SCHOOL_LEVEL

The following comparison is not valid:

 SELECT * FROM CAMP_DB2_ROSTER ***INCORRECT***
 WHERE AGE > ATTENDEE_NUMBER

However, AGE can be compared to ATTENDEE_NUMBER by using a cast function or CAST specification to
cast between the distinct type and the source type. All of the following comparisons are valid:

 SELECT * FROM CAMP_DB2_ROSTER
 WHERE AGE > YOUTH(ATTENDEE_NUMBER)

 SELECT * FROM CAMP_DB2_ROSTER
 WHERE AGE > CAST(ATTENDEE_NUMBER AS YOUTH)

 SELECT * FROM CAMP_DB2_ROSTER
 WHERE INTEGER(AGE) > ATTENDEE_NUMBER

 SELECT * FROM CAMP_DB2_ROSTER
 WHERE CAST(AGE AS INTEGER) > ATTENDEE_NUMBER

Chapter 2. Language elements 103

Array type comparisons
Comparisons of array type values are not supported.

Elements of arrays can be compared based on the comparison rules for the data type of the elements.

104 IBM i: Db2 for i SQL Reference

Rules for result data types
The data types of a result are determined by rules which are applied to the operands in an operation. This
section explains those rules.

These rules apply to:

• Corresponding columns in UNION, UNION ALL, EXCEPT, or INTERSECT operations
• Result expressions of a CASE expression
• Arguments of the scalar functions COALESCE, IFNULL, MAX, MIN, and VALUE
• Expression values of the IN list of an IN predicate
• Expression values in an ARRAY constructor
• Arguments for the aggregation group ranges in OLAP specifications

For the result data type of expressions that involve the operators /, *, + and -, see “With arithmetic
operators” on page 159. For the result data type of expressions that involve the CONCAT operator, see
“With the concatenation operator” on page 163.

The data type of the result is determined by the data type of the operands. The data types of the first two
operands determine an intermediate result data type, this data type and the data type of the next operand
determine a new intermediate result data type, and so on. The last intermediate result data type and the
data type of the last operand determine the data type of the result. For each pair of data types, the result
data type is determined by the sequential application of the rules summarized in the tables that follow.

If neither operand column allows nulls, the result does not allow nulls. Otherwise, the result allows nulls.

If the data type and attributes of any operand column are not the same as those of the result, the operand
column values are converted to conform to the data type and attributes of the result. The conversion
operation is exactly the same as if the values were assigned to the result. For example,

• If one operand column is CHAR(10), and the other operand column is CHAR(5), the result is CHAR(10),
and the values derived from the CHAR(5) column are padded on the right with five blanks.

• If the whole part of a number cannot be preserved then an error is returned.

Numeric operands
Numeric types are compatible with other numeric and character-string and graphic-string data types.

If one operand column is... And the other operand is... The data type of the result column is...

SMALLINT SMALLINT or String SMALLINT

INTEGER SMALLINT, INTEGER, or
String

INTEGER

BIGINT SMALLINT, INTEGER,
BIGINT, or String

BIGINT

DECIMAL(w,x) SMALLINT DECIMAL(p,x) where
p = min(mp, x+max(w-x,5))
mp = 31 or 63 (See Note 1)

DECIMAL(w,x) INTEGER DECIMAL(p,x) where
p = min(mp, x+max(w-x,11))
mp = 31 or 63 (See Note 1)

Chapter 2. Language elements 105

If one operand column is... And the other operand is... The data type of the result column is...

DECIMAL(w,x) BIGINT DECIMAL(p,x) where
p = min(mp, x+max(w-x,19))
mp = 31 or 63 (See Note 1)

DECIMAL(w,x) DECIMAL(y,z) or
NUMERIC(y,z,)

DECIMAL(p,s) where
p = min(mp, max(x,z)+max(w-x,y-z))
s = max(x,z)
mp = 31 or 63 (See Note 1)

DECIMAL(w,x) String DECIMAL(w,x)

NUMERIC(w,x) SMALLINT NUMERIC(p,x) where
p = min(mp, x + max(w-x,5))
mp = 31 or 63 (See Note 1)

NUMERIC(w,x) INTEGER NUMERIC(p,x) where
p = min(mp, x + max(w-x,11))
mp = 31 or 63 (See Note 1)

NUMERIC(w,x) BIGINT NUMERIC(p,x) where
p = min(mp, x + max(w-x,19))
mp = 31 or 63 (See Note 1)

NUMERIC(w,x) NUMERIC(y,z) NUMERIC(p,s) where
p = min(mp, max(x,z) + max(w-x, y-z))
s = max(x,z)
mp = 31 or 63 (See Note 1)

NUMERIC(w,x) String NUMERIC(w,x)

NONZERO SCALE BINARY NONZERO SCALE BINARY NONZERO SCALE BINARY
(If either operand is nonzero scale binary,
both operands must be binary with the
same scale.)

REAL REAL REAL

REAL SMALLINT, INTEGER,
BIGINT, DECIMAL, NUMERIC,
or String

DOUBLE

DOUBLE SMALLINT, INTEGER,
BIGINT, DECIMAL, NUMERIC,
REAL, DOUBLE, or String

DOUBLE

DECFLOAT(n) REAL, DOUBLE, INTEGER, or
SMALLINT

DECFLOAT(n)

DECFLOAT(n) DECIMAL(p<=16,s) or
NUMERIC(p<=16,s)

DECFLOAT(n)

106 IBM i: Db2 for i SQL Reference

If one operand column is... And the other operand is... The data type of the result column is...

DECFLOAT(n) BIGINT,
DECIMAL(p>16,s), or
NUMERIC(p>16,s)

DECFLOAT(34)

DECFLOAT(n) DECFLOAT(m) DECFLOAT(max(n,m))

DECFLOAT(n) String DECFLOAT(34)

Notes:

1. The value of mp is 63 if:

• either w or y is greater than 31, or
• a value of 63 was specified for the maximum precision on the DECRESULT parameter of the CRTSQLxxx

command, RUNSQLSTM command, or SET OPTION statement

Otherwise, the value of mp is 31.

Character and graphic string operands
Character and graphic strings are compatible with other character and graphic strings when there is
a defined conversion between their corresponding CCSIDs. A character string and a graphic string are
compatible if the encoding scheme of the graphic-string data type is Unicode and the character-string
data type is not bit data.

If one operand column is... And the other operand is... The data type of the result column is...

CHAR(x) CHAR(y) CHAR(z) where z = max(x,y)

GRAPHIC(x) CHAR(y) or GRAPHIC(y) GRAPHIC(z) where z = max(x,y)

VARCHAR(x) CHAR(y) or VARCHAR(y) VARCHAR(z) where z = max(x,y)

VARCHAR(x) GRAPHIC(y) VARGRAPHIC(z) where z = max(x,y)

VARGRAPHIC(x) CHAR(y), VARCHAR(y),
GRAPHIC(y), or
VARGRAPHIC(y)

VARGRAPHIC(z) where z = max(x,y)

CLOB(x) CHAR(y), VARCHAR(y), or
CLOB(y)

CLOB(z) where z = max(x,y)

CLOB(x) GRAPHIC(y) or
VARGRAPHIC(y)

DBCLOB(z) where z = max(x,y)

DBCLOB(x) CHAR(y), VARCHAR(y),
CLOB(y), GRAPHIC(y),
VARGRAPHIC(y), or
DBCLOB(y)

DBCLOB(z) where z = max(x,y)

When one of the operands has a CCSID of 1208, the length (x or y value) of every operand that does not
have a CCSID of 1208 is doubled for determining the result length.

The CCSID of the result graphic string will be derived based on the “Conversion rules for operations that
combine strings” on page 110.

Chapter 2. Language elements 107

Binary string operands
Binary strings are compatible only with other binary strings or character strings FOR BIT DATA. Other
data types can be treated as a binary-string data type by using the BINARY, VARBINARY, or BLOB scalar
functions to cast the data type to a binary string.

If one operand column is... And the other operand is... The data type of the result column is...

BINARY(x) BINARY(y) or CHAR(y) FOR
BIT DATA

BINARY(z) where z = max(x,y)

VARBINARY(x) BINARY(y), VARBINARY(y),
CHAR(y) FOR BIT DATA, or
VARCHAR(y) FOR BIT DATA

VARBINARY(z) where z = max(x,y)

VARCHAR(x) FOR BIT DATA BINARY(y) VARBINARY(z) where z = max(x,y)

BLOB(x) BINARY(y), VARBINARY(y),
BLOB(y), CHAR(y) FOR BIT
DATA, or VARCHAR(y) FOR
BIT DATA

BLOB(z) where z = max(x,y)

Datetime operands
A DATE type is compatible with another DATE type or any character or Unicode graphic string expression
that contains a valid string representation of a date. The data type of the result is DATE.

A TIME type is compatible with another TIME type or any character or Unicode graphic string expression
that contains a valid string representation of a time. The data type of the result is TIME.

A TIMESTAMP type is compatible with another TIMESTAMP type, a DATE type, or any character or Unicode
graphic string expression that contains a valid string representation of a date or a timestamp. The data
type of the result is TIMESTAMP.

If one operand column is... And the other operand is... The data type of the result column is...

DATE DATE, CHAR(y),
VARCHAR(y),
CLOB(y), GRAPHIC(y),
VARGRAPHIC(y), or
DBCLOB(y)

DATE

TIME TIME, CHAR(y),
VARCHAR(y),
CLOB(y), GRAPHIC(y),
VARGRAPHIC(y), or
DBCLOB(y)

TIME

TIMESTAMP(x) TIMESTAMP(y) TIMESTAMP(max(x,y))

TIMESTAMP(x) DATE, CHAR(y),
VARCHAR(y),
CLOB(y),, GRAPHIC(y),
VARGRAPHIC(y). or
DBCLOB(y)

TIMESTAMP(x)

DataLink operands
A DataLink is compatible with another DataLink. However, DataLinks with NO LINK CONTROL are only
compatible with other DataLinks with NO LINK CONTROL; DataLinks with FILE LINK CONTROL READ
PERMISSION FS are only compatible with other DataLinks with FILE LINK CONTROL READ PERMISSION
FS; and DataLinks with FILE LINK CONTROL READ PERMISSION DB are only compatible with other

108 IBM i: Db2 for i SQL Reference

DataLinks with FILE LINK CONTROL READ PERMISSION DB. The data type of the result is DATALINK. The
length of the result DATALINK is the largest length of all the data types.

If one operand column is... And the other operand is... The data type of the result column is...

DATALINK(x) DATALINK(y) DATALINK(z) where z = max(x,y)

ROWID operands
A ROWID is compatible with another ROWID. The data type of the result is ROWID.

XML operands
The XML data type is compatible only with another XML data type. The data type of the result is XML.

The result CCSID is the value from the SQL_XML_DATA_CCSID QAQQINI option setting as described in
“XML Values” on page 80.

Distinct type operands
A user-defined distinct type is compatible only with the same user-defined distinct type. The data type of
the result is the user-defined distinct type.

If one operand column is... And the other operand is... The data type of the result column is...

Distinct Type Distinct Type Distinct Type

Chapter 2. Language elements 109

Conversion rules for operations that combine strings
The operations that combine strings are concatenation, UNION, UNION ALL, EXCEPT, and INTERSECT.
(These rules also apply to the MAX, MIN, VALUE, COALESCE, IFNULL, and CONCAT scalar functions and
CASE expressions.) In each case, the CCSID of the result is determined at bind time, and the execution of
the operation may involve conversion of strings to the coded character set identified by that CCSID.

The CCSID of the result is determined by the CCSIDs of the operands. The CCSIDs of the first two
operands determine an intermediate result CCSID, this CCSID and the CCSID of the next operand
determine a new intermediate result CCSID, and so on. The last intermediate result CCSID and the CCSID
of the last operand determine the CCSID of the result string or column. For each pair of CCSIDs, the result
CCSID is determined by the sequential application of the following rules:

• If the CCSIDs are equal, the result is that CCSID.
• If either CCSID is 65535, the result is 65535.30

• If one CCSID denotes data in an encoding scheme different from the other CCSID, the result is
determined by the following table:

Table 23. Selecting the Encoding Scheme of the Intermediate Result

First Operand

Second Operand

SBCS Data DBCS Data Mixed Data
Unicode Graphic

Data

SBCS Data see below second second second

DBCS Data first see below second second

Mixed Data first first see below second

Unicode Graphic
Data

first first first see below

• Otherwise, the resulting CCSID is determined by the following tables:

Table 24. Selecting the CCSID of the Intermediate Result

First Operand

Second Operand

Column
Value

Derived
Value Constant

Special
Register Variable

Column Value first first first first first

Derived Value second first first first first

Constant second second first first first

Special Register second second first first first

Variable second second second second first

A variable containing data in a foreign encoding scheme is effectively converted to the native encoding
scheme before it is used in any operation. The above rules are based on the assumption that this
conversion has already occurred.

30 If either operand is a CLOB or DBCLOB, the resulting CCSID is the job default CCSID.

110 IBM i: Db2 for i SQL Reference

Note that an intermediate result is considered to be a derived value operand. For example, assume COLA,
COLB, and COLC are columns with CCSIDs 37, 278, and 500, respectively. The result CCSID of COLA
CONCAT COLB CONCAT COLC is determined as follows:

1. The result CCSID of COLA CONCAT COLB is first determined to be 37 because both operands are
columns, so the CCSID of the first operand is chosen.

2. The result CCSID of “intermediate result” CONCAT COLC is determined to be 500, because the first
operand is a derived value and the second operand is a column, so the CCSID of the second operand is
chosen.

An operand of concatenation, or the result expression of the CASE expression, or the operands of the
IN predicate, or the selected argument of the MAX, MIN, VALUE, COALESCE, IFNULL, or CONCAT scalar
function is converted, if necessary, to the coded character set of the result string. Each string of an
operand of UNION, UNION ALL, EXCEPT, or INTERSECT is converted, if necessary, to the coded character
set of the result column. Character conversion is necessary only if all of the following are true:

• The CCSIDs are different.
• Neither CCSID is 65535.
• The string is neither null nor empty.
• Conversion between the two CCSIDs is required. For more information, see “Coded character sets and

CCSIDs” on page 32.

An error is returned if a character of the string cannot be converted or if the conversion between the pair
of CCSIDs is not defined. For more information, see “Coded character sets and CCSIDs” on page 32. A
warning occurs if a character of a string is converted to the substitution character.

Chapter 2. Language elements 111

Constants
A constant (also called a literal) specifies a value. Constants are classified as string constants or numeric
constants. String constants are further classified as character or graphic. Numeric constants are further
classified as integer, floating point, or decimal.

All constants have the attribute NOT NULL. A negative sign in a numeric constant with a value of zero is
ignored.

Integer constants
An integer constant specifies an integer as a signed or unsigned number with a maximum of 19 digits that
does not include a decimal point. The data type of an integer constant is large integer if its value is within
the range of a large integer. The data type of an integer constant is big integer if its value is outside the
range of a large integer, but within the range of a big integer. A constant that is defined outside the range
of big integer values is considered a decimal constant.

Examples

64 -15 +100 32767 720176 12345678901

In syntax diagrams, the term integer is used for a large integer constant that must not include a sign.

Decimal constants
A decimal constant specifies a decimal number as a signed or unsigned number that consists of no more
than 63 digits and either includes a decimal point or is not within the range of binary integers.

The precision is the total number of digits (including leading and trailing zeros); the scale is the number of
digits to the right of the decimal point (including trailing zeros). If the precision of the decimal constant is
greater than the largest decimal precision and the scale is not greater than the largest decimal precision,
then leading zeroes to the left of the decimal point are eliminated to reduce the precision to the largest
decimal precision.

Examples

25.5 1000. -15. +37589.3333333333

Floating-point constants
A floating-point constant specifies a double-precision floating-point number as two numbers separated
by an E. The first number can include a sign and a decimal point; the second number can include a sign
but not a decimal point. The value of the constant is the product of the first number and the power of 10
specified by the second number; it must be within the range of floating-point numbers. The number of
characters in the constant must not exceed 24. Excluding leading zeros, the number of digits in the first
number must not exceed 17 and the number of digits in the second must not exceed 3.

Examples

15E1 2.E5 2.2E-1 +5.E+2

Decimal floating-point constants
A decimal floating-point constant specifies a decimal floating-point number as two numbers separated
by an E. The first number can include a sign and a decimal point; the second number can include a sign
but not a decimal point. The value of the constant is the product of the first number and the power of 10
specified by the second number; it must be within the range of DECFLOAT(34). The number of characters

112 IBM i: Db2 for i SQL Reference

in the constant must not exceed 42. Excluding leading zeros, the number of digits in the first number must
not exceed 34 and the number of digits in the second must not exceed 4.

A constant specified as two numbers separated by E is a decimal floating-point constant only if:

• Excluding leading zeros, the number of digits in the first number exceeds 17 (precision).
• The exponent is outside of the range of double floating-point numbers (smaller than -308 or larger than

308).

In addition to numeric constants, the following reserved keywords can be used to specify decimal
floating-point special values. These special values are: INFINITY, NAN, and SNAN. INFINITY represents
infinity, a number whose magnitude is infinitely large. INFINITY can be preceded by an optional sign.
INF can be specified in place of INFINITY. NAN represents Not a Number (NaN) and is sometimes called
quiet NaN. It is a value that represents undefined results which does not cause a warning or exception.
SNAN represents signaling NaN (sNaN). It is a value that represents undefined results which will cause
a warning or exception if used in any operation that is defined in any numerical operation. Both NAN
and SNAN can be preceded by an optional sign, but the sign is not significant for arithmetic operations.
SNAN can be used in non-numerical operations without causing a warning or exception, for example in
the VALUES list of an INSERT or as a constant compared in a predicate.

When one of the special values (INFINITY, INF, NAN, and SNAN) is used in a context where it could be
interpreted as an identifier, such as a column name, cast a string constant representing the special value
to decimal-floating point.

CAST('snan' AS DECFLOAT(34))
CAST('INF' AS DECFLOAT(34))
CAST('Nan' AS DECFLOAT(34))

Examples

1.8E308 -1.23456789012345678E-2 SNAN -INFINITY

Character-string constants
A character-string constant specifies a varying-length character string.

The two forms of character-string constant follow:

• A sequence of characters that starts and ends with a string delimiter. The number of bytes between the
string delimiters cannot be greater than 32740. Two consecutive string delimiters are used to represent
one string delimiter within the character string. Two consecutive string delimiters that are not contained
within a string represent the empty string.

• An X followed by a sequence of characters that starts and ends with a string delimiter. The characters
between the string delimiters must be an even number of hexadecimal digits. Blanks between the
string delimiters are ignored. The number of hexadecimal digits must not exceed 32762. A hexadecimal
digit is a digit or any of the letters A through F (uppercase or lowercase). Under the conventions
of hexadecimal notation, each pair of hexadecimal digits represents a character. This form of string
constant allows you to specify characters that do not have a keyboard representation.

Character-string constants can contain mixed data. If the job CCSID supports mixed data, a character-
string constant is classified as mixed data if it includes a DBCS substring. In all other cases, a character-
string constant is classified as SBCS data.

The CCSID assigned to the constant is the CCSID of the SQL statement text containing the constant unless
the SQL statement is encoded in Unicode or a foreign encoding scheme (such as ASCII). In this case, the
SQL statement text is converted from Unicode or the foreign encoding scheme to the default CCSID of the
current server. The CCSID assigned to the constant will be the default CCSID of the current server31.

The CCSID of the SQL statement text is defined in the following table.

31 If the default CCSID is 65535, the CCSID used will be the value of the DFTCCSID job attribute.

Chapter 2. Language elements 113

Table 25. CCSID of the SQL statement text for different interfaces

SQL Interface CCSID of SQL statement text

Embedded SQL • For static statements, the CCSID of the source file for the
CRTSQLxxx command.

• For dynamic statements, the CCSID of the variable specified
on the PREPARE statement, or if a string constant is
specified on the PREPARE statement, the CCSID of the
source file for the CRTSQLxxx command.

RUNSQLSTM The CCSID of the specified source file.

STRSQL and RUNSQL The default CCSID of the current server.

Call Level Interface (CLI) on the server Unicode, if SQL_ATTR_UCS2, SQL_ATTR_UTF8, or wide APIs
are specified.

Otherwise, the default CCSID of the current server. The
SQL_ATTR_NON_HEXCCSID environment variable can be
used to specify the DFTCCSID job attribute instead.

ODBC on a client using the IBM i Access
Family ODBC Driver

Unicode, if UNICODESQL is specified.

Otherwise, the default CCSID of the current server. If the
default CCSID is 65535, the CCSID used will be the value of
the DFTCCSID job attribute.

JDBC or SQLJ on the server using IBM
Developer Kit for Java

Unicode

JDBC on a client using the IBM Toolbox
for Java

Unicode

OLE DB on a client using the IBM i
Access Family OLE DB Provider

Unicode

.ADO .NET on a client using the IBM i
Access Family ODO .NET Provider

Unicode

Character-string constants are used to represent constant datetime values in assignments and
comparisons. For more information see “String representations of datetime values” on page 75.

Examples

 'Peggy' '14.12.1990' '32' 'DON''T CHANGE' '' X'FFFF'

Graphic-string constants
There are two types of graphic-string constants: DBCS and Unicode graphic-string constants.

DBCS graphic-string constants
A graphic-string constant is a varying-length graphic string. The length of the specified string cannot be
greater than 16370. The forms of DBCS graphic-string constants are:

114 IBM i: Db2 for i SQL Reference

In the normal form, the SQL delimiters and the G is an SBCS character. The SBCS ' is the EBCDIC
apostrophe, X'7D'.

In the PL/I form, the apostrophes and the G are DBCS characters. Two consecutive DBCS string delimiters
are used to represent one string delimiter within the string. Note that this PL/I form is only valid for static
statements embedded in PL/I programs.

A hexadecimal DBCS graphic constant is also supported. The form of the hexadecimal DBCS graphic
constant is:

GX'ssss'

In this constant, ssss represents a string from 0 to 32760 hexadecimal digits. The number of characters
between the string delimiters must be an even multiple of 4. Blanks between the string delimiters are
ignored. Each group of 4 digits represents a single DBCS graphic character. The hexadecimal for shift-in
and shift-out ('0E'X and '0F'X) are not included in the string.

The CCSID assigned to constants is the DBCS CCSID associated with the CCSID of the source unless the
source is encoded in a foreign encoding scheme (such as ASCII). In this case, the CCSID assigned to
the constant is the DBCS CCSID associated with the default CCSID of the current server when the SQL
statement containing the constant is prepared. If there is no DBCS CCSID associated with the CCSID of
the source, the CCSID is 65535.

For information about associated DBCS CCSIDs, see the Use DBCS CCSIDs topic in the IBM i Information
Center. For information about the CCSID of the source, see Character String Constants.

Unicode graphic-string constants
There are two types of Unicode graphic-string constants: N and UX. The form of the Unicode graphic
constant is:

N'ssss'

In the constant, ssss is a string of 16370 characters. The characters are converted from the source CCSID
to the Unicode CCSID during processing.

The form of the hexadecimal Unicode graphic constant is:

UX'ssss'

In the constant, ssss represents a string from 0 to 32760 hexadecimal digits. The number of characters
between the string delimiters must be an even multiple of 4. Blanks between the string delimiters are
ignored. Each group of 4 or more digits represents a single Unicode graphic character.

The CCSID of a Unicode graphic-string constant is 13488 (UCS-2). If the standards option is specified,
the CCSID is 1200 (UTF-16). For information about the standards option, see “Standards compliance” on
page xix.

Binary-string constants
A binary-string constant specifies a varying-length binary string.

The two forms of a binary-string constant are:

• A BX followed by a sequence of characters that starts and ends with a string delimiter. The characters
between the string delimiters must be an even number of hexadecimal digits. Blanks between the string

Chapter 2. Language elements 115

delimiters are ignored. The number of hexadecimal digits must not exceed 32740. A hexadecimal digit
is a digit or any of the letters A through F (uppercase or lowercase).

• An X followed by a sequence of characters that starts and ends with a string delimiter. The characters
between the string delimiters must be an even number of hexadecimal digits. Blanks between the string
delimiters are ignored. The number of hexadecimal digits must not exceed 32740. A hexadecimal digit
is a digit or any of the letters A through F (uppercase or lowercase).

The CCSID assigned to the constant is 65535.

Note that the syntax of the second form of binary string constant is identical to the second form of a
character constant. A constant of this form is only treated as a binary string constant if the standards
option is specified. For information on the standards option, see “Standards compliance” on page xix.

Examples

 BX'FFFF'
 X'FFFF'

Datetime constants
A datetime constant specifies a date, time, or timestamp.

Typically, character-string constants are used to represent constant datetime values in assignments and
comparisons. For information on string representations of datetime values, see “String representations of
datetime values” on page 75. However, the ANSI/ISO SQL standard form of a datetime constant can be
used to specifically denote the constant as a datetime constant instead of a string constant.

The format for the three ANSI/ISO SQL standard datetime constants are:

• DATE 'yyyy-mm-dd'

The data type of the value is DATE.
• TIME 'hh:mm:ss'

The data type of the value is TIME.
• TIMESTAMP 'yyyy-mm-dd hh:mm:ss.nnnnnnnnnnnn'

The data type of the value is TIMESTAMP(p), where p is the number of digits of fractional seconds.

Trailing zeros can be truncated or omitted entirely from fractional seconds.

Leading zeros must not be omitted from any part of a standard datetime constant.

Example

 DATE '2003-09-03'

Decimal point
You can specify a default decimal point.

The default decimal point can be specified:

• To interpret numeric constants
• To determine the decimal point character to use when casting a character string to a number (for

example, in the DECFLOAT, DECIMAL, DOUBLE_PRECISION, FLOAT, and REAL scalar functions and the
CAST specification)

• To determine the decimal point character to use in the result when casting a number to a string (for
example, in the CHAR, VARCHAR, CLOB, GRAPHIC, and VARGRAPHIC scalar functions and the CAST
specification)

The default decimal point can be specified through the following interfaces:

116 IBM i: Db2 for i SQL Reference

Table 26. Default Decimal Point Interfaces

SQL Interface Specification

Embedded SQL The *JOB, *PERIOD, *COMMA, or *SYSVAL value in the
OPTION parameter is specified on the Create SQL Program
(CRTSQLxxx) commands. The SET OPTION statement can
also be used to specify the DECMPT parameter within the
source of a program containing embedded SQL.

(For more information about CRTSQLxxx commands, see
Embedded SQL programming.)

Interactive SQL and Run SQL Statements The DECPNT parameter on the Start SQL (STRSQL) command
or by changing the session attributes. The DECMPT parameter
on the Run SQL Statements (RUNSQLSTM) command.

(For more information about STRSQL and RUNSQLSTM
commands, see SQL programming.)

Call Level Interface (CLI) on the server SQL_ATTR_DECIMAL_SEP environment or connection
variables

(For more information about CLI, see SQL Call Level
Interfaces (ODBC).)

JDBC or SQLJ on the server using IBM
IBM Developer Kit for Java

Decimal Separator connection property

(For more information about JDBC and SQLJ, see IBM
Developer Kit for Java.)

ODBC on a client using the IBM i Access
Family ODBC Driver

Decimal Separator in the Advanced Server Options in ODBC
Setup

(For more information about ODBC, see IBM i Access.)

JDBC on a client using the IBM Toolbox
for Java

Format in JDBC Setup

(For more information about ODBC, see IBM i Access.)

(For more information about the IBM Toolbox for Java, see
IBM Toolbox for Java.)

If the comma is the decimal point, the following rules apply:

• A period will also be allowed as a decimal point.
• A comma intended as a separator of numeric constants in a list must be followed by a space.
• A comma intended as a decimal point must not be followed by a space.

Thus, to specify a decimal constant without a fractional part, the trailing comma must be followed by a
non-blank character. The non-blank character can be a separator comma, as in:

 VALUES(9999999999,, 111)

Delimiters
*APOST and *QUOTE are mutually exclusive COBOL precompiler options that name the string delimiter
within COBOL statements. *APOST names the apostrophe (') as the string delimiter; *QUOTE names the

Chapter 2. Language elements 117

quotation mark ("). *APOST and *QUOTE are mutually exclusive COBOL precompiler options that play
a similar role for SQL statements embedded in COBOL programs. *APOST names the apostrophe (') as
the SQL string delimiter; with this option, the quotation mark (") is the SQL escape character. *QUOTE
names the quotation mark as the SQL string delimiter; with this option, the apostrophe is the SQL escape
character. The values of *APOST and *QUOTE are respectively the same as the values of *APOST and
*QUOTE.

In host languages other than COBOL, the usages are fixed. The string delimiter for the host language and
for static SQL statements is the apostrophe ('); the SQL escape character is the quotation mark (").

118 IBM i: Db2 for i SQL Reference

Special registers
A special register is a storage area that is defined for an application process by database manager and is
used to store information that can be referenced in SQL statements. A reference to a special register is a
reference to a value provided by the current server. If the value is a string, its CCSID is a default CCSID of
the current server.

The special registers can be referenced as follows:

Chapter 2. Language elements 119

CURRENT CLIENT_ACCTNG

CLIENT ACCTNG

CURRENT CLIENT_APPLNAME

CLIENT APPLNAME

CURRENT CLIENT_PROGRAMID

CLIENT PROGRAMID

CURRENT CLIENT_USERID

CLIENT USERID

CURRENT CLIENT_WRKSTNNAME

CLIENT WRKSTNNAME

CURRENT DATE

CURRENT_DATE
1

CURRENT DEBUG MODE

CURRENT DECFLOAT ROUNDING MODE

CURRENT DEGREE

CURRENT IMPLICIT XMLPARSE OPTION

CURRENT PATH

CURRENT FUNCTION PATH

CURRENT_PATH
1

CURRENT SCHEMA

CURRENT_SCHEMA
1

CURRENT SERVER

CURRENT_SERVER

CURRENT TEMPORAL SYSTEM_TIME

CURRENT TIME

CURRENT_TIME
1

CURRENT TIMESTAMP

CURRENT_TIMESTAMP
1

(6)

(integer)

CURRENT TIMEZONE

CURRENT_TIMEZONE

CURRENT TIME ZONE

CURRENT USER

CURRENT_USER
1

SESSION_USER

USER
1

SYSTEM_USER

Notes:
1 The SQL 2003 Core standard uses the form with the underscore.

The value of these special registers, except for CURRENT TEMPORAL SYSTEM_TIME, cannot be null.

120 IBM i: Db2 for i SQL Reference

CURRENT CLIENT_ACCTNG
The CURRENT CLIENT_ACCTNG special register specifies a VARCHAR(255) value that contains the value
of the accounting string from the client information specified for the current connection.

The default value of this register is the empty string. The value of the accounting string can be changed
through these interfaces:

• The Set Client Information (SQLESETI) API can change the client special register.
• The SYSPROC.WLM_SET_CLIENT_INFO procedure can change the client special register.
• In CLI, SQLSetConnectAttr() can be used to set the SQL_ATTR_INFO_ACCTSTR connection attribute.
• In ODBC, SQLSetConnectAttr() can be used to set the ODBC_ATTR_INFO_ACCTSTR connection

attribute.
• In JDBC, the setClientInfo connection method can be used to set the ClientAccounting connection

property.

Example
Get the current value of the accounting string for this connection

 VALUES CURRENT CLIENT_ACCTNG
 INTO :ACCT_STRING

CURRENT CLIENT_APPLNAME
The CURRENT CLIENT_APPLNAME special register specifies a VARCHAR(255) value that contains the
value of the application name from the client information specified for the current connection.

The default value of this register is the empty string. The value of the application name can be changed
through these interfaces:

• The Set Client Information (SQLESETI) API can change the client special register.
• The SYSPROC.WLM_SET_CLIENT_INFO procedure can change the client special register.
• In CLI, SQLSetConnectAttr() can be used to set the SQL_ATTR_INFO_APPLNAME connection attribute.
• In ODBC, SQLSetConnectAttr() can be used to set the ODBC_ATTR_INFO_APPLNAME connection

attribute.
• In JDBC, the setClientInfo connection method can be used to set the ApplicationName connection

property.

Example
Select the departments that are allowed to use the application being used in this connection.

 SELECT DEPT
 FROM DEPT_APPL_MAP
 WHERE APPL_NAME = CURRENT CLIENT_APPLNAME

CURRENT CLIENT_PROGRAMID
The CURRENT CLIENT_PROGRAMID special register specifies a VARCHAR(255) value that contains the
value of the client program ID from the client information specified for the current connection.

The default value of this register is the empty string. The value of the client program ID can be changed
through these interfaces:

• The Set Client Information (SQLESETI) API can change the client special register.
• The SYSPROC.WLM_SET_CLIENT_INFO procedure can change the client special register.

Chapter 2. Language elements 121

• In CLI, SQLSetConnectAttr() can be used to set the SQL_ATTR_INFO_PROGRAMID connection attribute.
• In ODBC, SQLSetConnectAttr() can be used to set the ODBC_ATTR_INFO_PROGRAMID connection

attribute.
• In JDBC, the setClientInfo connection method can be used to set the ClientProgramID connection

property.

Example
Get the program ID being used for this connection.

 VALUES CURRENT CLIENT_PROGRAMID
 INTO :PGM_ID

CURRENT CLIENT_USERID
The CURRENT CLIENT_USERID special register specifies a VARCHAR(255) value that contains the value of
the client user ID from the client information specified for the current connection.

The default value of this register is the empty string. The value of the client user ID can be changed
through these interfaces:

• The Set Client Information (SQLESETI) API can change the client special register.
• The SYSPROC.WLM_SET_CLIENT_INFO procedure can change the client special register.
• In CLI, SQLSetConnectAttr() can be used to set the SQL_ATTR_INFO_USERID connection attribute.
• In ODBC, SQLSetConnectAttr() can be used to set the ODBC_ATTR_INFO_USERID connection attribute.
• In JDBC, the setClientInfo connection method can be used to set the ClientUser connection property.

Example
Find out in which department the current client user ID works.

 SELECT DEPT
 FROM DEPT_USERID_MAP
 WHERE USER_ID = CURRENT CLIENT_USERID

CURRENT CLIENT_WRKSTNNAME
The CURRENT CLIENT_WRKSTNNAME special register specifies a VARCHAR(255) value that contains the
value of the workstation name from the client information specified for the current connection.

The default value of this register is the empty string. The value of the workstation name can be changed
through these interfaces:

• The Set Client Information (SQLESETI) API can change the client special register.
• The SYSPROC.WLM_SET_CLIENT_INFO procedure can change the client special register.
• In CLI, SQLSetConnectAttr() can be used to set the SQL_ATTR_INFO_WRKSTNNAME connection

attribute.
• In ODBC, SQLSetConnectAttr() can be used to set the ODBC_ATTR_INFO_WRKSTNNAME connection

attribute.
• In JDBC, the setClientInfo connection method can be used to set the ClientHostName connection

property.

Example
Get the workstation name being used for this connection.

122 IBM i: Db2 for i SQL Reference

 VALUES CURRENT CLIENT_WRKSTNNAME
 INTO :WS_NAME

CURRENT DATE
The CURRENT DATE special register specifies a date that is based on a reading of the time-of-day clock
when the SQL statement is executed at the current server.

If this special register is used more than once within a single SQL statement, or used with CURRENT
TIME, CURRENT TIMESTAMP, or the CURDATE, CURTIME, or NOW scalar functions within a single
statement; all values are based on a single clock reading.32

Example
Using the PROJECT table, set the project end date (PRENDATE) of the MA2111 project (PROJNO) to the
current date.

 UPDATE PROJECT
 SET PRENDATE = CURRENT DATE
 WHERE PROJNO = 'MA2111'

CURRENT DEBUG MODE
The CURRENT DEBUG MODE special register specifies whether SQL or Java procedures should be created
or altered so they can be debugged by the Unified Debugger.

Any explicit specification of the DEBUG MODE or the DBGVIEW option in the SET OPTION statement on
the CREATE PROCEDURE or ALTER PROCEDURE statement overrides the value in the CURRENT DEBUG
MODE special register. CURRENT DEBUG MODE affects static and dynamic SQL statements. The data type
of the register is VARCHAR(8). The valid values include:

DISALLOW
Procedures will be created so they cannot be debugged by the Unified Debugger. When the DEBUG
MODE attribute of a procedure is DISALLOW, the procedure can be subsequently altered to change
the DEBUG MODE attribute.

ALLOW
Procedures will be created so they can be debugged by the Unified Debugger. When the DEBUG MODE
attribute of a procedure is ALLOW, the procedure can be subsequently altered to change the DEBUG
MODE attribute.

DISABLE
Procedures will be created so they cannot be debugged by the Unified Debugger. When the DEBUG
MODE attribute of a procedure is DISABLE, the procedure cannot be subsequently altered to change
the DEBUG MODE attribute.

The value can be changed by invoking the SET CURRENT DEBUG MODE statement. For details about this
statement, see “SET CURRENT DEBUG MODE” on page 1495.

The initial value of CURRENT DEBUG MODE is DISALLOW.

Example
The following statement prevents subsequent creates or alters of SQL or Java procedures from being
debuggable:

 SET CURRENT DEBUG MODE = DISALLOW

32 LOCALDATE can be specified as a synonym for CURRENT_DATE.

Chapter 2. Language elements 123

CURRENT DECFLOAT ROUNDING MODE
The CURRENT DECFLOAT ROUNDING MODE special register specifies the rounding mode that is used
when DECFLOAT values are manipulated in dynamically prepared SQL statements.

The data type of the register is VARCHAR(128). The rounding modes supported are:

ROUND_CEILING
Round toward +infinity. If all of the discarded digits are zero or if the sign is negative, the result
is unchanged other than the removal of the discarded digits. Otherwise, the result coefficient is
incremented by one (rounded up).

ROUND_DOWN
Round toward zero (truncation). The discarded digits are ignored.

ROUND_FLOOR
Round toward -infinity. If all of the discarded digits are zero or if the sign is positive, the result is
unchanged other than the removal of the discarded digits. Otherwise, the sign is negative and the
result coefficient is incremented by one.

ROUND_HALF_DOWN
Round to nearest; if equidistant, round down. If the discarded digits represent greater than half (0.5)
of the value of a one in the next left position, then the result coefficient is incremented by one
(rounded up). Otherwise, the discarded digits are ignored.

ROUND_HALF_EVEN
Round to nearest; if equidistant, round so that the final digit is even. If the discarded digits represent
greater than half (0.5) of the value of a one in the next left position, then the result coefficient
is incremented by one (rounded up). If they represent less than half, then the result coefficient is
not adjusted (that is, the discarded digits are ignored). Otherwise (they represent exactly half), the
result coefficient is unaltered if its rightmost digit is even, or incremented by one (rounded up) if its
rightmost digit is odd (to make an even digit).

ROUND_HALF_UP
Round to nearest; if equidistant, round up. If the discarded digits represent greater than or equal to
half (0.5) of the value of a one in the next left position, then the result coefficient is incremented by
one (rounded up). Otherwise, the discarded digits are ignored.

ROUND_UP
Round away from zero. If all of the discarded digits are zero, the result is unchanged other than the
removal of discarded digits. Otherwise, the result coefficient is incremented by one (rounded up).

The initial value of CURRENT DECFLOAT ROUNDING MODE in an activation group is established by the
first SQL statement that is executed in the activation group.

• If the first SQL statement in an activation group is executed from an SQL program or SQL package,
the CURRENT DECFLOAT ROUNDING MODE special register is set to the value of the DECFLTRND
parameter.

• Otherwise, the initial value is ROUND_HALF_EVEN.

The DECFLTRND parameter on the CRTSQLxxx command or SET OPTION is used for static SQL
statements.

Example
Set the host variable APPL_ROUND (VARCHAR(128)) to the current rounding mode.

 SELECT CURRENT DECFLOAT ROUNDING MODE
 INTO :APPL_ROUND
 FROM SYSIBM.SYSDUMMY1

124 IBM i: Db2 for i SQL Reference

CURRENT DEGREE
The CURRENT DEGREE special register specifies the degree of I/O or Symmetric MultiProcessing
(SMP) parallelism for the execution of queries, index creates, index rebuilds, index maintenance, and
reorganizes.

CURRENT DEGREE affects static and dynamic SQL statements. The data type of the register is CHAR(5).
The valid values include:

1
No parallel processing is allowed.

2 through 32767
Specifies the degree of parallelism that will be used.

ANY
Specifies that the database manager can choose to use any number of tasks for either I/O or SMP
parallel processing.

Use of parallel processing and the number of tasks used is determined based on the number of
processors available in the system, this job's share of the amount of active memory available in the
pool in which the job is run, and whether the expected elapsed time for the operation is limited by
CPU processing or I/O resources. The database manager chooses an implementation that minimizes
elapsed time based on the job's share of the memory in the pool.

NONE
No parallel processing is allowed.

MAX
The database manager can choose to use any number of tasks for either I/O or SMP parallel
processing. MAX is similar to ANY except the database manager assumes that all active memory
in the pool can be used.

IO
The CQE optimizer can use parallel I/O methods only. This setting does not require the SMP feature.
The SQE optimizer considers I/O parallelism with or without this setting.

The initial value of CURRENT DEGREE is determined by the current degree in effect from the CHGQRYA
CL command, PARALLEL_DEGREE parameter in the current query options file (QAQQINI), or the
QQRYDEGREE system value.

The value can be changed by invoking the SET CURRENT DEGREE statement. For details about this
statement, see “SET CURRENT DEGREE” on page 1499.

Example
The following statement inhibits parallelism:

 SET CURRENT DEGREE = '1'

CURRENT IMPLICIT XMLPARSE OPTION
The CURRENT IMPLICIT XMLPARSE OPTION special register specifies whitespace handling options that
are to be used when serialized XML data is implicitly parsed by the Db2 server without validation.

An implicit non-validating parse operation occurs when an SQL statement is processing an XML host
variable or an implicitly or explicitly typed XML parameter marker that is not an argument of the
XMLVALIDATE function.

The data type of the register is VARCHAR(128). The supported values are:

STRIP WHITESPACE
Whitespace that is in the document to improve readability is removed. The whitespace characters are:
blank, carriage return, line feed, and tab. All boundary whitespace (whitespace between elements) is
removed.

Chapter 2. Language elements 125

PRESERVE WHITESPACE
No whitespace is removed.

The initial value of CURRENT IMPLICIT XMLPARSE OPTION is 'STRIP WHITESPACE'.

Example
Set the CURRENT IMPLICIT XMLPARSE OPTION to PRESERVE WHITESPACE.

 SET CURRENT IMPLICIT XMLPARSE OPTION = PRESERVE WHITESPACE

CURRENT PATH
The CURRENT PATH special register specifies the SQL path used to resolve unqualified type names,
function names, and procedure names in dynamically prepared SQL statements.

It is also used to resolve unqualified procedure names that are specified as variables in SQL CALL
statements (CALL variable). The data type is VARCHAR(8843).

The CURRENT PATH special register contains the value of the SQL path, which is a list of one or more
schema names. Each schema name is enclosed in delimiters and separated from the following schema
by a comma (any delimiters within the string are repeated as they are in any delimited identifier). The
delimiters and commas are included in the length of the special register. The maximum number of
schema names in the path is 268.

If a schema name has a different system name, the schema name is returned in the CURRENT PATH
special register even if the system name was explicitly specified in the SET PATH statement.

For information about when the SQL path is used to resolve unqualified names in both dynamic and static
SQL statements and the effect of its value, see “Unqualified function, procedure, specific name, type, and
variables” on page 59.

The initial value of the CURRENT PATH special register in an activation group is established by the first
SQL statement that is executed.

• If the first SQL statement in an activation group is executed from an SQL program or SQL package and
the SQLPATH parameter was specified on the CRTSQLxxx command, the path is the value specified in
the SQLPATH parameter. The SQLPATH value can also be specified using the SET OPTION statement.

• Otherwise,

– For SQL naming, "QSYS", "QSYS2", "SYSPROC", "SYSIBMADM", "the value of the run-time
authorization ID of the statement" .

– For system naming, "*LIBL".

The value of the special register can be changed by executing the SET PATH statement. For details about
this statement, see “SET PATH” on page 1531. For portability across the platforms, it is recommended that
a SET PATH statement be issued at the beginning of an application.

Example
Set the special register so that schema SMITH is searched before schemas QSYS and QSYS2 (SYSTEM
PATH).

 SET CURRENT PATH SMITH, SYSTEM PATH

126 IBM i: Db2 for i SQL Reference

CURRENT SCHEMA
The CURRENT SCHEMA special register specifies a VARCHAR(128) value that identifies the schema name
used to qualify unqualified database object references where applicable in dynamically prepared SQL
statements.

CURRENT SCHEMA is not used to qualify names in programs where the DYNDFTCOL has been specified. If
DYNDFTCOL is specified in a program, its schema name is used instead of the CURRENT SCHEMA schema
name.33

The initial value of CURRENT SCHEMA is the authorization ID of the current session user.

The value of the special register can be changed by executing the SET SCHEMA statement. For more
information, see “SET SCHEMA” on page 1537.

The DFTRDBCOL keyword controls the schema name used to qualify unqualified database object
references where applicable for static SQL statements.

Example
Set the schema for object qualification to 'D123'.

 SET CURRENT SCHEMA = 'D123'

CURRENT SERVER
The CURRENT SERVER special register specifies a VARCHAR(18) value that identifies the current
application server.

CURRENT SERVER can be changed by the CONNECT (Type 1), CONNECT (Type 2), or SET CONNECTION
statements, but only under certain conditions. See the description in “CONNECT (type 1)” on page 962,
“CONNECT (type 2)” on page 967, and “SET CONNECTION” on page 1492.

CURRENT SERVER cannot be specified unless the local relational database is named by adding the entry
to the relational database directory using the ADDRDBDIRE or WRKRDBDIRE command.

Example
Set the host variable APPL_SERVE (VARCHAR(18)) to the name of the current server.

 SELECT CURRENT SERVER
 INTO :APPL_SERVE
 FROM SYSIBM.SYSDUMMY1

CURRENT TEMPORAL SYSTEM_TIME
The CURRENT TEMPORAL SYSTEM_TIME special register specifies a TIMESTAMP(12) value that is used in
the default SYSTEM_TIME period specification for references to system-period temporal tables.

When a system-period temporal table is referenced and the value in effect for the CURRENT TEMPORAL
SYSTEM_TIME special register is not the null value, the following period specification is implicit:

FOR SYSTEM_TIME AS OF CURRENT TEMPORAL SYSTEM_TIME

The initial value of the special register in a user-defined function, procedure, or trigger is inherited from
the invoking application. In other contexts the initial value of the special register is the null value.

The value of this special register can be changed by executing the SET CURRENT TEMPORAL
SYSTEM_TIME statement. If the value of the special register is changed within a routine, that new value is
not passed back to the invoking application.

33 For compatibility with Db2 for z/OS, the special register CURRENT SQLID is treated as a synonym for
CURRENT SCHEMA.

Chapter 2. Language elements 127

The setting for the SYSTIME option determines whether references to system-period temporal tables
in both static SQL statements and dynamic SQL statements are affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register. The option can be set to YES or NO.

When the value of the CURRENT TEMPORAL SYSTEM_TIME special register is not null and the SYSTIME
option is set to YES, FOR SYSTEM_TIME cannot be explicitly specified in a select-statement.

Examples
For the following examples, assume the table IN_TRAY is a system-period temporal table.

Example 1: Based on the state of the messages in IN_TRAY as of the date specified by the CURRENT
TEMPORAL SYSTEM_TIME special register, list the user IDs and subject lines.

 SELECT SOURCE, SUBJECT
 FROM IN_TRAY

If the special register is set to a non-null value, the previous statement is equivalent to the following
statement:

SELECT SOURCE, SUBJECT
 FROM IN_TRAY
 FOR SYSTEM_TIME AS OF CURRENT TEMPORAL SYSTEM_TIME

Example 2: List the user ID and subject line for the messages in IN_TRAY sent before the value
specified by the CURRENT TEMPORAL SYSTEM_TIME special register, which has been set to a value
of '2011-01-01-00.00.00.000000'.

 SELECT SOURCE, SUBJECT
 FROM IN_TRAY
 WHERE RECEIVED < CURRENT TEMPORAL SYSTEM_TIME

Assuming that the CURRENT TEMPORAL SYSTEM_TIME special register is set to the null value, the
following statement returns the same result.

SELECT SOURCE, SUBJECT
 FROM IN_TRAY
 FOR SYSTEM_TIME AS OF '2011-01-01-00.00.00.000000'
 WHERE DATE(RECEIVED) < DATE('2011-01-01-00.00.00.000000')

CURRENT TIME
The CURRENT TIME special register specifies a time that is based on a reading of the time-of-day clock
when the SQL statement is executed at the current server.

If this special register is used more than once within a single SQL statement, or used with CURRENT
DATE, CURRENT TIMESTAMP, or the CURDATE, CURTIME, or NOW scalar functions within a single
statement; all values are based on a single clock reading.34

Example
Using the CL_SCHED table, select all the classes (CLASS_CODE) that start (STARTING) later today. Today's
classes have a value of 3 in the DAY column.

 SELECT CLASS_CODE FROM CL_SCHED
 WHERE STARTING > CURRENT TIME AND DAY = 3

34 LOCALTIME and LOCALTIME(0) can be specified as a synonyms for CURRENT_TIME.

128 IBM i: Db2 for i SQL Reference

CURRENT TIMESTAMP
The CURRENT TIMESTAMP special register specifies a timestamp that is based on a reading of the
time-of-day clock when the SQL statement is executed at the current server.

If this special register is used more than once within a single SQL statement, or used with CURRENT
DATE, CURRENT TIME, or the CURDATE, CURTIME, or NOW scalar functions within a single statement; all
values are based on a single clock reading.35

If a timestamp with a specific precision is desired, the special register can be referenced as CURRENT
TIMESTAMP(integer), where integer can range from 0 to 12. The default precision is 6.

Example
Insert a row into the IN_TRAY sample table. The value of the RECEIVED column should be a timestamp
that indicates when the row was inserted. The values for the other three columns come from the host
variables SRC (CHAR(8)), SUB (CHAR(64)), and TXT (VARCHAR(200)).

 INSERT INTO IN_TRAY
 VALUES (CURRENT TIMESTAMP, :SRC, :SUB, :TXT)

CURRENT USER
The CURRENT USER special register specifies the primary authorization ID that is to be used for
statement authorization. The data type of the special register is VARCHAR(128).

When multiple authorization IDs have been adopted within a thread, the value of the most recently
adopted authorization ID within the thread will be returned.

Example
Find the tables owned by the current statement authorization ID.

 SELECT TABLE_SCHEMA, TABLE_NAME FROM QSYS2.SYSTABLES
 WHERE TABLE_OWNER = CURRENT USER AND TABLE_TYPE = 'T'

CURRENT TIMEZONE
The CURRENT TIMEZONE special register specifies the difference between UTC and local time at the
current server.

The difference is represented by a time duration (a decimal number in which the first two digits are the
number of hours, the next two digits are the number of minutes, and the last two digits are the number of
seconds).36 The number of hours is between -24 and 24 exclusive. Subtracting CURRENT TIMEZONE from
a local time converts that local time to UTC.

Example
Using the IN_TRAY table, select all the rows from the table and adjust the value to UTC.

 SELECT RECEIVED - CURRENT TIMEZONE, SOURCE,
 SUBJECT, NOTE_TEXT FROM IN_TRAY

35 LOCALTIMESTAMP and LOCALTIMESTAMP(6) can be specified as a synonym for CURRENT_TIMESTAMP.
LOCALTIMESTAMP(n) can be specified as a synonym for CURRENT_TIMESTAMP(n).

36 Coordinated Universal Time, formerly known as GMT.

Chapter 2. Language elements 129

SESSION_USER
The SESSION_USER special register specifies the run-time authorization ID at the current server. The data
type of the special register is VARCHAR(128).

The initial value of SESSION_USER for a new connection is the same as the value of the SYSTEM_USER
special register.

The value can be changed by executing the SET SESSION AUTHORIZATION statement. For more
information, see “SET SESSION AUTHORIZATION” on page 1540.

Example
Select all notes from the IN_TRAY table that the user placed there himself.

 SELECT * FROM IN_TRAY
 WHERE SOURCE = SESSION_USER

SYSTEM_USER
The SYSTEM_USER special register specifies the authorization ID that connected to the current server.
The data type of the special register is VARCHAR(128).

Example
Select all notes from the IN_TRAY table that the user placed there himself.

 SELECT * FROM IN_TRAY
 WHERE SOURCE = SYSTEM_USER

USER
The USER special register specifies the run-time authorization ID at the current server. The data type of
the special register is VARCHAR(18).

The initial value of USER for a new connection is the same as the value of the SYSTEM_USER special
register.

The value can be changed by executing the SET SESSION AUTHORIZATION statement. For more
information, see “SET SESSION AUTHORIZATION” on page 1540.

Example
Select all notes from the IN_TRAY table that the user placed there himself.

 SELECT * FROM IN_TRAY
 WHERE SOURCE = USER

130 IBM i: Db2 for i SQL Reference

Column names
The meaning of a column name depends on its context.

A column name can be used to:

• Declare the name of a column, as in a CREATE TABLE statement.
• Identify a column, as in a CREATE INDEX statement.
• Specify values of the column, as in the following contexts:

– In an aggregate function, a column name specifies all values of the column in the group or
intermediate result table to which the function is applied. Groups and intermediate result tables are
explained under Chapter 6, “Queries,” on page 735. For example, MAX(SALARY) applies the function
MAX to all values of the column SALARY in a group.

– In a GROUP BY or ORDER BY clause, a column name specifies all values in the intermediate result
table to which the clause is applied. For example, ORDER BY DEPT orders an intermediate result
table by the values of the column DEPT.

– In an expression, a search condition, or a scalar function, a column name specifies a value for each
row or group to which the construct is applied. For example, when the search condition CODE = 20 is
applied to some row, the value specified by the column name CODE is the value of the column CODE
in that row.

• Provide a column name for an expression to temporarily rename a column, as in the correlation-clause
of a table-reference in a FROM clause, or in the AS clause in the select-clause.

Qualified column names
A qualifier for a column name can be a table name, a view name, an alias name, or a correlation name.

Whether a column name can be qualified depends on its context:

• In the COMMENT and LABEL statements, the column name must be qualified.
• Where the column name specifies values of the column, a column name can be qualified.
• In the assignment-clause of an UPDATE statement, it may be qualified.
• In the column-name-list of an INSERT statement, it may be qualified.
• In all other contexts, a column name must not be qualified.

Where a qualifier is optional it can serve two purposes. See “Column name qualifiers to avoid ambiguity”
on page 133 and “Column name qualifiers in correlated references” on page 135 for details.

Correlation names
A correlation name can be defined in the FROM clause of a query and after the target table-name or
view-name in an UPDATE or DELETE statement.

For example, the clause shown below establishes Z as a correlation name for X.MYTABLE:

 FROM X.MYTABLE Z

A correlation name is associated with a table or view only within the context in which it is defined. Hence,
the same correlation name can be defined for different purposes in different statements, or in different
clauses of the same statement.

As a qualifier, a correlation name can be used to avoid ambiguity or to establish a correlated reference.
A correlation name can also be used as a shorter name for a table or view. In the example that is shown
above, Z might have been used merely to avoid having to enter X.MYTABLE more than once.

If a correlation name is specified for a table or view, any qualified reference to a column of that instance of
the table or view must use the correlation name, rather than the table name or view name. For example,

Chapter 2. Language elements 131

the reference to EMPLOYEE.PROJECT in the following example is incorrect, because a correlation name
has been specified for EMPLOYEE:

 FROM EMPLOYEE E ***INCORRECT***
 WHERE EMPLOYEE.PROJECT='ABC'

The qualified reference to PROJECT should instead use the correlation name, “E”, as shown below:

 FROM EMPLOYEE E
 WHERE E.PROJECT='ABC'

Names specified in a FROM clause are either exposed or non-exposed. A correlation name is always an
exposed name. A table name or view name is said to be exposed in that FROM clause if a correlation name
is not specified. For example, in the following FROM clause, a correlation name is specified for EMPLOYEE
but not for DEPARTMENT, so DEPARTMENT is an exposed name, and EMPLOYEE is not:

 FROM EMPLOYEE E, DEPARTMENT

A table name or view name that is exposed in a FROM clause must not be the same as any other table
name or view name exposed in that FROM clause or any correlation name in the FROM clause. The names
are compared after qualifying any unqualified table or view names.

The first two FROM clauses shown below are correct, because each one contains no more than one
reference to EMPLOYEE that is exposed:

1. Given the FROM clause:

 FROM EMPLOYEE E1, EMPLOYEE

a qualified reference such as EMPLOYEE.PROJECT denotes a column of the second instance of
EMPLOYEE in the FROM clause. A qualified reference to the first instance of EMPLOYEE must use
the correlation name “E1” (E1.PROJECT).

2. Given the FROM clause:

 FROM EMPLOYEE, EMPLOYEE E2

a qualified reference such as EMPLOYEE.PROJECT denotes a column of the first instance of EMPLOYEE
in the FROM clause. A qualified reference to the second instance of EMPLOYEE must use the
correlation name “E2” (E2.PROJECT).

3. Given the FROM clause:

 FROM EMPLOYEE, EMPLOYEE ***INCORRECT***

the two exposed table names included in this clause (EMPLOYEE and EMPLOYEE) are the same, and
this is not allowed.

4. Given the following statement:

 SELECT *
 FROM EMPLOYEE E1, EMPLOYEE E2 ***INCORRECT***
 WHERE EMPLOYEE.PROJECT='ABC'

the qualified reference EMPLOYEE.PROJECT is incorrect, because both instances of EMPLOYEE in the
FROM clause have correlation names. Instead, references to PROJECT must be qualified with either
correlation name (E1.PROJECT or E2.PROJECT).

5. Given the FROM clause:

 FROM EMPLOYEE, X.EMPLOYEE

a reference to a column in the second instance of EMPLOYEE must use X.EMPLOYEE
(X.EMPLOYEE.PROJECT). This FROM clause is only valid if the authorization ID of the statement is
not X.

132 IBM i: Db2 for i SQL Reference

A correlation name specified in a FROM clause must not be the same as:

• Any other correlation name in that FROM clause
• Any unqualified table name or view name exposed in the FROM clause
• The second SQL identifier of any qualified table name or view name that is exposed in the FROM clause.

For example, the following FROM clauses are incorrect:

 FROM EMPLOYEE E, EMPLOYEE E
 FROM EMPLOYEE DEPARTMENT, DEPARTMENT ***INCORRECT***
 FROM X.T1, EMPLOYEE T1

The following FROM clause is technically correct, though potentially confusing:

 FROM EMPLOYEE DEPARTMENT, DEPARTMENT EMPLOYEE

The use of a correlation name in the FROM clause also allows the option of specifying a list of column
names to be associated with the columns of the result table. As with a correlation name, these listed
column names become the exposed names of the columns that must be used for references to the
columns throughout the query. If a column name list is specified, then the column names of the
underlying table become non-exposed.

Given the FROM clause:

 FROM DEPARTMENT D (NUM,NAME,MGR,ANUM,LOC)

a qualified reference such as D.NUM denotes the first column of the DEPARTMENT table that is defined
in the table as DEPTNO. A reference to D.DEPTNO using this FROM clause is incorrect since the column
name DEPTNO is a non-exposed column name.

If a list of columns is specified, it must consist of as many names as there are columns in the table-
reference. Each column name must be unique and unqualified.

Column name qualifiers to avoid ambiguity
In the context of a function, a GROUP BY clause, an ORDER BY clause, an expression, or a search
condition, a column name refers to values of a column in some target table or view in a DELETE or
UPDATE statement or table-reference in a FROM clause.

The tables, views, and table-references 37 that might contain the column are called the object tables
of the context. Two or more object tables might contain columns with the same name. One reason for
qualifying a column name is to designate the object from which the column comes. For information about
avoiding ambiguity between SQL parameters and variables and column names, see “References to SQL
parameters and SQL variables” on page 1581.

A nested table expression which is preceded by a LATERAL or TABLE keyword will consider table-
references that precede it in the FROM clause as object tables. The table-references that follow the nested
table expression are not considered as object tables.

Table designators
A qualifier that designates a specific object table is called a table designator. The clause that identifies the
object tables also establishes the table designators for them.

For example, the object tables of an expression in a SELECT clause are named in the FROM clause that
follows it:

 SELECT CORZ.COLA, OWNY.MYTABLE.COLA
 FROM OWNX.MYTABLE CORZ, OWNY.MYTABLE

Table designators in the FROM clause are established as follows:

37 In the case of a joined-table, each table-reference within the joined-table is an object table.

Chapter 2. Language elements 133

• A name that follows a table or view name is both a correlation name and a table designator. Thus, CORZ
is a table designator. CORZ is used to qualify the first column name in the select list.

• In SQL naming, an exposed table or view name is a table designator. Thus, OWNY.MYTABLE is a table
designator. OWNY.MYTABLE is used to qualify the second column name in the select list.

• In system naming, the table designator for an exposed table or view name is the unqualified table or
view name. In the following example MYTABLE is the table designator for OWNY/MYTABLE.

 SELECT CORZ.COLA, MYTABLE.COLA
 FROM OWNX/MYTABLE CORZ, OWNY/MYTABLE

Two or more object tables can be instances of the same table. In this case, distinct correlation names
must be used to unambiguously designate the particular instances of the table. In the following FROM
clause, X and Y are defined to refer, respectively, to the first and second instances of the table EMPLOYEE:

 SELECT * FROM EMPLOYEE X,EMPLOYEE Y

Avoiding undefined or ambiguous references
When a column name refers to values of a column, it must be possible to resolve that column name to
exactly one object table.

The following situations are considered errors:

• No object table contains a column with the specified name. The reference is undefined.
• The column name is qualified by a table designator, but the table designated does not include a column

with the specified name. Again the reference is undefined.
• The name is unqualified and more than one object table includes a column with that name. The

reference is ambiguous.
• The column name is qualified by a table designator, but the table designated is not unique in the FROM

clause and both occurrences of the designated table include the column. The reference is ambiguous.
• The column name is in a nested table expression which is not preceded by the LATERAL or TABLE

keyword or a table function or nested table expression that is the right operand of a right outer join, full
outer join, or a right exception join and the column name does not refer to a column of a table-reference
within the nested table expression's fullselect. The reference is undefined.

Avoid ambiguous references by qualifying a column name with a uniquely defined table designator. If the
column is contained in several object tables with different names, the object table names can be used
as designators. Ambiguous references can also be avoided without the use of the table designator by
giving unique names to the columns of one of the object tables using the column name list following the
correlation name.

When qualifying a column with the exposed table name form of a table designator, either the qualified or
unqualified form of the exposed table name may be used. However, the qualifier used and the table used
must be the same after fully qualifying the table name or view name and the table designator.

1. If the default schema is CORPDATA, then:

 SELECT CORPDATA.EMPLOYEE.WORKDEPT
 FROM EMPLOYEE

is a valid statement.
2. If the default schema is REGION, then:

 SELECT CORPDATA.EMPLOYEE.WORKDEPT
 FROM EMPLOYEE ***INCORRECT***

is invalid, because EMPLOYEE represents the table REGION.EMPLOYEE, but the qualifier for
WORKDEPT represents a different table, CORPDATA.EMPLOYEE.

134 IBM i: Db2 for i SQL Reference

3. If the default schema is REGION, then:

 SELECT EMPLOYEE.WORKDEPT
 FROM CORPDATA.EMPLOYEE ***INCORRECT***

is invalid, because EMPLOYEE in the select list represents the table REGION.EMPLOYEE, but the
explicitly qualified table name in the FROM clause represents a different table, CORPDATA.EMPLOYEE.
In this case, either omit the table qualifier in the select list, or define a correlation name for the table
designator in the FROM clause and use that correlation name as the qualifier for column names in the
statement.

Column name qualifiers in correlated references
A subselect is a form of a query that can be used as a component of various SQL statements.

Refer to Chapter 6, “Queries,” on page 735 for more information about subselects. A subquery is a form
of a fullselect that is enclosed within parentheses. For example, a subquery can be used in a search
condition. A fullselect used in the FROM clause of a query is called a nested table expression.

A subquery can include search conditions of its own, and these search conditions can, in turn, include
subqueries. Therefore, an SQL statement can contain a hierarchy of subqueries. Those elements of the
hierarchy that contain subqueries are said to be at a higher level than the subqueries they contain.

Every element of the hierarchy has a clause that establishes one or more table designators. This is the
FROM clause, except in the highest level of an UPDATE or DELETE statement. A search condition, the
select list, the join clause, an argument of a table function in a subquery, or a nested table expression that
is preceded by the LATERAL keyword can reference not only columns of the tables identified by the FROM
clause of its own element of the hierarchy, but also columns of tables identified at any level along the path
from its own element to the highest level of the hierarchy. A reference to a column of a table identified at a
higher level is called a correlated reference. A reference to a column of a table identified at the same level
from a nested table expression through the use of the LATERAL keyword is called lateral correlation.

A correlated reference to column C of table T can be of the form C, T.C, or Q.C, if Q is a correlation name
defined for T. However, a correlated reference in the form of an unqualified column name is not good
practice. The following explanation is based on the assumption that a correlated reference is always in the
form of a qualified column name and that the qualifier is a correlation name.

Q.C is a correlated reference only if these three conditions are met:

• Q.C is used in a search condition, select list, join clause, or an argument of a table function in a
subquery.

• Q does not designate a table used in the FROM clause of that subquery, select list, join clause, or an
argument of a table function in a subquery.

• Q does designate a table used at some higher level.

Q.C refers to column C of the table or view at the level where Q is used as the table designator of that
table or view. Because the same table or view can be identified at many levels, unique correlation names
are recommended as table designators. If Q is used to designate a table at more than one level, Q.C refers
to the lowest level that contains the subquery that includes Q.C.

In the following statement, Q is used as a correlation name for T1 and T2, but Q.C refers to the correlation
name associated with T2, because it is the lowest level that contains the subquery that includes Q.C.

SELECT *
 FROM T1 Q
 WHERE A < ALL (SELECT B
 FROM T2 Q
 WHERE B < ANY (SELECT D
 FROM T3
 WHERE D = Q.C))

Chapter 2. Language elements 135

Unqualified column names in correlated references
An unqualified column name can also be a correlated reference.

If the column:

• Is used in a search condition of a subquery
• Is not contained in a table used in the FROM clause of that subquery
• Is contained in a table used at some higher level

Unqualified correlated references are not recommended because it makes the SQL statement difficult
to understand. The column will be implicitly qualified when the statement is prepared depending on
which table the column was found in. Once this implicit qualification is determined it will not change until
the statement is re-prepared. When an SQL statement that has an unqualified correlated reference is
prepared or executed, a warning is returned (SQLSTATE 01545).

136 IBM i: Db2 for i SQL Reference

Variables
A variable in an SQL statement specifies a value that can be changed when the SQL statement is
executed.

There are several types of variables used in SQL statements:

global variable
Global variables are either built-in global variables or user-defined global variables. For more
information about how to refer to global variables see “Global variables” on page 137.

host variable
Host variables are defined by statements of a host language. For more information about how to refer
to host variables see “References to host variables” on page 139.

transition variable
Transition variables are defined in a trigger and refer to either the old or new values of columns. For
more information about how to refer to transition variables see “CREATE TRIGGER” on page 1170.

SQL variable
SQL variables are defined by an SQL compound statement in an SQL function, SQL procedure, or
trigger. For more information about SQL variables, see “References to SQL parameters and SQL
variables” on page 1581.

SQL parameter
SQL parameters are defined in an CREATE FUNCTION (SQL scalar), CREATE FUNCTION (SQL table), or
CREATE PROCEDURE (SQL) statement. For more information about SQL parameters, see “References
to SQL parameters and SQL variables” on page 1581.

parameter marker
Variables cannot be referenced in dynamic SQL statements. Parameter markers are defined in an SQL
descriptor and used instead. For more information about parameter markers, see Parameter Markers
in “PREPARE” on page 1435.

Global variables
Global variables are named memory variables that you can access and modify through SQL statements.

The Db2 database management system supports the following types of global variables:
Built-in global variable

A built-in global variable is part of the database management system, and is available to any SQL
statement that runs on the database manager. For a list of the built-in global variables and information
on these variables, see Chapter 3, “Built-in global variables,” on page 229.

User-defined global variable
A user-defined global variable enables you to share relational data between SQL statements without
the need for application logic to support this data transfer.

A user-defined global variable is associated with a specific session38 and contains a value that
is specific to that session. A user-defined session global variable is available to any active SQL
statement running against the database on which the variable was defined. A user-defined global
variable can be associated with more than one session, but its value will be specific to each session.
User-defined global variables are defined in the system catalog.

You can control access to global variables through the GRANT (Global Variable Privileges) and
REVOKE (Global Variable Privileges) statements.

Global variable names are qualified names. If an unqualified global variable name is the main object
of an ALTER, CREATE, COMMENT, DROP, GRANT, or REVOKE statement, the name is implicitly qualified

38 Note that what SQL calls a session equates to an activation group on the IBM i. See “Application servers” on
page 36 for details

Chapter 2. Language elements 137

using the same rules as for qualifying unqualified table names. Otherwise, the SQL path is used for name
resolution.

For static SQL statements and SQL routines, global variables are resolved for a statement the first time
all table references are resolved. In views, triggers, and other global variables, they are resolved when
the object is created. If resolution were to be performed again on any global variable, it could change the
behavior if, for example, a new global variable had been added with the same name in a different schema
that is also in the SQL path.

Global variables that are referenced in dynamic statements will be resolved when the statement is initially
prepared. They will not be resolved again unless the statement needs to be refreshed because a table has
changed.

The name of a global variable can be the same as the name of a column in a table or view that is
referenced in an SQL statement, as well as the name of an SQL variable or an SQL parameter in an
SQL routine. Names that are the same should be explicitly qualified. If the name is not qualified, or it is
qualified but is still ambiguous, the following rules describe the precedence of resolution:

• The name is checked to see if it is the name of a column of any existing table or view referenced in the
statement at the current server.

• If used in an SQL routine, the name is checked to see if it is the name of an SQL variable, SQL parameter,
or transition variable.

• If not found by either of these rules, it is assumed to be a global variable.
• If the SQL_GVAR_BUILD_RULE QAQQINI option is *EXIST and the global variable does not exist at

precompile time or when an SQL routine is being created, an error will be issued.

When a global variable is referenced in a trigger, view, routine, or global variable, a dependency on
the fully qualified global variable name is recorded for the statement or object. Also, if applicable, the
authorization ID being used for the statement is checked for the appropriate privilege on the global
variable.

Global variables can be used in any SQL statement that allows a variable. Global variables can be
referenced within any expression except in the following situations:

• Check constraints
• Materialized query tables (MQTs)
• Indexes
• A global variable is not allowed if the query specifies:

– a distributed table,
– a table with a read trigger, or
– a logical file built over multiple physical file members.

Authorization: If a global variable is referenced in a statement, the privileges held by the authorization ID
of the statement must include at least one of the following:

• For the global variable identified in the statement,

– The READ privilege on the global variable if the global variable is referenced, and
– The WRITE privilege on the global variable if the global variable is assigned a value, and
– The system authority *EXECUTE on the library containing the global variable

• Database administrator authority

The value of a global variable can be changed using the FETCH, SET, SELECT INTO, or VALUES INTO
statement. It can also be changed if it is an argument of an OUT or INOUT parameter in a CALL statement.

138 IBM i: Db2 for i SQL Reference

References to host variables
A host variable is a COBOL data item, an RPG field, or a PLI, REXX, C++, C, or Java variable that is
referenced in an SQL statement. Host variables are defined by statements of the host language.

Host variables cannot be referenced in dynamic SQL statements; instead, parameter markers must be
used. For more information on parameter markers, see “Variables in dynamic SQL” on page 141.

A host variable in an SQL statement must identify a host variable described in the program according to
the rules for declaring host variables.

All host variables used in an SQL statement should be declared in an SQL declare section in all host
languages other than Java, REXX, and RPG. Variables do not have to be declared in REXX. In Java
and RPG, there is no declare section, and host variables may be declared throughout the program. No
variables may be declared outside an SQL declare section with names identical to variables declared
inside an SQL declare section. An SQL declare section begins with BEGIN DECLARE SECTION and ends
with END DECLARE SECTION.

For further information about using host variables, see the Embedded SQL programming topic.

A variable in the INTO clause of a FETCH, a SELECT INTO, a SET variable, a GET DESCRIPTOR, or a
VALUES INTO statement identifies a host variable to which a value from a result column is assigned.
A variable in the GET DIAGNOSTICS statement identifies a host variable to which a diagnostic value
is assigned. A host variable in a CALL or in an EXECUTE statement can be an output argument that is
assigned a value after execution of the procedure, an input argument that provides an input value for the
procedure, or both an input and output argument. In all other contexts a variable specifies a value to be
passed to the database manager from the application program.

Non-Java variable references:
The general form of a variable reference in all languages other than Java is:

: host-identifier

INDICATOR
: host-identifier

Each host-identifier must be declared in the source program. The first host-identifier designates the main
variable, and the second host-identifier designates the associated indicator variable. An indicator variable
must be a small integer. Depending on the operation, the main variable either provides a value to the
database manager or is provided a value from the database manager. A given host variable can serve as
both an input and an output variable in the same program.

The purposes of an indicator variable are to:

• Specify a non-null value. A 0 (zero), or positive value of the indicator variable specifies that the
associated, first, host-identifier provides the value of this host variable reference.

• Specify the null value. A negative value of the indicator variable specifies the null value.
• On output, indicate that one of the following numeric conversion errors:

– Numeric conversion error (underflow or overflow)
– Arithmetic expression error (division by 0)
– A numeric value that is not valid

A -2 value of the indicator variable indicates a null result because of one of these warnings.
• On output, indicate one of the following string errors:

– Characters could not be converted
– Mixed data not properly formed

A -2 value of the indicator variable indicates a null result because of one of these warnings.

Chapter 2. Language elements 139

• On output, indicate one of the following datetime errors:

– Date or timestamp conversion error (a date or timestamp that is not within the valid range of the
dates for the specified format)

– String representation of the datetime value is not valid

A -2 value of the indicator variable indicates a null result because of one of these warnings.
• On output, indicate one of the following miscellaneous errors:

– Argument of SUBSTR scalar function is out of range
– Argument of a decryption function contains a data type that is not valid.

A -2 value of the indicator variable indicates a null result because of one of these warnings.
• On output, record the original length of a string if the string is truncated on assignment to a host

variable. If the string is truncated and there is no indicator variable, no error condition results.
• On output, record the seconds portion of a time if the time is truncated on assignment to a host variable.

If the time is truncated and there is no indicator variable, no error condition results.

For example, if :V1:V2 is used to specify an insert or update value, and if V2 is negative, the value
specified is the null value. If V2 is not negative the value specified is the value of V1.

Similarly, if :V1:V2 is specified in a CALL, FETCH, SELECT INTO, or VALUES INTO statement and the value
returned is null, V1 is undefined, and V2 is set to a negative value. The negative value is:

• -1 if the value selected was the null value, or
• -2 if the null value was returned due to data mapping errors in the select list of an outer subselect. 39

If the value returned is not null, that value is assigned to V1 and V2 is set to zero (unless the assignment
to V1 requires string truncation, in which case, V2 is set to the original length of the string). If an
assignment requires truncation of the seconds part of time, V2 is set to the number of seconds.

If the second host-identifier is omitted, the host variable does not have an indicator variable. The value
specified by the host variable :V1 is always the value of V1, and null values cannot be assigned to the
variable. Thus, this form should not be used on output unless the corresponding result column cannot
contain null values. If this form is used for an output host variable and the returned value is null, the
database manager returns an error at run-time (SQLSTATE 23502).

An indicator variable for an input host variable in an INSERT, MERGE, or UPDATE statement can also
be set to some special values to indicate that a target column is to be set to the default value, or to
indicate that a value should not be assigned to a target column. These special values are only allowed
when extended indicators are enabled. Extended indicators are enabled when the SET OPTION statement
specified EXTIND = *YES, the precompile specified OPTION(*EXTIND), or when the WITH EXTENDED
INDICATORS prepare attribute or cursor attribute has been specified for the statement.

When extended indicators are enabled, an input indicator variable in an INSERT, MERGE, or UPDATE
statement specifies that the target column for the associated host variable is assigned one of the
following types of values:

• A non-null value. A 0 (zero) or positive value specifies that the associated host-identifier provides the
value of this host variable reference.

• NULL. A -1, -2, -3, -4, or -6 value specifies the null value.
• DEFAULT. A -5 value specifies the default value of the target column.
• UNASSIGNED. A -7 value specifies that this host variable is treated as if a value was not specified for

assignment to the target column in the statement.

These indicator values can also be used in indicator structures with host structures. When extended
indicators are enabled, indicator values other than positive values, zero, and the negative values listed

39 It should be noted that although the null value returned for data mapping errors can be returned on certain
scalar functions and for arithmetic expressions, the result column is not considered null capable unless an
argument of the arithmetic expression or scalar function is null capable.

140 IBM i: Db2 for i SQL Reference

previously must not be used. DEFAULT and UNASSIGNED extended indicator values must only be used
in contexts where they are supported (INSERT, MERGE, and UPDATE statements). The DEFAULT and
UNASSIGNED extended indicator values can only be used for an expression containing a single host
parameter or a CAST of a single host parameter that is being assigned to a column. Output indicators are
never set to extended indicator values.

When extended indicator variables are enabled, rules for data type validation in assignment and
comparison are loosened for host variables where the associated indicator value is negative. Data type
assignment and comparison validation rules are not enforced for host variables where the associated
indicator value is NULL, DEFAULT, or ASSIGNED.

The unassigned extended indicator value can also be specified in the USING SUBSET clause for OPEN or
EXECUTE to remove a host variable from the replacement variable list. Extended indicators do not need to
be enabled for these statements to accept the extended indicator value.

An SQL statement that references host variables in C, C++, ILE RPG, and PL/I, must be within the scope of
the declaration of those host variables. For host variables referenced in the SELECT statement of a cursor,
that rule applies to the OPEN statement rather than to the DECLARE CURSOR statement.

The CCSID of a string host variable is either:

• The CCSID specified in the DECLARE VARIABLE statement, or
• If a DECLARE VARIABLE with a CCSID clause is not specified for the host variable, the default CCSID

of the application requester at the time the SQL statement that contains the host variable is executed
unless the CCSID is for a foreign encoding scheme other than Unicode (such as ASCII). In this case, the
host variable is converted to the default CCSID of the current server.

Java variable references:
The general form of a host variable reference in Java is:

:

IN

OUT

INOUT

Java-identifier

(Java-expression)

In Java, indicator variables are not used. Instead, instances of a Java class can be set to a null value.
Variables defined as Java primitive types cannot be set to a null value.

If IN, OUT, or INOUT is not specified, the default depends on the context in which the variable is used.
If the Java variable is used in an INTO clause, OUT is the default. Otherwise, IN is the default. For more
information about Java variables, see IBM Developer Kit for Java.

Example
Using the PROJECT table, set the host variable PNAME (VARCHAR(26)) to the project name (PROJNAME),
the host variable STAFF (DECIMAL(5,2)) to the mean staffing level (PRSTAFF), and the host variable
MAJPROJ (CHAR(6)) to the major project (MAJPROJ) for project (PROJNO) ‘IF1000'. Columns PRSTAFF
and MAJPROJ may contain null values, so provide indicator variables STAFF_IND (SMALLINT) and
MAJPROJ_IND (SMALLINT).

 SELECT PROJNAME, PRSTAFF, MAJPROJ
 INTO :PNAME, :STAFF :STAFF_IND, :MAJPROJ :MAJPROJ_IND
 FROM PROJECT
 WHERE PROJNO = 'IF1000'

Variables in dynamic SQL
In dynamic SQL statements, parameter markers are used instead of variables. A parameter marker is
a question mark (?) that represents a position in a dynamic SQL statement where the application will

Chapter 2. Language elements 141

provide a value; that is, where a variable would be found if the statement string were a static SQL
statement.

The following examples shows a static SQL that uses host variables and a dynamic statement that uses
parameter markers:

 INSERT INTO DEPT
 VALUES(:HV_DEPTNO, :HV_DEPTNAME, :HV_MGRNO:IND_MGRNO, :HV_ADMRDEPT)

 INSERT INTO DEPT
 VALUES(?, ?, ?, ?)

For more information about parameter markers, see Parameter Markers, in “PREPARE” on page 1435.

References to LOB or XML variables
You can define regular LOB or XML variables, LOB or XML locator variables, and LOB or XML file reference
variables.

Regular LOB or XML variables, LOB or XML locator variables, and LOB or XML file reference variables can
be defined in the following host languages:

• C
• C++
• ILE RPG
• ILE COBOL
• PL/I (LOB only)

Where LOBs or XML are allowed, the term variable in a syntax diagram can refer to a regular variable,
a locator variable, or a file reference variable. Since these variables are not native data types in host
programming languages, SQL extensions are used and the precompilers generate the host language
constructs necessary to represent each variable.

When it is possible to define a variable that is large enough to hold an entire LOB or XML value and
the performance benefit of delaying the transfer of data from the server is not required, a LOB or
XML locator is not needed. However, it is often not acceptable to store an entire LOB or XML value in
temporary storage due to host language restrictions, storage restrictions, or performance requirements.
When storing an entire LOB or XML value at one time is not acceptable, a LOB or XML value can be
referred to by a LOB or XML locator and portions of the LOB or XML value can be accessed.

References to LOB or XML locator variables
A LOB or XML locator variable is a variable that contains the locator representing a LOB or XML value on
the application server.

LOB or XML locator variables can be defined in the following host languages:

• C
• C++
• ILE RPG
• ILE COBOL
• PL/I (LOB only)

See “Manipulating large objects with locators” on page 73 for information about how locators can be used
to manipulate LOB and XML values.

A locator variable in an SQL statement must identify a LOB or XML locator variable described in the
program according to the rules for declaring locator variables. This is always indirectly through an SQL
statement. For example, in C:

 static volatile SQL TYPE IS CLOB_LOCATOR *loc1;

142 IBM i: Db2 for i SQL Reference

Like all other variables, a LOB or XML locator variable can have an associated indicator variable. Indicator
variables for LOB or XML locator variables behave in the same way as indicator variables for other data
types. When a null value is returned from the database, the indicator variable is set and the variable is
unchanged. When the indicator variable associated with a LOB or XML locator is null, the value of the
referenced LOB or XML is null. This means that a locator can never point to a null value.

If a locator variable does not currently represent any value, an error occurs when the locator variable is
referenced.

At transaction commit or any transaction termination, all LOB or XML locators that were acquired by the
transaction are released.

It is the application programmer's responsibility to guarantee that any LOB or XML locator is only used
in SQL statements that are executed at the same application server that originally generated the LOB or
XML locator. For example, assume that a LOB locator is returned from one application server and assigned
to a LOB locator variable. If that LOB locator variable is subsequently used in an SQL statement that is
executed at a different application server, unpredictable results will occur.

References to LOB or XML file reference variables
A LOB or XML file reference variable is used for direct file input and output for a LOB or XML.

A LOB or XML file reference variable can be defined in the following host languages:

• C
• C++
• ILE RPG
• ILE COBOL
• PL/I (LOB only)

Since these are not native data types, SQL extensions are used and the precompilers generate the host
language constructs necessary to represent each variable.

A file reference variable represents (rather than contains) the file, just as a LOB or XML locator represents,
rather than contains, the LOB or XML data. Database queries, updates, and inserts may use file reference
variables to store or to retrieve single column values. The file referenced must exist at the application
requester.

Like all other variables, a file reference variable can have an associated indicator variable. Indicator
variables for file reference variables behave in the same way as indicator variables for other data
types. When a null value is returned from the database, the indicator variable is set and the variable
is unchanged. When the indicator variable associated with a file reference variable is null, the value of the
referenced LOB or XML is null. This means that a file reference variable can never point to a null value.

The length attribute of a file reference variable is assumed to be the maximum length of a LOB or XML.

File reference variables are currently supported in the root (/), QOpenSys, and UDFS file systems. When
a file is created, it is given the CCSID of the data that is being written to the file. Currently, mixed CCSIDs
are not supported. To use a file created with a file reference variable, the file should be opened in binary
mode.

For more information about file reference variables, see the SQL programming topic collection.

References to XML variables
XML variables are defined in host languages as a type of LOB variable.

Like LOBs, an XML variable can be defined as a string, locator, or file reference variable. It can be
treated as CLOB, DBCLOB, or BLOB data. XML-supported CCSIDs can be assigned for CLOB and DBCLOB
variables. This value is used to define the encoding of the XML data stored within the LOB variable. An
XML variable defined as a BLOB will contain data that is encoded as specified within the data according
to the XML 1.0 specification for determining encoding. For example, an XML variable that uses a CLOB
storage structure can be defined in C as follows:

Chapter 2. Language elements 143

SQL TYPE IS XML AS CLOB(10K);

Although the application's XML variable declaration includes a LOB type specification, the variable
declarations are considered the XML data type, not the LOB type that is used in the declaration. The
application can also use non-XML variables in place of XML variables. For example, when a prepared
statement is executed, the application might use a character variable to replace an XML parameter
marker in the statement.

Although the XML data type is incompatible with all other data types, both XML and non-XML data types
can be used for input to and output from XML data. Applications can use character, Unicode graphic, or
binary variables as input or output variables in SQL statements.

Whenever an XML variable is used as input to an SQL statement, the value is implicitly parsed.

Host structures
A host structure is a COBOL group, PL/I, C, or C++ structure, or RPG data structure that is referenced in an
SQL statement. In Java and REXX, there is no equivalent to a host structure.

Host structures are defined by statements of the host language, as explained in the Embedded SQL
programming topic collection. As used here, the term host structure does not include an SQLCA or SQLDA.

The form of a host structure reference is identical to the form of a host variable reference. The
reference :S1:S2 is a host structure reference if S1 names a host structure. If S1 designates a host
structure, S2 must be either a small integer variable, or an array of small integer variables. S1 is the host
structure and S2 is its indicator array.

A host structure can be referenced in any context where a list of host variables can be referenced. A
host structure reference is equivalent to a reference to each of the host variables contained within the
structure in the order which they are defined in the host language structure declaration. The nth variable
of the indicator array is the indicator variable for the nth variable of the host structure.

In C, for example, if V1, V2, and V3 are declared as variables within the structure S1, the statement:

 EXEC SQL FETCH CURSOR1 INTO :S1;

is equivalent to:

 EXEC SQL FETCH CURSOR1 INTO :V1, :V2, :V3;

If the host structure has m more variables than the indicator array, the last m variables of the host
structure do not have indicator variables. If the host structure has m fewer variables than the indicator
array, the last m variables of the indicator array are ignored. These rules also apply if a reference to a host
structure includes an indicator variable or if a reference to a host variable includes an indicator array. If
an indicator array or indicator variable is not specified, no variable of the host structure has an indicator
variable.

In addition to structure references, individual host variables in the host structure or indicator variables in
the indicator array can be referenced by qualified names. The qualified form is a host identifier followed
by a period and another host identifier. The first host identifier must name a host structure, and the
second host identifier must name a host variable within that host structure.

The general form of a host variable or host structure reference is:

:

host-identifier.

host-identifier

INDICATOR
:

host-identifier.

host-identifier

144 IBM i: Db2 for i SQL Reference

A host-variable in an expression must identify a host variable (not a structure) described in the program
according to the rules for declaring host variables.

The following C example shows a references to host structure, host indicator array, and a host variable:

 struct { char empno[7];
 struct { short int firstname_len;
 char firstname_text[12];
 } firstname;
 char midint,
 struct { short int lastname_len;
 char lastname_text[15];
 } lastname;
 char workdept[4];
 } pemp1;
 short ind[14];
 short eind
 struct { short ind1;
 short ind2;
 } indstr;

 strcpy(pemp1.empno,"000220");

 EXEC SQL
 SELECT *
 INTO :pemp1:ind
 FROM corpdata.employee
 WHERE empno=:pemp1.empno;

In the example above, the following references to host variables and host structures are valid:

 :pemp1 :pemp1.empno :pemp1.empno:eind :pemp1.empno:indstr.ind1

For more information about how to refer to host structures in C, C++, COBOL, PL/I, and RPG, see the
Embedded SQL programming topic collection.

Host structure arrays
In PL/I, C++, and C, a host structure array is a structure name having a dimension attribute. In COBOL, it
is a one-dimensional table. In RPG, it is an occurrence data structure. In ILE RPG, it can also be a data
structure with the keyword DIM.

A host structure array can only be referenced in the FETCH statement when using a multiple-row fetch,
or in an INSERT statement when using a multiple-row insert. Host structure arrays are defined by
statements of the host language, as explained in the Embedded SQL programming topic collection.

The form of a host structure array is identical to the form of a host variable reference. The
reference :S1:S2 is a reference to host structure array if S1 names a host structure array. If S1 designates
a host structure, S2 must be either a small integer host variable, an array of small integer host variables,
or a two dimensional array of small integer host variables. In the following example, S1 is the host
structure array and S2 is its indicator array.

 EXEC SQL FETCH CURSOR1 FOR 5 ROWS
 INTO :S1:S2;

The dimension of the host structure and the indicator array must be equal.

If the host structure has m more variables than the indicator array, the last m variables of the host
structure do not have indicator variables. If the host structure has m fewer variables than the indicator
array, the last m variables of the indicator array are ignored. If an indicator array or variable is not
specified, no variable of the host structure array has an indicator variable.

The following diagram specifies the syntax of references to an array of host structures:

Chapter 2. Language elements 145

: host-identifier

INDICATOR
: host-identifier

Arrays of host structures are not supported in REXX.

146 IBM i: Db2 for i SQL Reference

Functions
A function is an operation denoted by a function name followed by one or more operands that are
enclosed in parentheses. It represents a relationship between a set of input values and a set of result
values. The input values to a function are called arguments. For example, a function can be passed two
input arguments that have date and time data types and return a value with a timestamp data type as the
result.

Types of functions
There are several ways to classify functions.

One way to classify functions is as built-in, user-defined, or generated user-defined functions for distinct
types.

• Built-in functions are functions that come with the database manager. These functions provide a single-
value result. Built-in functions include operator functions such as "+", aggregate functions such as
AVG, and scalar functions such as SUBSTR. For a list of the built-in aggregate and scalar functions and
information about these functions, see Chapter 4, “Built-in functions,” on page 243.

The built-in functions are part of schema QSYS2. 40

• User-defined functions are functions that are created using the CREATE FUNCTION statement
and registered to the database manager in catalog table QSYS2.SYSROUTINES and catalog view
QSYS2.SYSFUNCS. For more information, see “CREATE FUNCTION” on page 975. These functions allow
users to extend the function of the database manager by adding their own or third party vendor function
definitions.

A user-defined function is either an SQL, external, or sourced function. An SQL function is defined to the
database using only SQL statements. An external function is defined to the database with a reference
to an external program or service program that is executed when the function is invoked. A sourced
function is defined to the database with a reference to a built-in function or another user-defined
function. Sourced functions can be used to extend built-in aggregate and scalar functions for use on
distinct types.

A user-defined function resides in the schema in which it was created. The schema cannot be QSYS,
QSYS2, QTEMP, SYSIBM, or SYSPROC.

• Generated user-defined functions for distinct types are functions that the database manager
automatically generates when a distinct type is created using the CREATE TYPE statement. These
functions support casting from the distinct type to the source type and from the source type to
the distinct type. The ability to cast between the data types is important because a distinct type is
compatible only with itself.

The generated cast functions reside in the same schema as the distinct type for which they were
created. The schema cannot be QSYS, QSYS2, QTEMP, SYSIBM, or SYSPROC. For more information
about the functions that are generated for a distinct type, see “CREATE TYPE (distinct)” on page 1193.

Another way to classify functions is as aggregate, scalar, or table functions, depending on the input data
values and result values.

• An aggregate function receives a set of values for each argument (such as the values of a column)
and returns a single-value result for the set of input values. Aggregate functions are sometimes called
column functions. Built-in functions and user-defined sourced functions can be aggregate functions.

• A scalar function receives a single value for each argument and returns a single-value result. Built-in
functions and user-defined functions can be scalar functions. Generated user-defined functions for
distinct types are also scalar functions.

40 Built-in functions are implemented internally by the database manager, so an associated program or service
program object does not exist for a built-in function. Furthermore, the catalog does not contain information
about built-in functions. However, built-in functions can be treated as if they exist in QSYS2 and a built-in
function name can be qualified with QSYS2.

Chapter 2. Language elements 147

• A table function returns a table for the set of arguments it receives. Each argument is a single value. A
table function can only be referenced in the FROM clause of a subselect. A table function can be defined
as an external function or as an SQL function, but a table function cannot be a sourced function.

Table functions can be used to apply SQL language processing power to data that is not stored in the
database or to allow access to such data as if it were stored in a table. For example, a table function can
read a file, get data from the Web, or access a Lotus Notes® database and return a result table.

Function invocation
Each reference to a scalar or aggregate function (either built-in or user-defined) conforms to specific
syntax.

The syntax is as follows: 41

function-invocation

function-name (

ALL

DISTINCT

1

,

parameter-name =>

expression

DEFAULT

NULL

)

Notes:
1 The ALL or DISTINCT keyword can be specified only for an aggregate function or a user-defined
function that is sourced on an aggregate function.

Each reference to a table function conforms to the following syntax:

TABLE (function-name (

,

parameter-name =>

expression

DEFAULT

NULL

))

correlation-clause

In the above syntax, expression is the same as it is for a scalar or aggregate function. See “Expressions”
on page 158 for other rules for expression.

An argument is a value passed to a function upon invocation or the specification of DEFAULT. When a
function is invoked in SQL, it is passed a list of zero or more arguments. They are positional in that the
semantics of an argument are determined by its position in the argument list. A parameter is a formal
definition of an input to a function. When a function is defined to the database, either internally (a built-in
function) or by a user (a user-defined function), its parameters (zero or more) are specified, and the order

41 A few functions allow keywords instead of expressions. For example, the CHAR function allows a list of
keywords to indicate the desired date format. A few functions use keywords instead of commas in a comma
separated list of expressions. For example, the EXTRACT, TRIM, and POSITION functions use keywords.

148 IBM i: Db2 for i SQL Reference

of their definitions defines their positions and their semantics. Therefore, every parameter is a particular
positional input to a function.

On invocation, an argument is assigned to a parameter using either the positional syntax or the named
syntax. If using the positional syntax, an argument corresponds to a particular parameter according to
its position in the list of arguments. If using the named syntax, an argument corresponds to a particular
parameter by the name of the parameter. When an argument is assigned to a parameter using the named
syntax, then all the arguments that follow it must also be assigned using the named syntax. The name
of a named argument can appear only once in a function invocation. In cases where the data types of
the arguments of the function invocation are not a match to the data types of the parameters of the
selected function, the arguments are converted to the data type of the parameter at execution time using
the same rules as assignment to columns. This includes the case where precision, scale, or length differs
between the argument and the parameter. In cases where an argument of the function invocation is the
specification of DEFAULT, the actual value used for the argument is the value specified as the default for
the corresponding parameter in the function definition. If no default value was defined for the parameter,
the null value is used. If an untyped expression (a parameter marker, a NULL keyword, or a DEFAULT
keyword) is used as the argument, the data type associated with the argument is determined by the data
type of the parameter of the selected function.

For SQL functions that are inlined and external functions, all references to date, time, or timestamp
special register values in the argument list and in any default expressions will use one clock reading. For
SQL functions that are not inlined, any references to date, time, or timestamp special register values in the
argument list will use one clock reading for any default expressions and a separate clock reading for any
references in the explicit arguments.

When the function is invoked, the value of each of its parameters is assigned, using storage assignment,
to the corresponding parameter of the function. Control is passed to external functions according to the
calling conventions of the host language. When execution of a user-defined aggregate or scalar function
is complete, the result of the function is assigned, using storage assignment, to the result data type. For
details on the assignment rules, see “Assignments and comparisons” on page 89.

Table functions can be referenced only in the FROM clause of a subselect. For more details on referencing
a table function, see the description of the FROM clause in “table-reference” on page 742.

Function resolution
A function is invoked by its function name, which is implicitly or explicitly qualified with a schema name,
followed by parentheses that enclose the arguments to the function.

Within the database, each function is uniquely identified by its function signature, which is its schema
name, function name, the number of parameters, and the data types of the parameters. Thus, a schema
can contain several functions that have the same name but each of which have a different number of
parameters, or parameters with different data types. Or, a function with the same name, number of
parameters, and types of parameters can exist in multiple schemas.

• Overloading a function: A function name for which there are multiple function instances with the same
number of parameters in the same schema is called an overloaded function.

• Overriding a function: Functions can be overridden across the schemas of an SQL path, in which case
there is more than one function with the same name and the same number of parameters in different
schemas of the SQL path. These functions do not necessarily have different parameter data types.

When any function is invoked, the database manager must determine which function to execute. This
process is called function resolution.

Determining the set of candidate functions:

• Let A be the number of arguments in a function invocation.
• Let P be the number of parameters in a function signature.
• Let N be the number of parameters in a function signature without a defined default.

Candidate functions for resolution of a function invocation are selected based on the following criteria:

Chapter 2. Language elements 149

• Each candidate function has a matching name and applicable number of parameters. An applicable
number of parameters satisfies the condition N ≤ A ≤ P.

• Each parameter of a candidate function that does not have a corresponding argument in the function
invocation, specified by either position or name, is defined with a default.

• Each candidate function from a set of one or more schemas has the EXECUTE privilege associated with
the authorization ID of the statement invoking the function.

Function resolution is similar for functions that are invoked with a qualified or unqualified function name
with the exception that for an unqualified name, the database manager needs to search more than one
schema.

• Qualified function resolution: When a function is invoked with a function name and a schema name, the
database manager only searches the specified schema for candidate functions.

If no candidate function in the schema is found, an error is returned. If a function is selected, its
successful use depends on it being invoked in a context in which the returned result is allowed. For
example, if the function returns an integer data type where a character data type is required, or returns
a table where a table is not allowed, an error is returned.

• Unqualified function resolution: When a function is invoked with only a function name, the database
manager needs to search more than one schema to resolve the function instance to execute. The SQL
path contains the list of schemas to search. For each schema in the SQL path (see “SQL path” on page
57), the database manager selects candidate functions.

If no candidate function in any schema in the path is found, an error is returned. If a function is
selected, its successful use depends on it being invoked in a context in which the returned result
is allowed. For example, if the function returns an integer data type where a character data type is
required, or returns a table where a table is not allowed, an error is returned.

After the database manager identifies the candidate functions, it selects the candidate with the best
fit as the function instance to execute (see “Determining the best fit” on page 150). If more than one
schema contains the function instance with the best fit (the function signatures are identical except for
the schema name), the database manager selects the function whose schema is earliest in the SQL path.

Function resolution applies to all functions, including built-in functions. Built-in functions logically exist
in schema QSYS2. If schema QSYS2 is not explicitly specified in the SQL path, the schema is implicitly
assumed at the front of the path. When an unqualified function name is specified, the SQL path must be
set to a list of schemas in the desired search order so that the intended function is selected.

In a CREATE VIEW or CREATE TABLE statement, function resolution occurs at the time the view or
materialized query table is created. If another function with the same name is subsequently created,
the view or materialized query table is not affected, even if the new function is a better fit than the
one chosen at the time the view or materialized table was created. In a CREATE FUNCTION, CREATE
PROCEDURE, CREATE TRIGGER, CREATE VARIABLE, CREATE MASK, or CREATE PERMISSION statement,
function resolution occurs at the time the function, procedure, trigger, variable, mask, or permission
is created. The schema of the function that was chosen is saved in the trigger, variable, mask, and
permission. It is also saved in functions and procedures for default expressions. If another function with
the same name is subsequently created, the function, procedure, trigger, variable, mask, permission, or
routine default is only affected if the new function is a better fit than the one chosen at the time the object
was created.

Determining the best fit
There might be more than one function with the same name that is a candidate for execution. In that
case, the data types of the parameters, the position of the schema in the SQL path, and the total number
of parameters of each function in the set of candidate functions are used to determine if the function
meets the best fit requirements. Note that the data type of the result of the function or the type of
function (aggregate, scalar, or table) under consideration does not enter into this determination.

If the set of candidate functions contains more than one function and named arguments are used in the
function invocation, the ordinal position of the parameter corresponding to a named argument must be
the same for all candidate functions.

150 IBM i: Db2 for i SQL Reference

The term set of parameters is used to refer to all of the parameters at the same position in the parameter
lists (where such a parameter exists) for the set of candidate functions. The corresponding argument
of a parameter is determined based on how the arguments are specified in the function invocation. For
positional arguments, the corresponding argument to a parameter is the argument in the same position
in the function invocation as the position of the parameter in the parameter list of the candidate function.
For named arguments, the corresponding argument to a parameter is the argument with the same name
as the parameter. In this case, the order of the arguments in the function invocation is not considered
while determining the best fit. If the number of parameters in a candidate function is greater than the
number of arguments in the function invocation, each parameter that does not have a corresponding
argument is processed as if it does have a corresponding argument that has the DEFAULT keyword as the
value.

The following steps are used to determine the function that is the best fit:

• Step 1: Considering arguments that are typed expressions

The database manager determines the function, or set of functions, that meet the best fit requirements
for the invocation by comparing the data type of each parameter with the data type of the corresponding
argument.

When determining whether the data type of a parameter is the same as the data type of its
corresponding argument:

– Synonyms of data types match. For example, DOUBLE and FLOAT are considered to be the same.
– Attributes of a data type such as length, precision, scale, and CCSID are ignored. Therefore, CHAR(8)

and CHAR(35) are considered to be the same, as are DECIMAL(11,2), and DECIMAL(4,3).
– The character and graphic types are considered to be the same. For example, the following are

considered to be the same type: CHAR and GRAPHIC, VARCHAR and VARGRAPHIC, and CLOB and
DBCLOB. CHAR(13) and GRAPHIC(8) are considered to be the same type.

A subset of the candidate functions is obtained by considering only those functions for which the data
type of each argument of the function invocation that is not an untyped expression matches or is
promotable to the data type of the corresponding parameter of the function instance. If the argument of
the function invocation is an untyped expression, the data type of the corresponding parameter can be
any data type. The precedence list for the promotion of data types in “Promotion of data types” on page
84 shows the data types that fit (considering promotion) for each data type in best-to-worst order. If
this subset is not empty, then the best fit is determined using the Promotable process on this subset of
candidate functions. If this subset is empty, then the best fit is determined using the Castable process
on the original set of candidate functions.

Promotable process
This process determines the best fit only considering whether arguments in the function invocation
match or can be promoted to the data type of the corresponding parameter of the function
definition. For the subset of candidate functions, the parameter lists are processed from left to
right, processing the set of parameters in the first position from the subset of candidate functions
before moving on to the set of parameters in the second position, and so on. The following steps
are used to eliminate candidate functions from the subset of candidate functions (only considering
promotion):

1. If one candidate function has a parameter where the data type of the corresponding argument
fits (only considering promotion) the data type of the parameter better than other candidate
functions, those candidate functions that do not fit the function invocation equally well are
eliminated. The precedence list for the promotion of data types in “Promotion of data types” on
page 84 shows the data types that fit (considering promotion) for each data type in best-to-worst
order.

2. If the data type of the corresponding argument is an untyped expression, no candidate functions
are eliminated.

3. These steps are repeated for the next set of parameters from the remaining candidate functions
until there are no more sets of parameters.

Chapter 2. Language elements 151

Castable process
This process determines the best fit first considering, for each parameter, if the data type of
the corresponding argument in the function invocation matches or can be promoted to the data
type of the parameter of the function definition. Then, for each set of parameters where no
corresponding argument has a data type that was promotable, the database manager considers,
for each parameter, if the data type of the corresponding argument can be implicitly cast for function
resolution to the data type of the parameter.

For the set of candidate functions, the parameters in the parameter lists are processed from left to
right, processing the set of parameters in the first position from all the candidate functions before
moving on to the set of parameters in the second position, and so on. The following steps are used
to eliminate candidate functions from the set of candidate functions (only considering promotion):

1. If one candidate function has a parameter where the data type of the corresponding argument
fits (only considering promotion) the data type of the parameter better than other candidate
functions, those candidate functions that do not fit the function invocation equally well are
eliminated. The precedence list for the promotion of data types in “Promotion of data types” on
page 84 shows the data types that fit (considering promotion) for each data type in best-to-worst
order.

2. If the data type for the corresponding argument is not promotable (which includes the case when
the corresponding argument is an untyped expression) to the data type of the parameter of any
candidate function, no candidate functions are eliminated.

3. These steps are repeated for the next set of parameters from the remaining candidate functions
until there are no more sets of parameters.

If at least one set of parameters has no corresponding argument that fit (only considering
promotion) and the corresponding argument for the set of parameters has a data type, the database
manager compares each such set of parameters from left to right. The following steps are used to
eliminate candidate functions from the set of candidate functions (considering implicit casting).

1. If all the data types of the set of parameters for all remaining candidate functions do not belong
to the same data type precedence list, as specified in “Promotion of data types” on page 84, an
error is returned.

2. If the data type of the corresponding arguments cannot be implicitly cast to the data type of
the parameters, as specified in “Implicit casting for function resolution” on page 153, an error is
returned.

3. If one candidate function has a parameter where the data type of the corresponding argument
fits (considering implicit casting) the data type of the parameter better than other candidate
functions, those candidate functions that do not fit the function invocation equally well are
eliminated. The data type list in “Implicit casting for function resolution” on page 153 shows the
data type that fits (considering implicit casting) better.

4. These steps are repeated for the next set of parameters which has no corresponding argument
that fits (only considering promotion) and the corresponding argument for the set of parameters
has a data type until there are no more such sets of parameters or an error occurs.

• Step 2: Considering SQL path

If more than one candidate function remains, the database manager selects those candidate functions
whose schema is earliest in the SQL path.

• Step 3: Considering number of arguments in the function invocation

If more than one candidate function remains and if one candidate function has a number of parameters
that is less than or equal to the number of parameters of the other candidate functions, those candidate
functions that have a greater number of parameters are eliminated.

• Step 4: Considering arguments that are untyped expressions

If more than one candidate function remains and at least one set of parameters has a corresponding
argument that is an untyped expression, the database manager compares each such set of parameters

152 IBM i: Db2 for i SQL Reference

from left to right. The following steps are used to eliminate candidate functions from the set of
candidate functions:

1. If all the data types of the set of parameters for all remaining candidate functions do not belong to
the same data type precedence list, as specified in “Promotion of data types” on page 84, an error is
returned.

2. If the data type of the parameter of one candidate function is further left in the data type ordering
for implicit casting than other candidate functions, those candidate functions where the data type of
the parameter is further right in the data type ordering are eliminated. The data type list in “Implicit
casting for function resolution” on page 153 shows the data type ordering for implicit casting.

If there are still multiple candidate functions, an error is returned.

Implicit casting for function resolution
Implicit casting for function resolution is not supported for arguments with a user-defined type or an XML,
ROWID, or DATALINK data type. It is also not supported for built-in or user-defined cast functions. It is
supported for the following cases:

• Any supported cast between built-in types, except for DATE, TIME, and TIMESTAMP to numeric data
types. See Table 16 on page 87.

• An untyped argument can be cast to any data type.

Similar to the data type precedence list for promotion, for implicit casting there is an order to the data
types that are in the group of related data types. This order is used when performing function resolution
that considers implicit casting. Table 27 on page 153 shows the data type ordering for implicit casting for
function resolution. The data types are listed in best-to-worst order (note that this is different than the
ordering in the data type precedence list for promotion).

Table 27. Data type ordering for implicit casting for function resolution

Data type group
Data type list for implicit casting for function
resolution (in best-to-worst order)

Numeric data types DECFLOAT, double, real, decimal, BIGINT,
INTEGER, SMALLINT

Character and graphic string data types VARCHAR or VARGRAPHIC, CHAR or GRAPHIC,
CLOB or DBCLOB

Binary data types VARBINARY, BINARY, BLOB, VARCHAR FOR BIT
DATA, CHAR FOR BIT DATA

Datetime data types TIMESTAMP, DATE, TIME

Note:

The lower case types above are defined as follows:
decimal

= DECIMAL(p,s) or NUMERIC(p,s)
real

= REAL or FLOAT(n) where n is a specification for single precision floating point
double

= DOUBLE, DOUBLE PRECISION, FLOAT or FLOAT(n) where n is a specification for double precision
floating point

Examples
The following are examples of function resolution. (Note that not all required keywords are shown.)

Chapter 2. Language elements 153

Example 1: This is an example illustrating the SQL path considerations in function resolution. For this
example, there are eight ACT functions, in three different schemas, registered as:

CREATE FUNCTION AUGUSTUS.ACT (CHAR(5), INT, DOUBLE) SPECIFIC ACT_1 ...
CREATE FUNCTION AUGUSTUS.ACT (INT, INT, DOUBLE) SPECIFIC ACT_2 ...
CREATE FUNCTION AUGUSTUS.ACT (INT, INT, DOUBLE, INT) SPECIFIC ACT_3 ...
CREATE FUNCTION JULIUS.ACT (INT, DOUBLE, DOUBLE) SPECIFIC ACT_4 ...
CREATE FUNCTION JULIUS.ACT (INT, INT, DOUBLE) SPECIFIC ACT_5 ...
CREATE FUNCTION JULIUS.ACT (SMALLINT, INT, DOUBLE) SPECIFIC ACT_6 ...
CREATE FUNCTION JULIUS.ACT (INT, INT, DECFLOAT) SPECIFIC ACT_7 ...
CREATE FUNCTION NERO.ACT (INT, INT, DEC(7,2)) SPECIFIC ACT_8 ...

The function reference is as follows (where I1 and I2 are INTEGER columns, and D is a DECIMAL column):

SELECT ... ACT(I1, I2, D) ...

Assume that the application making this reference has an SQL path established as:

"JULIUS","AUGUSTUS","CAESAR"

Following the function resolution rules:

• The function with specific name ACT_8 is eliminated as a candidate, because the schema NERO is not
included in the SQL path.

• The function with specific name ACT_3 is eliminated as a candidate, because it has the wrong number
of parameters. ACT_1 and ACT_6 are eliminated because, in both cases, the first argument cannot be
promoted to the data type of the first parameter.

• Because there is more than one candidate remaining, the arguments are considered in order.

– For the first argument, the remaining functions, ACT_2, ACT_4, ACT_5, and ACT_7 are an exact
match with the argument type. No functions can be eliminated from consideration; therefore the next
argument must be examined.

– For this second argument, ACT_2, ACT_5, and ACT_7 are exact matches, but ACT_4 is not, so it is
eliminated from consideration. The next argument is examined to determine some differentiation
among ACT_2, ACT_5, and ACT_7.

– For the third and last argument, neither ACT_2, ACT_5, nor ACT_7 match the argument type exactly.
Although ACT_2 and ACT_5 are equally good, ACT_7 is not as good as the other two because the type
DOUBLE is closer to DECIMAL than is DECFLOAT. ACT_7 is eliminated.

• There are two functions remaining, ACT_2 and ACT_5, with identical parameter signatures. The final
tie-breaker is to see which function's schema comes first in the SQL path, and on this basis, ACT_5 is
the function chosen.

Example 2: This is an example of a situation where function resolution will result in an error since more
than one candidate function fits the invocation equally well, but the corresponding parameters for one of
the arguments do not belong to the same type precedence list.

For this example, there are only three function in a single schema defined as follows:

CREATE FUNCTION CAESAR.ACT (INT, VARCHAR(5), VARCHAR(5)) SPECIFIC ACT_1 ...
CREATE FUNCTION CAESAR.ACT (INT, INT, DATE) SPECIFIC ACT_2 ...
CREATE FUNCTION CAESAR.ACT (INT, INT, DOUBLE) SPECIFIC ACT_3 ...

The function reference is as follows (where I1 and I2 are INTEGER columns, and VC is a VARCHAR
column):

SELECT ... ACT(I1, I2, VC) ...

Assume that the application making this reference has an SQL path established as:

"CAESAR"

Following the function resolution rules:

154 IBM i: Db2 for i SQL Reference

• Each of the candidate functions is evaluated to determine if the data type of each input argument of the
function invocation matches or is promotable to the data type of the corresponding parameter of the
function instance:

– For the first argument, all the candidate functions have an exact match with the parameter type.
– For the second argument, ACT_1 is eliminated because INTEGER is not promotable to VARCHAR.
– For the third argument, both ACT_2 and ACT_3 are eliminated since VARCHAR is not promotable to

DATE or DOUBLE, so no candidate functions remain.
• Since the subset of candidate functions from above is empty, the candidate functions are considered

using the castable process:

– For the first argument, all the candidate functions have an exact match with the parameter type.
– For the second argument, ACT_1 is eliminated since INTEGER is not promotable to VARCHAR. ACT_2

and ACT_3 are better candidates.
– For the third argument, the data type of the corresponding parameters of ACT_2 and ACT_3 do not

belong to the same data type precedence list, so an error is returned.

Example 3: This example illustrates a situation where function resolution will succeed using the castable
process.

For this example, there are only three function in a single schema defined as follows:

CREATE FUNCTION CAESAR.ACT (INT, VARCHAR(5), VARCHAR(5)) SPECIFIC ACT_1 ...
CREATE FUNCTION CAESAR.ACT (INT, INT, DECFLOAT) SPECIFIC ACT_2 ...
CREATE FUNCTION CAESAR.ACT (INT, INT, DOUBLE) SPECIFIC ACT_3 ...

The function reference is as follows (where I1 and I2 are INTEGER columns, and VC is a VARCHAR
column):

SELECT ... ACT(I1, I2, VC) ...

Assume that the application making this reference has an SQL path established as:

"CAESAR"

Following the function resolution rules:

• Each of the candidate functions is evaluated to determine if the data type of each input argument of the
function invocation matches or is promotable to the data type of the corresponding parameter of the
function instance:

– For the first argument, all the candidate functions have an exact match with the parameter type.
– For the second argument, ACT_1 is eliminated because INTEGER is not promotable to VARCHAR.
– For the third argument, both ACT_2 and ACT_3 are eliminated since VARCHAR is not promotable to

DECFLOAT or DOUBLE, so no candidate functions remain.
• Since the subset of candidate functions from above is empty, the candidate functions are considered

using the castable process:

– For the first argument, all the candidate functions have an exact match with the parameter type.
– For the second argument, ACT_1 is eliminated since INTEGER is not promotable to VARCHAR. ACT_2

and ACT_3 are better candidates.
– For the third argument, both DECFLOAT and DOUBLE are in the same data type precedence list and

VARCHAR can be implicitly cast to both DECFLOAT and DOUBLE. Since DECFLOAT is a better fit for
the purpose of implicit casting, ACT_2 is the best fit

Example 4: This example illustrates that during function resolution using the castable process that
promotion of later arguments takes precedence over implicit casting.

Chapter 2. Language elements 155

For this example, there are only three function in a single schema defined as follows:

CREATE FUNCTION CAESAR.ACT (INT, INT, VARCHAR(5)) SPECIFIC ACT_1 ...
CREATE FUNCTION CAESAR.ACT (INT, INT, DECFLOAT) SPECIFIC ACT_2 ...
CREATE FUNCTION CAESAR.ACT (INT, INT, DOUBLE) SPECIFIC ACT_3 ...

The function reference is as follows (where I1 is an INTEGER columns, VC1 is a VARCHAR column, and C1
is a CHAR column):

SELECT ... ACT(I1, VC1, C1) ...

Assume that the application making this reference has an SQL path established as:

"CAESAR"

Following the function resolution rules:

• Each of the candidate functions is evaluated to determine if the data type of each input argument of the
function invocation matches or is promotable to the data type of the corresponding parameter of the
function instance:

– For the first argument, all the candidate functions have an exact match with the parameter type.
– For the second argument, all candidate functions are eliminated since VARCHAR is not promotable to

INTEGER, so no candidate functions remain.
• Since the subset of candidate functions from above is empty, the candidate functions are considered

using the castable process:

– For the first argument, all the candidate functions have an exact match with the parameter type.
– For the second argument, none of the candidate functions have a parameter to which the

corresponding argument can be promoted, so no candidate functions are eliminated.
– Since the third argument can be promoted to the parameter of ACT_1, but not to the parameters of

ACT_2 or ACT_3, ACT_1 is the best fit.

Best fit considerations
Once the function is selected, there are still possible reasons why the use of the function may not be
permitted. Each function is defined to return a result with a specific data type. If this result data type is
not compatible within the context in which the function is invoked, an error will occur.

For example, given functions named STEP defined with different data types as the result:

 STEP(SMALLINT) RETURNS DATE)
 STEP(DOUBLE) RETURNS INTEGER

and the following function reference (where S is a SMALLINT column):

 SELECT ... 3 +STEP(S)

then, because there is an exact match on argument type, the first STEP is chosen. An error occurs on the
statement because the result type is DATE instead of a numeric type as required for an argument of the
addition operator.

In cases where the arguments of the function invocation were not an exact match to the data types of the
parameters of the selected function, the arguments are converted to the data type of the parameter at
execution using the same rules as assignment to columns (see “Assignments and comparisons” on page
89). This includes the case where precision, scale, length, or CCSID differs between the argument and the
parameter.

An error also occurs in the following examples:

• The function is referenced in the TABLE clause of a FROM clause, but the function selected by the
function resolution step is a scalar or aggregate function.

156 IBM i: Db2 for i SQL Reference

• The function referenced in an SQL statement requires a scalar or aggregate function, but the function
selected by the function resolution step is a table function.

Chapter 2. Language elements 157

Expressions
An expression specifies a value.

Authorization: The use of some of the expressions, such as a scalar-fullselect, sequence-reference,
function-invocation, or cast-specification may require having the appropriate authorization. For these
expressions, the privileges held by the authorization ID of the statement must include the following
authorization:

• global variable. For information about authorization considerations, see “Global variables” on page 137.
• scalar-fullselect. For information about authorization considerations, see Chapter 6, “Queries,” on page

735.
• sequence-reference. The authorization to reference the sequence. For information about authorization

considerations, see “Notes” on page 193.
• function-invocation. The authorization to execute a user-defined function. For information about

authorization considerations, see “Function invocation” on page 148.
• array-element-specification. The authorization to reference an array type. For information about

authorization considerations, see “GRANT (type privileges)” on page 1382.
• cast-specification. The authorization to reference a user-defined type. For information about

authorization considerations, see “CAST specification” on page 176.

operator

 +
 -

function-invocation

(expression)

constant

column-name

variable

special-register

scalar-fullselect

labeled-duration

array-constructor

array-element-specification

case-expression

cast-specification

OLAP-specification

row-change-expression

sequence-reference

XMLCAST-specification

operator:

158 IBM i: Db2 for i SQL Reference

CONCAT

 ∥

 /

 *

 **
 +
 -

Without operators
If no operators are used, the result of the expression is the specified value.

Example

 SALARY :SALARY 'SALARY' MAX(SALARY)

With arithmetic operators
If arithmetic operators are used, the result of the expression is a number derived from the application of
the operators to the values of the operands.

If any operand can be null, the result can be null. If any operand has the null value, the result of the
expression is the null value.

If one operand of an arithmetic operator is numeric, the other operand can be a string. The string is first
converted to the data type of the numeric operand and must contain a valid string representation of a
number.

The prefix operator + (unary plus) does not change its operand. The prefix operator - (unary minus)
reverses the sign of a nonzero non-decimal floating-point operand. The prefix operator - (unary minus)
reverses the sign of all decimal floating-point operands, including zero and special values; that is,
signaling and non-signaling NaNs and plus and minus infinity. If the data type of A is small integer, the
data type of - A is large integer. The first character of the token following a prefix operator must not be a
plus or minus sign.

The infix operators, +, -, *, /, and **, specify addition, subtraction, multiplication, division, and
exponentiation, respectively. The value of the second operand of division must not be zero, except if
the calculation is performed using decimal floating-point arithmetic and the first operand is infinity or
-infinity.

In COBOL, blanks must precede and follow a minus sign to avoid any ambiguity with COBOL host variable
names (which allow use of a dash).

The result of an exponentiation (**) operator is a double-precision floating-point number. The result of the
other operators depends on the type of the operand.

Operands with a NUMERIC data type are converted to DECIMAL operands prior to performing the
arithmetic operation.

Two integer operands
If both operands of an arithmetic operator are integers with zero scale, the operation is performed in
binary, and the result is a large integer unless either (or both) operand is a big integer, in which case
the result is a big integer. Any remainder of division is lost. The result of an integer arithmetic operation
(including unary minus) must be within the range of large or big integers. If either integer operand has
nonzero scale, it is converted to a decimal operand with the same precision and scale.

Chapter 2. Language elements 159

Integer and decimal operands
If one operand is an integer with zero scale and the other is decimal, the operation is performed in
decimal using a temporary copy of the integer that has been converted to a decimal number with
precision and scale 0.

This is defined in the following table:

Operand Precision of Decimal Copy

Column or variable: big integer 19

Column or variable: large integer 11

Column or variable: small integer 5

Constant (including leading zeros) Same as the number of digits in the constant

If one operand is an integer with nonzero scale, it is first converted to a decimal operand with the same
precision and scale.

Two decimal operands
If both operands are decimal, the operation is performed in decimal. The result of any decimal arithmetic
operation is a decimal number with a precision and scale that are dependent on the operation and the
precision and scale of the operands. If the operation is addition or subtraction and the operands do not
have the same scale, the operation is performed with a temporary copy of one of the operands. The copy
of the shorter operand is extended with trailing zeros so that its fractional part has the same number of
digits as the longer operand.

Unless specified otherwise, all functions and operations that accept decimal numbers allow a precision of
up to 63 digits. The result of a decimal operation must not have a precision greater than 63.

Decimal arithmetic in SQL
The following formulas define the precision and scale of the result of decimal operations in SQL. The
symbols p and s denote the precision and scale of the first operand and the symbols p' and s' denote the
precision and scale of the second operand.

The symbol mp denotes the maximum precision. The value of mp is 63 if:

• either p or p' is greater than 31, or
• a value of 63 was explicitly specified for the maximum precision.

Otherwise, the value of mp is 31.

The symbol ms denotes the maximum scale. The default value of ms is 31. ms can be explicitly set to any
number from 0 to the maximum precision.

The symbol mds denotes the minimum divide scale. The default value of mds is 0, where 0 indicates that
no minimum scale is specified. mds can be explicitly set to any number from 1 to min (ms, 9).

The maximum precision, maximum scale, and minimum divide scale can be explicitly specified on the
DECRESULT parameter of the CRTSQLxxx command, RUNSQLSTM command, or SET OPTION statement.
They can also be specified in ODBC data sources, JDBC properties, OLE DB properties, .NET properties.

Addition and subtraction
The scale of the result of addition and subtraction is max (s,s'). The precision is min(mp,max(p-s,p'-s')
+max(s,s')+1).

Multiplication
The precision of the result of multiplication is min (mp,p+p') and the scale is min(ms,s+s').

160 IBM i: Db2 for i SQL Reference

Division
The precision of the result of division is (p-s+s') + max(mds, min(ms, mp - (p-s+s'))). The scale is
max(mds, min(ms, mp - (p-s+s'))). The scale must not be negative.

Floating-point operands
If either operand of an arithmetic operator is floating point and neither operand is decimal floating-point,
the operation is performed in floating point. The operands are first converted to double-precision floating-
point numbers, if necessary. Thus, if any element of an expression is a floating-point number, the result of
the expression is a double-precision floating-point number.

An operation involving a floating-point number and an integer is performed with a temporary copy of the
integer converted to double-precision floating point. An operation involving a floating-point number and
a decimal number is performed with a temporary copy of the decimal number that has been converted
to double-precision floating point. The result of a floating-point operation must be within the range of
floating-point numbers.

The order in which floating-point operands (or arguments to functions) are processed can slightly affect
results because floating-point operands are approximate representations of real numbers. Since the order
in which operands are processed may be implicitly modified by the optimizer (for example, the optimizer
may decide what degree of parallelism to use and what access plan to use), an application should not
depend on the results being precisely the same each time an SQL statement is executed that uses
floating-point operands.

Decimal floating-point operands
If either operand of an arithmetic operator is decimal floating-point, the operation is performed in decimal
floating-point.

Integer and DECFLOAT(n) operands
If one operand is a small integer or integer and the other is DECFLOAT, the operation is performed in
DECFLOAT(n) using a temporary copy of the integer that has been converted to a DECFLOAT(n) number.
If one operand is a big integer and the other is DECFLOAT, then a temporary copy of the big integer is
converted to a DECFLOAT(34) number. The rules for two DECFLOAT operands are then applied.

Decimal and DECFLOAT(n) operands
If one operand is a decimal and the other is DECFLOAT, the operation is performed in DECFLOAT using
a temporary copy of the decimal number that has been converted to a DECFLOAT number based on the
precision of the decimal number. If the decimal number has a precision < 17, the decimal number is
converted to DECFLOAT(16). Otherwise, the decimal number is converted to a DECFLOAT(34) number.
The rules for two DECFLOAT operands are then applied.

Floating-point and DECFLOAT(n) operands
If one operand is floating-point (real or double) and the other is DECFLOAT, the operation is performed
in DECFLOAT(n) using a temporary copy of the floating-point number that has been converted to a
DECFLOAT(n) number.

Two DECFLOAT operands
If both operands are DECFLOAT(n), the operation is performed in DECFLOAT(n). If one operand is
DECFLOAT(16) and the other is DECFLOAT(34), the operation is performed in DECFLOAT(34).

Chapter 2. Language elements 161

General arithmetic operation rules for DECFLOAT
The following general rules apply to all arithmetic operations on the DECFLOAT data type.

• Every operation on finite numbers is carried out (as described under the individual operations) as
though an exact mathematical result is computed, using integer arithmetic on the coefficient where
possible.

If the coefficient of the theoretical exact result has no more than the number of digits that reflect its
precision (16 or 34), then (unless there is an underflow or overflow) it is used for the result without
change. Otherwise, it is rounded (shortened) to exactly the number of digits that reflect its precision (16
or 34) and the exponent is increased by the number of digits removed.

Rounding uses the DECFLOAT rounding mode. For more information, see “CURRENT DECFLOAT
ROUNDING MODE” on page 124.

If the value of the adjusted exponent of the result is less than Emin, then a subnormal warning is
returned.42 In this case, the calculated coefficient and exponent form the result, unless the value of the
exponent is less than Etiny, in which case the exponent will be set to Etiny, the coefficient is rounded
(possibly to zero) to match the adjustment of the exponent, and the sign is unchanged. If this rounding
gives an inexact result then an underflow warning is returned. 42

If the value of the adjusted exponent of the result is larger than Emax then an overflow warning is
returned. In this case, the result may be infinite. It will have the same sign as the theoretical result.

• Arithmetic using the special value Infinity follows the usual rules, where negative Infinity is less than
every finite number and positive Infinity is greater than every finite number. Under these rules, an
infinite result is always exact. The following arithmetic operations return a warning and result in NaN:42

– Add +infinity to -infinity during an addition or subtraction operation
– Multiply 0 or -0 by +infinity or -infinity
– Divide either +infinity or -infinity by either +infinity or -infinity

• Signaling NaNs always raise a warning or error when used as an operand of an arithmetic operation and
NaNs are returned.

• The result of an arithmetic operation which has an operand which is a NaN, is NaN. The sign of the result
is copied from the first operand which is a NaN. Whenever the result is a NaN, the sign of the result
depends only on the copied operand.

• The sign of the result of a multiplication or division will be negative only if the operands have different
signs and neither is a NaN.

• The sign of the result of an addition or subtraction will be negative only if the result is less than zero and
neither operand is a NaN.

In some instances, negative zero might be the result from arithmetic operations and numeric functions.

Examples involving special values
 INFINITY + 1 = INFINITY
 INFINITY + INFINITY = INFINITY
 INFINITY + -INFINITY = NAN -- warning
 NAN + 1 = NAN
 NAN + INFINITY = NAN
 1 - INFINITY = -INFINITY
 INFINITY - INFINITY = NAN -- warning
 -INFINITY - -INFINITY = NAN -- warning
 -0.0 - 0.0E1 = -0.0
 -1.0 * 0.0E1 = -0.0
 1.0E1 / 0 = INFINITY
 -1.0E5 / 0.0 = -INFINITY
 1.0E5 / -0 = -INFINITY
 INFINITY / -INFINITY = NAN -- warning
 INFINITY / 0 = INFINITY -- warning

42 The warning is only returned if *YES is specified for the SQL_DECFLOAT_WARNINGS query option.

162 IBM i: Db2 for i SQL Reference

 -INFINITY / 0 = -INFINITY -- warning
 -INFINITY / -0 = INFINITY -- warning

Distinct type operands
A distinct type cannot be used with arithmetic operators even if its source data type is numeric. To
perform an arithmetic operation, create a function with the arithmetic operator as its source. For example,
if there were distinct types INCOME and EXPENSES, both of which had DECIMAL(8,2) data types, then the
following user-defined function, REVENUE, could be used to subtract one from the other.

 CREATE FUNCTION REVENUE (INCOME, EXPENSES)
 RETURNS DECIMAL(8,2) SOURCE "-" (DECIMAL, DECIMAL)

Alternately, the - (minus) operator could be overloaded using a user-defined function to subtract the new
data types.

 CREATE FUNCTION "-" (INCOME, EXPENSES)
 RETURNS DECIMAL(8,2) SOURCE "-" (DECIMAL, DECIMAL)

Alternatively, the distinct type can be cast to a built-in type, and the result can be used as an operand of
an arithmetic operator.

With the concatenation operator
If the concatenation operator (CONCAT or ||) is used, the result of the expression is a string.

The operands of concatenation must be compatible strings or numeric, date, time, or timestamp data
types.43 The operands must not be distinct types. If a numeric, date, time, or timestamp operand is
specified, it is CAST to the equivalent character string prior to concatenation. Note that a binary string
cannot be concatenated with a character string unless the character string is defined as FOR BIT DATA.

The data type of the result is determined by the data types of the operands. The data type of the result is
summarized in the following table:

Table 28. Result Data Types With Concatenation

If one operand column is ... And the other operand is ... The data type of the result column is ...

DBCLOB(x) CHAR(y)* or VARCHAR(y)*
or CLOB(y)* or GRAPHIC(y)
or VARGRAPHIC(y) or
DBCLOB(y)

DBCLOB(z) where z = MIN(x + y, maximum
length of a DBCLOB)

VARGRAPHIC(x) CHAR(y)* or VARCHAR(y)*
or GRAPHIC(y) or
VARGRAPHIC(y)

VARGRAPHIC(z) where z = MIN(x + y,
maximum length of a VARGRAPHIC)

GRAPHIC(x) CHAR(y)* mixed data VARGRAPHIC(z) where z = MIN(x + y,
maximum length of a VARGRAPHIC)

GRAPHIC(x) CHAR(y)* SBCS data or
GRAPHIC(y)

GRAPHIC(z) where z = MIN(x + y, maximum
length of a GRAPHIC)

CLOB(x)* GRAPHIC(y) or
VARGRAPHIC(y)

DBCLOB(z) where z = MIN(x + y, maximum
length of a DBCLOB)

VARCHAR(x)* GRAPHIC(y) VARGRAPHIC(z) where z = MIN(x + y,
maximum length of a VARGRAPHIC)

43 Using the vertical bar (|) character might inhibit code portability between relational database products. Use
the CONCAT operator in place of the || operator. Alternatively, if conformance to SQL 2003 Core standard is
of primary importance, use the || operator).

Chapter 2. Language elements 163

Table 28. Result Data Types With Concatenation (continued)

If one operand column is ... And the other operand is ... The data type of the result column is ...

CLOB(x) CHAR(y) or VARCHAR(y) or
CLOB(y)

CLOB(z) where z = MIN(x + y, maximum
length of a CLOB)

VARCHAR(x) CHAR(y) or VARCHAR(y) VARCHAR(z) where z = MIN(x + y,
maximum length of a VARCHAR)

CHAR(x) mixed data CHAR(y) VARCHAR(z) where z = MIN(x + y,
maximum length of a VARCHAR)

CHAR(x) SBCS data CHAR(y) CHAR(z) where z = MIN(x + y, maximum
length of a CHAR)

BLOB(x) BINARY(y) or VARBINARY(y)
or BLOB(y) or CHAR(y) FOR
BIT DATA or VARCHAR(y)
FOR BIT DATA

BLOB(z) where z = MIN(x + y, maximum
length of a BLOB)

VARBINARY(x) BINARY(y) or VARBINARY(y)
or CHAR(y) FOR BIT DATA or
VARCHAR(y) FOR BIT DATA

VARBINARY(z) where z = MIN(x + y,
maximum length of a VARBINARY)

BINARY(x) VARCHAR(y) FOR BIT DATA VARBINARY(z) where z = MIN(x + y,
maximum length of a VARBINARY)

BINARY(x) BINARY(y) or CHAR(y) FOR
BIT DATA

BINARY(z) where z = MIN(x + y, maximum
length of a BINARY)

Note:

* Character strings are only allowed when the other operand is a graphic string if the graphic string is
Unicode.

Table 29. Result Encoding Schemes With Concatenation

If one operand column is ... And the other operand is ... The data type of the result column is ...

Unicode data Unicode data or DBCS or
mixed or SBCS data

Unicode data

DBCS data DBCS data DBCS data

bit data mixed or SBCS or bit data bit data

mixed data mixed or SBCS data mixed data

SBCS data SBCS data SBCS data

If the sum of the lengths of the operands exceeds the maximum length attribute of the resulting data
type:

• The length attribute of the result is the maximum length of the resulting data type.44

• If only blanks are truncated no warning or error occurs.
• If non-blanks are truncated, an error occurs.

If either operand can be null, the result can be null, and if either is null, the result is the null value.
Otherwise, the result consists of the first operand string followed by the second.

44 If the expression is in the select-list, the length attribute may be further reduced in order to fit within the
maximum record size. For more information, see “Maximum row sizes” on page 1164.

164 IBM i: Db2 for i SQL Reference

With mixed data this result will not have redundant shift codes "at the seam". Thus, if the first operand is
a string ending with a "shift-in" character (X'0F'), while the second operand is a character string beginning
with a "shift-out" character (X'0E'), these two bytes are eliminated from the result.

The actual length of the result is the sum of the lengths of the operands unless redundant shifts are
eliminated; in which case, the actual length is two less than the sum of the lengths of the operands.

The CCSID of the result is determined by the CCSID of the operands as explained under “Conversion rules
for operations that combine strings” on page 110. Note that as a result of these rules:

• If any operand is bit data, the result is bit data.
• If one operand is mixed data and the other is SBCS data, the result is mixed data. However, this does

not necessarily mean that the result is well-formed mixed data.

Example
Concatenate the column FIRSTNME with a blank and the column LASTNAME.

 FIRSTNME CONCAT ' ' CONCAT LASTNAME

Scalar fullselect
A scalar fullselect as supported in an expression is a fullselect, enclosed in parentheses, that returns a
single row consisting of a single column value. If the fullselect does not return a row, the result of the
expression is the null value. If the select list element is an expression that is simply a column name, the
result column name is based on the name of the column. Otherwise, the result column is unnamed.

See “fullselect” on page 783 for more information.

A scalar fullselect is not allowed if the query specifies:

• a distributed table,
• a table with a read trigger, or
• a logical file built over multiple physical file members.

If the scalar fullselect is a subselect, it is also referred to as a scalar subselect. See “subselect” on page
736 for more information.

Datetime operands and durations
Datetime values can be incremented, decremented, and subtracted. These operations may involve
decimal numbers called durations. A duration is a positive or negative number representing an interval of
time.

There are four types of durations:

Labeled durations
The form a labeled duration is as follows:

labeled-duration:

Chapter 2. Language elements 165

function

(expression)

constant

column-name

variable

YEAR

YEARS

MONTH

MONTHS

DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SECOND

SECONDS

MICROSECOND

MICROSECONDS

A labeled duration represents a specific unit of time as expressed by a number (which can be the
result of an expression) followed by one of the seven duration keywords: YEARS, MONTHS, DAYS,
HOURS, MINUTES, SECONDS, or MICROSECONDS45. The number specified is converted as if it were
assigned to a DECIMAL(15,0) number, except for SECONDS which uses DECIMAL(27,12) to allow 0
to 12 digits of fractional seconds to be included. The MICROSECONDS duration returns 6 digits of
fractional seconds.

A labeled duration can only be used as an operand of an arithmetic operator in which the other
operand is a value of data type DATE, TIME, or TIMESTAMP. Thus, the expression HIREDATE + 2
MONTHS + 14 DAYS is valid whereas the expression HIREDATE + (2 MONTHS + 14 DAYS) is not. In
both of these expressions, the labeled durations are 2 MONTHS and 14 DAYS.

Date duration
A date duration represents a number of years, months, and days, expressed as a DECIMAL(8,0)
number. To be properly interpreted, the number must have the format yyyymmdd, where yyyy
represents the number of years, mm the number of months, and dd the number of days. The result
of subtracting one date value from another, as in the expression HIREDATE - BRTHDATE, is a date
duration.

Time duration
A time duration represents a number of hours, minutes, and seconds, expressed as a DECIMAL(6,0)
number. To be properly interpreted, the number must have the format hhmmss where hh represents
the number of hours, mm the number of minutes, and ss the number of seconds. The result of
subtracting one time value from another is a time duration.

Timestamp duration
A timestamp duration represents a number of years, months, days, hours, minutes, seconds, and
fractional seconds, expressed as a DECIMAL(14+s,s) number, where s is the number of digits of
fractional seconds ranging from 0 to 12. To be properly interpreted, the number must have the
format yyyymmddhhmmss.zzzzzzzzzzzz, where yyyy, mm, dd, hh, mm, ss, and zzzzzzzzzzzz represent,
respectively, the number of years, months, days, hours, minutes, seconds, and fractional seconds.
The result of subtracting one timestamp value from another is a timestamp duration with scale that
matches the maximum timestamp precision of the timestamp operands.

45 Note that the singular form of these keywords is also acceptable: YEAR, MONTH, DAY, HOUR, MINUTE,
SECOND, and MICROSECOND.

166 IBM i: Db2 for i SQL Reference

Datetime arithmetic in SQL
The only arithmetic operations that can be performed on datetime values are addition and subtraction. If
a datetime value is the operand of addition, the other operand must be a duration.

The specific rules governing the use of the addition operator with datetime values follow:

• If one operand is a date, the other operand must be a date duration or labeled duration of years,
months, or days.

• If one operand is a time, the other operand must be a time duration or a labeled duration of hours,
minutes, or seconds.

• If one operand is a timestamp, the other operand must be a duration. Any type of duration is valid.
• Neither operand of the addition operator can be an untyped parameter marker.

The rules for the use of the subtraction operator on datetime values are not the same as those for addition
because a datetime value cannot be subtracted from a duration, and because the operation of subtracting
two datetime values is not the same as the operation of subtracting a duration from a datetime value. The
specific rules governing the use of the subtraction operator with datetime values follow:

• If the first operand is a date, the second operand must be a date, a timestamp, a date duration, a string
representation of a date, a string representation of a timestamp, or a labeled duration of years, months,
or days.

• If the second operand is a date, the first operand must be a date, a timestamp, a string representation of
a date, or a string representation of a timestamp.

• If the first operand is a time, the second operand must be a time, a time duration, a string
representation of a time, or a labeled duration of hours, minutes, or seconds.

• If the second operand is a time, the first operand must be a time, or string representation of a time.
• If the first operand is a timestamp, the second operand must be a date, a timestamp, a string

representation of a date, a string representation of a timestamp, or a duration. If the second operand is
a string representation of a timestamp, it is implicitly converted to a timestamp with the same precision
as the first operand.

• If the second operand is a timestamp, the first operand must be a date, a timestamp, a string
representation of a date, or a string representation of a timestamp. If the first operand is a string
representation of a timestamp, it is implicitly converted to a timestamp with the same precision as the
second operand.

• Neither operand of the subtraction operator can be an untyped parameter marker.

Date arithmetic
Dates can be subtracted, incremented, or decremented.

Subtracting dates
The result of subtracting one date (DATE2) from another (DATE1) is a date duration that specifies the
number of years, months, and days between the two dates. The data type of the result is DECIMAL(8,0). If
DATE1 is greater than or equal to DATE2, DATE2 is subtracted from DATE1. If DATE1 is less than DATE2,
however, DATE1 is subtracted from DATE2, and the sign of the result is made negative. The following
procedural description clarifies the steps involved in the operation RESULT = DATE1 - DATE2.

If DAY(DATE2) <= DAY(DATE1)
 then DAY(RESULT) = DAY(DATE1) - DAY(DATE2).

If DAY(DATE2) > DAY(DATE1)
 then DAY(RESULT) = N + DAY(DATE1) - DAY(DATE2)
 where N = the last day of MONTH(DATE2).
 MONTH(DATE2) is then incremented by 1.

Chapter 2. Language elements 167

If MONTH(DATE2) <= MONTH(DATE1)
 then MONTH(RESULT) = MONTH(DATE1) - MONTH(DATE2).

If MONTH(DATE2) > MONTH(DATE1)
 then MONTH(RESULT) = 12 + MONTH(DATE1) - MONTH(DATE2).
 YEAR(DATE2) is then incremented by 1.

YEAR(RESULT) = YEAR(DATE1) - YEAR(DATE2).

For example, the result of DATE('3/15/2000') - '12/31/1999' is 215 (or, a duration of 0 years, 2 months,
and 15 days).

Incrementing and decrementing dates
The result of adding a duration to a date, or of subtracting a duration from a date, is itself a date. (For the
purposes of this operation, a month denotes the equivalent of a calendar page. Adding months to a date,
then, is like turning the pages of a calendar, starting with the page on which the date appears.) The result
must fall between the dates January 1, 0001 and December 31, 9999 inclusive.

If a duration of years is added or subtracted, only the year portion of the date is affected. The month
is unchanged, as is the day unless the result would be February 29 of a non-leap-year. In this case, the
day is changed to 28, an SQLSTATE of '01506' is assigned to the RETURNED_SQLSTATE condition area
item in the SQL Diagnostics Area (or SQLWARN6 in the SQLCA is set to 'W') to indicate the end-of-month
adjustment.

Similarly, if a duration of months is added or subtracted, only months and, if necessary, years are affected.
The day portion of the date is unchanged unless the result would be invalid (September 31, for example).
In this case, the day is set to the last day of the month, and SQLWARN6 in the SQLCA is set to 'W' to
indicate the end-of-month adjustment.

Adding or subtracting a duration of days will, of course, affect the day portion of the date, and potentially
the month and year. Adding a labeled duration of DAYS will not cause an end-of-month adjustment.

Date durations, whether positive or negative, may also be added to and subtracted from dates. As with
labeled durations, the result is a valid date, and a warning indicator is set in the SQLCA whenever an
end-of-month adjustment is necessary.

When a positive date duration is added to a date, or a negative date duration is subtracted from a date,
the date is incremented by the specified number of years, months, and days, in that order. Thus DATE1 +
X, where X is a positive DECIMAL(8,0) number, is equivalent to the expression:

• DATE1 + YEAR(X) YEARS + MONTH(X) MONTHS + DAY(X) DAYS

When a positive date duration is subtracted from a date, or a negative date duration is added to a date,
the date is decremented by the specified number of days, months, and years, in that order. Thus, DATE1 -
X, where X is a positive DECIMAL(8,0) number, is equivalent to the expression:

• DATE1 - DAY(X) DAYS - MONTH(X) MONTHS - YEAR(X) YEARS

Note: If one or more months is added to a given date and then the same number of months is subtracted
from the result, the final date is not necessarily the same as the original date.

Also note that logically equivalent expressions may not produce the same result. For example:

• (DATE('2002–01–31') + 1 MONTH) + 1 MONTH will result in a date of 2002–03–28.

does not produce the same result as

• DATE('2002–01–31') + 2 MONTHS will result in a date of 2002–03–31.

The order in which labeled date durations are added to and subtracted from dates can affect the results.
For compatibility with the results of adding or subtracting date durations, a specific order must be used.
When labeled date durations are added to a date, specify them in the order of YEARS + MONTHS + DAYS.
When labeled date durations are subtracted from a date, specify them in the order of DAYS - MONTHS -
YEARS. For example, to add one year and one day to a date, specify:

168 IBM i: Db2 for i SQL Reference

• DATE1 + 1 YEAR + 1 DAY

To subtract one year, one month, and one day from a date, specify:

• DATE1 - 1 DAY - 1 MONTH - 1 YEAR

Time arithmetic
Times can be subtracted, incremented, or decremented.

Subtracting times
The result of subtracting one time (TIME2) from another (TIME1) is a time duration that specifies
the number of hours, minutes, and seconds between the two times. The data type of the result is
DECIMAL(6,0). If TIME1 is greater than or equal to TIME2, TIME2 is subtracted from TIME1. If TIME1 is
less than TIME2, however, TIME1 is subtracted from TIME2, and the sign of the result is made negative.
The following procedural description clarifies the steps involved in the operation RESULT = TIME1 -
TIME2.

If SECOND(TIME2) <= SECOND(TIME1)
 then SECOND(RESULT) = SECOND(TIME1) - SECOND(TIME2).

If SECOND(TIME2) > SECOND(TIME1)
 then SECOND(RESULT) = 60 + SECOND(TIME1) - SECOND(TIME2).
 MINUTE(TIME2) is then incremented by 1.

If MINUTE(TIME2) <= MINUTE(TIME1)
 then MINUTE(RESULT) = MINUTE(TIME1) - MINUTE(TIME2).

If MINUTE(TIME2) > MINUTE(TIME1)
 then MINUTE(RESULT) = 60 + MINUTE(TIME1) - MINUTE(TIME2).
 HOUR(TIME2) is then incremented by 1.

HOUR(RESULT) = HOUR(TIME1) - HOUR(TIME2).

For example, the result of TIME('11:02:26') - '00:32:56' is 102930 (a duration of 10 hours, 29 minutes,
and 30 seconds).

Incrementing and decrementing times
The result of adding a duration to a time, or of subtracting a duration from a time, is itself a time. Any
overflow or underflow of hours is discarded, thereby ensuring that the result is always a time. If a duration
of hours is added or subtracted, only the hours portion of the time is affected. The minutes and seconds
are unchanged.

Similarly, if a duration of minutes is added or subtracted, only minutes and, if necessary, hours are
affected. The seconds portion of the time is unchanged.

Adding or subtracting a duration of seconds will, of course, affect the seconds portion of the time, and
potentially the minutes and hours.

Time durations, whether positive or negative, also can be added to and subtracted from times. The result
is a time that has been incremented or decremented by the specified number of hours, minutes, and
seconds, in that order. TIME1 + X, where “X” is a DECIMAL(6,0) number, is equivalent to the expression:

 TIME1 + HOUR(X) HOURS + MINUTE(X) MINUTES + SECOND(X) SECONDS

Chapter 2. Language elements 169

Timestamp arithmetic
Timestamps can be subtracted, incremented, or decremented.

Subtracting timestamps
The result of subtracting one timestamp (TS2) from another (TS1) is a timestamp duration that specifies
the number of years, months, days, hours, minutes, seconds, and fractional seconds between the two
timestamps. The data type of the result is DECIMAL(14+s,s), where s is the maximum timestamp
precision of TS1 and TS2. If TS1 is greater than or equal to TS2, TS2 is subtracted from TS1. If TS1
is less than TS2, however, TS1 is subtracted from TS2 and the sign of the result is made negative. The
following procedural description clarifies the steps involved in the operation RESULT = TS1 - TS2.

If SECOND(TS2,s) <= SECOND(TS1,s)
 then SECOND(RESULT,s) = SECOND(TS1,s) - SECOND(TS2,s).

If SECOND(TS2,s) > SECOND(TS1,s)
 then SECOND(RESULT,s) = 60 + SECOND(TS1,s) - SECOND(TS2,s,)
 and MINUTE(TS2) is incremented by 1.

The minutes part of the timestamps are subtracted as specified
in the rules for subtracting times.

If HOUR(TS2) <= HOUR(TS1)
 then HOUR(RESULT) = HOUR(TS1) - HOUR(TS2).

If HOUR(TS2) > HOUR(TS1)
 then HOUR(RESULT) = 24 + HOUR(TS1) - HOUR(TS2)
 and DAY(TS2) is incremented by 1.

The date part of the timestamps is subtracted as specified
in the rules for subtracting dates.

The result of subtracting a date (D1) from a timestamp (TS1) is the same as subtracting TIMESTAMP(D1)
from TS1. Similarly, the result of subtracting one timestamp (TS1) from a date (D2) is the same as
subtracting TS1 from TIMESTAMP(D2).

Incrementing and decrementing timestamps
The result of adding a duration to a timestamp, or of subtracting a duration from a timestamp, is itself a
timestamp. The precision of the result timestamp matches the precision of the timestamp operand. Date
and time arithmetic is performed as previously defined, except that an overflow or underflow of hours is
carried into the date part of the result, which must be within the range of valid dates. Fractional seconds
overflow into seconds. Thus, subtracting a duration, X, from a timestamp, TIMESTAMP1, where X is a
DECIMAL(14+s,s) number is equivalent to the expression:

TIMESTAMP1 - YEAR(X) YEARS - MONTH(X) MONTHS - DAY(X) DAYS
 - HOUR(X) HOURS - MINUTE(X) MINUTES
 - SECOND(X,s) SECONDS

When subtracting a duration with non-zero scale, a labeled duration of MICROSECOND or
MICROSECONDS, or a labeled duration of SECOND or SECONDS with a value that includes fractions of
a second, the subtraction is performed as if the timestamp value has up to 12 fractional second digits.
The resulting value is assigned to a timestamp value with the timestamp precision of the timestamp
operand which could result in truncation of fractional second digits.

170 IBM i: Db2 for i SQL Reference

Precedence of operations
Expressions within parentheses are evaluated first. When the order of evaluation is not specified by
parentheses, exponentiation is applied after prefix operators (such as -, unary minus) and before
multiplication and division. Multiplication and division are applied before addition and subtraction.
Operators at the same precedence level are applied from left to right.

The following table shows the priority of all operators.

Priority Operators

1 +, - (when used for signed numeric values)

2 **

3 *, /, CONCAT, ||

4 +, - (when used between two operands)

Example 1:
In this example, the first operation is the addition in (SALARY + BONUS) because it is within parenthesis.
The second operation is multiplication because it is at a higher precedence level than the second addition
operator and it is to the left of the division operator. The third operation is division because it is at a higher
precedence level than the second addition operator. Finally, the remaining addition is performed.

 1.10 * (SALARY + BONUS) + SALARY / :VAR3
 ↑ ↑ ↑ ↑
 ┌┴┐ ┌┴┐ ┌┴┐ ┌┴┐
 │2│ │1│ │4│ │3│
 └─┘ └─┘ └─┘ └─┘

Example 2:
In this example, the first operation (CONCAT) combines the character strings in the variables YYYYMM
and DD into a string representing a date. The second operation (-) then subtracts that date from the date
being processed in DATECOL. The result is a date duration that indicates the time elapsed between the
two dates.

 DATECOL - :YYYYMM CONCAT :DD
 ↑ ↑
 ┌┴┐ ┌┴┐
 │2│ │1│
 └─┘ └─┘

Chapter 2. Language elements 171

ARRAY constructor
The ARRAY constructor returns an array specified by a list of expressions or a fullselect.

ARRAY [

fullselect

,

element-expression

]

fullselect
A fullselect that returns a single column. The values returned by the fullselect are the elements of
the array. The cardinality of the array is equal to the number of rows returned by the fullselect. An
ORDER BY clause in the fullselect can be used to specify the order among the elements of the array;
otherwise, the order is undefined. The attributes of the base type of the array are the same as the data
type of the result column of the fullselect.

element-expression
An expression defining the value of an element within the array. The cardinality of the array is equal
to the number of element expressions. The first element-expression is assigned to the array element
with array index 1. The second element-expression is assigned to the array element with array index 2,
and so on. All element expressions must have compatible data types. The attributes of the base type
of the array are determined by all the operands as explained in “Rules for result data types” on page
105.

If there is no expression within the brackets, the result is an empty array. The cardinality of an empty
array is 0.

An ARRAY constructor can only be specified on the right side of a SET variable or assignment-statement.

Examples

• Set the array variable RECENT_CALLS of array type PHONENUMBERS to an array of fixed numbers.

SET RECENT_CALLS = ARRAY[9055553907, 4165554213, 4085553678]

• Set the array variable DEPT_PHONES of array type PHONENUMBERS to an array of phone numbers
retrieved from the DEPARTMENT_INFO table.

SET DEPT_PHONES = ARRAY[SELECT DECIMAL(AREA_CODE CONCAT ’555’ CONCAT EXTENSION,16)
 FROM DEPARTMENT_INFO
 WHERE DEPTID = 624]

172 IBM i: Db2 for i SQL Reference

ARRAY element specification
The ARRAY element specification returns the element from an array specified by expression.

array-variable

CAST (parameter-marker AS array-type)

[expression]

array-variable
Specifies a variable or parameter of type array in an SQL procedure or SQL function.

CAST(parameter-marker AS array-type)
Specifies the array data type to be used for the parameter marker. The array data type passed for the
parameter marker value must match this array data type exactly.

[expression]
Specifies the array index of the element that is to be extracted from the array. The array index must
return a value that is an exact numeric with zero scale or DECFLOAT. Its value must be between 1 and
the cardinality of the array.

The data type of the result is the data type specified for the array on the CREATE TYPE (Array) statement.

If expression is null or the array is null, the null value is returned.

Chapter 2. Language elements 173

CASE expression
CASE expressions allow an expression to be selected based on the evaluation of one or more conditions.

CASE searched-when-clause

simple-when-clause

ELSE NULL

ELSE result-expression

END

searched-when-clause

WHEN search-condition THEN result-expression

NULL

simple-when-clause

expression WHEN expression THEN result-expression

NULL

In general, the value of the case-expression is the value of the result-expression following the first
(leftmost) when-clause that evaluates to true. If no when-clause evaluates to true and the ELSE keyword
is present then the result is the value of the ELSE result-expression or NULL. If no when-clause evaluates
to true and the ELSE keyword is not present then the result is NULL. Note that when a when-clause
evaluates to unknown (because of nulls), the when-clause is not true and hence is treated the same way
as a when-clause that evaluates to false.

searched-when-clause
Specifies a search-condition that is applied to each row or group of table data presented for
evaluation, and the result when that condition is true.

simple-when-clause
Specifies that the value of the expression prior to the first WHEN keyword is tested for equality with
the value of the expression that follows each WHEN keyword. It also specifies the result when that
condition is true.

The data type of the expression prior to the first WHEN keyword must be compatible with the data
types of the expression that follows each WHEN keyword.

result-expression or NULL
Specifies the value that follows the THEN keyword and ELSE keywords. There must be at least one
result-expression in the CASE expression with a defined data type. NULL cannot be specified for every
case.

All result-expressions must have compatible data types, where the attributes of the result are
determined based on the “Rules for result data types” on page 105.

search-condition
Specifies a condition that is true, false, or unknown about a row or group of table data.

The search-condition must not include a subquery in an EXISTS or IN predicate.

If a CASE expression is used in a select list, the SET clause of an UPDATE or MERGE statement, or the
VALUES clause of an INSERT or MERGE statement, and if simple-when-clause or searched-when-clause
references a column for which column access control is activated, the masked value will be used instead
of the column value.

There are two scalar functions, NULLIF and COALESCE, that are specialized to handle a subset of the
functionality provided by CASE. The following table shows the equivalent expressions using CASE or these
functions.

174 IBM i: Db2 for i SQL Reference

Table 30. Equivalent CASE Expressions

CASE Expression Equivalent Expression

CASE WHEN e1=e2 THEN NULL ELSE e1 END NULLIF(e1,e2)

CASE WHEN e1 IS NOT NULL THEN e1 ELSE e2 END COALESCE(e1,e2)

CASE WHEN e1 IS NOT NULL THEN e1 ELSE COALESCE(e2,...,eN)
END COALESCE(e1,e2,...,eN)

Examples

• If the first character of a department number is a division in the organization, then a CASE expression
can be used to list the full name of the division to which each employee belongs:

 SELECT EMPNO, LASTNAME,
 CASE SUBSTR(WORKDEPT,1,1)
 WHEN 'A' THEN 'Administration'
 WHEN 'B' THEN 'Human Resources'
 WHEN 'C' THEN 'Accounting'
 WHEN 'D' THEN 'Design'
 WHEN 'E' THEN 'Operations'
 END
 FROM EMPLOYEE

• The number of years of education are used in the EMPLOYEE table to give the education level. A CASE
expression can be used to group these and to show the level of education.

 SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME,
 CASE
 WHEN EDLEVEL < 15 THEN 'SECONDARY'
 WHEN EDLEVEL < 19 THEN 'COLLEGE'
 ELSE 'POST GRADUATE'
 END
 FROM EMPLOYEE

• Another interesting example of CASE statement usage is in protecting from division by 0 errors. For
example, the following code finds the employees who earn more than 25% of their income from
commission, but who are not fully paid on commission:

 SELECT EMPNO, WORKDEPT, SALARY+COMM
 FROM EMPLOYEE
 WHERE (CASE WHEN SALARY=0 THEN NULL
 ELSE COMM/SALARY
 END) > 0.25

• The following CASE expressions are equivalent:

 SELECT LASTNAME,
 CASE
 WHEN LASTNAME = 'Haas' THEN 'President'
 ...
 ELSE 'Unknown'
 END
 FROM EMPLOYEE

 SELECT LASTNAME,
 CASE LASTNAME
 WHEN 'Haas' THEN 'President'
 ...
 ELSE 'Unknown'
 END
 FROM EMPLOYEE

Chapter 2. Language elements 175

CAST specification
The CAST specification returns the cast operand (the first operand) cast to the type specified by the
data-type.

CAST (expression

NULL

parameter-marker

AS data-type)

data-type
built-in-type

distinct-type

array-type

built-in-type

176 IBM i: Db2 for i SQL Reference

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

normalize-clause

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

)

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

DATALINK

(200)

(integer) ccsid-clause

ROWID

XML

ccsid-clause

ccsid-clause
CCSID integer

normalize-clause

Chapter 2. Language elements 177

normalize-clause
NOT NORMALIZED

NORMALIZED

The CAST specification returns the cast operand (the first operand) cast to the type specified by the
data-type. If the data type of either operand is a distinct type, the privileges held by the authorization ID
of the statement must include USAGE authority on the distinct type.

expression
Specifies that the cast operand is an expression other than NULL or a parameter marker. The result is
the argument value converted to the specified target data type.

The supported casts are shown in “Casting between data types” on page 86, where the first column
represents the data type of the cast operand (source data type) and the data types across the top
represent the target data type of the CAST specification. If the cast is not supported, an error is
returned.

When casting character or graphic strings to a character or graphic string with a different length, a
warning is returned if truncation of other than trailing blanks occurs.

NULL
Specifies that the cast operand is the null value. The result is a null value that has the specified
data-type.

parameter-marker
A parameter marker (specified as a question mark character) is normally considered an expression,
but is documented separately in this case because it has a special meaning. If the cast operand
is a parameter-marker, the specified data-type is considered a promise that the replacement will
be assignable to the specified data-type (using storage assignment rules, see “Assignments and
comparisons” on page 89). Such a parameter marker is called a typed parameter marker. Typed
parameter markers will be treated like any other typed value for the purpose of DESCRIBE of a select
list or for column assignment.

data-type
Specifies the data type of the result. If the data type is not qualified, the SQL path is used to find
the appropriate data type. For more information, see “Unqualified function, procedure, specific name,
type, and variables” on page 59. For a description of data-type, see “CREATE TABLE” on page 1115.
(For portability across operating systems, when specifying a floating-point data type, use REAL or
DOUBLE instead of FLOAT.)

Restrictions on the supported data types are based on the specified cast operand.

• For a cast operand that is an expression, see Table 16 on page 87 for the target data types that are
supported based on the data type of the cast operand.

• For a cast operand that is the keyword NULL, the target data type can be any data type.
• For a cast operand that is a parameter marker, the target data type can be any data type. If the data

type is a distinct type, the application that uses the parameter marker will use the source data type
of the distinct type. If the data type is an array type, the parameter marker must represent an array
with a cardinality less than or equal to the maximum cardinality of the target array data type. The
data type of the parameter marker must match the data type of the target array data type exactly.

If the CCSID attribute is not specified, then:

• If the data-type is BINARY, VARBINARY, or BLOB, a CCSID of 65535 is used.
• If FOR BIT DATA is specified, a CCSID of 65535 is used.
• If the expression is a character string, and the data-type is CHAR, VARCHAR, or CLOB:

– If FOR SBCS DATA is specified,

- If the CCSID of the expression is a Unicode CCSID, then the single-byte CCSID associated with
the default CCSID of the job is used.

178 IBM i: Db2 for i SQL Reference

- Otherwise, the single-byte CCSID associated with the CCSID of the expression is used.46
– If FOR MIXED DATA is specified,

- If the CCSID of the expression is a Unicode CCSID, then the mixed-byte CCSID associated with
the default CCSID of the job is used.

- Otherwise, the mixed-byte CCSID associated with the CCSID of the expression is used.46

– Otherwise,

- If expression is SBCS data, the CCSID of the expression is used.4746

- If expression is mixed data and the length attribute of the result is greater than or equal to 4,
then the CCSID of the expression is used.

- If expression is mixed data that is DBCS-open or DBCS-either and the length attribute of the
result is less than 4, the CCSID of the result is the associated SBCS CCSID for the mixed data
CCSID.

• If the expression is a graphic string or expression is a parameter marker, and the data-type is CHAR,
VARCHAR, or CLOB:

– If FOR SBCS DATA is specified, the single-byte CCSID associated with the default CCSID of the job
is used.

– If FOR MIXED DATA is specified, the mixed-byte CCSID associated with default CCSID of the job is
used.

– Otherwise,

- If the default CCSID of the job is SBCS data, the default CCSID of the job is used.
- If the default CCSID of the job is mixed data and the length attribute of the result is greater than

or equal to 4, then the default CCSID of the job is used.
- If the default CCSID of the job is mixed data that is DBCS-open or DBCS-either and the length

attribute of the result is less than 4, the CCSID of the result is the associated SBCS CCSID for
the mixed data CCSID.

• If the expression is a character string, datetime expression, or parameter marker, and the data-type
is GRAPHIC, VARGRAPHIC, or DBCLOB, the CCSID 1200 is used.

• If the expression is a graphic string, and the data-type is GRAPHIC, VARGRAPHIC, or DBCLOB; the
CCSID of the expression is used.

• If the data-type is XML, the CCSID value as specified by the SQL_XML_DATA_CCSID QAQQINI
setting is used. See “XML Values” on page 80 for more information.

• Otherwise, the default CCSID of the job is used.

If the CCSID attribute is specified, the data will be converted to that CCSID. If NORMALIZED is
specified, the data will be normalized. If FOR MIXED DATA or a mixed CCSID is specified, the result
length cannot be less than 4.

For information about which casts between data types are supported and the rules for casting to a data
type see “Casting between data types” on page 86.

Examples

• An application is only interested in the integer portion of the SALARY column (defined as DECIMAL(9,2))
from the EMPLOYEE table. The following CAST specification will convert the SALARY column to
INTEGER.

SELECT EMPNO, CAST(SALARY AS INTEGER)
 FROM EMPLOYEE

46 For XSLTRANSFORM, if the CCSID of the expression is 65535, the default CCSID of the job is used.
47 If the CCSID of the expression is 65535, casting to CLOB is not allowed.

Chapter 2. Language elements 179

• Assume that two distinct types exist. T_AGE was sourced on SMALLINT and is the data type for the
AGE column in the PERSONNEL table. R_YEAR was sourced on INTEGER and is the data type for the
RETIRE_YEAR column in the same table. The following UPDATE statement could be prepared.

UPDATE PERSONNEL SET RETIRE_YEAR = ?
 WHERE AGE = CAST(? AS T_AGE)

The first parameter is an untyped parameter marker that would have a data type of R_YEAR. An explicit
CAST specification is not required in this case because the parameter marker value is assigned to the
distinct type.

The second parameter marker is a typed parameter marker that is cast to distinct type T_AGE. An
explicit CAST specification is required in this case because the parameter marker value is compared to
the distinct type.

180 IBM i: Db2 for i SQL Reference

OLAP specifications
On-Line Analytical Processing (OLAP) specifications provide the ability to return ranking, row numbering,
and other aggregate function information as a scalar value in a query result.

OLAP-specification
ordered-OLAP-specification

numbering-specification

aggregation-specification

ordered-OLAP-specification
lag-function

lead-function

RANK ()

DENSE_RANK ()

NTILE (expression)

CUME_DIST ()

PERCENT_RANK ()

OVER (

window-partition-clause

window-order-clause)

lag-function
LAG (expression

, offset

, default-value

)

RESPECT NULLS

IGNORE NULLS

lead-function
LEAD (expression

, offset

, default-value

)

RESPECT NULLS

IGNORE NULLS

window-partition-clause

PARTITION BY

,

partitioning-expression

window-order-clause

Chapter 2. Language elements 181

ORDER BY

,

sort-key-expression

ASC NULLS LAST

ASC
NULLS FIRST

DESC
NULLS FIRST

DESC NULLS LAST

ORDER OF table-designator

numbering-specification
ROW_NUMBER () OVER (

window-partition-clause

window-order-clause

)

aggregation-specification
aggregate-function

OLAP-aggregate-function

OVER (

window-partition-clause

RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

window-order-clause
RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

window-aggregation-group-clause

)

aggregate-function

182 IBM i: Db2 for i SQL Reference

AVG function

CORRELATION function

COUNT function

COUNT_BIG function

COVARIANCE function

COVARIANCE_SAMP function

MAX function

MEDIAN function

MIN function

PERCENTILE_CONT function

PERCENTILE_DISC function

Regression function

STDDEV function

STDDEV_SAMP function

SUM function

VARIANCE function

VARIANCE_SAMP function

OLAP-aggregate-function
first-value-function

last-value-function

nth-value-function

ratio-to-report-function

first-value-function

FIRST_VALUE (expression)
RESPECT NULLS

IGNORE NULLS

last-value-function

LAST_VALUE (expression)
RESPECT NULLS

IGNORE NULLS

nth-value-function

NTH_VALUE (expression , n-expression)
FROM FIRST

FROM LAST

RESPECT NULLS

IGNORE NULLS

ratio-to-report-function
RATIO_TO_REPORT (expression)

Chapter 2. Language elements 183

window-aggregation-group-clause
ROWS

RANGE

group-start

group-between

group-end

group-start
UNBOUNDED PRECEDING

unsigned-constant PRECEDING

CURRENT ROW

group-between
BETWEEN group-bound1 AND group-bound2

group-bound1
UNBOUNDED PRECEDING

unsigned-constant PRECEDING

unsigned-constant FOLLOWING

CURRENT ROW

group-bound2
UNBOUNDED FOLLOWING

unsigned-constant PRECEDING

unsigned-constant FOLLOWING

CURRENT ROW

group-end
UNBOUNDED FOLLOWING

unsigned-constant FOLLOWING

An OLAP specification can be included in an expression in a select-clause or the ORDER BY clause of a
select-statement. The query result to which the OLAP specification is applied is the result table of the
innermost subselect that includes the OLAP specification. OLAP specifications are sometimes referred to
as window functions.

An OLAP specification is not valid in a WHERE, VALUES, GROUP BY, HAVING, or SET clause, or join-
condition in an ON clause of a joined table. An OLAP specification cannot be used as an argument of an
aggregate function in the select-clause.

When invoking an OLAP specification, a window is specified that defines the rows over which the function
is applied, and in what order.

ordered-OLAP-specification
Specifies OLAP operations that require a window-order-clause.
LAG or LEAD

Returns an expression value computed using rows prior to or following the current row.

offset must be a positive integer or positive bigint constant. If offset is not specified, the value 1 is
used.

default-value must be an expression that is castable to the type of expression. If default-value is
not specified, the default value is the null value.

If IGNORE NULLS is specified, all rows where the expression value is the null value are not
considered in the calculation.

184 IBM i: Db2 for i SQL Reference

LAG
The LAG function returns the expression value for the row at offset rows before the current
row. If a window-partition-clause is specified, offset means offset rows before the current row
and within the current partition.

LEAD
The LEAD function returns the expression value for the row at offset rows after the current row.
If a window-partition-clause is specified, offset means offset rows after the current row and
within the current partition.

If offset goes beyond the scope of the current partition, the default-value is returned.

The data type of the result is the data type of expression. The result can be null. If IGNORE NULLS
is specified and all values in the window are null, the result is the null value.

RANK or DENSE_RANK
Specifies that the ordinal rank of a row within the window is computed. Rows that are not distinct
with respect to the ordering within their window are assigned the same rank. The results of
ranking may be defined with or without gaps in the numbers resulting from duplicate values.

The data type of the result is BIGINT. The result cannot be null.

RANK
Specifies that the rank of a row is defined as 1 plus the number of rows that strictly precede
the row. Thus, if two or more rows are not distinct with respect to the ordering, then there will
be one or more gaps in the sequential rank numbering.

DENSE_RANK
Specifies that the rank of a row is defined as 1 plus the number of preceding rows that are
distinct with respect to the ordering. Therefore, there will be no gaps in the sequential rank
numbering.

NTILE
Specifies that the quantile rank of a row within the window is computed.

The argument must be castable to a BIGINT. If expression does not return a SMALLINT, INTEGER,
or BIGINT, it is cast to BIGINT before evaluating the function. It must have a value greater
than zero. expression must not contain a scalar-fullselect, a column reference, or a user-defined
function reference.

The result is the quantile rank of the current row. The argument determines the number of
quantiles in the result, which is determined by dividing the number of rows in the window by the
value of the argument. If the number of rows within the window is not evenly divisible by the
argument, each quantile will have a least n rows, and quantiles 1 through m will each have n+1
rows.

• r is the number of rows in the window
• q is the value of the argument
• m = MOD (r , q)
• n = TRUNC (r , q)

The data type of the result is SMALLINT, INTEGER, or BIGINT based on the value of the argument.
If the argument can be null, the result can be null. If the argument is null, the result is the null
value.

CUME_DIST
A cumulative distribution function that determines a percentile ranking for each row, expressed
as a decimal fraction ranging from 0 to 1. Given the default ascending order of rows, CUME_DIST
computes the number of rows that are ranked lower than or equal to the current row, including
the current row, divided by the total number of rows in the partition. If the window_order_clause
specifies descending order, CUME_DIST computes the number of rows that are ranked higher than
or equal to the current row divided by the total number of rows in the partition.

Chapter 2. Language elements 185

For example, given default ordering, if there are ten rows in the partition and the current row ranks
lower than six of those rows, the CUME_DIST result is 0.7 (six rows plus the current row = 7/10).
The lowest-ranking row in a partition has a CUME_DIST value of 1.0, assuming default ascending
order. If there is a single row in the partition, its CUME_DIST value is also 1.0.

The data type of the result is DECFLOAT(34). The result cannot be null.

PERCENT_RANK
The PERCENT_RANK function is a distribution function that returns a relative percentile rank of a
row within an OLAP window, expressed as a value between 0.0 - 1.0. When the number of rows in
the OLAP window is greater than 1, the result is computed as follows:

• The RANK of the current row in the OLAP window minus 1 divided by the number of rows in the
OLAP window minus 1.

Otherwise, the result is 0.0.

The data type of the result is DECFLOAT(34). The result cannot be null.

numbering-specification
Specifies an OLAP operation that returns sequential numbers for each row.
ROW_NUMBER

Specifies that a sequential row number is computed for the row within the window defined by the
ordering, starting with 1 for the first row. If the ORDER BY clause is not specified in the window,
the row numbers are assigned to the rows in arbitrary order, as returned by the subselect (not
according to any ORDER BY clause in the select-statement).

The data type of the result is BIGINT. The result cannot be null.

window-partition-clause
Defines the partition within which the OLAP operation is applied.
PARTITION BY (partitioning-expression,...)

Defines the partition within which the OLAP operation is applied. A partitioning-expression is
an expression used in defining the partitioning of the result set. Each column name referenced
in a partitioning-expression must unambiguously reference a column of the result table of the
subselect that contains the OLAP specification. A partitioning-expression cannot include a scalar-
fullselect or any function that is not deterministic or has an external action.

window-order-clause
Defines the ordering of rows within a partition that is used to determine the value of the OLAP
specification. It does not define the ordering of the result table.
ORDER BY (sort-key-expression,...)

A sort-key-expression is an expression used in defining the ordering of the rows within a window
partition. Each column name referenced in a sort-key-expression must unambiguously reference a
column of the result table of the subselect, including the OLAP specification. A sort-key-expression
cannot include a scalar-fullselect or any function that is not deterministic or that has an external
action.
The sum of the length attributes of the sort-key-expressions must not exceed 3.5 gigabytes.

ASC
Specifies that the values of the sort-key-expression are used in ascending order.

DESC
Specifies that the values of the sort-key-expression are used in descending order.

NULLS FIRST
Specifies that the window ordering considers null values before all non-null values in the sort
order.

NULLS LAST
Specifies that the window ordering considers null values after all non-null values in the sort order.

186 IBM i: Db2 for i SQL Reference

ORDER OF table-designator
Specifies that the same ordering used in table-designator should be applied to the result table
of the subselect. There must be a table reference matching table-designator in the FROM
clause of the subselect that specifies this clause and the table reference must identify a nested-
table-expression or common-table-expression. The subselect (or fullselect) corresponding to the
specified table-designator must include an ORDER BY clause that is dependent on the data. The
ordering that is applied is the same as if the columns of the ORDER BY clause in the nested
subselect (or fullselect) were included in the outer subselect (or fullselect), and these columns
were specified in place of the ORDER OF clause.

OLAP-aggregate-function
Specifies a function that will compute a single value from the OLAP window.
FIRST_VALUE or LAST_VALUE

Returns the first or last value in an OLAP window.

If IGNORE NULLS is specified, all rows where the expression value is the null value are not
considered in the calculation.
FIRST_VALUE

The result is the expression value for the first row in an OLAP window.
LAST_VALUE

The result is the expression value for the last row in an OLAP window.
The data type of the result is the data type of expression. The result can be null. If IGNORE NULLS
is specified and all values in the window are null, the result is the null value.

NTH_VALUE
Returns the expression value for the nth row in an OLAP window.

n-expression must be an integer constant or variable with a value greater than zero.

If IGNORE NULLS is specified, all rows where the expression value is the null value are not
considered in the calculation.

If FROM FIRST is specified, the nth value is computed counting forward from the beginning of the
OLAP window.

If FROM LAST is specified, the nth value is computed counting backward from the end of the OLAP
window.

The result is the nth value within the OLAP window as determined by n-expression.

The data type of the result is the data type of expression. The result can be null. If n-expression is
null, then the result is the null value. If IGNORE NULLS is specified and all values in the window
are null, the result is the null value.

FIRST_VALUE(expression) is equivalent to NTH_VALUE(expression, 1) FROM FIRST.

LAST_VALUE(expression) is equivalent to NTH_VALUE(expression, 1) FROM LAST.

RATIO_TO_REPORT
Returns the ratio of an argument to the sum of the arguments in an OLAP window. For example,
the following functions are equivalent:

RATIO_TO_REPORT(expression) OVER (...)
CAST(expression AS DECFLOAT(34)) /
 SUM(CAST(expression as DECFLOAT(34))) OVER(...)

The argument must be an expression that is castable to DECFLOAT(34). The division is performed
using DECFLOAT(34).

The data type of the result is DECFLOAT(34). If the argument can be null, the result can be null; if
the argument is null, the result is the null value.

Chapter 2. Language elements 187

window-aggregation-group-clause
The aggregation group of a given row is a set of rows that is defined in relation to the given row (in the
ordering of the rows in the partition of the given row). window-aggregation-group-clause specifies the
aggregation group. If this clause is not specified and a window-order-clause is also not specified, the
aggregation group consists of all rows of the window partition. The aggregation group of all rows of the
window partition can be explicitly specified using the RANGE or ROWS clauses.
If window-order-clause is specified but window-aggregation-group-clause is not specified, the window
aggregation group consists of all rows that precede a given row of the partition of the given row or all
rows that are peers of the given row in the window ordering of the window partition that is defined by
the window-order-clause
ROW

Specifies that the aggregation group is defined by counting rows.
RANGE

Specifies that the aggregation group is defined by an offset from a sort key.
group-start

Specifies the starting point for the aggregation group. The aggregation group end is the CURRENT
ROW. Specifying group-start is equivalent to specifying group-between as BETWEEN group-start
AND CURRENT ROW.

group-between
Specifies that the aggregation group start and end based on either ROWS or RANGE.

group-end
Specifies the ending point for the aggregation group. The aggregation group start is the CURRENT
ROW. Specifying group-end is equivalent to specifying group-between as BETWEEN CURRENT
ROW AND group-end.

UNBOUNDED PRECEDING
Specifies that the entire partition that precedes the current row is included in the aggregation
group. This can be specified with either the ROWS or RANGE clauses. Including the entire partition
that precedes the current row can also be specified with multiple sort-key-expressions in the
window-order-clause.

UNBOUNDED FOLLOWING
Specifies that the entire partition that follows the current row is included in the aggregation group.
This can be specified with either the ROWS or RANGE clauses. Including the entire partition that
follows the current row can also be specified with multiple sort-key-expressions in the window-
order-clause.

CURRENT ROW
Specifies that the aggregation group starts or ends based on the current row. If ROWS is specified,
the current row is the aggregation group boundary. If RANGE is specified, the aggregation
group boundary includes the set of rows with the values specified for the sort-key-expression
as the current row. This clause cannot be specified in group-bound-2 if group-bound-1 specifies
unsigned-constant FOLLOWING.

unsigned-constant PRECEDING
Specifies either the range or the number of rows that precede the current row. If ROWS is
specified, unsigned-constant must be zero or a positive integer or positive bigint that indicates a
number of rows. If RANGE is specified, the data type of unsigned-constant must be comparable to
the data type of the sort-key-expression of the window-order-clause. Only one sort-key-expression
is allowed, and the data type of sort-key-expression must allow subtraction. This clause cannot be
specified in group-bound-2 if group-bound-1 is CURRENT ROW or unsigned-constant FOLLOWING.

unsigned-constant FOLLOWING
Specifies either the range or the number of rows that follow the current row. If ROWS is specified,
unsigned-constant must be zero or a positive integer or positive bigint that indicates a number
of rows. If RANGE is specified, the data type of unsigned-constant must be comparable to the
data type of the sort-key-expression of the window-order-clause. Only one sort-key-expression is
allowed, and the data type of sort-key-expression must allow addition.

188 IBM i: Db2 for i SQL Reference

Notes
Comparisons: Partitioning and ordering are performed in accordance with the comparison rules
described in “Assignments and comparisons” on page 89.

Collating sequence: If a collating sequence other than *HEX is in effect when the statement that contains
the OLAP expression is executed, and the partitioning-expressions or the sort-key-expressions are SBCS
data, mixed data, or Unicode data, then the results are determined using the weighted values. The
weighted values are derived by applying the collating sequence to the partitioning-expressions and the
sort-key-expressions.

Column masks: If a column that is referenced in the partitioning-expression or the sort-key-expression of
the OLAP specification is defined to have a column mask, the column mask is not applied.

Restrictions: An OLAP specification is not allowed if the query specifies:

• a distributed table,
• a table with a read trigger, or
• a logical file built over multiple physical file members.

Determinism: An OLAP specification is non-deterministic.

Syntax alternatives:

• DENSERANK can be specified in place of DENSE_RANK.
• ROWNUMBER can be specified in place of ROW_NUMBER.
• IGNORE NULLS or RESPECT NULLS can be specified as a string-constant final argument to LAG, LEAD,

FIRST_VALUE, and LAST_VALUE.

Examples

• Display the ranking of employees, in order by surname, according to their total salary (based on salary
plus bonus) that have a total salary more than $30,000:

 SELECT EMPNO, LASTNAME, FIRSTNME, SALARY+BONUS AS TOTAL_SALARY,
 RANK() OVER (ORDER BY SALARY+BONUS DESC) AS RANK_SALARY
 FROM EMPLOYEE
 WHERE SALARY+BONUS > 30000
 ORDER BY LASTNAME

Note that if the result is to be ordered by the ranking, then replace ORDER BY LASTNAME with:

 ORDER BY RANK_SALARY

or:

 ORDER BY RANK() OVER (ORDER BY SALARY+BONUS DESC)

• Rank the departments according to their average total salary:

 SELECT WORKDEPT, AVG(SALARY+BONUS) AS AVG_TOTAL_SALARY,
 RANK() OVER (ORDER BY AVG(SALARY+BONUS) DESC) AS RANK_AVG_SAL
 FROM EMPLOYEE
 GROUP BY WORKDEPT
 ORDER BY RANK_AVG_SAL

• Rank the employees within a department according to their education level. Having multiple employees
with the same rank in the department should not increase the next ranking value:

 SELECT WORKDEPT, EMPNO, LASTNAME, FIRSTNME, EDLEVEL,
 DENSE_RANK() OVER (PARTITION BY WORKDEPT ORDER BY EDLEVEL DESC)
 AS RANK_EDLEVEL
 FROM EMPLOYEE
 ORDER BY WORKDEPT, LASTNAME

• Provide row numbers in the result of a query:

Chapter 2. Language elements 189

 SELECT ROW_NUMBER() OVER (ORDER BY WORKDEPT, LASTNAME) AS NUMBER,
 LASTNAME, SALARY
 FROM EMPLOYEE
 ORDER BY WORKDEPT, LASTNAME

• List the top five wage earners:

 SELECT EMPNO, LASTNAME, FIRSTNME, TOTAL_SALARY, RANK_SALARY
 FROM (SELECT EMPNO, LASTNAME, FIRSTNME, SALARY+BONUS AS TOTAL_SALARY,
 RANK() OVER (ORDER BY SALARY+BONUS DESC) AS RANK_SALARY
 FROM EMPLOYEE) AS RANKED_EMPLOYEE
 WHERE RANK_SALARY < 6
 ORDER BY RANK_SALARY

Note that a nested table expression was used to first compute the result, including the rankings, before
the rank could be used in the WHERE clause. A common table expression could also have been used.

• Compute the top 3 stock prices for stock ABC using NTH_VALUE:

SELECT Symbol, StockDate, Price,
 FIRST_VALUE(Price) OVER (PARTITION BY Symbol ORDER BY StockDate) AS FIRST_PRICE,
 NTH_VALUE(Price, 2) OVER (PARTITION BY Symbol ORDER BY StockDate) AS SECOND_PRICE,
 NTH_VALUE(Price, 3) OVER (PARTITION BY Symbol ORDER BY StockDate) AS THIRD_PRICE
FROM DailyStockData
WHERE StockDate BETWEEN CURRENT DATE - 1 MONTH AND CURRENT DATE
 AND Symbol = 'ABC'

• Compute the quartile rank using NTILE:

SELECT proc_id, total_sales,
 NTILE(4) OVER (ORDER BY total_sales DESC) AS Quartile
FROM Sales

• Calculate the 30 day moving average for the stocks 'ABC' and 'XYZ' during 2005:

WITH V1(SYMBOL, TRADINGDATE, MOVINGAVG30DAY) AS
(
 SELECT SYMBOL, TRADINGDATE,
 AVG(CLOSINGPRICE) OVER (PARTITION BY SYMBOL
 ORDER BY TRADINGDATE
 ROWS BETWEEN 29 PRECEDING AND CURRENT ROW)
 FROM DAILYSTOCKDATA
 WHERE SYMBOL IN ('ABC', 'XYZ')
 AND TRADINGDATE BETWEEN DATE('2005-01-01') - 2 MONTHS AND '2005-12-31'
)
SELECT SYMBOL, TRADINGDATE, MOVINGAVG30DAY
 FROM V1
 WHERE TRADINGDATE BETWEEN '2005-01-01' AND '2005-12-31'
 ORDER BY SYMBOL, TRADINGDATE

• Display the difference between each employee's salary and the median of the salaries of that
employee's department:

SELECT EMPNO, WORKDEPT, SALARY,
 SALARY - (MEDIAN(SALARY) OVER (PARTITION BY WORKDEPT))
FROM EMPLOYEE
ORDER BY WORKDEPT

• Display the difference between each employee's salary and the 90th percentile of salaries within that
employee's department:

SELECT EMPNO, WORKDEPT, SALARY,
 SALARY - (PERCENTILE_CONT(0.9) WITHIN GROUP (ORDER BY SALARY)
 OVER (PARTITION BY WORKDEPT))
FROM EMPLOYEE
ORDER BY WORKDEPT

• Find the cumulative distribution and the relative percentile rank of each employee's salary within their
department.

SELECT EMPNO, WORKDEPT, SALARY,
 CAST(CUME_DIST() OVER (PARTITION BY WORKDEPT ORDER BY SALARY) AS DECIMAL(4,3))
 AS CUME_DIST,

190 IBM i: Db2 for i SQL Reference

 CAST(PERCENT_RANK() OVER (PARTITION BY WORKDEPT ORDER BY SALARY)
 AS DECIMAL(4,3))
 AS PERCENT_RANK
FROM EMP
ORDER BY WORKDEPT, SALARY

Chapter 2. Language elements 191

ROW CHANGE expression
A ROW CHANGE expression returns a token or a timestamp that represents the last change to a row.

ROW CHANGE TIMESTAMP

TOKEN

FOR table-designator

ROW CHANGE TIMESTAMP

Specifies that a timestamp is returned that represents the last time when a row was changed. If the
row has not been changed, the result is the time that the initial value was inserted. If the table does
not have a row change timestamp, this expression is not allowed.

ROW CHANGE TOKEN

Specifies that a token that is a BIGINT value is returned that represents a relative point in the
modification sequence of a row. If the row has not been changed, the result is a token that represents
when the initial value was inserted.

FOR table-designator

Specifies a table designator of the subselect. For more information about table designators, see
“Table designators” on page 133. In SQL naming, the table name may be qualified. In system naming,
the table name cannot be qualified. The table designator cannot identify a table function or a data-
change-table-reference. If the table designator identifies a view or a nested table expression, the
expression returns the ROW CHANGE TOKEN or ROW CHANGE TIMESTAMP of its base table.

The result can be the null value. These expressions are not deterministic.

Example

• Find all rows that have been changed in the last day:

 SELECT *
 FROM ORDERS
 WHERE ROW CHANGE TIMESTAMP FOR ORDERS > CURRENT TIMESTAMP - 24 HOURS

192 IBM i: Db2 for i SQL Reference

Sequence reference
A sequence is referenced by using the NEXT VALUE and PREVIOUS VALUE expressions specifying the
name of the sequence.

sequence-reference
nextval-expression

prevval-expression

nextval-expression
NEXT VALUE FOR sequence-name

prevval-expression
PREVIOUS VALUE FOR sequence-name

A sequence is referenced by using the NEXT VALUE and PREVIOUS VALUE expressions specifying the
name of the sequence.

nextval-expression
A NEXT VALUE expression generates and returns the next value for a specified sequence. A new value
is generated for a sequence when a NEXT VALUE expression specifies the name of the sequence.
However, if there are multiple instances of a NEXT VALUE expression specifying the same sequence
name within a query, the sequence value is incremented only once for each row of the result, and
all instances of NEXT VALUE return the same value for a row of the result. NEXT VALUE is a non-
deterministic expression with external actions since it causes the sequence value to be incremented.

When the next value for the sequence is generated, if the maximum value for an ascending sequence
or the minimum value for a descending sequence of the logical range of the sequence is exceeded and
the NO CYCLE option is in effect, then an error is returned.

The data type and length attributes of the result of a NEXT VALUE expression are the same as for the
specified sequence. The result cannot be null.

prevval-expression
A PREVIOUS VALUE expression returns the most recently generated value for the specified sequence
for a previous statement within the current application process. This value can be repeatedly
referenced by using PREVIOUS VALUE expressions and specifying the name of the sequence. There
may be multiple instances of PREVIOUS VALUE expressions specifying the same sequence name
within a single statement and they all return the same value.

A PREVIOUS VALUE expression can be used only if a NEXT VALUE expression specifying the same
sequence name has already been referenced in the current application process.

The data type and length attributes of the result of a PREVIOUS VALUE expression are the same as for
the specified sequence. The result cannot be null.

sequence-name
Identifies the sequence to be referenced. The sequence-name must identify a sequence that exists at
the current server.

Notes
Authorization: If a sequence is referenced in a statement, the privileges held by the authorization ID of
the statement must include at least one of the following:

• For the sequence identified in the statement,

– The USAGE privilege on the sequence, and
– The system authority *EXECUTE on the library containing the sequence

• Database administrator authority

Chapter 2. Language elements 193

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Sequence.

Generating values with NEXT VALUE: When a value is generated for a sequence, that value is consumed,
and the next time that a value is requested, a new value will be generated. This is true even when the
statement containing the NEXT VALUE expression fails or is rolled back.

Scope of PREVIOUS VALUE: The PREVIOUS VALUE value persists until the next value is generated for
the sequence in the current session, the sequence is dropped or altered, or the application session ends.
The value is unaffected by COMMIT or ROLLBACK statements. The value of PREVIOUS VALUE cannot be
directly set and is a result of executing the NEXT VALUE expression for the sequence.

A technique commonly used, especially for performance, is for an application or product to manage a set
of connections and route transactions to an arbitrary connection. In these situations, the availability of the
PREVIOUS VALUE for a sequence should only be relied on until the end of the transaction.

Use as a Unique Key Value: The same sequence number can be used as a unique key value in two
separate tables by referencing the sequence number with a NEXT VALUE expression for the first row (this
generates the sequence value), and a PREVIOUS VALUE expression for the other rows (the instance of
PREVIOUS VALUE refers to the sequence value most recently generated in the current session), as shown
below:

 INSERT INTO ORDER (ORDERNO, CUSTNO)
 VALUES (NEXT VALUE FOR ORDER_SEQ, 123456)

 INSERT INTO LINE_ITEM (ORDERNO, PARTNO, QUANTITY)
 VALUES (PREVIOUS VALUE FOR ORDER_SEQ, 987654, 1)

Allowed use of NEXT VALUE and PREVIOUS VALUE: NEXT VALUE and PREVIOUS VALUE expressions
can be specified in the following places:

• Within the select-clause of a SELECT statement or SELECT INTO statement as long as the statement
does not contain a DISTINCT keyword, a GROUP BY clause, an ORDER BY clause, a UNION keyword, an
INTERSECT keyword, or EXCEPT keyword

• Within a VALUES clause of a fullselect (NEXT VALUE is not allowed)
• Within a VALUES clause of an INSERT statement
• Within the select-clause of the fullselect of an INSERT statement
• Within the SET clause of a searched or positioned UPDATE statement, though NEXT VALUE cannot be
specified in the select-clause of the subselect of an expression in the SET clause

A PREVIOUS VALUE expression can be specified anywhere within a SET clause of an UPDATE statement,
but a NEXT VALUE expression can be specified only in a SET clause if it is not within the select-clause of
the fullselect of an expression. For example, the following uses of sequence expressions are supported:

 UPDATE T SET C1 = (SELECT PREVIOUS VALUE FOR S1 FROM T)

 UPDATE T SET C1 = PREVIOUS VALUE FOR S1

 UPDATE T SET C1 = NEXT VALUE FOR S1

The following use of a sequence expression is not supported:

 UPDATE T SET C1 = (SELECT NEXT VALUE FOR S1 FROM T)

• Within an assignment-statement, except within the select-clause of the fullselect of an expression. The
following uses of sequence expressions are supported:

 SET :ORDERNUM = NEXT VALUE FOR INVOICE

 SET :ORDERNUM = PREVIOUS VALUE FOR INVOICE

The following use of a sequence expression is not supported:

194 IBM i: Db2 for i SQL Reference

 SET :X = (SELECT NEXT VALUE FOR S1 FROM T)

 SET :X = (SELECT PREVIOUS VALUE FOR S1 FROM T)

• Within a VALUES or VALUES INTO statement though not within the select-clause of the fullselect of an
expression

• Within the SQL-routine-body of a CREATE PROCEDURE statement
• Within the SQL-trigger-body of a CREATE TRIGGER statement (PREVIOUS VALUE is not allowed)
• Within the argument list of a CALL statement.
• Within a default expression for CREATE PROCEDURE or CREATE FUNCTION. A function with a default

containing NEXT VALUE or PREVIOUS VALUE can only be used in location where the NEXT VALUE or
PREVIOUS VALUE can be specified directly.

Restrictions on the use of NEXT VALUE and PREVIOUS VALUE: NEXT VALUE and PREVIOUS VALUE
expressions cannot be specified in the following places:

• Within a materialized query table definition in a CREATE TABLE or ALTER TABLE statement
• Within a CHECK constraint
• Within a view definition
• Within a CREATE INDEX statement
• Within the SQL-routine-body of a CREATE FUNCTION statement

In addition, the NEXT VALUE expression cannot be specified in the following places:

• CASE expression
• Parameter list of an aggregate function
• Subquery in a context other than those explicitly allowed
• SELECT statement for which the outer SELECT contains a DISTINCT operator or a GROUP BY clause
• SELECT statement for which the outer SELECT is combined with another SELECT statement using the

UNION, INTERSECT, or EXCEPT operator
• SELECT statement that contains an OFFSET clause.
• Join condition of a join
• Nested table expression
• Parameter list of a table function
• select-clause of the fullselect of an expression in the SET clause of an UPDATE statement
• WHERE clause of the outermost SELECT statement or a DELETE, or UPDATE statement
• ORDER BY clause of the outermost SELECT statement
• IF, WHILE, DO . . . UNTIL, or CASE statements in an SQL routine

Using sequence expressions with a cursor: Normally, a SELECT NEXT VALUE FOR ORDER_SEQ FROM T1
would produce a result table containing as many generated values from the sequence ORDER_SEQ as the
number of rows retrieved from T1. A reference to a NEXT VALUE expression in the SELECT statement of a
cursor refers to a value that is generated for a row of the result table. A sequence value is generated for a
NEXT VALUE expression each time a row is retrieved.

If blocking is done at a client in a DRDA environment, sequence values may get generated at the Db2
server before the processing of an application's FETCH statement. If the client application does not
explicitly FETCH all the rows that have been retrieved from the database, the application will never see all
those generated values of the sequence (as many as the rows that were not FETCHed). These values may
constitute a gap in the sequence.

A reference to the PREVIOUS VALUE expression in a SELECT statement of a cursor is evaluated at OPEN
time. In other words, a reference to the PREVIOUS VALUE expression in the SELECT statement of a
cursor refers to the last value generated by this application process for the specified sequence prior to
the opening of the cursor. Once evaluated at OPEN time, the value returned by PREVIOUS VALUE within

Chapter 2. Language elements 195

the body of the cursor will not change from FETCH to FETCH, even if NEXT VALUE is invoked within the
body of the cursor. After the cursor is closed, the value of PREVIOUS VALUE will be the last NEXT VALUE
generated by the application process.

Syntax alternatives: The keywords NEXTVAL and PREVVAL can be used as alternatives for NEXT VALUE
and PREVIOUS VALUE respectively.

Examples

• Assume that there is a table called ORDER, and that a sequence called ORDER_SEQ is created as
follows:

 CREATE SEQUENCE ORDER_SEQ
 START WITH 1
 INCREMENT BY 1
 NO MAXVALUE
 NO CYCLE
 CACHE 24

Following are some examples of how to generate an ORDER_SEQ sequence number with a NEXT VALUE
expression:

 INSERT INTO ORDER (ORDERNO, CUSTNO)
 VALUES (NEXT VALUE FOR ORDER_SEQ, 123456)

 UPDATE ORDER
 SET ORDERNO = NEXT VALUE FOR ORDER_SEQ
 WHERE CUSTNO = 123456

 VALUES NEXT VALUE FOR ORDER
 INTO :HV_SEQ

196 IBM i: Db2 for i SQL Reference

XMLCAST specification
The XMLCAST specification returns the cast operand (the first operand) cast to the XML data-type.

XMLCAST (expression

NULL

parameter-marker

AS data-type)

data-type
built-in-type

distinct-type

built-in-type
XML

ccsid-clause

ccsid-clause
CCSID integer

normalize-clause

normalize-clause
NOT NORMALIZED

NORMALIZED

expression
Specifies that the cast operand is an expression other than NULL or a parameter marker. It must have
a data type of XML. The result is the argument value converted to the specified XML target data type
and CCSID.

NULL
Specifies that the cast operand is the null value. The result is a null value that has the XML data type.

parameter-marker
A parameter marker (specified as a question mark character) is normally considered an expression,
but is documented separately in this case because it has a special meaning. If the cast operand is a
parameter-marker, the XML data type is considered a promise that the replacement will be assignable
to the XML data type. Such a parameter marker is called a typed parameter marker. Typed parameter
markers will be treated like any other typed value for the purpose of DESCRIBE of a select list or for
column assignment.

data-type
Specifies the data type of the result. The data type must be XML or a distinct type based on XML.

If the CCSID attribute is not specified, then the CCSID value as specified by the
SQL_XML_DATA_CCSID QAQQINI setting is used. See “XML Values” on page 80 for more information.

If the CCSID attribute is specified, the data will be converted to that CCSID. If NORMALIZED is
specified, the data will be normalized.

Example

• Create a null XML value:

VALUES(XMLCAST(NULL AS XML))

Chapter 2. Language elements 197

Predicates
A predicate specifies a condition that is true, false, or unknown about a given value, row, or group.

The following rules apply to all types of predicates:

• Predicates are evaluated after the expressions that are operands of the predicate.
• All values specified in the same predicate must be compatible.
• The value of a variable may be null (that is, the variable may have a negative indicator variable).
• The CCSID conversion of operands of predicates involving two or more operands are done according to

“Conversion rules for comparison:” on page 101.
• Use of a DataLink value is limited to the NULL predicate.

Row-value expression: The operand of several predicates (basic, quantified, and IN) can be a row-value-
expression:

(

,

expression)

A row-value-expression returns a single row that consists of one or more column values. The values
can be specified as a list of expressions. The number of columns that are returned by the row-value-
expression is equal to the number of expressions that are specified in the list.

198 IBM i: Db2 for i SQL Reference

Basic predicate
A basic predicate compares two values or compares a set of values with another set of values.

expression =

 <>

 <

 >

 <=

 >=

expression

row-value-expression =

 <>

row-value-expression

(fullselect) =

 <>

row-value-expression

row-value-expression =

 <>

(fullselect)

Note:

Other comparison operators are also supported.48

Notes
When a single expression is specified on the left side of the operator, another expression must be
specified on the right side. The data types of the corresponding expressions must be compatible. The
value of the expression on the left side is compared with the value of the expression on the right side. If
the value of either operand is null, the result of the predicate is unknown. Otherwise the result is either
true or false.

When a row-value-expression is specified on the left side of the operator (= or <>) and another row-value-
expression is specified on the right side of the operator, both row-value-expressions must have the
same number of value expressions. The data types of the corresponding expressions of the row-value-
expressions must be compatible. The value of each expression on the left side is compared with the value
of its corresponding expression on the right side.

When a row-value-expression is specified and a fullselect is also specified:

• SELECT * is not allowed in the outermost select lists of the fullselect.
• The result table of the fullselect must have the same number of columns as the row-value-expression.

The data types of the corresponding expressions of the row-value-expression and the fullselect must
be compatible. The value of each expression on the left side is compared with the value of its
corresponding expression on the right side.

The result of the predicate depends on the operator:

48 The following forms of the comparison operators are also supported in basic and quantified predicates: !
=, !<, !>, ¬=,¬<, and¬> are supported. All these product-specific forms of the comparison operators are
intended only to support existing SQL statements that use these operators and are not recommended for
use when writing new SQL statements.

Some keyboards must use the hex values for the not (¬) symbol. The hex value varies and is dependent
on the keyboard that is used. A not sign (¬) or the character that must be used in its place in certain
countries or regions, can cause parsing errors in statements passed from one database server to another.
The problem occurs if the statement undergoes character conversion with certain combinations of source
and target CCSIDs. To avoid this problem, substitute an equivalent operator for any operator that includes a
not sign. For example, substitute '<>' for '¬=', '<=' for '¬>', and '>=' for '¬<'.

Chapter 2. Language elements 199

• If the operator is =, the result of the predicate is:

– True if all pairs of corresponding value expressions evaluate to true.
– False if any one pair of corresponding value expressions evaluates to false.
– Otherwise, unknown (that is, if at least one comparison of corresponding value expressions is

unknown because of a null value and no pair of corresponding value expressions evaluates to false).
• If the operator is <>, the result of the predicate is:

– True if any one pair of corresponding value expressions evaluates to false.
– False if all pairs of corresponding value expressions evaluate to true.
– Otherwise, unknown (that is, if at least one comparison of corresponding value expressions is

unknown because of a null value and no pair of corresponding value expressions evaluates to true).

If the corresponding operands of the predicate are SBCS data, mixed data, or Unicode data, and if the
collating sequence in effect at the time the statement is executed is not *HEX, then the comparison of
the operands is performed using weighted values for the operands. The weighted values are based on the
collating sequence.

For values x and y:

Predicate Is true if and only if…

x = y x is equal to y

x <> y x is not equal to y

x < y x is less than y

x > y x is greater than y

x >= y x is greater than or equal to y

x <= y x is less than or equal to y

Examples
Example 1: Four examples of comparison predicates.

 EMPNO = '528671'

 PRTSTAFF <> :VAR1

 SALARY + BONUS + COMM < 20000

 SALARY > (SELECT AVG(SALARY)
 FROM EMPLOYEE)

Example 2: List the name, first name, and salary of the employee who is responsible for the 'OP1000'
project.

 SELECT LASTNAME, FIRSTNME, SALARY
 FROM EMPLOYEE X
 WHERE EMPNO = (SELECT RESPEMP
 FROM PROJA1 Y
 WHERE MAJPROJ = 'OP1000')

200 IBM i: Db2 for i SQL Reference

Quantified predicate
A quantified predicate compares a value or values with a set of values.

expression =

 <>

 <

 >

 <=

 >=

1
SOME

ANY

ALL

(fullselect)

row-value-expression = SOME

ANY

(fullselect)

row-value-expression <> ALL (fullselect)

Notes:
1 Other comparison operators are also supported. 48

When expression is specified, the fullselect must return a single result column. The fullselect can return
any number of values, whether null or not null. The result depends on the operator that is specified:

• When ALL is specified, the result of the predicate is:

– True if the result of the fullselect is empty, or if the specified relationship is true for every value
returned by the fullselect.

– False if the specified relationship is false for at least one value returned by the fullselect.
– Unknown if the specified relationship is not false for any values returned by the fullselect and at least

one comparison is unknown because of a null value.
• When SOME or ANY is specified, the result of the predicate is:

– True if the specified relationship is true for at least one value returned by the fullselect.
– False if the result of the fullselect is empty, or if the specified relationship is false for every value

returned by the fullselect.
– Unknown if the specified relationship is not true for any of the values returned by the fullselect and at

least one comparison is unknown because of a null value.

When row-value-expression is specified, the number of result columns returned by the fullselect must
be the same as the number of value expressions specified by row-value-expression. The fullselect can
return any number of rows of values. The data types of the corresponding expressions of the row value
expressions must be compatible. The value of each expression from row-value-expression is compared
with the value of the corresponding result column from the fullselect. SELECT * is not allowed in the
outermost select lists of the fullselect. The value of the predicate depends on the operator that is
specified:

• When ALL is specified, the result of the predicate is:

– True if the result of the fullselect is empty or if the specified relationship is true for every row returned
by fullselect.

– False if the specified relationship is false for at least one row returned by the fullselect.
– Unknown if the specified relationship is not false for any row returned by the fullselect and at least

one comparison is unknown because of a null value.
• When SOME or ANY is specified, the result of the predicate is:

– True if the specified relationship is true for at least one row returned by the fullselect.
– False if the result of the fullselect is empty or if the specified relationship is false for every row

returned by the fullselect.

Chapter 2. Language elements 201

– Unknown if the specified relationship is not true for any of the rows returned by the fullselect and at
least one comparison is unknown because of a null value.

If the corresponding operands of the predicate are SBCS data, mixed data, or Unicode data, and if the
collating sequence in effect at the time the statement is executed is not *HEX, then the comparison of
the operands is performed using weighted values for the operands. The weighted values are based on the
collating sequence.

Examples
Table TBLA

COLA

 1
 2
 3
 4
 null

Table TBLB

COLB

 2
 3

Example 1

 SELECT * FROM TBLA WHERE COLA = ANY(SELECT COLB FROM TBLB)

Results in 2,3. The fullselect returns (2,3). COLA in rows 2 and 3 equals at least one of these values.

Example 2

 SELECT * FROM TBLA WHERE COLA > ANY(SELECT COLB FROM TBLB)

Results in 3,4. The fullselect returns (2,3). COLA in rows 3 and 4 is greater than at least one of these
values.

Example 3

 SELECT * FROM TBLA WHERE COLA > ALL(SELECT COLB FROM TBLB)

Results in 4. The fullselect returns (2,3). COLA in row 4 is the only one that is greater than both these
values.

Example 4

 SELECT * FROM TBLA WHERE COLA > ALL(SELECT COLB FROM TBLB WHERE COLB<0)

Results in 1,2,3,4 and null. The fullselect returns no values. Thus, the result of the predicate is true for all
rows in TBLA.

Example 5

 SELECT * FROM TBLA WHERE COLA > ANY(SELECT COLB FROM TBLB WHERE COLB<0)

Results in an empty result table. The fullselect returns no values. Thus, the result of the predicate is false
for all rows in TBLA.

202 IBM i: Db2 for i SQL Reference

BETWEEN predicate
The BETWEEN predicate compares a value with a range of values.

expression

NOT

BETWEEN expression AND expression

If the data types of the operands are not the same, all values are converted to the data type that would
result by applying the “Rules for result data types” on page 105.

If the operands of the BETWEEN predicate are strings with different CCSIDs, operands are converted as if
the below logically-equivalent search conditions were specified.

The BETWEEN predicate:

 value1 BETWEEN value2 AND value3

is logically equivalent to the search condition:

 value1 >= value2 AND value1 <= value3

The BETWEEN predicate:

 value1 NOT BETWEEN value2 AND value3

is logically equivalent to the search condition:

 NOT(value1 BETWEEN value2 AND value3)

If the operands of the predicate are SBCS data, mixed data, or Unicode data, and if the collating sequence
in effect at the time the statement is executed is not *HEX, then the comparison of the operands is
performed using weighted values for the operands. The weighted values are based on the collating
sequence.

Examples

 EMPLOYEE.SALARY BETWEEN 20000 AND 40000

 SALARY NOT BETWEEN 20000 + :HV1 AND 40000

Chapter 2. Language elements 203

DISTINCT predicate
The DISTINCT predicate compares a value with another value.

expression IS

NOT

DISTINCT FROM expression

When the predicate is IS DISTINCT, the result of the predicate is true if the comparison of the expressions
evaluates to true. Otherwise, the result of the predicate is false. The result cannot be unknown.

When the predicate IS NOT DISTINCT FROM, the result of the predicate is true if the comparison of the
expressions evaluates to true (null values are considered equal to null values). Otherwise, the result of the
predicate is false. The result cannot be unknown.

The DISTINCT predicate:

 value1 IS NOT DISTINCT FROM value2

is logically equivalent to the search condition:

 (value1 IS NOT NULL AND value2 IS NOT NULL AND value1 = value2)
 OR
 (value1 IS NULL AND value2 IS NULL)

The DISTINCT predicate:

 value1 IS DISTINCT FROM value2

is logically equivalent to the search condition:

NOT (value1 IS NOT DISTINCT FROM value2)

If the operands of the DISTINCT predicate are strings with different CCSIDs, operands are converted as if
the above logically-equivalent search conditions were specified.

If the operands of the predicate are SBCS data, mixed data, or Unicode data, and if the collating sequence
in effect at the time the statement is executed is not *HEX, then the comparison of the operands is
performed using weighted values for the operands. The weighted values are based on the collating
sequence.

Example

Assume that table T1 exists and it has a single column C1, and three rows with the following values for
C1: 1, 2, null. The following query produces the following results:

 SELECT * FROM T1
 WHERE C1 IS DISTINCT FROM :HV:IND

C1 :HV:IND Result

1 2 True

2 2 False

1 Null True

Null Null False

The following query produces the following results:

 SELECT * FROM T1
 WHERE C1 IS NOT DISTINCT FROM :HV:IND

204 IBM i: Db2 for i SQL Reference

C1 :HV:IND Result

1 2 False

2 2 True

1 Null False

Null Null True

Chapter 2. Language elements 205

EXISTS predicate
The EXISTS predicate tests for the existence of certain rows.

EXISTS (fullselect)

The fullselect may specify any number of columns, and

• The result is true only if the number of rows specified by the fullselect is not zero.
• The result is false only if the number of rows specified by the fullselect is zero.
• The result cannot be unknown.

The values returned by the fullselect are ignored.

Example

 EXISTS (SELECT *
 FROM EMPLOYEE WHERE SALARY > 60000)

206 IBM i: Db2 for i SQL Reference

IN predicate
The IN predicate compares a value or values with a set of values.

expression1

NOT

IN (fullselect1)

(

,

expression2)

expression3

row-value-expression

NOT

IN (fullselect2)

When expression1 is specified, the IN predicate compares a value with a set of values. When fullselect1 is
specified, the fullselect must return a single result column, and can return any number of values, whether
null or not null. The data type of expression1 and the data type of the result column of the fullselect1,
expression2, or expression3 must be compatible. Each variable must identify a structure or variable that is
described in accordance with the rule for declaring host structures or variables.

When a row-value-expression is specified, the IN predicate compares values with a collection of values.

• SELECT * is not allowed in the outermost select list of fullselect2.
• The result table of the fullselect2 must have the same number of columns as row-value-expression.

The data types of the corresponding expressions of row-value-expression and of its the corresponding
result column of fullselect2 must be compatible. The value of each expression in row-value-expression is
compared with the value of its corresponding result column of fullselect2.

The value of the predicate depends on the operator that is specified:

• When the operator is IN, the result of the predicate is:

– True if at least one row returned from the fullselect2 is equal to the row-value-expression.
– False if the result of fullselect2 is empty or if no row returned from the fullselect2 is equal to the

row-value-expression.
– Otherwise, unknown (that is, if the comparison of row-value-expression to the row returned from

fullselect2 evaluates to unknown because of a null value for at least one row returned from fullselect2
and no row returned from fullselect2 is equal to the row-value-expression).

• When the operator is NOT IN, the result of the predicate is:

– True if the result of fullselect2 is empty or if the row-value-expression is not equal to any of the rows
returned by fullselect2.

– False if the row-value-expression is equal to at least one row returned by fullselect2.
– Otherwise, unknown (that is, if the comparison of row-value-expression to the row returned from

fullselect2 evaluates to unknown because of a null value for at least one row returned from fullselect2
and the comparison of row-value-expression to the row returned from fullselect2 is not true for any
row returned by fullselect2).

An IN predicate is equivalent to other predicates as follows:

IN predicate Equivalent predicate

expression IN (expression) expression = expression

expression IN (fullselect) expression = ANY (fullselect)

expression NOT IN (fullselect) expression <> ALL (fullselect)

Chapter 2. Language elements 207

IN predicate Equivalent predicate

expression IN (expression1, expression2, ...,
expressionn)

expression IN (SELECT * FROM R)

Where T is a table with a single row and R is a
temporary table formed by the following fullselect:

 SELECT expression1 FROM T
 UNION
 SELECT expression2 FROM T
 UNION
 .
 .
 .
 UNION
 SELECT expressionn FROM T

row-value-expression IN (fullselect) row-value-expression = SOME (fullselect)

row-value-expression IN (fullselect) row-value-expression = ANY (fullselect)

row-value-expression NOT IN (fullselect) row-value-expression <> ALL (fullselect)

If the operands of the IN predicate have different data types or attributes, the rules used to determine the
data type for evaluation of the IN predicate are those for UNION, UNION ALL, EXCEPT, and INTERSECT.
For a description, see “Rules for result data types” on page 105.

If the operands of the IN predicate are strings with different CCSIDs, the rules used to determine which
operands are converted are those for operations that combine strings. For a description, see “Conversion
rules for operations that combine strings” on page 110.

If the corresponding operands of the predicate are SBCS data, mixed data, or Unicode data, and if the
collating sequence in effect at the time the statement is executed is not *HEX, then the comparison of
the operands is performed using weighted values for the operands. The weighted values are based on the
collating sequence.

Examples

 DEPTNO IN ('D01', 'B01', 'C01')

 EMPNO IN(SELECT EMPNO FROM EMPLOYEE WHERE WORKDEPT = 'E11')

208 IBM i: Db2 for i SQL Reference

IS JSON predicate
The IS JSON predicate determines whether a value is in a JSON format with the specified attributes.

JSON-expression

FORMAT JSON

FORMAT BSON

IS JSON

IS NOT JSON

VALUE

ARRAY

OBJECT

SCALAR

WITHOUT UNIQUE
KEYS

WITH UNIQUE
KEYS

The result of the IS JSON predicate is true if the JSON-expression conforms to the JSON format
specified by the item type and the UNIQUE KEYS clause. The result is false if the JSON-expression
does not conform to the JSON format specified by the item type and the UNIQUE KEYS clause or if JSON-
expression is the empty string. If NOT is specified, the result is reversed. If the value of JSON-expression
is null, the result is unknown.

JSON-expression
An expression that returns a value that is a built-in string data type.

FORMAT JSON or FORMAT BSON
Specifies how JSON-expression is to be interpreted.
FORMAT JSON

JSON-expression contains JSON data. If JSON-expression is binary data, the data is interpreted as
UTF-8 or UTF-16. Binary data cannot be encoded using an EBCDIC CCSID.

FORMAT BSON
JSON-expression contains the BSON representation of JSON data. When FORMAT BSON is
specified, JSON-expression must be a binary string data type.

If the FORMAT clause is not specified and JSON-expression is a character or graphic string, JSON-
expression is treated as JSON. If the FORMAT clause is not specified and JSON-expression is a binary
string, JSON-expression is treated as BSON.

VALUE, ARRAY, OBJECT, or SCALAR
Specifies the type of JSON item to compare with the contents of JSON-expression.
VALUE

A valid JSON value of any of the types ARRAY, OBJECT, or SCALAR.
ARRAY

A valid JSON array which is a list of values separated by commas and enclosed in square brackets.
OBJECT

A valid JSON object which is a list of key:value pairs separated by commas and enclosed between
a left brace and right brace.

SCALAR
A valid JSON value that is not a JSON array or a JSON object. A scalar value can be a character
string, a number, or one of the JSON literals: null, true, or false.

WITHOUT UNIQUE KEYS or WITH UNIQUE KEYS
Specifies whether JSON-expression is considered to be valid JSON when keys are not unique. This
clause is ignored if the JSON item is not a JSON object.

Chapter 2. Language elements 209

WITHOUT UNIQUE KEYS
A JSON object with keys that are not unique is valid JSON.

WITH UNIQUE KEYS
A JSON object with keys that are not unique is not valid JSON.

Example
• Create a trigger to ensure only a valid JSON object can be inserted into a JSON_DATA column.

CREATE TRIGGER VALIDATE_JSON BEFORE INSERT ON T
 REFERENCING NEW AS N
 FOR EACH ROW
 IF N.JSON_DATA IS NOT JSON OBJECT THEN
 SIGNAL SQLSTATE '75007' SET MESSAGE_TEXT = 'Input is not valid JSON');
 END IF

210 IBM i: Db2 for i SQL Reference

JSON_EXISTS predicate
The JSON_EXISTS predicate determines whether JSON data contains a JSON value that can be located
using the specified sql-json-path-expression.

JSON_EXISTS (JSON-expression

FORMAT JSON

FORMAT BSON

, sql-json-path-expression

AS path-name

FALSE ON ERROR

TRUE

UNKNOWN

ERROR

ON ERROR

)

The result of the JSON_EXISTS predicate is true if at least one value can be located in JSON-expression
using the sql-json-path-expression. If sql-json-path-expression uses strict mode and an error occurs,
the result of the predicate is determined by the ON ERROR clause. The result of the JSON_EXISTS
predicate is unknown if JSON-expression is the null value.

JSON-expression
An expression that returns a built-in string data type. If it is a character or graphic data type, it must
contain correctly formatted JSON data. If it is a binary data type, it is interpreted according to the
explicit or implicit FORMAT clause.

FORMAT JSON or FORMAT BSON
Specifies how JSON-expression is to be interpreted.
FORMAT JSON

JSON-expression contains JSON data. If JSON-expression is binary data, the data is interpreted as
UTF-8 or UTF-16. Binary data cannot be encoded using an EBCDIC CCSID.

FORMAT BSON
JSON-expression contains the BSON representation of JSON data. When FORMAT BSON is
specified, JSON-expression must be a binary string data type.

If the FORMAT clause is not specified and JSON-expression is a character or graphic string, JSON-
expression is treated as JSON. If JSON-expression is a binary string, JSON-expression is treated as
BSON.

sql-json-path-expression
An expression that returns a value that is a built-in character or graphic string data type. The string is
interpreted as an SQL/JSON path expression and is used to locate a JSON value within the JSON data
specified by JSON-expression. For information on the content of an SQL/JSON path expression, see
“sql-json-path-expression” on page 213.
If the value of sql-json-path-expression is the empty string, a string of all blanks, or the null value, no
value can be located so the result of the predicate is false.

AS path-name
Specifies a name to be used to identify the sql-json-path-expression.

FALSE ON ERROR, TRUE ON ERROR, UNKNOWN ON ERROR, or ERROR ON ERROR
Specifies the result of the predicate when an error is encountered.
FALSE ON ERROR

The result is false if an error is encountered. This is the default.
TRUE ON ERROR

The result is true if an error is encountered.
UNKNOWN ON ERROR

The result is unknown if an error is encountered.

Chapter 2. Language elements 211

ERROR ON ERROR
An error is returned if an error is encountered.

Example
• Return rows for employees who do not have an emergency contact in their JSON_DATA column.

COALESCE causes null values to be treated as an empty string. The FALSE ON ERROR clause is used so
all rows that do not contain an emergency value will be returned.

SELECT empno, lastname FROM employee
 WHERE NOT JSON_EXISTS(COALESCE(json_data, ''), 'strict $.emergency' FALSE ON ERROR);

212 IBM i: Db2 for i SQL Reference

sql-json-path-expression
An SQL/JSON path expression defines access to the elements of a JSON text.

lax

strict

sql-json-accessor-expression

sql-json-accessor-expression

$

 . json-path-key-name

 . *

array-specifier

array-specifier

[

,

index-value

index-value to index-value

 *

]

index-value
number

last

last - number

lax or strict
Specifies the JSON path mode.
lax

Specifies that certain structural errors are tolerated when navigating the current JSON text. These
include:

• automatic unnesting of arrays
• automatic wrapping of scalar values to be a one element array if referenced as an array
• specification of nonexistent items, including array index values that are out of range

If an item does not exist, the SQL/JSON path expression returns an empty string which is handled
according to the current ON EMPTY clause.

strict
Specifies that an error is reported when the specified path expression cannot be used to navigate
the current JSON text. The error is handled according to the current ON ERROR clause.

sql-json-accessor-expression
$

Specifies the start of the context item to which the rest of the SQL/JSON path expression is
applied.

json-path-key-name
Specifies the key name of a key,value pair in the JSON text. If the name contains any special
characters, it must be delimited with " characters.

*
Specifies that the values for all the keys will be returned as an SQL/JSON sequence.

Chapter 2. Language elements 213

array-specifier
Specifies a list of one or more array index values to apply to an array. The values can be
specified as individual numbers or as ranges. They can be specified in any order and may contain
duplicates, but the result will be returned in document order without duplicates. If a range of
index values is specified and the from and to values are out of order, in lax mode all index values
in the range are used; in strict mode it is an error.
index-value

Specifies an array index value.
number

An unsigned integer constant representing an array element. The first element of the array
has an index of 0.

last
Indicates the last element of the array. This value cannot be specified as the first value in
an index range.

last - number
Indicates a position relative to the last element of the array.

*
Indicates all array elements are to be selected.

Example

• Consider the following text:

{ "isbn": "123-456-222", "author": [{ "name":"Jones"},{"name","Smith"}]}

Here are the results of using various SQL/JSON path expressions to access items in the JSON text.

Path Value

$.isbn "123-456-222"

$.author[0].name "Jones"

$.author[1].name "Smith"

214 IBM i: Db2 for i SQL Reference

LIKE predicate
The LIKE predicate searches for strings that have a certain pattern. The pattern is specified by a string in
which the underscore and percent sign have special meanings. Trailing blanks in a pattern are a part of
the pattern.

match-expression

NOT

LIKE pattern-expression

ESCAPE escape-expression

If the value of any of the arguments is null, the result of the LIKE predicate is unknown.

The match-expression, pattern-expression, and escape-expression must identify strings or numbers. A
numeric argument is cast to a character string before evaluating the predicate. For more information
about converting numeric to a character string, see “VARCHAR” on page 623. The values for match-
expression, pattern-expression, and escape-expression must either all be binary strings or none can be
binary strings. The three arguments can include a mixture of character strings and graphic strings.

None of the expressions can yield a distinct type. However, it can be a function that casts a distinct type to
its source type.

If the operands of the predicate are SBCS data, mixed data, or Unicode data, and if the collating sequence
in effect at the time the statement is executed is not *HEX, then the comparison of the operands is
performed using weighted values for the operands. The weighted values are based on the collating
sequence. An ICU collating sequence is not allowed with a LIKE predicate.

With character strings, the terms character, percent sign, and underscore in the following discussion refer
to single-byte characters. With graphic strings, the terms refer to double-byte or Unicode characters. With
binary strings, the terms refer to the code points of those single-byte characters.

match-expression
An expression that specifies the string that is to be examined to see if it conforms to a certain pattern
of characters.

LIKE pattern-expression
An expression that specifies the string that is to be matched.

Simple description: A simple description of the LIKE pattern is as follows:

• The underscore sign (_) represents any single character.
• The percent sign (%) represents a string of zero or more characters.
• Any other character represents itself.

If the pattern-expression needs to include either the underscore or the percent character, the escape-
expression is used to specify a character to precede either the underscore or percent character in the
pattern.

Rigorous description: Let x denote a value of match-expression and y denote the value of pattern-
expression.

The string y is interpreted as a sequence of the minimum number of substring specifiers so each
character of y is part of exactly one substring specifier. A substring specifier is an underscore, a
percent sign, or any nonempty sequence of characters other than an underscore or a percent sign.

The result of the predicate is unknown if x or y is the null value. Otherwise, the result is either true
or false. The result is true if x and y are both empty strings or if there exists a partitioning of x into
substrings such that:

• A substring of x is a sequence of zero or more contiguous characters and each character of x is part
of exactly one substring.

Chapter 2. Language elements 215

• If the nth substring specifier is an underscore, the nth substring of x is any single character.
• If the nth substring specifier is a percent sign, the nth substring of x is any sequence of zero or more

characters.
• If the nth substring specifier is neither an underscore nor a percent sign, the nth substring of x is

equal to that substring specifier and has the same length as that substring specifier.
• The number of substrings of x is the same as the number of substring specifiers.

It follows that if y is an empty string and x is not an empty string, the result is false. Similarly, it follows
that if x is an empty string and y is not an empty string consisting of other than percent signs, the
result is false.

The predicate x NOT LIKE y is equivalent to the search condition NOT(x LIKE y).

If necessary, the CCSID of the match-expression, pattern-expression, and escape-expression are
converted to the compatible CCSID between the match-expression and pattern-expression.

Mixed data: If the column is mixed data, the pattern can include both SBCS and DBCS characters. The
special characters in the pattern are interpreted as follows:

• An SBCS underscore refers to one SBCS character.
• A DBCS underscore refers to one DBCS character.
• A percent sign (either SBCS or DBCS) refers to any number of characters of any type, either SBCS or

DBCS.
• Redundant shifts in match-expression and pattern-expression are ignored.49

Unicode data: For Unicode, the special characters in the pattern are interpreted as follows:

• An SBCS or DBCS underscore refers to one character (a character can be one or more bytes)
• A percent sign (either SBCS or DBCS) refers to a string of zero or more characters (a character can

be one or more bytes).

When the LIKE predicate is used with Unicode data, the Unicode percent sign and underscore use the
code points indicated in the following table:

Character UTF-8 UTF-16 or UCS-2

Half-width % X'25' X'0025'

Full-width % X'EFBC85' X'FF05'

Half-width _ X'5F' X'005F'

Full-width _ X'EFBCBF' X'FF3F'

The full-width or half-width % matches zero or more characters. The full-width or half width _
character matches exactly one character. (For EBCDIC data, a full-width _ character matches one
DBCS character.)

Binary data: If the column is binary data, the pattern contains bytes. The special bytes in the pattern
are interpreted as follows:

• The code point for an SBCS underscore (X'6D') refers to one byte.
• The code point for an SBCS percent (X'6C') refers to any number of bytes.

Parameter marker:

49 Redundant shifts are normally ignored. To guarantee that they are ignored, however, specify the
IGNORE_LIKE_REDUNDANT_SHIFTS query attribute. See Database Performance and Query Optimization
for information about setting query attributes.

216 IBM i: Db2 for i SQL Reference

When the pattern specified in a LIKE predicate is a parameter marker, and a fixed-length character
variable is used to replace the parameter marker; specify a value for the variable that is the correct
length. If a correct length is not specified, the select will not return the intended results.

For example, if the variable is defined as CHAR(10), and the value WYSE% is assigned to that variable,
the variable is padded with blanks on assignment. The pattern used is

 'WYSE% '

This pattern requests the database manager to search for all values that start with WYSE and end
with five blank spaces. If you intended to search for only the values that start with 'WYSE' you should
assign the value 'WYSE%%%%%%' to the variable.

ESCAPE escape-expression
An expression that specifies a character to be used to modify the special meaning of the underscore
(_) and percent (%) characters in the pattern-expression. This allows the LIKE predicate to be used to
match values that contain the actual percent and underscore characters. The following rules apply the
use of the ESCAPE clause and the escape-expression:

• The escape-expression must be a string of length 1.50

• The pattern-expression must not contain the escape character except when followed by the escape
character, percent, or underscore.

For example, if '+' is the escape character, any occurrences of '+' other than '++', '+_', or '+%' in the
pattern-expression is an error.

• The escape-expression can be a parameter marker.

The following example shows the effect of successive occurrences of the escape character, which in
this case is the plus sign (+).

When the pattern string is... The actual pattern is...

+% A percent sign

++% A plus sign followed by zero or more arbitrary characters

+++% A plus sign followed by a percent sign

Examples

Example 1

Search for the string ‘SYSTEMS' appearing anywhere within the PROJNAME column in the PROJECT table.

 SELECT PROJNAME
 FROM PROJECT
 WHERE PROJECT.PROJNAME LIKE '%SYSTEMS%'

Example 2

Search for a string with a first character of ‘J' that is exactly two characters long in the FIRSTNME column
of the EMPLOYEE table.

SELECT FIRSTNME
 FROM EMPLOYEE
 WHERE EMPLOYEE.FIRSTNME LIKE 'J_'

Example 3

50 If it is NUL-terminated, a C character string variable of length 2 can be specified.

Chapter 2. Language elements 217

In this example:

SELECT *
 FROM TABLEY
 WHERE C1 LIKE 'AAAA+%BBB%' ESCAPE '+'

'+' is the escape character and indicates that the search is for a string that starts with 'AAAA%BBB'. The
'+%' is interpreted as a single occurrence of '%' in the pattern.

Example 4

In the following table of EBCDIC examples, assume COL1 is mixed data. The table shows the results when
the predicates in the first column are evaluated using the COL1 values from the second column:

Example 5

Assume that a distinct type named ZIP_TYPE with a source data type of CHAR(5) exists and an ADDRZIP
column with data type ZIP_TYPE exists in some table TABLEY. The following statement selects the row if
the zip code (ADDRZIP) begins with '9555'.

 SELECT *
 FROM TABLEY
 WHERE CHAR(ADDRZIP) LIKE '9555%'

Example 6

The RESUME column in sample table EMP_RESUME is defined as a CLOB. If the variable LASTNAME has
a value of 'JONES', the following statement selects the RESUME column when the string JONES appears
anywhere in the column.

 SELECT RESUME
 FROM EMP_RESUME
 WHERE RESUME LIKE '%'||LASTNAME||'%'

218 IBM i: Db2 for i SQL Reference

NULL predicate
The NULL predicate tests for null values.

expression IS

NOT

NULL

The result of a NULL predicate cannot be unknown. If the value of the expression is null, the result is true.
If the value is not null, the result is false.

If NOT is specified, the result is reversed.

Syntax alternatives: For compatibility with other SQL dialects, you can use ISNULL as a synonym for IS
NULL and NOTNULL as a synonym for IS NOT NULL.

Examples

 EMPLOYEE.PHONE IS NULL

 SALARY IS NOT NULL

Chapter 2. Language elements 219

REGEXP_LIKE predicate
The REGEXP_LIKE predicate searches for a regular expression pattern in a string.

REGEXP_LIKE (source-string , pattern-expression

, start

, flags

)

If the pattern-expression is found, the result is true. If the pattern-expression is not found, the result
is false. If source-string and pattern-expression are empty strings, the result is true. If source-string
or pattern-expression is the empty string (but not both), the result is false. If the value of any of the
arguments is null, the result is unknown.

source-string
An expression that specifies the string in which the search is to take place. The expression must
return a value that is a built-in character string, graphic string, numeric, or datetime data type. If
the value is not a UTF-16 DBCLOB, it is implicitly cast to a UTF-16 DBCLOB before searching for the
regular expression pattern. A character string with the FOR BIT DATA attribute or a binary string is not
supported. The length of a string must not be greater than 1 gigabyte.

pattern-expression
An expression that specifies the regular expression string that is the pattern for the search. The
expression must return a value that is a built-in character string, graphic string, numeric, or datetime
data type. If the value is not a UTF-16 DBCLOB, it is implicitly cast to a UTF-16 DBCLOB before
searching for the regular expression pattern. A character string with the FOR BIT DATA attribute or a
binary string is not supported. The length of the string must not be greater than 32K.

A valid pattern-expression consists of a set of characters and control characters that describe the
pattern of the search. For a description of the valid control characters, see “Regular expression control
characters” on page 221.

start
An expression that specifies the position within source-string at which the search is to start. The
expression must return a value of any built-in numeric, character-string, or graphic-string data type.
The argument is cast to INTEGER before searching for the regular expression pattern. For more
information about converting to INTEGER, see “INTEGER or INT” on page 442. The value of the
integer must be greater than or equal to 1. If the value of the integer is greater than the actual length
of the source-string, the result of the predicate is false.

flags
An expression that specifies flags that control aspects of the pattern matching. The expression must
return a value that is a built-in character string or graphic string data type. A character string with the
FOR BIT DATA attribute or a binary string is not supported. The string can include one or more valid
flag values and the combination of flag values must be valid. An empty string is the same as the value
'c'.

For a description of the valid flag characters, see “Regular expression flag values” on page 220.

Regular expression flag values
The following table describes the supported flag values.

Table 31. Flag Values

Flag value Description

c Specifies that matching is case sensitive. This is the default value if neither 'c' nor 'i' is specified.
This value must not be specified with a value of 'i'.

220 IBM i: Db2 for i SQL Reference

Table 31. Flag Values (continued)

Flag value Description

i Specifies that matching is case insensitive. This value must not be specified with a value of 'c'.

m Specifies that the input data could contain more than one line. By default, the '^' and the '$' in a
pattern will only match the start and the end, respectively, of the input string. If this flag is set,
"^" and "$" will also match at the start and end of each line within the input string.

n Specifies that the '.' character in a pattern matches a line terminator in the input string. By
default, the '.' in a pattern will not match a line terminator. A carriage-return and line-feed pair in
the input string behaves as a single line terminator, and will match a single "." in a pattern.

s Specifies that the '.' character in a pattern matches a line terminator in the input string. This is a
synonym for the 'n' value.

x Specifies that white space characters in a pattern are ignored, unless escaped.

Regular expression control characters
The regular expression processing is performed using the International Components for Unicode (ICU)
regular expression API on Unicode data with regular expression patterns that use the control characters
listed below.

Note that only halfwidth characters are recognized. Any fullwidth characters that correspond to the
characters in these tables will not be recognized.

Table 32. Regular Expression Metacharacters

Character
Outside
of sets

[Inside
sets] Description

\a ✔ ✔ Match a BELL, \u0007

\A ✔ Match at the beginning of the input. Differs from ^ in that \A will
not match after a new line within the input.

\b ✔ Match if the current position is a word boundary. Boundaries
occur at the transitions between word (\w) and non-word (\W)
characters, with combining marks ignored.

\B ✔ Match if the current position is not a word boundary.

\cX ✔ ✔ Match a control-X character.

\d ✔ ✔ Match any character with the Unicode General Category of Nd
(Number, Decimal Digit.)

\D ✔ ✔ Match any character that is not a decimal digit.

\e ✔ ✔ Match an ESCAPE, \u001B.

\E ✔ ✔ Terminates a \Q ... \E quoted sequence.

\f ✔ ✔ Match a FORM FEED, \u000C.

\G ✔ Match if the current position is at the end of the previous match.

\n ✔ ✔ Match a LINE FEED, \u000A.

\N{UNICODE
CHARACTER
NAME}

✔ ✔ Match the named character.

Chapter 2. Language elements 221

Table 32. Regular Expression Metacharacters (continued)

Character
Outside
of sets

[Inside
sets] Description

\p{UNICODE
PROPERTY
NAME}

✔ ✔ Match any character with the specified Unicode Property.

\P{UNICODE
PROPERTY
NAME}

✔ ✔ Match any character not having the specified Unicode Property.

\Q ✔ ✔ Quotes all following characters until \E.

\r ✔ ✔ Match a CARRIAGE RETURN, \u000D

\s ✔ ✔ Match a white space character. White space is defined as
[\t\n\f\r\p{Z}].

\S ✔ ✔ Match a non-white space character.

\t ✔ ✔ Match a HORIZONTAL TABULATION, \u0009.

\uhhhh ✔ ✔ Match the character with the hex value hhhh.

\Uhhhhhhhh ✔ ✔ Match the character with the hex value hhhhhhhh. Exactly eight
hex digits must be provided, even though the largest Unicode code
point is \U0010ffff.

\w ✔ ✔ Match a word character. Word characters are
[\p{Alphabetic}\p{Mark}\p{Decimal_Number}
\p{Connector_Punctuation}\u200c\u200d].

\W ✔ ✔ Match a non-word character.

\x{hhhh} ✔ ✔ Match the character with hex value hhhh. From one to six hex
digits may be supplied.

\xhh ✔ ✔ Match the character with two digit hex value hh

\X ✔ Match a Grapheme Cluster

\Z ✔ Match if the current position is at the end of input, but before the
final line terminator, if one exists.

\z ✔ Match if the current position is at the end of input.

\n ✔ Back Reference. Match whatever the nth capturing group matched.
n must be a number > 1 and < total number of capture groups in
the pattern.

\0ooo ✔ ✔ Match an Octal character. 'ooo' is from one to three octal digits.
0377 is the largest allowed Octal character. The leading zero is
required; it distinguishes Octal constants from back references.

[pattern] ✔ ✔ Match any one character from the set.

. ✔ Match any character.

^ ✔ Match at the beginning of a line.

$ ✔ Match at the end of a line.

\ ✔ Quotes the following character. Characters that must be quoted to
be treated as literals are * ? + [() { } ^ $ | \ .

222 IBM i: Db2 for i SQL Reference

Table 32. Regular Expression Metacharacters (continued)

Character
Outside
of sets

[Inside
sets] Description

\ ✔ Quotes the following character. Characters that must be quoted
to be treated as literals are [] \ Characters that may need to be
quoted, depending on the context are - &

Table 33. Regular Expression Operators

Operator Description

| Alternation. A|B matches either A or B.

* Match 0 or more times. Match as many times as possible.

+ Match 1 or more times. Match as many times as possible.

? Match zero or one times. Prefer one

{n} Match exactly n times

{n,} Match at least n times. Match as many times as possible.

{n,m} Match between n and m times. Match as many times as possible, but not more than m.

*? Match 0 or more times. Match as few times as possible.

+? Match 1 or more times. Match as few times as possible.

?? Match zero or one times. Prefer zero.

{n}? Match exactly n times

{n,}? Match at least n times, but no more than required for an overall pattern match

{n,m}? Match between n and m times. Match as few times as possible, but not less than n.

*+ Match 0 or more times. Match as many times as possible when first encountered, do not
retry with fewer even if overall match fails (Possessive Match)

++ Match 1 or more times. Possessive match

?+ Match zero or one times. Possessive match

{n}+ Match exactly n times

{n,}+ Match at least n times. Possessive Match.

{n,m}+ Match between n and m times. Possessive Match.

(...) Capturing parentheses. Range of input that matched the parenthesized subexpression is
available after the match.

(?: ...) Non-capturing parentheses. Groups the included pattern, but does not provide capturing
of matching text. Somewhat more efficient than capturing parentheses.

(?> ...) Atomic-match parentheses. First match of the parenthesized subexpression is the only
one tried; if it does not lead to an overall pattern match, back up the search for a match to
a position before the "(?>"

(?# ...) Free-format comment (?# comment).

(?= ...) Look-ahead assertion. True if the parenthesized pattern matches at the current input
position, but does not advance the input position.

Chapter 2. Language elements 223

Table 33. Regular Expression Operators (continued)

Operator Description

(?! ...) Negative look-ahead assertion. True if the parenthesized pattern does not match at the
current input position. Does not advance the input position.

(?<= ...) Look-behind assertion. True if the parenthesized pattern matches text preceding the
current input position, with the last character of the match being the input character just
before the current position. Does not alter the input position. The length of possible strings
matched by the look-behind pattern must not be unbounded (no * or + operators.)

(?<! ...) Negative Look-behind assertion. True if the parenthesized pattern does not match text
preceding the current input position, with the last character of the match being the input
character just before the current position. Does not alter the input position. The length of
possible strings matched by the look-behind pattern must not be unbounded (no * or +
operators.)

(?ismwx-
ismwx: ...)

Flag settings. Evaluate the parenthesized expression with the specified flags enabled or
disabled.

(?ismwx-ismwx) Flag settings. Change the flag settings. Changes apply to the portion of the pattern
following the setting. For example, (?i) changes to a case insensitive match.

Table 34. Set Expressions (Character Classes)

Example Description

[abc] Match any of the characters a, b or c

[^abc] Negation - match any character except a, b or c

[A-M] Range - match any character from A to M. The characters to include are
determined by Unicode code point ordering.

[\u0000-\U0010ffff] Range - match all characters.

[\p{Letter}]
[\p{General_Category=Letter}]
[\p{L}]

Characters with Unicode Category = Letter. All forms shown are equivalent.

[\P{Letter}] Negated property. (Upper case \P) Match everything except Letters.

[\p{numeric_value=9}] Match all numbers with a numeric value of 9. Any Unicode Property may be
used in set expressions.

[\p{Letter}&&\p{script=cyrillic}] Logical AND or intersection. Match the set of all Cyrillic letters.

[\p{Letter}--\p{script=latin}] Subtraction. Match all non-Latin letters.

[[a-z][A-Z][0-9]]
[[a-zA-Z0-9]]

Implicit Logical OR or Union of Sets. The examples match ASCII letters and
digits. The two forms are equivalent.

[:script=Greek:] Alternate POSIX-like syntax for properties. Equivalent to \p{script=Greek}

Notes
Prerequisites: In order to use the REGEXP_LIKE predicate, the International Components for Unicode
(ICU) option must be installed

Processing: The regular expression processing is done using the International Components for Unicode
(ICU) regular expression interface. For more information see, http://userguide.icu-project.org/strings/
regexp.

224 IBM i: Db2 for i SQL Reference

If only three arguments are specified, the third argument may be a start or flags argument. If the third
argument is a string, it is interpreted as a flags argument. Otherwise, it is interpreted as a start argument.

Examples

• Example 1: Select the employee number where the last name is spelled LUCCHESSI, LUCHESSI, or
LUCHESI from the EMPLOYEE table without considering upper or lower case letters.

SELECT EMPNO FROM EMPLOYEE
 WHERE REGEXP_LIKE(LASTNAME,'luc+?hes+?i','i')

The result is 1 row with EMPNO value '000110'.
• Example 2: Select any invalid product identifier values from the PRODUCT table. The expected format is

'nnn-nnn-nn' where 'n' is a digit from 0 to 9.

SELECT PID FROM PRODUCT
 WHERE NOT REGEXP_LIKE(pid,'[0-9]{3}-[0-9]{3}-[0-9]{2}')

The result is 0 rows because all the product identifiers match the pattern.

Chapter 2. Language elements 225

Trigger event predicates
A trigger event predicate is used in a triggered action to test the event that activated the trigger. It is only
allowed in the triggered action of a CREATE TRIGGER statement.

DELETING

INSERTING

UPDATING

DELETING
True if the trigger was activated by a delete operation. False otherwise.

INSERTING
True if the trigger was activated by an insert operation. False otherwise.

UPDATING
True if the trigger was activated by an update operation. False otherwise.

Notes
A trigger event predicate can be used anywhere in the triggered action of a CREATE TRIGGER statement.

Example

The following trigger, by using trigger event predicates in the routine body, increments the number of
employees each time a new person is hired (that is, each time a new row is inserted into the EMPLOYEE
table), decrements the number of employees each time an employee leaves the company, and raises an
error when an update occurs that would result in a salary increase greater than ten percent of the current
salary.

 CREATE TRIGGER HIRED
 AFTER INSERT OR DELETE OR UPDATE OF SALARY ON EMPLOYEE
 REFERENCING NEW AS N OLD AS O FOR EACH ROW
 BEGIN
 IF INSERTING
 THEN UPDATE COMPANY_STATS SET NBREMP = NBREMP + 1;
 END IF;
 IF DELETING
 THEN UPDATE COMPANY_STATS SET NBREMP = NBREMP - 1;
 END IF;
 IF UPDATING AND (N.SALARY > 1.1 * O.SALARY)
 THEN SIGNAL SQLSTATE '75000' SET MESSAGE_TEXT = 'Salary increase > 10%'
 END IF;
 END

226 IBM i: Db2 for i SQL Reference

Search conditions
A search condition specifies a condition that is true, false, or unknown about a given row or group.

NOT

predicate

SELECTIVITY numeric-constant

(search-condition)

AND

OR NOT

predicate

SELECTIVITY numeric-constant

(search-condition)

Description
SELECTIVITY numeric-constant

Specifies the expected selectivity percentage for the predicate. The selectivity value must be a
numeric constant in the range from 0 to 1 (inclusive). For example, if you specify 0.01, the predicate
is expected to filter out all but one percent of all the rows in the table. An error is returned if the
SELECTIVITY clause is specified for a trigger event predicate, or if it is used with a search-condition
that is part of a check constraint or in a CREATE INDEX statement.

Some predicates are rewritten during query processing. Since a SELECTIVITY clause cannot be
properly applied to the rewritten predicates, the following predicates will usually ignore a user-
supplied selectivity value:

• DISTINCT and NOT DISTINCT
• NOT BETWEEN
• EXISTS
• IN with a list of values
• row-value-expression compared to row-value-expression

The result of a search condition is derived by application of the specified logical operators (AND, OR, NOT)
to the result of each specified predicate. If logical operators are not specified, the result of the search
condition is the result of the specified predicate.

AND and OR are defined in the following table in which P and Q are any predicates:

Table 35. Truth Tables for AND and OR

P Q P AND Q P OR Q

True True True True

True False False True

True Unknown Unknown True

False True False True

False False False False

False Unknown False Unknown

Unknown True Unknown True

Unknown False False Unknown

Chapter 2. Language elements 227

Table 35. Truth Tables for AND and OR (continued)

P Q P AND Q P OR Q

Unknown Unknown Unknown Unknown

NOT(true) is false, NOT(false) is true, and NOT(unknown) is unknown.

Search conditions within parentheses are evaluated first. If the order of evaluation is not specified by
parentheses, NOT is applied before AND, and AND is applied before OR. The order in which operators at
the same precedence level are evaluated is undefined to allow for optimization of search conditions.

Examples

In the examples, the numbers on the second line indicate the order in which the operators are evaluated.

Example 1

 MAJPROJ = 'MA2100' AND DEPTNO = 'D11' OR DEPTNO = 'B03' OR DEPTNO = 'E11'
 ↑ ↑ ↑
 ┌┴┐ ┌──┴───┐ ┌──┴───┐
 │1│ │2 or 3│ │2 or 3│
 └─┘ └──────┘ └──────┘

Example 2

MAJPROJ = 'MA2100' AND (DEPTNO = 'D11' OR DEPTNO = 'B03') OR DEPTNO = 'E11'
 ↑ ↑ ↑
 ┌┴┐ ┌┴┐ ┌┴┐
 │2│ │1│ │3│
 └─┘ └─┘ └─┘

228 IBM i: Db2 for i SQL Reference

Chapter 3. Built-in global variables
This chapter contains semantic descriptions, rules, and examples of the use of the built-in global
variables.

Built-in global variables are provided with the database manager and are used in SQL statements to
retrieve scalar values associated with the variables.

As an example, the ROUTINE_TYPE global variable can be referenced in an SQL statement to retrieve the
current routine type.

The authorization ID of any statement that retrieves the value of the global variable is required to have
the READ privilege on the global variable and the system authority *EXECUTE on the library containing the
global variable.

Example

To access the global variable CLIENT_HOST, run the following query:

 SELECT SYSIBM.CLIENT_HOST
 FROM SYSIBM.SYSDUMMY1

The query returns the host name of the current client.

hotellnx93

© Copyright IBM Corp. 1998, 2015 229

CLIENT_HOST
This global variable contains the host name of the current client, as returned by the system.

This global variable has the following characteristics:

• It is read-only, with values maintained by system.
• The type is VARCHAR(255).
• The schema is SYSIBM.
• The scope of this global variable is session.

If the client connection originated from an application running on the local system, the value of the
global variable is NULL. The server obtains the client IP address from the network when the connection
is accepted. If the process did not originate from a remote system using TCP/IP, the value of the global
variable is NULL.

230 IBM i: Db2 for i SQL Reference

CLIENT_IPADDR
This global variable contains the IP address of the current client, as returned by the system.

This global variable has the following characteristics:

• It is read-only, with values maintained by system.
• The type is VARCHAR(128).
• The schema is SYSIBM.
• The scope of this global variable is session.

Chapter 3. Built-in global variables 231

CLIENT_PORT
This global variable contains the port number used by the current client to communicate with the server.

This global variable has the following characteristics:

• It is read-only, with values maintained by system.
• The type is INTEGER.
• The schema is SYSIBM.
• The scope of this global variable is session.

If the client did not connect by using the TCP/IP protocol, the value of the global variable is NULL.

232 IBM i: Db2 for i SQL Reference

JOB_NAME
This global variable contains the name of the current job.

This global variable has the following characteristics:

• It is read-only, with values maintained by system.
• The type is VARCHAR(28).
• The schema is QSYS2.
• The scope of this global variable is session.

Chapter 3. Built-in global variables 233

PACKAGE_NAME
This global variable contains the name of the package currently being used for a DRDA connection.

This global variable has the following characteristics:

• It is read-only, with values maintained by system.
• The type is VARCHAR(128).
• The schema is SYSIBM.
• The scope of this global variable is session.

If there is no package currently executing, the value is NULL.

234 IBM i: Db2 for i SQL Reference

PACKAGE_SCHEMA
This global variable contains the schema name of the package currently being used for a DRDA
connection.

This global variable has the following characteristics:

• It is read-only, with values maintained by system.
• The type is VARCHAR(128).
• The schema is SYSIBM.
• The scope of this global variable is session.

If there is no package currently executing, the value is NULL.

Chapter 3. Built-in global variables 235

PACKAGE_VERSION
This global variable contains the version identifier of the package currently being used for a DRDA
connection.

This global variable has the following characteristics:

• It is read-only, with values maintained by system.
• The type is VARCHAR(64).
• The schema is SYSIBM.
• The scope of this global variable is session.

If there is no package currently executing or the current executing package does not have a version
identifier, the value is NULL. A package will have a version identifier only when it is created from a server
other than Db2 for i.

236 IBM i: Db2 for i SQL Reference

PROCESS_ID
This global variable contains the process ID of the current job.

This global variable has the following characteristics:

• It is read-only, with values maintained by system.
• The type is INTEGER.
• The schema is QSYS2.
• The scope of this global variable is session.

Example

Review the details for this job.

SELECT USER, CURRENT SERVER, QSYS2.JOB_NAME, QSYS2.PROCESS_ID, QSYS2.THREAD_ID
 FROM SYSIBM.SYSDUMMY1

Chapter 3. Built-in global variables 237

ROUTINE_SCHEMA
This global variable contains the schema name of the currently executing routine.

This global variable has the following characteristics:

• It is read-only, with values maintained by system.
• The type is VARCHAR(128).
• The schema is SYSIBM.
• The scope of this global variable is session.

If there is no routine currently executing, the value is NULL.

The value of ROUTINE_SCHEMA global variable is set only for procedures and functions. The value always
reflects the schema name of the currently executing routine.

The value is not changed for functions that are inlined. The value remains the same as it was when the
inline function was invoked.

238 IBM i: Db2 for i SQL Reference

ROUTINE_SPECIFIC_NAME
This global variable contains the name of the currently executing routine.

This global variable has the following characteristics:

• It is read-only, with values maintained by system.
• The type is VARCHAR(128).
• The schema is SYSIBM.
• The scope of this global variable is session.

If there is no routine currently executing, the value is NULL.

The value of ROUTINE_SPECIFIC_NAME global variable is set only for procedures and functions. The
value always reflects the name of the currently executing routine.

The value is not changed for functions that are inlined. The value remains the same as it was when the
inline function was invoked.

Chapter 3. Built-in global variables 239

ROUTINE_TYPE
This global variable contains the type of the currently executing routine.

This global variable has the following characteristics:

• It is read-only, with values maintained by system.
• The type is CHAR(1).
• The schema is SYSIBM.
• The scope of this global variable is session.

The value of the global variable is 'P' for procedure or 'F' for function. If there is no routine currently
executing, the value is NULL.

The value of ROUTINE_TYPE global variable is set only for procedures and functions. The value always
reflects the type of the currently executing routine.

The value is not changed for functions that are inlined. The value remains the same as it was when the
inline function was invoked.

240 IBM i: Db2 for i SQL Reference

SERVER_MODE_JOB_NAME
This global variable contains the name of the job that established the SQL server mode connection.

This global variable has the following characteristics:

• It is read-only, with values maintained by system.
• The type is VARCHAR(28).
• The schema is QSYS2.
• The scope of this global variable is session.

If there is no server mode connection, the value is NULL.

Chapter 3. Built-in global variables 241

THREAD_ID
This global variable contains the thread ID of the current thread.

This global variable has the following characteristics:

• It is read-only, with values maintained by system.
• The type is BIGINT.
• The schema is QSYS2.
• The scope of this global variable is session.

Example

Capture the thread scoped record locks over the SALES table which are held by the current thread.

SELECT * FROM QSYS2.RECORD_LOCK_INFO L
 WHERE L.TABLE_NAME = 'SALES' AND
 L.JOB_NAME = QSYS2.JOB_NAME AND
 L.THREAD_ID = QSYS2.THREAD_ID

242 IBM i: Db2 for i SQL Reference

Chapter 4. Built-in functions
This chapter contains syntax diagrams, semantic descriptions, rules, and examples of the use of the
built-in functions listed in the following tables.

For more information about functions, see “Functions” on page 147.

Table 36. Aggregate Functions

Function Description Reference

ARRAY_AGG Aggregates a set of elements into an array. “ARRAY_AGG” on page 259

AVG Returns the average of a set of numbers “AVG” on page 261

CORR or CORRELATION Returns the coefficient of correlation of a set of
number pairs

“CORR or CORRELATION”
on page 262

COUNT Returns the number of rows or values in a set of
rows or values

“COUNT” on page 263

COUNT_BIG Returns the number of rows or values in a set of
rows or values (COUNT_BIG is similar to COUNT
except that the result can be greater than the
maximum value of integer)

“COUNT_BIG” on page 264

COVARIANCE or COVAR Returns the (population) covariance of a set of
number pairs

“COVARIANCE or COVAR”
on page 265

COVAR_SAMP or
COVARIANCE_SAMP

Returns the unbiased sample covariance (n-1) of
a set of number pairs

“COVAR_SAMP or
COVARIANCE_SAMP” on
page 266

GROUPING Returns a value that indicates whether a row was
generated as a summary row for a grouping set.

“GROUPING” on page 267

JSON_ARRAYAGG Returns a JSON array containing an array
element for each value in a set of JSON or SQL
values.

“JSON_ARRAYAGG” on page
268

JSON_OBJECTAGG Returns a JSON object containing a key:value pair
for each specific key and value in a set of SQL
values.

“JSON_OBJECTAGG” on
page 273

LISTAGG Aggregates a set of string elements into one
string by concatenating the strings.

“LISTAGG” on page 277

MAX Returns the maximum value in a set of values in a
group

“MAX” on page 280

MEDIAN Returns the median of a set of numbers “MEDIAN” on page 281

MIN Returns the minimum value in a set of values in a
group

“MIN” on page 282

PERCENTILE_CONT Returns the value that corresponds to the
specified percentile given a sort specification by
using a continuous distribution model.

“PERCENTILE_CONT” on
page 283

PERCENTILE_DISC Returns the value that corresponds to the
specified percentile given a sort specification by
using a discrete distribution model.

“PERCENTILE_DISC” on
page 285

© Copyright IBM Corp. 1998, 2015 243

Table 36. Aggregate Functions (continued)

Function Description Reference

Regression functions The regression functions support the fitting of an
ordinary-least-squares regression line of the form
y = a * x + b to a set of number pairs.

“Regression functions” on
page 287

STDDEV Returns the biased standard deviation of a set of
numbers

“STDDEV_POP or STDDEV”
on page 290

STDDEV_SAMP Returns the sample standard deviation of a set of
numbers

“STDDEV_SAMP” on page
291

SUM Returns the sum of a set of numbers “SUM” on page 292

VARIANCE or VAR Returns the biased variance of a set of numbers “VAR_POP or VARIANCE or
VAR” on page 293

VAR_SAMP or
VARIANCE_SAMP

Returns the sample variance of a set of numbers “VAR_SAMP or
VARIANCE_SAMP” on page
294

XMLAGG Returns an XML sequence containing an item for
each non-null value in a set of XML values.

“XMLAGG” on page 295

XMLGROUP Returns an XML value that is a well-formed XML
document.

“XMLGROUP” on page 297

Table 37. Cast Scalar Functions

Function Description Reference

BIGINT Returns a big integer representation of a
number

“BIGINT” on page 315

BINARY Returns a BINARY representation of a string of
any type

“BINARY” on page 317

BLOB Returns a BLOB representation of a string of any
type

“BLOB” on page 321

CHAR Returns a CHARACTER representation of a value “CHAR” on page 325

CLOB Returns a CLOB representation of a value “CLOB” on page 333

DATE Returns a DATE from a value “DATE” on page 352

DBCLOB Returns a DBCLOB representation of a string “DBCLOB” on page 361

DECFLOAT Returns a DECFLOAT representation of a
number

“DECFLOAT” on page 369

DECIMAL Returns a DECIMAL representation of a number “DECIMAL or DEC” on page
374

DOUBLE_PRECISION or
DOUBLE

Returns a DOUBLE PRECISION representation
of a number

“DOUBLE_PRECISION or
DOUBLE” on page 392

FLOAT Returns a FLOAT representation of a number “FLOAT” on page 408

GRAPHIC Returns a GRAPHIC representation of a string “GRAPHIC” on page 416

INTEGER or INT Returns an INTEGER representation of a
number

“INTEGER or INT” on page
442

REAL Returns a REAL representation of a number “REAL” on page 536

244 IBM i: Db2 for i SQL Reference

Table 37. Cast Scalar Functions (continued)

Function Description Reference

ROWID Returns a Row ID from a value “ROWID” on page 558

SMALLINT Returns a SMALLINT representation of a
number

“SMALLINT” on page 573

TIME Returns a TIME from a value “TIME” on page 589

TIMESTAMP Returns a TIMESTAMP from a value or a pair of
values

“TIMESTAMP” on page 590

TIMESTAMP_ISO Returns a timestamp value from a datetime
value

“TIMESTAMP_ISO” on page
597

TO_CLOB Returns a CLOB representation of a value “TO_CLOB” on page 602

VARBINARY Returns a VARBINARY representation of a string
of any type

“VARBINARY” on page 620

VARCHAR Returns a VARCHAR representative of a value “VARCHAR” on page 623

VARGRAPHIC Returns a VARGRAPHIC representation of a
value

“VARGRAPHIC” on page 638

ZONED Returns a zoned decimal representation of a
number

“ZONED” on page 683

Table 38. Datalink Scalar Functions

Function Description Reference

DLCOMMENT Returns the comment value from a DataLink
value

“DLCOMMENT” on page 383

DLLINKTYPE Returns the link type value from a DataLink
value

“DLLINKTYPE” on page 384

DLURLCOMPLETE Returns the complete URL value from a
DataLink value with a link type of URL

“DLURLCOMPLETE” on page
385

DLURLPATH Returns the path and file name necessary to
access a file within a given server from a
DataLink value with a linktype of URL

“DLURLPATH” on page 386

DLURLPATHONLY Returns the path and file name necessary to
access a file within a given server from a
DataLink value with a linktype of URL without
a file access token

“DLURLPATHONLY” on page
387

DLURLSCHEME Returns the scheme from a DataLink value with
a linktype of URL

“DLURLSCHEME” on page
388

DLURLSERVER Returns the file server from a DataLink value
with a linktype of URL

“DLURLSERVER” on page 389

DLVALUE Returns a DataLink value “DLVALUE” on page 390

Chapter 4. Built-in functions 245

Table 39. Datetime Scalar Functions

Function Description Reference

ADD_MONTHS Returns a date that represents the date
argument plus the number of months argument

“ADD_MONTHS” on page 303

CURDATE Returns a date based on a reading of the time-
of-day clock

“CURDATE” on page 347

CURTIME Returns a time based on a reading of the time-
of-day clock

“CURTIME” on page 348

DAY Returns the day part of a value “DAY” on page 354

DAYNAME Returns the name of the day part of a value “DAYNAME” on page 355

DAYOFMONTH Returns an integer that represents the day of the
month

“DAYOFMONTH” on page 356

DAYOFWEEK Returns the day of the week from a value, where
1 is Sunday and 7 is Saturday

“DAYOFWEEK” on page 357

DAYOFWEEK_ISO Returns the day of the week from a value, where
1 is Monday and 7 is Sunday

“DAYOFWEEK_ISO” on page
358

DAYOFYEAR Returns the day of the year from a value “DAYOFYEAR” on page 359

DAYS Returns an integer representation of a date “DAYS” on page 360

EXTRACT Returns a specified portion of a datetime value “EXTRACT” on page 404

HOUR Returns the hour part of a value “HOUR” on page 426

JULIAN_DAY Returns an integer value representing a number
of days from January 1, 4712 B.C. to the date
specified in the argument

“JULIAN_DAY” on page 467

LAST_DAY Returns a date or timestamp that represents the
last day of the month of the argument

“LAST_DAY” on page 469

MICROSECOND Returns the microsecond part of a value “MICROSECOND” on page
492

MIDNIGHT_SECONDS Returns an integer value representing the
number of seconds between midnight and a
specified time value

“MIDNIGHT_SECONDS” on
page 493

MINUTE Returns the minute part of a value “MINUTE” on page 495

MONTH Returns the month part of a value “MONTH” on page 498

MONTHNAME Returns the name of the month part of a value “MONTHNAME” on page 499

MONTHS_BETWEEN Returns an estimate of the number of months
between two dates

“MONTHS_BETWEEN” on
page 500

NEXT_DAY Returns a date or timestamp value that
represents the first weekday after the day
named by the second argument

“NEXT_DAY” on page 514

NOW Returns a timestamp based on a reading of the
time-of-day clock

“NOW” on page 517

QUARTER Returns an integer that represents the quarter of
the year in which a date resides

“QUARTER” on page 532

246 IBM i: Db2 for i SQL Reference

Table 39. Datetime Scalar Functions (continued)

Function Description Reference

ROUND_TIMESTAMP Returns a timestamp rounded to the specified
unit.

“ROUND_TIMESTAMP” on
page 555

SECOND Returns the seconds part of a value “SECOND” on page 568

TIMESTAMP_FORMAT Returns a timestamp from a character string
representation of a timestamp according to the
specified format of the string.

“TIMESTAMP_FORMAT” on
page 592

TIMESTAMPDIFF Returns an estimated number of intervals based
on the difference between two timestamps

“TIMESTAMPDIFF” on page
598

TO_DATE Returns a timestamp from a character string
representation of a timestamp according to the
specified format of the string.

“TO_DATE” on page 603

TO_TIMESTAMP Returns a timestamp from a character string
representation of a timestamp according to the
specified format of the string.

“TO_TIMESTAMP” on page
605

TRUNC_TIMESTAMP Returns a timestamp truncated to the specified
unit.

“TRUNC_TIMESTAMP” on
page 614

WEEK Returns the week of the year from a value,
where the week starts with Sunday

“WEEK” on page 646

WEEK_ISO Returns the week of the year from a value,
where the week starts with Monday

“WEEK_ISO” on page 647

YEAR Returns the year part of a value “YEAR” on page 682

Table 40. HTTP Scalar Functions

Function Description Reference

BASE64_DECODE Returns a character string that has been
Base64 decoded.

“BASE64_DECODE” on page
313

BASE64_ENCODE Returns the Base64 encoded version of a binary
value.

“BASE64_ENCODE” on page
314

HTTP_DELETE Deletes a text-based resource from the
specified URL through an HTTP DELETE
request.

“HTTP_DELETE” on page 427

HTTP_GET Retrieves a text-based resource from the
specified URL through an HTTP GET request.

“HTTP_GET” on page 428

HTTP_POST Updates a text-based resource under the
specified URL through an HTTP POST request

“HTTP_POST” on page 433

HTTP_PUT Retrieves a text-based resource from the
specified URL through an HTTP PUT request.

“HTTP_PUT” on page 434

URL_DECODE Completes URL decoding of the provided text
using UTF-8 encoding.

“URL_DECODE” on page 617

URL_ENCODE Completes URL encoding of the provided text
using UTF-8 encoding.

“URL_DECODE” on page 617

Chapter 4. Built-in functions 247

Table 41. JSON Scalar Functions

Function Description Reference

BSON_TO_JSON Converts a string containing formatted BSON
data to a character string containing the data
formatted as JSON.

“BSON_TO_JSON” on page
322

JSON_ARRAY Generates a JSON array either by explicitly
listing the array elements or by using a query

“JSON_ARRAY” on page 449

JSON_OBJECT Generates a JSON object using the specified
key:value pairs.

“JSON_OBJECT” on page 453

JSON_QUERY Returns an SQL/JSON value from the specified
JSON text by using an SQL/JSON path
expression

“JSON_QUERY” on page 457

JSON_TO_BSON Converts a string containing formatted JSON
data to a binary string containing the data
formatted as BSON.

“JSON_TO_BSON” on page
462

JSON_VALUE Returns an SQL scalar value from a JSON text
by using an SQL/JSON path expression

“JSON_VALUE” on page 463

Table 42. Miscellaneous Scalar Functions

Function Description Reference

ARRAY_MAX_CARDINALITY Returns a value representing the maximum
number of elements an array can contain.

“ARRAY_MAX_CARDINALITY”
on page 306

ARRAY_TRIM Returns a copy of an array from which a number
of elements have been removed from the end
of the array.

“ARRAY_TRIM” on page 307

CARDINALITY Returns a value representing the number of
elements of an array

“CARDINALITY” on page 323

COALESCE Returns the first argument that is not null “COALESCE” on page 338

CONTAINS Returns an indication of whether a match was
found in a text index.

“CONTAINS” on page 341

DATABASE Returns the current server “DATABASE” on page 349

GENERATE_UNIQUE Returns a bit character string that is unique
compared to any other execution of the
function

“ATAN2” on page 312

GET_BLOB_FROM_FILE Returns a BLOB locator containing the data
from a source stream file or a source physical
file member.

“GET_BLOB_FROM_FILE” on
page 411

GET_CLOB_FROM_FILE Returns a CLOB locator containing the data
from a source stream file or a source physical
file member.

“GET_CLOB_FROM_FILE” on
page 412

GET_DBCLOB_FROM_FILE Returns a DBCLOB locator containing the data
from a source stream file or a source physical
file member.

“GET_DBCLOB_FROM_FILE”
on page 413

248 IBM i: Db2 for i SQL Reference

Table 42. Miscellaneous Scalar Functions (continued)

Function Description Reference

GET_XML_FILE Returns a BLOB locator containing the data
from a source stream file or a source physical
file member with the data converted to UTF-8.

“GET_XML_FILE” on page 414

GREATEST Returns the maximum value in a set of values “GREATEST” on page 421

HEX Returns a hexadecimal representation of a
value

“HEX” on page 424

IDENTITY_VAL_LOCAL Returns the most recently assigned value for an
identity column

“IDENTITY_VAL_LOCAL” on
page 435

IFNULL Returns the first argument that is not null “IFNULL” on page 439

INTERPRET Returns the first operand interpreted as the
specified data type.

“INTERPRET” on page 444

LEAST Returns the minimum value in a set of values “LEAST” on page 471

LENGTH Returns the length of a value “LENGTH” on page 474

MAX Returns the maximum value in a set of values “MAX” on page 490

MAX_CARDINALITY Returns a value representing the maximum
number of elements an array can contain.

“MAX_CARDINALITY” on page
491

MIN Returns the minimum value in a set of values “MIN” on page 494

NULLIF Returns a null value if the arguments are
equal, otherwise it returns the value of the first
argument

“NULLIF” on page 518

NVL Returns the first argument that is not null “NVL” on page 519

RAISE_ERROR Raises an error with the specified SQLSTATE
and message text

“RAISE_ERROR” on page 534

RID Returns the relative record number of a row as
BIGINT.

“RID” on page 550

RRN Returns the relative record number of a row as
DECIMAL(15,0)

“RRN” on page 562

SCORE Returns an indication of how frequently a match
was found in a text index.

“SCORE” on page 565

SYS_CONNECT_BY_PATH Returns a string representing the path from
the root row to the current row for hierarchical
queries.

“SYS_CONNECT_BY_PATH” on
page 761

TABLE_NAME Returns the unqualified name of the object
found for an alias.

“TABLE_NAME” on page 585

TABLE_SCHEMA Returns the schema name of the object found
for an alias.

“TABLE_SCHEMA” on page
586

TRIM_ARRAY Returns a copy of an array from which a number
of elements have been removed from the end
of the array.

“TRIM_ARRAY” on page 611

VALUE Returns the first argument that is not null “VALUE” on page 619

Chapter 4. Built-in functions 249

Table 42. Miscellaneous Scalar Functions (continued)

Function Description Reference

VERIFY_GROUP_FOR_USER Returns an indication of whether a user is in a
list of specified profiles.

“VERIFY_GROUP_FOR_USER”
on page 644

WRAP Obfuscates DDL statement text “WRAP” on page 648

Table 43. MQSeries Scalar Functions

Function Description Reference

MQREAD Returns a message from a specified MQSeries®

location (return value of VARCHAR) without
removing the message from the queue

“MQREAD” on page 502

MQREADCLOB Returns a message from a specified MQSeries
location (return value of CLOB) without
removing the message from the queue

“MQREADCLOB” on page 504

MQRECEIVE Returns a message from a specified MQSeries
location (return value of VARCHAR) with
removal of message from the queue

“MQRECEIVE” on page 506

MQRECEIVECLOB Returns a message from a specified MQSeries
location (return value of CLOB) with removal of
message from the queue

“MQRECEIVECLOB” on page
508

MQSEND Sends a message to a specified MQSeries
location

“MQSEND” on page 510

Table 44. Numeric Scalar Functions

Function Description Reference

ABS or ABSVAL Returns the absolute value of a number “ABS or ABSVAL” on page 301

ACOS Returns the arc cosine of a number, in radians “ACOS” on page 302

ANTILOG Returns the anti-logarithm (base 10) of a
number

“ANTILOG” on page 305

ASIN Returns the arc sine of a number, in radians “ASIN” on page 309

ATAN Returns the arc tangent of a number, in radians “ATAN” on page 310

ATANH Returns the hyperbolic arc tangent of a number,
in radians

“ATANH” on page 311

ATAN2 Returns the arc tangent of x and y coordinates
as an angle expressed in radians

“ATAN2” on page 312

BITAND, BITANDNOT,
BITOR, BITXOR, BITNOT

Return a base 10 value based on a
bitwise operation using the two's complement
representation of the input arguments

“BITAND, BITANDNOT, BITOR,
BITXOR, and BITNOT” on
page 318

CEILING Returns the smallest integer value that is
greater than or equal to a number

“CEILING or CEIL” on page
324

COMPARE_DECFLOAT Returns an indication of how two decimal
floating-point values compare

“COMPARE_DECFLOAT” on
page 339

COS Returns the cosine of a number “COS” on page 344

250 IBM i: Db2 for i SQL Reference

Table 44. Numeric Scalar Functions (continued)

Function Description Reference

COSH Returns the hyperbolic cosine of a number “COSH” on page 345

DECFLOAT_FORMAT Returns a DECFLOAT(34) value that is based on
the interpretation of the input string using the
specified format.

“DECFLOAT_FORMAT” on
page 371

DECFLOAT_SORTKEY Returns an integer value that can be used to
sort decimal floating-point values.

“DECFLOAT_SORTKEY” on
page 373

DEGREES Returns the number of degrees of an angle “DEGREES” on page 380

DIGITS Returns a character-string representation of the
absolute value of a number

“DIGITS” on page 382

EXP Returns a value that is the base of the natural
logarithm (e) raised to a power specified by the
argument

“EXP” on page 403

FLOOR Returns the largest integer value that is less
than or equal to a number

“FLOOR” on page 409

LN Returns the natural logarithm of a number “LN” on page 476

LOG10 Returns the common logarithm (base 10) of a
number

“LOG10” on page 482

MOD Returns the remainder of the first argument
divided by the second argument

“MOD” on page 496

MULTIPLY_ALT Multiplies the first argument by the second
argument and returns the product

“MULTIPLY_ALT” on page 512

NORMALIZE_DECFLOAT Returns a decimal floating-point value in its
simplest form

“NORMALIZE_DECFLOAT” on
page 516

PI Returns the value of π “PI” on page 524

POWER or POW Returns the result of raising the first argument
to the power of the second argument

“POWER or POW” on page
529

QUANTIZE Returns a decimal floating-point value
formatted according to a provided value

“QUANTIZE” on page 530

RADIANS Returns the number of radians for an argument
that is expressed in degrees

“RADIANS” on page 533

RANDOM or RAND Returns a random number “RANDOM or RAND” on page
535

ROUND Returns a numeric value that has been rounded
to the specified number of decimal places

“ROUND” on page 553

SIGN Returns the sign of a number “SIGN” on page 570

SIN Returns the sine of a number “SIN” on page 571

SINH Returns the hyperbolic sine of a number “SINH” on page 572

SQRT Returns the square root of a number “SQRT” on page 576

TAN Returns the tangent of a number “TAN” on page 587

TANH Returns the hyperbolic tangent of a number “TANH” on page 588

Chapter 4. Built-in functions 251

Table 44. Numeric Scalar Functions (continued)

Function Description Reference

TO_NUMBER Returns a DECFLOAT(34) value that is based on
the interpretation of the input string using the
specified format.

“TO_NUMBER” on page 604

TOTALORDER Returns an ordering indication for two decimal
floating-point values

“TOTALORDER” on page 606

TRUNCATE or TRUNC Returns a number value that has been
truncated at a specified number of decimal
places

“TRUNCATE or TRUNC” on
page 612

Table 45. Partitioning Scalar Functions

Function Description Reference

DATAPARTITIONNAME Returns the partition name where a row is
located

“DATAPARTITIONNAME” on
page 350

DATAPARTITIONNUM Returns the partition number of a row “DATAPARTITIONNUM” on
page 351

DBPARTITIONNAME Returns the relational database name where a
row is located

“DBPARTITIONNAME” on
page 367

DBPARTITIONNUM Returns the node number of a row “DBPARTITIONNUM” on page
368

HASH Returns the partition number of a set of values “HASH” on page 422

HASHED_VALUE Returns the partition map index number of a
row

“HASHED_VALUE” on page
423

Table 46. String Scalar Functions

Function Description Reference

ASCII Returns the ASCII code value of the leftmost
character of the argument as an integer

“ASCII” on page 308

BIT_LENGTH Returns the length of a string expression in
bits

“BIT_LENGTH” on page 320

CHARACTER_LENGTH Returns the length of a string expression “CHARACTER_LENGTH or
CHAR_LENGTH” on page 331

CHR Returns the EBCDIC character that has the
ASCII code value specified by the argument.

“CHR” on page 332

CONCAT Returns a string that is the concatenation of
two strings

“CONCAT” on page 340

DECRYPT_BIT,
DECRYPT_BINARY,
DECRYPT_CHAR, and
DECRYPT_DB

Decrypts an encrypted string “DECRYPT_BIT,
DECRYPT_BINARY,
DECRYPT_CHAR and
DECRYPT_DB” on page 377

DIFFERENCE Returns a value representing the difference
between the sounds of two strings

“DIFFERENCE” on page 381

252 IBM i: Db2 for i SQL Reference

Table 46. String Scalar Functions (continued)

Function Description Reference

ENCRYPT and ENCRYPT_RC2 Encrypts a string using the RC2 encryption
algorithm

“ENCRYPT_RC2 or ENCRPYT”
on page 397

ENCRYPT_AES Encrypts a string using the AES encryption
algorithm

“ENCRYPT_AES” on page 394

ENCRYPT_TDES Encrypts a string using the Triple DES
encryption algorithm

“ENCRYPT_TDES” on page 400

GETHINT Returns a hint from an encrypted string “GETHINT” on page 415

HEXTORAW Returns a binary string representation of a
character string that has been formatted

“HEXTORAW” on page 425

INSERT Returns a string where a substring is deleted
and a new string inserted in its place

“INSERT” on page 440

INSTR Returns the starting position of a string within
another string.

“INSTR” on page 448

LAND Returns a string that is the logical AND of the
argument strings

“LAND” on page 468

LCASE Returns a string in which all the characters
have been converted to lowercase characters

“LCASE” on page 470

LEFT Returns the leftmost characters from the
string

“LEFT” on page 472

LNOT Returns a string that is the logical NOT of the
argument string

“LNOT” on page 477

LOCATE Returns the starting position of one string
within another string

“LOCATE” on page 478

LOCATE_IN_STRING Returns the starting position of a string within
another string.

“LOCATE_IN_STRING” on
page 480

LOR Returns a string that is the logical OR of the
argument strings

“LOR” on page 483

LOWER Returns a string in which all the characters
have been converted to lowercase characters

“LOWER” on page 484

LPAD Returns a string that is padded on the left “LPAD” on page 485

LTRIM Returns a string in which blanks or
hexadecimal zeroes have been removed from
the beginning of another string

“LTRIM” on page 488

OCTET_LENGTH Returns the length of a string expression in
octets

“OCTET_LENGTH” on page
520

OVERLAY Returns a string where a number of characters
have been deleted from the original string and
a new string inserted into the string.

“OVERLAY” on page 521

POSITION Returns the starting position of one string
within another string

“POSITION” on page 525

POSSTR Returns the starting position of one string
within another string

“POSSTR” on page 527

Chapter 4. Built-in functions 253

Table 46. String Scalar Functions (continued)

Function Description Reference

REGEXP_COUNT Returns a returns a count of the number of
times that a regular expression pattern is
matched in a string

“REGEXP_COUNT” on page
538

REGEXP_INSTR Returns the starting position or the position
after the end of the matched substring.

“REGEXP_INSTR” on page 540

REGEXP_REPLACE Returns a modified version of the source string
where a regular expression pattern is replaced
with a replacement string

“REGEXP_REPLACE” on page
542

REGEXP_SUBSTR Returns an occurrence of a substring of a
string that matches the regular expression
pattern

“REGEXP_SUBSTR” on page
544

REPEAT Returns a string composed of another string
repeated a number of times

“REPEAT” on page 546

REPLACE Returns a string where all occurrences of one
string are replaced by another string

“REPLACE” on page 548

RIGHT Returns the rightmost characters from the
string

“RIGHT” on page 551

RPAD Returns a string that is padded on the right “RPAD” on page 559

RTRIM Returns a string in which blanks or
hexadecimal zeroes have been removed from
the end of another string

“RTRIM” on page 563

SOUNDEX Returns a character code representing the
sound of the words in the argument

“SOUNDEX” on page 574

SPACE Returns a character string that consists of a
specified number of blanks

“SPACE” on page 575

STRIP Removes blanks or another specified
character from the end or beginning of a string
expression

“STRIP” on page 577

STRLEFT Returns the leftmost characters from the
string

“STRLEFT” on page 578

STRPOS Returns the starting position of one string
within another string

“STRPOS” on page 579

STRRIGHT Returns the rightmost characters from the
string

“STRRIGHT” on page 580

SUBSTR Returns a substring of a string “SUBSTR” on page 581

SUBSTRING Returns a substring of a string “SUBSTRING” on page 583

TO_CHAR Returns a character string representation of
the first argument using the format indicated
by the optional format-string.

“TO_CHAR” on page 601

TRANSLATE Returns a string in which one or more
characters in a string are converted to other
characters

“TRANSLATE” on page 607

254 IBM i: Db2 for i SQL Reference

Table 46. String Scalar Functions (continued)

Function Description Reference

TRIM Removes blanks or another specified
character from the beginning, the end, or
both the beginning and the end of a string
expression

“TRIM” on page 609

UCASE Returns a string in which all the characters
have been converted to uppercase characters

“UCASE” on page 615

UPPER Returns a string in which all the characters
have been converted to uppercase characters

“UPPER” on page 616

VARBINARY_FORMAT Returns a binary string representation of a
character string that has been formatted

“VARBINARY_FORMAT” on
page 621

VARCHAR_FORMAT Returns a character string representation of
the first argument using the format indicated
by the optional format-string.

“VARCHAR_FORMAT” on page
629

VARCHAR_FORMAT_BINARY Returns a character string representation of a
bit string that has been formatted

“VARCHAR_FORMAT_BINARY
” on page 637

XOR Returns a string that is the logical XOR of the
argument strings

“XOR” on page 676

Table 47. XML Scalar Functions

Function Description Reference

XMLATTRIBUTES Constructs XML attributes from the
arguments.

“XMLATTRIBUTES” on page
650

XMLCOMMENT Returns an XML value with the input argument
as the content.

“XMLCOMMENT” on page 651

XMLCONCAT Returns an XML sequence containing the
concatenation of a variable number of XML
input arguments.

“XMLCONCAT” on page 652

XMLDOCUMENT Returns an XML value that is a well-formed
XML document.

“XMLDOCUMENT” on page
654

XMLELEMENT Returns an XML value that is an XML element. “XMLELEMENT” on page 655

XMLFOREST Returns an XML value that is a sequence of
XML elements.

“XMLFOREST” on page 658

XMLNAMESPACES Constructs namespace declarations from the
arguments.

“XMLNAMESPACES” on page
661

XMLPARSE Returns an XML value by parsing the
arguments as an XML document.

“XMLPARSE” on page 663

XMLPI Returns an XML value with a single processing
instruction.

“XMLPI” on page 664

XMLROW Returns an XML value that is a well-formed
XML document.

“XMLROW” on page 665

XMLSERIALIZE Returns a serialized XML value as the specified
data type.

“XMLSERIALIZE” on page 667

Chapter 4. Built-in functions 255

Table 47. XML Scalar Functions (continued)

Function Description Reference

XMLTEXT Returns an XML value that contains the value
of the input argument.

“XMLTEXT” on page 671

XMLVALIDATE Returns an XML value that has been
augmented with information obtained from
XML schema validation.

“XMLVALIDATE” on page 672

XSLTRANSFORM Transforms an XML document into a different
data format.

“XSLTRANSFORM” on page
677

Table 48. Table Functions

Function Description Reference

BASE_TABLE Returns a table with one row containing the
table name and schema name for the specified
alias name

“BASE_TABLE” on page 687

HTTP_DELETE_VERBOSE Deletes a text-based resource from the
specified URL through an HTTP DELETE
request. It returns a one row table that contains
the normal HTTP response for the request and
the header information returned from the HTTP
request.

“HTTP_DELETE_VERBOSE” on
page 689

HTTP_GET_VERBOSE Retrieves a text-based resource from the
specified URL through an HTTP GET request.
It returns a one row table that contains the
normal HTTP response for the request and the
header information returned from the HTTP
request.

“HTTP_GET_VERBOSE” on
page 690

HTTP_POST_VERBOSE Updates a text-based resource under the
specified URL through an HTTP POST request.
It returns a one row table that contains the
normal HTTP response for the request and the
header information returned from the HTTP
request.

“HTTP_POST_VERBOSE” on
page 692

HTTP_PUT_VERBOSE Updates a text-based resource under the
specified URL through an HTTP PUT request.
It returns a one row table that contains the
normal HTTP response for the request and the
header information returned from the HTTP
request.

“HTTP_PUT_VERBOSE” on
page 693

JSON_TABLE Returns a table from the evaluation of SQL/
JSON path expressions.

“JSON_TABLE” on page 694

MQREADALL Returns a table containing the messages and
message metadata from a specified MQSeries
location with a VARCHAR column and without
removing the messages from the queue

“MQREADALL” on page 704

MQREADALLCLOB Returns a table containing the messages and
message metadata from a specified MQSeries
location with a CLOB column and without
removing the messages from the queue

“MQREADALLCLOB” on page
706

256 IBM i: Db2 for i SQL Reference

Table 48. Table Functions (continued)

Function Description Reference

MQRECEIVEALL Returns a table containing the messages and
message metadata from a specified MQSeries
location with a VARCHAR column and with
removal of messages from the queue

“MQRECEIVEALL” on page
708

MQRECEIVEALLCLOB Returns a table containing the messages and
message metadata from a specified MQSeries
location with a CLOB column and with removal
of messages from the queue

“MQRECEIVEALLCLOB” on
page 711

XMLTABLE Returns a table from the evaluation of an XPath
expression.

“XMLTABLE” on page 714

Chapter 4. Built-in functions 257

Aggregate functions
An aggregate function takes a set of values (like a column of data) and returns a single value result from
the set of values.

The following information applies to all aggregate functions other than COUNT(*) and COUNT_BIG(*).

• The argument of an aggregate function is a set of values derived from an expression. The expression
may include columns but cannot include another aggregate function. The scope of the set is a group or
an intermediate result table as explained in Chapter 6, "Queries".

• If a GROUP BY clause is specified in a query and the intermediate result of the FROM, WHERE, GROUP
BY, and HAVING clauses is an empty result table, then the aggregate functions are not applied and the
result of the query is an empty table.

• If a GROUP BY clause is not specified in a query and the intermediate result of the FROM, WHERE, and
HAVING clauses is an empty result table, then the aggregate functions are applied to the empty result
table. For example, the result of the following SELECT statement is applied to an empty result table
because department D01 has no employees:

 SELECT COUNT(DISTINCT JOB)
 FROM EMPLOYEE
 WHERE WORKDEPT = 'D01'

• The keyword DISTINCT is not considered an argument of the function, but rather a specification of an
operation that is performed before the function is applied. If DISTINCT is specified, redundant duplicate
values are eliminated. If ALL is implicitly or explicitly specified, redundant duplicate values are not
eliminated.

When interpreting the DISTINCT clause for decimal floating-point values that are numerically equal,
the number of significant digits in the value is not considered. For example, the decimal floating-point
number 123.00 is not distinct from the decimal floating-point number 123. The representation of the
number returned from the query will be any one of the representations encountered (for example, either
123.00 or 123).

• An aggregate function can be used in a WHERE clause only if that clause is part of a subquery of a
HAVING clause and the column name specified in the expression is a correlated reference to a group.
If the expression includes more than one column name, each column name must be a correlated
reference to the same group.

258 IBM i: Db2 for i SQL Reference

ARRAY_AGG
The ARRAY_AGG function aggregates a set of elements into an array.

ARRAY_AGG

(expression

ORDER BY

,

sort-key-expression
ASC

DESC

)

expression
An expression that returns a value that is any data type that can be specified for a CREATE TYPE
(Array) statement.

ORDER BY
Specifies the order of the rows from the same grouping set that are processed in the aggregation. If
the ORDER BY clause is not specified, or if the ORDER BY clause cannot differentiate the order of the
sort key value, the rows in the same grouping set are arbitrarily ordered.
sort-key-expression

Specifies a sort key value that is either a column name or an expression. The data type of the
column or expression must not be a DATALINK or XML value.
The ordering of the aggregated elements is based on the values of the sort keys.
The sum of the length attributes of the sort-key-expressions must not exceed 3.5 gigabytes.

If a collating sequence other than *HEX is in effect when the statement that contains the ARRAY_AGG
function is executed and the sort-key-expressions are SBCS data, mixed data, or Unicode data, then
the result is obtained by comparing weighted values. The weighted values are derived by applying the
collating sequence to the sort-key-expressions.

The ARRAY_AGG function can only be specified within an SQL procedure or an SQL function in the
following specific contexts:

• The select-clause of a SELECT INTO statement
• The select-clause of a scalar subquery on the right side of a SET statement

The SELECT that uses ARRAY_AGG cannot contain the DISTINCT clause.

Examples

Assume an array type and a table are created as follows:

CREATE TYPE PHONELIST AS DECIMAL(10,0) ARRAY[10]

CREATE TABLE EMPLOYEE (
 ID INTEGER NOT NULL,
 PRIORITY INTEGER NOT NULL,
 PHONENUMBER DECIMAL(10,0),
 PRIMARY KEY (ID, PRIORITY))

Create a procedure that uses a SELECT INTO statement to return the prioritized list of contact numbers
under which an employee can be reached.

CREATE PROCEDURE GETPHONENUMBERS
 (IN EMPID INTEGER,
 OUT NUMBERS PHONELIST)
 BEGIN
 SELECT ARRAY_AGG(PHONENUMBER ORDER BY PRIORITY) INTO NUMBERS
 FROM EMPLOYEE

Chapter 4. Built-in functions 259

 WHERE ID = EMPID;
 END

Create a procedure that uses a SET statement to return the list of an employee's contact numbers in an
arbitrary order.

CREATE PROCEDURE GETPHONENUMBERS
 (IN EMPID INTEGER,
 OUT NUMBERS PHONELIST)
 BEGIN
 SET NUMBERS =
 (SELECT ARRAY_AGG(PHONENUMBER)
 FROM EMPLOYEE
 WHERE ID = EMPID);
 END

260 IBM i: Db2 for i SQL Reference

AVG
The AVG function returns the average of a set of numbers.

AVG (
ALL

DISTINCT

numeric-expression)

numeric-expression
An expression that returns a value of any built-in numeric, character-string, or graphic-string data
type. If the argument is a character-string or graphic-string, it is cast to DECFLOAT(34) before
evaluating the function. The sum of the argument values must be within the range of the data type of
the result.

The data type of the result is the same as the data type of the argument values, except that:

• The result is DECFLOAT(34) if the argument values are DECFLOAT(16).
• The result is double-precision floating point if the argument values are single-precision floating point.
• The result is large integer if the argument values are small integers.
• The result is decimal if the argument values are decimal or nonzero scale binary with precision p and

scale s. The precision of the result is p-s+ min(ms, mp-p+s). The scale of the result is min(ms, mp-p+s).

For information about the values of p, s, ms, and mp, see “Decimal arithmetic in SQL” on page 160.

The function is applied to the set of values derived from the argument values by the elimination of null
values. If DISTINCT is used, duplicate values are eliminated.

The result can be null. If set of values is empty, the result is the null value. Otherwise, the result is the
average value of the set.

The order in which the values are aggregated is undefined, but every intermediate result must be within
the range of the result data type.

If the type of the result is integer, the fractional part of the average is lost.

Notes
Results involving DECFLOAT special values: If the data type of the argument is decimal floating-point
and a special value of sNaN or -sNaN, or both +Infinity and -Infinity are included in the aggregation, an
error or warning is returned. Otherwise, if +NaN or -NaN is found, the result is +NaN or -NaN. If +Infinity
or -Infinity is found, the result is +Infinity or -Infinity.

Examples

• Using the PROJECT table, set the host variable AVERAGE (DECIMAL(5,2)) to the average staffing level
(PRSTAFF) of projects in department (DEPTNO) ‘D11'.

 SELECT AVG(PRSTAFF)
 INTO :AVERAGE
 FROM PROJECT
 WHERE DEPTNO = 'D11'

Results in AVERAGE being set to 4.25 (that is, 17/4).
• Using the PROJECT table, set the host variable ANY_CALC to the average of each unique staffing value

(PRSTAFF) of projects in department (DEPTNO) 'D11'.

 SELECT AVG(DISTINCT PRSTAFF)
 INTO :ANY_CALC
 FROM PROJECT
 WHERE DEPTNO = 'D11'

Results in ANY_CALC being set to 4.66 (that is, 14/3).

Chapter 4. Built-in functions 261

CORR or CORRELATION
The CORRELATION function returns the coefficient of correlation of a set of number pairs.

CORR

CORRELATION

(expression1 , expression2)

expression1
An expression that returns a value of any built-in numeric, character-string, or graphic-string data
type. If the argument is a character-string or graphic-string, it is cast to DECFLOAT(34) before
evaluating the function.

expression2
An expression that returns a value of any built-in numeric, character-string, or graphic-string data
type. If the argument is a character-string or graphic-string, it is cast to DECFLOAT(34) before
evaluating the function.

If either argument is decimal floating-point, the result of the function is DECFLOAT(34). Otherwise, the
result of the function is a double precision floating-point number. The result can be null. When not null,
the result is between -1 and 1.

The function is applied to the set of (expression1, expression2) pairs derived from the argument values by
the elimination of all pairs for which either expression1 or expression2 is null.

If the function is applied to an empty set, or if either STDDEV(expression1) or STDDEV(expression2) is
equal to zero, the result is a null value. Otherwise, the result is the correlation coefficient for the value
pairs in the set. The result is equivalent to the following:

1. Let sdexp1 be the result of STDDEV(expression1) and let sdexp2 be the result of STDDEV(expression2).
2. The result of CORRELATION(expression1, expression2) is:

COVARIANCE(expression1, expression2) / (sdexp1 * sdexp2)

The order in which the values are aggregated is undefined, but every intermediate result must be within
the range of the result data type.

Notes
Results involving DECFLOAT special values: If the data type of the argument is decimal floating-point
and a special value of sNaN or -sNaN, or both +Infinity and -Infinity are included in the aggregation, an
error or warning is returned. Otherwise, if +NaN or -NaN is found, the result is +NaN or -NaN. If +Infinity
or -Infinity is found, the result is +Infinity or -Infinity.

Syntax alternatives: CORR should be used for conformance to the SQL standard.

Example

• Using the EMPLOYEE table, set the host variable CORRLN to the correlation between the salary and the
bonus for those employees in department 'A00'.

SELECT CORRELATION(SALARY, BONUS)
 INTO :CORRLN
 FROM EMPLOYEE
 WHERE WORKDEPT = ‘A00’;

CORRLN is set to 0.9760236077658643 when using the sample table.

262 IBM i: Db2 for i SQL Reference

COUNT
The COUNT function returns the number of rows or values in a set of rows or values.

COUNT (
ALL

DISTINCT

expression

*

)

expression
The argument values can be of any built-in data type other than a DataLink. XML is not allowed for
COUNT (DISTINCT expression).

The result of the function is a large integer and it must be within the range of large integers. The result
cannot be null. If the table is a distributed table, then the result is DECIMAL(15,0). For more information
about distributed tables, see the DB2 Multisystem topic collection.

The argument of COUNT(*) is a set of rows. The result is the number of rows in the set. A row that includes
only null values is included in the count.

The argument of COUNT(expression) or COUNT(ALL expression) is a set of values. The function is applied
to the set derived from the argument values by the elimination of null values. The result is the number of
non-null values in the set including duplicates.

The argument of COUNT(DISTINCT expression) is a set of values. The function is applied to the set of
values derived from the argument values by the elimination of null values and duplicate values. The result
is the number of values in the set.

If a collating sequence other than *HEX is in effect when the statement that contains the
COUNT(DISTINCT expression) is executed and the arguments are SBCS data, mixed data, or Unicode
data, then the result is obtained by comparing weighted values for each value in the set. The weighted
values are based on the collating sequence.

Examples

• Using the EMPLOYEE table, set the host variable FEMALE (INTEGER) to the number of rows where the
value of the SEX column is ‘F'.

 SELECT COUNT(*)
 INTO :FEMALE
 FROM EMPLOYEE
 WHERE SEX = 'F'

Results in FEMALE being set to 19.
• Using the EMPLOYEE table, set the host variable FEMALE_IN_DEPT (INTEGER) to the number of

departments (WORKDEPT) that have at least one female as a member.

 SELECT COUNT(DISTINCT WORKDEPT)
 INTO :FEMALE_IN_DEPT
 FROM EMPLOYEE
 WHERE SEX='F'

Results in FEMALE_IN_DEPT being set to 6. (There is at least one female in departments A00, C01,
D11, D21, E11, and E21.)

Chapter 4. Built-in functions 263

COUNT_BIG
The COUNT_BIG function returns the number of rows or values in a set of rows or values. It is similar to
COUNT except that the result can be greater than the maximum value of integer.

COUNT_BIG (
ALL

DISTINCT

expression

*

)

expression
The argument values can be of any built-in data type other than a DataLink. XML is not allowed for
COUNT_BIG(DISTINCT expression).

The result of the function is a decimal with precision 31 and scale 0. The result cannot be null.

The argument of COUNT_BIG(*) is a set of rows. The result is the number of rows in the set. A row that
includes only null values is included in the count.

The argument of COUNT_BIG(expression) is a set of values. The function is applied to the set derived from
the argument values by the elimination of null values. The result is the number of values in the set.

If a collating sequence other than *HEX is in effect when the statement that contains the
COUNT_BIG(DISTINCT expression) is executed and the arguments are SBCS data, mixed data, or Unicode
data, then the result is obtained by comparing weighted values for each value in the set. The weighted
values are based on the collating sequence.

Examples

• Refer to COUNT examples and substitute COUNT_BIG for occurrences of COUNT. The results are the
same except for the data type of the result.

• To count on a specific column, a sourced function must specify the type of the column. In this example,
the CREATE FUNCTION statement creates a sourced function that takes any column defined as CHAR,
uses COUNT_BIG to perform the counting, and returns the result as a double precision floating-point
number. The query shown counts the number of unique departments in the sample employee table.

 CREATE FUNCTION RICK.COUNT(CHAR(19)) RETURNS DOUBLE
 SOURCE QSYS2.COUNT_BIG(CHAR());

 SET CURRENT PATH RICK, SYSTEM PATH

 SELECT COUNT(DISTINCT WORKDEPT) FROM EMPLOYEE;

264 IBM i: Db2 for i SQL Reference

COVARIANCE or COVAR
The COVARIANCE function returns the (population) covariance of a set of number pairs.

COVARIANCE

COVAR

(expression1 , expression2)

expression1
An expression that returns a value of any built-in numeric, character-string, or graphic-string data
type. If the argument is a character-string or graphic-string, it is cast to DECFLOAT(34) before
evaluating the function.

expression2
An expression that returns a value of any built-in numeric, character-string, or graphic-string data
type. If the argument is a character-string or graphic-string, it is cast to DECFLOAT(34) before
evaluating the function.

If either argument is decimal floating-point, the result of the function is DECFLOAT(34). Otherwise, the
result of the function is a double precision floating-point number. The result can be null.

The function is applied to the set of (expression1, expression2) pairs derived from the argument values by
the elimination of all pairs for which either expression1 or expression2 is null.

If the function is applied to an empty set, the result is a null value. Otherwise, the result is the covariance
for the value pairs in the set. The result is equivalent to the following:

1. Let avgexp1 be the result of AVG(expression1) and let avgexp2 be the result of AVG(expression2).
2. The result of COVARIANCE(expression1, expression2) is:

AVG((expression1 - avgexp1) * (expression2 - avgexp2))

The order in which the values are aggregated is undefined, but every intermediate result must be within
the range of the result data type.

Notes
Results involving DECFLOAT special values: If the data type of the argument is decimal floating-point
and a special value of sNaN or -sNaN, or both +Infinity and -Infinity are included in the aggregation, an
error or warning is returned. Otherwise, if +NaN or -NaN is found, the result is +NaN or -NaN. If +Infinity
or -Infinity is found, the result is +Infinity or -Infinity.

Syntax alternatives: COVAR_POP can be specified as a synonym for COVARIANCE.

Example

• Using the EMPLOYEE table, set the host variable COVARNCE to the covariance between the salary and
the bonus for those employees in department 'A00'.

SELECT COVARIANCE(SALARY, BONUS)
 INTO :COVARNCE
 FROM EMPLOYEE
 WHERE WORKDEPT = ‘A00’;

COVARNCE is set to 1743000.0000 when using the sample table.

Chapter 4. Built-in functions 265

COVAR_SAMP or COVARIANCE_SAMP
The COVARIANCE_SAMP function returns the unbiased sample covariance (n-1) of a set of number pairs.

COVAR_SAMP

COVARIANCE_SAMP

(expression1 , expression2)

expression1
An expression that returns a value of any built-in numeric, character-string, or graphic-string data
type. If the argument is a character-string or graphic-string, it is cast to DECFLOAT(34) before
evaluating the function.

expression2
An expression that returns a value of any built-in numeric, character-string, or graphic-string data
type. If the argument is a character-string or graphic-string, it is cast to DECFLOAT(34) before
evaluating the function.

If either argument is decimal floating-point, the result of the function is DECFLOAT(34). Otherwise, the
result of the function is a double precision floating-point number. The result can be null.

The function is applied to the set of (expression1, expression2) pairs derived from the argument values by
the elimination of all pairs for which either expression1 or expression2 is null.

If the function is applied to an empty set or a set with only one row, the result is a null value. Otherwise,
the result is the sample covariance for the value pairs in the set. The result is equivalent to the following:

1. Let avgexp1 be the result of AVG(expression1) and let avgexp2 be the result of AVG(expression2).
2. The result of COVARIANCE_SAMP(expression1, expression2) is:

SUM((expression1 - avgexp1) * (expression2 - avgexp2)) /
 (COUNT(expression1) – 1)

The order in which the values are aggregated is undefined, but every intermediate result must be within
the range of the result data type.

Notes
Results involving DECFLOAT special values: If the data type of the argument is decimal floating-point
and a special value of sNaN or -sNaN, or both +Infinity and -Infinity are included in the aggregation, an
error or warning is returned. Otherwise, if +NaN or -NaN is found, the result is +NaN or -NaN. If +Infinity
or -Infinity is found, the result is +Infinity or -Infinity.

Syntax alternatives: COVAR_SAMP should be used for conformance to the SQL standard.

Example

• Set the host variable COVARNCE_S to the sample covariance between the salary and bonus for those
employees in department 'A00' of the EMPLOYEE table. The data type of the host variable COVARNCE_S
is double-precision floating point.

SELECT COVARIANCE_SAMP(SALARY, BONUS)
 INTO :COVARNCE_S
 FROM EMPLOYEE
 WHERE WORKDEPT = 'A00'

COVARNCE_S is set to 2178750.0000 when the sample table is used.

266 IBM i: Db2 for i SQL Reference

GROUPING
Used in conjunction with grouping-sets and super-groups, the GROUPING aggregate function returns a
value that indicates whether a row returned in a GROUP BY answer set is a row generated by a grouping
set that excludes the column represented by expression.

GROUPING (expression)

expression
The argument values can be any built-in data type, but must be an item of a GROUP BY clause.

The data type of the result is a small integer. It is set to one of the following values:

1 The value of expression in the returned row is a null value, and the row was generated
by the super-group. This generated row can be used to provide subtotal values for the
GROUP BY expression.

0 The value is other than the above.

Example

The following query:

 SELECT SALES_DATE, SALES_PERSON,
 SUM(SALES) AS UNITS_SOLD,
 GROUPING(SALES_DATE) AS DATE_GROUP,
 GROUPING(SALES_PERSON) AS SALES_GROUP
 FROM SALES
 GROUP BY CUBE(SALES_DATE, SALES_PERSON)
 ORDER BY SALES_DATE, SALES_PERSON

Results in:

SALES_DATE SALES_PERSON UNITS_SOLD DATE_GROUP SALES_GROUP
---------- ------------ ---------- ---------- -----------
12/31/1995 GOUNOT 1 0 0
12/31/1995 LEE 6 0 0
12/31/1995 LUCCHESSI 1 0 0
12/31/1995 - 8 0 1
03/29/1996 GOUNOT 11 0 0
03/29/1996 LEE 12 0 0
03/29/1996 LUCCHESSI 4 0 0
03/29/1996 - 27 0 1
03/30/1996 GOUNOT 21 0 0
03/30/1996 LEE 21 0 0
03/30/1996 LUCCHESSI 4 0 0
03/30/1996 - 46 0 1
03/31/1996 GOUNOT 3 0 0
03/31/1996 LEE 27 0 0
03/31/1996 LUCCHESSI 1 0 0
03/31/1996 - 31 0 1
04/01/1996 GOUNOT 14 0 0
04/01/1996 LEE 25 0 0
04/01/1996 LUCCHESSI 4 0 0
04/01/1996 - 43 0 1
- GOUNOT 50 1 0
- LEE 91 1 0
- LUCCHESSI 14 1 0
- - 155 1 1

An application can recognize a SALES_DATE subtotal row by the fact that the value of DATE_GROUP is 0
and the value of SALES_GROUP is 1. A SALES_PERSON subtotal row can be recognized by the fact that the
value of DATE_GROUP is 1 and the value of SALES_GROUP is 0. A grand total row can be recognized by the
fact that the value of both DATE_GROUP and SALES_GROUP is 1.

Chapter 4. Built-in functions 267

JSON_ARRAYAGG
The JSON_ARRAYAGG function returns a JSON array containing an array element for each value in a set of
JSON or SQL values.

JSON_ARRAYAGG (JSON-expression

FORMAT JSON

FORMAT BSON

ORDER BY

,

sort-key-expression
ASC

DESC

ABSENT ON NULL

NULL ON NULL

RETURNING CLOB (2G) CCSID 1208 FORMAT JSON

RETURNING data-type

FORMAT JSON

ENCODING UTF8

ENCODING UTF16

)

data-type

268 IBM i: Db2 for i SQL Reference

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

normalize-clause

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BINARY LARGE OBJECT

BLOB

(1M)

(integer

K

M

G

)

ccsid-clause
CCSID integer

normalize-clause

normalize-clause

Chapter 4. Built-in functions 269

NOT NORMALIZED

NORMALIZED

JSON-expression
The expression to use to generate a value in the JSON array. The result type of this expression can be
any built-in data type except XML, ROWID, or DATALINK. It cannot be CHAR or VARCHAR bit data. It
cannot be a user-defined type that is sourced on any of these data types.
FORMAT JSON or FORMAT BSON

Specifies whether JSON-expression is already formatted data.
FORMAT JSON

JSON-expression is formatted as JSON data. If JSON-expression is a character or graphic string
data type, it is treated as JSON data. If JSON-expression is a binary string data type, it is
interpreted as UTF-8 or UTF-16 data.

FORMAT BSON
JSON-expression is formatted as the BSON representation of JSON data and must be a binary
string data type.

If neither FORMAT JSON nor FORMAT BSON is specified:

• If JSON-expression is one of the built-in functions JSON_ARRAY, JSON_OBJECT, JSON_QUERY,
JSON_ARRAYAGG, or JSON_OBJECTAGG, the explicit or implicit FORMAT value of the function's
RETURNING clause determines the format of JSON-expression.

• If JSON-expression is a binary string type, it is interpreted as FORMAT BSON.
• Otherwise, JSON-expression is considered unformatted data. If the generated value is not numeric,

the result string will be constructed with strings enclosed in quotes and any special characters will
be escaped. A numeric value that is not a valid JSON number, such as INFINITY or NAN, will result
in an error.

ORDER BY
Specifies the order of the rows from the same grouping set that are processed in the aggregation. If
the ORDER BY clause is not specified, or if the ORDER BY clause cannot differentiate the order of the
sort key value, the rows in the same grouping set are arbitrarily ordered.
sort-key-expression

Specifies a sort key value that is either a column name or an expression. The data type of the
column or expression must not be a DATALINK or XML value..
ASC

Processes the sort-key-expression in ascending order. This is the default.
DESC

Processes the sort-key-expression in descending order.

The ordering is based on the values of the sort keys, which might or might not be used in
JSON-expression.

The sum of the length attributes of the sort-key-expressions must not exceed 3.5 gigabytes.

If a collating sequence other than *HEX is in effect when the statement that contains the
JSON_ARRAYAGG function is executed and the sort-key-expressions are SBCS data, mixed data, or
Unicode data, then the result is obtained by comparing weighted values. The weighted values are
derived by applying the collating sequence to the sort-key-expressions.

ABSENT ON NULL or NULL ON NULL
Specifies what to return when an array element produced by JSON-expression is the null value.
ABSENT ON NULL

A null array element is not included in the JSON array. This is the default.
NULL ON NULL

A null array element is included in the JSON array.

270 IBM i: Db2 for i SQL Reference

RETURNING data-type
Specifies the format of the result.
data-type

The data type of the result. For CHAR and VARCHAR results, the CCSID cannot be 65535. The
default is CLOB(2G) CCSID 1208.

If a CCSID is specified and the data-type is GRAPHIC, VARGRAPHIC, or DBCLOB, the CCSID must
be a Unicode CCSID.

If the CCSID attribute is not specified, the CCSID is determined as described in “CAST
specification” on page 176.

FORMAT JSON
JSON data is returned as a JSON string.
ENCODING UTF8 or ENCODING UTF16

The encoding to use when data-type is a binary string type. This clause is only allowed for
binary string types. The default for binary strings is UTF8.

The result can be null. If the set of values is empty, the result is the null value.

Example
• Return a JSON array containing all the department numbers.

SELECT JSON_ARRAYAGG(deptno) AS deptlist FROM dept;

The result is the following JSON array.

["A00","B01","C01","D01","D11","D21","E01","E11","E21","F22","G22","H22","I22","J22"]

• Return a JSON array for each department containing a list of employees assigned to that department.

SELECT workdept, JSON_ARRAYAGG(lastname ORDER BY lastname) AS dept_employees
FROM emp
WHERE workdept LIKE 'D%'
GROUP BY workdept;

The result is the following 2 rows.

DEPTNO PROJLIST
 D11 ["ADAMSON","BROWN","JOHN","JONES","LUTZ","PIANKA","SCOUTTEN",
 "STERN","WALKER","YAMAMOTO","YOSHIMURA"]
 D21 ["JEFFERSON","JOHNSON","MARINO","MONTEVERDE","PEREZ","PULASKI","SMITH"]

• Return a JSON object that contains a list of departments and employees in each department.

SELECT JSON_OBJECT('department number' VALUE deptno,
 'department name' VALUE deptname,
 'employee list' VALUE
 JSON_ARRAYAGG(
 JSON_OBJECT('last name' VALUE lastname,
 'employee id' VALUE empno)
 ORDER BY lastname))
 FROM dept LEFT OUTER JOIN emp ON deptno = workdept
 WHERE deptno LIKE 'D%'
 GROUP BY deptno, deptname;

The result is the following 3 rows.

{"department number":"D11","department name":"MANUFACTURING SYSTEMS",
 "employee list":[{"last name":"ADAMSON","employee id":"000150"},
 {"last name":"BROWN","employee id":"000200"},
 {"last name":"JOHN","employee id":"200220"},
 {"last name":"JONES","employee id":"000210"},
 {"last name":"LUTZ","employee id":"000220"},
 {"last name":"PIANKA","employee id":"000160"},
 {"last name":"SCOUTTEN","employee id":"000180"},
 {"last name":"STERN","employee id":"000060"},
 {"last name":"WALKER","employee id":"000190"},

Chapter 4. Built-in functions 271

 {"last name":"YAMAMOTO","employee id":"200170"},
 {"last name":"YOSHIMURA","employee id":"000170"}]}

{"department number":"D21","department name":"ADMINISTRATION SYSTEMS",
 "employee list":[{"last name":"JEFFERSON","employee id":"000150"},
 "last name":"JOHNSON","employee id":"000150"},
 "last name":"MARINO","employee id":"000150"},
 "last name":"MONTEVERDE","employee id":"000150"},
 "last name":"PEREZ","employee id":"000150"},
 "last name":"PULASKI","employee id":"000150"},
 "last name":"SMITH","employee id":"000150"}]}

{"department number":"D01","department name":"DEVELOPMENT CENTER"}

272 IBM i: Db2 for i SQL Reference

JSON_OBJECTAGG
The JSON_OBJECTAGG function returns a JSON object containing a key:value pair for each specific key
and value in a set of SQL values.

JSON_OBJECTAGG (

KEY
key-name-expression VALUE JSON-expression

key-name-expression : JSON-expression

FORMAT JSON

FORMAT BSON

NULL ON NULL

ABSENT ON NULL

WITHOUT UNIQUE KEYS

WITH UNIQUE KEYS

RETURNING CLOB (2G) CCSID 1208 FORMAT JSON

RETURNING data-type

FORMAT JSON

ENCODING UTF8

ENCODING UTF16

FORMAT BSON

)

data-type

Chapter 4. Built-in functions 273

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

normalize-clause

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BINARY LARGE OBJECT

BLOB

(1M)

(integer

K

M

G

)

ccsid-clause
CCSID integer

normalize-clause

normalize-clause

274 IBM i: Db2 for i SQL Reference

NOT NORMALIZED

NORMALIZED

key-name-expression
The name of the JSON key. The name must not be null. When using the colon form for defining
a key:value pair, key-name-expression must be a character string literal. Otherwise, the result of
key-name-expression must be a built-in character or graphic string data type. It cannot be CHAR or
VARCHAR bit data.

JSON-expression
The expression to use to generate the JSON value associated with key-name-expression. The result
type of this expression can be any built-in data type except XML, ROWID, or DATALINK. It cannot be
CHAR or VARCHAR bit data. It cannot be a user-defined type that is sourced on any of these data
types.
FORMAT JSON or FORMAT BSON

Specifies whether JSON-expression is already formatted data.
FORMAT JSON

JSON-expression is formatted as JSON data. If JSON-expression is a character or graphic string
data type, it is treated as JSON data. If JSON-expression is a binary string data type, it is
interpreted as UTF-8 or UTF-16 data.

FORMAT BSON
JSON-expression is formatted as the BSON representation of JSON data and must be a binary
string data type.

If neither FORMAT JSON nor FORMAT BSON is specified:

• If JSON-expression is one of the built-in functions JSON_ARRAY, JSON_OBJECT, JSON_QUERY,
JSON_ARRAYAGG, or JSON_OBJECTAGG, the explicit or implicit FORMAT value of the function's
RETURNING clause determines the format of JSON-expression.

• If JSON-expression is a binary string type, it is interpreted as FORMAT BSON.
• Otherwise, JSON-expression is considered unformatted data. If the generated value is not numeric,

the result string will be constructed with strings enclosed in quotes and any special characters will
be escaped. A numeric value that is not a valid JSON number, such as INFINITY or NAN, will result
in an error.

NULL ON NULL or ABSENT ON NULL
Specifies what to return when JSON-expression is the null value.
NULL ON NULL

A null value is returned. This is the default.
ABSENT ON NULL

The key:value pair is omitted from the JSON object.
WITHOUT UNIQUE KEYS or WITH UNIQUE KEYS

Specifies whether the key values for the resulting JSON object must be unique.
WITHOUT UNIQUE KEYS

The resulting JSON object will not be checked for duplicate keys. This is the default.
WITH UNIQUE KEYS

The resulting JSON object is required to have unique key values. An error will be issued if
duplicate keys are generated.

Generating a JSON object with unique keys is considered the best practice. If key-name-expression
generates unique key names, omit WITH UNIQUE KEYS to improve performance.

RETURNING data-type
Specifies the format of the result.

Chapter 4. Built-in functions 275

data-type
The data type of the result. For CHAR and VARCHAR results, the CCSID cannot be 65535. The
default is CLOB(2G) CCSID 1208.

If a CCSID is specified and the data-type is GRAPHIC, VARGRAPHIC, or DBCLOB, the CCSID must
be a Unicode CCSID.

If the CCSID attribute is not specified, the CCSID is determined as described in “CAST
specification” on page 176.

FORMAT JSON
JSON data is returned as a JSON string.
ENCODING UTF8 or ENCODING UTF16

The encoding to use when data-type is a binary string type. This clause is only allowed for
binary string types. The default for binary strings is UTF8.

FORMAT BSON
JSON data is returned in BSON format. When FORMAT BSON is specified, data-type must be a
VARBINARY or BLOB string type.

The result can be null. If the set of values is empty, the result is the null value.

Example
• Return a JSON object containing the manager numbers for each department. If no manager is assigned,

omit the department from the result.

SELECT JSON_OBJECTAGG(deptno VALUE mgrno ABSENT ON NULL) FROM dept;

The result is the following JSON string. Note that the order of entries in the JSON object is not defined.

{"A00":"000010","B01":"000020","C01":"000030","D11":"000060","D21":"000070",
 "E01":"000050","E11":"000090","E21":"000100"}

• Return a JSON object for each department containing a list of projects assigned to that department.

SELECT deptno, JSON_OBJECTAGG(projno VALUE projname) AS projlist FROM proj
WHERE deptno LIKE 'D%'
GROUP BY deptno;

The result is the following 3 rows. Note that the order of entries in the JSON object is not defined.

DEPTNO PROJLIST
 D01 {"AD3100":"ADMIN SERVICES","MA2100":"WELD LINE AUTOMATION"}
 D11 {"MA2110":"W L PROGRAMMING","MA2111":"W L PROGRAM DESIGN",
 "MA2112":"W L ROBOT DESIGN","MA2113":"W L PROD CONT PROGS"}
 D21 {"AD3110":"GENERAL ADMIN SYSTEMS","AD3111":"PAYROLL PROGRAMMING",
 "AD3112":"PERSONNEL PROGRAMMING","AD3113":"ACCOUNT PROGRAMMING"}

276 IBM i: Db2 for i SQL Reference

LISTAGG
The LISTAGG function aggregates a set of string elements into one string by concatenating the strings.
Optionally, a separator string can be provided which is inserted between contiguous input strings.

LISTAGG (
ALL

DISTINCT

string-expression

, separator-expression

ON OVERFLOW ERROR

ON OVERFLOW TRUNCATE
'...'

overflow-characters

WITH COUNT

WITHOUT COUNT

)

WITHIN GROUP (ORDER BY

,

sort-key-expression
ASC

DESC

)

The LISTAGG function aggregates a set of string values for the group into one string by appending the
string-expression values based on the order specified in the WITHIN GROUP clause.

The function is applied to the set of values that are derived from the first argument by the elimination
of null values. If DISTINCT is specified, duplicate string-expression values are eliminated. If a separator
argument is specified that is not the null value, the separator value is inserted between each pair of
non-null string-expression values.

string-expression
An expression that specifies the string values to be aggregated. The expression must return a value
that is a built-in string, numeric, or datetime data type. If the value is a numeric or datetime data type,
it is implicitly cast to VARCHAR before the function is evaluated.

separator-expression
An expression that defines the string that is to be used between non-null string-expression values. The
expression must return a value that is a built-in string, numeric, or datetime data type. If the value
is a numeric or datetime data type, it is implicitly cast to VARCHAR before the function is evaluated.
separator-expression must not contain a scalar-fullselect, a column reference, or a reference to a
function that is not deterministic or external action.
If no separator-expression is specified or if separator-expression is the null value, there is no
separation between string-expression values.

ON OVERFLOW ERROR or ON OVERFLOW TRUNCATE
Specifies the behavior if the actual length of the aggregated result string exceeds the result length.
The default is ON OVERFLOW ERROR.
ON OVERFLOW ERROR

Indicates an error is returned if the actual length of the result string exceeds the result length.
ON OVERFLOW TRUNCATE

Indicates the aggregated result string will be truncated if the actual length of the result string
exceeds the result length. The truncation will occur at the end of a string value. The result string
will contain complete entries including a final separator-expression, if one is defined.
If string-expression is a binary string or a non-Unicode graphic string, this option is not allowed.

Chapter 4. Built-in functions 277

'...' or overflow-characters
Indicates a character string constant to be appended to the end of the result string to indicate
truncation occurred.
'...'

Indicates that three period characters are appended directly after the last complete entry.
This is the default.

overflow-characters
Indicates the character string constant to be appended directly after the last complete
entry.

WITH COUNT or WITHOUT COUNT
Indicates whether the number of truncated values is included at the end of the result string.
The default is WITH COUNT.
WITH COUNT

The number of values truncated from the string is appended to the end of the result string.
It is formatted as a number within parentheses. For example, if 10 entries were truncated,
(10) is included at the end of the string.

WITHOUT COUNT
No indication of the number of entries that were truncated is returned.

WITHIN GROUP
Indicates that the aggregation will follow the specified ordering within the grouping set.

If WITHIN GROUP is not specified, the ordering of strings within the result is not deterministic.

ORDER BY
Specifies the order of the rows from the same grouping set that are processed in the aggregation.
If the ORDER BY clause is not specified, or if the ORDER BY clause cannot differentiate the order
of the sort key value, the rows in the same grouping set are arbitrarily ordered.

sort-key-expression
Specifies a sort key value that is either a column name or an expression. The data type of the
column or expression must not be a DATALINK or XML value.
The ordering of the aggregated elements is based on the values of the sort keys.
The sum of the length attributes of the sort-key-expression must not exceed 3.5 gigabytes.
ASC

Processes the sort-key-expression in ascending order. This is the default.
DESC

Processes the sort-key-expression in descending order.
If a collating sequence other than *HEX is in effect when the statement that contains the LISTAGG
function is executed and the sort-key-expressions are SBCS data, mixed data, or Unicode data,
then the result is obtained by comparing weighted values. The weighted values are derived by
applying the collating sequence to the sort-key-expressions.

The result data type of LISTAGG is based on the data type of string-expression

Table 49. Determining the result data type and length

Data type of string-expression Result data type and length

CHAR(n) or VARCHAR(n) VARCHAR(MAX(4000, n))

CLOB(n) CLOB(1M)

GRAPHIC(n) or VARGRAPHIC(n) VARGRAPHIC(MAX(2000, n))

DBCLOB(n) DBCLOB(1M)

BINARY(n) or VARBINARY(n) VARBINARY(MAX(4000, n))

278 IBM i: Db2 for i SQL Reference

Table 49. Determining the result data type and length (continued)

Data type of string-expression Result data type and length

BLOB(n) BLOB(1M)

The result data type can exceed VARCHAR(4000), VARBINARY(4000), or VARGRAPHIC(2000) if a derived
size is used to determine the size of the result. The maximum possible value is the maximum for the
result data type. The following example yields a return data type of VARCHAR(10000):

LISTAGG(CAST(NAME AS VARCHAR(10000)), ',')

If the actual length of the aggregated result string exceeds the result length, the behavior is determined
by the ON OVERFLOW clause.

The CCSID of the result is the CCSID of string-expression.

If a collating sequence other than *HEX is in effect when the statement that contains the LISTAGG
function is executed, and the sort-key-expressions are SBCS data, mixed data, or Unicode data, then the
result is obtained by comparing the weighted values. The weighted values are derived by applying the
collating sequence to the sort-key-expressions.

The result can be null. If the function is applied to an empty set or all of the string-expression values in the
set are null values, the result is the null value.

Rules
• LISTAGG cannot be used as part of an OLAP specification.

Example

• Produce an alphabetical list of comma-separated names, grouped by department.

SELECT workdept,
 LISTAGG(lastname, ', ') WITHIN GROUP(ORDER BY lastname)
 AS employees
 FROM emp
 GROUP BY workdept

Generates the following result:

WORKDEPT EMPLOYEES
A00 HAAS, HEMMINGER, LUCCHESSI, O'CONNELL, ORLANDO
B01 THOMPSON
C01 KWAN, NATZ, NICHOLLS, QUINTANA
D11 ADAMSON, BROWN, JOHN, JONES, LUTZ, PIANKA, SCOUTTEN, STERN, WALKER
 YAMAMOTO, YOSHIMURA
D21 JEFFERSON, JOHNSON, MARINO, MONTEVERDE, PEREZ, PULASKI, SMITH
E01 GEYER
E11 HENDERSON, PARKER, SCHNEIDER, SCHWARTZ, SETRIGHT, SMITH, SPRINGER
E21 ALONZO, GOUNOT, LEE, MEHTA, SPENSER, WONG

Chapter 4. Built-in functions 279

MAX
The MAX aggregate function returns the maximum value in a set of values in a group.

MAX (
ALL

DISTINCT

expression)

expression
The argument values can be any built-in data type other than a DataLink or XML.

The data type and length attribute of the result are the same as the data type and length attribute of the
argument values. When the argument is a string, the result has the same CCSID as the argument.

If a collating sequence other than *HEX is in effect when the statement that contains the MAX function
is executed and the arguments are SBCS data, mixed data, or Unicode data, then the result is obtained
by comparing weighted values for each value in the set. The weighted values are based on the collating
sequence.

The function is applied to the set of values derived from the argument values by the elimination of null
values.

The result can be null. If the set of values is empty, the result is a null value. Otherwise, the result is the
maximum value in the set.

The specification of DISTINCT has no effect on the result and is not advised.

Notes
Results involving DECFLOAT special values: If the data type of the argument is decimal floating-point
and positive or negative Infinity, sNaN, or NaN is found, the maximum value is determined using decimal
floating-point ordering rules. See “Numeric comparisons” on page 99. If multiple representations of
the same decimal floating-point value are found (for example, 2.00 and 2.0), it is unpredictable which
representation will be returned.

Examples

• Using the EMPLOYEE table, set the host variable MAX_SALARY (DECIMAL(7,2)) to the maximum
monthly salary (SALARY / 12) value.

 SELECT MAX(SALARY) /12
 INTO :MAX_SALARY
 FROM EMPLOYEE

Results in MAX_SALARY being set to 4395.83.
• Using the PROJECT table, set the host variable LAST_PROJ (CHAR(24)) to the project name

(PROJNAME) that comes last in the sort sequence.

 SELECT MAX(PROJNAME)
 INTO :LAST_PROJ
 FROM PROJECT

Results in LAST_PROJ being set to 'WELD LINE PLANNING '.

280 IBM i: Db2 for i SQL Reference

MEDIAN
The MEDIAN function returns the median of a set of numbers.

MEDIAN (numeric-expression)

numeric-expression
An expression that returns a built-in numeric, character-string, or graphic-string data type. If the
argument is a character-string or graphic-string, it is cast to DECFLOAT(34) before evaluating the
function.

If the argument is DECFLOAT(n), the result of the function is DECFLOAT(34). Otherwise, the result of the
function is a double precision floating-point number.

The function is applied to the set of values derived from the argument values by the elimination of null
values.

The result can be null. If numeric-expression is null or the function is applied to the empty set, the result is
the null value.

Notes
When used in an OLAP specification, only the window-partition-clause can be specified.

Examples

• Calculate the median salary of the employees in department D11 from the EMPLOYEE table.

SELECT MEDIAN(SALARY)
FROM EMPLOYEE
WHERE WORKDEPT = ‘D11’;

The result is 24680.00. Department D11 has 11 employees. The middle row of a group of 11 values is
the sixth row. The result of MEDIAN over that group is the value of the sixth row, which is 24680.00.

• Calculate the median salary of the employees in department E21 from the EMPLOYEE table.

SELECT MEDIAN(SALARY)
FROM EMPLOYEE
WHERE WORKDEPT = ‘E21’;

The result is 24605.00. Department E21 has six employees. Because there are an even number of rows,
the MEDIAN is computed by interpolating a value between the middle two rows. The middle two rows
are the third row with the value 23840.00 and the fourth row with the value 25370.00. MEDIAN is
computed by averaging those two values, which is 24605.00.

Chapter 4. Built-in functions 281

MIN
The MIN aggregate function returns the minimum value in a set of values in a group.

MIN (
ALL

DISTINCT

expression)

expression
The argument values can be any built-in data type other than a DataLink or XML.

The data type and length attribute of the result are the same as the data type and length attribute of the
argument values. When the argument is a string, the result has the same CCSID as the argument. The
result can be null.

If a collating sequence other than *HEX is in effect when the statement that contains the MIN function is
executed and the arguments are SBCS data, mixed data, or Unicode data, then the result is obtained by
comparing weighted values for each value in the set.

The function is applied to the set of values derived from the argument values by the elimination of null
values.

If the set of values is empty, the result is a null value. Otherwise, the result is the minimum value in the
set.

The specification of DISTINCT has no effect on the result and is not advised.

Notes
Results involving DECFLOAT special values: If the data type of the argument is decimal floating-point
and positive or negative Infinity, sNaN, or NaN is found, the minimum value is determined using decimal
floating-point ordering rules. See “Numeric comparisons” on page 99. If multiple representations of
the same decimal floating-point value are found (for example, 2.00 and 2.0), it is unpredictable which
representation will be returned.

Examples

• Using the EMPLOYEE table, set the host variable COMM_SPREAD (DECIMAL(7,2)) to the difference
between the maximum and minimum commission (COMM) for the members of department
(WORKDEPT) ‘D11'.

 SELECT MAX(COMM) - MIN(COMM)
 INTO :COMM_SPREAD
 FROM EMPLOYEE
 WHERE WORKDEPT = 'D11'

Results in COMM_SPREAD being set to 1118 (that is, 2580 - 1462).
• Using the PROJECT table, set the host variable FIRST_FINISHED (CHAR(10)) to the estimated ending

date (PRENDATE) of the first project scheduled to be completed.

 SELECT MIN(PRENDATE)
 INTO :FIRST_FINISHED
 FROM PROJECT

Results in FIRST_FINISHED being set to ‘1982-09-15'.

282 IBM i: Db2 for i SQL Reference

PERCENTILE_CONT
The PERCENTILE_CONT function returns the value that corresponds to the specified percentile given a
sort specification by using a continuous distribution model.

PERCENTILE_CONT (percentile-expression) WITHIN GROUP (ORDER BY

sort-expression
ASC

DESC

)

percentile-expression
Specifies the percentile to be calculated by the function. percentile-expression must return any built-in
numeric, character-string, or graphic-string data type. If the argument is a character-string or graphic-
string, it is cast to DECFLOAT(34) before evaluating the function. The value must be between 0 and
1. percentile-expression must not contain a scalar-fullselect, a column reference, or a user-defined
function reference.

WITHIN GROUP
Specifies that the percentile is to be calculated over the rows identified in the group.

sort-expression
Specifies the set of values over which to calculate the percentile as well as the order of the set.
sort-expression must return a built-in numeric, character string, or graphic string data type. If the
sort-expression is a character-string or graphic-string, it is cast to DECFLOAT(34) before evaluating the
function.
ASC

Specifies that the percentile is to be calculated using values from sort-expression in ascending
order.

DESC
Specifies that the percentile is to be calculated using values from sort-expression in descending
order.

The result is the value at the percentile specified by percentile-expression over the set of values identified
by sort-expression. The set of values is treated as a continuous distribution. The calculated percentile is
an interpolated value which might not have appeared in the input set. If the data type of sort-expression
is DECFLOAT(n), the result of the function is DECFLOAT(34). Otherwise the data type of the result is
double-precision floating point.

The function is applied to the set of values derived from the argument values by the elimination of null
values.

The result can be null. If percentile-expression is null or if the function is applied to the empty set, the
result is the null value.

Notes
When used in an OLAP specification, only the window-partition-clause can be specified.

Results involving DECFLOAT special values: If the data type of the argument is decimal floating-point
and a special value of sNaN or -sNaN, or both +Infinity and -Infinity are included in the aggregation, an
error or warning is returned. Otherwise, if +NaN or -NaN is found, the result is +NaN or -NaN. If +Infinity
or -Infinity is found, the result is +Infinity or -Infinity.

Column masks: If a column that is referenced in the sort-expression of the PERCENTILE_CONT function is
defined to have a column mask, the column mask is not applied.

The result of using PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY sort-expression) is equivalent to
specifying MEDIAN(sort-expression).

Chapter 4. Built-in functions 283

Examples

• Example 1: Calculate the median salary of the employees in department D11.

SELECT PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY SALARY) FROM EMPLOYEE
WHERE WORKDEPT = 'D11'

The result is 24680.00. There are 11 employees in department D11. The middle row of a group of 11
values is the sixth row. Since there are an odd number of rows, PERCENTILE_CONT for the percentile
0.5 returns the value of the sixth row, which is 24680.00.

• Example 2: Calculate the median commission of the employees in department E21.

SELECT PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY COMM) FROM EMPLOYEE
WHERE WORKDEPT = 'E21'

The result is 1968.5. Since there are an even number of rows, the PERCENTILE_CONT is computed
by interpolating a value between the middle two rows. The middle two rows are row three with value
1907.00 and row four with value 2030.00. PERCENTILE_CONT is computed by averaging those two
values, which results in 1968.5.

284 IBM i: Db2 for i SQL Reference

PERCENTILE_DISC
The PERCENTILE_DISC function returns the value that corresponds to the specified percentile given a
sort specification by using a discrete distribution model.

PERCENTILE_DISC (percentile-expression) WITHIN GROUP (ORDER BY

sort-expression
ASC

DESC

)

percentile-expression
Specifies the percentile to be calculated by the function. percentile-expression must return any built-in
numeric, character-string, or graphic-string data type. If the argument is a character-string or graphic-
string, it is cast to DECFLOAT(34) before evaluating the function. The value must be between 0 and
1. percentile-expression must not contain a scalar-fullselect, a column reference, or a user-defined
function reference.

WITHIN GROUP
Specifies that the percentile is to be calculated over the rows identified in the group.

sort-expression
Specifies the set of values over which to calculate the percentile as well as the order of the set.
sort-expression must return a built-in numeric, character string, or graphic string data type.
ASC

Specifies that the percentile is to be calculated using values from sort-expression in ascending
order.

DESC
Specifies that the percentile is to be calculated using values from sort-expression in descending
order.

The result is the value at the percentile specified by percentile-expression over the set of values identified
by sort-expression. Each value in the input set is treated as a discrete value. The calculated percentile is
always a value that appeared in the input set. The data type of the result is the same as the data type of
the result of sort-expression.

If a collating sequence other than *HEX is in effect when the statement that contains the
PERCENTILE_DISC function is executed, and the sort-expression is SBCS data, mixed data, or Unicode
data, then the result is determined by comparing the weighted values. The weighted values are derived by
applying the collating sequence to the sort-expression.

The function is applied to the set of values derived from the argument values by the elimination of null
values.

The result can be null. If percentile-expression is null or if the function is applied to the empty set, the
result is the null value.

Notes
When used in an OLAP specification, only the window-partition-clause can be specified.

Results involving DECFLOAT special values: If the data type of the argument is decimal floating-point
and a special value of sNaN or -sNaN, or both +Infinity and -Infinity are included in the aggregation, an
error or warning is returned. Otherwise, if +NaN or -NaN is found, the result is +NaN or -NaN. If +Infinity
or -Infinity is found, the result is +Infinity or -Infinity.

Column masks: If a column that is referenced in the sort-expression of the PERCENTILE_DISC function is
defined to have a column mask, the column mask is not applied.

Chapter 4. Built-in functions 285

Examples

• Example 1: Calculate the median salary as a discrete value of the employees in department D11.

SELECT PERCENTILE_DISC(0.5) WITHIN GROUP (ORDER BY SALARY)
FROM EMPLOYEE
WHERE WORKDEPT = 'D11'

The result is 24680.00. There are 11 employees in department D11. The middle row of a group of 11
values is the sixth row. Since there are an odd number of rows, PERCENTILE_DISC for the percentile 0.5
returns the value of the sixth row, which is 24680.00.

• Example 2: Calculate the median commission as a discrete value of the employees in department E21.

SELECT PERCENTILE_DISC(0.5) WITHIN GROUP (ORDER BY COMM)
FROM EMPLOYEE
WHERE WORKDEPT = 'E21'

The result is 1907.00. Since there are an even number of rows, PERCENTILE_DISC is computed by
returning the first of the two middle rows, which is row three with value 1907.00.

286 IBM i: Db2 for i SQL Reference

Regression functions
The regression functions support the fitting of an ordinary-least-squares regression line of the form y = a *
x + b to a set of number pairs. The first element of each pair (expression1) is interpreted as a value of the
dependent variable (that is, a "y value"). The second element of each pair (expression2) is interpreted as
a value of the independent variable (that is, an "x value").

REGR_AVGX

REGR_AVGY

REGR_COUNT

REGR_INTERCEPT

REGR_R2

REGR_SLOPE

REGR_SXX

REGR_SXY

REGR_SYY

(expression1 , expression2)

expression1
An expression that returns a value of any built-in numeric, character-string, or graphic-string data
type. If the argument is a character-string or graphic-string, it is cast to DECFLOAT(34) before
evaluating the function.

expression2
An expression that returns a value of any built-in numeric, character-string, or graphic-string data
type. If the argument is a character-string or graphic-string, it is cast to DECFLOAT(34) before
evaluating the function.

The REGR_COUNT function returns the number of non-null number pairs used to fit the regression line.

The REGR_INTERCEPT function returns the y-intercept of the regression line ("b" in the equation y = a * x
+ b).

The REGR_R2 function returns the coefficient of determination ("R-squared" or "goodness-of-fit") for the
regression.

The REGR_SLOPE function returns the slope of the line ("a" in the equation y = a * x + b).

The REGR_AVGX, REGR_AVGY, REGR_SXX, REGR_SXY, and REGR_SYY functions return quantities that
can be used to compute various diagnostic statistics needed for the evaluation of the quality and
statistical validity of the regression model.

The data type of the result of REGR_COUNT is bigint. For the remaining functions, if either argument
is DECFLOAT(n), the data type of the result is DECFLOAT(34); otherwise, the data type of the result is
double-precision floating-point. If either argument is a special decimal floating-point value, the rules for
general arithmetic operations for decimal floating-point apply. See “General arithmetic operation rules for
DECFLOAT” on page 162 for more information.

The result can be null. When not null, the result of REGR_R2 is between 0 and 1, and the result of both
REGR_SXX and REGR_SYY is non-negative.

Each function is applied to the set of (expression1, expression2) pairs derived from the argument values
by the elimination of all pairs for which either expression1 or expression2 is null.

If the set is empty, REGR_COUNT returns zero and the remaining functions return a null value.

If the set is not empty, the functions return results defined as follows:

REGR_COUNT
The number of non-null pairs in the set

Chapter 4. Built-in functions 287

REGR_SLOPE
If VARIANCE(expression2) is positive:

 REGR_SLOPE(expression1,expression2) =
 COVARIANCE(expression1,expression2)/VARIANCE(expression2)

If VARIANCE(expression2) is equal to zero, returns the null value.
REGR_INTERCEPT

If VARIANCE(expression2) is positive:

 REGR_INTERCEPT(expression1, expression2) =
 AVG(expression1) - REGR_SLOPE(expression1, expression2) * AVG(expression2)

If VARIANCE(expression2) is equal to zero, returns the null value.
REGR_R2

If VARIANCE(expression2) is positive:

• If VARIANCE(expression1) is positive:

 REGR_R2(expression1, expression2) =
 POWER(CORRELATION(expression1, expression2), 2)

• if VARIANCE(expression1) is equal to zero:

 REGR_R2(expression1, expression2) = 1

If VARIANCE(expression2) is equal to zero, returns the null value.
REGR_AVGX

REGR_AVGX(expression1, expression2) = AVG(expression2)

REGR_AVGY

REGR_AVGY(expression1, expression2) = AVG(expression1)

REGR_SXX

REGR_SXX(expression1, expression2) =
 REGR_COUNT(expression1, expression2) * VARIANCE(expression2)

REGR_SYY

REGR_SYY(expression1, expression2) =
 REGR_COUNT(expression1, expression2) * VARIANCE(expression1)

REGR_SXY

REGR_SXY(expression1, expression2) =
 REGR_COUNT(expression1, expression2) * COVARIANCE(expression1, expression2)

The order in which the values are aggregated is undefined, but every intermediate result must be within
the range of the result data type.

The usual diagnostic statistics that accompany a linear-regression analysis can be computed in terms of
the above functions. For example:

 Adjusted R2
 1 - ((1 - REGR_R2) * ((REGR_COUNT - 1) / (REGR_COUNT - 2)))
 Standard error
 SQRT((REGR_SYY-(POWER(REGR_SXY,2)/REGR_SXX))/(REGR_COUNT-2))
 Total sum of squares
 REGR_SYY
 Regression sum of squares
 POWER(REGR_SXY,2) / REGR_SXX
 Residual sum of squares
 (Total sum of squares)-(Regression sum of squares)
 t statistic for slope

288 IBM i: Db2 for i SQL Reference

 REGR_SLOPE * SQRT(REGR_SXX) / (Standard error)
 t statistic for y-intercept
 REGR_INTERCEPT/((Standard error) *
 SQRT((1/REGR_COUNT)+(POWER(REGR_AVGX,2)/REGR_SXX)))

Note
Syntax alternatives: REGR_ICPT can be specified as a synonym for REGR_INTERCEPT.

Example

• Using the EMPLOYEE table, compute an ordinary-least-squares regression line that expresses the bonus
of an employee in department (WORKDEPT) 'A00' as a linear function of the employee's salary. Set
the host variables SLOPE, ICPT, RSQR to the slope, intercept, and coefficient of determination of the
regression line, respectively. Also set the host variables AVGSAL and AVGBONUS to the average salary
and average bonus, respectively, of the employees in department 'A00', and set the host variable CNT
(integer) to the number of employees in department 'A00' for whom both salary and bonus data are
available. Store the remaining regression statistics in host variables SXX, SYY, and SXY.

SELECT REGR_SLOPE(BONUS,SALARY), REGR_INTERCEPT(BONUS,SALARY),
 REGR_R2(BONUS,SALARY), REGR_COUNT(BONUS,SALARY),
 REGR_AVGX(BONUS,SALARY), REGR_AVGY(BONUS,SALARY),
 REGR_SXX(BONUS,SALARY), REGR_SYY(BONUS,SALARY),
 REGR_SXY(BONUS,SALARY)
 INTO :SLOPE, :ICPT,
 :RSQR, :CNT,
 :AVGSAL, :AVGBONUS,
 :SXX, :SYY,
 :SXY
 FROM EMPLOYEE
 WHERE WORKDEPT = 'A00'

When using the sample table, the host variables are set to the following approximate values:

SLOPE: 0.018363799188747826
ICPT: 69.8388031396513
RSQR: 0.9526220829162935
CNT: 5
AVGSAL: 40850.0
AVGBONUS: 820.0
SXX: 4.74575E8
SYY: 168000.0
SXY: 8715000.0

Chapter 4. Built-in functions 289

STDDEV_POP or STDDEV
The STDDEV_POP function returns the biased standard deviation (/n) of a set of numbers.

STDDEV_POP

STDDEV

(
ALL

DISTINCT

numeric-expression)

The formula used to calculate the biased standard deviation is:

STDDEV_POP = SQRT(VAR_POP)

where SQRT(VAR_POP) is the square root of the variance.

numeric-expression
An expression that returns a value of any built-in numeric, character-string, or graphic-string data
type. If the argument is a character-string or graphic-string, it is cast to DECFLOAT(34) before
evaluating the function.

If the argument is DECFLOAT(n), the result of the function is DECFLOAT(34). Otherwise, the data type of
the result is double-precision floating point.

The function is applied to the set of values derived from the argument values by the elimination of null
values. If DISTINCT is specified, duplicate values are eliminated.

The result can be null. If the set of values is empty, the result is a null value. Otherwise, the result is the
standard deviation of the values in the set.

The order in which the values are added is undefined, but every intermediate result must be within the
range of the result data type.

Notes
Results involving DECFLOAT special values: If the data type of the argument is decimal floating-point
and a special value of sNaN or -sNaN, or both +Infinity and -Infinity are included in the aggregation, an
error or warning is returned. Otherwise, if +NaN or -NaN is found, the result is +NaN or -NaN. If +Infinity
or -Infinity is found, the result is +Infinity or -Infinity.

Syntax alternatives: STDEV_POP should be used for conformance to the SQL 2003 standard.

Example

• Using the EMPLOYEE table, set the host variable DEV (double-precision floating point) to the standard
deviation of the salaries for those employees in department A00.

 SELECT STDDEV_POP(SALARY)
 INTO :DEV
 FROM EMPLOYEE
 WHERE WORKDEPT = 'A00';

Results in DEV being set to approximately 9742.43.

290 IBM i: Db2 for i SQL Reference

STDDEV_SAMP
The STDDEV_SAMP function returns the sample standard deviation (/n-1) of a set of numbers.

STDDEV_SAMP (
ALL

DISTINCT

numeric-expression)

The formula used to calculate the sample standard deviation is:

STDDEV_SAMP = SQRT(VAR_SAMP)

where SQRT(VAR_SAMP) is the square root of the sample variance.

numeric-expression
An expression that returns a value of any built-in numeric, character-string, or graphic-string data
type. If the argument is a character-string or graphic-string, it is cast to DECFLOAT(34) before
evaluating the function.

If the argument is DECFLOAT(n), the result of the function is DECFLOAT(34). Otherwise, the data type of
the result is double-precision floating point.

The function is applied to the set of values derived from the argument values by the elimination of null
values. If DISTINCT is specified, duplicate values are eliminated.

The result can be null. If the set of values is empty or contains only one row, the result is a null value.
Otherwise, the result is the standard deviation of the values in the set.

The order in which the values are added is undefined, but every intermediate result must be within the
range of the result data type.

Notes
Results involving DECFLOAT special values: If the data type of the argument is decimal floating-point
and a special value of sNaN or -sNaN, or both +Infinity and -Infinity are included in the aggregation, an
error or warning is returned. Otherwise, if +NaN or -NaN is found, the result is +NaN or -NaN. If +Infinity
or -Infinity is found, the result is +Infinity or -Infinity.

Example

• Using the EMPLOYEE table, set the host variable DEV (double-precision floating point) to the sample
standard deviation of the salaries for those employees in department A00.

 SELECT STDDEV_SAMP(SALARY)
 INTO :DEV
 FROM EMPLOYEE
 WHERE WORKDEPT = 'A00';

Results in DEV being set to approximately 10892.37.

Chapter 4. Built-in functions 291

SUM
The SUM function returns the sum of a set of numbers.

SUM (
ALL

DISTINCT

numeric-expression)

numeric-expression
An expression that returns a value of any built-in numeric, character-string, or graphic-string data
type. If the argument is a character-string or graphic-string, it is cast to DECFLOAT(34) before
evaluating the function.

The data type of the result is the same as the data type of the argument values except that the result is:

• DECFLOAT(34) if the argument values are DECFLOAT(16).
• A double-precision floating point if the argument values are single-precision floating point
• A large integer if the argument values are small integers
• A decimal with precision mp and scale s if the argument values are decimal or nonzero scale binary

numbers with precision p and scale s.

For information about the values of p, s, and mp, see “Decimal arithmetic in SQL” on page 160.

The function is applied to the set of values derived from the argument values by the elimination of null
values. If DISTINCT is specified, duplicate values are eliminated.

The order in which the values are added is undefined, but every intermediate result must be within the
range of the result data type.

Notes
Results involving DECFLOAT special values: If the data type of the argument is decimal floating-point
and a special value of sNaN or -sNaN, or both +Infinity and -Infinity are included in the aggregation, an
error is signaled. Otherwise, if +NaN or -NaN is found, the result is +NaN or -NaN. If +Infinity or -Infinity is
found, the result is +Infinity or -Infinity.

Example

• Using the EMPLOYEE table, set the host variable JOB_BONUS (DECIMAL(9,2)) to the total bonus
(BONUS) paid to clerks (JOB='CLERK').

 SELECT SUM(BONUS)
 INTO :JOB_BONUS
 FROM EMPLOYEE
 WHERE JOB = 'CLERK'

Results in JOB_BONUS being set to 4000.

292 IBM i: Db2 for i SQL Reference

VAR_POP or VARIANCE or VAR
The VAR_POP function returns the biased variance (/n) of a set of numbers.

VAR_POP

VARIANCE

VAR

(
ALL

DISTINCT

numeric-expression)

The formula used to calculate the biased variance is:

 VAR_POP = SUM(X**2)/COUNT(X) - (SUM(X)/COUNT(X))**2

numeric-expression
An expression that returns a value of any built-in numeric, character-string, or graphic-string data
type. If the argument is a character-string or graphic-string, it is cast to DECFLOAT(34) before
evaluating the function.

If the argument is DECFLOAT(n), the result of the function is DECFLOAT(34). Otherwise, the data type of
the result is double-precision floating point.

The function is applied to the set of values derived from the argument values by the elimination of null
values. If DISTINCT is specified, duplicate values are eliminated.

The result can be null. If the set of values is empty, the result is a null value. Otherwise, the result is the
variance of the values in the set.

The order in which the values are added is undefined, but every intermediate result must be within the
range of the result data type.

Notes
Results involving DECFLOAT special values: If the data type of the argument is decimal floating-point
and a special value of sNaN or -sNaN, or both +Infinity and -Infinity are included in the aggregation, an
error or warning is returned. Otherwise, if +NaN or -NaN is found, the result is +NaN or -NaN. If +Infinity
or -Infinity is found, the result is +Infinity or -Infinity.

Syntax alternatives: VAR_POP should be used for conformance to the SQL 2003 standard.

Example

• Using the EMPLOYEE table, set the host variable VARNCE (double-precision floating point) to the
variance of the salaries for those employees in department A00.

 SELECT VAR_POP(SALARY)
 INTO :VARNCE
 FROM EMPLOYEE
 WHERE WORKDEPT = 'A00';

Results in VARNCE being set to approximately 94 915 000.

Chapter 4. Built-in functions 293

VAR_SAMP or VARIANCE_SAMP
The VAR_SAMP function returns the sample variance (/n-1) of a set of numbers.

VAR_SAMP

VARIANCE_SAMP

(
ALL

DISTINCT

numeric-expression)

The formula used to calculate the sample variance is:

 VAR_SAMP = (SUM(X**2) - ((SUM(X)**2) / (COUNT(X)))) / (COUNT(X) - 1)

numeric-expression
An expression that returns a value of any built-in numeric, character-string, or graphic-string data
type. If the argument is a character-string or graphic-string, it is cast to DECFLOAT(34) before
evaluating the function.

If the argument is DECFLOAT(n), the result of the function is DECFLOAT(34). Otherwise, the data type of
the result is double-precision floating point.

The function is applied to the set of values derived from the argument values by the elimination of null
values. If DISTINCT is specified, duplicate values are eliminated.

The result can be null. If the set of values is empty or contains only one row, the result is a null value.
Otherwise, the result is the variance of the values in the set.

The order in which the values are added is undefined, but every intermediate result must be within the
range of the result data type.

Notes
Results involving DECFLOAT special values: If the data type of the argument is decimal floating-point
and a special value of sNaN or -sNaN, or both +Infinity and -Infinity are included in the aggregation, an
error or warning is returned. Otherwise, if +NaN or -NaN is found, the result is +NaN or -NaN. If +Infinity
or -Infinity is found, the result is +Infinity or -Infinity.

Syntax alternatives: VAR_SAMP should be used for conformance to the SQL 2003 standard.

Example

• Using the EMPLOYEE table, set the host variable VARNCE (double-precision floating point) to the sample
variance of the salaries for those employees in department A00.

 SELECT VAR_SAMP(SALARY)
 INTO :VARNCE
 FROM EMPLOYEE
 WHERE WORKDEPT = 'A00';

Results in VARNCE being set to approximately 1 186 437 500.

294 IBM i: Db2 for i SQL Reference

XMLAGG
The XMLAGG function returns an XML sequence containing an item for each non-null value in a set of XML
values.

XMLAGG

(XML-expression

ORDER BY

,

sort-key-expression
ASC

DESC

)

XML-expression
An expression that returns an XML value.

ORDER BY
Specifies the order of the rows from the same grouping set that are processed in the aggregation. If
the ORDER BY clause is not specified, or if the ORDER BY clause cannot differentiate the order of the
sort key value, the rows in the same grouping set are arbitrarily ordered.
sort-key-expression

Specifies a sort key value that is either a column name or an expression. The data type of the
column or expression must not be a DATALINK or XML value.
The ordering is based on the values of the sort keys, which might or might not be used in
XML-expression.
The sum of the length attributes of the sort-key-expressions must not exceed 3.5 gigabytes.

If a collating sequence other than *HEX is in effect when the statement that contains the XMLAGG
function is executed and the sort-key-expressions are SBCS data, mixed data, or Unicode data, then
the result is obtained by comparing weighted values. The weighted values are derived by applying the
collating sequence to the sort-key-expressions.

The function is applied to the set of values derived from the argument values by elimination of null values.

The data type of the result is XML. The result can be null. If the set of values is empty, the result is the null
value. Otherwise, the result is an XML sequence containing an item for each value in the set.

Example

Note: XMLAGG does not insert blank spaces or new line characters in the output. All example output has
been formatted to enhance readability.

• Group employees by their department, generate a "Department" element for each department with its
name as the attribute, nest all the "emp" elements for employees in each department, and order the
"emp" elements by LASTNAME.

SELECT XMLSERIALIZE(XMLDOCUMENT (
 XMLELEMENT(NAME "Department",
 XMLATTRIBUTES(E.WORKDEPT AS "name"),
 XMLAGG(XMLELEMENT (NAME "emp", E.LASTNAME)
 ORDER BY E.LASTNAME)
))
 AS CLOB(200)) AS "dept_list"
 FROM EMPLOYEE E
 WHERE E.WORKDEPT IN ('C01', 'E21')
 GROUP BY WORKDEPT

The result of the query would look similar to the following result:

dept_list

<Department name="C01">

Chapter 4. Built-in functions 295

 <emp>KWAN</emp>
 <emp>NICHOLLS</emp>
 <emp>QUINTANA</emp>
</Department>
<Department name="E21">
 <emp>GOUNOT</emp>
 <emp>LEE</emp>
 <emp>MEHTA</emp>
 <emp>SPENSER</emp>
</Department>

296 IBM i: Db2 for i SQL Reference

XMLGROUP
The XMLGROUP function returns an XML value that is a well-formed XML document.

XMLGROUP (

,

expression

AS qname-identifier

ORDER BY

,

sort-key-expression
ASC

DESC

OPTION
1

ROW "row"

ROW row-name

ROOT "rowset"

ROOT root-name

AS ATTRIBUTES

)

Notes:
1 The same clause must not be specified more than once.

expression
The content of each XML element is specified by an expression. The data type of expression must not
be ROWID or DATALINK or a distinct type that is based on ROWID or DATALINK. The expression can
be any SQL expression. If the expression is not a simple column reference, an element name must
be specified. When AS ATTRIBUTES is specified, the data type of expression must not be XML or a
distinct type that is based on XML.

AS qname-identifier
Specifies the XML element name or attribute name as an SQL identifier. The qname-identifier must
be of the form of an XML qualified name, or QName. See the W3C XML namespace specifications for
more details on valid names. If the name is qualified, the namespace prefix must be declared within
the scope. If qname-identifier is not specified, expression must be a column name. The element name
or attribute name is created from the column name using the fully escaped mapping from a column
name to a QName.

ORDER BY
Specifies the order of the rows from the same grouping set that are processed in the aggregation. If
the ORDER BY clause is not specified, or if the ORDER BY clause cannot differentiate the order of the
sort key value, the rows in the same grouping set are arbitrarily ordered.
sort-key-expression

Specifies a sort key value that is either a column name or an expression. The data type of the
column or expression must not be a DATALINK or XML value.
The ordering is based on the values of the sort keys, which might or might not be used in
XML-expression.

OPTION
Specifies additional options for constructing the XML value. If no OPTION clause is specified, the
default behavior applies.

Chapter 4. Built-in functions 297

ROW row-name
Specifies the name of the element to which each row is mapped. If this option is not specified, the
default element name is "row".

ROOT root-name
Specifies the name of the root element. If this option is not specified, the default root element
name is "rowset".

AS ATTRIBUTES
Specifies that each expression is mapped to an attribute value with column name or qname-
identifier serving as the attribute name.

If a collating sequence other than *HEX is in effect when the statement that contains the XMLGROUP
function is executed and the sort-key-expressions are SBCS data, mixed data, or Unicode data, then
the result is obtained by comparing weighted values. The weighted values are derived by applying the
collating sequence to the sort-key-expressions.

The result of the function is XML. The result can be null. If the set of values is empty, the result is the null
value. Otherwise, the result is an XML sequence containing an item for each value in the set.

Notes
The default behavior defines a simple mapping between a result set and an XML value Some additional
notes about function behavior apply:

• By default, each row is transformed into an XML element named "row" and each expression is
transformed into a nested element with the column name or qname-identifier as the element name.

• The null handling behavior is NULL ON NULL. A null value for an expression maps to the absence of
the subelement. If all expression values are null, no row element is generated. If no row elements are
generated, the function returns the null value.

• The binary encoding scheme for binary and FOR BIT DATA data types is base64Binary encoding.
• The order of the row subelements in the root element will be the same as the order in which the rows

are returned in the query result set.

Examples

Note: XMLGROUP does not insert blank spaces or new line characters in the output. All example output
has been formatted to enhance readability.

Assume the following table T1 with columns C1 and C2:

 C1 C2
---- ----
 1 2
 - 2
 1 -
 - -

• The following example shows an XMLGROUP query and output fragment with default behavior, using a
single top-level element to represent the table:

SELECT XMLGROUP(C1, C2) FROM T1

Returns the following value for the single result row:

<rowset>
<row><C1>1</C1><C2>2</C2></row>
<row><C2>2</C2></row>
<row><C1>1</C1></row>
</rowset>

• The following example shows an XMLGROUP query and output fragment with attribute centric mapping.
Instead of appearing as nested elements as in the previous example, the data is mapped to element
attributes:

298 IBM i: Db2 for i SQL Reference

SELECT XMLGROUP(C1, C2 OPTION AS ATTRIBUTES) FROM T1

Returns the following value for the single result row:

<rowset>
<row C1="1" C2="2"/>
<row C2="2"/>
<row C1="1"/>
</rowset>

• The following example shows an XMLGROUP query and output fragment with the default <rowset> root
element replaced by <document> and the default <row> element replaced by <entry>. Columns C1 and
C2 are returned as <column1> and <column2> elements, and the return set is ordered by column C1:

SELECT XMLGROUP(C1 AS "column1", C2 AS "column2"
 ORDER BY C1 OPTION ROW "entry" ROOT "document")
 FROM T1

Returns the following value for the single result row:

<document>
<entry> <column1>1</column1><column2>2</column2></entry>
<entry> <column1>1</column1></entry>
<entry> <column2>2</column2></entry>
</document>

Chapter 4. Built-in functions 299

Scalar functions
A scalar function takes input argument(s) and returns a single value result. A scalar function can be used
wherever an expression can be used.

The restrictions on the use of aggregate functions do not apply to scalar functions, because a scalar
function is applied to single parameter values rather than to sets of values. The argument of a scalar
function can be a function. However, the restrictions that apply to the use of expressions and aggregate
functions also apply when an expression or aggregate function is used within a scalar function. For
example, the argument of a scalar function can be an aggregate function only if an aggregate function is
allowed in the context in which the scalar function is used.

Example

The result of the following SELECT statement has as many rows as there are employees in department
D01:

 SELECT EMPNO, LASTNAME, YEAR(CURRENT DATE - BIRTHDATE)
 FROM EMPLOYEE
 WHERE WORKDEPT = 'D01'

300 IBM i: Db2 for i SQL Reference

ABS or ABSVAL
The ABS function returns the absolute value of a number.

ABS

ANSVAL

(expression)

expression
An expression that returns a value of any built-in numeric, character-string, or graphic-string
data type. A string argument is cast to double-precision floating point before evaluating the
function. For more information about converting strings to double-precision floating point, see
“DOUBLE_PRECISION or DOUBLE” on page 392.

The data type of the result is the same as the data type of the argument values except that the result is:

• A double-precision floating point if the argument values are single-precision floating point
• A large integer if the argument values are small integers
• A decimal with precision mp and scale s if the argument values are decimal or nonzero scale binary

numbers with precision p and scale s.

Note
Results involving DECFLOAT special values: For decimal floating-point values, the special values are
treated as follows:

• ABS(NaN) and ABS(-NaN) return NaN.
• ABS(Infinity) and ABS(-Infinity) return Infinity.
• ABS(sNaN) and ABS(-sNaN) return sNaN.

Example

• Assume the host variable PROFIT is a large integer with a value of -50000.

 SELECT ABS(:PROFIT)
 FROM SYSIBM.SYSDUMMY1

Returns the value 50000.

Chapter 4. Built-in functions 301

ACOS
The ACOS function returns the arc cosine of the argument as an angle expressed in radians. The ACOS and
COS functions are inverse operations.

ACOS (expression)

expression
An expression that returns a value of any built-in numeric data type (except for DECFLOAT), character-
string, or graphic-string data type. A string argument is cast to double-precision floating point before
evaluating the function. For more information about converting strings to double-precision floating
point, see “DOUBLE_PRECISION or DOUBLE” on page 392. The value must be greater than or equal to
-1 and less than or equal to 1.

The data type of the result is double-precision floating point. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

The result is greater than or equal to 0 and less than or equal to π.

Example

• Assume the host variable ACOSINE is a DECIMAL(10,9) host variable with a value of 0.070737202.

 SELECT ACOS(:ACOSINE)
 FROM SYSIBM.SYSDUMMY1

Returns the approximate value 1.49.

302 IBM i: Db2 for i SQL Reference

ADD_MONTHS
The ADD_MONTHS function returns a date or timestamp that represents expression plus numeric-
expression months.

ADD_MONTHS (expression , numeric-expression)

expression
An expression that returns a value of one of the following built-in data types: a date, a timestamp, a
character string, or a graphic string.

If expression is a character or graphic string, its value must be a valid string representation of a date
or timestamp. For the valid formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 75.

numeric-expression
An expression that returns a value of a built-in numeric data type with zero scale. A negative numeric
value is allowed.

If expression is a timestamp, the result of the function is a timestamp with the same precision as
expression. Otherwise, the result of the function is a date. If either argument can be null, the result can be
null; if either argument is null, the result is the null value.

If expression is the last day of the month or if the resulting month has fewer days than the day component
of expression, then the result is the last day of the resulting month. Otherwise, the result has the same
day component as expression.

Example

• Assume today is January 31, 2000. Set the host variable ADD_MONTH with the last day of January plus
1 month.

SET :ADD_MONTH = ADD_MONTHS(LAST_DAY(CURRENT_DATE), 1)

The host variable ADD_MONTH is set with the value representing the end of February, 2000-02-29.
• Assume DATE is a host variable with the value July 27, 1965. Set the host variable ADD_MONTH with

the value of that day plus 3 months.

SET :ADD_MONTH = ADD_MONTHS(:DATE, 3)

The host variable ADD_MONTH is set with the value representing the day plus 3 months, 1965-10-27.
• It is possible to achieve similar results with the ADD_MONTHS function and date arithmetic. The

following examples demonstrate the similarities and contrasts.

SET :DATEHV = DATE('2000-2-28') + 4 MONTHS
SET :DATEHV ADD_MONTHS('2000-2-28', 4)

In both cases, the host variable DATEHV is set with the value '2000–06–28'.

Now consider the same examples but with the date '2000–2–29' as the argument.

SET :DATEHV = DATE('2000-2-29') + 4 MONTHS

The host variable DATEHV is set with the value '2000–06–29'.

SET :DATEHV ADD_MONTHS('2000-2-29', 4)

The host variable DATEHV is set with the value '2000–06–30'.

Chapter 4. Built-in functions 303

In this case, the ADD_MONTHS function returns the last day of the month, which is June 30, 2000,
instead of June 29, 2000. The reason is that February 29 is the last day of the month. So, the
ADD_MONTHS function returns the last day of June.

304 IBM i: Db2 for i SQL Reference

ANTILOG
The ANTILOG function returns the anti-logarithm (base 10) of a number. The ANTILOG and LOG functions
are inverse operations.

ANTILOG (expression)

expression
An expression that returns a value of any built-in numeric, character-string, or graphic-string
data type. A string argument is cast to double-precision floating point before evaluating the
function. For more information about converting strings to double-precision floating point, see
“DOUBLE_PRECISION or DOUBLE” on page 392.

If the data type of the argument is DECFLOAT(n), the result is DECFLOAT(n). Otherwise, the data type
of the result is double-precision floating point. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

Note
Results involving DECFLOAT special values: For decimal floating-point values the special values are
treated as follows:

• ANTILOG(NaN) returns NaN.
• ANTILOG(-NaN) returns -NaN.
• ANTILOG(Infinity) returns Infinity.
• ANTILOG(-Infinity) returns 0.
• ANTILOG(sNaN) and ANTILOG(-sNaN) return a warning or error. 51

Example

• Assume the host variable ALOG is a DECIMAL(10,9) host variable with a value of 1.499961866.

 SELECT ANTILOG(:ALOG)
 FROM SYSIBM.SYSDUMMY1

Returns the approximate value 31.62.

51 If *YES is specified for the SQL_DECFLOAT_WARNINGS query option, NaN and -NaN are returned
respectively with a warning.

Chapter 4. Built-in functions 305

ARRAY_MAX_CARDINALITY
The ARRAY_MAX_CARDINALITY function returns a value representing the maximum number of elements
an array can contain. This is the cardinality specified on the CREATE TYPE (Array) statement for the
user-defined array type.

ARRAY_MAX_CARDINALITY (array-expression)

array-expression
The expression can be either an SQL variable or parameter of an array data type, or a cast
specification of a parameter marker to an array data type.

The ARRAY_MAX_CARDINALITY function is identical to the MAX_CARDINALITY function. For more
information, see “MAX_CARDINALITY” on page 491 .

306 IBM i: Db2 for i SQL Reference

ARRAY_TRIM
The ARRAY_TRIM function returns a copy of the array argument from which the specified number of
elements have been removed from the end of the array.

ARRAY_TRIM (array-variable-name , numeric-constant

numeric-variable

)

The ARRAY_TRIM function is identical to the TRIM_ARRAY function. For more information, see
“TRIM_ARRAY” on page 611 .

Chapter 4. Built-in functions 307

ASCII
The ASCII function returns the ASCII code value of the leftmost character of the argument as an integer.

ASCII (expression)

expression
An expression that specifies the string containing the character to evaluate. expression must be any
built-in numeric or string data type. The first character of the string will be converted to ASCII CCSID
367 for processing by the function.

The result of the function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

Examples

• Return the integer value for the ASCII representation of 'A'.

SELECT ASCII('A')
 FROM SYSIBM.SYSDUMMY1

Returns the value 65.

308 IBM i: Db2 for i SQL Reference

ASIN
The ASIN function returns the arc sine of the argument as an angle expressed in radians. The ASIN and
SIN functions are inverse operations.

ASIN (expression)

expression
An expression that returns a value of any built-in numeric data type (except for DECFLOAT), character-
string, or graphic-string data type. A string argument is cast to double-precision floating point before
evaluating the function. For more information about converting strings to double-precision floating
point, see “DOUBLE_PRECISION or DOUBLE” on page 392. The value must be greater than or equal to
-1 and less than or equal to 1.

The data type of the result is double-precision floating point. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

The result is greater than or equal to -π /2 and less than or equal to π /2.

Example

• Assume the host variable ASINE is a DECIMAL(10,9) host variable with a value of 0.997494987.

 SELECT ASIN(:ASINE)
 FROM SYSIBM.SYSDUMMY1

Returns the approximate value 1.50.

Chapter 4. Built-in functions 309

ATAN
The ATAN function returns the arc tangent of the argument as an angle expressed in radians. The ATAN
and TAN functions are inverse operations.

ATAN (expression)

expression
An expression that returns a value of any built-in numeric data type (except for DECFLOAT), character-
string, or graphic-string data type. A string argument is cast to double-precision floating point before
evaluating the function. For more information about converting strings to double-precision floating
point, see “DOUBLE_PRECISION or DOUBLE” on page 392.

The data type of the result is double-precision floating point. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

The result is greater than or equal to -π/2 and less than or equal to π/2.

Example

• Assume the host variable ATANGENT is a DECIMAL(10,8) host variable with a value of 14.10141995.

 SELECT ATAN(:ATANGENT)
 FROM SYSIBM.SYSDUMMY1

Returns the approximate value 1.50.

310 IBM i: Db2 for i SQL Reference

ATANH
The ATANH function returns the hyperbolic arc tangent of a number, in radians. The ATANH and TANH
functions are inverse operations.

ATANH (expression)

expression
An expression that returns a value of any built-in numeric data type (except for DECFLOAT), character-
string, or graphic-string data type. A string argument is cast to double-precision floating point before
evaluating the function. For more information about converting strings to double-precision floating
point, see “DOUBLE_PRECISION or DOUBLE” on page 392. The value must be greater than -1 and
less than 1.

The data type of the result is double-precision floating point. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Example

• Assume the host variable HATAN is a DECIMAL(10,9) host variable with a value of 0.905148254.

 SELECT ATANH(:HATAN)
 FROM SYSIBM.SYSDUMMY1

Returns the approximate value 1.50.

Chapter 4. Built-in functions 311

ATAN2
The ATAN2 function returns the arc tangent of x and y coordinates as an angle expressed in radians. The
first and second arguments specify the x and y coordinates, respectively.

ATAN2 (expression-1 , expression-2)

expression-1
An expression that returns a value of any built-in numeric data type (except for DECFLOAT), character-
string, or graphic-string data type. A string argument is cast to double-precision floating point before
evaluating the function. For more information on converting strings to double-precision floating point,
see “DOUBLE_PRECISION or DOUBLE” on page 392. If one argument is 0, the other argument must
not be 0.

expression-2
An expression that returns a value of any built-in numeric data type (except for DECFLOAT), character-
string, or graphic-string data type. A string argument is cast to double-precision floating point before
evaluating the function. For more information on converting strings to double-precision floating point,
see “DOUBLE_PRECISION or DOUBLE” on page 392. If one argument is 0, the other argument must
not be 0.

The data type of the result is double-precision floating point. If any argument can be null, the result can
be null; if any argument is null, the result is the null value.

Example

• Assume that host variables HATAN2A and HATAN2B are DOUBLE host variables with values of 1 and 2,
respectively.

 SELECT ATAN2(:HATAN2A,:HATAN2B)
 FROM SYSIBM.SYSDUMMY1

Returns a double precision floating-point number with an approximate value of 1.1071487.

312 IBM i: Db2 for i SQL Reference

BASE64_DECODE
The BASE64_DECODE scalar function returns a character string that has been Base64 decoded. Base64
encoding is widely used to represent binary data as a string.

BASE64_DECODE (character-string)

character-string
An expression that returns a character string in CCSID 1208 that is currently Base64 encoded.

The result of the function is a varying length character for bit data string that contains character-string
after being Base64 decoded.

Example

• Decode a binary string that was originally X'1122334455'. The result is the original value.

VALUES QSYS2.BASE64_DECODE('ESIzRFU=');

Chapter 4. Built-in functions 313

BASE64_ENCODE
The BASE64_ENCODE scalar function returns the Base64 encoded version of a binary value.

BASE64_ENCODE (binary-string)

binary-string
An expression that returns a built-in binary string to be encoded.

The result of the function is a CLOB in CCSID 1208 that contains the bytes of binary-string as a Base64-
encoded string.

Examples

• Encode a string that contains the value X'1122334455'.

VALUES QSYS2.BASE64_ENCODE(X'1122334455');

The result is: ESIzRFU=.
• Encode a character string that contains the EBCDIC value 'ABC'.

VALUES QSYS2.BASE64_ENCODE('ABC');

The result is: wcLD
• Encode a UTF-8 string that contains the value 'ABC'.

VALUES QSYS2.BASE64_ENCODE(CAST('ABC' AS VARCHAR(10) CCSID 1208));

The result is: QUJD

314 IBM i: Db2 for i SQL Reference

BIGINT
The BIGINT function returns a big integer representation.

Numeric to Big Integer

BIGINT (numeric-expression)

String to Big Integer

BIGINT (string-expression)

Datetime to Big Integer

BIGINT (datetime-expression)

The BIGINT function returns a big integer representation of:

• A number
• A character or graphic string representation of a decimal number
• A character or graphic string representation of an integer
• A character or graphic string representation of a floating-point number
• A character or graphic string representation of a decimal floating-point number
• A date
• A time
• A timestamp

Numeric to Big Integer
numeric-expression

An expression that returns a numeric value of any built-in numeric data type.

The result is the same number that would occur if the argument were assigned to a big integer column
or variable. If the whole part of the argument is not within the range of big integers, an error is
returned. The fractional part of the argument is truncated.

String to Big Integer
string-expression

An expression that returns a value that is a character-string or graphic-string representation of a
number.

The result is the same number that would result from CAST(string-expression AS BIGINT). Leading
and trailing blanks are eliminated and the resulting string must conform to the rules for forming a
floating-point, decimal floating-point, integer, or decimal constant. If the whole part of the argument
is not within the range of big integers, an error is returned. Any fractional part of the argument is
truncated.

Datetime to Big Integer
datetime-expression

An expression that is one of the following data types:

• DATE. The result is a BIGINT value representing the date as yyyymmdd.
• TIME. The result is a BIGINT value representing the time as hhmmss.

Chapter 4. Built-in functions 315

• TIMESTAMP. The result is a BIGINT value representing the timestamp as yyyymmddhhmmss. The
fractional seconds portion of the timestamp value is not included in the result.

The result of the function is a big integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

Note
Syntax alternatives: The CAST specification should be used to increase the portability of applications.
For more information, see “CAST specification” on page 176.

Example

• Using the EMPLOYEE table, select the SALARY column in big integer form for further processing in the
application.

 SELECT BIGINT(SALARY)
 FROM EMPLOYEE

316 IBM i: Db2 for i SQL Reference

BINARY
The BINARY function returns a BINARY representation of a string of any type.

BINARY (string-expression

, integer

)

The result of the function is a fixed-length binary string. If the first argument can be null, the result can be
null; if the first argument is null, the result is the null value.

string-expression
A string-expression whose value must be a built-in character string, graphic string, binary string, or
row ID data type.

integer
An integer constant that specifies the length attribute for the resulting binary string. The value must
be between 1 and 32766.

If integer is not specified:

• If the string-expression is the empty string constant, the length attribute of the result is 1.
• Otherwise, the length attribute of the result is the same as the length attribute of the first argument,

unless the argument is a graphic string. In this case, the length attribute of the result is twice the
length attribute of the argument.

The actual length is the same as the length attribute of the result. If the length of the string-expression
is less than the length of the result, the result is padded with hexadecimal zeroes up to the length
of the result. If the length of the string-expression is greater than the length attribute of the result,
truncation is performed. A warning (SQLSTATE 01004) is returned unless the first input argument is
a character string and all the truncated characters are blanks, or the first input argument is a graphic
string and all the truncated characters are double-byte blanks, or the first input argument is a binary
string and all the truncated bytes are hexadecimal zeroes.

Note
Syntax alternatives: The CAST specification should be used to increase the portability of applications
when the length is specified. For more information, see “CAST specification” on page 176.

Example

• The following function returns a BINARY for the string 'This is a BINARY'.

 SELECT BINARY('This is a BINARY')
 FROM SYSIBM.SYSDUMMY1

Chapter 4. Built-in functions 317

BITAND, BITANDNOT, BITOR, BITXOR, and BITNOT
These bitwise functions operate on the "two's complement" representation of the integer value of the
input arguments and return the result as a corresponding base 10 integer value in a data type based on
the data type of the input arguments.

BITAND

BITANDNOT

BITOR

BITXOR

(expression , expression)

BITNOT (expression)

Table 50. Bit manipulation functions

Function Description
A bit in the two's complement
representation of the result is:

BITAND Performs a bitwise AND
operation.

1 only if the corresponding bits in
both arguments are 1.

BITANDNOT Clears any bit in the first
argument that is in the second
argument.

Zero if the corresponding bit
in the second argument is 1;
otherwise, the result is copied
from the corresponding bit in the
first argument.

BITOR Performs a bitwise OR operation. 1 unless the corresponding bits
in both arguments are zero.

BITXOR Performs a bitwise exclusive OR
operation.

1 unless the corresponding bits
in both arguments are the same.

BITNOT Performs a bitwise NOT
operation.

Opposite of the corresponding bit
in the argument.

expression
An expression that returns a value of any built-in numeric data type. Arguments of type DECIMAL,
REAL, or DOUBLE are cast to DECFLOAT. The value is truncated to a whole number.

The bit manipulation functions can operate on up to 16 bits for SMALLINT, 32 bits for INTEGER, 64 bits
for BIGINT, and 113 bits for DECFLOAT. The range of supported DECFLOAT values includes integers from
-2112 to 2112 -1, and special values such as NaN or INFINITY are not supported. If the two arguments
have different data types, the argument supporting fewer bits is cast to a value with the data type of the
argument supporting more bits. This cast impacts the bits that are set for negative values. For example, -1
as a SMALLINT value has 16 bits set to 1, which when cast to an INTEGER value has 32 bits set to 1.

The result of the functions with two arguments has the data type of the argument that is highest in the
data type precedence list for promotion. If either argument is DECFLOAT, the data type of the result is
DECFLOAT(34). If either argument can be null, the result can be null; if either argument is null, the result
is the null value.

The result of the BITNOT function has the same data type as the input argument, except that DECIMAL,
REAL, DOUBLE, or DECFLOAT(16) returns DECFLOAT(34). If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Use of the BITXOR function is recommended to toggle bits in a value. Use the BITANDNOT function to
clear bits. BITANDNOT(val, pattern) operates more efficiently than BITAND(val, BITNOT(pattern)).

318 IBM i: Db2 for i SQL Reference

Example
The following examples are based on an ITEM table with a PROPERTIES column of type INTEGER.

• Return all items for which the third property bit is set.

 SELECT ITEMID FROM ITEM
 WHERE BITAND(PROPERTIES, 4) = 4

• Return all items for which the fourth or the sixth property bit is set.

 SELECT ITEMID FROM ITEM
 WHERE BITAND(PROPERTIES, 40) <> 0

• Clear the twelfth property of the item whose ID is 3412.

 UPDATE ITEM
 SET PROPERTIES = BITANDNOT(PROPERTIES, 2048)
 WHERE ITEMID = 3412

• Set the fifth property of the item whose ID is 3412.

 UPDATE ITEM
 SET PROPERTIES = BITOR(PROPERTIES, 16)
 WHERE ITEMID = 3412

• Toggle the eleventh property of the item whose ID is 3412.

 UPDATE ITEM
 SET PROPERTIES = BITXOR(PROPERTIES, 1024)
 WHERE ITEMID = 3412

• Switch all the bits in a 16-bit value that has only the second bit on.

 VALUES BITNOT(CAST(2 AS SMALLINT))

returns -3 (with a data type of SMALLINT).

Chapter 4. Built-in functions 319

BIT_LENGTH
The BIT_LENGTH function returns the length of a string expression in bits.

BIT_LENGTH (expression)

See “LENGTH” on page 474 , “CHARACTER_LENGTH or CHAR_LENGTH” on page 331 , and
“OCTET_LENGTH” on page 520 for similar functions.

expression
An expression that returns a value of any built-in numeric or string data type. A numeric argument
is cast to a character string before evaluating the function. For more information about converting
numeric to a character string, see “VARCHAR” on page 623.

The result of the function is DECIMAL(31). If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

The result is the number of bits (bytes * 8) in the argument. The length of a string includes trailing blanks.
The length of a varying-length string is the actual length in bits (bytes * 8), not the maximum length.

Example

• Assume table T1 has a GRAPHIC(10) column called C1.

 SELECT BIT_LENGTH(C1)
 FROM T1

Returns the value 160.

320 IBM i: Db2 for i SQL Reference

BLOB
The BLOB function returns a BLOB representation of a string of any type.

BLOB (string-expression

, integer

)

string-expression
A string-expression whose value can be a character string, graphic string, binary string, or row ID.

integer
An integer constant that specifies the length attribute for the resulting binary string. The value must
be between 1 and 2 147 483 647.

If integer is not specified:

• If the string-expression is the empty string constant, the length attribute of the result is 1.
• Otherwise, the length attribute of the result is the same as the length attribute of the first argument,

unless the argument is a graphic string. In this case, the length attribute of the result is twice the
length attribute of the argument.

The actual length of the result is the minimum of the length attribute of the result and the actual
length of the expression (or twice the length of the expression when the input is graphic data). If
the length of the string-expression is greater than the length attribute of the result, truncation is
performed. A warning (SQLSTATE 01004) is returned unless the first input argument is a character
string and all the truncated characters are blanks, or the first input argument is a graphic string and all
the truncated characters are double-byte blanks, or the first input argument is a binary string and all
the truncated bytes are hexadecimal zeroes.

The result of the function is a BLOB. If the first argument can be null, the result can be null; if the first
argument is null, the result is the null value.

Note
Syntax alternatives: The CAST specification should be used to increase the portability of applications
when the length is specified. For more information, see “CAST specification” on page 176.

Example

• The following function returns a BLOB for the string 'This is a BLOB'.

 SELECT BLOB('This is a BLOB')
 FROM SYSIBM.SYSDUMMY1

• The following function returns a BLOB for the large object that is identified by locator myclob_locator.

 SELECT BLOB(:myclob_locator)
 FROM SYSIBM.SYSDUMMY1

• Assume that a table has a BLOB column named TOPOGRAPHIC_MAP and a VARCHAR column named
MAP_NAME. Locate any maps that contain the string 'Pellow Island' and return a single binary string
with the map name concatenated in front of the actual map. The following function returns a BLOB for
the large object that is identified by locator myclob_locator.

 SELECT BLOB(MAP_NAME CONCAT ': ' CONCAT TOPOGRAPHIC_MAP)
 FROM ONTARIO_SERIES_4
 WHERE TOPOGRAPHIC_MAP LIKE '%Pellow Island%'

Chapter 4. Built-in functions 321

BSON_TO_JSON
The BSON_TO_JSON function converts a string containing formatted BSON data to a character string
containing the data formatted as JSON.

BSON_TO_JSON (JSON-expression)

JSON-expression

Specifies an expression that returns a binary string value. It must contain formatted BSON data.

If JSON-expression is a JSON object with a key name of SYSIBM_ROOT_ARRAY, the key will be
removed and the result will be the key's value.

If JSON-expression contains duplicate keys, the duplicate keys are retained in the result JSON string.

The data type of the result is CLOB(2G) with a CCSID of 1208.

If the argument can be null, the result can be null; if the argument is null, the result is the null value.

Note
If the outer JSON object's key is SYSIBM_ROOT_ARRAY, the key will be removed and the result will be the
value of the key.

Example
• Insert a value that contains data formatted as BSON into a column that holds JSON values.

INSERT INTO TABLE1 (JSON_COLUMN) VALUES (BSON_TO_JSON(:BSON_DATA));

322 IBM i: Db2 for i SQL Reference

CARDINALITY
The CARDINALITY function returns a value representing the number of elements of an array.

CARDINALITY (array-expression)

array-expression
The expression can be either an SQL variable or parameter of an array data type, or a cast
specification of a parameter marker to an array data type.

The value returned by the CARDINALITY function is the highest array index for which the array has an
assigned element. This includes elements that have been assigned the null value.

The result of the function is BIGINT. The function returns 0 if the array is empty. The result can be null; if
the argument is null, the result is the null value.

Example

Assume that array type PHONENUMBERS and array variable RECENT_CALLS are defined as follows:

CREATE TYPE PHONENUMBERS AS INTEGER ARRAY[50];
DECLARE RECENT_CALLS PHONENUMBERS;

RECENT_CALLS contains three elements. The following SET statement assigns the number of calls that
have been stored in the array so far to SQL variable HOWMANYCALLS:

SET HOWMANYCALLS = CARDINALITY(RECENT_CALLS)

After the statement executes, HOWMANYCALLS contains 3.

Chapter 4. Built-in functions 323

CEILING or CEIL
The CEILING or CEIL function returns the smallest integer value that is greater than or equal to
expression.

CEILING

CEIL

(expression)

expression
An expression that returns a value of any built-in numeric, character-string, or graphic-string
data type. A string argument is cast to double-precision floating point before evaluating the
function. For more information about converting strings to double-precision floating point, see
“DOUBLE_PRECISION or DOUBLE” on page 392.

The result of the function has the same data type and length attribute as the argument except that
the scale is 0 if the argument is a decimal number. For example, an argument with a data type of
DECIMAL(5,5) will result in DECIMAL(5,0).

If the argument can be null, the result can be null; if the argument is null, the result is the null value.

Note
Results involving DECFLOAT special values: For decimal floating-point values, the special values are
treated as follows:

• CEILING(NaN) returns NaN.
• CEILING(-NaN) returns -NaN.
• CEILING(Infinity) returns Infinity.
• CEILING(-Infinity) returns -Infinity.
• CEILING(sNaN) and CEILING(-sNaN) return a warning or error.52

Examples

• Find the highest monthly salary for all the employees. Round the result up to the next integer. The
SALARY column has a decimal data type

 SELECT CEIL(MAX(SALARY)/12)
 FROM EMPLOYEE

This example returns 4396.00 because the highest paid employee is Christine Haas who earns
$52750.00 per year. Her average monthly salary before applying the CEIL function is 4395.83.

• Use CEILING on both positive and negative numbers.

 SELECT CEILING(3.5),
 CEILING(3.1),
 CEILING(-3.1),
 CEILING(-3.5)
 FROM SYSIBM.SYSDUMMY1

This example returns:

04. 04. -03. -03.

52 If *YES is specified for the SQL_DECFLOAT_WARNINGS query option, NaN and -NaN are returned
respectively with a warning.

324 IBM i: Db2 for i SQL Reference

CHAR
The CHAR function returns a fixed-length character-string representation.

Integer to Character

CHAR (integer-expression)

Decimal to Character

CHAR (decimal-expression

, decimal-character

)

Floating-point to Character

CHAR (floating-point-expression

, decimal-character

)

Decimal floating-point to Character

CHAR (decimal-floating-point-expression

, decimal-character

)

Character to Character

CHAR (character-expression

, length

DEFAULT , integer

)

Graphic to Character

CHAR (graphic-expression

, length

DEFAULT , integer

)

Datetime to Character

CHAR (datetime-expression

, ISO

USA

EUR

JIS

LOCAL

)

The CHAR function returns a fixed-length character-string representation of:

• An integer number if the first argument is a SMALLINT, INTEGER, or BIGINT.
• A decimal number if the first argument is a decimal number.
• A double-precision floating-point number if the first argument is a DOUBLE or REAL.
• A decimal floating-point number if the first argument is a DECFLOAT.
• A character string if the first argument is any type of character string.
• A graphic string if the first argument is any type of graphic string.

Chapter 4. Built-in functions 325

• A date value if the first argument is a DATE.
• A time value if the first argument is a TIME.
• A timestamp value if the first argument is a TIMESTAMP.
• A row ID value if the first argument is a ROWID.

The result of the function is a fixed-length character string. If the first argument can be null, the result can
be null; if the first argument is null, the result is the null value.

Integer to Character
integer-expression

An expression that returns a value that is a built-in integer data type (either SMALLINT, INTEGER, or
BIGINT).

The result is the fixed-length character-string representation of the argument in the form of an SQL
integer constant. The result consists of n characters that are the significant digits that represent the value
of the argument with a preceding minus sign if the argument is negative. The result is left justified.

• If the argument is a small integer:

The length of the result is 6. If the number of characters in the result is less than 6, then the result is
padded on the right with blanks.

• If the argument is a large integer:

The length of the result is 11. If the number of characters in the result is less than 11, then the result is
padded on the right with blanks.

• If the argument is a big integer:

The length of the result is 20. If the number of characters in the result is less than 20, then the result is
padded on the right with blanks.

The CCSID of the result is the default SBCS CCSID at the current server.

Decimal to Character
decimal-expression

An expression that returns a value that is a built-in decimal data type (either DECIMAL or NUMERIC).
If a different precision and scale is wanted, the DECIMAL scalar function can be used to make the
change.

decimal-character
Specifies the single-byte character constant that is used to delimit the decimal digits in the result
character string. The character must be a period or comma. If the second argument is not specified,
the decimal point is the default decimal point. For more information, see “Decimal point” on page
116.

The result is a fixed-length character string representation of the argument. The result includes a decimal
character and up to p digits, where p is the precision of the decimal-expression with a preceding minus
sign if the argument is negative. Leading zeros are not returned. Trailing zeros are returned. If the scale of
decimal-expression is zero, the decimal character is not returned.

The length of the result is 2+p where p is the precision of the decimal-expression. This means that a
positive value will always include one trailing blank.

The CCSID of the result is the default SBCS CCSID at the current server.

Floating-point to Character
floating-point expression

An expression that returns a value that is a built-in floating-point data type (DOUBLE or REAL).

326 IBM i: Db2 for i SQL Reference

decimal-character
Specifies the single-byte character constant that is used to delimit the decimal digits in the result
character string. The character must be a period or comma. If the second argument is not specified,
the decimal point is the default decimal point. For more information, see “Decimal point” on page
116.

The result is a fixed-length character-string representation of the argument in the form of a floating-point
constant. The length of the result is 24. If the argument is negative, the first character of the result is
a minus sign. Otherwise, the first character is a digit or the decimal-character. If the argument is zero,
the result is 0E0. Otherwise, the result includes the smallest number of characters that can be used to
represent the value of the argument such that the mantissa consists of a single digit other than zero
followed by a decimal-character and a sequence of digits.

If the number of characters in the result is less than 24, then the result is padded on the right with blanks.

The CCSID of the result is the default SBCS CCSID at the current server.

Decimal floating-point to Character
decimal-floating-point expression

An expression that returns a value that is a built-in decimal floating-point data type (DECFLOAT).
decimal-character

Specifies the single-byte character constant that is used to delimit the decimal digits in the result
character string. The character must be a period or comma. If the second argument is not specified,
the decimal point is the default decimal point. For more information, see “Decimal point” on page
116.

The result is a fixed-length character-string representation of the argument in the form of a decimal
floating-point constant.

The length attribute of the result is 42. The actual length of the result is the smallest number of
characters that represents the value of the argument, including the sign, digits, and decimal-character.
Trailing zeros are significant. If the argument is negative, the first character of the result is a minus sign;
otherwise, the first character is a digit or the decimal-character. If the argument is zero, the result is 0.

If the DECFLOAT value is Infinity, sNaN, or NaN, the strings 'INFINITY', 'SNAN', and 'NAN', respectively,
are returned. If the special value is negative, a minus sign will be the first character in the string. The
DECFLOAT special value sNaN does not result in an exception when converted to a string.

If the number of characters in the result is less than 42, then the result is padded on the right with blanks.

The CCSID of the result is the default SBCS CCSID at the current server.

Character to Character
character-expression

An expression that returns a value that is a built-in character-string data type.53

length
An integer constant that specifies the length attribute for the resulting fixed length character string.
The value must be between 1 and 32766 (32765 if nullable). If the first argument is DBCS-only mixed
data, the second argument cannot be less than 4.

If the second argument is not specified or DEFAULT is specified:

• If the character-expression is the empty string constant, the length attribute of the result is 1.
• Otherwise, the length attribute of the result is the same as the length attribute of the first argument.

The actual length is the same as the length attribute of the result. If the length of the character-
expression is less than the length attribute of the result, the result is padded with blanks up to the
length of the result. If the length of the character-expression is greater than the length attribute of

53 A binary string is also allowed if a CCSID is not specified or if a CCSID of 65535 is explicitly specified.

Chapter 4. Built-in functions 327

the result, truncation is performed. A warning (SQLSTATE 01004) is returned unless the truncated
characters were all blanks.

integer
An integer constant that specifies the CCSID of the result. It must be a valid SBCS CCSID, mixed data
CCSID, or 65535 (bit data). If the third argument is an SBCS CCSID, then the result is SBCS data. If the
third argument is a mixed CCSID, then the result is mixed data and the length attribute of the result
cannot be less than 4. If the third argument is 65535, then the result is bit data. If the third argument
is a SBCS CCSID, then the first argument cannot be a DBCS-either or DBCS-only string.

If the third argument is not specified then:

• If the first argument is SBCS data, then the result is SBCS data. The CCSID of the result is the same
as the CCSID of the first argument.

• If the first argument is mixed data and the length attribute of the result is greater than or equal to 4,
then the result is mixed data. The CCSID of the result is the same as the CCSID of the first argument.

• If the first argument is mixed data that is DBCS-open or DBCS-either and the length attribute of the
result is less than 4, the CCSID of the result is the associated SBCS CCSID for the mixed data CCSID.

Graphic to Character
graphic-expression

An expression that returns a value that is a built-in graphic-string data type. It must not be DBCS-
graphic data.

length
An integer constant that specifies the length attribute for the resulting fixed length character string.
The value must be between 1 and 32766 (32765 if nullable).

If the second argument is not specified or DEFAULT is specified:

• If the graphic-expression is the empty string constant, the length attribute of the result is 1.
• If the result is SBCS data, the result length is n.
• If the result is mixed data, the result length is (2.5*(n-1)) + 4.

The actual length is the same as the length attribute of the result. If the length of the graphic-
expression is less than the length of the result, the result is padded with blanks up to the length of
the result. If the length of the graphic-expression is greater than the length attribute of the result,
truncation is performed. A warning (SQLSTATE 01004) is returned unless the truncated characters
were all blanks.

integer
An integer constant that specifies the CCSID of the result. It must be a valid SBCS CCSID or mixed
data CCSID. If the third argument is an SBCS CCSID, then the result is SBCS data. If the third
argument is a mixed CCSID, then the result is mixed data and the length attribute of the result cannot
be less than 4. The third argument cannot be 65535.

If the third argument is not specified, the CCSID of the result is the default CCSID at the current
server. If the default CCSID is mixed data and the length attribute of the result is greater than or equal
to 4, then the result is mixed data. Otherwise, the result is SBCS data.

Datetime to Character
datetime-expression

An expression that is one of the following three built-in data types
date

The result is the character-string representation of the date in the format specified by the second
argument. If the second argument is not specified, the format used is the default date format. If
the format is ISO, USA, EUR, or JIS, the length of the result is 10. Otherwise the length of the
result is the length of the default date format. For more information see “String representations of
datetime values” on page 75.

328 IBM i: Db2 for i SQL Reference

time
The result is the character-string representation of the time in the format specified by the second
argument. If the second argument is not specified, the format used is the default time format. The
length of the result is 8. For more information see “String representations of datetime values” on
page 75.

timestamp
The second argument is not applicable and must not be specified.

The result is the character-string representation of the timestamp. If datetime-expression is
a TIMESTAMP(0), the length of the result is 19. If the data type of datetime-expression is a
TIMESTAMP(n), the length of the result is 20+n. Otherwise the length of the result is 26.

The CCSID of the result is the default SBCS CCSID at the current server.
ISO, EUR, USA, or JIS

Specifies the date or time format of the resulting character string. For more information, see “String
representations of datetime values” on page 75.

LOCAL
Specifies that the date or time format of the resulting character string should come from the DATFMT,
DATSEP, TIMFMT, and TIMSEP attributes of the job at the current server.

Note
Syntax alternatives: The CAST specification should be used to increase the portability of applications
when the first argument is a string and the length argument is specified. For more information, see “CAST
specification” on page 176.

Examples

• Assume the column PRSTDATE has an internal value equivalent to 1988-12-25. The date format is
*MDY and the date separator is a slash (/).

 SELECT CHAR(PRSTDATE, USA)
 FROM PROJECT

Results in the value ‘12/25/1988'.

 SELECT CHAR(PRSTDATE)
 FROM PROJECT

Results in the value ‘12/25/88'.
• Assume the column STARTING has an internal value equivalent to 17.12.30, the host variable

HOUR_DUR (DECIMAL(6,0)) is a time duration with a value of 050000 (that is, 5 hours).

 SELECT CHAR(STARTING, USA)
 FROM CL_SCHED

Results in the value ‘5:12 PM'.

 SELECT CHAR(STARTING + :HOUR_DUR, JIS)
 FROM CL_SCHED

Results in the value ‘10:12:00'.
• Assume the column RECEIVED (timestamp) has an internal value equivalent to the combination of the

PRSTDATE and STARTING columns.

 SELECT CHAR(RECEIVED)
 FROM IN_TRAY

Results in the value ‘1988-12-25-17.12.30.000000'.

Chapter 4. Built-in functions 329

• Use the CHAR function to make the type fixed-length character and reduce the length of the displayed
results to 10 characters for the LASTNAME column (defined as VARCHAR(15)) of the EMPLOYEE table.

 SELECT CHAR(LASTNAME,10)
 FROM EMPLOYEE

For rows having a LASTNAME with a length greater than 10 characters (excluding trailing blanks), a
warning (SQLSTATE 01004) that the value is truncated is returned.

• Use the CHAR function to return the values for EDLEVEL (defined as SMALLINT) as a fixed length string.

 SELECT CHAR(EDLEVEL)
 FROM EMPLOYEE

An EDLEVEL of 18 would be returned as the CHAR(6) value '18 ' (18 followed by 4 blanks).
• Assume that the same SALARY subtracted from 20000.25 is to be returned with a comma as the

decimal character.

 SELECT CHAR(20000.25 - SALARY, ',')
 FROM EMPLOYEE

A SALARY of 21150 returns the value '–1149,75 ' (–1149,75 followed by 3 blanks).
• Assume a host variable, DOUBLE_NUM, has a double precision floating-point data type and a value of

-987.654321E-35.

 SELECT CHAR(:DOUBLE_NUM)
 FROM SYSIBM.SYSDUMMY1

Results in the character value '-9.8765432100000002E-33 '.

330 IBM i: Db2 for i SQL Reference

CHARACTER_LENGTH or CHAR_LENGTH
The CHARACTER_LENGTH or CHAR_LENGTH function returns the length of a string expression.

CHARACTER_LENGTH

CHAR_LENGTH

(expression)

See “LENGTH” on page 474 for a similar function.

expression
An expression that returns a value of any built-in numeric or string data type. A numeric argument
is cast to a character string before evaluating the function. For more information about converting
numeric to a character string, see “VARCHAR” on page 623.

The result of the function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

If expression is a character string or graphic string, the result is the number of characters in the argument
(not the number of bytes). A single character is either an SBCS, DBCS, or multiple-byte character. If
expression is a binary string, the result is the number of bytes in the argument. The length of strings
includes trailing blanks or hexadecimal zeroes. The length of a varying-length string is the actual length,
not the maximum length.

Example

• Assume that NAME is a VARCHAR(128) column, encoded in Unicode UTF-8, that contains the value
'Jürgen'.

 SELECT CHARACTER_LENGTH(NAME), LENGTH(NAME)
 FROM T1
 WHERE NAME = 'Jürgen'

Returns the value 6 for CHARACTER_LENGTH and 7 for LENGTH.

Chapter 4. Built-in functions 331

CHR
The CHR function returns the EBCDIC character that has the ASCII code value specified by the argument.
If expression is 0, the result is the blank character.

CHR (expression)

expression
An expression that returns a value of a BIGINT, INTEGER, or SMALLINT data type. The value of the
argument should be between 0 and 255; otherwise, the return value is null. The value is interpreted
as the code point for a character in ASCII CCSID 367.

The result of the function is CHAR(1). The result can be null; if the argument is null, the result is the null
value.

The CCSID of the result is the default SBCS CCSID of the current server.

Examples

• Return the EBCDIC character corresponding to the ASCII CCSID 367 code point 65.

SELECT CHR(65)
 FROM SYSIBM.SYSDUMMY1

Returns the value 'A'.

332 IBM i: Db2 for i SQL Reference

CLOB
The CLOB function returns a character-string representation.

Integer to CLOB

CLOB (integer-expression)

Decimal to CLOB

CLOB (decimal-expression

, decimal-character

)

Floating-point to CLOB

CLOB (floating-point-expression

, decimal-character

)

Decimal floating-point to CLOB

CLOB (decimal-floating-point-expression

, decimal-character

)

Character to CLOB

CLOB (character-expression

, length

DEFAULT , integer

)

Graphic to CLOB

CLOB (graphic-expression

, length

DEFAULT , integer

)

Datetime to CLOB

CLOB (datetime-expression

, ISO

USA

EUR

JIS

LOCAL

)

The CLOB function returns a character-string representation of:

• An integer number if the first argument is a SMALLINT, INTEGER, or BIGINT
• A decimal number if the first argument is a packed or zoned decimal number
• A double-precision floating-point number if the first argument is a DOUBLE or REAL
• A decimal floating-point number if the first argument is DECFLOAT
• A character string if the first argument is any type of character string
• A graphic string if the first argument is a Unicode graphic string

Chapter 4. Built-in functions 333

• A date value if the first argument is a DATE.
• A time value if the first argument is a TIME.
• A timestamp value if the first argument is a TIMESTAMP.

The result of the function is a CLOB. If the first argument can be null, the result can be null; if the first
argument is null, the result is the null value.

Integer to CLOB
integer-expression

An expression that returns a value that is a built-in integer data type (either SMALLINT, INTEGER, or
BIGINT).

The result is a varying-length character string of the argument in the form of an SQL integer constant. The
result consists of n characters that are the significant digits that represent the value of the argument with
a preceding minus sign if the argument is negative. The result is left justified.

• If the argument is a small integer, the length attribute of the result is 6.
• If the argument is a large integer, the length attribute of the result is 11.
• If the argument is a big integer, the length attribute of the result is 20.

The actual length of the result is the smallest number of characters that can be used to represent the
value of the argument. Leading zeroes are not included. If the argument is negative, the first character of
the result is a minus sign. Otherwise, the first character is a digit or the decimal-character.

The CCSID of the result is the default SBCS CCSID at the current server.

Decimal to CLOB
decimal-expression

An expression that returns a value that is a built-in decimal data type (either DECIMAL or NUMERIC).
If a different precision and scale is wanted, the DECIMAL scalar function can be used to make the
change.

decimal-character
Specifies the single-byte character constant that is used to delimit the decimal digits in the result
character string. The character must be a period or comma. If the second argument is not specified,
the decimal point is the default decimal point. For more information, see “Decimal point” on page
116.

The result is a varying-length character string representation of the argument. The result includes a
decimal character and up to p digits, where p is the precision of the decimal-expression with a preceding
minus sign if the argument is negative. Leading zeros are not returned. Trailing zeros are returned. If the
scale of decimal-expression is zero, the decimal character is not returned.

The length attribute of the result is 2+p where p is the precision of the decimal-expression. The actual
length of the result is the smallest number of characters that can be used to represent the result, except
that trailing characters are included. Leading zeros are not included. If the argument is negative, the result
begins with a minus sign. Otherwise, the result begins with a digit or the decimal-character.

The CCSID of the result is the default SBCS CCSID at the current server.

Floating-point to CLOB
floating-point expression

An expression that returns a value that is a built-in floating-point data type (DOUBLE or REAL).
decimal-character

Specifies the single-byte character constant that is used to delimit the decimal digits in the result
character string. The character must be a period or comma. If the second argument is not specified,
the decimal point is the default decimal point. For more information, see “Decimal point” on page
116.

334 IBM i: Db2 for i SQL Reference

The result is a varying-length character string representation of the argument in the form of a floating-
point constant.

The length attribute of the result is 24. The actual length of the result is the smallest number of
characters that can represent the value of the argument such that the mantissa consists of a single
digit other than zero followed by the decimal-character and a sequence of digits. If the argument is
negative, the first character of the result is a minus sign; otherwise, the first character is a digit or the
decimal-character. If the argument is zero, the result is 0E0.

The CCSID of the result is the default SBCS CCSID at the current server.

Decimal floating-point to CLOB
decimal floating-point expression

An expression that returns a value that is a built-in decimal floating-point data type.
decimal-character

Specifies the single-byte character constant that is used to delimit the decimal digits in the result
character string. The character must be a period or comma. If the second argument is not specified,
the decimal point is the default decimal point. For more information, see “Decimal point” on page
116.

The result is a varying-length character string representation of the argument in the form of a decimal
floating-point constant.

The length attribute of the result is 42. The actual length of the result is the smallest number of
characters that represents the value of the argument, including the sign, digits, and decimal-character.
Trailing zeros are significant. If the argument is negative, the first character of the result is a minus sign;
otherwise, the first character is a digit or the decimal-character. If the argument is zero, the result is 0.

If the DECFLOAT value is Infinity, sNaN, or NaN, the strings 'INFINITY', 'SNAN', and 'NAN', respectively,
are returned. If the special value is negative, a minus sign will be the first character in the string. The
DECFLOAT special value sNaN does not result in an exception when converted to a string.

The CCSID of the result is the default SBCS CCSID at the current server.

Character to CLOB
character-expression

An expression that returns a value that is a built-in character-string data type.
length

An integer constant that specifies the length attribute for the resulting varying length character string.
The value must be between 1 and 2 147 483 647. If the first argument is DBCS-only mixed data, the
second argument cannot be less than 4.

If the second argument is not specified or DEFAULT is specified:

• If the character-expression is the empty string constant, the length attribute of the result is 1.
• Otherwise, the length attribute of the result is the same as the length attribute of the first argument.

The actual length of the result is the minimum of the length attribute of the result and the actual
length of character-expression. If the length of the character-expression is greater than the length
attribute of the result, truncation is performed. A warning (SQLSTATE 01004) is returned unless the
truncated characters were all blanks.

integer
An integer constant that specifies the CCSID of the result. It must be a valid SBCS CCSID or mixed
data CCSID. If the third argument is an SBCS CCSID, then the result is SBCS data. If the third
argument is a mixed CCSID, then the result is mixed data and the length attribute of the result cannot
be less than 4. If the third argument is a SBCS CCSID, then the first argument cannot be a DBCS-either
or DBCS-only string. The third argument cannot be 65535.

If the third argument is not specified, the first argument must not have a CCSID of 65535:

Chapter 4. Built-in functions 335

• If the first argument is bit data, an error is returned.
• If the first argument is SBCS data, then the result is SBCS data. The CCSID of the result is the same

as the CCSID of the first argument.
• If the first argument is mixed data and the result length is greater than or equal to 4, then the result

is mixed data. The CCSID of the result is the same as the CCSID of the first argument.
• If the first argument is mixed data that is DBCS-open or DBCS-either and the length attribute of the

result is less than 4, the CCSID of the result is the associated SBCS CCSID for the mixed data CCSID.

Graphic to CLOB
graphic-expression

An expression that returns a value that is a built-in graphic-string data type. It must not be DBCS-
graphic data.

length
An integer constant that specifies the length attribute for the resulting varying length character string.
The value must be between 1 and 2 147 483 647. If the result is mixed data, the second argument
cannot be less than 4.

If the second argument is not specified or DEFAULT is specified, the length attribute of the result is
determined as follows (where n is the length attribute of the first argument):

• If the graphic-expression is the empty graphic string constant, the length attribute of the result is 1.
• If the result is SBCS data, the result length is n.
• If the result is mixed data, the result length is (2.5*(n-1)) + 4.

The actual length of the result is the minimum of the length attribute of the result and the actual
length of graphic-expression. If the length of the graphic-expression is greater than the length
attribute of the result, truncation is performed. A warning (SQLSTATE 01004) is returned unless the
truncated characters were all blanks.

integer
An integer constant that specifies the CCSID of the result. It must be a valid SBCS CCSID or mixed
data CCSID. If the third argument is an SBCS CCSID, then the result is SBCS data. If the third
argument is a mixed CCSID, then the result is mixed data and the length attribute of the result cannot
be less than 4. The third argument cannot be 65535.

If the third argument is not specified, the CCSID of the result is the default CCSID at the current
server. If the default CCSID is mixed data and the length attribute of the result is greater than or equal
to 4, then the result is mixed data. Otherwise, the result is SBCS data.

Datetime to CLOB
datetime-expression

An expression that is one of the following three built-in data types
date

The result is a varying-length character string representation of the date in the format specified
by the second argument. If the second argument is not specified, the format used is the default
date format. If the format is ISO, USA, EUR, or JIS, the length of the result is 10. Otherwise the
length of the result is the length of the default date format. For more information see “String
representations of datetime values” on page 75.

time
The result is a varying-length character string representation of the time in the format specified by
the second argument. If the second argument is not specified, the format used is the default time
format. The length of the result is 8. For more information see “String representations of datetime
values” on page 75.

timestamp
The second argument is not applicable and must not be specified.

336 IBM i: Db2 for i SQL Reference

The result is a varying-length character string representation of the timestamp. If datetime-
expression is a TIMESTAMP(0), the length of the result is 19. If the data type of datetime-
expression is a TIMESTAMP(n), the length of the result is 20+n. Otherwise, the length of the result
is 26.

The CCSID of the result is the default SBCS CCSID at the current server.
ISO, EUR, USA, or JIS

Specifies the date or time format of the resulting character string. For more information, see “String
representations of datetime values” on page 75.

LOCAL
Specifies that the date or time format of the resulting character string should come from the DATFMT,
DATSEP, TIMFMT, and TIMSEP attributes of the job at the current server.

Note
Syntax alternatives: TO_CLOB is a synonym for CLOB.

The CAST specification should be used to increase the portability of applications when the first argument
is a string and the length attribute is specified. For more information, see “CAST specification” on page
176.

Example

• The following function returns a CLOB for the string 'This is a CLOB'.

 SELECT CLOB('This is a CLOB')
 FROM SYSIBM.SYSDUMMY1

Chapter 4. Built-in functions 337

COALESCE
The COALESCE function returns the value of the first non-null expression.

COALESCE (expression-1 , expression-2)

The arguments must be compatible. Character-string arguments are compatible with datetime values. For
more information about data type compatibility, see “Assignments and comparisons” on page 89.

expression-1
An expression that returns a value of any built-in or user-defined data type. 54

expression-2
An expression that returns a value of any built-in or user-defined data type. 54

The arguments are evaluated in the order in which they are specified, and the result of the function is the
first argument that is not null. The result can be null only if all arguments can be null, and the result is null
only if all arguments are null.

The selected argument is converted, if necessary, to the attributes of the result. The attributes of the
result are determined by all the operands as explained in “Rules for result data types” on page 105.

Note
Syntax alternatives: NVL and VALUE are synonyms for COALESCE.

Examples

• When selecting all the values from all the rows in the DEPARTMENT table, if the department manager
(MGRNO) is missing (that is, null), then return a value of 'ABSENT'.

 SELECT DEPTNO, DEPTNAME, COALESCE(MGRNO, 'ABSENT'), ADMRDEPT
 FROM DEPARTMENT

• When selecting the employee number (EMPNO) and salary (SALARY) from all the rows in the EMPLOYEE
table, if the salary is missing (that is null), then return a value of zero.

 SELECT EMPNO, COALESCE(SALARY,0)
 FROM EMPLOYEE

• When working with several global variables that contain dates, return a non-null date value. When
DATE1 is null and DATE2 is not null, DATE2 will be returned. If DATE2 is also null, the value of the
CURRENT DATE special register will be returned.

VALUES COALESCE(DATE1, DATE2, CURRENT DATE)

54 This function cannot be used as a source function when creating a user-defined function. Because it
accepts any compatible data types as arguments, it is not necessary to create additional signatures to
support distinct types.

338 IBM i: Db2 for i SQL Reference

COMPARE_DECFLOAT
The COMPARE_DECFLOAT function returns an ordering for DECFLOAT values.

COMPARE_DECFLOAT (expression-1 , expression-2)

The COMPARE_DECFLOAT function returns a small integer value that indicates how expression-1
compares with expression-2.

expression-1
An expression that returns a value of any built-in numeric, character-string, or graphic-string data
type. If the argument is not DECFLOAT(34), it is logically converted to DECFLOAT(34) for processing.

expression-2
An expression that returns a value of any built-in numeric, character-string, or graphic-string data
type. If the argument is not DECFLOAT(34), it is logically converted to DECFLOAT(34) for processing.

The first argument is compared with the second argument and the result is returned according to the
following rules.

• If both operands are finite, the comparison is algebraic and follows the rules for DECFLOAT subtraction.
If the difference is exactly zero with either sign and with the same number of zeroes to the right of
the decimal point, the arguments are equal. If a nonzero difference is positive, the first argument is
greater than the second argument. If a nonzero difference is negative, the first argument is less than the
second.

• Positive zero and negative zero compare equal.
• Positive Infinity compares equal to positive infinity.
• Positive Infinity compares greater than any finite number.
• Negative Infinity compares equal to negative infinity.
• Negative Infinity compares less than any finite number.
• Numeric comparison is exact. The result is determined for finite operands as if range and precision were

unlimited. Overflow or underflow cannot occur.
• If either argument is a NaN or sNaN (positive or negative), the result is unordered.

The result value is set as follows:

0 if the arguments are exactly equal.

1 if expression-1 is less than expression-2.

2 if expression-1 is greater than expression-2.

3 if the arguments are unordered.

The result of the function is SMALLINT. If either argument can be null, the result can be null; if either
argument is null, the result is the null value.

Examples

The following examples demonstrate the values that will be returned when the function is used:

 COMPARE_DECFLOAT (DECFLOAT(2.17), DECFLOAT(2.17)) = 0
 COMPARE_DECFLOAT (DECFLOAT(2.17), DECFLOAT(2.170)) = 2
 COMPARE_DECFLOAT (DECFLOAT(2.170), DECFLOAT(2.17)) = 1
 COMPARE_DECFLOAT (DECFLOAT(2.17), DECFLOAT(0.0)) = 2
 COMPARE_DECFLOAT (INFINITY, INFINITY) = 0
 COMPARE_DECFLOAT (INFINITY, -INFINITY) = 2
 COMPARE_DECFLOAT (DECFLOAT(-2), INFINITY) = 1
 COMPARE_DECFLOAT (NAN, NAN) = 3
 COMPARE_DECFLOAT (DECFLOAT(-0.1), SNAN) = 3

Chapter 4. Built-in functions 339

CONCAT
The CONCAT function combines two arguments.

CONCAT (expression-1 , expression-2)

The arguments must be compatible. For more information about data type compatibility, see
“Assignments and comparisons” on page 89.

expression-1
An expression that returns a value of any built-in numeric, datetime, or string data type. A numeric or
datetime argument is cast to a character string before evaluating the function. For more information
about converting numeric or datetime to a character string, see “VARCHAR” on page 623.

expression-2
An expression that returns a value of any built-in numeric, datetime, or string data type. A numeric or
datetime argument is cast to a character string before evaluating the function. For more information
about converting numeric or datetime to a character string, see “VARCHAR” on page 623.

The result of the function is a string that consists of the first argument string followed by the second. The
data type of the result is determined by the data types of the arguments. For more information, see “With
the concatenation operator” on page 163. If either argument can be null, the result can be null; if either
argument is null, the result is the null value.

Note
Syntax alternatives: The CONCAT function is identical to the CONCAT operator. For more information, see
“With the concatenation operator” on page 163.

Example

• Concatenate the column FIRSTNME with the column LASTNAME.

 SELECT CONCAT(FIRSTNME, LASTNAME)
 FROM EMPLOYEE
 WHERE EMPNO ='000010'

Returns the value 'CHRISTINEHAAS'.

340 IBM i: Db2 for i SQL Reference

CONTAINS
The CONTAINS function searches a text search index using criteria that are specified in a search argument
and returns a result about whether or not a match was found.

CONTAINS

(column-name , search-argument

, search-argument-options

)

search-argument-options

QUERYLANGUAGE = value

RESULTLIMIT = value

SYNONYM =

OFF

ON

1

Notes:
1 The same clause must not be specified more than once.

column-name
Specifies a qualified or unqualified name of a column that has a text search index that is to be
searched. The column must exist in the table or view that is identified in the FROM clause in the
statement and the column of the table, or the column of the underlying base table of the view must
have an associated text search index. The underlying expression of the column of a view must be
a simple column reference to the column of an underlying table, directly or through another nested
view.

search-argument
An expression that returns a character-string data type or graphic-string data type that contains the
terms to be searched for. It must not be the empty string or contain all blanks. The actual length of
the string must not exceed 32 740 bytes after conversion to Unicode and must not exceed the text
search limitations or number of terms as specified in the search argument syntax. For information on
search-argument syntax, see Appendix G, “Text search argument syntax,” on page 1989.

search-argument-options
A character string or graphic string value that contains the search argument options to use for the
search. It must be a constant or a variable.
The options that can be specified as part of the search-argument-options are:
QUERYLANGUAGE = value

Specifies the language value. The value can be any of the supported language codes. If
QUERYLANGUAGE is not specified, the default is the language value of the text search index that
is used when the function is invoked. If the language value of the text search index is AUTO, the
default value for QUERYLANGUAGE is en_US. For more information on the query language option,
see “Text search language options” on page 1999.

RESULTLIMIT = value
Specifies the maximum number of results that are to be returned from the underlying search
engine. The value must be an integer from 1 to 2 147 483 647. If RESULTLIMIT is not specified, no
result limit is in effect for the query.

CONTAINS may or may not be called for each row of the result table, depending on the plan that
the optimizer chooses. If CONTAINS is called once for the query to the underlying search engine,
a result set of all of the ROWIDs or primary keys that match are returned from the search engine.
This result set is then joined to the table containing the column to identify the result rows. In
this case, the RESULTLIMIT value acts like a FETCH FIRST n ROWS ONLY from the underlying

Chapter 4. Built-in functions 341

text search engine and can be used as an optimization. If CONTAINS is called for each row of the
result because the optimizer determines that is the best plan, then the RESULTLIMIT option has
no effect.

SYNONYM = OFF or SYNONYNM = ON
Specifies whether to use a synonym dictionary associated with the text search index. The default
is OFF.
OFF

Do not use a synonym dictionary.
ON

Use the synonym dictionary associated with the text search index.

If search-argument-options is the empty string or the null value, the function is evaluated as if
search-argument-options were not specified.

The result of the function is a large integer. If search-argument can be null, the result can be null; if
search-argument is null, the result is the null value.

The result is 1 if the column contains a match for the search criteria specified by the search-argument.
Otherwise, the result is 0. If the column contains the null value, the result is 0.

CONTAINS is a non-deterministic function.

Notes
Prerequisites: In order to use the CONTAINS and SCORE functions, OmniFind Text Search Server for DB2
for i must be installed and started.

Rules: If a view, nested table expression, or common table expression provides a text search column
for a CONTAINS or SCORE scalar function and the applicable view, nested table expression, or common
table expression has a DISTINCT clause on the outermost SELECT, the SELECT list must contain all the
corresponding key fields of the text search index.

If a view, nested table expression, or common table expression provides a text search column for a
CONTAINS or SCORE scalar function, the applicable view, nested table expression, or common table
expression cannot have a UNION, EXCEPT, or INTERSECT at the outermost SELECT.

If a common table expression provides a text search column for a CONTAINS or SCORE scalar function,
the common table expression cannot be subsequently referenced again in the entire query unless that
reference does not provide a text search column for a CONTAINS or SCORE scalar function.

CONTAINS and SCORE scalar functions are not allowed if the query specifies:

• a distributed table,
• a table with a read trigger, or
• a logical file built over multiple physical file members.

Examples

• The following statement finds all of the employees who have "COBOL" in their resume. The text search
argument is not case-sensitive.

 SELECT EMPNO
 FROM EMP_RESUME
 WHERE RESUME_FORMAT = 'ascii'
 AND CONTAINS(RESUME, 'cobol') = 1

• Find 10 students at random whose online essay contains the phrase "fossil fuel" in Spanish, that is
"combustible fósil", to be invited for a radio interview. Since any 10 students can be selected, optimize
the query to using RESULTLIMIT to limit the number of results from the search.

 SELECT FIRSTNME, LASTNAME
 FROM STUDENT_ESSAYS

342 IBM i: Db2 for i SQL Reference

 WHERE CONTAINS(TERM_PAPER, 'combustible fósil',
 'QUERYLANGUAGE = es_ES RESULTLIMIT = 10 SYNONYM = ON') = 1

• Find the string 'ate' in the COMMENT column. Use a host variable to supply the search argument.

char search_arg[100];
...
EXEC SQL DECLARE C1 CURSOR FOR
 SELECT CUSTKEY
 FROM CUSTOMERS
 WHERE CONTAINS(COMMENT, :search_arg) = 1
 ORDER BY CUSTKEY;
strcpy(search_arg, "ate");
EXEC SQL OPEN C1;

Chapter 4. Built-in functions 343

COS
The COS function returns the cosine of the argument, where the argument is an angle expressed in
radians. The COS and ACOS functions are inverse operations.

COS (expression)

expression
An expression that returns a value of any built-in numeric data type (except for DECFLOAT), character-
string, or graphic-string data type. A string argument is cast to double-precision floating point before
evaluating the function. For more information about converting strings to double-precision floating
point, see “DOUBLE_PRECISION or DOUBLE” on page 392.

The data type of the result is double-precision floating point. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Example

• Assume the host variable COSINE is a DECIMAL(2,1) host variable with a value of 1.5.

 SELECT COS(:COSINE)
 FROM SYSIBM.SYSDUMMY1

Returns the approximate value 0.07.

344 IBM i: Db2 for i SQL Reference

COSH
The COSH function returns the hyperbolic cosine of the argument, where the argument is an angle
expressed in radians.

COSH (expression)

expression
An expression that returns a value of any built-in numeric data type (except for DECFLOAT), character-
string, or graphic-string data type. A string argument is cast to double-precision floating point before
evaluating the function. For more information about converting strings to double-precision floating
point, see “DOUBLE_PRECISION or DOUBLE” on page 392.

The data type of the result is double-precision floating point. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Example

• Assume the host variable HCOS is a DECIMAL(2,1) host variable with a value of 1.5.

 SELECT COSH(:HCOS)
 FROM SYSIBM.SYSDUMMY1

Returns the approximate value 2.35.

Chapter 4. Built-in functions 345

COT
The COT function returns the cotangent of the argument, where the argument is an angle expressed in
radians.

COT (expression)

expression
An expression that returns a value of any built-in numeric data type (except for DECFLOAT), character-
string, or graphic-string data type. A string argument is cast to double-precision floating point before
evaluating the function. For more information about converting strings to double-precision floating
point, see “DOUBLE_PRECISION or DOUBLE” on page 392.

The data type of the result is double-precision floating point. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Example

• Assume the host variable COTAN is a DECIMAL(2,1) host variable with a value of 1.5.

 SELECT COT(:COTAN)
 FROM SYSIBM.SYSDUMMY1

Returns the approximate value 0.07.

346 IBM i: Db2 for i SQL Reference

CURDATE
The CURDATE function returns a date based on a reading of the time-of-day clock when the SQL
statement is executed at the current server. The value returned by the CURDATE function is the same
as the value returned by the CURRENT DATE special register.

CURDATE ()

The data type of the result is a date. The result cannot be null.

If this function is used more than once within a single SQL statement, or used with the CURTIME or
NOW scalar functions or the CURRENT_DATE, CURRENT_TIME, or CURRENT_TIMESTAMP special registers
within a single statement, all values are based on a single clock reading.

Note
Syntax alternatives: The CURRENT_DATE special register should be used for maximal portability. For
more information, see “Special registers” on page 119.

Example

• Return the current date based on the time-of-day clock.

 SELECT CURDATE()
 FROM SYSIBM.SYSDUMMY1

Chapter 4. Built-in functions 347

CURTIME
The CURTIME function returns a time based on a reading of the time-of-day clock when the SQL
statement is executed at the current server. The value returned by the CURTIME function is the same
as the value returned by the CURRENT TIME special register.

CURTIME ()

The data type of the result is a time. The result cannot be null.

If this function is used more than once within a single SQL statement, or used with the CURDATE or
NOW scalar functions or the CURRENT_DATE, CURRENT_TIME, or CURRENT_TIMESTAMP special registers
within a single statement, all values are based on a single clock reading.

Note
Syntax alternatives: The CURRENT_TIME special register should be used for maximal portability. For
more information, see “Special registers” on page 119.

Example

• Return the current time based on the time-of-day clock.

 SELECT CURTIME()
 FROM SYSIBM.SYSDUMMY1

348 IBM i: Db2 for i SQL Reference

DATABASE
The DATABASE function returns the current server.

DATABASE ()

The result of the function is a VARCHAR(18). The result cannot be null.

The CCSID of the string is the default SBCS CCSID at the current server.

Note
Syntax alternatives: The DATABASE function returns the same result as the CURRENT SERVER special
register.

Examples

• Assume that the current server is 'RCHASGMA'.

 SELECT DATABASE()
 FROM SYSIBM.SYSDUMMY1

Results in a value of ‘RCHASGMA'.

Chapter 4. Built-in functions 349

DATAPARTITIONNAME
The DATAPARTITIONNAME function returns the partition name of where a row is located. If the argument
identifies a non-partitioned table, an empty string is returned.

DATAPARTITIONNAME (table-designator)

For more information about partitions, see the DB2 Multisystem topic collection.

table-designator
A table designator of the subselect. For more information about table designators, see “Table
designators” on page 133.

In SQL naming, the table name may be qualified. In system naming, the table name cannot be
qualified.

The table-designator must not identify a collection-derived-table, a VALUES clause, a table-function, or
a data-change-table-reference.

If the argument identifies a view, common table expression, or nested table expression, the function
returns the partition name of its base table. If the argument identifies a view, common table
expression, or nested table expression derived from more than one base table, the function returns
the partition name of the first table in the outer subselect of the view, common table expression, or
nested table expression.

The argument must not identify a view, common table expression, or nested table expression
whose outer fullselect includes an aggregate function, a GROUP BY clause, a HAVING clause, a
UNION, INTERSECT, or EXCEPT clause, DISTINCT clause, VALUES clause, or a table-function. The
DATAPARTITIONNAME function cannot be specified in a SELECT clause if the fullselect contains an
aggregate function, a GROUP BY clause, or a HAVING clause.

The data type of the result is VARCHAR(18). The result can be null.

The CCSID of the result is the default CCSID of the current server.

Example

• Join the EMPLOYEE and DEPARTMENT tables, select the employee number (EMPNO) and determine the
partition from which each row involved in the join originated.

 SELECT EMPNO, DATAPARTITIONNAME(X), DATAPARTITIONNAME(Y)
 FROM EMPLOYEE X, DEPARTMENT Y
 WHERE X.DEPTNO=Y.DEPTNO

350 IBM i: Db2 for i SQL Reference

DATAPARTITIONNUM
The DATAPARTITIONNUM function returns the data partition number of a row. If the argument identifies a
non-partitioned table, the value 0 is returned.

DATAPARTITIONNUM (table-designator)

For more information about data partitions, see the DB2 Multisystem topic collection.

table-designator
A table designator of the subselect. For more information about table designators, see “Table
designators” on page 133.

In SQL naming, the table name may be qualified. In system naming, the table name cannot be
qualified.

The table-designator must not identify a collection-derived-table, a VALUES clause, a table-function, or
a data-change-table-reference.

If the argument identifies a view, common table expression, or nested table expression, the function
returns the data partition number of its base table. If the argument identifies a view, common
table expression, or nested table expression derived from more than one base table, the function
returns the data partition number of the first table in the outer subselect of the view, common table
expression, or nested table expression.

The argument must not identify a view, common table expression, or nested table expression whose
outer fullselect subselect includes an aggregate function, a GROUP BY clause, a HAVING clause, a
UNION, INTERSECT, or EXCEPT clause, DISTINCT clause, VALUES clause, or a table-function. The
DATAPARTITIONNUM function cannot be specified in a SELECT clause if the fullselect contains an
aggregate function, a GROUP BY clause, or a HAVING clause.

The data type of the result is a large integer. The result can be null.

Example

• Determine the partition number and employee name for each row in the EMPLOYEE table. If this is a
partitioned table, the number of the partition where the row exists is returned.

 SELECT DATAPARTITIONNUM(EMPLOYEE), LASTNAME
 FROM EMPLOYEE

Chapter 4. Built-in functions 351

DATE
The DATE function returns a date from a value.

DATE (expression)

expression
An expression that returns a value of one of the following built-in data types: a date, a timestamp, a
character string, a graphic string, or any numeric data type.

• If expression is a character or graphic string, its value must be one of the following:

– A valid string representation of a date or timestamp. For the valid formats of string
representations of dates and timestamps, see “String representations of datetime values” on
page 75.

– A string with an actual length of 7 that represents a valid date in the form yyyynnn, where yyyy are
digits denoting a year, and nnn are digits between 001 and 366 denoting a day of that year.

• If expression is a number, it must be a positive number less than or equal to 3 652 059.

The result of the function is a date. If the argument can be null, the result can be null; if the argument is
null, the result is the null value.

The other rules depend on the data type of the argument:

• If the argument is a timestamp:

The result is the date part of the timestamp.
• If the argument is a date:

The result is that date.
• If the argument is a number:

The result is the date that is n-1 days after January 1, 0001, where n is the integral part of the number.
• If the argument is a character or graphic string:

The result is the date represented by the string or the date part of the timestamp value represented by
the string.

Note
Syntax alternatives: The CAST specification should be used to increase the portability of applications
when the argument is a date, timestamp, or character string. For more information, see “CAST
specification” on page 176.

Examples

• Assume that the column RECEIVED (TIMESTAMP) has an internal value equivalent to
‘1988-12-25-17.12.30.000000'.

 SELECT DATE(RECEIVED)
 FROM IN_TRAY
 WHERE SOURCE = 'BADAMSON'

Results in a date data type with a value of ‘1988-12-25'.
• The following DATE scalar function applied to an ISO string representation of a date:

 SELECT DATE('1988-12-25')
 FROM SYSIBM.SYSDUMMY1

Results in a date data type with a value of ‘1988-12-25'.
• The following DATE scalar function applied to an EUR string representation of a date:

352 IBM i: Db2 for i SQL Reference

 SELECT DATE('25.12.1988')
 FROM SYSIBM.SYSDUMMY1

Results in a date data type with a value of ‘1988-12-25'.
• The following DATE scalar function applied to a positive number:

 SELECT DATE(35)
 FROM SYSIBM.SYSDUMMY1

Results in a date data type with a value of ‘0001-02-04'.

Chapter 4. Built-in functions 353

DAY
The DAY function returns the day part of a value.

DAY (expression)

expression
An expression that returns a value of one of the following built-in data types: a date, a timestamp, a
character string, a graphic string, or a numeric data type.

• If expression is a character or graphic string, its value must be a valid string representation of a date
or timestamp. For the valid formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 75.

• If expression is a number, it must be a date duration or timestamp duration. For the valid formats of
datetime durations, see “Datetime operands and durations” on page 165.

The result of the function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

The other rules depend on the data type of the argument:

• If the argument is a date, timestamp, or valid character-string representation of a date or timestamp:

The result is the day part of the value, which is an integer between 1 and 31.
• If the argument is a date duration or timestamp duration:

The result is the day part of the value, which is an integer between -99 and 99. A nonzero result has the
same sign as the argument.

Examples

• Using the PROJECT table, set the host variable END_DAY (SMALLINT) to the day that the WELD LINE
PLANNING project (PROJNAME) is scheduled to stop (PRENDATE).

SELECT DAY(PRENDATE)
 INTO :END_DAY
 FROM PROJECT
 WHERE PROJNAME = 'WELD LINE PLANNING'

Results in END_DAY being set to 15.
• Return the day part of the difference between two dates:

 SELECT DAY(DATE('2000-03-15') - DATE('1999-12-31'))
 FROM SYSIBM.SYSDUMMY1

Results in the value 15.

354 IBM i: Db2 for i SQL Reference

DAYNAME
Returns a mixed case character string containing the name of the day (for example, Friday) for the day
portion of the argument.

DAYNAME (expression)

expression
An expression that returns a value of one of the following built-in data types: a date, a timestamp, a
character string, or a graphic string.

If expression is a character or graphic string, its value must be a valid string representation of a date
or timestamp. For the valid formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 75.

The result of the function is VARCHAR(100). If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

The CCSID of the result is the default CCSID of the current server.

Note
National language considerations: The name of the day that is returned is based on the language
used for messages in the job. This name of the day is retrieved from message CPX9034 in message file
QCPFMSG in library *LIBL.

Examples

• Assume that the language used is US English.

SELECT DAYNAME('2003-01-02')
 FROM SYSIBM.SYSDUMMY1

Results in 'Thursday'.

Chapter 4. Built-in functions 355

DAYOFMONTH
The DAYOFMONTH function returns an integer between 1 and 31 that represents the day of the month.

DAYOFMONTH (expression)

expression
An expression that returns a value of one of the following built-in data types: a date, a timestamp, a
character string, or a graphic string.

If expression is a character or graphic string, its value must be a valid string representation of a date
or timestamp. For the valid formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 75.

The result of the function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

Examples

• Using the PROJECT table, set the host variable END_DAY (SMALLINT) to the day that the WELD LINE
PLANNING project (PROJNAME) is scheduled to stop (PRENDATE).

SELECT DAYOFMONTH(PRENDATE)
 INTO :END_DAY
 FROM PROJECT
 WHERE PROJNAME = 'WELD LINE PLANNING'

Results in END_DAY being set to 15.

356 IBM i: Db2 for i SQL Reference

DAYOFWEEK
The DAYOFWEEK function returns an integer between 1 and 7 that represents the day of the week, where
1 is Sunday and 7 is Saturday.

DAYOFWEEK (expression)

For another alternative, see “DAYOFWEEK_ISO” on page 358.

expression
An expression that returns a value of one of the following built-in data types: a date, a timestamp, a
character string, or a graphic string.

If expression is a character or graphic string, its value must be a valid string representation of a date
or timestamp. For the valid formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 75.

The result of the function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

Example

• Using the EMPLOYEE table, set the host variable DAY_OF_WEEK (INTEGER) to the day of the week that
Christine Haas (EMPNO=‘000010') started (HIREDATE).

 SELECT DAYOFWEEK(HIREDATE)
 INTO :DAY_OF_WEEK
 FROM EMPLOYEE
 WHERE EMPNO = '000010'

Results in DAY_OF_WEEK being set to 6, which represents Friday.
• The following query returns four values: 1, 2, 1, and 2.

 SELECT DAYOFWEEK(CAST('10/11/1998' AS DATE)),
 DAYOFWEEK(TIMESTAMP('10/12/1998','01.02')),
 DAYOFWEEK(CAST(CAST('10/11/1998' AS DATE) AS CHAR(20))),
 DAYOFWEEK(CAST(TIMESTAMP('10/12/1998','01.02') AS CHAR(26)))
 FROM SYSIBM.SYSDUMMY1

Chapter 4. Built-in functions 357

DAYOFWEEK_ISO
The DAYOFWEEK_ISO function returns an integer between 1 and 7 that represents the day of the week,
where 1 is Monday and 7 is Sunday.

DAYOFWEEK_ISO (expression)

For another alternative, see “DAYOFWEEK” on page 357.

expression
An expression that returns a value of one of the following built-in data types: a date, a timestamp, a
character string, or a graphic string.

If expression is a character or graphic string, its value must be a valid string representation of a date
or timestamp. For the valid formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 75.

The result of the function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

Examples

• Using the EMPLOYEE table, set the host variable DAY_OF_WEEK (INTEGER) to the day of the week that
Christine Haas (EMPNO=‘000010') started (HIREDATE).

 SELECT DAYOFWEEK_ISO(HIREDATE)
 INTO :DAY_OF_WEEK
 FROM EMPLOYEE
 WHERE EMPNO = '000010'

Results in DAY_OF_WEEK being set to 5, which represents Friday.
• The following query returns four values: 7, 1, 7, and 1.

 SELECT DAYOFWEEK_ISO(CAST('10/11/1998' AS DATE)),
 DAYOFWEEK_ISO(TIMESTAMP('10/12/1998','01.02')),
 DAYOFWEEK_ISO(CAST(CAST('10/11/1998' AS DATE) AS CHAR(20))),
 DAYOFWEEK_ISO(CAST(TIMESTAMP('10/12/1998','01.02') AS CHAR(26)))
 FROM SYSIBM.SYSDUMMY1

358 IBM i: Db2 for i SQL Reference

DAYOFYEAR
The DAYOFYEAR function returns an integer between 1 and 366 that represents the day of the year where
1 is January 1.

DAYOFYEAR (expression)

expression
An expression that returns a value of one of the following built-in data types: a date, a timestamp, a
character string, or a graphic string.

If expression is a character or graphic string, its value must be a valid string representation of a date
or timestamp. For the valid formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 75.

The result of the function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

Example

• Using the EMPLOYEE table, set the host variable AVG_DAY_OF_YEAR (INTEGER) to the average of the
day of the year that employees started on (HIREDATE).

 SELECT AVG(DAYOFYEAR(HIREDATE))
 INTO :AVG_DAY_OF_YEAR
 FROM EMPLOYEE

Results in AVG_DAY_OF_YEAR being set to 197.

Chapter 4. Built-in functions 359

DAYS
The DAYS function returns an integer representation of a date.

DAYS (expression)

expression
An expression that returns a value of one of the following built-in data types: a date, a timestamp, a
character string, or a graphic string.

If expression is a character or graphic string, its value must be a valid string representation of a date
or timestamp. For the valid formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 75.

The result of the function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

The result is 1 more than the number of days from January 1, 0001 to D, where D is the date that would
occur if the DATE function were applied to the argument.

Examples

• Using the PROJECT table, set the host variable EDUCATION_DAYS (INTEGER) to the number of elapsed
days (PRENDATE - PRSTDATE) estimated for the project (PROJNO) ‘IF2000'.

 SELECT DAYS(PRENDATE) - DAYS(PRSTDATE)
 INTO :EDUCATION_DAYS
 FROM PROJECT
 WHERE PROJNO = 'IF2000'

Results in EDUCATION_DAYS being set to 396.
• Using the PROJECT table, set the host variable TOTAL_DAYS (INTEGER) to the sum of elapsed days

(PRENDATE - PRSTDATE) estimated for all projects in department (DEPTNO) ‘E21'.

SELECT SUM(DAYS(PRENDATE) - DAYS(PRSTDATE))
 INTO :TOTAL_DAYS
 FROM PROJECT
 WHERE DEPTNO = 'E21'

Results in TOTAL_DAYS being set to 1584.

360 IBM i: Db2 for i SQL Reference

DBCLOB
The DBCLOB function returns a graphic-string representation.

Integer to DBCLOB

DBCLOB (integer-expression)

Decimal to DBCLOB

DBCLOB (decimal-expression

, decimal-character

)

Floating-point to DBCLOB

DBCLOB (floating-point-expression

, decimal-character

)

Decimal floating-point to DBCLOB

DBCLOB (decimal-floating-point-expression

, decimal-character

)

Character to DBCLOB

DBCLOB (character-expression

, length

DEFAULT , integer

)

Graphic to DBCLOB

DBCLOB (graphic-expression

, length

DEFAULT , integer

)

Datetime to DBCLOB

DBCLOB (datetime-expression

, ISO

USA

EUR

JIS

LOCAL

)

The DBCLOB function returns a graphic-string representation of:

• An integer number if the first argument is a SMALLINT, INTEGER, or BIGINT
• A decimal number if the first argument is a packed or zoned decimal number
• A double-precision floating-point number if the first argument is a DOUBLE or REAL
• A decimal floating-point number if the first argument is a DECFLOAT
• A character string if the first argument is any type of character string
• A graphic string if the first argument is any type of graphic string

Chapter 4. Built-in functions 361

• A date value if the first argument is a DATE.
• A time value if the first argument is a TIME.
• A timestamp value if the first argument is a TIMESTAMP.

The result of the function is a DBCLOB. If the first argument can be null, the result can be null; if the first
argument is null, the result is the null value.

Integer to DBCLOB
integer-expression

An expression that returns a value that is a built-in integer data type (either SMALLINT, INTEGER, or
BIGINT).

The result is a varying-length graphic string of the argument in the form of an SQL integer constant. The
result consists of n characters that are the significant digits that represent the value of the argument with
a preceding minus sign if the argument is negative. The result is left justified.

• If the argument is a small integer, the length attribute of the result is 6.
• If the argument is a large integer, the length attribute of the result is 11.
• If the argument is a big integer, the length attribute of the result is 20.

The actual length of the result is the smallest number of characters that can be used to represent the
value of the argument. Leading zeroes are not included. If the argument is negative, the first character of
the result is a minus sign. Otherwise, the first character is a digit or the decimal-character.

The CCSID of the result is 1200 (UTF-16).

Decimal to DBCLOB
decimal-expression

An expression that returns a value that is a built-in decimal data type (either DECIMAL or NUMERIC).
If a different precision and scale is wanted, the DECIMAL scalar function can be used to make the
change.

decimal-character
Specifies the single-byte character constant that is used to delimit the decimal digits in the result
character string. The character must be a period or comma. If the second argument is not specified,
the decimal point is the default decimal point. For more information, see “Decimal point” on page
116.

The result is a varying-length graphic string representation of the argument. The result includes a decimal
character and up to p digits, where p is the precision of the decimal-expression with a preceding minus
sign if the argument is negative. Leading zeros are not returned. Trailing zeros are returned. If the scale of
decimal-expression is zero, the decimal character is not returned.

The length attribute of the result is 2+p where p is the precision of the decimal-expression. The actual
length of the result is the smallest number of characters that can be used to represent the result, except
that trailing characters are included. Leading zeros are not included. If the argument is negative, the result
begins with a minus sign. Otherwise, the result begins with a digit or the decimal-character.

The CCSID of the result is 1200 (UTF-16).

Floating-point to DBCLOB
floating-point expression

An expression that returns a value that is a built-in floating-point data type (DOUBLE or REAL).
decimal-character

Specifies the single-byte character constant that is used to delimit the decimal digits in the result
character string. The character must be a period or comma. If the second argument is not specified,
the decimal point is the default decimal point. For more information, see “Decimal point” on page
116.

362 IBM i: Db2 for i SQL Reference

The result is a varying-length graphic string representation of the argument in the form of a floating-point
constant.

The length attribute of the result is 24. The actual length of the result is the smallest number of
characters that can represent the value of the argument such that the mantissa consists of a single
digit other than zero followed by the decimal-character and a sequence of digits. If the argument is
negative, the first character of the result is a minus sign; otherwise, the first character is a digit or the
decimal-character. If the argument is zero, the result is 0E0.

The CCSID of the result is 1200 (UTF-16).

Decimal floating-point to DBCLOB
decimal floating-point expression

An expression that returns a value that is a built-in decimal floating-point data type.
decimal-character

Specifies the single-byte character constant that is used to delimit the decimal digits in the result
character string. The character must be a period or comma. If the second argument is not specified,
the decimal point is the default decimal point. For more information, see “Decimal point” on page
116.

The result is a varying-length graphic string representation of the argument in the form of a decimal
floating-point constant.

The length attribute of the result is 42. The actual length of the result is the smallest number of
characters that represents the value of the argument, including the sign, digits, and decimal-character.
Trailing zeros are significant. If the argument is negative, the first character of the result is a minus sign;
otherwise, the first character is a digit or the decimal-character. If the argument is zero, the result is 0.

If the DECFLOAT value is Infinity, sNaN, or NaN, the strings 'INFINITY', 'SNAN', and 'NAN', respectively,
are returned. If the special value is negative, a minus sign will be the first character in the string. The
DECFLOAT special value sNaN does not result in an exception when converted to a string.

The CCSID of the result is 1200 (UTF-16).

Character to DBCLOB
character-expression

An expression that returns a value that is a built-in character-string data type. It cannot be CHAR or
VARCHAR bit data. If the expression is an empty string or the EBCDIC string X'0E0F', the result is an
empty string.

length
An integer constant that specifies the length attribute for the resulting varying length character string.
The value must be between 1 and 1 073 741 823.

If the second argument is not specified or DEFAULT is specified:

• If the character-expression is the empty string constant, the length attribute of the result is 1.
• Otherwise, the length attribute of the result is the same as the length attribute of the first argument.

The actual length of the result is the minimum of the length attribute of the result and the actual
length of character-expression. If the length of the character-expression is greater than the length
attribute of the result, truncation is performed. A warning (SQLSTATE 01004) is returned unless the
truncated characters were all blanks.

integer
An integer constant that specifies the CCSID for the resulting varying-length graphic string. It must be
a DBCS, UTF-16, or UCS-2 CCSID. The CCSID cannot be 65535.

In the following rules, S denotes one of the following:

Chapter 4. Built-in functions 363

• If the string expression is a host variable containing data in a foreign encoding scheme, S is the
result of the expression after converting the data to a CCSID in a native encoding scheme. (See
“Character conversion” on page 28 for more information.)

• If the string expression is data in a native encoding scheme, S is that string expression.

If the third argument is not specified and the first argument is character, then the CCSID of the result
is determined by a mixed CCSID. Let M denote that mixed CCSID. M is determined as follows:

• If the CCSID of S is a mixed CCSID, M is that CCSID.
• If the CCSID of S is an SBCS CCSID:

– If the CCSID of S has an associated mixed CCSID, M is that CCSID.
– Otherwise the operation is not allowed.

The following table summarizes the result CCSID based on M.

M Result CCSID Description DBCS Substitution Character

930 300 Japanese EBCDIC X'FEFE'

933 834 Korean EBCDIC X'FEFE'

935 837 S-Chinese EBCDIC X'FEFE'

937 835 T-Chinese EBCDIC X'FEFE'

939 300 Japanese EBCDIC X'FEFE'

5026 4396 Japanese EBCDIC X'FEFE'

5035 4396 Japanese EBCDIC X'FEFE'

If the result is DBCS-graphic data, the equivalence of SBCS and DBCS characters depends on M.
Regardless of the CCSID, every double-byte code point in the argument is considered a DBCS character,
and every single-byte code point in the argument is considered an SBCS character with the exception of
the EBCDIC mixed data shift codes X'0E' and X'0F'.

• If the nth character of the argument is a DBCS character, the nth character of the result is that DBCS
character.

• If the nth character of the argument is an SBCS character that has an equivalent DBCS character, the nth
character of the result is that equivalent DBCS character.

• If the nth character of the argument is an SBCS character that does not have an equivalent DBCS
character, the nth character of the result is the DBCS substitution character.

If the result is Unicode graphic data, each character of the argument determines a character of the result.
The nth character of the result is the UTF-16 or UCS-2 equivalent of the nth character of the argument.

Graphic to DBCLOB
graphic-expression

An expression that returns a value that is a built-in graphic-string data type.
length

An integer constant that specifies the length attribute for the resulting varying length character string.
The value must be between 1 and 1 073 741 823.

If the second argument is not specified or DEFAULT is specified:

• If the graphic-expression is the empty string constant, the length attribute of the result is 1.
• Otherwise, the length attribute of the result is the same as the length attribute of the first argument.

The actual length of the result is the minimum of the length attribute of the result and the actual
length of graphic-expression. If the length of the graphic-expression is greater than the length

364 IBM i: Db2 for i SQL Reference

attribute of the result, truncation is performed. A warning (SQLSTATE 01004) is returned unless the
truncated characters were all blanks.

integer
An integer constant that specifies the CCSID for the resulting varying-length graphic string. It must be
a DBCS, UTF-16, or UCS-2 CCSID. The CCSID cannot be 65535.

In the following rules, S denotes one of the following:

• If the string expression is a host variable containing data in a foreign encoding scheme, S is the
result of the expression after converting the data to a CCSID in a native encoding scheme. (See
“Character conversion” on page 28 for more information.)

• If the string expression is data in a native encoding scheme, S is that string expression.

If the third argument is not specified, then the CCSID of the result is the same as the CCSID of the first
argument.

Datetime to DBCLOB
datetime-expression

An expression that is one of the following three built-in data types
date

The result is the varying-length graphic string representation of the date in the format specified by
the second argument. If the second argument is not specified, the format used is the default date
format. If the format is ISO, USA, EUR, or JIS, the length attribute and actual length of the result is
10. Otherwise the length attribute and actual length of the result is the length of the default date
format. For more information see “String representations of datetime values” on page 75.

time
The result is the varying-length graphic string representation of the time in the format specified by
the second argument. If the second argument is not specified, the format used is the default time
format. The length attribute and actual length of the result is 8. For more information see “String
representations of datetime values” on page 75.

timestamp
The second argument is not applicable and must not be specified.

The result is the varying-length graphic string representation of the timestamp. If datetime-
expression is a TIMESTAMP(0), the length attribute and actual length of the result is 19. If the
data type of datetime-expression is a TIMESTAMP(n), the length attribute and actual length of the
result is 20+n. Otherwise, the length attribute and actual length of the result is 26.

The CCSID of the result is 1200 (UTF-16).
ISO, EUR, USA, or JIS

Specifies the date or time format of the resulting graphic string. For more information, see “String
representations of datetime values” on page 75.

LOCAL
Specifies that the date or time format of the resulting graphic string should come from the DATFMT,
DATSEP, TIMFMT, and TIMSEP attributes of the job at the current server.

Note
Syntax alternatives: The CAST specification should be used to increase the portability of applications
when the first argument is a string and the length attribute is specified. For more information, see “CAST
specification” on page 176.

Example

• Using the EMPLOYEE table, set the host variable VAR_DESC (VARGRAPHIC(24)) to the DBCLOB
equivalent of the first name (FIRSTNME) for employee number (EMPNO) '000050'.

Chapter 4. Built-in functions 365

 SELECT DBCLOB(VARGRAPHIC(FIRSTNME))
 INTO :VAR_DESC
 FROM EMPLOYEE
 WHERE EMPNO = '000050'

366 IBM i: Db2 for i SQL Reference

DBPARTITIONNAME
The DBPARTITIONNAME function returns the relational database name (database partition name) of
where a row is located. If the argument identifies a non-distributed table, the current server is returned.

DBPARTITIONNAME (table-designator)

For more information about partitions, see the DB2 Multisystem topic collection.

table-designator
A table designator of the subselect. For more information about table designators, see “Table
designators” on page 133.

In SQL naming, the table name may be qualified. In system naming, the table name cannot be
qualified.

The table-designator must not identify a collection-derived-table, a VALUES clause, a table-function, or
a data-change-table-reference.

If the argument identifies a view, common table expression, or nested table expression, the function
returns the relational database name of its base table. If the argument identifies a view, common
table expression, or nested table expression derived from more than one base table, the function
returns the partition name of the first table in the outer subselect of the view, common table
expression, or nested table expression.

The argument must not identify a view, common table expression, or nested table expression
whose outer fullselect includes an aggregate function, a GROUP BY clause, a HAVING clause, a
UNION, INTERSECT, or EXCEPT clause, DISTINCT clause, VALUES clause, or a table-function. The
DBPARTITIONNAME function cannot be specified in a SELECT clause if the fullselect contains an
aggregate function, a GROUP BY clause, or a HAVING clause.

The data type of the result is VARCHAR(18). The result can be null.

The CCSID of the result is the default CCSID of the current server.

Note
Syntax alternatives: NODENAME is a synonym for DBPARTITIONNAME.

Example

• Join the EMPLOYEE and DEPARTMENT tables, select the employee number (EMPNO) and determine the
node from which each row involved in the join originated.

 SELECT EMPNO, DBPARTITIONNAME(X), DBPARTITIONNAME(Y)
 FROM EMPLOYEE X, DEPARTMENT Y
 WHERE X.DEPTNO=Y.DEPTNO

Chapter 4. Built-in functions 367

DBPARTITIONNUM
The DBPARTITIONNUM function returns the node number (database partition number) of a row.

DBPARTITIONNUM (table-designator)

If the argument identifies a non-distributed table, the value 0 is returned.55 For more information about
nodes and node numbers, see the DB2 Multisystem book.

table-designator
A table designator of the subselect. For more information about table designators, see “Table
designators” on page 133.

In SQL naming, the table name may be qualified. In system naming, the table name cannot be
qualified.

The table-designator must not identify a collection-derived-table, a VALUES clause, a table-function, or
a data-change-table-reference.

If the argument identifies a view, common table expression, or nested table expression, the function
returns the node number of its base table. If the argument identifies a view, common table
expression, or nested table expression derived from more than one base table, the function returns
the node number of the first table in the outer subselect of the view, common table expression, or
nested table expression.

The argument must not identify a view, common table expression, or nested table expression whose
outer fullselect subselect includes an aggregate function, a GROUP BY clause, a HAVING clause, a
UNION, INTERSECT, or EXCEPT clause, DISTINCT clause, VALUES clause, or a table-function. The
DBPARTITIONNUM function cannot be specified in a SELECT clause if the fullselect contains an
aggregate function, a GROUP BY clause, or a HAVING clause.

The data type of the result is a large integer. The result can be null.

Note
Syntax alternatives: NODENUMBER is a synonym for DBPARTITIONNUM.

Example

• Determine the node number and employee name for each row in the EMPLOYEE table. If this is a
distributed table, the number of the node where the row exists is returned.

 SELECT DBPARTITIONNUM(EMPLOYEE), LASTNAME
 FROM EMPLOYEE

55 If the argument identifies a DDS created logical file that is based on more than one physical file member,
DBPARTITIONNUM will not return 0, but instead will return the underlying physical file member number.

368 IBM i: Db2 for i SQL Reference

DECFLOAT
The DECFLOAT function returns a decimal floating-point representation of a number or a string
representation of a number.

Numeric to DECFLOAT

DECFLOAT (numeric-expression

, 34

, 16

)

String to DECFLOAT

DECFLOAT (string-expression

, 34

, 16 , decimal-character

)

The DECFLOAT function returns a decimal floating-point representation of:

• A number
• A character or graphic string representation of a decimal number
• A character or graphic string representation of an integer
• A character or graphic string representation of a floating-point number
• A character or graphic string representation of a decimal floating-point number

Numeric to DECFLOAT
numeric-expression

An expression that returns a value of any built-in numeric data type.
34 or 16

Specifies the number of digits of precision for the result. The default is 34.

The result is the same number that would occur if the first argument were assigned to a decimal floating-
point column or variable.

String to DECFLOAT
string-expression

An expression that returns a value that is a character-string or graphic-string representation of a
number. Leading and trailing blanks are eliminated and the resulting string folded to uppercase must
conform to the rules for forming a floating-point, decimal floating-point, integer, or decimal constant.

34 or 16
Specifies the number of digits of precision for the result. The default is 34.

decimal-character
Specifies the single-byte character constant that is used to delimit the decimal digits in string-
expression from the whole part of the number. The character must be a period or comma. If decimal-
character is not specified, the decimal point is the default decimal separator character. For more
information, see “Decimal point” on page 116.

The result of the function is a DECFLOAT number with the specified (either implicitly or explicitly) number
of digits of precision. If the first argument can be null, the result can be null; if the first argument is null,
the result is the null value.

Chapter 4. Built-in functions 369

If necessary, the source is rounded to the precision of the target. See “CURRENT DECFLOAT ROUNDING
MODE” on page 124 for more information.

Note
Syntax alternatives: The CAST specification should be used to increase the portability of applications.
For more information, see “CAST specification” on page 176.

Example

• Use the DECFLOAT function in order to force a DECFLOAT data type to be returned in a select-list for
the EDLEVEL column (data type = SMALLINT) in the EMPLOYEE table. The EMPNO column should also
appear in the select-clause.

 SELECT EMPNO, DECFLOAT(EDLEVEL,16)
 FROM EMPLOYEE

370 IBM i: Db2 for i SQL Reference

DECFLOAT_FORMAT
The DECFLOAT_FORMAT function returns a DECFLOAT(34) value that is based on the interpretation of the
input string using the specified format.

DECFLOAT_FORMAT (string-expression

, format-string

)

string-expression
An expression that returns a built-in character string or graphic string data type. If the value is a
graphic data type, it is implicitly cast to VARCHAR before evaluating the function. Leading and trailing
blanks are removed from the string. If format-string is not specified, the resulting substring must
conform to the rules for forming an SQL integer, decimal, floating-point, or decimal floating-point
constant and not be greater than 63 characters after stripping leading and trailing blanks. Otherwise,
the resulting substring must contain the components of a number that correspond to the format
specified by format-string.

format-string
An expression that returns a built-in character string or graphic string data type. If the value is
a graphic data type, it is implicitly cast to VARCHAR before evaluating the function. format-string
contains a template of how string-expression is to be interpreted for conversion to a DECFLOAT
value. format-string must contain a valid combination of the listed format elements according to the
following rules:

• At least one '0' or '9' format element must be specified.
• A sign format element ('S', 'MI', 'PR') can be specified only one time.
• A decimal point format element can be specified only one time.
• Alphabetic format elements must be specified in upper case.
• A prefix format element can only be specified at the beginning of the format string, before any

format elements that are not prefix format elements. When multiple prefix format elements are
specified they can be specified in any order.

• A suffix format element can only be specified at the end of the format string, after any format
elements that are not suffix format elements. When multiple suffix format elements are specified
they can be specified in any order.

• A comma or G format element can be the first format element that is not a prefix format element.
There can be any number of comma or G format elements.

• Blanks must not be specified between format elements. Leading and trailing blanks can be specified
but are ignored.

Table 51. Format elements for the DECFLOAT_FORMAT function

Format element Description

0 or 9 Represents a digit that can be included at the specified location. Both format
elements have the same meaning.

S Prefix: If string-expression represents a negative number, a leading minus
sign (−) is expected at the specified location. If string-expression represents
a positive number, a leading plus sign (+) or leading blank can be included at
the specified location.

$ Prefix: A leading dollar sign ($) is expected at the specified location.

MI Suffix: If string-expression represents a negative number, a trailing minus sign
(−) is expected at the specified location. If string-expression represents a
positive number, a trailing blank can be included at the specified location.

Chapter 4. Built-in functions 371

Table 51. Format elements for the DECFLOAT_FORMAT function (continued)

Format element Description

PR Suffix: If string-expression represents a negative number, a leading less than
character (<) and a trailing greater than character (>) are expected. If string-
expression represents a positive number, a leading blank and a trailing blank
can be included.

, Specifies the expected location of a comma. This comma is used as a group
separator.

. Specifies the expected location of the period. This period is used as a decimal
point.

L Prefix or Suffix: Specifies that the local currency symbol is expected at the
specified location. The currency symbol is retrieved from message CPX8416
in message file QCPFMSG in library *LIBL.

D Specifies that the local decimal point character is expected at the specified
location. The decimal character is retrieved from message CPX8416 in
message file QCPFMSG in library *LIBL.

G Specifies that the local group separator character is expected at the specified
location. If the local decimal character as retrieved from message CPX8416 in
message file QCPFMSG in library *LIBL is a period, the group separator will be
a comma. If the local decimal character is a comma, the group separator will
be a period.

The result is a DECFLOAT(34). If any argument of the DECFLOAT_FORMAT function can be null, the result
can be null; if any argument is null, the result is the null value.

Note
Syntax alternatives: TO_NUMBER is a synonym for DECFLOAT_FORMAT.

Examples

Example Result

DECFLOAT_FORMAT('123.45') 123.45

DECFLOAT_FORMAT('-123456.78') -123456.78

DECFLOAT_FORMAT('+123456.78') 123456.78

DECFLOAT_FORMAT('1.23E4') 12300

DECFLOAT_FORMAT('123.4', '9999.99') 123.40

DECFLOAT_FORMAT('001,234', '000,000') 1234

DECFLOAT_FORMAT('1234 ', '9999MI') 1234

DECFLOAT_FORMAT('1234-', '9999MI') -1234

DECFLOAT_FORMAT('+1234', 'S9999') 1234

DECFLOAT_FORMAT('-1234', 'S9999') -1234

DECFLOAT_FORMAT(' 1234 ', '9999PR') 1234

DECFLOAT_FORMAT('<1234>', '9999PR') -1234

DECFLOAT_FORMAT('$123,456.78', '$999,999.99') 123456.78

372 IBM i: Db2 for i SQL Reference

DECFLOAT_SORTKEY
The DECFLOAT_SORTKEY function returns a binary value that may be used to sort DECFLOAT values.

DECFLOAT_SORTKEY (expression)

The DECFLOAT_SORTKEY function returns a binary value that may be used to sort decimal floating-point
values in a manner that is consistent with the IEEE 754R specification on total ordering.

expression
An expression that returns a value of any built-in numeric, character-string, or graphic-string data
type.

If the data type of the argument is SMALLINT, INTEGER, REAL, DOUBLE, DECIMAL(p,s) where p <=16,
or NUMERIC(p,s) where p <=16, then the argument is converted to DECFLOAT(16) for processing.
Otherwise, the argument is converted to DECFLOAT(34) for processing.

The result of the function is BINARY(9) if the argument is DECFLOAT(16) or BINARY(17) if the argument is
DECFLOAT(34).

If the argument can be null, the result can be null. If the argument is null, the result is the null value.

Example

CREATE TABLE T1 (D1 DECFLOAT(16));
INSERT INTO T1 VALUES(2.100);
INSERT INTO T1 VALUES(2.10);
INSERT INTO T1 VALUES(2.1000);
INSERT INTO T1 VALUES(2.1);

SELECT D1 FROM T1 ORDER BY D1;

 D1

 2.100
 2.10
 2.1000
 2.1

Note that this result set is arbitrary. The ORDER BY has no effect on ordering these values.

SELECT D1 FROM T1 ORDER BY DECFLOAT_SORTKEY(D1);

 D1

 2.1000
 2.100
 2.10
 2.1

Note that this result set is ordered according to the IEEE 745R ordering specification.

Chapter 4. Built-in functions 373

DECIMAL or DEC
The DECIMAL function returns a decimal representation.

Numeric to Decimal

DECIMAL

DEC

(numeric-expression

, precision

, scale

)

String to Decimal

DECIMAL

DEC

(string-expression

, precision

, scale

, decimal-character

)

Datetime to Decimal

DECIMAL

DEC

(datetime-expression

, precision

, scale

)

The DECIMAL function returns a decimal representation of:

• A number
• A character or graphic string representation of a decimal number
• A character or graphic string representation of an integer
• A character or graphic string representation of a floating-point number
• A character or graphic string representation of a decimal floating-point number
• A date
• A time
• A timestamp

Numeric to Decimal
numeric-expression

An expression that returns a value of any built-in numeric data type.
precision

An integer constant with a value greater than or equal to 1 and less than or equal to 63.

The default for precision depends on the data type of the numeric-expression:

• 5 for small integer
• 11 for large integer
• 19 for big integer
• 15 for floating point, decimal, numeric, or nonzero scale binary
• 31 for decimal floating point

374 IBM i: Db2 for i SQL Reference

scale
An integer constant that is greater than or equal to 0 and less than or equal to precision. If not
specified, the default is 0.

The result is the same number that would occur if the first argument were assigned to a decimal column
or variable with a precision of precision and a scale of scale. An error is returned if the number of
significant decimal digits required to represent the whole part of the number is greater than precision-
scale. If the first argument can be null, the result can be null; if the first argument is null, the result is the
null value.

String to Decimal
string-expression

An expression that returns a character-string or graphic-string representation of a number. Leading
and trailing blanks are eliminated and the resulting string must conform to the rules for forming a
floating-point, decimal floating-point, integer, or decimal constant.

precision
An integer constant that is greater than or equal to 1 and less than or equal to 63. If not specified, the
default is 15.

scale
An integer constant that is greater than or equal to 0 and less than or equal to precision. If not
specified, the default is 0.

decimal-character
Specifies the single-byte character constant that is used to delimit the decimal digits in string-
expression from the whole part of the number. The character must be a period or comma. If decimal-
character is not specified, the decimal point is the default decimal separator character. For more
information, see “Decimal point” on page 116.

Digits are truncated from the end if the number of digits to the right of the decimal-character is greater
than the scale s. An error is returned if the number of significant digits to the left of the decimal-character
(the whole part of the number) in string-expression is greater than precision-scale. The default decimal
separator character is not valid in the substring if the decimal-character argument is specified.

Datetime to Decimal
datetime-expression

An expression that returns a value of type DATE, TIME, or TIMESTAMP
precision

An integer constant that is greater than or equal to 1 and less than or equal to 63 that specifies the
precision of the result. If not specified, the default for the precision and scale depends on the data
type of datetime-expression as follows:

• Precision is 8 and scale is 0 for DATE. The result is a DECIMAL(8,0) value representing the date as
yyyymmdd.

• Precision is 6 and scale is 0 for a TIME. The result is a DECIMAL(6,0) value representing the time as
hhmmss.

• Precision is 14+tp and scale is tp for a TIMESTAMP(tp). The result is a DECIMAL(14+tp,tp) value
representing the timestamp as yyyymmddhhmmss.nnnnnnnnnnnn.

scale
An integer constant that is greater than or equal to 0 and less than or equal to precision. If not
specified, the default is 0.

The result is the same number that would result from CAST(datetime-expression AS
DECIMAL(precision,scale)). Digits are truncated from the end if the number of digits to the right of the
decimal separator character is greater than scale. An error is returned if the number of significant digits
to the left of the decimal separator character (the whole part of the number) in datetime-expression is
greater than precision - scale.

Chapter 4. Built-in functions 375

The result of the function is a decimal number with precision of precision and scale of scale. If the first
argument can be null, the result can be null; if the first argument is null, the result is the null value.

Note
Syntax alternatives: The CAST specification should be used to increase the portability of applications
when precision is specified. For more information, see “CAST specification” on page 176.

Examples

• Use the DECIMAL function in order to force a DECIMAL data type (with a precision of 5 and a scale of 2)
to be returned in a select-list for the EDLEVEL column (data type = SMALLINT) in the EMPLOYEE table.
The EMPNO column should also appear in the select list.

 SELECT EMPNO, DECIMAL(EDLEVEL,5,2)
 FROM EMPLOYEE

• Using the PROJECT table, select all of the starting dates (PRSTDATE) that have been incremented by a
duration that is specified in a host variable. Assume the host variable PERIOD is of type INTEGER. Then,
in order to use its value as a date duration it must be “cast” as DECIMAL(8,0).

 SELECT PRSTDATE + DECIMAL(:PERIOD,8)
 FROM PROJECT

• Assume that updates to the SALARY column are input through a window as a character string using
comma as a decimal character (for example, the user inputs 21400,50). Once validated by the
application, it is assigned to the host variable newsalary which is defined as CHAR(10).

 UPDATE STAFF
 SET SALARY = DECIMAL(:newsalary, 9, 2, ',')
 WHERE ID = :empid

The value of SALARY becomes 21400.50.

376 IBM i: Db2 for i SQL Reference

DECRYPT_BIT, DECRYPT_BINARY, DECRYPT_CHAR and DECRYPT_DB
The DECRYPT_BIT, DECRYPT_BINARY, DECRYPT_CHAR, and DECRYPT_DB functions return a value that is
the result of decrypting encrypted data. The password used for decryption is either the password-string
value or the ENCRYPTION PASSWORD value assigned by the SET ENCRYPTION PASSWORD statement.

DECRYPT_BIT

DECRYPT_BINARY

DECRYPT_CHAR

DECRYPT_DB

(encrypted-data

, password-string

DEFAULT , integer

)

The decryption functions can only decrypt values that are encrypted using the ENCRYPT_AES,
ENCRYPT_RC2, or ENCRYPT_TDES function.

encrypted-data
An expression that must be a string expression that returns a complete, encrypted data value of a
CHAR FOR BIT DATA, VARCHAR FOR BIT DATA, BINARY, VARBINARY, or BLOB built-in data type. The
data string must have been encrypted using the ENCRYPT_AES, ENCRYPT_RC2, or ENCRYPT_TDES
function.

password-string
An expression that returns a character string value with at least 6 bytes and no more than 127 bytes.
The expression must not be a CLOB. This expression must be the same password used to encrypt
the data or decryption will result in a different value than was originally encrypted. If the value of
the password argument is null or not provided, the data will be decrypted using the ENCRYPTION
PASSWORD value, which must have been set using the SET ENCRYPTION PASSWORD statement.

DEFAULT
The data will be decrypted using the ENCRYPTION PASSWORD value, which must have been set using
the SET ENCRYPTION PASSWORD statement.

integer
An integer constant that specifies the CCSID of the result. If DECRYPT_BIT or DECRYPT_BINARY is
specified, the third argument must not be specified.

If DECRYPT_CHAR is specified, integer must be a valid SBCS CCSID or mixed data CCSID. It cannot
be 65535 (bit data). If the third argument is an SBCS CCSID, then the result is SBCS data. If the third
argument is a mixed CCSID, then the result is mixed data. If the third argument is not specified then
the CCSID of the result is the default CCSID of the current server.

If DECRYPT_DB is specified, integer must be a valid DBCS CCSID. If the third argument is not specified
then the CCSID of the result is the DBCS CCSID associated with the default CCSID of the current
server.

The data type of the result is determined by the function specified and the data type of the first argument
as shown in the following table. If a cast from the actual type of the encrypted data to the function's result
is not supported a warning or error is returned.

Function
Data Type of First
Argument

Actual Data Type of
Encrypted Data Result

DECRYPT_BIT CHAR FOR BIT DATA,
VARCHAR FOR BIT DATA,
BINARY, or VARBINARY

Character string VARCHAR FOR BIT DATA

Chapter 4. Built-in functions 377

Function
Data Type of First
Argument

Actual Data Type of
Encrypted Data Result

DECRYPT_BIT CHAR FOR BIT DATA,
VARCHAR FOR BIT DATA,
BINARY, or VARBINARY

Graphic string Error or Warning **

DECRYPT_BIT CHAR FOR BIT DATA,
VARCHAR FOR BIT DATA,
BINARY, or VARBINARY

Binary string Error or Warning **

DECRYPT_BIT BLOB Any string Error

DECRYPT_BINARY CHAR FOR BIT DATA,
VARCHAR FOR BIT DATA,
BINARY, or VARBINARY

Any string VARBINARY

DECRYPT_BINARY BLOB Any string BLOB

DECRYPT_CHAR CHAR FOR BIT DATA,
VARCHAR FOR BIT DATA,
BINARY, or VARBINARY

Character string VARCHAR

DECRYPT_CHAR CHAR FOR BIT DATA,
VARCHAR FOR BIT DATA,
BINARY, or VARBINARY

Unicode graphic string VARCHAR

DECRYPT_CHAR CHAR FOR BIT DATA,
VARCHAR FOR BIT DATA,
BINARY, or VARBINARY

Non-Unicode graphic
string

Error or Warning **

DECRYPT_CHAR CHAR FOR BIT DATA,
VARCHAR FOR BIT DATA,
BINARY, or VARBINARY

Binary string Error or Warning **

DECRYPT_CHAR BLOB Character string CLOB

DECRYPT_CHAR BLOB Unicode graphic string CLOB

DECRYPT_CHAR BLOB Non-Unicode graphic
string

Error or Warning **

DECRYPT_CHAR BLOB Binary string Error or Warning **

DECRYPT_DB CHAR FOR BIT DATA,
VARCHAR FOR BIT DATA,
BINARY, or VARBINARY

UTF-8 character string
or graphic string

VARGRAPHIC

DECRYPT_DB CHAR FOR BIT DATA,
VARCHAR FOR BIT DATA,
BINARY, or VARBINARY

Non-UTF-8 character
string

Error or Warning **

DECRYPT_DB CHAR FOR BIT DATA,
VARCHAR FOR BIT DATA,
BINARY, or VARBINARY

Binary string Error or Warning **

DECRYPT_DB BLOB UTF-8 character string
or graphic string

DBCLOB

DECRYPT_DB BLOB Non-UTF-8 character
string

Error or Warning **

DECRYPT_DB BLOB Binary string Error or Warning **

378 IBM i: Db2 for i SQL Reference

Function
Data Type of First
Argument

Actual Data Type of
Encrypted Data Result

Note:

** If the decryption function is in the select list of an outer subselect, a data mapping warning is returned.
Otherwise an error is returned. For more information about data mapping warnings, see “Assignments and
comparisons” on page 89.

If the encrypted-data included a hint, the hint is not returned by the function. The length attribute of the
result is the length attribute of the data type of encrypted-data minus 8 bytes. The actual length of the
result is the length of the original string that was encrypted. If the encrypted-data includes bytes beyond
the encrypted string, these bytes are not returned by the function.

If the argument can be null, the result can be null; if the argument is null, the result is the null value.

If the data is decrypted using a different CCSID than the originally encrypted value, expansion may occur
when converting the decrypted value to this CCSID. In such situations, the encrypted-data should be cast
to a varying-length string with a larger number of bytes.

Note
Password protection: To prevent inadvertent access to the encryption password, do not specify
password-string as a string constant in the source for a program, procedure, or function. Instead, use
the ENCRYPTION PASSWORD special register or a host variable.

When connected to a remote relational database, the specified password itself is sent "in the clear".
That is, the password itself is not encrypted. To protect the password in these cases, consider using a
communications encryption mechanism such as IPSEC (or SSL if connecting between IBM i products).

Syntax alternatives: For compatibility with previous versions of Db2, DECRYPT_BIN can be specified in
place of DECRYPT_BIT.

Examples

• Assume that table EMP1 has a social security column called SSN. This example uses the ENCRYPTION
PASSWORD value to hold the encryption password.

 SET ENCRYPTION PASSWORD = :pw

 INSERT INTO EMP1 (SSN) VALUES ENCRYPT_RC2('289-46-8832')

 SELECT DECRYPT_CHAR(SSN)
 FROM EMP1

The DECRYPT_CHAR function returns the original value '289-46-8832'.
• This example explicitly passes the encryption password which has been set in variable pw.

 INSERT INTO EMP1 (SSN) VALUES ENCRYPT_TDES('289-46-8832', :pw)

 SELECT DECRYPT_CHAR(SSN, :pw)
 FROM EMP1

The DECRYPT_CHAR function returns the original value '289-46-8832'.

Chapter 4. Built-in functions 379

DEGREES
The DEGREES function returns the number of degrees of the argument which is an angle expressed in
radians.

DEGREES (expression)

expression
An expression that returns a value of any built-in numeric, character-string, or graphic-string
data type. A string argument is cast to double-precision floating point before evaluating the
function. For more information about converting strings to double-precision floating point, see
“DOUBLE_PRECISION or DOUBLE” on page 392.

If the data type of the argument is DECFLOAT(n), the result is DECFLOAT(n). Otherwise, the data type
of the result is double-precision floating point. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

Example

• Assume the host variable RAD is a DECIMAL(4,3) host variable with a value of 3.142.

 SELECT DEGREES(:RAD)
 FROM SYSIBM.SYSDUMMY1

Returns the approximate value 180.0.

380 IBM i: Db2 for i SQL Reference

DIFFERENCE
The DIFFERENCE function returns a value from 0 to 4 representing the difference between the sounds
of two strings based on applying the SOUNDEX function to the strings. A value of 4 is the best possible
sound match.

DIFFERENCE (expression-1 , expression-2)

expression-1
An expression that returns a built-in numeric, character-string, or graphic-string data types, but
not CLOBs or DBCLOBs. The arguments cannot be binary strings. A numeric argument is cast to a
character string before evaluating the function. For more information about converting numeric to a
character string, see “VARCHAR” on page 623.

expression-2
An expression that returns a built-in numeric, character-string, or graphic-string data types, but
not CLOBs or DBCLOBs. The arguments cannot be binary strings. A numeric argument is cast to a
character string before evaluating the function. For more information about converting numeric to a
character string, see “VARCHAR” on page 623.

The data type of the result is INTEGER. If either argument can be null, the result can be null; if either
argument is null, the result is the null value.

Examples

• Assume the following statement:

 SELECT DIFFERENCE('CONSTRAINT','CONSTANT'),
 SOUNDEX('CONSTRAINT'),
 SOUNDEX('CONSTANT')
 FROM SYSIBM.SYSDUMMY1

Returns 4, C523, and C523. Since the two strings return the same SOUNDEX value, the difference is 4
(the highest value possible).

• Assume the following statement:

 SELECT DIFFERENCE('CONSTRAINT','CONTRITE'),
 SOUNDEX('CONSTRAINT'),
 SOUNDEX('CONTRITE')
 FROM SYSIBM.SYSDUMMY1

Returns 2, C523, and C536. In this case, the two strings return different SOUNDEX values, and hence, a
lower difference value.

Chapter 4. Built-in functions 381

DIGITS
The DIGITS function returns a character-string representation of the absolute value of a number.

DIGITS (expression)

expression
An expression that returns a value of a built-in SMALLINT, INTEGER, BIGINT, DECIMAL, NUMERIC,
character-string, or graphic-string data type. A string argument is cast to DECIMAL(63,31) before
evaluating the function. For more information about converting strings to decimal, see “DECIMAL or
DEC” on page 374.

If the argument can be null, the result can be null; if the argument is null, the result is the null value.

The result of the function is a fixed-length character string representing the absolute value of the
argument without regard to its scale. The result does not include a sign or a decimal point. Instead, it
consists exclusively of digits, including, if necessary, leading zeros to fill out the string. The length of the
string is:

• 5 if the argument is a small integer with a scale of zero
• 10 if the argument is a large integer with a scale of zero
• 19 if the argument is a big integer
• p if the argument is a decimal (or an integer with a scale greater than zero) with a precision of p

The CCSID of the character string is the default SBCS CCSID at the current server.

Examples

• Assume that a table called TABLEX contains an INTEGER column called INTCOL containing 10-digit
numbers. List all combinations of the first four digits contained in column INTCOL.

 SELECT DISTINCT SUBSTR(DIGITS(INTCOL),1,4)
 FROM TABLEX

• Assume that COLUMNX has the DECIMAL(6,2) data type, and that one of its values is -6.28.

 SELECT DIGITS(COLUMNX)
 FROM TABLEX

Returns the value '000628'.

The result is a string of length six (the precision of the column) with leading zeros padding the string out
to this length. Neither sign nor decimal point appear in the result.

382 IBM i: Db2 for i SQL Reference

DLCOMMENT
The DLCOMMENT function returns the comment value, if it exists, from a DataLink value.

DLCOMMENT (DataLink-expression)

DataLink-expression
An expression that results in a value with a built-in DataLink data type.

The result of the function is VARCHAR(254). If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

The CCSID of the character string is the same as that of DataLink-expression.

Examples

• Prepare a statement to select the date, the description and the comment from the link to the ARTICLES
column from the HOCKEY_GOALS table. The rows to be selected are those for goals scored by either of
the Richard brothers (Maurice or Henri).

 stmtvar = "SELECT DATE_OF_GOAL, DESCRIPTION, DLCOMMENT(ARTICLES)
 FROM HOCKEY_GOALS
 WHERE BY_PLAYER = 'Maurice Richard'
 OR BY_PLAYER = 'Henri Richard' ";
 EXEC SQL PREPARE HOCKEY_STMT FROM :stmtvar;

• Given a DataLink value that was inserted into column COLA of a row in table TBLA using the scalar
function:

 INSERT INTO TBLA
 VALUES (DLVALUE('http://dlfs.almaden.ibm.com/x/y/a.b','URL','A comment'))

then the following function operating on that value:

 SELECT DLCOMMENT(COLA)
 FROM TBLA

Returns the value 'A comment'.

Chapter 4. Built-in functions 383

DLLINKTYPE
The DLLINKTYPE function returns the link type value from a DataLink value.

DLLINKTYPE (DataLink-expression)

DataLink-expression
An expression that results in a value with a built-in DataLink data type.

The result of the function is VARCHAR(4). If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

The CCSID of the character string is the same as that of DataLink-expression.

Examples

• Given a DataLink value that was inserted into column COLA of a row in table TBLA using the scalar
function:

 INSERT INTO TABLA
 VALUES(DLVALUE('http://dlfs.almaden.ibm.com/x/y/a.b','URL','A comment'))

then the following function operating on that value:

 SELECT DLLINKTYPE(COLA)
 FROM TBLA

Returns the value 'URL'.

384 IBM i: Db2 for i SQL Reference

DLURLCOMPLETE
The DLURLCOMPLETE function returns the complete URL value from a DataLink value with a link type of
URL. The value is the same as what would be returned by the concatenation of DLURLSCHEME with '://',
then DLURLSERVER, and then DLURLPATH. If the DataLink has an attribute of FILE LINK CONTROL and
READ PERMISSION DB, the value includes a file access token.

DLURLCOMPLETE (DataLink-expression)

DataLink-expression
An expression that results in a value with a built-in DataLink data type.

If the argument can be null, the result can be null; if the argument is null, the result is the null value.

The result of the function is a varying-length string. The length attribute depends on the attributes of the
DataLink:

• If the DataLink has an attribute of FILE LINK CONTROL and READ PERMISSION DB, the length attribute
of the result is the length attribute of the argument plus 19.

• Otherwise, the length attribute of the result is the length attribute of the argument.

If the DataLink value only includes the comment, the result returned is a zero length string.

The CCSID of the character string is the same as that of DataLink-expression.

Examples

• Given a DataLink value that was inserted into column COLA (with the attributes of FILE LINK CONTROL
and READ PERMISSION DB) of a row in table TBLA using the scalar function:

 INSERT INTO TABLA
 VALUES(DLVALUE('http://dlfs.almaden.ibm.com/x/y/a.b','URL','A comment'))

then the following function operating on that value:

 SELECT DLURLCOMPLETE(COLA)
 FROM TBLA

Returns the value 'HTTP://DLFS.ALMADEN.IBM.COM/x/y/****************;a.b', where ****************
represents the access token.

Chapter 4. Built-in functions 385

DLURLPATH
The DLURLPATH function returns the path and file name necessary to access a file within a given server
from a DataLink value with a linktype of URL. When appropriate, the value includes a file access token.

DLURLPATH (DataLink-expression)

DataLink-expression
An expression that results in a value with a built-in DataLink data type.

If the argument can be null, the result can be null; if the argument is null, the result is the null value.

The result of the function is a varying-length string. The length attribute depends on the attributes of the
DataLink:

• If the DataLink has an attribute of FILE LINK CONTROL and READ PERMISSION DB, the length attribute
of the result is the length attribute of the argument plus 19.

• Otherwise, the length attribute of the result is the length attribute of the argument.

If the DataLink value only includes the comment, the result returned is a zero length string.

The CCSID of the character string is the same as that of DataLink-expression.

Examples

• Given a DataLink value that was inserted into column COLA (with the attributes of FILE LINK CONTROL
and READ PERMISSION DB) of a row in table TBLA using the scalar function:

 INSERT INTO TABLA
 VALUES(DLVALUE('http://dlfs.almaden.ibm.com/x/y/a.b','URL','A comment'))

then the following function operating on that value:

 SELECT DLURLPATH(COLA)
 FROM TBLA

Returns the value '/x/y/****************;a.b', where **************** represents the access token.

386 IBM i: Db2 for i SQL Reference

DLURLPATHONLY
The DLURLPATHONLY function returns the path and file name necessary to access a file within a given
server from a DataLink value with a linktype of URL. The value returned NEVER includes a file access
token.

DLURLPATHONLY (DataLink-expression)

DataLink-expression
An expression that results in a value with a built-in DataLink data type.

If the argument can be null, the result can be null; if the argument is null, the result is the null value.

The result of the function is a varying-length string with a length attribute of that is equal to the length
attribute of the argument.

If the DataLink value only includes the comment, the result returned is a zero length string.

The CCSID of the character string is the same as that of DataLink-expression.

Examples

• Given a DataLink value that was inserted into column COLA of a row in table TBLA using the scalar
function:

 INSERT INTO TABLA
 VALUES(DLVALUE('http://dlfs.almaden.ibm.com/x/y/a.b','URL','A comment'))

then the following function operating on that value:

 SELECT DLURLPATHONLY(COLA)
 FROM TBLA

Returns the value '/x/y/a.b'.

Chapter 4. Built-in functions 387

DLURLSCHEME
The DLURLSCHEME function returns the scheme from a DataLink value with a linktype of URL. The value
will always be in upper case.

DLURLSCHEME (DataLink-expression)

DataLink-expression
An expression that results in a value with a built-in DataLink data type.

The result of the function is VARCHAR(20). If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

If the DataLink value only includes the comment, the result returned is a zero length string.

The CCSID of the character string is the same as that of DataLink-expression.

Examples

• Given a DataLink value that was inserted into column COLA of a row in table TBLA using the scalar
function:

 INSERT INTO TABLA
 VALUES(DLVALUE('http://dlfs.almaden.ibm.com/x/y/a.b','URL','A comment'))

then the following function operating on that value:

 SELECT DLURLSCHEME(COLA)
 FROM TBLA

Returns the value 'HTTP'.

388 IBM i: Db2 for i SQL Reference

DLURLSERVER
The DLURLSERVER function returns the file server from a DataLink value with a linktype of URL. The value
will always be in upper case.

DLURLSERVER (DataLink-expression)

DataLink-expression
An expression that results in a value with a built-in DataLink data type.

If the argument can be null, the result can be null; if the argument is null, the result is the null value.

The result of the function is a varying-length string with a length attribute of that is equal to the length
attribute of the argument.

If the DataLink value only includes the comment, the result returned is a zero length string.

The CCSID of the character string is the same as that of DataLink-expression.

Examples

• Given a DataLink value that was inserted into column COLA of a row in table TBLA using the scalar
function:

 INSERT INTO TABLA
 VALUES(DLVALUE('http://dlfs.almaden.ibm.com/x/y/a.b','URL','A comment'))

then the following function operating on that value:

 SELECT DLURLSERVER(COLA)
 FROM TBLA

Returns the value 'DLFS.ALMADEN.IBM.COM'.

Chapter 4. Built-in functions 389

DLVALUE
The DLVALUE function returns a DataLink value. When the function is on the right hand side of a SET
clause in an UPDATE statement or is in a VALUES clause in an INSERT statement, it usually also creates
a link to a file. However, if only a comment is specified (in which case the data-location is a zero-length
string), the DataLink value is created with empty linkage attributes so there is no file link.

DLVALUE (data-location

, linktype-string

, comment-string

)

data-location
If the link type is URL, then this is a character string expression that contains a complete URL value.
If the expression is not an empty string, it must include the URL scheme and URL server. The actual
length of the character string expression must be less than or equal to 32718 characters.

linktype-string
An optional character string expression that specifies the link type of the DataLink value. The only
valid value is 'URL'.

comment-string
An optional character string expression that provides a comment or additional location information.
The actual length of the character string expression must be less than or equal to 254 characters.

The comment-string cannot be the null value. If a comment-string is not specified, the comment-string
is the empty string.

If the first argument can be null, the result can be null; if the first argument is null, the result is the null
value.

The result of the function is a DataLink value.

The CCSID of the DataLink is the same as that of data-location except in the following cases:

• If the comment string is mixed data and data-location is not mixed data, the CCSID of the result will be
the CCSID of the comment string.56

• If the data-location has a CCSID of bit data (65535), UTF-16 graphic data (1200), UCS-2 graphic data
(13488), Turkish data (905 or 1026), or Japanese data (290, 930, or 5026); the CCSID of the result is
described in the following table:

CCSID of data-location
CCSID of comment-
string Result CCSID

65535 65535 Job Default CCSID

65535 non-65535 comment-string CCSID (unless the CCSID is 290,
930, 5026, 905, 1026, or 13488 where the CCSID
will then be further modified as described in the
following rows.)

290 any 4396

930 or 5026 any 939

905 or 1026 any 500

1200 any 500

13488 any 500

56 If the CCSID of comment string is 5026 or 930, the CCSID of the results will be 939.

390 IBM i: Db2 for i SQL Reference

When defining a DataLink value using this function, consider the maximum length of the target of the
value. For example, if a column is defined as DataLink(200), then the maximum length of the data-
location plus the comment is 200 bytes.

Examples

• Insert a row into the table. The URL values for the first two links are contained in the variables
named url_article and url_snapshot. The variable named url_snapshot_comment contains a comment
to accompany the snapshot link. There is, as yet, no link for the movie, only a comment in the variable
named url_movie_comment.

 INSERT INTO HOCKEY_GOALS
 VALUES('Maurice Richard',
 'Montreal canadian',
 '?',
 'Boston Bruins,
 '1952-04-24',
 'Winning goal in game 7 of Stanley Cup final',
 DLVALUE(:url_article),
 DLVALUE(:url_snapshot, 'URL', :url_snapshot_comment),
 DLVALUE('', 'URL', :url_movie_comment))

Chapter 4. Built-in functions 391

DOUBLE_PRECISION or DOUBLE
The DOUBLE_PRECISION and DOUBLE functions return a floating-point representation.

Numeric to Double

DOUBLE_PRECISION

DOUBLE

(numeric-expression)

String to Double

DOUBLE_PRECISION

DOUBLE

(string-expression)

The DOUBLE_PRECISION and DOUBLE functions return a floating-point representation of:

• A number
• A character or graphic string representation of a decimal number
• A character or graphic string representation of an integer
• A character or graphic string representation of a floating-point number
• A character or graphic string representation of a decimal floating-point number

Numeric to Double
numeric-expression

An expression that returns a value of any built-in numeric data type.

The result is the same number that would occur if the expression were assigned to a double-precision
floating-point column or variable.

String to Double
string-expression

An expression that returns a value that is a character-string or graphic-string representation of a
number.

If the argument is a string-expression, the result is the same number that would result from
CAST(string-expression AS DOUBLE PRECISION). Leading and trailing blanks are eliminated and the
resulting string must conform to the rules for forming a floating-point, decimal floating-point, integer,
or decimal constant.

The single-byte character constant that must be used to delimit the decimal digits in string-expression
from the whole part of the number is the default decimal point. For more information, see “Decimal
point” on page 116.

The result of the function is a double-precision floating-point number. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

Note
Syntax alternatives: FLOAT is a synonym for DOUBLE_PRECISION and DOUBLE.

The CAST specification should be used to increase the portability of applications. For more information,
see “CAST specification” on page 176.

Example

• Using the EMPLOYEE table, find the ratio of salary to commission for employees whose commission
is not zero. The columns involved (SALARY and COMM) have DECIMAL data types. To eliminate the

392 IBM i: Db2 for i SQL Reference

possibility of out-of-range results, DOUBLE_PRECISION is applied to SALARY so that the division is
carried out in floating point:

 SELECT EMPNO, DOUBLE_PRECISION(SALARY)/COMM
 FROM EMPLOYEE
 WHERE COMM > 0

Chapter 4. Built-in functions 393

ENCRYPT_AES
The ENCRYPT_AES function returns a value that is the result of encrypting data-string using the AES
encryption algorithm. The password used for decryption is either the password-string value or the
encryption password value (assigned by the SET ENCRYPTION PASSWORD statement).

ENCRYPT_AES (data-string

, password-string

, hint-string

)

data-string
An expression that returns the string value to be encrypted. The string expression must be a built-in
string data type.

The length attribute for the data type of data-string is limited to 24 bytes (or 32 bytes) less than the
maximum length of the result data type without a hint-string argument and 56 bytes (or 64 bytes) less
than the maximum length of the result data type when the hint-string argument is specified.

password-string
An expression that returns a character string value with at least 6 bytes and no more than 127 bytes.
The expression must not be a CLOB and the CCSID of the expression must not be 65535. The value
represents the password used to encrypt the data-string. If the value of the password argument is
null or not provided, the data will be encrypted using the ENCRYPTION PASSWORD value, which must
have been set using the SET ENCRYPTION PASSWORD statement.

hint-string
An expression that returns a character string value with up to 32 bytes that will help data owners
remember passwords (For example, 'Ocean' is a hint to remember 'Pacific'). The expression must not
be a CLOB and the CCSID of the expression must not be 65535. If a hint value is specified, the hint
is embedded into the result and can be retrieved using the GETHINT function. If the password-string
is specified and this argument is the null value or not provided, no hint will be embedded in the
result. If the password-string is not specified, the hint may be specified using the SET ENCRYPTION
PASSWORD statement.

The data type of the result is determined by the first argument as shown in the following table:

Data Type of the First Argument Data Type of the Result

BINARY or VARBINARY VARBINARY

CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC VARCHAR FOR BIT DATA

BLOB, CLOB, or DBCLOB BLOB

The length attribute of the result depends on the arguments that are specified:

• When a password-string is specified but a hint-string is not specified, the length attribute of data-string
plus 24 plus the number of bytes to a 16 byte boundary.

• Otherwise, the length attribute of data-string plus 64 plus the number of bytes to a 16 byte boundary.

The actual length of the result is the sum of :

• The actual length of data-string plus a number of bytes to get to a 16 byte boundary.
• The actual length of the hint.

The actual length of the hint is zero if hint-string is not specified as a function argument or on the SET
ENCRYPTION PASSWORD statement.

• n, where n (the amount of overhead necessary to encrypt the value) is 24 bytes (or 32 bytes if data-
string is a LOB or different CCSID values are used for the data-string, the password, or the hint).

394 IBM i: Db2 for i SQL Reference

If the first argument can be null, the result can be null; if the first argument is null, the result is the null
value.

Note that the encrypted result is longer than the data-string value. Therefore, when assigning encrypted
values, ensure that the target is declared with sufficient size to contain the entire encrypted value.

Notes
Password protection: To prevent inadvertent access to the encryption password, do not specify
password-string as a string constant in the source for a program, procedure, or function. Instead, use
the SET ENCRYPTION PASSWORD statement or a host variable.

When connected to a remote relational database, the specified password itself is sent "in the clear".
That is, the password itself is not encrypted. To protect the password in these cases, consider using a
communications encryption mechanism such as IPSEC (or SSL if connecting between IBM i products).

Encryption algorithm: The internal encryption algorithm used is from the CLiC Toolkit from IBM
Research. The 128-bit encryption key is derived from the password using a SHA1 message digest.

Encryption passwords and data: It is the user's responsibility to perform password management. Once
the data is encrypted only the password used to encrypt it can be used to decrypt it. Be careful when
using CHAR variables to set password values as they may be padded with blanks. The encrypted result
may contain a null terminator and other non-printable characters.

Table column definition: When defining columns and distinct types to contain encrypted data:

• The column must be defined with a data type of CHAR FOR BIT DATA, VARCHAR FOR BIT DATA,
BINARY, VARBINARY, or BLOB.

• The length attribute of the column must include an additional n bytes, where n is the overhead
necessary to encrypt the data as described above.

Any assignment or cast to a column without one of these data types or with a length shorter than the
suggested data length may result in an assignment error or, if the assignment is successful, a failure and
lost data when the data is subsequently decrypted. Blanks are valid encrypted data values that may be
truncated when stored in a column that is too short.

Some sample column length calculations:

Maximum length of non-encrypted data 6 bytes
Number of bytes to the next 16 byte boundary 10 bytes
Overhead 24 bytes (or 32 bytes)

Encrypted data column length 40 bytes (or 48 bytes)

Maximum length of non-encrypted data 32 bytes
Number of bytes to a 16 byte boundary 0 bytes
Overhead 24 bytes (or 32 bytes)

Encrypted data column length 56 bytes

Administration of encrypted data: Encrypted data can only be decrypted on servers that support the
decryption functions that correspond to the ENCRYPT_AES function. Hence, replication of columns with
encrypted data should only be done to servers that support the decryption functions.

Example

• Assume that table EMP1 has a social security column called SSN. This example uses the ENCRYPTION
PASSWORD value to hold the encryption password.

 SET ENCRYPTION PASSWORD = 'Ben123'

 INSERT INTO EMP1 (SSN) VALUES ENCRYPT_AES('289-46-8832')

• This example explicitly passes the encryption password.

Chapter 4. Built-in functions 395

 INSERT INTO EMP1 (SSN) VALUES ENCRYPT_AES('289-46-8832', 'Ben123')

• The hint 'Ocean' is stored to help the user remember the encryption password 'Pacific'.

 INSERT INTO EMP1 (SSN) VALUES ENCRYPT_AES('289-46-8832', 'Pacific', 'Ocean')

396 IBM i: Db2 for i SQL Reference

ENCRYPT_RC2 or ENCRPYT
The ENCRYPT_RC2 function returns a value that is the result of encrypting data-string using the RC2
encryption algorithm. The password used for decryption is either the password-string value or the
encryption password value (assigned by the SET ENCRYPTION PASSWORD statement).

ENCRYPT_RC2 (data-string

, password-string

, hint-string

)

data-string
An expression that returns the string value to be encrypted. The string expression must be a built-in
string data type.

The length attribute for the data type of data-string must be less than m - MOD(m,8) - n - 1, where m
is the maximum length of the result data type and n is the amount of overhead necessary to encrypt
the value.

• If a hint-string is not specified, n is 8 bytes.
• If a hint-string is specified, n is 40 bytes.

password-string
An expression that returns a character string value with at least 6 bytes and no more than 127
bytes. The expression must not be a CLOB. The value represents the password used to encrypt the
data-string. If the value of the password argument is null or not provided, the data will be encrypted
using the ENCRYPTION PASSWORD value, which must have been set using the SET ENCRYPTION
PASSWORD statement.

hint-string
An expression that returns a character string value with up to 32 bytes that will help data owners
remember passwords (For example, 'Ocean' is a hint to remember 'Pacific'). The expression must not
be a CLOB. If a hint value is specified, the hint is embedded into the result and can be retrieved using
the GETHINT function. If the password-string is specified and this argument is the null value or not
provided, no hint will be embedded in the result. If the password-string is not specified, the hint may
be specified using the SET ENCRYPTION PASSWORD statement.

The data type of the result is determined by the first argument as shown in the following table:

Data Type of the First Argument Data Type of the Result

BINARY or VARBINARY VARBINARY

CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC VARCHAR FOR BIT DATA

BLOB, CLOB, or DBCLOB BLOB

The length attribute of the result depends on the arguments that are specified:

• When a password-string is specified but a hint-string is not specified, the length attribute of data-string
plus 16 plus the number of bytes to the next 8 byte boundary.57

• Otherwise, the length attribute of data-string plus 48 plus the number of bytes to the next 8 byte
boundary.57

The actual length of the result is the sum of :

• The actual length of data-string plus a number of bytes to get to the next 8 byte boundary.57

• The actual length of the hint.

57 Unlike ENCRYPT_TDES and ENCRYPT_AES, 8 bytes are added even if the length of data-string is already on
an 8 byte boundary.

Chapter 4. Built-in functions 397

The actual length of the hint is zero if hint-string is not specified as a function argument or on the SET
ENCRYPTION PASSWORD statement.

• n, where n (the amount of overhead necessary to encrypt the value) is 8 bytes (or 16 bytes if data-string
is a LOB or different CCSID values are used for the data-string, the password, or the hint).

If the argument can be null, the result can be null; if the argument is null, the result is the null value.

Note that the encrypted result is longer than the data-string value. Therefore, when assigning encrypted
values, ensure that the target is declared with sufficient size to contain the entire encrypted value.

Notes
Password protection: To prevent inadvertent access to the encryption password, do not specify
password-string as a string constant in the source for a program, procedure, or function. Instead, use
the SET ENCRYPTION PASSWORD statement or a host variable.

When connected to a remote relational database, the specified password itself is sent "in the clear".
That is, the password itself is not encrypted. To protect the password in these cases, consider using a
communications encryption mechanism such as IPSEC (or SSL if connecting between IBM i products).

Encryption algorithm: The internal encryption algorithm used is RC2 block cipher with padding, the 128
bit secret key is derived from the password using a MD5 message digest.

Encryption passwords and data: It is the user's responsibility to perform password management. Once
the data is encrypted only the password used to encrypt it can be used to decrypt it. Be careful when
using CHAR variables to set password values as they may be padded with blanks. The encrypted result
may contain a null terminator and other non-printable characters.

Table column definition: When defining columns and distinct types to contain encrypted data:

• The column must be defined with a data type of CHAR FOR BIT DATA, VARCHAR FOR BIT DATA,
BINARY, VARBINARY, or BLOB.

• The length attribute of the column must include an additional n bytes, where n is the overhead
necessary to encrypt the data as described above.

Any assignment or cast to a column without one of these data types or with a length shorter than the
suggested data length may result in an assignment error or, if the assignment is successful, a failure and
lost data when the data is subsequently decrypted. Blanks are valid encrypted data values that may be
truncated when stored in a column that is too short.

Some sample column length calculations:

Maximum length of non-encrypted data 6 bytes
Number of bytes to the next 8 byte boundary 2 bytes
Overhead 8 bytes (or 16 bytes)

Encrypted data column length 16 bytes (or 32 bytes)

Maximum length of non-encrypted data 32 bytes
Number of bytes to the next 8 byte boundary 8 bytes
Overhead 8 bytes (or 16 bytes)

Encrypted data column length 48 bytes (or 56 bytes)

Administration of encrypted data: Encrypted data can only be decrypted on servers that support the
decryption functions that correspond to the ENCRYPT_RC2 function. Hence, replication of columns with
encrypted data should only be done to servers that support the decryption functions.

Syntax alternatives: For compatibility with previous versions of Db2, ENCRYPT can be specified in place
of ENCRYPT_RC2.

Example

• Assume that table EMP1 has a social security column called SSN. This example uses the ENCRYPTION
PASSWORD value to hold the encryption password.

398 IBM i: Db2 for i SQL Reference

 SET ENCRYPTION PASSWORD = 'Ben123'

 INSERT INTO EMP1 (SSN) VALUES ENCRYPT_RC2('289-46-8832')

• This example explicitly passes the encryption password.

 INSERT INTO EMP1 (SSN) VALUES ENCRYPT_RC2('289-46-8832', 'Ben123')

• The hint 'Ocean' is stored to help the user remember the encryption password 'Pacific'.

 INSERT INTO EMP1 (SSN) VALUES ENCRYPT_RC2('289-46-8832', 'Pacific', 'Ocean')

Chapter 4. Built-in functions 399

ENCRYPT_TDES
The ENCRYPT_TDES function returns a value that is the result of encrypting data-string using the Triple
DES encryption algorithm. The password used for decryption is either the password-string value or the
encryption password value (assigned by the SET ENCRYPTION PASSWORD statement).

ENCRYPT_TDES (data-string

, password-string

, hint-string

)

data-string
An expression that returns the string value to be encrypted. The string expression must be a built-in
string data type.

The length attribute for the data type of data-string must be less than m - MOD(m,8) - n - 1, where m
is the maximum length of the result data type and n is the amount of overhead necessary to encrypt
the value.

password-string
An expression that returns a character string value with at least 6 bytes and no more than 127 bytes.
The expression must not be a CLOB and the CCSID of the expression must not be 65535. The value
represents the password used to encrypt the data-string. If the value of the password argument is
null or not provided, the data will be encrypted using the ENCRYPTION PASSWORD value, which must
have been set using the SET ENCRYPTION PASSWORD statement.

hint-string
An expression that returns a character string value with up to 32 bytes that will help data owners
remember passwords (For example, 'Ocean' is a hint to remember 'Pacific'). The expression must not
be a CLOB and the CCSID of the expression must not be 65535. If a hint value is specified, the hint
is embedded into the result and can be retrieved using the GETHINT function. If the password-string
is specified and this argument is the null value or not provided, no hint will be embedded in the
result. If the password-string is not specified, the hint may be specified using the SET ENCRYPTION
PASSWORD statement.

The data type of the result is determined by the first argument as shown in the following table:

Data Type of the First Argument Data Type of the Result

BINARY or VARBINARY VARBINARY

CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC VARCHAR FOR BIT DATA

BLOB, CLOB, or DBCLOB BLOB

The length attribute of the result depends on the arguments that are specified:

• When a password-string is specified but a hint-string is not specified, the length attribute of data-string
plus 24 plus the number of bytes to an 8 byte boundary.

• Otherwise, the length attribute of data-string plus 56 plus the number of bytes to an 8 byte boundary.

The actual length of the result is the sum of :

• The actual length of data-string plus a number of bytes to get to the an 8 byte boundary.
• The actual length of the hint.

The actual length of the hint is zero if hint-string is not specified as a function argument or on the SET
ENCRYPTION PASSWORD statement.

• n, where n (the amount of overhead necessary to encrypt the value) is 16 bytes (or 24 bytes if data-
string is a LOB or different CCSID values are used for the data-string, the password, or the hint).

If the argument can be null, the result can be null; if the argument is null, the result is the null value.

400 IBM i: Db2 for i SQL Reference

Note that the encrypted result is longer than the data-string value. Therefore, when assigning encrypted
values, ensure that the target is declared with sufficient size to contain the entire encrypted value.

Notes
Password protection: To prevent inadvertent access to the encryption password, do not specify
password-string as a string constant in the source for a program, procedure, or function. Instead, use
the SET ENCRYPTION PASSWORD statement or a host variable.

When connected to a remote relational database, the specified password itself is sent "in the clear".
That is, the password itself is not encrypted. To protect the password in these cases, consider using a
communications encryption mechanism such as IPSEC (or SSL if connecting between IBM i products).

Encryption algorithm: The internal encryption algorithm used is Triple DES block cipher with padding, the
128 bit secret key is derived from the password using a SHA1 message digest.

Encryption passwords and data: It is the user's responsibility to perform password management. Once
the data is encrypted only the password used to encrypt it can be used to decrypt it. Be careful when
using CHAR variables to set password values as they may be padded with blanks. The encrypted result
may contain a null terminator and other non-printable characters.

Table column definition: When defining columns and distinct types to contain encrypted data:

• The column must be defined with a data type of CHAR FOR BIT DATA, VARCHAR FOR BIT DATA,
BINARY, VARBINARY, or BLOB.

• The length attribute of the column must include an additional n bytes, where n is the overhead
necessary to encrypt the data as described above.

Any assignment or cast to a column without one of these data types or with a length shorter than the
suggested data length may result in an assignment error or, if the assignment is successful, a failure and
lost data when the data is subsequently decrypted. Blanks are valid encrypted data values that may be
truncated when stored in a column that is too short.

Some sample column length calculations:

Maximum length of non-encrypted data 6 bytes
Number of bytes to the next 8 byte boundary 2 bytes
Overhead 16 bytes (or 24 bytes)

Encrypted data column length 24 bytes (or 32 bytes)

Maximum length of non-encrypted data 32 bytes
Number of bytes to an 8 byte boundary 0 bytes
Overhead 16 bytes (or 24 bytes)

Encrypted data column length 48 bytes (or 56 bytes)

Administration of encrypted data: Encrypted data can only be decrypted on servers that support the
decryption functions that correspond to the ENCRYPT_TDES function. Hence, replication of columns with
encrypted data should only be done to servers that support the decryption functions.

Example

• Assume that table EMP1 has a social security column called SSN. This example uses the ENCRYPTION
PASSWORD value to hold the encryption password.

 SET ENCRYPTION PASSWORD = 'Ben123'

 INSERT INTO EMP1 (SSN) VALUES ENCRYPT_TDES('289-46-8832')

• This example explicitly passes the encryption password.

 INSERT INTO EMP1 (SSN) VALUES ENCRYPT_TDES('289-46-8832', 'Ben123')

• The hint 'Ocean' is stored to help the user remember the encryption password 'Pacific'.

Chapter 4. Built-in functions 401

 INSERT INTO EMP1 (SSN) VALUES ENCRYPT_TDES('289-46-8832', 'Pacific', 'Ocean')

402 IBM i: Db2 for i SQL Reference

EXP
The EXP function returns a value that is the base of the natural logarithm (e) raised to a power specified
by the argument. The EXP and LN functions are inverse operations.

EXP (expression)

expression
An expression that returns a value of any built-in numeric, character-string, or graphic-string
data type. A string argument is cast to double-precision floating point before evaluating the
function. For more information about converting strings to double-precision floating point, see
“DOUBLE_PRECISION or DOUBLE” on page 392.

If the data type of the argument is DECFLOAT(n), the result is DECFLOAT(n). Otherwise, the data type
of the result is double-precision floating point. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

Note
Results involving DECFLOAT special values: For decimal floating-point values the special values are
treated as follows:

• EXP(NaN) returns NaN.
• EXP(-NaN) returns -NaN.
• EXP(Infinity) returns Infinity.
• EXP(-Infinity) returns 0.
• EXP(sNaN) and EXP(-sNaN) return a warning or error. 58

Example

• Assume the host variable E is a DECIMAL(10,9) host variable with a value of 3.453789832.

 SELECT EXP(:E)
 FROM SYSIBM.SYSDUMMY1

Returns the approximate value 31.62.

58 If *YES is specified for the SQL_DECFLOAT_WARNINGS query option, NaN and -NaN are returned
respectively with a warning.

Chapter 4. Built-in functions 403

EXTRACT
The EXTRACT function returns a specified portion of a datetime value.

Extract Date Values

EXTRACT (EPOCH

MILLENNIUM

MILLENNIUMS

CENTURY

CENTURIES

DECADE

DECADES

YEAR

YEARS

QUARTER

MONTH

MONTHS

WEEK

DAY

DAYS

DOW

DOY

FROM date-expression

timestamp-expression

date-duration

timestamp-duration

)

Extract Time Values

EXTRACT (HOUR

HOURS

MINUTE

MINUTES

SECOND

SECONDS

MILLISECOND

MILLISECONDS

MICROSECOND

MICROSECONDS

FROM date-expression

time-expression

timestamp-expression

time-duration

timestamp-duration

)

Extract Date Values
EPOCH

Specifies that the number of seconds since 1970-01-01 00:00:00.00 is returned for the date-
expression or timestamp-expression. The value can be positive or negative. This cannot be specified
for a date-duration or timestamp-duration.

MILLENNIUM or MILLENNIUMS
Specifies that the number of full 1000-year periods represented by the year is returned for the date-
expression, timestamp-expression, date-duration, or timestamp-duration. For example, 2 is returned
for a date between 2000-01-01 and 2999-12-31.

404 IBM i: Db2 for i SQL Reference

CENTURY or CENTURIES
Specifies that the number of full 100-year periods represented by the year is returned for the date-
expression, timestamp-expression, date-duration, or timestamp-duration. For example, 20 is returned
for a date between 2000-01-01 and 2099-12-31.

DECADE or DECADES
Specifies that the number of full 10-year periods represented by the year is returned for the
date-expression, timestamp-expression, date-duration, or timestamp-duration. For example, 201 is
returned for a date between 2010-01-01 and 2019-12-31.

YEAR or YEARS
Specifies that the year portion of the date-expression, timestamp-expression, date-duration, or
timestamp-duration is returned. The result is identical to the YEAR scalar function. For more
information, see “YEAR” on page 682.

QUARTER
Specifies that the quarter of the year (1 - 4) is returned for the date-expression or timestamp-
expression. The result is identical to the QUARTER scalar function. For more information, see
“QUARTER” on page 532. This cannot be specified for a date-duration or timestamp-duration.

MONTH or MONTHS
Specifies that the month portion of the date-expression, timestamp-expression, date-duration, or
timestamp-duration is returned. The result is identical to the MONTH scalar function. For more
information, see “MONTH” on page 498.

WEEK
Specifies that the number of the week of the year (1 - 53) is returned for the date-expression or
timestamp-expression. The week starts with Monday. The result is identical to the WEEK_ISO scalar
function. For more information, see “WEEK_ISO” on page 647. This cannot be specified for a date-
duration or timestamp-duration.

DAY or DAYS
Specifies that the day portion of the date-expression, timestamp-expression, date-duration or
timestamp-duration is returned. The result is identical to the DAY scalar function. For more
information, see “DAY” on page 354.

DOW
Specifies that the day of the week, where 1 represents Sunday and 7 represents Saturday, is returned
for the date-expression or timestamp-expression. The result is identical to the DAYOFWEEK scalar
function. For more information, see “DAYOFWEEK” on page 357. This cannot be specified for a
date-duration or timestamp-duration.

DOY
Specifies that the day of the year (1 - 366) is returned for the date-expression or timestamp-
expression. The result is identical to the DAYOFYEAR scalar function. For more information, see
“DAYOFYEAR” on page 359. This cannot be specified for a date-duration or timestamp-duration.

date-expression
An expression that returns the value of either a built-in date, built-in character string, or built-in
graphic string data type.

If date-expression is a character or graphic string, its value must be a valid character-string or graphic-
string representation of a date. For the valid formats of string representations of dates, see “String
representations of datetime values” on page 75.

timestamp-expression
An expression that returns the value of either a built-in timestamp, built-in character string, or built-in
graphic string data type.

If timestamp-expression is a character or graphic string, its value must be a valid character-string
or graphic-string representation of a timestamp. For the valid formats of string representations of
timestamps, see “String representations of datetime values” on page 75.

date-duration
A date duration expressed as a DECIMAL(8,0) number. For the valid formats of datetime durations,
see “Datetime operands and durations” on page 165.

Chapter 4. Built-in functions 405

timestamp-duration
A timestamp duration expressed as a DECIMAL(14+s,s) number, where s is the number of digits of
fractional seconds ranging from 0 to 12. For the valid formats of datetime durations, see “Datetime
operands and durations” on page 165.

Extract Time Values
HOUR or HOURS

Specifies that the hour portion of the time-expression, timestamp-expression, time-duration, or
timestamp-duration is returned. Returns 0 for a date-expression. The result is identical to the HOUR
scalar function. For more information, see “HOUR” on page 426.

MINUTE or MINUTES
Specifies that the minute portion of the time-expression, timestamp-expression, time-duration, or
timestamp-duration is returned. Returns 0 for a date-expression. The result is identical to the MINUTE
scalar function. For more information, see “MINUTE” on page 495.

SECOND or SECONDS
Specifies that the second portion of the time-expression, timestamp-expression, time-duration, or
timestamp-duration is returned. Returns 0 for a date-expression. The result is identical to:

• SECOND(expression, 6) when the data type of expression is a TIME value, a string representation of
a TIME or TIMESTAMP, or a time duration.

• SECOND(expression, s) when the data type of expression is a TIMESTAMP(s) value or a timestamp
duration.

For more information, see “SECOND” on page 568.
MILLISECOND or MILLISECONDS

Specifies the second of the minute, including fractional parts to one thousandth of a second,
multiplied by 1000 is returned (0 - 59999) for the timestamp-expression or timestamp-duration.
Returns 0 for a date-expression, time-expression, or time-duration.

MICROSECOND or MICROSECONDS
Specifies the second of the minute, including fractional parts to one millionth of a second, multiplied
by 1000000 is returned (0 - 59999999) for the timestamp-expression or timestamp-duration. Returns
0 for a date-expression, time-expression, or time-duration.

date-expression
An expression that returns the value of either a built-in date. built-in character string, or built-in
graphic string data type.

If date-expression is a character or graphic string, its value must be a valid character-string or graphic-
string representation of a date. If expression is a valid string representation of a date, it must be one
of the IBM SQL standard formats. For the valid formats of string representations of dates, see “String
representations of datetime values” on page 75.

time-expression
An expression that returns the value of either a built-in time, built-in character string, or built-in
graphic string data type.

If time-expression is a character or graphic string, its value must be a valid character-string or graphic-
string representation of a time. For the valid formats of string representations of times, see “String
representations of datetime values” on page 75.

timestamp-expression
An expression that returns the value of either a built-in timestamp, built-in character string, or built-in
graphic string data type.

If timestamp-expression is a character or graphic string, its value must be a valid character-string
or graphic-string representation of a timestamp. For the valid formats of string representations of
timestamps, see “String representations of datetime values” on page 75.

406 IBM i: Db2 for i SQL Reference

time-duration
A time duration expressed as a DECIMAL(6,0) number. For the valid formats of datetime durations,
see “Datetime operands and durations” on page 165.

timestamp-duration
A timestamp duration expressed as a DECIMAL(14+s,s) number, where s is the number of digits of
fractional seconds ranging from 0 to 12. For the valid formats of datetime durations, see “Datetime
operands and durations” on page 165.

The data type of the result of the function depends on the part of the datetime value that is specified:

• If EPOCH is specified, the data type of result is BIGINT.
• If MILLENNIUM, CENTURY, DECADE, YEAR, QUARTER, MONTH, WEEK, DAY, DOW, DOY, HOUR, MINUTE,

MILLISECOND, or MICROSECOND is specified, the data type of the result is INTEGER.
• If SECOND is specified with a TIMESTAMP(p) value, the data type of the result is DECIMAL(2+p,p) where

p is the fractional seconds precision.
• If SECOND is specified with a TIME value or a string representation of a TIME or TIMESTAMP, the data

type of the result is DECIMAL(8,6).

If the argument can be null, the result can be null; if the argument is null, the result is the null value.

Examples

• Assume the column PRSTDATE has an internal value equivalent to 1988-12-25.

 SELECT EXTRACT(MONTH FROM PRSTDATE)
 FROM PROJECT

This statement returns the integer value 12.
• Assume the timestamp global variable GV1 has the value '2007-02-14 12:15:06.123456'.

 VALUES EXTRACT(MILLISECONDS FROM GV1);

This statement returns the integer value 6123.
• Assume the timestamp global variable GV1 has the value '2007-02-14 12:15:06.123456'.

 VALUES EXTRACT(MICROSECONDS FROM GV1);

This statement returns the integer value 6123456.
• Assume the date global variable GV2 has the value '2013-02-14'.

 VALUES EXTRACT(DECADE FROM GV2);

This statement returns the integer value 201.
• Assume the decimal(6,0) global variable GV3 has the value 123020.

 VALUES EXTRACT(SECONDS FROM GV3);

This statement returns the integer value 20.

Chapter 4. Built-in functions 407

FLOAT
The FLOAT function returns a floating point representation of a number or string.

Numeric to Float

FLOAT (numeric-expression)

String to Float

FLOAT (string-expression)

FLOAT is a synonym for the DOUBLE_PRECISION and DOUBLE functions. For more information, see
“DOUBLE_PRECISION or DOUBLE” on page 392.

408 IBM i: Db2 for i SQL Reference

FLOOR
The FLOOR function returns the largest integer value less than or equal to expression.

FLOOR (expression)

expression
An expression that returns a value of any built-in numeric, character-string, or graphic-string
data type. A string argument is cast to double-precision floating point before evaluating the
function. For more information about converting strings to double-precision floating point, see
“DOUBLE_PRECISION or DOUBLE” on page 392.

The result of the function has the same data type and length attribute as the argument except that
the scale is 0 if the argument is a decimal number. For example, an argument with a data type of
DECIMAL(5,5) will result in DECIMAL(5,0).

If the argument can be null, the result can be null; if the argument is null, the result is the null value.

Note
Results involving DECFLOAT special values: For decimal floating-point values, the special values are
treated as follows:

• FLOOR(NaN) returns NaN.
• FLOOR(-NaN) returns -NaN.
• FLOOR(Infinity) returns Infinity.
• FLOOR(-Infinity) returns -Infinity.
• FLOOR(sNaN) and FLOOR(-sNaN) returns a warning or error.59

Example

• Use the FLOOR function to truncate any digits to the right of the decimal point.

 SELECT FLOOR(SALARY)
 FROM EMPLOYEE

• Use FLOOR on both positive and negative numbers.

 SELECT FLOOR(3.5),
 FLOOR(3.1),
 FLOOR(-3.1),
 FLOOR(-3.5)
 FROM SYSIBM.SYSDUMMY1

This example returns:

3. 3. -4. -4.

respectively.

59 If *YES is specified for the SQL_DECFLOAT_WARNINGS query option, NaN and -NaN are returned
respectively with a warning.

Chapter 4. Built-in functions 409

GENERATE_UNIQUE
The GENERATE_UNIQUE function returns a bit data character string 13 bytes long (CHAR(13) FOR BIT
DATA) that is unique compared to any other execution of the same function. The function is defined as
non-deterministic

GENERATE_UNIQUE ()

The result of the function is a unique value that includes the internal form of the Universal Time,
Coordinated (UTC) and the system serial number. The result cannot be null.

The result of this function can be used to provide unique values in a table. Each successive value will be
greater than the previous value, providing a sequence that can be used within a table. The sequence is
based on the time when the function was executed.

This function differs from using the special register CURRENT TIMESTAMP in that a unique value is
generated for each instance of the function in an SQL statement and each row of a multiple row insert
statement, an insert statement with a fullselect, or an insert statement in a MERGE statement.

The timestamp value that is part of the result of this function can be determined using the TIMESTAMP
function with the result of GENERATE_UNIQUE as an argument.

Examples

• Create a table that includes a column that is unique for each row. Populate this column using the
GENERATE_UNIQUE function. Notice that the UNIQUE_ID column is defined as FOR BIT DATA to
identify the column as a bit data character string.

 CREATE TABLE EMP_UPDATE
 (UNIQUE_ID CHAR(13) FOR BIT DATA,
 EMPNO CHAR(6),
 TEXT VARCHAR(1000))
 INSERT INTO EMP_UPDATE VALUES (GENERATE_UNIQUE(),
 '000020',
 'Update entry 1...')
 INSERT INTO EMP_UPDATE VALUES (GENERATE_UNIQUE(),
 '000050',
 'Update entry 2...')

This table will have a unique identifier for each row provided that the UNIQUE_ID column is always set
using GENERATE_UNIQUE. This can be done by introducing a trigger on the table.

 CREATE TRIGGER EMP_UPDATE_UNIQUE
 NO CASCADE BEFORE INSERT ON EMP_UPDATE
 REFERENCING NEW AS NEW_UPD
 FOR EACH ROW MODE DB2SQL
 SET NEW_UPD.UNIQUE_ID = GENERATE_UNIQUE()

With this trigger, the previous INSERT statements that were used to populate the table can be issued
without specifying a value for the UNIQUE_ID column:

 INSERT INTO EMP_UPDATE(EMPNO, TEXT) VALUES ('000020', 'Update entry 1...')
 INSERT INTO EMP_UPDATE(EMPNO, TEXT) VALUES ('000050', 'Update entry 2...')

The timestamp (in UTC) for when a row was added to EMP_UPDATE can be returned using:

 SELECT TIMESTAMP(UNIQUE_ID), EMPNO, TEXT FROM EMP_UPDATE

Therefore, the table does not need a timestamp column to record when a row is inserted.

410 IBM i: Db2 for i SQL Reference

GET_BLOB_FROM_FILE
The GET_BLOB_FROM_FILE function returns the data from a source stream file or a source physical file.

GET_BLOB_FROM_FILE (string-expression

, integer

)

string-expression
The argument must be a string expression that specifies a path and file name. The file name may be a
name of a source stream file or a source physical file. For a source physical file, the string must be in
the form 'library/file(member)'.

integer
An integer constant that specifies how to handle trailing whitespace when the specified file is a source
physical file. Valid values are:

0 whitespace is returned as it exists in the file

1 trailing whitespace (blanks) is removed except for the first trailing blank

If this argument is not specified for a source physical file, the default is 0. If it is specified for a source
stream file, it is ignored.

The result of the function is a BLOB locator.

The function will read the file specified by the argument with no CCSID conversion and return it as a BLOB
locator. The function must be run under commitment control. The locator will be freed when a COMMIT or
ROLLBACK is performed.

Examples

Register an XML schema document in the XSR registry where the XML schema is in a source stream file.

CALL XSR_REGISTER ('myschemalib', 'myschema', NULL,
 GET_BLOB_FROM_FILE('/home/XML/MySchema.XSD',0), NULL)

Chapter 4. Built-in functions 411

GET_CLOB_FROM_FILE
The GET_CLOB_FROM_FILE function returns the data from a source stream file or a source physical file.

GET_CLOB_FROM_FILE (string-expression

, integer

)

string-expression
The argument must be a string expression that specifies a path and file name. The file name may be a
name of a source stream file or a source physical file. For a source physical file, the string must be in
the form 'library/file(member)'.

integer
An integer constant that specifies how to handle trailing whitespace when the specified file is a source
physical file. Valid values are:

0 whitespace is returned as it exists in the file

1 trailing whitespace (blanks) is removed except for the first trailing blank

If this argument is not specified for a source physical file, the default is 0. If it is specified for a source
stream file, it is ignored.

The result of the function is a CLOB locator.

The function will read the file specified by the argument, convert the data to the default job CCSID, and
return it as a CLOB locator. The function must be run under commitment control. The locator will be freed
when a COMMIT or ROLLBACK is performed.

Examples

Assign the data contained in the source file to host variable HV1. The data will be converted to the default
job CCSID and trailing blanks from each line of the source file will be removed.

 SET :HV1 = GET_CLOB_FROM_FILE('MYLIB/MYFILE(MYMBR)',1)

412 IBM i: Db2 for i SQL Reference

GET_DBCLOB_FROM_FILE
The GET_DBCLOB_FROM_FILE function returns the data from a source stream file or a source physical
file.

GET_DBCLOB_FROM_FILE (string-expression

, integer

)

string-expression
The argument must be a string expression that specifies a path and file name. The file name may be a
name of a source stream file or a source physical file. For a source physical file, the string must be in
the form 'library/file(member)'.

integer
An integer constant that specifies how to handle trailing whitespace when the specified file is a source
physical file. Valid values are:

0 whitespace is returned as it exists in the file

1 trailing whitespace (blanks) is removed except for the first trailing blank

If this argument is not specified for a source physical file, the default is 0. If it is specified for a source
stream file, it is ignored.

The result of the function is a DBCLOB locator.

The function will read the file specified by the argument, convert the data to the double-byte CCSID
associated with the default CCSID, and return it as a DBCLOB locator. The function must be run under
commitment control. The locator will be freed when a COMMIT or ROLLBACK is performed.

Examples

Assign the data contained in the source stream file to host variable HV1. The data will be converted to the
double-byte CCSID associated with the default CCSID.

SET :HV1 = GET_DBCLOB_FROM_FILE('/home/XML/MySchema.XSD')

Chapter 4. Built-in functions 413

GET_XML_FILE
The GET_XML_FILE function returns the data from a source stream file or a source physical file.

GET_XML_FILE (string-expression)

string-expression
The argument must be a string expression that specifies a path and file name. The file name may be a
name of a source stream file or a source physical file. For a source physical file, the string must be in
the form 'library/file(member)'.

The result of the function is a BLOB locator.

The function will read the file specified by the argument and convert the data to UTF-8. If the file does not
contains an XML declaration, one will be added. It will return it as a BLOB locator. The function must be
run under commitment control. The locator will be freed when a COMMIT or ROLLBACK is performed.

Examples

Register an XML schema document in the XSR registry where the XML schema is in a source stream file.

CALL XSR_REGISTER ('myschemalib', 'myschema', NULL,
 GET_XML_FILE('/home/XML/MySchema.XSD'), NULL)

414 IBM i: Db2 for i SQL Reference

GETHINT
The GETHINT function will return the password hint if one is found in the encrypted-data. A password hint
is a phrase that will help data owners remember passwords (For example, 'Ocean' as a hint to remember
'Pacific').

GETHINT (encrypted-data)

encrypted-data
An expression that must be a string expression that returns a complete, encrypted data value of a
CHAR FOR BIT DATA, VARCHAR FOR BIT DATA, BINARY, VARBINARY, or BLOB built-in data type. The
data string must have been encrypted using the ENCRYPT_RC2 or ENCRYPT_TDES function.

The data type of the result is VARCHAR(32). The actual length of the result is the actual length of the hint
that was provided when the data was encrypted.

The result can be null. If the argument is null or if a hint was not added to the encrypted-data by the
ENCRYPT_RC2 or ENCRYPT_TDES function, the result is the null value.

The CCSID of the result is the default CCSID of the current server.

Example

• The hint 'Ocean' is stored to help the user remember the encryption password 'Pacific'.

 INSERT INTO EMP1 (SSN) VALUES ENCRYPT_RC2('289-46-8832', 'Pacific', 'Ocean')

 SELECT GETHINT(SSN)
 FROM EMP1

The GETHINT function returns the original hint value 'Ocean'.

Chapter 4. Built-in functions 415

GRAPHIC
The GRAPHIC function returns a fixed-length graphic-string representation of a string expression.

Integer to Graphic

GRAPHIC (integer-expression)

Decimal to GRAPHIC

GRAPHIC (decimal-expression

, decimal-character

)

Floating-point to GRAPHIC

GRAPHIC (floating-point-expression

, decimal-character

)

Decimal floating-point to GRAPHIC

GRAPHIC (decimal-floating-point-expression

, decimal-character

)

Character to Graphic

GRAPHIC (character-expression

, length

DEFAULT , integer

)

Graphic to Graphic

GRAPHIC (graphic-expression

, length

DEFAULT , integer

)

Datetime to Graphic

GRAPHIC (datetime-expression

, ISO

USA

EUR

JIS

LOCAL

)

The GRAPHIC function returns a graphic-string representation of:

• An integer number if the first argument is a SMALLINT, INTEGER, or BIGINT
• A decimal number if the first argument is a packed or zoned decimal number
• A double-precision floating-point number if the first argument is a DOUBLE or REAL
• A decimal floating-point number if the first argument is a DECFLOAT
• A character string if the first argument is any type of character string
• A graphic string if the first argument is any type of graphic string

416 IBM i: Db2 for i SQL Reference

• A date value if the first argument is a DATE.
• A time value if the first argument is a TIME.
• A timestamp value if the first argument is a TIMESTAMP.

The result of the function is a fixed-length graphic string (GRAPHIC).

If the first argument can be null, the result can be null. If the first argument is null, the result is the null
value.

Integer to Graphic
integer-expression

An expression that returns a value that is an integer data type (either SMALLINT, INTEGER, or
BIGINT).

The result is a fixed-length graphic string of the argument in the form of an SQL integer constant. The
result consists of n characters that are the significant digits that represent the value of the argument with
a preceding minus sign if the argument is negative. It is left justified.

• If the argument is a small integer, the length attribute of the result is 6.
• If the argument is a large integer, the length attribute of the result is 11.
• If the argument is a big integer, the length attribute of the result is 20.

The result is the smallest number of characters that can be used to represent the value of the argument.
Leading zeroes are not included. If the argument is negative, the first character of the result is a minus
sign. Otherwise, the first character is a digit or the decimal-character.

The CCSID of the result is 1200 (UTF-16).

Decimal to Graphic
decimal-expression

An expression that returns a value that is a packed or zoned decimal data type (either DECIMAL or
NUMERIC). If a different precision and scale is wanted, the DECIMAL scalar function can be used to
make the change.

decimal-character
Specifies the single-byte character constant that is used to delimit the decimal digits in the result
character string. The character must be a period or comma. If the second argument is not specified,
the decimal point is the default decimal point. For more information, see “Decimal point” on page
116.

The result is a fixed-length graphic string representation of the argument. The result includes a decimal
character and up to p digits, where p is the precision of the decimal-expression with a preceding minus
sign if the argument is negative. Leading zeros are not returned. Trailing zeros are returned. If the scale of
decimal-expression is zero, the decimal character is not returned.

The length attribute of the result is 2+p where p is the precision of the decimal-expression. The result
is the smallest number of characters that can be used to represent the result. Leading zeros are not
included. If the argument is negative, the result begins with a minus sign. Otherwise, the result begins
with a digit or the decimal-character.

The CCSID of the result is 1200 (UTF-16).

Floating-point to Graphic
floating-point expression

An expression that returns a value that is a floating-point data type (DOUBLE or REAL).
decimal-character

Specifies the single-byte character constant that is used to delimit the decimal digits in the result
character string. The character must be a period or comma. If the second argument is not specified,

Chapter 4. Built-in functions 417

the decimal point is the default decimal point. For more information, see “Decimal point” on page
116.

The result is a fixed-length graphic string representation of the argument in the form of a floating-point
constant.

The length attribute of the result is 24. The result is the smallest number of characters that can represent
the value of the argument such that the mantissa consists of a single digit other than zero followed by the
decimal-character and a sequence of digits. If the argument is negative, the first character of the result is
a minus sign; otherwise, the first character is a digit or the decimal-character. If the argument is zero, the
result is 0E0.

The CCSID of the result is 1200 (UTF-16).

Decimal floating-point to Graphic
decimal-floating-point expression

An expression that returns a value that is a built-in decimal floating-point data type.
decimal-character

Specifies the single-byte character constant that is used to delimit the decimal digits in the result
character string. The character must be a period or comma. If the second argument is not specified,
the decimal point is the default decimal point. For more information, see “Decimal point” on page
116.

The result is a fixed-length graphic string representation of the argument in the form of a floating-point
constant.

The length attribute of the result is 42. The actual length of the result is the smallest number of
characters that represents the value of the argument, including the sign, digits, and decimal-character.
Trailing zeros are significant. If the argument is negative, the first character of the result is a minus sign;
otherwise, the first character is a digit or the decimal-character. If the argument is zero, the result is 0.

If the DECFLOAT value is Infinity, sNaN, or NaN, the strings 'INFINITY', 'SNAN', and 'NAN', respectively,
are returned. If the special value is negative, a minus sign will be the first character in the string. The
DECFLOAT special value sNaN does not result in an exception when converted to a string.

The CCSID of the result is 1200 (UTF-16).

Character to Graphic
character-expression

An expression that returns a value that is a built-in character-string data type. It cannot be a CHAR or
VARCHAR bit data. If the expression is an empty string or the EBCDIC string X'0E0F', the result is a
single double-byte blank.

length
An integer constant that specifies the length attribute of the result and must be an integer constant
between 1 and 16383 if the first argument is not nullable or between 1 and 16382 if the first
argument is nullable. If the length of character-expression is less than the length specified, the result
is padded with double-byte blanks to the length of the result.

If length is not specified, or if DEFAULT is specified, the length attribute of the result is the same as the
length attribute of the first argument.

Each character of the argument determines a character of the result. If the length attribute of
the resulting fixed-length string is less than the actual length of the first argument, truncation is
performed and no warning is returned.

integer
An integer constant that specifies the CCSID of the result. It must be a DBCS, UTF-16, or UCS-2
CCSID. The CCSID cannot be 65535. If the CCSID represents Unicode graphic data, each character of
the argument determines a character of the result. The nth character of the result is the UTF-16 or
UCS-2 equivalent of the nth character of the argument.

418 IBM i: Db2 for i SQL Reference

If integer is not specified then the CCSID of the result is determined by a mixed CCSID. Let M denote
that mixed CCSID.

In the following rules, S denotes one of the following:

• If the string expression is a host variable containing data in a foreign encoding scheme, S is the
result of the expression after converting the data to a CCSID in a native encoding scheme. (See
“Character conversion” on page 28 for more information.)

• If the string expression is data in a native encoding scheme, S is that string expression.

M is determined as follows:

• If the CCSID of S is a mixed CCSID, M is that CCSID.
• If the CCSID of S is an SBCS CCSID:

– If the CCSID of S has an associated mixed CCSID, M is that CCSID.
– Otherwise the operation is not allowed.

The following table summarizes the result CCSID based on M.

M Result CCSID Description DBCS Substitution Character

930 300 Japanese EBCDIC X'FEFE'

933 834 Korean EBCDIC X'FEFE'

935 837 S-Chinese EBCDIC X'FEFE'

937 835 T-Chinese EBCDIC X'FEFE'

939 300 Japanese EBCDIC X'FEFE'

5026 4396 Japanese EBCDIC X'FEFE'

5035 4396 Japanese EBCDIC X'FEFE'

The equivalence of SBCS and DBCS characters depends on M. Regardless of the CCSID, every double-
byte code point in the argument is considered a DBCS character, and every single-byte code point
in the argument is considered an SBCS character with the exception of the EBCDIC mixed data shift
codes X'0E' and X'0F'.

• If the nth character of the argument is a DBCS character, the nth character of the result is that DBCS
character.

• If the nth character of the argument is an SBCS character that has an equivalent DBCS character, the
nth character of the result is that equivalent DBCS character.

• If the nth character of the argument is an SBCS character that does not have an equivalent DBCS
character, the nth character of the result is the DBCS substitution character.

Graphic to Graphic
graphic-expression

An expression that returns a value of a built-in graphic-string data type.
length

An integer constant that specifies the length attribute of the result and must be an integer constant
between 1 and 16383 if the first argument is not nullable or between 1 and 16382 if the first
argument is nullable. If the length of graphic-expression is less than the length specified, the result is
padded with double-byte blanks to the length of the result.

If the second argument is not specified, or if DEFAULT is specified, the length attribute of the result is
the same as the length attribute of the first argument.

If the length of the graphic-expression is greater than the length attribute of the result, truncation is
performed. A warning (SQLSTATE 01004) is returned unless the truncated characters were all blanks.

Chapter 4. Built-in functions 419

integer
An integer constant that specifies the CCSID of the result. It must be a DBCS, UTF-16, or UCS-2
CCSID. The CCSID cannot be 65535.

If integer is not specified then the CCSID of the result is the CCSID of the first argument.

Datetime to Graphic
datetime-expression

An expression that is one of the following three built-in data types
date

The result is the graphic-string representation of the date in the format specified by the second
argument. If the second argument is not specified, the format used is the default date format. If
the format is ISO, USA, EUR, or JIS, the length of the result is 10. Otherwise the length of the
result is the length of the default date format. For more information see “String representations of
datetime values” on page 75.

time
The result is the graphic-string representation of the time in the format specified by the second
argument. If the second argument is not specified, the format used is the default time format. The
length of the result is 8. For more information see “String representations of datetime values” on
page 75.

timestamp
The second argument is not applicable and must not be specified.

The result is the graphic-string representation of the timestamp. If datetime-expression is a
TIMESTAMP(0), the length of the result is 19. If the data type of datetime-expression is a
TIMESTAMP(n), the length of the result is 20+n. Otherwise, the length of the result is 26.

The CCSID of the result is 1200 (UTF-16).
ISO, EUR, USA, or JIS

Specifies the date or time format of the resulting graphic string. For more information, see “String
representations of datetime values” on page 75.

LOCAL
Specifies that the date or time format of the resulting graphic string should come from the DATFMT,
DATSEP, TIMFMT, and TIMSEP attributes of the job at the current server.

Note
Syntax alternatives: The CAST specification should be used to increase the portability of applications
when the first argument is a string and the length attribute is specified. For more information, see “CAST
specification” on page 176.

Example

• Using the EMPLOYEE table, set the host variable DESC (GRAPHIC(24)) to the GRAPHIC equivalent of the
first name (FIRSTNME) for employee number (EMPNO) '000050'.

 SELECT GRAPHIC(VARGRAPHIC(FIRSTNME))
 INTO :DESC
 FROM EMPLOYEE
 WHERE EMPNO = '000050'

420 IBM i: Db2 for i SQL Reference

GREATEST
The GREATEST scalar function returns the maximum value in a set of values.

GREATEST (expression , expression)

The GREATEST function is identical to the MAX function. For more information, see “MAX” on page 490.

Chapter 4. Built-in functions 421

HASH
The HASH function returns the partition number of a set of values.

HASH (

,

expression)

Also see “HASHED_VALUE” on page 423. For more information about partition numbers, see the DB2
Multisystem topic collection.

expression
An expression that returns a value of any built-in data type except date, time, timestamp, floating-
point, XML, or DataLink values.

The result of the function is a large integer with a value between 0 and 1023.

If any of the arguments are null, the result is zero. The result cannot be null.

Example

• Use the HASH function to determine what the partitions would be if the partitioning key was composed
of EMPNO and LASTNAME. This query returns the partition number for every row in EMPLOYEE.

 SELECT HASH(EMPNO, LASTNAME)
 FROM EMPLOYEE

422 IBM i: Db2 for i SQL Reference

HASHED_VALUE
The HASHED_VALUE function returns the partition map index number of a row obtained by applying the
hashing function on the partitioning key value of the row.

HASHED_VALUE (table-designator)

Also see the “HASH” on page 422 function. If the argument identifies a non-distributed table, the value
0 is returned. For more information about partition maps and partitioning keys, see the DB2 Multisystem
topic collection.

table-designator
A table designator of the subselect. For more information about table designators, see “Table
designators” on page 133.

In SQL naming, the table name may be qualified. In system naming, the table name cannot be
qualified.

The table-designator must not identify a collection-derived-table, a VALUES clause, a table-function, or
a data-change-table-reference.

If the argument identifies a view, common table expression, or nested table expression, the function
returns the partition map index number of its base table. If the argument identifies a view, common
table expression, or nested table expression derived from more than one base table, the function
returns the partition map index number of the first table in the outer subselect of the view, common
table expression, or nested table expression.

The argument must not identify a view, common table expression, or nested table expression
whose outer fullselect includes an aggregate function, a GROUP BY clause, a HAVING clause,
a UNION, INTERSECT, or EXCEPT clause, DISTINCT clause, VALUES clause, or a table-function.
The HASHED_VALUE function cannot be specified in a SELECT clause if the fullselect contains an
aggregate function, a GROUP BY clause, or a HAVING clause

The data type of the result is a large integer with a value between 0 and 1023. The result can be null.

Note
Syntax alternatives: PARTITION is a synonym for HASHED_VALUE.

Example

• Select the employee number (EMPNO) from the EMPLOYEE table for all rows where the partition map
index number is equal to 100.

 SELECT EMPNO
 FROM EMPLOYEE
 WHERE HASHED_VALUE(EMPLOYEE) = 100

Chapter 4. Built-in functions 423

HEX
The HEX function returns a hexadecimal representation of a value.

HEX (expression)

expression
An expression that returns a value of any built-in data type other than a character or binary string with
a length attribute greater than 16 336 or a graphic string with a length attribute greater than 8168.

The result of the function is a character string. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

The result is a string of hexadecimal digits, the first two digits represent the first byte of the argument,
the next two digits represent the second byte of the argument, and so forth. If the argument is a datetime
value, the result is the hexadecimal representation of the internal form of the argument.60

If the argument is not a graphic string, the actual length of the result is twice the length of the argument.
If the argument is a graphic string, the actual length of the result is four times the length of the argument.
If the data type of the result is varying length, the length is limited to the maximum length of the data
type. The length of the argument is the value that would be returned if the argument were passed to the
LENGTH scalar function. For more information, see “LENGTH” on page 474.

The data type and length attribute of the result depends on the attributes of the argument:

• If the argument is not a string, the result is CHAR with a length attribute that is twice the length of the
argument.

• If the argument is a fixed-length character string with a length attribute that is less than one half the
maximum length attribute of CHAR, the result is CHAR with a length attribute that is twice the length
attribute of the argument. If the argument is a fixed-length graphic string with a length attribute that is
less than one fourth the maximum length attribute of CHAR, the result is CHAR with a length attribute
that is four times the length attribute of the argument. For more information about the product-specific
maximum length, see Table 129 on page 1645.

• Otherwise, the result is VARCHAR whose length attribute depends on the following:

– If the argument is a character or binary string, the length attribute of the result is the minimum of
twice the length attribute of the argument and the maximum length of the data type.

– If the argument is a graphic string, the length attribute of the result is the minimum of four times the
length attribute of the argument and the maximum length of the data type.

The length attribute of the result cannot be greater than the product-specific length attribute of CHAR or
VARCHAR. See Table 129 on page 1645 for more information.

The CCSID of the string is the default SBCS CCSID at the current server.

Example

• Use the HEX function to return a hexadecimal representation of the education level for each employee.

 SELECT FIRSTNME, MIDINIT, LASTNAME, HEX(EDLEVEL)
 FROM EMPLOYEE

60 This hexadecimal representation for DATE, TIMESTAMP, and NUMERIC data types is different from other
database products because the internal form for these data types is different.

424 IBM i: Db2 for i SQL Reference

HEXTORAW
The HEXTORAW function returns a binary string representation of a character string that has been
formatted using a format-string.

HEXTORAW (expression

, format-string

)

The HEXTORAW function is identical to VARBINARY_FORMAT except that if the length of expression is an
odd number of characters, the string is padded on the left with one '0' character. For more information,
see “VARBINARY_FORMAT” on page 621.

Chapter 4. Built-in functions 425

HOUR
The HOUR function returns the hour part of a value.

HOUR (expression)

expression
An expression that returns a value of one of the following built-in data types: a date, a time, a
timestamp, a character string, a graphic string, or a numeric data type.

• If expression is a character or graphic string, its value must be a valid string representation of a
datetime value. If expression is a valid string representation of a date, it must be in one of the IBM
SQL standard formats. For the valid formats of string representations of datetime values, see “String
representations of datetime values” on page 75.

• If the argument is a DATE, it is first converted to a TIMESTAMP(0) value, assuming a time of exactly
midnight (00.00.00).

• If expression is a number, it must be a time duration or timestamp duration. For the valid formats of
datetime durations, see “Datetime operands and durations” on page 165.

The result of the function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

The other rules depend on the data type of the argument:

• If the argument is a date, time, timestamp, or valid character-string representation of a date, time, or
timestamp:

The result is the hour part of the value, which is an integer between 0 and 24.
• If the argument is a time duration or timestamp duration:

The result is the hour part of the value, which is an integer between -99 and 99. A nonzero result has the
same sign as the argument.

Example

• Using the CL_SCHED sample table, select all the classes that start in the afternoon.

 SELECT *
 FROM CL_SCHED
 WHERE HOUR(STARTING) BETWEEN 12 AND 17

426 IBM i: Db2 for i SQL Reference

HTTP_DELETE
The HTTP_DELETE scalar function deletes a text-based resource from the specified URL through an HTTP
DELETE request.

HTTP_DELETE (url

, options

)

url
An expression that returns a built-in character string or graphic string data type that specifies the URL
of the resource being accessed.
The only supported protocols in the URL are http:// and https://. HTTP basic authentication in the form
https://userid:password@ cannot be specified in the URL. Instead, the basicAuth option must be used
to specify the userid and password for basic authentication.

options
An expression that returns a built-in character string or graphic string data type. This string must be
formatted as a JSON object containing the options, including headers, for the request. See “HTTP
options” on page 428 for the list of options.
If no options are provided, the default options are used.

The result of the function is a CLOB(2G) CCSID 1208 containing the response message.

Notes
For more information about using the HTTP functions see HTTP functions overview.

To return the header information from the HTTP request, use the HTTP_DELETE_VERBOSE table function:
“HTTP_DELETE_VERBOSE” on page 689

Example

• Send a HTTP DELETE request to https://www.example.com/delete using the certificate store /home/
javaTrustStore/fromJava.KDB and return the result.

VALUES QSYS2.HTTP_DELETE('https://www.example.com/delete',
 '{"sslCertificateStoreFile":"/home/javaTrustStore/fromJava.KDB"}')

Chapter 4. Built-in functions 427

HTTP_GET
The HTTP_GET scalar function retrieves a text-based resource from the specified URL through an HTTP
GET request.

HTTP_GET (url

, options

)

url
An expression that returns a built-in character string or graphic string data type that specifies the URL
of the resource being accessed.
The only supported protocols in the URL are http:// and https://. HTTP basic authentication in the form
https://userid:password@ cannot be specified in the URL. Instead, the basicAuth option must be used
to specify the userid and password for basic authentication.

options
An expression that returns a built-in character string or graphic string data type. This string must be
formatted as a JSON object containing the options, including headers, for the request. See “HTTP
options” on page 428 for the list of options.
If no options are provided, the default options are used.

The result of the function is a CLOB(2G) CCSID 1208 containing the response message.

Notes
For more information about using the HTTP functions see HTTP functions overview.

To return the header information from the HTTP request, use the HTTP_GET_VERBOSE table function:
“HTTP_GET_VERBOSE” on page 690

Example

• Retrieve service information from the IBM PSP website using a certificate store created from a Java
certificate store. See SSL considerations for more information.

VALUES QSYS2.HTTP_GET(
 'https://www.ibm.com/support/pages/sites/default/files/inline-files/xmldoc.xml',
 '{"sslCertificateStoreFile":"/home/javaTrustStore/fromJava.KDB"}');

HTTP options
Each HTTP function has a parameter for passing options to be used on the request. These options include
the setting of the HTTP headers. This string must be a JSON object in the following format:

{"option":"option-setting","option":"option-setting"}

For example, using the option string

{"header":"User-Agent,IBM i HTTP function"}

will cause

"User-Agent": "IBM i HTTP function"

to be included in the HTTP header sent to the server.

The following options can be set in the JSON object:

428 IBM i: Db2 for i SQL Reference

Table 52. HTTP options

Option Possible settings Default setting Description

basicAuth userid,password Sets the userid and password that will be used for HTTP
basic authentication.

To prevent exposure of the userid and password, this
option is only allowed when the URL begins with https:.

connectTimeout 0-2000000 Dependent on TCP/IP system
settings

Sets the connect timeout value. If timeout is greater than
zero, the value will be used as the maximum time, in
seconds, to wait for a connection to complete.

header headername,headervalue Sets an HTTP header in the HTTP request with the
specified headername and headervalue.

This option can be specified multiple times to set multiple
headers.

A common headers that may be required is the Accept
header. This header can be set in the following way:
"header":"Accept,*"

By default, only the Host and User-Agent HTTP header
are set for all requests. The Host is set using the
host information in the URL. The User-Agent header
defaults to curl/XX.YY where XX.YY are some version
numbers. This value was chosen to provide anonymity
when accessing web services.

If the content-type HTTP header is not set for a POST or
PUT operation, the default content type that will be used
is:

Content-Type: text/xml; charset=UTF-8

To correctly use these headers, consult the appropriate
Web server and RFC documentation on the use of HTTP
request headers. Examples of RFCs are RFC2616 and
RFC7231.

ioTimeout 0-2000000 Dependent on TCP/IP system
settings

Sets how long to wait for a read request to complete. If
timeout is greater than zero, the value will be used as the
maximum time, in seconds, to wait for a read request to
complete.

proxy host,port Sets the HTTP proxy information.

proxyAuth userid,password Sets the HTTP proxy authentication information.

To prevent exposure of the userid and password, this
option is only allowed when the proxySsl option is true.

proxySsl true
false

true Sets whether a secure (SSL) connection should be used
when connecting to the proxy server. A value of true
indicates that the transport will connect to the proxy
server using a secure channel. A value of false indicates
that the transport will connect to the proxy server using an
unsecure channel.

redirect 0-2000000 0 Specifies the number of HTTP redirects that will be
followed. If the number is greater than zero, HTTP
redirects will be followed up to the number specified. If
the value is less than one, HTTP redirects will not be
followed.

signalErrors true
false

false Indicates whether an HTTP error should be signaled as
an SQLException. This will be seen as SQLSTATE 38501,
SQLCODE -443.

sslCertificateStoreFile file /QIBM/USERDATA/ICSS/
CERT/SERVER/DEFAULT.KDB

Specifies the name of the certificate store file to be used
for the secure session or SSL environment. This parameter
is ignored if the sslApplicationID option is set to a value.

If SSL communication is to be done by using a path to
a keystore file, the user profile the application is running
under must have authority to the file.

• Execute (*X) data authority to each directory preceding
the stream file being read and

• Read (*R) data authority to the stream file

This option is only used when the URL begins with https:.

Chapter 4. Built-in functions 429

https://www.ibm.com/links?url=https%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc2616
https://www.ibm.com/links?url=https%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc7231

Table 52. HTTP options (continued)

Option Possible settings Default setting Description

sslCertificateStorePassword password Specifies the password for the certificate store file to be
used for the secure session or SSL environment. If the
option is not passed or is set to the null string, the internal
stash file associated with the user profile that is being
used to run the application is used as long as the user has
authority to the certificate store file and the password has
been used one time on the system. This option is ignored if
the sslApplicationID option is set to a value.

This option is only used when the URL begins with https:.

sslCertificateLabel label Specifies the label associated with the certificate in the
certificate store to be used for the secure session or SSL
environment. If the option is not passed or is set to the
null string, the default certificate label in the specified
certificate store file is used for the SSL environment. This
option is ignored if the sslApplicationID option is set to a
value.

This option is only used when the URL begins with https:.

sslTLS11 ENABLE
NONE

NONE Enable or disable the TLS Version 1.1 ciphers. A value of
NONE will disable the ciphers; any other value will enable
the ciphers.

This option is only used when the URL begins with https:.

sslTLS12 ENABLE
NONE

ENABLE Enable or disable the TLS Version 1.2 ciphers. A value of
NONE will disable the ciphers; any other value will enable
the ciphers.

This option is only used when the URL begins with https:.

sslTLS13 ENABLE
NONE

ENABLE Enable or disable the TLS Version 1.3 ciphers. A value of
NONE will disable the ciphers; any other value will enable
the ciphers.

This option is only used when the URL begins with https:.

sslTolerate true
false

false Tolerate soft validation errors (expired certificate or
certificate not in certificate store). Specify a value of true
to tolerate soft validation errors, or false to not tolerate
soft validation errors.

Warning: Enabling this option allows man-in-the-middle
attacks to occur and is not recommended.

This option is only used when the URL begins with https:.

sslApplicationId id Application ID to use for the SSL environment.

This option is only used when the URL begins with https:.

sslDomainName name Set using hostname present in
https: URL

Fully qualified domain name that will be used as Server
Name Indication (SNI) as defined by RFC 6066.

This option is only used when the URL begins with https:.

sslSniCritical true
false

false A value of true indicates that the SNI request is critical
and thus the server must support the SNI extension.
Otherwise, the secure connection will fail if server does
not send the extension. A value of false indicates that the
server does not need to support the SNI extension.

This option is only used when the URL begins with https:.

Some of the options can expose sensitive information such as passwords. A number of best practices can
be use to prevent the sensitive information from being exposed in the SQL statement text, which may be
visible using DBMON. Here are some examples of best practices to protect the password.

1. Use a global variable and concatenate the global values when the SQL Statement is executed.

CREATE VARIABLE MYLIB.HTTP_PW VARCHAR(30);
SET MYLIB.HTTP_PW = 'http_pwd';
VALUES QSYS2.HTTP_GET('https://www.somesite.com/authorized_info.html',
'{"basicAuth":"userid,' CONCAT MYLIB.HTTP_PW CONCAT '"}');

2. For interfaces that support a parameter marker, set the password using a parameter marker. Here is an
QSHELL example using the JDBC client provided in jt400.jar.

430 IBM i: Db2 for i SQL Reference

java -jar /qibm/proddata/os400/jt400/lib/java6/jt400.jar jdbc:db2:localhost
!PREPARE select QSYS2.HTTP_GET('https://www.somesite.com/authorized_info.html',
 '{"basicAuth":"userid,' CONCAT ? CONCAT '"}') from
sysibm.sysdummy1
!setParm 1,http_pwd
!executeQuery

3. Store passwords in a table, protected with a column mask.

CREATE MYLIB.TABLE PASSWORDS (TYPE VARCHAR(20), PWD_VALUE VARCHAR(100) CCSID 37);

CREATE MASK MYLIB.PASSWORD_MASK ON MYLIB.PASSWORDS
FOR COLUMN PWD_VALUE RETURN
CASE WHEN (VERIFY_GROUP_FOR_USER(SESSION_USER,'<my user id>') = 1)
THEN PWD_VALUE
ELSE 'Sorry' END
ENABLE;

ALTER TABLE MYLIB.PASSWORDS
ACTIVATE COLUMN ACCESS CONTROL;

INSERT INTO MYLIB.PASSWORDS VALUES ('HTTP', 'My secure password');

VALUES QSYS2.HTTP_GET('https://www.somesite.com/authorized_info.html',
 '{"basicAuth":"userid,' CONCAT
 (SELECT PWD_VALUE FROM MYLIB.PASSWORDS WHERE TYPE = 'HTTP') CONCAT
 '"}');

Chapter 4. Built-in functions 431

HTTP_PATCH
The HTTP_PATCH scalar function updates a text-based resource under the specified URL through an HTTP
PATCH request.

HTTP_PATCH (url , request-message

, options

)

url
An expression that returns a built-in character string or graphic string data type that specifies the URL
of the resource being accessed.
The only supported protocols in the URL are http:// and https://. HTTP basic authentication in the form
https://userid:password@ cannot be specified in the URL. Instead, the basicAuth option must be used
to specify the userid and password for basic authentication.

request-message
An expression that returns a built-in character string or graphic string data type that specifies the data
to update at the specified URL.

options
An expression that returns a built-in character string or graphic string data type. This string must be
formatted as a JSON object containing the options, including headers, for the request. See “HTTP
options” on page 428 for the list of options.
If no options are provided, the default options are used.

The result of the function is a CLOB(2G) CCSID 1208 containing the response message.

Notes
For more information about using the HTTP functions see HTTP functions overview.

To return the header information from the HTTP request, use the HTTP_PATCH_VERBOSE table function:
“HTTP_PATCH_VERBOSE” on page 691

Example

• Send a HTTP PATCH request to https://www.example.com/users sending 'ABC' and using the certificate
store /home/javaTrustStore/fromJava.KDB and return the result.

VALUES QSYS2.HTTP_PATCH('https://www.example.com/users',
 'ABC',
 '{"sslCertificateStoreFile":"/home/javaTrustStore/fromJava.KDB"}');

432 IBM i: Db2 for i SQL Reference

HTTP_POST
The HTTP_POST scalar function updates a text-based resource under the specified URL through an HTTP
POST request.

HTTP_POST (url , request-message

, options

)

url
An expression that returns a built-in character string or graphic string data type that specifies the URL
of the resource being accessed.
The only supported protocols in the URL are http:// and https://. HTTP basic authentication in the form
https://userid:password@ cannot be specified in the URL. Instead, the basicAuth option must be used
to specify the userid and password for basic authentication.

request-message
An expression that returns a built-in character string or graphic string data type that specifies the data
to update at the specified URL.

options
An expression that returns a built-in character string or graphic string data type. This string must be
formatted as a JSON object containing the options, including headers, for the request. See “HTTP
options” on page 428 for the list of options.
If no options are provided, the default options are used.

The result of the function is a CLOB(2G) CCSID 1208 containing the response message.

Notes
For more information about using the HTTP functions see HTTP functions overview.

To return the header information from the HTTP request, use the HTTP_POST_VERBOSE table function:
“HTTP_POST_VERBOSE” on page 692

Example

• Send a HTTP POST request to https://www.example.com/users sending 'ABC' and using the certificate
store /home/javaTrustStore/fromJava.KDB and return the result.

VALUES QSYS2.HTTP_POST('https://www.example.com/users',
 'ABC',
 '{"sslCertificateStoreFile":"/home/javaTrustStore/fromJava.KDB"}');

Chapter 4. Built-in functions 433

HTTP_PUT
The HTTP_PUT scalar function retrieves a text-based resource from the specified URL through an HTTP
PUT request.

HTTP_PUT (url , request-message

, options

)

url
An expression that returns a built-in character string or graphic string data type that specifies the URL
of the resource being accessed.
The only supported protocols in the URL are http:// and https://. HTTP basic authentication in the form
https://userid:password@ cannot be specified in the URL. Instead, the basicAuth option must be used
to specify the userid and password for basic authentication.

request-message
An expression that returns a built-in character string or graphic string data type that specifies the data
to update at the specified URL.

options
An expression that returns a built-in character string or graphic string data type. This string must be
formatted as a JSON object containing the options, including headers, for the request. See “HTTP
options” on page 428 for the list of options.
If no options are provided, the default options are used.

The result of the function is a CLOB(2G) CCSID 1208 containing the response message.

Notes
For more information about using the HTTP functions see HTTP functions overview.

To return the header information from the HTTP request, use the HTTP_PUT_VERBOSE table function:
“HTTP_PUT_VERBOSE” on page 693

Example

• Send a HTTP PUT request to https://www.example.com/users sending 'ABC' and using the certificate
store /home/javaTrustStore/fromJava.KDB and return the result.

VALUES QSYS2.HTTP_PUT('https://www.example.com/users',
 'ABC',
 '{"sslCertificateStoreFile":"/home/javaTrustStore/fromJava.KDB"}');

434 IBM i: Db2 for i SQL Reference

IDENTITY_VAL_LOCAL
IDENTITY_VAL_LOCAL is a non-deterministic function that returns the most recently assigned value for an
identity column.

IDENTITY_VAL_LOCAL ()

The function has no input parameters. The result is a DECIMAL(31,0) regardless of the actual data type of
the identity column that the result value corresponds to.

The value returned is the value that was assigned to the identity column of the table identified in the
most recent insert operation (specified in either an INSERT statement or a MERGE statement). The insert
operation has to be issued at the same level; that is, the value has to be available locally within the
level at which it was assigned until replaced by the next assigned value. A new level is initiated when a
trigger, function, or stored procedure is invoked. A trigger condition is at the same level as the associated
triggered action.

The assigned value can be a value supplied by the user (if the identity column is defined as GENERATED
BY DEFAULT) or an identity value that was generated by the database manager.

The result can be null. The result is null if an insert operation has not been issued for a table containing
an identity column at the current processing level. This includes invoking the function in a before or after
insert trigger.

The result of the IDENTITY_VAL_LOCAL function is not affected by the following statements:

• An insert operation for a table which does not contain an identity column
• An UPDATE statement
• A COMMIT statement
• A ROLLBACK statement

Notes
The following notes explain the behavior of the function when it is invoked in various situations:

Invoking the function within the VALUES clause of an insert operation
Expressions in an insert operation are evaluated before values are assigned to the target columns
of the insert operation. Thus, when you invoke IDENTITY_VAL_LOCAL in an insert operation, the
value that is used is the most recently assigned value for an identity column from a previous insert
operation. The function returns the null value if no such insert operation had been executed within the
same level as the invocation of the IDENTITY_VAL_LOCAL function.

Invoking the function following a failed insert operation
The function returns an unpredictable result when it is invoked after the unsuccessful execution of
an insert operation for a table with an identity column. The value might be the value that would
have been returned from the function had it been invoked before the failed insert operation or the
value that would have been assigned had the insert operation succeeded. The actual value returned
depends on the point of failure and is therefore unpredictable.

Invoking the function within the SELECT statement of a cursor
Because the results of the IDENTITY_VAL_LOCAL function are not deterministic, the result of an
invocation of the IDENTITY_VAL_LOCAL function from within the SELECT statement of a cursor can
vary for each FETCH statement.

Invoking the function within a procedure or function default expression
The result of invoking the IDENTITY_VAL_LOCAL function from within the default expression of a
procedure or function is undefined; this function should not be used in a default expression.

Invoking the function within the trigger condition of an insert trigger
The result of invoking the IDENTITY_VAL_LOCAL function from within the condition of an insert trigger
is the null value.

Chapter 4. Built-in functions 435

Invoking the function within a triggered action of an insert trigger
Multiple before or after insert triggers can exist for a table. In such cases, each trigger is processed
separately, and identity values generated by SQL statements issued within a triggered action are not
available to other triggered actions using the IDENTITY_VAL_LOCAL function. This is the case even
though the multiple triggered actions are conceptually defined at the same level.

Do not use the IDENTITY_VAL_LOCAL function in the triggered action of a before insert trigger. The
result of invoking the IDENTITY_VAL_LOCAL function from within the triggered action of a before
insert trigger is the null value. The value for the identity column of the table for which the trigger is
defined cannot be obtained by invoking the IDENTITY_VAL_LOCAL function within the triggered action
of a before insert trigger. However, the value for the identity column can be obtained in the triggered
action by referencing the trigger transition variable for the identity column.

The result of invoking the IDENTITY_VAL_LOCAL function in the triggered action of an after insert
trigger is the value assigned to an identity column of the table identified in the most recent insert
operation invoked in the same triggered action for a table containing an identity column. If an insert
operation for a table containing an identity column was not executed within the same triggered action
before invoking the IDENTITY_VAL_LOCAL function, then the function returns a null value.

Invoking the function following an insert operation with triggered actions
The result of invoking the function after an insert operation that activates triggers is the value
actually assigned to the identity column (that is, the value that would be returned on a subsequent
SELECT statement). This value is not necessarily the value provided in the insert operation or a value
generated by the database manager. The assigned value could be a value that was specified in a
SET transition variable statement within the triggered action of a before insert trigger for a trigger
transition variable associated with the identity column.

Scope of IDENTITY_VAL_LOCAL
The IDENTITY_VAL_LOCAL value persists until the next insert operation in the current session into
a table that has an identity column defined on it, or the application session ends. The value is
unaffected by COMMIT or ROLLBACK statements. The IDENTITY_VAL_LOCAL value cannot be directly
set and is a result of inserting a row into a table.

A technique commonly used, especially for performance, is for an application or product to manage
a set of connections and route transactions to an arbitrary connection. In these situations, the
availability of the IDENTITY_VAL_LOCAL value should only be relied on until the end of the
transaction.

Alternative to IDENTITY_VAL_LOCAL:
It is recommended that a SELECT FROM INSERT be used to obtain the assigned value for an identity
column. See “table-reference” on page 742 for more information.

Examples

• Set the variable IVAR to the value assigned to the identity column in the EMPLOYEE table. The value
returned from the function in the VALUES INTO statement should be 1.

 CREATE TABLE EMPLOYEE
 (EMPNO INTEGER GENERATED ALWAYS AS IDENTITY,
 NAME CHAR(30),
 SALARY DECIMAL(5,2),
 DEPTNO SMALLINT)

 INSERT INTO EMPLOYEE
 (NAME, SALARY, DEPTNO)
 VALUES('Rupert', 989.99, 50)

 VALUES IDENTITY_VAL_LOCAL() INTO :IVAR

• Assume two tables, T1 and T2, have an identity column named C1. The database manager generates
values 1, 2, 3,...for the C1 column in table T1, and values 10, 11, 12,...for the C1 column in table T2.

 CREATE TABLE T1
 (C1 SMALLINT GENERATED ALWAYS AS IDENTITY,
 C2 SMALLINT)

436 IBM i: Db2 for i SQL Reference

 CREATE TABLE T2
 (C1 DECIMAL(15,0) GENERATED BY DEFAULT AS IDENTITY (START WITH 10) ,
 C2 SMALLINT)

 INSERT INTO T1 (C2) VALUES(5)

 INSERT INTO T1 (C2) VALUES(5)

 SELECT * FROM T1

C1 C2

1 5

2 5

 VALUES IDENTITY_VAL_LOCAL() INTO :IVAR

At this point, the IDENTITY_VAL_LOCAL function would return a value of 2 in IVAR. The following
INSERT statement inserts a single row into T2 where column C2 gets a value of 2 from the
IDENTITY_VAL_LOCAL function.

 INSERT INTO T2 (C2) VALUES(IDENTITY_VAL_LOCAL())

 SELECT * FROM T2
 WHERE C1 = DECIMAL(IDENTITY_VAL_LOCAL(), 15, 0)

C1 C2

10 2

Invoking the IDENTITY_VAL_LOCAL function after this INSERT would result in a value of 10, which is the
value generated by the database manager for column C1 of T2. Assume another single row is inserted
into T2. For the following INSERT statement, the database manager assigns a value of 13 to identity
column C1 and gives C2 a value of 10 from IDENTITY_VAL_LOCAL. Thus, C2 is given the last identity
value that was inserted into T2.

 INSERT INTO T2 (C2, C1) VALUES(IDENTITY_VAL_LOCAL(), 13)

 SELECT * FROM T2
 WHERE C1 = DECIMAL(IDENTITY_VAL_LOCAL(), 15, 0)

C1 C2

13 10

• The IDENTITY_VAL_LOCAL function can also be invoked in an INSERT statement that both invokes the
IDENTITY_VAL_LOCAL function and causes a new value for an identity column to be assigned. The next
value to be returned is thus established when the IDENTITY_VAL_LOCAL function is invoked after the
INSERT statement completes. For example, consider the following table definition:

 CREATE TABLE T3
 (C1 SMALLINT GENERATED BY DEFAULT AS IDENTITY,
 C2 SMALLINT)

For the following INSERT statement, specify a value of 25 for the C2 column, and the database manager
generates a value of 1 for C1, the identity column. This establishes 1 as the value that will be returned
on the next invocation of the IDENTITY_VAL_LOCAL function.

 INSERT INTO T3 (C2) VALUES(25)

In the following INSERT statement, the IDENTITY_VAL_LOCAL function is invoked to provide a value for
the C2 column. A value of 1 (the identity value assigned to the C1 column of the first row) is assigned
to the C2 column, and the database manager generates a value of 2 for C1, the identity column. This

Chapter 4. Built-in functions 437

establishes 2 as the value that will be returned on the next invocation of the IDENTITY_VAL_LOCAL
function.

 INSERT INTO T3 (C2) VALUES(IDENTITY_VAL_LOCAL())

In the following INSERT statement, the IDENTITY_VAL_LOCAL function is again invoked to provide a
value for the C2 column, and the user provides a value of 11 for C1, the identity column. A value of
2 (the identity value assigned to the C1 column of the second row) is assigned to the C2 column. The
assignment of 11 to C1 establishes 11 as the value that will be returned on the next invocation of the
IDENTITY_VAL_LOCAL function.

 INSERT INTO T3 (C2, C1) VALUES(IDENTITY_VAL_LOCAL(), 11)

After the 3 INSERT statements have been processed, table T3 contains the following:

C1 C2

1 25

2 1

11 2

The contents of T3 illustrate that the expressions in the VALUES clause are evaluated before the
assignments for the columns of the INSERT statement. Thus, an invocation of an IDENTITY_VAL_LOCAL
function invoked from a VALUES clause of an INSERT statement uses the most recently assigned value
for an identity column in a previous INSERT statement.

438 IBM i: Db2 for i SQL Reference

IFNULL
The IFNULL function returns the value of the first non-null expression.

IFNULL (expression , expression)

The IFNULL function is identical to the COALESCE scalar function with two arguments. For more
information, see “COALESCE” on page 338.

Example

• When selecting the employee number (EMPNO) and salary (SALARY) from all the rows in the EMPLOYEE
table, if the salary is missing (that is, null), then return a value of zero.

 SELECT EMPNO, IFNULL(SALARY,0)
 FROM EMPLOYEE

Chapter 4. Built-in functions 439

INSERT
Returns a string where length characters have been deleted from source-string beginning at start and
where insert-string has been inserted into source-string beginning at start.

INSERT (source-string , start , length , insert-string)

source-string
An expression that specifies the source string. The source-string may be any built-in numeric or
string expression. It must be compatible with the insert-string. For more information about data type
compatibility, see “Assignments and comparisons” on page 89. A numeric argument is cast to a
character string before evaluating the function. For more information about converting numeric to a
character string, see “VARCHAR” on page 623. The actual length of the string must be greater than
zero.

start
An expression that returns a built-in BIGINT, INTEGER, or SMALLINT data type. The integer specifies
the starting character within source-string where the deletion of characters and the insertion of
another string is to begin. The value of the integer must be in the range of 1 to the length of
source-string plus one.

length
An expression that returns a built-in BIGINT, INTEGER, or SMALLINT data type. The integer specifies
the number of characters that are to be deleted from source-string, starting at the character position
identified by start. The value of the integer must be in the range of 0 to the length of source-string.

insert-string
An expression that specifies the string to be inserted into source-string, starting at the position
identified by start. The insert-string may be any built-in numeric or string expression. It must
be compatible with the source-string. For more information about data type compatibility, see
“Assignments and comparisons” on page 89. A numeric argument is cast to a character string before
evaluating the function. For more information about converting numeric to a character string, see
“VARCHAR” on page 623. The actual length of the string must be 0 or greater.

The data type of the result of the function depends on the data type of the first and fourth arguments. The
result data type is the same as if the two arguments were concatenated except that the result is always a
varying-length string. For more information see “Conversion rules for operations that combine strings” on
page 110.

The length attribute of the result depends on the arguments:

• If start and length are constants, the length attribute of the result is:

L1 - MIN((L1-V2 + 1), V3) + L4

where:

L1 is the length attribute of source-string
V2 depends on the encoding schema of source-string:
- If the source-string is UTF-8, the value MIN(L1+1,start*3)
- If the source-string is mixed data, the value MIN(L1+1,(start-1)*2.5+4)
- Otherwise, the value of start
V3 is the value of length
L4 is the length attribute of insert-string

• Otherwise, the length attribute of the result is the length attribute of source-string plus the length
attribute of insert-string.

If the length attribute of the result exceeds the maximum for the result data type, an error is returned.

The actual length of the result is:

440 IBM i: Db2 for i SQL Reference

A1 - MIN((A1 -V2 + 1), V3) + A4

where:

A1 is the actual length of source-string
V2 is the value of start
V3 is the value of length
A4 is the actual length of insert-string

If the actual length of the result string exceeds the maximum for the result data type, an error is returned.

If any argument can be null, the result can be null; if any argument is null, the result is the null value.

The CCSID of the result is determined by the CCSID of source-string and insert-string. The resulting CCSID
is the same as if the two arguments were concatenated. For more information, see “Conversion rules for
operations that combine strings” on page 110.

Examples

• The following example shows how the string 'INSERTING' can be changed into other strings. The use of
the CHAR function limits the length of the resulting string to 10 characters.

 SELECT INSERT('INSERTING', 4, 2, 'IS'),
 INSERT('INSERTING', 4, 0, 'IS'),
 INSERT('INSERTING', 4, 2, '')
 FROM SYSIBM.SYSDUMMY1

This example returns 'INSISTING ', 'INSISERTIN', and 'INSTING '.
• The previous example demonstrated how to insert text into the middle of some text. This example

shows how to insert text before some text by using 1 as the starting point (start).

 SELECT INSERT('INSERTING', 1, 0, 'XX'),
 INSERT('INSERTING', 1, 1, 'XX'),
 INSERT('INSERTING', 1, 2, 'XX'),
 INSERT('INSERTING', 1, 3, 'XX')
 FROM SYSIBM.SYSDUMMY1

This example returns 'XXINSERTIN', 'XXNSERTING', 'XXSERTING ', and 'XXERTING '.
• The following example shows how to insert text after some text. Add 'XX' at the end of string 'ABCABC'.

Because the source string is 6 characters long, set the starting position to 7 (one plus the length of the
source string).

 SELECT INSERT('ABCABC', 7, 0, 'XX')
 FROM SYSIBM.SYSDUMMY1

This example returns 'ABCABCXX '.

Chapter 4. Built-in functions 441

INTEGER or INT
The INTEGER function returns an integer representation.

Numeric to Integer

INTEGER

INT

(numeric-expression)

String to Integer

INTEGER

INT

(string-expression)

Date to Integer

INTEGER

INT

(date-expression)

Time to Integer

INTEGER

INT

(time-expression)

The INTEGER function returns an integer representation of:

• A number
• A character or graphic string representation of a decimal number
• A character or graphic string representation of an integer
• A character or graphic string representation of a floating-point number
• A character or graphic string representation of a decimal floating-point number
• A date
• A time

Numeric to Integer
numeric-expression

An expression that returns a numeric value of any built-in numeric data type.

If the argument is a numeric-expression, the result is the same number that would occur if the
argument were assigned to a large integer column or variable. If the whole part of the argument is not
within the range of integers, an error is returned. The fractional part of the argument is truncated.

String to Integer
string-expression

An expression that returns a value that is a character-string or graphic-string representation of a
number.

If the argument is a string-expression, the result is the same number that would result from
CAST(string-expression AS INTEGER). Leading and trailing blanks are eliminated and the resulting
string must conform to the rules for forming a floating-point, decimal floating-point, integer, or
decimal constant. If the whole part of the argument is not within the range of integers, an error is
returned. Any fractional part of the argument is truncated.

442 IBM i: Db2 for i SQL Reference

Date to Integer
date-expression

An expression that returns a value of the DATE data type. The result is an INTEGER value representing
the date as yyyymmdd.

Time to Integer
time-expression

An expression that returns a value of the TIME data type. The result is an INTEGER value representing
the time as hhmmss.

The result of the function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

Note
Syntax alternatives: The CAST specification should be used to increase the portability of applications.
For more information, see “CAST specification” on page 176.

Example

• Using the EMPLOYEE table, select a list containing salary (SALARY) divided by education level
(EDLEVEL). Truncate any decimal in the calculation. The list should also contain the values used in
the calculation and the employee number (EMPNO).

 SELECT INTEGER(SALARY / EDLEVEL), SALARY, EDLEVEL, EMPNO
 FROM EMPLOYEE

Chapter 4. Built-in functions 443

INTERPRET
The INTERPRET function returns the first operand interpreted as the specified data-type.

INTERPRET (expression AS data-type)

data-type
built-in-type

distinct-type

built-in-type

444 IBM i: Db2 for i SQL Reference

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

)

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

XML

ccsid-clause

ccsid-clause
CCSID integer

If the argument can be null, the result can be null; if the argument is null, the result is the null value.

Chapter 4. Built-in functions 445

string-expression
An expression that returns a built-in binary string or character FOR BIT DATA string that contains the
internal IBM i representation of data-type. The length of string-expression must follow the rules in
Table 53 on page 446.

data-type
Specifies the data type of the result. For a description of data-type, see “CREATE TABLE” on page 1115.
If the CCSID attribute is not specified for a character or graphic string data type:

• If data-type is CHAR, VARCHAR, or CLOB:

– If FOR BIT DATA is specified, a CCSID of 65535 is used.
– If FOR MIXED DATA is specified, the mixed-byte CCSID associated with the default CCSID of the

job is used.
– Otherwise, the single-byte CCSID associated with the default CCSID of the job is used.

• If data-type is GRAPHIC, VARGRAPHIC, or DBCLOB, CCSID 1200 is used.

Table 53. Data type interpretation rules

Result data type Required string-expression length in bytes Other considerations

SMALLINT 2

INTEGER 4

BIGINT 8

DECIMAL(p,s) (p/2) + 1

NUMERIC(p,s) p

FLOAT (single precision) 4

FLOAT (double precision) 8

DECFLOAT(16) 8

DECFLOAT(34) 16

CHAR(n) 0 to n If the length of string-expression is less than n, the result is padded
on the right with blanks.

VARCHAR(n) 2 to a maximum of n + 2 The length represented by the first 2 bytes of string-expression
cannot exceed n and must not be greater than the length of string-
expression - 2.

CLOB(n) 4 to a maximum of n + 4 The length represented by the first 4 bytes of string-expression
cannot exceed n and must not be greater than the length of string-
expression - 4.

GRAPHIC(n) 0 to 2n The length of string-expression must be divisible by 2. If the length
of string-expression is less than 2n, the result is padded on the right
with blanks.

VARGRAPHIC(n) 2 to a maximum of 2n + 2 The length of string-expression must be divisible by 2. The length
represented by the first 2 bytes of string-expression cannot exceed
n and must not be greater than the length of (string-expression -
2) / 2.

DBCLOB(n) 4 to a maximum of 2n + 4 The length of string-expression must be divisible by 2. The length
represented by the first 4 bytes of string-expression cannot exceed
n and must not be greater than the length of (string-expression -
4) / 2.

BINARY(n) 0 to n If the length of string-expression is less than n, the result is padded
on the right with hexadecimal zeros.

VARBINARY(n) 2 to a maximum of n + 2 The length represented by the first 2 bytes of string-expression
cannot exceed n and must not be greater than the length of string-
expression - 2.

BLOB(n) 4 to a maximum of n + 4 The length represented by the first 4 bytes of string-expression
cannot exceed n and must not be greater than the length of string-
expression - 4.

DATE 4

TIME 3

446 IBM i: Db2 for i SQL Reference

Table 53. Data type interpretation rules (continued)

Result data type Required string-expression length in bytes Other considerations

TIMESTAMP(p) when p is 0, 19; otherwise 20+p

XML 4 to 2G The length represented by the first 4 bytes of string-expression
must not be greater than the length of string-expression - 4.

Example

Table 54.

Function invocation Result value

INTERPRET(BX'00000011' AS INTEGER) 17

INTERPRET(BX'12345F' AS DECIMAL(5,2)) 123.45

INTERPRET(BX'00258541' AS DATE) 2020-04-05

INTERPRET(BX'616263' AS CHAR(3) CCSID 37) /ÃÄ

INTERPRET(BX'616263' AS CHAR(3) CCSID 1208) abc

INTERPRET(BX'0005C1C2C3C4C5' AS
VARCHAR(5))

ABCDE

INTERPRET(BX'0003C1C2C3C4C5' AS
VARCHAR(5))

ABC

INTERPRET(BX'0007C1C2C3C4C5' AS
VARCHAR(7))

Error

INTERPRET(BX'00000003003100320033' AS
DBCLOB(3) CCSID 1200)

123

Chapter 4. Built-in functions 447

INSTR
The INSTR function returns the starting position of a string (called the search-string) within another string
(called the source-string). If the search-string is not found and neither argument is null, the result is zero.
If the search-string is found, the result is a number from 1 to the actual length of the source-string. If the
optional start is specified, it indicates the character position in the source-string at which the search is to
begin.

INSTR (source-string , search-string

, start

, instance

)

The INSTR function is identical to the LOCATE_IN_STRING function. For more information, see
“LOCATE_IN_STRING” on page 480.

448 IBM i: Db2 for i SQL Reference

JSON_ARRAY
The JSON_ARRAY function generates a JSON array either by explicitly listing the array elements or by
using a query. If no JSON-expression is provided, the fullselect returns no values, or all values are null and
ABSENT ON NULL is specified, an empty array is returned.

JSON_ARRAY (
,

JSON-expression

FORMAT JSON

FORMAT BSON

fullselect

FORMAT JSON

FORMAT BSON

ABSENT ON NULL

NULL ON NULL

RETURNING CLOB (2G) CCSID 1208 FORMAT JSON

RETURNING data-type

FORMAT JSON

ENCODING UTF8

ENCODING UTF16

)

data-type

Chapter 4. Built-in functions 449

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

normalize-clause

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BINARY LARGE OBJECT

BLOB

(1M)

(integer

K

M

G

)

ccsid-clause
CCSID integer

normalize-clause

normalize-clause

450 IBM i: Db2 for i SQL Reference

NOT NORMALIZED

NORMALIZED

JSON-expression
The expression to use to generate a value in the JSON array. The result type of this expression can be
any built-in data type except XML, ROWID, or DATALINK. It cannot be CHAR or VARCHAR bit data. It
cannot be a user-defined type that is sourced on any of these data types.

fullselect
Specifies a fullselect that returns a single column to be used to generate the values in the array. The
value of each row is used to generate a value in the JSON array. The result type of this column can be
any built-in data type except XML, ROWID, DATALINK, or a user-defined type that is sourced on any of
these data types. It cannot be CHAR or VARCHAR bit data.

FORMAT JSON or FORMAT BSON
Specifies whether JSON-expression or fullselect is already formatted data.
FORMAT JSON

JSON-expression or fullselect is formatted as JSON data. If JSON-expression or fullselect is a
character or graphic string data type, it is treated as JSON data. If JSON-expression or fullselect is
a binary string data type, it is interpreted as UTF-8 or UTF-16 data.

FORMAT BSON
JSON-expression or fullselect is formatted as the BSON representation of JSON data and must be a
binary string data type.

If neither FORMAT JSON nor FORMAT BSON is specified:

• If JSON-expression is one of the built-in functions JSON_ARRAY, JSON_OBJECT, JSON_QUERY,
JSON_ARRAYAGG, or JSON_OBJECTAGG, the explicit or implicit FORMAT value of the function's
RETURNING clause determines the format of JSON-expression.

• If JSON-expression is a binary string type, it is interpreted as FORMAT BSON.
• Otherwise, JSON-expression or fullselect is considered unformatted data. If the generated value is

not numeric, the result string will be constructed with strings enclosed in quotes and any special
characters will be escaped. A numeric value that is not a valid JSON number, such as INFINITY or
NAN, will result in an error.

ABSENT ON NULL or NULL ON NULL
Specifies what to return when an array element produced by JSON-expression or fullselect is the null
value.
ABSENT ON NULL

A null array element is not included in the JSON array. This is the default.
NULL ON NULL

A null array element is included in the JSON array.
RETURNING data-type

Specifies the format of the result.
data-type

The data type of the result. For CHAR and VARCHAR results, the CCSID cannot be 65535. The
default is CLOB(2G) CCSID 1208.

If a CCSID is specified and the data-type is GRAPHIC, VARGRAPHIC, or DBCLOB, the CCSID must
be a Unicode CCSID.

If the CCSID attribute is not specified, the CCSID is determined as described in “CAST
specification” on page 176.

FORMAT JSON
JSON data is returned as a JSON string.

Chapter 4. Built-in functions 451

ENCODING UTF8 or ENCODING UTF16
The encoding to use when data-type is a binary string type. This clause is only allowed for
binary string types. The default for binary strings is UTF8.

Examples
• Generate a JSON array containing the values Washington, Jefferson, and Hamilton.

VALUES (JSON_ARRAY('Washington', 'Jefferson', 'Hamilton'));

The result is the following JSON array:

["Washington","Jefferson","Hamilton"]

• Generate a JSON array that includes all the department numbers.

VALUES(JSON_ARRAY((SELECT DEPTNO FROM DEPT
 WHERE DEPTNAME LIKE 'BRANCH OFFICE%')));

The result is the following JSON array:

["F22","G22","H22","I22","J22"]

452 IBM i: Db2 for i SQL Reference

JSON_OBJECT
The JSON_OBJECT function generates a JSON object using the specified key:value pairs. If no key:value
pairs are provided, an empty object is returned.

JSON_OBJECT (

,

KEY
key-name-expression VALUE JSON-expression

key-name-expression : JSON-expression FORMAT JSON

FORMAT BSON

NULL ON NULL

ABSENT ON NULL

WITHOUT UNIQUE KEYS

WITH UNIQUE KEYS

RETURNING CLOB (2G) CCSID 1208 FORMAT JSON

RETURNING data-type

FORMAT JSON

ENCODING UTF8

ENCODING UTF16

FORMAT BSON

)

data-type

Chapter 4. Built-in functions 453

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

normalize-clause

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BINARY LARGE OBJECT

BLOB

(1M)

(integer

K

M

G

)

ccsid-clause
CCSID integer

normalize-clause

normalize-clause

454 IBM i: Db2 for i SQL Reference

NOT NORMALIZED

NORMALIZED

key-name-expression
The name of the JSON key. The name must not be null. When using the colon form for defining
a key:value pair, key-name-expression must be a character string literal. Otherwise, the result of
key-name-expression must be a built-in character or graphic string data type. It cannot be CHAR or
VARCHAR bit data.

JSON-expression
The expression to use to generate the JSON value associated with key-name-expression. The result
type of this expression can be any built-in data type except XML, ROWID, or DATALINK. It cannot be
CHAR or VARCHAR bit data. It cannot be a user-defined type that is sourced on any of these data
types.
FORMAT JSON or FORMAT BSON

Specifies whether JSON-expression is already formatted data.
FORMAT JSON

JSON-expression is formatted as JSON data. If JSON-expression is a character or graphic string
data type, it is treated as JSON data. If JSON-expression is a binary string data type, it is
interpreted as UTF-8 or UTF-16 data.

FORMAT BSON
JSON-expression is formatted as the BSON representation of JSON data and must be a binary
string data type.

If neither FORMAT JSON nor FORMAT BSON is specified:

• If JSON-expression is one of the built-in functions JSON_ARRAY, JSON_OBJECT, JSON_QUERY,
JSON_ARRAYAGG, or JSON_OBJECTAGG, the explicit or implicit FORMAT value of the function's
RETURNING clause determines the format of JSON-expression.

• If JSON-expression is a binary string type, it is interpreted as FORMAT BSON.
• Otherwise, JSON-expression is considered unformatted data. If the generated value is not numeric,

the result string will be constructed with strings enclosed in quotes and any special characters will
be escaped. A numeric value that is not a valid JSON number, such as INFINITY or NAN, will result
in an error.

NULL ON NULL or ABSENT ON NULL
Specifies what to return when JSON-expression is the null value.
NULL ON NULL

A null value is returned. This is the default.
ABSENT ON NULL

The key:value pair is omitted from the JSON object.
WITHOUT UNIQUE KEYS or WITH UNIQUE KEYS

Specifies whether the key values for the resulting JSON object must be unique.
WITHOUT UNIQUE KEYS

The resulting JSON object will not be checked for duplicate keys. This is the default.
WITH UNIQUE KEYS

The resulting JSON object is required to have unique key values. An error will be issued if
duplicate keys are generated.

Generating a JSON object with unique keys is considered the best practice. If key-name-expression
generates unique key names, omit WITH UNIQUE KEYS to improve performance.

RETURNING data-type
Specifies the format of the result.

Chapter 4. Built-in functions 455

data-type
The data type of the result. For CHAR and VARCHAR results, the CCSID cannot be 65535. The
default is CLOB(2G) CCSID 1208.

If a CCSID is specified and the data-type is GRAPHIC, VARGRAPHIC, or DBCLOB, the CCSID must
be a Unicode CCSID.

If the CCSID attribute is not specified, the CCSID is determined as described in “CAST
specification” on page 176.

FORMAT JSON
JSON data is returned as a JSON string.
ENCODING UTF8 or ENCODING UTF16

The encoding to use when data-type is a binary string type. This clause is only allowed for
binary string types. The default for binary strings is UTF8.

FORMAT BSON
JSON data is returned in BSON format. When FORMAT BSON is specified, data-type must be a
VARBINARY or BLOB string type.

Examples
• Generate a JSON object for a name.

VALUES (JSON_OBJECT(KEY 'first' VALUE 'John', KEY 'last' VALUE 'Doe'));

VALUES (JSON_OBJECT('first' : 'John', 'last' : 'Doe'));

The result of either of these statements is the following JSON string:

{"first":"John","last":"Doe"}

• Generate a JSON object containing the last name, date hired, and salary for the employee with an
employee number of '000020'.

SELECT JSON_OBJECT(
 'Last name' : LASTNAME,
 'Hire date' : HIREDATE,
 'Salary' : SALARY)
FROM EMPLOYEE
WHERE EMPNO = '000020';

The result of this statement is the following JSON string:

{"Last name":"THOMPSON","Hire date":"1973-10-10","Salary":41250.00}

456 IBM i: Db2 for i SQL Reference

JSON_QUERY
The JSON_QUERY function returns an SQL/JSON value from the specified JSON text by using an SQL/
JSON path expression.

JSON_QUERY (JSON-expression

FORMAT JSON

FORMAT BSON

, sql-json-path-expression

AS path-name

RETURNING CLOB (2G) CCSID 1208 FORMAT JSON

RETURNING data-type

FORMAT JSON

ENCODING UTF8

ENCODING UTF16

FORMAT BSON

WITHOUT
ARRAY

WRAPPER

WITH
UNCONDITIONAL

CONDITIONAL

ARRAY
WRAPPER

KEEP QUOTES
ON SCALAR STRING

OMIT QUOTES
ON SCALAR STRING

NULL ON EMPTY

ERROR

EMPTY ARRAY

EMPTY OBJECT

ON EMPTY

NULL ON ERROR

ERROR

EMPTY ARRAY

EMPTY OBJECT

ON ERROR

)

data-type

Chapter 4. Built-in functions 457

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

normalize-clause

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BINARY LARGE OBJECT

BLOB

(1M)

(integer

K

M

G

)

ccsid-clause
CCSID integer

normalize-clause

normalize-clause

458 IBM i: Db2 for i SQL Reference

NOT NORMALIZED

NORMALIZED

JSON-expression
An expression that returns a value that is a built-in string data type. If a character or graphic value
is returned, it must contain correctly formatted JSON data. If it is a binary data type, it is interpreted
according to the explicit or implicit FORMAT clause.
If JSON-expression is a JSON array, it will be implicitly wrapped using a key name of
SYSIBM_ROOT_ARRAY modifying the JSON-expression to be a JSON object. sql-json-path-expression
is implicitly modified to account for this additional key.

FORMAT JSON or FORMAT BSON
Specifies how JSON-expression is to be interpreted.
FORMAT JSON

JSON-expression contains JSON data. If JSON-expression is binary data, the data is interpreted as
UTF-8 or UTF-16. Binary data cannot be encoded using an EBCDIC CCSID.

FORMAT BSON
JSON-expression contains the BSON representation of JSON data. When FORMAT BSON is
specified, JSON-expression must be a binary string data type.

If the FORMAT clause is not specified and JSON-expression is a character or graphic string, JSON-
expression is treated as JSON. If JSON-expression is a binary string, JSON-expression is treated as
BSON.

sql-json-path-expression
An expression that returns a value that is a built-in character or graphic string data type. The string is
interpreted as an SQL/JSON path expression and is used to locate a JSON value within the JSON data
specified by JSON-expression. If more than one value has the same key, one of the JSON values will
be selected.
For information on the content of an SQL/JSON path expression, see “sql-json-path-expression” on
page 213.

AS path-name
Specifies a name to be used to identify the sql-json-path-expression.

RETURNING data-type
Specifies the format of the result.
data-type

The data type of the result. For CHAR and VARCHAR results, the CCSID cannot be 65535. The
default is CLOB(2G) CCSID 1208.

If a CCSID is specified and the data-type is GRAPHIC, VARGRAPHIC, or DBCLOB, the CCSID must
be a Unicode CCSID.

If the CCSID attribute is not specified, the CCSID is determined as described in “CAST
specification” on page 176.

FORMAT JSON
JSON data is returned as a JSON string.
ENCODING UTF8 or ENCODING UTF16

The encoding to use when data-type is a binary string type. This clause is only allowed for
binary string types. The default for binary strings is UTF8.

FORMAT BSON
JSON data is returned in BSON format. When FORMAT BSON is specified, data-type must be a
VARBINARY or BLOB string type. FORMAT BSON can only be used when an SQL/JSON object is
returned.

Chapter 4. Built-in functions 459

WITHOUT ARRAY WRAPPER or WITH ARRAY WRAPPER
Specifies whether the output value should be wrapped in a JSON array.
WITHOUT ARRAY WRAPPER

The result is not wrapped. This is the default. Using an SQL/JSON path that results in a sequence
of two or more SQL/JSON elements results in an error.

WITH UNCONDITIONAL ARRAY WRAPPER
The result is enclosed in square brackets to create a JSON array.

WITH CONDITIONAL ARRAY WRAPPER
The result is enclosed in square brackets to create a JSON array when more than one SQL/JSON
element is returned or when a single SQL/JSON element that is not a JSON array or JSON object is
returned.

The following table shows how each of these options is applied to the JSON text {a:"10", b:[1,
2]}.

Table 55. Results using each WRAPPER clause

WRAPPER clause path value of $.a path value of $.b

WITHOUT ARRAY WRAPPER "10" [1,2]

WITH UNCONDITIONAL ARRAY WRAPPER ["10"] [[1,2]]

WITH CONDITIONAL ARRAY WRAPPER ["10"] [1,2]

KEEP QUOTES or OMIT QUOTES
Specifies whether the surrounding quotes should be removed when a scalar string is returned.
KEEP QUOTES

Indicates quotes are not removed from scalar strings. This is the default.
OMIT QUOTES

Indicates quotes are removed from scalar strings. When OMIT QUOTES is specified, the WITH
ARRAY WRAPPER clause cannot be specified

ON EMPTY
Specifies the behavior when an empty sequence is returned using sql-json-path-expression.
NULL ON EMPTY

A null value is returned. This is the default.
ERROR ON EMPTY

An error is returned.
EMPTY ARRAY ON EMPTY

An empty array is returned.
EMPTY OBJECT ON EMPTY

An empty object is returned.
ON ERROR

Specifies the behavior when an error is encountered by JSON_QUERY.
NULL ON ERROR

A null value is returned. This is the default.
ERROR ON ERROR

An error is returned.
EMPTY ARRAY ON ERROR

An empty array is returned.
EMPTY OBJECT ON ERROR

An empty object is returned.

The result can be null. If JSON-expression is null, the result is the null value.

460 IBM i: Db2 for i SQL Reference

Example
• Return the JSON object associated with the name key from a JSON text.

VALUES JSON_QUERY('{"id":"701", "name":{"first":"John", "last":"Doe"}}', '$.name');

The result is the following string that represents a JSON object.

{"first":"John", "last":"Doe"}

Chapter 4. Built-in functions 461

JSON_TO_BSON
The JSON_TO_BSON function converts a string containing formatted JSON data to a binary string
containing the data formatted as BSON.

JSON_TO_BSON (JSON-expression)

JSON-expression

Specifies an expression that returns a character or graphic string value. It must contain formatted
JSON data.

If JSON-expression is a JSON array, it will be wrapped using a key name of SYSIBM_ROOT_ARRAY
modifying the JSON-expression to be a JSON object.

If a JSON object in JSON-expression contains duplicate keys, only one of the key:value pairs will be
included in the result BSON string.

The data type of the result is BLOB(2G).

If the argument can be null, the result can be null; if the argument is null, the result is the null value.

Example
• Read a JSON value from a table and convert it to BSON format.

CREATE VARIABLE BSONVAR VARBINARY(2000);

SELECT JSON_TO_BSON(JSON_COL) INTO BSONVAR FROM TABLE2 WHERE KEY_COLUMN = 27;

462 IBM i: Db2 for i SQL Reference

JSON_VALUE
The JSON_VALUE function returns an SQL scalar value from a JSON text by using an SQL/JSON path
expression.

JSON_VALUE (JSON-expression

FORMAT JSON

FORMAT BSON

, sql-json-path-expression

AS path-name

RETURNING CLOB (2G) CCSID 1208

RETURNING data-type

NULL ON EMPTY

ERROR

DEFAULT default-expression

ON EMPTY

NULL ON ERROR

ERROR

DEFAULT default-expression

ON ERROR

)

data-type

Chapter 4. Built-in functions 463

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

normalize-clause

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

ccsid-clause
CCSID integer

normalize-clause

normalize-clause

464 IBM i: Db2 for i SQL Reference

NOT NORMALIZED

NORMALIZED

JSON-expression
An expression that returns a value that is a built-in string data type. If a character or graphic value
is returned, it must contain correctly formatted JSON data. If it is a binary data type, it is interpreted
according to the explicit or implicit FORMAT clause.
If JSON-expression is a JSON array, it will be implicitly wrapped using a key name of
SYSIBM_ROOT_ARRAY modifying the JSON-expression to be a JSON object. sql-json-path-expression
is implicitly modified to account for this additional key.

FORMAT JSON or FORMAT BSON
Specifies how JSON-expression is to be interpreted.
FORMAT JSON

JSON-expression contains JSON data. If JSON-expression is binary data, the data is interpreted as
UTF-8 or UTF-16. Binary data cannot be encoded using an EBCDIC CCSID.

FORMAT BSON
JSON-expression contains the BSON representation of JSON data. When FORMAT BSON is
specified, JSON-expression must be a binary string data type.

If the FORMAT clause is not specified and JSON-expression is a character or graphic string, JSON-
expression is treated as JSON. If JSON-expression is a binary string, JSON-expression is treated as
BSON.

sql-json-path-expression
An expression that returns a value that is a built-in character or graphic string data type. The string is
interpreted as an SQL/JSON path expression and is used to locate a JSON value within the JSON data
specified by JSON-expression. If more than one value has the same key, one of the JSON values will
be selected.
For information on the content of an SQL/JSON path expression, see “sql-json-path-expression” on
page 213.

AS path-name
Specifies a name to be used to identify the sql-json-path-expression.

RETURNING data-type
Specifies the data type of the result. For CHAR and VARCHAR results, the CCSID cannot be 65535.
Additional rules for result data type conversions are described here: Table 70 on page 701
The default is CLOB(2G) CCSID 1208.

ON EMPTY
Specifies the behavior when an empty sequence is found using sql-json-path-expression.
NULL ON EMPTY

A null value is returned. This is the default.
ERROR ON EMPTY

An error is returned.
DEFAULT default-expression ON EMPTY

The value specified by default-expression is returned. The expression must be assignment
compatible to the result data type.

ON ERROR
Specifies the behavior when an error is encountered by JSON_VALUE.
NULL ON ERROR

A null value is returned. This is the default.
ERROR ON ERROR

An error is returned.

Chapter 4. Built-in functions 465

DEFAULT default-expression ON ERROR
The value specified by default-expression is returned. The expression must be assignment
compatible to the result data type.

The result can be null. If JSON-expression is null, the result is the null value.

Example
• Return a value from a JSON text as an integer.

VALUES (JSON_VALUE('{"id":"987"}', '$.id' RETURNING INTEGER));

The result is 987.
• Try to return a value from a JSON text that is an array value. Handle any error by returning a default

string.

VALUES (JSON_VALUE('{"friends":["John","Lisa"]}',
 'strict $.friends' DEFAULT 'Not found' ON ERROR));

The result is Not found since the value corresponding to the friends key is an array, not a scalar
value.

466 IBM i: Db2 for i SQL Reference

JULIAN_DAY
The JULIAN_DAY function returns an integer value representing a number of days from January 1, 4713
B.C. (the start of the Julian date calendar) to the date specified in the argument.

JULIAN_DAY (expression)

expression
An expression that returns a value of one of the following built-in data types: a date, a timestamp, a
character string, or a graphic string. If expression is a character or graphic string, its value must be a
valid string representation of a date or timestamp. For the valid formats of string representations of
dates and timestamps, see “String representations of datetime values” on page 75.

The result of the function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

Note
Julian and Gregorian calendar: The transition from the Julian calendar to the Gregorian calendar on 15
October 1582 is not taken into account by this function.

Examples

• Using sample table EMPLOYEE, set the integer host variable JDAY to the Julian day of the day that
Christine Haas (EMPNO = '000010') was employed (HIREDATE = '1965-01-01').

 SELECT JULIAN_DAY(HIREDATE)
 INTO :JDAY
 FROM EMPLOYEE
 WHERE EMPNO = '000010'

The result is that JDAY is set to 2438762.
• Set integer host variable JDAY to the Julian day for January 1, 1998.

 SELECT JULIAN_DAY('1998-01-01')
 INTO :JDAY
 FROM SYSIBM.SYSDUMMY1

The result is that JDAY is set to 2450815.

Chapter 4. Built-in functions 467

LAND
The LAND function returns a string that is the logical 'AND' of the argument strings. This function takes
the first argument string, does an AND operation with the next string, and then continues to do AND
operations with each successive argument using the previous result. If a character-string argument is
shorter than the previous result, it is padded with blanks. If a binary-string argument is shorter than the
previous result, it is padded with hexadecimal zeros.

LAND (expression , expression)

The arguments must be compatible.

expression
An expression that returns a value of any built-in numeric or string data type, but cannot be LOBs.
The arguments cannot be mixed data character strings, UTF-8 character strings, or graphic strings. A
numeric argument is cast to a character string before evaluating the function. For more information
about converting numeric to a character string, see “VARCHAR” on page 623.

The arguments are converted, if necessary, to the attributes of the result. The attributes of the result are
determined as follows:

• If all the arguments are fixed-length strings, the result is a fixed-length string of length n, where n is the
length of the longest argument.

• If any argument is a varying-length string, the result is a varying-length string with length attribute n,
where n is the length attribute of the argument with greatest length attribute. The actual length of the
result is m, where m is the actual length of the longest argument.

If an argument can be null, the result can be null; if an argument is null, the result is the null value.

The CCSID of the result is 65535.

Example

• Assume the host variable L1 is a CHARACTER(2) host variable with a value of X'A1B1', host variable L2 is
a CHARACTER(3) host variable with a value of X'F0F040', and host variable L3 is a CHARACTER(4) host
variable with a value of X'A1B10040'.

 SELECT LAND(:L1,:L2,:L3)
 FROM SYSIBM.SYSDUMMY1

Returns the value X'A0B00040'.

468 IBM i: Db2 for i SQL Reference

LAST_DAY
The LAST_DAY function returns a date or timestamp that represents the last day of the month indicated
by expression.

LAST_DAY (expression)

expression
An expression that returns a value of one of the following built-in data types: a date, a timestamp, a
character string, or a graphic string.

If expression is a character or graphic string, its value must be a valid string representation of a date
or timestamp. For the valid formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 75.

The result of the function has the same data type as expression, unless expression is a string in which case
the result is DATE. If the argument can be null, the result can be null; if the argument is null, the result is
the null value.

Any hours, minutes, seconds, or fractional seconds information included in expression is not changed by
the function.

Example

• Set the host variable END_OF_MONTH with the last day of the current month.

SET :END_OF_MONTH = LAST_DAY(CURRENT_DATE)

The host variable END_OF_MONTH is set with the value representing the end of the current month. If
the current day is 2000-02-10, then END_OF_MONTH is set to 2000-02-29.

• Set the host variable END_OF_MONTH with the last day of the month in EUR format for the given date.

SET :END_OF_MONTH = CHAR(LAST_DAY('1965-07-07'), EUR)

The host variable END_OF_MONTH is set with the value '31.07.1965'.
• Assuming that the default date format is ISO,

SELECT LAST_DAY('2000-04-24')
FROM SYSIBM.SYSDUMMY1

Returns '2000–04–30' which is the last day of April in 2000.

Chapter 4. Built-in functions 469

LCASE
The LCASE function returns a string in which all the characters have been converted to lowercase
characters, based on the CCSID of the argument.

LCASE (expression)

The LCASE function is identical to the LOWER function. For more information, see “LOWER” on page 484.

470 IBM i: Db2 for i SQL Reference

LEAST
The LEAST scalar function returns the minimum value in a set of values.

LEAST (expression , expression)

The LEAST function is identical to the MIN function. For more information, see “MIN” on page 494.

Chapter 4. Built-in functions 471

LEFT
The LEFT function returns the leftmost integer characters of expression.

LEFT (expression , integer)

If expression is a character string, the result is a character string. If expression is a graphic string, the
result is a graphic string. If expression is a binary string, the result is a binary string.

expression
An expression that specifies the string from which the result is derived. The arguments must be
expressions that return a value of any built-in numeric, character string, graphic string, or a binary
string data type. A numeric argument is cast to a character string before evaluating the function. For
more information about converting numeric to a character string, see “VARCHAR” on page 623.

A substring of expression is zero or more contiguous characters of expression. If expression is a
character string or graphic string, a single character is either an SBCS, DBCS, or multiple-byte
character. If expression is a binary string, the result is the number of bytes in the argument.

integer
An expression that returns a built-in integer data type. The integer specifies the length of the result.
The value of integer must be greater than or equal to 0 and less than or equal to n, where n is the
length attribute of expression.

The result of the function is a varying-length string with a length attribute that is the same as the length
attribute of expression and a data type that depends on the data type of expression:

Data type of expression Data type of the Result

CHAR or VARCHAR VARCHAR

CLOB CLOB

GRAPHIC or VARGRAPHIC VARGRAPHIC

DBCLOB DBCLOB

BINARY or VARBINARY VARBINARY

BLOB BLOB

The actual length of the result is integer.

If any argument can be null, the result can be null; if any argument is null, the result is the null value.

The CCSID of the result is the same as that of expression.

Note
Syntax alternatives: STRLEFT is a synonym for LEFT.

Example

• Assume the host variable NAME (VARCHAR(50)) has a value of 'KATIE AUSTIN' and the host variable
FIRSTNAME_LEN (int) has a value of 5.

 SELECT LEFT(:NAME, :FIRSTNAME_LEN)
 FROM SYSIBM.SYSDUMMY1

Returns the value 'KATIE'
• Assume that NAME is a VARCHAR(128) column, encoded in Unicode UTF-8, that contains the value

'Jürgen'.

472 IBM i: Db2 for i SQL Reference

 SELECT LEFT(NAME, 2), SUBSTR(NAME, 1, 2)
 FROM T1
 WHERE NAME = 'Jürgen'

Returns the value 'Jü' for LEFT and 'JÊ' for SUBSTR(NAME, 1, 2).

Chapter 4. Built-in functions 473

LENGTH
The LENGTH function returns the length of a value.

LENGTH (expression)

See “CHARACTER_LENGTH or CHAR_LENGTH” on page 331, “OCTET_LENGTH” on page 520, and
“BIT_LENGTH” on page 320 for similar functions.

expression
An expression that returns a value of any built-in data type.

The result of the function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

The result is the length of the argument. The length of strings includes blanks. The length of a varying-
length string is the actual length, not the length attribute.

The length of a graphic string is the number of double-byte characters (the number of bytes divided by 2).
The length of all other values is the number of bytes used to represent the value:

• 2 for small integer
• 4 for large integer
• 8 for big integer
• The integral part of (p/2)+1 for packed decimal numbers with precision p
• p for zoned decimal numbers with precision p
• 4 for single-precision float
• 8 for double-precision float
• 8 for DECFLOAT(16)
• 16 for DECFLOAT(34)
• The length of the string for strings
• 3 for time
• 4 for date
• 7+((p+1)/2) for timestamp(p)
• The actual number of bytes used to store the DataLink value (plus 19 if the DataLink is FILE LINK

CONTROL and READ PERMISSION DB) for datalinks
• 26 for row ID

Examples

• Assume the host variable ADDRESS is a varying-length character string with a value of ‘895 Don Mills
Road'.

 SELECT LENGTH(:ADDRESS)
 FROM SYSIBM.SYSDUMMY1

Returns the value 18.
• Assume that PRSTDATE is a column of type DATE.

 SELECT LENGTH(PRSTDATE)
 FROM PROJECT

Returns the value 4.
• Assume that PRSTDATE is a column of type DATE.

474 IBM i: Db2 for i SQL Reference

 SELECT LENGTH(CHAR(PRSTDATE, EUR))
 FROM PROJECT

Returns the value 10.

Chapter 4. Built-in functions 475

LN
The LN function returns the natural logarithm of a number. The LN and EXP functions are inverse
operations.

LN (expression)

expression
An expression that returns a value of any built-in numeric, character-string, or graphic-string
data type. A string argument is cast to double-precision floating point before evaluating the
function. For more information about converting strings to double-precision floating point, see
“DOUBLE_PRECISION or DOUBLE” on page 392. The value of the argument must be greater than
zero.

If the data type of the argument is DECFLOAT(n), the result is DECFLOAT(n). Otherwise, the data type
of the result is double-precision floating point. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

Note
Results involving DECFLOAT special values: For decimal floating-point values the special values are
treated as follows:

• LN(NaN) returns NaN. 61

• LN(-NaN) returns NaN. 61

• LN(Infinity) returns Infinity.
• LN(-Infinity) returns NaN. 61

• LN(sNaN) and LN(-sNaN) return a warning or error. 61

• LN(0) returns -Infinity.
• LN with a negative argument, including -Infinity, returns NaN. 61

Example

• Assume the host variable NATLOG is a DECIMAL(4,2) host variable with a value of 31.62.

 SELECT LN(:NATLOG)
 FROM SYSIBM.SYSDUMMY1

Returns the approximate value 3.45.

61 If *YES is specified for the SQL_DECFLOAT_WARNINGS query option, NaN is returned with a warning.

476 IBM i: Db2 for i SQL Reference

LNOT
The LNOT function returns a string that is the logical NOT of the argument string.

LNOT (expression)

expression
An expression that returns a value of any built-in numeric or string data type, but cannot be LOBs.
The arguments cannot be mixed data character strings, UTF-8 character strings, or graphic strings. A
numeric argument is cast to a character string before evaluating the function. For more information
about converting numeric to a character string, see “VARCHAR” on page 623.

The data type and length attribute of the result is the same as the data type and length attribute of the
argument value. If the argument is a varying-length string, the actual length of the result is the same as
the actual length of the argument value. If the argument can be null, the result can be null; if the argument
is null, the result is the null value.

The CCSID of the result is 65535.

Example

• Assume the host variable L1 is a CHARACTER(2) host variable with a value of X'F0F0'.

 SELECT LNOT(:L1)
 FROM SYSIBM.SYSDUMMY1

Returns the value X'0F0F'.

Chapter 4. Built-in functions 477

LOCATE
The LOCATE function returns the starting position of the first occurrence of one string (called the
search-string) within another string (called the source-string). If the search-string is not found and neither
argument is null, the result is zero. If the search-string is found, the result is a number from 1 to the
actual length of the source-string. If the optional start is specified, it indicates the character position in the
source-string at which the search is to begin.

LOCATE (search-string , source-string

, start

)

search-string
An expression that specifies the string that is to be searched for. search-string may be any built-in
numeric, datetime, or string expression. It must be compatible with the source-string. A numeric or
datetime argument is cast to a character string before evaluating the function. For more information
about converting numeric and datetime to a character string, see “VARCHAR” on page 623.

source-string
An expression that specifies the source string in which the search is to take place. source-string may
be any built-in numeric, datetime, or string expression. A numeric or datetime argument is cast to a
character string before evaluating the function. For more information about converting numeric and
datetime to a character string, see “VARCHAR” on page 623.

start
An expression that specifies the position within source-string at which the search is to start. start
may be any built-in numeric, character string, or graphic string expression. If the value is not of type
INTEGER, it is implicitly cast to INTEGER before evaluating the function. The value must be greater
than zero.

If start is specified, the function is similar to:

 POSITION(search-string , SUBSTRING(source-string,start)) + start - 1

If start is not specified, the function is equivalent to:

 POSITION(search-string , source-string))

For more information, see “POSITION” on page 525.

The result of the function is a large integer. If any of the arguments can be null, the result can be null; if
any of the arguments is null, the result is the null value.

The LOCATE function operates on a character basis. Because LOCATE operates on a character-string
basis, any shift-in and shift-out characters are not required to be in exactly the same position and their
only significance is to indicate which characters are SBCS and which characters are DBCS.

If the CCSID of the search-string is different than the CCSID of the source-string, it is converted to the
CCSID of the source-string.

If a collating sequence other than *HEX is in effect when the statement that contains the LOCATE function
is executed and the arguments are SBCS data, mixed data, or Unicode data, then the result is obtained
by comparing weighted values for each value in the set. The weighted values are based on the collating
sequence. An ICU collating sequence table may not be specified with the LOCATE function.

Example

• Select RECEIVED and SUBJECT columns as well as the starting position of the words 'GOOD' within the
NOTE_TEXT column for all entries in the IN_TRAY table that contain these words.

 SELECT RECEIVED, SUBJECT, LOCATE('GOOD', NOTE_TEXT)
 FROM IN_TRAY
 WHERE LOCATE('GOOD', NOTE_TEXT) <> 0

478 IBM i: Db2 for i SQL Reference

• Assume that NOTE is a VARCHAR(128) column, encoded in Unicode UTF-8, that contains the value
'Jürgen lives on Hegelstraße'. Find the character position of the character 'ß' in the string.

 SELECT LOCATE('ß', NOTE), POSSTR(NOTE_TEXT, 'ß')
 FROM T1

Returns the value 26 for LOCATE and 27 for POSSTR.

Chapter 4. Built-in functions 479

LOCATE_IN_STRING
The LOCATE_IN_STRING function returns the starting position of a string (called the search-string) within
another string (called the source-string). If the search-string is not found and neither argument is null,
the result is zero. If the search-string is found, the result is a number from 1 to the actual length of the
source-string. If the optional start is specified, it indicates the character position in the source-string at
which the search is to begin.

LOCATE_IN_STRING (source-string , search-string

, start

, instance

)

If the optional start is specified, it indicates the character position in the source-string at which the search
is to begin. If start is specified, an optional instance number can also be specified. The instance argument
is used to determine the specific occurrence of search-string within source-string. Each unique instance
can include any of the characters in a previous instance, but not all characters in a previous instance.

If the search-string has a length of zero, the result returned by the function is 1. If the source-string
has a length of zero, the result returned by the function is 0. If neither condition exists, and if the value
of search-string is equal to an identical length of a substring of contiguous positions within the value
of source-string, the result returned by the function is the starting position of that substring within the
source-string value; otherwise, the result returned by the function is 0.

source-string
An expression that specifies the source string in which the search is to take place. source-string may
be any built-in numeric, datetime, or string expression. A numeric or datetime argument is cast to a
character string before evaluating the function. For more information about converting numeric and
datetime to a character string, see “VARCHAR” on page 623.

search-string
An expression that specifies the string that is to be searched for. search-string may be any built-in
numeric, datetime, or string expression. It must be compatible with the source-string. A numeric or
datetime argument is cast to a character string before evaluating the function. For more information
about converting numeric and datetime to a character string, see “VARCHAR” on page 623.

start
An expression that specifies the position within source-string at which the search is to start. start
may be any built-in numeric, character string, or graphic string expression. If the value is not of type
INTEGER, it is implicitly cast to INTEGER before evaluating the function.

If the value of the integer is greater than zero, the search begins at start and continues for each
position to the end of the string. If the value of the integer is less than zero, the search begins at
CHARACTER_LENGTH(source-string) + start + 1 and continues for each position to the beginning of
the string.

If start is not specified, the function is equivalent to:

 POSITION(search-string , source-string)

If start is zero, an error is returned.

instance
An expression that specifies which instance of search-string to search for within source-string. The
expression must return a value that is a built-in numeric, character string, or graphic string data type.
If the value is not of type INTEGER, it is implicitly cast to INTEGER before evaluating the function. If
instance is not specified, the default is 1. The value of the integer must be greater than or equal to 1.

480 IBM i: Db2 for i SQL Reference

At each search position, a match is found when the substring at that position and
CHARACTER_LENGTH(search-string) - 1 values to the right of the search position in source-string, is equal
to search-string.

The result of the function is a large integer. The result is the starting position of the instance of
search-string within source-string. The value is relative to the beginning of the string (regardless of the
specification of start).

If any argument can be null, the result can be null; if any argument is null, the result is the null value.

The LOCATE_IN_STRING function operates on a character basis. Because LOCATE_IN_STRING operates
on a character-string basis, any shift-in and shift-out characters are not required to be in exactly the same
position and their only significance is to indicate which characters are SBCS and which characters are
DBCS.

If the CCSID of the search-string is different than the CCSID of the source-string, it is converted to the
CCSID of the source-string.

If a collating sequence other than *HEX is in effect when the statement that contains the
LOCATE_IN_STRING function is executed and the arguments are SBCS data, mixed data, or Unicode
data, then the result is obtained by comparing weighted values for each value in the set. The weighted
values are based on the collating sequence. An ICU collating sequence table may not be specified with
the LOCATE function.

Syntax alternatives: INSTR can be used as a synonym for LOCATE_IN_STRING.

Example

• Locate the character 'ß' in the string 'Jürgen lives on Hegelstraße' by searching from the end of the
string, and set the host variable POSITION with the position within the string.

SET :POSITION = LOCATE_IN_STRING('Jürgen lives on Hegelstraße','ß',-1);

The value of host variable POSITION is set to 26.
• Find the position of an occurrence of the character 'N' in the string 'WINNING' by searching from the

start of the string.

SELECT LOCATE_IN_STRING('WINNING','N',1,3),
 LOCATE_IN_STRING('WINNING','N',3,2),
 LOCATE_IN_STRING('WINNING','N',3,3)
FROM SYSIBM.SYSDUMMY1;

Returns the values:

6 4 6

• Find the position of an occurrence of the character 'N' in the string 'WINNING' by searching from the
end of the string.

SELECT LOCATE_IN_STRING('WINNING','N',-1,3),
 LOCATE_IN_STRING('WINNING','N',-3,2),
 LOCATE_IN_STRING('WINNING','N',-3,3)
FROM SYSIBM.SYSDUMMY1;

Returns the values:

3 3 0

Chapter 4. Built-in functions 481

LOG10
The LOG10 function returns the common logarithm (base 10) of a number. The LOG10 and ANTILOG
functions are inverse operations.

LOG10 (expression)

expression
An expression that returns a value of any built-in numeric, character-string, or graphic-string
data type. A string argument is cast to double-precision floating point before evaluating the
function. For more information about converting strings to double-precision floating point, see
“DOUBLE_PRECISION or DOUBLE” on page 392.

If the data type of the argument is DECFLOAT(n), the result is DECFLOAT(n). Otherwise, the data type
of the result is double-precision floating point. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

Note
Results involving DECFLOAT special values: For decimal floating-point values the special values are
treated as follows:

• LOG10(NaN) returns NaN. 62

• LOG10(-NaN) returns NaN. 62

• LOG10(Infinity) returns Infinity.
• LOG10(-Infinity) returns NaN. 62

• LOG10(sNaN) and LOG10(-sNaN) return a warning or error. 62

• LOG10(0) returns -Infinity.
• LOG10 with a negative argument, including -Infinity, returns NaN. 62

Syntax alternatives: LOG is a synonym for LOG10. It is supported only for compatibility with previous
Db2 releases. LOG10 should be used instead of LOG because some database managers and applications
implement LOG as the natural logarithm of a number instead of the common logarithm of a number.

Example

• Assume the host variable L is a DECIMAL(4,2) host variable with a value of 31.62.

 SELECT LOG10(:L)
 FROM SYSIBM.SYSDUMMY1

Returns the approximate value 1.49.

62 If *YES is specified for the SQL_DECFLOAT_WARNINGS query option, NaN is returned with a warning.

482 IBM i: Db2 for i SQL Reference

LOR
The LOR function returns a string that is the logical OR of the argument strings. This function takes the
first argument string, does an OR operation with the next string, and then continues to do OR operations
for each successive argument using the previous result. If a character-string argument is shorter than the
previous result, it is padded with blanks. If a binary-string argument is shorter than the previous result, it
is padded with hexadecimal zeros.

LOR (expression , expression)

The arguments must be compatible.

expression
An expression that returns a value of any built-in numeric or string data type, but cannot be LOBs.
The arguments cannot be mixed data character strings, UTF-8 character strings, or graphic strings. A
numeric argument is cast to a character string before evaluating the function. For more information
about converting numeric to a character string, see “VARCHAR” on page 623.

The arguments are converted, if necessary, to the attributes of the result. The attributes of the result are
determined as follows:

• If all the arguments are fixed-length strings, the result is a fixed-length string of length n, where n is the
length of the longest argument.

• If any argument is a varying-length string, the result is a varying-length string with length attribute n,
where n is the length attribute of the argument with greatest length attribute. The actual length of the
result is m, where m is the actual length of the longest argument.

If an argument can be null, the result can be null; if an argument is null, the result is the null value.

The CCSID of the result is 65535.

Example

• Assume the host variable L1 is a CHARACTER(2) host variable with a value of X'0101', host variable L2 is
a CHARACTER(3) host variable with a value of X'F0F000', and host variable L3 is a CHARACTER(4) host
variable with a value of X'0000000F'.

 SELECT LOR(:L1,:L2,:L3)
 FROM SYSIBM.SYSDUMMY1

Returns the value X'F1F1404F'.

Chapter 4. Built-in functions 483

LOWER
The LOWER function returns a string in which all the characters have been converted to lowercase
characters, based on the CCSID of the argument. Only SBCS, Unicode graphic characters are converted.
The characters A-Z are converted to a-z, and characters with diacritical marks are converted to their
lowercase equivalent, if any.

LOWER (expression)

Refer to the UCS-2 level 1 mapping tables topic in theGlobalization topic collection for a description of the
monocasing tables that are used for this translation.

expression
An expression that specifies the string to be converted. expression must be any built-in numeric,
character, Unicode graphic string. A numeric argument is cast to a character string before evaluating
the function. For more information about converting numeric to a character string, see “VARCHAR” on
page 623.

The result of the function has the same data type, length attribute, actual length, and CCSID as the
argument. If the argument can be null, the result can be null. If the argument is null, the result is the null
value.

Note
Syntax alternatives: LCASE is a synonym for LOWER.

Examples

• Ensure that the characters in the value of host variable NAME are lowercase. NAME has a data type of
VARCHAR(30) and a value of 'Christine Smith'.

SELECT LOWER(:NAME)
 FROM SYSIBM.SYSDUMMY1

The result is the value 'christine smith'.

484 IBM i: Db2 for i SQL Reference

LPAD
The LPAD function returns a string composed of expression that is padded on the left.

LPAD (expression , length

, pad

)

The LPAD function treats leading or trailing blanks in expression as significant. Padding will only occur if
the actual length of expression is less than length, and pad is not an empty string.

expression
An expression that specifies the string from which the result is derived.

Expression must be a built-in string, numeric, or datetime data type. A numeric or datetime argument
is cast to VARCHAR with a CCSID that is the default SBCS CCSID at the current server before
evaluating the function. For more information about converting numeric or datetime to a varying
character string, see “VARCHAR” on page 623.

length
An expression that specifies the length of the result. The expression must return a value that is a
built-in numeric, character-string, or graphic-string data type. If the data type of the expression is not
INTEGER, it is implicitly cast to INTEGER before evaluating the function. The value must be zero or a
positive integer that is less than or equal to n, where n is the maximum length of the result data type.
See Appendix A, “SQL limits,” on page 1643 for more information.

If expression is a graphic string, length indicates the number of DBCS or Unicode graphic characters.
If expression is a character string, length indicates the number of characters where a character may
consist of one or more bytes. If expression is a binary string, length indicates the number of bytes.

pad
An expression that specifies the string with which to pad. The expression must return a value that is
a built-in string, numeric, or datetime data type. If the value is a numeric or datetime data type, it is
implicitly cast to VARCHAR with a CCSID that is the default SBCS CCSID at the current server before
evaluating the function.
If pad is not specified, the pad character is set as follows:

• For character and graphic strings, a single-byte, double-byte, UTF-16, or UTF-8 blank character
based on the data type and CCSID of expression.63

• For binary strings, hexadecimal zeros.

The value for expression and the value for pad must have compatible data types. If the CCSID of pad is
different than the CCSID of expression, the pad value is converted to the CCSID of expression. For more
information about data type compatibility, see “Assignments and comparisons” on page 89.

The data type of the result depends on the data type of expression:

Data type of expression Data Type of the Result for LPAD

CHAR or VARCHAR or numeric or
datetime

VARCHAR

CLOB CLOB

GRAPHIC or VARGRAPHIC VARGRAPHIC

DBCLOB DBCLOB

BINARY or VARBINARY VARBINARY

63 UTF-16 or UCS-2 defines a blank character at code point X'0020' and X'3000'. The database manager pads
with the blank at code point X'0020'. The database manager pads UTF-8 with a blank at code point X'20'

Chapter 4. Built-in functions 485

Data type of expression Data Type of the Result for LPAD

BLOB BLOB

The length attribute of the result depends on length. If length is explicitly specified by an integer constant
that is greater than zero, the length attribute of the result is length. If length is explicitly specified by an
integer constant that is zero, the length attribute of the result is 1. If length is specified as an expression,
the length attribute of the result is the minimum of m+100 and the maximum length of the result data
type, where m is the length attribute of expression. See Appendix A, “SQL limits,” on page 1643 for more
information.

The actual length of the result is determined from length.

• If length is 0, the actual length is 0 and the result is the empty result string.
• If length is equal to the actual length of expression, the actual length is the length of expression.
• If length is less than the actual length of expression, the result is truncated. The actual length is length

unless the result data type is varying-length mixed data or varying-length Unicode. In this case, only
complete characters will be truncated.

– For Unicode data, the actual length may be length-1 to prevent a double-byte character from being
split.

– For mixed data the actual length may be as little as length-3 to account for truncation of a double
byte character and possibly a “shift-in” character (X'0F') and a “shift-out” character (X'0E').

• If length is greater than the actual length of expression, the actual length is length unless the result data
type is varying-length mixed data or varying-length Unicode and pad contains double-byte characters.
In this case, only complete characters will be padded.

– For Unicode data, the actual length may be length-1 to prevent a double-byte character from being
split.

– For mixed data, the actual length may be may be as little as length-3 to account for truncation of a
double byte character and possibly a “shift-in” character (X'0F') and a “shift-out” character (X'0E').
Also, this result will not have redundant shift codes “at the seam”. Thus, if the pad is a string ending
with a “shift-in” character (X'0F'), and expression begins with a “shift-out” character (X'0E'), these
two bytes are eliminated from the result.

If any argument can be null, the result can be null; if any argument is null, the result is the null value.

The CCSID of the result is the same as that of expression.

Examples

• Example 1: Assume that NAME is a VARCHAR(15) column that contains the values "Chris", "Meg", and
"Jeff". The following query will completely pad out a value on the left with periods:

SELECT LPAD(NAME,15,'.') AS NAME FROM T1;

returns:

NAME

..........Chris
............Meg
...........Jeff

• Example 2: Assume that NAME is a VARCHAR(15) column that contains the values "Chris", "Meg", and
"Jeff". The following query will only pad each value to a length of 5:

SELECT LPAD(NAME,5,'.') AS NAME FROM T1;

returns:

486 IBM i: Db2 for i SQL Reference

NAME

Chris
..Meg
.Jeff

• Example 3: Assume that NAME is a CHAR(15) column containing the values "Chris", "Meg", and "Jeff".
The LPAD function does not pad because NAME is a fixed length character field and is blank padded
already. However, since the length of the result is 5, the columns are truncated:

SELECT LPAD(NAME,5,'.') AS NAME FROM T1;

returns:

NAME

Chris
Meg
Jeff

• Example 4: Assume that NAME is a VARCHAR(15) column containing the values "Chris", "Meg", and
"Jeff". In some cases, a partial instance of the pad specification is returned:

SELECT LPAD(NAME,15,'123') AS NAME FROM T1;

returns:

NAME

1231231231Chris
123123123123Meg
12312312312Jeff

• Example 5: Assume that NAME is a VARCHAR(15) column containing the values "Chris", "Meg", and
"Jeff". Note that "Chris" is truncated, "Meg" is padded, and "Jeff" is unchanged:

SELECT LPAD(NAME,4,'.') AS NAME FROM T1;

returns:

NAME

Chri
.Meg
Jeff

Chapter 4. Built-in functions 487

LTRIM
The LTRIM function removes any of the specified characters from the beginning of an expression.

LTRIM (string-expression

, trim-expression

)

The LTRIM function removes all of the characters that are contained in trim-expression from the beginning
of string-expression. The collating sequence does not affect the search. If the string-expression is defined
as FOR BIT DATA or is a binary data type, the search is done by comparing each byte in trim-expression to
the byte at the beginning of string-expression.

string-expression
An expression that returns a value of any built-in numeric, datetime, or string data type. A numeric or
datetime argument is cast to a character string before evaluating the function.64 For more information
about converting numeric or datetime to a character string, see “VARCHAR” on page 623.

trim-expression
An expression that specifies the characters to remove from the beginning of string-expression. The
expression must return a value of any built-in numeric, datetime, or string data type. A numeric or
datetime argument is cast to a character string before evaluating the function.

When trim-expression is not specified, the data type of the string-expression determines the default
value used:

• Hexadecimal zero (X'00') if the argument is a binary string.
• DBCS blank if the argument is a DBCS graphic string.
• UTF-16 or UCS-2 blank if the first argument is a Unicode graphic string.
• UTF-8 blank if the first argument is a UTF-8 character string.
• Otherwise, a SBCS blank.

The value for string-expression and the value for trim-expression must have compatible data types. For
more information about data type compatibility, see “Assignments and comparisons” on page 89. If
string-expression and trim-expression have different CCSIDs, trim-expression is converted to the CCSID of
string-expression.

The data type of the result depends on the data type of string-expression:

Data type of string-expression Data type of the Result

CHAR or VARCHAR VARCHAR

CLOB CLOB

GRAPHIC or VARGRAPHIC VARGRAPHIC

DBCLOB DBCLOB

BINARY or VARBINARY VARBINARY

BLOB BLOB

The length attribute of the result is the same as the length attribute of string-expression. The actual length
of the result for character or binary strings is the length of string-expression minus the number of bytes
removed. The actual length of the result for graphic strings is the length of string-expression minus the
number of graphic characters removed. If all characters are removed, the result is an empty string.

If either argument can be null, the result can be null; if any argument is null, the result is the null value.

The CCSID of the result is the same as that of string-expression.

64 The LTRIM function with one argument returns the same results as: STRIP(string-expression,LEADING)

488 IBM i: Db2 for i SQL Reference

Examples

• Example 1: Use the LTRIM function when the host variable HELLO is defined as CHAR(9) and has a value
of

 ' Hello'

 VALUES LTRIM(:HELLO)

The result is 'Hello'. When a trim-expression is not specified only blanks are removed.
• Example 2: Use the LTRIM function to remove individual numbers in the trim-expression from the

beginning (left side) of the string-expression.

SELECT LTRIM ('123DEFG123', '321'),
 LTRIM ('12DEFG123', '321'),
 LTRIM ('123123222XYZ22', '123'),
 LTRIM ('12321', '213'),
 LTRIM ('XYX123 ', '321')
 FROM SYSIBM.SYSDUMMY1

The result is:

 'DEFG123'
 'DEFG123'
 'XYZ22'
 '' (an empty string - all characters removed)
 'XYX123' (no characters removed)

The LTRIM function does not remove instances of '1', '2', and '3' on the right side of the string, following
characters that are not '1', '2', or '3'.

• Example 3: Use the LTRIM function to remove the characters specified in the trim-expression from the
beginning of the string-expression.

 VALUES LTRIM(('...$V..$AR', '$.'))

The result is 'V..$AR'. The function stops when it encounters a character not in the trim-expression.
• Example 4: Use the LTRIM function to remove the characters specified in the trim-expression from the

beginning of the string-expression.

 VALUES LTRIM('[[-78]]', '- []')

The result is '78]]'. When removing characters and blanks, you must include a blank in the trim-
expression.

Chapter 4. Built-in functions 489

MAX
The MAX scalar function returns the maximum value in a set of values.

MAX (expression , expression)

The arguments must be compatible. Character-string arguments are compatible with datetime values.
The arguments cannot be DataLink or XML values.

expression
An expression that returns the value of any built-in numeric or string data type. If one of the
arguments is numeric, then character and graphic string arguments are cast to numeric before
evaluating the function.

The result of the function is the largest argument value. The result can be null if at least one argument can
be null; the result is the null value if one of the arguments is null.

The selected argument is converted, if necessary, to the attributes of the result. The attributes of the
result are determined by all the operands as explained in “Rules for result data types” on page 105.

If a collating sequence other than *HEX is in effect when the statement is executed and the arguments are
SBCS data, mixed data, or Unicode data, the weighted values of the strings are compared instead of the
actual values. The weighted values are based on the collating sequence.

Note
Syntax alternatives: GREATEST can be specified as a synonym for MAX.

Examples

• Assume the host variable M1 is a DECIMAL(2,1) host variable with a value of 5.5, host variable M2 is a
DECIMAL(3,1) host variable with a value of 4.5, and host variable M3 is a DECIMAL(3,2) host variable
with a value of 6.25.

 SELECT MAX(:M1,:M2,:M3)
 FROM SYSIBM.SYSDUMMY1

Returns the value 6.25.
• Assume the host variable M1 is a CHARACTER(2) host variable with a value of 'AA', host variable M2 is a

CHARACTER(3) host variable with a value of 'AA ', and host variable M3 is a CHARACTER(4) host variable
with a value of 'AA A'.

 SELECT MAX(:M1,:M2,:M3)
 FROM SYSIBM.SYSDUMMY1

Returns the value 'AA A'.

490 IBM i: Db2 for i SQL Reference

MAX_CARDINALITY
The MAX_CARDINALITY function returns a value representing the maximum number of elements an array
can contain. This is the cardinality specified on the CREATE TYPE (Array) statement for the user-defined
array type.

MAX_CARDINALITY (array-expression)

array-expression
The expression can be either an SQL variable or parameter of an array data type, or a cast
specification of a parameter marker to an array data type.

The result of the function is BIGINT. The result cannot be null.

Note
Syntax alternatives: ARRAY_MAX_CARDINALITY can be specified as a synonym for MAX_CARDINALITY.

Example

Assume that array type PHONENUMBERS and array variable RECENT_CALLS are defined as follows:

CREATE TYPE PHONENUMBERS AS INTEGER ARRAY[50];
DECLARE RECENT_CALLS PHONENUMBERS;

The following statement sets LIST_SIZE to the maximum cardinality with which RECENT_CALLS was
defined.

SET LIST_SIZE = MAX_CARDINALITY(RECENT_CALLS)

After the statement executes, LIST_SIZE contains 50.

Chapter 4. Built-in functions 491

MICROSECOND
The MICROSECOND function returns the microsecond part of a value.

MICROSECOND (expression)

expression
An expression that returns a value of one of the following built-in data types: a date, a time, a
timestamp, a character string, a graphic string, or a numeric data type.

• If expression is a character or graphic string, its value must be a valid string representation of a
datetime value. If expression is a valid string representation of a date, it must be in one of the IBM
SQL standard formats. For the valid formats of string representations of dates and timestamps, see
“String representations of datetime values” on page 75.

• If the argument is a DATE, it is first converted to a TIMESTAMP(0) value, assuming a time of exactly
midnight (00.00.00).

• If expression is a number, it must be a timestamp duration. For the valid formats of datetime
durations, see “Datetime operands and durations” on page 165.

The result of the function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

The other rules depend on the data type of the argument:

• If the argument is date, time, or timestamp or a valid character-string representation of a date, time, or
timestamp:

The result is an integer that ranges from 0 to 999999.

If the precision of the timestamp exceeds 6, the value is truncated.
• If the argument is a duration:

The result is the microsecond part of the value, which is an integer between -999999 and 999999. A
nonzero result has the same sign as the argument.

Example

• Assume a table TABLEA contains two columns, TS1 and TS2, of type TIMESTAMP. Select all rows in
which the microseconds portion of TS1 is not zero and the seconds portion of TS1 and TS2 are identical.

 SELECT *
 FROM TABLEA
 WHERE MICROSECOND(TS1) <> 0 AND SECOND(TS1) = SECOND(TS2)

492 IBM i: Db2 for i SQL Reference

MIDNIGHT_SECONDS
The MIDNIGHT_SECONDS function returns an integer value that is greater than or equal to 0 and less than
or equal to 86 400 representing the number of seconds between midnight and the time value specified in
the argument.

MIDNIGHT_SECONDS (expression)

expression
An expression that returns a value of one of the following built-in data types: a date, a time, a
timestamp, a character string, or a graphic string. Its value must be a valid string representation of
a time or timestamp. For the valid formats of string representations of times and timestamps, see
“String representations of datetime values” on page 75.

If the argument is a DATE, it is first converted to a TIMESTAMP(0) value, assuming a time of exactly
midnight (00.00.00).

The result of the function is large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

Examples

• Find the number of seconds between midnight and 00:01:00, and midnight and 13:10:10. Assume that
host variable XTIME1 has a value of '00:01:00', and that XTIME2 has a value of '13:10:10'.

 SELECT MIDNIGHT_SECONDS(:XTIME1), MIDNIGHT_SECONDS(:XTIME2)
 FROM SYSIBM.SYSDUMMY1

This example returns 60 and 47410. Because there are 60 seconds in a minute and 3600 seconds in an
hour, 00:01:00 is 60 seconds after midnight ((60 * 1) + 0), and 13:10:10 is 47410 seconds ((3600 * 13)
+ (60 * 10) + 10).

• Find the number of seconds between midnight and 24:00:00, and midnight and 00:00:00.

 SELECT MIDNIGHT_SECONDS('24:00:00'), MIDNIGHT_SECONDS('00:00:00')
 FROM SYSIBM.SYSDUMMY1

This example returns 86400 and 0. Although these two values represent the same point in time,
different values are returned.

Chapter 4. Built-in functions 493

MIN
The MIN scalar function returns the minimum value in a set of values.

MIN (expression , expression)

The arguments must be compatible. Character-string arguments are compatible with datetime values.
The arguments cannot be DataLink or XML values.

expression
An expression that returns a value of any built-in numeric or string data type. If one of the arguments
is numeric, then character and graphic string arguments are cast to numeric before evaluating the
function.

The result of the function is the minimum argument value. The result can be null if at least one argument
can be null; the result is the null value if one of the arguments is null.

The selected argument is converted, if necessary, to the attributes of the result. The attributes of the
result are determined by all the operands as explained in “Rules for result data types” on page 105.

If a collating sequence other than *HEX is in effect when the statement is executed and the arguments are
SBCS data, mixed data, or Unicode data, the weighted values of the strings are compared instead of the
actual values. The weighted values are based on the collating sequence.

Note
Syntax alternatives: LEAST can be specified as a synonym for MIN.

Examples

• Assume the host variable M1 is a DECIMAL(2,1) host variable with a value of 5.5, host variable M2 is a
DECIMAL(3,1) host variable with a value of 4.5, and host variable M3 is a DECIMAL(3,2) host variable
with a value of 6.25.

 SELECT MIN(:M1,:M2,:M3)
 FROM SYSIBM.SYSDUMMY1

Returns the value 4.50.
• Assume the host variable M1 is a CHARACTER(2) host variable with a value of 'AA', host variable M2

is a CHARACTER(3) host variable with a value of 'AAA', and host variable M3 is a CHARACTER(4) host
variable with a value of 'AAAA'.

 SELECT MIN(:M1,:M2,:M3)
 FROM SYSIBM.SYSDUMMY1

Returns the value 'AA '.

494 IBM i: Db2 for i SQL Reference

MINUTE
The MINUTE function returns the minute part of a value.

MINUTE (expression)

expression
An expression that returns a value of one of the following built-in data types: a date, a time, a
timestamp, a character string, a graphic string, or a numeric data type.

• If expression is a character or graphic string, its value must be a valid string representation of a
datetime value. If expression is a valid string representation of a date, it must be in one of the IBM
SQL standard formats. For the valid formats of string representations of datetime values, see “String
representations of datetime values” on page 75.

• If the argument is a DATE, it is first converted to a TIMESTAMP(0) value, assuming a time of exactly
midnight (00.00.00).

• If expression is a number, it must be a time duration or timestamp duration. For the valid formats of
datetime durations, see “Datetime operands and durations” on page 165.

The result of the function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

The other rules depend on the data type of the argument:

• If the argument is a date, time, or timestamp, or a valid character-string representation of a date, time,
or timestamp:

The result is the minute part of the value, which is an integer between 0 and 59.
• If the argument is a time duration or timestamp duration:

The result is the minute part of the value, which is an integer between -99 and 99. A nonzero result has
the same sign as the argument.

Example

• Using the CL_SCHED sample table, select all classes with a duration less than 50 minutes.

 SELECT *
 FROM CL_SCHED
 WHERE HOUR(ENDING - STARTING) = 0 AND
 MINUTE(ENDING - STARTING) < 50

Chapter 4. Built-in functions 495

MOD
The MOD function divides the first argument by the second argument and returns the remainder.

MOD (expression-1 , expression-2)

The formula used to calculate the remainder is:

 MOD(x,y) = x - (x/y) * y

where x/y is the truncated integer result of the division. The result is negative only if first argument is
negative.

expression-1
An expression that returns a value of any built-in numeric, character-string, or graphic-string
data type. A string argument is cast to double-precision floating point before evaluating the
function. For more information about converting strings to double-precision floating point, see
“DOUBLE_PRECISION or DOUBLE” on page 392.

expression-2
An expression that returns a value of any built-in numeric, character-string, or graphic-string
data type. A string argument is cast to double-precision floating point before evaluating the
function. For more information about converting strings to double-precision floating point, see
“DOUBLE_PRECISION or DOUBLE” on page 392. expression-2 cannot be zero unless either argument
is decimal floating-point.

If an argument can be null, the result can be null; if an argument is null, the result is the null value.

The attributes of the result are determined as follows:

• If both arguments are large or small integers with zero scale, the data type of the result is large integer.
• If both arguments are integers with zero scale and at least one of the arguments is a big integer, the

data type of the result is big integer.
• If one argument is an integer with zero scale and the other is decimal, the result is decimal with the

same precision and scale as the decimal argument.
• If both arguments are decimal or integer with scale numbers, the result is decimal. The precision of the

result is min (p-s,p'-s') + max (s,s'), and the scale of the result is max (s,s'), where the symbols p and s
denote the precision and scale of the first operand, and the symbols p' and s' denote the precision and
scale of the second operand.

• If either argument is floating point and the other operand is not decimal floating-point, the data type of
the result is double-precision floating point.

The operation is performed in floating point. If necessary, the operands are first converted to double
precision floating-point numbers. For example, an operation that involves a floating-point number and
either an integer or a decimal number is performed with a temporary copy of the integer or decimal
number that has been converted to double precision floating-point. The result of a floating-point
operation must be within the range of floating-point numbers.

• If either argument is decimal floating-point, the data type of the result is DECFLOAT(34). If the
argument is a special decimal floating-point value, the general rules for arithmetic operations apply.
See “General arithmetic operation rules for DECFLOAT” on page 162 for more information.

If either argument is decimal floating-point and the second operand evaluates to 0, the result is NaN and
the invalid operation warning (SQLSTATE 0168D) is issued.65 MOD(1, -Infinity) returns the value 1.

65 If *YES is specified for the SQL_DECFLOAT_WARNINGS query option, NaN is returned with a warning.
Otherwise, a division by zero warning or error is returned.

496 IBM i: Db2 for i SQL Reference

Examples

• Assume the host variable M1 is an integer host variable with a value of 5, and host variable M2 is an
integer host variable with a value of 2.

 SELECT MOD(:M1,:M2)
 FROM SYSIBM.SYSDUMMY1

Returns the value 1.
• Assume the host variable M1 is an integer host variable with a value of 5, and host variable M2 is a

DECIMAL(3,2) host variable with a value of 2.20.

 SELECT MOD(:M1,:M2)
 FROM SYSIBM.SYSDUMMY1

Returns the value 0.60.
• Assume the host variable M1 is a DECIMAL(4,2) host variable with a value of 5.50, and host variable M2

is a DECIMAL(4,1) host variable with a value of 2.0.

 SELECT MOD(:M1,:M2)
 FROM SYSIBM.SYSDUMMY1

Returns the value 1.50.

Chapter 4. Built-in functions 497

MONTH
The MONTH function returns the month part of a value.

MONTH (expression)

expression
An expression that returns a value of one of the following built-in data types: a date, a timestamp, a
character string, a graphic string, or a numeric data type.

• If expression is a character or graphic string, its value must be a valid string representation of a date
or timestamp. For the valid formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 75.

• If expression is a number, it must be a date duration or timestamp duration. For the valid formats of
datetime durations, see “Datetime operands and durations” on page 165.

The result of the function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

The other rules depend on the data type of the argument:

• If the argument is a date, a timestamp, or a valid character-string representation of a date or timestamp:

The result is the month part of the value, which is an integer between 1 and 12.
• If the argument is a date duration or timestamp duration:

The result is the month part of the value, which is an integer between -99 and 99. A nonzero result has
the same sign as the argument.

Example

• Select all rows from the EMPLOYEE table for people who were born (BIRTHDATE) in DECEMBER.

 SELECT *
 FROM EMPLOYEE
 WHERE MONTH(BIRTHDATE) = 12

498 IBM i: Db2 for i SQL Reference

MONTHNAME
Returns a mixed case character string containing the name of the month (for example, January) for the
month portion of the argument.

MONTHNAME (expression)

expression
An expression that returns a value of one of the following built-in data types: a date, a timestamp, a
character string, or a graphic string.

If expression is a character or graphic string, its value must be a valid string representation of a date
or timestamp. For the valid formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 75.

The result of the function is VARCHAR(100). If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

The CCSID of the result is the default CCSID of the current server.

Note
National language considerations: The name of the month that is returned is based on the language
used for messages in the job. This name of the month is retrieved from message CPX3BC0 in message file
QCPFMSG in library *LIBL.

Examples

• Assume that the language used is US English.

SELECT MONTHNAME('2003-01-02')
 FROM SYSIBM.SYSDUMMY1

Results in 'January'.

Chapter 4. Built-in functions 499

MONTHS_BETWEEN
The MONTHS_BETWEEN function returns an estimate of the number of months between expression1 and
expression2.

MONTHS_BETWEEN (expression1 , expression2)

expression1
An expression that returns a value of one of the following built-in data types: a date, a timestamp, a
character-string, or a graphic-string.
If expression1 is a character or graphic string, its value must be a valid string representation of a date
or timestamp. For the valid formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 75

expression2
An expression that returns a value of one of the following built-in data types: a date, a timestamp, a
character-string, or a graphic-string.
If expression2 is a character or graphic string, its value must be a valid string representation of a date
or timestamp. For the valid formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 75

If expression1 represents a date that is later than expression2, then the result is positive. If expression2
represents a date that is equal to or later than expression1, then the result is negative.

• If expression1 and expression2 represent dates or timestamps with the same day of the month or the
last day of the month, or both arguments represent the last day of their respective months, the result
is a the whole number difference based on the year and month values ignoring any time portions of
timestamp arguments.

• Otherwise, the whole number part of the result is the difference based on the year and month values.
The fractional part of the result is calculated from the remainder based on an assumption that every
month has 31 days. If either argument represents a timestamp, the arguments are effectively processed
as timestamps with precision 12, and the time portions of these values are also considered when
determining the result.

The result of the function is a DECIMAL(31,15). If either argument can be null, the result can be null; if
either argument is null, the result is the null value.

Examples

• Calculate the months between two dates:

 SELECT MONTHS_BETWEEN('2005-01-17', '2005-02-17')
 FROM SYSIBM.SYSDUMMY1

Returns the value -1.000000000000000

 SELECT MONTHS_BETWEEN('2005-02-20', '2005-01-17')
 FROM SYSIBM.SYSDUMMY1

Returns the value 1.096774193548387
• The following table contains additional examples:

500 IBM i: Db2 for i SQL Reference

Table 56. Additional examples using MONTHS_BETWEEN

Value for argument
e1

Value for argument
e2

Value returned by
MONTHS_BETWEEN
(e1,e2)

Value returned by
ROUND(
MONTHS_BETWEEN(
e1,e2)*31,2) Comment

2005-02-02 2005-01-01 1.032258064516129 32.00

2007-11-01-09.00.00
.00000

2007-12-07-14.30.12
.12345

-1.20094538659274
1

-37.23

2007-12-13-09.40.30
.00000

2007-11-13-08.40.30
.00000

1.000000000000000 31.00 See Note 1

2007–03–15 2007–02–20 0.838709677419354 26.00 See Note 2

2008-02-29 2008-02-28-12.00.00 0.016129032258064 0.50

2008-03-29 2008-02-29 1.000000000000000 31.00

2008-03-30 2008-02-29 1.032258064516129 32.00

2008-03-31 2008-02-29 1.000000000000000 31.00 See Note 3

Note:

1. The time difference is ignored because the day of the month is the same for both values.
2. The result is not 23 because, even though February has 28 days, the assumption is that all months

have 31 days.
3. The result is not 33 because both dates are the last day of their respective month, and so the result

is only based on the year and month portions.

Chapter 4. Built-in functions 501

MQREAD
The MQREAD function returns a message from a specified MQSeries location (return value of VARCHAR)
without removing the message from the queue.

MQREAD (

receive-service

, service-policy

, correl-id

)

The MQREAD function returns a message from the MQSeries location that is specified by receive-service,
using the quality-of-service policy that is defined in service-policy. Performing this operation does not
remove the message from the queue that is associated with receive-service, but instead returns the
message at the beginning of the queue.

receive-service
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service point that is defined in the SYSIBM.MQSERVICE table. A service point is a
logical end-point from where a message is sent or received. Service point definitions include the
name of the MQSeries queue manager and queue. For more information about MQSeries Application
Messaging, see SQL Programming.

If receive-service is not specified or the null value, DB2.DEFAULT.SERVICE is used.

service-policy
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service policy that is defined in the SYSIBM.MQPOLICY table. A service policy specifies
a set of quality-of-service options that are to be applied to this messaging operation. These options
include message priority and message persistence. For more information about MQSeries Application
Messaging, see SQL Programming.

If service-policy is not specified or the null value, DB2.DEFAULT.POLICY is used.

correl-id
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The expression must have an actual length that is no greater than 24 bytes. The value of
the expression specifies the correlation identifier that is associated with this message. A correlation
identifier is often specified in request-and-reply scenarios to associate requests with replies. The
first message with a matching correlation identifier is returned. For more information about MQSeries
Application Messaging, see SQL Programming.

A fixed length string with trailing blanks is considered a valid value. However, when the correl-id
is specified on another request such as MQSEND, the identical correl-id must be specified to be
recognized as a match. For example, specifying a value of 'test' for correl-id on MQRECEIVE does not
match a correl-id value of 'test ' (with trailing blanks) specified earlier on an MQSEND request.

If correl-id is not specified or is an empty string or the null value, a correlation identifier is not used,
and the message at the beginning of the queue is returned.

The result of the function is a varying-length string with a length attribute of 32000. The result can be null.
If no messages are available to be returned, the result is the null value.

The CCSID of the result is the default CCSID at the current server.

502 IBM i: Db2 for i SQL Reference

Notes
Prerequisites: In order to use the MQSeries functions, IBM MQSeries for IBM i must be installed,
configured, and operational.

Example

• This example reads the message at the head of the queue specified by the default service
(DB2.DEFAULT.SERVICE), using the default policy (DB2.DEFAULT.POLICY).

 SELECT MQREAD ()
 FROM SYSIBM.SYSDUMMY1

• This example reads the message at the head of the queue specified by the service "MYSERVICE" using
the default policy (DB2.DEFAULT.POLICY).

 SELECT MQREAD ('MYSERVICE')
 FROM SYSIBM.SYSDUMMY1

• This example reads the message at the head of the queue specified by the service "MYSERVICE", and
using the policy "MYPOLICY".

 SELECT MQREAD ('MYSERVICE','MYPOLICY')
 FROM SYSIBM.SYSDUMMY1

• This example reads the first message with a correlation id that matches '1234' from the head of the
queue specified by the service "MYSERVICE" using the policy "MYPOLICY".

 SELECT MQREAD ('MYSERVICE','MYPOLICY','1234')
 FROM SYSIBM.SYSDUMMY1

Chapter 4. Built-in functions 503

MQREADCLOB
The MQREADCLOB function returns a message from a specified MQSeries location (return value of CLOB)
without removing the message from the queue.

MQREADCLOB (

receive-service

, service-policy

, correl-id

)

The MQREADCLOB function returns a message from the MQSeries location that is specified by receive-
service, using the quality-of-service policy that is defined in service-policy. Performing this operation does
not remove the message from the queue that is associated with receive-service, but instead returns the
message at the beginning of the queue.

receive-service
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service point that is defined in the SYSIBM.MQSERVICE table. A service point is a
logical end-point from where a message is sent or received. Service point definitions include the
name of the MQSeries queue manager and queue. For more information about MQSeries Application
Messaging, see SQL Programming.

If receive-service is not specified or the null value, DB2.DEFAULT.SERVICE is used.

service-policy
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service policy that is defined in the SYSIBM.MQPOLICY table. A service policy specifies
a set of quality-of-service options that are to be applied to this messaging operation. These options
include message priority and message persistence. For more information about MQSeries Application
Messaging, see SQL Programming.

If service-policy is not specified or the null value, DB2.DEFAULT.POLICY is used.

correl-id
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The expression must have an actual length that is no greater than 24 bytes. The value of
the expression specifies the correlation identifier that is associated with this message. A correlation
identifier is often specified in request-and-reply scenarios to associate requests with replies. The
first message with a matching correlation identifier is returned. For more information about MQSeries
Application Messaging, see SQL Programming.

A fixed length string with trailing blanks is considered a valid value. However, when the correl-id
is specified on another request such as MQSEND, the identical correl-id must be specified to be
recognized as a match. For example, specifying a value of 'test' for correl-id on MQRECEIVE does not
match a correl-id value of 'test ' (with trailing blanks) specified earlier on an MQSEND request.

If correl-id is not specified or is an empty string or the null value, a correlation identifier is not used,
and the message at the beginning of the queue is returned.

The result of the function is a CLOB with a length attribute of 2 MB. The result can be null. If no messages
are available to be returned, the result is the null value.

The CCSID of the result is the default CCSID at the current server.

504 IBM i: Db2 for i SQL Reference

Notes
Prerequisites: In order to use the MQSeries functions, IBM MQSeries for IBM i must be installed,
configured, and operational.

Example

• This example reads the message at the head of the queue specified by the default service
(DB2.DEFAULT.SERVICE), using the default policy (DB2.DEFAULT.POLICY).

 SELECT MQREADCLOB ()
 FROM SYSIBM.SYSDUMMY1

• This example reads the message at the head of the queue specified by the service "MYSERVICE" using
the default policy (DB2.DEFAULT.POLICY).

 SELECT MQREADCLOB ('MYSERVICE')
 FROM SYSIBM.SYSDUMMY1

• This example reads the message at the head of the queue specified by the service "MYSERVICE", and
using the policy "MYPOLICY".

 SELECT MQREADCLOB ('MYSERVICE','MYPOLICY')
 FROM SYSIBM.SYSDUMMY1

• This example reads the first message with a correlation id that matches '1234' from the head of the
queue specified by the service "MYSERVICE" using the policy "MYPOLICY".

 SELECT MQREADCLOB ('MYSERVICE','MYPOLICY','1234')
 FROM SYSIBM.SYSDUMMY1

Chapter 4. Built-in functions 505

MQRECEIVE
The MQRECEIVE function returns a message from a specified MQSeries location (return value of
VARCHAR) with removal of the message from the queue.

MQRECEIVE (

receive-service

, service-policy

, correl-id

)

The MQRECEIVE function returns a message from the MQSeries location that is specified by receive-
service, using the quality-of-service policy that is defined in service-policy. Performing this operation
removes the message from the beginning of the queue that is associated with receive-service.

receive-service
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service point that is defined in the SYSIBM.MQSERVICE table. A service point is a
logical end-point from where a message is sent or received. Service point definitions include the
name of the MQSeries queue manager and queue. For more information about MQSeries Application
Messaging, see SQL Programming.

If receive-service is not specified or the null value, DB2.DEFAULT.SERVICE is used.

service-policy
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service policy that is defined in the SYSIBM.MQPOLICY table. A service policy specifies
a set of quality-of-service options that are to be applied to this messaging operation. These options
include message priority and message persistence. For more information about MQSeries Application
Messaging, see SQL Programming.

If service-policy is not specified or the null value, DB2.DEFAULT.POLICY is used.

correl-id
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The expression must have an actual length that is no greater than 24 bytes. The value of
the expression specifies the correlation identifier that is associated with this message. A correlation
identifier is often specified in request-and-reply scenarios to associate requests with replies. The
first message with a matching correlation identifier is returned. For more information about MQSeries
Application Messaging, see SQL Programming.

A fixed length string with trailing blanks is considered a valid value. However, when the correl-id
is specified on another request such as MQSEND, the identical correl-id must be specified to be
recognized as a match. For example, specifying a value of 'test' for correl-id on MQRECEIVE does not
match a correl-id value of 'test ' (with trailing blanks) specified earlier on an MQSEND request.

If correl-id is not specified or is an empty string or the null value, a correlation identifier is not used,
and the message at the beginning of the queue is returned.

The result of the function is a varying-length string with a length attribute of 32000. The result can be null.
If no messages are available to be returned, the result is the null value.

The CCSID of the result is the default CCSID at the current server.

506 IBM i: Db2 for i SQL Reference

Notes
Prerequisites: In order to use the MQSeries functions, IBM MQSeries for IBM i must be installed,
configured, and operational.

Example

• This example receives the message at the head of the queue specified by the default service
(DB2.DEFAULT.SERVICE), using the default policy (DB2.DEFAULT.POLICY).

 SELECT MQRECEIVE ()
 FROM SYSIBM.SYSDUMMY1

• This example receives the message at the head of the queue specified by the service "MYSERVICE"
using the default policy (DB2.DEFAULT.POLICY).

 SELECT MQRECEIVE ('MYSERVICE')
 FROM SYSIBM.SYSDUMMY1

• This example receives the message at the head of the queue specified by the service "MYSERVICE"
using the policy "MYPOLICY".

 SELECT MQRECEIVE ('MYSERVICE','MYPOLICY')
 FROM SYSIBM.SYSDUMMY1

• This example receives the first message with a correlation id that matches '1234' from the head of the
queue specified by the service "MYSERVICE" using the policy "MYPOLICY".

 SELECT MQRECEIVE ('MYSERVICE','MYPOLICY','1234')
 FROM SYSIBM.SYSDUMMY1

Chapter 4. Built-in functions 507

MQRECEIVECLOB
The MQRECEIVECLOB function returns a message from a specified MQSeries location (return value of
CLOB) with removal of the message from the queue.

MQRECEIVECLOB (

receive-service

, service-policy

, correl-id

)

The MQRECEIVE function returns a message from the MQSeries location that is specified by receive-
service, using the quality-of-service policy that is defined in service-policy. Performing this operation
removes the message from the beginning of the queue that is associated with receive-service.

receive-service
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service point that is defined in the SYSIBM.MQSERVICE table. A service point is a
logical end-point from where a message is sent or received. Service point definitions include the
name of the MQSeries queue manager and queue. For more information about MQSeries Application
Messaging, see SQL Programming.

If receive-service is not specified or the null value, DB2.DEFAULT.SERVICE is used.

service-policy
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service policy that is defined in the SYSIBM.MQPOLICY table. A service policy specifies
a set of quality-of-service options that are to be applied to this messaging operation. These options
include message priority and message persistence. For more information about MQSeries Application
Messaging, see SQL Programming.

If service-policy is not specified or the null value, DB2.DEFAULT.POLICY is used.

correl-id
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The expression must have an actual length that is no greater than 24 bytes. The value of
the expression specifies the correlation identifier that is associated with this message. A correlation
identifier is often specified in request-and-reply scenarios to associate requests with replies. The
first message with a matching correlation identifier is returned. For more information about MQSeries
Application Messaging, see SQL Programming.

A fixed length string with trailing blanks is considered a valid value. However, when the correl-id
is specified on another request such as MQSEND, the identical correl-id must be specified to be
recognized as a match. For example, specifying a value of 'test' for correl-id on MQRECEIVE does not
match a correl-id value of 'test ' (with trailing blanks) specified earlier on an MQSEND request.

If correl-id is not specified or is an empty string or the null value, a correlation identifier is not used,
and the message at the beginning of the queue is returned.

The result of the function is a CLOB with a length attribute of 2 MB. The result can be null. If no messages
are available to be returned, the result is the null value.

The CCSID of the result is the default CCSID at the current server.

508 IBM i: Db2 for i SQL Reference

Notes
Prerequisites: In order to use the MQSeries functions, IBM MQSeries for IBM i must be installed,
configured, and operational.

Example

• This example receives the message at the head of the queue specified by the default service
(DB2.DEFAULT.SERVICE), using the default policy (DB2.DEFAULT.POLICY).

 SELECT MQRECEIVECLOB ()
 FROM SYSIBM.SYSDUMMY1

• This example receives the message at the head of the queue specified by the service "MYSERVICE"
using the default policy (DB2.DEFAULT.POLICY).

 SELECT MQRECEIVECLOB ('MYSERVICE')
 FROM SYSIBM.SYSDUMMY1

• This example receives the message at the head of the queue specified by the service "MYSERVICE"
using the policy "MYPOLICY".

 SELECT MQRECEIVECLOB ('MYSERVICE','MYPOLICY')
 FROM SYSIBM.SYSDUMMY1

• This example receives the first message with a correlation id that matches '1234' from the head of the
queue specified by the service "MYSERVICE" using the policy "MYPOLICY".

 SELECT MQRECEIVECLOB ('MYSERVICE','MYPOLICY','1234')
 FROM SYSIBM.SYSDUMMY1

Chapter 4. Built-in functions 509

MQSEND
The MQSEND function sends a message to a specified MQSeries location.

MQSEND (

send-service ,

service-policy ,

msg-data

, correl-id
1

)

Notes:
1 The correl-id cannot be specified unless a send-service and a service-policy are also specified.

The MQSEND function sends the message data that is contained in msg-data to the MQSeries location
that is specified by send-service, using the quality-of-service policy that is defined in service-policy. The
message is sent using the MQSeries built-in format MQFMT_STRING.

send-service
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service point that is defined in the SYSIBM.MQSERVICE table. A service point is a
logical end-point from where a message is sent or received. Service point definitions include the
name of the MQSeries queue manager and queue. For more information about MQSeries Application
Messaging, see SQL Programming.

If send-service is not specified or the null value, DB2.DEFAULT.SERVICE is used.

service-policy
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service policy that is defined in the SYSIBM.MQPOLICY table. A service policy specifies
a set of quality-of-service options that are to be applied to this messaging operation. These options
include message priority and message persistence. For more information about MQSeries Application
Messaging, see SQL Programming.

If service-policy is not specified or the null value, DB2.DEFAULT.POLICY is used.

msg-data
An expression that returns a value that is a built-in character string data type. If the expression is a
CLOB, the value must not be longer than 2 MB. Otherwise, the value must not be longer than 32000
bytes. The value of the expression is the message data that is to be sent via MQSeries. A null value, an
empty string, and a fixed length string with trailing blanks are all considered valid values.

correl-id
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The expression must have an actual length that is no greater than 24 bytes. The value of
the expression specifies the correlation identifier that is associated with this message. A correlation
identifier is often specified in request-and-reply scenarios to associate requests with replies. For more
information about MQSeries Application Messaging, see SQL Programming.

A fixed length string with trailing blanks is considered a valid value. However, when the correl-id
is specified on another request such as MQRECEIVE, the identical correl-id must be specified to
be recognized as a match. For example, specifying a value of 'test' for correl-id on MQSEND does
not match a correl-id value of 'test ' (with trailing blanks) specified subsequently on an MQRECEIVE
request.

If correl-id is not specified or is an empty string or the null value, a correlation identifier is not sent.

510 IBM i: Db2 for i SQL Reference

The result of the function is a varying-length string with a length attribute of 1. The result is nullable, even
though a null value is never returned. The result is '1' if the function was successful or '0' if unsuccessful.

The CCSID of the result is the default SBCS CCSID at the current server.

Notes
Prerequisites: In order to use the MQSeries functions, IBM MQSeries for IBM i must be installed,
configured, and operational.

Example

• This example sends the string "Testing 123" to the default service (DB2.DEFAULT.SERVICE), using the
default policy (DB2.DEFAULT.POLICY), with no correlation identifier.

 SELECT MQSEND ('Testing 123')
 FROM SYSIBM.SYSDUMMY1

• This example sends the string "Testing 345" to the service "MYSERVICE", using the policy "MYPOLICY",
with no correlation identifier.

 SELECT MQSEND ('MYSERVICE','MYPOLICY','Testing 345')
 FROM SYSIBM.SYSDUMMY1

• This example sends the string "Testing 678" to the service "MYSERVICE", using the policy "MYPOLICY",
with correlation identifier "TEST3".

 SELECT MQSEND ('MYSERVICE','MYPOLICY','Testing 678','TEST3')
 FROM SYSIBM.SYSDUMMY1

• This example sends the string "Testing 901" to the service "MYSERVICE", using the default policy
(DB2.DEFAULT.POLICY), and no correlation identifier.

 SELECT MQSEND ('MYSERVICE','Testing 901')
 FROM SYSIBM.SYSDUMMY1

Chapter 4. Built-in functions 511

MULTIPLY_ALT
The MULTIPLY_ALT scalar function returns the product of the two arguments as a decimal value. It is
provided as an alternative to the multiplication operator, especially when the sum of the precisions of the
arguments exceeds 63.

MULTIPLY_ALT (expression-1 , expression-2)

expression-1
An expression that returns a value of any built-in numeric data type (other than floating-point or
decimal floating-point), character-string, or graphic-string data type. A string argument is cast to
double-precision floating point before evaluating the function. For more information about converting
strings to double-precision floating point, see “DOUBLE_PRECISION or DOUBLE” on page 392.

expression-2
An expression that returns a value of any built-in numeric data type (other than floating-point or
decimal floating-point), character-string, or graphic-string data type. A string argument is cast to
double-precision floating point before evaluating the function. For more information about converting
strings to double-precision floating point, see “DOUBLE_PRECISION or DOUBLE” on page 392.
expression-2 cannot be zero.

The result of the function is a DECIMAL. The precision and scale of the result are determined as follows,
using the symbols p and s to denote the precision and scale of the first argument, and the symbols p' and
s' to denote the precision and scale of the second argument.

• The precision is MIN(mp, p+p')
• The scale is:

– 0 if the scale of both arguments is 0
– MIN(ms, s+s') if p+p' is less than or equal to mp
– MIN(ms, MAX(MIN(3, s+s'), mp-(p-s+p'-s'))) if p+p' is greater than mp.

For information about the values of p, s, ms, and mp, see “Decimal arithmetic in SQL” on page 160.

If either argument can be null, the result can be null; if either argument is null, the result is the null value.

The MULTIPLY_ALT function is a better choice than the multiplication operator when performing decimal
arithmetic where a scale of at least 3 is wanted and the sum of the precisions exceeds 63. In these cases,
the internal computation is performed so that overflows are avoided and then assigned to the result type
value using truncation for any loss of scale in the final result. Note that the possibility of overflow of the
final result is still possible when the scale is 3.

The following table compares the result types using MULTIPLY_ALT and the multiplication operator when
the maximum precision is 31 and the maximum scale is 31:

Type of Argument 1 Type of Argument 2
Result using
MULTIPLY_ALT

Result using
multiplication operator

DECIMAL(31,3) DECIMAL(15,8) DECIMAL(31,3) DECIMAL(31,11)

DECIMAL(26,23) DECIMAL(10,1) DECIMAL(31,19) DECIMAL(31,24)

DECIMAL(18,17) DECIMAL(20,19) DECIMAL(31,29) DECIMAL(31,31)

DECIMAL(16,3) DECIMAL(17,8) DECIMAL(31,9) DECIMAL(31,11)

DECIMAL(26,5) DECIMAL(11,0) DECIMAL(31,3) DECIMAL(31,5)

DECIMAL(21,1) DECIMAL(15,1) DECIMAL(31,2) DECIMAL(31,2)

512 IBM i: Db2 for i SQL Reference

Examples

• Multiply two values where the data type of the first argument is DECIMAL(26,3) and the data type of the
second argument is DECIMAL(9,8). The data type of the result is DECIMAL(31,7).

 SELECT MULTIPLY_ALT(98765432109876543210987.654,5.43210987)
 FROM SYSIBM.SYSDUMMY1

Returns the value 536504678578875294857887.5277415.

Note that the complete product of these two numbers is
536504678578875294857887.52774154498, but the last 4 digits are truncated to match the scale
of the result data type. Using the multiplication operator with the same values will cause an arithmetic
overflow, since the result data type is DECIMAL(31,11) and the result value has 24 digits left of the
decimal, but the result data type only supports 20 digits.

Chapter 4. Built-in functions 513

NEXT_DAY
The NEXT_DAY function returns a date or timestamp value that represents the first weekday, named by
string-expression, that is later than the date expression.

NEXT_DAY (expression , string-expression)

expression
An expression that returns a value of one of the following built-in data types: a date, a timestamp, a
character string, or a graphic string.

If expression is a character or graphic string, its value must be a valid string representation of a date
or timestamp. For the valid formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 75.

string-expression
An expression that returns a built-in character string data type or graphic string data type. The value
must compare equal to the full name of a day of the week or compare equal to the abbreviation of a
day of the week. For example, in the English language:

Day of Week Abbreviation

MONDAY MON

TUESDAY TUE

WEDNESDAY WED

THURSDAY THU

FRIDAY FRI

SATURDAY SAT

SUNDAY SUN

The minimum length of the input value is the length of the abbreviation. Leading and trailing blanks
are trimmed from string-expression. The resulting value is then folded to uppercase, so the characters
in the value may be in any case.

The result of the function has the same data type as expression, unless expression is a string in which
case the result data type is TIMESTAMP(6). If either argument can be null, the result can be null; if either
argument is null, the result is the null value.

Any hours, minutes, seconds, or fractional seconds information included in expression is not changed by
the function. If expression is a string representing a date, the time information in the resulting TIMESTAMP
value is all set to zero.

Note
National language considerations: The values of the days of the week (or abbreviations) in string-
expression may either be the US English values listed in the table above or the values based on the
language used for messages in the job. The non-abbreviated name of the day is retrieved from message
CPX9034 in message file QCPFMSG in library *LIBL. The abbreviated name of the day is retrieved from
message CPX9039 in message file QCPFMSG in library *LIBL.

Applications that need to run in many different language environments may want to consider using US
English values since they will always be accepted in the NEXT_DAY function.

Example

• Assuming that the default language for the job is US English, set the host variable NEXTDAY with the
date of the Tuesday following April 24, 2000.

514 IBM i: Db2 for i SQL Reference

SET :NEXTDAY = NEXT_DAY(CURRENT_DATE, 'TUESDAY')

The host variable NEXTDAY is set with the value of '2000–04–25–00.00.00.000000', assuming that the
value of the CURRENT_DATE special register is '2000–04–24'.

• Assuming that the default language for the job is US English, set the host variable NEXTDAY with the
date of the first Monday in May, 2000. Assume the host variable DAYHV = 'MON'.

SET :NEXTDAY = NEXT_DAY(LAST_DAY(CURRENT_TIMESTAMP), :DAYHV)

The host variable NEXTDAY is set with the value of '2000-05-01-12.01.01.123456', assuming that the
value of the CURRENT_TIMESTAMP special register is '2000-04-24-12.01.01.123456'.

• Assuming that the default language for the job is US English,

SELECT NEXT_DAY('2000-04-24', 'TUESDAY')
FROM SYSIBM.SYSDUMMY1

Returns '2000-04-25-00.00.00.000000', which is the Tuesday following '2000-04-24'.

Chapter 4. Built-in functions 515

NORMALIZE_DECFLOAT
The NORMALIZE_DECFLOAT function returns a DECFLOAT value equal to the input argument set to its
simplest form.

NORMALIZE_DECFLOAT (expression)

The NORMALIZE_DECFLOAT function returns a decimal floating-point value equal to the input argument
set to its simplest form; that is, a non-zero number with trailing zeros in the coefficient has those zeros
removed. This may require representing the number in normalized form by dividing the coefficient by the
appropriate power of ten and adjusting the exponent accordingly. A zero value has its exponent set to 0.

expression
An expression that returns a value of any built-in numeric, character-string, or graphic-string data
type. If the data type of the argument is SMALLINT, INTEGER, REAL, DOUBLE, DECIMAL(p,s) where
p <=16, or NUMERIC(p,s) where p <=16, then the argument is converted to DECFLOAT(16) for
processing. Otherwise, the argument is converted to DECFLOAT(34) for processing.

If the argument is a special value then the general rules for arithmetic operations apply. See “General
arithmetic operation rules for DECFLOAT” on page 162 for more information.

The result of the function is a DECFLOAT(16) value if the data type of expression after conversion to
decimal floating-point is DECFLOAT(16). Otherwise, the result of the function is a DECFLOAT(34) value. If
the argument can be null, the result can be null; if the argument is null, the result is the null value.

Examples

The following examples show the result of using the NORMALIZE_DECFLOAT function on various
DECFLOAT values:

 NORMALIZE_DECFLOAT(DECFLOAT(2.1)) = 2.1
 NORMALIZE_DECFLOAT(DECFLOAT(-2.0)) = -2
 NORMALIZE_DECFLOAT(DECFLOAT(1.200)) = 1.2
 NORMALIZE_DECFLOAT(DECFLOAT(-120)) = -1.2E+2
 NORMALIZE_DECFLOAT(DECFLOAT(120.00)) = 1.2E+2
 NORMALIZE_DECFLOAT(DECFLOAT(0.00)) = 0
 NORMALIZE_DECFLOAT(-NAN) = -NAN
 NORMALIZE_DECFLOAT(-INFINITY) = -INFINITY

516 IBM i: Db2 for i SQL Reference

NOW
The NOW function returns a timestamp based on a reading of the time-of-day clock when the SQL
statement is executed at the current server.

NOW (
6

integer

)

integer

Specifies the precision of the timestamp. Valid values are 0 to 12, inclusive. If a value is not specified,
the default precision of 6 is used.

The value returned by the NOW function is the same as the value returned by the CURRENT_TIMESTAMP
special register. If this function is used more than once within a single SQL statement, or
used with the CURDATE or CURTIME scalar functions or the CURRENT_DATE, CURRENT_TIME, or
CURRENT_TIMESTAMP special registers within a single statement, all values are based on a single clock
reading.

The data type of the result is a timestamp with a precision specified by integer. The result cannot be null.

Note
Syntax alternatives: The CURRENT_TIMESTAMP special register should be used for maximal portability.
For more information, see “Special registers” on page 119.

Example

• Return the current timestamp based on the time-of-day clock.

 SELECT NOW()
 FROM SYSIBM.SYSDUMMY1

Chapter 4. Built-in functions 517

NULLIF
The NULLIF function returns a null value if the arguments compare equal, otherwise it returns the value of
the first argument.

NULLIF (expression-1 , expression-2)

The arguments must be compatible data types.
expression-1

An expression that returns a value of any built-in data type other than a DATALINK or XML or any
distinct data type other than a distinct type that is based on a DATALINK or XML.

expression-2
An expression that returns a value of any built-in data type other than a DATALINK or XML or any
distinct data type other than a distinct type that is based on a DATALINK or XML .

The attributes of the result are the attributes of the first argument. The result can be null. The result is null
if the first argument is null or if both arguments are equal.

The result of using NULLIF(e1,e2) is the same as using the expression

 CASE WHEN e1=e2 THEN NULL ELSE e1 END

Note that when e1=e2 evaluates to unknown (because one or both arguments is NULL), CASE expressions
consider this not true. Therefore, in this situation, NULLIF returns the value of the first operand, e1.

Example

• Assume host variables PROFIT, CASH, and LOSSES have DECIMAL data types with the values 4500.00,
500.00, and 5000.00 respectively:

 SELECT NULLIF (:PROFIT + :CASH, :LOSSES)
 FROM SYSIBM.SYSDUMMY1

Returns the null value.

518 IBM i: Db2 for i SQL Reference

NVL
The NVL function returns the value of the first non-null expression.

NVL (expression-1 , expression-2)

The NVL function is identical to the COALESCE function. For more information, see “COALESCE” on page
338.

Chapter 4. Built-in functions 519

OCTET_LENGTH
The OCTET_LENGTH function returns the length of a string expression in octets (bytes).

OCTET_LENGTH (expression)

See “LENGTH” on page 474 and “CHARACTER_LENGTH or CHAR_LENGTH” on page 331 for similar
functions.

expression
An expression that returns a value of any built-in numeric or string data type. A numeric argument
is cast to a character string before evaluating the function. For more information about converting
numeric to a character string, see “VARCHAR” on page 623.

The result of the function is DECIMAL(31). If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

The result is the number of octets (bytes) in the argument. The length of a string includes trailing blanks.
The length of a varying-length string is the actual length in octets (bytes), not the maximum length.

Example

• Assume table T1 has a GRAPHIC(10) column called C1.

 SELECT OCTET_LENGTH(C1)
 FROM T1

Returns the value 20.

520 IBM i: Db2 for i SQL Reference

OVERLAY
Returns a string where length characters have been deleted from source-string beginning at start and
where insert-string has been inserted into source-string beginning at start.

OVERLAY

(source-string PLACING insert-string FROM start

FOR length

, insert-string , start

, 1

, length

)

source-string
An expression that specifies the source string. The source-string may be any built-in numeric, string,
or datetime expression. It must be compatible with the insert-string. For more information about
data type compatibility, see “Assignments and comparisons” on page 89. A numeric or datetime
argument is cast to VARCHAR with a CCSID that is the default SBCS CCSID at the current server
before evaluating the function. For more information about converting numeric or datetime to a
varying character string, see “VARCHAR” on page 623. The actual length of the string must be
greater than zero.

The OVERLAY function is identical to the INSERT function except that the arguments are in a different
order and length is optional.

insert-string
An expression that specifies the string to be inserted into source-string, starting at the position
identified by start. The insert-string may be any built-in numeric, string, or datetime expression. It
must be compatible with the source-string. For more information about data type compatibility, see
“Assignments and comparisons” on page 89. A numeric or datetime argument is cast to VARCHAR
with a CCSID that is the default SBCS CCSID at the current server before evaluating the function. For
more information about converting numeric or datetime to a varying character string, see “VARCHAR”
on page 623.

start
An expression that returns a value of any built-in numeric, character-string, or graphic-string data
type. If value is not of type INTEGER, it is implicitly cast to INTEGER before evaluating the function.
The integer specifies the starting character within source-string where the deletion of characters and
the insertion of another string is to begin. The value of the integer must be in the range of 1 to the
length of source-string plus one.

length
An expression that returns a value of any built-in numeric, character-string, or graphic-string data
type. If value is not of type INTEGER, it is implicitly cast to INTEGER before evaluating the function.
The integer specifies the number of characters that are to be deleted from source-string, starting at
the character position identified by start. The value of the integer must be in the range of 0 to the
length of source-string.

The data type of the result of the function depends on the data type of the first and second arguments.
The result data type is the same as if the two arguments were concatenated except that the result is
always a varying-length string. For more information see “Conversion rules for operations that combine
strings” on page 110.

The length attribute of the result depends on the arguments:

• If start and length are constants, the length attribute of the result is:

L1 - MIN((L1-V2 + 1), V3) + L4

where:

Chapter 4. Built-in functions 521

L1 is the length attribute of source-string
V2 depends on the encoding schema of source-string:
- If the source-string is UTF-8, the value MIN(L1+1,start*3)
- If the source-string is mixed data, the value MIN(L1+1,(start-1)*2.5+4)
- Otherwise, the value of start
V3 is the value of length
L4 is the length attribute of insert-string

• Otherwise, the length attribute of the result is the length attribute of source-string plus the length
attribute of insert-string.

If the length attribute of the result exceeds the maximum for the result data type, an error is returned.

The actual length of the result is:

A1 - MIN((A1 -V2 + 1), V3) + A4

where:

A1 is the actual length of source-string
V2 is the value of start
V3 is the value of length
A4 is the actual length of insert-string

If the actual length of the result string exceeds the maximum for the result data type, an error is returned.

If any argument can be null, the result can be null; if any argument is null, the result is the null value.

The CCSID of the result is determined by the CCSID of source-string and insert-string. The resulting CCSID
is the same as if the two arguments were concatenated. For more information, see “Conversion rules for
operations that combine strings” on page 110.

Examples

• The following example shows how the string 'INSERTING' can be changed into other strings. The use of
the CHAR function limits the length of the resulting string to 10 characters.

 SELECT OVERLAY('INSERTING', 'IS', 4, 2),
 OVERLAY('INSERTING', 'IS', 4, 0),
 OVERLAY('INSERTING', '', 4, 2)
 FROM SYSIBM.SYSDUMMY1

This example returns 'INSISTING ', 'INSISERTING', and 'INSTING '.
• The previous example demonstrated how to insert text into the middle of some text. This example

shows how to insert text before some text by using 1 as the starting point (start).

 SELECT OVERLAY('INSERTING', 'XX', 1, 0),
 OVERLAY('INSERTING', 'XX', 1, 1),
 OVERLAY('INSERTING', 'XX', 1, 2),
 OVERLAY('INSERTING', 'XX', 1, 3)
 FROM SYSIBM.SYSDUMMY1

This example returns 'XXINSERTING', 'XXNSERTING', 'XXSERTING ', and 'XXERTING '.
• The following example shows how to insert text after some text. Add 'XX' at the end of string 'ABCABC'.

Because the source string is 6 characters long, set the starting position to 7 (one plus the length of the
source string).

 SELECT OVERLAY('ABCABC', 'XX', 7, 0)
 FROM SYSIBM.SYSDUMMY1

This example returns 'ABCABCXX '.
• The following example changes the string 'Hegelstraße' to 'Hegelstrasse'.

 SELECT OVERLAY('Hegelstraße', 'ss', 10, 1)
 FROM SYSIBM.SYSDUMMY1

522 IBM i: Db2 for i SQL Reference

This example returns 'Hegelstrasse'.
• Assume the variable UTF8_VAR is defined as UTF8 and UTF16_VAR is defined as UTF16. Assume

both contain Unicode string '&N~AB', where '&' is the musical symbol G clef character, and '~' is the
combining tilde character.

 SELECT OVERLAY(UTF8_VAR, 'C', 1),
 OVERLAY(UTF8_VAR, 'C', 5),
 OVERLAY(UTF16_VAR, 'C', 1),
 OVERLAY(UTF16_VAR, 'C', 5)
 FROM SYSIBM.SYSDUMMY1

This example returns 'CN~AB', '&N~AC', 'CN~AB', and '&N~AC'.

Chapter 4. Built-in functions 523

PI
Returns the value of π 3.141592653589793. There are no arguments.

PI ()

The result of the function is double-precision floating-point. The result cannot be null.

Example

• The following returns the circumference of a circle with diameter 10:

 SELECT PI()*10
 FROM SYSIBM.SYSDUMMY1

524 IBM i: Db2 for i SQL Reference

POSITION
The POSITION function returns the starting position of the first occurrence of one string (called the
search-string) within another string (called the source-string). If the search-string is not found and neither
argument is null, the result is zero. If the search-string is found, the result is a number from 1 to the actual
length of the source-string.

POSITION (search-string IN source-string)

POSITION (search-string , source-string)

See the related functions “LOCATE” on page 478 and “POSSTR” on page 527.

search-string
An expression that specifies the string that is to be searched for. search-string can be any built-in
numeric, datetime, or string expression. It must be compatible with the source-string. A numeric or
datetime argument is cast to a character string before evaluating the function. For more information
about converting numeric and datetime to a character string, see “VARCHAR” on page 623.

source-string
An expression that specifies the source string in which the search is to take place. source-string can
be any built-in numeric, datetime, or string expression. A numeric or datetime argument is cast to a
character string before evaluating the function. For more information about converting numeric and
datetime to a character string, see “VARCHAR” on page 623.

The result of the function is a large integer. If either of the arguments can be null, the result can be null. If
either of the arguments is null, the result is the null value.

The POSITION function operates on a character basis. Because POSITION operates on a character-string
basis, any shift-in and shift-out characters are not required to be in exactly the same position, and their
only significance is to indicate which characters are SBCS and which characters are DBCS.

If the CCSID of the search-string is different from the CCSID of the source-string, it is converted to the
CCSID of the source-string. If the CCSID of the source-string is mixed data or UTF-8, CCSID conversion to
UTF-16 will occur.

If a collating sequence other than *HEX is in effect when the statement that contains the POSITION
function is executed and the arguments are SBCS data, mixed data, or Unicode data, then the result is
obtained by comparing weighted values for each value in the set. The weighted values are based on the
collating sequence. An ICU collating sequence table cannot be specified with the POSITION function.

If the search-string has a length of zero, the result returned by the function is 1. Otherwise:

• If the source-string has a length of zero, the result returned by the function is 0.
• Otherwise,

– If the value of search-string is equal to an identical length of substring of contiguous positions within
the value of source-string, then the result returned by the function is the starting position of the first
such substring within the source-string value.

– Otherwise, the result returned by the function is 0.66

Example

• Select RECEIVED and SUBJECT columns as well as the starting position of the words 'GOOD' within the
NOTE_TEXT column for all entries in the IN_TRAY table that contain these words.

 SELECT RECEIVED, SUBJECT, POSITION('GOOD', NOTE_TEXT)
 FROM IN_TRAY
 WHERE POSITION('GOOD', NOTE_TEXT) <> 0

66 This includes the case where the search-string is longer than the source-string.

Chapter 4. Built-in functions 525

• Assume that NOTE is a VARCHAR(128) column, encoded in Unicode UTF-8, that contains the value
'Jürgen lives on Hegelstraße'. Find the character position of the character 'ß' in the string.

 SELECT POSITION('ß', NOTE), POSSTR(NOTE, 'ß')
 FROM T1

Returns the value 26 for POSITION and 27 for POSSTR.

526 IBM i: Db2 for i SQL Reference

POSSTR
The POSSTR function returns the starting position of the first occurrence of one string (called the
search-string) within another string (called the source-string). If the search-string is not found and neither
argument is null, the result is zero. If the search-string is found, the result is a number from 1 to the actual
length of the source-string.

POSSTR (source-string , search-string)

See the related functions, “LOCATE” on page 478 and “POSITION” on page 525.

source-string
An expression that specifies the source string in which the search is to take place. source-string may
be any built-in numeric, datetime, or string expression. A numeric or datetime argument is cast to a
character string before evaluating the function. For more information about converting numeric and
datetime to a character string, see “VARCHAR” on page 623.

search-string
An expression that specifies the string that is to be searched for. search-string may be any built-in
numeric, datetime, or string expression. It must be compatible with the source-string. A numeric or
datetime argument is cast to a character string before evaluating the function. For more information
about converting numeric and datetime to a character string, see “VARCHAR” on page 623.

The result of the function is a large integer. If either of the arguments can be null, the result can be null. If
either of the arguments is null, the result is the null value.

The POSSTR function accepts mixed data strings. However, POSSTR operates on a strict byte-count
basis without regard to single-byte or double-byte characters.67 It is recommended that if either the
search-string or source-string contains mixed data, POSITION should be used instead of POSSTR. The
POSITION function operates on a character basis. In an EBCDIC encoding scheme, any shift-in and
shift-out characters are not required to be in exactly the same position, and their only significance is to
indicate which characters are SBCS and which characters are DBCS.

If the CCSID of the search-string is different than the CCSID of the source-string, it is converted to the
CCSID of the source-string. If the CCSID of the source-string is mixed data or UTF-8, CCSID conversion to
UTF-16 will occur.

If a collating sequence other than *HEX is in effect when the statement that contains the POSSTR function
is executed and the arguments are SBCS data, mixed data, or Unicode data, then the result is obtained
by comparing weighted values for each value in the set. The weighted values are based on the collating
sequence. An ICU collating sequence table cannot be specified with the POSSTR function.

If the search-string has a length of zero, the result returned by the function is 1. Otherwise:

• if the source-string has a length of zero, the result returned by the function is 0.
• Otherwise,

– If the value of search-string is equal to an identical length of substring of contiguous positions within
the value of source-string, then the result returned by the function is the starting position of the first
such substring within the source-string value.

– Otherwise, the result returned by the function is 0.68

Note
Syntax alternatives: STRPOS is a synonym for POSSTR.

67 For example, in an EBCDIC encoding scheme, if the source-string contains mixed data, the search-string will
only be found if any shift-in and shift-out characters are also found in the source-string in exactly the same
positions.

68 This includes the case where the search-string is longer than the source-string.

Chapter 4. Built-in functions 527

Example

• Select RECEIVED and SUBJECT columns as well as the starting position of the words 'GOOD' within the
NOTE_TEXT column for all entries in the IN_TRAY table that contain these words.

 SELECT RECEIVED, SUBJECT, POSSTR(NOTE_TEXT, 'GOOD')
 FROM IN_TRAY
 WHERE POSSTR(NOTE_TEXT, 'GOOD') <> 0

528 IBM i: Db2 for i SQL Reference

POWER or POW
The POWER or POW function returns the result of raising the first argument to the power of the second
argument.

POWER

POW

(expression-1 , expression-2)

expression-1
An expression that returns a value of any built-in numeric, character-string, or graphic-string
data type.69 A string argument is cast to double-precision floating point before evaluating the
function. For more information about converting strings to double-precision floating point, see
“DOUBLE_PRECISION or DOUBLE” on page 392.

expression-2
An expression that returns a value of any built-in numeric data type. If the value of expression-1 is
equal to zero, then expression-2 must be greater than or equal to zero. If the value of expression-1 is
less than zero, then expression-2 must be an integer value.

If the data type of the argument is decimal floating-point, the data type of the result is DECFLOAT(34).
Otherwise, the result of the function is a double-precision floating-point number. If both arguments are 0,
the result is 1. If an argument can be null, the result can be null; if an argument is null, the result is the
null value.

Note
Results involving DECFLOAT special values: If either argument is decimal floating-point, both
arguments are converted to DECFLOAT(34). For decimal floating-point values the special values are
treated as follows:

• If either argument is NaN or -NaN, NaN is returned.70

• POWER®(Infinity, any valid second argument) returns Infinity.
• POWER(-Infinity, any valid odd integer value) returns -Infinity.
• POWER(-Infinity, any valid even integer value) returns Infinity.
• POWER(0,Infinity) returns 0.
• POWER(1,Infinity) returns 1.
• POWER(any number greater than 1,Infinity) returns Infinity.
• POWER(any number greater than 0 and less than 1,Infinity) returns 0.
• POWER(any number less than 0,Infinity) returns NaN. 70

• If either argument is sNaN or -sNaN, a warning or error is returned. 70

Example

• Assume the host variable HPOWER is an integer with value 3.

 SELECT POWER(2,:HPOWER)
 FROM SYSIBM.SYSDUMMY1

Returns the value 8.

69 The result of the POWER function is exactly the same as the result of exponentiation: expression-1 **
expression-2.

70 If *YES is specified for the SQL_DECFLOAT_WARNINGS query option, NaN is returned with a warning

Chapter 4. Built-in functions 529

QUANTIZE
The QUANTIZE function returns a decimal floating-point value that is equal in value (except for any
rounding) and sign to expression-1 and which has an exponent set equal to the exponent in expression-2.

QUANTIZE (expression-1 , expression-2)

expression-1
An expression that returns a value of any built-in numeric, character-string, or graphic-string data
type. If the data type of the argument is not a DECFLOAT value, it is converted to DECFLOAT(34) for
processing.

expression-2
An expression that returns a value of any built-in numeric, character-string, or graphic-string data
type. If the data type of the argument is not a DECFLOAT value, it is converted to DECFLOAT(34) for
processing.

If one argument (after conversion) is DECFLOAT(16) and the other is DECFLOAT(34), the DECFLOAT(16)
argument is converted to DECFLOAT(34) before the function is processed.

The coefficient of the result is derived from that of expression-1. It is rounded if necessary (if the
exponent is being increased), multiplied by a power of ten (if the exponent is being decreased), or remains
unchanged (if the exponent is already equal to that of expression-2).

If necessary, the rounding mode is used by the QUANTIZE function. See “CURRENT DECFLOAT
ROUNDING MODE” on page 124 for more information.

Unlike other arithmetic operations on the DECFLOAT data type, if the length of the coefficient after the
quantize operation would be greater than the precision of the resulting DECFLOAT number, an error
occurs. This guarantees that unless there is an error, the exponent of the result of a QUANTIZE function is
always equal to that of expression-2.

The result of the function is a DECFLOAT(16) value if both arguments are DECFLOAT(16). Otherwise, the
result of the function is a DECFLOAT(34) value. If either argument can be null, the result can be null; if
either argument is null, the result is the null value

Note
Results involving DECFLOAT special values: Decimal floating-point special values are treated as follows:

• If either argument is NaN and the first argument is not -NaN, then NaN is returned.
• If either argument is sNaN, then a warning or error occurs. 71

• If either argument is -NaN and the first argument is not NaN, then -NaN is returned.
• If either argument is -sNaN, then a warning or error occurs. 71

• If both arguments are Infinity (positive or negative), then Infinity (positive or negative) is returned.
• If one argument is Infinity (positive or negative) and the other argument is not Infinity (positive or

negative), then NaN is returned. 71

Examples

The following examples illustrate the value that is returned for the QUANTIZE function given the input
DECFLOAT values:

 QUANTIZE(2.17, 0.001) ==> 2.170
 QUANTIZE(2.17, 0.01) ==> 2.17
 QUANTIZE(2.17, 0.1) ==> 2.2
 QUANTIZE(2.17, 1e+0) ==> 2
 QUANTIZE(2.17, 1e+1) ==> 0E+1
 QUANTIZE(2, Infinity) ==> NaN (exception)

71 If *YES is specified for the SQL_DECFLOAT_WARNINGS query option, NaN is returned with a warning.

530 IBM i: Db2 for i SQL Reference

 QUANTIZE(0, 1e+5) ==> 0E+5
 QUANTIZE(217, 1e-1) ==> 217.0
 QUANTIZE(217, 1e+0) ==> 217
 QUANTIZE(217, 1e+1) ==> 2.2E+2
 QUANTIZE(217, 1e+2) ==> 2E+2

In the following example, the value -0 is returned for the QUANTIZE function. The CHAR function is used
to avoid the potential removal of the minus sign by a client program.

 CHAR(QUANTIZE(-0.1, 1)) ==> -0

Chapter 4. Built-in functions 531

QUARTER
The QUARTER function returns an integer between 1 and 4 that represents the quarter of the year in
which the date resides. For example, any dates in January, February, or March will return the integer 1.

QUARTER (expression)

expression
An expression that returns a value of one of the following built-in data types: a date, a timestamp, a
character string, or a graphic string.

If expression is a character or graphic string, its value must be a valid string representation of a date
or timestamp. For the valid formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 75.

The result of the function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

Example

• Using the PROJECT table, set the host variable QUART (INTEGER) to the quarter in which project
‘PL2100' ended (PRENDATE).

 SELECT QUARTER(PRENDATE)
 INTO :QUART
 FROM PROJECT
 WHERE PROJNO = 'PL2100'

Results in QUART being set to 3.

532 IBM i: Db2 for i SQL Reference

RADIANS
The RADIANS function returns the number of radians for an argument that is expressed in degrees.

RADIANS (expression)

expression
An expression that returns a value of any built-in numeric, character-string, or graphic-string
data type. A string argument is cast to double-precision floating point before evaluating the
function. For more information about converting strings to double-precision floating point, see
“DOUBLE_PRECISION or DOUBLE” on page 392.

If the data type of the argument is DECFLOAT(n), the result is DECFLOAT(n). Otherwise, the data type
of the result is double-precision floating point. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

Example

• Assume that host variable HDEG is an INTEGER with a value of 180. The following statement:

 SELECT RADIANS(:HDEG)
 FROM SYSIBM.SYSDUMMY1

Returns a double precision floating-point number with an approximate value of 3.1415926536.

Chapter 4. Built-in functions 533

RAISE_ERROR
The RAISE_ERROR function causes the statement that invokes the function to return an error with the
specified SQLSTATE (along with SQLCODE -438) and diagnostic string.

RAISE_ERROR (sqlstate , diagnostic-string)

sqlstate
An expression that returns a value of a built-in CHAR or VARCHAR data type with exactly 5 characters.
The sqlstate value must follow the rules for application-defined SQLSTATEs:

• Each character must be from the set of digits ('0' through '9') or nonaccented uppercase letters ('A'
through 'Z').

• The SQLSTATE class (first two characters) cannot be '00', '01', or '02' because these are not error
classes.

If the SQLSTATE does not conform to these rules, an error is returned.

diagnostic-string
An expression that returns a value of a built-in CHAR or VARCHAR data type and a length up to 1000
bytes that describes the error condition. If the string is longer than 1000 bytes, it is truncated.

If an SQLCA is used, the following actions occur:

• The string is returned in the SQLERRMC field of the SQLCA.
• If the actual length of the string is longer than 70 bytes, it is truncated without a warning.

Since the data type of the result of RAISE_ERROR is undefined, it may only be used where parameter
markers are allowed. To use this function in a context where parameter markers are not allowed (such
as alone in a select list), you must use a cast specification to give a data type to the null value that is
returned.

The RAISE_ERROR function always returns NULL with an undefined data type.

Example

• List employee numbers and education levels as Post Graduate, Graduate and Diploma. If an education
level is greater than 20, raise an error.

 SELECT EMPNO,
 CASE WHEN EDLEVEL < 16 THEN 'Diploma'
 WHEN EDLEVEL < 18 THEN 'Graduate'
 WHEN EDLEVEL < 21 THEN 'Post Graduate'
 ELSE RAISE_ERROR('07001',
 'EDLEVEL has a value greater than 20')
 END
 FROM EMPLOYEE

534 IBM i: Db2 for i SQL Reference

RANDOM or RAND
The RANDOM or RAND function returns a floating point value greater than or equal to 0 and less than or
equal to 1.

RANDOM

RAND

(

expression

)

expression
If an expression is specified, it is used as the seed value. The argument must be an expression that
returns a value of a built-in small integer, large integer, character-string, or graphic-string data type. A
string argument is cast to integer before evaluating the function. For more information on converting
strings to integer, see “INTEGER or INT” on page 442.

The data type of the result is double-precision floating point. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

A specific seed value will produce the same sequence of random numbers for a specific instance of a
RAND function in a query each time the query is executed. If a seed value is not specified, a different
sequence of random numbers is produced each time the query is executed.

The seed value is used only for the first invocation of an instance of the RAND function within a statement.

RAND is a non-deterministic function.

Example

• Assume that host variable HRAND is an INTEGER with a value of 100. The following statement:

 SELECT RAND(:HRAND)
 FROM SYSIBM.SYSDUMMY1

Returns a random floating-point number between 0 and 1, such as the approximate value .0121398.
• To generate values in a numeric interval other than 0 to 1, multiply the RAND function by the size of

the wanted interval. For example, to get a random number between 0 and 10, such as the approximate
value 5.8731398, multiply the function by 10:

 SELECT RAND(:HRAND) * 10
 FROM SYSIBM.SYSDUMMY1

Chapter 4. Built-in functions 535

REAL
The REAL function returns a single-precision floating-point representation.

Numeric to Real

REAL (numeric-expression)

String to Real

REAL (string-expression)

The REAL function returns a single-precision floating-point representation of:

• A number
• A character or graphic string representation of a decimal number
• A character or graphic string representation of an integer
• A character or graphic string representation of a floating-point number
• A character or graphic string representation of a decimal floating-point number

Numeric to Real
numeric-expression

The argument is an expression that returns a value of any built-in numeric data type.

The result is the same number that would occur if the argument were assigned to a single-precision
floating-point column or variable. If the numeric value of the argument is not within the range of
single-precision floating-point, an error is returned.

String to Real
string-expression

An expression that returns a value that is a character-string or graphic-string representation of a
number.

If the argument is a string-expression, the result is the same number that would result from
CAST(string-expression AS REAL). Leading and trailing blanks are eliminated and the resulting string
must conform to the rules for forming a floating-point, decimal floating-point, integer, or decimal
constant. If the numeric value of the argument is not within the range of single-precision floating-
point, an error is returned.

The single-byte character constant that must be used to delimit the decimal digits in string-expression
from the whole part of the number is the default decimal point. For more information, see “Decimal
point” on page 116.

The result of the function is a single-precision floating-point number. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

Note
Syntax alternatives: The CAST specification should be used to increase the portability of applications.
For more information, see “CAST specification” on page 176.

Example

• Using the EMPLOYEE table, find the ratio of salary to commission for employees whose commission
is not zero. The columns involved (SALARY and COMM) have DECIMAL data types. To eliminate the
possibility of out-of-range results, REAL is applied to SALARY so that the division is carried out in
floating point:

536 IBM i: Db2 for i SQL Reference

 SELECT EMPNO, REAL(SALARY)/COMM
 FROM EMPLOYEE
 WHERE COMM > 0

Chapter 4. Built-in functions 537

REGEXP_COUNT
The REGEXP_COUNT function returns a count of the number of times that a regular expression pattern is
matched in a string.

REGEXP_COUNT (source-string , pattern-expression

, start

, flags

)

source-string
An expression that specifies the string in which the search is to take place. The expression must
return a value that is a built-in character string, graphic string, numeric, or datetime data type. If
the value is not a UTF-16 DBCLOB, it is implicitly cast to a UTF-16 DBCLOB before searching for the
regular expression pattern. A character string with the FOR BIT DATA attribute or a binary string is not
supported. The length of a string must not be greater than 1 gigabyte.

pattern-expression
An expression that specifies the regular expression string that is the pattern for the search. The
expression must return a value that is a built-in character string, graphic string, numeric, or datetime
data type. If the value is not a UTF-16 DBCLOB, it is implicitly cast to a UTF-16 DBCLOB before
searching for the regular expression pattern. A character string with the FOR BIT DATA attribute or a
binary string is not supported. The length of the string must not be greater than 32K.

A valid pattern-expression consists of a set of characters and control characters that describe the
pattern of the search. For a description of the valid control characters, see “Regular expression control
characters” on page 221.

start
An expression that specifies the position within source-string at which the search is to start. The
expression must return a value of any built-in numeric, character-string, or graphic-string data
type. The argument is cast to INTEGER before evaluating the function. For more information about
converting to INTEGER, see “INTEGER or INT” on page 442. The value of the integer must be greater
than or equal to 1. If the value of the integer is greater than the actual length of the source-string, the
result is 0.

flags
An expression that specifies flags that control aspects of the pattern matching. The expression must
return a value that is a built-in character string or graphic string data type. A character string with the
FOR BIT DATA attribute or a binary string is not supported. The string can include one or more valid
flag values and the combination of flag values must be valid. An empty string is the same as the value
'c'.

For a description of the valid flag characters, see “Regular expression flag values” on page 220.

The result of the function is an INTEGER representing the number of occurrences of the pattern-
expression within the source-string. If the pattern-expression is not found and no argument is null, the
result is 0.

If any argument of the REGEXP_COUNT function can be null, the result can be null. If any argument is null,
the result is the null value.

Notes
Prerequisites: In order to use the REGEXP_COUNT function, the International Components for Unicode
(ICU) option must be installed

538 IBM i: Db2 for i SQL Reference

Processing: The regular expression processing is done using the International Components for Unicode
(ICU) regular expression interface. For more information see, http://userguide.icu-project.org/strings/
regexp.

If only three arguments are specified, the third argument may be a start or flags argument. If the third
argument is a string, it is interpreted as a flags argument. Otherwise, it is interpreted as a start argument.

Syntax Alternatives: REGEXP_MATCH_COUNT is a synonym for REGEXP_COUNT.

Example

• Count the number of times "Steven" or "Stephen" occurs in the string "Steven Jones and Stephen Smith
are the best players".

SELECT REGEXP_COUNT(
 'Steven Jones and Stephen Smith are the best players',
 'Ste(v|ph)en')
FROM sysibm.sysdummy1

The result is 2.

Chapter 4. Built-in functions 539

REGEXP_INSTR
The REGEXP_INSTR returns the starting position or the position after the end of the matched substring,
depending on the value of the return_option argument.

REGEXP_INSTR (source-string , pattern-expression

, start
, occurrence

, return-option

, flags

, group

)

source-string
An expression that specifies the string in which the search is to take place. The expression must
return a value that is a built-in character string, graphic string, numeric, or datetime data type. If
the value is not a UTF-16 DBCLOB, it is implicitly cast to a UTF-16 DBCLOB before searching for the
regular expression pattern. A character string with the FOR BIT DATA attribute or a binary string is not
supported. The length of a string must not be greater than 1 gigabyte.

pattern-expression
An expression that specifies the regular expression string that is the pattern for the search. The
expression must return a value that is a built-in character string, graphic string, numeric, or datetime
data type. If the value is not a UTF-16 DBCLOB, it is implicitly cast to a UTF-16 DBCLOB before
searching for the regular expression pattern. A character string with the FOR BIT DATA attribute or a
binary string is not supported. The length of the string must not be greater than 32K.

A valid pattern-expression consists of a set of characters and control characters that describe the
pattern of the search. For a description of the valid control characters, see “Regular expression control
characters” on page 221.

start
An expression that specifies the position within source-string at which the search is to start. The
expression must return a value of any built-in numeric, character-string, or graphic-string data
type. The argument is cast to INTEGER before evaluating the function. For more information about
converting to INTEGER, see “INTEGER or INT” on page 442. The value of the integer must be greater
than or equal to 1. If the value of the integer is greater than the actual length of the source-string, the
result is 0.

occurrence
An expression that specifies which occurrence of the pattern-expression within source-string to search
for. The expression must return a value of any built-in numeric, character-string, or graphic-string data
type. The argument is cast to INTEGER before evaluating the function. For more information about
converting to INTEGER, see “INTEGER or INT” on page 442. The value of the integer must be greater
than or equal to 1. If occurrence is not specified, the default value is 1 which indicates that only the
first occurrence of pattern-expression is considered.

return-option
An expression that specifies whether to return the starting position or the position after the end
of the string that matches the pattern. The expression must return a value of any built-in numeric,
character-string, or graphic-string data type. The argument is cast to INTEGER before evaluating
the function. For more information about converting to INTEGER, see “INTEGER or INT” on page
442. The value of the integer must be equal to 0 or 1. A value of 0 returns the starting position of
the occurrence. A value of 1 returns the ending position of the occurrence. If return-option is not
specified, the default value is 0.

540 IBM i: Db2 for i SQL Reference

flags
An expression that specifies flags that control aspects of the pattern matching. The expression must
return a value that is a built-in character string or graphic string data type. A character string with the
FOR BIT DATA attribute or a binary string is not supported. The string can include one or more valid
flag values and the combination of flag values must be valid. An empty string is the same as the value
'c'.

For a description of the valid flag characters, see “Regular expression flag values” on page 220.

group
An expression that specifies which capture group of the pattern-expression is used to determine the
position within source-string to return. The expression must return a value of any built-in numeric,
character-string, or graphic-string data type. The argument is cast to INTEGER before evaluating the
function. For more information about converting to INTEGER, see “INTEGER or INT” on page 442. The
value of the integer must be greater than or equal to 0 and must not be greater than the number of
capture groups in the pattern-expression. If group is not specified, the default is 0 which indicates the
entire string that matches the entire pattern is returned.

The result of the function is a large integer. If the pattern-expression is found, the result is a number from
1 to n, where n is the actual length of the source-string plus 1. The result value represents the position
used to process the function. If the pattern-expression is not found and no argument is null, the result is 0.

If any argument of the REGEXP_INSTR function can be null, the result can be null. If any argument is null,
the result is the null value.

Notes
Prerequisites: In order to use the REGEXP_INSTR function, the International Components for Unicode
(ICU) option must be installed

Processing: The regular expression processing is done using the International Components for Unicode
(ICU) regular expression interface. For more information see, http://userguide.icu-project.org/strings/
regexp.

Examples

• Example 1: Find the first occurrence of a 'o' which has a character preceding it.

SELECT REGEXP_INSTR('hello to you', '.o',1,1)
FROM sysibm.sysdummy1

The result is 4, which is the position of the second 'l' character.
• Example 2: Find the second occurrence of a 'o' which has a character preceding it.

SELECT REGEXP_INSTR('hello to you', '.o',1,2)
FROM sysibm.sysdummy1

The result is 7, which is the position of the character 't'.
• Example 3: Find the position after the third occurrence of the first capture group of the regular

expression '(.o).' using case insensitive matching.

SELECT REGEXP_INSTR('hello to you', '(.o).', 1,3,1,'i',1)
FROM sysibm.sysdummy1

The result is 12, which is the position of the character 'u' at the end of the string.

Chapter 4. Built-in functions 541

REGEXP_REPLACE
The REGEXP_REPLACE function returns a modified version of the source string where occurrences of the
regular expression pattern found in the source string are replaced with the specified replacement string.

REGEXP_REPLACE (source-string , pattern-expression

, replacement-string

, start
, occurrence

, flags

)

source-string
An expression that specifies the string in which the search is to take place. The expression must
return a value that is a built-in character string, graphic string, numeric, or datetime data type. If
the value is not a UTF-16 DBCLOB, it is implicitly cast to a UTF-16 DBCLOB before searching for the
regular expression pattern. A character string with the FOR BIT DATA attribute or a binary string is not
supported. The length of a string must not be greater than 1 gigabyte.

pattern-expression
An expression that specifies the regular expression string that is the pattern for the search. The
expression must return a value that is a built-in character string, graphic string, numeric, or datetime
data type. If the value is not a UTF-16 DBCLOB, it is implicitly cast to a UTF-16 DBCLOB before
searching for the regular expression pattern. A character string with the FOR BIT DATA attribute or a
binary string is not supported. The length of the string must not be greater than 32K.

A valid pattern-expression consists of a set of characters and control characters that describe the
pattern of the search. For a description of the valid control characters, see “Regular expression control
characters” on page 221.

replacement-string
An expression that specifies the replacement string for matching substrings. The expression must
return a value that is a built-in character string, graphic string, numeric, or datetime data type. If
the value is not a UTF-16 DBCLOB, it is implicitly cast to a UTF-16 DBCLOB before searching for the
regular expression pattern. A character string with the FOR BIT DATA attribute or a binary string is
not supported. The length of the string must not be greater than 32K. If replacement-string is not
specified, the default is the empty string.

The content of the replacement-string can include references to capture group text from the search to
use in the replacement text. These references are of the form '$n' or '\n'33, where n is the number of
the capture group and 0 represents the entire string that matches the pattern. The value for n must
be in the range 0 to 9 and not greater than the number of capture groups in the pattern. For example,
either '$2' or '\2' can be used to refer to the content found in source-string for the second capture
group specified in pattern-expression. If the replacement-string must include a literal reference to a
'$' or '\' character, then the '\' character must precede the literal reference so that it appears in the
replacement-string as '\$' or '\\'.

start
An expression that specifies the position within source-string at which the search is to start. The
expression must return a value of any built-in numeric, character-string, or graphic-string data
type. The argument is cast to INTEGER before evaluating the function. For more information about
converting to INTEGER, see “INTEGER or INT” on page 442. The value of the integer must be greater
than or equal to 1. If the value of the integer is greater than the actual length of the source-string, the
original string is returned.

542 IBM i: Db2 for i SQL Reference

occurrence
An expression that specifies which occurrence of the pattern-expression within source-string to search
for and replace. The expression must return a value of any built-in numeric, character-string, or
graphic-string data type. The argument is cast to INTEGER before evaluating the function. For more
information about converting to INTEGER, see “INTEGER or INT” on page 442. The value of the
integer must be greater than or equal to 0. If occurrence is not specified, the default value is 0 which
indicates that all occurrences of pattern-expression in source-string are replaced.

flags
An expression that specifies flags that control aspects of the pattern matching. The expression must
return a value that is a built-in character string or graphic string data type. A character string with the
FOR BIT DATA attribute or a binary string is not supported. The string can include one or more valid
flag values and the combination of flag values must be valid. An empty string is the same as the value
'c'.

For a description of the valid flag characters, see “Regular expression flag values” on page 220.

The result of the function is a string. If there are no occurrences of the pattern to be replaced and no
argument is null, the original string is returned. The data type of the string is the same as if the first
and third arguments were concatenated except that the result is always a varying-length string. For more
information, see “With the concatenation operator” on page 163.

The length attribute of the result data type is determined based on the length attributes of the source-
string and the replacement-string using the following calculation: MIN(MaxTypeLen, LAS+(LAS+1)*LAR)
where MaxTypeLen is the maximum length attribute for the data type of the result, LAS is the length
attribute for the data type of source-string, and LAR is the length attribute for the data type of
replacement-string. If replacement-string is not specified, the value for LAR is 0. If the actual length of
the result string exceeds the maximum for the return data type, an error is returned.

The CCSID of the result is determined by the CCSID of the source-string and the replacement-string. The
resulting CCSID is the same as if the first and third arguments were concatenated. For more information,
see “Rules for result data types” on page 105.

If any argument of the REGEXP_REPLACE function can be null, the result can be null. If any argument is
null, the result is the null value.

Notes
Prerequisites: In order to use the REGEXP_REPLACE function, the International Components for Unicode
(ICU) option must be installed

Processing: The regular expression processing is done using the International Components for Unicode
(ICU) regular expression interface. For more information see, http://userguide.icu-project.org/strings/
regexp.

Example

• Replace the second occurrence of the pattern 'R.d' with 'Orange' using a case sensitive search.

SELECT REGEXP_REPLACE(
 'Red Yellow RED Blue Red Green Blue',
 'R.d','Orange',1,2,'c')
FROM sysibm.sysdummy1

The result is 'Red Yellow RED Blue Orange Green Blue'.

Chapter 4. Built-in functions 543

REGEXP_SUBSTR
The REGEXP_SUBSTR function returns one occurrence of a substring of a string that matches the regular
expression pattern.

REGEXP_SUBSTR (source-string , pattern-expression

, start
, occurrence

, flags

, group

)

source-string
An expression that specifies the string in which the search is to take place. The expression must
return a value that is a built-in character string, graphic string, numeric, or datetime data type. If
the value is not a UTF-16 DBCLOB, it is implicitly cast to a UTF-16 DBCLOB before searching for the
regular expression pattern. A character string with the FOR BIT DATA attribute or a binary string is not
supported. The length of a string must not be greater than 1 gigabyte.

pattern-expression
An expression that specifies the regular expression string that is the pattern for the search. The
expression must return a value that is a built-in character string, graphic string, numeric, or datetime
data type. If the value is not a UTF-16 DBCLOB, it is implicitly cast to a UTF-16 DBCLOB before
searching for the regular expression pattern. A character string with the FOR BIT DATA attribute or a
binary string is not supported. The length of the string must not be greater than 32K.

A valid pattern-expression consists of a set of characters and control characters that describe the
pattern of the search. For a description of the valid control characters, see “Regular expression control
characters” on page 221.

start
An expression that specifies the position within source-string at which the search is to start. The
expression must return a value of any built-in numeric, character-string, or graphic-string data
type. The argument is cast to INTEGER before evaluating the function. For more information about
converting to INTEGER, see “INTEGER or INT” on page 442. The value of the integer must be greater
than or equal to 1. If the value of the integer is greater than the actual length of the source-string, the
result is the null value.

occurrence
An expression that specifies which occurrence of the pattern-expression within source-string to search
for. The expression must return a value of any built-in numeric, character-string, or graphic-string data
type. The argument is cast to INTEGER before evaluating the function. For more information about
converting to INTEGER, see “INTEGER or INT” on page 442. The value of the integer must be greater
than or equal to 1. If occurrence is not specified, the default value is 1 which indicates that only the
first occurrence of pattern-expression is considered.

flags
An expression that specifies flags that control aspects of the pattern matching. The expression must
return a value that is a built-in character string or graphic string data type. A character string with the
FOR BIT DATA attribute or a binary string is not supported. The string can include one or more valid
flag values and the combination of flag values must be valid. An empty string is the same as the value
'c'.

For a description of the valid flag characters, see “Regular expression flag values” on page 220.

group
An expression that specifies which capture group of the pattern-expression within source-string to
return. The expression must return a value of any built-in numeric, character-string, or graphic-string

544 IBM i: Db2 for i SQL Reference

data type. The argument is cast to INTEGER before evaluating the function. For more information
about converting to INTEGER, see “INTEGER or INT” on page 442. The value of the integer must
be greater than or equal to 0 and must not be greater than the number of capture groups in the
pattern-expression. If group is not specified, the default is 0 which indicates the entire string that
matches the entire pattern is returned.

The result of the function is a string. The data type of the result depends on the data type of source-string:

Data type of source-string Data Type of the Result for REGEXP_SUBSTR

CHAR or VARCHAR or numeric or datetime VARCHAR

CLOB CLOB

GRAPHIC or VARGRAPHIC VARGRAPHIC

DBCLOB DBCLOB

The length attribute of the result data type is same as the length attribute of the source-string. The actual
length of the result is the length of the occurrence in the string that matches the pattern-expression. If the
pattern-expression is not found, the result is the null value.

The CCSID of the result is the same as the source-string.

If any argument of the REGEXP_SUBSTR function can be null, the result can be null. If any argument is
null, the result is the null value.

Notes
Prerequisites: In order to use the REGEXP_SUBSTR function, the International Components for Unicode
(ICU) option must be installed

Processing: The regular expression processing is done using the International Components for Unicode
(ICU) regular expression interface. For more information see, http://userguide.icu-project.org/strings/
regexp.

Syntax Alternatives: REGEXP_EXTRACT is a synonym for REGEXP_SUBSTR.

Examples

• Example 1: Return the string which matches any character preceding a 'o'.

SELECT REGEXP_SUBSTR('hello to you', '.o',1,1)
FROM sysibm.sysdummy1

The result is 'lo'.
• Example 2: Return the second string occurrence which matches any character preceding a 'o'.

SELECT REGEXP_SUBSTR('hello to you', '.o',1,2)
FROM sysibm.sysdummy1

The result is 'to'.
• Example 3: Return the third string occurrence which matches any character preceding a 'o'.

SELECT REGEXP_SUBSTR('hello to you', '.o',1,3)
FROM sysibm.sysdummy1

The result is 'yo'.

Chapter 4. Built-in functions 545

REPEAT
The REPEAT function returns a string composed of expression repeated integer times.

REPEAT (expression , integer)

expression
An expression that specifies the string to be repeated. The string must be a built-in numeric or string
expression. A numeric argument is cast to a character string before evaluating the function. For more
information on converting numeric to a character string, see “VARCHAR” on page 623.

integer
An expression that returns a built-in BIGINT, INTEGER, or SMALLINT data type whose value is a
positive integer or zero. The integer specifies the number of times to repeat the string.

The data type of the result of the function depends on the data type of the first argument:

Data type of expression Data type of the Result

CHAR or VARCHAR or any numeric type VARCHAR

CLOB CLOB

GRAPHIC or VARGRAPHIC VARGRAPHIC

DBCLOB DBCLOB

BINARY or VARBINARY VARBINARY

BLOB BLOB

If integer is a constant, the length attribute of the result is the minimum of the length attribute of
expression times integer and the maximum length of the result data type. Otherwise, the length attribute
depends on the data type of the result:

• 1,048,576 for BLOB, CLOB, or DBCLOB
• 4000 for VARCHAR or VARBINARY
• 2000 for VARGRAPHIC

The actual length of the result is the actual length of expression times integer. If the actual length of the
result string exceeds the maximum for the return type, an error is returned.

If either argument can be null, the result can be null; if either argument is null, the result is the null value.

The CCSID of the result is the CCSID of expression.72

Examples

• Repeat 'abc' two times to create 'abcabc'.

 SELECT REPEAT('abc', 2)
 FROM SYSIBM.SYSDUMMY1

• List the phrase 'REPEAT THIS' five times. Use the CHAR function to limit the output to 60 bytes.

 SELECT CHAR(REPEAT('REPEAT THIS', 5), 60)
 FROM SYSIBM.SYSDUMMY1

This example results in 'REPEAT THISREPEAT THISREPEAT THISREPEAT THISREPEAT THIS '.

72 If the value of expression is mixed data that is not a properly formed mixed data string, the result will not be
a properly formed mixed data string.

546 IBM i: Db2 for i SQL Reference

• For the following query, the LENGTH function returns a value of 0 because the result of repeating a
string zero times is an empty string, which is a zero-length string.

 SELECT LENGTH(REPEAT('REPEAT THIS', 0))
 FROM SYSIBM.SYSDUMMY1

• For the following query, the LENGTH function returns a value of 0 because the result of repeating an
empty string any number of times is an empty string, which is a zero-length string.

 SELECT LENGTH(REPEAT('', 5))
 FROM SYSIBM.SYSDUMMY1

Chapter 4. Built-in functions 547

REPLACE
The REPLACE function replaces all occurrences of search-string in source-string with replace-string. If
search-string is not found in source-string, source-string is returned unchanged.

REPLACE (source-string , search-string

, ''

, replace-string

)

source-string
An expression that specifies the source string. The source-string must be a built-in numeric or string
expression. A numeric argument is cast to a character string before evaluating the function. For more
information about converting numeric to a character string, see “VARCHAR” on page 623.

search-string
An expression that specifies the string to be removed from the source string. The search-string must
be a built-in numeric or string expression. A numeric argument is cast to a character string before
evaluating the function. For more information about converting numeric to a character string, see
“VARCHAR” on page 623.

replace-string
An expression that specifies the replacement string. The replace-string must be a built-in numeric or
string expression. A numeric argument is cast to a character string before evaluating the function. For
more information about converting numeric to a character string, see “VARCHAR” on page 623.

If replace-string is an empty string or is not specified, nothing replaces the string that is removed from
the source string.

source-string, search-string, and replace-string must be compatible. For more information about data type
compatibility, see “Assignments and comparisons” on page 89.

The data type of the result of the function depends on the data type of the arguments. The result
data type is the same as if the three arguments were concatenated except that the result is always a
varying-length string. For more information see “Conversion rules for operations that combine strings” on
page 110.

The length attribute of the result depends on the arguments:

• If search-string is variable length, the length attribute of the result is:

 (L3 * L1)

• If the length attribute of replace-string is less than or equal to the length attribute of search-string, the
length attribute of the result is the length attribute of source-string

• Otherwise, the length attribute of the result is:

 (L3 * (L1/L2)) + MOD(L1,L2)

where:

L1 is the length attribute of source-string
L2 is the length attribute of search-string
L3 is the length attribute of replace-string

If the length attribute of the result exceeds the maximum for the result data type, an error is returned.

The actual length of the result is the actual length of source-string plus the number of occurrences of
search-string that exist in source-string multiplied by the actual length of replace-string minus the actual
length of search-string. If the actual length of the result string exceeds the maximum for the result data
type, an error is returned.

If any argument can be null, the result can be null; if any argument is null, the result is the null value.

548 IBM i: Db2 for i SQL Reference

The CCSID of the result is determined by the CCSID of source-string, search-string, and replace-string.
The resulting CCSID is the same as if the three arguments were concatenated. For more information, see
“Conversion rules for operations that combine strings” on page 110.

Examples

• Replace all occurrences of the character 'N' in the string 'DINING' with 'VID'. Use the CHAR function to
limit the output to 10 bytes.

 SELECT CHAR(REPLACE('DINING', 'N', 'VID'), 10)
 FROM SYSIBM.SYSDUMMY1

The result is the string 'DIVIDIVIDG'.

• Replace string 'ABC' in the string 'ABCXYZ' with nothing, which is the same as removing 'ABC' from the

string.

 SELECT REPLACE('ABCXYZ', 'ABC', '')
 FROM SYSIBM.SYSDUMMY1

The result is the string 'XYZ'.

Omitting the third argument returns the same result.

 SELECT REPLACE('ABCXYZ', 'ABC')
 FROM SYSIBM.SYSDUMMY1

• Replace string 'ABC' in the string 'ABCCABCC' with 'AB'. This example illustrates that the result can still

contain the string that is to be replaced (in this case, 'ABC') because all occurrences of the string to be
replaced are identified prior to any replacement.

 SELECT REPLACE('ABCCABCC', 'ABC', 'AB')
 FROM SYSIBM.SYSDUMMY1

The result is the string 'ABCABC'.

Chapter 4. Built-in functions 549

RID
The RID function returns the relative record number of a row as a BIGINT.

RID (table-designator)

table-designator
A table designator that can be used to qualify a column in the same relative location in the SQL
statement as the RID function. For more information about table designators, see “Table designators”
on page 133.

In SQL naming, the table name may be qualified. In system naming, the table name cannot be
qualified.

The table-designator must not identify a table-function, a collection-derived-table, a VALUES clause, or
a data-change-table-reference. If the argument identifies a view, common table expression, or nested
table expression, its outer subselect must directly or indirectly reference a table.

If the argument identifies a view, common table expression, or nested table expression, the function
returns the relative record number of its base table. If the argument identifies a view, common
table expression, or nested table expression derived from more than one base table, the function
returns the relative record number of the first table in the outer subselect of the view, common table
expression, or nested table expression.

If the argument identifies a distributed table, the function returns the relative record number of the
row on the node where the row is located. If the argument identifies a partitioned table, the function
returns the relative record number of the row in the partition where the row is located. This means
that RID will not be unique for each row of a partitioned or distributed table.

The argument must not identify a view, common table expression, or nested table expression whose
outer fullselect includes an aggregate function, a GROUP BY clause, a HAVING clause, a UNION,
INTERSECT, or EXCEPT clause, a DISTINCT clause, a VALUES clause, or a table-function. The RID
function cannot be specified in a SELECT clause if the fullselect contains an aggregate function, a
GROUP BY clause, or a HAVING clause

The data type of the result is a big integer. The result can be null.

Example

• Return the relative record number and employee name from table EMPLOYEE for those employees in
department 20.

 SELECT RID(EMPLOYEE), LASTNAME
 FROM EMPLOYEE
 WHERE DEPTNO = 20

550 IBM i: Db2 for i SQL Reference

RIGHT
The RIGHT function returns the rightmost integer characters of expression.

RIGHT (expression , integer)

If expression is a character string, the result is a character string. If expression is a graphic string, the
result is a graphic string. If expression is a binary string, the result is a binary string.

expression
An expression that specifies the string from which the result is derived. The string must be a built-in
numeric or string expression. A numeric argument is cast to a character string before evaluating the
function. For more information on converting numeric to a character string, see “VARCHAR” on page
623.

A substring of expression is zero or more contiguous characters of expression. If expression is a
character string or graphic string, a single character is either an SBCS, DBCS, or multiple-byte
character. If expression is a binary string, the result is the number of bytes in the argument.

integer
An expression that returns a built-in integer data type. The integer specifies the length of the result.
integer must be greater than or equal to 0 and less than or equal to n, where n is the length attribute of
expression.

The result of the function is a varying-length string with a length attribute that is the same as the length
attribute of expression and a data type that depends on the data type of expression:

Data type of expression Data type of the Result

CHAR or VARCHAR VARCHAR

CLOB CLOB

GRAPHIC or VARGRAPHIC VARGRAPHIC

DBCLOB DBCLOB

BINARY or VARBINARY VARBINARY

BLOB BLOB

The actual length of the result is integer.

If any argument can be null, the result can be null; if any argument is null, the result is the null value.

The CCSID of the result is the same as that of expression.

Note
Syntax alternatives: STRRIGHT is a synonym for RIGHT.

Example

• Assume that host variable ALPHA has a value of 'ABCDEF'. The following statement:

 SELECT RIGHT(:ALPHA, 3)
 FROM SYSIBM.SYSDUMMY1

Returns the value 'DEF', which are the three rightmost characters in ALPHA.

• The following statement returns a zero length string.

Chapter 4. Built-in functions 551

 SELECT RIGHT('ABCABC', 0)
 FROM SYSIBM.SYSDUMMY1

• Assume that NAME is a VARCHAR(128) column, encoded in Unicode UTF-8, that contains the value
'Jürgen'.

 SELECT RIGHT(NAME, 5), SUBSTR(NAME, 3, 5)
 FROM T1
 WHERE NAME = 'Jürgen'

Returns the value 'ürgen' for RIGHT and an unprintable string (X'BC7267656E') for SUBSTR(NAME, 3,
5).

552 IBM i: Db2 for i SQL Reference

ROUND
The ROUND function returns expression–1 rounded to some number of places to the right or left of the
decimal point.

ROUND (expression-1

, 0

, expression-2

)

expression–1
An expression that returns a value of any built-in numeric, character-string, or graphic-string
data type. A string argument is converted to double-precision floating point before evaluating the
function. For more information about converting strings to double-precision floating point, see
“DOUBLE_PRECISION or DOUBLE” on page 392.
If expression-1 is a decimal floating-point data type, the DECFLOAT ROUNDING MODE will not be
used. The rounding behavior of ROUND corresponds to a value of ROUND_HALF_UP. If a different
rounding behavior is wanted, use the QUANTIZE function.

expression–2
An expression that returns a value of a built-in BIGINT, INTEGER, or SMALLINT data type.

If expression–2 is positive, expression–1 is rounded to the expression–2 number of places to the right
of the decimal point.

If expression–2 is negative, expression–1 is rounded to 1 + (the absolute value of expression–2)
number of places to the left of the decimal point. If the absolute value of expression–2 is greater than
the number of digits to the left of the decimal point, the result is 0. (For example, ROUND(748.58,-4)
returns 0.)

If expression–2 is not specified, expression–1 is rounded to zero places to the left of the decimal
point.

If expression–1 is positive, a digit value of 5 is rounded to the next higher positive number. If
expression–1 is negative, a digit value of 5 is rounded to the next lower negative number.

The data type and length attribute of the result are the same as the data type and length attribute of the
first argument, except that precision is increased by one if expression–1 is DECIMAL or NUMERIC and
the precision is less than the maximum precision (mp). For example, an argument with a data type of
DECIMAL(5,2) will result in DECIMAL(6,2). An argument with a data type of DECIMAL(63,2) will result in
DECIMAL(63,2).

If either argument can be null, the result can be null. If either argument is null, the result is the null value.

Examples

• Calculate the number 873.726 rounded to 2, 1, 0, -1, -2, -3, and -4 decimal places respectively.

 SELECT ROUND(873.726, 2),
 ROUND(873.726, 1),
 ROUND(873.726, 0),
 ROUND(873.726, -1),
 ROUND(873.726, -2),
 ROUND(873.726, -3),
 ROUND(873.726, -4)
 FROM SYSIBM.SYSDUMMY1

Returns the following values, respectively:

0873.730 0873.700 0874.000 0870.000 0900.000 1000.000 0000.000

• Calculate both positive and negative numbers.

 SELECT ROUND(3.5, 0),
 ROUND(3.1, 0),

Chapter 4. Built-in functions 553

 ROUND(-3.1, 0),
 ROUND(-3.5, 0)
 FROM SYSIBM.SYSDUMMY1

Returns the following examples, respectively:

04.0 03.0 -03.0 -04.0

554 IBM i: Db2 for i SQL Reference

ROUND_TIMESTAMP
The ROUND_TIMESTAMP function returns a timestamp that is the expression rounded to the unit specified
by the format-string. If format-string is not specified, expression is rounded to the nearest day, as if 'DD'
was specified for format-string.

ROUND_TIMESTAMP (expression

, 'DD'

, format-string

)

expression
An expression that returns a value of one of the following built-in data types: a date, a timestamp, a
character-string, or a graphic-string.
If expression is a character or graphic string, its value must be a valid string representation of a
date or timestamp. It is first converted to a TIMESTAMP(12) value. For the valid formats of string
representations of dates and timestamps, see “String representations of datetime values” on page 75.

format-string
An expression that returns a built-in character string data type or graphic string data type. format-
string contains a template of how expression should be rounded. For example, if format-string is 'DD', a
timestamp that is represented by expression is rounded to the nearest day. Leading and trailing blanks
are removed from the string, and the resulting substring must be a valid template for a timestamp.
The resulting value is then folded to uppercase, so the characters in the value may be in any case.
Allowable values for format-string are listed in Table 57 on page 555.

The result of the function is a timestamp with a timestamp precision of:

• p when the data type of expression is TIMESTAMP(p)
• 0 when the data type of expression is DATE
• 6 otherwise.

If either argument can be null, the result can be null; if either argument is null, the result is the null value.

Table 57. ROUND_TIMESTAMP and TRUNC_TIMESTAMP format models

Format model
Rounding or truncating
unit

ROUND_TIMESTAMP
example

TRUNC_TIMESTAMP
example

CC

SCC

Century. One greater than
the first two digits of a
four digit year.

For ROUND_TIMESTAMP,
rounds up on the 50th
year of the century.

Input value:
1897-12-04-12.22.22.00
0000

Result:
1901-01-01-00.00.00.00
0000

Input value:
1897-12-04-12.22.22.00
0000

Result:
1801-01-01-00.00.00.00
0000

YYYY

SYYYY

YEAR

SYEAR

YYY

YY

Y

Year.

For ROUND_TIMESTAMP,
rounds up on July 1 to
January 1st of the next
year.

Input value:
1897-12-04-12.22.22.00
0000

Result:
1898-01-01-00.00.00.00
0000

Input value:
1897-12-04-12.22.22.00
0000

Result:
1897-01-01-00.00.00.00
0000

Chapter 4. Built-in functions 555

Table 57. ROUND_TIMESTAMP and TRUNC_TIMESTAMP format models (continued)

Format model
Rounding or truncating
unit

ROUND_TIMESTAMP
example

TRUNC_TIMESTAMP
example

IYYY

IYY

IY

I

ISO year.

For ROUND_TIMESTAMP,
rounds up on July 1 to the
first day of the next ISO
year. The first day of the
ISO year is defined as the
Monday of the first ISO
week.

Input value:
1897-12-04-12.22.22.00
0000

Result:
1898-01-03-00.00.00.00
0000

Input value:
1897-12-04-12.22.22.00
0000

Result:
1897-01-04-00.00.00.00
0000

Q Quarter.

For ROUND_TIMESTAMP,
rounds up on the 16th day
of the second month of
the quarter.

Input value:
1999-06-04-12.12.30.00
0000

Result:
1999-07-01-00.00.00.00
0000

Input value:
1999-06-04-12.12.30.00
0000

Result:
1999-04-01-00.00.00.00
0000

MONTH

MON

MM

RM

Month.

For ROUND_TIMESTAMP,
rounds up on the 16th day
of the month.

Input value:
1999-06-18-12.12.30.00
0000

Result:
1999-07-01-00.00.00.00
0000

Input value:
1999-06-18-12.12.30.00
0000

Result:
1999-06-01-00.00.00.00
0000

WW Same day of the week as
the first day of the year.

For ROUND_TIMESTAMP,
rounds up on the 12th
hour of the 4th day of the
week, with respect to the
first day of the year.

Input value:
2000-05-05-12.12.30.00
0000

Result:
2000-05-06-00.00.00.00
0000

Input value:
2000-05-05-12.12.30.00
0000

Result:
2000-04-29-00.00.00.00
0000

IW Same day of the week as
the first day of the ISO
year.

For ROUND_TIMESTAMP,
rounds up on the 12th
hour of the 4th day of the
week, with respect to the
first day of the ISO year.

Input value:
2000-05-05-12.12.30.00
0000

Result:
2000-05-08-00.00.00.00
0000

Input value:
2000-05-05-12.12.30.00
0000

Result:
2000-05-01-00.00.00.00
0000

W Same day of the week as
the first day of the month.

For ROUND_TIMESTAMP,
rounds up on the 12th
hour of the 4th day of the
week, with respect to the
first day of the month.

Input value:
2000-06-21-12.12.30.00
0000

Result:
2000-06-22-00.00.00.00
0000

Input value:
2000-06-21-12.12.30.00
0000

Result:
2000-06-15-00.00.00.00
0000

556 IBM i: Db2 for i SQL Reference

Table 57. ROUND_TIMESTAMP and TRUNC_TIMESTAMP format models (continued)

Format model
Rounding or truncating
unit

ROUND_TIMESTAMP
example

TRUNC_TIMESTAMP
example

DDD

DD

J

Day.

For ROUND_TIMESTAMP,
rounds up on the 12th
hour of the day.

Input value:
2000-05-17-12.59.59.00
0000

Result:
2000-05-18-00.00.00.00
0000

Input value:
2000-05-17-12.59.59.00
0000

Result:
2000-05-17-00.00.00.00
0000

DAY

DY

D

Starting day of the week.

For ROUND_TIMESTAMP,
rounds up with respect to
the 12th hour of the 4th
day of the week. The first
day of the week is always
Sunday.

Input value:
2000-05-17-12.59.59.00
0000

Result:
2000-05-21-00.00.00.00
0000

Input value:
2000-05-17-12.59.59.00
0000

Result:
2000-05-14-00.00.00.00
0000

HH

HH12

HH24

Hour.

For ROUND_TIMESTAMP,
rounds up at 30 minutes.

Input value:
2000-05-17-23.59.59.00
0000

Result:
2000-05-18-00.00.00.00
0000

Input value:
2000-05-17-23.59.59.00
0000

Result:
2000-05-17-23.00.00.00
0000

MI Minute.

For ROUND_TIMESTAMP,
rounds up at 30 seconds.

Input value:
2000-05-17-23.58.45.00
0000

Result:
2000-05-17-23.59.00.00
0000

Input value:
2000-05-17-23.58.45.00
0000

Result:
2000-05-17-23.58.00.00
0000

SS Second.

For ROUND_TIMESTAMP,
rounds up at 500000
microseconds.

Input value:
2000-05-17-23.58.45.50
0000

Result:
2000-05-17-23.58.46.00
0000

Input value:
2000-05-17-23.58.45.50
0000

Result:
2000-05-17-23.58.45.00
0000

Note:

The ISO year starts on the first day of the first ISO week of the year. This can be up to three days before
January 1st or three days after January 1st. See “WEEK_ISO” on page 647 for details.

Example

• Set the host variable RND_TMSTMP with the current year rounded to the nearest month value.

 SET :RND_TMSTMP = ROUND_TIMESTAMP('2000-03-18-17.30.00', 'MONTH');

Host variable RND_TMSTMP is set with the value 2000-04-01-00.00.00.000000.

Chapter 4. Built-in functions 557

ROWID
The ROWID function casts a character string to a row ID.

ROWID (string-expression)

string-expression
An expression that returns a character string value. Although the string can contain any value, it is
recommended that it contain a ROWID value that was previously generated by Db2 for z/OS or Db2
for i to ensure a valid ROWID value is returned. For example, the function can be used to convert a
ROWID value that was cast to a CHAR value back to a ROWID value.

If the actual length of string-expression is less than 40, the result is not padded. If the actual length
of string-expression is greater than 40, the result is truncated. If non-blank characters are truncated, a
warning is returned.

The length attribute of the result is 40. The actual length of the result is the length of string-expression.

The result of the function is a row ID. If the argument can be null, the result can be null; if the argument is
null, the result is the null value.

Note
Syntax alternatives: The CAST specification should be used to increase the portability of applications.
For more information, see “CAST specification” on page 176.

Example

• Assume that table EMPLOYEE contains a ROWID column EMP_ROWID. Also assume that
the table contains a row that is identified by a row ID value that is equivalent to
X'F0DFD230E3C0D80D81C201AA0A280100000000000203'. Using direct row access, select the
employee number for that row.

 SELECT EMPNO
 FROM EMPLOYEE
 WHERE EMP_ROWID = ROWID(X'F0DFD230E3C0D80D81C201AA0A280100000000000203')

558 IBM i: Db2 for i SQL Reference

RPAD
The RPAD function returns a string composed of expression that is padded on the right.

RPAD (expression , length

, pad

)

The RPAD function treats leading or trailing blanks in expression as significant. Padding will only occur if
the actual length of expression is less than length, and pad is not an empty string.

expression
An expression that specifies the string from which the result is derived.

Expression must be a built-in string, numeric, or datetime data type. A numeric or datetime argument
is cast to VARCHAR with a CCSID that is the default SBCS CCSID at the current server before
evaluating the function. For more information about converting numeric or datetime to a character
string, see “VARCHAR” on page 623.

length
An expression that specifies the length of the result. The expression must return a value that is a
built-in numeric, character-string, or graphic-string data type. If the data type of the expression is not
INTEGER, it is implicitly cast to INTEGER before evaluating the function. The value must be zero or a
positive integer that is less than or equal to n, where n is the maximum length of the result data type.
See Appendix A, “SQL limits,” on page 1643 for more information.

If expression is a graphic string, length indicates the number of DBCS or Unicode graphic characters.
If expression is a character string, length indicates the number of characters where a character may
consist of one or more bytes. If expression is a binary string, length indicates the number of bytes.

pad
An expression that specifies the string with which to pad. The expression must return a value that is
a built-in string, numeric, or datetime data type. If the value is a numeric or datetime data type, it is
implicitly cast to VARCHAR with a CCSID that is the default SBCS CCSID at the current server before
evaluating the function.
If pad is not specified, the pad character is set as follows:

• For character and graphic strings, a single-byte, double-byte, UTF-16, or UTF-8 blank character
based on the data type and CCSID of expression.73

• For binary strings, hexadecimal zeros.

The value for expression and the value for pad must have compatible data types. If the CCSID of pad is
different than the CCSID of expression, the pad value is converted to the CCSID of expression. For more
information about data type compatibility, see “Assignments and comparisons” on page 89.

The data type of the result depends on the data type of expression:

Data type of expression Data Type of the Result for RPAD

CHAR or VARCHAR or numeric or
datetime

VARCHAR

CLOB CLOB

GRAPHIC or VARGRAPHIC VARGRAPHIC

DBCLOB DBCLOB

BINARY or VARBINARY VARBINARY

73 UTF-16 or UCS-2 defines a blank character at code point X'0020' and X'3000'. The database manager pads
with the blank at code point X'0020'. The database manager pads UTF-8 with a blank at code point X'20'

Chapter 4. Built-in functions 559

Data type of expression Data Type of the Result for RPAD

BLOB BLOB

The length attribute of the result depends on length. If length is explicitly specified by an integer constant
that is greater than zero, the length attribute of the result is length. If length is explicitly specified by an
integer constant that is zero, the length attribute of the result is 1. If length is specified as an expression,
the length attribute of the result is the minimum of m+100 and the maximum length of the result data
type, where m is the length attribute of expression. See Appendix A, “SQL limits,” on page 1643 for more
information.

The actual length of the result is determined from length.

• If length is 0, the actual length is 0 and the result is the empty result string.
• If length is equal to the actual length of expression, the actual length is the length of expression.
• If length is less than the actual length of expression, the result is truncated. The actual length is length

unless the result data type is varying-length mixed data or varying-length Unicode. In this case, only
complete characters will be truncated.

– For Unicode data, the actual length may be length-1 to prevent a double-byte character from being
split.

– For mixed data the actual length may be as little as length-3 to account for truncation of a double
byte character and possibly a “shift-in” character (X'0F') and a “shift-out” character (X'0E').

• If length is greater than the actual length of expression, the actual length is length unless the result data
type is varying-length mixed data or varying-length Unicode and pad contains double-byte characters.
In this case, only complete characters will be padded.

– For Unicode data, the actual length may be length-1 to prevent a double-byte character from being
split.

– For mixed data, the actual length may be may be as little as length-3 to account for truncation of a
double byte character and possibly a “shift-in” character (X'0F') and a “shift-out” character (X'0E').
Also, this result will not have redundant shift codes “at the seam”. Thus, if the pad is a string ending
with a “shift-in” character (X'0F'), and expression begins with a “shift-out” character (X'0E'), these
two bytes are eliminated from the result.

If any argument can be null, the result can be null; if any argument is null, the result is the null value.

The CCSID of the result is the same as that of expression.

Examples

• Example 1: Assume that NAME is a VARCHAR(15) column that contains the values "Chris", "Meg", and
"Jeff". The following query will completely pad out a value on the right with periods:

SELECT RPAD(NAME,15,'.') AS NAME FROM T1;

returns:

NAME

Chris..........
Meg............
Jeff...........

• Example 2: Assume that NAME is a VARCHAR(15) column that contains the values "Chris", "Meg", and
"Jeff". The following query will only pad each value to a length of 5:

SELECT RPAD(NAME,5,'.') AS NAME FROM T1;

returns:

560 IBM i: Db2 for i SQL Reference

NAME

Chris
Meg..
Jeff.

• Example 3: Assume that NAME is a CHAR(15) column containing the values "Chris", "Meg", and "Jeff".
Note that the result of RTRIM is a varying length string with the blanks removed

SELECT RPAD(RTRIM(NAME),15,'.') AS NAME FROM T1;

returns:

NAME

Chris..........
Meg............
Jeff...........

• Example 4: Assume that NAME is a VARCHAR(15) column containing the values "Chris", "Meg", and
"Jeff". The following query will completely pad out a value on the right with pad (note that in some
cases, a partial instance of the pad specification is returned):

SELECT RPAD(NAME,15,'123') AS NAME FROM T1;

returns:

NAME

Chris1231231231
Meg123123123123
Jeff12312312312

• Example 5: Assume that NAME is a VARCHAR(15) column containing the values "Chris", "Meg", and
"Jeff". Note that "Chris" is truncated, "Meg" is padded, and "Jeff" is unchanged:

SELECT RPAD(NAME,4,'.') AS NAME FROM T1;

returns:

NAME

Chri
Meg.
Jeff

Chapter 4. Built-in functions 561

RRN
The RRN function returns the relative record number of a row.

RRN (table-designator)

table-designator
A table designator that could be used to qualify a column in the same relative location in the
SQL statement as the RRN function. For more information about table designators, see “Table
designators” on page 133.

In SQL naming, the table name may be qualified. In system naming, the table name cannot be
qualified.

The table-designator must not identify a collection-derived-table, a VALUES clause, a table-function, or
a data-change-table-reference. If the argument identifies a view, common table expression, or nested
table expression, its outer subselect must directly or indirectly reference a table.

If the argument identifies a view, common table expression, or nested table expression, the function
returns the relative record number of its base table. If the argument identifies a view, common
table expression, or nested table expression derived from more than one base table, the function
returns the relative record number of the first table in the outer subselect of the view, common table
expression, or nested table expression.

If the argument identifies a distributed table, the function returns the relative record number of the
row on the node where the row is located. If the argument identifies a partitioned table, the function
returns the relative record number of the row in the partition where the row is located. This means
that RRN will not be unique for each row of a partitioned or distributed table.

The argument must not identify a view, common table expression, or nested table expression whose
outer fullselect includes an aggregate function, a GROUP BY clause, a HAVING clause, a UNION,
INTERSECT, or EXCEPT clause, a DISTINCT clause, a VALUES clause, or a table-function. The RRN
function cannot be specified in a SELECT clause if the fullselect contains an aggregate function, a
GROUP BY clause, or a HAVING clause.

The data type of the result is a decimal with precision 15 and scale 0. The result can be null.

Example

• Return the relative record number and employee name from table EMPLOYEE for those employees in
department 20.

 SELECT RRN(EMPLOYEE), LASTNAME
 FROM EMPLOYEE
 WHERE DEPTNO = 20

562 IBM i: Db2 for i SQL Reference

RTRIM
The RTRIM function removes any of the specified characters from the end of an expression.

RTRIM (string-expression

, trim-expression

)

The RTRIM function removes all of the characters that are contained in trim-expression from the end of
string-expression. The collating sequence does not affect the search. If the string-expression is defined as
FOR BIT DATA or is a binary data type, the search is done by comparing each byte in trim-expression to the
byte at the end of string-expression.

string-expression
An expression that returns a value of any built-in numeric, datetime, or string data type. 74 A numeric
or datetime argument is cast to a character string before evaluating the function. For more information
about converting numeric or datetime to a character string, see “VARCHAR” on page 623.

trim-expression
An expression that specifies the characters to remove from the end of string-expression. The
expression must return a value of any built-in numeric, datetime, or string data type. A numeric or
datetime argument is cast to a character string before evaluating the function.

When trim-expression is not specified, the data type of the string-expression determines the default
value used:

• Hexadecimal zero (X'00') if the argument is a binary string.
• DBCS blank if the argument is a DBCS graphic string.
• UTF-16 or UCS-2 blank if the first argument is a Unicode graphic string.
• UTF-8 blank if the first argument is a UTF-8 character string.
• Otherwise, a SBCS blank.

The value for string-expression and the value for trim-expression must have compatible data types. For
more information about data type compatibility, see “Assignments and comparisons” on page 89. If
string-expression and trim-expression have different CCSIDs, trim-expression is converted to the CCSID of
string-expression.

The data type of the result depends on the data type of string-expression:

Data type of string-expression Data type of the Result

CHAR or VARCHAR VARCHAR

CLOB CLOB

GRAPHIC or VARGRAPHIC VARGRAPHIC

DBCLOB DBCLOB

BINARY or VARBINARY VARBINARY

BLOB BLOB

The length attribute of the result is the same as the length attribute of string-expression. The actual length
of the result for character or binary strings is the length of string-expression minus the number of bytes
removed. The actual length of the result for graphic strings is the length of string-expression minus the
number of graphic characters removed. If all characters are removed, the result is an empty string.

If either argument can be null, the result can be null; if any argument is null, the result is the null value.

The CCSID of the result is the same as that of string-expression.

74 The RTRIM function returns the same results as: STRIP(expression,TRAILING)

Chapter 4. Built-in functions 563

Examples

• Example 1: Use the RTRIM function when the host variable HELLO is defined as CHAR(9) and has a value
of

 'Hello '

VALUES RTRIM(:HELLO)

The result is 'Hello'. When a trim-expression is not specified only blanks are removed.
• Example 2: Use the RTRIM function to remove individual numbers in the trim-expression from the end

(right side) of the string-expression.

SELECT RTRIM ('123DEFG123', '321'),
 RTRIM ('12322XYZ12322222', '123'),
 RTRIM ('12321', '213'),
 RTRIM ('123XYX', '321')
 FROM SYSIBM.SYSDUMMY1

The result is:

'123DEFG'
'12322XYZ'
'' (empty string - all characters removed)
'123XYX' (no characters removed)

The RTRIM function does not remove instances of '1', '2', and '3' on the left side of the string, before
characters that are not '1', '2', or '3'.

• Example 3: Use the RTRIM function to remove the characters specified in the trim-expression from the
end of the string-expression.

VALUES RTRIM('...VAR...', '$.')

The result is '...$VAR'.
• Example 4: Use the RTRIM function to remove the characters specified in the trim-expression from the

end of the string-expression.

VALUES RTRIM('((-78.0))', '-0. ()')

The result is '((-78'. When removing characters and blanks, you must include a blank in the trim-
expression.

564 IBM i: Db2 for i SQL Reference

SCORE
The SCORE function searches a text search index using criteria that are specified in a search argument
and returns a relevance score that measures how well a document matches the query.

SCORE

(column-name , search-argument

, search-argument-options

)

search-argument-options

QUERYLANGUAGE = value

RESULTLIMIT = value

SYNONYM =

OFF

ON

1

Notes:
1 The same clause must not be specified more than once.

column-name
Specifies a qualified or unqualified name of a column that has a text search index that is to be
searched. The column must exist in the table or view that is identified in the FROM clause in the
statement and the column of the table, or the column of the underlying base table of the view must
have an associated text search index. The underlying expression of the column of a view must be
a simple column reference to the column of an underlying table, either directly or through another
nested view.

search-argument
An expression that returns a character-string data type or graphic-string data type that contains the
terms to be searched for. It must not be the empty string or contain all blanks. The actual length of
the string must not exceed 32 740 bytes after conversion to Unicode and must not exceed the text
search limitations or number of terms as specified in the search argument syntax. For information on
search-argument syntax, see Appendix G, “Text search argument syntax,” on page 1989.

search-argument-options
A character string or graphic string value that specifies the search argument options to use for the
search. It must be a constant or a variable.
The options that can be specified as part of the search-argument-options are:
QUERYLANGUAGE = value

Specifies the language value. The value can be any of the supported language codes. If
QUERYLANGUAGE is not specified, the default is the language value of the text search index that
is used when the function is invoked. If the language value of the text search index is AUTO, the
default value for QUERYLANGUAGE is en_US. For more information on the query language option,
see “Text search language options” on page 1999.

RESULTLIMIT = value
Specifies the maximum number of results that are to be returned from the underlying search
engine. The value must be an integer from 1 to 2 147 483 647. If RESULTLIMIT is not specified, no
result limit is in effect for the query.

SCORE may or may not be called for each row of the result table, depending on the plan that the
optimizer chooses. If SCORE is called once for the query to the underlying search engine, a result
set of all of the ROWIDs or primary keys that match are returned from the search engine. This
result set is then joined to the table containing the column to identify the result rows. In this case,
the RESULTLIMIT value acts like a FETCH FIRST n ROWS ONLY from the underlying text search

Chapter 4. Built-in functions 565

engine and can be used as an optimization. If SCORE is called for each row of the result because
the optimizer determines that is the best plan, then the RESULTLIMIT option has no effect.

SYNONYM = OFF or SYNONYM = ON
Specifies whether to use a synonym dictionary associated with the text search index. The default
is OFF.
OFF

Do not use a synonym dictionary.
ON

Use the synonym dictionary associated with the text search index.

If search-argument-options is the empty string or the null value, the function is evaluated as if
search-argument-options were not specified.

The result of the function is a double-precision floating-point number. If search-argument can be null, the
result can be null; if search-argument is null, the result is the null value.

The result of SCORE is a value between 0 and 1. The more frequent the column contains a match for the
search criteria specified by search-argument, the larger the result value. If a match is not found, the result
is 0. If the column value is null or search-argument contains only blanks or is the empty string, the result
is 0.

SCORE is a non-deterministic function.

Notes
Prerequisites: In order to use the CONTAINS and SCORE functions, OmniFind Text Search Server for DB2
for i must be installed and started.

Rules: If a view, nested table expression, or common table expression provides a text search column
for a CONTAINS or SCORE scalar function and the applicable view, nested table expression, or common
table expression has a DISTINCT clause on the outermost SELECT, the SELECT list must contain all the
corresponding key fields of the text search index.

If a view, nested table expression, or common table expression provides a text search column for a
CONTAINS or SCORE scalar function, the applicable view, nested table expression, or common table
expression cannot have a UNION, EXCEPT, or INTERSECT at the outermost SELECT.

If a common table expression provides a text search column for a CONTAINS or SCORE scalar function,
the common table expression cannot be subsequently referenced again in the entire query unless that
reference does not provide a text search column for a CONTAINS or SCORE scalar function.

CONTAINS and SCORE scalar functions are not allowed if the query specifies:

• a distributed table,
• a table with a read trigger, or
• a logical file built over multiple physical file members.

Example

• The following statement generates a list of employees in the order of how well their resumes match the
query "programmer AND (java OR cobol)", along with a relevance value that is normalized between 0
(zero) and 100.

 SELECT EMPNO, INTEGER(SCORE(RESUME, 'programmer AND
 (java OR cobol)') * 100) AS RELEVANCE
 FROM EMP_RESUME
 WHERE RESUME_FORMAT = 'ascii'
 AND CONTAINS(RESUME, 'programmer AND (java OR cobol)') = 1
 ORDER BY RELEVANCE DESC

566 IBM i: Db2 for i SQL Reference

The database manager first evaluates the CONTAINS predicate in the WHERE clause, and therefore,
does not evaluate the SCORE function in the SELECT list for every row of the table. In this case, the
arguments for SCORE and CONTAINS must be identical.

Chapter 4. Built-in functions 567

SECOND
The SECOND function returns the seconds part of a value with optional fractional seconds.

SECOND (expression

, 0

, precision-constant

)

expression
An expression that returns a value of one of the following built-in data types: a date, a time, a
timestamp, a character string, a graphic string, or a numeric data type.

• If expression is a character or graphic string, its value must be a valid string representation of a
datetime value. If expression is a valid string representation of a timestamp, it is first converted to a
TIMESTAMP(12) value. If expression is a valid string representation of a date, it must be in one of the
IBM SQL standard formats. For the valid formats of string representations of datetime values, see
“String representations of datetime values” on page 75.

• If the argument is a DATE, it is first converted to a TIMESTAMP(0) value, assuming a time of exactly
midnight (00.00.00).

• If expression is a number, it must be a time duration or timestamp duration. For the valid formats of
datetime durations, see “Datetime operands and durations” on page 165.

precision-constant
An integer constant representing the number of fractional seconds. The value must be in the range 0
through 12.

The result of the function with a single argument is a large integer. The result of the function with two
arguments is DECIMAL(2+s,s) where s is the value of the precision-constant. If the argument can be null,
the result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

• If the argument is a date, a time, a timestamp, or a valid character-string representation of a date, time,
or timestamp:

If only one argument is specified, the result is the seconds part of the value (0 to 59).

If both arguments are specified, the result is the seconds part of the value (0 to 59) and precision-
constant digits of the fractional seconds part of the value. If there are no fractional seconds in the value,
then zeroes are returned.

• If the argument is a time duration or timestamp duration:

If only one argument is specified, the result is the seconds part of the value (-99 to 99). A nonzero result
has the same sign as the argument.

If both arguments are specified, the result is the seconds part of the value (-99 to 99) and precision-
constant digits of the fractional seconds part of the value. If there are no fractional seconds in the value,
then zeroes are returned. A nonzero result has the same sign as the argument.

Examples

• Assume that the host variable TIME_DUR (DECIMAL(6,0)) has the value 153045.

 SELECT SECOND(:TIME_DUR)
 FROM SYSIBM.SYSDUMMY1

Returns the value 45.
• Assume that the column RECEIVED (TIMESTAMP) has an internal value equivalent to

1988-12-25-17.12.30.000000.

568 IBM i: Db2 for i SQL Reference

 SELECT SECOND(RECEIVED)
 FROM IN_TRAY

Returns the value 30.
• Get the seconds with fractional seconds from a current timestamp in milliseconds.

 SELECT SECOND(CURRENT TIMESTAMP(3),3)
 FROM SYSIBM.SYSDUMMY1

Returns a DECIMAL(5,3) value based on the current timestamp that could be something like 54.321.

Chapter 4. Built-in functions 569

SIGN
The SIGN function returns an indicator of the sign of expression.

SIGN (expression)

The returned value is:

–1
if the argument is less than zero

-0
if the argument is DECFLOAT negative zero

0
if the argument is zero

1
if the argument is greater than zero

expression
An expression that returns a value of any built-in numeric, character-string, or graphic-string
data type. A string argument is converted to double-precision floating point before evaluating the
function. For more information about converting strings to double-precision floating point, see
“DOUBLE_PRECISION or DOUBLE” on page 392.

The result has the same data type and length attribute as the argument, except that precision is increased
by one if the argument is DECIMAL or NUMERIC and the scale of the argument is equal to its precision.
For example, an argument with a data type of DECIMAL(5,5) will result in DECIMAL(6,5). If the precision
is already the maximum precision (mp), the scale will be decreased by one. For example, DECIMAL(63,63)
will result in DECIMAL(63,62).

If the argument can be null, the result can be null; if the argument is null, the result is the null value.

Example

• Assume that host variable PROFIT is a large integer with a value of 50000.

 SELECT SIGN(:PROFIT)
 FROM EMPLOYEE

Returns the value 1.

570 IBM i: Db2 for i SQL Reference

SIN
The SIN function returns the sine of the argument, where the argument is an angle expressed in radians.
The SIN and ASIN functions are inverse operations.

SIN (expression)

expression
An expression that returns a value of any built-in numeric data type (except for DECFLOAT), character-
string, or graphic-string data type. A string argument is converted to double-precision floating point
before evaluating the function. For more information about converting strings to double-precision
floating point, see “DOUBLE_PRECISION or DOUBLE” on page 392.

The data type of the result is double-precision floating point. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Example

• Assume the host variable SINE is a decimal (2,1) host variable with a value of 1.5.

 SELECT SIN(:SINE)
 FROM SYSIBM.SYSDUMMY1

Returns the approximate value 0.99.

Chapter 4. Built-in functions 571

SINH
The SINH function returns the hyperbolic sine of the argument, where the argument is an angle expressed
in radians.

SINH (expression)

expression
An expression that returns a value of any built-in numeric data type (except for DECFLOAT), character-
string, or graphic-string data type. A string argument is converted to double-precision floating point
before evaluating the function. For more information about converting strings to double-precision
floating point, see “DOUBLE_PRECISION or DOUBLE” on page 392.

The data type of the result is double-precision floating point. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Example

• Assume the host variable HSINE is a decimal (2,1) host variable with a value of 1.5.

 SELECT SINH(:HSINE)
 FROM SYSIBM.SYSDUMMY1

Returns the approximate value 2.12.

572 IBM i: Db2 for i SQL Reference

SMALLINT
The SMALLINT function returns a small integer representation.

Numeric to Smallint

SMALLINT (numeric-expression)

String to Smallint

SMALLINT (string-expression)

The SMALLINT function returns a small integer representation of

• A number
• A character or graphic string representation of a decimal number
• A character or graphic string representation of an integer
• A character or graphic string representation of a floating-point number
• A character or graphic string representation of a decimal floating-point number

Numeric to Smallint
numeric-expression

An expression that returns a numeric value of any built-in numeric data type.

The result is the same number that would occur if the argument were assigned to a small integer
column or variable. If the whole part of the argument is not within the range of small integers, an error
is returned. The fractional part of the argument is truncated.

String to Smallint
string-expression

An expression that returns a value that is a character-string or graphic-string representation of a
number.

If the argument is a string-expression, the result is the same number that would result from
CAST(string-expression AS SMALLINT). Leading and trailing blanks are eliminated and the resulting
string must conform to the rules for forming a floating-point, decimal floating-point, integer, or
decimal constant. If the whole part of the argument is not within the range of small integers, an
error is returned. Any fractional part of the argument is truncated.

The result of the function is a small integer. If the argument can be null, the result can be null. If the
argument is null, the result is the null value.

Note
Syntax alternatives: The CAST specification should be used to increase the portability of applications.
For more information, see “CAST specification” on page 176.

Example

• Using the EMPLOYEE table, select a list containing salary (SALARY) divided by education level
(EDLEVEL). Truncate any decimal in the calculation. The list should also contain the values used in
the calculation and the employee number (EMPNO).

 SELECT SMALLINT(SALARY / EDLEVEL), SALARY, EDLEVEL, EMPNO
 FROM EMPLOYEE

Chapter 4. Built-in functions 573

SOUNDEX
The SOUNDEX function returns a 4 character code representing the sound of the words in the argument.
The result can be used to compare with the sound of other strings.

SOUNDEX (expression)

expression
An expression that returns a value of any built-in numeric or string data type, that is not a CLOB or
DBCLOB. The argument cannot be a binary string. A numeric argument is cast to a character string
before evaluating the function. For more information about converting numeric to a character string,
see “VARCHAR” on page 623.

The data type of the result is CHAR(4). If the argument can be null, the result can be null; if the argument
is null, the result is the null value.

The CCSID of the result is the default CCSID of the current server.

The SOUNDEX function is useful for finding strings for which the sound is known but the precise spelling
is not. It makes assumptions about the way that letters and combinations of letters sound that can help
to search out words with similar sounds. The comparison can be done directly or by passing the strings as
arguments to the DIFFERENCE function. For more information, see “DIFFERENCE” on page 381.

Example

• Using the EMPLOYEE table, find the EMPNO and LASTNAME of the employee with a surname that
sounds like 'Loucesy'.

 SELECT EMPNO, LASTNAME
 FROM EMPLOYEE
 WHERE SOUNDEX(LASTNAME) = SOUNDEX('Loucesy')

Returns the row:

000110 LUCCHESSI

574 IBM i: Db2 for i SQL Reference

SPACE
The SPACE function returns a character string that consists of the number of SBCS blanks that the
argument specifies.

SPACE (expression)

expression
An expression that returns a value of any built-in SMALLINT, INTEGER, BIGINT, character-string, or
graphic-string data type. A string argument is converted to integer before evaluating the function. For
more information about converting strings to integer, see “INTEGER or INT” on page 442.

The expression specifies the number of SBCS blanks for the result, and it must be between 0 and
32740. If expression is a constant, it must not be the constant 0.

The result of the function is a varying-length character string (VARCHAR) that contains SBCS data.

If expression is a constant, the length attribute of the result is the constant. Otherwise, the length
attribute of the result is 4000. The actual length of the result is the value of expression. The actual length
of the result must not be greater than the length attribute of the result.

If the argument can be null, the result can be null; if the argument is null, the result is the null value.

The CCSID is the default CCSID for SBCS data of the job.

Example

• The following statement returns a character string that consists of 5 blanks.

 SELECT SPACE(5)
 FROM SYSIBM.SYSDUMMY1

Chapter 4. Built-in functions 575

SQRT
The SQRT function returns the square root of a number.

SQRT (expression)

expression
An expression that returns a value of any built-in numeric, character-string, or graphic-string
data type. A string argument is converted to double-precision floating point before evaluating the
function. For more information about converting strings to double-precision floating point, see
“DOUBLE_PRECISION or DOUBLE” on page 392. The value of expression must be greater than or
equal to zero.

If the data type of the argument is DECFLOAT(n), the result is DECFLOAT(n). Otherwise, the data type
of the result is double-precision floating point. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

Note
Results involving DECFLOAT special values: For decimal floating-point values the special values are
treated as follows:

• SQRT(NaN) returns NaN. 75

• SQRT(-NaN) returns NaN. 75

• SQRT(Infinity) returns Infinity.
• SQRT(-Infinity) returns NaN. 75

• SQRT(sNaN) and SQRT(-sNaN) return a warning or error. 62

Example

• Assume the host variable SQUARE is a DECIMAL(2,1) host variable with a value of 9.0.

 SELECT SQRT(:SQUARE)
 FROM SYSIBM.SYSDUMMY1

Returns the approximate value 3.00.

75 If *YES is specified for the SQL_DECFLOAT_WARNINGS query option, NaN is returned with a warning.

576 IBM i: Db2 for i SQL Reference

STRIP
The STRIP function removes blanks or another specified character from the end, the beginning, or both
ends of a string expression.

STRIP (expression

, BOTH

, B

, LEADING

, L

, TRAILING

, T

, strip-character

)

The STRIP function is identical to the TRIM scalar function. For more information, see “TRIM” on page
609.

Chapter 4. Built-in functions 577

STRLEFT
The STRLEFT function returns the leftmost integer characters of expression.

STRLEFT (expression , integer)

The STRLEFT function is identical to the LEFT function. For more information, see “LEFT” on page 472.

578 IBM i: Db2 for i SQL Reference

STRPOS
The STRPOS function returns the starting position of the first occurrence of one string (called the
search-string) within another string (called the source-string). If the search-string is not found and neither
argument is null, the result is zero. If the search-string is found, the result is a number from 1 to the actual
length of the source-string.

STRPOS (source-string , search-string)

The STRPOS function is identical to the POSSTR function. For more information, see “POSSTR” on page
527.

Chapter 4. Built-in functions 579

STRRIGHT
The STRRIGHT function returns the rightmost integer characters of expression.

STRRIGHT (expression , integer)

The STRRIGHT function is identical to the RIGHT function. For more information, see “RIGHT” on page
551.

580 IBM i: Db2 for i SQL Reference

SUBSTR
The SUBSTR function returns a substring of a string.

SUBSTR (expression , start

, length

)

expression
An expression that specifies the string from which the result is derived.

Expression must be any built-in numeric or string data type. A numeric argument is cast to a character
string before evaluating the function. For more information about converting numeric to a character
string, see “VARCHAR” on page 623. If expression is a character string, the result of the function is
a character string. If it is a graphic string, the result of the function is a graphic string. If it is a binary
string, the result of the function is a binary string.

A substring of expression is zero or more contiguous characters of expression. If expression is a
graphic string, a character is a DBCS or Unicode graphic character. If expression is a character string, a
character is a byte.76 If expression is a binary string, a character is a byte.

start
An expression that specifies the position within expression of the first character (or byte) of the result.
The expression must return a value that is a built-in BIGINT, INTEGER, or SMALLINT data type. A
value of 1 indicates that the first character of the result is the first character of expression. A negative
or zero value indicates a position before the beginning of the string. It may also be greater than the
length attribute of expression. (The length attribute of a varying-length string is its maximum length.)

length
An expression that specifies the length of the result. If specified, length must be an expression that
returns a value that is a built-in BIGINT, INTEGER, or SMALLINT data type. The value must be greater
than or equal to 0.

If length is explicitly specified, expression is effectively padded on the right with the necessary
number of blank characters so that the specified substring of expression always exists. Hexadecimal
zeroes are used as the padding character when expression is a binary string.

If expression is a fixed-length string, omission of length is an implicit specification of
LENGTH(expression) - start + 1, which is the number of characters (or bytes) from the start character
(or byte) to the last character (or byte) of expression. If expression is a varying-length string, omission
of length is an implicit specification of zero or LENGTH(expression) - start + 1, whichever is greater. If
the resulting length is zero, the result is the empty string.

The data type of the result depends on the data type of expression:

Data type of expression Data Type of the Result for SUBSTR

CHAR or VARCHAR CHAR, if:

• length is explicitly specified by an integer constant that is greater
than zero.

• length is not explicitly specified, but expression is a fixed-length
string and start is an integer constant.

VARCHAR, in all other cases

CLOB CLOB

76 The SUBSTR function accepts mixed data strings. However, because SUBSTR operates on a strict byte-
count basis, the result will not necessarily be a properly formed mixed data string.

Chapter 4. Built-in functions 581

Data type of expression Data Type of the Result for SUBSTR

GRAPHIC or VARGRAPHIC GRAPHIC, if:

• length is explicitly specified by an integer constant that is greater
than zero.

• length is not explicitly specified, but expression is a fixed-length
string and start is an integer constant.

VARGRAPHIC, in all other cases.

DBCLOB DBCLOB

BINARY or VARBINARY BINARY, if:

• length is explicitly specified by an integer constant that is greater
than zero.

• length is not explicitly specified, but expression is a fixed-length
string and start is an integer constant.

VARBINARY, in all other cases.

BLOB BLOB

If expression is not a LOB, the length attribute of the result depends on length, start, and the attributes of
expression.

• If length is explicitly specified by an integer constant that is greater than zero, the length attribute of the
result is length.

• If length is not explicitly specified, but expression is a fixed-length string and start is an integer constant,
the length attribute of the result is LENGTH(expression) - start + 1.

In all other cases, the length attribute of the result is the same as the length attribute of expression.
(Remember that if the actual length of expression is less than the value for start, the actual length of the
substring is zero.)

If any argument can be null, the result can be null; if any argument is null, the result is the null value.

The CCSID of the result is the same as that of expression.

Examples

• Assume the host variable NAME (VARCHAR(50)) has a value of 'KATIE AUSTIN' and the host variable
SURNAME_POS (INTEGER) has a value of 7.

 SELECT SUBSTR(:NAME, :SURNAME_POS)
 FROM SYSIBM.SYSDUMMY1

Returns the value 'AUSTIN'.
• Likewise,

 SELECT SUBSTR(:NAME, :SURNAME_POS, 1)
 FROM SYSIBM.SYSDUMMY1

Returns the value 'A'.
• Select all rows from the PROJECT table for which the project name (PROJNAME) starts with the word

'OPERATION '.

 SELECT *
 FROM PROJECT
 WHERE SUBSTR(PROJNAME,1,10) = 'OPERATION '

The space at the end of the constant is necessary to preclude initial words such as 'OPERATIONS'.

582 IBM i: Db2 for i SQL Reference

SUBSTRING
The SUBSTRING function returns a substring of a string.

SUBSTRING (expression , start

, length

)

SUBSTRING (expression FROM start

 FOR length

)

expression
An expression that specifies the string from which the result is derived.

Expression must be any built-in numeric or string data type. A numeric argument is cast to a character
string before evaluating the function. For more information about converting numeric to a character
string, see “VARCHAR” on page 623. If expression is a character string, the result of the function is
a character string. If it is a graphic string, the result of the function is a graphic string. If it is a binary
string, the result of the function is a binary string.

A substring of expression is zero or more contiguous characters of expression. If expression is a
graphic string, a character is a DBCS or Unicode graphic character. If expression is a character string,
a character is a character that may consist of one or more bytes. If expression is a binary string, a
character is a byte.

start
An expression that specifies the position within expression of the first character (or byte) of the result.
The expression must return a value that is a built-in BIGINT, INTEGER, or SMALLINT data type. A
value of 1 indicates that the first character of the result is the first character of expression. A negative
or zero value indicates a position before the beginning of the string. It may also be greater than the
length attribute of expression. (The length attribute of a varying-length string is its maximum length.)

length
An expression that specifies the maximum actual length of the resulting substring. If specified, length
must be an expression that returns a value that is a built-in BIGINT, INTEGER, or SMALLINT data type.
The value must be greater than or equal to 0.

If length is explicitly specified, padding is not performed.

If expression is a fixed-length string, omission of length is an implicit specification of
LENGTH(expression) - start + 1, which is the number of characters (or bytes) from the start character
(or byte) to the last character (or byte) of expression. If expression is a varying-length string, omission
of length is an implicit specification of zero or LENGTH(expression) - start + 1, whichever is greater. If
the resulting length is zero, the result is the empty string.

The data type of the result depends on the data type of expression:

Data type of expression Data Type of the Result for SUBSTRING

CHAR or VARCHAR VARCHAR

CLOB CLOB

GRAPHIC or VARGRAPHIC VARGRAPHIC

DBCLOB DBCLOB

BINARY or VARBINARY VARBINARY

BLOB BLOB

The length attribute of the result is the same as the length attribute of expression. (Remember that if the
actual length of expression is less than the value for start, the actual length of the substring is zero.)

Chapter 4. Built-in functions 583

If any argument can be null, the result can be null; if any argument is null, the result is the null value.

The CCSID of the result is the same as that of expression.

Examples

• Select all rows from the PROJECT table for which the project name (PROJNAME) starts with the word
'OPERATION '.

 SELECT *
 FROM PROJECT
 WHERE SUBSTRING(PROJNAME,1,10) = 'OPERATION '

The space at the end of the constant is necessary to preclude initial words such as 'OPERATIONS'.
• Assume that FIRSTNAME is a VARCHAR(12) column, encoded in Unicode UTF-8, in T1. One of its values

is the 6-character string 'Jürgen'. When FIRSTNAME has this value:

 SELECT SUBSTRING(FIRSTNAME, 1,2), SUBSTR(FIRSTNAME, 1,2)
 FROM T1

Returns the values 'Jü' (x'4AC3BC') and 'Jô' (x'4AC3').

584 IBM i: Db2 for i SQL Reference

TABLE_NAME
The TABLE_NAME function returns an unqualified name of the object found for an alias.

TABLE_NAME (object-name

, object-schema

)

The specified object-name (and object-schema) are used to find an alias by that name.

object-name
A character or graphic string expression that identifies the SQL or system name of the object to be
resolved. object-name must have an actual length less than 129 characters and may not identify a
blank name. This name is case sensitive and must not be delimited.

object-schema
A character or graphic string expression that identifies the SQL or system name of the schema used to
qualify object-name. object-schema must have an actual length less than 129 characters and may not
identify a blank name. This name is case sensitive and must not be delimited.

If object-schema is not supplied, the default schema is used for the qualifier.

The result of the function is VARCHAR(128). If object-name can be null, the result can be null; if object-
name is null, the result is the null value. If object-schema is the null value, the default schema name is
used. The result is the character string representing an unqualifed name.

The result name is the table name or view name referenced by the alias. If object-name is not an alias
name, object-name is returned.

Example

Get the name of the table referenced by an alias that was created like this:

CREATE ALIAS MYLIB2.ALIAS1 FOR MYLIB.EMPLOYEE

VALUES TABLE_NAME('ALIAS1', 'MYLIB2')

The result is:

EMPLOYEE

Chapter 4. Built-in functions 585

TABLE_SCHEMA
The TABLE_SCHEMA function returns the schema name of the object found for an alias.

TABLE_SCHEMA (object-name

, object-schema

)

The specified object-name (and object-schema) are used to find an alias by that name.

object-name
A character or graphic string expression that identifies the SQL or system name of the object to be
resolved. object-name must have an actual length less than 129 characters and may not identify a
blank name. This name is case sensitive and must not be delimited.

object-schema
A character or graphic string expression that identifies the SQL or system name of the schema used to
qualify object-name. object-schema must have an actual length less than 129 characters and may not
identify a blank name. This name is case sensitive and must not be delimited.

If object-schema is not supplied, the default schema is used for the qualifier.

The result of the function is VARCHAR(128). If object-name can be null, the result can be null; if object-
name is null, the result is the null value. If object-schema is the null value, the default schema name is
used. The result is the character string representing a schema name.

The result name is the schema name of the table or view referenced by the alias. If object-name is not an
alias name, object-schema is returned.

Example

Get the name of the schema referenced by an alias that was created like this:

CREATE ALIAS MYLIB2.ALIAS1 FOR MYLIB.EMPLOYEE

VALUES TABLE_SCHEMA('ALIAS1', 'MYLIB2')

The result is:

MYLIB

586 IBM i: Db2 for i SQL Reference

TAN
The TAN function returns the tangent of the argument, where the argument is an angle expressed in
radians. The TAN and ATAN functions are inverse operations.

TAN (expression)

expression
An expression that returns a value of any built-in numeric data type (except for DECFLOAT), character-
string, or graphic-string data type. A string argument is converted to double-precision floating point
before evaluating the function. For more information about converting strings to double-precision
floating point, see “DOUBLE_PRECISION or DOUBLE” on page 392.

The data type of the result is double-precision floating point. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Example

• Assume the host variable TANGENT is a DECIMAL(2,1) host variable with a value of 1.5.

 SELECT TAN(:TANGENT)
 FROM SYSIBM.SYSDUMMY1

Returns the approximate value 14.10.

Chapter 4. Built-in functions 587

TANH
The TANH function returns the hyperbolic tangent of the argument, where the argument is an angle
expressed in radians. The TANH and ATANH functions are inverse operations.

TANH (expression)

expression
An expression that returns a value of any built-in numeric data type (except for DECFLOAT), character-
string, or graphic-string data type. A string argument is converted to double-precision floating point
before evaluating the function. For more information about converting strings to double-precision
floating point, see “DOUBLE_PRECISION or DOUBLE” on page 392.

The data type of the result is double-precision floating point. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Example

• Assume the host variable HTANGENT is a DECIMAL(2,1) host variable with a value of 1.5.

 SELECT TANH(:HTANGENT)
 FROM SYSIBM.SYSDUMMY1

Returns the approximate value 0.90.

588 IBM i: Db2 for i SQL Reference

TIME
The TIME function returns a time from a value.

TIME (expression)

expression
An expression that returns a value of one of the following built-in data types: a date, a time, a
timestamp, a character string, or a graphic string.

If expression is a character or graphic string, its value must be a valid string representation of a date,
time, or timestamp. If expression is a valid string representation of a date, it must be one of the IBM
SQL standard formats. For the valid formats of string representations of dates, times, and timestamps,
see “String representations of datetime values” on page 75.

The result of the function is a time. If the argument can be null, the result can be null; if the argument is
null, the result is the null value.

The other rules depend on the data type of the argument:

• If the argument is a date:

The result is midnight.
• If the argument is a time:

The result is that time.
• If the argument is a timestamp:

The result is the time part of the timestamp.
• If the argument is a character or graphic string:

The result is the time represented by the string or the time part of the timestamp value represented by
the string.

Note
Syntax alternatives: The CAST specification should be used to increase the portability of applications.
For more information, see “CAST specification” on page 176.

Example

• Select all notes from the IN_TRAY sample table that were received at least one hour later in the day
(any day) than the current time.

 SELECT *
 FROM IN_TRAY
 WHERE TIME(RECEIVED) >= CURRENT TIME + 1 HOUR

Chapter 4. Built-in functions 589

TIMESTAMP
The TIMESTAMP function returns a timestamp from its argument or arguments.

TIMESTAMP (expression-1

, expression-2

precision-constant

)

expression-1 and expression-2

The rules for the arguments depend on whether a second argument is specified and the data type of
the second argument.

• If only expression-1 is specified:

The argument must be an expression that returns a value of one of the following built-in data types:
a date, a timestamp, a character string, or a graphic string. If expression-1 is a character or graphic
string, its value must be one of the following:

– A valid string representation of a date or a timestamp. For the valid formats of string
representations of dates and timestamps, see “String representations of datetime values” on
page 75.

– A character string with an actual length of 13 that is assumed to be a result
from a GENERATE_UNIQUE function. For information on GENERATE_UNIQUE, see
“GENERATE_UNIQUE” on page 410.

• If both arguments are specified:

– If the second argument is expression-2:

The first argument must be an expression that returns a value of one of the following built-in
data types: a date, a character string, or a graphic string. If expression-1 is a character or graphic
string, its value must be a valid string representation of a date.

expression-2 must be an expression that returns a value of one of the following built-in data
types: a time, a character string, or a graphic string. If expression-2 is a character or graphic
string, its value must be a valid string representation of a time. For the valid formats of string
representations of dates and times, see “String representations of datetime values” on page 75.

– If the second argument is precision-constant:

The first argument must be an expression that returns a value of one of the following built-in data
types: a date, a timestamp, a character string, or a graphic string. If expression-1 is a character or
graphic string, its value must be one of the following:

- A valid string representation of a date or timestamp. For the valid formats of string
representations of dates and timestamps, see “String representations of datetime values” on
page 75.

- A character string with an actual length of 13 that is assumed to be a result
from a GENERATE_UNIQUE function. For information on GENERATE_UNIQUE, see
“GENERATE_UNIQUE” on page 410.

precision-constant
An integer constant representing the number of fractional seconds. The value must be in the range 0
through 12.

The result of the function is a timestamp. If either argument can be null, the result can be null; if either
argument is null, the result is the null value.

The other rules depend on whether the second argument is specified:

• If both arguments are specified and the second argument is expression-2:

590 IBM i: Db2 for i SQL Reference

The result is a TIMESTAMP(6) with the date specified by the first argument and the time specified by the
second argument. The fractional seconds part of the timestamp is zero.

• If both arguments are specified and the second argument is precision-constant:

The result is a timestamp with the precision specified by the second argument.
• If only one argument is specified and it is a TIMESTAMP(p):

The result is a TIMESTAMP(p).
• If only one argument is specified and it is a DATE:

The result is that date with an assumed time of midnight cast to TIMESTAMP(0).
• If only one argument is specified and it is a string:

The result is the TIMESTAMP(6) represented by that string. If the argument is a string of length 14, the
timestamp has a fractional seconds part of zero.

Note
Syntax alternatives: The CAST specification should be used to increase the portability of applications
when only one argument is specified. For more information, see “CAST specification” on page 176.

Examples

• Assume the following date and time values:

 SELECT TIMESTAMP(DATE('1988-12-25'), TIME('17.12.30'))
 FROM SYSIBM.SYSDUMMY1

Returns the value '1988-12-25-17.12.30.000000'.

• Convert a timestamp string with 7 digits of fractional seconds to a TIMESTAMP(9) value.

TIMESTAMP('2007-09-24-15.53.37.2162474', 9)

Returns the value ’2007-09-24-15.53.37.216247400’.

Chapter 4. Built-in functions 591

TIMESTAMP_FORMAT
The TIMESTAMP_FORMAT function returns a timestamp that is based on the interpretation of the input
string using the specified format.

TIMESTAMP_FORMAT (string-expression , format-string

, 6

, precision-constant

)

string-expression
An expression that returns a value of any built-in character string data type or graphic string data type.

The string is interpreted as a date or timestamp using the format specified by format-string. The
string-expression must contain only the components of a date or timestamp that correspond to the
format elements specified by format-string.

format-string
An expression that returns a built-in character string data type or graphic string data type. format-
string contains a template of how string-expression is to be interpreted as a date or a timestamp value.

A valid format-string must contain at least one format element, must not contain multiple
specifications for any component of a date or a timestamp, and can contain any combination of
the format elements, unless otherwise noted in Table 58 on page 592. For example, format-string
cannot contain both YY and YYYY, because they are both used to interpret the year component
of string-expression. Refer to the table to determine which format elements cannot be specified
together.

Two format elements can optionally be separated by one or more of the following separator
characters:

• minus sign (-)
• period (.)
• slash (/)
• comma (,)
• apostrophe (′)
• semicolon (;)
• colon (:)
• blank ()

Separator characters can also be specified at the start or end of format-string. These separator
characters can be used in any combination in the format string, for example 'YYYY/MM-
DD HH24:MM.SS'. Separator characters specified in a string-expression are used to separate
components and are not required to match the separator characters specified in the format-string.

Table 58. Format elements for the TIMESTAMP_FORMAT function

Format element

Related
components of
a timestamp Description

AM or PM 1, 2 hour Meridian indicator (morning or evening) without periods. The
meridian indicator is retrieved from message CPX9035 in
message file QCPFMSG in library *LIBL.

592 IBM i: Db2 for i SQL Reference

Table 58. Format elements for the TIMESTAMP_FORMAT function (continued)

Format element

Related
components of
a timestamp Description

A.M. or P.M. 1, 2 hour Meridian indicator (morning or evening) with periods. This
format element uses the exact strings ‘A.M.' or ‘P.M.' and is
independent of the language used for messages in the job.

DAY, Day, or day
1, 3

none Name of the day in uppercase, titlecase, or lowercase format.
The name of the day is retrieved from message CPX9034 in
message file QCPFMSG in library *LIBL.

DY, Dy, or dy 1, 3 none Abbreviated name of the day in uppercase, titlecase, or
lowercase format. The abbreviated name of the day is retrieved
from message CPX9039 in message file QCPFMSG in library
*LIBL.

D 1, 3 none Day of week (1-7), where 1 is Sunday.

DD day Day of month (01-31).

DDD month, day Day of year (001-366).

FF or FFn fractional
seconds

Fractional seconds (0-999999999999). The number n is
used to specify the number of digits expected in the string-
expression. Valid values for n are 1-12. Specifying FF is
equivalent to specifying FF6. When the component in string-
expression that corresponds to the FF format element is
followed by a separator character or is the last component,
the number of digits for the fractional seconds can be less
than what is specified by the format element. In this case, zero
digits are padded onto the right of the specified digits.

HH hour HH behaves the same as HH12.

HH12 hour Hour of the day (01-12) in 12-hour format. AM is the default
meridian indicator.

HH24 hour Hour of the day (00-24) in 24-hour format.

J year, month, and
day

Julian date (number of days since January 1, 4713 BC).

MI minute Minute (00-59).

MM month Month (01-12).

MONTH, Month,
or month 1

month Name of the month in uppercase, titlecase, or lowercase
format. The name of the month is retrieved from message
CPX3BC0 in message file QCPFMSG in library *LIBL.

MON, Mon, or
mon 1

month Abbreviated name of the month in uppercase, titlecase, or
lowercase format. The name of the month is retrieved from
message CPX8601 in message file QCPFMSG in library *LIBL.

NNNNNN microseconds Microsecond (same as FF6).

RR 4 year Last 2 digits of the adjusted year (00-99).

RRRR 4 year Four digit adjusted year (0000-9999).

SS seconds Seconds (00-59).

Chapter 4. Built-in functions 593

Table 58. Format elements for the TIMESTAMP_FORMAT function (continued)

Format element

Related
components of
a timestamp Description

SSSSS hours, minutes,
and seconds

Seconds since previous midnight (00000-86400).

Y year Last digit of the year (0-9). First three digits of the current year
are used to determine the full 4-digit year.

YY year Last 2 digits of the year (00-99). First two digits of the current
year are used to determine the full 4-digit year.

YYY year Last three digits of the year (000-999). First digit of the current
year is used to determine the full 4-digit year.

YYYY year 4-digit year (0000-9999).

Notes:

1. Only these exact spellings and case combinations can be used. If this format element is specified
in an invalid case combination an error is returned.

2. The AM and PM set of meridian indicators can be used interchangeably in the format-string, as can
A.M. and P.M. If HH24 is used in the format-string along with a meridian indicator, the value of
the meridian indicator in the string-expression is not used for determining the hour portion of the
resulting timestamp.

3. The DAY, Day, day DY, Dy, dy, and D format elements do not contribute to any components of
the resulting timestamp. However, a specified value for any of these format elements must be
correct for the combination of the year, month, and day components of the resulting timestamp.
For example, a value of 'Monday 2008-10-06' for string-expression is valid for a value of 'Day
YYYY-MM-DD'. However, a value of 'Tuesday 2008-10-06' for string-expression would result in an
error for the same format-string.

4. The RR and RRRR format elements can be used to alter how a specification for a year is to be
interpreted by adjusting the value to produce a 2-digit or a 4-digit value depending on the leftmost
two digits of the current year according to the following table:

Last two digits of current
year

Two digits of year in
string-expression

First 2 digits of the year component of
date or timestamp

0-50 0-49 First 2 digits of current year

51-99 0-49 First 2 digits of current year + 1

0-50 50-99 First 2 digits of current year - 1

51-99 50-99 First 2 digits of current year

For example, if the current year is 2007, '86' with format 'RR' means 1986, but if the current year is
2052, it means 2086.

The following defaults will be used when a format-string does not include a format element for one of
the components of a timestamp:

Timestamp component Default

year current year, as 4 digits

month current month, as 2 digits

day 01 (first day of the month)

594 IBM i: Db2 for i SQL Reference

Timestamp component Default

hour 00

minute 00

second 00

fractional seconds a number of zeros matching the timestamp
precision of the result

If string-expression does not include a value that corresponds to an hour, minute, second, or fractional
seconds format element that is specified in the format-string, these same defaults are used.

Leading zeros can be specified for any component of the date or timestamp value (for example,
month, day, hour, minutes, seconds) that does not have the maximum number of significant digits for
the corresponding format element in the format-string.

A substring of the string-expression representing a component of a date or timestamp (such as
year, month, day, hour, minutes, seconds) can include less than the maximum number of digits for
that component of the date or timestamp. Any missing digits default to zero. For example, with a
format-string of 'YYYY-MM-DD HH24:MI:SS', an input value of '999-3-9 5:7:2' would produce the
same result as '0999-03-09 05:07:02'.

precision-constant
An integer constant that specifies the timestamp precision of the result. The value must be in the
range 0 to 12. If precision-constant is not specified, the timestamp precision defaults to 6.

The result is a timestamp with a precision that is based on precision-constant. If either of the first two
arguments can be null, the result can be null; if either of the first two arguments is null, the result is the
null value.

Notes
Julian and Gregorian calendar: The transition from the Julian calendar to the Gregorian calendar on 15
October 1582 is taken into account by this function.

Syntax alternatives: TO_DATE is a synonym for TIMESTAMP_FORMAT. TO_TIMESTAMP is identical to
TIMESTAMP_FORMAT except that if precision-constant is not specified, the timestamp precision of the
result defaults to 12.

Examples

• Insert a row into the IN_TRAY table with a receiving timestamp that is equal to one second before the
beginning of the year 2000 (December 31, 1999 at 23:59:59).

INSERT INTO IN_TRAY (RECEIVED)
 VALUES (TIMESTAMP_FORMAT('1999-12-31 23:59:59',
 'YYYY-MM-DD HH24:MI:SS'))

• An application receives strings of date information into a variable called INDATEVAR. This value is not
strictly formatted and might include two or four digits for years, and one or two digits for months and
days. Date components might be separated with minus sign (-) or slash (/) characters and are expected
to be in day, month, and year order. Time information consists of hours (in 24-hour format) and minutes,
and is usually separated by a colon. Sample values include '15/12/98 13:48' and '9-3-2004 8:02'.
Insert such values into the IN_TRAY table.

INSERT INTO IN_TRAY (RECEIVED)
 VALUES (TIMESTAMP_FORMAT(:INDATEVAR,
 'DD/MM/RRRR HH24:MI'))

The use of RRRR in the format allows for 2- and 4-digit year values and assigns missing first two digits
based on the current year. If YYYY were used, input values with a 2-digit year would have leading zeros.

Chapter 4. Built-in functions 595

The slash separator also allows the minus sign character. Assuming a current year of 2007, resulting
timestamps from the sample values are:

'15/12/98 13:48' --> 1998-12-15-13.48.00.000000
'9-3-2004 8:02' --> 2004-03-09-08.02.00.000000

• Set the character variable TVAR to the value of ROUTINE_CREATED from QSYS2.SYSPROCS if it is equal
to one second before the beginning of the year 2000 ('1999-12-31 23:59:59'). The character string
should be interpreted according to the format string provided.

SELECT VARCHAR_FORMAT(ROUTINE_CREATED, 'YYYY-MM-DD HH24:MI:SS')
 INTO :TVAR
 FROM QSYS2.SYSPROCS
 WHERE ROUTINE_CREATED =
 TIMESTAMP_FORMAT('1999-12-31 23:59:59', 'YYYY-MM-DD HH24:MI:SS')

• Return timestamp values for strings containing meridian indicators:

string-expression format-expression Result timestamp value

'2015-10-28 10:29AM' 'YYYY-MM-DD HH12:MIAM' 2015-10-28-10.29.00.000000

'2015-10-28 10:29PM' 'YYYY-MM-DD HH12:MIAM' 2015-10-28-22.29.00.000000

'2015-10-28 10:29AM' 'YYYY-MM-DD HH24:MIAM' 2015-10-28-10.29.00.000000

'2015-10-28 10:29PM' 'YYYY-MM-DD HH24:MIAM' 2015-10-28-10.29.00.000000

'2015-10-28 22:29AM' 'YYYY-MM-DD HH24:MIAM' 2015-10-28-22.29.00.000000

'2015-10-28 22:29PM' 'YYYY-MM-DD HH24:MIAM' 2015-10-28-22.29.00.000000

596 IBM i: Db2 for i SQL Reference

TIMESTAMP_ISO
Returns a timestamp value based on a date, time, or timestamp argument. If the argument is a date, it
inserts zero for the time and fractional seconds part of the timestamp. If the argument is a time, it inserts
the value of CURRENT DATE for the date part of the timestamp and zero for the fractional seconds part of
the timestamp.

TIMESTAMP_ISO (expression)

expression
An expression that returns a value of one of the following built-in data types: a timestamp, a date, a
time, a character string, or a graphic string.

If expression is a character or graphic string, its value must be a valid string representation of a date
or timestamp. For the valid formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 75.

If expression is a timestamp, the result of the function is a timestamp with the same precision as
expression. Otherwise, the result of the function is TIMESTAMP(6). If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

If expression is a time, the function is not deterministic.

Note
Syntax alternatives: The CAST specification should be used to increase the portability of applications.
For more information, see “CAST specification” on page 176.

Example

• Assume the following date value:

 SELECT TIMESTAMP_ISO(DATE('1988-12-25'))
 FROM SYSIBM.SYSDUMMY1

Returns the value '1988-12-25-00.00.00.000000'.

Chapter 4. Built-in functions 597

TIMESTAMPDIFF
The TIMESTAMPDIFF function returns an estimated number of intervals of the type defined by the first
argument, based on the difference between two timestamps.

TIMESTAMPDIFF (numeric-expression , string-expression)

numeric-expression
The first argument must be a built-in data type of either INTEGER or SMALLINT. The value specifies
the interval that is used to determine the difference between two timestamps. Valid values of the
interval follow.

Table 59. Valid values for numeric-expression and equivalent intervals that are used to determine the
difference between two timestamps

Valid values for numeric-expression Equivalent intervals

1 Microseconds

2 Seconds

4 Minutes

8 Hours

16 Days

32 Weeks

64 Months

128 Quarters

256 Years

string-expression
string-expression is the result of subtracting two timestamps and converting the result to a string of
length 22. If the string-expression has more than 6 digits to the right of the decimal point, the string
will be truncated to 6 digits. The argument must be an expression that returns a value of a built-in
character string or a graphic string.

If a positive or negative sign is present, it is the first character of the string. The following table
describes the elements of the character string duration:

Table 60. TIMESTAMPDIFF String Elements

String elements
Valid values

Character position from the
decimal point (negative is left)

Years 1-9998 or blank -14 to -11

Months 0-11 or blank -10 to -9

Days 0-30 or blank -8 to -7

Hours 0-24 or blank -6 to -5

Minutes 0-59 or blank -4 to -3

Seconds 0-59 -2 to -1

Decimal separator period 0

Microseconds 000000-999999 1 to 6

598 IBM i: Db2 for i SQL Reference

The result of the function is an integer with the same sign as string-expression. If either argument can be
null, the result can be null; if either argument is null, the result is the null value.

The returned value is determined for each interval as indicated by the following table:

Table 61. TIMESTAMPDIFF Computations

Result interval Computation using duration elements

Years years

Quarters integer value of (months+(years*12))/3

Months months + (years*12)

Weeks integer value of ((days+(months*30))/7)+(years*52)

Days days + (months*30)+(years*365)

Hours hours + ((days+(months*30)+(years*365))*24)

Minutes (the absolute
value of the duration must
not exceed
40850913020759.99999
9)

minutes + (hours+((days+(months*30)+(years*365))*24))*60

Seconds (the absolute
value of the duration
must be less than
680105031408.000000)

seconds + (minutes+(hours+((days+(months*30)+
(years*365))*24))*60)*60

Microseconds (the
absolute value of the
duration must be less
than 3547.483648)

microseconds + (seconds+(minutes*60))*1000000

The following assumptions are used when converting the element values to the requested interval type:

• One year has 365 days.
• One year has 52 weeks.
• One year has 12 months.
• One quarter has 3 months.
• One month has 30 days.
• One week has 7 days.
• One day has 24 hours.
• One hour has 60 minutes.
• One minute has 60 seconds.
• One second has 1000000 microseconds.

The use of these assumptions imply that some result values are an estimate of the interval. Consider the
following examples:

• Difference of 1 month where the month has less than 30 days.

TIMESTAMPDIFF(16, CHAR(TIMESTAMP('1997-03-01-00.00.00') - TIMESTAMP('1997-02-01-00.00.00')))

The result of the timestamp arithmetic is a duration of 00000100000000.000000, or 1 month. When
the TIMESTAMPDIFF function is invoked with 16 for the interval argument (days), the assumption of 30
days in a month is applied and the result is 30.

• Difference of 1 day less than 1 month where the month has less than 30 days.

Chapter 4. Built-in functions 599

TIMESTAMPDIFF(16, CHAR(TIMESTAMP('1997-03-01-00.00.00') - TIMESTAMP('1997-02-02-00.00.00')))

The result of the timestamp arithmetic is a duration of 00000027000000.000000, or 27 days. When
the TIMESTAMPDIFF function is invoked with 16 for the interval argument (days), the result is 27.

• Difference of 1 day less than 1 month where the month has 31 days.

TIMESTAMPDIFF(64, CHAR(TIMESTAMP('1997-09-01-00.00.00') - TIMESTAMP('1997-08-02-00.00.00')))

The result of the timestamp arithmetic is a duration of 00000030000000.000000, or 30 days. When
the TIMESTAMPDIFF function is invoked with 64 for the interval argument (months), the result is 0. The
days portion of the duration is 30, but it is ignored because the interval specified months.

Example

• The following statement estimates the age of employees in months and returns that value as
AGE_IN_MONTHS:

SELECT
 TIMESTAMPDIFF(64,
 CAST(CURRENT_TIMESTAMP-CAST(BIRTHDATE AS TIMESTAMP) AS CHAR(22)))
 AS AGE_IN_MONTHS
 FROM EMPLOYEE

600 IBM i: Db2 for i SQL Reference

TO_CHAR
The TO_CHAR function returns a character string representation of the first argument in the format
indicated by the optional format-string.

Character to Varchar

TO_CHAR (string-expression)

Timestamp to Varchar

TO_CHAR (timestamp-expression

, format-string

)

Numeric to Varchar

TO_CHAR (numeric-expression

, format-string

)

The TO_CHAR function is identical to the VARCHAR_FORMAT function. For more information, see
“VARCHAR_FORMAT” on page 629.

Chapter 4. Built-in functions 601

TO_CLOB
The TO_CLOB function returns a character-string representation.

Integer to CLOB

TO_CLOB (integer-expression)

Decimal to CLOB

TO_CLOB (decimal-expression

, decimal-character

)

Floating-point to CLOB

TO_CLOB (floating-point-expression

, decimal-character

)

Decimal floating-point to CLOB

TO_CLOB (decimal-floating-point-expression

, decimal-character

)

Character to CLOB

TO_CLOB (character-expression

, length

DEFAULT , integer

)

Graphic to CLOB

TO_CLOB (graphic-expression

, length

DEFAULT , integer

)

Datetime to CLOB

TO_CLOB (datetime-expression

, ISO

USA

EUR

JIS

LOCAL

)

The TO_CLOB function is identical to the CLOB function. For more information, see “CLOB” on page 333.

602 IBM i: Db2 for i SQL Reference

TO_DATE
The TO_DATE function returns a timestamp that is based on the interpretation of the input string using the
specified format.

TO_DATE (string-expression , format-string

, 6

, precision-constant

)

The TO_DATE function is identical to the TIMESTAMP_FORMAT function. For more information, see
“TIMESTAMP_FORMAT” on page 592.

Chapter 4. Built-in functions 603

TO_NUMBER
The TO_NUMBER function returns a DECFLOAT(34) value that is based on the interpretation of the input
string using the specified format.

TO_NUMBER (string-expression

, format-string

)

The TO_NUMBER function is identical to the DECFLOAT_FORMAT function. For more information, see
“DECFLOAT_FORMAT” on page 371.

604 IBM i: Db2 for i SQL Reference

TO_TIMESTAMP
The TO_TIMESTAMP function returns a timestamp that is based on the interpretation of the input string
using the specified format.

TO_TIMESTAMP (string-expression , format-string

, 6

, precision-constant

)

The TO_TIMESTAMP function is identical to TIMESTAMP_FORMAT except that if precision-constant
is not specified, the timestamp precision of the result defaults to 12. For more information, see
“TIMESTAMP_FORMAT” on page 592.

Chapter 4. Built-in functions 605

TOTALORDER
The TOTALORDER function returns an ordering for DECFLOAT values.

TOTALORDER (expression-1 , expression-2)

The TOTALORDER function returns a small integer value that indicates how expression-1 compares with
expression-2.

expression-1
An expression that returns a value of any built-in numeric, character-string, or graphic-string data
type. If the argument is not DECFLOAT(34), it is logically converted to DECFLOAT(34) for processing.

expression-2
An expression that returns a value of any built-in numeric, character-string, or graphic-string data
type. If the argument is not DECFLOAT(34), it is logically converted to DECFLOAT(34) for processing.

Numeric comparison is exact, and the result is determined for finite operands as if range and precision
were unlimited. Overflow or underflow cannot occur.

TOTALORDER determines ordering based on the total order predicate rules of IEEE 754R, with the
following result:

-1 if the first operand is lower in order compared to the second.

0 if both operands have the same order.

1 if the first operand is higher in order compared to the second.

The ordering of the special values and finite numbers is as follows:

-NAN<-SNAN<-INFINITY<-0.10<-0.100<-0<0<0.100<0.10<INFINITY<SNAN<NAN

The result of the function is SMALLINT. If either argument can be null, the result can be null; if either
argument is null, the result is the null value.

Examples

The following examples show the use of the TOTALORDER function to compare decimal floating-point
values:

 TOTALORDER(-INFINITY, -INFINITY) = 0
 TOTALORDER(DECFLOAT(-1.0), DECFLOAT(-1.0)) = 0
 TOTALORDER(DECFLOAT(-1.0), DECFLOAT(-1.00)) = -1
 TOTALORDER(DECFLOAT(-1.0), DECFLOAT(-0.5)) = -1
 TOTALORDER(DECFLOAT(-1.0), DECFLOAT(0.5)) = -1
 TOTALORDER(DECFLOAT(-1.0), INFINITY) = -1
 TOTALORDER(DECFLOAT(-1.0), SNAN) = -1
 TOTALORDER(DECFLOAT(-1.0), NAN) = -1
 TOTALORDER(NAN, DECFLOAT(-1.0)) = 1
 TOTALORDER(-NAN, -NAN) = 0
 TOTALORDER(-SNAN, -SNAN) = 0
 TOTALORDER(NAN, NAN) = 0
 TOTALORDER(SNAN, SNAN) = 0

606 IBM i: Db2 for i SQL Reference

TRANSLATE
The TRANSLATE function returns a value in which one or more characters in expression may have been
converted into other characters.

TRANSLATE (expression

, to-string

, from-string

, pad

)

expression
An expression that specifies the string to be converted expression must be any built-in numeric or
string data type. A numeric argument is cast to a character string before evaluating the function. For
more information about converting numeric to a character string, see “VARCHAR” on page 623.

to-string
A string that specifies the characters to which certain characters in expression are to be converted.
This string is sometimes called the output translation table. The string must be any built-in numeric
or string constant. A numeric argument is cast to a character string before evaluating the function. For
more information about converting numeric to a character string, see “VARCHAR” on page 623. A
character string argument must have an actual length that is not greater than 256.

If the actual length of the to-string is less than the actual length of the from-string, then the to-string
is padded to the longer length using either the pad character if it is specified or a blank if a pad
character is not specified. If the actual length of the to-string is greater than the actual length of the
from-string, the extra characters in to-string are ignored without warning.

from-string
A string that specifies the characters that if found in expression are to be converted. This string is
sometimes called the input translation table. When a character in from-string is found, the character
in expression is converted to the character in to-string that is in the corresponding position of the
character in from-string

The string must be any built-in numeric or string constant. A numeric argument is cast to a character
string before evaluating the function. For more information about converting numeric to a character
string, see “VARCHAR” on page 623. A character string argument must have an actual length that is
not greater than 256.

If there are duplicate characters in from-string, the first one scanning from the left is used and no
warning is issued. The default value for from-string is a string starting with the character X'00' and
ending with the character X'FF' (decimal 255).

pad
A string that specifies the character with which to pad to-string if its length is less than from-string.
The string must be a character string constant with a length of 1. The default is an SBCS blank.

If the first argument is a Unicode graphic or UTF-8 string, no other arguments may be specified.

If only the first argument is specified, the SBCS characters of the argument are converted to uppercase,
based on the CCSID of the argument. Only SBCS characters are converted. The characters a-z are
converted to A-Z, and characters with diacritical marks are converted to their uppercase equivalent, if
any. If the first argument is UTF–16, UCS-2, or UTF-8, the alphabetic UTF-16, UCS-2, or UTF-8 characters
are converted to uppercase. Refer to the UCS-2 level 1 mapping tables topic of the Globalization topic
collection for a description of the monocasing tables that are used for this conversion.

If more than one argument is specified, the result string is built character by character from expression,
converting characters in from-string to the corresponding character in to-string. For each character in
expression, the same character is searched for in from-string. If the character is found to be the nth

Chapter 4. Built-in functions 607

character in from-string, the resulting string will contain the nth character from to-string. If to-string is less
than n characters long, the resulting string will contain the pad character. If the character is not found in
from-string, it is moved to the result string unconverted.

Conversion is done on a byte basis and, if used improperly, may result in an invalid mixed string. The
SRTSEQ attribute does not apply to the TRANSLATE function.

The result of the function has the same data type, length attribute, actual length, and CCSID as the
argument. If the first argument can be null, the result can be null. If the argument is null, the result is the
null value.

Examples

• Monocase the string 'abcdef'.

 SELECT TRANSLATE('abcdef')
 FROM SYSIBM.SYSDUMMY1

Returns the value 'ABCDEF'.
• Monocase the mixed character string.

 SELECT TRANSLATE(’ab def ’)

 FROM SYSIBM.SYSDUMMY1

Returns the value ’AB DEF’

• Given that the host variable SITE is a varying-length character string with a value of 'Pivabiska Lake
Place'.

 SELECT TRANSLATE(:SITE, '$', 'L')
 FROM SYSIBM.SYSDUMMY1

Returns the value 'Pivabiska $ake Place'.

 SELECT TRANSLATE(:SITE, '$$', 'Ll')
 FROM SYSIBM.SYSDUMMY1

Returns the value 'Pivabiska $ake P$ace'.

 SELECT TRANSLATE(:SITE, 'pLA', 'Place', '.')
 FROM SYSIBM.SYSDUMMY1

Returns the value 'pivAbiskA LAk. pLA..'.

608 IBM i: Db2 for i SQL Reference

TRIM
The TRIM function removes blanks or another specified character from the end, from the beginning, or
from both of a string expression.

TRIM (

BOTH

B

LEADING

L

TRAILING

T

strip-character

FROM

expression)

The first argument, if specified, indicates whether characters are removed from the end or beginning of
the string. If the first argument is not specified, then the characters are removed from both the end and
the beginning of the string.

strip-character
The second argument, if specified, is a single-character constant that indicates the binary, SBCS, or
DBCS character that is to be removed. If expression is a binary string, the second argument must be a
binary string constant. If expression is a DBCS graphic or DBCS-only string, the second argument must
be a graphic constant consisting of a single DBCS character. If the second argument is not specified
then:

• If expression is a binary string, then the default strip character is a hexadecimal zero (X'00').
• If expression is a DBCS graphic string, then the default strip character is a DBCS blank.
• If expression is a Unicode graphic string, then the default strip character is a UTF-16 or UCS-2 blank.
• If expression is a UTF-8 character string, then the default strip character is a UTF-8 blank.
• Otherwise, the default strip character is an SBCS blank.

expression
An expression that returns a value of any built-in numeric or string data type. A numeric argument
is cast to a character string before evaluating the function. For more information about converting
numeric to a character string, see “VARCHAR” on page 623.

The data type of the result depends on the data type of expression:

Data type of expression Data type of the Result

CHAR or VARCHAR VARCHAR

CLOB CLOB

GRAPHIC or VARGRAPHIC VARGRAPHIC

DBCLOB DBCLOB

BINARY or VARBINARY VARBINARY

BLOB BLOB

The length attribute of the result is the same as the length attribute of expression. The actual length of the
result is the length of the expression minus the number of bytes removed. If all characters are removed,
the result is an empty string.

If the first argument can be null, the result can be null; if the first argument is null, the result is the null
value.

Chapter 4. Built-in functions 609

The CCSID of the result is the same as that of the string.

The SRTSEQ attribute does not apply to the TRIM function.

Examples

• Assume the host variable HELLO of type CHAR(9) has a value of ' Hello '.

 SELECT TRIM(:HELLO), TRIM(TRAILING FROM :HELLO)
 FROM SYSIBM.SYSDUMMY1

Results in 'Hello' and ' Hello' respectively.
• Assume the host variable BALANCE of type CHAR(9) has a value of '000345.50'.

 SELECT TRIM(L '0' FROM :BALANCE)
 FROM SYSIBM.SYSDUMMY1

Results in: '345.50'
• Assume the string to be stripped contains mixed data.

SELECT TRIM(BOTH FROM ’ ’)

 FROM SYSIBM.SYSDUMMY1

Results in: ’ ’

610 IBM i: Db2 for i SQL Reference

TRIM_ARRAY
The TRIM_ARRAY function returns a copy of the array argument from which the specified number of
elements have been removed from the end of the array.

TRIM_ARRAY (array-variable-name , numeric-constant

numeric-variable

)

array-variable-name
Identifies an SQL variable or parameter. The variable or parameter must be an array type.

numeric-constant or numeric-variable
Specifies the number of elements that will be trimmed from the copy of array-variable-name. This
must be a constant or SQL variable or parameter that can be cast to the integer data type. The value
must be between 0 and the cardinality of array-variable-name.

The result array type is identical to the array type of the first argument but with the cardinality decreased
by the number of elements trimmed.

The result can be null; if either argument is null, the result is the null value.

TRIM_ARRAY can only be used in an SQL procedure or SQL function as the only expression on the right
side of an assignment-statement.

Note
Syntax alternatives: ARRAY_TRIM can be specified as a synonym for TRIM_ARRAY.

Example

Assume that array type PHONENUMBERS and array variable RECENT_CALLS are defined as follows:

CREATE TYPE PHONENUMBERS AS INTEGER ARRAY[50];
DECLARE RECENT_CALLS PHONENUMBERS;

The following statement removes the last element from the array variable RECENT_CALLS.

 SET RECENT_CALLS = TRIM_ARRAY(RECENT_CALLS, 1)

Chapter 4. Built-in functions 611

TRUNCATE or TRUNC
The TRUNCATE function returns expression–1 truncated to some number of places to the right or left of
the decimal point.

TRUNCATE

TRUNC

(expression-1

, 0

, expression-2

)

expression–1
An expression that returns a value of any built-in numeric, character-string, or graphic-string
data type. A string argument is converted to double-precision floating point before evaluating the
function. For more information about converting strings to double-precision floating point, see
“DOUBLE_PRECISION or DOUBLE” on page 392.

If expression-1 is a decimal floating-point data type, the DECFLOAT ROUNDING MODE will not be
used. The rounding behavior of TRUNCATE corresponds to a value of ROUND_DOWN. If a different
rounding behavior is wanted, use the QUANTIZE function.

expression–2
An expression that returns a value of a built-in small integer, large integer, or big integer data type. The
absolute value of integer specifies the number of places to the right of the decimal point for the result
if expression–2 is not negative, or to the left of the decimal point if expression–2 is negative.

If expression–2 is not negative, expression–1 is truncated to the expression–2 number of places to the
right of the decimal point.

If expression–2 is negative, expression–1 is truncated to the absolute value of expression–2+1
number of places to the left of the decimal point.

If expression–2 is not specified, expression–1 is truncated to zero places to the left of the decimal
point.

If the absolute value of expression–2 is larger than the number of digits to the left of the decimal
point, the result is 0. For example, TRUNCATE(748.58,-4) = 0.

The data type and length attribute of the result are the same as the data type and length attribute of the
first argument.

If either argument can be null, the result can be null. If either argument is null, the result is the null value.

Examples

• Calculate the average monthly salary for the highest paid employee. Truncate the result to two places to
the right of the decimal point.

 SELECT TRUNCATE(MAX(SALARY/12) , 2)
 FROM EMPLOYEE

Because the highest paid employee in the sample employee table earns $52750.00 per year, the
example returns the value 4395.83.

• Calculate the number 873.726 truncated to 2, 1, 0, -1, -2, and -3 decimal places respectively.

 SELECT TRUNCATE(873.726, 2),
 TRUNCATE(873.726, 1),
 TRUNCATE(873.726, 0),
 TRUNCATE(873.726, -1),
 TRUNCATE(873.726, -2),
 TRUNCATE(873.726, -3)
 FROM SYSIBM.SYSDUMMY1

612 IBM i: Db2 for i SQL Reference

Returns the following values respectively:

0873.720 0873.700 0873.000 0870.000 0800.000 0000.000

• Calculate both positive and negative numbers.

 SELECT TRUNCATE(3.5, 0),
 TRUNCATE(3.1, 0),
 TRUNCATE(-3.1, 0),
 TRUNCATE(-3.5, 0)
 FROM SYSIBM.SYSDUMMY1

This example returns:

3.0 3.0 -3.0 -3.0

respectively.

Chapter 4. Built-in functions 613

TRUNC_TIMESTAMP
The TRUNC_TIMESTAMP function returns a timestamp that is the expression truncated to the unit
specified by the format-string. If format-string is not specified, expression is truncated to the nearest
day, as if 'DD' was specified for format-string.

TRUNC_TIMESTAMP (expression

, 'DD'

, format-string

)

expression
An expression that returns a value of one of the following built-in data types: a date, a timestamp, a
character-string, or a graphic-string.
If expression is a character or graphic string, its value must be a valid string representation of a
date or timestamp. It is first converted to a TIMESTAMP(12) value. For the valid formats of string
representations of dates and timestamps, see “String representations of datetime values” on page 75.

format-string
An expression that returns a built-in character string data type or graphic string data type. format-
string contains a template of how expression should be truncated. For example, if format-string is
'DD', a timestamp that is represented by expression is truncated to the nearest day. Leading and
trailing blanks are removed from the string, and the resulting substring must be a valid template for a
timestamp. The resulting value is then folded to uppercase, so the characters in the value may be in
any case. Allowable values for format-string are listed in Table 57 on page 555.

The result of the function is a timestamp with a timestamp precision of:

• p when the data type of expression is TIMESTAMP(p)
• 0 when the data type of expression is DATE
• 6 otherwise.

If either argument can be null, the result can be null; if either argument is null, the result is the null value.

Example

• Set the host variable TRN_TMSTMP with the current year truncated to the nearest year value.

 SET :TRN_TMSTMP = TRUNC_TIMESTAMP('2000-03-14-17.30.00', 'YEAR');

Host variable TRN_TMSTMP is set with the value 2000-01-01-00.00.00.000000.

614 IBM i: Db2 for i SQL Reference

UCASE
The UCASE function returns a string in which all the characters have been converted to uppercase
characters, based on the CCSID of the argument.

UCASE (expression)

The UCASE function is identical to the UPPER function. For more information, see “UPPER” on page 616.

Chapter 4. Built-in functions 615

UPPER
The UPPER function returns a string in which all the characters have been converted to uppercase
characters, based on the CCSID of the argument. Only SBCS and Unicode graphic characters are
converted. The characters a-z are converted to A-Z, and characters with diacritical marks are converted to
their uppercase equivalent, if any.

UPPER (expression)

Refer to the UCS-2 level 1 mapping tables topic of the Globalization topic collection for a description of
the monocasing tables that are used for this translation.

expression
An expression that specifies the string to be converted. expression must be any built-in numeric,
character, Unicode graphic string. A numeric argument is cast to a character string before evaluating
the function. For more information about converting numeric to a character string, see “VARCHAR” on
page 623.

The result of the function has the same data type, length attribute, actual length, and CCSID as the
argument. If the argument can be null, the result can be null; if the argument is null, the result is the null
value.

Note
Syntax alternatives: UCASE is a synonym for UPPER.

Examples

• Uppercase the string 'abcdef' using the UPPER scalar function.

SELECT UPPER('abcdef')
 FROM SYSIBM.SYSDUMMY1

Returns the value 'ABCDEF'.
• Uppercase the mixed character string using the UPPER scalar function.

SELECT UPPER(’ab def ’)

 FROM SYSIBM.SYSDUMMY1

Returns the value: ’AB DEF’

616 IBM i: Db2 for i SQL Reference

URL_DECODE
The URL_DECODE scalar function completes URL decoding of the provided text using UTF-8 encoding.

URL_DECODE (character-string)

character-string
An expression that returns a built-in character string that is currently encoded.

The result of the function is a varying length character string that contains character-string after being
decoded.

Example

• Decode the string https://www.example.com/search?q=IBM+i+Q%26A

VALUES URL_DECODE('https://www.example.com/search?q=IBM+i+Q%26A')

Returns

https://www.example.com/search?q=IBM i Q&A

Chapter 4. Built-in functions 617

URL_ENCODE
The URL_ENCODE scalar function completes URL encoding of the provided text using UTF-8 encoding.
This is typically used to encode parameter information that is passed as part of the URL.

URL_ENCODE (character-string)

character-string
An expression that returns a built-in character string that is to be encoded.

The result of the function is a varying length character string that contains character-string after being
encoded.

Example

• Create a URL that has the parameter encoded for a request to example.com.

VALUES 'https://www.example.com/search?q=' CONCAT URL_ENCODE('IBM i Q&A')

Returns

https://www.example.com/search?q=IBM+i+Q%26A

618 IBM i: Db2 for i SQL Reference

VALUE
The VALUE function returns the value of the first non-null expression.

VALUE (expression , expression)

The VALUE function is identical to the COALESCE scalar function. For more information, see “COALESCE”
on page 338.

Note
Syntax alternatives: COALESCE should be used for conformance to the SQL 2003 standard.

Chapter 4. Built-in functions 619

VARBINARY
The VARBINARY function returns a VARBINARY representation of a string of any type.

VARBINARY (string-expression

, integer

)

The result of the function is VARBINARY. If the first argument can be null, the result can be null; if the first
argument is null, the result is the null value.

string-expression
A string-expression whose value can be a character string, graphic string, binary string, or row ID.

integer
An integer constant that specifies the length attribute for the resulting binary string. The value must
be between 1 and 32740 (32739 if nullable).

If integer is not specified:

• If the string-expression is the empty string constant, the length attribute of the result is 1.
• Otherwise, the length attribute of the result is the same as the length attribute of the first argument,

unless the argument is a graphic string. In this case, the length attribute of the result is twice the
length attribute of the argument.

The actual length of the result is the minimum of the length attribute of the result and the actual
length of the expression (or twice the length of the expression when the input is graphic data). If
the length of the string-expression is greater than the length attribute of the result, truncation is
performed. A warning (SQLSTATE 01004) is returned unless the first input argument is a character
string and all the truncated characters are blanks, or the first input argument is a graphic string and all
the truncated characters are double-byte blanks, or the first input argument is a binary string and all
the truncated bytes are hexadecimal zeroes.

Note
Syntax alternatives: The CAST specification should be used to increase the portability of applications
when the length is specified. For more information, see “CAST specification” on page 176.

Example

• The following function returns a VARBINARY for the string 'This is a VARBINARY'.

 SELECT VARBINARY('This is a VARBINARY')
 FROM SYSIBM.SYSDUMMY1

620 IBM i: Db2 for i SQL Reference

VARBINARY_FORMAT
The VARBINARY_FORMAT function returns a binary string representation of a character string that has
been formatted using a format-string.

VARBINARY_FORMAT (expression

, format-string

)

expression
An expression that returns a value of any built-in numeric, character-string, or graphic-string data
type. A numeric or graphic argument is cast to a character string before evaluating the function. For
more information about converting numeric or graphic to a character string, see “VARCHAR” on page
623.

All leading and trailing blanks are removed from expression before evaluating the function.

If a format-string is specified, the length of expression must be equal to the length of the format-string
and the value of expression must conform to the template specified by the format-string. If a format-
string is not specified, the value of expression (after removing leading and trailing blanks) should be
an even number of characters from the ranges '0' to '9', 'a' to 'f', and 'A' to 'F'. If the length is an odd
number of characters, the string is padded on the right with one '0' character.

format-string
An expression that returns a built-in character string or graphic string data type. format-string contains
a template for how the value for expression is to be interpreted.

The valid format strings are: 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx' and 'XXXXXXXX-XXXX-XXXX-
XXXX-XXXXXXXXXXXX' where each 'x' or 'X' corresponds to one hexadecimal digit in the result. If 'X'
is specified, the corresponding hexadecimal digit must not be a lower case character. If 'x' is specified,
the corresponding hexadecimal digit must not be an upper case character.

The result of the function is a varying-length binary string. The length attribute of the result is half the
length attribute of expression. If a format-string is not specified, the actual length is half the actual length
of expression (after leading and trailing blanks have been removed and padding to an even number of
characters). If a format-string is specified, the actual length is half the actual length of the format-string
(after removing the non-digit separator characters). If either argument can be null, the result can be null;
if either argument is null, the result is the null value.

Note
Syntax alternatives: HEXTORAW is a synonym for VARBINARY_FORMAT except that if the length of
expression is an odd number of characters, the string is padded on the left with one '0' character.
VARCHAR_BIT_FORMAT is a synonym for VARBINARY_FORMAT except that the result of the function is a
varying-length character string FOR BIT DATA.

Example

• Represent a Universal Unique Identifier in its binary form:

VALUES VARBINARY_FORMAT('d83d6360-1818-11db-9804-b622a1ef5492',
 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx')

Result returned:

BX'D83D6360181811DB9804B622A1EF5492'

• Represent a Universal Unique Identifier in its binary form:

VALUES VARBINARY_FORMAT('D83D6360-1818-11DB-9804-B622A1EF5492',
 'XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX')

Chapter 4. Built-in functions 621

Result returned:

BX'D83D6360181811DB9804B622A1EF5492'

• Represent a string of hexadecimal characters in binary form:

VALUES VARBINARY_FORMAT('ef01abC9')

Result returned:

BX'EF01ABC9'

622 IBM i: Db2 for i SQL Reference

VARCHAR
The VARCHAR function returns a character-string representation.

Integer to Varchar

VARCHAR (integer-expression)

Decimal to Varchar

VARCHAR (decimal-expression

, decimal-character

)

Floating-point to Varchar

VARCHAR (floating-point-expression

, decimal-character

)

Decimal floating-point to Varchar

VARCHAR (decimal-floating-point-expression

, decimal-character

)

Character to Varchar

VARCHAR (character-expression

, length

DEFAULT , integer

)

Graphic to Varchar

VARCHAR (graphic-expression

, length

DEFAULT , integer

)

Datetime to Varchar

VARCHAR (datetime-expression

, ISO

USA

EUR

JIS

LOCAL

)

The VARCHAR function returns a character-string representation of:

• An integer number if the first argument is a SMALLINT, INTEGER, or BIGINT.
• A decimal number if the first argument is a packed or zoned decimal number.
• A double-precision floating-point number if the first argument is a DOUBLE or REAL.
• A decimal floating-point number if the first argument is DECFLOAT.
• A character string if the first argument is any type of character string.
• A graphic string if the first argument is any graphic string.

Chapter 4. Built-in functions 623

• A date value if the first argument is a DATE.
• A time value if the first argument is a TIME.
• A timestamp value if the first argument is a TIMESTAMP.

The result of the function is a varying-length string. If the first argument can be null, the result can be null;
if the first argument is null, the result is the null value.

Integer to Varchar
integer-expression

An expression that returns a value that is an integer data type (either SMALLINT, INTEGER, or
BIGINT).

The result is a varying-length character string of the argument in the form of an SQL integer constant. The
result consists of n characters that are the significant digits that represent the value of the argument with
a preceding minus sign if the argument is negative. It is left justified.

• If the argument is a small integer, the length attribute of the result is 6.
• If the argument is a large integer, the length attribute of the result is 11.
• If the argument is a big integer, the length attribute of the result is 20.

The actual length of the result is the smallest number of characters that can be used to represent the
value of the argument. Leading zeroes are not included. If the argument is negative, the first character of
the result is a minus sign. Otherwise, the first character is a digit.

The CCSID of the result is the default SBCS CCSID at the current server.

Decimal to Varchar
decimal-expression

An expression that returns a value that is a packed or zoned decimal data type (either DECIMAL or
NUMERIC). If a different precision and scale is wanted, the DECIMAL scalar function can be used to
make the change.

decimal-character
Specifies the single-byte character constant that is used to delimit the decimal digits in the result
character string. The character must be a period or comma. If the second argument is not specified,
the decimal point is the default decimal point. For more information, see “Decimal point” on page
116.

The result is a varying-length character string representation of the argument. The result includes a
decimal character and up to p digits, where p is the precision of the decimal-expression with a preceding
minus sign if the argument is negative. Leading zeros are not returned. Trailing zeros are returned. If the
scale of decimal-expression is zero, the decimal character is not returned.

The length attribute of the result is 2+p where p is the precision of the decimal-expression. The actual
length of the result is the smallest number of characters that can be used to represent the result, except
that trailing characters are included. Leading zeros are not included. If the argument is negative, the result
begins with a minus sign. Otherwise, the result begins with a digit or the decimal-character.

The CCSID of the result is the default SBCS CCSID at the current server.

Floating-point to Varchar
floating-point expression

An expression that returns a value that is a floating-point data type (DOUBLE or REAL).
decimal-character

Specifies the single-byte character constant that is used to delimit the decimal digits in the result
character string. The character must be a period or comma. If the second argument is not specified,
the decimal point is the default decimal point. For more information, see “Decimal point” on page
116.

624 IBM i: Db2 for i SQL Reference

The result is a varying-length character string representation of the argument in the form of a floating-
point constant.

The length attribute of the result is 24. The actual length of the result is the smallest number of
characters that can represent the value of the argument such that the mantissa consists of a single
digit other than zero followed by the decimal-character and a sequence of digits. If the argument is
negative, the first character of the result is a minus sign; otherwise, the first character is a digit or the
decimal-character. If the argument is zero, the result is 0E0.

The CCSID of the result is the default SBCS CCSID at the current server.

Decimal floating-point to Varchar
decimal-floating-point expression

An expression that returns a value that is a decimal floating-point data type.
decimal-character

Specifies the single-byte character constant that is used to delimit the decimal digits in the result
character string. The character must be a period or comma. If the second argument is not specified,
the decimal point is the default decimal point. For more information, see “Decimal point” on page
116.

The result is a varying-length character string representation of the argument in the form of a decimal
floating-point constant.

The length attribute of the result is 42. The actual length of the result is the smallest number of
characters that represents the value of the argument, including the sign, digits, and decimal-character.
Trailing zeros are significant. If the argument is negative, the first character of the result is a minus sign;
otherwise, the first character is a digit or the decimal-character. If the argument is zero, the result is 0.

If the DECFLOAT value is Infinity, sNaN, or NaN, the strings 'INFINITY', 'SNAN', and 'NAN', respectively,
are returned. If the special value is negative, a minus sign will be the first character in the string. The
DECFLOAT special value sNaN does not result in an exception when converted to a string.

The CCSID of the result is the default SBCS CCSID at the current server.

Character to Varchar
character-expression

An expression that returns a value that is a built-in CHAR, VARCHAR, or CLOB data type.77

length
An integer constant that specifies the length attribute for the resulting varying length character string.
The value must be between 1 and 32740 (32739 if nullable). If the first argument is DBCS-only mixed
data, the second argument cannot be less than 4.

If the second argument is not specified or DEFAULT is specified:

• If the character-expression is an empty string constant, the length attribute of the result is 1.
• Otherwise, the length attribute of the result is the same as the length attribute of the first argument.

The actual length of the result is the minimum of the length attribute of the result and the actual
length of character-expression. If the length of the character-expression is greater than the length
attribute of the result, truncation is performed. A warning (SQLSTATE 01004) is returned unless the
truncated characters were all blanks.

integer
An integer constant that specifies the CCSID of the result. It must be a valid SBCS CCSID, mixed data
CCSID, or 65535 (bit data). If the third argument is an SBCS CCSID, then the result is SBCS data. If the
third argument is a mixed CCSID, then the result is mixed data and the length attribute of the result
cannot be less than 4. If the third argument is 65535, then the result is bit data. If the third argument
is a SBCS CCSID, then the first argument cannot be a DBCS-either or DBCS-only string.

77 A binary string is also allowed if a CCSID is not specified or if a CCSID of 65535 is explicitly specified.

Chapter 4. Built-in functions 625

If the third argument is not specified then:

• If the first argument is SBCS data, then the result is SBCS data. The CCSID of the result is the same
as the CCSID of the first argument.

• If the first argument is mixed data and the length attribute of the result is greater than or equal to 4,
then the result is mixed data. The CCSID of the result is the same as the CCSID of the first argument.

• If the first argument is mixed data that is DBCS-open or DBCS-either and the length attribute of the
result is less than 4, the CCSID of the result is the associated SBCS CCSID for the mixed data CCSID.

Graphic to Varchar
graphic-expression

An expression that returns a value that is a GRAPHIC, VARGRAPHIC, and DBCLOB data type. It must
not be DBCS-graphic data.

length
An integer constant that specifies the length attribute for the resulting varying length character string.
The value must be between 1 and 32740 (32739 if nullable). If the first argument contains DBCS
data, the second argument cannot be less than 4.

If the second argument is not specified or DEFAULT is specified, the length attribute of the result is
determined as follows (where n is the length attribute of the first argument):

• If the graphic-expression is the empty graphic string constant, the length attribute of the result is 1.
• If the result is SBCS data, the result length is n.
• If the result is mixed data, the result length is (2.5*(n-1)) + 4.

The actual length of the result is the minimum of the length attribute of the result and the actual
length of graphic-expression. If the length of the character-expression is greater than the length
attribute of the result, truncation is performed. A warning (SQLSTATE 01004) is returned unless the
truncated characters were all blanks.

integer
An integer constant that specifies the CCSID of the result. It must be a valid SBCS CCSID or mixed
data CCSID. If the third argument is an SBCS CCSID, then the result is SBCS data. If the third
argument is a mixed CCSID, then the result is mixed data and the length attribute of the result cannot
be less than 4. The third argument cannot be 65535.

If the third argument is not specified, the CCSID of the result is the default CCSID at the current
server. If the default CCSID is mixed data and the length attribute of the result is greater than or equal
to 4, then the result is mixed data. Otherwise, the result is SBCS data.

Datetime to Varchar
datetime-expression

An expression that is one of the following three built-in data types
date

The result is the varying-length character string representation of the date in the format specified
by the second argument. If the second argument is not specified, the format used is the default
date format. If the format is ISO, USA, EUR, or JIS, the length attribute and actual length of the
result is 10. Otherwise the length attribute and actual length of the result is the length of the
default date format. For more information see “String representations of datetime values” on page
75.

time
The result is the varying-length character string representation of the time in the format specified
by the second argument. If the second argument is not specified, the format used is the default
time format. The length attribute and actual length of the result is 8. For more information see
“String representations of datetime values” on page 75.

626 IBM i: Db2 for i SQL Reference

timestamp
The second argument is not applicable and must not be specified.

The result is the varying-length character string representation of the timestamp. If datetime-
expression is a TIMESTAMP(0), the length attribute and actual length of the result is 19. If the data
type of datetime-expression is a TIMESTAMP(n), the length attribute and actual length of the result
is 20+n. Otherwise, the length attribute and actual length of the result is 26.

The CCSID of the string is the default SBCS CCSID at the current server.
ISO, EUR, USA, or JIS

Specifies the date or time format of the resulting character string. For more information, see “String
representations of datetime values” on page 75.

LOCAL
Specifies that the date or time format of the resulting character string should come from the DATFMT,
DATSEP, TIMFMT, and TIMSEP attributes of the job at the current server.

Note
Syntax alternatives: The CAST specification should be used to increase the portability of applications
when the first argument is a string and the length argument is specified. For more information, see “CAST
specification” on page 176.

Example

• Make EMPNO varying-length with a length of 10.

 SELECT VARCHAR(EMPNO,10)
 INTO :VARHV
 FROM EMPLOYEE

Chapter 4. Built-in functions 627

VARCHAR_BIT_FORMAT
The VARCHAR_BIT_FORMAT function returns a character string representation of a character string that
has been formatted using a format-string.

VARCHAR_BIT_FORMAT (expression

, format-string

)

The VARCHAR_BIT_FORMAT function is identical to VARBINARY_FORMAT except that the result
of the function is a varying-length character string FOR BIT DATA. For more information, see
“VARBINARY_FORMAT” on page 621.

628 IBM i: Db2 for i SQL Reference

VARCHAR_FORMAT
The VARCHAR_FORMAT function returns a character string representation of the first argument in the
format indicated by the optional format-string.

Character to Varchar

VARCHAR_FORMAT (string-expression)

Timestamp to Varchar

VARCHAR_FORMAT (timestamp-expression

, format-string

)

Numeric to Varchar

VARCHAR_FORMAT (numeric-expression

, format-string

)

If any argument of the VARCHAR_FORMAT function can be null, the result can be null; if any argument is
null, the result is the null value.

Character to Varchar
string-expression

An expression that returns a value that is a built-in character-string or graphic-string data type.
If the argument is a character string:

• The length attribute of the result and the actual length are determined as follows:

– If string-expression is an empty string constant, the length attribute of the result is 1.
– Otherwise, the length attribute and the actual length of the result is the same as the length

attribute of string-expression.
– The actual length of the result is the minimum of the length attribute of the result and the actual

length of string-expression.
• The CCSID of the result is determined as follows:

– If string-expression is SBCS data, then the result is SBCS data. The CCSID of the result is the same
as the CCSID of string-expression.

– If string-expression is mixed data (DBCS-open, DBCS-only, or DBCS-either), then the result is
mixed data. The CCSID of the result is the same as the CCSID of string-expression.

If the argument is a graphic string, it must not be DBCS-graphic data.

• The length attribute and the actual length of the result is determined as follows (where n is the
length attribute of string-expression):

– If string-expression is the empty graphic string constant, the length attribute of the result is 1.
– If the result is SBCS data, the length attribute of the result is n.
– If the result is mixed data, the length attribute of the result is (2.5*(n-1)) + 4.
– The actual length of the result is the minimum of the length attribute of the result and the actual

length of string-expression.
• The CCSID of the result is the default CCSID at the current server. If the default CCSID is mixed

data, then the result is mixed data. If the default CCSID is SBCS data, then the result is SBCS data.

Chapter 4. Built-in functions 629

Timestamp to Varchar
timestamp-expression

An expression that returns a value of one of the following built-in data types: a date, a timestamp, a
character string, or a graphic string. If the argument is a DATE, it is first converted to a TIMESTAMP(0)
value, assuming a time of exactly midnight (00.00.00).

If timestamp-expression is a character or graphic string, the value of timestamp-expression must be
a valid string representation of a date or timestamp. It is first converted to a TIMESTAMP(12) value.
For the valid formats of string representations of timestamps, see “String representations of datetime
values” on page 75.

If the argument is a string, the format-string argument must also be specified.

format-string
An expression that returns a built-in character string data type or graphic string data type. If the value
is not a CHAR or VARCHAR data type, it is implicitly cast to VARCHAR before evaluating the function.
format-string contains a template of how timestamp-expression is to be formatted. The resulting value
may contain characters in any case. A valid format is any combination of the formats listed below
optionally separated by valid separators. Valid separators are:

• minus sign (-)
• period (.)
• slash (/)
• comma (,)
• apostrophe (′)
• semicolon (;)
• colon (:)
• blank ()

Table 62. Format elements for the VARCHAR_FORMAT (Timestamp to VARCHAR) function

Format Unit

AM or PM 1, 2 Meridian indicator (morning or evening) without periods. The meridian indicator
that is returned is based on the language used for messages in the job.
This meridian indicator is retrieved from message CPX9035 in message file
QCPFMSG in library *LIBL.

A.M. or P.M. 1, 2 Meridian indicator (morning or evening) with periods. This format element uses
the exact strings ‘A.M.' or ‘P.M.' and is independent of the language used for
messages in the job.

CC Century (00-99). If the last two digits of the four digit year are zero, the result is
the first two digits of the year. Otherwise, the result is the first two digits of the
year plus one.

DAY, Day, or day 1, 2 Name of the day in uppercase, titlecase, or lowercase format. The name of the
day that is returned is based on the language used for messages in the job. This
name of the day is retrieved from message CPX9034 in message file QCPFMSG
in library *LIBL.

DY, Dy, or dy 1, 3 Abbreviated name of the day in uppercase, titlecase, or lowercase format. The
abbreviated name of the day is retrieved from message CPX9039 in message file
QCPFMSG in library *LIBL.

D 1 Day of week (1-7), where 1 is Sunday.

DD Day of month (01-31).

DDD Day of year (001-366).

630 IBM i: Db2 for i SQL Reference

Table 62. Format elements for the VARCHAR_FORMAT (Timestamp to VARCHAR) function (continued)

Format Unit

FF or FFn Fractional seconds (0-999999999999). The number n is used to specify the
number of digits to include in the value returned. Valid values for n are 1-12. The
default is 6.

HH HH behaves the same as HH12.

HH12 Hour of the day (01-12) in 12-hour format.

HH24 Hour of the day (00-24) in 24-hour format.

ID ISO day of week (1-7), where 1 is Monday and 7 is Sunday

IW ISO week of year (01-53). The week starts on Monday and includes 7 days.
Week 1 is the first week of the year to contain a Thursday, which is equivalent to
the first week of the year to contain January 4

I ISO year (0-9). The last digit of the year based on the ISO week that is returned.

IY ISO year (00-99). The last two digits of the year based on the ISO week that is
returned.

IYY ISO year (000-999). The last three digits of the year based on the ISO week that
is returned.

IYYY ISO year (0000-9999). The year based on the ISO week that is returned.

J Julian date (0000000-9999999).

MI Minute (00-59).

MM Month (01-12).

MONTH, Month, or
month 1, 3

Name of the month in uppercase, titlecase, or lowercase format. The name of
the month that is returned is based on the language used for messages in the
job. This name of the month is retrieved from message CPX3BC0 in message file
QCPFMSG in library *LIBL.

MON, Mon, or mon 1, 3 Abbreviated name of the month in uppercase, titlecase, or lowercase format.
The name of the month that is returned is based on the language used for
messages in the job. This name of the month is retrieved from message
CPX8601 in message file QCPFMSG in library *LIBL.

MS Milliseconds (000-999). Same as FF3.

NNNNNN Microseconds (000000-999999). Same as FF6.

Q Quarter (1-4).

RR RR behaves the same as YY.

RRRR RRRR behaves the same as YYYY.

SS Seconds (00-59).

SSSSS Seconds since previous midnight (00000-86400).

US Microseconds (000000-999999). Same as FF6.

W Week of month (1-5). Week 1 starts on the first day of the month and ends on
the seventh day.

WW Week of the year (01-53), where week 1 starts on January 1 and ends on
January 7.

Chapter 4. Built-in functions 631

Table 62. Format elements for the VARCHAR_FORMAT (Timestamp to VARCHAR) function (continued)

Format Unit

Y Last digit of the year (0-9).

YY Last two digits of the year (00-99).

YYY Last three digits of the year (000-999).

YYYY Year (0000-9999).

Notes:

1. This format element is case sensitive. In cases where the format elements are ambiguous, the case
insensitive format elements will be considered first.

2. The AM and PM set of meridian indicators can be used interchangeably in the format-string, as can
A.M. and P.M. The result string will contain the appropriate meridian indicator for the actual time value.

3. Only these exact spellings and case combinations can be used. If this format element is specified in an
invalid case combination an error is returned.

Examples of valid format strings are:

'HH24-MI-SS'
'HH24-MI-SS-NNNNNN'
'YYYY-MM-DD'
'YYYY-MM-DD-HH24-MI-SS'
'YYYY-MM-DD-HH24-MI-SS-NNNNNN'
'FF3.J/Q-YYYY'

The result is a representation of timestamp-expression in the format specified by format-string. format-
string is interpreted as a series of format elements that can be separated by one or more separator
characters. A string of characters in format-string is interpreted as the longest format element that
matches an element in the previous table. If two format elements are composed of the same character
and they are not separated by a separator character, the specification is interpreted, starting from the left,
as the longest element that matches an element from the previous table, and continues until matches are
found for the remainder of the format string. For example, DDYYYY would be interpreted as DD followed
by YYYY, rather than D followed by DY, followed by YYY.

If format-string is not specified, timestamp-expression is returned as the varying-length character string
representation of the timestamp.

The data type of the result is varying-length character or varying-length graphic based on the data type of
the format-string. The length attribute of the result is the maximum of 255 and the length attribute of the
format-string. format-string also determines the actual length of the result. The actual length must not be
greater than the length attribute of the result.

The CCSID of the result is same as the CCSID of the format-string. If format-string is not specified, the
CCSID of the result is the default SBCS CCSID at the current server.

Numeric to Varchar
numeric-expression

An expression that returns a value of any built-in numeric data type. If the argument is not a decimal
floating-point value, it is converted to DECFLOAT(34) for processing.

format-string
An expression that returns a built-in character string, graphic string, or numeric data type. If the value
is not a CHAR or VARCHAR data type, it is implicitly cast to VARCHAR before evaluating the function.
format-string contains a template of how numeric-expression is to be formatted. A format-string must
contain a valid combination of the listed format elements according to the following rules:

• A sign format element ('S', 'MI', 'PR') can be specified only one time.
• A decimal point format element can be specified only one time.

632 IBM i: Db2 for i SQL Reference

• Alphabetic format elements must be specified in upper case.
• A prefix format element can only be specified at the beginning of the format string, before any

format elements that are not prefix format elements. When multiple prefix format elements are
specified they can be specified in any order.

• A suffix format element can only be specified at the end of the format string, after any format
elements that are not suffix format elements. When multiple suffix format elements are specified
they can be specified in any order.

• A comma or G format element must not be the first format element that is not a prefix format
element. There can be any number of comma or G format elements.

• Blanks must not be specified between format elements. Leading and trailing blanks can be specified
but are ignored when formatting the result.

Table 63. Format elements for the VARCHAR_FORMAT (Numeric to VARCHAR) function

Format element Description

0 Each 0 represents a significant digit. Leading zeros in a number are displayed as
zeros.

9 Each 9 represents a significant digit. Leading zeros in a number are displayed
as blanks. Only group separators that have at least one digit to the left of the
separator are generated.

S Prefix: If numeric-expression is a negative number, a leading minus sign (-) is
included in the result. If numeric-expression is a positive number, a leading plus
sign (+) is included in the result.

$ Prefix: A leading dollar sign ($) is included in the result.

MI Suffix: If numeric-expression is a negative number, a trailing minus sign (-) is
included in the result. If numeric-expression is a positive number, a trailing blank
is included in the result.

PR Suffix: If numeric-expression is a negative number, a leading less than character
(<) and a trailing greater than character (>) are included in the result. If numeric-
expression is a positive number, a leading space and a trailing space are included
in the result.

, Specifies that a comma be included in that location in the result. This comma is
used as a group separator.

. Specifies that a period be included in that location in the result. This period is
used as a decimal point.

L Prefix or Suffix: Specifies that the local currency symbol be included in that
location in the result. The currency symbol is retrieved from message CPX8416
in message file QCPFMSG in library *LIBL.

D Specifies that the local decimal point character be included in that location
in the result. The decimal character is retrieved from message CPX8416 in
message file QCPFMSG in library *LIBL.

G Specifies that the local group separator character be included in that location in
the result. If the local decimal character as retrieved from message CPX8416 in
message file QCPFMSG in library *LIBL is a period, the group separator will be a
comma. If the local decimal character is a comma, the group separator will be a
period.

If format-string is not specified, the function is equivalent to VARCHAR(DECFLOAT(numeric-expression)).

The result is a representation of the numeric-expression value (which might be rounded) in the format that
is specified by format-string. Prior to being formatted, the value of numeric-expression is rounded by using

Chapter 4. Built-in functions 633

the ROUND function if the number of digits to the right of the decimal point is greater than the number of
digit format elements ('0' or '9') to the right of the decimal point in format-string. format-string is applied
to this rounded-input-value according to the following rules:

• The result does not include any digit characters to the left of the decimal point if all of the following
conditions are true:

– -1 < rounded-input-value < 1
– format-string does not include a '0' format element to the left of the decimal point
– format-string includes at least one digit format element ('0' or '9') to the right of the decimal point

• The result includes a single 0 character immediately before the implicit or explicit decimal point if all of
the following conditions are true:

– The value of rounded-input-value is 0 or -0
– format-string includes only the '9' digit format elements to the left of the implicit or explicit decimal

point
– format-string does not include any digit format elements to the right of the decimal point

• If format-string includes both '0' and '9' format elements to the left of the decimal point, the position of
the first digit format element from the left side of the format string determines the presence of leading
blanks or zeroes. All '9' format elements specified after the leftmost '0' format element to the left of the
implicit or explicit decimal point are treated the same as if a '0' format element had been specified. For
example, the format-string value '99099' is the same as the value '99000'.

• If the number of digits to the right of the decimal point in rounded-input-value is less than the number
of digit format elements to the right of the decimal point in format-string, the result includes the number
of digit characters to the right of the decimal point that corresponds to the number of digit format
elements to the right of the decimal point in format-string, padded to the right with zeros.

• If the number of digits to the left of the decimal point in rounded-input-value is greater than the number
of digit format elements to the left of the decimal point in format-string, the result is a string of number
sign (#) characters that matches the length that format-string produces in the result for valid values.

• If the value of rounded-input-value represents any of the positive or negative special values, Infinity,
sNaN, or NaN, the string 'INFINITY', 'SNAN', 'NAN', '-INFINITY', '-SNAN', or '-NAN' is returned without
using the format that is specified by format-string. The decimal floating-point special value sNaN does
not result in an exception when converted to a string.

• If format-string does not include any of the sign format elements 'S', ''MI', or 'PR', and the value of
rounded-input-value is negative, a minus sign (−) is included in the result. Otherwise, a blank is included
in the resulting string. The minus sign or blank immediately precedes the first digit of the result to the
left of the decimal point, or the decimal point if there are no digits to the left of the decimal point.

The result is a string representation of rounded-input-value. The data type of the result is varying-length
character or varying-length graphic based on the data type of the format-string. If a single argument is
specified the length attribute is 42. Otherwise the length attribute is 254. The actual length of the result is
determined by format-string, if specified. Otherwise, the actual length of the result is the smallest number
of characters that can represent the value of rounded-input-value. If the resulting string exceeds the
length attribute of the result, the result will be truncated.

The CCSID of the result is the same as the CCSID of the format-string. If format-string is not specified, the
CCSID of the result is the default SBCS CCSID at the current server.

Note
Syntax alternatives: TO_CHAR is a synonym for VARCHAR_FORMAT.

Examples

Example: Timestamp to VARCHAR

634 IBM i: Db2 for i SQL Reference

• Set the character variable TVAR to a string representation of the timestamp value of RECEIVED from
CORPDATA.IN_TRAY, formatted as YYYY-MM-DD HH24:MI:SS.

SELECT VARCHAR_FORMAT(RECEIVED,'YYYY-MM-DD HH24:MI:SS')
 INTO :TVAR
 FROM CORPDATA.IN_TRAY
 WHERE SOURCE = 'CHAAS'

Returns the string:

1988-12-22 14:07:21

Assuming that the value in the RECEIVED column is one second before the beginning of the year 2000
(December 31, 1999 at 23:59:59pm), the following string is returned:

1999-12-31 23:59:59

The result would be different if HH12 had been specified instead of HH24 in the format string:

1999-12-31 11:59:59

Example: Timestamp to VARCHAR

• Assume that the variable TMSTAMP is defined as a TIMESTAMP and has the following value:
2007-03-09-14.07.38.123456. The following examples show several invocations of the function and
the resulting string values. The result data type in each case is VARCHAR(255).

Function invocation Result
------------------- ------
VARCHAR_FORMAT(TMSTAMP,'YYYYMMDDHHMISSFF3') 20070309020738123
VARCHAR_FORMAT(TMSTAMP,'YYYYMMDDHH24MISS') 20070309140738
VARCHAR_FORMAT(TMSTAMP,'YYYYMMDDHHMI') 200703090207
VARCHAR_FORMAT(TMSTAMP,'DD/MM/YY') 09/03/07
VARCHAR_FORMAT(TMSTAMP,'MM-DD-YYYY') 03-09-2007
VARCHAR_FORMAT(TMSTAMP,'J') 2454169
VARCHAR_FORMAT(TMSTAMP,'Q') 1
VARCHAR_FORMAT(TMSTAMP,'W') 2
VARCHAR_FORMAT(TMSTAMP,'IW') 10
VARCHAR_FORMAT(TMSTAMP,'WW') 10
VARCHAR_FORMAT(TMSTAMP,'Month') March
VARCHAR_FORMAT(TMSTAMP,'MONTH') MARCH
VARCHAR_FORMAT(TMSTAMP,'MON') MAR

Example: Timestamp to VARCHAR

• Assume that the variable DTE is defined as a DATE and has the value of '2007-03-09'. The following
examples show several invocations of the function and the resulting string values. The result data type
in each case is VARCHAR(255):

Function invocation Result
------------------- ------
VARCHAR_FORMAT(DTE,'YYYYMMDD') 20070309
VARCHAR_FORMAT(DTE,'YYYYMMDDHH24MISS') 20070309000000

Example: Timestamp to VARCHAR

• Format the hour of the specified string representation of a timestamp:

SELECT
 VARCHAR_FORMAT(TIMESTAMP('1979-04-07-14.00.00.000000'), 'HH'),
 VARCHAR_FORMAT(TIMESTAMP('1979-04-07-14.00.00.000000'), 'HH12')
 VARCHAR_FORMAT(TIMESTAMP('1979-04-07-14.00.00.000000'), 'HH24'),
 VARCHAR_FORMAT(TIMESTAMP('2000-01-01-00.00.00.000000'), 'HH'),
 VARCHAR_FORMAT(TIMESTAMP('2000-01-01-12.00.00.000000'), 'HH'),
 VARCHAR_FORMAT(TIMESTAMP('2000-01-01-24.00.00.000000'), 'HH'),
 VARCHAR_FORMAT(TIMESTAMP('2000-01-01-00.00.00.000000'), 'HH12'),
 VARCHAR_FORMAT(TIMESTAMP('2000-01-01-12.00.00.000000'), 'HH12'),
 VARCHAR_FORMAT(TIMESTAMP('2000-01-01-24.00.00.000000'), 'HH12'),
 VARCHAR_FORMAT(TIMESTAMP('2000-01-01-00.00.00.000000'), 'HH24'),
 VARCHAR_FORMAT(TIMESTAMP('2000-01-01-12.00.00.000000'), 'HH24'),

Chapter 4. Built-in functions 635

 VARCHAR_FORMAT(TIMESTAMP('2000-01-01-24.00.00.000000'), 'HH24')
FROM SYSIBM.SYSDUMMY1;

The previous SELECT statement returns the following values:

'02' '02' '14' '12' '12' '12' '12' '12' '12' '00' '12' '24'

Example: Numeric to VARCHAR

• Assume that the variables POSNUM and NEGNUM are defined as DECFLOAT(34) and have the following
values: '1234.56' and '-1234.56', respectively. The following examples show several invocations of the
function and the resulting string values.

Function invocation Result
------------------------- -----------
VARCHAR_FORMAT(POSNUM) '1234.56'
VARCHAR_FORMAT(NEGNUM) '-1234.56'

VARCHAR_FORMAT(POSNUM,'9999.99') ' 1234.56'
VARCHAR_FORMAT(NEGNUM,'9999.99') '-1234.56'

VARCHAR_FORMAT(POSNUM,'99999.99') ' 1234.56'
VARCHAR_FORMAT(NEGNUM,'99999.99') ' -1234.56'

VARCHAR_FORMAT(POSNUM,'00000.00') ' 01234.56'
VARCHAR_FORMAT(NEGNUM,'00000.00') '-01234.56'

VARCHAR_FORMAT(POSNUM,'9999.99MI') '1234.56 '
VARCHAR_FORMAT(NEGNUM,'9999.99MI') '1234.56-'

VARCHAR_FORMAT(POSNUM,'S9999.99') '+1234.56'
VARCHAR_FORMAT(NEGNUM,'S9999.99') '-1234.56'

VARCHAR_FORMAT(POSNUM,'9999.99PR') ' 1234.56 '
VARCHAR_FORMAT(NEGNUM,'9999.99PR') '<1234.56>'

VARCHAR_FORMAT(POSNUM,'S$9,999.99') '+$1,234.56'
VARCHAR_FORMAT(NEGNUM,'S$9,999.99') '-$1,234.56'

636 IBM i: Db2 for i SQL Reference

VARCHAR_FORMAT_BINARY
The VARCHAR_FORMAT_BINARY function returns a character string representation of a bit string that has
been formatted using a format-string.

VARCHAR_FORMAT_BINARY (expression , format-string)

expression
An expression that returns a built-in binary string or character FOR BIT DATA string. The length of
expression must be equal to the number of 'x' or 'X' characters in the format-string divided by 2.

format-string
An expression that returns a built-in character string or graphic string data type. format-string contains
a template for how the value for expression is to be formatted.

Valid format strings are: 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx' and 'XXXXXXXX-XXXX-XXXX-XXXX-
XXXXXXXXXXXX' where each 'x' or 'X' corresponds to one hexadecimal digit from expression. If
'x' is specified, the character returned for the corresponding hexadecimal digit will be lower case.
Otherwise, the character returned will be upper case.

The result of the function is a varying-length character string with the length attribute and actual length
based on the format string. For the two valid format strings, the length attribute and actual length of the
result is 36. If either argument can be null, the result can be null; if either argument is null, the result is
the null value.

The CCSID of the result is the CCSID of format-string.

Note
Syntax alternatives: VARCHAR_FORMAT_BIT is a synonym for VARCHAR_FORMAT_BINARY.

Example

• Represent a Universal Unique Identifier in its formatted form:

VALUES VARCHAR_FORMAT_BINARY(BX'd83d6360181811db9804b622a1ef5492',
 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx')

Result returned:

'd83d6360-1818-11db-9804-b622a1ef5492'

• Represent a Universal Unique Identifier in its formatted form:

VALUES VARCHAR_FORMAT_BINARY(BX'd83d6360181811db9804b622a1ef5492',
 'XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX')

Result returned:

'D83D6360-1818-11DB-9804-B622A1EF5492'

Chapter 4. Built-in functions 637

VARGRAPHIC
The VARGRAPHIC function returns a graphic-string representation.

Integer to Vargraphic

VARGRAPHIC (integer-expression)

Decimal to Vargraphic

VARGRAPHIC (decimal-expression

, decimal-character

)

Floating-point to Vargraphic

VARGRAPHIC (floating-point-expression

, decimal-character

)

Decimal floating-point to Vargraphic

VARGRAPHIC (decimal-floating-point-expression

, decimal-character

)

Character to Vargraphic

VARGRAPHIC (character-expression

, length

DEFAULT , integer

)

Graphic to Vargraphic

VARGRAPHIC (graphic-expression

, length

DEFAULT , integer

)

Datetime to Vargraphic

VARGRAPHIC (datetime-expression

, ISO

USA

EUR

JIS

LOCAL

)

The VARGRAPHIC function returns a graphic-string representation of

• An integer number if the first argument is a SMALLINT, INTEGER, or BIGINT.
• A decimal number if the first argument is a packed or zoned decimal number.
• A double-precision floating-point number if the first argument is a DOUBLE or REAL.

638 IBM i: Db2 for i SQL Reference

• A decimal floating-point number if the first argument is DECFLOAT.
• A character string if the first argument is any type of character string.
• A graphic string if the first argument is a Unicode graphic string.
• A date value if the first argument is a DATE.
• A time value if the first argument is a TIME.
• A timestamp value if the first argument is a TIMESTAMP.

The result of the function is a varying-length graphic string (VARGRAPHIC).

If the first argument can be null, the result can be null. If the first argument is null, the result is the null
value. If the first argument is an empty string or the EBCDIC string X'0E0F', the result is an empty string.

Integer to Vargraphic
integer-expression

An expression that returns a value that is an integer data type (either SMALLINT, INTEGER, or
BIGINT).

The result is a varying-length graphic string of the argument in the form of an SQL integer constant. The
result consists of n characters that are the significant digits that represent the value of the argument with
a preceding minus sign if the argument is negative. It is left justified.

• If the argument is a small integer, the length attribute of the result is 6.
• If the argument is a large integer, the length attribute of the result is 11.
• If the argument is a big integer, the length attribute of the result is 20.

The actual length of the result is the smallest number of characters that can be used to represent the
value of the argument. Leading zeroes are not included. If the argument is negative, the first character of
the result is a minus sign. Otherwise, the first character is a digit or the decimal-character.

The CCSID of the result is 1200 (UTF-16).

Decimal to Vargraphic
decimal-expression

An expression that returns a value that is a packed or zoned decimal data type (either DECIMAL or
NUMERIC). If a different precision and scale is wanted, the DECIMAL scalar function can be used to
make the change.

decimal-character
Specifies the single-byte character constant that is used to delimit the decimal digits in the result
character string. The character must be a period or comma. If the second argument is not specified,
the decimal point is the default decimal point. For more information, see “Decimal point” on page
116.

The result is a varying-length graphic string representation of the argument. The result includes a decimal
character and up to p digits, where p is the precision of the decimal-expression with a preceding minus
sign if the argument is negative. Leading zeros are not returned. Trailing zeros are returned. If the scale of
decimal-expression is zero, the decimal character is not returned.

The length attribute of the result is 2+p where p is the precision of the decimal-expression. The actual
length of the result is the smallest number of characters that can be used to represent the result, except
that trailing characters are included. Leading zeros are not included. If the argument is negative, the result
begins with a minus sign. Otherwise, the result begins with a digit or the decimal-character.

The CCSID of the result is 1200 (UTF-16).

Floating-point to Vargraphic
floating-point expression

An expression that returns a value that is a floating-point data type (DOUBLE or REAL).

Chapter 4. Built-in functions 639

decimal-character
Specifies the single-byte character constant that is used to delimit the decimal digits in the result
character string. The character must be a period or comma. If the second argument is not specified,
the decimal point is the default decimal point. For more information, see “Decimal point” on page
116.

The result is a varying-length graphic string representation of the argument in the form of a floating-point
constant.

The length attribute of the result is 24. The actual length of the result is the smallest number of
characters that can represent the value of the argument such that the mantissa consists of a single
digit other than zero followed by the decimal-character and a sequence of digits. If the argument is
negative, the first character of the result is a minus sign; otherwise, the first character is a digit or the
decimal-character. If the argument is zero, the result is 0E0.

The CCSID of the result is 1200 (UTF-16).

Decimal floating-point to Vargraphic
decimal-floating-point expression

An expression that returns a value that is a decimal floating-point data type.
decimal-character

Specifies the single-byte character constant that is used to delimit the decimal digits in the result
character string. The character must be a period or comma. If the second argument is not specified,
the decimal point is the default decimal point. For more information, see “Decimal point” on page
116.

The result is a varying-length graphic string representation of the argument in the form of a decimal
floating-point constant.

The length attribute of the result is 42. The actual length of the result is the smallest number of
characters that represents the value of the argument, including the sign, digits, and decimal-character.
Trailing zeros are significant. If the argument is negative, the first character of the result is a minus sign;
otherwise, the first character is a digit or the decimal-character. If the argument is zero, the result is 0.

If the DECFLOAT value is Infinity, sNaN, or NaN, the strings 'INFINITY', 'SNAN', and 'NAN', respectively,
are returned. If the special value is negative, a minus sign will be the first character in the string. The
DECFLOAT special value sNaN does not result in an exception when converted to a string.

The CCSID of the result is 1200 (UTF-16).

Character to Vargraphic
character-expression

Specifies a character string expression. It cannot be a CHAR or VARCHAR bit data.
length

An integer constant that specifies the length attribute of the result and must be an integer constant
between 1 and 16370 if the first argument is not nullable or between 1 and 16369 if the first
argument is nullable.

If the second argument is not specified, or if DEFAULT is specified, the length attribute of the result is
the same as the length attribute of the first argument, except if the expression is an empty string or
the EBCDIC string X'0E0F', the length attribute of the result is 1.

The actual length of the result is the minimum of the length attribute of the result and the actual
length of character-expression. Each character of the argument determines a character of the result. If
the length (in characters) of the character-expression is greater than the length attribute of the result,
truncation is performed. A warning (SQLSTATE 01004) is returned unless the truncated characters
were all blanks.

640 IBM i: Db2 for i SQL Reference

integer
An integer constant that specifies the CCSID of the result. It must be a DBCS, UTF-16, or UCS-2
CCSID. The CCSID cannot be 65535. If the CCSID represents Unicode graphic data, each character of
the argument determines a character of the result. The nth character of the result is the UTF-16 or
UCS-2 equivalent of the nth character of the argument.

If integer is not specified then the CCSID of the result is determined by a mixed CCSID. Let M denote
that mixed CCSID.

In the following rules, S denotes one of the following:

• If the string expression is a host variable containing data in a foreign encoding scheme, S is the
result of the expression after converting the data to a CCSID in a native encoding scheme. (See
“Character conversion” on page 28 for more information.)

• If the string expression is data in a native encoding scheme, S is that string expression.

M is determined as follows:

• If the CCSID of S is 1208 (UTF-8), M is 1200 (UTF–16).
• If the CCSID of S is a mixed CCSID, M is that CCSID.
• If the CCSID of S is an SBCS CCSID:

– If the CCSID of S has an associated mixed CCSID, M is that CCSID.
– Otherwise the operation is not allowed.

The following table summarizes the result CCSID based on M.

M Result CCSID Description DBCS Substitution Character

930 300 Japanese EBCDIC X'FEFE'

933 834 Korean EBCDIC X'FEFE'

935 837 S-Chinese EBCDIC X'FEFE'

937 835 T-Chinese EBCDIC X'FEFE'

939 300 Japanese EBCDIC X'FEFE'

5026 4396 Japanese EBCDIC X'FEFE'

5035 4396 Japanese EBCDIC X'FEFE'

The equivalence of SBCS and DBCS characters depends on M. Regardless of the CCSID, every double-
byte code point in the argument is considered a DBCS character, and every single-byte code point
in the argument is considered an SBCS character with the exception of the EBCDIC mixed data shift
codes X'0E' and X'0F'.

• If the nth character of the argument is a DBCS character, the nth character of the result is that DBCS
character.

• If the nth character of the argument is an SBCS character that has an equivalent DBCS character, the
nth character of the result is that equivalent DBCS character.

• If the nth character of the argument is an SBCS character that does not have an equivalent DBCS
character, the nth character of the result is the DBCS substitution character.

Graphic to Vargraphic
graphic-expression

An expression that returns a value that is a graphic string.

Chapter 4. Built-in functions 641

length
An integer constant that specifies the length attribute of the result and must be an integer constant
between 1 and 16370 if the first argument is not nullable or between 1 and 16369 if the first
argument is nullable.

If the second argument is not specified, or if DEFAULT is specified, the length attribute of the result is
the same as the length attribute of the first argument, except if the expression is an empty string, the
length attribute of the result is 1.

The actual length of the result is the minimum of the length attribute of the result and the actual
length of graphic-expression. Each character of the argument determines a character of the result. If
the length (in characters) of the graphic-expression is greater than the length attribute of the result,
truncation is performed. A warning (SQLSTATE 01004) is returned unless the truncated characters
were all blanks.

integer
An integer constant that specifies the CCSID of the result. It must be a DBCS, UTF-16, or UCS-2
CCSID. The CCSID cannot be 65535.

If integer is not specified then the CCSID of the result is the CCSID of the first argument.

Datetime to Vargraphic
datetime-expression

An expression that is one of the following three built-in data types
date

The result is the varying-length graphic string representation of the date in the format specified by
the second argument. If the second argument is not specified, the format used is the default date
format. If the format is ISO, USA, EUR, or JIS, the length attribute and actual length of the result is
10. Otherwise the length attribute and actual length of the result is the length of the default date
format. For more information see “String representations of datetime values” on page 75.

time
The result is the varying-length graphic string representation of the time in the format specified by
the second argument. If the second argument is not specified, the format used is the default time
format. The length attribute and actual length of the result is 8. For more information see “String
representations of datetime values” on page 75.

timestamp
The second argument is not applicable and must not be specified.

The result is the varying-length graphic string representation of the timestamp. If datetime-
expression is a TIMESTAMP(0), the length attribute and actual length of the result is 19. If the
data type of datetime-expression is a TIMESTAMP(n), the length attribute and actual length of the
result is 20+n. Otherwise, the length attribute and actual length of the result is 26.

The CCSID of the result is 1200 (UTF-16).
ISO, EUR, USA, or JIS

Specifies the date or time format of the resulting graphic string. For more information, see “String
representations of datetime values” on page 75.

LOCAL
Specifies that the date or time format of the resulting graphic string should come from the DATFMT,
DATSEP, TIMFMT, and TIMSEP attributes of the job at the current server.

Note
Syntax alternatives: The CAST specification should be used to increase the portability of applications
when the first argument is a string and the length attribute is specified. For more information, see “CAST
specification” on page 176.

642 IBM i: Db2 for i SQL Reference

Example

• Using the EMPLOYEE table, set the host variable VAR_DESC (VARGRAPHIC(24)) to the VARGRAPHIC
equivalent of the first name (FIRSTNME) for employee number (EMPNO) '000050'.

 SELECT VARGRAPHIC(FIRSTNME)
 INTO :VAR_DESC
 FROM EMPLOYEE
 WHERE EMPNO = '000050'

Chapter 4. Built-in functions 643

VERIFY_GROUP_FOR_USER
The VERIFY_GROUP_FOR_USER function returns a value that indicates whether the specified user is
in the list of user profiles or is a member of any of the group user profiles specified by the list of
authorization-id-expression arguments.

VERIFY_GROUP_FOR_USER (SESSION_USER

USER

CURRENT_USER

,

,

authorization-id-expression)

SESSION_USER or USER or CURRENT_USER
Specifies an authorization ID.

authorization-id-expression
An expression that specifies an authorization name. The existence of the authorization name at the
current server is not verified. authorization-id-expression must return a value of any built-in character-
string or graphic-string data type. The value of each authorization-id-expression must have a length of
at least 1 and be less than or equal to 10.

The result of the function is a large integer. The result cannot be null.

The value of the result is 1 if the authorization ID represented by the first argument is anywhere in the list
of authorization-id-expressions. Otherwise, the result is 0.

The VERIFY_GROUP_FOR_USER function is deterministic within a connection. It is not deterministic
across connections. It can be referenced in a CREATE MASK or CREATE PERMISSION statement to verify
access to the data.

Example

Assume that table EMPLOYEE exists and that column level access control is activated for the table. Alex
(with QIBM_DB_SECADM authority) created the following column mask to control what information is
returned for a social security number depending on who requests the information. The column mask
only returns the actual social security number if the session user is a member of the MGR group profile.
Otherwise a masked representation of the social security number is returned.

CREATE MASK SSN_MASK
 ON EMPLOYEE
 FOR COLUMN SSN
 RETURN
 CASE
 WHEN VERIFY_GROUP_FOR_USER(SESSION_USER,'MGR') = 1
 THEN SSN
 ELSE 'XXX-XX' CONCAT SUBSTR(SSN, 8,4)
 END
 ENABLE;

An ALTER TABLE statement is then issued to activate the column mask on the EMPLOYEE table:

ALTER TABLE EMPLOYEE
 ACTIVATE COLUMN ACCESS CONTROL;
COMMIT;

Assume that Mary is a manager and is a member of the MGR group profile. Mary issues the following
statement:

SELECT SSN FROM EMPLOYEE WHERE NAME = 'Tom';

644 IBM i: Db2 for i SQL Reference

The SSN_MASK column mask is applied to the SSN column to produce the result table. Since Mary is a
member of the MGR group profile, the result table contains Tom's actual social security number.

Later, Mary is no longer a manager and is removed from the MGR group profile. She issues the same query
again:

SELECT SSN FROM EMPLOYEE WHERE NAME = 'Tom';

As before, the SSN_MASK column mask is applied to the SSN column to produce the result table. This
time the result table contains a masked version of Tom's social security number where only the last 4
digits of the actual number are returned. An 'X' is returned for the other digits.

Chapter 4. Built-in functions 645

WEEK
The WEEK function returns an integer between 1 and 54 that represents the week of the year. The week
starts with Sunday, and January 1 is always in the first week.

WEEK (expression)

expression
An expression that returns a value of one of the following built-in data types: a date, a timestamp, a
character string, or a graphic string.

If expression is a character or graphic string, its value must be a valid string representation of a date
or timestamp. For the valid formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 75.

The result of the function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

Example

• Using the PROJECT table, set the host variable WEEK (INTEGER) to the week that project (‘PL2100')
ended.

 SELECT WEEK(PRENDATE)
 INTO :WEEK
 FROM PROJECT
 WHERE PROJNO = 'PL2100'

Results in WEEK being set to 38.
• Assume that table X has a DATE column called DATE_1 with various dates from the list below.

 SELECT DATE_1, WEEK(DATE_1)
 FROM X

Results in the following list shows what is returned by the WEEK function for various dates.

 1997-12-28 53
 1997-12-31 53
 1998-01-01 1
 1999-01-01 1
 1999-01-04 2
 1999-12-31 53
 2000-01-01 1
 2000-01-03 2

646 IBM i: Db2 for i SQL Reference

WEEK_ISO
The WEEK_ISO function returns an integer between 1 and 53 that represents the week of the year. The
week starts with Monday. Week 1 is the first week of the year to contain a Thursday, which is equivalent to
the first week containing January 4. Thus, it is possible to have up to 3 days at the beginning of the year
appear as the last week of the previous year or to have up to 3 days at the end of a year appear as the first
week of the next year.

WEEK_ISO (expression)

expression
An expression that returns a value of one of the following built-in data types: a date, a timestamp, a
character string, or a graphic string.

If expression is a character or graphic string, its value must be a valid string representation of a date
or timestamp. For the valid formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 75.

The result of the function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

Examples

• Using the PROJECT table, set the host variable WEEK (INTEGER) to the week that project (‘AD2100')
ended.

 SELECT WEEK_ISO(PRENDATE)
 INTO :WEEK
 FROM PROJECT
 WHERE PROJNO = 'AD3100'

Results in WEEK being set to 5.
• Assume that table X has a DATE column called DATE_1 with various dates from the list below.

 SELECT DATE_1, WEEK_ISO(DATE_1)
 FROM X

Results in the following:

 1997-12-28 52
 1997-12-31 1
 1998-01-01 1
 1999-01-01 53
 1999-01-04 1
 1999-12-31 52
 2000-01-01 52
 2000-01-03 1

Chapter 4. Built-in functions 647

WRAP
The WRAP function transforms a readable DDL statement into an obfuscated DDL statement.

WRAP (object-definition-string)

In an obfuscated DDL statement, the procedural logic and embedded SQL statements are scrambled in
such a way that any intellectual property in the logic cannot be easily extracted.

The schema is SYSIBMADM.

object-definition-string
A string of type CLOB or DBCLOB containing a DDL statement. It can be one of the following SQL
statements:

• CREATE FUNCTION (SQL scalar)
• CREATE FUNCTION (SQL table)
• CREATE PROCEDURE (SQL)
• CREATE TRIGGER

The result is a string of type CLOB(2M) which contains an encoded version of the input statement. The
result cannot be null. The encoding consists of a prefix of the original statement up to and including
the routine signature or trigger name, followed by the keyword WRAPPED. This keyword is followed by
information about the application server that invoked the function. The information has the form pppvvrrm
where:

• ppp identifies the product using the following 3 characters:

– DSN for Db2 for z/OS
– QSQ for Db2 for i
– SQL for Db2 for LUW

• vv is a two-digit version identifier, such as '07'
• rr is a two-digit release identifier, such as '02'
• m is a one-character modification level identifier, such as '0'

For example Db2 for i version 7.3 is identified as 'QSQ07030'.

This application server information is followed by a string of letters (a-z and A-Z), digits (0-9),
underscores, and colons.

The encoded DDL statement may be up to one-third longer than the plain text form of the statement. If
the result exceeds the maximum length for SQL statements, an error is issued.

Note
The encoding of the statement is meant to obfuscate the content and should not be considered as a form
of strong encryption.

Examples
Example 1: Produce an obfuscated version of a function that computes a yearly salary from an hourly
wage given a 40 hour work week.

VALUES WRAP('CREATE FUNCTION salary(wage DECFLOAT) RETURNS DECFLOAT
 RETURN wage * 40 * 52')

The result of this statement would be something of the form:

CREATE FUNCTION salary(wage DECFLOAT) WRAPPED QSQ07020 <encoded-suffix>

648 IBM i: Db2 for i SQL Reference

Example 2: Produce an obfuscated version of a trigger that sets a complex default.

VALUES WRAP('CREATE OR REPLACE TRIGGER trig1 BEFORE INSERT ON emp
 REFERENCING NEW AS n FOR EACH ROW
 WHEN (n.bonus IS NULL) SET n.bonus = n.salary * .04')

The result of this statement would be something of the form:

CREATE TRIGGER trig1 WRAPPED QSQ07020 <encoded-suffix>

Chapter 4. Built-in functions 649

XMLATTRIBUTES
The XMLATTRIBUTES function constructs XML attributes from the arguments.

XMLATTRIBUTES (

,

attribute-value-expression

AS attribute-name

)

This function can only be used as an argument of the XMLELEMENT function. The result is an XML
sequence containing an XML attribute for each non-null attribute-value-expression argument.

attribute-value-expression
An expression whose result is the attribute value. The data type of attribute-value-expression must
not be ROWID, DATALINK, XML or a distinct type that is based on ROWID, DATALINK, or XML. The
expression can be any SQL expression. If the expression is not a simple column reference, an attribute
name must be specified.

attribute-name
Specifies an attribute name. The name is an SQL identifier that must be in the form of an XML qualified
name, or QName. See the W3C XML namespace specifications for more details on valid names. The
attribute name cannot be "xmlns" or prefixed with "xmlns:". A namespace is declared using the
function XMLNAMESPACES. Duplicate attribute names, whether implicit or explicit, are not allowed.
If attribute-name is not specified, attribute-value-expression must be a column name. The attribute
name is created from the column name using the fully escaped mapping from a column name to an
XML attribute name.

The result of the function is XML. If the result of any attribute-value-expression can be null, the result can
be null; if the result of every attribute-value-expression is null, the result is the null value.

Example

Note: XMLATTRIBUTES does not insert blank spaces or new line characters in the output. All example
output has been formatted to enhance readability.

• Produce an element with attributes.

 SELECT E.EMPNO, XMLELEMENT(
 NAME "Emp",
 XMLATTRIBUTES(
 E.EMPNO, E.FIRSTNME ||' '|| E.LASTNAME AS "name"
)
)
 AS "Result"
 FROM EMPLOYEE E
 WHERE E.EDLEVEL = 12

This query produces the following result:

EMPNO Result
000290 <Emp EMPNO="000290" name="JOHN PARKER"/>
000310 <Emp EMPNO="000310" name="MAUDE SETRIGHT"/>
200310 <Emp EMPNO="200310" name="MICHELLE SPRINGER"/>

650 IBM i: Db2 for i SQL Reference

XMLCOMMENT
The XMLCOMMENT function returns an XML value with the input argument as the content.

XMLCOMMENT (string-expression)

string-expression
An expression that returns a value of any built-in character-string or graphic-string data type.
It cannot be CHAR or VARCHAR bit data. The result of string-expression is parsed to check for
conformance to the content of an XML comment, as specified by the following rules:

• Two adjacent hyphens ('--') must not occur in the string expression.
• The string expression must not end with a hyphen ('-').
• Each character of the string can be any Unicode character, excluding the surrogate blocks, X'FFFE',

and X'FFFF'.78

If string-expression does not conform to the previous rules, an error is returned.

The result of the function is XML. If the argument can be null, the result can be null; if the argument is
null, the result is the null value.

Example

• Generate an XML comment.

 SELECT XMLCOMMENT('This is an XML comment')
 FROM SYSIBM.SYSDUMMY1

This query produces the following result:

<!--This is an XML comment-->

78 Valid Unicode characters consist of the following Unicode code points: #x9, #xA, #xD, #x20-#xD7FF,
#xE000-#xFFFD, #x10000-#x10FFFF.

Chapter 4. Built-in functions 651

XMLCONCAT
The XMLCONCAT function returns a sequence containing the concatenation of a variable number of XML
input arguments.

XMLCONCAT (XML-expression , XML-expression)

XML-expression
An expression that returns an XML value.

The result of the function is an XML sequence that contains the concatenation of the non-null input XML
values. Null values in the input are ignored.

The result of the function is XML. The result can be null; if the result of every input value is null, the result
is the null value.

Examples

Note: XMLCONCAT does not insert blank spaces or new line characters in the output. All example output
has been formatted to enhance readability.

• Concatenate first name and last name elements by using "first" and "last" element names for each
employee

 SELECT XMLSERIALIZE(
 XMLCONCAT(
 XMLELEMENT(NAME "first", e.firstnme),
 XMLELEMENT(NAME "last", e.lastname)
) AS VARCHAR(100)) AS "result"
 FROM EMPLOYEE E
 WHERE e.lastname = 'SMITH'

The result of the query would look similar to the following result:

result
--
<first>DANIEL</first><last>SMITH</last>
<first>PHILIP</first><last>SMITH</last>

• Construct a department element for departments A00 and B01 containing a list of employees sorted by
first name. Include an introductory comment immediately preceding the department element.

 SELECT XMLCONCAT(
 XMLCOMMENT (
 'Confirm these employees are on track for their product schedule'),
 XMLELEMENT(
 NAME "Department",
 XMLATTRIBUTES(E.WORKDEPT AS "name"),
 XMLAGG(
 XMLELEMENT(NAME "emp", E.FIRSTNME)
 ORDER BY E.FIRSTNME)
))
 FROM EMPLOYEE E
 WHERE E.WORKDEPT IN ('A00', 'B01')
 GROUP BY E.WORKDEPT

This query produces the following result:

<!--Confirm these employees are on track for their product schedule-->
<Department name="A00">
<emp>CHRISTINE</emp>
<emp>SEAN</emp>
<emp>VINCENZO</emp>
</Department>
<!--Confirm these employees are on track for their product schedule-->
<Department name="B01">

652 IBM i: Db2 for i SQL Reference

<emp>MICHAEL</emp>
</Department>

Chapter 4. Built-in functions 653

XMLDOCUMENT
The XMLDOCUMENT function returns an XML value.

XMLDOCUMENT (

,

XML-expression)

XML-expression
An expression that returns an XML value.

The result of the function is XML. If the result of XML-expression can be null, the result can be null; if every
XML-expression is null, the result is the null value.

Example

• Insert a constructed document into an XML column.

INSERT INTO T1 VALUES(123,
 (SELECT XMLDOCUMENT(
 XMLELEMENT(NAME "Emp",
 E.FIRSTNME || ' ' || E.LASTNAME,
 XMLCOMMENT('This is just a simple example')
))
 FROM EMPLOYEE E
 WHERE E.EMPNO = '000120'))

654 IBM i: Db2 for i SQL Reference

XMLELEMENT
The XMLELEMENT function returns an XML value that is an XML element.

XMLELEMENT (NAME element-name

, xmlnamespaces-declaration

, xmlattributes-function

, element-content-expression

OPTION
1

EMPTY ON NULL

NULL ON NULL
2

XMLBINARY
USING

BASE64

XMLBINARY
USING

HEX

3

)

Notes:
1 The OPTION clause can only be specified if at least one xmlattributes-function or element-content-
expression is specified
2 If element-content-expression is not specified, EMPTY ON NULL or NULL ON NULL must not be
specified.
3 The same clause must not be specified more than once.

NAME element-name
Specifies the name of an XML element. The name is an SQL identifier that must be in the form of an
XML qualified name, or QName. See the W3C XML namespace specifications for more details on valid
names. If the name is qualified, the namespace prefix must be declared within the scope.

xmlnamespaces-declaration
Specifies the XML namespace declarations that are the result of the XMLNAMESPACES declaration.
The namespaces that are declared are in the scope of the XMLELEMENT function. The namespaces
apply to any nested XML functions within the XMLELEMENT function, regardless of whether or not
they appear inside another subselect. See “XMLNAMESPACES” on page 661 for more information on
declaring XML namespaces.
If xmlnamespaces-declaration is not specified, namespace declarations are not associated with the
constructed element.

xmlattributes-function
Specifies the XML attributes for the element. The attributes are the result of the XMLATTRIBUTES
function. See “XMLATTRIBUTES” on page 650 for more information on construction attributes.

element-content-expression
The content of the generated XML element node is specified by an expression or a list of expressions.
The expression can be any SQL expression of any SQL data type except for ROWID or DATALINK.
The expression is used to construct the namespace declarations, attributes, and content of the
constructed element.
If element-content-expression is not specified, an empty string is used as the content for the element
and NULL ON NULL or EMPTY ON NULL must not be specified.

Chapter 4. Built-in functions 655

OPTION
Specifies additional options for constructing the XML element. This clause has no impact on nested
XMLELEMENT invocations specified in element-content-expression.
EMPTY ON NULL or NULL ON NULL

Specifies whether a null value or an empty element is to be returned if the value of every element-
content-expression is the null value. This option only affects null handling of element contents, not
attribute values. The default is EMPTY ON NULL.
EMPTY ON NULL

If the value of each element-content-expression is null, an empty element is returned.
NULL ON NULL

If the value of each element-content-expression is null, a null value is returned.
XMLBINARY USING BASE64 or XMLBINARY USING HEX

Specifies the assumed encoding of binary input data, character string data with the FOR BIT DATA
attribute, or a distinct type that is based on one of these types. The encoding applies to element
content or attribute values. The default is XMLBINARY USING BASE64.
XMLBINARY USING BASE64

Specifies that the assumed encoding is base64 characters, as defined for XML schema type
xs:base64Binary encoding. The base64 encoding uses a 65-character subset of US-ASCII (10
digits, 26 lowercase characters, 26 uppercase characters, '+', and '/') to represent every six
bits of the binary or bit data with one printable character in the subset. These characters are
selected so that they are universally representable. Using this method, the size of the encoded
data is 33 percent larger than the original binary or bit data.

XMLBINARY USING HEX
Specifies that the assumed encoding is hexadecimal characters, as defined for XML schema
type xs:hexBinary encoding. The hexadecimal encoding represents each byte (8 bits) with two
hexadecimal characters. Using this method, the encoded data is twice the size of the original
binary or bit data.

This function takes an element name, an optional collection of namespace declarations, an optional
collection of attributes, and zero or more arguments that make up the content of the XML element.
The result is an XML sequence containing an XML element node or the null value. If the results of all
element-content-expression arguments are empty strings, the result is an XML sequence that contains an
empty element.

The result of the function is XML. The result can be null; if all the element-content-expression argument
values are null and the NULL ON NULL option is in effect, the result is the null value.

Rules about using namespaces within XMLELEMENT: The following rules describe scoping of
namespaces:

• The namespaces declared in the XMLNAMESPACES declaration are the in-scope namespaces of the
element constructed by the XMLELEMENT function. If the element is serialized, then each of its in-
scope namespaces will be serialized as a namespace attribute unless it is an in-scope namespace of an
XML value that includes this element.

• The scope of these namespaces is the lexical scope of the XMLELEMENT function, including the element
name, the attribute names that are specified in the XMLATTRIBUTES function, and all element-content-
expressions. These are used to resolve the QNames in the scope.

• If an attribute of the constructed element comes from an element-content-expression, its namespace
might not already by declared as an in-scope namespace of the constructed element. In this case, a
new namespace is created for it. If this would result in a conflict, which means that the prefix of the
attribute name is already bound to a different URI by an in-scope namespace, Db2 generates a different
prefix to be used in the attribute name. A namespace is created for this generated prefix. The name of
the generated prefix follows the following pattern: db2ns-xx, where xx is a pair of characters chosen
from the set [A-Z, a-z, 0-9].

656 IBM i: Db2 for i SQL Reference

Example

Note: XMLELEMENT does not insert blank spaces or new line characters in the output. All example output
has been formatted to enhance readability.

The following examples use a temporary CANDIDATES employee table:

 DECLARE GLOBAL TEMPORARY TABLE CANDIDATES
 (EMPNO CHAR(6),
 FIRSTNME VARCHAR(12),
 MIDINIT CHAR(1),
 LASTNAME VARCHAR(15),
 WORKDEPT CHAR(4),
 EDLEVEL INT)
 INSERT INTO SESSION.CANDIDATES
 VALUES('A0001', 'John', 'A', 'Parker', 'X001', 12)
 INSERT INTO SESSION.CANDIDATES
 VALUES('B0001', NULL, NULL, 'Smith', 'X001', 12)
 INSERT INTO SESSION.CANDIDATES
 VALUES('B0002', NULL, NULL, NULL, 'X001', NULL)
 INSERT INTO SESSION.CANDIDATES
 VALUES(NULL, NULL, NULL, NULL, 'X001', NULL)

• The following statement used the XMLELEMENT function to create an XML element that contains an
employee's name. The statement also sets the employee number as an attribute names serial. If there
is a null value in the referenced column, the function returns the null value:

 SELECT E.EMPNO, E.FIRSTNME, E.LASTNAME,
 XMLELEMENT(NAME "foo:Emp",
 XMLNAMESPACES('http://www.foo.com' AS "foo"),
 XMLATTRIBUTES(E.EMPNO AS "serial"),
 E.FIRSTNME, E.LASTNAME
 OPTION NULL ON NULL) AS "Result"
FROM SESSION.CANDIDATES E

This query produces the following result:

EMPNO FIRSTNME LASTNAME Result
------ --------- -------- -------------------
A0001 John Parker <foo:Emp xmlns:foo="http://www.foo.com"
 serial="A0001">JohnParker</foo:Emp>
B0001 (null) Smith <foo:Emp xmlns:foo="http://www.foo.com"
 serial="B0001">Smith</foo:Emp>
B0002 (null) (null) (null)
(null) (null) (null) (null)

• The following example is similar to the previous one. However, when there is a null value in the
referenced column, an empty element is returned:

 SELECT E.EMPNO, E.FIRSTNME, E.LASTNAME,
 XMLELEMENT(NAME "foo:Emp",
 XMLNAMESPACES('http://www.foo.com' AS "foo"),
 XMLATTRIBUTES(E.EMPNO AS "serial"),
 E.FIRSTNME, E.LASTNAME
 OPTION EMPTY ON NULL) AS "Result"
FROM SESSION.CANDIDATES E

This query produces the following result:

EMPNO FIRSTNME LASTNAME Result
------ --------- -------- -------------------
A0001 John Parker <foo:Emp xmlns:foo="http://www.foo.com"
 serial="A0001">JohnParker</foo:Emp>
B0001 (null) Smith <foo:Emp xmlns:foo="http://www.foo.com"
 serial="B0001">Smith</foo:Emp>
B0002 (null) (null) <foo:Emp xmlns:foo="http://www.foo.com"
 serial="B0002"></foo:Emp>
(null) (null) (null) <foo:Emp xmlns:foo="http://www.foo.com"></foo:Emp>

Chapter 4. Built-in functions 657

XMLFOREST
The XMLFOREST function returns an XML value that is a sequence of XML elements.

XMLFOREST (

xmlnamespaces-declaration ,

,

element-content-expression

AS element-name

OPTION

NULL ON NULL

EMPTY ON NULL

XMLBINARY
USING

BASE64

XMLBINARY
USING

HEX

1

)

Notes:
1 The same clause must not be specified more than once.

xmlnamespace-declaration
Specifies the XML namespace declarations that are the result of the XMLNAMESPACES declaration.
The namespaces that are declared are in the scope of the XMLFOREST function. The namespaces
apply to any nested XML functions within the XMLFOREST function, regardless of whether or not they
appear inside another subselect. See “XMLNAMESPACES” on page 661 for more information on
declaring XML namespaces.
If xmlnamespace-declaration is not specified, namespace declarations are not associated with the
constructed XML elements.

element-content-expression
Specifies an expression that returns a value that is used for the content of a generated XML element.
The data type of the expression must not be ROWID or DATALINK. If the expression is not a simple
column reference, element-name must be specified.

AS element-name
Specifies an identifier that is used for the XML element name.
An XML element name must be an XML qualified name, or QName. See the W3C XML namespace
specifications for more details on valid names. If the name is qualified, the namespace prefix must be
declared within the scope.
If element-name is not specified, element-content-expression must be a column name. The element
name is created from the column name using the fully escaped mapping from a column name to a
QName.

OPTION
Specifies options for the result for NULL values, binary data, and bit data. The options will not be
inherited by XMLELEMENT or XMLFOREST functions that appear in element-content-expression.
NULL ON NULL or EMPTY ON NULL

Specifies whether a null value or an empty element is to be returned if the value of every element-
content-expression is the null value. This option only affects null handling of the element-content-
expression arguments. The default is NULL ON NULL.

658 IBM i: Db2 for i SQL Reference

NULL ON NULL
If the value of each element-content-expression is null, a null value is returned.

EMPTY ON NULL
If the value of each element-content-expression is null, an empty element is returned.

XMLBINARY USING BASE64 or XMLBINARY USING HEX
Specifies the assumed encoding of binary input data, character string data with the FOR BIT DATA
attribute, ROWID, or a distinct type that is based on one of these types. The encoding applies to
element content or attribute values. The default is XMLBINARY USING BASE64.
XMLBINARY USING BASE64

Specifies that the assumed encoding is base64 characters, as defined for XML schema type
xs:base64Binary encoding. The base64 encoding uses a 65-character subset of US-ASCII (10
digits, 26 lowercase characters, 26 uppercase characters, '+', and '/') to represent every six
bits of the binary or bit data with one printable character in the subset. These characters are
selected so that they are universally representable. Using this method, the size of the encoded
data is 33 percent larger than the original binary or bit data.

XMLBINARY USING HEX
Specifies that the assumed encoding is hexadecimal characters, as defined for XML schema
type xs:hexBinary encoding. The hexadecimal encoding represents each byte (8 bits) with two
hexadecimal characters. Using this method, the encoded data is twice the size of the original
binary or bit data.

The result of the function is an XML value. If the result of any element-content-expression can be null, the
result can be null; if the result of every element-content-expression is null and the NULL ON NULL option is
in effect, the result is the null value.

The XMLFOREST function can be expressed by using XMLCONCAT and XMLELEMENT. For example, the
following two expressions are semantically equivalent.

XMLFOREST(xmlnamespaces-declaration, arg1 AS name1, arg2 AS name2, ...)

XMLCONCAT(XMLELEMENT(NAME name1, xmlnamespaces-declaration, arg1),
 XMLELEMENT(NAME name2, xmlnamespaces-declaration, arg2),
 ...)

When constructing elements that will be copied as content of another element that defines default
namespaces, default namespaces should be explicitly undeclared in the copied element to avoid possible
errors that could result from inheriting the default namespace from the new parent element. Predefined
namespace prefixes ('xs', 'xsi', 'xml', 'sqlxml') must also be declared explicitly when they are used.

Example

Note: XMLFOREST does not insert blank spaces or new line characters in the output. All example output
has been formatted to enhance readability.

• Construct a forest of elements with a default namespace.

SELECT EMPNO,
 XMLFOREST(XMLNAMESPACES(DEFAULT 'http://hr.org',
 'http://fed.gov' AS "d"),
 LASTNAME, JOB AS "d:job") AS "Result"
FROM EMPLOYEE WHERE EDLEVEL = 12

This query produces the following result:

EMPNO Result
000290 <LASTNAME xmlns:"http://hr.org" xmlns:d="http://fed.gov">PARKER
 </LASTNAME>
 <d:job xmlns:"http://hr.org" xmlns:d="http://fed.gov">OPERATOR</d:job>
000310 <LASTNAME xmlns:"http://hr.org" xmlns:d="http://fed.gov">SETRIGHT
 </LASTNAME>
 <d:job xmlns:"http://hr.org" xmlns:d="http://fed.gov">OPERATOR</d:job>
200310 <LASTNAME xmlns:"http://hr.org" xmlns:d="http://fed.gov">SPRINGER

Chapter 4. Built-in functions 659

 </LASTNAME>
 <d:job xmlns:"http://hr.org" xmlns:d="http://fed.gov">OPERATOR</d:job>

660 IBM i: Db2 for i SQL Reference

XMLNAMESPACES
The XMLNAMESPACES declaration constructs namespace declarations from the arguments. This
declaration can only be used as an argument for the XMLELEMENT and XMLFOREST functions. The result
is one or more XML namespace declarations containing in-scope namespaces for each non-null input
value.

XMLNAMESPACES (

,

namespace-uri AS namespace-prefix
1

DEFAULT namespace-uri

NO DEFAULT

)

Notes:
1 The DEFAULT or NO DEFAULT clause can only be specified one time.

namespace-uri
Specifies an SQL character string constant that contains the namespace name or a universal resource
identifier (URI). The character string constant must not be an empty string if it is used with
namespace-prefix.

AS namespace-prefix
Specifies a namespace prefix. The prefix is an SQL identifier that must be in the form of an XML
NCName. See the W3C XML namespace specifications for more details on valid names. The prefix
must not be "xml" or "xmlns". The prefix must be unique within the list of namespace declarations.
The following namespace prefixes are pre-defined in SQL/XML: "xml", "xs", "xsd", "xsi", and "sqlxml".
Their bindings are:

• xmlns:xml = "http://www.w3.org/XML/1998/namespace"
• xmlns:xs = "http://www.w3.org/2001/XMLSchema"
• xmlns:xsd = "http://www.w3.org/2001/XMLSchema"
• xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
• xmlns:sqlxml = "http:/standards.iso.org/iso/9075/2003/sqlxml"

DEFAULT namespace-uri or NO DEFAULT
Specifies whether a default namespace is to be used within the scope of this namespace declaration.
The scope of this namespace declaration is the specified XML element and all XML expressions that
are contained in the specified XML element.
DEFAULT namespace-uri

Specifies the default namespace to use within the scope of this namespace declaration. The
namespace-uri applies for unqualified names in the scope unless it is overridden in a nested scope
by another DEFAULT declaration or by a NO DEFAULT declaration.
namespace-uri specifies an SQL character string constant that contains a namespace name or
universal resource identifier (URI). The character string constant can be an empty string in the
context of the DEFAULT clause.

NO DEFAULT
Specifies that no default namespace is to be used within the scope of this namespace declaration.
There is no default namespace in the scope unless the NO DEFAULT clause is overridden in a
nested scope by a DEFAULT declaration.

The result of the function is an XML value that is an XML sequence that contains an XML namespace
declaration for each specified namespace. The result cannot be null.

Chapter 4. Built-in functions 661

Examples

Note: XML processing does not insert blank spaces or new line characters in the output. All example
output has been formatted to enhance readability.

• Generate an "employee" element for each employee. The employee element is associated with XML
namespace "urn:bo", which is bound to prefix "bo". The element contains attributes for names and a
hiredate subelement.

SELECT E.EMPNO,
 XMLSERIALIZE(XMLELEMENT(NAME "bo:employee",
 XMLNAMESPACES('urn:bo' AS "bo"),
 XMLATTRIBUTES(E.LASTNAME, E.FIRSTNME),
 XMLELEMENT(NAME "bo:hiredate", E.HIREDATE))
 AS CLOB(200))
 FROM EMPLOYEE E WHERE E.EDLEVEL = 12

This query produces the following result:

00029 <bo:employee xmlns:bo="urn:bo" LASTNAME="PARKER" FIRSTNME="JOHN">
 <bo:hiredate>1988-05-30</bo:hiredate>
 </bo:employee>
00031 <bo:employee xmlns:bo="urn:bo" LASTNAME="SETRIGHT" FIRSTNME="MAUDE">
 <bo:hiredate>1964-09-12</bo:hiredate>
 </bo:employee>

• Generate two elements for each employee using XMLFOREST. The first "lastname" element is
associated with the default namespace "http://hr.org", and the second "job" element is associated with
XML namespace "http://fed.gov", which is bound to prefix "d".

SELECT EMPNO,
 XMLSERIALIZE(XMLFOREST(XMLNAMESPACES(DEFAULT 'http://hr.org',
 'http://fed.gov' AS "d"),
 LASTNAME, JOB AS "d:job")
 AS CLOB(200))
 FROM EMPLOYEE WHERE EDLEVEL = 12

This query produces the following result:

00029 <LASTNAME xmlns="http://hr.org" xmlns:d="http://fed.gov">PARKER
 </LASTNAME>
 <d:job xmlns="http://hr.org" xmlns:d="http://fed.gov">
 OPERATOR</d:job>
00031 <LASTNAME xmlns="http://hr.org" xmlns:d="http://fed.gov">
 SETRIGHT</LASTNAME>
 <d:job xmlns="http://hr.org" xmlns:d="http://fed.gov">
 OPERATOR</d:job>

662 IBM i: Db2 for i SQL Reference

XMLPARSE
The XMLPARSE function parses the arguments as an XML document and returns an XML value.

XMLPARSE (DOCUMENT string-expression
STRIP WHITESPACE

PRESERVE WHITESPACE

)

DOCUMENT
Specifies that the character string expression to be parsed must evaluate to a well-formed XML
document that conforms to XML 1.0.

string-expression
An expression that returns a value that is a built-in character, Unicode graphic, or binary string. If a
parameter marker is used, it must be explicitly cast to one of the supported data types.

STRIP WHITESPACE or PRESERVE WHITESPACE
Specifies whether or not whitespace in the input argument is to be preserved. If neither is specified,
STRIP WHITESPACE is the default.
STRIP WHITESPACE

Specifies that whitespace characters will be stripped unless the nearest containing element has
the attribute xml:space='preserve'. The whitespace characters in the CDATA section are also
affected by this option.

PRESERVE WHITESPACE
Specifies that all whitespace is to be preserved, even when the nearest containing element has
the attribute xml:space='default'.

The result of the function is XML. If the result of string-expression can be null, the result can be null; if the
result of string-expression is null, the result is the null value. The CCSID of the result is determined from
string-expression. If string-expression has a CCSID of 65535, the value from the SQL_XML_DATA_CCSID
QAQQINI option is used.

The input string may contain an XML declaration that identifies the encoding of the characters in the XML
document. The encoding in the XML declaration must match the encoding of the string-expression.

Examples

Example 1: Insert an XML document into the EMP table and preserve the whitespace in the original XML
document.

 INSERT INTO EMP (ID, XVALUE) VALUES(1001,
 XMLPARSE(DOCUMENT '<a xml:space=''preserve''> <c>c</c>b '
 PRESERVE WHITESPACE))

XMLPARSE will treat the value for the insert statement as equivalent to the following value:

<a xml:space='preserve'> <c>c</c>b

Example 2: Insert an XML document into the EMP table and strip the whitespace in the original XML
document.

 INSERT INTO EMP (ID, XVALUE) VALUES(1001,
 XMLPARSE(DOCUMENT
 '<a xml:space=''preserve''> <b xml:space=''default''> <c>c</c>b '
 STRIP WHITESPACE))

XMLPARSE will treat the value for the insert statement as equivalent to the following value:

<a xml:space='preserve'>
<b xml:space='default'><c>c</c>b

Chapter 4. Built-in functions 663

XMLPI
The XMLPI function returns an XML value with a single processing instruction.

XMLPI (NAME pi-name

, string-expression

)

NAME pi-name
Specifies the name of a processing instruction. The name is an SQL identifier that must be in the form
of an XML NCName. See the W3C XML namespace specifications for more details on valid names. The
name must not be "xml" in any case combination.

string-expression
An expression that returns a value that is a built-in character or graphic string. It cannot be CHAR or
VARCHAR bit data. The resulting string must conform to the content of an XML processing instruction
as specified by the following rules:

• The string must not contain the substring '?>' since this substring terminates a processing
instruction

• Each character of the string can be any Unicode character, excluding the surrogate blocks, X'FFFE',
and X'FFFF'.79

If string-expression does not conform to the previous rules, an error is returned.
The resulting string becomes the content of the processing instruction.

The result of the function is XML. If the result of string-expression can be null, the result can be null; if the
result of string-expression is null, the result is the null value. If string-expression is an empty string or is
not specified, the result is an empty processing instruction.

Example

• Generate an XML processing instruction.

 SELECT XMLPI(
 NAME "Instruction", 'Push the red button')
 FROM SYSIBM.SYSDUMMY1

This query produces the following result:

<?Instruction Push the red button?>

• Generate an empty XML processing instruction.

 SELECT XMLPI(NAME "Warning")
 FROM SYSIBM.SYSDUMMY1

This query produces the following result:

<?Warning ?>

79 Valid Unicode characters consist of the following Unicode code points: #x9, #xA, #xD, #x20-#xD7FF,
#xE000-#xFFFD, #x10000-#x10FFFF.

664 IBM i: Db2 for i SQL Reference

XMLROW
The XMLROW function returns an XML value that is a well-formed XML document.

XMLROW (

,

expression

AS qname-identifier

OPTION
1

ROW "row"

ROW row-name

AS ATTRIBUTES

)

Notes:
1 The same clause must not be specified more than once.

expression
The content of each XML element is specified by an expression. The data type of expression must
not be ROWID or DATALINK or a distinct type that is based on ROWID or DATALINK. When AS
ATTRIBUTES is specified, the data type of expression must not be XML or a distinct type that is
based on XML. The expression can be any SQL expression. If the expression is not a simple column
reference, an element name must be specified.

AS qname-identifier
Specifies the XML element name or attribute name as an SQL identifier. The qname-identifier must
be of the form of an XML qualified name, or QName. See the W3C XML namespace specifications for
more details on valid names. If the name is qualified, the namespace prefix must be declared within
the scope. If qname-identifier is not specified, expression must be a column name. The element name
or attribute name is created from the column name using the fully escaped mapping from a column
name to a QName.

OPTION
Specifies additional options for constructing the XML value. If no OPTION clause is specified, the
default behavior applies.

ROW row-name
Specifies the name of the element to which each row is mapped. If this option is not specified, the
default element name is "row".

AS ATTRIBUTES
Specifies that each expression is mapped to an attribute value with column name or qname-identifier
serving as the attribute name. AS ATTRIBUTES cannot be specified if any expression has a result data
type of XML.

The result is an XML sequence containing the concatenation of the non-null input XML values.

The result of the function is an XML value. Null values in the input are ignored. If the result of any
expression can be null, the result can be null; if the result of every expression is null, the result is the null
value.

Notes
By default, each row in the result set is mapped to an XML value as follows:

• Each row is transformed into an XML element named "row" and each expression is transformed into a
nested element with the column name or qname-identifier as the element name.

Chapter 4. Built-in functions 665

• The null handling behavior is NULL ON NULL. A null value for an expression maps to the absence of the
subelement. If all expression values are null, the function returns a null value.

• The binary encoding scheme for binary and FOR BIT DATA data types is base64Binary encoding.

Examples

Assume the following table T1 with columns C1 and C2:

 C1 C2
---- ----
 1 2
 - 2
 1 -
 - -

• The following example shows an XMLROW query and output fragment with default behavior, using a
sequence of row elements to represent the table:

 SELECT XMLROW(C1, C2) FROM T1

<row><C1>1</C1><C2>2</C2></row>
<row><C2>2</C2></row>
<row><C1>1</C1></row>
-

• The following example shows an XMLROW query and output fragment with attribute centric mapping.
Instead of appearing as nested elements, data is mapped to element attributes:

 SELECT XMLROW(C1, C2 OPTION AS ATTRIBUTES) FROM T1

<row C1="1" C2="2"/>
<row C2="2"/>
<row C1="1"/>
-

• The following example shows an XMLROW query and output fragment with the default <row> element
replaced by <entry>. Columns C1 and C2 are returned as <column1> and <column2> elements, and the
total of C1 and C2 is returned inside a <total> element:

 SELECT XMLROW(C1 AS "column1", C2 AS "column2",
 C1+C2 AS "total" OPTION ROW "entry") FROM T1

<entry><column1>1</column1><column2>2</column2><total>3</total></entry>
<entry><column2>2</column2></entry>
<entry><column1>1</column1></entry>
-

666 IBM i: Db2 for i SQL Reference

XMLSERIALIZE
The XMLSERIALIZE function returns a serialized XML value of the specified data type generated from the
XML-expression argument.

XMLSERIALIZE (
CONTENT

XML-expression AS data-type

VERSION '1.0'1

EXCLUDING XMLDECLARATION

INCLUDING XMLDECLARATION

)

data-type

Chapter 4. Built-in functions 667

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

normalize-clause

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BINARY LARGE OBJECT

BLOB

(1M)

(integer

K

M

G

)

Notes:
1 The same clause must not be specified more than once.

ccsid-clause

668 IBM i: Db2 for i SQL Reference

CCSID integer

normalize-clause

normalize-clause
NOT NORMALIZED

NORMALIZED

CONTENT
Specifies that any XML value can be specified and the result of the serialization is based on this input
value.

XML-expression
An expression that returns a value that is a built-in XML string. This is the input to the serialization
process.

AS data-type
Specifies the result type. The implicit or explicit length attribute of the specified result data type must
be sufficient to contain the serialized output.

If a CCSID is specified and the data-type is GRAPHIC, VARGRAPHIC, or DBCLOB, the CCSID must be a
Unicode CCSID.

If the CCSID attribute is not specified, the CCSID is determined as described in “CAST specification”
on page 176.

VERSION '1.0'
Specifies the XML version of the serialized value. The only version supported is '1.0' which must be
specified as a string constant.

EXCLUDING XMLDECLARATION or INCLUDING XMLDECLARATION
Specifies whether an XML declaration is included in the result. The default is EXCLUDING
XMLDECLARATION.
EXCLUDING XMLDECLARATION

Specifies that an XML declaration is not included in the result.
INCLUDING XMLDECLARATION

Specifies that an XML declaration is included in the result. The XML declaration is the string '<?xml
version="1.0" encoding="encoding-name"?>, where encoding-name matches the CCSID of the
result data type.

If the result of XML-expression can be null, the result can be null; if the result of XML-expression is null,
the result is the null value.

Examples

Example 1: Serialize into CLOB of UTF-8, the XML value that is returned by the XMLELEMENT function,
which is a simple XML element with "Emp" as the element name and an employee name as the element
content:

 SELECT e.empno, XMLSERIALIZE(XMLELEMENT(NAME "Emp",
 e.firstnme || ' ' ||e.lastname)
 AS CLOB(100) CCSID 1208) AS "result"
 FROM employee e WHERE e.lastname = 'SMITH'

The result looks similar to the following results:

 EMPNO result
 ----- ---------------------
 000250 <Emp>DANIEL SMITH</Emp>
 000300 <Emp>PHILIP SMITH</Emp>

Chapter 4. Built-in functions 669

Example 2: Serialize into a string of BLOB type, the XML value that is returned by the XMLELEMENT
function:

 SELECT XMLSERIALIZE(XMLELEMENT(NAME "Emp",
 e.firstnme || ' ' ||e.lastname)
 AS BLOB(1K)
 VERSION '1.0') AS "result"
 FROM employee e WHERE e.empno = '000300'

The result looks similar to the following results:

 result

 <Emp>PHILIP SMITH</Emp>

Example 3: Serialize into a string of CLOB type, the XML value that is returned by the XMLELEMENT
function. Include the XMLDECLARATION:

 SELECT e.empno, e.firstnme, e.lastname,
 XMLSERIALIZE(XMLELEMENT(NAME "xmp:Emp",
 XMLNAMESPACES('http://www.xmp.com' as "xmp"),
 XMLATTRIBUTES(e.empno as "serial"),
 e.firstnme, e.lastname
 OPTION NULL ON NULL)
 AS CLOB(1000) CCSID 1208
 INCLUDING XMLDECLARATION) AS "Result"
 FROM employee e WHERE e.empno = '000300'

The result looks similar to the following results:

 EMPNO FIRSTNME LASTNAME Result
 ------ --------- --------- -----------------------
 000300 PHILIP SMITH <?xml version="1.0" encoding="UTF-8" ?>
 <xmp:Emp xmlns:xmp="http://www.xmp.com"
 serial="000300">PHILIPSMITH</xmp:Emp>

670 IBM i: Db2 for i SQL Reference

XMLTEXT
The XMLTEXT function returns an XML value that contains the value of string-expression.

XMLTEXT (string-expression)

string-expression
An expression that returns a value of a built-in character or graphic string. It cannot be CHAR or
VARCHAR bit data.

The result of the function is an XML value. If the result of string-expression can be null, the result can be
null; if the result of string-expression is null, the result is the null value. If the result of string-expression is
an empty string, the result value is empty text.

Example

• Create a simple XMLTEXT query.

 VALUES (XMLTEXT (
 'The stock symbol for Johnson&Johnson is JNJ.'))

This query produces the following serialized result:

The stock symbol for Johnson&Johnson is JNJ.

Note that the '&' sign is mapped to '&' when the text is serialized.
• Use XMLTEXT with XMLAGG to construct mixed content. Suppose that the content of table T is as

follows:

• SEQNO PLAINTEXT EMPHTEXT
----- -- ----------
1 This query shows how to construct mixed content
2 using XMLAGG and XMLTEXT. Without XMLTEXT
3 , XMLAGG will not have text nodes to group with other nodes, mixed content
 therefore, cannot generate

SELECT XMLELEMENT(NAME "para",
 XMLAGG(XMLCONCAT(
 XMLTEXT(PLAINTEXT),
 XMLELEMENT(
 NAME "emphasis", EMPHTEXT))
 ORDER BY SEQNO), '.') AS "result"
 FROM T

This query produces the following result:

result
--
<para>This query shows how to construct <emphasis>mixed content</emphasis>
using XMLAGG and XMLTEXT. Without <emphasis>XMLTEXT</emphasis>, XMLAGG
will not have text nodes to group with other nodes, therefore, cannot generate
<emphasis>mixed content</emphasis>.</para>

Chapter 4. Built-in functions 671

XMLVALIDATE
The XMLVALIDATE function returns a copy of the input XML value augmented with information obtained
from XML schema validation, including default values and type annotations.

XMLVALIDATE (
DOCUMENT

XML-expression

XML-validate-according-to-clause

)

XML-validate-according-to-clause
ACCORDING TO XMLSCHEMA

ID XML-schema-name

URI XML-uri1

NO NAMESPACE LOCATION XML-uri2

XML-valid-element-clause

XML-valid-element-clause

NAMESPACE XML-uri3

NO NAMESPACE

ELEMENT XML-element-name

DOCUMENT
Specifies that the XML value resulting from XML-expression must be a well-formed XML document that
conforms to XML Version 1.0.

XML-expression
An expression that returns a value of data type XML. If XML-expression is an XML host variable or an
implicitly or explicitly typed parameter marker, the function performs a validating parse that strips
ignorable whitespace and the CURRENT IMPLICIT XMLPARSE OPTION setting is not considered.

XML-validate-according-to-clause
Specifies the information that is to be used when validating the input XML value.
ACCORDING TO XMLSCHEMA

Indicates that the XML schema information for validation is explicitly specified. If this clause is
not included, the XML schema information must be provided in the content of the XML-expression
value.
ID XML-schema-name

Specifies an SQL identifier for the XML schema that is to be used for validation. The name,
including the implicit or explicit SQL schema qualifier, must uniquely identify an existing XML
schema in the XML schema repository at the current server. If no XML schema by this name
exists in the implicitly or explicitly specified SQL schema, an error is returned.

URI XML-uri1
Specifies the target namespace URI of the XML schema that is to be used for validation. The
value of XML-uri1 specifies a URI as a character string constant that is not empty. The URI
must be the target namespace of a registered XML schema and, if no LOCATION clause is
specified, it must uniquely identify the registered XML schema.

NO NAMESPACE
Specifies that the XML schema for validation has no target namespace. The target namespace
URI is equivalent to an empty character string that cannot be specified as an explicit target
namespace URI.

672 IBM i: Db2 for i SQL Reference

LOCATION XML-uri2
Specifies the XML schema location URI of the XML schema that is to be used for validation.
The value of XML-uri2 specifies a URI as a character string constant that is not empty. The XML
schema location URI, combined with the target namespace URI, must identify a registered
XML schema, and there must be only one such XML schema registered.

XML-valid-element-clause
Specifies that the XML value in XML-expression must have the specified element name as the root
element of the XML document.
NAMESPACE XML-uri3 or NO NAMESPACE

Specifies the target namespace for the element that is to be validated. If neither clause
is specified, the specified element is assumed to be in the same namespace as the target
namespace of the registered XML schema that is to be used for validation.
NAMESPACE XML-uri3

Specifies the namespace URI for the element that is to be validated. The value of XML-uri3
specifies a URI as a character string constant that is not empty. This can be used when the
registered XML schema that is to be used for validation has more than one namespace.

NO NAMESPACE
Specifies that the element for validation has no target namespace. The target namespace
URI is equivalent to an empty character string which cannot be specified as an explicit
target namespace URI.

ELEMENT xml-element-name
Specifies the name of a global element in the XML schema that is to be used for validation.
The specified element, with implicit or explicit namespace, must match the root element
of the value of XML-expression.

The result of the function is XML. If the value of XML-expression can be null, the result can be null; if the
value of XML-expression is null, the result is the null value. The CCSID of the result is determined from the
XML-expression.

The XML validation process is performed on a serialized XML value. Because XMLVALIDATE is invoked
with an argument of type XML, this value is automatically serialized prior to validation processing with the
following two exceptions:

• If the argument to XMLVALIDATE is an XML host variable or an implicitly or explicitly typed parameter
marker, then a validating parse operation is performed on the input value (no implicit non-validating
parse is performed and the CURRENT IMPLICIT XMLPARSE OPTION setting is not considered).

• If the argument to XMLVALIDATE is an XMLPARSE invocation using the option PRESERVE WHITESPACE,
then the XML parsing and XML validation of the document may be combined into a single validating
parse operation.

To validate a document whose root element does not have a namespace, an
xsi:noNamespaceSchemaLocation attribute must be present on the root element.

Notes
Determining the XML schema: The XML schema can be specified explicitly as part of the XMLVALIDATE
invocation or determined from the XML schema information in the input XML value. If the XML schema
information is not specified during invocation, the target namespace and the schema location in the input
XML value are used to identify the registered schema for validation. If an explicit XML schema is not
specified, the input XML value must contain an XML schema information hint. Explicit or implicit XML
schema information must identify a registered XML schema, and there must be only one such registered
XML schema.

If you do not specify an XML schema document, the database server looks in the input document for
an xsi:schemaLocation attribute that specifies a namespace and location hint for the XML schema. When
there is no target namespace for the XML schema, the xsi:noNamespaceSchemaLocation attribute is used
to specify a location hint for the XML schema.

Chapter 4. Built-in functions 673

xsi:schemaLocation or xsi:noNamespaceSchemaLocation attributes are defined by the W3C XML schema
specification and are called XML schema hints. An xsi:schemaLocation attribute contains one or more
pairs of values that help to locate the XML schema document. The first value in each pair is a namespace
and the second value is a hint that indicates where to find the XML schema for the namespace. Db2
for i will attempt to match a namespace and location hint to an XML schema, using the primary XML
schema document's target namespace and the schemalocation parameter that was supplied on the
XSR_REGISTER procedure call.

If an XML schema document is specified in the XMLVALIDATE function, it overrides the
xsi:schemaLocation or xsi:noNamespaceSchemaLocation attribute.

If xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes are not defined by the XML
document, Db2 for i will attempt to locate an XML schema where the target namespace of the primary
XSD matches a namespace in the XML document.

Specifying the XML schema explicitly in the XMLVALIDATE function avoids the parsing required to locate
the XML schema information hint in the XML value.

XML schema authorization: The XML schema used for validation must be registered in the XML schema
repository prior to use. The privileges held by the authorization ID of the statement must include at least
one of the following:

• USAGE privilege on the XML schema that is to be used during validation
• Database administrator authority

Examples

• Validate using the XML schema identified by the XML schema hint in the XML instance document.

 INSERT INTO T1(XMLCOL)
 VALUES (XMLVALIDATE(?))

Assume that the input parameter marker is bound to an XML value that contains the XML schema
information.

 <po:order
 xmlns:po='http://my.world.com'
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://my.world.com/world.xsd" >
 ...
 </po:order>

Further, assume that the XML schema that is associated with the target namespace "http://
my.world.com" and by schemaLocation hint "http://my.world.com/world.xsd" is found in the XML
schema repository

Based on these assumptions, the input XML value will be validated according to that XML schema.
• Validate using the XML schema identified by the SQL name PODOCS.WORLDPO

 INSERT INTO T1(XMLCOL)
 VALUES(
 XMLVALIDATE(? ACCORDING TO XMLSCHEMA ID PODOCS.WORLDPO))

Assuming that the XML schema that is associated with SQL name PODOC.WORLDPO is found in the XML
schema repository, the input XML value will be validated and the type annotated according to that XML
schema.

• Validate a specified element of the XML value.

 INSERT INTO T1(XMLCOL)
 VALUES(
 XMLVALIDATE(?
 ACCORDING TO XMLSCHEMA ID FOO.WORLDPO
 NAMESPACE 'http://my.world.com/Mary'
 ELEMENT "po"))

674 IBM i: Db2 for i SQL Reference

Assuming that the XML schema that is associated with SQL name FOO.WORLDPO is found in the XML
schema repository, the XML schema will be validated against the element "po", whose namespace is
"http://my.world.com/Mary".

• XML schema is identified by target namespace and schema location.

 INSERT INTO T1(XMLCOL)
 VALUES(
 XMLVALIDATE(?
 ACCORDING TO XMLSCHEMA URI 'http://my.world.com'
 LOCATION 'http://my.world.com/world.xsd'))

Assuming that an XML schema associated with the target namespace "http://my.world.com" and by
schemaLocation hint "http://my.world.com/world.xsd" is found in the XML schema repository, the input
XML value will be validated according to that XML schema.

Chapter 4. Built-in functions 675

XOR
The XOR function returns a string that is the logical XOR of the argument strings. This function takes
the first argument string, does an XOR operation with the next string, and then continues to do XOR
operations for each successive argument using the previous result. If a character-string argument is
shorter than the previous result, it is padded with blanks. If a binary-string argument is shorter than the
previous result, it is padded with hexadecimal zeros.

XOR (expression , expression)

The arguments must be compatible.

expression
An expression that returns a value of any built-in numeric or string data type, but cannot be LOBs.
The arguments cannot be mixed data character strings, UTF-8 character strings, or graphic strings. A
numeric argument is cast to a character string before evaluating the function. For more information
about converting numeric to a character string, see “VARCHAR” on page 623.

The arguments are converted, if necessary, to the attributes of the result. The attributes of the result are
determined as follows:

• If all the arguments are fixed-length strings, the result is a fixed-length string of length n, where n is the
length of the longest argument.

• If any argument is a varying-length string, the result is a varying-length string with length attribute n,
where n is the length attribute of the argument with greatest length attribute. The actual length of the
result is m, where m is the actual length of the longest argument.

If an argument can be null, the result can be null; if an argument is null, the result is the null value.

The CCSID of the result is 65535.

Example

• Assume the host variable L1 is a CHARACTER(2) host variable with a value of X'E1E1', host variable L2 is
a CHARACTER(3) host variable with a value of X'F0F000', and host variable L3 is a CHARACTER(4) host
variable with a value of X'0000000F'.

 SELECT XOR(:L1,:L2,:L3)
 FROM SYSIBM.SYSDUMMY1

Returns the value X'1111404F'.

676 IBM i: Db2 for i SQL Reference

XSLTRANSFORM
The XSLTRANSFORM transforms an XML document into a different data format. The data can be
transformed into any form possible for the XSLT processor, including but not limited to XML, HTML, or
plain text.

XSLTRANSFORM (XML-document USING xsl-stylesheet

WITH xsl-parameters

AS CLOB (2G)

AS data-type

)

data-type

Chapter 4. Built-in functions 677

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

normalize-clause

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

)

ccsid-clause
CCSID integer

normalize-clause

normalize-clause

678 IBM i: Db2 for i SQL Reference

NOT NORMALIZED

NORMALIZED

Use XSLTRANSFORM to convert XML data into other formats including the conversion of XML documents
that conform to one XML schema into documents that conform to another XML schema.

XML-document
A character string, Unicode graphic string, binary string, or XML expression that returns a well-formed
XML document. This is the document that is transformed using the XSL style sheet specified in
xsl-stylesheet.

xsl-stylesheet
A character string, Unicode graphic string, binary string, or XML expression that returns a well-formed
XML document. The document is an XSL style sheet that conforms to the XSLT Version 1.10
Recommendation. Style sheets incorporating the xsl:include declaration are not supported. This
stylesheet is applied to transform the value specified in xml-document.

xsl-parameters
A character string, Unicode graphic string, binary string, or XML expression that returns a well-formed
XML document. This is a document that provides parameter values to the XSL stylesheet specified in
xsl-stylesheet. The value of the parameter can be specified as an attribute or as text.
The syntax of the parameter document is as follows:

<params xmlns="http://www.ibm.com/XSLTransformParameters">
<param name="..." value="..."/>
<param name="...">enter value here</param> ... </params>

Note: The stylesheet document must have xsl:param element(s) in it with name attribute values
that match the ones specified in the parameter document.

AS data-type
Specifies the result data type. The implicit or explicit length attribute of the specified result data type
must be sufficient to contain the transformed output. The default result data type is CLOB(2G).

If a CCSID is specified and the data-type is GRAPHIC, VARGRAPHIC, or DBCLOB, the CCSID must be a
Unicode CCSID.

If the CCSID attribute is not specified, the CCSID is determined as if the XML-document was cast to
data-type as described in “CAST specification” on page 176.

The result of the function has the data type specified. CCSID conversion that results in data loss can occur
when storing any of the above documents in a character data type.

If either XML-document or xsl-stylesheet is null, the result is the null value.

Note
Prerequisites: In order to use the XSLTRANSFORM function, the XML Toolkit for IBM i and International
Components for Unicode (ICU option) must be installed.

Example
This example illustrates how to use XSLT as a formatting engine. To get set up, first insert the two example
documents below into the database.

CREATE TABLE XML_TAB (c1 INT, xml_doc CLOB(2M), xsl_doc CLOB(256K));
INSERT INTO XML_TAB VALUES
 (1, '<?xml version="1.0"?>
<students xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation = "/home/steffen/xsd/xslt.xsd">
<student studentID="1" firstName="Steffen" lastName="Siegmund"
 age="23" university="Rostock"/>
</students>',

Chapter 4. Built-in functions 679

'<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:param name="headline"/>
<xsl:param name="showUniversity"/>

 <xsl:template match="students">
 <html>
 <head/>
 <body>
 <h1><xsl:value-of select="$headline"/></h1>
 <table border="1">
 <th>
 <tr>
 <td width="80">StudentID</td>
 <td width="200">First Name</td>
 <td width="200">Last Name</td>
 <td width="50">Age</td>
 <xsl:choose>
 <xsl:when test="$showUniversity =''true''">
 <td width="200">University</td>
 </xsl:when>
 </xsl:choose>
 </tr>
 </th>
 <xsl:apply-templates/>
 </table>
 </body>
 </html>
 </xsl:template>
 <xsl:template match="student">
 <tr>
 <td><xsl:value-of select="@studentID"/></td>
 <td><xsl:value-of select="@firstName"/></td>
 <td><xsl:value-of select="@lastName"/></td>
 <td><xsl:value-of select="@age"/></td>
 <xsl:choose>
 <xsl:when test="$showUniversity = ''true''">
 <td><xsl:value-of select="@university"/></td>
 </xsl:when>
 </xsl:choose>
 </tr>
 </xsl:template>
</xsl:stylesheet>');

Next, call the XSLTRANSFORM function to convert the XML data into HTML and display it.

SELECT XSLTRANSFORM (XML_DOC USING XSL_DOC
 WITH '<params xmlns="http://www.ibm.com/XSLTransformParameters"></params>')
FROM XML_TAB;

The result is this document:

<html>
<head>
<META http-equiv="Content-Type" content="text/html; charset=UTF-8">
</head>
<body>
<h1></h1>
<table border="1">
<th>
<tr>
<td width="80">StudentID</td>
<td width="200">First Name</td>
<td width="200">Last Name</td>
<td width="50">Age</td>
</tr>
</th>
<tr>
<td>1</td>
<td>Steffen</td>
<td>Siegmund</td>
<td>23</td>
</tr>
</table>
</body>
</html>

680 IBM i: Db2 for i SQL Reference

In this example, the output is HTML and the parameters influence only what HTML is produced and what
data is brought over to it. As such it illustrates the use of XSLT as a formatting engine for end-user output.

Chapter 4. Built-in functions 681

YEAR
The YEAR function returns the year part of a value.

YEAR (expression)

expression
An expression that returns a value of one of the following built-in data types: a date, a timestamp, a
character string, a graphic string, or a numeric data type.

• If expression is a character or graphic string, its value must be a valid string representation of a date
or timestamp. For the valid formats of string representations of dates and timestamps, see “String
representations of datetime values” on page 75.

• If expression is a number, it must be a date duration or timestamp duration. For the valid formats of
datetime durations, see “Datetime operands and durations” on page 165.

The result of the function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

The other rules depend on the data type of the argument:

• If the argument is a date or a timestamp or a valid character-string representation of a date or
timestamp:

The result is the year part of the value, which is an integer between 1 and 9999.
• If the argument is a date duration or timestamp duration:

The result is the year part of the value, which is an integer between -9999 and 9999. A nonzero result
has the same sign as the argument.

Examples

• Select all the projects in the PROJECT table that are scheduled to start (PRSTDATE) and end
(PRENDATE) in the same calendar year.

 SELECT *
 FROM PROJECT
 WHERE YEAR(PRSTDATE) = YEAR(PRENDATE)

• Select all the projects in the PROJECT table that are scheduled to take less than one year to complete.

 SELECT *
 FROM PROJECT
 WHERE YEAR(PRENDATE - PRSTDATE) < 1

682 IBM i: Db2 for i SQL Reference

ZONED
The ZONED function returns a zoned decimal representation.

Numeric to Zoned Decimal

ZONED (numeric-expression

, precision-integer

, scale-integer

)

String to Zoned Decimal

ZONED (string-expression

, precision

, scale

, decimal-character

)

Datetime to Decimal

ZONED (datetime-expression

, precision

, scale

)

The ZONED function returns a zoned decimal representation of:

• A number
• A character or graphic string representation of a decimal number
• A character or graphic string representation of an integer
• A character or graphic string representation of a floating-point number
• A character or graphic string representation of a decimal floating-point number
• A date
• A time
• A timestamp

Numeric to Zoned Decimal
numeric-expression

An expression that returns a value of any built-in numeric data type.
precision

An integer constant with a value greater than or equal to 1 and less than or equal to 63.

The default for precision depends on the data type of the numeric-expression:

• 5 for small integer
• 11 for large integer
• 19 for big integer
• 15 for floating point, decimal, numeric, or nonzero scale binary
• 31 for decimal floating point

Chapter 4. Built-in functions 683

scale
An integer constant that is greater than or equal to 0 and less than or equal to precision. If not
specified, the default is 0.

The result is the same number that would occur if the first argument were assigned to a decimal column
or variable with a precision of precision and a scale of scale. An error is returned if the number of
significant decimal digits required to represent the whole part of the number is greater than precision-
scale. If the first argument can be null, the result can be null; if the first argument is null, the result is the
null value.

String to Zoned Decimal
string-expression

An expression that returns a value that is a character-string or graphic-string representation of a
number. Leading and trailing blanks are eliminated and the resulting string must conform to the rules
for forming a floating-point, decimal floating-point, integer, or decimal constant.

precision
An integer constant that is greater than or equal to 1 and less than or equal to 63. If not specified, the
default is 15.

scale
An integer constant that is greater than or equal to 0 and less than or equal to precision. If not
specified, the default is 0.

decimal-character
Specifies the single-byte character constant that was used to delimit the decimal digits in string-
expression from the whole part of the number. The character must be a period or comma. If the
second argument is not specified, the decimal point is the default decimal separator character. For
more information, see “Decimal point” on page 116.

Digits are truncated from the end if the number of digits to the right of the decimal-character is greater
than the scale s. An error is returned if the number of significant digits to the left of the decimal-character
(the whole part of the number) in string-expression is greater than precision-scale. The default decimal
separator character is not valid in the substring if the decimal-character argument is specified.

Datetime to Zoned Decimal
datetime-expression

An expression that returns a value of type DATE, TIME, or TIMESTAMP.
precision

An integer constant that is greater than or equal to 1 and less than or equal to 63 that specifies the
precision of the result. If not specified, the default for the precision and scale depends on the data
type of datetime-expression as follows:

• Precision is 8 and scale is 0 for DATE. The result is a NUMERIC(8,0) value representing the date as
yyyymmdd.

• Precision is 6 and scale is 0 for a TIME. The result is a NUMERIC(6,0) value representing the time as
hhmmss.

• Precision is 14+tp and scale is tp for a TIMESTAMP(tp). The result is a NUMERIC(14+tp,tp) value
representing the timestamp as yyyymmddhhmmss.nnnnnnnnnnnn.

scale
An integer constant that is greater than or equal to 0 and less than or equal to precision. If not
specified and a precision is specified, the default is 0.

The result is the same number that would result from CAST(datetime-expression AS
NUMERIC(precision,scale)). Digits are truncated from the end if the number of digits to the right of the
decimal separator is greater than the scale s. An error is returned if the number of significant digits to
the left of the decimal separator (the whole part of the number) in datetime-expression is greater than
precision - scale.

684 IBM i: Db2 for i SQL Reference

The result of the function is a zoned decimal number with precision of precision and scale of scale. If the
first argument can be null, the result can be null; if the first argument is null, the result is the null value.

Note
Syntax alternatives: The CAST specification should be used to increase the portability of applications
when the precision is specified. For more information, see “CAST specification” on page 176.

Examples

• Assume the host variable Z1 is a decimal host variable with a value of 1.123.

 SELECT ZONED(:Z1,15,14)
 FROM SYSIBM.SYSDUMMY1

Returns the value 1.12300000000000.
• Assume the host variable Z1 is a decimal host variable with a value of 1123.

 SELECT ZONED(:Z1,11,2)
 FROM SYSIBM.SYSDUMMY1

Returns the value 1123.00.
• Likewise,

 SELECT ZONED(:Z1,4)
 FROM SYSIBM.SYSDUMMY1

Returns the value 1123.

Chapter 4. Built-in functions 685

Table functions
Table functions return columns of a table and resemble a table created through a CREATE TABLE
statement.

A table function can be used only in the FROM clause of an SQL statement. Table functions can be
qualified with a schema name.

686 IBM i: Db2 for i SQL Reference

BASE_TABLE
The BASE_TABLE function returns the object names and schema names of the object found for an alias.

BASE_TABLE (object-schema , object-name)

The schema is SYSPROC.

object-schema
A character or graphic string expression that identifies the SQL or system schema name used to
qualify the supplied object-name. object-schema must have an actual length less than 129 characters.
A special value of *LIBL may be specified, in which case, the first instance of a file named object-name
found in the library list will be used. This name is case sensitive and must not be delimited.

object-name
A character or graphic string expression that identifies the SQL or system name of the object to
be resolved. object-name must have an actual length less than 129 characters. This name is case
sensitive and must not be delimited.

If the specified object does not refer to an alias or it is not found, the result of the function is the input
object name and schema.

The result of the function is a table containing a single row with the format shown in the following table.
All the columns are nullable.

Table 64. Format of the resulting table for BASE_TABLE

Column name Data type Contains

BASESCHEMA VARCHAR(128) Name of the SQL schema that contains the table or
view referenced by the alias. This is object-schema
if no alias was found. The name is undelimited and
case sensitive.

BASENAME VARCHAR(128) Name of the table or view referenced by the alias.
This is the object-name if no alias was found. The
name is undelimited and case sensitive.

SYSTEM_TABLE_SCHEMA CHAR(10) System schema name. This column will contain
the NULL value if no alias was found or if the
alias references a remote RDB. The name may be
delimited and is case sensitive.

SYSTEM_TABLE_NAME CHAR(10) System table name. This column will contain the
NULL value if no alias was found or if the alias
references a remote RDB. The name may be
delimited and is case sensitive.

MEMBER_NAME CHAR(10) The member name that was identified for a
member alias. This column will contain the NULL
value if no alias was found or if the alias does not
reference a specific member. The name may be
delimited and is case sensitive.

RDBNAME VARCHAR(128) The RDB if the object is a three-part alias for a
remote object. This column will contain the NULL
value if no alias was found or there is no RDB is
associated with the alias.

The CCSID of the result columns is the default CCSID at the current server.

Chapter 4. Built-in functions 687

Example

• The following query will return the base table information for every alias identified in SYSTABLES:

SELECT C.BASESCHEMA, C.BASENAME
FROM QSYS2.SYSTABLES A,
LATERAL (
 SELECT * FROM TABLE(SYSPROC.BASE_TABLE(A.TABLE_SCHEMA,A.TABLE_NAME)) AS X)
 AS C
WHERE A.TABLE_TYPE=’A’

688 IBM i: Db2 for i SQL Reference

HTTP_DELETE_VERBOSE
The HTTP_DELETE_VERBOSE table function deletes a text-based resource from the specified URL through
an HTTP DELETE request. It returns a one row table that contains the normal HTTP response for the
request and the header information returned from the HTTP request.

HTTP_DELETE_VERBOSE (url

, options

)

url
An expression that returns a built-in character string or graphic string data type that specifies the URL
of the resource being accessed.
The only supported protocols in the URL are http:// and https://. HTTP basic authentication in the form
https://userid:password@ cannot be specified in the URL. Instead, the basicAuth option must be used
to specify the userid and password for basic authentication.

options
An expression that returns a built-in character string or graphic string data type. This string must be
formatted as a JSON object containing the options, including headers, for the request. See “HTTP
options” on page 428 for the list of options.
If no options are provided, the default options are used.

The result of the function is table containing a single row with the format shown in the following table.

Table 65. HTTP_DELETE_VERBOSE result table

Column name Data type Description

RESPONSE_MESSAGE CLOB(2G) CCSID 1208 The HTTP response for the
request.

RESPONSE_HTTP_HEADER CLOB(2G) CCSID 1208 Header information returned
from the HTTP request,
formatted as a JSON object.

Notes
For more information about using the HTTP functions see HTTP functions overview.

Example

• Send a HTTP DELETE request to https://www.example.com/delete using the certificate store /home/
javaTrustStore/fromJava.KDB. Return the result and header information.

SELECT * FROM TABLE(QSYS2.HTTP_DELETE_VERBOSE(
 'https://www.example.com/delete',
 '{"sslCertificateStoreFile":"/home/javaTrustStore/fromJava.KDB"}'));

Chapter 4. Built-in functions 689

HTTP_GET_VERBOSE
The HTTP_GET_VERBOSE table function retrieves a text-based resource from the specified URL through
an HTTP GET request. It returns a one row table that contains the normal HTTP response for the request
and the header information returned from the HTTP request

HTTP_GET_VERBOSE (url

, options

)

url
An expression that returns a built-in character string or graphic string data type that specifies the URL
of the resource being accessed.
The only supported protocols in the URL are http:// and https://. HTTP basic authentication in the form
https://userid:password@ cannot be specified in the URL. Instead, the basicAuth option must be used
to specify the userid and password for basic authentication.

options
An expression that returns a built-in character string or graphic string data type. This string must be
formatted as a JSON object containing the options, including headers, for the request. See “HTTP
options” on page 428 for the list of options.
If no options are provided, the default options are used.

The result of the function is table containing a single row with the format shown in the following table.

Table 66. HTTP_GET_VERBOSE result table

Column name Data type Description

RESPONSE_MESSAGE CLOB(2G) CCSID 1208 The HTTP response for the
request.

RESPONSE_HTTP_HEADER CLOB(2G) CCSID 1208 Header information returned
from the HTTP request,
formatted as a JSON object.

Notes
For more information about using the HTTP functions see HTTP functions overview.

Example

• Retrieve service information from the IBM PSP website using a certificate store created from a Java
certificate store. See SSL considerations for more information.

SELECT * FROM TABLE(QSYS2.HTTP_GET_VERBOSE(
 'https://www.ibm.com/support/pages/sites/default/files/inline-files/
xmldoc.xml',
 '{"sslCertificateStoreFile":"/home/javaTrustStore/fromJava.KDB"}'));

690 IBM i: Db2 for i SQL Reference

HTTP_PATCH_VERBOSE
The HTTP_PATCH_VERBOSE table function updates a text-based resource under the specified URL
through an HTTP PATCH request. It returns a one row table that contains the normal HTTP response
for the request and the header information returned from the HTTP request.

HTTP_PATCH_VERBOSE (url , request-message

, options

)

url
An expression that returns a built-in character string or graphic string data type that specifies the URL
of the resource being accessed.
The only supported protocols in the URL are http:// and https://. HTTP basic authentication in the form
https://userid:password@ cannot be specified in the URL. Instead, the basicAuth option must be used
to specify the userid and password for basic authentication.

request-message
An expression that returns a built-in character string or graphic string data type that specifies the data
to update at the specified URL.

options
An expression that returns a built-in character string or graphic string data type. This string must be
formatted as a JSON object containing the options, including headers, for the request. See “HTTP
options” on page 428 for the list of options.
If no options are provided, the default options are used.

The result of the function is table containing a single row with the format shown in the following table.

Table 67. HTTP_PATCH_VERBOSE result table

Column name Data type Description

RESPONSE_MESSAGE CLOB(2G) CCSID 1208 The HTTP response for the
request.

RESPONSE_HTTP_HEADER CLOB(2G) CCSID 1208 Header information returned
from the HTTP request,
formatted as specified by the
verboseResponseHeaderFormat
option.

Notes
For more information about using the HTTP functions see HTTP functions overview.

Example

• Send a HTTP PATCH request to https://www.example.com/users sending 'ABC' and using the certificate
store /home/javaTrustStore/fromJava.KDB. Return the result and header information.

SELECT * FROM TABLE(QSYS2.HTTP_PATCH_VERBOSE(
 'https://www.example.com/users',
 'ABC',
 '{"sslCertificateStoreFile":"/home/javaTrustStore/fromJava.KDB"}'));

Chapter 4. Built-in functions 691

HTTP_POST_VERBOSE
The HTTP_POST_VERBOSE table function updates a text-based resource under the specified URL through
an HTTP POST request. It returns a one row table that contains the normal HTTP response for the request
and the header information returned from the HTTP request.

HTTP_POST_VERBOSE (url , request-message

, options

)

url
An expression that returns a built-in character string or graphic string data type that specifies the URL
of the resource being accessed.
The only supported protocols in the URL are http:// and https://. HTTP basic authentication in the form
https://userid:password@ cannot be specified in the URL. Instead, the basicAuth option must be used
to specify the userid and password for basic authentication.

request-message
An expression that returns a built-in character string or graphic string data type that specifies the data
to update at the specified URL.

options
An expression that returns a built-in character string or graphic string data type. This string must be
formatted as a JSON object containing the options, including headers, for the request. See “HTTP
options” on page 428 for the list of options.
If no options are provided, the default options are used.

The result of the function is table containing a single row with the format shown in the following table.

Table 68. HTTP_POST_VERBOSE result table

Column name Data type Description

RESPONSE_MESSAGE CLOB(2G) CCSID 1208 The HTTP response for the
request.

RESPONSE_HTTP_HEADER CLOB(2G) CCSID 1208 Header information returned
from the HTTP request,
formatted as a JSON object.

Notes
For more information about using the HTTP functions see HTTP functions overview.

Example

• Send a HTTP POST request to https://www.example.com/users sending 'ABC' and using the certificate
store /home/javaTrustStore/fromJava.KDB. Return the result and header information.

SELECT * FROM TABLE(QSYS2.HTTP_POST_VERBOSE(
 'https://www.example.com/users',
 'ABC',
 '{"sslCertificateStoreFile":"/home/javaTrustStore/fromJava.KDB"}'));

692 IBM i: Db2 for i SQL Reference

HTTP_PUT_VERBOSE
The HTTP_PUT_VERBOSE table function updates a text-based resource under the specified URL through
an HTTP PUT request. It returns a one row table that contains the normal HTTP response for the request
and the header information returned from the HTTP request.

HTTP_PUT_VERBOSE (url , request-message

, options

)

url
An expression that returns a built-in character string or graphic string data type that specifies the URL
of the resource being accessed.
The only supported protocols in the URL are http:// and https://. HTTP basic authentication in the form
https://userid:password@ cannot be specified in the URL. Instead, the basicAuth option must be used
to specify the userid and password for basic authentication.

request-message
An expression that returns a built-in character string or graphic string data type that specifies the data
to update at the specified URL.

options
An expression that returns a built-in character string or graphic string data type. This string must be
formatted as a JSON object containing the options, including headers, for the request. See “HTTP
options” on page 428 for the list of options.
If no options are provided, the default options are used.

The result of the function is table containing a single row with the format shown in the following table.

Table 69. HTTP_PUT_VERBOSE result table

Column name Data type Description

RESPONSE_MESSAGE CLOB(2G) CCSID 1208 The HTTP response for the
request.

RESPONSE_HTTP_HEADER CLOB(2G) CCSID 1208 Header information returned
from the HTTP request,
formatted as a JSON object.

Notes
For more information about using the HTTP functions see HTTP functions overview.

Example

• Send a HTTP PUT request to https://www.example.com/users sending 'ABC' and using the certificate
store /home/javaTrustStore/fromJava.KDB. Return the result and header information.

SELECT * FROM TABLE(QSYS2.HTTP_PUT_VERBOSE(
 'https://www.example.com/users',
 'ABC',
 '{"sslCertificateStoreFile":"/home/javaTrustStore/fromJava.KDB"}'));

Chapter 4. Built-in functions 693

JSON_TABLE
The JSON_TABLE table function returns a result table from the evaluation of SQL/JSON path expressions.
Each item in the result sequence of the row SQL/JSON path expression represents one or many rows in
the result table.

JSON_TABLE (JSON-expression

FORMAT JSON

FORMAT BSON

, sql-json-path-expression

AS path-name

COLUMNS (

,

json-table-regular-column-definition

json-table-formatted-column-definition

json-table-ordinality-column-definition

json-table-nested-column-definition

)
EMPTY ON ERROR

ERROR ON ERROR

1

)

Notes:
1 The ON ERROR clause can optionally be specified before the COLUMNS clause.

json-table-regular-column-definition
column-name data-type

PATH column-path-expression-constant

NULL ON EMPTY

ERROR

DEFAULT default-expression

ON EMPTY

NULL

ERROR

DEFAULT default-expression

ON ERROR

json-table-formatted-column-definition

694 IBM i: Db2 for i SQL Reference

column-name data-type FORMAT JSON

PATH column-path-expression-constant

WITHOUT
ARRAY

WRAPPER

WITH
UNCONDITIONAL

CONDITIONAL

ARRAY
WRAPPER

KEEP QUOTES
ON SCALAR STRING

OMIT QUOTES
ON SCALAR STRING

NULL ON EMPTY

ERROR

EMPTY ARRAY

EMPTY OBJECT

ON EMPTY NULL

ERROR

EMPTY ARRAY

EMPTY OBJECT

ON ERROR

json-table-ordinality-column-definition
column-name FOR ORDINALITY

json-table-nested-column-definition

NESTED
PATH

nested-path-expression-constant

AS nested-path-name

COLUMNS (

,

json-table-regular-column-definition

json-table-formatted-column-definition

json-table-ordinality-column-definition

json-table-nested-column-definition

)

data-type

Chapter 4. Built-in functions 695

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

normalize-clause

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

ccsid-clause
CCSID integer

normalize-clause

normalize-clause

696 IBM i: Db2 for i SQL Reference

NOT NORMALIZED

NORMALIZED

JSON-expression
Specifies an expression that returns a character, graphic, or binary string value. If a character or
graphic value is returned, it must contain a correctly formatted JSON object. If a binary value is
returned, it must contain the BSON representation of a JSON object.
The JSON-expression specifies the initial context item for the sql-json-path-expression, identified
within sql-json-path-expression as $.
If JSON-expression is a JSON array, it will be implicitly wrapped using a key name of
SYSIBM_ROOT_ARRAY modifying the JSON-expression to be a JSON object. Any path expressions
provided to JSON_TABLE are implicitly modified to account for this additional key.
If JSON-expression does not contain correctly formatted data, JSON_TABLE returns an empty table
unless a different error behavior is specified with an ON ERROR clause.

FORMAT JSON or FORMAT BSON
Specifies how JSON-expression is to be interpreted.
FORMAT JSON

Indicates that JSON-expression contains JSON data. If JSON-expression is binary data, the data is
interpreted as UTF-8 or UTF-16. The binary data cannot be encoded using an EBCDIC CCSID.

FORMAT BSON
Indicates that JSON-expression contains the BSON representation of JSON data. When FORMAT
BSON is specified, JSON-expression must be a binary string data type.

If the FORMAT clause is not specified and JSON-expression is a character or graphic string, JSON-
expression is treated as JSON. If JSON-expression is a binary string, JSON-expression is treated as
BSON.

sql-json-path-expression
Specifies a character or graphic string expression that is interpreted as an SQL/JSON path expression.
This expression returns an output sequence where each item in the sequence is used by the column
definitions to generate one or more rows in the output table. If the output sequence is empty, the
result of JSON_TABLE is an empty table. sql-json-path-expression must not be an empty string or a
string of all blanks.
For information on the content of an SQL/JSON path expression, see “sql-json-path-expression” on
page 213.

AS path-name
Specifies a name to be used to identify the sql-json-path-expression.

EMPTY ON ERROR or ERROR ON ERROR
Specifies the desired behavior of JSON_TABLE when a table level error is encountered.
EMPTY ON ERROR

An empty table is returned when a table level error is encountered. This is the default.
ERROR ON ERROR

An error is returned when a table level error is encountered.
COLUMNS

Specifies the output columns of the result table including the column name, data type, and how the
column value is computed for each row.
The sum of all the result column lengths cannot exceed 64K bytes. For information on the byte counts
of columns according to data type, see “Maximum row sizes” on page 1164. This function can return
up to approximately 200 columns, depending on the length of the column name and the length of the
column path.
json-table-regular-column-definition

Specifies an output column of the result table including the column name, data type, and an
SQL/JSON path expression to extract the value from the sequence item for the row.

Chapter 4. Built-in functions 697

column-name
Specifies the name of the column in the result table. The name cannot be qualified and the
same name cannot be used for more than one column of the result table.

data-type
Specifies the data type of the column. For CHAR and VARCHAR columns, the CCSID cannot be
65535.

PATH column-path-expression-constant
Specifies a character or graphic string constant that is interpreted as an SQL/JSON path.
The column-path-expression-constant specifies an SQL/JSON path expression that determines
the column value with respect to an item that is the result of evaluating the SQL/JSON
path expression in sql-json-path-expression. Given an item from the result of processing the
sql-json-path-expression as the externally provided context item, the column-path-expression-
constant is evaluated and returns an output sequence. If a JSON object contains more than
one value with the same key, only one of the values for the key will be returned for the output
sequence.
The column value is determined based on this output sequence as follows:

• If an empty sequence is returned, the ON EMPTY clause provides the value of the column. If
ERROR ON EMPTY is specified, an error is issued.

• If an empty sequence is returned and no ON EMPTY clause is specified, the null value is
assigned to the column.

• If a single element sequence is returned and the type of the element is not a JSON array or a
JSON object, the value is converted to the data-type specified for the column.

• If a single element sequence is returned and the type of the element is a JSON array or a
JSON object, an error is returned.

• If a sequence with more than one element is returned, an error is returned.
• If an error occurs, the ON ERROR clause specifies the value of the column.

The value of column-path-expression-constant must not be an empty string or a string of all
blanks. If the PATH clause is not specified, the column-path-expression-constant is defined as
'$.' prepended to the column-name.

ON EMPTY
Specifies the behavior when an empty sequence is returned for the column.
NULL ON EMPTY

An SQL null value is returned. This is the default.
ERROR ON EMPTY

An error is returned.
DEFAULT default-expression ON EMPTY

The value specified by default-expression is returned.
ON ERROR

Specifies the behavior when an error is returned for the column.
NULL ON ERROR

An SQL null value is returned. This is the default.
ERROR ON ERROR

An error is returned.
DEFAULT default-expression ON ERROR

The value specified by default-expression is returned.
If this clause is not specified:

• If a table level ERROR ON ERROR clause is specified, an error is returned.
• Otherwise, an SQL null value is returned.

698 IBM i: Db2 for i SQL Reference

json-table-formatted-column-definition
Specifies an output column of the result table including the column name, data type, and an
SQL/JSON path expression to extract the value from the sequence item for the row. The extracted
value is formatted as a JSON string.
column-name

Specifies the name of the column in the result table. The name cannot be qualified and the
same name cannot be used for more than one column of the result table.

data-type
Specifies the data type of the column. The data type must be a character or graphic type. For
CHAR and VARCHAR columns, the CCSID cannot be 65535.

FORMAT JSON
Indicates that the retrieved data should be formatted as a JSON string.

PATH column-path-expression-constant
Specifies a character or graphic string constant that is interpreted as an SQL/JSON path.
The column-path-expression-constant specifies an SQL/JSON path expression that determines
the column value with respect to an item that is the result of evaluating the SQL/JSON
path expression in sql-json-path-expression as well as all the paths specified by prior
NESTED PATHs. Given an item from the result of processing the sql-json-path-expression as
the externally provided context item, the column-path-expression-constant is evaluated and
returns an output sequence. If a JSON object contains more than one value with the same key,
only one of the values for the key will be returned for the output sequence.
The column value is determined based on this output sequence as follows:

• If an empty sequence is returned, the ON EMPTY clause provides the value of the column. If
ERROR ON EMPTY is specified, an error is returned.

• If an empty sequence is returned and no ON EMPTY clause is specified, the null value is
assigned to the column.

• If an error occurs, the ON ERROR clause specifies the value of the column.

The value for column-path-expression-constant must not be an empty string or a string of all
blanks. If the PATH clause is not specified, the column-path-expression-constant is defined as
'$.' prepended to the column-name.

WITHOUT ARRAY WRAPPER or WITH ARRAY WRAPPER
Specifies whether the output value should be wrapped in a JSON array.
WITHOUT ARRAY WRAPPER

Indicates that the result is not wrapped. This is the default. Using an SQL/JSON path that
results in a sequence of two or more SQL/JSON elements results in an error.

WITH UNCONDITIONAL ARRAY WRAPPER
Indicates that the result is enclosed in square brackets to create a JSON array.

WITH CONDITIONAL ARRAY WRAPPER
Indicates that the result is enclosed in square brackets to create a JSON array if more than
one SQL/JSON element is returned.

KEEP QUOTES or OMIT QUOTES
Specifies whether the surrounding quotes should be removed when a scalar string is returned.
KEEP QUOTES

Indicates quotes are not removed from scalar strings. This is the default.
OMIT QUOTES

Indicates quotes are removed from scalar strings. When OMIT QUOTES is specified, the
WITH ARRAY WRAPPER clause cannot be specified

ON EMPTY
Specifies the behavior when an empty sequence is returned for a column.

Chapter 4. Built-in functions 699

NULL ON EMPTY
An SQL null value is returned. This is the default.

ERROR ON EMPTY
An error is returned.

EMPTY ARRAY ON EMPTY
An empty JSON array is returned.

EMPTY OBJECT ON EMPTY
An empty JSON object is returned.

ON ERROR
Specifies the behavior when an error is returned for a column.
NULL ON ERROR

An SQL null value is returned.
ERROR ON ERROR

An error is returned.
EMPTY ARRAY ON ERROR

An empty JSON array is returned.
EMPTY OBJECT ON ERROR

An empty JSON object is returned.
If this clause is not specified:

• If a table level ERROR ON ERROR clause is specified, an error is returned.
• Otherwise, an SQL null value is returned.

json-table-ordinality-column-definition
Specifies an ordinality column of the result table.
column-name

Specifies the name of the column in the result table. The name cannot be qualified and the
same name cannot be used for more than one column of the result table.

FOR ORDINALITY
Specifies that column-name is the ordinality column of the result table for the enclosing
nesting level. The data type of this column is BIGINT.

• If the ordinality column is not within a nested column definition, the rows of the result
table are numbered sequentially, starting with 1, and the ordinality column contains the
sequential number of the current row.

• If the ordinality column is within a nested column definition, the rows produced by the
enclosing nested column definition are numbered sequentially, starting with 1, and the
ordinality column contains the sequential number of the current row. If the enclosing nested
column definition is within an outer nested column definition, the numbering restarts with
1 each time the path expression of the enclosing nested column definition is applied to the
result of the outer nested column definition.

json-table-nested-column-definition
Specifies one or more columns that are nested at the current level.
NESTED PATH nested-path-expression-constant

Specifies a character or graphic string constant that is interpreted as an SQL/JSON path.
The nested-path-expression-constant specifies an SQL/JSON path expression that determines
the column value with respect to an item that is the result of evaluating the SQL/JSON path
expression in sql-json-path-expression as well as the nested-path-expression-constant from
prior NESTED PATHs. Given an item from the result of processing the sql-json-path-expression
as the externally provided context item and the nested-path-expression-constant from prior
NESTED PATHs, the nested-path-expression-constant is evaluated and is used as the context
for the nested columns.

700 IBM i: Db2 for i SQL Reference

AS nested-path-name
Specifies the name of the current path.

COLUMNS
Specifies the columns to be included in this nesting level.

Table 70. Supported JSON to SQL result column conversions

JSON type SQL type Notes®

Number SMALLINT
INTEGER
BIGINT

If the source value is beyond the range of the target data
type, an overflow error is returned.

Number DECIMAL
NUMERIC

The resulting number value is converted, if necessary, to the
precision and scale of the target data type. The necessary
number of leading zeros are added or removed. In the
fractional part of the number, the necessary number of
trailing zeros are added or the necessary number of digits
are eliminated. This truncation behavior is similar to the
behavior of the cast from DECIMAL to DECIMAL.

Number FLOAT
DOUBLE
REAL
DECFLOAT

If the source value is beyond the range of the target data
type, an overflow error is returned. If the source value
contains more significant digits than the precision of the
target data type, the source value is rounded to the precision
of the target data type.

String or Number CHAR
VARCHAR
CLOB
GRAPHIC
VARGRAPHIC
DBCLOB

The resulting value is converted, if necessary, to the
CCSID of the target data type using the rules described in
“Conversion rules for assignments” on page 94 before it is
converted to the target type with a limited length. Truncation
occurs if the specified length limit is smaller than the length
of the resulting string after CCSID conversion. A warning
occurs if any non-blank characters are truncated. If the
target type is a fixed-length string (CHAR or GRAPHIC) and
the specified length of the target type is greater than the
length of the resulting string from CCSID conversion, blanks
are padded at the end. This truncation and padding behavior
is similar to retrieval assignment of character or graphic
strings.

String DATE The JSON string is converted to a date value. The JSON
string must be in one of the following formats:
ISO

yyyy-mm-dd
USA

mm/dd/yyyy
EUR

dd.mm.yyyy
JIS

yyyy-mm-dd

Chapter 4. Built-in functions 701

Table 70. Supported JSON to SQL result column conversions (continued)

JSON type SQL type Notes®

String TIME The JSON string is converted to a time value. The JSON
string must be in one of the following formats:
ISO

hh.mm.ss
EUR

hh.mm.ss
JIS

hh:mm:ss
HMS

hh:mm:ss

String TIMESTAMP The JSON string is converted to a timestamp value. The
JSON string must be in one of the following formats:
ISO

yyyy-mm-dd hh:mm:ss.nnnnnn
IBMSQL

yyyy-mm-dd-hh.mm.ss.nnnnnn
ISO-8601

yyyy-mm-ddThh:mm:ss.nnnnnn<+/-Offset>
If the ISO-8601 timestamp includes an offset, the
timestamp is adjusted using that offset. For example,
2021-03-18T03:00:00.0-02:00 is converted to 2021-03-18
05:00:00.000000.

Array or Object CHAR
VARCHAR
CLOB
GRAPHIC
VARGRAPHIC
DBCLOB

Must be returned using a FORMAT JSON column. JSON
arrays or objects are returned as JSON formatted character
strings. The resultant conversion is that same as for string
types.

Null Any A JSON null value is converted to an SQL null value

Boolean CHAR
VARCHAR
CLOB
GRAPHIC
VARGRAPHIC
DBCLOB

A JSON boolean value is converted to either a true or
false string and is returned as a string using the conversion
rules for JSON strings.

Examples

These examples operate on the following JSON document:

{
 "id" : 901,
 "name" : { "first":"John", "last":"Doe" },
 "phones": [{ "type":"home", "number":"555-3762"},
 { "type":"work", "number":"555-8792"}]
}

• List the employee id, first name, last name, and first phone type and number:

702 IBM i: Db2 for i SQL Reference

SELECT U."id", U."first name",U."last name",U."phone type",U."phone number"
 FROM EMPLOYEE_TABLE E,
 JSON_TABLE(E.jsondoc,
 'lax $'
 COLUMNS("id" INTEGER,
 "first name" VARCHAR(20) PATH 'lax $.name.first',
 "last name" VARCHAR(20) PATH 'lax $.name.last',
 "phone type" VARCHAR(20) PATH 'lax $.phones[0].type',
 "phone number" VARCHAR(20) PATH 'lax $.phones[0].number')
) AS U

Returns:

id first name last name phone type phone number
--- ---------- --------- ---------- ------------
901 John Doe home 555-3762

• List the employee id, first name, last name, and all available telephone types and numbers:

SELECT U."id", U."first name",U."last name",U."phone type",U."number" AS "phone number"
 FROM EMPLOYEE_TABLE E,
 JSON_TABLE(E.jsondoc,
 'lax $'
 COLUMNS("id" INTEGER,
 "first name" VARCHAR(20) PATH 'lax $.name.first',
 "last name" VARCHAR(20) PATH 'lax $.name.last',
 NESTED PATH 'lax $.phones[*]'
 COLUMNS (
 "phone type" VARCHAR(20) PATH 'lax $.type',
 "number" VARCHAR(20))
)
) AS U

Returns:

id first name last name phone type phone number
--- ---------- --------- ---------- ------------
901 John Doe home 555-3762
901 John Doe work 555-8792

Chapter 4. Built-in functions 703

MQREADALL
The MQREADALL function returns a table that contains the messages and message metadata from a
specified MQSeries location with a VARCHAR column without removing the messages from the queue.

MQREADALL (

receive-service

, service-policy

,
num-rows

1
)

Notes:
1 The comma is required before num-rows when any of the preceding arguments to the function are
specified.

The MQREADALL function returns a table containing the messages and message metadata from the
MQSeries location that is specified by receive-service, using the quality-of-service policy that is defined in
service-policy. Performing this operation does not remove the messages from the queue that is associated
with receive-service.

receive-service
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service point that is defined in the SYSIBM.MQSERVICE table. A service point is a
logical end-point from where a message is sent or received. Service point definitions include the
name of the MQSeries queue manager and queue. For more information about MQSeries Application
Messaging, see SQL Programming.

If receive-service is not specified or the null value, DB2.DEFAULT.SERVICE is used.

service-policy
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service policy that is defined in the SYSIBM.MQPOLICY table. A service policy specifies
a set of quality-of-service options that are to be applied to this messaging operation. These options
include message priority and message persistence. For more information about MQSeries Application
Messaging, see SQL Programming.

If service-policy is not specified or the null value, DB2.DEFAULT.POLICY is used.

num-rows
An expression that returns a value that is a SMALLINT or INTEGER data type whose value is a positive
integer or zero. The value of the expression specifies the maximum number of messages to return.

If num-rows is not specified or the value of expression is zero, all available messages are returned.

The result of the function is a table with the format shown in the following table. All the columns are
nullable.

Table 71. Format of the resulting table for MQREADALL

Column name Data type Contains

MSG VARCHAR(32000) The contents of the MQSeries message

CORRELID VARCHAR(24) The correlation ID that is used to relate messages

TOPIC VARCHAR(40) Reserved

704 IBM i: Db2 for i SQL Reference

Table 71. Format of the resulting table for MQREADALL (continued)

Column name Data type Contains

QNAME VARCHAR(48) The name of the queue from which the message was received

MSGID VARCHAR(24) The unique, MQSeries-assigned identifier for the message

MSGFORMAT VARCHAR(8) The format of the message, as defined by MQSeries

The CCSID of the result columns, except for CORRELID and MSGID, is the default CCSID at the current
server.

Notes
Prerequisites: In order to use the MQSeries functions, IBM MQSeries for IBM i must be installed,
configured, and operational.

Example

• This example receives all the messages from the queue specified by the default service
(DB2.DEFAULT.SERVICE), using the default policy (DB2.DEFAULT.POLICY). The messages and all the
metadata are returned as a table.

 SELECT *
 FROM TABLE (MQREADALL ()) AS T

• This example receives all the messages from the head of the queue specified by the service
MYSERVICE, using the default policy (DB2.DEFAULT.POLICY). Only the MSG and CORRELID columns
are returned.

 SELECT T.MSG, T.CORRELID
 FROM TABLE (MQREADALL ('MYSERVICE')) AS T

• This example reads the head of the queue specified by the default service (DB2.DEFAULT.SERVICE),
using the default policy (DB2.DEFAULT.POLICY). Only messages with a CORRELID of '1234' are
returned. All columns are returned.

 SELECT *
 FROM TABLE (MQREADALL ()) AS T
 WHERE T.CORRELID = '1234'

• This example receives the first 10 messages from the head of the queue specified by the default service
(DB2.DEFAULT.SERVICE), using the default policy (DB2.DEFAULT.POLICY). All columns are returned.

 SELECT *
 FROM TABLE (MQREADALL (10)) AS T

Chapter 4. Built-in functions 705

MQREADALLCLOB
The MQREADALLCLOB function returns a table that contains the messages and message metadata from a
specified MQSeries location with a CLOB column without removing the messages from the queue.

MQREADALLCLOB (

receive-service

, service-policy

,
num-rows

1
)

Notes:
1 The comma is required before num-rows when any of the preceding arguments to the function are
specified.

The MQREADALLCLOB function returns a table containing the messages and message metadata from the
MQSeries location that is specified by receive-service, using the quality-of-service policy that is defined in
service-policy. Performing this operation does not remove the messages from the queue that is associated
with receive-service.

receive-service
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service point that is defined in the SYSIBM.MQSERVICE table. A service point is a
logical end-point from where a message is sent or received. Service point definitions include the
name of the MQSeries queue manager and queue. For more information about MQSeries Application
Messaging, see SQL Programming.

If receive-service is not specified or the null value, DB2.DEFAULT.SERVICE is used.

service-policy
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service policy that is defined in the SYSIBM.MQPOLICY table. A service policy specifies
a set of quality-of-service options that are to be applied to this messaging operation. These options
include message priority and message persistence. For more information about MQSeries Application
Messaging, see SQL Programming.

If service-policy is not specified or the null value, DB2.DEFAULT.POLICY is used.

num-rows
An expression that returns a value that is a SMALLINT or INTEGER data type whose value is a positive
integer or zero. The value of the expression specifies the maximum number of messages to return.

If num-rows is not specified or the value of expression is zero, all available messages are returned.

The result of the function is a table with the format shown in the following table. All the columns are
nullable.

Table 72. Format of the resulting table for MQREADALLCLOB

Column name Data type Contains

MSG CLOB(2M) The contents of the MQSeries message

CORRELID VARCHAR(24) The correlation ID that is used to relate messages

706 IBM i: Db2 for i SQL Reference

Table 72. Format of the resulting table for MQREADALLCLOB (continued)

Column name Data type Contains

TOPIC VARCHAR(40) Reserved

QNAME VARCHAR(48) The name of the queue from which the message was received

MSGID VARCHAR(24) The unique, MQSeries-assigned identifier for the message

MSGFORMAT VARCHAR(8) The format of the message, as defined by MQSeries

The CCSID of the result columns, except for CORRELID and MSGID, is the default CCSID at the current
server.

Notes
Prerequisites: In order to use the MQSeries functions, IBM MQSeries for IBM i must be installed,
configured, and operational.

Example

• This example receives all the messages from the queue specified by the default service
(DB2.DEFAULT.SERVICE), using the default policy (DB2.DEFAULT.POLICY). The messages and all the
metadata are returned as a table.

 SELECT *
 FROM TABLE (MQREADALLCLOB ()) AS T

• This example receives all the messages from the head of the queue specified by the service
MYSERVICE, using the default policy (DB2.DEFAULT.POLICY). Only the MSG and CORRELID columns
are returned.

 SELECT T.MSG, T.CORRELID
 FROM TABLE (MQREADALLCLOB ('MYSERVICE')) AS T

• This example reads the head of the queue specified by the default service (DB2.DEFAULT.SERVICE),
using the default policy (DB2.DEFAULT.POLICY). Only messages with a CORRELID of '1234' are
returned. All columns are returned.

 SELECT *
 FROM TABLE (MQREADALLCLOB ()) AS T
 WHERE T.CORRELID = '1234'

• This example receives the first 10 messages from the head of the queue specified by the default service
(DB2.DEFAULT.SERVICE), using the default policy (DB2.DEFAULT.POLICY). All columns are returned.

 SELECT *
 FROM TABLE (MQREADALLCLOB (10)) AS T

Chapter 4. Built-in functions 707

MQRECEIVEALL
The MQRECEIVEALL function returns a table that contains the messages and message metadata from a
specified MQSeries location with a VARCHAR column with removal of the messages from the queue.

MQRECEIVEALL (

receive-service

, service-policy

, correl-id

,
num-rows

1
)

Notes:
1 The comma is required before num-rows when any of the preceding arguments to the function are
specified.

The MQRECEIVEALL function returns a table containing the messages and message metadata from the
MQSeries location that is specified by receive-service, using the quality-of-service policy that is defined
in service-policy. Performing this operation removes the messages from the queue that is associated with
receive-service.

receive-service
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service point that is defined in the SYSIBM.MQSERVICE table. A service point is a
logical end-point from where a message is sent or received. Service point definitions include the
name of the MQSeries queue manager and queue. For more information about MQSeries Application
Messaging, see SQL Programming.

If receive-service is not specified or the null value, DB2.DEFAULT.SERVICE is used.

service-policy
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service policy that is defined in the SYSIBM.MQPOLICY table. A service policy specifies
a set of quality-of-service options that are to be applied to this messaging operation. These options
include message priority and message persistence. For more information about MQSeries Application
Messaging, see SQL Programming.

If service-policy is not specified or the null value, DB2.DEFAULT.POLICY is used.

correl-id
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The expression must have an actual length that is no greater than 24 bytes. The value of
the expression specifies the correlation identifier that is associated with this message. A correlation
identifier is often specified in request-and-reply scenarios to associate requests with replies. The
first message with a matching correlation identifier is returned. For more information about MQSeries
Application Messaging, see SQL Programming.

A fixed length string with trailing blanks is considered a valid value. However, when the correl-id
is specified on another request such as MQSEND, the identical correl-id must be specified to be
recognized as a match. For example, specifying a value of 'test' for correl-id on MQRECEIVEALL does
not match a correl-id value of 'test ' (with trailing blanks) specified earlier on an MQSEND request.

708 IBM i: Db2 for i SQL Reference

If correl-id is not specified or is an empty string or the null value, a correlation identifier is not used,
and the message at the beginning of the queue is returned.

num-rows
An expression that returns a value that is a SMALLINT or INTEGER data type whose value is a positive
integer or zero. The value of the expression specifies the maximum number of messages to return.

If num-rows is not specified or the value of expression is zero, all available messages are returned.

The result of the function is a table with the format shown in the following table. All the columns are
nullable.

Table 73. Format of the resulting table for MQRECEIVEALL

Column name Data type Contains

MSG VARCHAR(32000) The contents of the MQSeries message

CORRELID VARCHAR(24) The correlation ID that is used to relate messages

TOPIC VARCHAR(40) Reserved

QNAME VARCHAR(48) The name of the queue from which the message was received

MSGID VARCHAR(24) The unique, MQSeries-assigned identifier for the message

MSGFORMAT VARCHAR(8) The format of the message, as defined by MQSeries

The CCSID of the result columns, except for CORRELID and MSGID, is the default CCSID at the current
server.

Notes
Prerequisites: In order to use the MQSeries functions, IBM MQSeries for IBM i must be installed,
configured, and operational.

Example

• This example receives all the messages from the queue specified by the default service
(DB2.DEFAULT.SERVICE), using the default policy (DB2.DEFAULT.POLICY). The messages and all the
metadata are returned as a table.

 SELECT *
 FROM TABLE (MQRECEIVEALL ()) AS T

• This example receives all the messages from the head of the queue specified by the service
MYSERVICE, using the default policy (DB2.DEFAULT.POLICY). Only the MSG and CORRELID columns
are returned.

 SELECT T.MSG, T.CORRELID
 FROM TABLE (MQRECEIVEALL ('MYSERVICE')) AS T

• This example receives all of the message from the head of the queue specified by the service
"MYSERVICE", using the policy "MYPOLICY". Only messages with a CORRELID of '1234' are returned.
Only the MSG and CORRELID columns are returned.

 SELECT *
 FROM TABLE (MQRECEIVEALL ('MYSERVICE','MYPOLICY','1234')) AS T

Chapter 4. Built-in functions 709

• This example receives the first 10 messages from the head of the queue specified by the default service
(DB2.DEFAULT.SERVICE), using the default policy (DB2.DEFAULT.POLICY). All columns are returned.

 SELECT *
 FROM TABLE (MQRECEIVEALL (10)) AS T

710 IBM i: Db2 for i SQL Reference

MQRECEIVEALLCLOB
The MQRECEIVEALLCLOB function returns a table that contains the messages and message metadata
from a specified MQSeries location with a CLOB column with removal of the messages from the queue.

MQRECEIVEALLCLOB (

receive-service

, service-policy

, correl-id

,
num-rows

1
)

Notes:
1 The comma is required before num-rows when any of the preceding arguments to the function are
specified.

The MQRECEIVEALLCLOB function returns a table containing the messages and message metadata
from the MQSeries location that is specified by receive-service, using the quality-of-service policy that
is defined in service-policy. Performing this operation removes the messages from the queue that is
associated with receive-service.

receive-service
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service point that is defined in the SYSIBM.MQSERVICE table. A service point is a
logical end-point from where a message is sent or received. Service point definitions include the
name of the MQSeries queue manager and queue. For more information about MQSeries Application
Messaging, see SQL Programming.

If receive-service is not specified or the null value, DB2.DEFAULT.SERVICE is used.

service-policy
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The value of the expression must not be an empty string or a string with trailing blanks. The
expression must have an actual length that is no greater than 48 bytes. The value of the expression
must refer to a service policy that is defined in the SYSIBM.MQPOLICY table. A service policy specifies
a set of quality-of-service options that are to be applied to this messaging operation. These options
include message priority and message persistence. For more information about MQSeries Application
Messaging, see SQL Programming.

If service-policy is not specified or the null value, DB2.DEFAULT.POLICY is used.

correl-id
An expression that returns a value that is a built-in character string or graphic string data type that is
not a LOB. The expression must have an actual length that is no greater than 24 bytes. The value of
the expression specifies the correlation identifier that is associated with this message. A correlation
identifier is often specified in request-and-reply scenarios to associate requests with replies. The
first message with a matching correlation identifier is returned. For more information about MQSeries
Application Messaging, see SQL Programming.

A fixed length string with trailing blanks is considered a valid value. However, when the correl-id
is specified on another request such as MQSEND, the identical correl-id must be specified to be
recognized as a match. For example, specifying a value of 'test' for correl-id on MQRECEIVEALLCLOB

Chapter 4. Built-in functions 711

does not match a correl-id value of 'test ' (with trailing blanks) specified earlier on an MQSEND
request.

If correl-id is not specified or is an empty string or the null value, a correlation identifier is not used,
and the message at the beginning of the queue is returned.

num-rows
An expression that returns a value that is a SMALLINT or INTEGER data type whose value is a positive
integer or zero. The value of the expression specifies the maximum number of messages to return.

If num-rows is not specified or the value of expression is zero, all available messages are returned.

The result of the function is a table with the format shown in the following table. All the columns are
nullable.

Table 74. Format of the resulting table for MQRECEIVEALLCLOB

Column name Data type Contains

MSG CLOB(2M) The contents of the MQSeries message

CORRELID VARCHAR(24) The correlation ID that is used to relate messages

TOPIC VARCHAR(40) Reserved

QNAME VARCHAR(48) The name of the queue from which the message was received

MSGID VARCHAR(24) The unique, MQSeries-assigned identifier for the message

MSGFORMAT VARCHAR(8) The format of the message, as defined by MQSeries

The CCSID of the result columns, except for CORRELID and MSGID, is the default CCSID at the current
server.

Notes
Prerequisites: In order to use the MQSeries functions, IBM MQSeries for IBM i must be installed,
configured, and operational.

Example

• This example receives all the messages from the queue specified by the default service
(DB2.DEFAULT.SERVICE), using the default policy (DB2.DEFAULT.POLICY). The messages and all the
metadata are returned as a table.

 SELECT *
 FROM TABLE (MQRECEIVEALLCLOB ()) AS T

• This example receives all the messages from the head of the queue specified by the service
MYSERVICE, using the default policy (DB2.DEFAULT.POLICY). Only the MSG and CORRELID columns
are returned.

 SELECT T.MSG, T.CORRELID
 FROM TABLE (MQRECEIVEALLCLOB ('MYSERVICE')) AS T

• This example receives all of the message from the head of the queue specified by the service
"MYSERVICE", using the policy "MYPOLICY". Only messages with a CORRELID of '1234' are returned.
Only the MSG and CORRELID columns are returned.

 SELECT *
 FROM TABLE (MQRECEIVEALLCLOB ('MYSERVICE','MYPOLICY','1234')) AS T

712 IBM i: Db2 for i SQL Reference

• This example receives the first 10 messages from the head of the queue specified by the default service
(DB2.DEFAULT.SERVICE), using the default policy (DB2.DEFAULT.POLICY). All columns are returned.

 SELECT *
 FROM TABLE (MQRECEIVEALLCLOB (10)) AS T

Chapter 4. Built-in functions 713

XMLTABLE
The XMLTABLE function returns a result table from the evaluation of XPath expressions, possibly using
specified input arguments as XPath variables. Each item in the result sequence of the row XPath
expression represents a row of the result table.

XMLTABLE (

xmlnamespaces-declaration ,

row-xquery-expression-constant

PASSING

BY VALUE

,

row-xquery-argument
1

COLUMNS

,

xml-table-regular-column-definition

xml-table-ordinality-column-definition
2

)

row-xquery-argument
xquery-context-item-expression

xquery-variable-expression AS identifier

BY VALUE

xml-table-regular-column-definition
column-name data-type

BY VALUE

3

default-clause

PATH column-xquery-expression-constant

xml-table-ordinality-column-definition
column-name FOR ORDINALITY

Notes:
1 xquery-context-item-expression must not be specified more than one time.
2 The xml-table-ordinality-column-definition clause must not be specified more than one time.
3 Neither the default-clause nor the PATH clause can be specified more than one time.

data-type

714 IBM i: Db2 for i SQL Reference

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

normalize-clause

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

XML

ccsid-clause

ccsid-clause
CCSID integer

normalize-clause

normalize-clause

Chapter 4. Built-in functions 715

NOT NORMALIZED

NORMALIZED

default-clause
WITH

DEFAULT

constant

NULL

CURRENT_DATE

CURRENT_TIME

CURRENT_TIMESTAMP

USER

The function name cannot be specified as a qualified name.

xmlnamespaces-declaration
Specifies one or more XML namespace declarations, using the XMLNAMESPACES function, that
become part of the static context of the row-xquery-expression-constant and the column-xquery-
expression-constant. The set of statically known namespaces for XPath expressions which are
arguments of XMLTABLE is the combination of the pre-established set of statically known namespaces
and the namespace declarations specified in this clause. The XPath prolog within an XPath expression
can override these namespaces.

If xmlnamespaces-declaration is not specified, only the pre-established set of statically known
namespaces apply to the XPath expressions.

row-xquery-expression-constant
Specifies an SQL string constant that is interpreted as an XPath expression using supported XPath
language syntax. This expression determines the number of rows in the result table. The expression
is evaluated using the optional set of input XML values that is specified in row-xquery-argument, and
returns an output XPath sequence where one row is generated for each item in the sequence. If the
sequence is empty, the result of XMLTABLE is an empty table. row-xquery-expression-constant must
not be an empty string or a string of all blanks.

PASSING
Specifies input values and the manner in which these values are passed to the XPath expression
specified by row-xquery-expression-constant.
BY VALUE

Specifies that any XML arguments are passed by value. When XML values are passed by value,
the XPath evaluation uses a copy of the XML data. This is the default behavior. Db2 for i binds the
XPath variable expression to a document node that represents the XML input value.

This clause has no impact on how non-XML values are passed. Non-XML values always create a
copy of the value during the cast to XML.

row-xquery-argument
Specifies an argument that is to be passed to the XPath expression specified by row-xquery-
expression-constant. row-xquery-argument specifies an SQL expression that is evaluated before
being passed to the XPath expression.

If the data type of row-xquery-argument is not XML, the result of the expression is converted to
XML. For xquery-variable-expression, a null value is converted to an XML empty sequence.

How row-xquery-argument is used in the XPath expression depends on whether the argument is
specified as an xquery-context-item-expression or an xquery-variable-expression.

row-xquery-argument must not contain a NEXT VALUE or PREVIOUS VALUE expression or an OLAP
specification.

716 IBM i: Db2 for i SQL Reference

xquery-context-item-expression
Specifies an SQL expression that returns a value that is XML or that is a type that has a
supported conversion to XML.

xquery-context-item-expression specifies the initial context item for the row-xquery-
expression. The value of the initial context item is the result of xquery-context-item-expression
after being converted to XML. xquery-context-item-expression must not be specified more than
one time.

xquery-variable-expression
Specifies an SQL expression whose value is available to the XPath expression specified by
row-xquery-expression-constant during execution. The expression must return a value that is
XML or that is a type that has a supported conversion to XML.

xquery-variable-expression specifies an argument that will be passed to row-xquery-
expression-constant as an XPath variable. If xquery-variable-expression is the null value, the
XPath variable is set to an XML empty sequence. The scope of the XPath variables that are
created from the PASSING clause is the XPath expression specified by row-xquery-expression-
constant.

AS identifier
Specifies that the value generated by xquery-variable-expression will be passed to row-xquery-
expression-constant as an XPath variable. The identifier is a name that must be in the form of
an XML NCName. See the W3C XML namespace specifications for more details on valid names.
The leading dollar sign ($) that precedes variable names in the XPath language must not be
included as part of identifier. The identifier must not be greater than 128 bytes in length. Two
arguments within the same PASSING clause cannot use the same identifier.

BY VALUE
Specifies that xquery-variable-expression is passed by value. When XML values are passed by
value, the XPath evaluation uses a copy of the XML data. Db2 for i binds the XPath variable
expression to a document node that represents the XML input value. If BY VALUE is not
specified following xquery-variable-expression, XML arguments are passed using the default
passing mechanism that is provided through the syntax that follows the PASSING keyword.
This clause is only valid for input values with the XML data type. Non-XML values always create
a copy of the value during the cast to XML.

Table 75. Supported SQL to XML conversions

SQL type XML type Notes

SMALLINT xs:integer

INTEGER xs:integer

BIGINT xs:integer

DECIMAL
NUMERIC

xs:decimal Decimal numbers with a precision greater than 34 can
lose precision during processing.

FLOAT
DOUBLE
DECFLOAT

xs:double

Chapter 4. Built-in functions 717

Table 75. Supported SQL to XML conversions (continued)

SQL type XML type Notes

CHAR
VARCHAR
CLOB
GRAPHIC
VARGRAPHIC
DBCLOB

xs:string When character string values are cast to XML values,
the resulting xs:string atomic value cannot contain
illegal XML characters. If the input character string is
not in Unicode, the input characters are converted to
Unicode.

CHAR and VARCHAR strings cannot have a CCSID of
65535 or be defined for bit data.

DATE xs:date The xs:date value will not have a timezone component.
For comparisons, the timezone is implicitly assumed to
be UTC.

If needed, the fn:adjust-timezone() function can be
used to explicitly set the timezone.

TIME xs:time The xs:time value will not have a timezone component.
For comparisons, the timezone is implicitly assumed to
be UTC.

If needed, the fn:adjust-timezone() function can be
used to explicitly set the timezone.

TIMESTAMP xs:dateTime The xs:dateTime value will not have a timezone
component. For comparisons, the timezone is implicitly
assumed to be UTC.

If needed, the fn:adjust-timezone() function can be
used to explicitly set the timezone.

COLUMNS
Specifies the output columns of the result table including the column name, data type, and how the
column value is computed for each row. If this clause is not specified, a single unnamed column of
type XML is returned with the value based on the sequence item from evaluating the XPath expression
in the row-xquery-expression (equivalent to specifying PATH '.'). To reference this result column, a
column-name must be specified in the correlation-clause following the table function.

The sum of all the result column lengths cannot exceed 64K bytes. For information on the byte counts
of columns according to data type, see “Maximum row sizes” on page 1164. Assume the number of
row-xquery-arguments is N. There must be no more than 8000-N columns.

xml-table-regular-column-definition
Specifies one output column of the result table including the column name, data type, and an
XPath expression to extract the value from the sequence item for the row.
column-name

Specifies the name of the column in the result table. The name cannot be qualified and the
same name cannot be used for more than one column of the result table.

data-type
Specifies the data type of the column. For CHAR and VARCHAR columns, the CCSID cannot be
65535.

BY VALUE
Specifies that the result column is returned by value. When XML values are returned by
value, a copy of the XML data is returned. This is the default behavior. Db2 for i constructs a
document node for the XML result when the value is returned from the table function. This
clause must not be specified for a column with a data type that is not XML.

718 IBM i: Db2 for i SQL Reference

default-clause
Specifies a default value for the column. For XMLTABLE result columns, the default is applied
when the processing of the XPath expression contained in column-xquery-expression-constant
returns an empty sequence.

PATH column-xquery-expression-constant
Specifies a string constant that is interpreted as an XPath expression using supported
XPath language syntax. The column-xquery-expression-constant specifies an XPath expression
that determines the column value with respect to an item that is the result of evaluating
the XPath expression in row-xquery-expression-constant. Given an item from the result of
processing the row-query-expression-constant as the externally provided context item, the
column-xquery-expression-constant is evaluated and returns an output sequence. The column
value is determined based on this output sequence as follows:

• If an empty sequence is returned, the default-clause provides the value of the column.
• If an empty sequence is returned and no default-clause was specified, the null value is

assigned to the column.
• If a non-empty sequence is returned, the value is converted to the data-type specified for

the column. An error could be returned from processing this implicit conversion.

The value for column-xquery-expression-constant must not be an empty string or a string of all
blanks. If this clause is not specified, the default XPath expression is the column-name.

xml-table-ordinality-column-definition
Specifies the ordinality column of the result table.
colum-name

Specifies the name of the column in the result table. The name cannot be qualified and the
same name cannot be used for more than one column of the result table.

FOR ORDINALITY
Specifies that column-name is the ordinality column of the result table. The data type of
this column is BIGINT. The value of this column in the result table is the sequential number
of the item for the row in the resulting sequence from evaluating the XPath expression in
row-xquery-expression-constant.

Table 76. Supported XML to SQL result column conversions

XML type SQL type Notes

xs:integer SMALLINT
INTEGER
BIGINT

xs:decimal DECIMAL
NUMERIC

The resulting xs:decimal value is converted, if necessary,
to the precision and scale of the target data type. The
necessary number of leading zeros is added or removed.
In the fractional part of the number, the necessary
number of trailing zeros is added or the necessary
number of digits is eliminated. This truncation behavior
is similar to the behavior of the cast from DECIMAL
to DECIMAL. Decimal numbers with a precision greater
than 34 can lose precision during processing.

Chapter 4. Built-in functions 719

Table 76. Supported XML to SQL result column conversions (continued)

XML type SQL type Notes

xs:double FLOAT
DOUBLE
REAL
DECFLOAT

If the target type is FLOAT, DOUBLE, or REAL and the
source XML value after the XPath cast is an xs:double
value of INF, -INF, or NaN, an error is returned. If the
source value is an xs:double negative zero, the value is
converted to positive zero. If the source value is beyond
the range of the target data type, an overflow error is
returned. If the source value contains more significant
digits than the precision of the target data type, the
source value is rounded to the precision of the target
data type.

If the target type is DECFLOAT and the source XML value
is an xs:double value of INF, -INF, or NaN, the result
will be the corresponding special DECFLOAT values INF,
-INF, or NaN. If the source value is an xs:double negative
zero, the result is negative zero. If the target type is
DECFLOAT(16) and the source value is beyond the range
of DECFLOAT(16), an overflow error is returned. If the
source value has more than 16 significant digits, the
value is rounded according to the ROUNDING mode that
is in effect. This rounding behavior is the same as what is
used during the cast of DECFLOAT(34) to DECFLOAT(16).

xs:string CHAR
VARCHAR
CLOB
GRAPHIC
VARGRAPHIC
DBCLOB

The resulting XML value is converted, if necessary, to the
CCSID of the target data type using the rules described
in “Conversion rules for assignments” on page 94 before
it is converted to the target type with a limited length.
Truncation occurs if the specified length limit is smaller
than the length of the resulting string after CCSID
conversion. A warning occurs if any non-blank characters
are truncated. If the target type is a fixed-length string
type (CHAR or GRAPHIC) and the specified length of the
target type is greater than the length of the resulting
string from CCSID conversion, blanks are padded at the
end. This truncation and padding behavior is similar to
retrieval assignment of character or graphic strings.

xs:date DATE The resulting XML value is adjusted to UTC time and the
time zone component is removed. The year part of the
resulting xs:date value must be in the range of 0001 to
9999.

xs:time TIME The resulting XML value is adjusted to UTC time and
the time zone component is removed. Any fractional
seconds are truncated from the result.

xs:dateTime TIMESTAMP The resulting XML value is adjusted to UTC time and
the time zone component is removed. The year part of
the resulting xs:dateTime value must be in the range
of 0001 to 9999. If the target timestamp type has a
precision less than 12, the fractional seconds part of the
xs:dateTime value is truncated to the target timestamp
precision.

The result of the function is a table. If the evaluation of any of the XPath expressions results in an error,
then the XMLTABLE function returns the XPath error.

720 IBM i: Db2 for i SQL Reference

Example

• List as a table result the purchase order items for orders with a status of 'Unshipped'.

SELECT U."PO ID", U."Part #", U."Product Name",
 U."Quantity", U."Price", U."Order Date"
 FROM PURCHASEORDER P,
 XMLTABLE('$po/PurchaseOrder/itemlist/item' PASSING P.PORDER AS "po"
 COLUMNS "PO ID" INTEGER PATH '../@PoNum',
 "Part #" CHAR(10) PATH 'partid',
 "Product Name" VARCHAR(50) PATH 'name',
 "Quantity" INTEGER PATH 'quantity',
 "Price" DECIMAL(9,2) PATH 'price',
 "Order Date" DATE PATH '../@OrderDate'
) AS U
 WHERE P.STATUS = 'Unshipped'

Chapter 4. Built-in functions 721

722 IBM i: Db2 for i SQL Reference

Chapter 5. Procedures
This chapter contains syntax diagrams, semantic descriptions, rules, and examples of the use of the
system supplied procedures.

© Copyright IBM Corp. 1998, 2015 723

CREATE_WRAPPED
The CREATE_WRAPPED procedure transforms a readable DDL statement into an obfuscated DDL
statement and then deploys the object in the database.

CREATE_WRAPPED (object-definition-string)

In an obfuscated DDL statement, the procedural logic and embedded SQL statements are scrambled in
such a way that any intellectual property in the logic cannot be easily extracted.

The schema is SYSIBMADM.

object-definition-string
A string of type CLOB containing a DDL statement. It can be one of the following SQL statements:

• CREATE FUNCTION (SQL scalar)
• CREATE FUNCTION (SQL table)
• CREATE PROCEDURE (SQL)
• CREATE TRIGGER

The procedure transforms the input into an obfuscated DDL statement string and then dynamically
executes that DDL statement. The encoding consists of a prefix of the original statement up to and
including the routine signature or trigger name, followed by the keyword WRAPPED. This keyword is
followed by information about the application server that invoked the function. The information has the
form pppvvrrm where:

• ppp identifies the product using the following 3 characters:

– DSN for Db2 for z/OS
– QSQ for Db2 for i
– SQL for Db2 for LUW

• vv is a two-digit version identifier, such as '07'
• rr is a two-digit release identifier, such as '02'
• m is a one-character modification level identifier, such as '0'

For example Db2 for i version 7.3 is identified as 'QSQ07030'.

This application server information is followed by a string of letters (a-z and A-Z), digits (0-9),
underscores, and colons.

The encoded DDL statement may be up to one-third longer than the plain text form of the statement. If
the result exceeds the maximum length for SQL statements, an error is issued.

Note
The encoding of the statement is meant to obfuscate the content and should not be considered as a form
of strong encryption.

Examples
Example 1: Produce an obfuscated version of a function that computes a yearly salary from an hourly
wage given a 40 hour work week.

CALL CREATE_WRAPPED('CREATE FUNCTION salary(wage DECFLOAT)
 RETURNS DECFLOAT RETURN wage * 40 * 52');

SELECT ROUTINE_DEFINITION FROM QSYS2.SYSROUTINES
 WHERE routine_name ='SALARY' AND routine_schema = CURRENT SCHEMA;

724 IBM i: Db2 for i SQL Reference

Upon successful completion of the CALL statement, the ROUTINE_DEFINITION column in
QSYS2.SYSROUTINES for the row corresponding to routine 'SALARY' would be something of the form:

WRAPPED QSQ07020 <encoded-suffix>

Example 2: Produce an obfuscated version of a trigger that sets a complex default.

CALL CREATE_WRAPPED('CREATE OR REPLACE TRIGGER trig1 BEFORE INSERT ON emp
 REFERENCING NEW AS n FOR EACH ROW
 WHEN (n.bonus IS NULL) SET n.bonus = n.salary * .04');

SELECT ACTION_STATEMENT FROM QSYS2.SYSTRIGGERS
 WHERE trigname ='TRIG1' AND trigschema = CURRENT SCHEMA;

Upon successful completion of the CALL statement, the ACTION_STATEMENT column in
QSYS2.SYSTRIGGERS for the row corresponding to trigger 'TRIG1' would be something of the form:

WRAPPED QSQ07020 <encoded-suffix>

Chapter 5. Procedures 725

XDBDECOMPXML
The XDBDECOMPXML procedure extracts values from serialized XML data and populates relational tables
with the values.

Authorization
The privileges held by the authorization ID of the statement must include the following:

• The following system authorities:

– The system authority *EXECUTE on the XDBDECOMPXML service program associated with the
procedure, and

– The system authority *EXECUTE on the SYSPROC library.

The privileges held by the authorization ID of the statement must include:

• The INSERT privilege on any tables specified in the annotations, or
• Database administrator authority

Syntax
XDBDECOMPXML (rschema

NULL

, name , xmldoc ,

documentid

NULL

)

Description
The schema is SYSPROC.

The XDBDECOMPXML stored procedure uses an XML schema which contains annotations that indicate
which columns and tables should be used to store the decomposed XML values. The referenced XML
schema must exist in the XSR and must be enabled for decomposition. You can enable an XML schema for
decomposition by using the XSR_COMPLETE stored procedure. If your XML schema references tables that
did not exist when you invoked the XSR_COMPLETE stored procedure, Db2 will return an error.

rschema
An input parameter of type VARCHAR(128) that specifies the SQL schema for the XML schema. It
must be a valid SQL identifier. The SQL schema is one part of the qualified name used to identify
this XML schema in the XSR. (The other part of the name is supplied by the name parameter). This
parameter can have the NULL value which indicates that name is implicitly qualified based on the
rules specified in “Qualification of unqualified object names” on page 57.
If rschema is specified, it cannot be QSYS, QSYS2, SYSIBM, SYSPROC, or QTEMP.

name
An input parameter of type VARCHAR(128) that specifies the name of the XML schema. It must
be a valid SQL identifier. The complete name for the XML schema for which decomposition is to
be performed is rschema.name. The XML schema name must already exist and be enabled for
decomposition as a result of calling the XSR_COMPLETE stored procedure. This parameter cannot
have the NULL value.

xmldoc
An input parameter of type BLOB(2G) that points to the XML value that is to be decomposed. This
parameter cannot be null.

726 IBM i: Db2 for i SQL Reference

documentid
An input parameter of type VARCHAR(1024) that contains a string that the caller can use to identify
the input XML document. This parameter can be null.

Chapter 5. Procedures 727

XSR_ADDSCHEMADOC
The XSR_ADDSCHEMADOC stored procedure adds every XML schema other than the primary XML
schema document to the XSR.

Authorization
Each XML schema in the XSR can consist on one or more XML schema documents. When an XML schema
consists of multiple documents, you need to call XSR_ADDSCHEMADOC for the additional documents.

The privileges held by the authorization ID of the statement must include the following:

• The following system authorities:

– The system authority *EXECUTE on the service program associated with the procedure,
– The system authority *EXECUTE on the SYSPROC library,
– The system authority *EXECUTE on the library containing the *SQLXSR object, and
– The ALTER privilege for the *SQLXSR object.

• Database administrator authority

The privileges held by the authorization ID of the statement must include at least one of the following:

• For the XSROBJECTCOMPONENTS and XSROBJECTHIERARCHIES catalog tables:

– The INSERT privilege on the table, and
– The system authority *EXECUTE on library QSYS2.

• Database administrator authority

The user ID of the caller of the procedure must have the EXECUTE privilege on the XSR_ADDSCHEMADOC
stored procedure and must be the definer of the XSR object as recorded in the XSROBJECTS catalog
table.

Syntax
XSR_ADDSCHEMADOC (rschema , name , schemalocation , content ,

docproperty)

Description
The schema is SYSPROC.

rschema
An input parameter of type VARCHAR(128) that specifies the SQL schema for the XML schema. It
must be a valid SQL identifier. The SQL schema is one part of the qualified name used to identify
this XML schema in the XSR. (The other part of the name is supplied by the name parameter). This
parameter can have the NULL value which indicates that name is implicitly qualified based on the
rules specified in “Qualification of unqualified object names” on page 57.
If rschema is specified, it cannot be QSYS, QSYS2, SYSIBM, SYSPROC, or QTEMP.

name
An input parameter of type VARCHAR(128) that specifies the name of the XML schema. It must be a
valid SQL identifier. The complete name for the XML schema is rschema.name. The XML schema must
already exist as a result of calling the XSR_REGISTER stored procedure and XML schema registration
cannot yet be completed. This parameter cannot have the NULL value.

schemalocation
An input parameter of type VARCHAR(1000), which can have the NULL value, that indicates the
schema location of the primary XML schema document to which the XML schema document is being

728 IBM i: Db2 for i SQL Reference

added. This argument is the external name of the XML schema, that is, the primary document can be
identified in the XML instance documents with the xsi:schemaLocation attribute. The document that
references the schemalocation must use a valid URI format.

content
An input parameter of type BLOB(30M) that contains the content of the XML schema document being
added. This argument cannot have the NULL value; an XML schema document must be supplied. The
content of the XML schema document must be encoded in UTF-8.

docproperty
An input parameter of type BLOB(5M) that indicates the properties for the XML schema document
being added. This argument can have the NULL value; otherwise, the value is an XML document.

Example
The following example calls the XSR_ADDSCHEMADOC stored procedure:

 CALL SYSPROC.XSR_ADDSCHEMADOC(
 'MyLib',
 'MySchema',
 'http://myschema/addschema1.xsd',
 :schema_content,
 :schema_docproperties)

Chapter 5. Procedures 729

XSR_COMPLETE
The XSR_COMPLETE procedure is the final stored procedure to be called as part of the XML schema
registration process, which registers XML schemas with the XSR. An XML schema is not available for
validation until the schema registration completes through a call to this stored procedure.

Authorization
The privileges held by the authorization ID of the statement must include the following:

• The following system authorities:

– The system authority *EXECUTE on the service program associated with the procedure,
– The system authority *EXECUTE on the SYSPROC library,
– The system authority *EXECUTE on the library containing the *SQLXSR object, and
– The ALTER privilege for the *SQLXSR object.

• Database administrator authority

The privileges held by the authorization ID of the statement must include at least one of the following:

• For the XSROBJECTS, XSROBJECTCOMPONENTS, XSROBJECTHIERARCHIES, and
XSRANNOTATIONINFO catalog tables:

– The UPDATE privilege on XSROBJECTS, XSROBJECTCOMPONENTS, and XSROBJECTHIERARCHIES,
– The INSERT privilege on XSRANNOTATIONINFO, and
– The system authority *EXECUTE on library QSYS2.

• Database administrator authority

The user ID of the caller of the procedure must have the EXECUTE privilege on the XSR_COMPLETE stored
procedure.

Syntax
XSR_COMPLETE (rschema , name , schemaproperties ,

issuedfordecomposition)

Description
The schema is SYSPROC.

rschema
An input parameter of type VARCHAR(128) that specifies the SQL schema for the XML schema. It
must be a valid SQL identifier. The SQL schema is one part of the qualified name used to identify
this XML schema in the XSR. (The other part of the name is supplied by the name parameter). This
parameter can have the NULL value which indicates that name is implicitly qualified based on the
rules specified in “Qualification of unqualified object names” on page 57.
If rschema is specified, it cannot be QSYS, QSYS2, SYSIBM, SYSPROC, or QTEMP.

name
An input parameter of type VARCHAR(128) that specifies the name of the XML schema. It must
be a valid SQL identifier. The complete name for the XML schema for which a completion check is
to be performed is rschema.name. The XML schema name must already exist as a result of calling
the XSR_REGISTER stored procedure, and XML schema registration cannot yet be completed. This
parameter cannot have the NULL value. Rules for valid characters and delimiters that apply to any SQL
identifier also apply to this parameter.

730 IBM i: Db2 for i SQL Reference

schemaproperties
An input parameter of type BLOB(5M) that specifies properties, if any, associated with the XML
schema. The values for this parameter is either NULL, if there are no associated properties, or an XML
document representing the properties for the XML schema.

issuedfordecomposition
An input parameter of type INTEGER that indicates if an XML schema is to be used for decomposition.
If an XML schema is to be used for decomposition, this value should be set to 1; otherwise, it should
be set to 0.

Example
The following example calls the XSR_COMPLETE stored procedure:

 CALL SYSPROC.XSR_COMPLETE(
 'MyLib',
 'MySchema',
 :schemaproperty_host_var,
 0)

Chapter 5. Procedures 731

XSR_REGISTER
The XSR_REGISTER procedure is the first stored procedure to be called as part of the XML schema
registration process, which registers XML schemas with the XML schema repository (XSR).

Authorization
The user that calls this stored procedure is considered the creator of this XML schema. Db2 obtains the
namespace attribute from the schema document when XSR_COMPLETE is invoked.

The privileges held by the authorization ID of the statement must include the following:

• The following system authorities:

– The system authority *EXECUTE on the service program associated with the procedure, and
– The system authority *EXECUTE on the SYSPROC library.

The privileges held by the authorization ID of the statement must include as least one of the following:

• The privilege to create in the schema
• Database administrator authority

The privileges held by the authorization ID of the statement must include at least one of the following:

• For the XSROBJECTS, XSROBJECTCOMPONENTS, and XSROBJECTHIERARCHIES catalog tables:

– The INSERT privilege on the table, and
– The system authority *EXECUTE on library QSYS2.

• Database administrator authority

Syntax
XSR_REGISTER (rschema , name , schemalocation , content ,

docproperty)

Description
The schema is SYSPROC.

rschema
An input parameter of type VARCHAR(128) that specifies the SQL schema for the XML schema. It
must be a valid SQL identifier. The SQL schema is one part of the qualified name used to identify
this XML schema in the XSR. (The other part of the name is supplied by the name parameter). This
parameter can have the NULL value which indicates that name is implicitly qualified based on the
rules specified in “Qualification of unqualified object names” on page 57.
If rschema is specified, it cannot be QSYS, QSYS2, SYSIBM, SYSPROC, or QTEMP.

name
An input parameter of type VARCHAR(128) that specifies the name of the XML schema. It must be a
valid SQL identifier. The complete name for the XML schema is rschema.name and should be unique
among all objects in the XSR.

schemalocation
An input parameter of type VARCHAR(1000), which can have the NULL value, that indicates the
schema location of the primary XML schema document. This parameter is the external name of the
XML schema, that is, the primary document can be identified in the XML instance documents with the
xsi:schemaLocation attribute.

732 IBM i: Db2 for i SQL Reference

content
An input parameter of type BLOB(30M) that contains the content of the primary XML schema
document. This parameter cannot have the NULL value; an XML schema document must be supplied.
The content of the XML schema document must be encoded in UTF-8.

docproperty
An input parameter of type BLOB(5M) that indicates the properties for the primary XML schema
document. This parameter can have the NULL value; otherwise, the value is an XML document.

Example
The following example calls the XSR_REGISTER stored procedure:

 CALL SYSPROC.XSR_REGISTER(
 'MyLib',
 'MySchema',
 'http://myschema/primary.xsd',
 :content_host_var,
 :docproperty_host_var)

Chapter 5. Procedures 733

XSR_REMOVE
The XSR_REMOVE procedure is used to remove all components of an XML schema. After the XML schema
is removed, you can reuse the name of the removed XML schema when you register a new XML schema.

Authorization
The privileges held by the authorization ID of the statement must include the following:

• The following system authorities:

– The system authority *EXECUTE on the service program associated with the procedure, and
– The system authority *EXECUTE on the SYSPROC library.

The privileges held by the authorization ID of the statement must include at least one of the following:

• The following system authorities:

– The system authority *OBJOPR and *OBJEXIST on the object associated with the XSR object, and
– The system authority *EXECUTE on the library that contains the XSR object to be dropped, and
– The DELETE privilege on the XSROBJECTS, XSROBJECTCOMPONENTS, XSROBJECTHIERARCHIES,

and XSRANNOTATIONINFO catalog tables, and
– The system authority *EXECUTE on library QSYS2.

• Database administrator authority

Syntax
XSR_REMOVE (rschema

NULL

, name)

Description
The schema is SYSPROC.

rschema
An input parameter of type VARCHAR(128) that specifies the SQL schema for the XML schema. It
must be a valid SQL identifier. The SQL schema is one part of the qualified name used to identify
this XML schema in the XSR. (The other part of the name is supplied by the name parameter). This
parameter can have the NULL value which indicates that name is implicitly qualified based on the
rules specified in “Qualification of unqualified object names” on page 57.
If rschema is specified, it cannot be QSYS, QSYS2, SYSIBM, SYSPROC, or QTEMP.

name
An input parameter of type VARCHAR(128) that specifies the name of the XML schema. It must be a
valid SQL identifier. The complete name for the XML schema that is to be removed is rschema.name.
The XML schema name must already exist as a result of calling the XSR_REGISTER stored procedure.
This parameter cannot have the NULL value.

Example
The following example calls the XSR_REMOVE stored procedure:

 CALL SYSPROC.XSR_REMOVE(
 'MyLib',
 'MySchema')

734 IBM i: Db2 for i SQL Reference

Chapter 6. Queries
A query specifies a result table or an intermediate result table. A query is a component of certain SQL
statements.

The three forms of a query are the subselect, the fullselect, and the select-statement. There is another
SQL statement that can be used to retrieve at most a single row described under “SELECT INTO” on page
1489.

Authorization
For any form of a query, the privileges held by the authorization ID of the statement must include at least
one of the following:

• For each table or view identified in the statement,

– The SELECT privilege on the table or view, and
– The system authority *EXECUTE on the library containing the table or view

• Database administrator authority

If a query includes a user-defined function, the privileges held by the authorization ID of the statement
must include at least one of the following:

• For each user-defined function identified in the statement:

– The EXECUTE privilege on the function
• Database administrator authority

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Table or View or Corresponding System Authorities When
Checking Privileges to a Function or Procedure.

If the query references a table that contains active row or column access control and row permissions or
column masks are defined for the table, the authorization ID of the statement does not need authority to
reference objects that are specified in the definitions of those row permissions or column masks.

© Copyright IBM Corp. 1998, 2015 735

subselect
The subselect is a component of the fullselect.

select-clause from-clause

where-clause hierarchical-query-clause

group-by-clause having-clause order-by-clause

offset-clause fetch-clause

A subselect specifies a result table derived from the tables or views identified in the FROM clause. The
derivation can be described as a sequence of operations in which the result of each operation is input for
the next. (This is only a way of describing the subselect. The method used to perform the derivation may
be quite different from this description. If portions of the subselect do not actually need to be executed
for the correct result to be obtained, they may or may not be executed.)

When a subselect directly or indirectly references a table for which row or column access control is
enforced, the rules that are defined in the row permissions or column masks affect how the rows in the
result table are derived. Typically those rules are based on the authorization ID of the process.

A scalar-subselect is a subselect, enclosed in parentheses, that returns a single result row and a single
result column. If the result of the subselect is no rows, then the null value is returned. An error is returned
if there is more than one row in the result.

The sequence of the (hypothetical) operations is:

1. FROM clause
2. hierarchical-query clause
3. WHERE clause
4. GROUP BY clause
5. HAVING clause
6. SELECT clause
7. ORDER BY clause
8. OFFSET clause
9. FETCH clause

736 IBM i: Db2 for i SQL Reference

select-clause
The SELECT clause specifies the columns of the final result table.

SELECT
ALL

DISTINCT

*
,

expression

AS
column-name

table-name.*

view-name.*

correlation-name.*

The column values are produced by the application of the select list to R. The select list is the names or
expressions specified in the SELECT clause, and R is the result of the previous operation of the subselect.
For example, if the only clauses specified are SELECT, FROM, and WHERE, R is the result of that WHERE
clause.

ALL
Selects all rows of the final result table and does not eliminate duplicates. This is the default.

DISTINCT
Eliminates all but one of each set of duplicate rows of the final result table. Two rows are duplicates of
one another only if each value in the first row is equal to the corresponding value in the second row.
(For determining duplicate rows, two null values are considered equal.) The collating sequence is also
used for determining distinct values.

DISTINCT is not allowed if the select-list contains a DATALINK or XML column, or an expression that
returns a value that is the XML data type.

Column access controls do not affect the operation of SELECT DISTINCT. The elimination of
duplicated rows is based on the original column values, not the masked values. However, after
the application of column masks, the masked values in the final result table might not reflect the
uniqueness that is enforced by SELECT DISTINCT.

If a column mask is applied to a column that directly or indirectly derives the result of SELECT
DISTINCT, SELECT DISTINCT can return a result that is not deterministic. The following conditions are
a few examples of when a result that is not deterministic might be returned:

• The definition of the column mask references other columns of the table to which the column mask
is applied.

• The column is referenced in the argument of a built-in scalar function, such as COALESCE, IFNULL,
NULLIF, MAX, MIN, LOCATE, etc.

• The column is referenced in the argument of an aggregate function.
• The column is embedded in an expression and the expression contains a function that is not

deterministic or has an external action.

Select list notation

*
Represents a list of columns of table R in the order the columns are produced by the FROM clause.
Any columns defined with the hidden attribute will not be included. The list of names is established

Chapter 6. Queries 737

when the statement containing the SELECT clause is prepared. Therefore, * does not identify any
columns that have been added to a table after the statement has been prepared.
* cannot be used in the definition of a row permission or a column mask.

expression
Specifies the values of a result column. Each column-name in the expression must unambiguously
identify a column of R.
column-name or AS column-name

Names or renames the result column. The name must not be qualified and does not have to be
unique.

name.*
Represents a list of columns of name. Any columns defined with the hidden attribute are not included.
The name can be a table name, view name, or correlation name, and must designate an exposed
table, view, or correlation name in the FROM clause immediately following the SELECT clause. The
first name in the list identifies the first column of the table or view, the second name in the list
identifies the second column of the table or view, and so on.

The list of names is established when the statement containing the SELECT clause is prepared.
Therefore, * does not identify any columns that have been added to a table after the statement has
been prepared.

name.* cannot be used in the definition of a row permission or a column mask.

Normally, when SQL statements are implicitly rebound, the list of names is not reestablished. Therefore,
the number of columns returned by the statement does not change. However, there are four cases where
the list of names is established again and the number of columns can change:

• When an SQL program or SQL package is saved and then restored on a IBM i product that is not the
same release as the system from which it was saved.

• When SQL naming is specified for an SQL program or package and the owner of the program has
changed since the SQL program or package was created.

• When an SQL statement is executed for the first time after the install of a more recent release of the
IBM i operating system.

• When the SELECT * occurs in the fullselect of an INSERT statement or in a fullselect within a predicate,
and a table or view referenced in the fullselect has been deleted and recreated with additional columns.

The number of columns in the result of SELECT is the same as the number of expressions in the
operational form of the select list (that is, the list established at prepare time), and cannot exceed
8000. The result of a subquery must be a single expression, unless the subquery is used in the EXISTS
predicate.

Applying the select list
The results of applying the select list to R depend on whether GROUP BY or HAVING is used:

If GROUP BY or HAVING is used

• Each column-name in the select list must identify a grouping expression, or be specified within an
aggregate function, or be a correlated reference:

– If the grouping expression is a column name, the select list may apply additional operators to the
column name. For example, if the grouping expression is column C1, the select list may contain C1+1.

– If the grouping expression is not a column name, the select list may not apply additional operators to
the expression. For example, if the grouping expression is C1+1, the select list may contain C1+1, but
not (C1+1)/8.

• The select list is applied to each group of R, and the result contains as many rows as there are groups
in R. When the select list is applied to a group of R, that group is the source of the arguments of the
aggregate functions in the select list.

738 IBM i: Db2 for i SQL Reference

• The RRN, RID, DATAPARTITIONNAME, DATAPARTITIONNUM, DBPARTITIONNAME, DBPARTITIONNUM,
and HASHED_VALUE functions cannot be specified in the select list.

If neither GROUP BY nor HAVING is used

• The select list must not include any aggregate functions, or each column-name must be specified in an
aggregate function or be a correlated reference.

• If the select list does not include aggregate functions, it is applied to each row of R and the result
contains as many rows as there are rows in R.

• If the select list is a list of aggregate functions, R is the source of the arguments of the functions and the
result of applying the select list is one row.

In either case the nth column of the result contains the values specified by applying the nth expression in
the operational form of the select list.

Effect of column masks on result columns: When column masks are enabled, they determine the values
in the final result table of an outermost select list. When a column mask is enabled for a column, if the
column appears in the outermost select list (either implicitly or explicitly), the column mask is applied
to the column to produce the values for the final result table. If the column itself does not appear in
the outermost select list, but is included in the output (for example, it appears in a materialized table
expression or a view), the masked value is included in the result table of the table expression or view so
that it can be used in the final result table.

The enabled column masks do not interfere with the operations of other clauses within the statement,
such as the WHERE, GROUP BY, HAVING, SELECT DISTINCT, and ORDER BY clauses.

The rows that are returned in the final result table remain the same, except that the values in the
result rows might be masked. As such, if a column with masked values also appears in an ORDER BY
clause with a sort-key expression, the order is based on the original column values (the masked values
in the final result table might not reflect that order). Similarly, the masked values might not reflect the
uniqueness enforced by a SELECT DISTINCT. If the masked column is embedded in an expression, the
result of the expression might be different because the column mask is applied to the column before
the expression is evaluated. For example, a column mask on column SSN can change the result of the
function COUNT(DISTINCT SSN) because the DISTINCT operation is performed on the masked values.

When the definition of a column mask is applied to an SQL statement to mask column values in the
final result table, the semantics of the column mask might conflict with certain SQL semantics in the
statement. In these situations, the combination of the statement and the column mask might return an
error.

See “ALTER TABLE” on page 869 for more information about the application of enabled column masks.

Null attributes of result columns
Result columns allow null values if they are derived from:

• Any aggregate function but COUNT and COUNT_BIG
• Any column that allows null values
• A scalar function or expression with an operand that allows null values
• A host variable that has an indicator variable, an SQL parameter or variable, or in the case of Java, a

variable or expression whose type is able to represent a Java null value
• A result of a UNION or INTERSECT if at least one of the corresponding items in the select list is nullable
• An arithmetic expression in the outer select list
• A scalar-fullselect
• A user-defined scalar or table function
• A GROUPING SETS grouping-expression

Chapter 6. Queries 739

Names of result columns
• If the AS clause is specified, the name of the result column is the name specified on the AS clause.
• If the AS clause is not specified and a column list is specified in the correlation clause, the name of the

result column is the corresponding name in the correlation column list.
• If neither an AS clause nor a column list in the correlation clause is specified and the result column is

derived only from a single column (without any functions or operators), then the result column name is
the unqualified name of that column.

• If neither an AS clause nor a column list in the correlation clause is specified and the result column is
derived only from a single variable (without any functions or operators), then the result column name is
the unqualified name of that variable.

• If neither an AS clause nor a column list in the correlation clause is specified and the result column is
derived only from a single pseudo column (without any functions or operators), then the result column
name is the name of that pseudo column.

• All other result columns are unnamed.

Data types of result columns
Each column of the result of SELECT acquires a data type from the expression from which it is derived.

When the expression is: The data type of the result column is:

the name of any numeric column the same as the data type of the column, with the same precision
and scale for decimal columns.

an integer constant INTEGER or BIGINT (if the value of the constant is outside the range
of INTEGER, but within the range of BIGINT).

a decimal or floating-point
constant

the same as the data type of the constant, with the same precision
and scale for decimal constants.

the name of a DECFLOAT(7)
variable

DECFLOAT(16)

the name of any numeric variable the same as the data type of the variable, with the same precision
and scale for decimal variables. If the data type of the variable is not
identical to an SQL data type (for example, DISPLAY SIGN LEADING
SEPARATE in COBOL), the result column is decimal.

an expression the same as the data type of the result, with the same precision and
scale for decimal results as described under “Expressions” on page
158.

any function the data type of the result of the function. For a built-in function, see
Chapter 4, “Built-in functions,” on page 243 to determine the data
type of the result. For a user-defined function, the data type of the
result is what was defined in the CREATE FUNCTION statement for
the function.

the name of any string column the same as the data type of the column, with the same length
attribute.

the name of any string variable the same as the data type of the variable, with a length attribute
equal to the length of the variable. If the data type of the variable
is not identical to an SQL data type (for example, a NUL-terminated
string in C), the result column is a varying-length string.

a character-string constant of
length n

VARCHAR(n)

740 IBM i: Db2 for i SQL Reference

When the expression is: The data type of the result column is:

a graphic-string constant of
length n

VARGRAPHIC(n)

the name of an XML column or
variable

XML

the name of a datetime column,
or an ILE RPG compiler or an ILE
COBOL compiler datetime host
variable

the same as the data type of the column or variable.

the name of a distinct type
column

the same as the distinct type of the column, with the same length,
precision, and scale attributes, if any.

the name of a datalink column a datalink, with the same length attribute.

the name of a row ID column or a
row ID variable

ROWID

Chapter 6. Queries 741

from-clause
The FROM clause specifies an intermediate result table.

FROM

,

table-reference

If only one table-reference is specified, the intermediate result table is simply the result of that table-
reference. If more than one table-reference is specified in the FROM clause, the intermediate result table
consists of all possible combinations of the rows of the specified table-references (the Cartesian product).
Each row of the result is a row from the first table-reference concatenated with a row from the second
table-reference, concatenated in turn with a row from the third, and so on. The number of rows in the
result is the product of the number of rows in all the individual table-references.

If table-reference has row access controls enforced, table-reference has at least one row permission: the
default row permission. When there are multiple row permissions defined for a table-reference, a row
access control search condition is derived by applying the logical OR operator to the search condition in
each enabled permission. This derived search condition acts as a filter to the table-reference to determine
the result table of the table-reference that is accessible to the authorization ID of the subselect.

table-reference
A table-reference specifies an intermediate result table.

single-table

nested-table-expression

table-function

json-table-expression

xmltable-expression

data-change-table-reference

collection-derived-table

joined-table

single-table
table-name

view-name period-specification correlation-clause

nested-table-expression

LATERAL

(fullselect)

correlation-clause

table-function
TABLE (function-invocation)

correlation-clause

json-table-expression
json-table-function

correlation-clause

xmltable-expression

742 IBM i: Db2 for i SQL Reference

xmltable-function

correlation-clause

data-change-table-reference
FINAL

NEW

TABLE (INSERT statement)

correlation-clause

collection-derived-table

UNNEST (

,

array-expression)

WITH ORDINALITY

correlation-clause

period-specification
FOR SYSTEM_TIME AS OF value

FROM value1 TO value2

BETWEEN value1 AND value2

correlation-clause
AS

correlation-name

(

,

column-name)

• If a single table or view is identified without a period-specification, the intermediate result table is
simply that table or view. If a period-specification is specified for a table-name or view-name, the
intermediate result table consists of the rows of the temporal table where the period matches the
specification.

• A fullselect in parentheses called a nested table expression.80 If a nested table expression is specified,
the result table is the result of that nested table expression. The columns of the result do not need
unique names, but a column with a non-unique name cannot be explicitly referenced.

• If a function-name , json-table-expression, or xmltable-expression is specified, the intermediate result
table is the set of rows returned by the table function.

• If a data-change-table-reference is specified, the intermediate result table is the set of rows inserted by
the INSERT statement.

• If a collection-derived-table is specified, the intermediate result table is a set of rows from one or more
arrays.

• If a joined-table is specified, the intermediate result table is the result of one or more join operations.
For more information, see “joined-table” on page 750.

If table-reference identifies a distributed table or a table that has a read trigger, the query cannot contain:

• EXCEPT or INTERSECT operations,
• VALUES in a fullselect,
• OLAP specifications,
• recursive common table expressions and CONNECT BY,
• ORDER OF,

80 A nested table expression is also called a derived table.

Chapter 6. Queries 743

• scalar fullselects (scalar subselects are supported),
• full outer join,
• LOBs in a GROUP BY,
• grouping sets or super groups,
• ORDER BY or FETCH clause in a subselect,
• OFFSET clause, or FETCH clause with a variable for N rows,
• CORRELATION, COVARIANCE, COVARIANCE_SAMP, LISTAGG, MEDIAN, PERCENTILE_CONT,

PERCENTILE_DISC, or Regression aggregate functions,
• VERIFY_GROUP_FOR_USER, LOCATE_IN_STRING, LTRIM or RTRIM with 2 arguments, EXTRACT

function with EPOCH,
• BSON_TO_JSON, JSON_ARRAY, JSON_ARRAYAGG, JSON_OBJECT, JSON_OBJECTAGG, JSON_QUERY,

JSON_TABLE, JSON_TO_BSON, and JSON_VALUE functions, and the IS JSON and JSON_EXISTS
predicates,

• XMLAGG, XMLATTRIBUTES, XMLCOMMENT, XMLCONCAT, XMLDOCUMENT, XMLELEMENT, XMLFOREST,
XMLGROUP, XMLNAMESPACES, XMLPI, XMLROW, XMLTABLE, or XMLTEXT functions,

• CONTAINS or SCORE functions,
• default values for user defined functions,
• global variables, or
• references to arrays.

If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a non-null value CTST, the value of the
SYSTIME option is YES, and table-name or view-name identifies a system-period temporal table, the table
reference is executed as if it contained the following specification with the special register set to the null
value:

 table-name FOR SYSTEM_TIME AS OF CTST

or

 view-name FOR SYSTEM_TIME AS OF CTST

The list of names in the FROM clause must conform to these rules:

• Each table-name and view-name must name an existing table or view at the current server or the table-
identifier of a common table expression defined preceding the subselect containing the table-reference.

• The exposed names must be unique. An exposed name is:

– A correlation-name
– A table-name or view-name that is not followed by a correlation-name
– The table-name or view-name that is the target of the data-change-table-reference when the data-

change-table-reference is not followed by a correlation-name

If a correlation-clause is not specified for a nested-table-expression, table-function, json-table-
expression, xmltable-expression, data-change-table-reference, or collection-derived-table, there is no
exposed name for that table reference.

• Each function-name, together with the types of its arguments, must resolve to a table function that
exists at the current server. An algorithm called function resolution, which is described in “Function
resolution” on page 149, uses the function name and the arguments to determine the exact function to
use.

• Each array-variable-name must identify an array variable in the SQL routine.

Each correlation-name is defined as a designator of the intermediate result table specified by the
immediately preceding table-reference.

744 IBM i: Db2 for i SQL Reference

Any qualified reference to a column must use the exposed name. If the same table name or view name is
specified twice, at least one specification must be followed by a correlation-name. The correlation-name
is used to qualify references to the columns of the table or view. When a correlation-name is specified,
column-names can also be specified to give names to the columns of the table-reference. If a column list
is specified, there must be a name in the column list for each column in the table or view and for each
result column in the nested-table-expression, table-function, json-table-expression, xmltable-expression,
data-change-table-reference, or collection-derived-table. For more information, see “Correlation names”
on page 131. If the correlation-clause does not include column-names, the exposed column names are
determined as follows:

• Column names of the referenced table or view when the table-reference is a table-name or view-name.
• Column names specified in the RETURNS clause of the CREATE FUNCTION statement when the table-

reference is a function-name reference.
• Column names specified in the COLUMNS clause of the json-table-expression or xmltable-expression

when the table-reference is a json-table-expression or xmltable-expression.
• Column names returned by the fullselect when the table-reference is a nested-table-expression.
• Column names from the target table of the data change statement, along with any defined INCLUDE

columns, when the table-reference is a data-change-table-reference.

In general, nested-table-expressions, table-functions, and collection-derived-tables can be specified in any
FROM clause. Columns from the nested table expressions, table functions, and collection derived tables
can be referenced in the select list and in the rest of the subselect using the correlation name. The scope
of this correlation name is the same as correlation names for other table or view names in the FROM
clause. A nested table expression can be used:

• in place of a view to avoid creating the view (when general use of the view is not required)
• when the desired result table is based on variables.

period-specification
Specifies that a period specification applies to the table-reference. A query with a period-specification
is a temporal query. A period-specification cannot be specified for a table or view that has a column
referenced in a CONTAINS or SCORE built-in function.

The rows of the table reference are derived by application of the period specification. The intermediate
result table of a temporal query does not include rows in the associated history table that were added for
the ON DELETE ADD EXTRA ROW attribute in the system-period temporal table definition.

The rows of a view reference are derived by application of the period specification to all of the temporal
tables that are accessed when computing the result table of the view. If the view does not access
any temporal tables, the period specification has no effect on the result table of the view. If a period-
specification was specified for any of the table references within the view definition, a table reference of
that view cannot include a period-specification. The definition of the view must not reference an external
function with a data access indication other than NO SQL and must not reference an SQL function unless it
is an inline function.

If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a value other than the null value, a
period-specification is not allowed unless the value of the SYSTIME option is NO.

FOR SYSTEM_TIME
Specifies that the SYSTEM_TIME period is used for the period-specification. The table reference must
be a view or a system-period temporal table.

AS OF value
Specifies that the table-reference includes each row for which the begin value for the specified
period is less than or equal to value and the end value for the period is greater than value. The
table-reference contains zero rows if value is the null value.

Chapter 6. Queries 745

value
Specifies an expression that returns a value of a built-in data type. The result of the expression
must be comparable to TIMESTAMP(12) according to the comparison rules specified in “Datetime
comparisons” on page 102.
The expression must not contain a column reference, a scalar fullselect, or a function that is
non-deterministic, external action, or modifies SQL data.

FROM value1 TO value2
Specifies that the table-reference includes rows that exist for the period that is specified from value1
up to value2. A row is included in the table-reference if the start value for the period in the row is less
than value2 and the end value for the period in the row is greater than value1. The table-reference
contains zero rows if value1 is greater than or equal to value2 or if value1 or value2 is the null value.
value1 or value2

Specifies an expression that returns a value of a built-in data type. The result of the expression
must be comparable to TIMESTAMP(12) according to the comparison rules specified in “Datetime
comparisons” on page 102.
The expression must not contain a column reference, a scalar fullselect, or a function that is
non-deterministic, external action, or modifies SQL data.

BETWEEN value1 AND value2
Specifies that the table-reference includes rows in which the specified period overlaps at any point
in time between value1 and value2. A row is included in the table-reference if the start value for the
period in the row is less than or equal to value2 and the end value for the period in the row is greater
than value1. The table-reference contains zero rows if value1 is greater than value2 or if value1 or
value2 is the null value. If value1 = value2, the expression is equivalent to AS OF value1.
value1 or value2

Specifies an expression that returns a value of a built-in data type. The result of the expression
must be comparable to TIMESTAMP(12) according to the comparison rules specified in “Datetime
comparisons” on page 102.
The expression must not contain a column reference, a scalar fullselect, or a function that is
non-deterministic, external action, or modifies SQL data.

Syntax alternatives:

• AS OF TIMESTAMP can be specified in place of FOR SYSTEM_TIME AS OF
• VERSIONS BETWEEN TIMESTAMP can be specified in place of FOR SYSTEM_TIME BETWEEN

json-table-function
Specifies an invocation of the built-in JSON_TABLE table function. See “JSON_TABLE” on page 694 for
more information.

xmltable-function
Specifies an invocation of the built-in XMLTABLE table function. See “XMLTABLE” on page 714 for more
information.

Data change table reference
A data-change-table-reference specifies an intermediate result table that is based on the rows that are
directly changed by the INSERT statement included in the clause. A data-change-table-reference must be
the only table-reference in the FROM clause of the outer fullselect that is used in a select-statement, a
SELECT INTO statement, a SET variable statement, or as the only fullselect in an assignment statement.

The intermediate result table for a data-change-table-reference includes all rows that were inserted. All
columns of the inserted table may be referenced in the subselect, along with any INCLUDE columns
defined on the INSERT statement. A data-change-table-reference has the following restrictions:

• It can appear only in the outer level fullselect.

746 IBM i: Db2 for i SQL Reference

• The target table or view of the INSERT statement is considered a table or view referenced in the query.
Therefore, the authorization ID of the query must be authorized to the table or view as well as having
the necessary privileges required by the INSERT.

• A fullselect in the INSERT statement cannot contain correlated references to columns outside the
fullselect of the INSERT statement.

• A data-change-table-reference in a select-statement makes the cursor READ ONLY. This means that
UPDATE WHERE CURRENT OF and DELETE WHERE CURRENT OF cannot be used.

• If the INSERT references a view, the view must be defined using WITH CASCADED CHECK OPTION
or could have been defined using WITH CHECK OPTION. In addition, the view cannot have a WHERE
clause that contains:

– a function that modifies SQL data
– a function that is not deterministic or has external action

• A data-change-table-reference clause cannot be specified in a view definition or a materialized query
table definition.

• If the target of the SQL data change statement is a view that is defined with an INSTEAD OF INSERT
trigger, an error is returned.

If row access control is enforced for the target of the data change statement, the rows in the intermediate
result table already satisfy the rules that are specified in the enabled row permissions. If column access
control is enforced for the target of the data change statement, the enabled column masks are applied to
the outermost select list. See “select-clause” on page 737 for more information.

FINAL TABLE
Specifies that the rows of the intermediate result table represent the set of rows that are inserted
by the SQL data change statement as they appear at the completion of the data change statement.
If there are AFTER INSERT triggers or referential constraints that result in further changes to the
inserted rows of the table that is the target of the data change statement, an error is returned.

NEW TABLE
Specifies that the rows of the intermediate result table represent the set of rows that are changed
by the SQL data change statement prior to the application of referential constraints and AFTER
triggers. Data in the target table at the completion of the statement might not match the data in
the intermediate result table because of additional processing for referential constraints and AFTER
triggers.

Collection derived table
A collection derived table can be used to unnest the elements of arrays into rows.

array-expression
An expression that returns an array data type. The expression must be one of the following
expressions:

• An SQL variable
• An SQL parameter
• A CAST specification of a parameter marker

Names for the result columns produced by the UNNEST function can be provided as part of the
correlation-clause of the collection-derived-table clause.

The result table depends on the input arguments.

• If a single array argument is specified, the result is a single column table with a column data type that
matches the array element data type.

• If more than one array is specified, the first array provides the first column in the result table, the
second array provides the second column, and so on. The data type of each column matches the data
type of the array elements of the corresponding array argument. If WITH ORDINALITY is specified, an
extra column of type BIGINT, which contains the position of the elements in the arrays, is appended.

Chapter 6. Queries 747

If the cardinalities of the arrays are not identical, the cardinality of the result table is the same as
the array with the largest cardinality. The column values in the table are set to the null value for all
rows whose array index value is greater than the cardinality of the corresponding array. In other words,
if each array is viewed as a table with two columns (one for the subindices and one for the data),
then UNNEST performs an OUTER JOIN among the arrays using equality on the subindices as the join
predicate.

UNNEST can only be specified within an SQL procedure or SQL function.

Correlated references in table-references
Correlated references can be used in nested-table-expressions. The basic rule that applies is that the
correlated reference must be from a table-reference at a higher level in the hierarchy of subqueries. This
hierarchy includes the table-references that have already been resolved in the left-to-right processing of
the FROM clause. For nested table expressions, the TABLE or LATERAL keyword must appear before the
fullselect. For more information see “References to SQL parameters and SQL variables” on page 1581

A table function can contain one or more correlated references to other tables in the same FROM clause
if the referenced tables precede the reference in the left-to-right order of the tables in the FROM clause.
The same capability exists for nested table expressions if the optional keyword TABLE or LATERAL is
specified. Otherwise, only references to higher levels in the hierarchy of subqueries is allowed.

A nested table expression or table function that contains correlated references to other tables in the same
FROM clause:

• Cannot participate in a RIGHT OUTER JOIN, FULL OUTER JOIN, or RIGHT EXCEPTION JOIN
• Can participate in LEFT OUTER JOIN or an INNER JOIN if the referenced tables precede the reference in

the left-to-right order of the tables in the FROM clause

If table-reference identifies a distributed table or a table that has a read trigger; a nested table expression
cannot contain a correlated reference to other tables in the same FROM clause when:

• The nested table expression contains a UNION, EXCEPT, or INTERSECT.
• The nested table expression uses the DISTINCT keyword in the select list.
• The nested table expression contains an ORDER BY and FETCH clause.
• The nested table expression is in the FROM clause of another nested table expression that contains one

of these restrictions.

Syntax Alternatives: TABLE can be specified in place of LATERAL.

Example 1
The following example is valid:

SELECT D.DEPTNO, D.DEPTNAME, EMPINFO.AVGSAL, EMPINFO.EMPCOUNT
FROM DEPARTMENT D,
 (SELECT AVG(E.SALARY) AS AVGSAL,COUNT (*) AS EMPCOUNT
 FROM EMPLOYEE E
 WHERE E.WORKDEPT =
 (SELECT X.DEPTNO
 FROM DEPARTMENT X
 WHERE X.DEPTNO = E.WORKDEPT)) AS EMPINFO

The following example is not valid because the reference to D.DEPTNO in the WHERE clause of the
nested-table-expression attempts to reference a table that is outside the hierarchy of subqueries:

SELECT D.DEPTNO, D.DEPTNAME,
 EMPINFO.AVGSAL, EMPINFO.EMPCOUNT ***INCORRECT***
 FROM DEPARTMENT D,
 (SELECT AVG(E.SALARY) AS AVGSAL,COUNT (*) AS EMPCOUNT
 FROM EMPLOYEE E
 WHERE E.WORKDEPT = D.DEPTNO) AS EMPINFO

748 IBM i: Db2 for i SQL Reference

The following example is valid because the reference to D.DEPTNO in the WHERE clause of the nested-
table-expression references DEPT, which precedes the nested-table-expression and the LATERAL keyword
was specified:

SELECT D.DEPTNO, D.DEPTNAME,
 EMPINFO.AVGSAL, EMPINFO.EMPCOUNT
 FROM DEPARTMENT D,
 LATERAL (SELECT AVG(E.SALARY) AS AVGSAL,COUNT (*) AS EMPCOUNT
 FROM EMPLOYEE E
 WHERE E.WORKDEPT = D.DEPTNO) AS EMPINFO

Example 2
The following example of a table function is valid:

SELECT t.c1, z.c5
 FROM t, TABLE(tf3 (t.c2)) AS z
 WHERE t.c3 = z.c4

The following example is not valid because the reference to t.c2 is for a table that is to the right of the
table function in the FROM clause:

SELECT t.c1, z.c5
 FROM TABLE(tf6 (t.c2)) AS z, t ***INCORRECT***
 WHERE t.c3 = z.c4

Example 3
The following example of a table function is valid:

SELECT t.c1, z.c5
 FROM t, TABLE(tf4 (2 * t.c2)) AS z
 WHERE t.c3 = z.c4

The following example is not valid because the reference to b.c2 is for the table function that is to the
right of the table function containing the reference to b.c2 in the FROM clause:

SELECT a.c1, b.c5
 FROM TABLE(tf7a (b.c2)) AS z, ***INCORRECT***
 TABLE(tf7b (a.c6)) AS b
 WHERE a.c3 = b.c4

Chapter 6. Queries 749

joined-table
A joined-table specifies an intermediate result table that is the result of either an inner, outer, cross, or
exception join. The table is derived by applying one of the join operators: INNER, LEFT OUTER, RIGHT
OUTER, FULL OUTER, LEFT EXCEPTION, RIGHT EXCEPTION, or CROSS to its operands.

table-reference
INNER

LEFT

RIGHT

FULL

OUTER

LEFT

RIGHT

EXCEPTION

JOIN table-reference ON join-condition

USING (

,

column-name)

table-reference CROSS JOIN table-reference

(joined-table)

If a join operator is not specified, INNER is implicit. The order in which multiple joins are performed can
affect the result. Joins can be nested within other joins. The order of processing for joins is generally from
left to right, but based on the position of the required join-condition or USING clause. Parentheses are
recommended to make the order of nested joins more readable. For example:

 TB1 LEFT JOIN TB2 ON TB1.C1=TB2.C1
 LEFT JOIN TB3 LEFT JOIN TB4 ON TB3.C1=TB4.C1
 ON TB1.C1=TB3.C1

is the same as

 (TB1 LEFT JOIN TB2 ON TB1.C1=TB2.C1)
 LEFT JOIN (TB3 LEFT JOIN TB4 ON TB3.C1=TB4.C1)
 ON TB1.C1=TB3.C1

An inner join combines each row of the left table with every row of the right table keeping only the rows
where the join-condition (or USING clause) is true. Thus, the result table may be missing rows from either
or both of the joined tables. Outer joins include the rows produced by the inner join as well as the missing
rows, depending on the type of outer join. Exception joins include only the missing rows, depending on the
type of exception join.

• A left outer join includes the rows from the left table that were missing from the inner join.
• A right outer join includes the rows from the right table that were missing from the inner join.
• A full outer join includes the rows from both tables that were missing from the inner join.
• A left exception join includes only the rows from the left table that were missing from the inner join.
• A right exception join includes only the rows from the right table that were missing from the inner join.

A joined table can be used in any context in which any form of the SELECT statement is used. A view or a
cursor is read-only if its SELECT statement includes a joined table.

Join condition
The join-condition is a search-condition that must conform to these rules:

• It cannot contain a quantified subquery, IN predicate with a subselect, or EXISTS subquery. It can
contain basic predicate subqueries and scalar-fullselects.

• Any column referenced in an expression of the join-condition must be a column of one of the operand
tables of the associated join (in the scope of the same joined-table clause).

• Each column name must unambiguously identify a column in one of the tables in the from-clause.

750 IBM i: Db2 for i SQL Reference

• Aggregate functions cannot be used in the expression.

For any type of join, column references in an expression of the join-condition are resolved using the rules
for resolution of column name qualifiers specified in “Column names” on page 131 before any rules about
which tables the columns must belong to are applied.

Join USING
The USING clause specifies a shorthand way of defining the join condition. This form is known as a
named-columns-join.

column-name
Must unambiguously identify a column that exists in both table-references of the joined table. The
column must not be a DATALINK column.

The result table of the join contains the columns from the USING clause first, then the columns from the
first table of the join that were not in the USING clause, followed by the remaining columns from the
second table of the join that were not in the USING clause. Any column specified in the USING clause
cannot be qualified in the query.

The USING clause is equivalent to a join-condition in which each column from the left table-reference is
compared equal to a column of the same name in the right table-reference. For example, assume that TB1
and TB2 have columns C1, C2, ... Cn, D1, D2 named-columns-join of the form:

 TB1 INNER JOIN TB2
 USING (C1, C2, ... Cn)

defines a result table that is equivalent to:

 SELECT TB1.*, TB2.D1, TB2.D2
 FROM TB1 INNER JOIN TB2
 ON TB1.C1 = TB2.C1 AND
 TB1.C2 = TB2.C2 AND
 ...
 TB1.Cn = TB2.Cn

Join operations
A join-condition (or USING clause) specifies pairings of T1 and T2, where T1 and T2 are the left and right
operand tables of the JOIN operator of the join-condition (or USING clause). For all possible combinations
of rows of T1 and T2, a row of T1 is paired with a row of T2 if the join-condition (or USING clause) is true.
When a row of T1 is joined with a row of T2, a row in the result consists of the values of that row of T1
concatenated with the values of that row of T2. In the case of OUTER joins, the execution might involve
the generation of a null row. The null row of a table consists of a null value for each column of the table,
regardless of whether the columns allow null values.

INNER JOIN or JOIN
The result of T1 INNER JOIN T2 consists of their paired rows.

Using the INNER JOIN syntax with a join-condition (or USING clause) will produce the same result
as specifying the join by listing two tables in the FROM clause separated by commas and using the
where-clause to provide the join condition.

LEFT JOIN or LEFT OUTER JOIN
The result of T1 LEFT OUTER JOIN T2 consists of their paired rows and, for each unpaired row of T1,
the concatenation of that row with the null row of T2. All columns derived from T2 allow null values.

RIGHT JOIN or RIGHT OUTER JOIN
The result of T1 RIGHT OUTER JOIN T2 consists of their paired rows and, for each unpaired row of T2,
the concatenation of that row with the null row of T1. All columns derived from T1 allow null values.

FULL JOIN or FULL OUTER JOIN
The result of T1 FULL OUTER JOIN T2 consists of their paired rows and, for each unpaired row of
T2, the concatenation of that row with the null row of T1 and, for each unpaired row of T1, the

Chapter 6. Queries 751

concatenation of that row with the null row of T2. All columns derived from T1 and T2 allow null
values.

FULL OUTER JOIN is not allowed if the query specifies:

• a distributed table,
• a table with a read trigger, or
• a logical file built over multiple physical file members.

LEFT EXCEPTION JOIN and EXCEPTION JOIN
The result of T1 LEFT EXCEPTION JOIN T2 consists only of each unpaired row of T1, the
concatenation of that row with the null row of T2. All columns derived from T2 allow null values.

RIGHT EXCEPTION JOIN
The result of T1 RIGHT EXCEPTION JOIN T2 consists only of each unpaired row of T2, the
concatenation of that row with the null row of T1. All columns derived from T1 allow null values.

CROSS JOIN
The result of T1 CROSS JOIN T2 consists of each row of T1 paired with each row of T2. CROSS JOIN is
also known as Cartesian product.

752 IBM i: Db2 for i SQL Reference

Hierarchical queries
Hierarchical queries are a form of recursive query that provides support for retrieving a hierarchy, such as
a bill of materials, from relational data using a CONNECT BY clause.

Connect-by recursion uses the same subquery for the seed (start) and the recursive step (connect). This
combination provides a concise method of representing recursions such as bills-of-material, reports-to-
chains, or email threads.

Connect-by recursion returns an error if a cycle occurs. A cycle occurs when a row produces itself, either
directly or indirectly. Using the optional CONNECT BY NOCYCLE clause, the recursion can be directed to
ignore the duplicated row, thus avoiding both the cycle and the error.

subselect
Hierarchical query support includes the following extensions to the subselect.

• The subselect includes a hierarchical-query-clause
• The clauses of the subselect are processed in the following sequence:

1. FROM clause
2. hierarchical-query-clause
3. WHERE clause
4. GROUP BY clause
5. HAVING clause
6. SELECT clause
7. ORDER BY clause
8. OFFSET clause
9. FETCH clause

• If the subselect includes a hierarchical-query-clause, special rules apply for the order of processing the
predicates in the WHERE clause. The search-condition is factored into predicates along with its AND
conditions (conjunction). If a predicate is an implicit join predicate (that is, it references more than one
table in the FROM clause), the predicate is applied before the hierarchical-query-clause. Any predicate
referencing at most one table in the FROM clause is applied to the intermediate result table of the
hierarchical-query-clause.

A hierarchical query involving joins should be written using explicit joined tables with an ON clause to
avoid confusion about the application of WHERE clause predicates.

• The ORDER SIBLINGS BY clause can be specified if the subselect includes a hierarchical-query-clause.
This clause specifies that the ordering applies only to siblings within the hierarchies.

Chapter 6. Queries 753

hierarchical-query-clause
A subselect that includes a hierarchical-query-clause is called a hierarchical query.

start-with-clause

connect-by-clause

start-with-clause
START WITH search-condition

connect-by-clause
CONNECT BY

NOCYCLE

search-condition

After establishing a first intermediate result table H1, subsequent intermediate result tables H2, H3, and
so forth are generated by joining Hn with R using the connect-by-clause as a join condition to produce
Hn+1. R is the result of the FROM clause of the subselect and any join predicates in the WHERE clause. The
process stops when Hn+1 has yielded an empty result table or when processing has reached the maximum
supported depth level of 250. The result table H of the hierarchical-query-clause is the UNION ALL of
every Hi.

start-with-clause
Specifies the intermediate result table H1 for the hierarchical query that consists of those rows of
R for which the search-condition is true. If the start-with-clause is not specified, H1 is the entire
intermediate result table R.

connect-by-clause
Produces the intermediate result table Hn+1 from Hn by joining Hn with R, using the search-condition.

If the intermediate result table Hn+1 would return a row from R for a hierarchical path that is the same
as a row from R that is already in that hierarchical path, an error is returned.

NOCYCLE
Specifies that an error is not returned, but the repeated row is not included in the intermediate
result table Hn+1.

The rules for the search-condition in the start-with-clause and the connect-by-clause are the same as for
the where-clause.

The unary operator PRIOR is used to distinguish column references to Hn, the last prior recursive step,
from column references to R. For example:

 CONNECT BY MGRID = PRIOR EMPID

MGRID is resolved with R, and EMPID is resolved within the previous intermediate result table Hn.

A subselect that is a hierarchical query returns the intermediate result set in a partial order unless that
order is destroyed through the use of an explicit ORDER BY clause, a GROUP BY or HAVING clause, or a
DISTINCT keyword in the select list. The partial order returns rows, such that rows produced in Hn+1 for
a given hierarchy immediately follow the row in Hn that produced them. The ORDER SIBLINGS BY clause
can be used to enforce order within a set of rows produced by the same parent.

A NEXT VALUE expression cannot be specified in:

• The parameter list of a CONNECT_BY_ROOT operator or a SYS_CONNECT_BY_PATH function
• The START WITH or CONNECT BY clauses

754 IBM i: Db2 for i SQL Reference

Examples

• The following reports-to-chain example illustrates connect-by recursion. The example is based on a
table named MY_EMP, which is created and populated with data as follows:

CREATE TABLE MY_EMP(
 EMPID INTEGER NOT NULL PRIMARY KEY,
 NAME VARCHAR(10),
 SALARY DECIMAL(9, 2),
 MGRID INTEGER);

INSERT INTO MY_EMP VALUES (1, 'Jones', 30000, 10);
INSERT INTO MY_EMP VALUES (2, 'Hall', 35000, 10);
INSERT INTO MY_EMP VALUES (3, 'Kim', 40000, 10);
INSERT INTO MY_EMP VALUES (4, 'Lindsay', 38000, 10);
INSERT INTO MY_EMP VALUES (5, 'McKeough', 42000, 11);
INSERT INTO MY_EMP VALUES (6, 'Barnes', 41000, 11);
INSERT INTO MY_EMP VALUES (7, 'O''Neil', 36000, 12);
INSERT INTO MY_EMP VALUES (8, 'Smith', 34000, 12);
INSERT INTO MY_EMP VALUES (9, 'Shoeman', 33000, 12);
INSERT INTO MY_EMP VALUES (10, 'Monroe', 50000, 15);
INSERT INTO MY_EMP VALUES (11, 'Zander', 52000, 16);
INSERT INTO MY_EMP VALUES (12, 'Henry', 51000, 16);
INSERT INTO MY_EMP VALUES (13, 'Aaron', 54000, 15);
INSERT INTO MY_EMP VALUES (14, 'Scott', 53000, 16);
INSERT INTO MY_EMP VALUES (15, 'Mills', 70000, 17);
INSERT INTO MY_EMP VALUES (16, 'Goyal', 80000, 17);
INSERT INTO MY_EMP VALUES (17, 'Urbassek', 95000, NULL);

The following query returns all employees working for Goyal, as well as some additional information,
such as the reports-to-chain:

 1 SELECT NAME,
 2 LEVEL,
 3 SALARY,
 4 CONNECT_BY_ROOT NAME AS ROOT,
 5 SUBSTR(SYS_CONNECT_BY_PATH(NAME, ':'), 1, 25) AS CHAIN
 6 FROM MY_EMP
 7 START WITH NAME = 'Goyal'
 8 CONNECT BY PRIOR EMPID = MGRID
 9 ORDER SIBLINGS BY SALARY;
 NAME LEVEL SALARY ROOT CHAIN
 ---------- ----------- ----------- ----- ---------------
 Goyal 1 80000.00 Goyal :Goyal
 Henry 2 51000.00 Goyal :Goyal:Henry
 Shoeman 3 33000.00 Goyal :Goyal:Henry:Shoeman
 Smith 3 34000.00 Goyal :Goyal:Henry:Smith
 O'Neil 3 36000.00 Goyal :Goyal:Henry:O'Neil
 Zander 2 52000.00 Goyal :Goyal:Zander
 Barnes 3 41000.00 Goyal :Goyal:Zander:Barnes
 McKeough 3 42000.00 Goyal :Goyal:Zander:McKeough
 Scott 2 53000.00 Goyal :Goyal:Scott

Lines 7 and 8 comprise the core of the recursion. The optional START WITH clause describes the
WHERE clause that is to be used on the source table to seed the recursion. In this case, only the row for
employee Goyal is selected. If the START WITH clause is omitted, the entire source table is used to seed
the recursion. The CONNECT BY clause describes how, given the existing rows, the next set of rows is to
be found. The unary operator PRIOR is used to distinguish values in the previous step from those in the
current step. PRIOR identifies EMPID as the employee ID of the previous recursive step, and MGRID as
originating from the current recursive step.

LEVEL in line 2 is a pseudo column that describes the current level of recursion.

CONNECT_BY_ROOT is a unary operator that always returns the value of its argument as it was during
the first recursive step; that is, the values that are returned by an explicit or implicit START WITH clause.

SYS_CONNECT_BY_PATH() is a binary function that prepends the second argument to the first and then
appends the result to the value that it produced in the previous recursive step.

Unless explicitly overridden, connect-by recursion returns a result set in a partial order; that is, the rows
that are produced by a recursive step always follow the row that produced them. Siblings at the same
level of recursion have no specific order. The ORDER SIBLINGS BY clause in line 9 defines an order for
these siblings, which further refines the partial order, potentially into a total order.

Chapter 6. Queries 755

• Return the organizational structure of the DEPARTMENT table. Use the level of the department to
visualize the hierarchy.

 SELECT LEVEL, CAST(SPACE((LEVEL - 1) * 4) || '/' || DEPTNAME
 AS VARCHAR(40)) AS DEPTNAME
 FROM DEPARTMENT
 START WITH DEPTNO = 'A00'
 CONNECT BY NOCYCLE PRIOR DEPTNO = ADMRDEPT

The query returns:

LEVEL DEPTNAME
----------- --
 1 /SPIFFY COMPUTER SERVICE DIV.
 2 /PLANNING
 2 /INFORMATION CENTER
 2 /DEVELOPMENT CENTER
 3 /MANUFACTURING SYSTEMS
 3 /ADMINISTRATION SYSTEMS
 2 /SUPPORT SERVICES
 3 /OPERATIONS
 3 /SOFTWARE SUPPORT
 3 /BRANCH OFFICE F2
 3 /BRANCH OFFICE G2
 3 /BRANCH OFFICE H2
 3 /BRANCH OFFICE I2
 3 /BRANCH OFFICE J2

756 IBM i: Db2 for i SQL Reference

pseudo columns
A pseudo column is an identifier that shares the same namespace as columns and variables. After regular
name resolution for a column has failed, Db2 attempts to match an unqualified identifier to a pseudo
column name.

CONNECT_BY_ISCYCLE
CONNECT_BY_ISCYCLE is a pseudo column for use in hierarchical queries. The column returns the value 1
if the row is part of a cycle in the hierarchy; that is, the row has itself as a direct or indirect ancestor given
the CONNECT BY clause's search-condition. If the row is not part of a cycle, the column returns the value
0.

The data type of the column is SMALLINT and it cannot be null.

CONNECT_BY_ISCYCLE must be specified in the context of a hierarchical query but cannot be specified in
the START WITH clause or the CONNECT BY clause, as an argument of the CONNECT_BY_ROOT operator,
or as an argument of the SYS_CONNECT_BY_PATH function.

CONNECT_BY_ISLEAF
CONNECT_BY_ISLEAF is a pseudo column for use in hierarchical queries. The column returns the value
1 if the row is a leaf in the hierarchy as defined by the CONNECT BY clause. If the row is not a leaf, the
column returns the value 0.

The data type of the column is SMALLINT and it cannot be null.

CONNECT_BY_ISLEAF must be specified in the context of a hierarchical query but cannot be specified in
the START WITH clause or the CONNECT BY clause, as an argument of the CONNECT_BY_ROOT operator,
or as an argument of the SYS_CONNECT_BY_PATH function.

LEVEL
LEVEL is a pseudo column for use in hierarchical queries. The column returns the recursive step in the
hierarchy at which the row was produced. All rows produced by the START WITH clause return the value
1. Rows produced by applying the first iteration of the CONNECT BY clause return 2, and so on.

The data type of the column is INTEGER and it cannot be null.

LEVEL must be specified in the context of a hierarchical query but cannot be specified in the
START WITH clause, as an argument of the CONNECT_BY_ROOT operator, or as an argument of the
SYS_CONNECT_BY_PATH function.

Chapter 6. Queries 757

CONNECT_BY_ROOT
The CONNECT_BY_ROOT unary operator is for use only in hierarchical queries. For every row in the
hierarchy, this operator returns the expression for the row's root ancestor.

CONNECT_BY_ROOT expression

expression
An expression that does not contain a NEXT VALUE expression, a hierarchical query construct (such as
the LEVEL pseudocolumn), the SYS_CONNECT_BY_PATH function, or an OLAP specification.

The result data type and length of the operator is the same as the result data type and length of the
expression.

A CONNECT_BY_ROOT operator cannot be specified in the START WITH clause or the CONNECT BY clause
of a hierarchical query. It cannot be specified as an argument to the SYS_CONNECT_BY_PATH function.

A CONNECT_BY_ROOT operator has a higher precedence than any infix operator. Therefore, to pass an
expression with infix operators (such as + or ||) as an argument, parentheses must be used. For example:

CONNECT_BY_ROOT FIRSTNME || LASTNAME

returns the FIRSTNME value of the root ancestor row concatenated with the LASTNAME value of the
actual row in the hierarchy, because this expression is equivalent to:

(CONNECT_BY_ROOT FIRSTNME) || LASTNAME

rather than:

CONNECT_BY_ROOT (FIRSTNME || LASTNAME)

Example

• Return the hierarchy of departments and their root departments in the DEPARTMENT table.

SELECT CONNECT_BY_ROOT DEPTNAME AS ROOT, DEPTNAME
 FROM DEPARTMENT
 START WITH DEPTNO IN ('B01','C01','D01','E01')
 CONNECT BY PRIOR DEPTNO = ADMRDEPT

This query returns:

ROOT DEPTNAME
------------------ -----------------------
PLANNING PLANNING
INFORMATION CENTER INFORMATION CENTER
DEVELOPMENT CENTER DEVELOPMENT CENTER
DEVELOPMENT CENTER MANUFACTURING SYSTEMS
DEVELOPMENT CENTER ADMINISTRATION SYSTEMS
SUPPORT SERVICES SUPPORT SERVICES
SUPPORT SERVICES OPERATIONS
SUPPORT SERVICES SOFTWARE SUPPORT
SUPPORT SERVICES BRANCH OFFICE F2
SUPPORT SERVICES BRANCH OFFICE G2
SUPPORT SERVICES BRANCH OFFICE H2
SUPPORT SERVICES BRANCH OFFICE I2
SUPPORT SERVICES BRANCH OFFICE J2

758 IBM i: Db2 for i SQL Reference

PRIOR
The PRIOR unary operator is for use only in the CONNECT BY clause of hierarchical queries.

PRIOR expression

The CONNECT BY clause performs an inner join between the intermediate result table Hn of the
hierarchical query and the source result table specified in the FROM clause. All column references to
tables that are referenced in the FROM clause, and which are arguments to the PRIOR operator, are
considered to be ranging over Hn.

The primary key of the intermediate result table Hn is typically joined to the foreign keys of the source
result table to recursively traverse the hierarchy.

CONNECT BY PRIOR T.PK = T.FK

If the primary key is a composite key, care must be taken to prefix each column with PRIOR:

CONNECT BY PRIOR T.PK1 = T.FK1 AND PRIOR T.PK2 = T.FK2

expression
An expression that does not contain a NEXT VALUE expression, a hierarchical query construct (such as
the LEVEL pseudocolumn), the SYS_CONNECT_BY_PATH function, or an OLAP specification.

The result data type and length of the operator is the same as the result data type and length of the
expression.

A PRIOR operator has a higher precedence than any infix operator. Therefore, to pass an expression with
infix operators (such as + or ||) as an argument, parentheses must be used. For example:

PRIOR FIRSTNME || LASTNAME

returns the FIRSTNME value of the prior row concatenated with the LASTNAME value of the actual row in
the hierarchy, because this expression is equivalent to:

(PRIOR FIRSTNME) || LASTNAME

rather than:

PRIOR (FIRSTNME || LASTNAME)

Example

• Return the hierarchy of departments in the DEPARTMENT table.

SELECT LEVEL, DEPTNAME
 FROM DEPARTMENT
 START WITH DEPTNO = 'A00'
 CONNECT BY NOCYCLE PRIOR DEPTNO = ADMRDEPT

This query returns:

LEVEL DEPTNAME
----------- --
 1 SPIFFY COMPUTER SERVICE DIV.
 2 PLANNING
 2 INFORMATION CENTER
 2 DEVELOPMENT CENTER
 3 MANUFACTURING SYSTEMS
 3 ADMINISTRATION SYSTEMS
 2 SUPPORT SERVICES
 3 OPERATIONS
 3 SOFTWARE SUPPORT
 3 BRANCH OFFICE F2
 3 BRANCH OFFICE G2
 3 BRANCH OFFICE H2

Chapter 6. Queries 759

 3 BRANCH OFFICE I2
 3 BRANCH OFFICE J2

760 IBM i: Db2 for i SQL Reference

SYS_CONNECT_BY_PATH
The SYS_CONNECT_BY_PATH function is used in hierarchical queries to build a string representing a path
from the root row to this row.

SYS_CONNECT_BY_PATH (string-expression1 , string-expression2)

The string for a given row at LEVEL n is built as follows:

• Step 1 (using the values of the root row from the first intermediate result table H1):

path1 := string-expression2 || string-expression1

• Step n (based on the row from the intermediate result table Hn):

pathn := pathn-1 || string-expression2 || string-expression1

string-expression1
A character string expression that identifies the row. It must be a built-in character string data
type. The expression must not include a NEXT VALUE expression for a sequence, any hierarchical
query construct such as the LEVEL pseudocolumn or the CONNECT_BY_ROOT operator, an OLAP
specification, or an aggregate function.

string-expression2
A character string expression that serves as a separator. It must be a built-in character string data
type. The expression must not include a NEXT VALUE expression for a sequence, any hierarchical
query construct such as the LEVEL pseudocolumn or the CONNECT_BY_ROOT operator, an OLAP
specification, or an aggregate function.

The result is a CLOB(1M).

The SYS_CONNECT_BY_PATH function must not be used outside of the context of a hierarchical query. It
cannot be used in a START WITH clause or a CONNECT BY clause.

Example

• Return the hierarchy of departments in the DEPARTMENT table.

SELECT CAST(SYS_CONNECT_BY_PATH(DEPTNAME, '/')
 AS VARCHAR(76)) AS ORG
 FROM DEPARTMENT
 START WITH DEPTNO = 'A00'
 CONNECT BY NOCYCLE PRIOR DEPTNO = ADMRDEPT

This query returns:

ORG

/SPIFFY COMPUTER SERVICE DIV.
/SPIFFY COMPUTER SERVICE DIV./PLANNING
/SPIFFY COMPUTER SERVICE DIV./INFORMATION CENTER
/SPIFFY COMPUTER SERVICE DIV./DEVELOPMENT CENTER
/SPIFFY COMPUTER SERVICE DIV./DEVELOPMENT CENTER/MANUFACTURING SYSTEMS
/SPIFFY COMPUTER SERVICE DIV./DEVELOPMENT CENTER/ADMINISTRATION SYSTEMS
/SPIFFY COMPUTER SERVICE DIV./SUPPORT SERVICES
/SPIFFY COMPUTER SERVICE DIV./SUPPORT SERVICES/OPERATIONS
/SPIFFY COMPUTER SERVICE DIV./SUPPORT SERVICES/SOFTWARE SUPPORT
/SPIFFY COMPUTER SERVICE DIV./SUPPORT SERVICES/BRANCH OFFICE F2
/SPIFFY COMPUTER SERVICE DIV./SUPPORT SERVICES/BRANCH OFFICE G2
/SPIFFY COMPUTER SERVICE DIV./SUPPORT SERVICES/BRANCH OFFICE H2
/SPIFFY COMPUTER SERVICE DIV./SUPPORT SERVICES/BRANCH OFFICE I2
/SPIFFY COMPUTER SERVICE DIV./SUPPORT SERVICES/BRANCH OFFICE J2

Chapter 6. Queries 761

where-clause
The WHERE clause specifies an intermediate result table that consists of those rows of R for which the
search-condition is true. R is the result of the FROM clause of the statement.

WHERE search-condition

The search-condition must conform to the following rules:

• Each column-name must unambiguously identify a column of R or be a correlated reference. A column-
name is a correlated reference if it identifies a column of a table, view, common-table-expression, or
nested-table-expression identified in an outer fullselect.

• An aggregate function must not be specified unless the WHERE clause is specified in a subquery of a
HAVING clause and the argument of the function is a correlated reference to a group.

Any subquery in the search-condition is effectively executed for each row of R and the results are used in
the application of the search-condition to the given row of R. A subquery is executed for each row of R if
it includes a correlated reference to a column of R. A subquery with no correlated reference is typically
executed just once.

If row access controls are enabled for a table and no other row permission is defined, the row access
control search condition is the default row permission, 1 = 0. If only one row permission is defined,
the row access control search condition is the search conditions that are specified by that permission.
Otherwise, if multiple row permissions are defined for a table, the row access control search condition
is derived by application of the logical OR operator to the search conditions that are specified by each
row permission. This row access control search condition, as a whole, is connected by application of
the logical AND operator to the search conditions specified by the WHERE clause and has the same
precedence level as other search conditions in the WHERE clause. This process is repeated for each
table-reference in the FROM clause of the subselect for which row access controls are enabled.

The row access control search condition acts as a filter to the table-reference to determine the results
of the table-reference that are accessible to the authorization ID of the subselect. Because the order in
which operators are evaluated is undefined for operators at the same precedence level, other search
conditions in the WHERE clause might be evaluated before the row access control search condition. So,
the other search conditions have access to the rows that are restricted by the row permission rules.
To ensure that sensitive data is protected, the predicates that reference user-defined functions that are
defined with the NOT SECURED option are always evaluated after the row access control search condition.

Column access control does not affect the operation of the WHERE clause.

If a collating sequence other than *HEX is in effect when the statement that contains the WHERE clause is
executed and if the search-condition contains operands that are SBCS data, mixed data, or Unicode data,
then the comparison for those predicates is done using weighted values. The weighted values are derived
by applying the collating sequence to the operands of the predicate.

762 IBM i: Db2 for i SQL Reference

group-by-clause
The GROUP BY clause specifies an intermediate result table that consists of a grouping of the rows of R. R
is the result of the previous clause of the subselect.

GROUP BY

,

grouping-expression

grouping-sets

super-groups

In its simplest form, a GROUP BY clause contains a grouping-expression. A grouping-expression is an
expression that defines the grouping of R. The following restrictions apply to grouping-expression.

• Each column name included in grouping-expression must unambiguously identify a column of R.
• The result of grouping-expression cannot be a DataLink or XML data type or a distinct type that is based

on a DataLink or XML.
• grouping-expression cannot include any of the following items:

– A correlated column
– A variable
– An aggregate function
– Any function that is non-deterministic

More complex forms of the GROUP BY clause include grouping-sets and super-groups. For a description of
these forms, see “grouping-sets” on page 764 and “super-groups” on page 764, respectively.

The result of the GROUP BY clause is a set of groups of rows. In each group of more than one row,
all values of each grouping-expression are equal, and all rows with the same set of values of the grouping-
expressions are in the same group. For grouping, all null values for a grouping-expression are considered
equal.

Because every row of a group contains the same value of any grouping-expression, grouping-expressions
can be used in a search condition in a HAVING clause, in the SELECT clause, or in a sort-key-expression
of an ORDER BY clause (see “order-by-clause” on page 777 for details). In each case, the reference
specifies only one value for each group. The grouping-expression specified in these clauses must exactly
match the grouping-expression in the GROUP BY clause, except that blanks are not significant. For
example, a grouping-expression of

SALARY*.10

will match the expression in a having-clause of

HAVING SALARY*.10

but will not match

HAVING .10 *SALARY
 or
HAVING (SALARY*.10)+100

If the grouping-expression contains varying-length strings with trailing blanks, the values in the group can
differ in the number of trailing blanks and may not all have the same length. In that case, a reference to
the grouping-expression still specifies only one value for each group, but the value for a group is chosen
arbitrarily from the available set of values. Thus, the actual length of the result value is unpredictable.

Column access controls do not affect the operation of the GROUP BY clause. The grouping is performed
using the original column values.

Chapter 6. Queries 763

If a collating sequence other than *HEX is in effect when the statement that contains the GROUP BY
clause is executed, and the grouping-expressions are SBCS data, mixed data, or Unicode data, then the
rows are placed into groups using the weighted values. The weighted values are derived by applying the
collating sequence to the grouping-expressions. In that case, a reference to the grouping-expression still
specifies only one value for each group, but the value for a group is chosen arbitrarily from the available
set of values. Thus, the actual value of the result is unpredictable.

grouping-sets

GROUPING SETS (

,

grouping-expression

super-groups

(

,

grouping-expression

super-groups

)

)

A grouping-sets specification allows multiple grouping clauses to be specified in a single statement. This
can be thought of as the union of two or more groups of rows into a single result set. It is logically
equivalent to the union of multiple subselects with the group by clause in each subselect corresponding
to one grouping set. A grouping set can be a single element or can be a list of elements delimited by
parentheses, where an element is either a grouping-expression or a super-group. Using grouping sets
allows the groups to be computed with a single pass over the base table.

The grouping-sets specification allows either a simple grouping-expression to be used, or the more
complex forms of super-groups. For a description of super-groups, see “super-groups” on page 764.

Note that grouping sets are the fundamental building blocks for GROUP BY operations. A simple GROUP
BY with a single column can be considered a grouping set with one element. For example:

 GROUP BY a

is the same as

 GROUP BY GROUPING SETS((a))

and

 GROUP BY a, b, c

is the same as

 GROUP BY GROUPING SETS((a,b,c))

Non-aggregation columns from the select list of the subselect that are excluded from a grouping set will
return a null for such columns for each row generated for that grouping set. This reflects the fact that
aggregation was done without considering the values for those columns.

If a table-reference in the previous clauses of the query identifies a distributed table or a table that has a
read trigger; a grouping-sets specification is not allowed.

Example C2 through Example C7 illustrate the use of grouping sets.

super-groups

764 IBM i: Db2 for i SQL Reference

ROLLUP (grouping-expression-list)
1

CUBE (grouping-expression-list)
2

grand-total

Notes:
1 Alternate specification when used alone in group-by-clause is: grouping-expression-list WITH
ROLLUP.
2 Alternate specification when used alone in group-by-clause is: grouping-expression-list WITH CUBE.

grouping-expression-list
,

grouping-expression

(

,

grouping-expression)

grand-total
()

ROLLUP (grouping-expression-list)
A ROLLUP grouping is an extension to the GROUP BY clause that produces a result set containing
sub-total rows in addition to the "regular" grouped rows. Sub-total rows are "super-aggregate" rows
that contain further aggregates whose values are derived by applying the same aggregate functions
that were used to obtain the grouped rows. These rows are called sub-total rows because that is their
most common use; however, any aggregate function can be used for the aggregation. For instance,
MAX and AVG are used in example C8.
A ROLLUP grouping is a series of grouping-sets. The general specification of a ROLLUP with n elements

 GROUP BY ROLLUP(C1,C2,...,Cn-1,Cn)

is equivalent to

 GROUP BY GROUPING SETS((C1,C2,...,Cn-1,Cn),
 (C1,C2,...,Cn-1),
 ...
 (C1,C2),
 (C1),
 ())

Note that the n elements of the ROLLUP translate to n+1 grouping sets. Note also that the order in
which the grouping-expressions are specified is significant for ROLLUP. For example:

 GROUP BY ROLLUP (a,b)

is equivalent to

 GROUP BY GROUPING SETS ((a,b),
 (a),
 ())

while

 GROUP BY ROLLUP (b,a)

is equivalent to

Chapter 6. Queries 765

 GROUP BY GROUPING SETS ((b,a),
 (b),
 ())

The ORDER BY clause is the only way to guarantee the order of the rows in the result set. Example C3
illustrates the use of ROLLUP.

CUBE (grouping-expression-list)
A CUBE grouping is an extension to the GROUP BY clause that produces a result set that contains all
the rows of a ROLLUP aggregation and, in addition, contains "cross-tabulation" rows. Cross-tabulation
rows are additional "super-aggregate" rows that are not part of an aggregation with sub-totals. Only
10 expressions are allowed in the grouping-expression-list.
Like a ROLLUP, a CUBE grouping can also be thought of as a series of grouping-sets. In the case of a
CUBE, all permutations of the cubed grouping-expression-list are computed along with the grand total.
Therefore, the n elements of a CUBE translate to 2 ** n (2 to the power n) grouping-sets. For instance,
a specification of

 GROUP BY CUBE (a,b,c)

is equivalent to

 GROUP BY GROUPING SETS ((a,b,c),
 (a,b),
 (a,c),
 (b,c),
 (a),
 (b),
 (c),
 ())

Notice that the 3 elements of the CUBE translate to 8 grouping sets.
The order of specification of elements does not matter for CUBE. 'CUBE(DayOfYear, Sales_Person)'
and 'CUBE(Sales_Person, DayOfYear) yield the same result sets. The use of the word 'same' applies to
content of the result set, not to its order. The ORDER BY clause is the only way to guarantee the order
of the rows in the result set. Example C4 illustrates the use of CUBE.

grouping-expression-list
A grouping-expression-list is used within a CUBE or ROLLUP grouping to define the number of
elements in the CUBE or ROLLUP operation. This is controlled by using parentheses to delimit
elements with multiple grouping-expressions.
The rules for a grouping-expression are described in “group-by-clause” on page 763. For example,
suppose that a query is to return the total expenses for the ROLLUP of City within a Province but not
within a County. However, the clause

 GROUP BY ROLLUP (Province, County, City)

results in unwanted sub-total rows for the County. In the clause

 GROUP BY ROLLUP (Province, (County, City))

the composite (County, City) forms one element in the ROLLUP and, therefore, a query that uses this
clause will yield the wanted result. In other words, the two element ROLLUP

 GROUP BY ROLLUP (Province, (County, City))

generates

 GROUP BY GROUPING SETS ((Province, County, City)
 (Province)
 ())

while the three element ROLLUP generates

 GROUP BY GROUPING SETS ((Province, County, City),
 (Province, County),

766 IBM i: Db2 for i SQL Reference

 (Province),
 ())

Example C2 also uses composite column values.
grand-total

Both CUBE and ROLLUP return a row which is the overall (grand total) aggregation. This may be
separately specified with empty parentheses within the GROUPING SETS clause. It may also be
specified directly in the GROUP BY clause, although there is no effect on the result of the query.
Example C4 uses the grand-total syntax.

Combining grouping sets
This can be used to combine any of the types of GROUP BY clauses. When simple grouping-expressions
are combined with other groups, they are "appended" to the beginning of the resulting grouping sets.
When ROLLUP and CUBE expressions are combined, they operate like "multipliers" on the remaining
expression, forming additional grouping set entries according to the definition of either ROLLUP or CUBE.

For instance, combining grouping-expression elements acts as follows

 GROUP BY a, ROLLUP (b,c)

is equivalent to

 GROUP BY GROUPING SETS((a,b,c),
 (a,b),
 (a))

Or similarly

 GROUP BY a,b, ROLLUP (c,d)

is equivalent to

 GROUP BY GROUPING SETS((a,b,c,d),
 (a,b,c),
 (a,b))

Combining of ROLLUP elements acts as follows:

 GROUP BY ROLLUP(a), ROLLUP (b,c)

is equivalent to

 GROUP BY GROUPING SETS((a,b,c),
 (a,b),
 (a),
 (b,c),
 (b),
 ())

Similarly,

 GROUP BY ROLLUP(a), CUBE (b,c)

is equivalent to

 GROUP BY GROUPING SETS((a,b,c),
 (a,b),
 (a,c),
 (a),
 (b,c),
 (b),
 (c),
 ())

Chapter 6. Queries 767

Combining of CUBE and ROLLUP elements acts as follows:

 GROUP BY CUBE(a,b), ROLLUP (c,d)

is equivalent to

 GROUP BY GROUPING SETS((a,b,c,d),
 (a,b,c),
 (a,b),
 (a,c,d),
 (a,c),
 (a),
 (b,c,d),
 (b,c),
 (b),
 (c,d),
 (c),
 ())

Like a simple grouping-expression, combining grouping sets also eliminates duplicates within each
grouping set. For instance,

 GROUP BY a, ROLLUP (a,b)

is equivalent to

 GROUP BY GROUPING SETS((a,b),
 (a))

A more complete example of combining grouping sets is to construct a result set that eliminates certain
rows that would be returned for a full CUBE aggregation.

For example, consider the following GROUP BY clause:

 GROUP BY Region,
 ROLLUP (Sales_Person, WEEK(Sales_Date)),
 CUBE (YEAR(Sales_Date), MONTH(Sales_Date))

The column listed immediately to the right of GROUP BY is grouped, those within the parentheses
following ROLLUP are rolled up, and those within the parentheses following CUBE are cubed. Thus,
the above clause results in a cube of MONTH within YEAR which is then rolled up within WEEK within
Sales_Person within the Region aggregation. It does not result in any grand total row or any cross-
tabulation rows on Region, Sales_Person, or WEEK(Sales_Date) so produces fewer rows than the clause:

 GROUP BY ROLLUP (Region, Sales_Person, WEEK(Sales_Date),
 YEAR(Sales_Date), MONTH(Sales_Date))

Examples of grouping sets, cube, and rollup
The queries in Example C1 through C4 use a subset of the rows in the SALES table based on the predicate
'WEEK(SALES_DATE) = 13'.

 SELECT WEEK(SALES_DATE) AS WEEK,
 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
 SALES_PERSON,
 SALES AS UNITS_SOLD
 FROM SALES
 WHERE WEEK(SALES_DATE) = 13

which results in:

WEEK DAY_WEEK SALES_PERSON UNITS_SOLD
------- ---------- ------------- ------------
 13 6 LUCCHESSI 3
 13 6 LUCCHESSI 1
 13 6 LEE 2
 13 6 LEE 2
 13 6 LEE 3

768 IBM i: Db2 for i SQL Reference

 13 6 LEE 5
 13 6 GOUNOT 3
 13 6 GOUNOT 1
 13 6 GOUNOT 7
 13 7 LUCCHESSI 1
 13 7 LUCCHESSI 2
 13 7 LUCCHESSI 1
 13 7 LEE 7
 13 7 LEE 3
 13 7 LEE 7
 13 7 LEE 4
 13 7 GOUNOT 2
 13 7 GOUNOT 18
 13 7 GOUNOT 1

Example C1:
Here is a query with a basic GROUP BY over 3 columns:

 SELECT WEEK(SALES_DATE) AS WEEK,
 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
 SALES_PERSON,
 SUM(SALES) AS UNITS_SOLD
 FROM SALES
 WHERE WEEK(SALES_DATE) = 13
 GROUP BY WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE), SALES_PERSON
 ORDER BY WEEK, DAY_WEEK, SALES_PERSON

This results in:

WEEK DAY_WEEK SALES_PERSON UNITS_SOLD
------- ---------- ------------- ------------
 13 6 GOUNOT 11
 13 6 LEE 12
 13 6 LUCCHESSI 4
 13 7 GOUNOT 21
 13 7 LEE 21
 13 7 LUCCHESSI 4

Example C2:
Produce the result based on two different grouping sets of rows from the SALES table.

 SELECT WEEK(SALES_DATE) AS WEEK,
 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
 SALES_PERSON,
 SUM(SALES) AS UNITS_SOLD
 FROM SALES
 WHERE WEEK(SALES_DATE) = 13
 GROUP BY GROUPING SETS((WEEK(SALES_DATE), SALES_PERSON),
 (DAYOFWEEK(SALES_DATE), SALES_PERSON))
 ORDER BY WEEK, DAY_WEEK, SALES_PERSON

This results in:

WEEK DAY_WEEK SALES_PERSON UNITS_SOLD
------- ---------- ------------- ------------
 13 - GOUNOT 32
 13 - LEE 33
 13 - LUCCHESSI 8
 - 6 GOUNOT 11
 - 6 LEE 12
 - 6 LUCCHESSI 4
 - 7 GOUNOT 21
 - 7 LEE 21
 - 7 LUCCHESSI 4

The rows with WEEK 13 are from the first grouping set and the other rows are from the second grouping
set.

Chapter 6. Queries 769

Example C3:
If you use 3 distinct columns involved in the grouping sets of Example C2 and perform a ROLLUP, you can
see grouping sets for (WEEK, DAY_WEEK, SALES_PERSON), (WEEK, DAY_WEEK), (WEEK), and grand total.

 SELECT WEEK(SALES_DATE) AS WEEK,
 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
 SALES_PERSON,
 SUM(SALES) AS UNITS_SOLD
 FROM SALES
 WHERE WEEK(SALES_DATE) = 13
 GROUP BY ROLLUP(WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE), SALES_PERSON)
 ORDER BY WEEK, DAY_WEEK, SALES_PERSON

This results in:

WEEK DAY_WEEK SALES_PERSON UNITS_SOLD
------- ---------- ------------- ------------
 13 6 GOUNOT 11
 13 6 LEE 12
 13 6 LUCCHESSI 4
 13 6 - 27
 13 7 GOUNOT 21
 13 7 LEE 21
 13 7 LUCCHESSI 4
 13 7 - 46
 13 - - 73
 - - - 73

Example C4:
If you run the same query as Example C3 only replace ROLLUP with CUBE, you can see
additional grouping sets for (WEEK, SALES_PERSON), (DAY_WEEK, SALES_PERSON), (DAY_WEEK), and
(SALES_PERSON) in the result.

 SELECT WEEK(SALES_DATE) AS WEEK,
 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
 SALES_PERSON,
 SUM(SALES) AS UNITS_SOLD
 FROM SALES
 WHERE WEEK(SALES_DATE) = 13
 GROUP BY CUBE(WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE), SALES_PERSON)
 ORDER BY WEEK, DAY_WEEK, SALES_PERSON

This results in:

WEEK DAY_WEEK SALES_PERSON UNITS_SOLD
------- ---------- ------------- ------------
 13 6 GOUNOT 11
 13 6 LEE 12
 13 6 LUCCHESSI 4
 13 6 - 27
 13 7 GOUNOT 21
 13 7 LEE 21
 13 7 LUCCHESSI 4
 13 7 - 46
 13 - GOUNOT 32
 13 - LEE 33
 13 - LUCCHESSI 8
 13 - - 73
 - 6 GOUNOT 11
 - 6 LEE 12
 - 6 LUCCHESSI 4
 - 6 - 27
 - 7 GOUNOT 21
 - 7 LEE 21
 - 7 LUCCHESSI 4
 - 7 - 46
 - - GOUNOT 32
 - - LEE 33
 - - LUCCHESSI 8
 - - - 73

770 IBM i: Db2 for i SQL Reference

Example C5:
Obtain a result set which includes a grand total of selected rows from the SALES table together with a
group of rows aggregated by SALES_PERSON and MONTH.

 SELECT SALES_PERSON,
 MONTH(SALES_DATE) AS MONTH,
 SUM(SALES) AS UNITS_SOLD
 FROM SALES
 GROUP BY GROUPING SETS((SALES_PERSON, MONTH(SALES_DATE)),
 ())
 ORDER BY SALES_PERSON, MONTH

This results in:

SALES_PERSON MONTH UNITS_SOLD
------------- ------- ------------
GOUNOT 3 35
GOUNOT 4 14
GOUNOT 12 1
LEE 3 60
LEE 4 25
LEE 12 6
LUCCHESSI 3 9
LUCCHESSI 4 4
LUCCHESSI 12 1
- - 155

Example C6:
This example shows two simple ROLLUP queries followed by a query which treats the two ROLLUPs as
grouping sets in a single result set and specifies row ordering for each column involved in the grouping
sets.

Example C6-1:

 SELECT WEEK(SALES_DATE) AS WEEK,
 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
 SUM(SALES) AS UNITS_SOLD
 FROM SALES
 GROUP BY ROLLUP(WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE))
 ORDER BY WEEK, DAY_WEEK

This results in:

WEEK DAY_WEEK UNITS_SOLD
-------- ---------- ------------
 13 6 27
 13 7 46
 13 - 73
 14 1 31
 14 2 43
 14 - 74
 53 1 8
 53 - 8
 - - 155

Example C6-2:

 SELECT MONTH(SALES_DATE) AS MONTH,
 REGION,
 SUM(SALES) AS UNITS_SOLD
 FROM SALES
 GROUP BY ROLLUP(MONTH(SALES_DATE), REGION)
 ORDER BY MONTH, REGION

This results in:

MONTH REGION UNITS_SOLD
-------- -------------- ------------
 3 Manitoba 22

Chapter 6. Queries 771

 3 Ontario-North 8
 3 Ontario-South 34
 3 Quebec 40
 3 - 104
 4 Manitoba 17
 4 Ontario-North 1
 4 Ontario-South 14
 4 Quebec 11
 4 - 43
 12 Manitoba 2
 12 Ontario-South 4
 12 Quebec 2
 12 - 8
 - - 155

Example C6-3:

 SELECT WEEK(SALES_DATE) AS WEEK,
 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
 MONTH(SALES_DATE) AS MONTH,
 REGION,
 SUM(SALES) AS UNITS_SOLD
 FROM SALES
 GROUP BY GROUPING SETS(ROLLUP(WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE)),
 ROLLUP(MONTH(SALES_DATE), REGION))
 ORDER BY WEEK, DAY_WEEK, MONTH, REGION

This results in:

WEEK DAY_WEEK MONTH REGION UNITS_SOLD
-------- ---------- ------- ------------- -----------
 13 6 - - 27
 13 7 - - 46
 13 - - - 73
 14 1 - - 31
 14 2 - - 43
 14 - - - 74
 53 1 - - 8
 53 - - - 8
 - - 3 Manitoba 22
 - - 3 Ontario-North 8
 - - 3 Ontario-South 34
 - - 3 Quebec 40
 - - 3 - 104
 - - 4 Manitoba 17
 - - 4 Ontario-North 1
 - - 4 Ontario-South 14
 - - 4 Quebec 11
 - - 4 - 43
 - - 12 Manitoba 2
 - - 12 Ontario-South 4
 - - 12 Quebec 2
 - - 12 - 8
 - - - - 155
 - - - - 155

Using the two ROLLUPs as grouping sets causes the result to include duplicate rows. There are even two
grand total rows.

Observe how the use of ORDER BY has affected the results:

• In the first grouped set, week 53 has been repositioned to the end
• In the second grouped set, month 12 has now been positioned to the end and the regions now appear in

alphabetic order.
• Null values are sorted high.

Example C7:
In queries that perform multiple ROLLUPs in a single pass (such as Example C6-3) you may want to be
able to indicate which grouping set produced each row. The following steps demonstrate how to provide a
column (called GROUP) which indicates the origin of each row in the result set. By origin means which one
of the two grouping sets produced the row in the result set.

772 IBM i: Db2 for i SQL Reference

Step 1: Introduce a way of generating new data values using a query which selects from a VALUES clause
(which is an alternate form of a fullselect). This query shows how a table called X can be derived that has
2 columns, R1 and R2, and one row of data.

 SELECT R1, R2
 FROM (VALUES ('GROUP 1', 'GROUP 2')) AS X(R1, R2)

Results in:

R1 R2
-------- -------
GROUP 1 GROUP 2

Step 2: Form the cross product of this table X with the SALES table. This adds columns R1 and R2 to every
row.

 SELECT R1, R2,
 WEEK(SALES_DATE) AS WEEK,
 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
 MONTH(SALES_DATE) AS MONTH,
 REGION,
 SALES AS UNITS_SOLD
 FROM SALES,
 (VALUES ('GROUP 1', 'GROUP 2')) AS X(R1, R2)

Step 3: Now these columns are combined with the grouping sets to include these columns in the rollup
analysis.

 SELECT R1, R2,
 WEEK(SALES_DATE) AS WEEK,
 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
 MONTH(SALES_DATE) AS MONTH,
 REGION,
 SUM(SALES) AS UNITS_SOLD
 FROM SALES,
 (VALUES ('GROUP 1', 'GROUP 2')) AS X(R1, R2)
 GROUP BY GROUPING SETS((R1, ROLLUP(WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE))),
 (R2, ROLLUP(MONTH(SALES_DATE), REGION)))
 ORDER BY WEEK, DAY_WEEK, MONTH, REGION

This results in:

R1 R2 WEEK DAY_WEEK MONTH REGION UNITS_SOLD
-------- ------- -------- ---------- ------- ------------- -----------
GROUP 1 - 13 6 - - 27
GROUP 1 - 13 7 - - 46
GROUP 1 - 13 - - - 73
GROUP 1 - 14 1 - - 31
GROUP 1 - 14 2 - - 43
GROUP 1 - 14 - - - 74
GROUP 1 - 53 1 - - 8
GROUP 1 - 53 - - - 8
- GROUP 2 - - 3 Manitoba 22
- GROUP 2 - - 3 Ontario-North 8
- GROUP 2 - - 3 Ontario-South 34
- GROUP 2 - - 3 Quebec 40
- GROUP 2 - - 3 - 104
- GROUP 2 - - 4 Manitoba 17
- GROUP 2 - - 4 Ontario-North 1
- GROUP 2 - - 4 Ontario-South 14
- GROUP 2 - - 4 Quebec 11
- GROUP 2 - - 4 - 43
- GROUP 2 - - 12 Manitoba 2
- GROUP 2 - - 12 Ontario-South 4
- GROUP 2 - - 12 Quebec 2
- GROUP 2 - - 12 - 8
- GROUP 2 - - - - 155
GROUP 1 - - - - - 155

Step 4: Notice that because R1 and R2 are used in different grouping sets, whenever R1 is non-null in the
result, R2 is null and whenever R2 is non-null in the result, R1 is null. That means you can consolidate

Chapter 6. Queries 773

these columns into a single column using the COALESCE function. You can also use this column in the
ORDER BY clause to keep the results of the two grouping sets together.

 SELECT COALESCE(R1, R2) AS GROUP,
 WEEK(SALES_DATE) AS WEEK,
 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
 MONTH(SALES_DATE) AS MONTH,
 REGION,
 SUM(SALES) AS UNITS_SOLD
 FROM SALES,
 (VALUES ('GROUP 1', 'GROUP 2')) AS X(R1, R2)
 GROUP BY GROUPING SETS((R1, ROLLUP(WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE))),
 (R2, ROLLUP(MONTH(SALES_DATE), REGION)))
 ORDER BY GROUP, WEEK, DAY_WEEK, MONTH, REGION

This results in:

GROUP WEEK DAY_WEEK MONTH REGION UNITS_SOLD
-------- -------- ---------- ------- ------------- -----------
GROUP 1 13 6 - - 27
GROUP 1 13 7 - - 46
GROUP 1 13 - - - 73
GROUP 1 14 1 - - 31
GROUP 1 14 2 - - 43
GROUP 1 14 - - - 74
GROUP 1 53 1 - - 8
GROUP 1 53 - - - 8
GROUP 1 - - - - 155
GROUP 2 - - 3 Manitoba 22
GROUP 2 - - 3 Ontario-North 8
GROUP 2 - - 3 Ontario-South 34
GROUP 2 - - 3 Quebec 40
GROUP 2 - - 3 - 104
GROUP 2 - - 4 Manitoba 17
GROUP 2 - - 4 Ontario-North 1
GROUP 2 - - 4 Ontario-South 14
GROUP 2 - - 4 Quebec 11
GROUP 2 - - 4 - 43
GROUP 2 - - 12 Manitoba 2
GROUP 2 - - 12 Ontario-South 4
GROUP 2 - - 12 Quebec 2
GROUP 2 - - 12 - 8
GROUP 2 - - - - 155

Example C8
The following example illustrates the use of various aggregate functions when performing a CUBE. The
example also makes use of cast functions and rounding to produce a decimal result with reasonable
precision and scale.

 SELECT MONTH(SALES_DATE) AS MONTH,
 REGION,
 SUM(SALES) AS SALES,
 MAX(SALES) AS BEST_SALE,
 CAST(ROUND(AVG(DECIMAL(SALES)),2) AS DECIMAL(5,2)) AS AVG_UNITS_SOLD
 FROM SALES
 GROUP BY CUBE (MONTH(SALES_DATE), REGION)
 ORDER BY MONTH, REGION

This results in:

MONTH REGION UNITS_SOLD BEST_SALE AVG_UNITS_SOLD
------- ------------- ------------ ---------- ---------------
 3 Manitoba 22 7 3.14
 3 Ontario-North 8 3 2.67
 3 Ontario-South 34 14 4.25
 3 Quebec 40 18 5.00
 3 - 104 18 4.00
 4 Manitoba 17 9 5.67
 4 Ontario-North 1 1 1.00
 4 Ontario-South 14 8 4.67
 4 Quebec 11 8 5.50
 4 - 43 9 4.78

774 IBM i: Db2 for i SQL Reference

 12 Manitoba 2 2 2.00
 12 Ontario-South 4 3 2.00
 12 Quebec 2 1 1.00
 12 - 8 3 1.60
 - Manitoba 41 9 3.73
 - Ontario-North 9 3 2.25
 - Ontario-South 52 14 4.00
 - Quebec 53 18 4.42
 - - 155 18 3.87

Chapter 6. Queries 775

having-clause
The HAVING clause specifies an intermediate result table that consists of those groups of R for which the
search-condition is true. R is the result of the previous clause of the subselect. If this clause is not GROUP
BY, R is considered a single group with no grouping expressions.

HAVING search-condition

Each expression that contains a column-name in the search condition must do one of the following:

• Unambiguously identify a grouping expression of R.
• Be specified within an aggregate function.
• Be a correlated reference. A column-name is a correlated reference if it identifies a column of a table,

view, common table expression, or nested table expression identified in an outer subselect.

The RRN, RID, DATAPARTITIONNAME, DATAPARTITIONNUM, DBPARTITIONNAME, DBPARTITIONNUM,
and HASHED_VALUE functions cannot be specified in the HAVING clause unless it is within an aggregate
function. See “Aggregate functions” on page 258 for restrictions that apply to the use of aggregate
functions.

A group of R to which the search condition is applied supplies the argument for each aggregate function in
the search condition, except for any function whose argument is a correlated reference.

If the search condition contains a subquery, the subquery can be thought of as being executed each time
the search condition is applied to a group of R, and the results used in applying the search condition.
In actuality, the subquery is executed for each group only if it contains a correlated reference. For an
illustration of the difference, see examples 6 and 7 under “Examples of a subselect” on page 781.

A correlated reference to a group of R must either identify a grouping column or be contained within an
aggregate function.

When HAVING is used without GROUP BY, any column name in the select list must appear within an
aggregate function.

If a collating sequence other than *HEX is in effect when the statement that contains the HAVING clause
is executed and if the search-condition contains operands that have SBCS data, mixed data, or Unicode
data, the comparison for those predicates is done using weighted values. The weighted values are derived
by applying the collating sequence to the operands in the predicate.

776 IBM i: Db2 for i SQL Reference

order-by-clause
The ORDER BY clause specifies an ordering of the rows of the result table.

ORDER

SIBLINGS

BY

,

sort-key
ASC

DESC

ORDER OF table-designator

INPUT SEQUENCE

sort-key
column-name

integer

sort-key-expression

A subselect that contains an ORDER BY clause cannot be specified in the outermost fullselect of a view.

Note: An ORDER BY clause in a subselect does not affect the order of the rows returned by a query. An
ORDER BY clause only affects the order of the rows returned if it is specified in the outermost fullselect.

If the subselect is not enclosed within parentheses and is not the outermost fullselect, the ORDER BY
clause cannot be specified.

If a single sort specification (one sort-key with associated ascending or descending ordering specification)
is identified, the rows are ordered by the values of that specification. If more than one sort specification is
identified, the rows are ordered by the values of the first identified sort specification, then by the values of
the second identified sort specification, and so on.

If the subselect includes a hierarchical-query-clause, ORDER SIBLINGS BY can be specified. This
specifies that the ordering applies to siblings within the hierarchies only and parent rows are sorted
before their child rows.

If a collating sequence other than *HEX is in effect when the statement that contains the ORDER BY
clause is executed and if the ORDER BY clause involves sort specifications that are SBCS data, mixed
data, or Unicode data, the comparison for those sort specifications is done using weighted values. The
weighted values are derived by applying the collating sequence to the values of the sort specifications.

A named column in the select list may be identified by a sort-key that is a integer or a column-name. An
unnamed column in the select list may be identified by a integer or, in some cases by a sort-key-expression
that matches the expression in the select list (see details of sort-key-expression). “Names of result
columns” on page 740 defines when result columns are unnamed. If the fullselect includes a UNION
operator, see “fullselect” on page 783 for the rules on named columns in a fullselect.

Ordering is performed in accordance with the comparison rules described in Chapter 2, “Language
elements,” on page 43. The null value is higher than all other values. If your ordering specification does
not determine a complete ordering, rows with duplicate values of the last identified sort-key have an
arbitrary order. If the ORDER BY clause is not specified, the rows of the result table have an arbitrary
order.

The sum of the length attributes of the sort-keys must not exceed 3.5 gigabytes.

column-name
Must unambiguously identify a column of the result table. The column must not be a DATALINK or XML
column and must not be the result of the ARRAY_AGG function. The rules for unambiguous column
references are the same as in the other clauses of the fullselect. See “Column name qualifiers to avoid
ambiguity” on page 133 for more information.

Chapter 6. Queries 777

If the fullselect includes a UNION, UNION ALL, EXCEPT, or INTERSECT, the column name cannot be
qualified.

The column-name may also identify a column name of a table, view, or nested-table-expression
identified in the FROM clause. This includes columns defined as implicitly hidden. An error occurs
if the subselect includes an aggregation in the select list and the column-name is not a grouping-
expression.

integer
Must be greater than 0 and not greater than the number of columns in the result table. The integer n
identifies the nth column of the result table. The identified column must not be a DATALINK or XML
column and must not be the result of the ARRAY_AGG function.

sort-key-expression
An expression that is not simply a column name or an unsigned integer constant. The query to which
ordering is applied must be a subselect to use this form of sort-key.

The sort-key-expression cannot contain RRN, RID, DATAPARTITIONNAME, DATAPARTITIONNUM,
DBPARTITIONNAME, DBPARTITIONNUM, and HASHED_VALUE scalar functions if the fullselect
includes a UNION, UNION ALL, EXCEPT, or INTERSECT. The result of the sort-key-expression must
not be DATALINK or XML.

If the subselect is grouped, the sort-key-expression can be an expression in the select list of the
subselect or can include an aggregate function, constant, or variable.

ASC
Uses the values of the column in ascending order. This is the default.

DESC
Uses the values of the column in descending order.

ORDER OF table-designator
Specifies that the same ordering used in table-designator should be applied to the result table of
the subselect. There must be a table reference matching table-designator in the FROM clause of the
subselect that specifies this clause and the table reference must identify a nested-table-expression or
common-table-expression. The ordering that is applied is the same as if the columns of the ORDER
BY clause in the nested-table-expression or common-table-expression were included in the outer
subselect (or fullselect), and these columns were specified in place of the ORDER OF clause. If
the nested-table-expression or common-table-expression has no ORDER BY clause, the order is not
defined.

ORDER OF is not allowed if the query specifies:

• a distributed table,
• a table with a read trigger, or
• a logical file built over multiple physical file members.

INPUT SEQUENCE
Specifies that the result table reflects the input order of the rows of an INSERT statement. INPUT
SEQUENCE ordering can be specified only when an INSERT statement is specified in a from-clause.
If INPUT SEQUENCE is specified and the input data is not ordered, the INPUT SEQUENCE clause is
ignored.

Column access controls do not effect the operation of the ORDER BY clause. The order is based on the
original column values. However, after column masks are applied, the masked values in the final result
table might not reflect the order of the original column values.

A sort-key must not be LOB if the query specifies:

• a distributed table,
• a table with a read trigger, or
• a logical file built over multiple physical file members.

778 IBM i: Db2 for i SQL Reference

offset-clause
The offset-clause sets the number of rows to skip before any rows are retrieved. It lets the database
manager know that the application does not want to start retrieving rows until offset-row-count rows have
been skipped. If offset-clause is not specified, the default is equivalent to OFFSET 0 ROWS. If offset-row-
count specifies more rows than the number of rows in the intermediate result table, the intermediate
result table is treated as an empty result table.

OFFSET offset-row-count ROW

ROWS

offset-row-count
An expression that specifies the number of rows to skip before any rows are retrieved. offset-row-
count must not contain a scalar-fullselect, a column reference, a table reference, a user-defined
function reference, or a built-in scalar function identified as restricted in a check constraint; see
check-constraint. If the data type of the expression is not BIGINT, the result of the expression is cast
to a BIGINT value. The value of offset-row-count must be a positive number or zero. It cannot be the
null value.

Determining a predictable set of rows to skip requires the specification of an ORDER BY clause with sort
keys that uniquely identify the sort order of each row in the intermediate result table. If the intermediate
result table includes duplicate sort keys for some rows, the order of the rows is not deterministic. If there
is no ORDER BY clause, the intermediate result table is not in a deterministic order. If the order of the
intermediate result table is not deterministic, the set of skipped rows is unpredictable.

An offset-clause cannot be specified in the outermost fullselect of a view.

If the fullselect contains an SQL data change statement in the FROM clause, all the rows are modified
regardless of the number of rows to skip.

Notes
select-list restriction: The select-list of the fullselect containing an offset-clause must not contain a NEXT
VALUE sequence expression and must not contain a function that is non-deterministic, external action, or
modifies SQL data.

Syntax alternatives: See the Notes entry associated with the fetch-clause for alternative syntax to set the
number of rows to skip when specifying the maximum number of rows to retrieve.

Chapter 6. Queries 779

fetch-clause
The fetch-clause sets a maximum number of rows that can be retrieved.

FETCH FIRST

NEXT

1

fetch-row-count

ROW

ROWS

ONLY

The fetch-clause sets a maximum number of rows that can be retrieved. It lets the database manager
know that the application does not want to retrieve more than fetch-row-count rows, regardless of how
many rows there are in the intermediate result table. An attempt to fetch beyond fetch-row-count rows is
handled the same way as normal end of data.

A fetch-clause cannot be specified in the outermost fullselect of a view.

Determining a predictable set of rows to retrieve requires the specification of an ORDER BY clause
with sort keys that uniquely identify the sort order of each row in the intermediate result table. If
the intermediate result table includes duplicate sort keys for some rows, the order of the rows is not
deterministic. If there is no ORDER BY clause, the intermediate result table is not in a deterministic order.
If the order of the intermediate result table is not deterministic, the set of rows retrieved is unpredictable.
If both the order-by-clause and fetch-clause are specified, the fetch-clause is processed on the ordered
data.

fetch-row-count
An expression that specifies the maximum number of rows to retrieve. fetch-row-count must not
contain a scalar-fullselect, a column reference, a table reference, a user-defined function reference, or
a built-in scalar function identified as restricted in a check constraint; see check-constraint. If the data
type of the expression is not BIGINT, the result of the expression is cast to a BIGINT value. The value
of fetch-row-count must be a positive number or zero. It cannot be the null value.

Limiting the result table to a specified number of rows can improve performance. In some cases, the
database manager will cease processing the query when it has determined the specified number of
rows. If the offset-clause is also specified, the database manager will also consider the offset value in
determining when to cease processing.

If the fullselect contains an SQL data change statement in the FROM clause, all the rows are modified
regardless of the limit on the number of rows to fetch.

Row access controls can indirectly affect the FETCH FIRST clause because row access controls affect the
rows that are accessible to the authorization ID of the subselect.

Notes
Syntax alternatives:

• The keywords FIRST and NEXT can be used interchangeably. The result is unchanged; however, using
the keyword NEXT is more readable when the offset-clause is used.

• The following are supported for compatibility with SQL used by other database products. These
alternatives are non-standard and should not be used.

Alternative syntax Equivalent syntax

LIMIT x FETCH FIRST x ROWS ONLY

LIMIT x OFFSET y OFFSET y ROWS FETCH FIRST x ROWS ONLY

LIMIT y, x OFFSET y ROWS FETCH FIRST x ROWS ONLY

780 IBM i: Db2 for i SQL Reference

Examples of a subselect
subselect can be used in many different ways.

Example 1
Select all columns and rows from the EMPLOYEE table.

 SELECT * FROM EMPLOYEE

Example 2
Join the EMPPROJACT and EMPLOYEE tables, select all the columns from the EMPPROJACT table and add
the employee's surname (LASTNAME) from the EMPLOYEE table to each row of the result.

 SELECT EMPPROJACT.*, LASTNAME
 FROM EMPPROJACT, EMPLOYEE
 WHERE EMPPROJACT.EMPNO = EMPLOYEE.EMPNO

Example 3
Join the EMPLOYEE and DEPARTMENT tables, select the employee number (EMPNO), employee surname
(LASTNAME), department number (WORKDEPT in the EMPLOYEE table and DEPTNO in the DEPARTMENT
table) and department name (DEPTNAME) of all employees who were born (BIRTHDATE) earlier than
1930.

 SELECT EMPNO, LASTNAME, WORKDEPT, DEPTNAME
 FROM EMPLOYEE, DEPARTMENT
 WHERE WORKDEPT = DEPTNO
 AND YEAR(BIRTHDATE) < 1930

This subselect could also be written as follows:

 SELECT EMPNO, LASTNAME, WORKDEPT, DEPTNAME
 FROM EMPLOYEE INNER JOIN DEPARTMENT
 ON WORKDEPT = DEPTNO
 WHERE YEAR(BIRTHDATE) < 1930

Example 4
Select the job (JOB) and the minimum and maximum salaries (SALARY) for each group of rows with the
same job code in the EMPLOYEE table, but only for groups with more than one row and with a maximum
salary greater than or equal to 27000.

 SELECT JOB, MIN(SALARY), MAX(SALARY)
 FROM EMPLOYEE
 GROUP BY JOB
 HAVING COUNT(*) > 1 AND MAX(SALARY) >= 27000

Example 5
Select all the rows of EMPPROJACT table for employees (EMPNO) in department (WORKDEPT) ‘E11'.
(Employee department numbers are shown in the EMPLOYEE table.)

 SELECT * FROM EMPPROJACT
 WHERE EMPNO IN (SELECT EMPNO FROM EMPLOYEE
 WHERE WORKDEPT = 'E11')

Chapter 6. Queries 781

Example 6
From the EMPLOYEE table, select the department number (WORKDEPT) and maximum departmental
salary (SALARY) for all departments whose maximum salary is less than the average salary for all
employees.

 SELECT WORKDEPT, MAX(SALARY)
 FROM EMPLOYEE
 GROUP BY WORKDEPT
 HAVING MAX(SALARY) < (SELECT AVG(SALARY)
 FROM EMPLOYEE)

The subquery in the HAVING clause would only be executed once in this example.

Example 7
Using the EMPLOYEE table, select the department number (WORKDEPT) and maximum departmental
salary (SALARY) for all departments whose maximum salary is less than the average salary in all other
departments.

 SELECT WORKDEPT, MAX(SALARY)
 FROM EMPLOYEE EMP_COR
 GROUP BY WORKDEPT
 HAVING MAX(SALARY) < (SELECT AVG(SALARY)
 FROM EMPLOYEE
 WHERE NOT WORKDEPT = EMP_COR.WORKDEPT)

In contrast to example 6, the subquery in the HAVING clause would need to be executed for each group.

Example 8
Join the EMPLOYEE and EMPPROJACT tables, select all of the employees and their project numbers.
Return even those employees that do not have a project number currently assigned.

 SELECT EMPLOYEE.EMPNO, PROJNO
 FROM EMPLOYEE LEFT OUTER JOIN EMPPROJACT
 ON EMPLOYEE.EMPNO = EMPPROJACT.EMPNO

Any employee in the EMPLOYEE table that does not have a project number in the EMPPROJACT table will
return one row in the result table containing the EMPNO value and the null value in the PROJNO column.

782 IBM i: Db2 for i SQL Reference

fullselect
The fullselect is a component of the select-statement, ALTER TABLE statement for the definition of
a materialized query table, CREATE TABLE statement, CREATE VIEW statement, DECLARE GLOBAL
TEMPORARY TABLE statement, INSERT statement, SET transition-variable statement, SET VARIABLE
statement, UPDATE statement, and assignment-statement.

subselect

(fullselect)

values-clause

UNION
DISTINCT

ALL

EXCEPT
DISTINCT

INTERSECT
DISTINCT

subselect

(fullselect)

values-clause

order-by-clause offset-clause fetch-clause

values-clause

VALUES

,

values-row

values-row
expression

NULL

(

,

expression

NULL

)

A fullselect that is enclosed in parenthesis is called a subquery. For example, a subquery can be used in a
search condition.

A scalar-fullselect is a fullselect, enclosed in parentheses, that returns a single result row and a single
result column. If the result of the fullselect is no rows, then the null value is returned. An error is returned
if there is more than one row in the result.

A fullselect specifies a result table. If UNION, EXCEPT, or INTERSECT is not used, the result of the
fullselect is the result of the specified subselect or values-clause.

values-clause
Derives a result table by specifying the actual values, using expressions, for each column of a row in
the result table. Multiple rows may be specified.
NULL can only be used with multiple specifications of values-row, and at least one row in the same
column must not be NULL.
A values-row is specified by:

Chapter 6. Queries 783

• A single expression for a single column result table or,
• n expressions (or NULL) separated by commas and enclosed in parentheses, where n is the number

of columns in the result table.

A multiple row VALUES clause must have the same number of expressions in each values-row.
The following are examples of values-clauses and their meanings.

 VALUES (1), (2), (3) - 3 rows of 1 column
 VALUES 1, 2, 3 - 3 rows of 1 column
 VALUES (1, 2, 3) - 1 row of 3 columns
 VALUES (1,21), (2,22), (3,23) - 3 rows of 2 columns

A values-clause that is composed of n specifications of values-row, RE1 to REn, where n is greater than
1 is equivalent to:

 RE1 UNION ALL RE2 ... UNION ALL REn

This means that the corresponding expressions of each values-row must be comparable. All result
columns in a values-row are unnamed.

UNION, EXCEPT, or INTERSECT
The set operators UNION, EXCEPT, and INTERSECT correspond to the relational operators union,
difference, and intersection. A fullselect specifies a result table. If a set operator is not used, the
result of the fullselect is the result of the specified subselect. Otherwise, the result table is derived by
combining two other result tables (R1 and R2) subject to the specified set operator.
UNION DISTINCT or UNION ALL

If UNION is specified without the ALL option, the result is the set of all rows in either R1 or R2,
with duplicate rows eliminated. In either case, however, each row of the UNION table is either a
row from R1 or a row from R2.

EXCEPT DISTINCT
The result consists of all rows that are only in R1, with duplicate rows in the result of this
operation eliminated. Each row in the result table of the difference is a row from R1 that does not
have a matching row in R2.

INTERSECT DISTINCT
The result consists of all rows that are in both R1 and R2, with the duplicate rows eliminated. Each
row in the result table of the intersection is a row that exists in both R1 and R2.

The expression that corresponds to the nth column in R1 and R2 can reference columns with column
masks. The nth column of the result of the set operation can be derived from the masked values in R1
or R2.

With DISTINCT, the elimination of the duplicate rows is based on the unmasked values in R1 and R2.
Because all rows are from R1 or R2, the output values in the result table of the set operation may vary
when one or more of the following conditions occur:

• The expression corresponding to the nth column in R1 references columns with column masks, but
the expression corresponding to the nth column in R2 does not, or vise versa.

• The expressions corresponding to the nth column in R1 and R2 reference columns with different
column masks.

• The column mask definition references columns that are not the same target column for which
the column mask is defined, and those columns are not part of the DISTINCT operation. It is
recommended that the column mask definition does not reference other columns from the target
table.

For example, a row in R1 is derived from the masked value, and a row in R2 is derived from the
unmasked value. If the DISTINCT picks the row for the result table from R1, the masked value is
returned. If the DISTINCT picks the row for the result table from R2, the unmasked value is returned.

Rules for columns:

784 IBM i: Db2 for i SQL Reference

• R1 and R2 must have the same number of columns, and the data type of the nth column of R1 must
be compatible with the data type of the nth column of R2. Character-string values are compatible with
datetime values.

• The nth column of the result of UNION, UNION ALL, EXCEPT, or INTERSECT is derived from the nth
columns of R1 and R2. The attributes of the result columns are determined using the rules for result
columns.

• If the nth column of R1 is named, then the nth column of the result table has that result column name.
Otherwise, the result column is unnamed.

• If UNION, INTERSECT, or EXCEPT is specified, no column can be a DATALINK or XML column.

For information on the valid combinations of operand columns and the data type of the result column, see
“Rules for result data types” on page 105.

EXCEPT and INTERSECT restrictions: VALUES, INTERSECT, and EXCEPT are not allowed if the query
specifies one of the following:

• A distributed table
• A table with a read trigger
• A logical file built over multiple physical file members

Duplicate rows: Two rows are duplicates if each value in the first is equal to the corresponding value of
the second. (For determining duplicates, two null values are considered equal.)

Operator precedence: UNION, UNION ALL, and INTERSECT are associative set operations. However,
when UNION, UNION ALL, EXCEPT, and INTERSECT are used in the same statement, the result depends
on the order in which the operations are performed. Operations within parenthesis are performed first.
When the order is not specified by parentheses, operations are performed in left-to-right order with the
exception that all INTERSECT operations are performed before UNION or EXCEPT operations.

Results of set operators: In the following example, the values of tables R1 and R2 are shown on the left.
The other headings listed show the values as a result of various set operations on R1 and R2.

R1 R2 UNION ALL UNION EXCEPT INTERSECT

1 1 1 1 2 1

1 1 1 2 5 3

1 3 1 3 4

2 3 1 4

2 3 1 5

2 3 2

3 4 2

4 2

4 3

5 3

3

3

3

4

4

4

Chapter 6. Queries 785

R1 R2 UNION ALL UNION EXCEPT INTERSECT

5

Collating sequence: If a collating sequence other than *HEX is in effect when the statement that contains
the UNION, EXCEPT, or INTERSECT keyword is executed and if the result tables contain columns that are
SBCS data, mixed data, or Unicode data, the comparison for those columns is done using weighted values.
The weighted values are derived by applying the collating sequence to each value.

786 IBM i: Db2 for i SQL Reference

Examples of a fullselect

Example 1
Select all columns and rows from the EMPLOYEE table.

 SELECT * FROM EMPLOYEE

Example 2
List the employee numbers (EMPNO) of all employees in the EMPLOYEE table whose department number
(WORKDEPT) either begins with 'E' or who are assigned to projects in the EMPPROJACT table whose
project number (PROJNO) equals 'MA2100', 'MA2110', or 'MA2112'.

 SELECT EMPNO FROM EMPLOYEE
 WHERE WORKDEPT LIKE 'E%'
 UNION
 SELECT EMPNO FROM EMPPROJACT
 WHERE PROJNO IN('MA2100', 'MA2110', 'MA2112')

Example 3
Make the same query as in example 2, only use UNION ALL so that no duplicate rows are eliminated.

 SELECT EMPNO FROM EMPLOYEE
 WHERE WORKDEPT LIKE 'E%'
 UNION ALL
 SELECT EMPNO FROM EMPPROJACT
 WHERE PROJNO IN('MA2100', 'MA2110', 'MA2112')

Example 4
Make the same query as in example 2, and, in addition, "tag" the rows from the EMPLOYEE table with
'emp' and the rows from the EMPPROJACT table with 'empprojact'. Unlike the result from example 2,
this query may return the same EMPNO more than once, identifying which table it came from by the
associated "tag".

 SELECT EMPNO, 'emp' FROM EMPLOYEE
 WHERE WORKDEPT LIKE 'E%'
 UNION
 SELECT EMPNO, 'empprojact' FROM EMPPROJACT
 WHERE PROJNO IN('MA2100', 'MA2110', 'MA2112')

Example 5
This example of EXCEPT produces all rows that are in T1 but not in T2, with duplicate rows removed.

 (SELECT * FROM T1)
 EXCEPT DISTINCT
 (SELECT * FROM T2)

If no NULL values are involved, this example returns the same results as:

 (SELECT DISTINCT *
 FROM T1
 WHERE NOT EXISTS (SELECT * FROM T2
 WHERE T1.C1 = T2.C1 AND T1.C2 = T2.C2 AND...))

where C1, C2, and so on represent the columns of T1 and T2.

Chapter 6. Queries 787

Example 6
This example of INTERSECT produces all rows that are in both tables T1 and T2, with duplicate rows
removed.

 (SELECT * FROM T1)
 INTERSECT DISTINCT
 (SELECT * FROM T2)

If no NULL values are involved, this example returns the same results as:

 (SELECT DISTINCT *
 FROM T1
 WHERE EXISTS (SELECT * FROM T2
 WHERE T1.C1 = T2.C1 AND T1.C2 = T2.C2 AND...))

where C1, C2, and so on represent the columns of T1 and T2.

Example 7
Make the same query as in example 3, only include an additional two employees currently not in any table
and tag these rows as "new".

 SELECT EMPNO, 'emp' FROM EMPLOYEE
 WHERE WORKDEPT LIKE 'E%'
 UNION
 SELECT EMPNO, 'empprojact' FROM EMPPROJACT
 WHERE PROJNO IN('MA2100', 'MA2110', 'MA2112')
 UNION
 VALUES ('NEWAAA', 'new'), ('NEWBBB', 'new')

788 IBM i: Db2 for i SQL Reference

select-statement
The select-statement is the form of a query that can be directly specified in a DECLARE CURSOR or
FOR statement, prepared and then referenced in a DECLARE CURSOR statement, or directly specified
in an SQLJ assignment clause. It can also be issued interactively. In any case, the table specified by a
select-statement is the result of the fullselect.

WITH

RECURSIVE

,

common-table-expression

fullselect

update-clause

read-only-clause

optimize-clause

isolation-clause

concurrent-access-resolution-clause

1 2

Notes:
1 The update-clause and read-only-clause cannot both be specified in the same select-statement.
2 Each clause may be specified only once.

RECURSIVE
Indicates that a common-table-expression is potentially recursive.

Chapter 6. Queries 789

common-table-expression
A common-table-expression permits defining a result table with a table-identifier that can be specified as
a table name in any FROM clause of the fullselect that follows. Multiple common table expressions can
be specified following the single WITH keyword. Each common table expression specified can also be
referenced by name in the FROM clause of subsequent common table expressions.

table-identifier

(

,

column-name)

AS (fullselect)

search-clause cycle-clause

search-clause

SEARCH DEPTH FIRST

BREADTH FIRST

BY

,

column-name SET seq-column-name

cycle-clause

CYCLE

,

column-name SET cycle-column-name TO constant DEFAULT

constant

USING using-column-name

If a list of columns is specified, it must consist of as many names as there are columns in the result
table of the fullselect. Each column-name must be unique and unqualified. If these column names are not
specified, the names are derived from the select list of the subselect used to define the common table
expression.

The table-identifier of a common table expression must be different from any other common table
expression table-identifier in the same statement. A common table expression table-identifier can be
specified as a table name in any FROM clause throughout the fullselect. A table-identifier of a common
table expression overrides any existing table, view, or alias (in the catalog) with the same unqualified
name or any table-identifier specified for a trigger.

If more than one common table expression is defined in the same statement, cyclic references between
the common table expressions are not permitted. A cyclic reference occurs when two common table
expressions dt1 and dt2 are created such that dt1 refers to dt2 and dt2 refers to dt1.

The table name of a common table expression can only be referenced in the select-statement, INSERT
statement, or CREATE VIEW statement that defines it.

If a select-statement, INSERT statement, or CREATE VIEW statement refers to an unqualified table name,
the following rules are applied to determine which table is actually being referenced:

• If the unqualified name corresponds to one or more common table expression names that are specified
in the select-statement, the name identifies the common table expression that is in the innermost scope.

• If in a CREATE TRIGGER statement and the unqualified name corresponds to a transition table name,
the name identifies that transition table.

• Otherwise, the name identifies a persistent table, a temporary table, or a view that is present in the
default schema.

A common-table-expression can be used:

790 IBM i: Db2 for i SQL Reference

• In place of a view to avoid creating the view (when general use of the view is not required and
positioned UPDATE or DELETE is not used)

• To enable grouping by a column that is derived from a scalar-fullselect or function that is not
deterministic

• When the required result table is based on variables
• When the same result table needs to be shared in a fullselect
• When the result needs to be derived using recursion

If a fullselect of a common table expression contains a reference to itself in a FROM clause, the
common table expression is a recursive table expression. Queries using recursion are useful in supporting
applications such as bill of materials (BOM), reservation systems, and network planning.

The following restrictions must be true of a recursive common-table-expression:

• Each fullselect that is part of the recursion cycle must start with SELECT or SELECT ALL. Use of SELECT
DISTINCT is not allowed.

• The UNION ALL set operator must be specified.
• A list of column-names must be specified following the table-identifier of the common-table-expression.
• The first fullselect of the first union (the initialization fullselect) must not include a reference to the

common-table-expression itself in any FROM clause.
• Each fullselect that is part of the recursion cycle must not include any aggregate functions, GROUP BY

clauses, or HAVING clauses.
• The FROM clauses of these fullselects can include at most one reference to a common-table-expression

that is part of a recursion cycle.
• The table being defined in the common-table-expression cannot be referenced in a subquery of a

fullselect that defines the common-table-expression.
• LEFT OUTER JOIN and FULL OUTER JOIN are not allowed if the common-table-expression is the right

operand. RIGHT OUTER JOIN and FULL OUTER JOIN are not allowed if the common-table-expression is
the left operand.

• Each fullselect other than the initialization fullselect that is part of the recursion cycle must not include
an ORDER BY clause.

If a column name of the common-table-expression is referred to in the iterative fullselect, the attributes of
the result columns are determined using the rules for result columns. For more information see “Rules for
result data types” on page 105.

search-clause
The SEARCH clause in the definition of the recursive common-table-expression is used to specify the
order in which the result rows are to be returned.
SEARCH DEPTH FIRST

Each parent or containing item appears in the result before the items that it contains.
SEARCH BREADTH FIRST

Sibling items are grouped before subordinate items.
BY column-name,…

Identifies the columns that associate the parent and child relationship of the recursive query. Each
column-name must unambiguously identify a column of the parent. The column must not be a
DATALINK or XML column. The rules for unambiguous column references are the same as in the
other clauses of the fullselect. See “Column name qualifiers to avoid ambiguity” on page 133 for
more information.

The column-name must identify a column name of the recursive common-table-expression. The
column-name must not be qualified.

SET seq-column-name
Specifies the name of a result column that contains an ordinal number of the current row in the
recursive query result. The data type of the seq-column-name is BIGINT.

Chapter 6. Queries 791

The seq-column-name may only be referenced in the ORDER BY clause of the outer fullselect
that references the common-table-expression. The seq-column-name cannot be referenced in the
fullselect that defines the common-table-expression.

The seq-column-name must not be the same as using-column-name or cycle-column-name.

cycle-clause
The CYCLE clause in the definition of the recursive common-table-expression is used to prevent an
infinite loop in the recursive query when the parent and child relationship of the data results in a loop.
CYCLE column-name,…

Specifies the list of columns that represent the parent/child join relationship values for the
recursion. Any new row from the query is first checked for a duplicate value (per these column
names) in the existing rows that lead to this row in the recursive query results to determine if
there is a cycle.

Each column-name must identify a result column of the common table expression. It must not be
an XML or DataLink column. The same column-name must not be specified more than once.

SET cycle-column-name
Specifies the name of a result column that is set based on whether a cycle has been detected in
the recursive query:

• If a duplicate row is encountered, indicating that a cycle has been detected in the data, the
cycle-column-name is set to the TO constant.

• If a duplicate row is not encountered, indicating that a cycle has not been detected in the data,
the cycle-column-name is set to the DEFAULT constant.

The data type of the cycle-column-name is CHAR(1).

When cyclic data in the row is encountered, the duplicate row is not returned to the recursive
query process for further recursion and that child branch of the query is stopped. By specifying the
provided cycle-column-name is in the result set of the main fullselect, the existence of cyclic data
can actually be determined and even corrected if that is wanted.

The cycle-column-name must not be the same as using-column-name or seq-column-name.

The cycle-column-name can be referenced in the fullselect that defines the common-table-
expression.

TO constant
Specifies a CHAR(1) constant value to assign to the cycle-column if a cycle has been detected in
the data. The TO constant must not be equal to the DEFAULT constant.

DEFAULT constant
Specifies a CHAR(1) constant value to assign to the cycle-column if a cycle has not been detected
in the data. The DEFAULT constant must not be equal to the TO constant.

USING using-column-name
Identifies the temporary results consisting of the columns from the CYCLE column list. The
temporary result is used by the database manager to identify duplicate rows in the query result.

The using-column-name must not be the same as cycle-column-name or seq-column-name.

When developing recursive common table expressions, remember that an infinite recursion cycle (loop)
can be created. Ensure that recursion cycles will end. This is especially important if the data involved is
cyclic. A recursive common table expression is expected to include a predicate that will prevent an infinite
loop. The recursive common table expression is expected to include:

• In the iterative fullselect, an integer column incremented by a constant.
• A predicate in the WHERE clause of the iterative fullselect in the form "counter_col < constant" or

"counter_col < :hostvar".

A warning is issued if this syntax is not found in the recursive common table expression.

Recursive common table expressions are not allowed if the query specifies:

792 IBM i: Db2 for i SQL Reference

• a distributed table,
• a table with a read trigger, or
• a logical file built over multiple physical file members.

Recursion example: bill of materials
Bill of materials (BOM) applications are a common requirement in many business environments. To
illustrate the capability of a recursive common table expression for BOM applications, consider a table of
parts with associated subparts and the quantity of subparts required by the part.

For this example, create the table as follows:

 CREATE TABLE PARTLIST
 (PART VARCHAR(8),
 SUBPART VARCHAR(8),
 QUANTITY INTEGER)

To give query results for this example, assume that the PARTLIST table is populated with the following
values:

PART SUBPART QUANTITY
-------- -------- -----------
 00 01 5
 00 05 3
 01 02 2
 01 03 3
 01 04 4
 01 06 3
 02 05 7
 02 06 6
 03 07 6
 04 08 10
 04 09 11
 05 10 10
 05 11 10
 06 12 10
 06 13 10
 07 14 8
 07 12 8

Example 1: Single level explosion
The first example is called single level explosion. It answers the question, "What parts are needed to build
the part identified by '01'?". The list will include the direct subparts, subparts of the subparts and so on.
However, if a part is used multiple times, its subparts are only listed once.

 WITH RPL (PART, SUBPART, QUANTITY) AS
 (SELECT ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY
 FROM PARTLIST ROOT
 WHERE ROOT.PART = '01'
 UNION ALL
 SELECT CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY
 FROM RPL PARENT, PARTLIST CHILD
 WHERE PARENT.SUBPART = CHILD.PART
)
 SELECT DISTINCT PART, SUBPART, QUANTITY
 FROM RPL
 ORDER BY PART, SUBPART, QUANTITY

The above query includes a common table expression, identified by the name RPL, that expresses the
recursive part of this query. It illustrates the basic elements of a recursive common table expression.

The first operand (fullselect) of the UNION, referred to as the initialization fullselect, gets the direct
children of part '01'. The FROM clause of this fullselect refers to the source table and will never refer
to itself (RPL in this case). The result of this first fullselect goes into the common table expression RPL
(Recursive PARTLIST). As in this example, the UNION must always be a UNION ALL.

Chapter 6. Queries 793

The second operand (fullselect) of the UNION uses RPL to compute subparts of subparts by having the
FROM clause refer to the common table expression RPL and the source table with a join of a part from the
source table (child) to a subpart of the current result contained in RPL (parent). The result goes back to
RPL again. The second operand of UNION is then used repeatedly until no more children exist.

The SELECT DISTINCT in the main fullselect of this query ensures the same part/subpart is not listed
more than once.

The result of the query is as follows:

PART SUBPART QUANTITY
-------- -------- -----------
 01 02 2
 01 03 3
 01 04 4
 01 06 3
 02 05 7
 02 06 6
 03 07 6
 04 08 10
 04 09 11
 05 10 10
 05 11 10
 06 12 10
 06 13 10
 07 12 8
 07 14 8

Observe in the result that part '01' goes to '02' which goes to '06' and so on. Further, notice that part
'06' is reached twice, once through '01' directly and another time through '02'. In the output, however, its
subcomponents are listed only once (this is the result of using a SELECT DISTINCT) as required.

Example 2: Summarized explosion
The second example is a summarized explosion. The question posed here is, what is the total quantity
of each part required to build part '01'. The main difference from the single level explosion is the need
to aggregate the quantities. The first example indicates the quantity of subparts required for the part
whenever it is required. It does not indicate how many of the subparts are needed to build part '01'.

 WITH RPL (PART, SUBPART, QUANTITY) AS
 (SELECT ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY
 FROM PARTLIST ROOT
 WHERE ROOT.PART = '01'
 UNION ALL
 SELECT PARENT.PART, CHILD.SUBPART, PARENT.QUANTITY*CHILD.QUANTITY
 FROM RPL PARENT, PARTLIST CHILD
 WHERE PARENT.SUBPART = CHILD.PART
)
 SELECT PART, SUBPART, SUM(QUANTITY) AS "Total QTY Used"
 FROM RPL
 GROUP BY PART, SUBPART
 ORDER BY PART, SUBPART

In the above query, the select list of the second operand of the UNION in the recursive common table
expression, identified by the name RPL, shows the aggregation of the quantity. To find out how much of a
subpart is used, the quantity of the parent is multiplied by the quantity per parent of a child. If a part is
used multiple times in different places, it requires another final aggregation. This is done by the grouping
over the common table expression RPL and using the SUM aggregate function in the select list of the main
fullselect.

The result of the query is as follows:

PART SUBPART Total Qty Used
-------- -------- --------------
 01 02 2
 01 03 3
 01 04 4
 01 05 14
 01 06 15
 01 07 18

794 IBM i: Db2 for i SQL Reference

 01 08 40
 01 09 44
 01 10 140
 01 11 140
 01 12 294
 01 13 150
 01 14 144

Looking at the output, consider the line for subpart '06'. The total quantity used value of 15 is derived
from a quantity of 3 directly for part '01' and a quantity of 6 for part '02' which is needed 2 times by part
'01'.

Example 3: Controlling depth
The question may come to mind, what happens when there are more levels of parts in the table than you
are interested in for your query? That is, how is a query written to answer the question, "What are the first
two levels of parts needed to build the part identified by '01'?" For the sake of clarity in the example, the
level is included in the result.

 WITH RPL (LEVEL, PART, SUBPART, QUANTITY)
 AS (SELECT 1, ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY
 FROM PARTLIST ROOT
 WHERE ROOT.PART = '01'
 UNION ALL
 SELECT PARENT.LEVEL+1, CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY
 FROM RPL PARENT, PARTLIST CHILD
 WHERE PARENT.SUBPART = CHILD.PART
 AND PARENT.LEVEL < 2
)
 SELECT PART, LEVEL, SUBPART, QUANTITY
 FROM RPL

This query is similar to example 1. The column LEVEL was introduced to count the levels from the original
part. In the initialization fullselect, the value for the LEVEL column is initialized to 1. In the subsequent
fullselect, the level from the parent is incremented by 1. Then to control the number of levels in the result,
the second fullselect includes the condition that the parent level must be less than 2. This ensures that
the second fullselect only processes children to the second level.

The result of the query is:

PART LEVEL SUBPART QUANTITY
-------- ----------- -------- -----------
 01 1 02 2
 01 1 03 3
 01 1 04 4
 01 1 06 3
 02 2 05 7
 02 2 06 6
 03 2 07 6
 04 2 08 10
 04 2 09 11
 06 2 12 10
 06 2 13 10

Chapter 6. Queries 795

update-clause
The UPDATE clause identifies the columns that can appear as targets in an assignment clause in a
subsequent positioned UPDATE statement. Each column-name must be unqualified and must identify a
column of the table or view identified in the first FROM clause of the fullselect. The clause must not be
specified if the result table of the fullselect is read-only.

FOR UPDATE

OF

,

column-name

If an UPDATE clause is specified with a column-name list, and extended indicators are not enabled, then
column-name must be an updatable column.

If the UPDATE clause is specified without column-name list, then the implicit column-name list is
determined as follows:

• If extended indicators are enabled, all the columns of the table or view identified in the first FROM
clause of the fullselect.

• Otherwise, all the updatable columns of the table or view identified in the first FROM clause of the
fullselect.

If the UPDATE clause is not specified in a select-statement and its result table is not read-only, then an
implicit UPDATE clause will result. The implicit column-name list is determined as follows:

• If extended indicators are enabled, all the columns of the table or view identified in the first FROM
clause of the fullselect are included.

• Otherwise, all the updatable columns of the table or view identified in the first FROM clause of the
fullselect are included.

The UPDATE clause must not be specified if the result table of the fullselect is read-only (for more
information see “DECLARE CURSOR” on page 1215) or if the FOR READ ONLY clause is used.

When the UPDATE clause is used, FETCH operations referencing the cursor acquire an exclusive row lock.

796 IBM i: Db2 for i SQL Reference

read-only-clause
The READ ONLY clause indicates that the result table is read-only; therefore, the cursor cannot be used
for positioned UPDATE and DELETE statements.

FOR READ ONLY

Some result tables are read-only by nature. (For example, a table based on a read-only view). FOR READ
ONLY can still be specified for such tables, but the specification has no effect.

For result tables in which updates and deletes are allowed, specifying FOR READ ONLY can possibly
improve the performance of FETCH operations by allowing the database manager to do blocking and
avoid exclusive locks. For example, in programs that contain dynamic SQL statements without the FOR
READ ONLY or ORDER BY clause, the database manager might open cursors as if the UPDATE clause was
specified.

A read-only result table must not be referred to in an UPDATE or DELETE statement, whether it is
read-only by nature or specified as FOR READ ONLY.

To guarantee that selected data is not locked by any other job, you can specify the optional syntax of USE
AND KEEP EXCLUSIVE LOCKS on the isolation-clause. This guarantees that the selected data can later be
updated or deleted without incurring a row lock conflict.

Syntax Alternatives: FOR FETCH ONLY can be specified in place of FOR READ ONLY.

Chapter 6. Queries 797

optimize-clause
The optimize-clause tells the database manager to assume that the program does not intend to retrieve
more than integer rows from the result table. Without this clause, or with the keyword ALL, the database
manager assumes that all rows of the result table are to be retrieved. Optimizing for integer rows can
improve performance. The database manager will optimize the query based on the specified number of
rows.

OPTIMIZE FOR integer

ALL

ROW

ROWS

The clause does not change the result table or the order in which the rows are fetched. Any number of
rows can be fetched, but performance can possibly degrade after integer fetches.

The value of integer must be a positive integer (not zero).

Row access controls indirectly affect the optimize-clause because row access controls affect the rows that
are accessible to the authorization ID of the subselect.

798 IBM i: Db2 for i SQL Reference

isolation-clause
The isolation-clause specifies an isolation level at which the select statement is executed.

WITH NC

UR

CS

KEEP LOCKS

RS

lock-clause

RR

lock-clause

lock-clause
USE AND KEEP EXCLUSIVE LOCKS

RR
Repeatable Read
USE AND KEEP EXCLUSIVE LOCKS

Exclusive row locks are acquired and held until a COMMIT or ROLLBACK statement is executed.
RS

Read Stability
USE AND KEEP EXCLUSIVE LOCKS

Exclusive row locks are acquired and held until a COMMIT or ROLLBACK statement is executed.
The USE AND KEEP EXCLUSIVE LOCKS clause is only allowed in the isolation-clause in the
following SQL statements:

• DECLARE CURSOR
• FOR
• select-statement
• SELECT INTO
• PREPARE in the ATTRIBUTES string

It is not allowed on updatable cursors.
CS

Cursor Stability
KEEP LOCKS

The KEEP LOCKS clause specifies that any read locks acquired will be held for a longer duration.
Normally, read locks are released when the next row is read. If the isolation clause is associated
with a cursor, the locks will be held until the cursor is closed or until a COMMIT or ROLLBACK
statement is executed. Otherwise, the locks will be held until the completion of the SQL
statement.

UR
Uncommitted Read

NC
No Commit

If isolation-clause is not specified, the default isolation is used with the exception of a default isolation
level of uncommitted read. See “Isolation level” on page 23 for a description of how the default is
determined.

Chapter 6. Queries 799

Exclusive locks: The USE AND KEEP EXCLUSIVE LOCKS clause should be used with caution. If it is
specified, the exclusive row locks that are acquired on rows will prevent concurrent access to those rows
by other users running COMMIT(*CS), COMMIT(*RS), and COMMIT(*RR) till the end of the unit of work.
Concurrent access by users running COMMIT(*NC) or COMMIT(*UR) is not prevented.

Keyword Synonyms: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• The keyword NONE can be used as a synonym for NC.
• The keyword CHG can be used as a synonym for UR.
• The keyword ALL can be used as a synonym for RS.

800 IBM i: Db2 for i SQL Reference

concurrent-access-resolution-clause
The concurrent-access-resolution-clause specifies the concurrent access resolution to use for the
statement.

SKIP LOCKED DATA

USE CURRENTLY COMMITTED

WAIT FOR OUTCOME

SKIP LOCKED DATA
Specifies that the select-statement, searched UPDATE statement (including a searched update
operation in a MERGE statement), or searched DELETE statement that is prepared in the PREPARE
statement will skip rows when incompatible locks are held on the row by other transactions. These
rows can belong to any accessed table that is specified in the statement. SKIP LOCKED DATA can be
used only when isolation level NC, UR, CS, or RS is in effect.
SKIP LOCKED DATA is ignored if it is specified when the isolation level that is in effect is RR.

USE CURRENTLY COMMITTED
Specifies that the database manager can use the currently committed version of the data for
applicable scans when it is in the process of being updated or deleted. Rows in the process of being
inserted can be skipped. This clause applies if possible when the isolation level is CS without the
KEEP LOCKS clause and is ignored otherwise. Applicable scans include read-only scans.

WAIT FOR OUTCOME
Specifies to wait for the commit or rollback when encountering data in the process of being updated
or deleted. Rows encountered that are in the process of being inserted are not skipped. This clause
applies if possible when the isolation level is CS or RS. It is ignored when an isolation level of NC, UR,
or RR is in effect.

Chapter 6. Queries 801

Examples of a select-statement
You can use select-statement in many different ways.

Example 1
Select all columns and rows from the EMPLOYEE table.

 SELECT * FROM EMPLOYEE

Example 2
Select the project name (PROJNAME), start date (PRSTDATE), and end date (PRENDATE) from the
PROJECT table. Order the result table by the end date with the most recent dates appearing first.

 SELECT PROJNAME, PRSTDATE, PRENDATE
 FROM PROJECT
 ORDER BY PRENDATE DESC

Example 3
Select the department number (WORKDEPT) and average departmental salary (SALARY) for all
departments in the EMPLOYEE table. Arrange the result table in ascending order by average departmental
salary.

 SELECT WORKDEPT, AVG(SALARY)
 FROM EMPLOYEE
 GROUP BY WORKDEPT
 ORDER BY AVGSAL

Example 4
Declare a cursor named UP_CUR, to be used in a C program, that updates the start date (PRSTDATE)
and the end date (PRENDATE) columns in the PROJECT table. The program must receive both of these
values together with the project number (PROJNO) value for each row. The declaration specifies that the
access path for the query be optimized for the retrieval of a maximum of 2 rows. Even so, the program
can retrieve more than 2 rows from the result table. However, when more than 2 rows are retrieved,
performance could possibly degrade.

 EXEC SQL DECLARE UP_CUR CURSOR FOR
 SELECT PROJNO, PRSTDATE, PRENDATE
 FROM PROJECT
 FOR UPDATE OF PRSTDATE, PRENDATE
 OPTIMIZE FOR 2 ROWS ;

Example 5
Select items from a table with an isolation level of Read Stability (RS).

 SELECT NAME, SALARY
 FROM PAYROLL
 WHERE DEPT = 704
 WITH RS

Example 6
This example names the expression SALARY+BONUS+COMM as TOTAL_PAY:

802 IBM i: Db2 for i SQL Reference

 SELECT SALARY+BONUS+COMM AS TOTAL_PAY
 FROM EMPLOYEE
 ORDER BY TOTAL_PAY

Example 7
Determine the employee number and salary of sales representatives along with the average salary and
head count of their departments. Also, list the average salary of the department with the highest average
salary.

Using a common table expression for this case saves the overhead of creating the DINFO view as a regular
view. Because of the context of the rest of the fullselect, only the rows for the department of the sales
representatives need to be considered by the view.

 WITH
 DINFO (DEPTNO, AVGSALARY, EMPCOUNT) AS
 (SELECT OTHERS.WORKDEPT, AVG(OTHERS.SALARY), COUNT(*)
 FROM EMPLOYEE OTHERS
 GROUP BY OTHERS.WORKDEPT),
 DINFOMAX AS
 (SELECT MAX(AVGSALARY) AS AVGMAX
 FROM DINFO)
 SELECT THIS_EMP.EMPNO, THIS_EMP.SALARY, DINFO.AVGSALARY, DINFO.EMPCOUNT,
 DINFOMAX.AVGMAX
 FROM EMPLOYEE THIS_EMP, DINFO, DINFOMAX
 WHERE THIS_EMP.JOB = 'SALESREP'
 AND THIS_EMP.WORKDEPT = DINFO.DEPTNO

Example 8
Find the average charges for each subscriber (SNO) in the state of California during the last Friday of each
month in the first quarter of 2000. Group the result according to SNO. Each MONTHnn table has columns
for SNO, CHARGES, and DATE. The CUST table has columns for SNO and STATE.

 SELECT V.SNO, AVG(V.CHARGES)
 FROM CUST, LATERAL (
 SELECT SNO, CHARGES, DATE
 FROM MONTH1
 WHERE DATE BETWEEN '01/01/2000' AND '01/31/2000'
 UNION ALL
 SELECT SNO, CHARGES, DATE
 FROM MONTH2
 WHERE DATE BETWEEN '02/01/2000' AND '02/29/2000'
 UNION ALL
 SELECT SNO, CHARGES, DATE
 FROM MONTH3
 WHERE DATE BETWEEN '03/01/2000' AND '03/31/2000'
) AS V (SNO, CHARGES, DATE)
 WHERE CUST.SNO=V.SNO
 AND CUST.STATE='CA'
 AND DATE IN ('01/28/2000','02/25/2000','03/31/2000')
 GROUP BY V.SNO

Chapter 6. Queries 803

804 IBM i: Db2 for i SQL Reference

Chapter 7. Statements
This section contains syntax diagrams, semantic descriptions, rules, and examples of the use of the SQL
statements.

The statements are listed in the following table.

Table 77. SQL Schema Statements

SQL Statement Description Page

ALTER FUNCTION
(external scalar)

Alters the description of an external scalar
function

“ALTER FUNCTION (external
scalar)” on page 820

ALTER FUNCTION
(external table)

Alters the description of an external table
function

“ALTER FUNCTION (external
table)” on page 825

ALTER FUNCTION (SQL
scalar)

Alters the description of an SQL scalar
function

“ALTER FUNCTION (SQL
scalar)” on page 830

ALTER FUNCTION (SQL
table)

Alters the description of an SQL table
function

“ALTER FUNCTION (SQL
table)” on page 837

ALTER MASK Alters the state of a mask “ALTER MASK” on page 845

ALTER PERMISSION Alters the state of a permission “ALTER PERMISSION” on
page 847

ALTER PROCEDURE
(external)

Alters the description of an external
procedure

“ALTER PROCEDURE
(external)” on page 849

ALTER PROCEDURE (SQL) Alters the description of an SQL procedure “ALTER PROCEDURE (SQL)”
on page 854

ALTER SEQUENCE Alters the description of a sequence “ALTER SEQUENCE” on page
864

ALTER TABLE Alters the description of a table “ALTER TABLE” on page 869

ALTER TRIGGER Alters the description of a trigger “ALTER TRIGGER” on page
920

COMMENT Adds or replaces a comment to the
description of an object

“COMMENT” on page 940

CREATE ALIAS Creates an alias “CREATE ALIAS” on page
971

CREATE FUNCTION Creates a user-defined function “CREATE FUNCTION” on
page 975

CREATE FUNCTION
(external scalar)

Creates an external scalar function “CREATE FUNCTION
(external scalar)” on page
980

CREATE FUNCTION
(external table)

Creates an external table function “CREATE FUNCTION
(external table)” on page
1000

CREATE FUNCTION
(sourced)

Creates a user-defined function based
on another existing scalar or aggregate
function

“CREATE FUNCTION
(sourced)” on page 1018

© Copyright IBM Corp. 1998, 2015 805

Table 77. SQL Schema Statements (continued)

SQL Statement Description Page

CREATE FUNCTION (SQL
scalar)

Creates an SQL scalar function “CREATE FUNCTION (SQL
scalar)” on page 1028

CREATE FUNCTION (SQL
table)

Creates an SQL table function “CREATE FUNCTION (SQL
table)” on page 1042

CREATE INDEX Creates an index on a table “CREATE INDEX” on page
1055

CREATE MASK Creates a column mask for a table “CREATE MASK” on page
1064

CREATE PERMISSION Creates a row permission for a table “CREATE PERMISSION” on
page 1070

CREATE PROCEDURE Creates a procedure. “CREATE PROCEDURE” on
page 1074

CREATE PROCEDURE
(external)

Creates an external procedure. “CREATE PROCEDURE
(external)” on page 1075

CREATE PROCEDURE
(SQL)

Creates an SQL procedure. “CREATE PROCEDURE (SQL)”
on page 1090

CREATE SCHEMA Creates a schema and a set of objects in
that schema

“CREATE SCHEMA” on page
1103

CREATE SEQUENCE Creates a sequence “CREATE SEQUENCE” on
page 1108

CREATE TABLE Creates a table “CREATE TABLE” on page
1115

CREATE TRIGGER Creates a trigger “CREATE TRIGGER” on page
1170

CREATE TYPE Creates a type “CREATE TYPE (distinct)” on
page 1193

CREATE VARIABLE Creates a global variable “CREATE VARIABLE” on page
1200

CREATE VIEW Creates a view of one or more tables or
views

“CREATE VIEW” on page
1206

DROP Drops an alias, function, index, package,
procedure, schema, sequence, table, trigger,
type, variable, view, or XSR object.

“DROP” on page 1288

GRANT (function or
procedure privileges)

Grants privileges on a function or procedure “GRANT (function or
procedure privileges)” on
page 1357

GRANT (variable
privileges)

Grants privileges on a global variable “GRANT (variable privileges)”
on page 1385

GRANT (package
privileges)

Grants privileges on a package “GRANT (package
privileges)” on page 1365

GRANT (schema
privileges)

Grants privileges on a schema “GRANT (schema privileges)”
on page 1368

806 IBM i: Db2 for i SQL Reference

Table 77. SQL Schema Statements (continued)

SQL Statement Description Page

GRANT (sequence
privileges)

Grants privileges on a sequence “GRANT (sequence
privileges)” on page 1371

GRANT (table or view
privileges)

Grants privileges on a table or view “GRANT (table or view
privileges)” on page 1374

GRANT (type privileges) Grants privileges on a type “GRANT (type privileges)” on
page 1382

GRANT (XML schema
privileges)

Grants privileges on an XML schema “GRANT (XML schema
privileges)” on page 1388

LABEL Adds or replaces a label to the description
of an object

“LABEL” on page 1407

RENAME Renames a table, view, or index. “RENAME” on page 1458

REVOKE (function or
procedure privileges)

Revokes privileges on a function or
procedure

“REVOKE (function or
procedure privileges)” on
page 1461

REVOKE (variable
privileges)

Revokes privileges on a global variable “REVOKE (variable
privileges)” on page 1478

REVOKE (package
privileges)

Revokes the privilege to execute statements
in a package

“REVOKE (package
privileges)” on page 1467

REVOKE (schema
privileges)

Revokes privileges on a schema “REVOKE (schema
privileges)” on page 1469

REVOKE (sequence
privileges)

Revokes privileges on a sequence “REVOKE (sequence
privileges)” on page 1471

REVOKE (table or view
privileges)

Revokes privileges on a table or view “REVOKE (table or view
privileges)” on page 1473

REVOKE (type privileges) Revokes the privilege to use a type “REVOKE (type privileges)”
on page 1476

REVOKE (XML schema
privileges)

Revokes privileges on an XML schema “REVOKE (XML schema
privileges)” on page 1480

TRANSFER OWNERSHIP Transfers ownership of an object to a
different authorization ID

“TRANSFER OWNERSHIP” on
page 1555

Table 78. SQL Data Change Statements

SQL Statement Description Page

DELETE Deletes one or more rows from a table “DELETE” on page 1259

INSERT Inserts one or more rows into a table “INSERT” on page 1395

MERGE Updates a target table using data from a
source table

“MERGE” on page 1418

TRUNCATE Deletes all the rows from a table “TRUNCATE” on page 1558

UPDATE Updates the values of one or more columns
in one or more rows of a table

“UPDATE” on page 1561

Chapter 7. Statements 807

Table 79. SQL Data Statements

SQL Statement Description Page

All SQL data change statements Table 78 on page 807

ALLOCATE CURSOR Allocates a cursor for the result set
identified by the result set locator variable.

“ALLOCATE CURSOR” on
page 817

ASSOCIATE LOCATORS Gets the result set locator value for each
result set returned by a procedure.

“ASSOCIATE LOCATORS” on
page 923

CLOSE Closes a cursor “CLOSE” on page 938

DECLARE CURSOR Defines an SQL cursor “DECLARE CURSOR” on page
1215

FETCH Positions a cursor on a row of the result
table; can also assign values from one or
more rows of the result table to variables

“FETCH” on page 1311

FREE LOCATOR Removes the association between a LOB
locator variable and its value

“FREE LOCATOR” on page
1318

HOLD LOCATOR Allows a LOB locator variable to retain its
association with a value beyond a unit of
work

“HOLD LOCATOR” on page
1391

LOCK TABLE Either prevents concurrent processes from
changing a table or prevents concurrent
processes from using a table

“LOCK TABLE” on page 1416

OPEN Opens a cursor “OPEN” on page 1429

REFRESH TABLE Refreshes the data in a materialized query
table

“REFRESH TABLE” on page
1453

SELECT Executes a query “SELECT” on page 1488

SELECT INTO Assigns values to variables “SELECT INTO” on page
1489

SET transition-variable Assigns values to a transition variable “SET transition-variable” on
page 1546

SET variable Assigns values to a variable “SET variable” on page 1548

VALUES Executes a query. “VALUES” on page 1572

VALUES INTO Specifies a result table of no more than one
row and assigns the values to variables.

“VALUES INTO” on page
1573

Table 80. SQL Transaction Statements

SQL Statement Description Page

COMMIT Ends a unit of work and commits the
database changes made by that unit of work

“COMMIT” on page 950

RELEASE SAVEPOINT Releases a savepoint within a unit of work “RELEASE SAVEPOINT” on
page 1457

ROLLBACK Ends a unit of work and backs out the
database changes made by that unit of work
or made since the specified savepoint

“ROLLBACK” on page 1482

808 IBM i: Db2 for i SQL Reference

Table 80. SQL Transaction Statements (continued)

SQL Statement Description Page

SAVEPOINT Sets a savepoint within a unit of work “SAVEPOINT” on page 1486

SET TRANSACTION Changes the isolation level for the current
unit of work

“SET TRANSACTION” on
page 1543

Table 81. SQL Connection Statements

SQL Statement Description Page

CONNECT (type 1) Connects to an application server and
establishes the rules for remote unit of work

“CONNECT (type 1)” on page
962

CONNECT (type 2) Connects to an application server and
establishes the rules for application-
directed distributed unit of work

“CONNECT (type 2)” on page
967

DISCONNECT Immediately ends one or more connections “DISCONNECT” on page
1286

RELEASE (connection) Places one or more connections in the
release-pending state

“RELEASE (connection)” on
page 1455

SET CONNECTION Establishes the application server of the
process by identifying one of its existing
connections

“SET CONNECTION” on page
1492

Table 82. SQL Dynamic Statements

SQL Statement Description Page

ALLOCATE DESCRIPTOR Allocates an SQL descriptor “ALLOCATE DESCRIPTOR” on
page 818

Compound (dynamic) Groups other statements together in an
executable routine

“compound (dynamic)” on
page 953

DEALLOCATE
DESCRIPTOR

Deallocates an SQL descriptor “DEALLOCATE DESCRIPTOR”
on page 1214

DESCRIBE Describes the result columns of a prepared
statement

“DESCRIBE” on page 1266

DESCRIBE CURSOR Describes the cursor. “DESCRIBE CURSOR” on
page 1271

DESCRIBE INPUT Describes the input parameter markers of a
prepared statement

“DESCRIBE INPUT” on page
1273

DESCRIBE PROCEDURE Describes the result sets returned by a
procedure.

“DESCRIBE PROCEDURE” on
page 1276

DESCRIBE TABLE Describes the columns of a table or view “DESCRIBE TABLE” on page
1282

EXECUTE Executes a prepared SQL statement “EXECUTE” on page 1304

EXECUTE IMMEDIATE Prepares and executes an SQL statement “EXECUTE IMMEDIATE” on
page 1309

GET DESCRIPTOR Gets information from an SQL descriptor “GET DESCRIPTOR” on page
1319

Chapter 7. Statements 809

Table 82. SQL Dynamic Statements (continued)

SQL Statement Description Page

PREPARE Prepares an SQL statement for execution “PREPARE” on page 1435

SET DESCRIPTOR Sets items in an SQL descriptor “SET DESCRIPTOR” on page
1505

Table 83. SQL Session Statements

SQL Statement Description Page

DECLARE GLOBAL
TEMPORARY TABLE

Defines a declared temporary table “DECLARE GLOBAL
TEMPORARY TABLE” on page
1223

SET CURRENT DEBUG
MODE

Assigns a value to the CURRENT DEBUG
MODE special register

“SET CURRENT DEBUG
MODE” on page 1495

SET CURRENT DECFLOAT
ROUNDING MODE

Assigns a value to the CURRENT DECFLOAT
ROUNDING MODE special register

“SET CURRENT DECFLOAT
ROUNDING MODE” on page
1497

SET CURRENT DEGREE Assigns a value to the CURRENT DEGREE
special register

“SET CURRENT DEGREE” on
page 1499

SET CURRENT IMPLICIT
XMLPARSE OPTION

Assigns a value to the CURRENT IMPLICIT
XMLPARSE OPTION special register

“SET CURRENT IMPLICIT
XMLPARSE OPTION” on page
1502

SET CURRENT TEMPORAL
SYSTEM_TIME

Assigns a value to the CURRENT TEMPORAL
SYSTEM_TIME special register

“SET CURRENT TEMPORAL
SYSTEM_TIME” on page
1504

SET ENCRYPTION
PASSWORD

Assigns a value to the default encryption
password and default encryption password
hint

“SET ENCRYPTION
PASSWORD” on page 1510

SET PATH Assigns a value to the CURRENT PATH
special register

“SET PATH” on page 1531

SET SCHEMA Assigns a value to the CURRENT SCHEMA
special register

“SET SCHEMA” on page
1537

SET SESSION
AUTHORIZATION

Changes the user of the job and the USER
special register

“SET SESSION
AUTHORIZATION” on page
1540

Table 84. SQL Embedded Host Language Statements

SQL Statement Description Page

BEGIN DECLARE SECTION Marks the beginning of an SQL declare
section

“BEGIN DECLARE SECTION”
on page 928

CALL Calls a procedure “CALL” on page 930

DECLARE PROCEDURE Defines an external procedure “DECLARE PROCEDURE” on
page 1244

DECLARE STATEMENT Declares the names used to identify
prepared SQL statements

“DECLARE STATEMENT” on
page 1254

810 IBM i: Db2 for i SQL Reference

Table 84. SQL Embedded Host Language Statements (continued)

SQL Statement Description Page

DECLARE VARIABLE Declares a subtype or normalized other than
the default for a host variable

“DECLARE VARIABLE” on
page 1256

END DECLARE SECTION Marks the end of an SQL declare section “END DECLARE SECTION”
on page 1303

GET DIAGNOSTICS Obtains information about the previously
executed SQL statement

“GET DIAGNOSTICS” on
page 1332

INCLUDE Inserts declarations into a source program “INCLUDE” on page 1393

SET OPTION Establishes the options for processing SQL
statements

“SET OPTION” on page 1512

SET RESULT SETS Identifies the result sets in a procedure “SET RESULT SETS” on page
1534

SIGNAL Signals an error or warning condition “SIGNAL” on page 1551

TAG Identifies the branch location for a
WHENEVER statement in ILE RPG.

“TAG” on page 1554

WHENEVER Defines actions to be taken on the basis of
SQL return codes

“WHENEVER” on page 1576

Table 85. SQL Control Statements

SQL Statement Description Page

assignment-statement Assigns a value to an output parameter or to
a local variable

“assignment-statement” on
page 1590

CALL Calls a procedure “CALL statement” on page
1593

CASE Selects an execution path based on multiple
conditions

“CASE statement” on page
1595

compound-statement Groups other statements together in an SQL
routine

“compound-statement” on
page 1597

FOR Executes a statement for each row of a table “FOR statement” on page
1605

GET DIAGNOSTICS Obtains information about the previously
executed SQL statement

“GET DIAGNOSTICS
statement” on page 1607

GOTO Branches to a user-defined label within an
SQL routine or trigger

“GOTO statement” on page
1615

IF Provides conditional execution based on the
truth value of a condition

“IF statement” on page
1617

ITERATE Causes the flow of control to return to the
beginning of a labeled loop

“ITERATE statement” on
page 1622

LEAVE Continues execution by leaving a block or
loop

“LEAVE statement” on page
1624

LOOP Repeats the execution of a statement “LOOP statement” on page
1625

Chapter 7. Statements 811

Table 85. SQL Control Statements (continued)

SQL Statement Description Page

REPEAT Repeats the execution of a statement “REPEAT statement” on
page 1628

RESIGNAL Resignals an error or warning condition “RESIGNAL statement” on
page 1630

RETURN Returns from a routine “RETURN statement” on
page 1634

SIGNAL Signals an error or warning condition “SIGNAL statement” on
page 1637

WHILE Repeats the execution of a statement while a
specified condition is true

“WHILE statement” on page
1641

How SQL statements are invoked
The SQL statements described in this chapter are classified as executable or nonexecutable. The
Invocation section in the description of each statement indicates whether the statement is executable.

An executable statement can be invoked in any of the following ways:

• Embedded in an application program
• Dynamically prepared and executed
• Issued interactively

Note: Statements embedded in REXX or processed using RUNSQLSTM are prepared and executed
dynamically.

Depending on the statement, some or all of these methods can be used. The Invocation section in the
description of each statement tells you which methods can be used.

A nonexecutable statement can only be embedded in an application program.

Embedding a statement in an application program
SQL statements can be included in a source program that will be submitted to the precompiler by
using the CRTSQLCBL, CRTSQLCBLI, CRTSQLCI, CRTSQLCPPI, CRTSQLPLI, CRTSQLRPG, or CRTSQLRPGI
commands. Such statements are said to be embedded in the program.

An embedded statement can be placed anywhere in the program where a host language statement is
allowed. Each embedded statement must be preceded by a keyword (or keywords) to indicate that the
statement is an SQL statement:

• In C, COBOL, PL/I, and RPG, each embedded statement must be preceded by the keywords EXEC and
SQL.

• In Java, each embedded statement must be preceded by the keywords #sql.
• In REXX, each embedded statement must be preceded by the keyword EXECSQL.

Executable statements
An executable statement embedded in an application program is executed every time a statement of
the host language would be executed if specified in the same place. This means that a statement within
a loop is executed every time the loop is executed, and a statement within a conditional construct is
executed only when the condition is satisfied.

An embedded statement can contain references to variables. A variable referenced in this way can be
used in two ways:

812 IBM i: Db2 for i SQL Reference

• As input (the current value of the variable is used in the execution of the statement)
• As output (the variable is assigned a new value as a result of executing the statement)

In particular, all references to variables in expressions and predicates are effectively replaced by current
values of the variables; that is, the variables are used as input. The treatment of other references is
described individually for each statement.

Follow all executable statements with a test of the SQL return state or the SQL return code. Alternatively,
the WHENEVER statement (which is itself nonexecutable) can be used to change the flow of control
immediately after the execution of an embedded statement.

Objects referenced in SQL statements need not exist when the statements are prepared.

Nonexecutable statements
An embedded nonexecutable statement is processed only by the precompiler. The precompiler reports
any errors encountered in the statement. The statement is never executed, and acts as a no-operation
if placed among executable statements of the application program. Therefore, do not follow such
statements by a test of an SQL return code.

Dynamic preparation and execution
An application program can dynamically build an SQL statement in the form of a character string placed in
a variable. In general, the statement is built from some data available to the program (for example, input
from a workstation).

The statement can be prepared for execution using the (embedded) statement PREPARE and executed
by the (embedded) statement EXECUTE. Alternatively, the (embedded) statement EXECUTE IMMEDIATE
can be used to prepare and execute a statement in one step. In Java, the statement can be prepared for
execution by means of the Statement, PreparedStatement, and CallableStatement classes, and executed
by means of their respective execute() methods.

A statement that is dynamically prepared must not contain references to host variables. Instead, the
statement can contain parameter markers. See “PREPARE” on page 1435 for rules concerning the
parameter markers. When the prepared statement is executed, the parameter markers are effectively
replaced by the current values of the variables specified in the EXECUTE statement. See “EXECUTE” on
page 1304 for rules concerning this replacement. After a statement is prepared, it can be executed
several times with different values of variables. Parameter markers are not allowed in EXECUTE
IMMEDIATE.

In C, COBOL, PL/I, REXX, and RPG, the successful or unsuccessful execution of the statement is indicated
by the values returned in the stand-alone SQLCODE or SQLSTATE after the EXECUTE (or EXECUTE
IMMEDIATE) statement. The SQL return code should be checked as described above for embedded
statements. See the topic “SQL diagnostic information” on page 814 for more information. In Java, the
successful or unsuccessful execution of the statement is handled by Java Exceptions.

Static invocation of a select-statement
A select-statement can be included as a part of the (nonexecutable) statement DECLARE CURSOR.

Such a statement is executed every time the cursor is opened by means of the (embedded) statement
OPEN. After the cursor is open, the result table can be retrieved one row at a time by successive
executions of the FETCH statement or multiple rows at a time by using the multiple-row FETCH
statement.

Used in this way, the select-statement can contain references to variables. These references are
effectively replaced by the values that the variables have at the moment of executing OPEN.

Chapter 7. Statements 813

Dynamic invocation of a select-statement
An application program can dynamically build a select-statement in the form of a character string placed in
a variable.

In general, the statement is built from some data available to the program (for example, a query obtained
from a workstation). The statement is then executed every time the cursor is opened by means of the
(embedded) statement OPEN. After the cursor is open, the result table can be retrieved one row at a time
by successive executions of the FETCH statement or multiple rows at a time by using the multiple-row
FETCH statement.

Used in this way, the select-statement must not contain references to variables. It can instead contain
parameter markers. See “PREPARE” on page 1435 for rules concerning the parameter markers. The
parameter markers are effectively replaced by the values of the variables specified in the OPEN
statement. See “OPEN” on page 1429 for rules concerning this replacement.

Interactive invocation
A capability for entering SQL statements from a workstation is part of the architecture of the database
manager. A statement entered in this way is said to be issued interactively.

A statement issued interactively must be an executable statement that does not contain parameter
markers or references to variables, because these make sense only in the context of an application
program.

The Db2 for i database provides the Start Structured Query Language (STRSQL) command, the Start Query
Manager (STRQM) command, and the Run SQL Script support of System i Navigator for this facility. Other
products are also available.

SQL diagnostic information
The database manager uses a diagnostics area to store status information and diagnostic information
about the execution of an executable SQL statement. When an SQL statement other than GET
DIAGNOSTICS or compound-statement is processed, the current diagnostics area is cleared, before
processing the SQL statement. As each SQL statement is processed, information about the execution
of that SQL statement is recorded in the current diagnostics area as one or more completion conditions or
exception conditions.

A completion condition indicates the SQL statement completed successfully, completed with a warning
condition, or completed with a not found condition. An exception condition indicates that the statement
was not successful. The GET DIAGNOSTICS statement can be used in most languages to return conditions
and other information about the previously executed SQL statement from the diagnostics area. For more
information, see “GET DIAGNOSTICS” on page 1332. Additionally, the condition information is provided
through language specific mechanisms:

• For SQL procedures, SQL functions, and SQL triggers, see “SQL-procedure-statement” on page 1586.
• For host languages, see “Detecting and processing error and warning conditions in host language

applications” on page 814.

Detecting and processing error and warning conditions in host
language applications

Each host language provides a mechanism for handling diagnostic information:

• In C, COBOL, and PL/I, an application program containing executable SQL statements must provide at
least one of the following:

– A structure named SQLCA.
– A stand-alone CHAR(5) (CHAR(6) in C) variable named SQLSTATE.
– A stand-alone integer variable named SQLCODE.

814 IBM i: Db2 for i SQL Reference

A stand-alone SQLSTATE or SQLCODE must not be declared in a host structure. Both a stand-alone
SQLSTATE and SQLCODE may be provided.

An SQLCA can be obtained by using the INCLUDE SQLCA statement. If an SQLCA is provided, neither
a stand-alone SQLSTATE or SQLCODE can be provided. The SQLCA includes a character-string variable
named SQLSTATE and an integer variable named SQLCODE.

A stand-alone SQLSTATE should be used to conform with the SQL 2003 Core standard.
• In Java, for error conditions, the getSQLState method can be used to get the SQLSTATE and the

getErrorCode method can be used to get the SQLCODE.
• In REXX and RPG, an SQLCA is provided automatically.

SQLSTATE
The database manager sets SQLSTATE after each SQL statement (other than GET DIAGNOSTICS or
a compound statement) is executed. Thus, application programs can check the execution of SQL
statements by testing SQLSTATE instead of SQLCODE.

SQLSTATE provides application programs with common codes for common error conditions. Furthermore,
SQLSTATE is designed so that application programs can test for specific errors or classes of errors. The
scheme is the same for all database managers and is based on the ISO/ANSI SQL 2003 Core standard. A
complete list of SQLSTATE classes and SQLSTATEs associated with each SQLCODE is supplied in the SQL
Messages and Codes topic collection.

SQLCODE
The database manager sets SQLCODE after each SQL statement (other than GET DIAGNOSTICS or a
compound statement) is executed. SQLCODE is set as follows:

• If SQLCODE = 0 and SQLWARN0 is blank, execution was successful.
• If SQLCODE = 100, no data was found. For example, a FETCH statement returned no data, because the

cursor was positioned after the last row of the result table.
• If SQLCODE > 0 and not = 100, execution was successful with a warning.
• If SQLCODE = 0 and SQLWARN0 = 'W', execution was successful with a warning.
• If SQLCODE < 0, execution was not successful.

A complete listing of Db2 for i SQLCODEs and their corresponding SQLSTATEs is provided in the SQL
Messages and Codes topic collection.

SQL comments
In most host languages, static SQL statements can include host language or SQL comments. In Java and
REXX, static SQL statements cannot include host language or SQL comments.

Dynamic SQL statements can include SQL comments.

There are two types of SQL comments:

simple comments
Simple comments are introduced by two consecutive hyphens.

bracketed comments
Bracketed comments are introduced by /* and end with */.

These rules apply to the use of simple comments:

• The two hyphens must be on the same line and must not be separated by a space.
• Simple comments can be started wherever a space is valid (except within a delimiter token or between

'EXEC' and 'SQL').
• Simple comments cannot be continued to the next line.

Chapter 7. Statements 815

• In COBOL, the hyphens must be preceded by a space.

These rules apply to the use of bracketed comments:

• The /* must be on the same line and not separated by a space.
• The */ must be on the same line and not separated by a space.
• Bracketed comments can be started wherever a space is valid (except within a delimiter token or

between 'EXEC' and 'SQL').
• Bracketed comments can be continued to the next line.
• Bracketed comments can be nested within other bracketed comments.

A comment embedded in an SQL statement that precedes a name (such as a table name) may cause
object names in the text saved for a view, trigger, variable, or MQT to not be maintained correctly.
Similarly, names in rows of a dependency view (such as SYSTRIGDEP) may not be correctly qualified.

Example 1

This example shows how to include simple comments in a statement:

 CREATE VIEW PRJ_MAXPER -- PROJECTS WITH MOST SUPPORT PERSONNEL
 AS SELECT PROJNO, PROJNAME -- NUMBER AND NAME OF PROJECT
 FROM PROJECT
 WHERE DEPTNO = 'E21' -- SYSTEMS SUPPORT DEPT CODE
 AND PRSTAFF > 1

Example 2

This example shows how to include bracketed comments in a statement:

 CREATE VIEW PRJ_MAXPER /* PROJECTS WITH MOST SUPPORT
 PERSONNEL */
 AS SELECT PROJNO, PROJNAME /* NUMBER AND NAME OF PROJECT */
 FROM PROJECT
 WHERE DEPTNO = 'E21' /* SYSTEMS SUPPORT DEPT CODE */
 AND PRSTAFF > 1

816 IBM i: Db2 for i SQL Reference

ALLOCATE CURSOR
The ALLOCATE CURSOR statement defines a cursor and associates it with a result set locator variable.

Invocation
This statement can be embedded in an application program. It is an executable statement that can be
dynamically prepared. It cannot be issued interactively. It must not be specified in REXX.

Authorization
None required.

Syntax
ALLOCATE cursor-name CURSOR FOR RESULT SET rs-locator-variable

Description
cursor-name

Names the cursor. The name must not identify a cursor that has already been declared in the source
program.

CURSOR FOR RESULT SET rs-locator-variable
Specifies a result set locator variable that has been declared in the application program according to
the rules for declaring result set locator variables.
The result set locator variable must contain a valid result set locator value as returned by the
ASSOCIATE LOCATORS or DESCRIBE PROCEDURE SQL statement. The value of the result set locator
variable is used at the time the cursor is allocated. Subsequent changes to the value of the result set
locator have no effect on the allocated cursor. The result set locator value must not be the same as a
value used for another cursor allocated in the source program.

Rules
• The following rules apply when you use an allocated cursor:

– You cannot open an allocated cursor with the OPEN statement.
– You can close an allocated cursor with the CLOSE statement. Closing an allocated cursor closes the

associated cursor defined in the stored procedure.
– You can allocate only one cursor to each result set.

• Allocated cursors follow the same rules as declared cursors in a program with the CLOSQLCSR option.
The CLOSQLCSR option can be specified on the CRTSQLxxx command or using the SET OPTION
statement.

• A commit operation closes allocated cursors that were declared without the WITH HOLD clause by the
procedure including any that are running with a commit level of *NONE.

• Closing an allocated cursor closes the associated cursor in the procedure.

Example
This SQL procedure example defines and associates cursor C1 with the result set locator variable LOC1
and the related result set returned by the SQL procedure:

 ALLOCATE C1 CURSOR FOR RESULT SET LOC1;

Chapter 7. Statements 817

ALLOCATE DESCRIPTOR
The ALLOCATE DESCRIPTOR statement allocates an SQL descriptor.

Invocation
This statement can only be embedded in an application program, SQL function, SQL procedure, or trigger.
It cannot be issued interactively. It is an executable statement that cannot be dynamically prepared. It
must not be specified in REXX.

Authorization
None required.

Syntax

ALLOCATE

SQL

DESCRIPTOR
LOCAL

GLOBAL

SQL-descriptor-name

WITH MAX 20

WITH MAX integer

integer-variable

Description
LOCAL

Defines the scope of the name of the descriptor to be local to the program invocation. The descriptor
will not be known outside this scope. For example, a program called from another separately compiled
program cannot use a descriptor that was allocated by the calling program. The scope of the
descriptor is also limited to the thread in which the program that contains the descriptor is running.
For example, if the same program is running in two separate threads in the same job, the second
thread cannot use a descriptor that was allocated by the first thread.

GLOBAL
Defines the scope of the name of the descriptor to be global to the SQL session. The descriptor will be
known to any program that executes using the same database connection.

SQL-descriptor-name
Names the descriptor to allocate. The name must not be the same as a descriptor that already exists
with the specified scope.

WITH MAX
The descriptor is allocated to support the specified maximum number of items. If this clause is not
specified, the descriptor is allocated with a maximum of 20 items.
integer

Specifies the number of items to allocate. The value of integer must be greater than zero and not
greater than 8000.

integer-variable
Specifies an integer variable (or decimal or numeric variable with zero scale) that contains the
number of items to allocate. It cannot be a global variable. The value of integer-variable must be
greater than zero and not greater than 8000.

818 IBM i: Db2 for i SQL Reference

Notes
Descriptor persistence: Local descriptors are implicitly deallocated based on the CLOSQLCSR option:

• For ILE programs, if CLOSQLCSR(*ENDACTGRP) is specified (the default), local descriptors are implicitly
deallocated when the activation group ends. If CLOSQLCSR(*ENDMOD) is specified, local descriptors
are implicitly deallocated on exit from the module.

• For OPM programs, if CLOSQLCSR(*ENDPGM) is specified (the default), local descriptors are implicitly
deallocated when the program ends. If CLOSQLCSR(*ENDSQL) is specified, local descriptors are
implicitly deallocated when the first SQL program on the call stack ends. If CLOSQLCSR(*ENDJOB)
is specified, local descriptors are implicitly deallocated when the job ends.

Global descriptors are implicitly deallocated when the activation group ends.

Both local and global descriptors can be explicitly deallocated using the DEALLOCATE DESCRIPTOR
statement.

Examples

Allocate a descriptor called 'NEWDA' large enough to hold 20 items.

 EXEC SQL ALLOCATE DESCRIPTOR 'NEWDA'
 WITH MAX 20

Chapter 7. Statements 819

ALTER FUNCTION (external scalar)
The ALTER FUNCTION (external scalar) statement alters an external scalar function at the current server.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For the function identified in the statement:

– The ALTER privilege for the function, and
– The system authority *EXECUTE on the library containing the function.

• Database administrator authority

If a different external program is specified, the privileges held by the authorization ID of the statement
must also include the same privileges required to create a new external scalar function. For more
information, see “CREATE FUNCTION (external scalar)” on page 980.

If the SECURED option is specified or if the function is currently secure:

• The authorization ID of the statement must have security administrator authority. See “Administrative
authority” on page 15.

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Function or Procedure, Corresponding System Authorities When
Checking Privileges to a Table or View, and Corresponding System Authorities When Checking Privileges
to a Distinct Type.

Syntax
ALTER FUNCTION function-name

(
,

parameter-type

)

SPECIFIC FUNCTION specific-name

ALTER

RESTRICT

option-list

parameter-type
data-type

AS LOCATOR

data-type
built-in-type

distinct-type-name

option-list

820 IBM i: Db2 for i SQL Reference

LANGUAGE C

C++

CL

COBOL

COBOLLE

JAVA

PLI

REXX

RPG

RPGLE

PARAMETER STYLE SQL

PARAMETER STYLE GENERAL

PARAMETER STYLE GENERAL WITH NULLS

PARAMETER STYLE JAVA

PARAMETER STYLE DB2GENERAL

NOT DETERMINISTIC

DETERMINISTIC

1

MODIFIES SQL DATA

READS SQL DATA

CONTAINS SQL

NO SQL

CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

INHERIT SPECIAL REGISTERS STATIC DISPATCH NO DBINFO

DBINFO

EXTERNAL ACTION

NO EXTERNAL ACTION

FENCED

NOT FENCED

EXTERNAL NAME external-program-name NO FINAL CALL

FINAL CALL

ALLOW PARALLEL

DISALLOW PARALLEL

NO SCRATCHPAD

SCRATCHPAD
100

integer

NOT SECURED

SECURED

Notes:
1 The clauses in the option-list can be specified in any order.

built-in-type

Chapter 7. Statements 821

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

)

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

DATALINK

(200)

(integer) ccsid-clause

ROWID

XML

ccsid-clause
CCSID integer

822 IBM i: Db2 for i SQL Reference

Description
FUNCTION or SPECIFIC FUNCTION

Identifies the function to alter. function-name must identify an external scalar function that exists at
the current server. It cannot identify a built-in function, a sourced function, or an SQL function. An
external table function cannot be altered to be an external scalar function.

The specified function is altered. The owner of the function is preserved. If the external program or
service program exists at the time the function is altered, all privileges on the function are preserved.

FUNCTION function-name
Identifies the function by its name. The function-name must identify exactly one function. The
function may have any number of parameters defined for it. If there is more than one function of
the specified name in the specified or implicit schema, an error is returned.

FUNCTION function-name (parameter-type,...)
Identifies the function by its function signature, which uniquely identifies the function. The
function-name (parameter-type,...) must identify a function with the specified function signature.
The specified parameters must match the data types in the corresponding position that were
specified when the function was created. The number of data types, and the logical concatenation
of the data types is used to identify the specific function instance which is being altered.
Synonyms for data types are considered a match. Parameters that have defaults must be included
in this signature.

If function-name() is specified, the function identified must have zero parameters.

function-name
Identifies the name of the function.

(parameter-type,...)
Identifies the parameters of the function.

If an unqualified distinct type name is specified, the database manager searches the SQL path
to resolve the schema name for the distinct type.

For data types that have a length, precision, or scale attribute, use one of the following:

• Empty parenthesis indicates that the database manager ignores the attribute when
determining whether the data types match. For example, DEC() will be considered a match
for a parameter of a function defined with a data type of DEC(7,2). However, FLOAT cannot
be specified with empty parenthesis because its precision value indicates a specific data
type (REAL or DOUBLE).

• If a specific value for a length, precision, or scale attribute is specified, the value must
exactly match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION
statement. If the data type is FLOAT, the precision does not have to exactly match the value
that was specified because matching is based on the data type (REAL or DOUBLE).

• If length, precision, or scale is not explicitly specified, and empty parentheses are not
specified, the default attributes of the data type are implied. The implicit length must
exactly match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION
statement.

Specifying the FOR DATA clause or CCSID clause is optional. Omission of either clause
indicates that the database manager ignores the attribute when determining whether the
data types match. If either clause is specified, it must match the value that was implicitly or
explicitly specified in the CREATE FUNCTION statement.

AS LOCATOR
Specifies that the function is defined to receive a locator for this parameter. If AS LOCATOR is
specified, the data type must be LOB or XML or a distinct type based on a LOB or XML.

SPECIFIC FUNCTION specific-name
Identifies the function by its specific name. The specific-name must identify a specific function
that exists at the current server.

Chapter 7. Statements 823

ALTER option-list
Indicates that one or more of the options of the function are to be altered. If an option is not specified,
the value from the existing function definition is used. See “CREATE FUNCTION (external scalar)” on
page 980 for a description of each option.

RESTRICT
Indicates that the function will not be altered if it is referenced by any view, function, procedure, or
materialized query table.

Notes
General considerations for defining or replacing functions: See CREATE FUNCTION (external scalar)
for general information about defining a function. ALTER FUNCTION (external scalar) allows individual
attributes to be altered while preserving the privileges on the function.

Altering a function from NOT SECURED to SECURED: The function is considered secure after the ALTER
FUNCTION statement is executed. Db2 treats the SECURED attribute as an assertion that declares that
the user has established an audit procedure for all changes to the user-defined function. Db2 assumes
that all subsequent ALTER FUNCTION statements are being reviewed through this audit process.

Invoking other user-defined functions in a secure function: When a secure user-defined function is
referenced in an SQL data change statement that references a table that is using row access control or
column access control, and if the secure user-defined function invokes other user-defined functions, the
nested user-defined functions are not validated as secure. If those nested functions can access sensitive
data, a user authorized to the Database Security Administrator function of IBM i needs to ensure that
those functions are allowed to access that data and should ensure that a change control audit procedure
has been established for all changes to those functions.

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• The keywords VARIANT and NOT VARIANT can be used as synonyms for NOT DETERMINISTIC and
DETERMINISTIC.

• The keywords NULL CALL and NOT NULL CALL can be used as synonyms for CALLED ON NULL INPUT
and RETURNS NULL ON NULL INPUT.

• The keywords SIMPLE CALL can be used as a synonym for GENERAL.
• The keyword DB2GENRL may be used as a synonym for DB2GENERAL.
• The value DB2SQL may be used as a synonym for SQL.
• The keywords PARAMETER STYLE in the PARAMETER STYLE clause are optional.
• The keywords IS DETERMINISTIC may be used as a synonym for DETERMINISTIC.

Example

Modify the definition for function MYFUNC to change the name of the external program that will be
invoked when the function is invoked. The name of the external program is PROG10B.

 ALTER FUNCTION MYFUNC
 EXTERNAL NAME PROG10B

824 IBM i: Db2 for i SQL Reference

ALTER FUNCTION (external table)
The ALTER FUNCTION (external table) statement alters an external table function at the current server.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For the function identified in the statement:

– The ALTER privilege for the function, and
– The system authority *EXECUTE on the library containing the function.

• Database administrator authority

If a different external program is specified, the privileges held by the authorization ID of the statement
must also include the same privileges required to create a new external table function. For more
information, see “CREATE FUNCTION (external table)” on page 1000.

If the SECURED option is specified or if the function is currently secure:

• The authorization ID of the statement must have security administrator authority. See “Administrative
authority” on page 15.

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Function or Procedure, Corresponding System Authorities When
Checking Privileges to a Table or View, and Corresponding System Authorities When Checking Privileges
to a Distinct Type.

Syntax
ALTER FUNCTION function-name

(
,

parameter-type

)

SPECIFIC FUNCTION specific-name

ALTER

RESTRICT

option-list

parameter-type
data-type

AS LOCATOR

data-type
built-in-type

distinct-type-name

option-list

Chapter 7. Statements 825

LANGUAGE C

C++

CL

COBOL

COBOLLE

JAVA

PLI

REXX

RPG

RPGLE

PARAMETER STYLE SQL

PARAMETER STYLE DB2GENERAL

NOT DETERMINISTIC

DETERMINISTIC

1

MODIFIES SQL DATA

READS SQL DATA

CONTAINS SQL

NO SQL

CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

INHERIT SPECIAL REGISTERS

STATIC DISPATCH NO DBINFO

DBINFO

EXTERNAL ACTION

NO EXTERNAL ACTION

FENCED

NOT FENCED

EXTERNAL NAME external-program-name

NO FINAL CALL

FINAL CALL

ALLOW PARALLEL

DISALLOW PARALLEL

NO SCRATCHPAD

SCRATCHPAD
100

integer

CARDINALITY bigint

NOT SECURED

SECURED

Notes:
1 The clauses in the option-list can be specified in any order.

built-in-type

826 IBM i: Db2 for i SQL Reference

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

)

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

DATALINK

(200)

(integer) ccsid-clause

ROWID

XML

ccsid-clause
CCSID integer

Chapter 7. Statements 827

Description
FUNCTION or SPECIFIC FUNCTION

Identifies the function to alter. function-name must identify an external table function that exists at
the current server. It cannot identify a built-in function, a sourced function, or an SQL function. An
external scalar function cannot be altered to be an external table function.

The specified function is altered. The owner of the function is preserved. If the external program or
service program exists at the time the function is altered, all privileges on the function are preserved.

FUNCTION function-name
Identifies the function by its name. The function-name must identify exactly one function. The
function may have any number of parameters defined for it. If there is more than one function of
the specified name in the specified or implicit schema, an error is returned.

FUNCTION function-name (parameter-type,...)
Identifies the function by its function signature, which uniquely identifies the function. The
function-name (parameter-type,...) must identify a function with the specified function signature.
The specified parameters must match the data types in the corresponding position that were
specified when the function was created. The number of data types, and the logical concatenation
of the data types is used to identify the specific function instance which is being altered.
Synonyms for data types are considered a match. Parameters that have defaults must be included
in this signature.

If function-name() is specified, the function identified must have zero parameters.

function-name
Identifies the name of the function.

(parameter-type,...)
Identifies the parameters of the function.

If an unqualified distinct type name is specified, the database manager searches the SQL path
to resolve the schema name for the distinct type.

For data types that have a length, precision, or scale attribute, use one of the following:

• Empty parenthesis indicates that the database manager ignores the attribute when
determining whether the data types match. For example, DEC() will be considered a match
for a parameter of a function defined with a data type of DEC(7,2). However, FLOAT cannot
be specified with empty parenthesis because its precision value indicates a specific data
type (REAL or DOUBLE).

• If a specific value for a length, precision, or scale attribute is specified, the value must
exactly match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION
statement. If the data type is FLOAT, the precision does not have to exactly match the value
that was specified because matching is based on the data type (REAL or DOUBLE).

• If length, precision, or scale is not explicitly specified, and empty parentheses are not
specified, the default attributes of the data type are implied. The implicit length must
exactly match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION
statement.

Specifying the FOR DATA clause or CCSID clause is optional. Omission of either clause
indicates that the database manager ignores the attribute when determining whether the
data types match. If either clause is specified, it must match the value that was implicitly or
explicitly specified in the CREATE FUNCTION statement.

AS LOCATOR
Specifies that the function is defined to receive a locator for this parameter. If AS LOCATOR is
specified, the data type must be a LOB or XML or a distinct type based on a LOB or XML.

SPECIFIC FUNCTION specific-name
Identifies the function by its specific name. The specific-name must identify a specific function
that exists at the current server.

828 IBM i: Db2 for i SQL Reference

ALTER option-list
Indicates that one or more of the options of the function are to be altered. If an option is not specified,
the value from the existing function definition is used. See “CREATE FUNCTION (external table)” on
page 1000 for a description of each option.

RESTRICT
Indicates that the function will not be altered if it is referenced by any view, function, procedure, or
materialized query table.

Notes
General considerations for defining or replacing functions: See CREATE FUNCTION (external table)
for general information about defining a function. ALTER FUNCTION (external table) allows individual
attributes to be altered while preserving the privileges on the function.

Altering a function from NOT SECURED to SECURED: The function is considered secure after the ALTER
FUNCTION statement is executed. Db2 treats the SECURED attribute as an assertion that declares that
the user has established an audit procedure for all changes to the user-defined function. Db2 assumes
that all subsequent ALTER FUNCTION statements are being reviewed through this audit process.

Invoking other user-defined functions in a secure function: When a secure user-defined function is
referenced in an SQL data change statement that references a table that is using row access control or
column access control, and if the secure user-defined function invokes other user-defined functions, the
nested user-defined functions are not validated as secure. If those nested functions can access sensitive
data, a user authorized to the Database Security Administrator function of IBM i needs to ensure that
those functions are allowed to access that data and should ensure that a change control audit procedure
has been established for all changes to those functions.

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• The keywords VARIANT and NOT VARIANT can be used as synonyms for NOT DETERMINISTIC and
DETERMINISTIC.

• The keywords NULL CALL and NOT NULL CALL can be used as synonyms for CALLED ON NULL INPUT
and RETURNS NULL ON NULL INPUT.

• The keyword DB2GENRL may be used as a synonym for DB2GENERAL.
• The value DB2SQL may be used as a synonym for SQL.
• The keywords PARAMETER STYLE in the PARAMETER STYLE clause are optional.
• The keywords IS DETERMINISTIC may be used as a synonym for DETERMINISTIC.

Example

Modify the definition for an external table function to set the estimated cardinality to 10,000.

 ALTER FUNCTION GET_TABLE
 ALTER CARDINALITY 10000

Chapter 7. Statements 829

ALTER FUNCTION (SQL scalar)
The ALTER FUNCTION (SQL scalar) statement alters an SQL scalar function at the current server.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For the function identified in the statement:

– The ALTER privilege for the function, and
– The system authority *EXECUTE on the library containing the function.

• Database administrator authority

If a different external program is specified, the privileges held by the authorization ID of the statement
must also include the same privileges required to create a new external scalar function. For more
information, see “CREATE FUNCTION (SQL scalar)” on page 1028.

If the SECURED option is specified or if the function is currently secure:

• The authorization ID of the statement must have security administrator authority. See “Administrative
authority” on page 15.

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Function or Procedure, Corresponding System Authorities When
Checking Privileges to a Table or View, and Corresponding System Authorities When Checking Privileges
to a Distinct Type.

Syntax
ALTER FUNCTION function-name

(
,

parameter-type

)

SPECIFIC FUNCTION specific-name

ALTER

RESTRICT

option-list

REPLACE

RESTRICT

routine-specification

parameter-type
data-type1

AS LOCATOR

data-type1, data-type2,data-type3
built-in-type

distinct-type-name

routine-specification

830 IBM i: Db2 for i SQL Reference

(
,

parameter-declaration

) RETURNS data-type2

option-list

SET OPTION-statement

SQL-routine-body

parameter-declaration
parameter-name data-type3

default-clause

SQL-routine-body
SQL-control-statement

option-list

LANGUAGE SQL

1

NOT DETERMINISTIC

DETERMINISTIC

READS SQL DATA

MODIFIES SQL DATA

CONTAINS SQL

CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

INHERIT SPECIAL REGISTERS

STATIC DISPATCH EXTERNAL ACTION

NO EXTERNAL ACTION

ALLOW DEBUG MODE

DISABLE DEBUG MODE

DISALLOW DEBUG MODE

FENCED

NOT FENCED

ALLOW PARALLEL

DISALLOW PARALLEL

CONCURRENT ACCESS RESOLUTION

DEFAULT

USE CURRENTLY COMMITTED

U

WAIT FOR OUTCOME

W

NOT SECURED

SECURED

Notes:
1 The clauses in the option-list can be specified in any order.

built-in-type

Chapter 7. Statements 831

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

)

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

DATALINK

(200)

(integer) ccsid-clause

ROWID

XML

ccsid-clause
CCSID integer

default-clause

832 IBM i: Db2 for i SQL Reference

DEFAULT NULL

constant

special-register

global-variable

(expression)

Description
FUNCTION or SPECIFIC FUNCTION

Identifies the function to alter. function-name must identify an SQL scalar function that exists at the
current server.

The specified function is altered. The owner of the function and all privileges on the function are
preserved.

FUNCTION function-name
Identifies the function by its name. The function-name must identify exactly one function. The
function may have any number of parameters defined for it. If there is more than one function of
the specified name in the specified or implicit schema, an error is returned.

FUNCTION function-name (parameter-type,...)
Identifies the function by its function signature, which uniquely identifies the function. The
function-name (parameter-type,...) must identify a function with the specified function signature.
The specified parameters must match the data types in the corresponding position that were
specified when the function was created. The number of data types, and the logical concatenation
of the data types is used to identify the specific function instance which is being altered.
Synonyms for data types are considered a match. Parameters that have defaults must be included
in this signature.

If function-name() is specified, the function identified must have zero parameters.

function-name
Identifies the name of the function.

(parameter-type,...)
Identifies the parameters of the function.

If an unqualified distinct type name is specified, the database manager searches the SQL path
to resolve the schema name for the distinct type.

For data types that have a length, precision, or scale attribute, use one of the following:

• Empty parenthesis indicates that the database manager ignores the attribute when
determining whether the data types match. For example, DEC() will be considered a match
for a parameter of a function defined with a data type of DEC(7,2). However, FLOAT cannot
be specified with empty parenthesis because its precision value indicates a specific data
type (REAL or DOUBLE).

• If a specific value for a length, precision, or scale attribute is specified, the value must
exactly match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION
statement. If the data type is FLOAT, the precision does not have to exactly match the value
that was specified because matching is based on the data type (REAL or DOUBLE).

• If length, precision, or scale is not explicitly specified, and empty parentheses are not
specified, the default attributes of the data type are implied. The implicit length must
exactly match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION
statement.

Specifying the FOR DATA clause or CCSID clause is optional. Omission of either clause
indicates that the database manager ignores the attribute when determining whether the
data types match. If either clause is specified, it must match the value that was implicitly or
explicitly specified in the CREATE FUNCTION statement.

Chapter 7. Statements 833

AS LOCATOR
Specifies that the function is defined to receive a locator for this parameter. If AS LOCATOR is
specified, the data type must be a LOB or XML or a distinct type based on a LOB or XML.

SPECIFIC FUNCTION specific-name
Identifies the function by its specific name. The specific-name must identify a specific function
that exists at the current server.

ALTER option-list
Indicates that one or more of the options of the function are to be altered. If ALTER FUNCTION ALTER
option-list is specified and an option is not specified, the value from the existing function definition is
used. See “CREATE FUNCTION (SQL scalar)” on page 1028 for a description of each option.

REPLACE routine-specification
Indicates that the existing function definition, including options and parameters, is to be replaced by
those specified in this statement. The values of all options are replaced when a function is replaced. If
an option is not specified, the same default is used as when a new SQL scalar function is created, for
more information see “CREATE FUNCTION (SQL scalar)” on page 1028.

If the routine has a comment or label, they are removed from the routine definition.

RESTRICT
Indicates that the function will not be altered or replaced if it is referenced by any function,
materialized query table, procedure, trigger, or view.

(parameter-declaration,…)
Specifies the number of parameters of the function, the data type of each parameter, and the name of
each parameter.

The maximum number of parameters allowed in an SQL function is 2000.

parameter-name
Names the parameter. The name is used to refer to the parameter within the body of the function.
The name cannot be the same as any other parameter-name in the parameter list.

data-type3
Specifies the data type of the input parameter. If a CCSID is specified, the parameter will be
converted to that CCSID prior to passing it to the function. If a CCSID is not specified, the CCSID is
determined by the default CCSID at the current server at the time the function is invoked.

default-clause
Specifies a default value for the parameter. The default can be a constant, a special register, a
global variable, an expression, or the keyword NULL. The expression is any expression defined
in “Expressions” on page 158, that does not include an aggregate function or column name. If a
default value is not specified, the parameter has no default and cannot be omitted on invocation.
The maximum length of the expression string is 64K.

The default expression must be assignment compatible to the parameter data type.

Any comma in the default expression that is intended as a separator of numeric constants in a list
must be followed by a space.

A default cannot be specified for a parameter of type array.

RETURNS
Specifies the output of the function.
data-type2

Specifies the data type and attributes of the output.

You can specify any built-in data type (except LONG VARCHAR, or LONG VARGRAPHIC) or a
distinct type.

If a CCSID is specified and the CCSID of the return data is encoded in a different CCSID, the data is
converted to the specified CCSID.

834 IBM i: Db2 for i SQL Reference

If a CCSID is not specified the return data is converted to the CCSID of the job (or associated
graphic CCSID of the job for graphic string return values), if the CCSID of the return data is
encoded in a different CCSID. To avoid any potential loss of characters during the conversion,
consider explicitly specifying a CCSID that can represent any characters that will be returned
from the function. This is especially important if the data type is graphic string data. In this case,
consider using CCSID 1200 or 13488 (Unicode graphic string data).

option-list
List of options for the function being altered. These options are the same ones that are listed above
under ALTER option-list. If a specific option is not specified, the same default that is used when a
new function is created is used. For more information see “CREATE FUNCTION (SQL scalar)” on page
1028.

SET OPTION-statement
Specifies the options that will be used to create the function. For example, to create a debuggable
function, the following statement could be included:

SET OPTION DBGVIEW = *SOURCE

For more information, see “SET OPTION” on page 1512.

The options CNULRQD, COMPILEOPT, NAMING, and SQLCA are not allowed in the ALTER FUNCTION
statement. The following options are used when processing default value expressions: ALWCPYDTA,
CONACC, DATFMT, DATSEP, DECFLTRND, DECMPT, DECRESULT, DFTRDBCOL, LANGID, SQLCURRULE,
SQLPATH, SRTSEQ, TGTRLS, TIMFMT, and TIMSEP.

SQL-routine-body
Specifies a single SQL statement, including a compound statement. See “SQL control statements” on
page 1579 for more information about defining SQL functions.

A call to a procedure that issues a CONNECT, SET CONNECTION, RELEASE, DISCONNECT, COMMIT,
ROLLBACK, and SET TRANSACTION statement is not allowed in a function.

The SQL-routine-body must contain at least one RETURN statement and a RETURN statement must be
executed when the function is called.

ALTER PROCEDURE (SQL), ALTER FUNCTION (SQL scalar), and ALTER FUNCTION (SQL table) with a
REPLACE keyword are not allowed in an SQL-routine-body.

Notes
General considerations for defining or replacing functions: See CREATE FUNCTION (SQL scalar) for
general information about defining a function. ALTER FUNCTION (SQL scalar) allows individual attributes
to be altered while preserving the privileges on the function.

Cascaded effects: If REPLACE is specified without RESTRICT and the function signature or result data
type is altered, the results from any function, materialized query table, procedure, trigger, or view that
references the function may be unpredictable. Any referenced objects should be recreated.

Obfuscated statements: A function that was created using an obfuscated statement can be altered.
When the statement is altered the encoded version of the statement that is saved in the catalog is
modified and could exceed the maximum length for an SQL statement. If this happens an error will be
issued and the alter will fail.

Altering a function from NOT SECURED to SECURED: The function is considered secure after the ALTER
FUNCTION statement is executed. Db2 treats the SECURED attribute as an assertion that declares that
the user has established an audit procedure for all changes to the user-defined function. Db2 assumes
that all subsequent ALTER FUNCTION statements are being reviewed through this audit process.

Invoking other user-defined functions in a secure function: When a secure user-defined function is
referenced in an SQL data change statement that references a table that is using row access control or
column access control, and if the secure user-defined function invokes other user-defined functions, the
nested user-defined functions are not validated as secure. If those nested functions can access sensitive
data, a user authorized to the Database Security Administrator function of IBM i needs to ensure that

Chapter 7. Statements 835

those functions are allowed to access that data and should ensure that a change control audit procedure
has been established for all changes to those functions.

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• The keywords VARIANT and NOT VARIANT can be used as synonyms for NOT DETERMINISTIC and
DETERMINISTIC.

• The keywords NULL CALL and NOT NULL CALL can be used as synonyms for CALLED ON NULL INPUT
and RETURNS NULL ON NULL INPUT.

• The keywords IS DETERMINISTIC may be used as a synonym for DETERMINISTIC.

Example

Modify the definition for an SQL scalar function to indicate that the function is deterministic.

 ALTER FUNCTION MY_UDF1
 DETERMINISTIC

836 IBM i: Db2 for i SQL Reference

ALTER FUNCTION (SQL table)
The ALTER FUNCTION (SQL table) statement alters an SQL table function at the current server.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For the function identified in the statement:

– The ALTER privilege for the function, and
– The system authority *EXECUTE on the library containing the function.

• Database administrator authority

If a different external program is specified, the privileges held by the authorization ID of the statement
must also include the same privileges required to create a new external table function. For more
information, see “CREATE FUNCTION (SQL table)” on page 1042.

If the SECURED option is specified or if the function is currently secure:

• The authorization ID of the statement must have security administrator authority. See “Administrative
authority” on page 15.

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Function or Procedure, Corresponding System Authorities When
Checking Privileges to a Table or View, and Corresponding System Authorities When Checking Privileges
to a Distinct Type.

Syntax
ALTER FUNCTION function-name

(
,

parameter-type

)

SPECIFIC FUNCTION specific-name

ALTER

RESTRICT

option-list

REPLACE

RESTRICT

routine-specification

parameter-type
data-type1

AS LOCATOR default-clause

data-type1, data-type2, data-type3
built-in-type

distinct-type-name

default-clause

Chapter 7. Statements 837

DEFAULT NULL

constant

special-register

global-variable

(expression)

routine-specification
(

,

parameter-declaration

) RETURNS TABLE

(

,

column-name data-type2)

option-list

SET OPTION-statement

SQL-routine-body

parameter-declaration
parameter-name data-type3

SQL-routine-body
SQL-control-statement

option-list

838 IBM i: Db2 for i SQL Reference

LANGUAGE SQL 1
NOT DETERMINISTIC

DETERMINISTIC

READS SQL DATA

MODIFIES SQL DATA

CONTAINS SQL

CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

INHERIT SPECIAL REGISTERS

STATIC DISPATCH EXTERNAL ACTION

NO EXTERNAL ACTION

ALLOW DEBUG MODE

DISABLE DEBUG MODE

DISALLOW DEBUG MODE

FENCED

NOT FENCED

ALLOW PARALLEL

DISALLOW PARALLEL

CONCURRENT ACCESS RESOLUTION

DEFAULT

USE CURRENTLY COMMITTED

U

WAIT FOR OUTCOME

W

CARDINALITY bigint

NOT SECURED

SECURED

Notes:
1 The clauses in the option-list can be specified in any order.

built-in-type

Chapter 7. Statements 839

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

)

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

DATALINK

(200)

(integer) ccsid-clause

ROWID

XML

ccsid-clause
CCSID integer

840 IBM i: Db2 for i SQL Reference

Description
FUNCTION or SPECIFIC FUNCTION

Identifies the function to alter. function-name must identify an SQL table function that exists at the
current server.

The specified function is altered. The owner of the function and all privileges on the function are
preserved.

FUNCTION function-name
Identifies the function by its name. The function-name must identify exactly one function. The
function may have any number of parameters defined for it. If there is more than one function of
the specified name in the specified or implicit schema, an error is returned.

FUNCTION function-name (parameter-type,...)
Identifies the function by its function signature, which uniquely identifies the function. The
function-name (parameter-type,...) must identify a function with the specified function signature.
The specified parameters must match the data types in the corresponding position that were
specified when the function was created. The number of data types, and the logical concatenation
of the data types is used to identify the specific function instance which is being altered.
Synonyms for data types are considered a match. Parameters that have defaults must be included
in this signature.

If function-name() is specified, the function identified must have zero parameters.

function-name
Identifies the name of the function.

(parameter-type,...)
Identifies the parameters of the function.

If an unqualified distinct type name is specified, the database manager searches the SQL path
to resolve the schema name for the distinct type.

For data types that have a length, precision, or scale attribute, use one of the following:

• Empty parenthesis indicates that the database manager ignores the attribute when
determining whether the data types match. For example, DEC() will be considered a match
for a parameter of a function defined with a data type of DEC(7,2). However, FLOAT cannot
be specified with empty parenthesis because its precision value indicates a specific data
type (REAL or DOUBLE).

• If a specific value for a length, precision, or scale attribute is specified, the value must
exactly match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION
statement. If the data type is FLOAT, the precision does not have to exactly match the value
that was specified because matching is based on the data type (REAL or DOUBLE).

• If length, precision, or scale is not explicitly specified, and empty parentheses are not
specified, the default attributes of the data type are implied. The implicit length must
exactly match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION
statement.

Specifying the FOR DATA clause or CCSID clause is optional. Omission of either clause
indicates that the database manager ignores the attribute when determining whether the
data types match. If either clause is specified, it must match the value that was implicitly or
explicitly specified in the CREATE FUNCTION statement.

AS LOCATOR
Specifies that the function is defined to receive a locator for this parameter. If AS LOCATOR is
specified, the data type must be a LOB or XML or a distinct type based on a LOB or XML.

SPECIFIC FUNCTION specific-name
Identifies the function by its specific name. The specific-name must identify a specific function
that exists at the current server.

Chapter 7. Statements 841

ALTER option-list
Indicates that one or more of the options of the function are to be altered. If ALTER FUNCTION ALTER
option-list is specified and an option is not specified, the value from the existing function definition is
used. See “CREATE FUNCTION (SQL table)” on page 1042 for a description of each option.

REPLACE routine-specification
Indicates that the existing function definition, including options and parameters, is to be replaced by
those specified in this statement. The values of all options are replaced when a function is replaced.
If an option is not specified, the same default is used as when a new SQL table function is created, for
more information see “CREATE FUNCTION (SQL table)” on page 1042.

If the routine has a comment or label, they are removed from the routine definition.

RESTRICT
Indicates that the function will not be altered or replaced if it is referenced by any function,
materialized query table, procedure, trigger, or view.

(parameter-declaration,…)
Specifies the number of parameters of the function, the data type of each parameter, and the name of
each parameter.

The maximum number of parameters allowed in an SQL function is 2000.

parameter-name
Names the parameter. The name is used to refer to the parameter within the body of the function.
The name cannot be the same as any other parameter-name in the parameter list.

data-type3
Specifies the data type of the input parameter. If a CCSID is specified, the parameter will be
converted to that CCSID prior to passing it to the function. If a CCSID is not specified, the CCSID is
determined by the default CCSID at the current server at the time the function is invoked.

default-clause
Specifies a default value for the parameter. The default can be a constant, a special register, a
global variable, an expression, or the keyword NULL. The expression is any expression defined
in “Expressions” on page 158, that does not include an aggregate function or column name. If a
default value is not specified, the parameter has no default and cannot be omitted on invocation.
The maximum length of the expression string is 64K.

The default expression must be assignment compatible to the parameter data type.

Any comma in the default expression that is intended as a separator of numeric constants in a list
must be followed by a space.

A default cannot be specified for a parameter of type array.

RETURNS TABLE
Specifies the output table of the function.

Assume the number of parameters is N. There must be no more than 2000-N columns.

column-name
Specifies the name of a column of the output table. Do not specify the same name more than
once.

data-type2
Specifies the data type and attributes of the output.

You can specify any built-in data type (except LONG VARCHAR, or LONG VARGRAPHIC) or a
distinct type.

If a CCSID is specified and the CCSID of the return data is encoded in a different CCSID, the data is
converted to the specified CCSID.

If a CCSID is not specified the return data is converted to the CCSID of the job (or associated
graphic CCSID of the job for graphic string return values), if the CCSID of the return data is

842 IBM i: Db2 for i SQL Reference

encoded in a different CCSID. To avoid any potential loss of characters during the conversion,
consider explicitly specifying a CCSID that can represent any characters that will be returned
from the function. This is especially important if the data type is graphic string data. In this case,
consider using CCSID 1200 or 13488 (Unicode graphic string data).

option-list
List of options for the function being altered. These options are the same ones that are listed above
under ALTER option-list. If a specific option is not specified, the same default that is used when a new
function is created is used. For more information see “CREATE FUNCTION (SQL table)” on page 1042.

SET OPTION-statement
Specifies the options that will be used to create the function. For example, to create a debuggable
function, the following statement could be included:

SET OPTION DBGVIEW = *SOURCE

For more information, see “SET OPTION” on page 1512.

The options CNULRQD, COMPILEOPT, NAMING, and SQLCA are not allowed in the ALTER FUNCTION
statement. The following options are used when processing default value expressions: ALWCPYDTA,
CONACC, DATFMT, DATSEP, DECFLTRND, DECMPT, DECRESULT, DFTRDBCOL, LANGID, SQLCURRULE,
SQLPATH, SRTSEQ, TGTRLS, TIMFMT, and TIMSEP.

SQL-routine-body
Specifies a single SQL statement, including a compound statement. See “SQL control statements” on
page 1579 for more information about defining SQL functions.

A call to a procedure that issues a CONNECT, SET CONNECTION, RELEASE, DISCONNECT, COMMIT,
ROLLBACK, and SET TRANSACTION statement is not allowed in a function.

The SQL-routine-body must contain at least one RETURN statement and a RETURN statement must be
executed when the function is called.

ALTER PROCEDURE (SQL), ALTER FUNCTION (SQL scalar), and ALTER FUNCTION (SQL table) with a
REPLACE keyword are not allowed in an SQL-routine-body.

Notes
General considerations for defining or replacing functions: See CREATE FUNCTION (SQL table) for
general information about defining a function. ALTER FUNCTION (SQL table) allows individual attributes to
be altered while preserving the privileges on the function.

Cascaded effects: If REPLACE is specified without RESTRICT and the function signature or result data
types are altered, the results from any function, materialized query table, procedure, trigger, or view that
references the function may be unpredictable. Any referenced objects should be recreated.

Obfuscated statements: A function that was created using an obfuscated statement can be altered.
When the statement is altered the encoded version of the statement that is saved in the catalog is
modified and could exceed the maximum length for an SQL statement. If this happens an error will be
issued and the alter will fail.

Altering a function from NOT SECURED to SECURED: The function is considered secure after the ALTER
FUNCTION statement is executed. Db2 treats the SECURED attribute as an assertion that declares that
the user has established an audit procedure for all changes to the user-defined function. Db2 assumes
that all subsequent ALTER FUNCTION statements are being reviewed through this audit process.

Invoking other user-defined functions in a secure function: When a secure user-defined function is
referenced in an SQL data change statement that references a table that is using row access control or
column access control, and if the secure user-defined function invokes other user-defined functions, the
nested user-defined functions are not validated as secure. If those nested functions can access sensitive
data, a user authorized to the Database Security Administrator function of IBM i needs to ensure that
those functions are allowed to access that data and should ensure that a change control audit procedure
has been established for all changes to those functions.

Chapter 7. Statements 843

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• The keywords VARIANT and NOT VARIANT can be used as synonyms for NOT DETERMINISTIC and
DETERMINISTIC.

• The keywords NULL CALL and NOT NULL CALL can be used as synonyms for CALLED ON NULL INPUT
and RETURNS NULL ON NULL INPUT.

• The keywords IS DETERMINISTIC may be used as a synonym for DETERMINISTIC.

Example

Modify the definition for an SQL table function to set the estimated cardinality to 10,000.

 ALTER FUNCTION GET_TABLE
 ALTER CARDINALITY 10000

844 IBM i: Db2 for i SQL Reference

ALTER MASK
The ALTER MASK statement alters a column mask that exists at the current server.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The authorization ID of the statement must have security administrator authority. See “Administrative
authority” on page 15.

Syntax
ALTER MASK mask-name ENABLE

DISABLE

REGENERATE

Description
mask-name

Identifies the column mask to be altered. It must identify a column mask that exists at the current
server.

ENABLE, DISABLE, or REGENERATE
ENABLE

Specifies that the column mask is to be enabled for column access control. If column access
control is not currently activated for the table, the column mask will become effective when
column access control is activated for the table. If column access control is currently activated for
the table, the column mask becomes effective immediately.
A column mask that gets an error when trying to be enabled cannot be enabled until any errors in
the mask definition are resolved. This may require the column mask to be dropped and recreated
with a modified definition.
ENABLE is ignored if the column mask is already defined as enabled for column access control.

DISABLE
Specifies that the column mask is to be disabled for column access control. If column access
control is not currently activated for the table, the column mask will remain ineffective when
column access control is activated for the table. If column access control is currently activated for
the table, the column mask becomes ineffective.
DISABLE is ignored if the column mask is already defined as disabled for column access control.

REGENERATE
Specifies that the column mask is to be regenerated. The column mask definition in the catalog
is used and existing dependencies and authorizations, if any, are retained. The column mask
definition is reevaluated as if the column mask were being created. The user-defined functions
that are referenced in the column mask definition must be resolved to the same secure UDFs as
were resolved during the column mask creation.

Examples
Example 1: Enable column mask M1.

ALTER MASK M1 ENABLE

Chapter 7. Statements 845

Example 2: Disable column mask M1.

ALTER MASK M1 DISABLE

Example 3: Regenerate column mask M1.

ALTER MASK M1 REGENERATE

846 IBM i: Db2 for i SQL Reference

ALTER PERMISSION
The ALTER PERMISSION statement alters a row permission that exists at the current server.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The authorization ID of the statement must have security administrator authority. See “Administrative
authority” on page 15.

Syntax
ALTER PERMISSION permission-name ENABLE

DISABLE

REGENERATE

Description
permission-name

Identifies the row permission to be altered. It must identify a row permission that exists at the current
server. It cannot be a default permission.

ENABLE, DISABLE, or REGENERATE
ENABLE

Specifies that the row permission is to be enabled for row access control. If row access control is
not currently activated for the table, the row permission will become effective when row access
control is activated for the table. If row access control is currently activated for the table, the row
permission becomes effective immediately.
A row permission that gets an error when trying to be enabled cannot be enabled until any errors
in the permission definition are resolved. This may require the row permission to be dropped and
recreated with a modified definition.
ENABLE is ignored if the row permission is already defined as enabled for row access control.

DISABLE
Specifies that the row permission is to be disabled for row access control. If row access control is
not currently activated for the table, the row permission will remain ineffective when row access
control is activated for the table. If row access control is currently activated for the table, the row
permission becomes ineffective.
If row access control is currently activated for the table and all row permissions are disabled, a
default row permission that allows no access to any row of the table will be used.
DISABLE is ignored if the row permission is already defined as disabled for row access control.

REGENERATE
Specifies that the row permission is to be regenerated. The row permission definition in the
catalog is used and existing dependencies and authorizations, if any, are retained. The row
permission definition is reevaluated as if the row permission were being created. The user-defined
functions that are referenced in the row permission must be resolved to the same secure UDFs as
were resolved during the row permission creation.

Chapter 7. Statements 847

Examples
Example 1: Enable permission P1.

ALTER PERMISSION P1 ENABLE

Example 2: Disable permission P1.

ALTER PERMISSION P1 DISABLE

Example 3: Regenerate permission P1.

ALTER PERMISSION P1 REGENERATE

848 IBM i: Db2 for i SQL Reference

ALTER PROCEDURE (external)
The ALTER PROCEDURE (external) statement alters an external procedure at the current server.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For the procedure identified in the statement:

– The ALTER privilege for the procedure, and
– The system authority *EXECUTE on the library containing the procedure.

• Database administrator authority

If a different external program is specified, the privileges held by the authorization ID of the statement
must also include the same privileges required to create a new external procedure. For more information,
see “CREATE PROCEDURE (external)” on page 1075.

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Function or Procedure, Corresponding System Authorities When
Checking Privileges to a Table or View, and Corresponding System Authorities When Checking Privileges
to a Distinct Type.

Syntax
ALTER

PROCEDURE procedure-name

(
,

parameter-type

)

SPECIFIC PROCEDURE specific-name

ALTER
option-list

parameter-type
data-type

AS LOCATOR

data-type
built-in-type

distinct-type-name

array-type-name

option-list

Chapter 7. Statements 849

LANGUAGE C

C++

CL

COBOL

COBOLLE

JAVA

PLI

REXX

RPG

RPGLE

PARAMETER STYLE SQL

PARAMETER STYLE GENERAL

PARAMETER STYLE GENERAL WITH NULLS

PARAMETER STYLE JAVA

PARAMETER STYLE DB2GENERAL

NOT DETERMINISTIC

DETERMINISTIC

1

MODIFIES SQL DATA

READS SQL DATA

CONTAINS SQL

NO SQL

CALLED ON NULL INPUT

INHERIT SPECIAL REGISTERS

DYNAMIC RESULT SETS integer

NO DBINFO

DBINFO

ALLOW DEBUG MODE

DISABLE DEBUG MODE

DISALLOW DEBUG MODE

FENCED

NOT FENCED

EXTERNAL NAME external-program-name OLD SAVEPOINT LEVEL

NEW SAVEPOINT LEVEL

COMMIT ON RETURN NO

COMMIT ON RETURN YES

AUTONOMOUS

Notes:
1 The clauses in the option-list can be specified in any order.

built-in-type

850 IBM i: Db2 for i SQL Reference

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

)

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

DATALINK

(200)

(integer) ccsid-clause

ROWID

XML

ccsid-clause
CCSID integer

Chapter 7. Statements 851

Description
PROCEDURE or SPECIFIC PROCEDURE

Identifies the procedure to alter. procedure-name must identify an external procedure that exists at
the current server.

The specified procedure is altered. The owner of the procedure is preserved. If the external program
or service program exists at the time the procedure is altered, all privileges on the procedure are
preserved.

PROCEDURE procedure-name
Identifies the procedure by its name. The procedure-name must identify exactly one external
procedure. The procedure may have any number of parameters defined for it. If there is more than
one procedure of the specified name in the specified or implicit schema, an error is returned.

PROCEDURE procedure-name (parameter-type,...)
Identifies the procedure by its procedure signature, which uniquely identifies the procedure.
The procedure-name (parameter-type,...) must identify an external procedure with the specified
procedure signature. The specified parameters must match the data types in the corresponding
position that were specified when the procedure was created. The number of data types and the
logical concatenation of the data types is used to identify the specific procedure instance which
is being altered. Synonyms for data types are considered a match. Parameters that have defaults
must be included in this signature.

If procedure-name() is specified, the procedure identified must have zero parameters.

procedure-name
Identifies the name of the procedure.

(parameter-type,...)
Identifies the parameters of the procedure.

If an unqualified distinct type or array type name is specified, the database manager searches
the SQL path to resolve the schema name for the distinct type or array type.

For data types that have a length, precision, or scale attribute, use one of the following:

• Empty parenthesis indicates that the database manager ignores the attribute when
determining whether the data types match. For example, DEC() will be considered a match
for a parameter of a procedure defined with a data type of DEC(7,2). However, FLOAT cannot
be specified with empty parenthesis because its precision value indicates a specific data
type (REAL or DOUBLE).

• If a specific value for a length, precision, or scale attribute is specified, the value
must exactly match the value that was specified (implicitly or explicitly) in the CREATE
PROCEDURE statement. If the data type is FLOAT, the precision does not have to exactly
match the value that was specified because matching is based on the data type (REAL or
DOUBLE).

• If length, precision, or scale is not explicitly specified, and empty parentheses are not
specified, the default attributes of the data type are implied. The implicit length must exactly
match the value that was specified (implicitly or explicitly) in the CREATE PROCEDURE
statement.

Specifying the FOR DATA clause or CCSID clause is optional. Omission of either clause
indicates that the database manager ignores the attribute when determining whether the
data types match. If either clause is specified, it must match the value that was implicitly or
explicitly specified in the CREATE PROCEDURE statement.

AS LOCATOR
Specifies that the procedure is defined to receive a locator for this parameter. If AS LOCATOR
is specified, the data type must be a LOB or XML or a distinct type based on a LOB or XML.

SPECIFIC PROCEDURE specific-name
Identifies the procedure by its specific name. The specific-name must identify a specific procedure
that exists at the current server.

852 IBM i: Db2 for i SQL Reference

ALTER option-list
Indicates that one or more of the options of the procedure are to be altered. If an option is
not specified, the value from the existing procedure definition is used. See “CREATE PROCEDURE
(external)” on page 1075 for a description of each option.

Notes
General considerations for defining or changing a procedure: See CREATE PROCEDURE for general
information about defining a procedure. ALTER PROCEDURE (external) allows individual attributes to be
altered while preserving the privileges on the procedure.

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• The keywords VARIANT and NOT VARIANT can be used as synonyms for NOT DETERMINISTIC and
DETERMINISTIC.

• The keywords NULL CALL can be used as synonyms for CALLED ON NULL INPUT.
• DYNAMIC RESULT SET, RESULT SETS, and RESULT SET may be used as synonyms for DYNAMIC RESULT

SETS.
• The value DB2SQL may be used as a synonym for SQL.

Examples

Modify the definition for procedure MYPROC to change the name of the external program that is invoked
when the procedure is called. The name of the external program is PROG10A.

 ALTER PROCEDURE MYPROC
 EXTERNAL NAME PROG10A

Chapter 7. Statements 853

ALTER PROCEDURE (SQL)
The ALTER PROCEDURE (SQL) statement alters a procedure at the current server.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For the procedure identified in the statement:

– The ALTER privilege for the procedure, and
– The system authority *EXECUTE on the library containing the procedure.

• Database administrator authority

If a distinct type is referenced in a parameter-declaration, the privileges held by the authorization ID of
the statement must include at least one of the following:

• For each distinct type identified in the statement:

– The USAGE privilege on the distinct type, and
– The system authority *EXECUTE on the library containing the distinct type

• Administrative authority

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Function or Procedure and Corresponding System Authorities
When Checking Privileges to a Distinct Type.

Syntax
ALTER

PROCEDURE procedure-name

(
,

parameter-type

)

SPECIFIC PROCEDURE specific-name

ALTER
option-list

REPLACE routine-specification

routine-specification

(
,

parameter-declaration

) option-list

SET OPTION-statement

SQL-routine-body

854 IBM i: Db2 for i SQL Reference

parameter-declaration
IN

OUT

INOUT

parameter-name data-type

default-clause

parameter-type
data-type

data-type
built-in-type

distinct-type-name

array-type-name

default-clause
DEFAULT NULL

constant

special-register

global-variable

(expression)

option-list

Chapter 7. Statements 855

LANGUAGE SQL NOT DETERMINISTIC

DETERMINISTIC

1
MODIFIES SQL DATA

READS SQL DATA

CONTAINS SQL

CALLED ON NULL INPUT INHERIT SPECIAL REGISTERS

DYNAMIC RESULT SETS 0

DYNAMIC RESULT SETS integer ALLOW DEBUG MODE

DISABLE DEBUG MODE

DISALLOW DEBUG MODE

FENCED

NOT FENCED

OLD SAVEPOINT LEVEL

NEW SAVEPOINT LEVEL

COMMIT ON RETURN NO

COMMIT ON RETURN YES

AUTONOMOUS

CONCURRENT ACCESS RESOLUTION

DEFAULT

USE CURRENTLY COMMITTED

U

WAIT FOR OUTCOME

W

Notes:
1 The clauses in the option-list can be specified in any order.

SQL-routine-body

856 IBM i: Db2 for i SQL Reference

SQL-control-statement

ALLOCATE CURSOR-statement

ALLOCATE DESCRIPTOR-statement

ALTER FUNCTION-statement

ALTER MASK-statement

ALTER PERMISSION-statement

ALTER PROCEDURE-statement

ALTER SEQUENCE-statement

ALTER TABLE-statement

ALTER TRIGGER-statement

ASSOCIATE LOCATORS-statement

COMMENT-statement

COMMIT-statement

CONNECT-statement

CREATE ALIAS-statement

CREATE FUNCTION (external scalar)-statement

CREATE FUNCTION (external table)-statement

CREATE FUNCTION (sourced)-statement

CREATE INDEX-statement

CREATE MASK-statement

CREATE PERMISSION-statement

CREATE PROCEDURE (external)-statement

CREATE SCHEMA-statement

CREATE SEQUENCE-statement

CREATE TABLE-statement

CREATE TYPE-statement

CREATE VIEW-statement

DEALLOCATE DESCRIPTOR-statement

DECLARE GLOBAL TEMPORARY TABLE-statement

DELETE-statement

DESCRIBE-statement

DESCRIBE CURSOR-statement

DESCRIBE INPUT-statement

DESCRIBE PROCEDURE-statement

DESCRIBE TABLE-statement

DISCONNECT-statement

SQL-routine-body (continued)

Chapter 7. Statements 857

DROP-statement

EXECUTE IMMEDIATE-statement

GET DESCRIPTOR-statement

GRANT-statement

INSERT-statement

LABEL-statement

LOCK TABLE-statement

MERGE-statement

REFRESH TABLE-statement

RELEASE-statement

RELEASE SAVEPOINT-statement

RENAME-statement

REVOKE-statement

ROLLBACK-statement

SAVEPOINT-statement

SELECT INTO-statement

SET CONNECTION-statement

SET CURRENT DEBUG MODE-statement

SET CURRENT DECFLOAT ROUNDING MODE-statement

SET CURRENT DEGREE-statement

SET CURRENT IMPLICIT XMLPARSE OPTION-statement

SET CURRENT TEMPORAL SYSTEM_TIME-statement

SET DESCRIPTOR-statement

SET ENCRYPTION PASSWORD-statement

SET PATH-statement

SET RESULT SETS-statement

SET SCHEMA-statement

SET TRANSACTION-statement

TRANSFER OWNERSHIP-statement

TRUNCATE-statement

UPDATE-statement

VALUES INTO-statement

built-in-type

858 IBM i: Db2 for i SQL Reference

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

)

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

DATALINK

(200)

(integer) ccsid-clause

ROWID

XML

ccsid-clause
CCSID integer

Chapter 7. Statements 859

Description
PROCEDURE or SPECIFIC PROCEDURE

Identifies the procedure to alter. procedure-name must identify an SQL procedure that exists at the
current server.

The specified procedure is altered. The owner of the procedure and all privileges on the procedure are
preserved.

PROCEDURE procedure-name
Identifies the procedure by its name. The procedure-name must identify exactly one SQL
procedure. The procedure may have any number of parameters defined for it. If there is more
than one procedure of the specified name in the specified or implicit schema, an error is returned.

PROCEDURE procedure-name (parameter-type,...)
Identifies the procedure by its procedure signature, which uniquely identifies the procedure. The
procedure-name (parameter-type,...) must identify an SQL procedure with the specified procedure
signature. The specified parameters must match the data types in the corresponding position
that were specified when the procedure was created. The number of data types and the logical
concatenation of the data types is used to identify the specific procedure instance which is being
altered. Synonyms for data types are considered a match. Parameters that have defaults must be
included in this signature.

If procedure-name() is specified, the procedure identified must have zero parameters.

procedure-name
Identifies the name of the procedure.

(parameter-type,...)
Identifies the parameters of the procedure.

If an unqualified distinct type or array type name is specified, the database manager searches
the SQL path to resolve the schema name for the distinct type or array type.

For data types that have a length, precision, or scale attribute, use one of the following:

• Empty parenthesis indicates that the database manager ignores the attribute when
determining whether the data types match. For example, DEC() will be considered a match
for a parameter of a procedure defined with a data type of DEC(7,2). However, FLOAT cannot
be specified with empty parenthesis because its precision value indicates a specific data
type (REAL or DOUBLE).

• If a specific value for a length, precision, or scale attribute is specified, the value
must exactly match the value that was specified (implicitly or explicitly) in the CREATE
PROCEDURE statement. If the data type is FLOAT, the precision does not have to exactly
match the value that was specified because matching is based on the data type (REAL or
DOUBLE).

• If length, precision, or scale is not explicitly specified, and empty parentheses are not
specified, the default attributes of the data type are implied. The implicit length must exactly
match the value that was specified (implicitly or explicitly) in the CREATE PROCEDURE
statement.

Specifying the FOR DATA clause or CCSID clause is optional. Omission of either clause
indicates that the database manager ignores the attribute when determining whether the
data types match. If either clause is specified, it must match the value that was implicitly or
explicitly specified in the CREATE PROCEDURE statement.

AS LOCATOR
Specifies that the procedure is defined to receive a locator for this parameter. If AS LOCATOR
is specified, the data type must be a LOB or a distinct type based on a LOB.

SPECIFIC PROCEDURE specific-name
Identifies the procedure by its specific name. The specific-name must identify a specific procedure
that exists at the current server.

860 IBM i: Db2 for i SQL Reference

ALTER option-list
Indicates that one or more of the options of the procedure are to be altered. If ALTER PROCEDURE
ALTER option-list is specified and an option is not specified, the value from the existing procedure
definition is used. See “CREATE PROCEDURE (SQL)” on page 1090 for a description of each option.

REPLACE routine-specification
Indicates that the existing procedure definition, including options and parameters, is to be replaced
by those specified in this statement. The values of all options are replaced when a procedure is
replaced. If an option is not specified, the same default is used as when a new SQL procedure is
created, for more information see “CREATE PROCEDURE (SQL)” on page 1090.

If the routine has a comment or label, they are removed from the routine definition.

(parameter-declaration,…)
Specifies the number of parameters of the procedure, the data type of each parameter, and the name
of each parameter. A parameter for a procedure can be used for input only, for output only, or for both
input and output.

The maximum number of parameters allowed in an SQL procedure is 2000.

IN
Identifies the parameter as an input parameter to the procedure.

OUT
Identifies the parameter as an output parameter that is returned by the procedure. If the
parameter is not set within the procedure, the null value is returned.

INOUT
Identifies the parameter as both an input and output parameter for the procedure. If the
parameter is not set within the procedure, its input value is returned. If an INOUT parameter
is defined with a default and the default is used when calling the procedure, no value for the
parameter is returned.

parameter-name
Names the parameter for use as an SQL variable. The name cannot be the same as any other
parameter-name for the procedure.

data-type
Specifies the data type of the parameter. If a CCSID is specified, the parameter will be converted
to that CCSID prior to passing it to the procedure. If a CCSID is not specified, the CCSID is
determined by the default CCSID at the current server at the time the procedure is called.

default-clause
Specifies a default value for the parameter. The default can be a constant, a special register, a
global variable, an expression, or the keyword NULL. The expression is any expression defined
in “Expressions” on page 158, that does not include an aggregate function or column name. If a
default value is not specified, the parameter has no default and cannot be omitted on invocation.
The maximum length of the expression string is 64K.

The default expression must not modify SQL data. The expression must be assignment compatible
to the parameter data type. All objects referenced in a default expression must exist when the
procedure is created.

Any comma in the default expression that is intended as a separator of numeric constants in a list
must be followed by a space.

A default cannot be specified:

• for an OUT parameter.
• for a parameter of type array.

option-list
List of options for the procedure being altered. These options are the same ones that are listed above
under ALTER option-list. If a specific option is not specified, the same default that is used when a new
procedure is created is used. For more information see “CREATE PROCEDURE (SQL)” on page 1090.

Chapter 7. Statements 861

SET OPTION-statement
Specifies the options that will be used to create the procedure. For example, to create a debuggable
procedure, the following statement could be included:

SET OPTION DBGVIEW = *SOURCE

For more information, see “SET OPTION” on page 1512.

The options CLOSQLCSR, CNULRQD, COMPILEOPT, NAMING, and SQLCA are not allowed in the ALTER
PROCEDURE statement. The following options are used when processing default value expressions:
ALWCPYDTA, CONACC, DATFMT, DATSEP, DECFLTRND, DECMPT, DECRESULT, DFTRDBCOL, LANGID,
SQLCURRULE, SQLPATH, SRTSEQ, TGTRLS, TIMFMT, and TIMSEP.

SQL-routine-body
Specifies a single SQL statement, including a compound statement. See “SQL control statements” on
page 1579 for more information about defining SQL procedures.

CONNECT, SET CONNECTION, RELEASE, DISCONNECT, and SET TRANSACTION statements are not
allowed in a procedure that is running on a remote application server. COMMIT and ROLLBACK
statements are not allowed in an ATOMIC SQL procedure or in a procedure that is running on a
connection to a remote application server.

ALTER PROCEDURE (SQL), ALTER FUNCTION (SQL scalar), and ALTER FUNCTION (SQL table) with a
REPLACE keyword are not allowed in an SQL-routine-body.

Notes
General considerations for defining or replacing procedures: See CREATE PROCEDURE for general
information about defining a procedure. ALTER PROCEDURE (SQL) allows individual attributes or the
routine specification to be altered while preserving the privileges on the procedure.

Alter Procedure Replace considerations: When an SQL procedure definition is replaced, SQL creates a
temporary source file that will contain C source code with embedded SQL statements. A program object
is then created using the CRTPGM command. The SQL options used to create the program are the options
that are in effect at the time the ALTER PROCEDURE (SQL) statement is executed. The program is created
with ACTGRP(*CALLER).

When an SQL procedure is altered, a new *PGM or *SRVPGM object is created and the procedure's
attributes are stored in the created program object. If the *PGM or *SRVPGM object is saved and then
restored to this or another system, the catalogs are automatically updated with those attributes.

The specific name is used as the name of the member in the source file and the name of the program
object, if it is a valid system name. If the procedure name is not a valid system name, a unique name
is generated. If a source file member with the same name already exists, the member is overlaid. If a
module or a program with the same name already exists, the objects are not overlaid, and a unique name
is generated. The unique names are generated according to the rules for generating system table names.

Target release considerations: When an SQL procedure definition is replaced, the target release will
be the current release in which the ALTER statement is executed unless the user explicitly specifies
a different target release. The target release can be explicitly specified using the TGTRLS keyword in
the SET OPTION statement. If the ALTER is specified in the source for a RUNSQLSTM or CRTSQLxxx
command, the TGTRLS keyword can also be specified on the command.

If the procedure definition is not replaced, the target release of the existing procedure will be preserved
unless the target release level of the procedure is earlier than the earliest supported release level. In this
case, the target release will be changed to the earliest supported release level.

Obfuscated statements: A procedure that was created using an obfuscated statement can be altered.
When the statement is altered the encoded version of the statement that is saved in the catalog is
modified and could exceed the maximum length for an SQL statement. If this happens an error will be
issued and the alter will fail.

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

862 IBM i: Db2 for i SQL Reference

• The keywords VARIANT and NOT VARIANT can be used as synonyms for NOT DETERMINISTIC and
DETERMINISTIC.

• The keywords NULL CALL can be used as synonyms for CALLED ON NULL INPUT.
• DYNAMIC RESULT SET, RESULT SETS, and RESULT SET may be used as synonyms for DYNAMIC RESULT

SETS.

Examples

Modify the definition for an SQL procedure so that SQL changes are committed on return from the SQL
procedure.

 ALTER PROCEDURE UPDATE_SALARY_2
 ALTER COMMIT ON RETURN YES

Chapter 7. Statements 863

ALTER SEQUENCE
The ALTER SEQUENCE statement can be used to change a sequence.

The ALTER SEQUENCE statement can be used to change a sequence in any of these ways:

• Restarting the sequence
• Changing the increment between future sequence values
• Setting or eliminating the minimum or maximum values
• Changing the number of cached sequence numbers
• Changing the attribute that determines whether the sequence can cycle or not
• Changing whether sequence numbers must be generated in order of request

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For the sequence identified in the statement:

– The system authority *EXECUTE on the library containing the sequence
– The ALTER privilege for the sequence

• Database administrator authority

The privileges held by the authorization ID of the statement must include at least one of the following:

• The following system authorities:

– *USE to the Change Data Area (CHGDTAARA) command
– *USE to the Retrieve Data Area (RTVDTAARA) command

• Administrative authority

The privileges held by the authorization ID of the statement must include at least one of the following:

• For the SYSSEQOBJECTS catalog table:

– The UPDATE privilege on the table, and
– The system authority *EXECUTE on library QSYS2

• Administrative authority

If a distinct type is referenced, the privileges held by the authorization ID of the statement must include at
least one of the following:

• For the distinct type identified in the statement:

– The USAGE privilege on the distinct type, and
– The system authority *EXECUTE on the library containing the distinct type

• Administrative authority

For information on the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Sequence, Corresponding System Authorities When Checking
Privileges to a Table or View, and Corresponding System Authorities When Checking Privileges to a
Distinct Type.

864 IBM i: Db2 for i SQL Reference

Syntax
ALTER SEQUENCE sequence-name

DATA TYPE data-type

RESTART

WITH numeric-constant

INCREMENT BY numeric-constant

NO MINVALUE

MINVALUE numeric-constant

NO MAXVALUE

MAXVALUE numeric-constant

NO CYCLE

CYCLE

NO CACHE

CACHE integer-constant

NO ORDER

ORDER

1

Notes:
1 The same clause must not be specified more than once.

data-type
built-in-type

distinct-type-name

built-in-type
SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

)

Description
sequence-name

Identifies the sequence to be altered. The name must identify a sequence that already exists at the
current server.

DATA TYPE data-type
Specifies the new data type to be used for the sequence value. The data type can be any exact
numeric type (SMALLINT, INTEGER, BIGINT, DECIMAL, or NUMERIC) with a scale of zero, or a user-
defined distinct type for which the source type is an exact numeric type with a scale of zero.

Chapter 7. Statements 865

Each of the existing START WITH, INCREMENT BY, MINVALUE, and MAXVALUE attributes that are not
changed by the ALTER SEQUENCE statement must contain a value that could be assigned to a column
of the data type associated with the new data type.

built-in-type
Specifies the new built-in data type used as the basis for the internal representation of the sequence.
If the data type is DECIMAL or NUMERIC, the precision must be less than or equal to 63 and the scale
must be 0. See “CREATE TABLE” on page 1115 for a more complete description of each built-in data
type.

For portability of applications across platforms, use DECIMAL instead of a NUMERIC data type.

distinct-type-name
Specifies that the new data type of the sequence is a distinct type (a user-defined data type). If the
source type is DECIMAL or NUMERIC, the precision of the sequence is the precision of the source
type of the distinct type. The precision of the source type must be less than or equal to 63 and the
scale must be 0. If a distinct type name is specified without a schema name, the distinct type name is
resolved by searching the schemas on the SQL path.

RESTART
Restarts the sequence. If numeric-constant is not specified, the sequence is restarted at the value
specified implicitly or explicitly as the starting value on the CREATE SEQUENCE statement that
originally created the sequence.
WITH numeric-constant

Restarts the sequence with the specified value. This value can be any positive or negative value
that could be assigned to a column of the data type associated with the sequence, without
nonzero digits to the right of the decimal point.

INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the sequence. This value can be any positive or
negative value that could be assigned to a column of the data type associated with the sequence, and
does not exceed the value of a large integer constant, without nonzero digits existing to the right of the
decimal point.

If this value is negative, then this is a descending sequence. If this value is 0 or positive, this is an
ascending sequence after the ALTER statement.

NO MINVALUE or MINVALUE
Specifies the minimum value at which a descending sequence either cycles or stops generating
values, or an ascending sequence cycles to after reaching the maximum value.
NO MINVALUE

For an ascending sequence, the value is the original starting value. For a descending sequence, the
value is the minimum value of the data type (and precision, if DECIMAL or NUMERIC) associated
with the sequence.

MINVALUE numeric-constant
Specifies the numeric constant that is the minimum value that is generated for this sequence. This
value can be any positive or negative value that could be assigned to a column of the data type
associated with the sequence and without non-zero digits to the right of the decimal point. The
value must be less than or equal to the maximum value.

NO MAXVALUE or MAXVALUE
Specifies the maximum value at which an ascending sequence either cycles or stops generating
values, or a descending sequence cycles to after reaching the minimum value.
NO MAXVALUE

For an ascending sequence, the value is the maximum value of the data type (and precision, if
DECIMAL or NUMERIC) associated with the sequence. For a descending sequence, the value is the
original starting value.

MAXVALUE numeric-constant
Specifies the numeric constant that is the maximum value that is generated for this sequence.
This value can be any positive or negative value that could be assigned to a column of the data

866 IBM i: Db2 for i SQL Reference

type associated with the sequence and without non-zero digits to the right of the decimal point.
The value must be greater than or equal to the minimum value.

CYCLE or NO CYCLE
Specifies whether this sequence should continue to generate values after reaching either the
maximum or minimum value of the sequence.
NO CYCLE

Specifies that values will not be generated for the sequence once the maximum or minimum value
for the sequence has been reached.

CYCLE
Specifies that values continue to be generated for this sequence after the maximum or minimum
value has been reached. If this option is used, after an ascending sequence reaches the maximum
value of the sequence, it generates its minimum value. After a descending sequence reaches its
minimum value of the sequence, it generates its maximum value. The maximum and minimum
values for the sequence determine the range that is used for cycling.

When CYCLE is in effect, duplicate values can be generated for a sequence by the database
manager.

CACHE or NO CACHE
Specifies whether to keep some preallocated values in memory. Preallocating and storing values in
the cache improves the performance of the NEXT VALUE sequence expression.
CACHE integer-constant

Specifies the maximum number of sequence values that are preallocated and kept in memory.
Preallocating and storing values in the cache reduces synchronous I/O when values are generated
for the sequence.

In certain situations, such as system failure, all cached sequence values that have not been used
in committed statements are lost, and thus, will never be used. The value specified for the CACHE
option is the maximum number of sequence values that could be lost in these situations.

The minimum value is 2.

NO CACHE
Specifies that values of the sequence are not to be preallocated. It ensures that there is not a
loss of values in situations, such as system failure. When this option is specified, the values of the
sequence are not stored in the cache. In this case, every request for a new value for the sequence
results in synchronous I/O.

NO ORDER or ORDER
Specifies whether the sequence numbers must be generated in order of request.
NO ORDER

Specifies that the sequence numbers do not need to be generated in order of request.
ORDER

Specifies that the sequence numbers are generated in order of request. If ORDER is specified,
the performance of the NEXT VALUE sequence expression will be worse than if NO ORDER is
specified.

Notes
Altering a sequence:

• Only future sequence numbers are affected by the ALTER SEQUENCE statement.
• All the cached values are lost when a sequence is altered.
• After restarting a sequence or changing it to cycle, it is possible that a generated value will duplicate a

value previously generated for that sequence.

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases
of other Db2 products. These keywords are non-standard and should not be used:

Chapter 7. Statements 867

• The keywords NOMINVALUE, NOMAXVALUE, NOCYCLE, NOCACHE, and NOORDER can be used as
synonyms for NO MINVALUE, NO MAXVALUE, NO CYCLE, NO CACHE, and NO ORDER.

Examples

A possible reason for specifying RESTART without a numeric value would be to reset the sequence to the
START WITH value. In this example, the goal is to generate the numbers from 1 up to the number of rows
in a table and then inserting the numbers into a column added to the table using temporary tables.

 ALTER SEQUENCE ORG_SEQ RESTART

 DECLARE GLOBAL TEMPORARY TABLE TEMP_ORG AS
 (SELECT NEXT VALUE FOR ORG_SEQ, ORG.*
 FROM ORG) WITH DATA

 INSERT INTO TEMP_ORG
 SELECT NEXT VALUE FOR ORG_SEQ, ORG.*
 FROM ORG

Another use would be to get results back where all the resulting rows are numbered:

 ALTER SEQUENCE ORG_SEQ RESTART

 SELECT NEXT VALUE FOR ORG_SEQ, ORG.*
 FROM ORG

868 IBM i: Db2 for i SQL Reference

ALTER TABLE
The ALTER TABLE statement alters the definition of a table.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For the table identified in the statement,

– The ALTER privilege on the table, and
– The system authority *EXECUTE on the library containing the table

• Database administrator authority

To define a foreign key, the privileges held by the authorization ID of the statement must include at least
one of the following on the parent table:

• The REFERENCES privilege or object management authority for the table
• The REFERENCES privilege on each column of the specified parent key
• Database administrator authority

If a field procedure is defined, the privileges held by the authorization ID of the statement must include at
least one of the following:

• The following system authorities:

– The system authority *EXECUTE on the program, and
– The system authority *EXECUTE on the library containing the program

• Database administrator authority

If a select-statement is specified, the privileges held by the authorization ID of the statement must include
at least one of the following on the tables or views specified in these clauses:

• The SELECT privilege for the table or view
• Database administrator authority

If a distinct type is referenced, the privileges held by the authorization ID of the statement must include at
least one of the following:

• For each distinct type identified in the statement:

– The USAGE privilege on the distinct type, and
– The system authority *EXECUTE on the library containing the distinct type

• Database administrator authority

If an ACTIVATE or DEACTIVATE clause is specified:

• The authorization ID of the statement must have security administrator authority. See “Administrative
authority” on page 15.

To drop a partition from a table that has active row permissions with DELETE ROWS, the privileges held by
the authorization ID of the statement must include at least one of the following:

• The system authorities of *OBJOPR and *OBJEXIST on the table
• Database administrator authority

Chapter 7. Statements 869

To attach a partition, the privileges held by the authorization ID of the statement must also include at
least one of the following:

• For the source table identified in the statement,

– The SELECT privilege, and
– The system authority of *OBJEXIST, and
– The system authority *EXECUTE on the library containing the source table

• Database administrator authority

To detach a partition, the privileges held by the authorization ID of the statement must also include at
least one of the following:

• For the source table identified in the statement,

– The SELECT, DELETE, and ALTER privileges, and
– The system authority *EXECUTE on the library containing the source table

• Database administrator authority

To detach a partition, the privileges held by the authorization ID of the statement must include at least
one of the following:

• The privilege to create in the schema. For more information, see Privileges necessary to create in a
schema.

• Database administrator authority

To alter a table to become a system-period temporal table (with the ADD VERSIONING clause), alter a
system-period temporal table when one or more of the changes also result in changes to the associated
history table, or to DROP VERSIONING, the privileges that are held by the authorization ID of the
statement must also include at least one of the following authorities:

• The following system authorities:

– The ALTER privilege on the history table, and
– The system authority *EXECUTE on the library containing the history table

• Database administrator authority

For information on the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Table or View and Corresponding System Authorities When
Checking Privileges to a Distinct Type.

870 IBM i: Db2 for i SQL Reference

Syntax
ALTER TABLE table-name

ADD
COLUMN

column-definition

BEFORE column-name

ALTER
COLUMN

column-alteration

DROP
COLUMN

column-name
CASCADE

RESTRICT

ADD unique-constraint

referential-constraint

check-constraint

DROP PRIMARY KEY

UNIQUE

FOREIGN KEY

CHECK

CONSTRAINT

constraint-name

CASCADE

RESTRICT

ADD partitioning-clause

DROP PARTITIONING

ADD PARTITION add-partition

ALTER PARTITION partition-name boundary-spec

media-preference memory-preference

DROP PARTITION partition-name DELETE ROWS

PRESERVE ROWS

ATTACH PARTITION attach-partition
1

DETACH PARTITION partition-name INTO table-name1
1

ADD

MATERIALIZED
QUERY

materialized-query-definition

ALTER
MATERIALIZED

QUERY materialized-query-table-alteration

DROP
MATERIALIZED

QUERY

ACTIVATE NOT LOGGED INITIALLY

WITH EMPTY TABLE

ADD PERIOD
FOR

period-definition

DROP PERIOD SYSTEM_TIME

ADD
SYSTEM

VERSIONING USE HISTORY TABLE history-table-name

ON DELETE ADD EXTRA ROW

2

DROP
SYSTEM

VERSIONING
2

ACTIVATE

DEACTIVATE

ROW ACCESS CONTROL
3

ACTIVATE

DEACTIVATE

COLUMN ACCESS CONTROL
3

VOLATILE

NOT VOLATILE

CARDINALITY

ALTER media-preference

ALTER memory-preference

media-preference

Chapter 7. Statements 871

UNIT ANY

UNIT SSD

memory-preference
KEEP IN MEMORY NO

YES

column-definition

column-name

FOR
COLUMN

system-column-name

data-type
4 5

default-clause

generated-clause

NOT NULL

NOT HIDDEN

IMPLICITLY HIDDEN

column-constraint

FIELDPROC external-program-name

(

,

constant)

datalink-options
6

data-type
built-in-type

distinct-type-name

Notes:
1 ATTACH PARTITION or DETACH PARTITION cannot be specified with any other clause.
2 ADD VERSIONING or DROP VERSIONING cannot be specified with any other clause.
3 If an ACTIVATE or DEACTIVATE clause is specified, clauses other than ACTIVATE or DEACTIVATE are not
allowed on the ALTER TABLE statement. Each clause must not be specified more than once.
4 data-type is optional for row change timestamp, row-begin, row-end, and transaction-start-ID columns.
5 The same clause must not be specified more than once.
6 The datalink-options can only be specified for DATALINKs and distinct types sourced on DATALINKs.

built-in-type

872 IBM i: Db2 for i SQL Reference

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

allocate-clause

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) allocate-clause FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

allocate-clause

DBCLOB

(1M)

(integer

K

M

G

) allocate-clause

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

allocate-clause

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

) allocate-clause

normalize-clause

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

allocate-clause

BINARY LARGE OBJECT

BLOB

(1M)

(integer

K

M

G

) allocate-clause

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

DATALINK

(200)

(integer) allocate-clause ccsid-clause

ROWID

XML

allocate-clause ccsid-clause

allocate-clause
ALLOCATE (integer)

ccsid-clause

Chapter 7. Statements 873

CCSID integer

normalize-clause

normalize-clause
NOT NORMALIZED

NORMALIZED

default-clause
WITH

DEFAULT

constant

USER

NULL

CURRENT_DATE

CURRENT_TIME

CURRENT_TIMESTAMP

(6)

(integer)

cast-function-name (constant

USER

CURRENT_DATE

CURRENT_TIME

CURRENT_TIMESTAMP

(6)

(integer)

)

generated-clause
GENERATED ALWAYS

GENERATED BY DEFAULT

1

identity-options

as-row-change-timestamp-clause

GENERATED
ALWAYS

as-row-transaction-timestamp-clause

as-row-transaction-start-id-clause

as-generated-expression-clause

identity-options

874 IBM i: Db2 for i SQL Reference

AS IDENTITY

(START WITH

1

numeric-constant

INCREMENT BY

1

numeric-constant

NO MINVALUE

MINVALUE numeric-constant

NO MAXVALUE

MAXVALUE numeric-constant

NO CYCLE

CYCLE

CACHE 20

NO CACHE

CACHE integer

NO ORDER

ORDER

2
)

as-row-change-timestamp-clause
FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP

as-row-transaction-timestamp-clause
AS ROW BEGIN

START

END

as-row-transaction-start-id-clause
AS TRANSACTION START ID

as-generated-expression-clause
AS (non-deterministic-expression)

non-deterministic-expression
DATA CHANGE OPERATION

special-register

built-in-global-variable

special-register
CURRENT CLIENT_ACCTNG

CURRENT CLIENT_APPLNAME

CURRENT CLIENT_PROGRAMID

CURRENT CLIENT_USERID

CURRENT CLIENT_WRKSTNNAME

CURRENT SERVER

SESSION_USER

USER

Chapter 7. Statements 875

built-in-global-variable
QSYS2.JOB_NAME

QSYS2.SERVER_MODE_JOB_NAME

SYSIBM.CLIENT_HOST

SYSIBM.CLIENT_IPADDR

SYSIBM.CLIENT_PORT

SYSIBM.PACKAGE_NAME

SYSIBM.PACKAGE_SCHEMA

SYSIBM.PACKAGE_VERSION

SYSIBM.ROUTINE_SCHEMA

SYSIBM.ROUTINE_SPECIFIC_NAME

SYSIBM.ROUTINE_TYPE

column-constraint

CONSTRAINT constraint-name

PRIMARY KEY

UNIQUE

references-clause

CHECK (check-condition)

datalink-options
LINKTYPE URL NO LINK CONTROL

FILE LINK CONTROL file-link-options

MODE DB2OPTIONS

file-link-options

INTEGRITY ALL

READ PERMISSION FS

READ PERMISSION DB

WRITE PERMISSION FS

WRITE PERMISSION BLOCKED

RECOVERY NO

ON UNLINK RESTORE

ON UNLINK DELETE

3

column-alteration

876 IBM i: Db2 for i SQL Reference

column-name

SET

DATA TYPE data-type

default-clause

generated-alteration

NOT NULL

NOT HIDDEN

IMPLICITLY HIDDEN

FIELDPROC external-program-name

(

,

constant)

DROP DEFAULT

NOT NULL

GENERATED

IDENTITY

ROW CHANGE TIMESTAMP

FIELDPROC

4

identity-alteration

generated-alteration
GENERATED ALWAYS

GENERATED BY DEFAULT

5

identity-options

GENERATED
ALWAYS

as-row-transaction-timestamp-clause

as-row-transaction-start-id-clause

identity-alteration

SET INCREMENT BY numeric-constant

NO MINVALUE

MINVALUE numeric-constant

NO MAXVALUE

MAXVALUE numeric-constant

NO CYCLE

CYCLE

NO CACHE

CACHE integer

NO ORDER

ORDER

RESTART

WITH numeric-constant

4

unique-constraint

Chapter 7. Statements 877

CONSTRAINT constraint-name

PRIMARY KEY

UNIQUE

(

,

column-name

)

referential-constraint

CONSTRAINT constraint-name

FOREIGN KEY (

,

column-name)

references-clause

references-clause
REFERENCES table-name

(

,

column-name)

ON DELETE NO ACTION

ON DELETE RESTRICT

CASCADE

SET NULL

SET DEFAULT

ON UPDATE NO ACTION

ON UPDATE RESTRICT

6

check-constraint

CONSTRAINT constraint-name

CHECK (check-condition)

ON INSERT VIOLATION SET column-name = DEFAULT

ON UPDATE VIOLATION PRESERVE column-name

7

period-definition
SYSTEM_TIME (begin-column-name , end-column-name)

partitioning-clause

PARTITION BY
RANGE

range-partition-spec

HASH hash-partition-spec

range-partition-spec

(

,

partition-expression) (

,

partition-element)

partition-expression

878 IBM i: Db2 for i SQL Reference

column-name
NULLS LAST

NULLS FIRST

partition-element

PARTITION partition-name

boundary-spec

media-preference memory-preference

boundary-spec EVERY (integer-constant

DAY

DAYS

MONTH

MONTHS

YEAR

YEARS

)
8

boundary-spec

starting-clause ending-clause

starting-clause

STARTING
FROM

(

,

constant

MINVALUE

MAXVALUE

)

constant

MINVALUE

MAXVALUE

INCLUSIVE

EXCLUSIVE

ending-clause

ENDING
AT

(

,

constant

MINVALUE

MAXVALUE

)

constant

MINVALUE

MAXVALUE

INCLUSIVE

EXCLUSIVE

hash-partition-spec

(

,

column-name) INTO integer PARTITIONS

add-partition

partition-name

boundary-spec

media-preference memory-preference

integer HASH PARTITIONS

HASH PARTITION

Chapter 7. Statements 879

attach-partition

partition-name boundary-spec

FROM table-name1

materialized-query-definition
(select-statement) refreshable-table-options

refreshable-table-options
DATA INITIALLY DEFERRED

DATA INITIALLY IMMEDIATE

REFRESH DEFERRED

MAINTAINED BY USER

ENABLE QUERY OPTIMIZATION

DISABLE QUERY OPTIMIZATION

9

materialized-query-table-alteration
(select-statement)

refreshable-table-options

SET REFRESH DEFERRED

MAINTAINED BY USER

ENABLE QUERY OPTIMIZATION

DISABLE QUERY OPTIMIZATION

10

Notes:
1 GENERATED can be specified only if the column has a ROWID data type (or a distinct type that is based on a
ROWID data type), or the column is an identity column, or the column is a row change timestamp.
2 The same clause must not be specified more than once.
3 All five file-link-options must be specified, but they can be specified in any order.
4 The same clause must not be specified more than once.
5 GENERATED can be specified only if the column has a ROWID data type (or a distinct type that is based
on a ROWID data type), the column is an identity column, identity-options are specified, as-row-transaction-
timestamp-clause is specified, as-row-transaction-start-id-clause is specified, or the column is a row change
timestamp.
6 The ON DELETE and ON UPDATE clauses may be specified in either order.
7 The same clause must not be specified more than once.
8 This syntax for a partition-element is valid if there is only one partition-expression with a numeric or
datetime data type.
9 The same clause must not be specified more than once. MAINTAINED BY USER must be specified.
10 The same clause must not be specified more than once.

Description
table-name

Identifies the table to be altered. The table-name must identify a table that exists at the current
server. It must not be a view, a catalog table, or a declared temporary table. If table-name identifies a
materialized query table or a history table, ADD column-definition, ALTER column-alteration, or DROP
COLUMN are not allowed. If table-name identifies a materialized query table or a temporal table,
ATTACH PARTITION and DETACH PARTITION are not allowed.

880 IBM i: Db2 for i SQL Reference

ADD COLUMN column-definition
Adds a column to the table. The table cannot be a history table. If the table has rows, every value of
the column is set to its default value, unless the column is a ROWID column or a generated column.
The database manager generates default values for ROWID columns and generated columns. If the table
previously had n columns, the ordinality of the new column is n+1. The value of n+1 must not exceed
8000.

A table can have only one ROWID and one of each type of generated column.

A DataLink column with FILE LINK CONTROL cannot be added to a table that is a dependent in a
referential constraint with a delete rule of CASCADE or to a system period temporal table. A ROWID
column cannot be added to a system-period temporal table.

Adding a new column must not make the sum of the row buffer byte counts of the columns be greater
than 32766 or, if a VARCHAR, VARBINARY, or VARGRAPHIC column is specified, 32740. Additionally, if a
LOB or XML column is specified, the sum of the byte counts of the columns must not be greater than 3
758 096 383 at the time of insert or update. For information on the byte counts of columns according to
data type, see “Maximum row sizes” on page 1164.

If the table is a system-period temporal table, the column is also added to the associated history table.
The following attributes are copied for the column in the history table:

• Column name and system column name
• Data type
• Length, precision, and scale
• FOR BIT DATA, FOR SBCS DATA, FOR MIXED DATA attribute
• CCSID
• Allocate attribute
• Null attribute
• Hidden attribute
• Field procedure

column-name
Names the column to be added to the table. Do not use the same name for more than one column of
the table or for a system-column-name of the table. A column named SYSTEM_TIME cannot be added
to a table that has a period. Do not qualify column-name.

FOR COLUMN system-column-name
Provides an IBM i name for the column. Do not use the same name for more than one column-name or
system-column-name of the table.

If the system-column-name is not specified, and the column-name is not a valid system-column-name,
a system column name is generated. For more information about how system column names are
generated, see “Rules for Column Name Generation” on page 1166.

data-type
Specifies the data type of the column. The data type can be a built-in data type or a distinct type.
built-in-type

Specifies a built-in data type. See “CREATE TABLE” on page 1115 for a description of built-in
types.

distinct-type-name
Specifies that the data type of a column is a distinct type. The length, precision, and scale of the
column are respectively the length, precision, and scale of the source type of the distinct type. If
a distinct type name is specified without a schema name, the distinct type name is resolved by
searching the schemas on the SQL path.

Chapter 7. Statements 881

DEFAULT
Specifies a default value for the column. This clause cannot be specified more than once in the
same column-definition. DEFAULT cannot be specified for the following types of columns because the
system generates default values:

• a ROWID column
• an identity column
• a row change timestamp column
• a row-begin column
• a row-end column
• a transaction-start-ID column
• a generated expression column

For an XML column, the default is NULL unless NOT NULL is specified; in that case there is no default.
If a value is not specified following the DEFAULT keyword or a DEFAULT clause is not specified, then:

• if the column is a generated column, the default depends on the type of generated column. For
these values, see “GENERATED” on page 884 keyword.

• if the column is nullable, the default value is the null value.
• if the column is not nullable, the default depends on the data type of the column:

Data type Default value

Numeric 0

Fixed-length character or graphic
string

Blanks

Fixed-length binary string Hexadecimal zeros

Varying-length string A string length of 0

Date For existing rows, a date corresponding to January 1,
0001. For added rows, the current date.

Time For existing rows, a time corresponding to 0 hours, 0
minutes, and 0 seconds. For added rows, the current time.

Timestamp For existing rows, a date corresponding to January 1,
0001 and a time corresponding to 0 hours, 0 minutes,
0 seconds, and 0 fractional seconds. For added rows, the
current timestamp.

Datalink A value corresponding to DLVALUE('','URL','')

distinct-type The default value of the corresponding source type of the
distinct type.

Omission of NOT NULL and DEFAULT from a column-definition is an implicit specification of DEFAULT
NULL.
constant

Specifies the constant as the default for the column. The specified constant must represent
a value that could be assigned to the column in accordance with the rules of assignment as
described in “Assignments and comparisons” on page 89. A floating-point constant or decimal
floating-point constant must not be used for a SMALLINT, INTEGER, BIGINT, DECIMAL, or
NUMERIC column. A decimal constant must not contain more digits to the right of the decimal
point than the specified scale of the column.

USER
Specifies the value of the USER special register at the time of INSERT or UPDATE as the default
value for the column. The data type of the column must be CHAR or VARCHAR with a length

882 IBM i: Db2 for i SQL Reference

attribute that is greater than or equal to the length attribute of the USER special register. For
existing rows, the value is that of the USER special register at the time the ALTER TABLE statement
is processed.

NULL
Specifies null as the default for the column. If NOT NULL is specified, DEFAULT NULL must not be
specified within the same column-definition.

CURRENT_DATE
Specifies the current date as the default for the column. If CURRENT_DATE is specified, the data
type of the column must be DATE or a distinct type based on a DATE.

CURRENT_TIME
Specifies the current time as the default for the column. If CURRENT_TIME is specified, the data
type of the column must be TIME or a distinct type based on a TIME.

CURRENT_TIMESTAMP or CURRENT_TIMESTAMP(integer)
Specifies the current timestamp as the default for the column. If CURRENT_TIMESTAMP is
specified, the data type of the column must be TIMESTAMP or a distinct type based on a
TIMESTAMP. The timestamp precision of the CURRENT_TIMESTAMP special register used as the
default will always match the timestamp precision of the column, regardless of the precision
specified for the special register.

cast-function-name
This form of a default value can only be used with columns defined as a distinct type, BINARY,
VARBINARY, BLOB, CLOB, DBCLOB, DATE, TIME, or TIMESTAMP data types. The following table
describes the allowed uses of these cast-functions.

Data Type Cast Function Name

Distinct type N based on a BINARY,
VARBINARY, BLOB, CLOB, or DBCLOB

BINARY, VARBINARY, BLOB, CLOB, or DBCLOB *

Distinct type N based on a DATE, TIME, or
TIMESTAMP

N (the user-defined cast function that was
generated when N was created) **

or
DATE, TIME, or TIMESTAMP *

Distinct type N based on other data types N (the user-defined cast function that was
generated when N was created) **

BINARY, VARBINARY, BLOB, CLOB, or
DBCLOB

BINARY, VARBINARY, BLOB, CLOB, or DBCLOB *

DATE, TIME, or TIMESTAMP DATE, TIME, or TIMESTAMP *

Notes:

* The name of the function must match the name of the data type (or the source type of the
distinct type) with an implicit or explicit schema name of QSYS2.

** The name of the function must match the name of the distinct type for the column. If qualified
with a schema name, it must be the same as the schema name for the distinct type. If not
qualified, the schema name from function resolution must be the same as the schema name for
the distinct type.

constant
Specifies a constant as the argument. The constant must conform to the rules of a constant
for the source type of the distinct type or for the data type if not a distinct type. For BINARY,
VARBINARY, BLOB, CLOB, DBCLOB, DATE, TIME, and TIMESTAMP functions, the constant
must be a string constant.

Chapter 7. Statements 883

USER
Specifies the value of the USER special register at the time of INSERT or UPDATE as the
default value for the column. The data type of the source type of the distinct type of the
column must be CHAR or VARCHAR with a length attribute that is greater than or equal to the
length attribute of USER. For existing rows, the value is that of the USER special register at the
time the ALTER TABLE statement is processed.

CURRENT_DATE
Specifies the current date as the default for the column. If CURRENT_DATE is specified, the
data type of the source type of the distinct type of the column must be DATE.

CURRENT_TIME
Specifies the current time as the default for the column. If CURRENT_TIME is specified, the
data type of the source type of the distinct type of the column must be TIME.

CURRENT_TIMESTAMP or CURRENT_TIMESTAMP(integer)
Specifies the current timestamp as the default for the column. If CURRENT_TIMESTAMP
is specified, the data type of the source type of the distinct type of the column must be
TIMESTAMP. The timestamp precision of the CURRENT_TIMESTAMP special register used
as the default will always match the timestamp precision of the column, regardless of the
precision specified for the special register.

If the value specified is not valid, an error is returned.

GENERATED
Specifies that the database manager generates values for the column. GENERATED may be specified
if the column is to be considered an identity column (defined with the AS IDENTITY clause), a row
change timestamp column, a row-begin column, a row-end column, a transaction-start-ID column, or
a generated expression column. It may also be specified if the data type of the column is a ROWID (or
a distinct type that is based on a ROWID). Otherwise, it must not be specified. An identity, ROWID, or
row change timestamp column cannot be added to a system-period temporal table.

If the column is nullable, the null value is assigned as the value for the column in existing rows.
Otherwise, the value for the column in existing rows depends on the type of generated column:

• IDENTITY generates an identity value for each row
• ROW CHANGE TIMESTAMP uses a value that corresponds to the timestamp of the ALTER TABLE

statement
• ROW BEGIN uses a date that corresponds to January 1, 0001 and a time that corresponds to 0

hours, 0 minutes, 0 seconds, and 0 fractional seconds
• ROW END uses a date that corresponds to December 30, 9999, and a time that corresponds to 0

hours, 0 minutes, 0 seconds, and 0 fractional seconds
• TRANSACTION START ID uses a date that corresponds to January 1, 0001, and a time that

corresponds to 0 hours, 0 minutes, 0 seconds, and 0 fractional seconds
• A generated expression uses 0 for numeric columns, a string with length 0 for varying-length

character string columns, and blanks for fixed-length character string columns.

ALWAYS
Specifies that the database manager will always generate a value for the column when a row is
inserted or updated and a default value must be generated. ALWAYS is the recommended value.

BY DEFAULT
Specifies that the database manager will generate a value for the column when a row is inserted
or updated and a default value must be generated, unless an explicit value is specified.

For a ROWID column, the database manager uses a specified value, but it must be a valid unique
row ID value that was previously generated by the database manager or Db2 for i.

For an identity column or row change timestamp column, the database manager inserts or
updates a specified value but does not verify that it is a unique value for the column unless
the identity column or row change timestamp column has a unique constraint or a unique index
that solely specifies the identity column or row change timestamp column.

884 IBM i: Db2 for i SQL Reference

AS IDENTITY
Specifies that the column is an identity column for the table. A table can have only one identity
column. An identity column is not allowed in a distributed table. AS IDENTITY can be specified only
if the data type for the column is an exact numeric type with a scale of zero (SMALLINT, INTEGER,
BIGINT, DECIMAL or NUMERIC with a scale of zero, or a distinct type based on one of these data
types). If a DECIMAL or NUMERIC data type is specified, the precision must not be greater than 31.

An identity column is implicitly NOT NULL. See the AS IDENTITY clause in “CREATE TABLE” on page
1115 for the descriptions of the identity attributes.

FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP
Specifies that the column is a timestamp and the values will be generated by the database manager.
The database manager generates a value for the column for each row as a row is inserted, and for
every row in which any column is updated. The value generated for a row change timestamp column is
a timestamp corresponding to the time of the insert or update of the row. If multiple rows are inserted
with a single SQL statement, the value for the row change timestamp column may be different for
each row to reflect when each row was inserted. The generated value is not guaranteed to be unique.
A table can have only one row change timestamp column. If data-type is specified, it must be a
TIMESTAMP with a precision of 6 or a distinct type based on a TIMESTAMP with a precision of 6. A row
change timestamp column cannot have a DEFAULT clause and must be NOT NULL.

AS ROW BEGIN
Specifies that the column contains timestamp data and that the values are generated by the database
manager. The database manager generates a value for the column for each row as the row is
inserted, and for every row in which any column is updated. The generated value is a timestamp
that corresponds to the start time that is associated with the most recent transaction. If multiple rows
are inserted with a single SQL statement, the values for the transaction start timestamp column are
the same for each row.
For a system-period temporal table, the database manager ensures uniqueness of the generated
values for a row-begin column across transactions. The timestamp value might be adjusted to ensure
that rows inserted into an associated history table have the end timestamp value greater than the
begin timestamp value. This can happen when a conflicting transaction is updating the same row
in the system-period temporal table. The SYSTIME_PERIOD_ADJ QAQQINI option must be set to
*ADJUST for this adjustment to the timestamp value to occur. If multiple rows are inserted or updated
within a single SQL transaction and an adjustment is not needed, the values for the row-begin column
are the same for all the rows and are unique from the values generated for the column for another
transaction.
A row-begin column is intended to be used for a system-period temporal table and is required as
the first column of a SYSTEM_TIME period. A table can have only one row-begin column. If data-type
is not specified, the column is defined as a TIMESTAMP(12). If data-type is specified, it must be
TIMESTAMP(12). The column cannot have a DEFAULT clause and must be defined as NOT NULL. A
row-begin column is not updatable.
For existing rows, the value of the column is set to a date that corresponds to January 1, 0001 and a
time that corresponds to 0 hours, 0 minutes, 0 seconds, and 0 fractional seconds.

AS ROW END
Specifies that a value for the data type of the column is assigned by the database manager
whenever a row is inserted or any column in the row is updated. The assigned value is
TIMESTAMP ’9999-12-30-00.00.00.000000000000’. For a system-period temporal table, when a
row is deleted, the value of the row-end column in the historical row reflects when the row was
deleted. If multiple rows are deleted with a single SQL statement, the values for the column in the
historical rows are the same.
A row-end column is intended to be used for a system-period temporal table and is required as the
second column of a SYSTEM_TIME period. A table can have only one row-end column. If data-type
is not specified, the column is defined as TIMESTAMP(12). If data-type is specified, it must be
TIMESTAMP(12). The column cannot have a DEFAULT clause and must be defined as NOT NULL. A
row-end column is not updatable.

Chapter 7. Statements 885

For existing rows, the value of the column is set to a date that corresponds to December 30, 9999 and
a time that corresponds to 0 hours, 0 minutes, 0 seconds, and 0 fractional seconds.

AS TRANSACTION START ID
Specifies that the value is assigned by the database manager whenever a row is inserted into the
table or any column in the row is updated. The database manager assigns a unique timestamp value
per transaction or the null value. The null value is assigned to the transaction-start-ID column if the
column is nullable and if there is a row-begin column in the table for which the value did not need to
be adjusted. Otherwise the value is generated. If multiple rows are inserted or updated within a single
SQL transaction, the values for the transaction-start-ID column are the same for all the rows and are
unique from the values generated for the column for another transaction.
A transaction-start-ID column is intended to be used for a system-period temporal table and is
required for a system-period temporal table. A table can have only one transaction-start-ID column. If
data-type is not specified, the column is defined as TIMESTAMP(12). If data-type is specified it must
be TIMESTAMP(12). A transaction-start-ID column cannot have a DEFAULT clause. A transaction-
start-ID column is not updatable.
For existing rows, if the column is nullable, the null value is assigned as the value of the column.
Otherwise, the value of the column is set to a timestamp with a date that corresponds to January 1,
0001 and a time that corresponds to 0 hours, 0 minutes, 0 seconds, and 0 fractional seconds.

DATA CHANGE OPERATION
Specifies that the database manager generates a value for each row that is inserted, for every row
in which any column is updated, and for all rows deleted from a system-period temporal table when
the history table is defined with ON DELETE ADD EXTRA ROW. The column will contain one of the
following values:
I

insert operation
U

update operation
D

delete operation
If data-type is not specified, the column is defined as CHAR(1). If data-type is specified it must be
CHAR(1). The column cannot have a DEFAULT clause or a field procedure.
For existing rows, if the column is nullable, the null value is assigned as the value of the column.
Otherwise, the value of the column is set to blank.

special-register
Specifies that the value of a special register is assigned by the database manager for each row that is
inserted, for every row in which any column is updated, and for all rows deleted from a system-period
temporal table when the history table is defined with ON DELETE ADD EXTRA ROW. The value of the
special register at the time of the data change statement is used. If multiple rows are changed with a
single SQL statement, the value for the column will be the same for all of the rows.
data-type must be defined according to the following table:

Special register Data type for the column

CURRENT CLIENT_ACCTNG VARCHAR(255)

CURRENT CLIENT_APPLNAME VARCHAR(255)

CURRENT CLIENT_PROGRAMID VARCHAR(255)

CURRENT CLIENT_USERID VARCHAR(255)

CURRENT CLIENT_WRKSTNNAME VARCHAR(255)

CURRENT SERVER VARCHAR(18)

SESSION_USER VARCHAR(128)

886 IBM i: Db2 for i SQL Reference

Special register Data type for the column

USER VARCHAR(18)

The column cannot have a DEFAULT clause or a field procedure.
For existing rows, if the column is nullable, the null value is assigned as the value of the column.
Otherwise, the value of the column is set to a string with length 0.

built-in-global-variable
Specifies that the value of a built-in global variable is assigned by the database manager for each
row that is inserted, for every row in which any column is updated, and for all rows deleted from a
system-period temporal table when the history table is defined with ON DELETE ADD EXTRA ROW.
The value of the built-in global variable at the time of the data change statement is used. If multiple
rows are changed with a single SQL statement, the value for the column will be the same for all of the
rows.
data-type must be defined according to the following table:

Built-in global variable Data type for the column

QSYS2.JOB_NAME VARCHAR(28)

QSYS2.SERVER_MODE_JOB_NAME VARCHAR(28)

SYSIBM.CLIENT_HOST VARCHAR(255)

SYSIBM.CLIENT_IPADDR VARCHAR(128)

SYSIBM.CLIENT_PORT INTEGER

SYSIBM.PACKAGE_NAME VARCHAR(128)

SYSIBM.PACKAGE_SCHEMA VARCHAR(128)

SYSIBM.PACKAGE_VERSION VARCHAR(64)

SYSIBM.ROUTINE_SCHEMA VARCHAR(128)

SYSIBM.ROUTINE_SPECIFIC_NAME VARCHAR(128)

SYSIBM.ROUTINE_TYPE CHAR(1)

The column cannot have a DEFAULT clause or a field procedure.
For existing rows, if the column is nullable, the null value is assigned as the value of the column.
Otherwise, the value of the column is set to 0 for numeric columns, a string with length 0 for
varying-length character string columns, and blanks for fixed-length character string columns.

NOT NULL
Prevents the column from containing null values. Omission of NOT NULL implies that the column can
contain null values. If NOT NULL is specified in the column definition, then DEFAULT must also be
specified unless the column is an identity column. NOT NULL is required for a row change timestamp
column, a row-begin column, and a row-end column.

NOT HIDDEN
Indicates the column is included in implicit references to the table in SQL statements. This is the
default.

IMPLICITLY HIDDEN
Indicates the column is not visible in SQL statements unless it is referred to explicitly by name. For
example, SELECT * does not include any hidden columns in the result. A table must contain at least
one column that is not IMPLICITLY HIDDEN.

column-constraint
The column-constraint of a column-definition provides a shorthand method of defining a constraint
composed of a single column. Thus, if a column-constraint is specified in the definition of column C,

Chapter 7. Statements 887

the effect is the same as if that constraint were specified as a unique-constraint, referential-constraint
or check-constraint in which C is the only identified column.
CONSTRAINT constraint-name

A constraint-name must not be the same as a constraint name that was previously specified in
the ALTER TABLE statement and must not identify a constraint that already exists at the current
server.

If the clause is not specified, a unique constraint name is generated by the database manager.

PRIMARY KEY
Provides a shorthand method of defining a primary key composed of a single column. Thus, if
PRIMARY KEY is specified in the definition of column C, the effect is the same as if the PRIMARY
KEY(C) clause is specified as a separate clause.

This clause must not be specified in more than one column-definition and must not be specified
at all if the UNIQUE clause is specified in the column definition. The column must not be a LOB,
DataLink, or XML column. If a sort sequence is specified, the column must not contain a field
procedure.

When a primary key is added, a CHECK constraint is implicitly added to enforce the rule that the
NULL value is not allowed in the column that makes up the primary key.

UNIQUE
Provides a shorthand method of defining a unique constraint composed of a single column. Thus,
if UNIQUE is specified in the definition of column C, the effect is the same as if the UNIQUE (C)
clause is specified as a separate clause.

This clause cannot be specified more than once in a column definition and must not be specified
if PRIMARY KEY is specified in the column-definition. The column must not be a LOB, DataLink, or
XML column. If a sort sequence is specified, the column must not contain a field procedure.

references-clause
The references-clause of a column-definition provides a shorthand method of defining a foreign
key composed of a single column. Thus, if a references-clause is specified in the definition of
column C, the effect is the same as if that references-clause were specified as part of a FOREIGN
KEY clause in which C is the only identified column. The references-clause is not allowed if the
table is a declared global temporary table, a distributed table, or a history table. The column
cannot be a row change timestamp column.

CHECK(check-condition)
Provides a shorthand method of defining a check constraint whose check-condition only
references a single column. Thus, if CHECK is specified in the column definition of column C,
no columns other than C can be referenced in the check-condition of the check constraint. The
effect is the same as if the check constraint were specified as a separate clause.

ROWID, XML, or DATALINK with FILE LINK CONTROL columns cannot be referenced in a CHECK
constraint. For additional restrictions see, “ADD check-constraint” on page 895.

FIELDPROC
Designates an external-program-name as the field procedure exit routine for the column. It must be
an ILE program that does not contain SQL. It cannot be a service program.
The field procedure encodes and decodes column values. Before a value is inserted in the column, it is
passed to the field procedure for encoding. Before a value from the column is used, it is passed to the
field procedure for decoding.
The field procedure is also invoked during the processing of the ALTER TABLE statement. When so
invoked, the procedure provides Db2 with the column's field description. The field description defines
the data characteristics of the encoded values. By contrast, the information supplied for the column
defines the data characteristics of the decoded values.
constant

Specifies a parameter that is passed to the field procedure when it is invoked. A parameter list is
optional.

888 IBM i: Db2 for i SQL Reference

A field procedure cannot be defined for a column that is a ROWID or DATALINK or a distinct
type based on a ROWID or DATALINK. The column must not be an identity column, a row change
timestamp column, a row-begin column, a row-end column, a transaction-start-ID column, or a
generated expression column. The column must not have a default value of CURRENT DATE,
CURRENT TIME, CURRENT TIMESTAMP, or USER. The column cannot be referenced in a check
condition, unless it is referenced in a NULL predicate. If it is part of a foreign key, the corresponding
parent key column must use the same field procedure. See SQL Programming for more details on how
to create a field procedure.

datalink-options
Specifies the options associated with a DATALINK column. See “CREATE TABLE” on page 1115 for a
description of datalink-options.

BEFORE column-name
Identifies the column before which the new column is added. The name must not be qualified and
must identify an existing column in the table. If the BEFORE clause is not specified, the column is
added at the end of the row.

ALTER COLUMN column-alteration
Alters the definition of a column, including the attributes of an existing identity column. Only the
attributes specified will be altered. Others will remain unchanged. If the table is a system-period
temporal table, the change will be made to the corresponding history table column, except any change to
the default value or a generated column attribute such as identity or row change timestamp is not copied.

column-name
Identifies the column to be altered. The name must not be qualified and must identify an existing
column in the table. The name must not identify a column that is being added or dropped in the same
ALTER TABLE statement.

SET DATA TYPE data-type
Specifies the new data type of the column to be altered. The new data type must be compatible with
the existing data type of the column. For more information about the compatibility of data types see
“Assignments and comparisons” on page 89. The following alters are not allowed:

• Numeric data type to a character-string data type
• Character-string data type to a numeric data type
• Datetime data type to character-string data type
• Datetime data type to a different datetime data type

For an XML column, only the CCSID can be changed.

The specified length, precision, and scale may be larger, smaller, or the same as the existing length,
precision, and scale. However, if the new length, precision, or scale is smaller, truncation or numeric
conversion errors may occur.

If the specified column has a default value and a new default value is not specified, the existing
default value must represent a value that could be assigned to the column in accordance with the
rules for assignment as described in “Assignments and comparisons” on page 89.

A row change timestamp column cannot be altered to a timestamp with a precision other than 6.

A row-begin, row-end, or transaction-start-ID column cannot be altered to a timestamp with a
precision other than 12.

A generated expression column cannot be altered to a data type and length different than its required
definition.

If the table is a system-period temporal table, the column is also changed in the associated history
table. If the table is a system-period temporal table, the column cannot be altered in any way that
could cause data loss, such as a shorter string length or lower precision.

Chapter 7. Statements 889

If the column is specified in a unique, primary, or foreign key, the new sum of the lengths of the
columns of the keys must not exceed 32766-n, where n is the number of columns specified that allow
nulls.

Changing the attributes will cause any existing values in the column to be converted to the new
column attributes according to the rules for assignment to a column, except that string values will be
truncated.

Altering the data type attributes of a column can affect a row permission or column mask that is
defined for the table. When data type attributes of a column change, row permissions and column
masks are reevaluated using the new column attributes. If an error is encountered during the
reevaluation process, the ALTER statement fails.

If a row permission or a column mask defined on a different table references this column, the row
permission or column mask will not be reevaluated until it is used or is the object of an ALTER
REGENERATE. A reevaluation error will result in failure of either the regenerate or the statement that
first requires use of the column mask or row permission. The row permission or column mask may
need to be dropped and recreated to fix the error.

SET default-clause
Specifies the new default value of the column to be altered. The specified default value must
represent a value that could be assigned to the column in accordance with the rules for assignment as
described in “Assignments and comparisons” on page 89.

SET GENERATED ALWAYS or GENERATED BY DEFAULT
Specifies that the database manager generates values for the column. GENERATED may be specified
if the column is an identity column, row change timestamp column, or the data type of the column is
a ROWID (or a distinct type that is based on a ROWID). For a row-begin, row-end, transaction-start-ID
column, and generated expression column, only GENERATED ALWAYS is allowed. For other types of
columns, GENERATED must not be specified.

AS IDENTITY
Specifies that the column is changed to an identity column for the table. A table can have only
one identity column. An identity column is not allowed in a distributed table. AS IDENTITY can be
specified only if the data type for the column is an exact numeric type with a scale of zero (SMALLINT,
INTEGER, BIGINT, DECIMAL or NUMERIC with a scale of zero, or a distinct type based on one of these
data types). If a DECIMAL or NUMERIC data type is specified, the precision must not be greater than
31.

The column must not be nullable. If the column has an explicit default value, the default value is
dropped. See the AS IDENTITY clause in “CREATE TABLE” on page 1115 for the descriptions of the
identity attributes.

as-row-transaction-timestamp-clause
Specifies that the column is changed to a row-begin or row-end column for the table. The column
must be a TIMESTAMP(12), must not have a default and must not be nullable.

as-row-transaction-start-id-clause
Specifies that the column is changed to a transaction-start-id column for the table. The column must
be a TIMESTAMP(12) and must not have a default.

SET NOT NULL
Specifies that the column cannot contain null values. All values for this column in existing rows of
the table must be not null. If the specified column has a default value and a new default value is not
specified, the existing default value must not be NULL. SET NOT NULL is not allowed if the column is
identified in the foreign key of a referential constraint with a DELETE rule of SET NULL and no other
nullable columns exist in the foreign key.

SET NOT HIDDEN or IMPLICITLY HIDDEN
Specifies the hidden attribute for the column.
NOT HIDDEN

Indicates the column is included in implicit references to the table in SQL statements.

890 IBM i: Db2 for i SQL Reference

IMPLICITLY HIDDEN
Indicates the column is not visible in SQL statements unless it is referred to explicitly by name.
For example, SELECT * does not include any hidden columns in the result. A table must contain at
least one column that is not IMPLICITLY HIDDEN.

SET FIELDPROC
Designates an external-program-name as the field procedure exit routine for the column. It must be
an ILE program that does not contain SQL. It cannot be a service program.
The field procedure encodes and decodes column values. Before a value is inserted in the column, it is
passed to the field procedure for encoding. Before a value from the column is used, it is passed to the
field procedure for decoding.
The field procedure is also invoked during the processing of the ALTER TABLE statement. When so
invoked, the procedure provides Db2 with the column's field description. The field description defines
the data characteristics of the encoded values. By contrast, the information supplied for the column
defines the data characteristics of the decoded values.
constant

Specifies a parameter that is passed to the field procedure when it is invoked. A parameter list is
optional.

A field procedure cannot be defined for a column that is a ROWID or DATALINK or a distinct
type based on a ROWID or DATALINK. The column must not be an identity column, a row change
timestamp column, a row-begin column, a row-end column, a transaction-start-ID column, or a
generated expression column. The column must not have a default value of CURRENT DATE,
CURRENT TIME, CURRENT TIMESTAMP, or USER. The nullability attribute of the encoded and
decoded form of the field must match. The column cannot be referenced in a check condition, unless
it is referenced in a NULL predicate. If it is part of a foreign key, the corresponding parent key column
must use the same field procedure. See SQL Programming topic collection for an example of a field
procedure.

DROP DEFAULT
Drops the current default for the column. The specified column:

• must have a default value and must not have NOT NULL as the null attribute, or
• can have a default value of NULL if the default for the column was defined with DEFAULT NULL.

The new default value is the null value.
DROP NOT NULL

Drops the NOT NULL attribute of the column, allowing the column to have the null value. If a default
value is not specified or does not already exist, the new default value is the null value. DROP NOT
NULL is not allowed if the column is specified in the primary key of the table or is an identity column,
row change timestamp column, row-begin column, row-end column, or ROWID.

DROP GENERATED
Drops the generated attribute of the column. The column must be an identity column, a row change
timestamp column, a row-begin column, a row-end column, a transaction-start-ID column, or a
generated expression column. The generated attribute cannot be dropped for a row-begin column,
row-end column, or transaction-start-ID column if versioning is active.

DROP IDENTITY
Drops the identity attributes of the column, making the column a simple numeric data type column.
DROP IDENTITY is not allowed if the column is not an identity column.

DROP ROW CHANGE TIMESTAMP
Drops the row change timestamp attribute of the column, making the column a simple timestamp
column. DROP ROW CHANGE TIMESTAMP is not allowed if the column is not a row change timestamp
column.

DROP FIELDPROC
Drops the field procedure for the column. DROP FIELDPROC is not allowed if the column does not
have a field procedure defined.

Chapter 7. Statements 891

identity-alteration
Alters the identity attributes of the column. The column must exist in the specified table and must
already be defined with the IDENTITY attribute. For a description of the attributes, see AS IDENTITY.
RESTART

Specifies the next value for an identity column. If WITH numeric-constant is not specified, the
sequence is restarted at the value specified implicitly or explicitly as the starting value when the
identity column was originally created. RESTART does not change the original START WITH value.
WITH numeric-constant

Specifies that numeric-constant will be used as the next value for the column. The numeric-
constant must be an exact numeric constant that can be any positive or negative value that
could be assigned to this column, without nonzero digits existing to the right of the decimal
point.

DROP COLUMN
Drops the identified column from the table.

column-name
Identifies the column to be dropped. The column name must not be qualified. The name must identify
a column of the specified table. The name must not identify:

• a column that was already added or altered in this ALTER TABLE statement
• the only column of a table
• the last column of the table that is not hidden
• a partition key of a partitioned table or a distributed table
• a column in a system-period temporal table
• a column in a history table
• a column referenced in the definition of a period

When a column is dropped, any column mask defined for that column is dropped. A column
referenced in the definition of a row permission or column mask for a different column cannot be
dropped.

CASCADE
Specifies that any views, indexes, triggers, or constraints that are dependent on the column being
dropped are also dropped. 81

RESTRICT
Specifies that the column cannot be dropped if any views, indexes, triggers, materialized query tables,
or constraints are dependent on the column. 81

If all the columns referenced in a constraint are dropped in the same ALTER TABLE statement,
RESTRICT does not prevent the drop.

ADD unique-constraint
CONSTRAINT constraint-name

Names the constraint. A constraint-name must not be the same as a constraint name that was
previously specified in the ALTER TABLE statement and must not identify a constraint that already
exists at the current server. The constraint-name must be unique within a schema.

If not specified, a unique constraint name is generated by the database manager.

UNIQUE (column-name,…)
Defines a unique constraint composed of the identified columns. Each column-name must be an
unqualified name that identifies a column of the table. The same column must not be identified more

81 A trigger is dependent on the column if it is referenced in the UPDATE OF column list or anywhere in the
triggered action.

892 IBM i: Db2 for i SQL Reference

than once. The column must not be a LOB, DATALINK, or XML column. If a sort sequence is specified,
the column must not contain a field procedure. The number of identified columns must not exceed
120, and the sum of their lengths must not exceed 32766-n, where n is the number of columns
specified that allow nulls. UNIQUE is not allowed if the table is a history table.

The set of identified columns cannot be the same as the set of columns specified in another UNIQUE
constraint or PRIMARY KEY on the table. For example, UNIQUE (A,B) is not allowed if UNIQUE (B,A) or
PRIMARY KEY (A,B) already exists on the table. Any existing nonnull values in the set of columns must
be unique. Multiple null values are allowed.

If a unique index already exists on the identified columns, that index is designated as a unique
constraint index. Otherwise, a unique index is created to support the uniqueness of the unique key.
The unique index is created as part of the system physical file, not as a separate system logical file.

PRIMARY KEY (column-name,…)
Defines a primary key composed of the identified columns. Each column-name must be an unqualified
name that identifies a column of the table. The same column must not be identified more than once.
The column must not be a LOB, DATALINK, or XML column. If a sort sequence is specified, the column
must not contain a field procedure. The number of identified columns must not exceed 120, and
the sum of their lengths must not exceed 32766. The table must not already have a primary key.
PRIMARY KEY is not allowed if the table is a history table.

The identified columns cannot be the same as the columns specified in another UNIQUE constraint on
the table. For example, PRIMARY KEY (A,B) is not allowed if UNIQUE (B,A) already exists on the table.
Any existing values in the set of columns must be unique.

When a primary key is added, a CHECK constraint is implicitly added to enforce the rule that the NULL
value is not allowed in any of the columns that make up the primary key.

If a unique index already exists on the identified columns, that index is designated as a primary index.
Otherwise, a primary index is created to support the uniqueness of the primary key. The unique index
is created as part of the system physical file, not a separate system logical file.

ADD referential-constraint
CONSTRAINT constraint-name

Names the constraint. A constraint-name must not identify a constraint that already exists at the
current server.

If not specified, a unique constraint name is generated by the database manager.

FOREIGN KEY
Defines a referential constraint. FOREIGN KEY is not allowed if the table is a declared global
temporary table, a distributed table, or a history table.

Let T1 denote the table being altered.

(column-name,…)
The foreign key of the referential constraint is composed of the identified columns. Each column-
name must be an unqualified name that identifies a column of T1. The same column must not be
identified more than once. The column must not be a LOB, DATALINK, or XML column and must
not be a row change timestamp column. If a sort sequence is specified, the column must not
contain a field procedure. The number of the identified columns must not exceed 120, and the
sum of their lengths must not exceed 32766-n, where n is the number of columns specified that
allows nulls.

REFERENCES table-name
The table-name specified in a REFERENCES clause must identify a base table that exists at the
current server, but it must not identify a catalog table, a declared temporary table, a distributed
table, or a history table. If the parent is a partitioned table, the unique index that enforces the
parent unique constraint must be non-partitioned. This table is referred to as the parent table in
the constraint relationship.

Chapter 7. Statements 893

A referential constraint is a duplicate if its foreign key, parent key, and parent table are the same
as the foreign key, parent key, and parent table of an existing referential constraint on the table.
Duplicate referential constraints are allowed, but not recommended.

Let T2 denote the identified parent table.

(column-name,…)
The parent key of the referential constraint is composed of the identified columns. Each column-
name must be an unqualified name that identifies a column of T2. The same column must not be
identified more than once. The column must not be a LOB, DATALINK, or XML column and must
not be a row change timestamp column. If a sort sequence is specified, the column must not
contain a field procedure. The number of identified columns must not exceed 120, and the sum
of their lengths must not exceed 32766-n, where n is the number of columns specified that allow
nulls.

The list of column names must be identical to the list of column names in the primary key of T2 or
a UNIQUE constraint that exists on T2. The names may be specified in any order. For example, if
(A,B) is specified, a unique constraint defined as UNIQUE (B,A) would satisfy the requirement. If a
column name list is not specified then T2 must have a primary key. Omission of the column name
list is an implicit specification of the columns of that primary key.

The specified foreign key must have the same number of columns as the parent key of T2. The
description of the nth column of the foreign key and the nth column of the parent key must have
identical data types, lengths, CCSIDs, and FIELDPROCs.

Unless the table is empty, the values of the foreign key must be validated before the table can be
used. Values of the foreign key are validated during the execution of the ALTER TABLE statement.
Therefore, every nonnull value of the foreign key must match some value of the parent key of T2.

The referential constraint specified by the FOREIGN KEY clause defines a relationship in which T2 is
the parent and T1 is the dependent.

ON DELETE
Specifies what action is to take place on the dependent tables when a row of the parent table is
deleted. There are five possible actions:

• NO ACTION (default)
• RESTRICT
• CASCADE
• SET NULL
• SET DEFAULT

SET NULL must not be specified unless some column of the foreign key allows null values. SET
NULL and SET DEFAULT must not be specified if T1 has an update trigger.

CASCADE must not be specified if T1 has a delete trigger.

CASCADE must not be specified if T1 contains a DataLink column with FILE LINK CONTROL.

The delete rule applies when a row of T2 is the object of a DELETE or propagated delete operation
and that row has dependents in T1. Let p denote such a row of T2.

• If RESTRICT or NO ACTION is specified, an error occurs and no rows are deleted.
• If CASCADE is specified, the delete operation is propagated to the dependents of p in T1.
• If SET NULL is specified, each nullable column of the foreign key of each dependent of p in T1 is

set to null.
• If SET DEFAULT is specified, each column of the foreign key of each dependent of p in T1 is set

to its default value.

ON UPDATE
Specifies what action is to take place on the dependent tables when a row of the parent table is
updated.

894 IBM i: Db2 for i SQL Reference

The update rule applies when a row of T2 is the object of an UPDATE or propagated update
operation and that row has dependents in T1. Let p denote such a row of T2.

• If RESTRICT or NO ACTION is specified, an error occurs and no rows are updated.

ADD check-constraint
CONSTRAINT constraint-name

Names the constraint. A constraint-name must not identify a constraint that already exists at the
current server. The constraint-name must be unique within a schema.

If not specified, a unique constraint name is generated by the database manager.

CHECK(check-condition)
Defines a check constraint. The check-condition must be true or unknown for every row of the table.

The check-condition is a search-condition, except:

• It can only refer to columns of the table and the column names must not be qualified.
• The result of any expression in the check-condition cannot be a ROWID, XML, or DATALINK with FILE

LINK CONTROL data type.
• It must not contain any of the following:

– Subqueries
– Aggregate functions
– Variables
– Global variables
– Parameter markers
– Sequence-references
– Complex expressions that contain LOBs (such as concatenation)
– OLAP specifications
– ROW CHANGE expressions
– IS JSON, JSON_EXISTS, or REGEXP_LIKE predicates
– Special registers
– Any function that is not deterministic
– User-defined functions other than functions that were implicitly generated with the creation of a

distinct type
– The following built-in scalar functions:

ATAN2 DLURLPATHONLY LOCATE_IN_STRING RPAD

BSON_TO_JSON DLURLSCHEME LPAD SCORE

CARDINALITY DLURLSERVER MAX_CARDINALITY SOUNDEX

CONTAINS DLVALUE MONTHNAME TABLE_NAME

CURDATE ENCRYPT_AES MONTHS_BETWEEN TABLE_SCHEMA

CURTIME ENCRYPT_RC2 NEXT_DAY TIMESTAMP_FORMAT

DATAPARTITIONNAME ENCRYPT_TDES NOW TIMESTAMPDIFF

DATAPARTITIONNUM GENERATE_UNIQUE OVERLAY TRUNC_TIMESTAMP

DAYNAME GETHINT RAISE_ERROR VARCHAR_FORMAT

DBPARTITIONNAME IDENTITY_VAL_LOCAL RAND VERIFY_GROUP_FOR_USER

DECRYPT_BINARY INSERT REGEXP_COUNT WEEK_ISO

DECRYPT_BIT INTERPRET REGEXP_INSTR WRAP

DECRYPT_CHAR JSON_ARRAY REGEXP_REPLACE XMLPARSE

Chapter 7. Statements 895

DECRYPT_DB JSON_OBJECT REGEXP_SUBSTR XMLVALIDATE

DIFFERENCE JSON_QUERY REPEAT XSLTRANSFORM

DLURLCOMPLETE 1 JSON_TO_BSON REPLACE

DLURLPATH JSON_VALUE ROUND_TIMESTAMP

1 For DataLinks with an attribute of FILE LINK CONTROL and READ PERMISSION DB.

ON INSERT VIOLATION
Specifies the action to take if the check-condition is false for a row being inserted. If this clause is not
specified, an error will occur if the check-condition is false for an insert.
SET column-name = DEFAULT

The default value for column-name is inserted into the table instead of the value provided by the
insert operation.

column-name must be referenced in the check-condition.

ON UPDATE VIOLATION
Specifies the action to take if the check-condition is false for a row being updated. If this clause is not
specified, an error will occur if the check-condition is false for an update.
PRESERVE column-name

The current value for column-name remains in the table rather than being replaced by the value
provided by the update operation.

column-name must be referenced in the check-condition.

For more information about search-condition, see “Search conditions” on page 227.

DROP
PRIMARY KEY

Drops the definition of the primary key and all referential constraints in which the primary key is a
parent key. The table must have a primary key.

UNIQUE constraint-name
Drops the unique constraint constraint-name and all referential constraints dependent on this unique
constraint. The constraint-name must identify a unique constraint on the table. DROP UNIQUE will not
drop a PRIMARY KEY unique constraint.

FOREIGN KEY constraint-name
Drops the referential constraint constraint-name. The constraint-name must identify a referential
constraint in which the table is a dependent.

CHECK constraint-name
Drops the check constraint constraint-name. The constraint-name must identify a check constraint on
the table.

CONSTRAINT constraint-name
Drops the constraint constraint-name. The constraint-name must identify a unique, referential, or
check constraint on the table. If the constraint is a PRIMARY KEY or UNIQUE constraint, all referential
constraints in which the primary key or unique key is a parent are also dropped.

CASCADE
Specifies for unique constraints that any referential constraints that are dependent on the constraint
being dropped are also dropped.

RESTRICT
Specifies for unique constraints that the constraint cannot be dropped if any referential constraints
are dependent on the constraint.

896 IBM i: Db2 for i SQL Reference

ADD partitioning-clause
Changes a non-partitioned table into a partitioned table. If the specified table is a distributed table or
already a partitioned table, an error is returned. A DDS-created physical file cannot be partitioned. See
“CREATE TABLE” on page 1115 for a description of the partitioning-clause.

Changing a non-partitioned table that contains data into a partitioned table will require data movement
between the data partitions. When using range partitioning, all existing data in the table must be
assignable to the specified range partitions.

DROP PARTITIONING
Changes a partitioned table into a non-partitioned table. If the specified table is already non-partitioned,
an error is returned.

Changing a partitioned table that contains data into a non-partitioned table will require data movement
between the data partitions.

ADD PARTITION add-partition
Adds one or more partitions to a partitioned table. The specified table must be a partitioned table. The
number of partitions must not exceed 256.

Changing the number of hash partitions in a partitioned table that contains data will require data
movement between the data partitions.

partition-name
Names the partition. A partition-name must not identify a data partition that already exists in the
table.

If the clause is not specified, a unique partition name is generated by the database manager.

boundary-spec
Specifies the boundaries of a range partition. If the specified table is not a range partitioned table, an
error is returned. Both a starting-clause and an ending-clause must be specified. See “CREATE TABLE”
on page 1115 for a description of the boundary-spec.

integer HASH PARTITIONS
Specifies the number of hash partitions to be added. If the specified table is not a hash partitioned
table, an error is returned.

ALTER PARTITION
Alters the boundaries of a partition of a range partitioned table. If the specified table is not a range
partitioned table, an error is returned.

Changing the boundaries of one or more partitions of a table that contains data may require data
movement between the data partitions. All existing data in the table must be assignable to the specified
range partitions.

partition-name
Specifies the name of the partition to alter. The partition-name must identify a data partition that
exists in the table.

boundary-spec
Specifies the new boundaries of a range partition. Both a starting-clause and an ending-clause must
be specified. See “CREATE TABLE” on page 1115 for a description of the boundary-spec.

DROP PARTITION
Drops a partition of a partitioned table. If the specified table is not a partitioned table, an error is returned.
If the last remaining partition of a partitioned table is specified, an error is returned. A partition cannot

Chapter 7. Statements 897

be dropped from a system-period temporal table unless the PRESERVE ROWS option is specified or the
partition is empty.

partition-name
Specifies the name of the partition to drop. The partition-name must identify a data partition that
exists in the table.

DELETE ROWS
Specifies that any data in the specified partition will be discarded. All data stored in the partition is
dropped from the table without processing any delete triggers.

PRESERVE ROWS
Specifies that any data in the specified partition will be preserved by moving it to the remaining
partitions without processing any delete or insert triggers. If the specified table is a range partitioned
table, PRESERVE ROWS must not be specified. Dropping a hash partition will require data movement
between the remaining data partitions.

ATTACH PARTITION
Attaches another table as a new data partition. The data in the table being attached becomes a new
partition of the table being attached to. There is no data movement involved. If the specified target table
is not a partitioned table, an error is returned. If the target table already has the maximum number of
partitions, an error is returned. If the table is hash partitioned, an error is returned.

If the table being attached has either row level access control or column level access control activated
then the table to attach to must have the same controls activated. No row permissions or column masks
are automatically carried over from the table being attached to the target table. The column masks and
row permissions do not necessarily need to be exactly the same on both tables, although this would be
best from a security perspective. But if the table being attached has row level access control activated
then the table to attach to must also have row level access control activated. Similarly, if the table being
attached has column level access control activated and at least one column mask enabled then the table
to attach to must also have column level access control activated and a column mask enabled for the
corresponding columns.

partition-name
Names the data partition. The name must not be the same as any other data partition for the table. If
this clause is not specified and the source table is partitioned, the partition name of the source table
will be used. Otherwise, if this clause is not specified, a unique partition name is generated by the
database manager.

boundary-spec
Specifies the boundaries for the new partition. If a boundary-spec is not specified:

• The source table must be a partitioned table with a single partition and the boundary-spec of that
partition will be implicitly used.

• The number of partition keys and the partition key names of the source table must be the same as
those of the target table.

The implicit or explicit range must not overlap that of an existing data partition. See “CREATE TABLE”
on page 1115 for a description of the boundary-spec. If a boundary-spec is specified, the data
in the source table must conform to the specified range or subsequent SQL operations may be
unpredictable.

FROM table-name1
Specifies the table that is to be used as the source of data for the new partition. The table must exist
in the same relational database as the target table. If the specified table is not a partitioned table,
an error is returned. If the table is hash partitioned, an error is returned. The table must not be a
view, a materialized query table, a declared global temporary table, a system-period temporal table,
a history table, or a system table. The table must not have a NOT LOGGED INITIALLY attribute. The
table definition of table-name1 cannot have multiple partitions, and it must match the altered table in
the following ways:

• The number of columns must be the same.

898 IBM i: Db2 for i SQL Reference

• The data types, attributes, field procedures, generated expressions, default values, and CCSIDs of
the columns in the same ordinal position in the table must be the same.

• The nullability characteristic of the columns in the same ordinal position in the table must be the
same.

• If the target table has a row change timestamp column, the corresponding column of the source
table must be a row change timestamp column.

• For varying length or LOB data types, the ALLOCATE length of columns in the same ordinal position
in the table must be the same.

After the data from table-name1 is successfully attached, an operation equivalent to DROP TABLE
table-name1 CASCADE is performed to remove this table, which no longer has data, from the
database.

DETACH PARTITION
Detaches a partition of a partitioned table. If the specified table is not a partitioned table, an error is
returned. A new partitioned table named table-name1 with one partition will be created to contain the
detached partition data. partition-name cannot be the last remaining partition of the table being altered.
The table being altered must not be a system-period temporal table, a parent table of an enforced
referential constraint, or use HASH partitioning.

If the source table contains an identity column, the corresponding column in the created table will not be
an identity column. All other column attributes from the source table are defined for the corresponding
column in the created table. If the source table has constraints, similar constraints are not added to the
created table.

When a partition is detached from a table for which either row level access control or column level access
control is activated, the new table that is created for the detached data will automatically have row level
access control activated to protect the detached data. Direct access to this new table will return no rows
until appropriate row permissions are defined for the table or row level access control is deactivated for
this table.

Privileges on the source table are not propagated to the created table.

partition-name
Specifies the name of the partition to detach. partition-name must identify a data partition that exists
in the table.

table-name1
Names the table. The name, including the implicit or explicit qualifier, must not identify an alias, file,
index, table, or view that already exists at the current server.

If SQL names were specified, the table will be created in the schema specified by the implicit or
explicit qualifier.

If system names were specified, the table will be created in the schema that is specified by the
qualifier. If not qualified:

• If the value of the CURRENT SCHEMA special register is *LIBL, the table will be created in the
current library (*CURLIB).

• Otherwise, the table will be created in the current schema.

If the specified partitioned table is journaled, the new table will be journaled to the same journal.
Otherwise, the new table will not be journaled.

ADD MATERIALIZED QUERY materialized-query-definition
Changes a base table to a materialized query table. If the specified table is already a materialized query
table or if the table is referenced in another materialized query table, an error is returned.

Chapter 7. Statements 899

select-statement
Defines the query on which the table is based. The columns of the existing table must meet the
following characteristics:

• The number of columns in the table must be the same as the number of result columns in the
select-statement.

• The column attributes of each column of the table must be compatible to the column attributes of
the corresponding result column in the select-statement.

The select-statement for a materialized query table must not contain a reference to the table being
altered, a view over the table being altered, or another materialized query table. For additional details
about specifying select-statement for a materialized query table, see “CREATE TABLE” on page 1115.

refreshable-table-options
Specifies the materialized query table options for altering a base table to a materialized query table.
DATA INITIALLY DEFERRED

Specifies that the data in the table is not validated as part of the ALTER TABLE statement. A
REFRESH TABLE statement can be used to make sure the data in the materialized query table is
the same as the result of the query in which the table is based.

DATA INITIALLY IMMEDIATE
Specifies that the data is inserted in the table from the result of the query as part of processing the
ALTER TABLE statement.

REFRESH DEFERRED
Specifies that the data in the table can be refreshed at any time using the REFRESH TABLE
statement. The data in the table only reflects the result of the query as a snapshot at the time
when the REFRESH TABLE statement is processed or when it was last updated.

MAINTAINED BY USER
Specifies that the materialized query table is maintained by the user. The user can use INSERT,
DELETE, UPDATE, or REFRESH TABLE statements on the table.

ENABLE QUERY OPTIMIZATION or DISABLE QUERY OPTIMIZATION
Specifies whether this materialized query table can be used for query optimization.
ENABLE QUERY OPTIMIZATION

The materialized query table can be used for query optimization.
DISABLE QUERY OPTIMIZATION

The materialized query table will not be used for query optimization. The table can still be
queried directly.

If row level or column level access control is activated for any table that is directly or indirectly referenced
in the select-statement and row access control is not activated for the table being altered, row access
control is implicitly activated for the altered table. This restricts direct access to the contents of the
materialized query table. A query that explicitly references the table will return a warning that there is no
data in the table. To provide access to the materialized query table, an appropriate row permission can be
created or an ALTER TABLE DEACTIVATE ROW ACCESS CONTROL on the materialized query table can be
issued to remove the row level protection if that is appropriate.

ALTER MATERIALIZED QUERY materialized-query-table-alteration
Changes the attributes of a materialized query table. The table-name must identify a materialized query
table.

select-statement
Defines the query on which the table is based. The columns of the existing table must meet the
following characteristics:

• The number of columns in the table must be the same as the number of result columns in the
select-statement.

900 IBM i: Db2 for i SQL Reference

• The column attributes of each column of the table must be compatible to the column attributes of
the corresponding result column in the select-statement.

The select-statement for a materialized query table must not contain a reference to the table being
altered, a view over the table being altered, or another materialized query table. For additional details
about specifying select-statement for a materialized query table, see “CREATE TABLE” on page 1115.

refreshable-table-options
Specifies the materialized query table options for altering a base table to a materialized query table.
DATA INITIALLY DEFERRED

Specifies that the data in the table is not refreshed or validated as part of the ALTER TABLE
statement. A REFRESH TABLE statement can be used to make sure the data in the materialized
query table is the same as the result of the query in which the table is based.

DATA INITIALLY IMMEDIATE
Specifies that the data is inserted in the table from the result of the query as part of processing the
ALTER TABLE statement.

REFRESH DEFERRED
Specifies that the data in the table can be refreshed at any time using the REFRESH TABLE
statement. The data in the table only reflects the result of the query as a snapshot at the time
when the REFRESH TABLE statement is processed or when it was last updated.

MAINTAINED BY USER
Specifies that the materialized query table is maintained by the user. The user can use INSERT,
DELETE, UPDATE, or REFRESH TABLE statements on the table.

ENABLE QUERY OPTIMIZATION or DISABLE QUERY OPTIMIZATION
Specifies whether this materialized query table can be used for query optimization.
ENABLE QUERY OPTIMIZATION

The materialized query table can be used for query optimization.
DISABLE QUERY OPTIMIZATION

The materialized query table will not be used for query optimization. The table can still be
queried directly.

SET refreshable-table-alteration
Changes how the table is maintained or whether the table can be used in query optimization.
MAINTAINED BY USER

Specifies that the materialized query table is maintained by the user. The user can use INSERT,
DELETE, UPDATE, or REFRESH TABLE statements on the table.

REFRESH DEFERRED
Specifies that the data in the table can be refreshed at any time using the REFRESH TABLE
statement. The data in the table only reflects the result of the query as a snapshot at the time
when the REFRESH TABLE statement is processed or when it was last updated.

ENABLE QUERY OPTIMIZATION or DISABLE QUERY OPTIMIZATION
Specifies whether this materialized query table can be used for query optimization.
ENABLE QUERY OPTIMIZATION

The materialized query table can be used for query optimization.
DISABLE QUERY OPTIMIZATION

The materialized query table will not be used for query optimization. The table can still be
queried directly.

DROP MATERIALIZED QUERY
Changes a materialized query table so that it is no longer a materialized query table. The table specified
by table-name must be defined as a materialized query table. The definition of columns are not changed,
but the table can no longer be used for query optimization and is no longer valid for use with the REFRESH
TABLE statement. Row level access and column level access for the table remain in their current activated
or deactivated state.

Chapter 7. Statements 901

ACTIVATE NOT LOGGED INITIALLY
Activates the NOT LOGGED INITIALLY attribute of the table for this current unit of work.

Any changes made to the table by INSERT, DELETE, or UPDATE statements in the same unit of work after
the table is altered by this statement are not logged (journaled).

At the completion of the current unit of work, the NOT LOGGED INITIALLY attribute is deactivated and all
operations that are done on the table in subsequent units of work are logged (journaled).

ACTIVATE NOT LOGGED INITIALLY is not allowed in a transaction if data change operations are pending
for table-name or cursors are currently open under commit that reference table-name.

ACTIVATE NOT LOGGED INITIALLY is not allowed if the table is a system-period temporal table or a
history table. It is ignored if the table has a DATALINK column with FILE LINK CONTROL or if running with
isolation level No Commit (NC).

WITH EMPTY TABLE
Causes all data currently in the table to be removed. If the unit of work in which this ALTER statement
was issued is rolled back, the table data will NOT be returned to its original state. When this action is
requested, no DELETE triggers defined on the affected table are fired.

WITH EMPTY TABLE cannot be specified for a materialized query table or for a parent in a referential
constraint. WITH EMPTY TABLE is ignored if running with isolation level No Commit (NC).

A DELETE statement without a WHERE clause will typically perform as well or better than ACTIVATE
NOT LOGGED INITIALLY WITH EMPTY TABLE and will allow a ROLLBACK to rollback the delete of the
rows in the table.

ADD PERIOD FOR period-definition
Adds a period definition to the table.

SYSTEM_TIME (begin-column-name, end-column-name)
Defines a system period with the name SYSTEM_TIME. There must not be a column in the table with
the name SYSTEM_TIME. A table can have only one SYSTEM_TIME period. begin-column-name must
be defined as ROW BEGIN and end-column-name must be defined as ROW END

DROP PERIOD SYSTEM_TIME
Drops the SYSTEM_TIME period from the table. The SYSTEM_TIME period cannot be dropped if the table
is a system-period temporal table.

ADD VERSIONING USE HISTORY TABLE history-table-name
Specifies that the table is a system-period temporal table. The table must not already be defined as
a system-period temporal table or a history table. A SYSTEM_TIME period and a transaction-start-ID
column must be defined in the table. The table must not be a materialized query table or a distributed
table and must not have a ROWID column or a DATALINK column with FILE LINK CONTROL. Neither the
table nor the history table can have the NOT LOGGED INITIALLY attribute activated.

Historical versions of the rows in the table are retained by the database manager. An associated history
table is used to store the historical rows of the table. The database manager records extra information
that indicates when a row was inserted into the table, and when it was updated or deleted. When a
row in a system-period temporal table is updated, a previous version of the row is kept. When data in a
system-period temporal table is deleted, the old version of the row is inserted as a historical record.

References to the table can include a period specification to indicate which versions of the data are to be
returned.

history-table-name
Identifies a history table where historical rows of the system-period temporal table are kept. history-
table-name must identify a table that exists at the current server, and is not a catalog table, an

902 IBM i: Db2 for i SQL Reference

existing system-period temporal table, an existing history table, a declared global temporary table, a
materialized query table, or a view.

The identified history table must not contain an identity column, row change timestamp column,
row-begin column, row-end column, transaction start-ID column, or include a period. It cannot be
part of a referential constraint or have a unique or primary key constraint.

Once a table has been defined as a history table, no direct inserts or updates can be performed on the
table. Deletes are allowed.

ON DELETE ADD EXTRA ROW
Indicates that when a row is deleted from the system-period temporal table, the deleted row is added
to the history table. This additional history row is not returned for a query with a period specification
for a system-period temporal table. Values for the row begin, row end, and any generated expression
columns are generated when this row is added.
The ON DELETE ADD EXTRA ROW clause is intended to be used when the system-period temporal
table contains generated expression columns. The generated expression columns in an extra row
contain information about the delete operation that resulted in the extra row in the history table.

The system-period temporal table and the identified history table must be in the same schema and must
have the same number and order of columns. The following attributes for the corresponding columns of
the two tables must be the same:

• Name and system column name
• Data type
• Length, precision, and scale
• FOR BIT DATA, FOR SBCS DATA, FOR MIXED DATA attribute
• CCSID
• Null attribute
• Hidden attribute
• Field procedure
• Date and time formats and separators
• Sort sequence and language ID

If the history table contains data, ensure that the data accurately represents historical rows. If the data
does not accurately represent historical rows, the results of temporal queries might be unexpected.

If row access control or column access control is activated for the system-period temporal table and row
access control is not activated on the history table, the database manager automatically activates row
access control on the history table and creates a default row permission for the history table.

DROP VERSIONING
Specifies that the table is no longer a system-period temporal table. The table must be a system-period
temporal table. Historical data is no longer recorded and maintained for the table. The definition of the
columns and data of the table are not changed, but the table is no longer treated as a system-period
temporal table. The SYSTEM_TIME period is retained. Subsequent queries that reference the table must
not specify a SYSTEM_TIME period specification for the table. The relationship between the system-
period temporal table and the associated history table is removed. The history table is not dropped and
the contents of the history table are not affected.

ACTIVATE ROW ACCESS CONTROL or DEACTIVATE ROW ACCESS CONTROL
Specifies whether enabled row permissions are to be applied by Db2 to control the set of rows in the table
that are accessible.

Chapter 7. Statements 903

ACTIVATE ROW ACCESS CONTROL
Specifies to activate row access control for the table. If the table is an alias, row access control is
activated for the base table. Row access control cannot be activated for a declared global temporary
table or a table in QTEMP.

A default row permission is implicitly created and allows no access to any rows of the table unless
an enabled row permission exists that provides access for the authorization IDs or group profiles that
are specified in the definition of the permission. A query that references the table before such a row
permission exists will return a warning that there is no data in the table.

If a trigger exists for the table, the trigger must be defined with the SECURED attribute and must not
be a READ trigger.

The table must not be referenced in the definition of a view if an INSTEAD OF trigger that is defined
with the NOT SECURED attribute exists for the view.

When the table is referenced in a data manipulation statement, all enabled row permissions that have
been created for the table, including the default row permission, are applied by Db2 to control the set
of rows in the table that are accessible. A permission that gets an error when trying to be activated
cannot be activated until any errors in the permission definition are resolved. This may require the
permission to be dropped and recreated with a modified definition.

If a materialized query table that depends on the table (directly, or indirectly through a view) for which
row level access control is being activated and that materialized query table does not already have
row level access control activated, row level access control is implicitly activated for the materialized
query table. This restricts direct access to the contents of the materialized query table. A query
that explicitly references the table before such a row permission is defined will return a warning
that there is no data in the table. To provide access to the materialized query table, an appropriate
row permission can be created, or an ALTER TABLE DEACTIVATE ROW ACCESS CONTROL on the
materialized query table can be issued to remove the row level protection if that is appropriate.

ACTIVATE ROW ACCESS CONTROL is ignored if row access control is already defined as activated for
the table.

If the table is a system-period temporal table and row access control is not already activated on the
history table, the database manager automatically activates row access control on the history table
and creates a default row permission for the history table.

DEACTIVATE ROW ACCESS CONTROL
Specifies to deactivate row access control for the table. When the table is referenced in a data
manipulation statement, any enabled row permissions defined on the table are not applied by Db2 to
control the set of rows in the table that are accessible.

DEACTIVATE ROW ACCESS CONTROL is ignored if row access control is already defined as not
activated for the table.

ACTIVATE COLUMN ACCESS CONTROL or DEACTIVATE COLUMN ACCESS CONTROL
Specifies whether enabled column masks are to be applied by Db2 to mask column values returned from
the table.

ACTIVATE COLUMN ACCESS CONTROL
Specifies to activate column access control for the table. If the table is an alias, column access control
is activated for the base table.

If a trigger exists for the table, the trigger must be defined with the SECURED attribute and must not
be a READ trigger.

The table must not be referenced in the definition of a view if an INSTEAD OF trigger that is defined
with the NOT SECURED attribute exists for the view.

The access to the table is not restricted but when the table is referenced in a data manipulation
statement, all enabled column masks that have been created for the table are applied by Db2 to mask
the values returned for the columns referenced in the final result table of the queries or to determine

904 IBM i: Db2 for i SQL Reference

the new values used in the data change statements. A column mask that gets an error when trying to
be activated cannot be activated until any errors in the mask definition are resolved. This may require
the column mask to be dropped and recreated with a modified definition.

If a materialized query table that depends on the table (directly, or indirectly through a view) for
which column level access control is being activated and that materialized query table does not
already have row level access control activated, row level access control is implicitly activated for
the materialized query table. This restricts direct access to the contents of the materialized query
table. A query that explicitly references the table before such a row permission is defined will return
a warning that there is no data in the table. To provide access to the materialized query table, an
appropriate row permission can be created, or an ALTER TABLE DEACTIVATE ROW ACCESS CONTROL
on the materialized query table can be issued to remove the row level protection if that is appropriate.

ACTIVATE COLUMN ACCESS CONTROL is ignored if column access control is already defined as
activated for the table.

If the table is a system-period temporal table and row access control is not already activated on the
history table, the database manager automatically activates row access control on the history table
and creates a default row permission for the history table.

DEACTIVATE COLUMN ACCESS CONTROL
Specifies to deactivate column access control for the table. When the table is referenced in a data
manipulation statement, any enabled column masks defined on the table are not applied by Db2 to
control the values returned for the columns referenced in the final result table of the queries or to
determine whether the new values can be used in the data change statements.

DEACTIVATE COLUMN ACCESS CONTROL is ignored if column access control is already defined as not
activated for the table.

VOLATILE or NOT VOLATILE
Indicates to the optimizer whether the cardinality of table table-name can vary significantly at run time.
Volatility applies to the number of rows in the table, not to the table itself. The default is NOT VOLATILE.

VOLATILE
Specifies that the cardinality of table-name can vary significantly at run time, from empty to large. To
access the table, the optimizer will typically use an index, if possible.

NOT VOLATILE
Specifies that the cardinality of table-name is not volatile. Access plans that reference this table will
be based on the cardinality of the table at the time the access plan is built.

media-preference
Specifies the preferred storage media for the table or partition.

UNIT ANY
No storage media is preferred. Storage for the table or partition will be allocated from any available
storage media. If UNIT ANY is specified on the table, any media-preference that is specified on a
partition is used. If the table or partition is currently on solid state disk storage, it may be moved
asynchronously onto other media, if available.

UNIT SSD
Solid state disk storage media is preferred. Storage for the table or partition may be allocated from
solid state disk storage media, if available. If UNIT SSD is specified on the table, any media-preference
specified on a partition is ignored. If the table or partition is not currently on solid state disk storage, it
may be moved asynchronously onto solid state disk storage media, if available.

memory-preference
KEEP IN MEMORY

Specifies whether the data for the table should be brought into a main storage pool when the data is
used in a query.

Chapter 7. Statements 905

NO
The data will not be brought into a main storage pool.

YES
The data will be brought into a main storage pool.

Notes
Column references: A column can only be referenced once in an ADD, ALTER, or DROP COLUMN clause in
a single ALTER TABLE statement. However, that same column can be referenced multiple times for adding
or dropping constraints in the same ALTER TABLE statement.

Order of operations: The order of operations within an ALTER TABLE statement is:

• drop period
• drop constraints
• drop materialized query table
• drop partition
• drop partitioning
• drop columns for which the RESTRICT option was specified
• alter all other column definitions

– drop columns for which the CASCADE option was specified
– alter column drop attributes (for example, DROP DEFAULT)
– alter column alter attributes
– alter column add attributes
– add columns

• alter partition
• add or alter materialized query table
• add partition or add partitioning
• add constraints
• add period

Within each of these stages, the order in which the user specifies the clauses is the order in which they
are performed, with one exception. If any columns are being dropped, that operation is logically done
before any column definitions are added or altered.

QTEMP considerations: Any views or logical files in another job's QTEMP that are dependent on the table
being altered will be dropped as a result of an ALTER TABLE statement. These objects will not be dropped
if the alter is changing cardinality, media preference, memory preference, adding or dropping constraints,
activating or deactivating row and column access control, or when specifying ACTIVATE NOT LOGGED
INITIALLY.

Authority checking: Authority checking is performed only on the table being altered and any object
explicitly referenced in the ALTER TABLE statement (such as tables referenced in the fullselect). Other
objects may be accessed by the ALTER TABLE statement, but no authority to those objects is required. For
example, no authority is required on views that exist on the table being altered, nor on dependent tables
that reference the table being altered through a referential constraint.

Backup recommendation: It is strongly recommended that a current backup of the table and dependent
views and logical files exist prior to altering a table.

Performance considerations: The following performance considerations apply to an ALTER TABLE
statement when adding, altering, or dropping columns from a table:

• The data in the table may be copied.82

Adding and dropping columns require the data to be copied.

906 IBM i: Db2 for i SQL Reference

Altering a column usually requires the data to be copied. The data does not need to be copied, however,
if the alter only includes the following changes:

– The length attribute of a VARCHAR or VARBINARY column is increasing and the current length
attribute is greater than 20.

– The length attribute of a VARGRAPHIC column is increasing and the current length attribute is greater
than 10.

– The allocated length of a VARCHAR or VARBINARY column is changing and the current and new
allocated lengths are both less than or equal to 20.

– The allocated length of a VARGRAPHIC column is changing and the current and new allocated lengths
are both less than or equal to 10.

– The CCSID of a column is changing but no conversion is necessary between the old and new CCSID.
For example, if one CCSID is 65535, no data conversion is necessary.

– The default value is changing, and the length of the default value is not greater than the current
allocated length.

– DROP DEFAULT is specified.
– DROP NOT NULL is specified, but at least one nullable column will still exist in the table after the alter

table is complete.

Altering a column that has a field procedure defined might require the field procedure to be run two
times.

• Indexes may need to be rebuilt.83

An index does not need to be rebuilt when columns are added to a table or when columns are dropped
or altered and those columns are not referenced in the index key.

Altering a column that is used in the key of an index or constraint usually requires the index to be
rebuilt. The index does not need to be rebuilt, however, in the following cases:

– The length attribute of a VARCHAR, VARBINARY, or VARGRAPHIC key is increasing.
– The CCSID of a column is changing but no conversion is necessary between the old and new CCSID.

For example, if one CCSID is 65535.

Adding a generated column: When you add a row change timestamp column, row-begin column, row-
end column, transaction-start-ID column, or generated expression column to an existing table, the initial
values are generated during the alter operation.

Considerations for implicitly hidden columns: A column that is defined as implicitly hidden can be
explicitly referenced on the ALTER statement. For example, an implicitly hidden column can be altered,
can be specified as part of a referential constraint or a check constraint, or a materialized query table
definition.

Altering materialized query tables: The isolation level at the time when a base table is first altered
to become a materialized query table by the ALTER TABLE statement is the isolation level for the
materialized query table.

Altering a table to change it to a materialized query table with query optimization enabled makes the
table eligible for use in optimization. Therefore, ensure that the data in the table is accurate. The DATA
INITIALLY IMMEDIATE clause can be used to refresh the data when the table is altered.

ATTACH PARTITION effects on dependent views, indexes, and materialized query tables:

• Views and DDS-created logical files on the source table are dropped.
• Views that reference the target table will now include the new partition.

82 In cases where enough storage does not exist to make a complete copy, a special copy that only requires
approximately 16-32 megabytes of free storage is performed.

83 Any indexes that need to be rebuilt are rebuilt asynchronously by database server jobs.

Chapter 7. Statements 907

• DDS-created logical files that referenced all the partitions prior to the attach will now include the new
partition.

• Materialized query tables on the source table are dropped.
• Materialized query tables on the target table will be preserved but users will need to refresh the

materialized query tables to include the data associated with the new partition.
• Partitioned (non-spanning) indexes on the source table that correspond to partitioned indexes on the

target table will be preserved as part of the target table's partitioned index as long as the logical page
size of the index is the same. If the logical page size is different, the index over that partition will be
dropped.

• Partitioned (non-spanning) indexes on the source table that do not correspond to partitioned indexes on
the target table will be dropped.

• Partitioned (non-spanning) indexes on the target table that do not correspond to indexes on the source
table will be modified to include the new partition.

• Non-partitioned (spanning) indexes on the target table will be rebuilt to include the new partition.

DETACH PARTITION effects on dependent views, indexes, and materialized query tables:

• Views on the source table will no longer include the detached partition.
• DDS-created logical files that referenced all the partitions prior to the detach will include the remaining

partitions.
• Materialized query tables on the source table will be preserved but users will need to refresh the

materialized query tables to remove the data associated with the detached partition.
• Any partitioned (non-spanning) index on the source table will be modified to remove the detached

partition index.
• Any non-partitioned (spanning) index on the source table will be rebuilt.

Considerations for using row access control and column access control:

Row access control that is activated explicitly: The ACTIVATE ROW ACCESS CONTROL clause is used to
activate row access control for a table. When this happens, a default row permission is implicitly created
and allows no access to any rows of the table, unless later another enabled row permission exists that
provides access for the authorization IDs that are specified in the definition of the permission. The default
row permission is always enabled.

When the table is referenced in a data manipulation statement, all enabled row permissions that have
been created for the table, including the default row permission, are implicitly applied by Db2 to control
which rows in the table are accessible. A row access control search condition is derived by application
of the logical OR operator to the search condition in each enabled row permission. This derived search
condition acts as a filter to the table before any user specified operations such as predicates, grouping,
ordering, etc. are processed. This derived search condition permits the authorization IDs that are
specified in the permission definitions to access certain rows in the table. See the description of subselect
for information on how the application of enabled row permissions affects the fetch operation. See the
data change statements for information on how the application of enabled row permissions affects the
data change operation.

Row access control remains enforced until the DEACTIVATE ROW ACCESS CONTROL clause is used to
stop enforcing it.

Implicit row permission that is created when row access control is activated for a table: When the
ACTIVATE ROW ACCESS CONTROL clause is used to activate row access control for a table, Db2 implicitly
creates a default row permission for the table. The default row permission prevents all access to the
table. The implicitly created row permission is in the same schema of the base table and has a name in
the form of QIBM_DEFAULT_system-table-name_system_schema_name.

The default row permission is always enabled.

The default row permission is dropped when row access control is deactivated or when the table is
dropped.

908 IBM i: Db2 for i SQL Reference

Activating column access control: The ACTIVATE COLUMN ACCESS CONTROL clause is used to activate
column access control for a table. The access to the table is not restricted but when the table is
referenced in a data manipulation statement, all enabled column masks that have been created for
the table are applied to mask the column values referenced in the final result table of the query or to
determine the new values used in the data change statements.

When column masks are used to mask the column values, they determine the values in the final result
table. If a column has a column mask and the column (a simple reference to a column name or embedded
in an expression) appears in the outermost select list, the column mask is applied to the column to
produce the value for the final result table. If the column does not appear in the outermost select list but
it participates in the final result table, for example, it appears in a nested table expression or view, the
column mask is applied to the column returned in the result table of the nested table expression or view
so that it can be used in the final result table.

The application of column masks does not interfere with the operations of other clauses within the
statement such as the WHERE, GROUP BY, HAVING, SELECT DISTINCT, and ORDER BY. The rows
returned in the final result table remain the same, except that the values in the resultant rows might
have been masked by the column masks. As such, if the masked column also appears in an ORDER BY
sort-key, the order is based on the original column values and the masked values in the final result table
might not reflect that order. Similarly, the masked values might not reflect the uniqueness enforced by
SELECT DISTINCT. If the masked column is embedded in an expression, the result of the expression can
become different because the column mask is applied on the column before the expression evaluation
can take place. For example, applying a column mask on column SSN can change the result of aggregate
function COUNT(DISTINCT SSN) because the DISTINCT operation is performed on the masked values. On
the other hand, if the expression in a query is the same as the expression used to mask the column value
in the column mask definition, the result of the expression in the query might remain unchanged. For
example, the expression in the query is 'XXX-XX-' || SUBSTR(SSN, 8, 4) and the same expression appears
in the column mask definition. In this particular example, the user can replace the expression in the query
with column SSN to avoid the same expression being evaluated twice.

The following are the contexts where the column masks are used by Db2 to mask the column values for
the result of a query. Certain restrictions might apply to some contexts. Those restrictions are described in
a separate list.

• The outermost SELECT clause of a SELECT or SELECT INTO statement, or if the column does not appear
in the outermost select list but it participates in the final result table, the outermost SELECT clause
of the corresponding nested table expression, common table expression, or view where the column
appears.

• The outermost SELECT clause that is used to derive the new values for an INSERT, UPDATE, or MERGE
statement.

• A scalar-fullselect expression that appears in the outermost SELECT clause of the above statements,
the right side of a SET variable assignment statement, the VALUES INTO statement, or the VALUES
statement.

A column mask is created without knowing all of the contexts in which it might be used. To mask a column
value in the final result table, the column mask definition is merged into the statement by Db2. When
the column mask definition is brought into the context of the statement, it might conflict with certain
SQL semantics in the statement. Therefore, in some situations the combination of the statement and
the application of a column mask can return an error. The following describes when the error might be
returned:

• If the FROM clause in a subselect references a recursive common table expression, and if the result of
the recursive common table expression is used to derive the final result table, the column mask cannot
be applied to a column that is referenced in the fullselect of the recursive common table expression.

• If a user-defined function is defined with the NOT SECURED option, the argument of the function must
not reference a column for which a column mask is enabled and column access control is activated for
its table. This rule applies to user-defined functions that are referenced anywhere in the statement.

To avoid the above error situations, one of the following actions must be taken:

• modify or remove the above contexts from the statement

Chapter 7. Statements 909

• disable the column mask
• drop the column mask, modify the definition, and recreate the column mask
• deactivate column access control for the table

In some situations, if the statement contains a SELECT DISTINCT or a GROUP BY and a column mask is
applied to a column that directly or indirectly derives the result of SELECT DISTINCT or GROUP BY, the
statement might return a result that is not deterministic. These situations include:

• The column mask definition references other columns from the same table as the column to which the
column mask is applied.

• The column is referenced in the argument of built-in scalar functions (such as COALESCE, IFNULL,
NULLIF, MAX, MIN, LOCATE).

• The column is referenced in the argument of an aggregate function.
• The column is embedded in an expression and the expression contains a function that is not

deterministic or has an external action.

If the column is not nullable, the definition of its column mask will not, most likely, consider a null value
for the column. After the column access control is activated for the table, if the table is the null-padded
table in an outer join, the value of the column in the final result table might be a null. To ensure that the
column mask can mask a null value, if the table is the null-padded table in an outer join, Db2 will add
"WHEN target-column IS NULL THEN NULL" as the first WHEN clause to the column mask definition. This
forces a null value to always be masked as a null value. For a nullable column, this removes the ability to
mask a null value as something else. Example 4 shows this added WHEN clause.

For INSERT, UPDATE, and MERGE, when a column is referenced while deriving the values of a new row,
if that column has an enabled column mask, the masked value is used to derive the new values. If the
object table also has column access control activated, the column mask that is applied to derive the new
values must return the column itself, not a constant or an expression. If the column mask does not mask
the column to itself, the new value cannot be used for insert or update and an error is returned. The rules
that are used to apply column masks in order to derive the new values follow the same rules described
above for the final result table of a query. See the data change statements for how the column masks are
used to affect the insertability and updatability.

A column mask can be applied only to a base table column. If a view, nested table expression, or common
table expression column is involved in the final result table, the above error situations can occur inside the
view, nested table expression, or common table expression.

Column access control does not affect the XMLTABLE built-in function. If the input to the XMLTABLE
function is a column with a column mask, the column mask is not applied.

Column access control remains activated until the DEACTIVATE COLUMN ACCESS CONTROL clause is
used to stop enforcing it.

Column masks and trigger transition variables: Values for OLD ROW and OLD TABLE transition variables
will never contain masked values.

A SET transition-variable assignment statement can assign masked data to the variable. If a violation
check constraint does not exist for the column, the masked data will be inserted or updated in the column
and no error will be issued.

Stop enforcing row or column access control: The DEACTIVATE ROW ACCESS CONTROL clause is used
to stop enforcing row access control for a table. The default row permission is dropped. Thereafter, when
the table is referenced in a data manipulation statement, explicitly created row permissions are not
applied. The table is accessible based on the granted privileges.

The DEACTIVATE COLUMN ACCESS CONTROL clause is used to stop enforcing column access control for
a table. Thereafter, when the table is referenced in a data manipulation statement, the column masks are
not applied. The unmasked column values are used for the final result table. The explicitly created row
permissions or column masks, if any, remain but have no effect.

Secure triggers for row and column access control: Triggers are used for database integrity, and as
such a balance between row and column access control (security) and database integrity is needed.

910 IBM i: Db2 for i SQL Reference

Enabled row permissions and column masks are not applied to the initial values of transition variables
and transition tables. Row and column access control enforced for the triggering table is also ignored
for any transition variables or transition tables referenced in the trigger body. To ensure there is no
security concern for SQL statements in the trigger action to access sensitive data in transition variables
and transition tables, the trigger must be created or altered with the SECURED option. If a trigger is not
secure, row and column access control cannot be enforced for the triggering table.

Secure user-defined functions for row and column access control: If a row permission or column mask
definition references a user-defined function, the function must be altered with the SECURED option
because the sensitive data might be passed as arguments to the function.

Db2 considers the SECURED option an assertion that declares the user has established a change control
audit procedure for all changes to the user-defined function. It is assumed that such a control audit
procedure is in place for all versions of the user-defined function, and that all subsequent ALTER
FUNCTION statements or changes to external programs are being reviewed by this audit process.

Database operations where row and column access control is not applicable: Row and column access
control must not compromise database integrity. Columns involved in primary keys, unique keys, indexes,
check constraints, and referential integrity must not be subject to row and column access control. Column
masks can be defined for those columns but they are not applied during the process of key building or
constraint or RI enforcement.

Defining a system-period temporal table: A system-period temporal table definition includes the
following aspects:

• A system period named SYSTEM_TIME which is defined using a row-begin column and a row-end
column. See “AS ROW BEGIN” on page 885, “AS ROW END” on page 885, and “ADD PERIOD FOR
period-definition” on page 902

• A transaction-start-ID column. See “AS TRANSACTION START ID” on page 886
• A system-period data versioning definition specified on a subsequent ALTER TABLE statement using

the ADD VERSIONING clause which includes the name of the associated history table. See “ADD
VERSIONING USE HISTORY TABLE history-table-name” on page 902.

Considerations for transaction-start-ID columns: A transaction-start-ID column contains a null value if
the column allows null values and there is a row-begin column and the value of the row-begin column is
unique from values of row-begin columns generated for other transactions. Given that the column may
contain null values, it is recommended that one of the following methods be used when retrieving a value
from the column:

• COALESCE (transaction_start_id_col, row_begin_col)
• CASE WHEN transaction_start_id_col IS NOT NULL THEN transaction_start_id_col ELSE row_begin_col

END

Considerations for system-period temporal tables and row and column access control: Row and
column access control can be defined on both the system-period temporal table and the associated
history table.

• When a system-period temporal table is accessed, any row and column access rules defined on the
system-period temporal table are applied to all of the rows returned from the system-period temporal
table, regardless of whether the rows are stored in the system-period temporal table or the history
table. The row and column access rules defined on the history table are not applied.

• When the history table is accessed directly, the row and column access rules defined on the history
table are applied.

When a system-period temporal table is defined and row access control or column access control is
activated for the system-period temporal table and row access control is not already activated on the
history table, the database manager automatically activates row access control on the history table and
creates a default row permission for the history table.

Managing a history table: For an authorized user, limited modifications can be made directly to the
history table. Rows can be deleted from the table and partitions can be added or dropped.

Chapter 7. Statements 911

Read-only cursors and read-only views: The rules that are used to determine a read-only cursor or a
read-only view remain unaffected by row and column access control. The effect of application of enabled
column masks is not known until run time. Therefore, the data change operation on a writable cursor or a
writable view could still fail at run time.

Syntax alternatives: The following syntax is supported for compatibility to prior releases. The syntax is
non-standard and should not be used:

• INLINE LENGTH is a synonym for ALLOCATE.
• If an ADD constraint is the first clause of the ALTER TABLE statement, the ADD keyword is optional, but

strongly recommended. Otherwise, it is required.
• constraint-name (without the CONSTRAINT keyword) may be specified following the FOREIGN KEY

keywords in a referential-constraint.
• PART is a synonym for PARTITION.
• PARTITION partition-number may be specified instead of PARTITION partition-name. A partition-

number must not identify an existing partition of the table or a partition that was previously specified in
the ALTER TABLE statement.

If a partition-number is not specified, a unique partition number is generated by the database manager.
• VALUES is a synonym for ENDING AT.
• SET MATERIALIZED QUERY AS DEFINITION ONLY is a synonym for DROP MATERIALIZED QUERY.
• SET SUMMARY AS DEFINITION ONLY is a synonym for DROP MATERIALIZED QUERY
• SET MATERIALIZED QUERY AS (select-statement) is a synonym for ADD MATERIALIZED QUERY (select-

statement)
• SET SUMMARY AS (select-statement) is a synonym for ADD MATERIALIZED QUERY (select-statement)

Cascaded Effects
Adding a column has no cascaded effects to SQL views, materialized query tables, or most logical files.
For example, adding a column to a table does not cause the column to be added to any dependent views,
even if those views were created with a SELECT * clause.

Adding a column does cause any SQL triggers to be recreated and include the new column.

Dropping or altering a column may cause several cascaded effects. Table 86 on page 912 lists the
cascaded effects of dropping a column.

Table 86. Cascaded effects of dropping a column

Operation RESTRICT Effect CASCADE Effect

Drop of a column
referenced by a
view

The drop of the column is not allowed. The view and all views dependent on
that view are dropped.

84 A column will also be added to a logical file that shares its physical file's format when a column is added to
that physical file (unless that format is used again in the logical file with another based-on file).

912 IBM i: Db2 for i SQL Reference

Table 86. Cascaded effects of dropping a column (continued)

Operation RESTRICT Effect CASCADE Effect

Drop of a column
referenced by a
non-view logical
file

The drop is allowed, and the column is
dropped from the logical file if:

• The logical file shares a format with
the file being altered, and

• The dropped column is not used
as a key field or in select/omit
specifications, and

• That format is not used again in the
logical file with another based-on file.

Otherwise, the drop of the column is not
allowed.

The drop is allowed, and the column is
dropped from the logical file if:

• The logical file shares a format with
the file being altered, and

• The dropped column is not used
as a key field or in select or omit
specifications, and

• That format is not used again in the
logical file with another based-on file.

Otherwise, the logical file is dropped.

Drop of a column
referenced in an
index as part of a
key, in the WHERE
clause, in the
INCLUDE clause, or
as an explicit or
implicit column in
the ADD columns
clause

The drop of the index is not allowed. The index is dropped.

Drop of a column
referenced in the
key of an keyed
physical file where
the key is not a
PRIMARY KEY

The physical file is changed to a non-
keyed physical file.

The physical file is changed to a non-
keyed physical file.

Drop of a column
referenced in a
unique constraint

If all the columns referenced in the
unique constraint are dropped in the
same ALTER COLUMN statement and
the unique constraint is not referenced
by a referential constraint, the columns
and the constraint are dropped. (Hence,
the index used to satisfy the constraint
is also dropped.) For example, if column
A is dropped, and a unique constraint of
UNIQUE (A) or PRIMARY KEY (A) exists
and no referential constraints reference
the unique constraint, the operation is
allowed.

Otherwise, the drop of the column is not
allowed.

The unique constraint is dropped as
are any referential constraints that refer
to that unique constraint. (Hence, any
indexes used by those constraints are
also dropped).

Chapter 7. Statements 913

Table 86. Cascaded effects of dropping a column (continued)

Operation RESTRICT Effect CASCADE Effect

Drop of a
column referenced
in a referential
constraint

If all the columns referenced in the
referential constraint are dropped at
the same time, the columns and the
constraint are dropped. (Hence, the
index used by the foreign key is also
dropped). For example, if column B is
dropped and a referential constraint of
FOREIGN KEY (A) exists, the operation
is allowed.

Otherwise, the drop of the column is not
allowed.

The referential constraint is dropped.
(Hence, the index used by the foreign
key is also dropped).

Drop of a column
referenced in an
SQL trigger

The drop of the column is not allowed. The SQL trigger is dropped.

Drop of a column
referenced in an
MQT

The drop of the column is not allowed. The MQT is dropped.

Table 87 on page 914 lists the cascaded effects of altering a column. (Alter of a column in the following
chart means altering a data type, precision, scale, length, or nullability characteristic.)

Table 87. Cascaded effects of altering a column

Operation Effect

Alter of a column
referenced by a
view

The alter is allowed.

The views that are dependent on the table will be recreated. The new column
attributes will be used when recreating the views.

Alter of a column
referenced by a
non-view logical
file

The alter is allowed.

The non-view logical files that are dependent on the table will be recreated. If the
logical file shares a format with the file being altered, and that format is not used
again in the logical file with another based-on file, the new column attributes will
be used when recreating the logical file.

Otherwise, the new column attributes will not be used when recreating the logical
file. Instead, the current logical file attributes are used.

Alter of a column
referenced in the
key of an index.

The alter is allowed. (Hence, the index will usually be rebuilt.)

Alter of a column
referenced in a
unique constraint

The alter is allowed. (Hence, the index will usually be rebuilt.)

If the unique constraint is referenced by a referential constraint, the attributes of
the foreign keys no longer match the attributes of the unique constraint including
the field procedure. The constraint will be placed in a defined and check-pending
state.

914 IBM i: Db2 for i SQL Reference

Table 87. Cascaded effects of altering a column (continued)

Operation Effect

Alter of a
column referenced
in a referential
constraint

The alter is allowed.

• If the referential constraint is in the defined but check-pending state, the alter
is allowed and an attempt is made to put the constraint in the enabled state.
(Hence, the index used to satisfy the unique constraint will usually to be rebuilt.)

• If the referential constraint is in the enabled state, the constraint is placed in the
defined and check-pending state.

Alter of a column
referenced in an
SQL trigger

The trigger is recreated.

Alter of a column
referenced in an
MQT

The MQT is recreated to include the new attributes.

Examples

Example 1: Add a new column named RATING, which is one character long, to the DEPARTMENT table.

 ALTER TABLE DEPARTMENT
 ADD RATING CHAR

Example 2: Add a new column named PICTURE_THUMBNAIL to the EMPLOYEE table. Create
PICTURE_THUMBNAIL as a BLOB column with a maximum length of 1K characters.

 ALTER TABLE EMPLOYEE
 ADD PICTURE_THUMBNAIL BLOB(1K)

Example 3: Assume a new table EQUIPMENT has been created with the following columns:

 EQUIP_NO
INT

 EQUIP_DESC
VARCHAR(50)

 LOCATION
VARCHAR(50)

 EQUIP_OWNER
CHAR(3)

Add a referential constraint to the EQUIPMENT table so that the owner (EQUIP_OWNER) must be a
department number (DEPTNO) that is present in the DEPARTMENT table. If a department is removed from
the DEPARTMENT table, the owner (EQUIP_OWNER) values for all equipment owned by that department
should become unassigned (or set to null). Give the constraint the name DEPTQUIP.

 ALTER TABLE EQUIPMENT
 FOREIGN KEY DEPTQUIP (EQUIP_OWNER)
 REFERENCES DEPARTMENT
 ON DELETE SET NULL

Change the default value for the EQUIP_OWNER column to 'ABC'.

 ALTER TABLE EQUIPMENT
 ALTER COLUMN EQUIP_OWNER
 SET DEFAULT 'ABC'

Drop the LOCATION column. Also drop any views, indexes, or constraints that are built on that column.

Chapter 7. Statements 915

 ALTER TABLE EQUIPMENT
 DROP COLUMN LOCATION CASCADE

Alter the table so that a new column called SUPPLIER is added, the existing column called LOCATION is
dropped, a unique constraint over the new column SUPPLIER is added, and a primary key is built over the
existing column EQUIP_NO.

 ALTER TABLE EQUIPMENT
 ADD COLUMN SUPPLIER INT
 DROP COLUMN LOCATION
 ADD UNIQUE SUPPLIER
 ADD PRIMARY KEY EQUIP_NO

Notice that the column EQUIP_DESC is a variable length column. If an allocated length of 25 was
specified, the following ALTER TABLE statement would not change that allocated length.

 ALTER TABLE EQUIPMENT
 ALTER COLUMN EQUIP_DESC
 SET DATA TYPE VARCHAR(60)

Example 4: Alter the EMPLOYEE table. Add the check constraint named REVENUE defined so that each
employee must make a total of salary and commission greater than $30,000.

 ALTER TABLE EMPLOYEE
 ADD CONSTRAINT REVENUE
 CHECK (SALARY + COMM > 30000)

Example 5: Alter EMPLOYEE table. Drop the constraint REVENUE which was previously defined.

 ALTER TABLE EMPLOYEE
 DROP CONSTRAINT REVENUE

Example 6: Alter the EMPLOYEE table. Alter the column PHONENO to accept up to 20 characters for a
phone number.

 ALTER TABLE EMPLOYEE
 ALTER COLUMN PHONENO SET DATA TYPE VARCHAR (20)

Example 7: Alter the base table TRANSCOUNT to a materialized query table. The result of the select-
statement must provide a set of columns that match the columns in the existing table (same number of
columns and compatible attributes).

 ALTER TABLE TRANSCOUNT
 ADD MATERIALIZED QUERY
 (SELECT ACCTID, LOCID, YEAR, COUNT(*) AS CNT
 FROM TRANS
 GROUP BY ACCTID, LOCID, YEAR)
 DATA INITIALLY DEFERRED
 REFRESH DEFERRED
 MAINTAINED BY USER

Example 8: Alter the CUSTOMER table to become a system-period temporal table.

First, add the columns and the period definition that are required to become a system-period temporal
table, along with two columns that will be used for tracking identity of row changes:

ALTER TABLE CUSTOMER
 ADD COLUMN SYSTEM_START TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN
 ADD COLUMN SYSTEM_END TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END
 ADD COLUMN TRANSACTION_ID TIMESTAMP(12) GENERATED ALWAYS AS TRANSACTION START ID
 ADD COLUMN AUDIT_TYPE_CHANGE CHAR(1) GENERATED ALWAYS AS (DATA CHANGE OPERATION)
 ADD COLUMN AUDIT_USER VARCHAR(128) GENERATED ALWAYS AS (SESSION_USER)
 ADD PERIOD FOR SYSTEM_TIME (SYSTEM_START, SYSTEM_END);

Next, create the history table:

CREATE TABLE CUSTOMER_HISTORY LIKE CUSTOMER;

916 IBM i: Db2 for i SQL Reference

Finally, define the CUSTOMER table as a system-period temporal table with the CUSTOMER_HISTORY
table as the associated history table:

ALTER TABLE CUSTOMER ADD VERSIONING USE HISTORY TABLE CUSTOMER_HISTORY
 ON DELETE ADD EXTRA ROW;

Examples for column access control
Example 1: Based on the data in the CUSTOMER table, the SELECT DISTINCT statement returns one
row with the SALARY value 100,000. A column mask, SALARY_MASK, is created to mask the salary
value. After column access control is activated for the CUSTOMER table, the column mask is applied
to SALARY column. A user with the 'MGR' authorization ID issues a SELECT DISTINCT statement. The
SELECT DISTINCT statement still returns one row because the removal of duplicates is based on the
unmasked value of the SALARY column, but the value that is returned in that row is based on the masked
SALARY value, which can be either 125,000 or 110,000.

The table CUSTOMER contains:

SALARY COMMISSION EMPID

100,000 25,000 123456

100,000 10,000 654321

CREATE MASK SALARY_MASK ON CUSTOMER
 FOR COLUMN SALARY RETURN
 CASE WHEN(SESSION_USER = 'MGR')
 THEN SALARY + COMMISSION
 ELSE SALARY
 END
 ENABLE;

COMMIT;

ALTER TABLE CUSTOMER
 ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

SELECT DISTINCT SALARY FROM CUSTOMER;

Example 2: Based on the data in T1 and T2 tables, the SELECT DISTINCT statement using the COALESCE
function returns one row with the T1.C1 value of 1. A column mask, C1_MASK, is created to mask the
value of T1.C1. After column access control is activated for table T1, the column mask is applied to
column C1 of table T1. A user with the 'EMP' authorization ID issues a SELECT DISTINCT statement. The
SELECT DISTINCT statement still returns one row because the removal of duplicates is based on the
unmasked value of T1.C1 from the COALESCE function, but the value that is returned in that row is based
on the masked value of T1.C1 from the COALESCE function. The returned value can be either 2 or 3.

INSERT INTO T1(C1) VALUES(1);
INSERT INTO T1(C1) VALUES(1);

INSERT INTO T2(C1) VALUES(2);
INSERT INTO T2(C1) VALUES(3);

CREATE MASK C1_MASK ON T1
 FOR COLUMN C1 RETURN
 CASE WHEN(SESSION_USER = 'EMP')
 THEN NULL
 ELSE C1
 END
 ENABLE;

COMMIT;

ALTER TABLE T1
 ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

Chapter 7. Statements 917

SELECT DISTINCT COALESCE(T1.C1, T2.C1) FROM T1, T2;

Example 3: Based on the data in the CUSTOMER table, the maximum income is the same in the states CA
and IL, 50,000, thus, the SELECT DISTINCT statement returns one row. A column mask, INCOME_MASK,
is created to mask the income value. After column access control is activated for the CUSTOMER table,
the column mask is applied to the INCOME column before the MAX aggregate function is evaluated.
However, the INCOME_ MASK column mask, masks the income value of 0 as 100,000 in state IL. As a
result, the maximum income becomes 100,000 for state IL, but the maximum income is still 50,000 for
state CA. X.B is used in a predicate in the SELECT DISTINCT statement, therefore, the original INCOME
values and the original results of the MAX(INCOME) function must be preserved. So the SELECT DISTINCT
statement still returns one row, but the value in that row might not be deterministic, that is, the value
might be 50,000 from the 'CA' row or might be 100,000 from the 'IL' row.

The CUSTOMER table contains:

STATE INCOME

CA 40,000

CA 50,000

IL 0

IL 10,000

IL 50,000

CREATE MASK INCOME_MASK ON CUSTOMER
 FOR COLUMN INCOME RETURN
 CASE WHEN(INCOME = 0)
 THEN 100000
 ELSE INCOME
 END
 ENABLE;

COMMIT;

ALTER TABLE CUSTOMER
 ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

SELECT DISTINCT B FROM
 (SELECT STATE, MAX(INCOME) FROM CUSTOMER
 GROUP BY STATE)
 X(A, B)
 WHERE B > 10000;

Example 4: The expression INCOME + RAND() is not deterministic because the RAND function is not
deterministic. Based on the data in the CUSTOMER table, the SELECT DISTINCT statement will, most
likely, return two distinct rows. However, it could return only one row. A column mask, INCOME_MASK,
is created to mask the income value. After column access control is activated for the CUSTOMER table,
the column mask is applied to the INCOME column, which causes the masked value for both rows to be
the same. Because the RAND function is not deterministic, the SELECT DISTINCT statement will, most
likely, still return two distinct rows, but it could return only one row. The uncertainty caused by the RAND
function causes the result of the SELECT DISTINCT statement to not be deterministic.

The CUSTOMER table contains:

STATE INCOME

CA 40,000

CA 50,000

CREATE MASK INCOME_MASK ON CUSTOMER
 FOR COLUMN INCOME RETURN

918 IBM i: Db2 for i SQL Reference

 CASE WHEN(INCOME = 40,000)
 THEN 50000
 ELSE INCOME
 END
 ENABLE;

COMMIT;

ALTER TABLE CUSTOMER
 ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

SELECT DISTINCT A FROM
 (SELECT INCOME + RAND() FROM CUSTOMER)
 X(A)
 WHERE A > 10000;

Example 5: A column mask, STATE_MASK, is created for the STATE column of the CUSTOMER table to
return a value that shows the city name with the state if the city is SJ, SFO, or OKLD. Otherwise the city
is not returned, just the state. After column access control is activated for the CUSTOMER table, a SELECT
statement which groups results using the STATE column is issued. However, because the CITY column
that is referenced in the STATE_MASK column mask is not a grouping column, an error is returned to
signify that the STATE_MASK column mask is not appropriate for this statement.

The CUSTOMER table contains:

STATE CITY INCOME

CA SJ 40,000

CA SC 30,000

CA SB 60,000

CA SFO 80,000

CA OKLD 50,000

CA SJ 70,000

NY NY 50,000

CREATE MASK STATE_MASK ON CUSTOMER
 FOR COLUMN STATE RETURN
 CASE WHEN(CITY = 'SJ')
 THEN CITY||', '||STATE
 WHEN(CITY = 'SFO')
 THEN CITY||', '||STATE
 WHEN(CITY = 'OKLD')
 THEN CITY||', '||STATE
 ELSE STATE
 END
 ENABLE;

COMMIT;

ALTER TABLE CUSTOMER
 ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

SELECT STATE, AVG(INCOME) FROM CUSTOMER
 GROUP BY STATE
 HAVING STATE = 'CA';

Chapter 7. Statements 919

ALTER TRIGGER
The ALTER TRIGGER statement changes the description of the trigger at the current server.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
If ENABLE or DISABLE is specified, the privileges held by the authorization ID of the statement must
include at least one of the following:

• For the trigger identified in the statement:

– The system authority *USE on the Change Physical File Trigger (CHGPFTRG) command,
– The ALTER privilege on the table or view on which the trigger is defined, and
– The system authority *EXECUTE on the library containing the trigger.

• Database administrator authority

If the SECURED option is specified, or if the NOT SECURED option is specified and the trigger is currently
secured:

• The authorization ID of the statement must have security administrator authority. See “Administrative
authority” on page 15.

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Table or View.

920 IBM i: Db2 for i SQL Reference

Syntax

ALTER TRIGGER trigger-name
1

SECURED

NOT SECURED

ENABLE

DISABLE

Notes:
1 The same clause must not be specified more than one time.

Description
trigger-name

Identifies the trigger to be altered. The trigger-name must identify a trigger that exists at the current
server. It can be either an SQL or a native trigger.

SECURED or NOT SECURED
Specifies whether the trigger is considered secure for row and column access control. If row or
column access control is active for the triggering table, altering the trigger from SECURED to NOT
SECURED will return an error.
SECURED

Specifies that the trigger is considered secure for row access control and column access control.
SECURED must be specified for a trigger whose subject table is using row access control or
column access control. SECURED must also be specified for a trigger that is created for a view and
one or more of the underlying tables in the view definition is using row access control or column
access control.

NOT SECURED
Specifies that the trigger is considered not secure for row access control and column access
control.
NOT SECURED must not be specified for a trigger whose subject table is using row access control
or column access control. NOT SECURED must also not be specified for a trigger that is created for
a view and one or more of the underlying tables in the view definition is using row access control
or column access control.

ENABLE or DISABLE
Specifies the state to which the trigger is to be changed.
ENABLE

The trigger will be called during the appropriate data change operations.
DISABLE

The trigger will not be called during the appropriate data change operations.

Notes
Altering a trigger from NOT SECURED to SECURED: The trigger is considered secure after the ALTER
TRIGGER statement is executed. Db2 treats the SECURED attribute as an assertion that declares that the
user has established an audit procedure for all activities in the trigger body. If a secure trigger references
user-defined functions, Db2 assumes those functions are secure without validation. If those functions can
access sensitive data, a user with security administrator authority needs to ensure that those functions
are allowed to access that data and that an audit procedure is in place for those functions, and that all
subsequent ALTER FUNCTION statements are being reviewed through this audit process.

Chapter 7. Statements 921

Transition variable values and row and column access control: Row and column access control is not
enforced for transition variables and transition tables. If row or column access control is enforced for
the triggering table, row permissions and column masks are not applied to the initial values of transition
variables and transition tables. Row and column access control enforced for the triggering table is also
ignored for transition variables and transition tables that are referenced in the trigger body or are passed
as arguments to user-defined functions invoked within the trigger body. To ensure there are no security
concerns for SQL statements accessing sensitive data in transition variables and transition tables, the
trigger must be created with the SECURED option. If the trigger is not secure, row access control and
column access control cannot be enforced for the triggering table.

Example
Example 1: Change the definition of trigger TRIGGER1 to secured:

 ALTER TRIGGER TRIGGER1
 SECURED

Example 2: Change the definition of trigger TRIGGER1 to not secured:

 ALTER TRIGGER TRIGGER1
 NOT SECURED

922 IBM i: Db2 for i SQL Reference

ASSOCIATE LOCATORS
The ASSOCIATE LOCATORS statement gets the result set locator value for each result set returned by a
procedure.

Invocation
This statement can be embedded in an application program. It is an executable statement that can be
dynamically prepared. It cannot be issued interactively. It must not be specified in REXX.

Authorization
None required.

Syntax

ASSOCIATE
RESULT SET

LOCATOR

LOCATORS

(

,

rs-locator-variable)

WITH

PROCEDURE

ROUTINE

procedure-name

(
,

parameter-type

)

SPECIFIC PROCEDURE

ROUTINE

specific-name

PROCEDURE variable

parameter-type
data-type

AS LOCATOR

data-type
built-in-type

distinct-type-name

built-in-type

Chapter 7. Statements 923

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

)

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

DATALINK

(200)

(integer) ccsid-clause

ROWID

XML

ccsid-clause
CCSID integer

924 IBM i: Db2 for i SQL Reference

Description
rs-locator-variable

Identifies a result set locator variable that has been declared according to the rules for declaring
result set locator variables.

WITH PROCEDURE procedure-name or variable
Identifies the procedure that returned one or more result sets. When the ASSOCIATE LOCATORS
statement is executed, the procedure name must identify a procedure that the requester has already
invoked using the SQL CALL statement.
PROCEDURE or SPECIFIC PROCEDURE

Identifies the procedure. The procedure-name must identify a procedure that exists at the current
server.
PROCEDURE procedure-name

Identifies the procedure by its name. The procedure-name must identify exactly one
procedure. The procedure may have any number of parameters defined for it. If there is
more than one procedure of the specified name in the specified or implicit schema, an error is
returned.

PROCEDURE procedure-name (parameter-type, ...)
Identifies the procedure by its procedure signature, which uniquely identifies the procedure.
The procedure-name (parameter-type, ...) must identify a procedure with the specified
procedure signature. The specified parameters must match the data types in the
corresponding position that were specified when the procedure was created. The number
of data types, and the logical concatenation of the data types is used to identify the specific
procedure instance which is to be labeled on. Synonyms for data types are considered a
match. Parameters that have defaults must be included in this signature.

If procedure-name () is specified, the procedure identified must have zero parameters.

procedure-name
Identifies the name of the procedure.

(parameter-type, ...)
Identifies the parameters of the procedure.

If an unqualified distinct type or array type name is specified, the database manager
searches the SQL path to resolve the schema name for the distinct type or array type.

For data types that have a length, precision, or scale attribute, use one of the following:

• Empty parentheses indicate that the database manager ignores the attribute when
determining whether the data types match. For example, DEC() will be considered
a match for a parameter of a procedure defined with a data type of DEC(7,2).
However, FLOAT cannot be specified with empty parenthesis because its parameter
value indicates a specific data type (REAL or DOUBLE).

• If a specific value for a length, precision, or scale attribute is specified, the value
must exactly match the value that was specified (implicitly or explicitly) in the CREATE
PROCEDURE statement. If the data type is FLOAT, the precision does not have to exactly
match the value that was specified because matching is based on the data type (REAL or
DOUBLE).

• If length, precision, or scale is not explicitly specified, and empty parentheses are
not specified, the default attributes of the data type are implied. The implicit length
must exactly match the value that was specified (implicitly or explicitly) in the CREATE
PROCEDURE statement.

Specifying the FOR DATA clause or CCSID clause is optional. Omission of either clause
indicates that the database manager ignores the attribute when determining whether the
data types match. If either clause is specified, it must match the value that was implicitly
or explicitly specified in the CREATE PROCEDURE statement.

Chapter 7. Statements 925

AS LOCATOR
Specifies that the procedure is defined to receive a locator for this parameter. If AS
LOCATOR is specified, the data type must be a LOB or XML or a distinct type based on a
LOB or XML. If AS LOCATOR is specified, FOR SBCS DATA or FOR MIXED DATA must not be
specified.

SPECIFIC PROCEDURE specific-name
Identifies the procedure by its specific name. The specific-name must identify a specific
procedure that exists at the current server.

variable
Specifies a variable that contains a procedure or specific name. If variable is specified:

• It must be a character-string variable or Unicode graphic-string variable. It cannot be a global
variable.

• It must not be followed by an indicator variable.
• The name that is contained within the variable must be left-justified and must be padded on the

right with blanks if its length is less than that of the variable.
• The name must be in uppercase unless it is a delimited name.

If only one procedure with this name has been invoked using the CALL statement, the variable is
used as a procedure name. If multiple procedures with this name have been invoked, the variable
is used as a specific name.

Notes
Assignment of locator values. If a SET RESULT SETS statement was executed in the procedure, the
SET RESULT SETS statement identifies the result sets. The locator values are assigned to the items
in the descriptor area or the SQLVAR entries in the SQLDA in the order specified on the SET RESULT
SETS statement. If a SET RESULT SETS statement was not executed in the procedure, locator values are
assigned to the locator variables in the order that the associated cursors are opened at runtime. Locator
values are assigned to the locator variables in the same order that they would be placed in the entries in
the SQL descriptor area or the SQLDA as a result of a DESCRIBE PROCEDURE statement.

Locator values are not provided for cursors that are closed when control is returned to the invoking
application. If a cursor was closed and later re-opened before returning to the invoking application, the
most recently executed OPEN CURSOR statement for the cursor is used to determine the order in which
the locator values are returned for the procedure result sets. For example, assume procedure P1 opens
three cursors A, B, C, closes cursor B, and then issues another OPEN CURSOR statement for cursor B
before returning to the invoking application. The locator values assigned for the following ASSOCIATE
LOCATORS statement will be in the order A, C, B.

ASSOCIATE RESULT SET LOCATORS (:loc1, :loc2, :loc3) WITH PROCEDURE P1;

More than one locator can be associated with a result set. You can issue multiple ASSOCIATE LOCATORS
statements for the same procedure with different result set locator variables to associate multiple
locators with each result set.

• If the number of result set locator variables specified in the ASSOCIATE LOCATORS statement is
less than the number of result sets returned by the procedure, all locator variables specified in the
statement are assigned a value and a warning is issued. For example, assume procedure P1 exists and
returns four result sets. Each of the following ASSOCIATE LOCATORS statements returns information on
the first result set along with a warning that not enough locators were provided to obtain information
about all the result sets.

CALL P1;

ASSOCIATE RESULT SET LOCATORS (:loc1) WITH PROCEDURE P1; -> loc1 is assigned a value for first
result set, and a warning is returned

ASSOCIATE RESULT SET LOCATORS (:loc2) WITH PROCEDURE P1; -> loc2 is assigned a value for first
result set, and a warning is returned

926 IBM i: Db2 for i SQL Reference

ASSOCIATE RESULT SET LOCATORS (:loc3) WITH PROCEDURE P1; -> loc3 is assigned a value for first
result set, and a warning is returned

ASSOCIATE RESULT SET LOCATORS (:loc4) WITH PROCEDURE P1; -> loc4 is assigned a value for first
result set, and a warning is returned

• If the number of result set locator variables that are listed in the ASSOCIATE LOCATORS statement is
greater than the number of locators returned by the procedure, the extra locator variables are assigned
a value of 0.

Multiple calls to the same procedure: When multiple calls to the same procedure are made from the
same program, the result sets of earlier invocations are lost unless an ASSOCIATE LOCATOR statement is
executed prior to a subsequent CALL to the procedure. The ASSOCIATE LOCATORS statement will refer to
the most recent CALL

EXEC SQL CALL P1; /* Returns 2 result sets */

EXEC SQL CALL P1; /* Returns 2 result sets, result sets from first invocation are closed */

EXEC SQL ASSOCIATE RESULT SET LOCATORS (:a, :b) WITH PROCEDURE P1; /* Refers to second call */

EXEC SQL CALL P1; /* Returns 2 result sets */

EXEC SQL ASSOCIATE RESULT SET LOCATORS (:c, :d) WITH PROCEDURE P1; /* Refers to third call */

/* The following statements process the result sets from the second call */
EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :a;
EXEC SQL ALLOCATE C2 CURSOR FOR RESULT SET :b;
EXEC SQL FETCH C1 INTO :h1;
EXEC SQL CLOSE C1;
EXEC SQL FETCH C2 INTO :h2;
EXEC SQL CLOSE C2;

/* The following statements process the result sets from the third call */
EXEC SQL ALLOCATE C3 CURSOR FOR RESULT SET :c;
EXEC SQL ALLOCATE C4 CURSOR FOR RESULT SET :d;
EXEC SQL FETCH C3 INTO :h1;
EXEC SQL CLOSE C3;
EXEC SQL FETCH C4 INTO :h2;
EXEC SQL CLOSE C4;

RETURN TO CLIENT procedures: A result set of a RETURN TO CLIENT procedure becomes associated
with the highest procedure on the invocation stack. To associate a locator with such a result set, the
procedure name of the highest procedure on the invocation stack must be specified.

Example
Allocate result set locators for procedure P1 which returns 3 result sets

 ASSOCIATE RESULT SET LOCATORS (:loc11, :loc2, :loc3) WITH PROCEDURE P1;

Chapter 7. Statements 927

BEGIN DECLARE SECTION
The BEGIN DECLARE SECTION statement marks the beginning of an SQL declare section. An SQL declare
section contains declarations of host variables that are eligible to be used as host variables in SQL
statements in a program.

Invocation
This statement can only be embedded in an application program. It is not an executable statement. It
must not be specified in Java, RPG, or REXX.

Authorization
None required.

Syntax
BEGIN DECLARE SECTION

Description
The BEGIN DECLARE SECTION statement is used to indicate the beginning of an SQL declare section. It
can be coded in the application program wherever variable declarations can appear in accordance with
the rules of the host language. It cannot be coded in the middle of a host structure declaration. An SQL
declare section ends with an END DECLARE SECTION statement, described in “END DECLARE SECTION”
on page 1303.

The BEGIN DECLARE SECTION and the END DECLARE SECTION statements must be paired and cannot
be nested.

SQL statements should not be included within a declare section, with the exception of the DECLARE
VARIABLE and INCLUDE statements.

If SQL declare sections are specified in the program, only the variables declared within the SQL declare
sections can be used as host variables. If SQL declare sections are not specified in the program, all
variables in the program are eligible for use as host variables.

SQL declare sections should be specified for host languages, other than RPG and REXX, so that the
source program conforms to the IBM SQL standard of SQL. SQL declare sections are required for all host
variables in C++. The SQL declare section should appear before the first reference to the variable. Host
variables are declared without the use of these statements in Java and RPG, and they are not declared at
all in REXX.

Variables declared outside an SQL declare section should not have the same name as variables declared
within an SQL declare section.

More than one SQL declare section can be specified in the program.

Examples
Example 1: Define the host variables hv_smint (SMALLINT), hv_vchar24 (VARCHAR(24)), and hv_double
(DOUBLE) in a C program.

 EXEC SQL BEGIN DECLARE SECTION;
 static short hv_smint;
 static struct {
 short hv_vchar24_len;
 char hv_vchar24_value[24];
 } hv_vchar24;
 static double hv_double;
 EXEC SQL END DECLARE SECTION;

928 IBM i: Db2 for i SQL Reference

Example 2: Define the host variables HV-SMINT (smallint), HV-VCHAR24 (varchar(24)), and HV-DEC72
(dec(7,2)) in a COBOL program.

 WORKING-STORAGE SECTION.
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 HV-SMINT PIC S9(4) BINARY.
 01 HV-VCHAR24.
 49 HV-VCHAR24-LENGTH PIC S9(4) BINARY.
 49 HV-VCHAR24-VALUE PIC X(24).
 01 HV-DEC72 PIC S9(5)V9(2) PACKED-DECIMAL.
 EXEC SQL END DECLARE SECTION END-EXEC.

Chapter 7. Statements 929

CALL
The CALL statement calls a procedure.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• If the procedure is an SQL procedure:

– The EXECUTE privilege on the procedure, and
– The USAGE privilege on the schema containing the SQL procedure

• If the procedure is a Java external procedure:

– Read authority (*R) to the integrated file system file that contains the Java class.
– Read and execute authority (*RX) to all directories that must be accessed in order to find the

integrated file system file.
• If the procedure is a REXX external procedure:

– The system authorities *OBJOPR, *READ, and *EXECUTE on the source file associated with the
procedure,

– The USAGE privilege on the schema containing the source file, and
– The system authority *USE to the CL command,

• If the procedure is an external procedure, but not a REXX or Java external procedure:

– The system authority *EXECUTE on the program or service program associated with the procedure,
and

– The USAGE privilege on the schema containing the program or service program associated with the
procedure

• Database administrator authority

If a global variable is referenced as an IN or INOUT parameter, the privileges held by the authorization ID
for the statement must include at least one of the following:

• The READ privilege on the global variable.
• Database administrator authority

If a global variable is referenced as an OUT or INOUT parameter, the privileges held by the authorization
ID for the statement must include at least one of the following:

• The WRITE privilege on the global variable.
• Database administrator authority

For information on the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Function or Procedure.

930 IBM i: Db2 for i SQL Reference

Syntax
CALL procedure-name

variable argument-list

SQL-descriptors

USING DESCRIPTOR descriptor-name

argument-list
(

,

parameter-name =>

expression

DEFAULT

NULL

)

SQL-descriptors

INTO

SQL

DESCRIPTOR
LOCAL

GLOBAL

SQL-descriptor-name

USING

SQL
1

DESCRIPTOR
LOCAL

GLOBAL

SQL-descriptor-name

Notes:
1 If an SQL descriptor is specified in the USING clause and the INTO clause is not specified, USING
DESCRIPTOR is not allowed and USING SQL DESCRIPTOR must be specified.

Description
procedure-name or variable

Identifies the procedure to call by the specified procedure-name or the procedure name contained in
the variable. The identified procedure must exist at the current server.

If a variable is specified:

• It must be a character-string variable or Unicode graphic-string. It cannot be a global variable.
• It must not be followed by an indicator variable.
• The procedure name that is contained within the variable must be left-justified and must be padded

on the right with blanks if its length is less than that of the variable.
• The name of the procedure must be in uppercase unless the procedure name is a delimited name.

If the procedure name is unqualified, it is implicitly qualified based on the path and number of
parameters. For more information see “Qualification of unqualified object names” on page 57.

If the procedure-name identifies a procedure that was defined by a DECLARE PROCEDURE statement,
and the current server is a Db2 for i product, then:

• The DECLARE PROCEDURE statement determines the name of the external program, language, and
calling convention.

• The attributes of the parameters of the procedure are defined by the DECLARE PROCEDURE
statement.

Chapter 7. Statements 931

If there is no DECLARE PROCEDURE and the procedure name identifies a procedure that was defined
by a CREATE PROCEDURE statement, and the current server is Db2 for i, then:

• The CREATE PROCEDURE statement determines the name of the external program, language, and
calling convention.

• The attributes of the parameters of the procedure are defined by the CREATE PROCEDURE
statement.

Otherwise:

• The current server determines the name of the external program, language, and calling convention.
• If the current server is Db2 for i:

– The external program name is assumed to be the same as the external procedure name.
– If the program attribute information associated with the program identifies a recognizable

language, then that language is used. Otherwise, the language is assumed to be C.
– The calling convention is assumed to be GENERAL.

• The application requester assumes all parameters that are variables or parameter markers are
INOUT. All parameters that are not variables are assumed to be IN.

• The actual attributes of the parameters are determined by the current server.

If the current server is a Db2 for i, the attributes of the parameters will be the same as the attributes
of the arguments specified on the CALL statement. 85

argument-list
Identifies a list of values to be passed as parameters to the procedure. The nth unnamed argument
corresponds to the nth parameter in the procedure.

Each parameter defined (using a CREATE PROCEDURE or DECLARE PROCEDURE statement) as OUT
must be specified as a variable. A default cannot be specified for an OUT parameter. If a default is
used for an INOUT parameter, then the default expression is used to initialize the parameter for input
to the procedure. No value is returned for this parameter when the procedure exits.

When a procedure is called, arguments must be specified for all parameters that are not defined to
have a default value. When an argument is assigned to a parameter using the named syntax, then all
the arguments that follow it must also be assigned using the named syntax.

Any references to date, time, or timestamp special register values in the argument list will use one
clock reading for any default expressions and a separate clock reading for any references in the
explicit arguments.

If any argument is an array, all other arguments must be literals, special registers, NULL, or DEFAULT.

The application requester assumes all parameters that are variables are INOUT parameters except
for Java, where it is assumed all parameters that are variables are IN unless the mode is explicitly
specified in the variable reference. All parameters that are not variables are assumed to be input
parameters. The actual attributes of the parameters are determined by the current server.

parameter-name
Name of the parameter to which the argument value is assigned. The name must match a
parameter name defined for the procedure. Named arguments correspond to the same named
parameter regardless of the order in which they are specified in the argument list. When an
argument is assigned to a parameter by name, all the arguments that follow it must also be
assigned by name.
A named argument must be specified only one time (implicitly or explicitly).
Named arguments are only allowed on a call to a procedure that was defined using a CREATE
PROCEDURE statement.

85 Note that in the case of decimal constants, leading zeroes are significant when determining the attributes of
the argument. Normally, leading zeroes are not significant.

932 IBM i: Db2 for i SQL Reference

expression
An expression of the type described in “Expressions” on page 158, that does not include an
aggregate function or column name.

DEFAULT
Specifies the default as defined in the CREATE PROCEDURE statement is used as an argument to
the procedure. If no default is defined for the parameter, the NULL value is used.

NULL
Specifies a null value as an argument to the procedure.

SQL-descriptors
If SQL descriptors are specified on CALL, a procedure that has IN and INOUT parameters requires
an SQL descriptor to be specified in the USING clause; and a procedure that has OUT or INOUT
parameters requires an SQL descriptor to be specified in the INTO clause. If all the parameters of
the procedure are INOUT parameters, the same descriptor can be used for both clauses. For more
information, see Multiple SQL descriptors on CALL.
INTO

Identifies an SQL descriptor which contains valid descriptions of the output variables to be
used with the CALL statement. Before the CALL statement is executed, a descriptor must be
allocated using the ALLOCATE DESCRIPTOR statement. The COUNT field in the descriptor header
must be set to reflect the number of OUT and INOUT parameters for the procedure. The
item information, including TYPE, and where applicable, DATETIME_INTERVAL_CODE, LENGTH,
DB2_CCSID, PRECISION, and SCALE, must be set for the variables that are used when processing
the statement.
LOCAL

Specifies the scope of the name of the descriptor to be local to program invocation. The
information is returned from the descriptor known in this local scope.

GLOBAL
Specifies the scope of the name of the descriptor to be global to the SQL session. The
information is returned from the descriptor known to any program that executes using the
same database connection.

SQL-descriptor-name
Names the SQL descriptor. The name must identify a descriptor that already exists with the
specified scope.

See “GET DESCRIPTOR” on page 1319 for an explanation of the information that is placed in
the SQL descriptor.

USING
Identifies an SQL descriptor which contains valid descriptions of the input variables to be
used with the CALL statement. Before the CALL statement is executed, a descriptor must
be allocated using the ALLOCATE DESCRIPTOR statement. The COUNT field in the descriptor
header must be set to reflect the number of IN and INOUT parameters for the procedure. The
item information, including TYPE, and where applicable, DATETIME_INTERVAL_CODE, LENGTH,
DB2_CCSID, PRECISION, and SCALE, must be set for the variables that are used when processing
the statement. The DATA item and when nulls are used, the INDICATOR item, must be set for the
input variables.
LOCAL

Specifies the scope of the name of the descriptor to be local to program invocation.
GLOBAL

Specifies the scope of the name of the descriptor to be global to the SQL session.
SQL-descriptor-name

Names the SQL descriptor. The name must identify a descriptor that already exists with the
specified scope.

See “SET DESCRIPTOR” on page 1505 for an explanation of the information in the SQL
descriptor.

Chapter 7. Statements 933

USING DESCRIPTOR descriptor-name
Identifies an SQLDA that must contain a valid description of variables.

Before the CALL statement is processed, you must set the following fields in the SQLDA. (The rules for
REXX are different. For more information, see the Embedded SQL Programming topic collection.)

• SQLN to indicate the number of SQLVAR occurrences provided in the SQLDA
• SQLDABC to indicate the number of bytes of storage allocated for the SQLDA
• SQLD to indicate the number of variables used in the SQLDA when processing the statement
• SQLVAR occurrences to indicate the attributes of the variables.

The SQLDA must have enough storage to contain all SQLVAR occurrences. Therefore, the value in
SQLDABC must be greater than or equal to 16 + SQLN*(80), where 80 is the length of an SQLVAR
occurrence. If LOBs or distinct types are specified, there must be two SQLVAR entries for each
parameter marker and SQLN must be set to two times the number of parameter markers.

SQLD must be set to a value greater than or equal to zero and less than or equal to SQLN. It must
be the same as the number of parameters in the CALL statement. The nth variable described by the
SQLDA corresponds to the nth parameter marker in the prepared statement. (For a description of an
SQLDA, see Appendix D, “SQLDA (SQL descriptor area),” on page 1675.)

Note that RPG/400 does not provide the function for setting pointers. Because the SQLDA uses
pointers to locate the appropriate variables, you have to set these pointers outside your RPG/400
application.

The USING DESCRIPTOR clause is not supported for a CALL statement within a Java program.

Notes
Parameter assignments: When the CALL statement is executed, the value of each of its parameters is
assigned (using storage assignment rules) to the corresponding parameter of the procedure. A parameter
value that is defined to have a default value can be omitted from the argument list when invoking the
procedure. Control is passed to the procedure according to the calling conventions of the host language.
When execution of the procedure is complete, the value of each parameter of the procedure is assigned
(using storage assignment rules for SQL parameters, otherwise using retrieval assignment rules) to the
corresponding parameter of the CALL statement defined as OUT or INOUT. For details on the assignment
rules, see “Assignments and comparisons” on page 89.

Global variables: A global variable may be specified and will be modified if used as a parameter that is
INOUT or OUT.

Procedure signatures: A procedure is identified by its schema, a procedure name, and the number of
parameters. This is called a procedure signature, which must be unique within the database. There can be
more than one procedure with the same name in a schema, provided that the number of parameters is
different for each procedure.

SQL path: A procedure can be invoked by referring to a qualified name (schema and procedure name),
followed by an optional list of arguments enclosed by parentheses. A procedure can also be invoked
without the schema name, resulting in a choice of possible procedures in different schemas with the
same number of parameters. In this case, the SQL path is used to assist in procedure resolution.

Procedure resolution: For details of how procedure resolution is performed, see “Procedure resolution”
on page 63 .

Cursors and prepared statements in procedures: All cursors opened in the called procedure that are not
result set cursors are closed, and all statements prepared in the called procedure are destroyed when the
procedure ends. CLOSQLCSR(*ENDACTGRP) can be used to keep cursors open when the procedure ends.
For more information, see “SET OPTION” on page 1512.

Result sets from procedures: There are three ways to return result sets from a procedure:

934 IBM i: Db2 for i SQL Reference

• If a SET RESULT SETS statement is executed in the procedure, the last SET RESULT SETS statement
executed in the procedure identifies the result sets. The result sets are returned in the order specified
on the SET RESULT SETS statement.

• If a SET RESULT SETS statement is not executed in the procedure,

– If no cursors have specified a WITH RETURN clause, each cursor that the procedure opens and
leaves open when it returns identifies a result set. The result sets are returned in the order in which
the cursors are opened.

– If any cursors have specified a WITH RETURN clause, each cursor that is defined with the WITH
RETURN clause that the procedure opens and leaves open when it returns identifies a result set. The
result sets are returned in the order in which the cursors are opened.

When a result set is returned using an open cursor, the rows are returned starting with the current cursor
position.

If a cursor result set references an SQL array type, an error will be returned if the array reference would
cause incorrect results when processing the result set.

Locks in procedures: All locks that have been acquired in the called procedure are retained until the end
of the unit of work.

Errors from procedures: A procedure can return errors (or warnings) using the SQLSTATE like other SQL
statements. Applications should be aware of the possible SQLSTATEs that can be expected when invoking
a procedure. The possible SQLSTATEs depend on how the procedure is coded. Procedures may also return
SQLSTATEs such as those that begin with '38' or '39' if the database manager encounters problems
executing the procedure. Applications should therefore be prepared to handle any error SQLSTATE that
may result from issuing a CALL statement.

Nesting CALL statements: A program that is executing as a procedure, a user-defined function, or a
trigger can issue a CALL statement. When a procedure, user-defined function, or trigger calls a procedure,
user-defined function, or trigger, the call is considered to be nested. There is no limit on how many levels
procedures and functions can be nested, but triggers can only be nested up to 200 levels deep.

If a procedure returns any query result sets, the result sets are returned to the caller of the procedure. If
the SQL CALL statement is nested, the result sets are visible only to the program that is at the previous
nesting level. For example, if a client program calls procedure PROCA, which in turn calls procedure
PROCB. Only PROCA can access any result sets that PROCB returns; the client program has no access to
the query result sets.

When an SQL or an external procedure is called, an attribute is set for SQL data-access that was defined
when the procedure was created. The possible values for the attribute are:

 NONE
 CONTAINS
 READS
 MODIFIES

If a second procedure is invoked within the execution of the current procedure, an error is issued if:

• The invoked procedure possibly contains SQL and the invoking procedure does not allow SQL
• The invoked procedure reads SQL data and the invoking procedure does not allow reading SQL data
• The invoked procedure modifies SQL data and the invoking procedure does not allow modifying SQL

data

REXX procedures: If the external procedure to be called is a REXX procedure, then the procedure must
be declared using the CREATE PROCEDURE or DECLARE PROCEDURE statement.

Variables cannot be used in the CALL statement within a REXX procedure. Instead, the CALL must be the
object of a PREPARE and EXECUTE using parameter markers.

Multiple SQL descriptors on CALL: If SQL descriptors are specified on CALL and a procedure has IN or
INOUT parameters and OUT or INOUT parameters, two descriptors must be specified. The number of

Chapter 7. Statements 935

variables that must be allocated in the SQL descriptors depends on how the SQL descriptor attributes are
set and the number of each type of parameter.

• If the input SQL descriptor attributes were set using DESCRIBE INPUT and the output SQL descriptor
attributes were set using DESCRIBE (OUTPUT), the SQL descriptors will have attributes that match the
actual procedure definition at the current server prior to calling the procedure. In this case, the output
SQL descriptor will contain one variable for each OUT and INOUT parameter. Likewise, the input SQL
descriptor will contain one variable for each IN and INOUT parameter.

This is the recommended technique for specifying multiple SQL descriptors on a CALL statement.
• Otherwise, the actual procedure definition at the current server is unknown prior to calling the

procedure, so each parameter is assumed to be INOUT at the time the procedure is called. This
means that both SQL descriptors must be specified, and since each parameter is assumed to be INOUT,
they must have the same number of variables and the TYPE, DATETIME_INTERVAL_CODE, LENGTH,
DB2_CCSID, PRECISION, and SCALE of each variable in the output SQL descriptor must be exactly the
same as the corresponding variable in the input SQL descriptor. Otherwise, an error is returned.

If multiple SQL descriptors are specified, the DATA or INDICATOR items associated with any INOUT
parameters in the input SQL descriptor may also be modified when the procedure is called. Thus, a SET
DESCRIPTOR may be necessary to reset the DATA and INDICATOR items for such an input SQL descriptor
prior to its use in another SQL statement.

Examples

Example 1: Call procedure PGM1 and pass two parameters.

 CALL PGM1 (:hv1,:hv2)

Example 2: In C, invoke a procedure called SALARY_PROC using the SQLDA named INOUT_SQLDA.

 struct sqlda *INOUT_SQLDA;

 /* Setup code for SQLDA variables goes here */

 CALL SALARY_PROC USING DESCRIPTOR :*INOUT_SQLDA;

Example 3: A Java procedure is defined in the database using the following statement:

 CREATE PROCEDURE PARTS_ON_HAND (IN PARTNUM INTEGER,
 OUT COST DECIMAL(7,2),
 OUT QUANTITY INTEGER)
 LANGUAGE JAVA PARAMETER STYLE JAVA
 EXTERNAL NAME 'parts!onhand';

A Java application calls this procedure on the connection context 'ctx' using the following code fragment:

...
int variable1;
BigDecimal variable2;
Integer variable3;
...
#sql [ctx] {CALL PARTS_ON_HAND(:IN variable1, :OUT variable2, :OUT variable3)};
...

This application code fragment will invoke the Java method onhand in class parts since the procedure-
name specified on the CALL statement is found in the database and has the external name 'parts!onhand'.

Example 4: Call procedure PGM2 on relational database BRANCHRDB2 and pass one parameter.

 CALL BRANCHRDB2.SCHEMA3.PGM2 (:hv1)

Example 5: Assume the following procedure exists.

 CREATE PROCEDURE update_order(
 IN IN_POID BIGINT,
 IN IN_CUSTID BIGINT DEFAULT GLOBAL_CUST_ID,

936 IBM i: Db2 for i SQL Reference

 IN NEW_STATUS VARCHAR(10) DEFAULT NULL,
 IN NEW_ORDERDATE DATE DEFAULT NULL,
 IN NEW_COMMENTS VARCHAR(1000)DEFAULT NULL)...

Also assume that the global variable GLOBAL_CUST_ID is set to the value 1002. Call the procedure to
change the status of order 5000 for customer 1002 to 'Shipped'. Leave the rest of the order data as it is by
allowing the rest of the arguments to default to the null value.

CALL update_order (5000, NEW_STATUS => 'Shipped')

The customer with ID 1001 has called and indicated that they received their shipment for purchase order
5002 and are satisfied. Update their order.

CALL update_order (5002,
 IN_CUSTID => 1001,
 NEW_STATUS => 'Received',
 NEW_COMMENTS => 'Customer satisfied with the order.')

Chapter 7. Statements 937

CLOSE
The CLOSE statement closes a cursor. If a result table was created when the cursor was opened, that
table is destroyed.

Invocation
This statement can only be embedded in an application program. It is an executable statement that
cannot be dynamically prepared. It must not be specified in Java.

Authorization
None required. See “DECLARE CURSOR” on page 1215 for the authorization required to use a cursor.

Syntax
CLOSE cursor-name

Description
cursor-name

Identifies the cursor to be closed. The cursor-name must identify a declared cursor as explained in the
DECLARE CURSOR statement. When the CLOSE statement is executed, the cursor must be in the open
state.

Notes
Implicit cursor close: All cursors in a program are in the closed state when:

• The program is called.

– If CLOSQLCSR(*ENDPGM) is specified, all cursors are in the closed state each time the program is
called.

– If CLOSQLCSR(*ENDSQL) is specified, all cursors are in the closed state only the first time the
program is called as long as one SQL program remains on the call stack.

– If CLOSQLCSR(*ENDJOB) is specified, all cursors are in the closed state only the first time the
program is called in the job.

– If CLOSQLCSR(*ENDMOD) is specified, all cursors are in the closed state each time the module is
initiated.

– If CLOSQLCSR(*ENDACTGRP) is specified, all cursors are in the closed state the first time the module
in the program is initiated within the activation group.

• A program starts a new unit of work by executing a COMMIT or ROLLBACK statement without a HOLD
option. Cursors declared with the HOLD option are not closed by a COMMIT statement.

Note: The Db2 for i database manager will open files in order to implement queries. The closing of the
files can be separate from the SQL CLOSE statement. For more information, see SQL Programming.

Close cursors for performance: Explicitly closing cursors as soon as possible can improve performance.

Procedure considerations: Special rules apply to cursors within procedures that have not been closed
before returning to the calling program. For more information, see “CALL” on page 930.

Example

In a COBOL program, use the cursor C1 to fetch the values from the first four columns of the
EMPPROJACT table a row at a time and put them in the following host variables:

• EMP (CHAR(6))

938 IBM i: Db2 for i SQL Reference

• PRJ (CHAR(6))
• ACT (SMALLINT)
• TIM (DECIMAL(5,2))

Finally, close the cursor.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 77 EMP PIC X(6).
 77 PRJ PIC X(6).
 77 ACT PIC S9(4) BINARY.
 77 TIM PIC S9(3)V9(2) PACKED-DECIMAL.
 EXEC SQL END DECLARE SECTION END-EXEC.
 .
 .
 .

 EXEC SQL DECLARE C1 CURSOR FOR
 SELECT EMPNO, PROJNO, ACTNO, EMPTIME
 FROM EMPPROJACT END-EXEC.

 EXEC SQL OPEN C1 END-EXEC.

 EXEC SQL FETCH C1 INTO :EMP, :PRJ, :ACT, :TIM END-EXEC.

 IF SQLSTATE = '02000'
 PERFORM DATA-NOT-FOUND
 ELSE
 PERFORM GET-REST-OF-ACTIVITY UNTIL SQLSTATE IS NOT EQUAL TO '00000'.

 EXEC SQL CLOSE C1 END-EXEC.

 GET-REST-OF-ACTIVITY
 EXEC SQL FETCH C1 INTO :EMP, :PRJ, :ACT, :TIM END-EXEC.
 .
 .
 .

Chapter 7. Statements 939

COMMENT
The COMMENT statement adds or replaces comments in the catalog descriptions of various database
objects.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
To comment on a table, view, alias, column, type, package, sequence, variable, or XSR object, the
privileges held by the authorization ID of the statement must include at least one of the following:

• For the table, view, alias, type, package, sequence, variable, or XSR object in the statement,

– The ALTER privilege on the table, view, alias, type, package, sequence, variable, or XSR object, and
– The system authority *EXECUTE on the library that contains the table, view, alias, index, type,

package, sequence, variable, or XSR object
• Administrative authority

To comment on a constraint or trigger, the privileges held by the authorization ID of the statement must
include at least one of the following:

• For the subject table of the constraint or trigger in the statement:

– The ALTER privilege on the subject table, and
– The system authority *EXECUTE on the library that contains the subject table

• Database administrator authority

To comment on an index, the privileges held by the authorization ID of the statement must include at least
one of the following:

• For the index identified in the statement,

– The system authority *OBJALTER on the index, and
– The system authority *EXECUTE on the library containing the index.

• Administrative authority

To comment on a function, the privileges held by the authorization ID of the statement must include at
least one of the following:

• For the SYSFUNCS and SYSROUTINES catalog view and table:

– The UPDATE privilege on SYSROUTINES,
– The system authority *OBJOPR on SYSFUNCS, and
– The system authority *EXECUTE on library QSYS2

• Administrative authority

To comment on a procedure, the privileges held by the authorization ID of the statement must include at
least one of the following:

• For the SYSPROCS and SYSROUTINES catalog view and table:

– The UPDATE privilege on SYSROUTINES,
– The system authority *OBJOPR on SYSPROCS, and
– The system authority *EXECUTE on library QSYS2

• Administrative authority

940 IBM i: Db2 for i SQL Reference

To comment on a parameter, the privileges held by the authorization ID of the statement must include at
least one of the following:

• For the SYSPARMS catalog table:

– The UPDATE privilege on the table, and
– The system authority *EXECUTE on library QSYS2

• Administrative authority

To comment on a mask or permission:

• The authorization ID of the statement must be authorized to the Database Security Administrator
function of IBM i. See “Administrative authority” on page 15.

To comment on a sequence, the privileges held by the authorization ID of the statement must also include
at least one of the following:

• *USE authority to the Change Data Area (CHGDTAARA), CL command
• Administrative authority

To comment on a variable, the privileges held by the authorization ID of the statement must also include
at least one of the following:

• For the SYSVARIABLES catalog table:

– The UPDATE privilege on SYSVARIABLES, and
– The system authority *EXECUTE on library QSYS2

• Administrative authority

To comment on an XSR object, the privileges held by the authorization ID of the statement must also
include at least one of the following:

• For the XSROBJECTS catalog table:

– The UPDATE privilege on XSROBJECTS, and
– The system authority *EXECUTE on library QSYS2

• Administrative authority

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Table or View, Corresponding System Authorities When
Checking Privileges to a User-defined Type, Corresponding System Authorities When Checking Privileges
to a Sequence, Corresponding System Authorities When Checking Privileges to a Variable , Corresponding
System Authorities When Checking Privileges to a Package, and Corresponding System Authorities When
Checking Privileges to an XSR object.

Chapter 7. Statements 941

Syntax
COMMENT ON

ALIAS alias-name

COLUMN table-name.column-name

view-name.column-name

CONSTRAINT constraint-name

FUNCTION

ROUTINE

function-name

(
,

parameter-type

)

SPECIFIC FUNCTION

ROUTINE

specific-name

INDEX index-name

MASK mask-name

PACKAGE package-name

VERSION
version-id

PARAMETER routine-name.parameter-name

SPECIFIC FUNCTION

PROCEDURE

ROUTINE

specific-name.parameter-name

PERMISSION permission-name

PROCEDURE

ROUTINE

procedure-name

(
,

parameter-type

)

SPECIFIC PROCEDURE

ROUTINE

specific-name

SEQUENCE sequence-name

TABLE table-name

view-name

TRIGGER trigger-name

TYPE distinct-type-name

array-type-name

VARIABLE variable-name

XSROBJECT xsrobject-name

IS string-constant

multiple-column-list

multiple-parameter-list

multiple-column-list

COLUMN
table-name

view-name

(

,

column-name IS string-constant)

multiple-parameter-list

942 IBM i: Db2 for i SQL Reference

PARAMETER

SPECIFIC FUNCTION

PROCEDURE

ROUTINE

specific-name

ROUTINE

FUNCTION

PROCEDURE

routine-name

(
,

parameter-type

)

(

,

parameter-name IS string-constant)

parameter-type
data-type

AS LOCATOR

data-type
built-in-type

distinct-type-name

array-type-name

built-in-type

Chapter 7. Statements 943

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

)

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

DATALINK

(200)

(integer) ccsid-clause

ROWID

XML

ccsid-clause
CCSID integer

944 IBM i: Db2 for i SQL Reference

Description
ALIAS alias-name

Identifies the alias to which the comment applies. The alias-name must identify an alias that exists at
the current server.

COLUMN
Specifies that a comment will be added to or replaced for a column.
table-name.column-name or view-name.column-name

Identifies the column to which the comment applies. The table-name or view-name must identify
a table or view that exists at the current server, but must not identify a declared temporary table.
The column-name must identify a column of that table or view.

CONSTRAINT
Specifies that a comment will be added to or replaced for a constraint.
constraint-name

Identifies the constraint to which the comment applies. The constraint-name must identify a
constraint that exists at the current server.

FUNCTION or SPECIFIC FUNCTION
Identifies the function on which the comment applies. The function must exist at the current server
and it must be a user-defined function. The function can be identified by its name, function signature,
or specific name.
FUNCTION function-name

Identifies the function by its name. The function-name must identify exactly one function. The
function may have any number of parameters defined for it. If there is more than one function of
the specified name in the specified or implicit schema, an error is returned.

FUNCTION function-name (parameter-type, ...)
Identifies the function by its function signature, which uniquely identifies the function. The
function-name (parameter-type, ...) must identify a function with the specified function signature.
The specified parameters must match the data types in the corresponding position that were
specified when the function was created. The number of data types, and the logical concatenation
of the data types is used to identify the specific function instance on which to comment.
Synonyms for data types are considered a match. Parameters that have defaults must be included
in this signature.

If function-name () is specified, the function identified must have zero parameters.

function-name
Identifies the name of the function.

(parameter-type, ...)
Identifies the parameters of the function.

If an unqualified distinct type name is specified, the database manager searches the SQL path
to resolve the schema name for the distinct type.

For data types that have a length, precision, or scale attribute, use one of the following:

• Empty parentheses indicate that the database manager ignores the attribute when
determining whether the data types match. For example, DEC() will be considered a match
for a parameter of a function defined with a data type of DEC(7,2). However, FLOAT cannot
be specified with empty parenthesis because its parameter value indicates a specific data
type (REAL or DOUBLE).

• If a specific value for a length, precision, or scale attribute is specified, the value must
exactly match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION
statement. If the data type is FLOAT, the precision does not have to exactly match the value
that was specified because matching is based on the data type (REAL or DOUBLE).

• If length, precision, or scale is not explicitly specified, and empty parentheses are not
specified, the default attributes of the data type are implied. The implicit length must

Chapter 7. Statements 945

exactly match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION
statement.

Specifying the FOR DATA clause or CCSID clause is optional. Omission of either clause
indicates that the database manager ignores the attribute when determining whether the
data types match. If either clause is specified, it must match the value that was implicitly or
explicitly specified in the CREATE FUNCTION statement.

AS LOCATOR
Specifies that the function is defined to receive a locator for this parameter. If AS LOCATOR is
specified, the data type must be a LOB or XML or a distinct type based on a LOB or XML. If AS
LOCATOR is specified, FOR SBCS DATA or FOR MIXED DATA must not be specified.

SPECIFIC FUNCTION specific-name
Identifies the function by its specific name. The specific-name must identify a specific function
that exists at the current server.

INDEX index-name
Identifies the index to which the comment applies. The index-name must identify an index that exists
at the current server.

MASK mask-name
Identifies the mask to which the comment applies. The mask-name must identify a mask that exists at
the current server.

PACKAGE package-name
Identifies the package to which the comment applies. The package-name must identify a package
that exists at the current server. 86

VERSION version-id
version-id is the version identifier that was assigned to the package when it was created. If
version-id is not specified, a null string is used as the version identifier.

PARAMETER
Specifies that a comment will be added to or replaced for a parameter.
routine-name.parameter-name

Identifies the parameter to which the comment applies. The parameter could be for a procedure
or a function. The routine-name must identify a procedure or function that exists at the current
server, and the parameter-name must identify a parameter of that procedure or function.

specific-name.parameter-name
Identifies the parameter to which the comment applies. The parameter could be for a procedure
or a function. The specific-name must identify a procedure or function that exists at the current
server, and the parameter-name must identify a parameter of that procedure or function.

PERMISSION permission-name
Identifies the permission to which the comment applies. The permission-name must identify a
permission that exists at the current server.

PROCEDURE or SPECIFIC PROCEDURE
Identifies the procedure to which the comment applies. The procedure-name must identify a
procedure that exists at the current server.
PROCEDURE procedure-name

Identifies the procedure by its name. The procedure-name must identify exactly one procedure.
The procedure may have any number of parameters defined for it. If there is more than one
procedure of the specified name in the specified or implicit schema, an error is returned.

PROCEDURE procedure-name (parameter-type, ...)
Identifies the procedure by its procedure signature, which uniquely identifies the procedure.
The procedure-name (parameter-type, ...) must identify a procedure with the specified procedure
signature. The specified parameters must match the data types in the corresponding position
that were specified when the procedure was created. The number of data types, and the logical

86 If the identified package has a version-id, the comment is limited to 176 bytes.

946 IBM i: Db2 for i SQL Reference

concatenation of the data types is used to identify the specific procedure instance which is to be
commented on. Synonyms for data types are considered a match. Parameters that have defaults
must be included in this signature.

If procedure-name () is specified, the procedure identified must have zero parameters.

procedure-name
Identifies the name of the procedure.

(parameter-type, ...)
Identifies the parameters of the procedure.

If an unqualified distinct type or array type name is specified, the database manager searches
the SQL path to resolve the schema name for the distinct type or array type.

For data types that have a length, precision, or scale attribute, use one of the following:

• Empty parentheses indicate that the database manager ignores the attribute when
determining whether the data types match. For example, DEC() will be considered a match
for a parameter of a procedure defined with a data type of DEC(7,2). However, FLOAT cannot
be specified with empty parenthesis because its parameter value indicates a specific data
type (REAL or DOUBLE).

• If a specific value for a length, precision, or scale attribute is specified, the value
must exactly match the value that was specified (implicitly or explicitly) in the CREATE
PROCEDURE statement. If the data type is FLOAT, the precision does not have to exactly
match the value that was specified because matching is based on the data type (REAL or
DOUBLE).

• If length, precision, or scale is not explicitly specified, and empty parentheses are not
specified, the default attributes of the data type are implied. The implicit length must exactly
match the value that was specified (implicitly or explicitly) in the CREATE PROCEDURE
statement.

Specifying the FOR DATA clause or CCSID clause is optional. Omission of either clause
indicates that the database manager ignores the attribute when determining whether the
data types match. If either clause is specified, it must match the value that was implicitly or
explicitly specified in the CREATE PROCEDURE statement.

AS LOCATOR
Specifies that the procedure is defined to receive a locator for this parameter. If AS LOCATOR
is specified, the data type must be a LOB or XML or a distinct type based on a LOB or XML. If
AS LOCATOR is specified, FOR SBCS DATA or FOR MIXED DATA must not be specified.

SPECIFIC PROCEDURE specific-name
Identifies the procedure by its specific name. The specific-name must identify a specific procedure
that exists at the current server.

SEQUENCE sequence-name
Identifies the sequence to which the comment applies. The sequence-name must identify a sequence
that exists at the current server.

TABLE table-name or view-name
Identifies the table or view to which the comment applies. The table-name or view-name must identify
a table or view that exists at the current server, but must not identify a declared temporary table.

TRIGGER trigger-name
Identifies the trigger to which the comment applies. The trigger-name must identify a trigger that
exists at the current server.

TYPE distinct-type-name or array-type-name
Identifies the distinct type or array type to which the comment applies. The distinct-type-name or
array-type-name must identify a type that exists at the current server.

VARIABLE variable-name
Identifies the variable to which the comment applies. The variable-name must identify a variable that
exists at the current server.

Chapter 7. Statements 947

XSROBJECT xsrobject-name
Identifies the XSR object to which the comment applies. The xsrobject-name must identify an XSR
object that exists at the current server.

IS
Introduces the comment that to be added or replaced.
string-constant

Can be any character-string constant of up to 2000 characters (500 for a sequence).

multiple-column-list
To comment on more than one column in a table or view, specify the table or view name and then, in
parenthesis, a list of the form:

 (column-name IS string-constant,
 column-name IS string-constant, ...)

The column name must not be qualified, each name must identify a column of the specified table or view,
and that table or view must exist at the current server.

multiple-parameter-list
To comment on more than one parameter in a procedure or function, specify the procedure name,
function name, or specific name, and then, in parenthesis, a list of the form:

 (parameter-name IS string-constant,
 parameter-name IS string-constant, ...)

The parameter name must not be qualified, each name must identify a parameter of the specified
procedure or function, and that procedure or function must exist at the current server.

Notes
Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• The keyword PROGRAM can be used as a synonym for PACKAGE.
• The keywords DATA TYPE or DISTINCT TYPE can be used as a synonym for TYPE.

Examples

Example 1: Insert a comment for the EMPLOYEE table.

 COMMENT ON TABLE EMPLOYEE
 IS 'Reflects first quarter 2000 reorganization'

Example 2: Insert a comment for the EMP_VIEW1 view.

 COMMENT ON TABLE EMP_VIEW1
 IS 'View of the EMPLOYEE table without salary information'

Example 3: Insert a comment for the EDLEVEL column of the EMPLOYEE table.

 COMMENT ON COLUMN EMPLOYEE.EDLEVEL
 IS 'Highest grade level passed in school'

Example 4: Enter comments on two columns in the DEPARTMENT table.

 COMMENT ON DEPARTMENT
 (MGRNO IS 'EMPLOYEE NUMBER OF DEPARTMENT MANAGER',
 ADMRDEPT IS 'DEPARTMENT NUMBER OF ADMINISTERING DEPARTMENT')

948 IBM i: Db2 for i SQL Reference

Example 5: Insert a comment for the PAYROLL package.

 COMMENT ON PACKAGE PAYROLL
 IS 'This package is used for distributed payroll processing.'

Chapter 7. Statements 949

COMMIT
The COMMIT statement ends a unit of work and commits the database changes that were made by that
unit of work.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

COMMIT is not allowed in a trigger if the trigger program and the triggering program run under the same
commitment definition. COMMIT is not allowed in a procedure if the procedure is called on a Distributed
Unit of Work connection to a remote application server or if the procedure is defined as ATOMIC. COMMIT
is not allowed in a function.

Authorization
None required.

Syntax

COMMIT
WORK

HOLD

Description
The COMMIT statement ends the unit of work in which it is executed and starts a new unit of work. It
commits all changes made by SQL schema statements (except DROP SCHEMA) and SQL data change
statements during the unit of work. For information about SQL schema statements and SQL data change
statements see Chapter 7, “Statements,” on page 805.

Connections in the release-pending state are ended.

WORK
COMMIT WORK has the same effect as COMMIT.

HOLD
Specifies a hold on resources. If specified, currently open cursors are not closed whether they are
declared with a HOLD option or not. All resources acquired during the unit of work are held. Locks on
specific rows and objects implicitly acquired during the unit of work are released.

All implicitly acquired locks are released; except for object level locks required for the cursors that are not
closed.

All locators that are not held are released. For more information about held locators, see “HOLD
LOCATOR” on page 1391.

Notes
Recommended coding practices: An explicit COMMIT or ROLLBACK statement should be coded at the
end of an application process. Either an implicit commit or rollback operation will be performed at the end
of an application process depending on the application environment. Thus, a portable application should
explicitly execute a COMMIT or ROLLBACK before execution ends in those environments where explicit
COMMIT or ROLLBACK is permitted.

An implicit COMMIT or ROLLBACK may be performed under the following circumstances.

• For the default activation group:

950 IBM i: Db2 for i SQL Reference

– An implicit COMMIT is not performed when applications that run in the default activation group end.
Interactive SQL, Query Manager, and non-ILE programs are examples of programs that run in the
default activation group.

– In order to commit work, you must issue a COMMIT.
• For non-default activation groups when the scope of the commitment definition is to the activation

group:

– If the activation group ends normally, the commitment definition is implicitly committed.
– If the activation group ends abnormally, the commitment definition is implicitly rolled back.

• Regardless of the type of activation group, if the scope of the commitment definition is the job, an
implicit commit is never performed.

Effect of commit: Commit without HOLD causes the following to occur:

• Connections in the release-pending state are ended.

For existing connections:

– all open cursors that were declared with the WITH HOLD clause are preserved and their current
position is maintained, although a FETCH statement is required before a Positioned UPDATE or
Positioned DELETE statement can be executed.

– all open cursors that were declared without the WITH HOLD clause including any opened under
isolation level NC are closed.

• All LOB locators that are not held are freed. Note that this is true even when the locators are associated
with LOB values retrieved via a cursor that has the WITH HOLD property.

• All locks acquired by the LOCK TABLE statement are released. All implicitly acquired locks are released,
except for those required for the cursors that were not closed.

Row lock limit: A unit of work can include the processing of up to 4 million rows, including rows retrieved
during a SELECT or FETCH statement87, and rows inserted, deleted, or updated as part of INSERT,
DELETE, and UPDATE statements.88

Unaffected statements: The commit and rollback operations do not affect the DROP SCHEMA statement,
and this statement is not, therefore, allowed in an application program that also specifies COMMIT(*CHG),
COMMIT(*CS), COMMIT(*ALL), or COMMIT(*RR).

COMMIT Restrictions: A commit or rollback in a user-defined function in a secondary thread is not
allowed.

Commitment definition use: The commitment definition used by SQL is determined as follows:

• If the activation group of the program calling SQL is already using an activation group level commitment
definition, then SQL uses that commitment definition.

• If the activation group of the program calling SQL is using the job level commitment definition, then SQL
uses the job level commitment definition.

• If the activation group of the program calling SQL is not currently using a commitment definition but the
job commitment definition is started, then SQL uses the job commitment definition.

87 This limit also includes:

• Any rows accessed or changed through files opened under commitment control through high-level
language file processing

• Any rows deleted, updated, or inserted as a result of a trigger or CASCADE, SET NULL, or SET DEFAULT
referential integrity delete rule.

88 Unless you specified COMMIT(*CHG) or COMMIT(*CS), in which case these rows are not included in this
total.

Chapter 7. Statements 951

• If the activation group of the program calling SQL is not currently using a commitment definition and the
job commitment definition is not started, then SQL implicitly starts a commitment definition. SQL uses
the Start Commitment Control (STRCMTCTL) command with:

– A CMTSCOPE(*ACTGRP) parameter
– A LCKLVL parameter based on the COMMIT option specified on either the CRTSQLxxx, STRSQL, or

RUNSQLSTM commands. In REXX, the LCKLVL parameter is based on the commit option in the SET
OPTION statement.

Example

In a C program, transfer a certain amount of commission (COMM) from one employee (EMPNO) to another
in the EMPLOYEE table. Subtract the amount from one row and add it to the other. Use the COMMIT
statement to ensure that no permanent changes are made to the database until both operations are
completed successfully.

void main ()
 {

 EXEC SQL BEGIN DECLARE SECTION;
 decimal(5,2) AMOUNT;
 char FROM_EMPNO[7];
 char TO_EMPNO[7];
 EXEC SQL END DECLARE SECTION;
 EXEC SQL INCLUDE SQLCA;
 EXEC SQL WHENEVER SQLERROR GOTO SQLERR;
 ...
 EXEC SQL UPDATE EMPLOYEE
 SET COMM = COMM - :AMOUNT
 WHERE EMPNO = :FROM_EMPNO;
 EXEC SQL UPDATE EMPLOYEE
 SET COMM = COMM + :AMOUNT
 WHERE EMPNO = :TO_EMPNO;
 FINISHED:
 EXEC SQL COMMIT WORK;
 return;

 SQLERR:
 ...
 EXEC SQL WHENEVER SQLERROR CONTINUE; /* continue if error on rollback */
 EXEC SQL ROLLBACK WORK;
 return;
 }

952 IBM i: Db2 for i SQL Reference

compound (dynamic)
A compound (dynamic) statement groups other statements together in an executable routine. A
compound statement allows the declaration of SQL variables, cursors, and condition handlers.

Invocation
This statement can be issued interactively. It is an executable statement that can be dynamically
prepared. It cannot be embedded in an application program.

Authorization
The privileges held by the authorization ID of the statement must also include all of the privileges
necessary to invoke the SQL statements that are specified in the compound (dynamic) statement.

Syntax

BEGIN
NOT ATOMIC

ATOMIC

SQL-variable-declaration

SQL-condition-declaration

return-codes-declaration

INCLUDE-statement

 ;

DECLARE CURSOR-statement

INCLUDE-statement

 ;

handler-declaration

INCLUDE-statement

 ;

SQL-procedure-statement ;

END

SQL-variable-declaration

Chapter 7. Statements 953

DECLARE

,

SQL-variable-name

data-type
DEFAULT NULL

CONSTANT NULL

DEFAULT constant

NOT NULL
1

CONSTANT constant

array-type-name
DEFAULT NULL

SQL-condition-declaration
DECLARE SQL-condition-name CONDITION

FOR

SQLSTATE
VALUE

string-constant

return-codes-declaration

DECLARE SQLSTATE CHARACTER(5)

CHAR(5)

DEFAULT '00000'

DEFAULT string-constant

SQLCODE INTEGER

INT

DEFAULT 0

DEFAULT integer-constant

handler-declaration

DECLARE CONTINUE

EXIT

UNDO

HANDLER FOR specific-condition-value

general-condition-value

2

SQL-procedure-statement

specific-condition-value
,

SQLSTATE
VALUE

string

SQL-condition-name

general-condition-value
,

SQLEXCEPTION

SQLWARNING

NOT FOUND

3

data-type

954 IBM i: Db2 for i SQL Reference

built-in-type

distinct-type-name

Notes:
1 The DEFAULT and NOT NULL clauses can be specified in either order.
2 specific-condition-value and general-condition-value cannot be specified in the same handler
declaration.
3 The same clause must not be specified more than once.

built-in-type

Chapter 7. Statements 955

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CLOB

CHAR LARGE OBJECT

CHARACTER LARGE OBJECT

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

)

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

DATALINK

(200)

(integer) ccsid-clause

ROWID

XML

ccsid-clause
CCSID integer

956 IBM i: Db2 for i SQL Reference

Description
ATOMIC

ATOMIC indicates that an unhandled exception condition within the compound (dynamic) statement
causes the compound statement to be rolled back. If ATOMIC is specified, COMMIT, ROLLBACK
(ROLLBACK TO SAVEPOINT may be specified), SET CURRENT DEBUG MODE, SET CURRENT DEGREE,
SET CURRENT DECFLOAT ROUNDING MODE, SET CURRENT IMPLICIT XMLPARSE OPTION, SET
CURRENT TEMPORAL SYSTEM_TIME, SET PATH, and SET SCHEMA statements cannot be specified
in the compound statement.

NOT ATOMIC
NOT ATOMIC indicates that an unhandled exception condition within the compound (dynamic)
statement does not causes the compound statement to be rolled back.

SQL-variable-declaration
Declares a variable that is local to the compound (dynamic) statement.
SQL-variable-name

Defines the name of a local SQL variable. The database manager converts all undelimited SQL
variable names to uppercase. The name must not be the same as another SQL variable within
the same compound (dynamic) statement, excluding any declarations in compound-statements
nested within the compound (dynamic) statement. Do not name SQL variables the same as a
column name. See “References to SQL parameters and SQL variables” on page 1581 for how SQL
variable names are resolved when there are columns with the same name involved in a statement.
Variable names should not begin with 'SQL'.

data-type
Specifies the data type of the variable. See “CREATE TABLE” on page 1115 for a description of
data type.

If the data-type is a graphic string data type, consider specifying CCSID 1200 or 13488 to indicate
UTF-16 or UCS-2 data. If a CCSID is not specified, the CCSID of the graphic string variable will be
the associated DBCS CCSID for the job.

array-type-name
Specifies that the SQL variable is an array as defined with the CREATE TYPE (Array) statement.

DEFAULT constant or NULL
Defines the default for the SQL variable. The specified constant must represent a value that
could be assigned to the variable in accordance with the rules of assignment as described in
“Assignments and comparisons” on page 89. The variable is initialized when the compound
(dynamic) statement is invoked. If a default value is not specified, the SQL variable is initialized to
NULL. SQL variables of type XML cannot have a default value specified.

NOT NULL
Prevents the SQL variable from containing the NULL value. Omission of NOT NULL implies that the
variable can be null. SQL variables of type XML cannot have NOT NULL specified

CONSTANT constant or NULL
Specifies that the SQL variable has a fixed value that cannot be changed. An SQL variable that is
defined using CONSTANT cannot be used as the target of any assignment operation. The specified
constant must represent a value that could be assigned to the variable in accordance with the
rules of assignment as described in “Assignments and comparisons” on page 89.

SQL-condition-declaration
Declares a condition name and corresponding SQLSTATE value.
SQL-condition-name

Specifies the name of the condition. The condition name must be unique within the compound
(dynamic) statement, excluding any declarations in compound-statements nested within the
compound (dynamic) statement.

FOR SQLSTATE string-constant
Specifies the SQLSTATE associated with this condition. The string constant must be specified as 5
characters. The SQLSTATE class (the first 2 characters) must not be '00'.

Chapter 7. Statements 957

return-codes-declaration
Declares special SQL variables called SQLSTATE and SQLCODE that are set for the first condition in
the diagnostics area after executing an SQL statement other than GET DIAGNOSTICS or an empty
compound-statement.

The SQLSTATE and SQLCODE special variables are only intended to be used as a means of obtaining
the SQL return codes that resulted from processing the previous SQL statement other than GET
DIAGNOSTICS. If there is any intention to use the SQLSTATE and SQLCODE values, save the values
immediately to other SQL variables to avoid having the values replaced by the SQL return codes
returned after executing the next SQL statement. If a handler is defined that handles an SQLSTATE,
you can use an assignment statement to save that SQLSTATE (or the associated SQLCODE) value in
another SQL variable, if the assignment is the first statement in the handler.

Assignment to these variables is not prohibited; however, it is not recommended. Assignment to these
special variables is ignored by condition handlers. The SQLSTATE and SQLCODE special variables
cannot be set to NULL.

DECLARE CURSOR-statement
Declares a cursor in the compound (dynamic) statement. The cursor name must be unique within the
compound (dynamic) statement, excluding any declarations in compound-statements nested within
the compound (dynamic) statement.

A cursor-name can only be referenced within the compound (dynamic) statement in which it is
declared, including any compound-statements nested within the compound (dynamic) statement.

Use an OPEN statement to open the cursor, and a FETCH statement to read rows using the cursor. Any
open cursor is closed at the end of the compound (dynamic) statement.

For more information about declaring a cursor, refer to “DECLARE CURSOR” on page 1215.

handler-declaration
Specifies a handler, an SQL-procedure-statement to execute when an exception or completion
condition occurs in the compound (dynamic) statement.

A condition handler declaration cannot reference the same condition value or SQLSTATE value more
than once, and cannot reference an SQLSTATE value and a condition name that represent the same
SQLSTATE value. For a list of SQLSTATE values as well as more information, see the SQL messages and
codes topic collection.

Furthermore, when two or more condition handlers are declared in a compound (dynamic) statement,
no two condition handler declarations may specify the same:

• general condition category or
• specific condition, either as an SQLSTATE value or as a condition name that represents the same

value.

A condition handler is active for the set of SQL-procedure-statements that follow the handler-
declarations within the compound (dynamic) statement, including any nested compound-statements.

A handler for a condition may exist at several levels of nested compound statements. For example,
assume that compound (dynamic) statement n1 contains another compound statement n2 which
contains another compound statement n3. When an exception condition occurs within n3, any active
handlers within n3 are first allowed to handle the condition. If no appropriate handler exists in n3,
then the condition is resignalled to n2 and the active handlers within n2 may handle the condition.
If no appropriate handler exists in n2, then the condition is resignalled to n1 and the active handlers
within n1 may handle the condition. If no appropriate handler exists in n1, the condition is considered
unhandled.

There are three types of condition handlers:

CONTINUE
Specifies that after the condition handler is activated and completes successfully, control is
returned to the SQL statement following the one that raised the exception. If the error occurs

958 IBM i: Db2 for i SQL Reference

while executing a comparison as in an IF, CASE, FOR, WHILE, or REPEAT, control returns to the
statement following the corresponding END IF, END CASE, END FOR, END WHILE, or END REPEAT.

EXIT
Specifies that after the condition handler is activated and completes successfully, control is
returned to the end of the compound (dynamic) statement.

UNDO
Specifies that when the condition handler is activated changes made by the compound (dynamic)
statement are rolled back. When the handler completes successfully, control is returned to the
end of the compound (dynamic) statement. If UNDO is specified, then ATOMIC must be specified.

The conditions under which the handler is activated are:

SQLSTATE string
Specifies that the handler is invoked when the specific SQLSTATE occurs. The SQLSTATE class (the
first 2 characters) must not be '00'.

SQL-condition-name
Specifies that the handler is invoked when the specific SQLSTATE associated with the condition
name occurs. The SQL-condition-name must be previously defined in a SQL-condition-declaration.

SQLEXCEPTION
Specifies that the handler is invoked when an exception condition occurs. An exception condition
is represented by an SQLSTATE value where the first two characters are not '00', '01', or '02'.

SQLWARNING
Specifies that the handler is invoked when a warning condition occurs. A warning condition is
represented by an SQLSTATE value where the first two characters are '01'.

NOT FOUND
Specifies that the handler is invoked when a NOT FOUND condition occurs. A NOT FOUND
condition is represented by an SQLSTATE value where the first two characters are '02'.

SQL-procedure-statement
An SQL statement or SQL control statement as defined in “SQL-procedure-statement” on page 1586.
The SET RESULT SETS and SET SESSION AUTHORIZATION SQL statements are not allowed.

Notes
Compound (dynamic) content: See “SQL control statements” on page 1579 for more information on the
constructs that can be used in a compound (dynamic) statement.

Nesting compound statements: Compound-statements can be nested within a compound (dynamic)
statement. Nested compound statements can be used to scope variable definitions, condition names,
condition handlers, and cursors to a subset of the statements in the compound (dynamic) statement.
This can simplify the processing done for each SQL-procedure-statement. Support for nested compound
statements enables the use of a compound statement within the declaration of a condition handler.

Compound (dynamic) statement execution: When a compound (dynamic) statement is dynamically
prepared and executed, the statements within the compound statement are processed as static
statements. A temporary program that embeds the statements for the compound statement is created
and then executed. The program name is QTEMP.QCMPDnnnnn, where nnnnn is a unique number for the
job.

CURRENT PATH and CURRENT SCHEMA: The current schema and current path apply to the prepared
and executed compound (dynamic) statement. Any change to these special registers within the
compound statement does not affect subsequent resolution of statements within the same compound
statement. For example:

SET SCHEMA prodlib;
SET stmt = 'BEGIN SET SCHEMA datalib; INSERT INTO test_table VALUES(1); END';
PREPARE compound_stmt FROM stmt;
EXECUTE compound_stmt;

Chapter 7. Statements 959

When the compound statement compound_stmt is prepared and executed, the INSERT will resolve to
PRODLIB.TEST_TABLE, not DATALIB.TEST_TABLE.

Most end user SQL script interfaces use dynamic SQL to execute SQL statements. For example, executing
the following two statements in IBM i Navigator's Run SQL Scripts is logically equivalent to the above
example. The INSERT will resolve to PRODLIB.TEST_TABLE, not DATALIB.TEST_TABLE.

SET SCHEMA prodlib;
BEGIN
 SET SCHEMA datalib;
 INSERT INTO test_table VALUES(1);
END;

Condition handlers: Condition handlers in a compound (dynamic) statement are similar to WHENEVER
statements used in external SQL application programs. A condition handler can be defined to
automatically get control when an exception, warning, or not found condition occurs. The body of a
condition handler contains code that is executed when the condition handler is activated. A condition
handler can be activated as a result of an exception, warning, or not found condition that is returned
by the database manager for the processing of an SQL statement, or the activating condition can be the
result of a SIGNAL or RESIGNAL statement issued within the routine body.

A condition handler is declared within a compound (dynamic) statement, and it is active for the set
of SQL-procedure-statements that follow all of the condition handler declarations within the compound
(dynamic) statement. To be more specific, the scope of a condition handler declaration H is the list of
SQL-procedure-statements that follows the condition handler declarations contained within the compound
(dynamic) statement in which H appears. This means that the scope of H does not include the statements
contained in the body of the condition handler H, implying that a condition handler cannot handle
conditions that arise inside its own body. Similarly, for any two condition handlers H1 and H2 declared in
the same compound (dynamic) statement, H1 will not handle conditions arising in the body of H2, and H2
will not handle conditions arising in the body of H1.

The declaration of a condition handler specifies the condition that activates it, the type of the condition
handler (CONTINUE, EXIT, or UNDO), and the handler action. The type of the condition handler
determines where control is returned to after successful completion of the handler action.

Condition handler activation: When a condition other than successful completion occurs in the
processing of an SQL-procedure-statement, if a condition handler that could handle the condition is within
scope, one such condition handler will be activated to process the condition.

In a compound (dynamic) statement with nested compound-statements, condition handlers that could
handle a specific condition may exist at several levels of the nested compound statements. The condition
handler that is activated is a condition handler that is declared innermost to the scope in which the
condition was encountered. If more than one condition handler at that nesting level could handle
the condition, the condition handler that is activated is the most appropriate handler declared in that
compound statement.

The most appropriate handler is a handler that is defined in the compound statement which most closely
matches the SQLSTATE of the exception or completion condition.

For example, if the innermost compound statement declares a specific handler for SQLSTATE 22001 as
well as a handler for SQLEXCEPTION, the specific handler for SQLSTATE 22001 is the most appropriate
handler when an SQLSTATE 22001 is encountered. In this case, the specific handler is activated.

When a condition handler is activated, the condition handler action is executed. If the handler action
completes successfully or with an unhandled warning, the diagnostics area is cleared, and the type of the
condition handler (CONTINUE, EXIT, or UNDO handler) determines where control is returned. Additionally,
the SQLSTATE and SQLCODE SQL variables are cleared when a handler completes successfully or with an
unhandled warning.

If the handler action does not complete successfully, and an appropriate handler exists for the
condition encountered in the handler action, that condition handler is activated. Otherwise, the condition
encountered within the condition handler is unhandled.

960 IBM i: Db2 for i SQL Reference

Unhandled conditions: If a condition is encountered and an appropriate handler does not exist for that
condition, the condition is unhandled.

• If the unhandled condition is an exception, the compound statement containing the failing statement is
terminated with an unhandled exception condition.

• If the unhandled condition is a warning or not found condition, processing continues with the next
statement. Note that the processing of the next SQL statement will cause information about the
unhandled condition in the diagnostics area to be overwritten, and evidence of the unhandled condition
will no longer exist.

Considerations for using SIGNAL or RESIGNAL statements with nested compound statements:
If an SQL-procedure-statement specified in the condition handler is either a SIGNAL or RESIGNAL
statement with an exception SQLSTATE, the compound (dynamic) statement terminates with the specified
exception. This happens even if this condition handler or another condition handler in the same
compound (dynamic) statement specifies CONTINUE, since these condition handlers are not in the scope
of this exception. If a compound-statement is nested in a compound (dynamic) statement, condition
handlers in the compound (dynamic) statement may handle the exception from within the compound-
statement because those condition handlers are within the scope of the exception.

Null values in SQL variables: If the value of an SQL variable is null and it is used in an SQL statement
(such as CONNECT or DESCRIBE) that does not allow an indicator variable, an error is returned.

Uncommitted changes: Any uncommitted transactional work is scoped to the activation group of the
connection in which the dynamic compound statement is run.

Effect on open cursors: Upon exit from the compound (dynamic) statement for any reason, all open
cursors that are declared in that compound statement are closed.

Considerations for SQLSTATE and SQLCODE SQL variables: The compound (dynamic) statement
itself does not affect the SQLSTATE and SQLCODE SQL variables. However, SQL statements contained
within the compound statement can affect the SQLSTATE and SQLCODE SQL variables. At the end
of the compound statement the SQLSTATE and SQLCODE SQL variables reflect the result of the last
SQL statement executed within that compound statement that caused a change to the SQLSTATE and
SQLCODE SQL variables. If the SQLSTATE and SQLCODE variables were not changed within the compound
(dynamic) statement, they contain the same values as when the compound (dynamic) statement was
invoked.

Chapter 7. Statements 961

CONNECT (type 1)
The CONNECT (type 1) statement connects an activation group within an application process to the
identified application server using the rules for remote unit of work. This server is then the current server
for the activation group. This type of CONNECT statement is used if RDBCNNMTH(*RUW) was specified on
the CRTSQLxxx command.

Differences between the two types of statements are described in “CONNECT (type 1) and CONNECT
(type 2) differences” on page 1662. Refer to “Application-directed distributed unit of work” on page 38
for more information about connection states.

Invocation
This statement can only be embedded within an application program or issued interactively. It is an
executable statement that cannot be dynamically prepared. It must not be specified in Java or REXX.

CONNECT is not allowed in a trigger or function.

Authorization
The privileges held by the authorization ID of the statement must include communications-level security.
(See the section about security in Distributed Database Programming).

If the application server is Db2 for i, the user profile of the person issuing the statement must also be a
valid user profile on the application server system, UNLESS:

• User is specified. In this case, the USER clause must specify a valid user profile on the application
server system.

• TCP/IP is used with a server authorization entry for the application server. In this case, the server
authorization entry must specify a valid user profile on the application server system.

If a global variable is referenced in a statement, the privileges held by the authorization ID of the
statement must include at least one of the following:

• For the global variable identified in the statement,

– The READ privilege on the global variable, and
– The system authority *EXECUTE on the library containing the global variable

• Database administrator authority

Syntax
CONNECT

TO server-name

variable authorization

RESET

authorization
USER authorization-name

variable

USING password

variable

Description
TO server-name or variable

Identifies the application server by the specified server name or the server name contained in the
variable. It can be a global variable if it is qualified with schema name. If a variable is specified:

• It must be a CHAR or VARCHAR host variable.

962 IBM i: Db2 for i SQL Reference

• It must not be followed by an indicator variable.
• The server name must be left-justified within the variable and must conform to the rules for forming

an ordinary identifier.
• If the length of the server name is less than the length of the variable, it must be padded on the right

with blanks.

When the CONNECT statement is executed, the specified server name or the server name contained
in the variable must identify an application server described in the local directory and the activation
group must be in the connectable state.

If the server-name is a local relational database and an authorization-name is specified, it must be the
user of the job. If the specified authorization-name is different than the user of the job, an error occurs
and the application is left in the unconnected state.

USER authorization-name or variable
Identifies the authorization name that will be used to connect to the application server. It can be a
global variable if it is qualified with schema name.

If a variable is specified,

• It must be a CHAR or VARCHAR host variable.
• It must not be followed by an indicator variable.
• The authorization name must be left-justified within the variable and must conform to the rules of

forming an authorization name.
• If the length of the authorization name is less than the length of the variable, it must be padded on

the right with blanks.
• The value of the server name must not contain lowercase characters.

USING password or variable
Identifies the password that will be used to connect to the application server.

If password is specified as a literal, it must be a character string. The maximum length is 128
characters. It must be left justified. The literal form of the password is not allowed in static SQL or
REXX.

If a variable is specified,

• It cannot be a global variable.
• It must be a CHAR or VARCHAR host variable.
• It must not be followed by an indicator variable.
• The password must be left-justified within the variable.
• If the length of the password is less than that of the variable, it must be padded on the right with

blanks.

RESET
CONNECT RESET is equivalent to CONNECT TO x where x is the local server name.

CONNECT with no operand
This form of the CONNECT statement returns information about the current server and has no effect
on connection states, open cursors, prepared statements, or locks. The connection information is
returned in the connection information items in the SQL Diagnostics Area (or the SQLCA).

Notes
Successful connection: If the CONNECT statement is successful:

• All open cursors are closed, all prepared statements are destroyed, and all locks are released from the
current connection.

• The activation group is disconnected from all current and dormant connections, if any, and connected to
the identified application server.

Chapter 7. Statements 963

• The name of the application server is placed in the CURRENT SERVER special register.
• Information about the application server is placed in the connection-information-items in the SQL

Diagnostics Area.
• Information about the application server is also placed in the SQLERRP and SQLERRD(4) fields of the

SQLCA. If the application server is an IBM relational database product, the information in the SQLERRP
field has the form pppvvrrm, where:

– ppp identifies the product as follows:

- ARI for Db2 for VM and VSE
- DSN for Db2 for z/OS
- QSQ for Db2 for i
- SQL for all other Db2 products

– vv is a two-digit version identifier such as '09'
– rr is a two-digit release identifier such as '01'
– m is a one-character modification level such as '0'

For example, if the application server is Version 9 of Db2 for z/OS, the value of SQLERRP is 'DSN09010'.

The SQLERRD(4) field of the SQLCA contains values indicating whether the application server allows
committable updates to be performed. For a CONNECT (type 1) statement SQLERRD(4) will always
contain the value 1. The value 1 indicates that committable updates can be performed, and the
connection:

– Uses an unprotected conversation89, or
– Is a connection to an application requester driver program using the *RUW connection method, or
– Is a local connection using the *RUW connection method.

• Additional information about the connection is placed in the SQLERRMC field of the SQLCA. Refer to
Appendix C, “SQLCA (SQL communication area),” on page 1665

Unsuccessful connection: If the CONNECT statement is unsuccessful, the
DB2_MODULE_DETECTING_ERROR condition information item in the SQL Diagnostics Area (or the
SQLERRP field of the SQLCA) is set to the name of the module at the application requester that detected
the error. Note that the first three characters of the module name identify the product. For example, if the
application requester is Db2 LUW the first three characters are 'SQL'.

If the CONNECT statement is unsuccessful because the activation group is not in the connectable state,
the connection state of the activation group is unchanged.

If the CONNECT statement is unsuccessful for any other reason:

• The activation group remains in a connectable, but unconnected state
• All open cursors are closed, all prepared statements are destroyed, and all locks are released from all

current and dormant connections.

An application in a connectable but unconnected state can only execute the CONNECT or SET
CONNECTION statements.

Implicit connect:

• When running in the default activation group, the SQL program implicitly connects to a remote relational
database when:

– The activation group is in a connectable state.
– The first SQL statement in the first SQL program on the program stack is executed.

89 To reduce the possibility of confusion between network connections and SQL connections, in this book the
term 'conversation' will be used to apply to network connections over TCP/IP as well as over APPC, even
though it formally applies only to APPC connections.

964 IBM i: Db2 for i SQL Reference

• When running in a non-default activation group, the SQL program implicitly connects to a remote
relational database when the first SQL statement in the first SQL program for that activation group is
executed.

Note: It is a good practice for the first SQL statement executed by an activation group to be the CONNECT
statement.

When APPC is used for connecting to an RDB, implicit connect always sends the authorization-name of
the application requester job and does not send passwords. If the authorization-name of the application
server job is different, or if a password must be sent, an explicit connect statement must be used.

When TCP/IP is used for connecting to an RDB, an implicit connect is not bound by the above restrictions.
Use of the ADDSVRAUTE and other -SVRAUTE commands allows one to specify, for a given user under
which the implicit (or explicit) CONNECT is done, the remote authorization-name and password to be used
in connecting to a given RDB.

In order for the password to be stored with the ADDSVRAUTE or CHGSVRAUTE command, the
QRETSVRSEC system value must be set to '1' rather than the default of '0'. When using these commands
for DRDA connection, it is very important to realize that the value of the RDB name entered into
the SERVER parameter must be in UPPER CASE. For more information, see Example 2 under Type 2
CONNECT.

For more information about implicit connect, refer to the SQL Programming topic collection. Once a
connection to a relational database for a user profile is established, the password, if specified, may not
be validated again on subsequent connections to the same relational database with the same user profile.
Revalidation of the password depends on if the conversation is still active. See the Distributed Database
Programming topic collection for more details.

Connection states: For a description of connection states, see “Remote unit of work connection
management” on page 37. Consecutive CONNECT statements can be executed successfully because
CONNECT does not remove the activation group from the connectable state.

A CONNECT to either a current or dormant connection in the application group is executed as follows:

• If the connection identified by the server-name was established using a CONNECT (type 1) statement,
then no action is taken. Cursors are not closed, prepared statements are not destroyed, and locks are
not released.

• If the connection identified by the server-name was established using a CONNECT (type 2) statement,
then the CONNECT statement is executed like any other CONNECT statement.

CONNECT cannot execute successfully when it is preceded by any SQL statement other than CONNECT,
COMMIT, DISCONNECT, SET CONNECTION, RELEASE, or ROLLBACK. To avoid an error, execute a commit
or rollback operation before a CONNECT statement is executed.

If any previous current or dormant connections were established using protected conversations, then
the CONNECT (type 1) statement will fail. Either, a CONNECT (type 2) statement must be used, or the
connections using protected conversations must be ended by releasing the connections and successfully
committing.

For more information about connecting to a remote relational database and the local directory, see SQL
Programming and the Distributed Database Programming.

SET SESSION AUTHORIZATION: If a SET SESSION AUTHORIZATION statement has been executed
in the thread, a CONNECT to the local server will fail unless prior to the connect statement, the
SYSTEM_USER value is the same as SESSION_USER.

This includes an implicit connect due to invoking a program that specifies ACTGRP(*NEW).

Examples

Example 1: In a C program, connect to the application server TOROLAB.

 EXEC SQL CONNECT TO TOROLAB;

Chapter 7. Statements 965

Example 2: In a C program, connect to an application server whose name is stored in the variable
APP_SERVER (VARCHAR(18)). Following a successful connection, copy the product identifier of the
application server to the variable PRODUCT.

 void main ()
 {
 char product[9] = " ";
 EXEC SQL BEGIN DECLARE SECTION;
 char APP_SERVER[19];
 char username[11];
 char userpass[129];
 EXEC SQL END DECLARE SECTION;
 EXEC SQL INCLUDE SQLCA;
 strcpy(APP_SERVER,"TOROLAB");
 strcpy(username,"JOE");
 strcpy(userpass,"XYZ1");
 EXEC SQL CONNECT TO :APP_SERVER
 USER :username USING :userpass;
 if (strncmp(SQLSTATE, "00000", 5))
 { EXEC SQL GET DIAGNOSTICS CONDITION 1
 product = DB2_PRODUCT_ID; }
 ...
 return;
 }

966 IBM i: Db2 for i SQL Reference

CONNECT (type 2)
The CONNECT (type 2) statement connects an activation group within an application process to the
identified application server using the rules for application directed distributed unit of work. This
server is then the current server for the activation group. This type of CONNECT statement is used if
RDBCNNMTH(*DUW) was specified on the CRTSQLxxx command.

Differences between the two types of statements are described in “CONNECT (type 1) and CONNECT
(type 2) differences” on page 1662. Refer to “Application-directed distributed unit of work” on page 38
for more information about connection states.

Invocation
This statement can only be embedded in an application program or issued interactively. It is an
executable statement that cannot be dynamically prepared. It must not be specified in Java or REXX.

CONNECT is not allowed in a trigger or function.

Authorization
The privileges held by the authorization ID of the statement must include communications-level security.
(See the section about security in the Distributed Database Programming topic collection.)

If the application server is Db2 for i, the profile ID of the person issuing the statement must also be a valid
user profile on the application server system, UNLESS:

• USER is specified. If USER is specified, the USER clause must specify a valid user profile on the
application server system.

• TCP/IP is used with a server authorization entry for the application server. If this is the case, the server
authorization entry must specify a valid user profile on the application server system.

If a global variable is referenced in a statement, the privileges held by the authorization ID of the
statement must include at least one of the following:

• For the global variable identified in the statement,

– The READ privilege on the global variable, and
– The system authority *EXECUTE on the library containing the global variable

• Database administrator authority

Syntax
CONNECT

TO server-name

variable authorization

RESET

authorization
USER authorization-name

variable

USING password

variable

Description
TO server-name or variable

Identifies the application server by the specified server name or the server name contained in the
variable. It can be a global variable if it is qualified with schema name. If a variable is specified:

• It must be a CHAR or VARCHAR host variable.

Chapter 7. Statements 967

• It must not be followed by an indicator variable.
• The server name must be left-justified within the variable and must conform to the rules for forming

an ordinary identifier.
• If the length of the server name is less than the length of the variable, it must be padded on the right

with blanks.
• The value of the server name must not contain lowercase characters.

When the CONNECT statement is executed, the specified server name or the server name contained
in the variable must identify an application server described in the local directory.

Let S denote the specified server name or the server name contained in the variable. S must not
identify an existing connection of the application process.

USER authorization-name or variable
Identifies the authorization name that will be used to connect to the application server. It can be a
global variable if it is qualified with schema name.

If a variable is specified:

• It must be a CHAR or VARCHAR host variable.
• It must not be followed by an indicator variable. The authorization name must be left-justified within

the variable and must conform to the rules of forming an authorization name.
• If the length of the authorization name is less than the length of the variable, it must be padded on

the right with blanks.

USING password or variable
Identifies the password that will be used to connect to the application server.

If password is specified as a literal, it must be a character string. The maximum length is 128
characters. It must be left justified. The literal form of the password is not allowed in static SQL or
REXX.

If a variable is specified:

• It cannot be a global variable.
• It must be a CHAR or VARCHAR host variable.
• It must not be followed by an indicator variable.
• The password must be left-justified within the variable.
• If the length of the password is less than that of the variable, it must be padded on the right with

blanks.

RESET
CONNECT RESET is equivalent to CONNECT TO x where x is the local server name.

CONNECT with no operand
This form of the CONNECT statement returns information about the current server and has no effect
on connection states, open cursors, prepared statements, or locks. The connection information is
returned in the connection information items in the SQL Diagnostics Area (or the SQLCA).

In addition, the DB2_CONNECTION_STATUS connection information item in the SQL Diagnostics Area
(or the SQLERRD(3) field of the SQLCA) will indicate the status of connection for this unit of work. It
will have one of the following values:

• 1 - Committable updates can be performed on the connection for this unit of work.
• 2 - No committable updates can be performed on the connection for this unit of work.

Notes
Successful connection: If the CONNECT statement is successful:

968 IBM i: Db2 for i SQL Reference

• A connection to application server S is created and placed in the current and held states. The previous
connection, if any, is placed in the dormant state.

• S is placed in the CURRENT SERVER special register.
• Information about the application server is placed in the connection-information-items in the SQL

Diagnostics Area.
• Information about application server S is also placed in the SQLERRP and SQLERRD(4) fields of the

SQLCA. If the application server is an IBM relational database product, the information in the SQLERRP
field has the form pppvvrrm, where:

– ppp identifies the product as follows:

- ARI for Db2 for VM and VSE
- DSN for Db2 for z/OS
- QSQ for Db2 for i
- SQL for all other Db2 products

– vv is a two-digit version identifier such as '09'
– rr is a two-digit release identifier such as '01'
– m is a one-character modification level such as '0'

For example, if the application server is Version 9 of Db2 for z/OS, the value of SQLERRP is 'DSN09010'.

The SQLERRD(4) field of the SQLCA contains values indicating whether application server S allows
committable updates to be performed. Following is a list of values and their meanings for the
SQLERRD(4) field of the SQLCA on the CONNECT:

– 1 - committable updates can be performed. Conversation is unprotected. 89

– 2 - No committable updates can be performed. Conversation is unprotected.
– 3 - It is unknown if committable updates can be performed. Conversation is protected.
– 4 - It is unknown if committable updates can be performed. Conversation is unprotected.
– 5 - It is unknown if committable updates can be performed. The connection is either a local

connection or a connection to an application requester driver program.
• Additional information about the connection is placed in the SQLERRMC field of the SQLCA. Refer to

Appendix C, “SQLCA (SQL communication area),” on page 1665.

Unsuccessful connection: If the CONNECT statement is unsuccessful, the connection state of the
activation group and the states of its connections are unchanged.

Implicit connect: Implicit connect will always send the authorization-name of the application requester
job and will not send passwords. If the authorization-name of the application server job is different or if a
password must be sent, an explicit connect statement must be used.

When TCP/IP is used for connecting to an RDB, an implicit connect is not bound by the above restrictions.
Use of the ADDSVRAUTE and other -SVRAUTE commands allows one to specify, for a given user under
which the implicit (or explicit) CONNECT is done, the remote authorization-name and password to be used
in connecting to a given RDB.

In order for the password to be stored with the ADDSVRAUTE or CHGSVRAUTE command, the
QRETSVRSEC system value must be set to '1' rather than the default of '0'. When using these commands
for DRDA connection, it is very important to realize that the value of the RDB name entered into
the SERVER parameter must be in UPPER CASE. For more information, see Example 2 under Type 2
CONNECT.

For more information about implicit connect, refer to SQL Programming. Once a connection to a relational
database for a user profile is established, the password, if specified, may not be validated again on
subsequent connections to the same relational database with the same user profile. Revalidation of the
password depends on if the conversation is still active. See Distributed Database Programming for more
details.

Chapter 7. Statements 969

SET SESSION AUTHORIZATION: If a SET SESSION AUTHORIZATION statement has been executed
in the thread, a CONNECT to the local server will fail unless prior to the connect statement, the
SYSTEM_USER value is the same as SESSION_USER.

This includes an implicit connect due to invoking a program that specifies ACTGRP(*NEW).

Examples

Example 1: Execute SQL statements at TOROLAB and SVLLAB. The first CONNECT statement creates the
TOROLAB connection and the second CONNECT statement places it in the dormant state.

 EXEC SQL CONNECT TO TOROLAB;

 (execute statements referencing objects at TOROLAB)

 EXEC SQL CONNECT TO SVLLAB;

 (execute statements referencing objects at SVLLAB)

Example 2: Connect to a remote server specifying a userid and password, perform work for the user and
then connect as another user to perform further work.

 EXEC SQL CONNECT TO SVLLAB USER :AUTHID USING :PASSWORD;

 (execute SQL statements accessing data on the server)

 EXEC SQL COMMIT;

 (set AUTHID and PASSWORD to new values)

 EXEC SQL CONNECT TO SVLLAB USER :AUTHID USING :PASSWORD;

 (execute SQL statements accessing data on the server)

Example 3: User JOE wants to connect to TOROLAB3 and execute SQL statements under the user ID
ANONYMOUS which has a password of SHIBBOLETH. The RDB directory entry for TOROLAB3 specifies
*IP for the connection type.

Before running the application, some setup must be done.

This command will be required to allow server security information to be retained in the IBM i operating
system, if it has not been previously run:

 CHGSYSVAL SYSVAL(QRETSVRSEC) VALUE('1')

This command adds the required server authorization entry:

 ADDSVRAUTE USRPRF(JOE) SERVER(TOROLAB3) USRID(ANONYMOUS) +
 PASSWORD(SHIBBOLETH)

This statement, run under JOE's user profile, will now make the wanted connection:

 EXEC SQL CONNECT TO TOROLAB3;
 (execute statements referencing objects at TOROLAB3)

970 IBM i: Db2 for i SQL Reference

CREATE ALIAS
The CREATE ALIAS statement defines an alias on a table, partition of a table, view, or member of a
database file at the current or remote server.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• The privilege to create in the schema. For more information, see Privileges necessary to create in a
schema.

• Database administrator authority

The privileges held by the authorization ID of the statement must include at least one of the following:

• The following system authorities:

– *USE to the Create DDM File (CRTDDMF) command
• Database administrator authority

If SQL names are specified and a user profile exists that has the same name as the library into which the
alias is created, and that name is different from the authorization ID of the statement, then the privileges
held by the authorization ID of the statement must include at least one of the following:

• The system authority *ADD to the user profile with that name
• Database administrator authority

To replace an existing alias, the privileges held by the authorization ID of the statement must include at
least one of the following:

• The following system authorities:

– The system authority of *OBJMGT on the alias
– All authorities needed to DROP the alias

• Database administrator authority

Syntax
CREATE

OR REPLACE

ALIAS alias-name FOR table-name

view-name

(partition-name

member-name

)

Description
OR REPLACE

Specifies to replace the definition for the alias if one exists at the current server. The existing
definition is effectively dropped before the new definition is replaced in the catalog with the exception
that privileges that were granted on the alias are not affected. This option is ignored if a definition for
the alias does not exist at the current server.

Chapter 7. Statements 971

alias-name
Names the alias. The name, including the implicit or explicit qualifier, must not be the same as an
index, table, view, alias or file that already exists at the current server.

If the alias-name is qualified, the name can be a two-part or three-part name. The schema name
should not be a system schema. If a three-part name is used, the first part must identify a relational
database name in the relational database directory.

For more information about connecting to a remote relational database and the local directory, see
SQL Programming and the Distributed Database Programming.

If SQL names were specified, the alias will be created in the schema specified by the implicit or
explicit qualifier.

If system names were specified, the alias will be created in the schema that is specified by the
qualifier. If not qualified, the alias will be created in the same schema as the table or view for which
the alias was created. If the table is not qualified and does not exist at the time the alias is created:

• If the value of the CURRENT SCHEMA special register is *LIBL, the alias will be created in the
current library (*CURLIB).

• Otherwise, the alias will be created in the current schema.

If the alias name is not a valid system name, Db2 for i will generate a system name. For information
about the rules for generating a name, see “Rules for Table Name Generation” on page 1167.

FOR table-name or view-name
Identifies the table or view at the current or remote server for which the alias is to be defined. An alias
name cannot be specified (an alias cannot refer to another alias), unless the name refers to an alias on
a remote server.

The table-name or view-name need not identify a table or view that exists at the time the alias is
created. If the table or view does not exist when the alias is created, a warning is returned. If the table
or view does not exist when the alias is used, an error is returned.

If SQL names were specified and the table-name or view-name was not qualified, then the qualifier is
the implicit qualifier. For more information, see “Naming conventions” on page 48.

If system names were specified and the table-name or view-name is not qualified and does not exist
when the alias is created, the table-name or view-name is qualified by the library in which the alias is
created.

partition-name
Identifies a partition of a partitioned table.

If a partition is specified, the alias cannot be used in SQL schema statements. If a partition is not
specified, all partitions in the table are included in the alias.

If a partition name is specified, a three-part name should not be specified in the FOR clause. If a
three-part name is specified and identifies a different relational database than the relational database
of the alias, any attempt to use the alias will fail.

member-name
Identifies a member of a database file. If a member name is not specified and the table is not a
partitioned table, *FIRST is used. If a member name is not specified and the table is a partitioned
table, all members (partitions) are used.

If a member is specified, the alias cannot be used in most SQL schema statements. It can be used in
CREATE PROCEDURE, CREATE FUNCTION and in a CREATE TABLE with an as-result-table clause.

If a member name is specified, a three-part name should not be specified in the FOR clause. If a
three-part name is specified and identifies a different relational database than the relational database
of the alias, any attempt to use the alias will fail.

Notes

972 IBM i: Db2 for i SQL Reference

Alias references: An alias can be defined to reference either the system name or SQL name. Since
system names are generated during create processing, it is generally recommended that the SQL name be
specified.

However, if the alias specifies a reference to a three-part name and the alias will be used as a DDM file in
native commands or native access, the name specified must be the system name.

The Override Database File (OVRDBF) CL command also allows the database manager to process
individual members of a database file. Creating an alias over a partition of a table or member of a
database file, however, is easier and performs better by eliminating the need to perform the override.

Alias attributes: An alias is created as a special form of a DDM file. Both an alias and a normal DDM
file can be used in SQL, but if the alias or DDM file specifies a non-local relational database name, the
specified table-name or view-name must be the same as the name of the alias.

An alias created over a distributed table is only created on the current server. For more information about
distributed tables, see DB2 Multisystem.

Alias ownership: If SQL names were specified:

• If a user profile with the same name as the schema into which the alias is created exists, the owner of
the alias is that user profile.

• Otherwise, the owner of the alias is the user profile or group user profile of the thread executing the
statement.

If system names were specified, the owner of the alias is the user profile or group user profile of the
thread executing the statement.

Alias authority: If SQL names are used, aliases are created with the system authority of *EXCLUDE on
*PUBLIC. If system names are used, aliases are created with the authority to *PUBLIC as determined by
the create authority (CRTAUT) parameter of the schema.

If the owner of the alias is a member of a group profile (GRPPRF keyword) and group authority is specified
(GRPAUT keyword), that group profile will also have authority to the alias.

REPLACE rules: When an alias is recreated by REPLACE:

• Any existing comment or label is discarded.
• Authorized users are maintained. The object owner could change.
• Current journal auditing is preserved.

Packages and three-part aliases: When an application uses three-part name aliases for remote objects
and DRDA access, a package for the application program must exist at each location that is specified
in the three-part names. A package can be explicitly created using the CRTSQLPKG CL command. If the
three-part name alias is referenced and a package does not exist, the database manager will attempt to
implicitly create the package.

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• The keyword SYNONYM can be used as a synonym for ALIAS.

Examples

Example 1: Create an alias named CURRENT_PROJECTS for the PROJECT table.

CREATE ALIAS CURRENT_PROJECTS
 FOR PROJECT

Chapter 7. Statements 973

Example 2: Create an alias named SALES_JANUARY on the JANUARY partition of the SALES table. The
sales table has 12 partitions (one for each month of the year).

CREATE ALIAS SALES_JANUARY
 FOR SALES(JANUARY)

Example 3: Create an alias named REPORTS.SALES for the SALES table in schema REPORTS on relational
database USARDB.

CREATE ALIAS REPORTS.SALES
 FOR USARDB.REPORTS.SALES

974 IBM i: Db2 for i SQL Reference

CREATE FUNCTION
The CREATE FUNCTION statement defines a user-defined function at the current server.

The following types of functions can be defined:

• External Scalar

The function is written in a programming language such as C or Java and returns a scalar value. The
external program is referenced by a function defined at the current server along with various attributes
of the function. See “CREATE FUNCTION (external scalar)” on page 980.

• External Table

The function is written in a programming language such as C or Java and returns a set of rows. The
external program is referenced by a function defined at the current server along with various attributes
of the function. See “CREATE FUNCTION (external table)” on page 1000.

• Sourced

The function is implemented by invoking another function (built-in, external, sourced, or SQL) that
already exists at the current server. A sourced function can return a scalar result, or the result of an
aggregate function. See “CREATE FUNCTION (sourced)” on page 1018. The function inherits attributes
of the underlying source function.

• SQL Scalar

The function is written exclusively in SQL and returns a scalar value. The body of an SQL function is
written in the SQL procedural language, SQL PL. The function body is defined at the current server along
with various attributes of the function. See “CREATE FUNCTION (SQL scalar)” on page 1028.

• SQL Table

The function is written exclusively in SQL and returns a set of rows. The body of an SQL function is
written in the SQL procedural language, SQL PL. The function body is defined at the current server along
with various attributes of the function. See “CREATE FUNCTION (SQL table)” on page 1042.

Chapter 7. Statements 975

Notes
Choosing the schema and function name: If a qualified function name is specified, the schema-name
cannot be one of the system schemas (see “Schemas” on page 4). If function-name is not qualified, it is
implicitly qualified with the default schema name.

The unqualified function name must not be one of the following names reserved for system use even if
they are specified as delimited identifiers:

= < > >=

<= <> ¬= ¬<

¬< != !< !>

ALL FALSE PERCENTILE_DISC XMLAGG

AND FOR POSITION XMLATTRIBUTES

ANY FROM RID XMLCOMMENT

ARRAY_AGG HASHED_VALUE RRN XMLCONCAT

BETWEEN IN SELECT XMLDOCUMENT

BOOLEAN IS SIMILAR XMLELEMENT

CASE LIKE SOME XMLFOREST

CAST MATCH STRIP XMLGROUP

CHECK NODENAME SUBSTRING XMLNAMESPACES

DATAPARTITIONNAME NODENUMBER TABLE XMLPARSE

DATAPARTITIONNUM NOT THEN XMLPI

DBPARTITIONNAME NULL TRIM XMLROW

DBPARTITIONNUM ONLY TRUE XMLSERIALIZE

DISTINCT OR TYPE XMLTEXT

EXCEPT OVERLAPS UNIQUE XMLVALIDATE

EXISTS PARTITION UNKNOWN XSLTRANSFORM

EXTRACT PERCENTILE_CONT WHEN

Defining the parameters: The input parameters for the function are specified as a list within parenthesis.

The maximum number of parameters allowed in CREATE FUNCTION is 2000.

A function can have no input parameters. In this case, an empty set of parenthesis must be specified, for
example:

 CREATE FUNCTION WOOFER()

The data type of the result of the function is specified in the RETURNS clause for the function.

• Choosing data types for parameters: When choosing the data types of the input and result parameters
for a function, the rules of promotion that can affect the values of the parameters need to be
considered. See “Promotion of data types” on page 84. For example, a constant that is one of the
input arguments to the function might have a built-in data type that is different from the data type that
the function expects, and more significantly, might not be promotable to that expected data type. Based
on the rules of promotion, using the following data types is recommended:

– INTEGER instead of SMALLINT
– DOUBLE instead of REAL

976 IBM i: Db2 for i SQL Reference

– VARCHAR instead of CHAR
– VARGRAPHIC instead of GRAPHIC

For portability of functions across platforms that are not Db2 for i, do not use the following data type
names, which might have different representations on different platforms:

– FLOAT. Use DOUBLE or REAL instead.
– NUMERIC. Use DECIMAL instead.

• Specifying AS LOCATOR for a parameter: Passing a locator instead of a value can result in fewer bytes
being passed in or out of the function. This can be useful when the value of the parameter is very large.
The AS LOCATOR clause specifies that a locator to the value of the parameter is passed instead of the
actual value. Specify AS LOCATOR only for parameters that have a LOB or XML data type or a distinct
type based on a LOB or XML data type and only when LANGUAGE JAVA is not in effect.

The AS LOCATOR clause has no effect on determining whether data types can be promoted, nor does it
affect the function signature, which is used in function resolution.

AS LOCATOR cannot be specified for SQL functions.

Determining the uniqueness of functions in a schema: The same name can be used for more than
one function in a schema if the function signature of each function is unique. The function signature
is the qualified function name combined with the number and data types of the input parameters. The
combination of name, schema name, the number of parameters, and the data type each parameter
(without regard for other attributes such as length, precision, scale, or CCSID) must not identify a user-
defined function that exists at the current server. The return type has no impact on the determining
uniqueness of a function. Two different schemas can each contain a function with the same name that
have the same data types for all of their corresponding data types. However, a schema must not contain
two functions with the same name that have the same data types for all of their corresponding data types.

When determining whether corresponding data types match, the database manager does not consider
any length, precision, or scale attributes in the comparison. The database manager considers the
synonyms of data types a match. For example, REAL and FLOAT, and DOUBLE and FLOAT are considered
a match. Therefore, CHAR(8) and CHAR(35) are considered to be the same, as are DECIMAL(11,2), and
DECIMAL(4,3). Furthermore, the character and graphic types are considered to be the same. For example,
the following are considered to be the same type: CHAR and GRAPHIC, VARCHAR and VARGRAPHIC, and
CLOB and DBCLOB. CHAR(13) and GRAPHIC(8) are considered to be the same type. An error is returned
if the signature of the function being created is a duplicate of a signature for an existing user-defined
function with the same name and schema.

Assume that the following statements are executed to create four functions in the same schema. The
second and fourth statements fail because they create functions that are duplicates of the functions that
the first and third statements created.

CREATE FUNCTION PART (INT, CHAR(15) ...
CREATE FUNCTION PART (INTEGER, CHAR(40) ...

CREATE FUNCTION ANGLE (DECIMAL(12,2)) ...
CREATE FUNCTION ANGLE (DEC(10,7)) ...

Specifying a specific name for a function: When defining multiple functions with the same name and
schema (with different parameter lists), it is recommended that a specific name also be specified. The
specific name can be used to uniquely identify the function such as when sourcing on this function,
dropping the function, or commenting on the function. However, the function cannot be invoked by its
specific name.

The specific name is implicitly or explicitly qualified with a schema name. If a schema name is not
specified on CREATE FUNCTION, it is the same as the explicit or implicit schema name of the function
name (function-name). If a schema name is specified, it must be the same as the explicit or implicit
schema name of the function name. The name, including the schema name must not identify the specific
name of another function or procedure that exists at the current server.

Chapter 7. Statements 977

If a specific name is not specified, it is set to the function name. If a function or procedure with that
specific name already exists, a unique name is generated similar to the rules used to generate unique
table names.

Extending or overriding a built-in function:
Giving a user-defined function the same name as a built-in function is not a recommended practice unless
the functionality of the built-in function needs to be extended or overridden.

• Extending the functionality of existing built-in functions:

Create the new user-defined function with the same name as the built-in function, and a unique
function signature. For example, a user-defined function similar to the built-in function ROUND that
accepts the distinct type MONEY as input rather than the built-in numeric types might be necessary.
In this case, the signature for the new user-defined function named ROUND is different from all the
function signatures supported by the built-in ROUND function.

• Overriding a built-in function:

Create the new user-defined function with the same name and signature as an existing built-in function.
The new function has the same name and data type as the corresponding parameters of the built-in
function but implements different logic. For example, a user-defined function similar to the built-in
function ROUND that uses different rules for rounding than the built-in ROUND function might be
necessary. In this case, the signature for the new user-defined function named ROUND will be the same
as a signature that is supported by the built-in ROUND function.

Once a built-in function has been overridden, if the schema for the new function appears in the SQL path
before the system schemas, the database manager may choose a user-defined function rather than the
built-in function. An application that uses the unqualified function name and was previously successful
using the built-in function of that name might fail, or perhaps even worse, appear to run successfully but
provide a different result if the user-defined function is chosen by the database manager rather than the
built-in function.

The DISTINCT keyword can be passed on the invocation of a user-defined function that is sourced on
one of the built-in aggregate functions. For example, assume that MY_AVG is a user-defined function
that is sourced on the built-in AVG function. The user-defined function could be invoked with MY_AVG
(DISTINCT expression). This results in the underlying built-in AVG function being invoked with the
DISTINCT keyword.

Special registers in functions: The settings of the special registers of the invoker are inherited by the
function on invocation and restored upon return to the invoker. Special registers may be changed in a
function that can execute SQL statements, but these changes do not affect the caller.

Creating a secure function: Db2 treats the SECURED attribute as an assertion that declares that the user
has established an audit procedure for all changes to the user-defined function. Db2 assume that such an
audit control procedure is in place for all subsequent ALTER FUNCTION statements.

Invoking other user-defined functions in a secure function: When a secure user-defined function is
referenced in an SQL statement that references a table that is using row access control or column access
control, and if the secure user-defined function invokes other user-defined functions, the nested user-
defined functions are not validated as secure. If those nested functions can access sensitive data, a user
authorized who has security administrator authority i needs to ensure that those functions are allowed
to access that data and should ensure that a change control audit procedure has been established for all
changes to those functions.

MODIFIES SQL DATA and EXTERNAL ACTION functions: If a MODIFIES SQL DATA or EXTERNAL
ACTION function is invoked in other than the outermost select list, the results are unpredictable since
the number of times the function is invoked will vary depending on the access plan used.

Functions and adopted authority: Fenced functions run in separate threads. If ALLOW PARALLEL is
specified for a NOT FENCED function, that function may also run in a separate thread. Functions that
run in separate threads will not run under any adopted authority that might be specified by the invoking
application.

978 IBM i: Db2 for i SQL Reference

Restore considerations: When a function's associated program or service program is saved and
subsequently restored and the object was updated with the function attributes when the function was
created, the saved attributes will be processed and possibly changed during the restore.

If the 'Saved library' (SAVLIB) of the program or service program is different from the 'Restore to library'
(RSTLIB), the function's schema name, specific schema name, and the external name may be changed as
a result of the restore.

• If the saved function schema name and the library name of the saved object match, the function
schema will be changed to the 'Restore to library' (RSTLIB). Otherwise, the function schema name is the
saved function schema name.

• The specific schema name is always the same as function schema name.
• If the saved EXTERNAL NAME library and the library name of the saved object match, the EXTERNAL

NAME library will be changed to the 'Restore to library' (RSTLIB). Otherwise, the EXTERNAL NAME
library is the saved library name. If the saved EXTERNAL NAME library is *LIBL, it will not change.

If the same function signature already exists in the catalog:

• If the external program name or service program name is the same as the one that already exists in
the catalog, the information in the catalog for that procedure will be replaced with the saved attributes
(including the specific name).

• Otherwise, the saved attributes are not restored, and a warning (SQL9015) is issued.

If the same specific name already exists in the catalog, a warning is issued and a new specific name is
generated. Otherwise, the specific name of the function is preserved.

Chapter 7. Statements 979

CREATE FUNCTION (external scalar)
This CREATE FUNCTION (external scalar) statement defines an external scalar function at the current
server. A user-defined external scalar function returns a single value each time it is invoked.

Invocation
This statement can be embedded in an application program, or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization id of the statement must include at least one of the following:

• For the SYSFUNCS catalog view and SYSPARMS catalog table90:

– The INSERT privilege on the table, and
– The system authority *EXECUTE on library QSYS2

• Database administrator authority

If the external program or service program exists, the privileges held by the authorization ID of the
statement must include at least one of the following:

• For the external program or service program that is referenced in the SQL statement:

– The system authority *EXECUTE on the library that contains the external program or service program.
– The system authority *EXECUTE on the external program or service program, and
– The system authority *CHANGE on the program or service program. The system needs this authority

to update the program object to contain the information necessary to save/restore the function to
another system. If user does not have this authority, the function is still created, but the program
object is not updated.

• Database administrator authority

If SQL names are specified and a user profile exists that has the same name as the library into which
the function is created, and that name is different from the authorization ID of the statement, then the
privileges held by the authorization ID of the statement must include at least one of the following:

• The system authority *ADD to the user profile with that name
• Database administrator authority

If a distinct type is referenced, the privileges held by the authorization ID of the statement must include at
least one of the following:

• For each distinct type identified in the statement:

– The USAGE privilege on the distinct type, and
– The system authority *EXECUTE on the library containing the distinct type

• Database administrator authority

To replace an existing function, the privileges held by the authorization ID of the statement must include
at least one of the following:

• The following system authorities:

– The system authority of *OBJMGT on the service program object associated with the function
– All authorities needed to DROP the function
– The system authority *READ to the SYSFUNCS catalog view and SYSPARMS catalog table

90 The GRTOBJAUT CL command must be used to grant these privileges.

980 IBM i: Db2 for i SQL Reference

• Database administrator authority

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Table or View and Corresponding System Authorities When
Checking Privileges to a Distinct Type.

Syntax
CREATE

OR REPLACE

FUNCTION function-name (

,

parameter-declaration

) RETURNS

data-type2

AS LOCATOR

data-type3 CAST FROM data-type4

AS LOCATOR

option-list

SET OPTION-statement

parameter-declaration

parameter-name

data-type1

AS LOCATOR

XML-cast-type

default-clause

data-type1, data-type2, data-type3, data-type4
built-in-type

distinct-type-name

XML-cast-type

Chapter 7. Statements 981

CHARACTER

CHAR

(1)

(integer) ccsid-clause

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) ccsid-clause LOCATOR

GRAPHIC

(1)

(integer) ccsid-clause

GRAPHIC VARYING

VARGRAPHIC

(integer)

ccsid-clause

DBCLOB

(1M)

(integer

K

M

G

) ccsid-clause LOCATOR

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

) LOCATOR

982 IBM i: Db2 for i SQL Reference

built-in-type
SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

normalize-clause

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

)

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

ROWID

XML

ccsid-clause
1

Chapter 7. Statements 983

Notes:
1 The ccsid-clause for XML is only allowed for data-type2 and data-type3.

ccsid-clause
CCSID integer

normalize-clause

normalize-clause
NOT NORMALIZED

NORMALIZED

default-clause
DEFAULT NULL

constant

special-register

global-variable

(expression)

option-list

984 IBM i: Db2 for i SQL Reference

LANGUAGE C

C++

CL

COBOL

COBOLLE

JAVA

PLI

RPG

RPGLE

1

PARAMETER STYLE SQL

PARAMETER STYLE JAVA

PARAMETER STYLE GENERAL

PARAMETER STYLE GENERAL WITH NULLS

PARAMETER STYLE DB2GENERAL

SPECIFIC specific-name

NOT DETERMINISTIC

GLOBAL

STATEMENT

DETERMINISTIC

READS SQL DATA

NO SQL

CONTAINS SQL

MODIFIES SQL DATA

CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

INHERIT SPECIAL REGISTERS STATIC DISPATCH NO DBINFO

DBINFO

EXTERNAL ACTION

NO EXTERNAL ACTION

FENCED

NOT FENCED PROGRAM TYPE MAIN

PROGRAM TYPE SUB

NO FINAL CALL

FINAL CALL ALLOW PARALLEL

DISALLOW PARALLEL

NO SCRATCHPAD

SCRATCHPAD
100

integer

EXTERNAL

EXTERNAL NAME external-program-name

NOT SECURED

SECURED

Notes:
1 This clause and the clauses that follow in the option-list can be specified in any order. Each clause
can be specified at most once.

Chapter 7. Statements 985

Description
OR REPLACE

Specifies to replace the definition for the function if one exists at the current server. The existing
definition is effectively dropped before the new definition is replaced in the catalog with the exception
that privileges that were granted on the function are not affected. This option is ignored if a definition
for the function does not exist at the current server. To replace an existing function, the specific-name
and function-name of the new definition must be the same as the specific-name and function-name of
the old definition, or the signature of the new definition must match the signature of the old definition.
Otherwise, a new function is created.

function-name
Names the user-defined function. The combination of name, schema name, the number of
parameters, and the data type of each parameter (without regard for any length, precision, scale,
or CCSID attributes of the data type) must not identify a user-defined function that exists at the
current server unless OR REPLACE is specified.

For SQL naming, the function will be created in the schema specified by the implicit or explicit
qualifier.

For system naming, the function will be created in the schema that is specified by the qualifier. If no
qualifier is specified:

• If the value of the CURRENT SCHEMA special register is *LIBL, the function will be created in the
current library (*CURLIB).

• Otherwise, the function will be created in the current schema.

In general, more than one function can have the same name if the function signature of each function
is unique.

Certain function names are reserved for system use. For more information see Choosing the schema
and function name in “CREATE FUNCTION” on page 975.

(parameter-declaration,...)
Specifies the number of input parameters of the function and the data type of each parameter. Each
parameter-declaration specifies an input parameter for the function.

The maximum number of parameters depends on the type of language:

• For JAVA and ILE programs and service programs, the maximum is 2000.
• For OPM programs, the maximum is 90.

The maximum number of parameters can be further limited by the maximum number of parameters
allowed by the language.

A function can have zero or more input parameters. There must be one entry in the list for each
parameter that the function expects to receive. All the parameters for a function are input parameters
and are nullable. In the case of JAVA, numeric parameters other than the DECIMAL and NUMERIC
types are not nullable. A runtime error will occur if a null value is input to such a parameter for a
CALLED ON NULL INPUT function. For more information, see Defining the parameters in “CREATE
FUNCTION” on page 975.
parameter-name

Names the parameter. Although not required, a parameter name can be specified for each
parameter. The name cannot be the same as any other parameter-name in the parameter list.

data-type1
Specifies the data type of the input parameter. The data type can be a built-in data type or a
distinct type. It cannot be an array type.
built-in-type

Specifies a built-in data type. For a more complete description of each built-in data type,
see “CREATE TABLE” on page 1115. Some data types are not supported in all languages.
For details on the mapping between the SQL data types and host language data types,

986 IBM i: Db2 for i SQL Reference

see Embedded SQL Programming topic collection. Built-in data type specifications can be
specified if they correspond to the language that is used to write the user-defined function.

distinct-type-name
Specifies a user-defined distinct type. The length, precision, or scale attributes for the
parameter are those of the source type of the distinct type (those specified on CREATE TYPE).
For more information on creating a distinct type, see “CREATE TYPE (distinct)” on page 1193.

If the name of the distinct type is unqualified, the database manager resolves the schema
name by searching the schemas in the SQL path.

If a CCSID is specified, the parameter will be converted to that CCSID prior to passing it to the
function. If a CCSID is not specified, the CCSID is determined by the default CCSID at the current
server at the time the function is invoked.

Date, time, and timestamp parameters are passed to the procedure as character strings in ISO
format.

Any parameter that has an XML type must specify either the XML-cast-type clause or the AS
LOCATOR clause.

AS LOCATOR
Specifies that a locator to the value of the parameter is passed to the function instead of the
actual value. Specify AS LOCATOR only for parameters with a LOB or XML data type or a distinct
type based on a LOB or XML data type. If AS LOCATOR is specified, FOR SBCS DATA or FOR MIXED
DATA must not be specified.

For more information on the AS LOCATOR clause, see Specifying AS LOCATOR for a parameter in
“CREATE FUNCTION” on page 975.

AS XML-cast-type
Specifies the data type passed to the function for a parameter that is XML type or a distinct type
based on XML type. If LOCATOR is specified, the parameter is a locator to the value rather than the
actual value.

If a CCSID value is specified, only Unicode CCSID values can be specified for graphic data types.
If a CCSID value is not specified, the CCSID is established at the time the function is created
according to the SQL_XML_DATA_CCSID QAQQINI option setting. The default CCSID is 1208. See
“XML Values” on page 80 for a description of this option.

default-clause
Specifies a default value for the parameter. The default can be a constant, a special register, a
global variable, an expression, or the keyword NULL. The expression is any expression defined
in “Expressions” on page 158, that does not include an aggregate function or column name. If a
default value is not specified, the parameter has no default and cannot be omitted on invocation.
The maximum length of the expression string is 64K.

The default expression must be assignment compatible to the parameter data type.

Any comma in the default expression that is intended as a separator of numeric constants in a list
must be followed by a space.

All objects referenced in a default expression must exist when the function is created. When the
function is invoked, the default will be evaluated using the authority of the invoker.

A default cannot be specified for a parameter of type array.

RETURNS
Specifies the data type for the result of the function. Consider this clause in conjunction with the
optional CAST FROM clause.
data-type2

Specifies the data type and attributes of the output.

You can specify any built-in data type (except LONG VARCHAR, LONG VARGRAPHIC, or DataLink)
or a distinct type (that is not based on a DataLink). You cannot specify an array type.

Chapter 7. Statements 987

If a CCSID is specified,

• If AS LOCATOR is not specified, the result returned is assumed to be encoded in that CCSID.
• If AS LOCATOR is specified and the CCSID of the data the locator points to is encoded in a

different CCSID, the data is converted to the specified CCSID.

If a CCSID is not specified and the function is not referenced in the outermost select list of a view,

• If AS LOCATOR is not specified, the result returned is assumed to be encoded in the CCSID of
the job (or associated graphic CCSID of the job for graphic string return values).

• If AS LOCATOR is specified, the data the locator points to is converted to the CCSID of the
job, if the CCSID of the data the locator points to is encoded in a different CCSID. To avoid
any potential loss of characters during the conversion, consider explicitly specifying a CCSID
that can represent any characters that will be returned from the function. This is especially
important if the data type is graphic string data. In this case, consider using CCSID 1200 or
13488 (Unicode graphic string data).

If a CCSID is not specified and the function is referenced in the outermost select list of a view,

• If AS LOCATOR is not specified, the result returned is assumed to be encoded in the CCSID of
the associated view column.

• If AS LOCATOR is specified, the data the locator points to is converted to the CCSID of the
associated view column, if the CCSID of the data the locator points to is encoded in a different
CCSID. To avoid any potential loss of characters during the conversion, consider explicitly
specifying a CCSID that can represent any characters that will be returned from the function.
This is especially important if the data type is graphic string data. In this case, consider using
CCSID 1200 or 13488 (Unicode graphic string data).

AS LOCATOR
Specifies that the function returns a locator to the value rather than the actual value. Specify
AS LOCATOR only if the result of the function has a LOB or XML data type or a distinct type
based on a LOB or XML data type. If AS LOCATOR is specified, FOR SBCS DATA or FOR MIXED
DATA must not be specified.

For more information on the AS LOCATOR clause, see Specifying AS LOCATOR for a parameter
in “CREATE FUNCTION” on page 975.

data-type3 CAST FROM data-type4
Specifies the data type and attributes of the function (data-type4) and the data type in which that
result is returned to the invoking statement (data-type3). The two data types can be different. For
example, for the following definition, the function returns a DOUBLE value, which the database
manager converts to a DECIMAL value and then passes to the statement that invoked the function:

CREATE FUNCTION SQRT (DECIMAL15,0))
 RETURNS DECIMAL(15,0)
 CAST FROM DOUBLE
 ...

The value of data-type4 must not be XML or a distinct type and must be castable to data-type3.
The value for data-type3 can be any built-in data type or distinct type. (For information on casting
data types, see “Casting between data types” on page 86).

For CCSID information, see the preceding description of data-type2.

AS LOCATOR
Specifies that the function returns a locator to the value rather than the actual value. Specify
AS LOCATOR only if the result of the function has a LOB data type or a distinct type based on a
LOB data type. If AS LOCATOR is specified, FOR SBCS DATA or FOR MIXED DATA must not be
specified.

For more information on the AS LOCATOR clause, see Specifying AS LOCATOR for a parameter
in “CREATE FUNCTION” on page 975.

988 IBM i: Db2 for i SQL Reference

LANGUAGE
Specifies the language interface convention to which the function body is written. All programs must
be designed to run in the server's environment.

If LANGUAGE is not specified, the LANGUAGE is determined from the program attribute information
associated with the external program at the time the function is created. The language of the program
is assumed to be C if:

• The program attribute information associated with the program does not identify a recognizable
language

• The program cannot be found

C
The external program is written in C.

C++
The external program is written in C++.

CL
The external program is written in CL or ILE CL.

COBOL
The external program is written in COBOL.

COBOLLE
The external program is written in ILE COBOL.

JAVA
The external program is written in JAVA. The database manager will call the user-defined function,
which must be a public static method of the specified Java class

Do not specify LANGUAGE JAVA when SCRATCHPAD, FINAL CALL, or DBINFO is specified.

PLI
The external program is written in PL/I.

RPG
The external program is written in RPG.

RPGLE
The external program is written in ILE RPG.

PARAMETER STYLE
Specifies the conventions used for passing parameters to and returning the values from functions:
SQL

All applicable parameters are passed. The parameters are defined to be in the following order:

• n parameters for the input parameters that are specified for the function.
• A parameter for the result of the function.
• n parameters for indicator variables for the input parameters.
• A parameter for the indicator variable for the result.
• A CHAR(5) output parameter for SQLSTATE. The SQLSTATE returned indicates the success or

failure of the function. The SQLSTATE returned can either be:

– the SQLSTATE from the last SQL statement executed in the external program,
– an SQLSTATE that is assigned by the external program.

The user may set the SQLSTATE to any valid value in the external program to return an error or
warning from the function.

• A VARCHAR(517) input parameter for the fully qualified function name.
• A VARCHAR(128) input parameter for the specific name.
• A VARCHAR(1000) output parameter for the message text.

Chapter 7. Statements 989

When control is returned to the invoking program, the message text can be found in the 6th
token of the SQLERRMC field of the SQLCA. Only a portion of the message text is available.
For information on the layout of the message data in the SQLERRMC, see the replacement
data descriptions for message SQL0443 in message file QSQLMSG. The complete message
text can be retrieved using the GET DIAGNOSTICS statement. For more information, see “GET
DIAGNOSTICS” on page 1332.

• Zero to three optional parameters:

– A structure (consisting of an INTEGER followed by a CHAR(n)) input and output parameter for
the scratchpad, if SCRATCHPAD was specified on the CREATE FUNCTION statement.

– An INTEGER input parameter for the call type, if FINAL CALL was specified on the CREATE
FUNCTION statement.

– A structure for the dbinfo structure, if DBINFO was specified on the CREATE FUNCTION
statement.

These parameters are passed according to the specified LANGUAGE. For example, if the language
is C or C++, the VARCHAR parameters are passed as NUL-terminated strings. For more information
about the parameters passed, see the include sqludf in the appropriate source file in library
QSYSINC. For example, for C, sqludf can be found in QSYSINC/H.

DB2GENERAL
This parameter style is used to specify the conventions for passing parameters to and returning
the value from external functions that are defined as a method in a Java class. All applicable
parameters are passed. The parameters are defined to be in the following order:

• The first N parameters are the input parameters that are specified on the CREATE FUNCTION
statement.

• A parameter for the result of the function.

DB2GENERAL is only allowed when the LANGUAGE is JAVA.

GENERAL
All applicable parameters are passed. The parameters are defined to be in the following order:

• The first N parameters are the input parameters that are specified on the CREATE FUNCTION
statement.

Note that the result is returned as a value of a C value returning function. For example:

return_val func(parameter-1, parameter-2, ...)

GENERAL is only allowed when EXTERNAL NAME identifies a service program.

GENERAL WITH NULLS
All applicable parameters are passed. The parameters are defined to be in the following order:

• The first N parameters are the input parameters that are specified on the CREATE FUNCTION
statement.

• An additional argument is passed for an indicator variable array.
• A parameter for the indicator variable for the result.

Note that the result is returned as a value of a C value returning function. For example:

return_val func(parameter-1, parameter-2, ...)

GENERAL WITH NULLS is only allowed when EXTERNAL NAME identifies a service program.

JAVA
Specifies that the function will use a parameter passing convention that conforms to the Java
language and ISO/IEC FCD 9075-13:2003, Information technology - Database languages - SQL -
Part 13: Java Routines and Types (SQL/JRT) specification. All applicable parameters are passed.
The parameters are defined to be in the following order:

990 IBM i: Db2 for i SQL Reference

• The first N parameters are the input parameters that are specified on the CREATE FUNCTION
statement.

Note that the result is returned as a value of a C value returning function. For example:

return_val func(parameter-1, parameter-2, ...)

JAVA is only allowed when the LANGUAGE is JAVA.

Note that the language of the external function determines how the parameters are passed. For
example, in C, any VARCHAR or CHAR parameters are passed as NUL-terminated strings. For more
information, see the SQL Programming topic collection. For Java routines, see the IBM Developer Kit
for Java topic collection.

SPECIFIC specific-name
Specifies a unique name for the function. For more information on specific names, see Specifying a
specific name for a function in “CREATE FUNCTION” on page 975.

GLOBAL DETERMINISTIC or STATEMENT DETERMINISTIC or NOT DETERMINISTIC
Specifies whether the function returns the same results each time that the function is invoked with
the same input arguments. The default is NOT DETERMINISTIC.
NOT DETERMINISTIC

Specifies that the function might not return the same result each time that the function is invoked
with the same input arguments. The function depends on some state values that affect the results.
The database manager uses this information during optimization of SQL statements. An example
of a function that is not deterministic is one that generates random numbers.

A function that is not deterministic might return incorrect results if the function is executed by
parallel tasks. Specify the DISALLOW PARALLEL clause for these functions.

NOT DETERMINISTIC should be specified if the function contains a reference to a special register,
a non-deterministic function, or a sequence.

GLOBAL DETERMINISTIC
Specifies that the function always returns the same result each time that the function is invoked
with the same input arguments. The database manager uses this information during optimization
of SQL statements. The query optimizer may choose to cache global deterministic scalar function
results.91 An example of a global deterministic function is a function that calculates the square
root of the input argument.

STATEMENT DETERMINISTIC
Specifies that the function might not return the same result each time that the function is
invoked with the same input arguments, but multiple invocations of the function within a single
SQL statement are considered deterministic. The query optimizer will not cache statement
deterministic scalar function results.92 An example of a statement deterministic function is a
function that performs currency conversion.

CONTAINS SQL, READS SQL DATA, MODIFIES SQL DATA, or NO SQL
Specifies the classification of SQL statements and nested routines that the function can execute.
The database manager verifies that the SQL statements issued by the function, and all routines
locally invoked by the function, are consistent with this specification. The verification is not performed
when nested remote routines are invoked. For the classification of each statement, see Appendix B,
“Characteristics of SQL statements,” on page 1651. The default is READS SQL DATA. This option is
ignored for parameter default expressions.

91 If the result of the function contains sensitive data, consider using STATEMENT DETERMINISTIC or the
DETERMINISTIC_UDF_SCOPE QAQQINI option or create the function NOT DETERMINISTIC to prevent
inadvertent access to the result. For more information, see the Database Performance and Query
Optimization topic collection.

92 The DETERMINISTIC_UDF_SCOPE QAQQINI option can be used to get this same behavior for a GLOBAL
DETERMINISTIC function. For more information, see the Database Performance and Query Optimization
topic collection.

Chapter 7. Statements 991

READS SQL DATA
Specifies that the function can execute statements with a data access classification of READS SQL
DATA, CONTAINS SQL, or NO SQL. The function cannot execute SQL statements that modify data.

NO SQL
Specifies that the function can execute only SQL statements with a data access classification of
NO SQL.

CONTAINS SQL
Specifies that the function can execute only SQL statements with a data access classification of
CONTAINS SQL or NO SQL. The function cannot execute any SQL statements that read or modify
data.

MODIFIES SQL DATA
The function can execute any SQL statement except those statements that are not supported in
any function.

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
Specifies whether the function is called if any of the input arguments is null at execution time. CALLED
ON NULL INPUT is the default.
RETURNS NULL ON INPUT

Specifies that the function is not invoked if any of the input arguments is null. The result is the null
value.

CALLED ON NULL INPUT
Specifies that the function is to be invoked, if any, or all, argument values are null. This
specification means that the function must be coded to test for null argument values. The function
can return a null or nonnull value.

INHERIT SPECIAL REGISTERS
Specifies that existing values of special registers are inherited upon entry to the function.

STATIC DISPATCH
Specifies that the function is dispatched statically. All functions are statically dispatched.

NO DBINFO or DBINFO
Specifies whether additional status information is passed when the function is invoked. The default is
NO DBINFO.
NO DBINFO

Specifies that no additional information is passed.
DBINFO

Specifies that the database manager should pass a structure containing status information to
the function. Table 88 on page 992 contains a description of the DBINFO structure. Detailed
information about the DBINFO structure can be found in include sqludf in the appropriate source
file in library QSYSINC. For example, for C, sqludf can be found in QSYSINC/H.

DBINFO is only allowed with PARAMETER STYLE SQL or PARAMETER STYLE DB2GENERAL.

Table 88. DBINFO fields

Field Data Type Description

Relational database VARCHAR(128) The name of the current server.

Authorization ID VARCHAR(128) The run-time authorization ID.

992 IBM i: Db2 for i SQL Reference

Table 88. DBINFO fields (continued)

Field Data Type Description

CCSID Information INTEGER
INTEGER
INTEGER

INTEGER
INTEGER
INTEGER

INTEGER
INTEGER
INTEGER

INTEGER

CHAR(8)

The CCSID information of the job. Three sets of three CCSIDs are
returned. The following information identifies the three CCSIDs in
each set:

• SBCS CCSID
• DBCS CCSID
• Mixed CCSID

Following the three sets of CCSIDs is an integer that indicates which
set of three sets of CCSIDs is applicable and eight bytes of reserved
space.

Each set of CCSIDs is for a different encoding scheme (EBCDIC,
ASCII, and Unicode).

If a CCSID is not explicitly specified for a parameter on the CREATE
FUNCTION statement, the input string is assumed to be encoded
in the CCSID of the job at the time the function is executed. If
the CCSID of the input string is not the same as the CCSID of the
parameter, the input string passed to the external function will be
converted before calling the external program.

Target column VARCHAR(128)

VARCHAR(128)

VARCHAR(128)

If a user-defined function is specified on the right-hand side of a SET
clause in an UPDATE statement, the following information identifies
the target column:

• Schema name
• Base table name
• Column name

If the user-defined function is not on the right-hand side of a SET
clause in an UPDATE statement, these fields are blank.

Version and release CHAR(8) The version, release, and modification level of the database
manager.

Platform INTEGER The server's platform type.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an object that the database
manager does not manage. An example of an external action is sending a message or writing a record
to a stream file. The default is EXTERNAL ACTION.
EXTERNAL ACTION

Specifies that the function can take an action that changes the state of an object that the database
manager does not manage. Thus, the function must be invoked with each successive function
invocation. EXTERNAL ACTION should be specified if the function contains a reference to another
function that has an external action.

NO EXTERNAL ACTION
The function does not perform an external action. It need not be called with each successive
function invocation.

NO EXTERNAL ACTION functions might perform better than EXTERNAL ACTION functions
because they might not be invoked for each successive function invocation.

Chapter 7. Statements 993

FENCED or NOT FENCED
Specifies whether the external function runs in an environment that is isolated from the database
manager environment. FENCED is the default.
FENCED

The function will run in a separate thread.

FENCED functions cannot keep SQL cursors open across individual calls to the function. However,
the cursors in one thread are independent of the cursors in any other threads which reduces the
possibility of cursor name conflicts.

NOT FENCED
The function may run in the same thread as the invoking SQL statement.

NOT FENCED functions can keep SQL cursors open across individual calls to the function. Since
cursors can be kept open, the cursor position will also be preserved between calls to the function.
However, cursor names may conflict since the UDF is now running in the same thread as the
invoking SQL statement and other NOT FENCED UDFs.

NOT FENCED functions usually perform better than FENCED functions.

PROGRAM TYPE MAIN or PROGRAM TYPE SUB
This parameter is allowed for compatibility with other products. It indicates whether the routine's
external program is a program (*PGM) or a procedure in a service program (*SRVPGM).
PROGRAM TYPE MAIN

Specifies that the routine executes as the main entry point in a program. The external program
must be a *PGM object.

PROGRAM TYPE SUB
Specifies that the routine executes as a procedure in a service program. The external program
must be a *SRVPGM object.

NO FINAL CALL or FINAL CALL
Specifies whether a final call is made to the function. A final call enables the function to free any
system resources that it has acquired. A final call is useful when the function has been defined
with the SCRATCHPAD keyword and the function acquires system resources and stores them in the
scratchpad. The default is NO FINAL CALL.
NO FINAL CALL

Specifies that a final call is not made to the function. The function does not receive an additional
argument that specifies the type of call.

FINAL CALL
Specifies that a final call is made to the function. To differentiate between final calls and other
calls, the function receives an additional argument that specifies the type of call.

FINAL CALL is only allowed with PARAMETER STYLE SQL or PARAMETER STYLE DB2GENERAL.

The types of calls are:

First Call
Specifies the first call to the function for this reference to the function in this SQL statement.
A first call is a normal call. SQL arguments are passed and the function is expected to return a
result.

Normal Call
Specifies that SQL arguments are passed and the function is expected to return a result.

Final Call
Specifies the last call to the function to enable the function to free resources. A final call is not
a normal call. If an error occurs, the database manager attempts to make the final call.

A final call occurs at these times:

• End of statement: When the cursor is closed for cursor-oriented statements, or the execution
of the statement has completed.

994 IBM i: Db2 for i SQL Reference

• End of a parallel task: When the function is executed by parallel tasks.
• End of transaction: When normal end of statement processing does not occur. For example,

the logic of an application, for some reason, bypasses closing the cursor.

Some functions that use a final call can receive incorrect results if parallel tasks execute the
function. For example, if a function sends a note for each final call to it, one note is sent for
each parallel task instead of once for the function. Specify the DISALLOW PARALLEL clause for
functions that have inappropriate actions when executed in parallel.

If a commit operation occurs while a cursor defined as WITH HOLD is open, a final call is made
when the cursor is closed or the application ends. If a commit occurs at the end of a parallel
task, a final call is made regardless of whether a cursor defined as WITH HOLD is open.

Committable operations should not be performed during a FINAL CALL, because the FINAL CALL
may occur during a close that is invoked as part of a COMMIT operation.

ALLOW PARALLEL or DISALLOW PARALLEL
Specifies whether the function can be run in parallel.

The default is DISALLOW PARALLEL if one or more of the following clauses are specified: NOT
DETERMINISTIC, EXTERNAL ACTION, FINAL CALL, MODIFIES SQL DATA, or SCRATCHPAD. Otherwise,
ALLOW PARALLEL is the default.

ALLOW PARALLEL
Specifies that the database manager can consider parallelism for the function. The database
manager is not required to use parallelism on the SQL statement that invokes the function or on
any SQL statement issued from within the function.

See the descriptions of NOT DETERMINISTIC, EXTERNAL ACTION, MODIFIES SQL DATA,
SCRATCHPAD, and FINAL CALL for considerations that apply to specification of ALLOW PARALLEL.

DISALLOW PARALLEL
Specifies that the database manager must not use parallelism for the function.

NO SCRATCHPAD or SCRATCHPAD
Specifies whether the function requires a static memory area.
NO SCRATCHPAD

Specifies that the function does not require a persistent memory area.
SCRATCHPAD integer

Specifies that the function requires a persistent memory area of length integer. The integer can
range from 1 to 16,000,000. If the memory area is not specified, the size of the area is 100 bytes.
If parameter style SQL is specified, a pointer is passed following the required parameters that
points to a static storage area. If ALLOW PARALLEL is specified, a memory area is allocated for
each user-defined function reference in the statement. If DISALLOW PARALLEL is specified, only 1
memory area will be allocated for the function.

The scope of a scratchpad is the SQL statement. For each reference to the function in an SQL
statement, there is one scratchpad. For example, assuming that function UDFX was defined with
the SCRATCHPAD keyword, three scratchpads are allocated for the three references to UDFX in
the following SQL statement:

SELECT A, UDFX(A)
 FROM TABLEB
 WHERE UDFX(A) > 103 OR UDFX(A) < 19

If the function is run under parallel tasks, one scratchpad is allocated for each parallel task of
each reference to the function in the SQL statement. This can lead to unpredictable results. For
example, if a function uses the scratchpad to count the number of times that it is invoked, the
count reflects the number of invocations done by the parallel task and not the SQL statement.
Specify the DISALLOW PARALLEL clause for functions that will not work correctly with parallelism.

SCRATCHPAD is only allowed with PARAMETER STYLE SQL or PARAMETER STYLE DB2GENERAL.

Chapter 7. Statements 995

EXTERNAL
Specifies that the CREATE FUNCTION statement is being used to define a new function that is based
on code that is written in an external programming language.

If external-program-name is not specified, the external program name is assumed to be the same as
the function name.

NAME external-program-name
Specifies the program, service program, or Java class that will be executed when the function is
invoked in an SQL statement. The name must identify a program, service program, or Java class
that exists at the application server at the time the function is invoked. If the naming option is
*SYS and the name is not qualified:

• The current path will be used to search for the program at the time the function is invoked.
• *LIBL will be used to search for the program or service program at the time COMMENT, GRANT,

LABEL, or REVOKE operations are performed on the function.

The validity of the name is checked at the application server. If the format of the name is not
correct, an error is returned.

The program, service program, or Java class need not exist at the time the function is created, but
it must exist at the time the function is invoked.

CONNECT, SET CONNECTION, RELEASE, DISCONNECT, COMMIT, ROLLBACK, and SET
TRANSACTION statements are not allowed in the external program of the function.

NOT SECURED or SECURED
Specifies whether the function is considered secure for row access control and column access
control.
NOT SECURED

Specifies that the function is considered not secure for row access control and column access
control. This is the default.
When the function is invoked, the arguments of the function must not reference a column for
which a column mask is enabled when the table is using active column access control.

SECURED
Specifies that the function is considered secure for row access control and column access
control. This option can be used for an external function that is written in C, C++, ILE RPG,
ILE COBOL, ILE CL, or Java. The program or service program must exist when the CREATE
FUNCTION statement is executed.
A function must be defined as secure when it is referenced in a row permission or a column
mask.

SET OPTION-statement
Specifies the options that will be used for parameter defaults. The default values for the options
depend on the options in effect at create time. For more information, see “SET OPTION” on page
1512.

The following options are used when processing default value expressions: ALWCPYDTA, CONACC,
DATFMT, DATSEP, DECFLTRND, DECMPT, DECRESULT, DFTRDBCOL, LANGID, SQLCURRULE, SQLPATH,
SRTSEQ, TGTRLS, TIMFMT, and TIMSEP. The options CNULRQD, CNULIGN, COMPILEOPT, EXTIND,
NAMING, and SQLCA are not allowed in the CREATE FUNCTION statement. Other options are
accepted but will be ignored.

Notes
General considerations for defining user-defined functions: See “CREATE FUNCTION” on page 975 for
general information on defining user-defined functions.

REPLACE rules: When an external function is recreated by REPLACE:

• Any existing comment or label is discarded.

996 IBM i: Db2 for i SQL Reference

• If a different external program is specified:

– Authorized users are not copied to the new program.
– Journal auditing is not changed.

• Otherwise:

– Authorized users are maintained. The object owner will not change.
– Current journal auditing is not changed.

Creating the function: When an external function associated with an ILE external program or service
program is created, an attempt is made to save the function's attributes in the associated program or
service program object. If the *PGM or *SRVPGM object is saved and then restored to this or another
system, the attributes are used to update the catalogs.

The attributes can be saved for external functions subject to the following restrictions:

• The external program library must not be QSYS.
• The external program must exist when the CREATE FUNCTION statement is issued.

If system naming is specified and the external program name is not qualified, the external program
must be found in the library list.

• The external program must be an ILE *PGM or *SRVPGM object.

If the object cannot be updated, the function will still be created.

If the external function is created in QTEMP, the catalog information is not removed when the job ends.

Invoking the function: When an external function is invoked, it runs in whatever activation group
was specified when the external program or service program was created. However, ACTGRP(*CALLER)
should normally be used so that the function runs in the same activation group as the calling program.
ACTGRP(*NEW) is not allowed.

LANGUAGE JAVA functions always run in the default activation group (*DFTACTGRP). Caution should be
used when writing MODIFIES SQL DATA Java functions. Since changes performed by the Java function are
performed in the default activation group, transaction problems may occur if the invoker runs in a new
activation group (*NEW).

Notes for Java functions: To be able to run Java functions, you must have the IBM IBM Developer Kit
for Java (5770-JV1) installed on your system. Otherwise, an SQLCODE of -443 will be returned and a
CPDB521 message will be placed in the job log.

If an error occurs while running a Java function, an SQLCODE of -443 will be returned. Depending on the
error, other messages may exist in the job log of the job where the function was run.

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• The keywords VARIANT and NOT VARIANT can be used as synonyms for NOT DETERMINISTIC and
DETERMINISTIC.

• The keywords NULL CALL and NOT NULL CALL can be used as synonyms for CALLED ON NULL INPUT
and RETURNS NULL ON NULL INPUT.

• The keywords SIMPLE CALL can be used as a synonym for GENERAL.
• The keyword DB2GENRL may be used as a synonym for DB2GENERAL.
• The value DB2SQL may be used as a synonym for SQL.
• The keywords PARAMETER STYLE in the PARAMETER STYLE clause are optional.
• The keywords IS DETERMINISTIC may be used as a synonym for DETERMINISTIC.

Chapter 7. Statements 997

Examples

Example 1: Assume an external function program in C is needed that implements the following logic:

 rslt = 2 * input - 4

The function should return a null value if and only if one of the input arguments is null. The simplest way
to avoid a function call and get a null result when an input value is null is to specify RETURNS NULL ON
NULL INPUT on the CREATE FUNCTION statement. The following statement defines the function, using
the specific name MINENULL1.

 CREATE FUNCTION NTEST1 (SMALLINT)
 RETURNS SMALLINT
 EXTERNAL NAME NTESTMOD
 SPECIFIC MINENULL1
 LANGUAGE C
 DETERMINISTIC
 NO SQL
 FENCED
 PARAMETER STYLE SQL
 RETURNS NULL ON NULL INPUT
 NO EXTERNAL ACTION

The program code:

 void nudft1
 (int *input, /* ptr to input argument */
 int *output, /* ptr to output argument */
 short *input_ind, /* ptr to input indicator */
 short *output_ind, /* ptr to output indicator */
 char sqlstate[6], /* sqlstate */
 char fname[140], /* fully qualified function name */
 char finst[129], /* function specific name */
 char msgtext[71]) /* msg text buffer */
 {
 if (*input_ind == -1)
 *output_ind = -1;
 else
 {
 output = 2(*input)-4;
 *output_ind = 0;
 }
 return;
 }

Example 2: Assume that a user wants to define an external function named CENTER. The function
program will be written in C. The following statement defines the function, and lets the database manager
generate a specific name for the function. The name of the program containing the function body is the
same as the name of the function, so the EXTERNAL clause does not include 'NAME external-program-
name'.

 CREATE FUNCTION CENTER (INTEGER, FLOAT)
 RETURNS FLOAT
 LANGUAGE C
 DETERMINISTIC
 NO SQL
 PARAMETER STYLE SQL
 NO EXTERNAL ACTION

Example 3: Assume that user McBride (who has database administrator authority) wants to define an
external function named CENTER in the SMITH schema. McBride plans to give the function specific name
FOCUS98. The function program uses a scratchpad to perform some one-time only initialization and save
the results. The function program returns a value with a DOUBLE data type. The following statement
written by user McBride defines the function and ensures that when the function is invoked, it returns a
value with a data type of DECIMAL(8,4).

 CREATE FUNCTION SMITH.CENTER (DOUBLE, DOUBLE, DOUBLE)
 RETURNS DECIMAL(8,4)
 CAST FROM DOUBLE
 EXTERNAL NAME CMOD
 SPECIFIC FOCUS98

998 IBM i: Db2 for i SQL Reference

 LANGUAGE C
 DETERMINISTIC
 NO SQL
 FENCED
 PARAMETER STYLE SQL
 NO EXTERNAL ACTION
 SCRATCHPAD
 NO FINAL CALL

Example 4: The following example defines a Java user-defined function that returns the position of the
first vowel in a string. The user-defined function is written in Java, is to be run fenced, and is the FINDVWL
method of class JAVAUDFS.

 CREATE FUNCTION FINDV (VARCHAR(32000))
 RETURNS INTEGER
 FENCED
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 EXTERNAL NAME 'JAVAUDFS.FINDVWL'
 NO EXTERNAL ACTION
 CALLED ON NULL INPUT
 DETERMINISTIC
 NO SQL

Chapter 7. Statements 999

CREATE FUNCTION (external table)
This CREATE FUNCTION (external table) statement defines an external table function at the current
server. The function returns a result table.

An external user-defined table function may be used in the FROM clause of a subselect, and returns a
table to the subselect by returning one row each time it is invoked.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization id of the statement must include at least one of the following:

• For the SYSFUNCS catalog view and SYSPARMS catalog table:

– The INSERT privilege on the table, and
– The system authority *EXECUTE on library QSYS2

• Database administrator authority

If the external program or service program exists, the privileges held by the authorization ID of the
statement must include at least one of the following:

• For the external program or service program that is referenced in the SQL statement:

– The system authority *EXECUTE on the library that contains the external program or service program.
– The system authority *EXECUTE on the external program or service program, and
– The system authority *CHANGE on the program or service program. The system needs this authority

to update the program object to contain the information necessary to save/restore the function to
another system. If user does not have this authority, the function is still created, but the program
object is not updated.

• Database administrator authority

If SQL names are specified and a user profile exists that has the same name as the library into which
the function is created, and that name is different from the authorization ID of the statement, then the
privileges held by the authorization ID of the statement must include at least one of the following:

• The system authority *ADD to the user profile with that name
• Database administrator authority

If a distinct type is referenced, the privileges held by the authorization ID of the statement must include at
least one of the following:

• For each distinct type identified in the statement:

– The USAGE privilege on the distinct type, and
– The system authority *EXECUTE on the library containing the distinct type

• Database administrator authority

To replace an existing function, the privileges held by the authorization ID of the statement must include
at least one of the following:

• The following system authorities:

– The system authority of *OBJMGT on the service program object associated with the function
– All authorities needed to DROP the function
– The system authority *READ to the SYSFUNCS catalog view and SYSPARMS catalog table

1000 IBM i: Db2 for i SQL Reference

• Database administrator authority

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Table or View and Corresponding System Authorities When
Checking Privileges to a Distinct Type.

Syntax
CREATE

OR REPLACE

FUNCTION function-name (

,

parameter-declaration

) RETURNS TABLE

(

,

column-name data-type2

AS LOCATOR

) option-list

SET OPTION-statement

parameter-declaration

parameter-name

data-type1

AS LOCATOR

XML-cast-type

default-clause

data-type1, data-type2
built-in-type

distinct-type-name

XML-cast-type

Chapter 7. Statements 1001

CHARACTER

CHAR

(1)

(integer) ccsid-clause

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) ccsid-clause LOCATOR

GRAPHIC

(1)

(integer) ccsid-clause

GRAPHIC VARYING

VARGRAPHIC

(integer)

ccsid-clause

DBCLOB

(1M)

(integer

K

M

G

) ccsid-clause LOCATOR

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

) LOCATOR

built-in-type

1002 IBM i: Db2 for i SQL Reference

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

normalize-clause

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

)

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

ROWID

XML

ccsid-clause
1

ccsid-clause
CCSID integer

normalize-clause

normalize-clause

Chapter 7. Statements 1003

NOT NORMALIZED

NORMALIZED

default-clause
DEFAULT NULL

constant

special-register

global-variable

(expression)

Notes:
1 The ccsid-clause for XML is only allowed for data-type2

option-list

1004 IBM i: Db2 for i SQL Reference

LANGUAGE C

C++

CL

COBOL

COBOLLE

JAVA

PLI

RPG

RPGLE

1
PARAMETER STYLE SQL

PARAMETER STYLE DB2GENERAL

SPECIFIC specific-name

NOT DETERMINISTIC

GLOBAL

STATEMENT

DETERMINISTIC

READS SQL DATA

NO SQL

CONTAINS SQL

MODIFIES SQL DATA

CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

INHERIT SPECIAL REGISTERS STATIC DISPATCH NO DBINFO

DBINFO

EXTERNAL ACTION

NO EXTERNAL ACTION

FENCED

NOT FENCED PROGRAM TYPE MAIN

PROGRAM TYPE SUB

NO FINAL CALL

FINAL CALL ALLOW PARALLEL

DISALLOW PARALLEL

NO SCRATCHPAD

SCRATCHPAD
100

integer

EXTERNAL

EXTERNAL NAME external-program-name CARDINALITY bigint

NOT SECURED

SECURED

Notes:
1 This clause and the clauses that follow in the option-list can be specified in any order. Each clause
can be specified at most once.

Chapter 7. Statements 1005

Description
OR REPLACE

Specifies to replace the definition for the function if one exists at the current server. The existing
definition is effectively dropped before the new definition is replaced in the catalog with the exception
that privileges that were granted on the function are not affected. This option is ignored if a definition
for the function does not exist at the current server. To replace an existing function, the specific-name
and function-name of the new definition must be the same as the specific-name and function-name of
the old definition, or the signature of the new definition must match the signature of the old definition.
Otherwise, a new function is created.

function-name
Names the user-defined function. The combination of name, schema name, the number of
parameters, and the data type of each parameter (without regard for any length, precision, scale,
or CCSID attributes of the data type) must not identify a user-defined function that exists at the
current server unless OR REPLACE is specified.

For SQL naming, the function will be created in the schema specified by the implicit or explicit
qualifier.

For system naming, the function will be created in the schema that is specified by the qualifier. If no
qualifier is specified:

• If the value of the CURRENT SCHEMA special register is *LIBL, the function will be created in the
current library (*CURLIB).

• Otherwise, the function will be created in the current schema.

In general, more than one function can have the same name if the function signature of each function
is unique.

Certain function names are reserved for system use. For more information see Choosing the Schema
and Function Name in “CREATE FUNCTION” on page 975.

(parameter-declaration,...)
Specifies the number of input parameters of the function and the data type of each parameter. Each
parameter-declaration specifies an input parameter for the function.

The maximum number of parameters depends on the type of language:

• For JAVA and ILE programs and service programs, the maximum is 2000.
• For OPM programs, the maximum is 90.

The maximum number of parameters can be further limited by the maximum number of parameters
allowed by the language.

A function can have zero or more input parameters. There must be one entry in the list for each
parameter that the function expects to receive. All the parameters for a function are input parameters
and are nullable. In the case of JAVA, numeric parameters other than the DECIMAL and NUMERIC
types are not nullable. A runtime error will occur if a null value is input to such a parameter for a
CALLED ON NULL INPUT function. For more information, see Defining the parameters in “CREATE
FUNCTION” on page 975.
parameter-name

Names the parameter. Although not required, a parameter name can be specified for each
parameter. The name cannot be the same as any other parameter-name in the parameter list.

data-type1
Specifies the data type of the input parameter. The data type can be a built-in data type or a
distinct type. It cannot be an array type.
built-in-type

Specifies a built-in data type. For a more complete description of each built-in data type,
see “CREATE TABLE” on page 1115. Some data types are not supported in all languages.
For details on the mapping between the SQL data types and host language data types,

1006 IBM i: Db2 for i SQL Reference

see Embedded SQL Programming topic collection. Built-in data type specifications can be
specified if they correspond to the language that is used to write the user-defined function.

distinct-type-name
Specifies a user-defined distinct type. The length, precision, or scale attributes for the
parameter are those of the source type of the distinct type (those specified on CREATE TYPE).
For more information about creating a distinct type, see “CREATE TYPE (distinct)” on page
1193

If the name of the distinct type is unqualified, the database manager resolves the schema
name by searching the schemas in the SQL path.

Parameters with a large object (LOB) data type are not supported when PARAMETER STYLE JAVA
is specified.

If a CCSID is specified, the parameter will be converted to that CCSID prior to passing it to the
function. If a CCSID is not specified, the CCSID is determined by the default CCSID at the current
server at the time the function is invoked.

Date, time, and timestamp parameters are passed to the procedure as character strings in ISO
format.

Any parameter that has an XML type must specify either the XML-cast-type clause or the AS
LOCATOR clause.

AS LOCATOR
Specifies that the input parameter is a locator to the value rather than the actual value. You can
specify AS LOCATOR only if the input parameter has a LOB or XML data type or a distinct type
based on a LOB or XML data type. If AS LOCATOR is specified, FOR SBCS DATA or FOR MIXED
DATA must not be specified.

For more information on the AS LOCATOR clause, see Specifying AS LOCATOR for a parameter in
“CREATE FUNCTION” on page 975.

AS XML-cast-type
Specifies the data type passed to the function for a parameter that is XML type or a distinct type
based on XML type. If LOCATOR is specified, the parameter is a locator to the value rather than the
actual value.

If a CCSID value is specified, only Unicode CCSID values can be specified for graphic data types.
If a CCSID value is not specified, the CCSID is established at the time the function is created
according to the SQL_XML_DATA_CCSID QAQQINI option setting. The default CCSID is 1208. See
“XML Values” on page 80 for a description of this option.

default-clause
Specifies a default value for the parameter. The default can be a constant, a special register, a
global variable, an expression, or the keyword NULL. The expression is any expression defined
in “Expressions” on page 158, that does not include an aggregate function or column name. If a
default value is not specified, the parameter has no default and cannot be omitted on invocation.
The maximum length of the expression string is 64K.

The default expression must be assignment compatible to the parameter data type.

Any comma in the default expression that is intended as a separator of numeric constants in a list
must be followed by a space.

All objects referenced in a default expression must exist when the function is created. When the
function is invoked, the default will be evaluated using the authority of the invoker.

A default cannot be specified for a parameter of type array.

RETURNS TABLE
Specifies that the output of the function is a table. The parenthesis that follow this clause enclose a
list of names and the data types of the columns of the result table.

Chapter 7. Statements 1007

The maximum number of result columns depends on the type of language. Assume that the number of
parameters is N.

• For JAVA and ILE programs and service programs, there must be no more than 8000 - N columns.
• For OPM programs, there must be no more than 125 - N columns.

column-name
Specifies the name of a column of the output table. Do not specify the same name more than
once.

data-type2
Specifies the data type of the column. The column is nullable.

You can specify any built-in data type (except LONG VARCHAR, LONG VARGRAPHIC, or DataLink)
or a distinct type (that is not based on a DataLink). You cannot specify an array type.

If a DATE or TIME is specified, the table function must return the date or time in ISO format.

If a CCSID is specified,

• If AS LOCATOR is not specified, the result returned is assumed to be encoded in that CCSID.
• If AS LOCATOR is specified and the CCSID of the data the locator points to is encoded in a

different CCSID, the data is converted to the specified CCSID.

If a CCSID is not specified,

• If AS LOCATOR is not specified, the result returned is assumed to be encoded in the CCSID of
the job (or associated graphic CCSID of the job for graphic string return values).

• If AS LOCATOR is specified, the data the locator points to is converted to the CCSID of the
job, if the CCSID of the data the locator points to is encoded in a different CCSID. To avoid
any potential loss of characters during the conversion, consider explicitly specifying a CCSID
that can represent any characters that will be returned from the function. This is especially
important if the data type is graphic string data. In this case, consider using CCSID 1200 or
13488 (Unicode graphic string data).

AS LOCATOR
Specifies that the function returns a locator to the value for the column rather than the actual
value. You can specify AS LOCATOR only for a LOB or XML data type or a distinct type based on
a LOB or XML data type. If AS LOCATOR is specified, FOR SBCS DATA or FOR MIXED DATA must
not be specified.

For more information on the AS LOCATOR clause, see Specifying AS LOCATOR for a parameter
in “CREATE FUNCTION” on page 975.

LANGUAGE
The language clause specifies the language of the external program.

If LANGUAGE is not specified, the LANGUAGE is determined from the program attribute information
associated with the external program at the time the function is created. The language of the program
is assumed to be C if:

• The program attribute information associated with the program does not identify a recognizable
language

• The program cannot be found

C
The external program is written in C.

C++
The external program is written in C++.

CL
The external program is written in CL or ILE CL.

1008 IBM i: Db2 for i SQL Reference

COBOL
The external program is written in COBOL.

COBOLLE
The external program is written in ILE COBOL.

JAVA
The external program is written in JAVA. The database manager will call the user-defined function
as a method in a Java class.

PLI
The external program is written in PL/I.

RPG
The external program is written in RPG.

RPGLE
The external program is written in ILE RPG.

PARAMETER STYLE
Specifies the conventions used for passing parameters to and returning the values from functions:
DB2GENERAL

This parameter style is used to specify the conventions for passing parameters to and returning
the value from external functions that are defined as a method in a Java class. All applicable
parameters are passed. The parameters are defined to be in the following order:

• The first N parameters are the input parameters that are specified on the CREATE FUNCTION
statement.

• The next M parameters are the result columns of the function that are specified on the RETURNS
TABLE clause.

DB2GENERAL is only allowed when the LANGUAGE is JAVA.

SQL
All applicable parameters are passed. The parameters are defined to be in the following order:

• The first N parameters are the input parameters that are specified on the CREATE FUNCTION
statement.

• The next M parameters are the result columns of the function that are specified on the RETURNS
TABLE clause.

• N parameters for indicator variables for the input parameters.
• M parameters for the indicator variables of the result columns of the function that are specified

on the RETURNS TABLE clause
• A CHAR(5) output parameter for SQLSTATE. The SQLSTATE returned indicates the success or

failure of the function. The SQLSTATE returned either be:

– the SQLSTATE from the last SQL statement executed in the external program,
– an SQLSTATE that is assigned by the external program.

The user may set the SQLSTATE to any valid value in the external program to return an error or
warning from the function.

• A VARCHAR(517) input parameter for the fully qualified function name.
• A VARCHAR(128) input parameter for the specific name.
• A VARCHAR(1000) output parameter for the message text.
• A structure (consisting of an INTEGER followed by a CHAR(n)) input and output parameter for

the scratchpad, if SCRATCHPAD was specified on the CREATE FUNCTION statement.
• An INTEGER input parameter for the call type.
• A structure for the dbinfo structure, if DBINFO was specified on the CREATE FUNCTION

statement.

Chapter 7. Statements 1009

These parameters are passed according to the specified LANGUAGE. For example, if the language
is C or C++, the VARCHAR parameters are passed as NUL-terminated strings. For more information
about the parameters passed, see the include sqludf in the appropriate source file in library
QSYSINC. For example, for C, sqludf can be found in QSYSINC/H.

Note that the language of the external function determines how the parameters are passed. For
example, in C, any VARCHAR or CHAR parameters are passed as NUL-terminated strings. For more
information, see the SQL Programming topic collection. For Java routines, see the IBM Developer Kit
for Java topic collection.

SPECIFIC specific-name
Specifies a unique name for the function. For more information on specific names, see Specifying a
specific name for a function in “CREATE FUNCTION” on page 975.

GLOBAL DETERMINISTIC or STATEMENT DETERMINISTIC or NOT DETERMINISTIC
Specifies whether the function returns the same results each time that the function is invoked with
the same input arguments. The default is NOT DETERMINISTIC.
NOT DETERMINISTIC

Specifies that the function might not return the same result each time that the function is invoked
with the same input arguments. The function depends on some state values that affect the
results. The database manager uses this information during optimization of SQL statements. An
example of a table function that is not deterministic is one that references special registers,
non-deterministic functions, or a sequence in a way that affects the table function result table.

GLOBAL DETERMINISTIC
Specifies that the function always returns the same result table each time that the function is
invoked with the same input arguments. The database manager uses this information during
optimization of SQL statements. The query optimizer may choose to cache global deterministic
function results.

STATEMENT DETERMINISTIC
Specifies that the function might not return the same result each time that the function is
invoked with the same input arguments, but multiple invocations of the function within a single
SQL statement are considered deterministic. The query optimizer will not cache statement
deterministic function results.93

CONTAINS SQL, READS SQL DATA, MODIFIES SQL DATA, or NO SQL
Specifies the classification of SQL statements and nested routines that the function can execute.
The database manager verifies that the SQL statements issued by the function, and all routines
locally invoked by the function, are consistent with this specification. The verification is not performed
when nested remote routines are invoked. For the classification of each statement, see Appendix B,
“Characteristics of SQL statements,” on page 1651. The default is READS SQL DATA. This option is
ignored for parameter default expressions.
READS SQL DATA

Specifies that the function can execute statements with a data access classification of READS SQL
DATA, CONTAINS SQL, or NO SQL. The function cannot execute SQL statements that modify data.

NO SQL
Specifies that the function can execute only SQL statements with a data access classification of
NO SQL.

CONTAINS SQL
Specifies that the function can execute only SQL statements with a data access classification of
CONTAINS SQL or NO SQL. The function cannot execute any SQL statements that read or modify
data.

93 The DETERMINISTIC_UDF_SCOPE QAQQINI option can be used to get this same behavior for a GLOBAL
DETERMINISTIC function. For more information, see the Database Performance and Query Optimization
topic collection.

1010 IBM i: Db2 for i SQL Reference

MODIFIES SQL DATA
The function can execute any SQL statement except those statements that are not supported in
any function.

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
Specifies whether the function is called if any of the input arguments is null at execution time. CALLED
ON NULL INPUT is the default.
RETURNS NULL ON NULL INPUT

Specifies that the function is not called if any of the input arguments is null. The result is an empty
table, which is a table with no rows.

CALLED ON NULL INPUT
Specifies that the function is to be invoked, if any argument values are null. This specification
means that the function must be coded to test for null argument values. The function can return
an empty table, depending on its logic.

INHERIT SPECIAL REGISTERS
Specifies that existing values of special registers are inherited upon entry to the function.

STATIC DISPATCH
Specifies that the function is dispatched statically. All functions are statically dispatched.

NO DBINFO or DBINFO
Specifies whether additional status information is passed when the function is invoked. The default is
NO DBINFO.
NO DBINFO

Specifies that no additional information is passed.
DBINFO

Specifies that the database manager should pass a structure containing status information to
the function. Table 89 on page 1011 contains a description of the DBINFO structure. Detailed
information about the DBINFO structure can be found in sqludf in the appropriate source file in
library QSYSINC. For example, for C, sqludf can be found in QSYSINC/H.

Table 89. DBINFO fields

Field Data Type Description

Relational database VARCHAR(128) The name of the current server.

Authorization ID VARCHAR(128) The run-time authorization ID.

Chapter 7. Statements 1011

Table 89. DBINFO fields (continued)

Field Data Type Description

CCSID Information INTEGER
INTEGER
INTEGER

INTEGER
INTEGER
INTEGER

INTEGER
INTEGER
INTEGER

INTEGER

CHAR(8)

The CCSID information of the job. Three sets of three CCSIDs are
returned. The following information identifies the three CCSIDs in
each set:

• SBCS CCSID
• DBCS CCSID
• Mixed CCSID

Following the three sets of CCSIDs is an integer that indicates which
set of three sets of CCSIDs is applicable and eight bytes of reserved
space.

Each set of CCSIDs is for a different encoding scheme (EBCDIC,
ASCII, and Unicode).

If a CCSID is not explicitly specified for a parameter on the CREATE
FUNCTION statement, the input string is assumed to be encoded
in the CCSID of the job at the time the function is executed. If
the CCSID of the input string is not the same as the CCSID of the
parameter, the input string passed to the external function will be
converted before calling the external program.

Target column VARCHAR(128)

VARCHAR(128)

VARCHAR(128)

If a user-defined function is specified on the right-hand side of a SET
clause in an UPDATE statement, the following information identifies
the target column:

• Schema name
• Base table name
• Column name

If the user-defined function is not on the right-hand side of a SET
clause in an UPDATE statement, these fields are blank.

Version and release CHAR(8) The version, release, and modification level of the database
manager.

Platform INTEGER The server's platform type.

Number of table
function column list
entries

SMALLINT The number of non-zero entries in the table function column list
specified in the "Table function column list" field below.

Reserved CHAR(24) Reserved for future use.

1012 IBM i: Db2 for i SQL Reference

Table 89. DBINFO fields (continued)

Field Data Type Description

Table function column
list

Pointer (16
Bytes)

This field is a pointer to an array of short integers which is
dynamically allocated by the database manager. Only the first n
entries, where n is specified in the "Number of table function column
list entries" field, are of interest, n may be equal to 0, and is less
than or equal to the number of result columns defined for the
function in the RETURNS TABLE clause. The values correspond to
the ordinal numbers of the columns which this statement needs
from the table function. A value of 1 means the first defined result
column, 2 means the second defined result column, and so on. The
values may be in any order. Note that n could be equal to zero for
a statement that is similar to SELECT COUNT(*) FROM TABLE(TF(...))
AS QQ, where no actual column values are needed by the query.

This array represents an opportunity for optimization. The function
need not return all values for all the result columns of the table
function. Only a subset of the values may be needed in a particular
context, and these are the columns identified (by number) in the
array. Since this optimization may complicate the function logic, the
function can choose to return every defined column.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an object that the database
manager does not manage. An example of an external action is sending a message or writing a record
to a stream file. The default is EXTERNAL ACTION.
EXTERNAL ACTION

Specifies that the function can take an action that changes the state of an object that the database
manager does not manage. Thus, the function must be invoked with each successive function
invocation. EXTERNAL ACTION should be specified if the function contains a reference to another
function that has an external action.

NO EXTERNAL ACTION
The function does not perform an external action. It need not be called with each successive
function invocation.

NO EXTERNAL ACTION functions might perform better than EXTERNAL ACTION functions
because they might not be invoked for each successive function invocation.

FENCED or NOT FENCED
Specifies whether the external function runs in an environment that is isolated from the database
manager environment. FENCED is the default.
FENCED

The function will run in a separate thread.

FENCED functions cannot keep SQL cursors open across individual calls to the function. However,
the cursors in one thread are independent of the cursors in any other threads which reduces the
possibility of cursor name conflicts.

NOT FENCED
The function may run in the same thread as the invoking SQL statement.

NOT FENCED functions can keep SQL cursors open across individual calls to the function. Since
cursors can be kept open, the cursor position will also be preserved between calls to the function.
However, cursor names may conflict since the UDF is now running in the same thread as the
invoking SQL statement and other NOT FENCED UDFs.

NOT FENCED functions usually perform better than FENCED functions.

Chapter 7. Statements 1013

PROGRAM TYPE MAIN or PROGRAM TYPE SUB
This parameter is allowed for compatibility with other products. It indicates whether the routine's
external program is a program (*PGM) or a procedure in a service program (*SRVPGM).
PROGRAM TYPE MAIN

Specifies that the routine executes as the main entry point in a program. The external program
must be a *PGM object.

PROGRAM TYPE SUB
Specifies that the routine executes as a procedure in a service program. The external program
must be a *SRVPGM object.

NO FINAL CALL or FINAL CALL
Specifies whether a separate first call and final call are made to the function. To differentiate between
types of calls, the function receives an additional argument that specifies the type of call. For table
functions, the call-type argument is always present (regardless of whether FINAL CALL or NO FINAL
CALL is in effect), and it indicates first call, open call, fetch call, close call, or final call.

With NO FINAL CALL, the database manager will only make three types of calls to the table function:
open, fetch and close. However, if FINAL CALL is specified, then in addition to open, fetch and close, a
first call and a final call can be made to the table function.

A final call enables the function to free any system resources that it has acquired. A final call is useful
when the function has been defined with the SCRATCHPAD keyword and the function acquires system
resources and stores them in the scratchpad. The default is NO FINAL CALL.

NO FINAL CALL
Specifies that separate first and final calls are not made to the function. However, the open, fetch,
and close calls are still made to the function, and the table function always receives an additional
argument that specifies the type of call.

FINAL CALL
Specifies that separate first and final calls are made to the function. It also controls when the
scratchpad is re-initialized.

The types of calls are:

First Call
Specifies the first call to the function for this reference to the function in this SQL statement.

Open Call
Specifies a call to open the table function result in this SQL statement.

Fetch Call
Specifies a call to fetch a row from the table function in this SQL statement.

Close Call
Specifies a call to close the table function result in this SQL statement.

Final Call
Specifies the last call to the function to enable the function to free resources. If an error
occurs, the database manager attempts to make the final call.

A final call occurs at these times:

• End of statement: When the cursor is closed for cursor-oriented statements, or the execution
of the statement has completed.

• End of transaction: When normal end of statement processing does not occur. For example,
the logic of an application, for some reason, bypasses closing the cursor.

If a commit operation occurs while a cursor defined as WITH HOLD is open, a final call is made
when the cursor is closed or the application ends.

Committable operations should not be performed during a FINAL CALL, because the FINAL CALL
may occur during a close invoked as part of a COMMIT operation.

1014 IBM i: Db2 for i SQL Reference

ALLOW PARALLEL or DISALLOW PARALLEL
Specifies whether the function can be run in parallel.

The default is DISALLOW PARALLEL if one or more of the following clauses are specified: NOT
DETERMINISTIC, EXTERNAL ACTION, FINAL CALL, MODIFIES SQL DATA, or SCRATCHPAD. Otherwise,
ALLOW PARALLEL is the default.

ALLOW PARALLEL
Specifies that the database manager can consider parallelism for the function. The database
manager is not required to use parallelism on the SQL statement that invokes the function or on
any SQL statement issued from within the function.

See the descriptions of NOT DETERMINISTIC, EXTERNAL ACTION, MODIFIES SQL DATA,
SCRATCHPAD, and FINAL CALL for considerations that apply to specification of ALLOW PARALLEL.

DISALLOW PARALLEL
Specifies that the database manager must not use parallelism for the function.

NO SCRATCHPAD or SCRATCHPAD
Specifies whether the function requires a static memory area.
NO SCRATCHPAD

Specifies that the function does not require a persistent memory area.
SCRATCHPAD integer

Specifies that the function requires a persistent memory area of length integer. The integer can
range from 1 to 16,000,000. If the memory area is not specified, the size of the area is 100 bytes.
If parameter style SQL is specified, a pointer is passed following the required parameters that
points to a static storage area. Only 1 memory area will be allocated for the function.

The scope of a scratchpad is the SQL statement. For each reference to the function in an SQL
statement, there is one scratchpad. For example, assuming that function UDFX was defined with
the SCRATCHPAD keyword, two scratchpads are allocated for the two references to UDFX in the
following SQL statement:

SELECT A.C1, B.C1
 FROM TABLE(UDFX(:hv1)) AS A, TABLE(UDFX(:hv1)) AS B

EXTERNAL
Specifies that the CREATE FUNCTION statement is being used to define a new function that is based
on code that is written in an external programming language.

If external-program-name is not specified, the external program name is assumed to be the same as
the function name.

NAME external-program-name
Specifies the program, service program, or Java class that will be executed when the function is
invoked in an SQL statement. The name must identify a program, service program, or Java class
that exists at the application server at the time the function is invoked. If the naming option is
*SYS and the name is not qualified:

• The current path will be used to search for the program at the time the function is invoked.
• *LIBL will be used to search for the program or service program at the time COMMENT, GRANT,

LABEL, or REVOKE operations are performed on the function.

The validity of the name is checked at the application server. If the format of the name is not
correct, an error is returned.

The program, service program, or Java class need not exist at the time the function is created, but
it must exist at the time the function is invoked.

CONNECT, SET CONNECTION, RELEASE, DISCONNECT, COMMIT, ROLLBACK, and SET
TRANSACTION statements are not allowed in the external program of the function.

Chapter 7. Statements 1015

CARDINALITY bigint
Specifies an estimate of the expected number of rows to be returned by the function for the database
manager to use during optimization. bigint must be in the range from 0 to 9 223 372 036 854 775 807
inclusive. The database manager assumes a finite value if CARDINALITY is not specified.

A table function that returns a row every time it is called and never returns the end-of-table condition
has infinite cardinality. A query that invokes such a function and requires an eventual end-of-table
condition before it can return any data will not return unless interrupted. Table functions that never
return the end-of-table condition should not be used in queries involving DISTINCT, GROUP BY, or
ORDER BY.

NOT SECURED or SECURED
Specifies whether the function is considered secure for row access control and column access control.
NOT SECURED

Specifies that the function is considered not secure for row access control and column access
control. This is the default.
When the function is invoked, the arguments of the function must not reference a column for
which a column mask is enabled when the table is using active column access control.

SECURED
Specifies that the function is considered secure for row access control and column access control.
This option can be used for an external function that is written in C, C++, ILE RPG, ILE COBOL, ILE
CL, or Java. The program or service program must exist when the CREATE FUNCTION statement is
executed.
A function must be defined as secure when it is referenced in a row permission or a column mask.

SET OPTION-statement
Specifies the options that will be used parameter defaults. The default values for the options depend
on the options in effect at create time. For more information, see “SET OPTION” on page 1512.

The following options are used when processing default value expressions: ALWCPYCTA, CONACC,
DATFMT, DATSEP, DECFLTRND, DECMPT, DECRESULT, DFTRDBCOL, LANGID, SQLCURRULE, SQLPATH,
SRTSEQ, TGTRLS, TIMFMT, and TIMSEP. The options CNULRQD, CNULIGN, COMPILEOPT, EXTIND,
NAMING, and SQLCA are not allowed in the CREATE FUNCTION statement. Other options are
accepted but will be ignored.

Notes
General considerations for defining user-defined functions: See “CREATE FUNCTION” on page 975 for
general information about defining user-defined functions.

REPLACE rules: When an external function is recreated by REPLACE:

• Any existing comment or label is discarded.
• If a different external program is specified:

– Authorized users are not copied to the new program.
– Journal auditing is not changed.

• Otherwise:

– Authorized users are maintained. The object owner will not change.
– Current journal auditing is not changed.

Creating the function: When an external function associated with an ILE external program or service
program is created, an attempt is made to save the function's attributes in the associated program or
service program object. If the *PGM or *SRVPGM object is saved and then restored to this or another
system, the attributes are used to update the catalogs.

The attributes can be saved for external functions subject to the following restrictions:

• The external program library must not be SYSIBM, QSYS, or QSYS2.

1016 IBM i: Db2 for i SQL Reference

• The external program must exist when the CREATE FUNCTION statement is issued.

If system naming is specified and the external program name is not qualified, the external program
must be found in the library list.

• The external program must be an ILE *PGM or *SRVPGM object.

If the object cannot be updated, the function will still be created.

If the external function is created in QTEMP, the catalog information is not removed when the job ends.

Invoking the function: When an external function is invoked, it runs in whatever activation group
was specified when the external program or service program was created. However, ACTGRP(*CALLER)
should normally be used so that the function runs in the same activation group as the calling program.
ACTGRP(*NEW) is not allowed.

LANGUAGE JAVA functions always run in the default activation group (*DFTACTGRP). Caution should be
used when writing MODIFIES SQL DATA Java functions. Since changes performed by the Java function are
performed in the default activation group, transaction problems may occur if the invoker runs in a new
activation group (*NEW).

Notes for Java functions: To be able to run Java functions, you must have the IBM IBM Developer Kit
for Java (5770-JV1) installed on your system. Otherwise, an SQLCODE of -443 will be returned and a
CPDB521 message will be placed in the job log.

If an error occurs while running a Java function, an SQLCODE of -443 will be returned. Depending on the
error, other messages may exist in the job log of the job where the function was run.

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• The keywords VARIANT and NOT VARIANT can be used as synonyms for NOT DETERMINISTIC and
DETERMINISTIC.

• The keywords NULL CALL and NOT NULL CALL can be used as synonyms for CALLED ON NULL INPUT
and RETURNS NULL ON NULL INPUT.

• The value DB2GENRL may be used as a synonym for DB2GENERAL.
• The keywords PARAMETER STYLE in the PARAMETER STYLE clause are optional.
• The keywords IS DETERMINISTIC may be used as a synonym for DETERMINISTIC.
• The keywords PARAMETER STYLE DB2SQL may be used as a synonym for PARAMETER STYLE SQL.

Example

The following creates a table function written to return a row consisting of a single document identifier
column for each known document in a text management system. The first parameter matches a given
subject area and the second parameter contains a given string.

Within the context of a single session, the UDF will always return the same table, and therefore it is
defined as DETERMINISTIC. Note the RETURNS clause which defines the output from DOCMATCH. FINAL
CALL must be specified for each table function. Although the size of the output for DOCMATCH is highly
variable, CARDINALITY 20 is a representative value, and is specified to help the optimizer.

CREATE FUNCTION DOCMATCH (VARCHAR(30), VARCHAR(255))
 RETURNS TABLE (DOCID CHAR(16))
 EXTERNAL NAME 'MYLIB/RAJIV(UDFMATCH)'
 LANGUAGE C
 PARAMETER STYLE SQL
 NO SQL
 DETERMINISTIC
 NO EXTERNAL ACTION
 NOT FENCED
 SCRATCHPAD
 FINAL CALL
 DISALLOW PARALLEL
 CARDINALITY 20

Chapter 7. Statements 1017

CREATE FUNCTION (sourced)
This CREATE FUNCTION (sourced) statement defines a user-defined function, based on another existing
scalar or aggregate function, at the current server.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• The privilege to create in the schema. For more information, see Privileges necessary to create in a
schema.

• Database administrator authority

The privileges held by the authorization id of the statement must include at least one of the following:

• For the SYSFUNCS catalog view and SYSPARMS catalog table:

– The INSERT privilege on the table, and
– The system authority *EXECUTE on library QSYS2

• Database administrator authority

If the source function is a user-defined function, the authorization ID of the statement must include at
least one of the following for the source function:

• The EXECUTE privilege on the function
• Database administrator authority

To create a sourced function, the privileges held by the authorization ID of the statement must also
include at least one of the following:

• The following system authorities:

– *USE to the Create Service Program (CRTSRVPGM) command or
– *USE to the Create Program (CRTPGM) command

• Database administrator authority

If SQL names are specified and a user profile exists that has the same name as the library into which
the function is created, and that name is different from the authorization ID of the statement, then the
privileges held by the authorization ID of the statement must include at least one of the following:

• The system authority *ADD to the user profile with that name
• Database administrator authority

If a distinct type is referenced, the privileges held by the authorization ID of the statement must include at
least one of the following:

• For each distinct type identified in the statement:

– The USAGE privilege on the distinct type, and
– The system authority *EXECUTE on the library containing the distinct type

• Database administrator authority

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Table or View, Corresponding System Authorities When
Checking Privileges to a Function or Procedure, and Corresponding System Authorities When Checking
Privileges to a Distinct Type.

1018 IBM i: Db2 for i SQL Reference

Syntax
CREATE FUNCTION function-name (

,

parameter-declaration

)

RETURNS data-type2

AS LOCATOR
1

SPECIFIC qualified-specific-name

SOURCE

function-name

(
,

parameter-type

)

SPECIFIC qualified-specific-name

SET OPTION-statement

parameter-declaration

parameter-name

data-type1

AS LOCATOR default-clause

data-type1, data-type2, data-type3
built-in-type

distinct-type-name

Notes:
1 The RETURNS, SPECIFIC, and SOURCE clauses can be specified in any order.

built-in-type

Chapter 7. Statements 1019

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

normalize-clause

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

)

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

DATALINK

(200)

(integer) ccsid-clause

ROWID

XML

ccsid-clause

ccsid-clause
CCSID integer

normalize-clause

normalize-clause

1020 IBM i: Db2 for i SQL Reference

NOT NORMALIZED

NORMALIZED

default-clause
DEFAULT NULL

constant

special-register

global-variable

(expression)

parameter-type
data-type3

AS LOCATOR

Description
function-name

Names the user-defined function. The combination of name, schema name, the number of
parameters, and the data type of each parameter (without regard for any length, precision, scale,
or CCSID attributes of the data type) must not identify a user-defined function that exists at the
current server unless OR REPLACE is specified.

For SQL naming, the function will be created in the schema specified by the implicit or explicit
qualifier.

For system naming, the function will be created in schema that is specified by the qualifier. If no
qualifier is specified:

• If the value of the CURRENT SCHEMA special register is *LIBL, the function will be created in the
current library (*CURLIB).

• Otherwise, the function will be created in the current schema.

If the function is sourced on an existing function to enable the use of the existing function with a
distinct type, the name can be the same name as the existing function. In general, more than one
function can have the same name if the function signature of each function is unique.

Certain function names are reserved for system use. For more information see Choosing the schema
and function name in “CREATE FUNCTION” on page 975.

(parameter-declaration,...)
Specifies the number of input parameters of the function and the data type of each parameter. Each
parameter-declaration specifies an input parameter for the function. A maximum of 2000 parameters
can be specified. A function can have zero or more input parameters. There must be one entry in the
list for each parameter that the function expects to receive. All the parameters for a function are input
parameters and are nullable. In the case of JAVA, numeric parameters other than the DECIMAL and
NUMERIC types are not nullable. A runtime error will occur if a null value is input to such a parameter
for a CALLED ON NULL INPUT function. For more information, see Defining the parameters in “CREATE
FUNCTION” on page 975.
parameter-name

Names the parameter. Although not required, a parameter name can be specified for each
parameter. The name cannot be the same as any other parameter-name in the parameter list.

data-type1
Specifies the data type of the parameter. The data type can be a built-in data type or a distinct
data type. It cannot be an array type.

Chapter 7. Statements 1021

Any valid SQL data type may be used, provided that it is castable to the type of the corresponding
parameter of the function identified in the SOURCE clause (for information, see “Casting between
data types” on page 86). However, this checking does not guarantee that an error will not occur
when the function is invoked. For more information, see Considerations for invoking a sourced
user-defined function.

built-in-type
The data type of the input parameter is a built-in data type. See “CREATE TABLE” on page
1115 for a more complete description of each built-in data type.

distinct-type-name
The data type of the input parameter is a distinct type. The length, precision, or scale
attributes for the parameter are those of the source type of the distinct type (those specified
on CREATE TYPE). See “CREATE TYPE (distinct)” on page 1193 for more information.

If the name of the distinct type is specified without a schema name, the database manager
resolves the schema name by searching the schemas in the SQL path.

DataLinks are not allowed for functions sourced on external functions.

If a CCSID is specified, the parameter is converted to that CCSID prior to passing it to the function.
If a CCSID is not specified, the CCSID is determined by the default CCSID at the current server at
the time the function is invoked.

AS LOCATOR
Specifies that the input parameter is a locator to the value rather than the actual value. You can
specify AS LOCATOR only if the input parameter has a LOB data type or a distinct type based on
a LOB data type. If AS LOCATOR is specified, FOR SBCS DATA or FOR MIXED DATA must not be
specified.

For more information on the AS LOCATOR clause, see Specifying AS LOCATOR for a parameter in
“CREATE FUNCTION” on page 975.

default-clause
Specifies a default value for the parameter. The default can be a constant, a special register, a
global variable, an expression, or the keyword NULL. The expression is any expression defined
in “Expressions” on page 158, that does not include an aggregate function or column name. If a
default value is not specified, the parameter has no default and cannot be omitted on invocation.
The maximum length of the expression string is 64K.

The default expression must be assignment compatible to the parameter data type.

Any comma in the default expression that is intended as a separator of numeric constants in a list
must be followed by a space.

All objects referenced in a default expression must exist when the function is created.

A default cannot be specified for a parameter of type array.

RETURNS
Specifies the result of the function.
data-type2

Specifies the data type of the column. The column is nullable. The data type can be a built-in
data type (except LONG VARCHAR, LONG VARGRAPHIC, or a DataLink) or distinct type (that is not
based on a DataLink). It cannot be an array type.

Any valid SQL data type can be used provided it is castable from the result type of the source
function. (For information about casting data types, see “Casting between data types” on page 86)
However, this checking does not guarantee that an error will not occur when this new function is
invoked. For more information, see Considerations for invoking a sourced user-defined function.

AS LOCATOR
Specifies that the function returns a locator to the value rather than the actual value. You can
specify AS LOCATOR only if the output from the function has a LOB data type or a distinct type

1022 IBM i: Db2 for i SQL Reference

based on a LOB data type. If AS LOCATOR is specified, FOR SBCS DATA or FOR MIXED DATA must
not be specified. The AS LOCATOR clause is not allowed for functions sourced on SQL functions.

For more information on the AS LOCATOR clause, see Specifying AS LOCATOR for a parameter in
“CREATE FUNCTION” on page 975.

SPECIFIC qualified-specific-name
Specifies a unique name for the function. For more information on specific names, see Specifying a
specific name for a function in “CREATE FUNCTION” on page 975.

SOURCE
Specifies that the new function is being defined as a sourced function. A sourced function is
implemented by another function (the source function). The function must be a scalar or aggregate
function that exists at the current server, and it must be one of the following types of functions:

• A function that was defined with a CREATE FUNCTION statement
• A cast function that was generated by a CREATE TYPE statement
• A built-in function

If the source function is not a built-in function, the particular function can be identified by its name,
function signature, or specific name.

If the source function is a built-in function, the SOURCE clause must include a function signature
for the built-in function. The source function must not be any of the following built-in functions (If a
particular syntax is shown, only the indicated form cannot be specified.):

• ARRAY_AGG
• BINARY when more than one argument is specified
• BLOB when more than one argument is specified
• CARDINALITY
• CHAR when more than one argument is specified
• CLOB when more than one argument is specified
• COALESCE
• CONTAINS
• DATAPARTITIONNAME
• DATAPARTITIONNUM
• DBCLOB when more than one argument is specified
• DBPARTITIONNAME
• DBPARTITIONNUM
• DECFLOAT when more than one argument is specified
• DECIMAL when more than one argument is specified
• DECRYPT_BIN when more than one argument is specified
• DECRYPT_BINARY when more than one argument is specified
• DECRYPT_BIT when more than one argument is specified
• DECRYPT_CHAR when more than one argument is specified
• DECRYPT_DB when more than one argument is specified
• EXTRACT
• GRAPHIC when more than one argument is specified
• GREATEST
• HASH
• HASHED_VALUE
• LAND

Chapter 7. Statements 1023

• LEAST
• LOR
• MAX
• MAX_CARDINALITY
• MIN
• NODENAME
• NODENUMBER
• NVL
• PARTITION
• PERCENTILE_CONT
• PERCENTILE_DISC
• POSITION
• RAISE_ERROR
• RID
• RRN
• SCORE
• SECOND when more than one argument is specified
• STRIP
• SUBSTRING
• TIMESTAMP when the second argument is an integer
• TIMESTAMP_FORMAT when more than two arguments are specified
• TO_CLOB when more than one argument is specified
• TO_DATE when more than two arguments are specified
• TO_TIMESTAMP when more than two arguments are specified
• TRANSLATE when more than one argument is specified
• TRIM
• TRIM_ARRAY
• VALUE
• VARBINARY when more than one argument is specified
• VARCHAR when more than one argument is specified
• VARGRAPHIC when more than one argument is specified
• VERIFY_GROUP_FOR_USER when more than two arguments are specified
• XMLAGG
• XMLATTRIBUTES
• XMLCOMMENT
• XMLCONCAT
• XMLDOCUMENT
• XMLELEMENT
• XMLFOREST
• XMLGROUP
• XMLNAMESPACES
• XMLPARSE
• XMLPI

1024 IBM i: Db2 for i SQL Reference

• XMLROW
• XMLSERIALIZE
• XMLTEXT
• XMLVALIDATE
• XOR
• XSLTRANSFORM
• ZONED when more than one argument is specified

function-name
Identifies the function to be used as the source function by its function name. The source function
can be defined with any number of parameters. If more than one function is defined with the
specified name in the specified or implicit schema, an error is returned.

If an unqualified function-name is specified, the SQL path is used to locate the function. The
database manager selects the first schema that has only one function with this name on which
the user has EXECUTE authority. An error is returned if a function is not found, or if the database
manager encounters a schema that has more than one function with this name.

function-name (parameter-type, ...)
Identifies the function to be used as the source function by its function signature, which uniquely
identifies the function. The function-name (parameter-type,...) must identify a function with the
specified signature at the current server. The specified parameters must match the data types
in the corresponding position that were specified when the function was created. The number of
data types, and the logical concatenation of the data types is used to identify the specific function
instance. Synonyms for data types are considered a match. Parameters that have defaults must be
included in this signature.

If function-name() is specified, the function identified must have zero parameters.

To use a built-in function as the source function, this syntax variation must be used.

function-name
Identifies the name of the source function. If an unqualified name is specified, the schemas of
the SQL path are searched. Otherwise, the database manager searches for the function in the
specified schema.

parameter-type,...
Identifies the parameters of the function.

If an unqualified distinct type name is specified, the database manager searches the SQL path
to resolve the schema name for the distinct type.

Empty parentheses are allowed for some data types that are specified in this context. For data
types that have a length, precision or scale attribute, use one of the following specifications:

• Empty parentheses indicate that the database manager ignores the attribute when
determining whether the data types match. For example, DEC() will be considered a match
for a parameter of a function defined with a data type of DEC(7,2).

• If a specific value for a length, precision, or scale attribute is specified, the value must
exactly match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION
statement. If the data type is FLOAT, the precision does not have to exactly match the value
that was specified because matching is based on the data type (REAL or DOUBLE).

• If length, precision, or scale is not explicitly specified, and empty parentheses are not
specified, the default attributes of the data type are implied. The implicit length must
exactly match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION
statement.

For data types with a subtype or CCSID attribute, specifying the FOR DATA clause or CCSID
clause is optional. Omission of either clause indicates that the database manager ignores the
attribute when determining whether the data types match. If you specify either clause, it must
match the value that was implicitly or explicitly specified in the CREATE FUNCTION statement.

Chapter 7. Statements 1025

AS LOCATOR
Specifies that the function is defined to receive a locator for this parameter. If AS LOCATOR
is specified, the data type must be a LOB or a distinct type based on a LOB. If AS LOCATOR
is specified, FOR SBCS DATA or FOR MIXED DATA must not be specified. If AS LOCATOR is
specified and a length is explicitly specified, the data type length is ignored.

For more information on the AS LOCATOR clause, see Specifying AS LOCATOR for a parameter
in“CREATE FUNCTION” on page 975.

SPECIFIC qualified-specific-name
Identifies the function to be used as the source function by its specific name. The qualified-
specific-name must identify a specific function that exists in the specified schema.

SET OPTION-statement
Specifies the options that will be used for parameter defaults. The default values for the options
depend on the options in effect at create time. For more information, see “SET OPTION” on page
1512. The following options are used when processing default value expressions: ALWCPYDTA,
CONACC, DATFMT, DATSEP, DECFLTRND, DECMPT, DECRESULT, DFTRDBCOL, LANGID, SQLCURRULE,
SQLPATH, SRTSEQ, TGTRLS, TIMFMT, and TIMSEP. The options CNULRQD, CNULIGN, COMPILEOPT,
EXTIND, NAMING, and SQLCA are not allowed in the CREATE FUNCTION statement. Other options are
accepted but will be ignored.

The number of input parameters in the function that is being created must be the same as the number of
parameters in the source function. If the data type of each input parameter is not the same as or castable
to the corresponding parameter of the source function, an error occurs. The data type of the final result of
the source function must match or be castable to the result of the sourced function.

If a CCSID is specified and the CCSID of the return data is encoded in a different CCSID, the data is
converted to the specified CCSID.

If a CCSID is not specified the return data is converted to the CCSID of the job (or associated graphic
CCSID of the job for graphic string return values), if the CCSID of the return data is encoded in a different
CCSID. To avoid any potential loss of characters during the conversion, consider explicitly specifying
a CCSID that can represent any characters that will be returned from the function. This is especially
important if the data type is graphic string data. In this case, consider using CCSID 1200 or 13488
(Unicode graphic string data).

Notes
General considerations for defining user-defined functions: See “CREATE FUNCTION” on page 975 for
general information about defining user-defined functions.

Function ownership: If SQL names were specified:

• If a user profile with the same name as the schema into which the function is created exists, the owner
of the function is that user profile.

• Otherwise, the owner of the function is the user profile or group user profile of the thread executing the
statement.

If system names were specified, the owner of the function is the user profile or group user profile of the
thread executing the statement.

Function authority: If SQL names are used, functions are created with the system authority of *EXCLUDE
on *PUBLIC. If system names are used, functions are created with the authority to *PUBLIC as
determined by the create authority (CRTAUT) parameter of the schema.

If the owner of the function is a member of a group profile (GRPPRF keyword) and group authority is
specified (GRPAUT keyword), that group profile will also have authority to the function.

Considerations for invoking a sourced user-defined function: When a sourced function is invoked, each
argument to the function is assigned to the associated parameter defined for the function. The values are
then cast (if necessary) to the data type of the corresponding parameters of the underlying function. An
error can occur either in the assignment or in the cast. For example: an argument passed on input to a

1026 IBM i: Db2 for i SQL Reference

function that matches the data type and length or precision attributes of the parameter for the function
might not be castable if the corresponding parameter of the underlying source function has a shorter
length or less precision. It is recommended that the data types of the parameters of a sourced function be
defined with attributes that are less than or equal to the attributes of the corresponding parameters of the
underlying function.

The result of the underlying function is assigned to the RETURNS data type of the sourced function. The
RETURNS data type of the underlying function might not be castable to the RETURNS data type of the
source function. This can occur when the RETURNS data type of this new source function has a shorter
length or less precision than the RETURNS data type of the underlying function. For example, an error
would occur when function A is invoked assuming the following functions exist. Function A returns an
INTEGER. Function B is a sourced function, is defined to return a SMALLINT, and the definition references
function A in the SOURCE clause. It is recommended that the RETURNS data type of a sourced function be
defined with attributes that are the same or greater than the attributes defined for the RETURNS data type
of the underlying function.

Considerations when the function is based on a user-defined function: If the sourced function is based
directly or indirectly on an external scalar function, the sourced function inherits the attributes of the
external scalar function. This can involve several layers of sourced functions. For example, assume that
function A is sourced on function B, which in turn is sourced on function C. Function C is an external scalar
function. Functions A and B inherit all of the attributes for function C.

The sourced function inherits the secure attribute from the user-defined function is it directly based on. A
sourced function based on a built-in function is always secure.

Creating the function: When a sourced function is created, a small service program object is created
that represents the function. When this service program is saved and restored to another system, the
attributes from the CREATE FUNCTION statement are automatically added to the catalog on that system.

Examples

Example 1: Assume that distinct type HATSIZE is defined and is based on the built-in data type INTEGER.
An AVG function could be defined to compute the average hat size of different departments. Create a
sourced function that is based on built-in function AVG.

 CREATE FUNCTION AVG (HATSIZE)
 RETURNS HATSIZE
 SOURCE AVG (INTEGER)

The syntax of the SOURCE clause includes an explicit parameter list because the source function is a
built-in function.

When distinct type HATSIZE was created, two cast functions were generated, which allow HATSIZE to be
cast to INTEGER for the argument and INTEGER to be cast to HATSIZE for the result of the function.

Example 2: After Smith created the external scalar function CENTER in his schema, there is a need to
use this function, function, but the invocation of the function needs to accept two INTEGER arguments
instead of one INTEGER argument and one DOUBLE argument. Create a sourced function that is based on
CENTER.

 CREATE FUNCTION MYCENTER (INTEGER, INTEGER)
 RETURNS DOUBLE
 SOURCE SMITH.CENTER (INTEGER, DOUBLE);

Chapter 7. Statements 1027

CREATE FUNCTION (SQL scalar)
This CREATE FUNCTION (SQL scalar) statement creates an SQL function at the current server. The
function returns a single result.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• The privilege to create in the schema. For more information, see Privileges necessary to create in a
schema.

• Database administrator authority

The privileges held by the authorization id of the statement must include at least one of the following:

• For the SYSFUNCS catalog view and SYSPARMS catalog table:

– The INSERT privilege on the table, and
– The system authority *EXECUTE on library QSYS2

• Database administrator authority

The privileges held by the authorization ID of the statement must also include at least one of the
following:

• The following system authorities:

– *USE to the Create Service Program (CRTSRVPGM) command or
• Database administrator authority

If a distinct type is referenced, the privileges held by the authorization ID of the statement must include at
least one of the following:

• For each distinct type identified in the statement:

– The USAGE privilege on the distinct type, and
– The system authority *EXECUTE on the library containing the distinct type

• Database administrator authority

If the SECURED attribute is specified, or the function is secure and OR REPLACE is specified:

• The authorization ID of the statement must have security administrator authority. See “Administrative
authority” on page 15.

To replace an existing function, the privileges held by the authorization ID of the statement must include
at least one of the following:

• The following system authorities:

– The system authority of *OBJMGT on the service program object associated with the function
– All authorities needed to DROP the function
– The system authority *READ to the SYSFUNCS catalog view and SYSPARMS catalog table

• Database administrator authority

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Table or View and Corresponding System Authorities When
Checking Privileges to a Distinct Type.

1028 IBM i: Db2 for i SQL Reference

Syntax

CREATE

OR REPLACE

FUNCTION function-name (

,

parameter-declaration

) function-definition

WRAPPED obfuscated-statement-text

function-definition
RETURNS data-type2 option-list

SET OPTION-statement

SQL-routine-body

parameter-declaration
parameter-name data-type1

default-clause

data-type1, data-type2
built-in-type

distinct-type-name

array-type-name

Chapter 7. Statements 1029

built-in-type
SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

normalize-clause

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

)

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

DATALINK

(200)

(integer) ccsid-clause

ROWID

XML

ccsid-clause
CCSID integer

normalize-clause

1030 IBM i: Db2 for i SQL Reference

normalize-clause
NOT NORMALIZED

NORMALIZED

default-clause
DEFAULT NULL

constant

special-register

global-variable

(expression)

Chapter 7. Statements 1031

option-list
LANGUAGE SQL 1

SPECIFIC specific-name

PROGRAM NAME external-program-name

NOT DETERMINISTIC

GLOBAL

STATEMENT

DETERMINISTIC

EXTERNAL ACTION

NO EXTERNAL ACTION

READS SQL DATA

CONTAINS SQL

MODIFIES SQL DATA

CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

INHERIT SPECIAL REGISTERS STATIC DISPATCH

DISALLOW DEBUG MODE

ALLOW DEBUG MODE

DISABLE DEBUG MODE

FENCED

NOT FENCED ALLOW PARALLEL

DISALLOW PARALLEL

CONCURRENT ACCESS RESOLUTION

DEFAULT

USE CURRENTLY COMMITTED

U

WAIT FOR OUTCOME

W

SYSTEM_TIME SENSITIVE YES

SYSTEM_TIME SENSITIVE NO

NOT SECURED

SECURED

Notes:
1 This clause and the clauses that follow in the option-list can be specified in any order. Each clause
can be specified at most once.

SQL-routine-body
SQL-control-statement

Description
OR REPLACE

Specifies to replace the definition for the function if one exists at the current server. The existing
definition is effectively dropped before the new definition is replaced in the catalog with the exception
that privileges that were granted on the function are not affected. This option is ignored if a definition

1032 IBM i: Db2 for i SQL Reference

for the function does not exist at the current server. To replace an existing function, the specific-name
and function-name of the new definition must be the same as the specific-name and function-name of
the old definition, or the signature of the new definition must match the signature of the old definition.
Otherwise, a new function is created.

function-name
Names the user-defined function. The combination of name, schema name, the number of
parameters, and the data type of each parameter (without regard for any length, precision, scale,
or CCSID attributes of the data type) must not identify a user-defined function that exists at the
current server unless OR REPLACE is specified.

For SQL naming, the function will be created in the schema specified by the implicit or explicit
qualifier.

For system naming, the function will be created in the schema that is specified by the qualifier. If no
qualifier is specified:

• If the value of the CURRENT SCHEMA special register is *LIBL, the function will be created in the
current library (*CURLIB).

• Otherwise, the function will be created in the current schema.

In general, more than one function can have the same name if the function signature of each function
is unique.

Certain function names are reserved for system use. For more information see Choosing the schema
and function name in “CREATE FUNCTION” on page 975.

(parameter-declaration,...)
Specifies the number of input parameters of the function and the data type of each parameter. Each
parameter-declaration specifies an input parameter for the function. A maximum of 2000 parameters
can be specified. A function can have zero or more input parameters. There must be one entry in
the list for each parameter that the function expects to receive. All the parameters for a function are
input parameters and are nullable. For more information, see Defining the parameters in “CREATE
FUNCTION” on page 975.
parameter-name

Names the parameter. The name is used to refer to the parameter within the body of the function.
The name cannot be the same as any other parameter-name in the parameter list.

data-type1
Specifies the data type of the input parameter. The data type can be a built-in data type or a
distinct data type.
built-in-type

Specifies a built-in data type. For a more complete description of each built-in data type, see
“CREATE TABLE” on page 1115.

distinct-type-name
Specifies a distinct type. The length, precision, or scale attributes for the parameter are those
of the source type of the distinct type (those specified on CREATE TYPE). For more information
about creating a distinct type, see “CREATE TYPE (distinct)” on page 1193.

If the name of the distinct type is unqualified, the database manager resolves the schema
name by searching the schemas in the SQL path.

array-type-name
Specifies an array type.

If the name of the array type is unqualified, the database manager resolves the schema name
by searching the schemas in the SQL path.

If a CCSID is specified, the parameter is converted to that CCSID prior to passing it to the function.
If a CCSID is not specified, the CCSID is determined by the default CCSID at the current server at
the time the function is invoked.

A parameter that is an array of XML or LOB type is read only.

Chapter 7. Statements 1033

default-clause
Specifies a default value for the parameter. The default can be a constant, a special register, a
global variable, an expression, or the keyword NULL. The expression is any expression defined
in “Expressions” on page 158, that does not include an aggregate function or column name. If a
default value is not specified, the parameter has no default and cannot be omitted on invocation.
The maximum length of the expression string is 64K.

The default expression must be assignment compatible to the parameter data type.

Any comma in the default expression that is intended as a separator of numeric constants in a list
must be followed by a space.

All objects referenced in a default expression must exist when the function is created.

A default cannot be specified for a parameter of type array.

RETURNS
Specifies the result of the function.
data-type2

Specifies the expression that is to be returned for the function. The result data type of the
expression must be assignable (using storage assignment rules) to the data type that is defined in
the RETURNS clause. For more information, see “Assignments and comparisons” on page 89.

You can specify any built-in data type (except LONG VARCHAR, or LONG VARGRAPHIC), a distinct
type, or an array type.

If a CCSID is specified and the CCSID of the return data is encoded in a different CCSID, the data is
converted to the specified CCSID.

If a CCSID is not specified, the return data is converted to the CCSID of the job (or associated
graphic CCSID of the job for graphic string return values), if the CCSID of the return data is
encoded in a different CCSID. To avoid any potential loss of characters during the conversion,
consider explicitly specifying a CCSID that can represent any characters that will be returned
from the function. This is especially important if the data type is graphic string data. In this case,
consider using CCSID 1200 or 13488 (Unicode graphic string data).

LANGUAGE SQL
Specifies that this is an SQL function.

SPECIFIC specific-name
Specifies a unique name for the function. For more information on specific names, see Specifying a
specific name for a function in “CREATE FUNCTION” on page 975.

PROGRAM NAME external-program-name
Specifies the unqualified name of the service program to be created for the function. external-
program-name must be a valid system name.

GLOBAL DETERMINISTIC or STATEMENT DETERMINISTIC or NOT DETERMINISTIC
Specifies whether the function returns the same results each time that the function is invoked with
the same input arguments. The default is NOT DETERMINISTIC.
NOT DETERMINISTIC

Specifies that the function might not return the same result each time that the function is invoked
with the same input arguments. The function depends on some state values that affect the results.
The database manager uses this information during optimization of SQL statements. An example
of a function that is not deterministic is one that generates random numbers.

A function that is not deterministic might return incorrect results if the function is executed by
parallel tasks. Specify the DISALLOW PARALLEL clause for these functions.

NOT DETERMINISTIC should be specified if the function contains a reference to a special register,
a non-deterministic function, or a sequence.

GLOBAL DETERMINISTIC
Specifies that the function always returns the same result each time that the function is invoked
with the same input arguments. The database manager uses this information during optimization

1034 IBM i: Db2 for i SQL Reference

of SQL statements. The query optimizer may choose to cache global deterministic scalar function
results.94 An example of a global deterministic function is a function that calculates the square
root of the input argument.

STATEMENT DETERMINISTIC
Specifies that the function might not return the same result each time that the function is
invoked with the same input arguments, but multiple invocations of the function within a single
SQL statement are considered deterministic. The query optimizer will not cache statement
deterministic scalar function results.95 An example of a statement deterministic function is a
function that performs currency conversion.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an object that the database
manager does not manage. An example of an external action is sending a message or writing a record
to a stream file. The default is EXTERNAL ACTION.
EXTERNAL ACTION

Specifies that the function can take an action that changes the state of an object that the database
manager does not manage. Thus, the function must be invoked with each successive function
invocation. EXTERNAL ACTION should be specified if the function contains a reference to another
function that has an external action.

NO EXTERNAL ACTION
The function does not perform an external action. It need not be called with each successive
function invocation.

NO EXTERNAL ACTION functions might perform better than EXTERNAL ACTION functions
because they might not be invoked for each successive function invocation.

CONTAINS SQL, READS SQL DATA, or MODIFIES SQL DATA
Specifies the classification of SQL statements and nested routines that the function can execute.
The database manager verifies that the SQL statements issued by the function, and all routines
locally invoked by the function, are consistent with this specification. The verification is not performed
when nested remote routines are invoked. For the classification of each statement, see Appendix
B, “Characteristics of SQL statements,” on page 1651. The default is READS SQL DATA. This option
applies to any parameter default expressions.
READS SQL DATA

Specifies that the function can execute statements with a data access classification of READS SQL
DATA, CONTAINS SQL, or NO SQL. The function cannot execute SQL statements that modify data.

CONTAINS SQL
Specifies that the function can execute only SQL statements with a data access classification of
CONTAINS SQL or NO SQL. The function cannot execute any SQL statements that read or modify
data.

MODIFIES SQL DATA
The function can execute any SQL statement except those statements that are not supported in
any function.

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
Specifies whether the function is called if any of the input arguments is null at execution time.
RETURNS NULL ON INPUT

Specifies that the function is not invoked if any of the input arguments is null. The result is the null
value.

94 If the result of the function contains sensitive data, consider using STATEMENT DETERMINISTIC or the
DETERMINISTIC_UDF_SCOPE QAQQINI option or create the function NOT DETERMINISTIC to prevent
inadvertent access to the result. For more information, see the Database Performance and Query
Optimization topic collection.

95 The DETERMINISTIC_UDF_SCOPE QAQQINI option can be used to get this same behavior for a GLOBAL
DETERMINISTIC function. For more information, see the Database Performance and Query Optimization
topic collection.

Chapter 7. Statements 1035

CALLED ON NULL INPUT
Specifies that the function is to be invoked if any or all argument values are null. This specification
means that the function must be coded to test for null argument values. The function can return a
null or nonnull value.

INHERIT SPECIAL REGISTERS
Specifies that existing values of special registers are inherited upon entry to the function.

STATIC DISPATCH
Specifies that the function is dispatched statically. All functions are statically dispatched.

DISALLOW DEBUG MODE, ALLOW DEBUG MODE, or DISABLE DEBUG MODE
Indicates whether the function is created so it can be debugged by the Unified Debugger. If DEBUG
MODE is specified, a DBGVIEW option in the SET OPTION statement must not be specified.
DISALLOW DEBUG MODE

The function cannot be debugged by the Unified Debugger. When the DEBUG MODE attribute of
the function is DISALLOW, the function can be subsequently altered to change the debug mode
attribute.

ALLOW DEBUG MODE
The function can be debugged by the Unified Debugger. When the DEBUG MODE attribute of the
function is ALLOW, the function can be subsequently altered to change the debug mode attribute.

DISABLE DEBUG MODE
The function cannot be debugged by the Unified Debugger. When the DEBUG MODE attribute of
the function is DISABLE, the function cannot be subsequently altered to change the debug mode
attribute.

If FENCED or ALLOW PARALLEL is specified for the function, the DEBUG MODE option will be ignored.
DISALLOW DEBUG MODE will be used.

If DEBUG MODE is not specified, but a DBGVIEW option in the SET OPTION statement is specified,
the function cannot be debugged by the Unified Debugger, but may be debugged by the system debug
facilities. If neither DEBUG MODE nor a DBGVIEW option is specified, the debug mode used is from
the CURRENT DEBUG MODE special register.

FENCED or NOT FENCED
Specifies whether the SQL function runs in an environment that is isolated from the database manager
environment. FENCED is the default.
FENCED

The function will run in a separate thread.

FENCED functions cannot keep SQL cursors open across individual calls to the function. However,
the cursors in one thread are independent of the cursors in any other threads which reduces the
possibility of cursor name conflicts.

NOT FENCED
The function may run in the same thread as the invoking SQL statement.

NOT FENCED functions can keep SQL cursors open across individual calls to the function. Since
cursors can be kept open, the cursor position will also be preserved between calls to the function.
However, cursor names may conflict since the UDF is now running in the same thread as the
invoking SQL statement and other NOT FENCED UDFs.

NOT FENCED functions usually perform better than FENCED functions.

ALLOW PARALLEL or DISALLOW PARALLEL
Specifies whether the function can be run in parallel.

The default is DISALLOW PARALLEL if one or more of the following clauses are specified: NOT
DETERMINISTIC, EXTERNAL ACTION, or MODIFIES SQL DATA. Otherwise, ALLOW PARALLEL is the
default.

1036 IBM i: Db2 for i SQL Reference

ALLOW PARALLEL
Specifies that the database manager can consider parallelism for the function. The database
manager is not required to use parallelism on the SQL statement that invokes the function or on
any SQL statement issued from within the function.

See the descriptions of NOT DETERMINISTIC, EXTERNAL ACTION, and MODIFIES SQL DATA for
considerations that apply to specification of ALLOW PARALLEL.

DISALLOW PARALLEL
Specifies that the database manager must not use parallelism for the function.

CONCURRENT ACCESS RESOLUTION
Specifies whether the database manager should wait for data that is in the process of being updated.
DEFAULT is the default.
DEFAULT

Specifies that the concurrent access resolution is not explicitly set for this function. The value that
is in effect when the function is invoked will be used.

WAIT FOR OUTCOME
Specifies that the database manager is to wait for the commit or rollback of data in the process of
being updated.

USE CURRENTLY COMMITTED
Specifies that the database manager is to use the currently committed version of the data when
encountering data that is in the process of being updated.
When the lock contention is between a read transaction and a delete or update transaction, the
clause is applicable to scans with isolation level CS (but not for CS KEEP LOCKS).

SYSTEM_TIME SENSITIVE
Determines whether references to system-period temporal tables in both static and dynamic SQL
statements are affected by the value of the CURRENT TEMPORAL SYSTEM_TIME special register. YES
is the default.
YES

References to system-period temporal tables are affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register.

NO
References to system-period temporal tables are not affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register.

NOT SECURED or SECURED
Specifies whether the function is considered secure for row access control and column access control.
NOT SECURED

Specifies that the function is considered not secure for row access control and column access
control. This is the default.
When the function is invoked, the arguments of the function must not reference a column for
which a column mask is enabled when the table is using active column access control.

SECURED
Specifies that the function is considered secure for row access control and column access control.
A function must be defined as secure when it is referenced in a row permission or a column mask.

WRAPPED obfuscated-statement-text
Specifies the encoded definition of the function. A CREATE FUNCTION statement can be encoded
using the WRAP scalar function.

SET OPTION-statement
Specifies the options that will be used to create the function. These options also apply to any default
value expressions. For example, to create a debuggable function, the following statement could be
included:

SET OPTION DBGVIEW = *SOURCE

Chapter 7. Statements 1037

The default values for the options depend on the options in effect at create time. For information
about the , see “SET OPTION” on page 1512.

The options CNULRQD, CNULIGN, COMPILEOPT, NAMING, and SQLCA are not allowed in the CREATE
FUNCTION statement. The following options are used when processing default value expressions:
ALWCPYDTA, CONACC, DATFMT, DATSEP, DECFLTRND, DECMPT, DECRESULT, DFTRDBCOL, LANGID,
SQLCURRULE, SQLPATH, SRTSEQ, TGTRLS, TIMFMT, and TIMSEP.

SQL-routine-body
Specifies a single SQL-procedure-statement, including a compound statement. See “SQL control
statements” on page 1579 for more information about defining SQL functions.

A call to a procedure that issues a CONNECT, SET CONNECTION, RELEASE, DISCONNECT, COMMIT,
ROLLBACK, and SET TRANSACTION statement is not allowed in a function.

If the SQL-routine-body is a compound statement, it must contain at least one RETURN statement and
a RETURN statement must be executed when the function is called.

ALTER PROCEDURE (SQL), ALTER FUNCTION (SQL scalar), and ALTER FUNCTION (SQL table) with a
REPLACE keyword are not allowed in an SQL-routine-body.

Notes
General considerations for defining user-defined functions: For general information about defining
user-defined functions, see “CREATE FUNCTION” on page 975.

SQL path and function resolution: Resolution of function invocations inside the function body is done
according to the SQL path that is in effect for the CREATE FUNCTION statement and does not change after
the function is created.

Function ownership: If SQL names were specified:

• If a user profile with the same name as the schema into which the function is created exists, the owner
of the function is that user profile.

• Otherwise, the owner of the function is the user profile or group user profile of the thread executing the
statement.

If system names were specified, the owner of the function is the user profile or group user profile of the
thread executing the statement.

Function authority: If SQL names are used, functions are created with the system authority of *EXCLUDE
on *PUBLIC. If system names are used, functions are created with the authority to *PUBLIC as
determined by the create authority (CRTAUT) parameter of the schema.

If the owner of the function is a member of a group profile (GRPPRF keyword) and group authority is
specified (GRPAUT keyword), that group profile will also have authority to the function.

REPLACE rules: When a function is recreated by REPLACE:

• Any existing comment or label is discarded.
• Authorized users are maintained. The object owner could change.
• Current journal auditing is preserved.

If the function is replaced and the function signature or result data type is altered, the results from
any function, materialized query table, procedure, trigger, or view that references the function may be
unpredictable. Any referenced objects should be recreated.

Creating the function: When an SQL function is created, the database manager creates a temporary
source file that will contain C source code with embedded SQL statements. A *SRVPGM object is then
created using the CRTSRVPGM command. The SQL options used to create the service program are the
options that are in effect at the time the CREATE FUNCTION statement is executed. The service program
is created with ACTGRP(*CALLER).

1038 IBM i: Db2 for i SQL Reference

When an SQL function is created, the function's attributes are stored in the created service program
object. If the *SRVPGM object is saved and then restored to this or another system, the attributes are
used to update the catalogs.

If the PROGRAM NAME clause is provided, its name is used for the creation of the service program object.
Otherwise, the specific name is used to determine the name of the source file member and *SRVPGM
object. If the specific name is a valid system name, it will used as the name of member and program. If
the member already exists, it will be overlaid. If a program already exists in the specified library, a unique
name is generated using the rules for generating system table names. If the specific name is not a valid
system name, a unique name is generated using the rules for generating system table names.

Invoking the function: When an SQL function is invoked, it runs in the activation group of the calling
program.

If a function is specified in the select-list of a select-statement and if the function specifies EXTERNAL
ACTION or MODIFIES SQL DATA, the function will only be invoked for each row returned. Otherwise, the
UDF may be invoked for rows that are not selected.

Inline functions: When an SQL scalar function is inlined, instead of invoking the function as part of a
query, the expression in the RETURN statement of the function may be copied (inlined) into the query
itself. Such a function is called an inline function. A scalar function is an inline function if:

• The SQL function is global deterministic.
• The SQL-routine-body contains only a RETURN statement.
• No input parameter is an array type.
• The data type of the result is not XML or an array type.
• All objects referenced in the function exist when the function is created.
• The SQL-routine-body does not contain a common table expression that references an input parameter.
• The SQL-routine-body does not contain a nested table expression without a preceding LATERAL

keyword that references an input parameter.

An inline function is only copied (inlined) into a query if:

• The query is eligible for the SQL Query Engine (SQE).
• The function references an object and the authority attributes of the function and the query are

compatible based on one of the following conditions:

– The function is defined to run under the user's authority (*USER).
– The query is running under the owner's authority (*OWNER) and the owner of the query is the same

as the owner of the function.
– The query is running under the user's authority (*USER), and the user or the user's group profile is the

same as the owner of the function.

Note: If the function is defined as FENCED, the query must not use adopted authority. If the query runs
under the owner's authority (*OWNER) and the function runs under the user’s authority (*USER), the
owner of the query must be the same as the user or the user's group profile.

When a function is inlined, some of the options specified when the function was created are ignored:

• PARALLEL or NOT PARALLEL
• MODIFIES SQL DATA
• Commitment control level
• CONCURRENT ACCESS RESOLUTION
• ALWCPYDTA
• ATOMIC or NOT ATOMIC

If a function is inlined and it contains a reference to a special register, the value of the special register will
be the same as other references to the same special register in the query.

Chapter 7. Statements 1039

Returning an array from a function: If the return type of a function is an array type, the function can only
be invoked from within an SQL function or SQL procedure routine body in one of the following contexts:

• the select-list of a SELECT INTO
• the select-list of a DECLARE CURSOR
• the select-list of a scalar subselect on the right side of a SET statement

A select-list that contains a function that returns an array type cannot use the DISTINCT keyword. A query
that contains this select list cannot use UNION, EXCEPT, or INTERSECT.

Obfuscated statements: A CREATE FUNCTION statement can be executed in obfuscated form. In an
obfuscated statement, only the function name and parameters are readable followed by the WRAPPED
keyword. The rest of the statement is encoded in such a way that it is not readable but can be decoded
by a database server that supports obfuscated statements. Obfuscated statements can be produced by
invoking the WRAP scalar function. Any debug options that are specified when the function is created
from an obfuscated statement are ignored. A function that is created from an obfuscated statement
cannot be restored to a release where obfuscation is not supported.

Setting of the default value: Parameters of a function that are defined with a default value are set to
their default value when the function is invoked, but only if a value is not supplied for the corresponding
argument, or the argument is specified as DEFAULT.

Dependent objects: An SQL routine is dependent on objects that are referenced in the SQL-routine-body.
The names of the dependent objects are stored in catalog view SYSROUTINEDEP. If the object reference
in the SQL-routine-body is a fully qualified name or, in SQL naming, if an unqualified name is qualified
by the current schema, then the schema name of the object in SYSROUTINEDEP will be set to the
specified name or the value of the current schema. Otherwise, the schema name is not set to a specific
schema name. Unqualified function names, variable names, and type names will have a schema name of
CURRENT PATH. If the name is not set to an actual schema name, then DROP and ALTER statements will
not be able to determine whether the routine is dependent on the object being altered or dropped.

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• The keywords VARIANT and NOT VARIANT can be used as synonyms for NOT DETERMINISTIC and
DETERMINISTIC.

• The keywords NULL CALL and NOT NULL CALL can be used as synonyms for CALLED ON NULL INPUT
and RETURNS NULL ON NULL INPUT.

• The keywords IS DETERMINISTIC may be used as a synonym for DETERMINISTIC.

Example

Example 1: Define a scalar function that returns the tangent of a value using the existing SIN and COS
built-in functions.

 CREATE FUNCTION TAN
 (X DOUBLE)
 RETURNS DOUBLE
 LANGUAGE SQL
 CONTAINS SQL
 NO EXTERNAL ACTION
 DETERMINISTIC
 RETURN SIN(X)/COS(X)

Notice that a parameter name (X) is specified for the input parameter to function TAN. The parameter
name is used within the body of the function to refer to the input parameter. The invocations of the SIN
and COS functions, within the body of the TAN user-defined function, pass the parameter X as input.

Example 2: Define a scalar function that returns a date formatted as mm/dd/yyyy followed by a string of
up to 3 characters:

 CREATE FUNCTION BADPARM
 (INP1 DATE,
 USA VARCHAR(3))

1040 IBM i: Db2 for i SQL Reference

 RETURNS VARCHAR(20)
 LANGUAGE SQL
 CONTAINS SQL
 NO EXTERNAL ACTION
 DETERMINISTIC
 RETURN CHAR(INP1,USA)CONCAT USA

Assume that the function is invoked as in the following statement:

 SELECT BADPARM(BIRTHDATE,'ISO')
 FROM EMPLOYEE WHERE EMPNO='000010'

The result is '08/24/1933ISO'. Notice that parameter names (INP1 and USA) are specified for the input
parameters to function BADPARM. Although there is an input parameter named USA, the instance of USA
in the parameter list for the CHAR function is taken as the keyword parameter for the built-in CHAR
function and not the parameter named USA.

Chapter 7. Statements 1041

CREATE FUNCTION (SQL table)
This CREATE FUNCTION (SQL table) statement creates an SQL table function at the current server. The
function returns a single result table.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• The privilege to create in the schema. For more information, see Privileges necessary to create in a
schema.

• Database administrator authority

The privileges held by the authorization id of the statement must include at least one of the following:

• For the SYSFUNCS catalog view and SYSPARMS catalog table:

– The INSERT privilege on the table, and
– The system authority *EXECUTE on library QSYS2

• Database administrator authority

The privileges held by the authorization ID of the statement must also include at least one of the
following:

• The following system authorities:

– *USE to the Create Service Program (CRTSRVPGM) command or
• Database administrator authority

If a distinct type is referenced, the privileges held by the authorization ID of the statement must include at
least one of the following:

• For each distinct type identified in the statement:

– The USAGE privilege on the distinct type, and
– The system authority *EXECUTE on the library containing the distinct type

• Database administrator authority

If the SECURED attribute is specified, or the function is secure and OR REPLACE is specified:

• The authorization ID of the statement must have security administrator authority. See “Administrative
authority” on page 15.

To replace an existing function, the privileges held by the authorization ID of the statement must include
at least one of the following:

• The following system authorities:

– The system authority of *OBJMGT on the service program object associated with the function
– All authorities needed to DROP the function
– The system authority *READ to the SYSFUNCS catalog view and SYSPARMS catalog table

• Database administrator authority

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Table or View and Corresponding System Authorities When
Checking Privileges to a Distinct Type.

1042 IBM i: Db2 for i SQL Reference

Syntax
CREATE

OR REPLACE

FUNCTION function-name (

,

parameter-declaration

) function-definition

WRAPPED obfuscated-statement-text

function-definition

RETURNS TABLE (

,

column-name data-type2) option-list

SET OPTION-statement

SQL-routine-body

parameter-declaration
parameter-name data-type1

default-clause

data-type1, data-type2
built-in-type

distinct-type-name

built-in-type

Chapter 7. Statements 1043

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

normalize-clause

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

)

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

DATALINK

(200)

(integer) ccsid-clause

ROWID

XML

ccsid-clause
CCSID integer

normalize-clause

normalize-clause

1044 IBM i: Db2 for i SQL Reference

NOT NORMALIZED

NORMALIZED

default-clause
DEFAULT NULL

constant

special-register

global-variable

(expression)

option-list

Chapter 7. Statements 1045

LANGUAGE SQL 1

SPECIFIC specific-name

PROGRAM NAME external-program-name

NOT DETERMINISTIC

GLOBAL

STATEMENT

DETERMINISTIC

EXTERNAL ACTION

NO EXTERNAL ACTION

READS SQL DATA

CONTAINS SQL

MODIFIES SQL DATA

CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

INHERIT SPECIAL REGISTERS STATIC DISPATCH FENCED

NOT FENCED

ALLOW PARALLEL

DISALLOW PARALLEL

CONCURRENT ACCESS RESOLUTION

DEFAULT

USE CURRENTLY COMMITTED

U

WAIT FOR OUTCOME

W

SYSTEM_TIME SENSITIVE YES

SYSTEM_TIME SENSITIVE NO

NOT SECURED

SECURED

CARDINALITY bigint

Notes:
1 This clause and the clauses that follow in the option-list can be specified in any order. Each clause
can be specified at most once.

SQL-routine-body
SQL-control-statement

Description
OR REPLACE

Specifies to replace the definition for the function if one exists at the current server. The existing
definition is effectively dropped before the new definition is replaced in the catalog with the exception

1046 IBM i: Db2 for i SQL Reference

that privileges that were granted on the function are not affected. This option is ignored if a definition
for the function does not exist at the current server. To replace an existing function, the specific-name
and function-name of the new definition must be the same as the specific-name and function-name of
the old definition, or the signature of the new definition must match the signature of the old definition.
Otherwise, a new function is created.

function-name
Names the user-defined function. The combination of name, schema name, the number of
parameters, and the data type of each parameter (without regard for any length, precision, scale,
or CCSID attributes of the data type) must not identify a user-defined function that exists at the
current server unless OR REPLACE is specified.

For SQL naming, the function will be created in the schema specified by the implicit or explicit
qualifier.

For system naming, the function will be created in the schema that is specified by the qualifier. If no
qualifier is specified:

• If the value of the CURRENT SCHEMA special register is *LIBL, the function will be created in the
current library (*CURLIB).

• Otherwise, the function will be created in the current schema.

In general, more than one function can have the same name if the function signature of each function
is unique.

Certain function names are reserved for system use. For more information see Choosing the schema
and function name in “CREATE FUNCTION” on page 975.

(parameter-declaration,...)
Specifies the number of input parameters of the function and the data type of each parameter. Each
parameter-declaration specifies an input parameter for the function. A maximum of 2000 parameters
can be specified. A function can have zero or more input parameters. There must be one entry in
the list for each parameter that the function expects to receive. All the parameters for a function are
input parameters and are nullable. For more information, see Defining the parameters in “CREATE
FUNCTION” on page 975.
parameter-name

Names the parameter. The name is used to refer to the parameter within the body of the function.
The name cannot be the same as any other parameter-name in the parameter list.

data-type1
Specifies the data type of the input parameter. The data type can be a built-in data type or a
distinct data type.
built-in-type

Specifies a built-in data type. For a more complete description of each built-in data type, see
“CREATE TABLE” on page 1115.

distinct-type-name
Specifies a distinct type. The length, precision, or scale attributes for the parameter are those
of the source type of the distinct type (those specified on CREATE TYPE). For more information
about creating a distinct type, see “CREATE TYPE (distinct)” on page 1193.

If the name of the distinct type is unqualified, the database manager resolves the schema
name by searching the schemas in the SQL path.

If a CCSID is specified, the parameter will be converted to that CCSID prior to passing it to the
function. If a CCSID is not specified, the CCSID is determined by the default CCSID at the current
server at the time the function is invoked.

default-clause
Specifies a default value for the parameter. The default can be a constant, a special register, a
global variable, an expression, or the keyword NULL. The expression is any expression defined
in “Expressions” on page 158, that does not include an aggregate function or column name. If a

Chapter 7. Statements 1047

default value is not specified, the parameter has no default and cannot be omitted on invocation.
The maximum length of the expression string is 64K.

The default expression must be assignment compatible to the parameter data type.

Any comma in the default expression that is intended as a separator of numeric constants in a list
must be followed by a space.

All objects referenced in a default expression must exist when the function is created.

RETURNS TABLE
Specifies the output table of the function.

Assume the number of parameters is N. There must be no more than 8000-N columns.

column-name
Specifies the name of a column of the output table. Do not specify the same name more than
once.

data-type2
Specifies the data type and attributes of the output.

You can specify any built-in data type (except LONG VARCHAR, or LONG VARGRAPHIC) or a
distinct type. When the function is invoked the results are assigned to these data types (using
storage assignment rules).

If a CCSID is specified and the CCSID of the return data is encoded in a different CCSID, the data is
converted to the specified CCSID.

If a CCSID is not specified and the function is not referenced in a view, the return data is converted
to the CCSID of the job (or associated graphic CCSID of the job for graphic string return values),
if the CCSID of the return data is encoded in a different CCSID. To avoid any potential loss of
characters during the conversion, consider explicitly specifying a CCSID that can represent any
characters that will be returned from the function. This is especially important if the data type
is graphic string data. In this case, consider using CCSID 1200 or 13488 (Unicode graphic string
data).

If a CCSID is not specified and the function is referenced in a view, the return data is converted
to the CCSID of the associated view column. To avoid any potential loss of characters during the
conversion, consider explicitly specifying a CCSID that can represent any characters that will be
returned from the function. This is especially important if the data type is graphic string data. In
this case, consider using CCSID 1200 or 13488 (Unicode graphic string data).

LANGUAGE SQL
Specifies that this is an SQL function.

SPECIFIC specific-name
Specifies a unique name for the function. For more information on specific names, see Specifying a
specific name for a function in “CREATE FUNCTION” on page 975.

PROGRAM NAME external-program-name
Specifies the unqualified name of the service program to be created for the function. external-
program-name must be a valid system name.

GLOBAL DETERMINISTIC or STATEMENT DETERMINISTIC or NOT DETERMINISTIC
Specifies whether the function returns the same results each time that the function is invoked with
the same input arguments. The default is NOT DETERMINISTIC.
NOT DETERMINISTIC

Specifies that the function might not return the same result each time that the function is invoked
with the same input arguments. The function depends on some state values that affect the
results. The database manager uses this information during optimization of SQL statements. An
example of a table function that is not deterministic is one that references special registers,
non-deterministic functions, or a sequence in a way that affects the table function result table.

1048 IBM i: Db2 for i SQL Reference

GLOBAL DETERMINISTIC
Specifies that the function always returns the same result table each time that the function is
invoked with the same input arguments. The database manager uses this information during
optimization of SQL statements. The query optimizer may choose to cache global deterministic
function results.

STATEMENT DETERMINISTIC
Specifies that the function might not return the same result each time that the function is
invoked with the same input arguments, but multiple invocations of the function within a single
SQL statement are considered deterministic. The query optimizer will not cache statement
deterministic function results.96

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an object that the database
manager does not manage. An example of an external action is sending a message or writing a record
to a stream file. The default is EXTERNAL ACTION.
EXTERNAL ACTION

Specifies that the function can take an action that changes the state of an object that the database
manager does not manage. Thus, the function must be invoked with each successive function
invocation. EXTERNAL ACTION should be specified if the function contains a reference to another
function that has an external action.

NO EXTERNAL ACTION
The function does not perform an external action. It need not be called with each successive
function invocation.

NO EXTERNAL ACTION functions might perform better than EXTERNAL ACTION functions
because they might not be invoked for each successive function invocation.

CONTAINS SQL, READS SQL DATA, or MODIFIES SQL DATA
Specifies the classification of SQL statements and nested routines that the function can execute.
The database manager verifies that the SQL statements issued by the function, and all routines
locally invoked by the function, are consistent with this specification. The verification is not performed
when nested remote routines are invoked. For the classification of each statement, see Appendix
B, “Characteristics of SQL statements,” on page 1651. The default is READS SQL DATA. This option
applies to any parameter default expressions.
READS SQL DATA

Specifies that the function can execute statements with a data access classification of READS SQL
DATA, CONTAINS SQL, or NO SQL. The function cannot execute SQL statements that modify data.

CONTAINS SQL
Specifies that the function can execute only SQL statements with a data access classification of
CONTAINS SQL or NO SQL. The function cannot execute any SQL statements that read or modify
data.

MODIFIES SQL DATA
The function can execute any SQL statement except those statements that are not supported in
any function.

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
Specifies whether the function is called if any of the input arguments is null at execution time.
RETURNS NULL ON NULL INPUT

Specifies that the function is not called if any of the input arguments is null. The result is an empty
table, which is a table with no rows. RETURNS NULL ON NULL INPUT is the default.

96 The DETERMINISTIC_UDF_SCOPE QAQQINI option can be used to get this same behavior for a GLOBAL
DETERMINISTIC function. For more information, see the Database Performance and Query Optimization
topic collection.

Chapter 7. Statements 1049

CALLED ON NULL INPUT
Specifies that the function is to be invoked if any argument values are null. This specification
means that the function must be coded to test for null argument values. The function can return
an empty table, depending on its logic.

INHERIT SPECIAL REGISTERS
Specifies that existing values of special registers are inherited upon entry to the function.

STATIC DISPATCH
Specifies that the function is dispatched statically. All functions are statically dispatched.

FENCED or NOT FENCED
Specifies whether the SQL function runs in an environment that is isolated from the database manager
environment. FENCED is the default.
FENCED

The function will run in a separate thread.

FENCED functions cannot keep SQL cursors open across individual calls to the function. However,
the cursors in one thread are independent of the cursors in any other threads which reduces the
possibility of cursor name conflicts.

NOT FENCED
The function may run in the same thread as the invoking SQL statement.

NOT FENCED functions can keep SQL cursors open across individual calls to the function. Since
cursors can be kept open, the cursor position will also be preserved between calls to the function.
However, cursor names may conflict since the UDF is now running in the same thread as the
invoking SQL statement and other NOT FENCED UDFs.

NOT FENCED functions usually perform better than FENCED functions.

ALLOW PARALLEL or DISALLOW PARALLEL
Specifies whether the function can be run in parallel.

The default is DISALLOW PARALLEL if one or more of the following clauses are specified: NOT
DETERMINISTIC, EXTERNAL ACTION, or MODIFIES SQL DATA, or if this is a pipelined table function.
Otherwise, ALLOW PARALLEL is the default.

ALLOW PARALLEL
Specifies that the database manager can consider parallelism for the function. The database
manager is not required to use parallelism on the SQL statement that invokes the function or on
any SQL statement issued from within the function.

See the descriptions of NOT DETERMINISTIC, EXTERNAL ACTION, and MODIFIES SQL DATA for
considerations that apply to specification of ALLOW PARALLEL.

DISALLOW PARALLEL
Specifies that the database manager must not use parallelism for the function.

CONCURRENT ACCESS RESOLUTION
Specifies whether the database manager should wait for data that is in the process of being updated.
DEFAULT is the default.
DEFAULT

Specifies that the concurrent access resolution is not explicitly set for this function. The value that
is in effect when the function is invoked will be used.

WAIT FOR OUTCOME
Specifies that the database manager is to wait for the commit or rollback of data in the process of
being updated.

USE CURRENTLY COMMITTED
Specifies that the database manager is to use the currently committed version of the data when
encountering data that is in the process of being updated.
When the lock contention is between a read transaction and a delete or update transaction, the
clause is applicable to scans with isolation level CS (but not for CS KEEP LOCKS).

1050 IBM i: Db2 for i SQL Reference

SYSTEM_TIME SENSITIVE
Determines whether references to system-period temporal tables in both static and dynamic SQL
statements are affected by the value of the CURRENT TEMPORAL SYSTEM_TIME special register. YES
is the default.
YES

References to system-period temporal tables are affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register.

NO
References to system-period temporal tables are not affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register.

NOT SECURED or SECURED
Specifies whether the function is considered secure for row access control and column access control.
NOT SECURED

Specifies that the function is considered not secure for row access control and column access
control. This is the default.
When the function is invoked, the arguments of the function must not reference a column for
which a column mask is enabled when the table is using active column access control.

SECURED
Specifies that the function is considered secure for row access control and column access control.
A function must be defined as secure when it is referenced in a row permission or a column mask.

WRAPPED obfuscated-statement-text
Specifies the encoded definition of the function. A CREATE FUNCTION statement can be encoded
using the WRAP scalar function.

CARDINALITY bigint
This optional clause provides an estimate of the expected number of rows to be returned by the
function for optimization purposes. Valid values for integer range from 0 to 9 223 372 036 854 775
807 inclusive.

If the CARDINALITY clause is not specified for a table function, the database manager will assume a
finite value as a default.

A table function that returns a row every time it is called and never returns the end-of-table condition
has infinite cardinality. A query that invokes such a function and requires an eventual end-of-table
condition before it can return any data will not return unless interrupted.

SET OPTION-statement
Specifies the options that will be used to create the function. These options also apply to any default
value expressions. For example, to create a debuggable function, the following statement could be
included:

SET OPTION DBGVIEW = *SOURCE

The default values for the options depend on the options in effect at create time. For more
information, see “SET OPTION” on page 1512.

The options CNULRQD, CNULIGN, COMPILEOPT, NAMING, and SQLCA are not allowed in the
CREATE FUNCTION statement. CLOSQLCSR(*ENDACTGRP) is always used for SQL table functions.
The following options are used when processing default value expressions: ALWCPYDTA, CONACC,
DATFMT, DATSEP, DECFLTRND, DECMPT, DECRESULT, DFTRDBCOL, LANGID, SQLCURRULE, SQLPATH,
SRTSEQ, TGTRLS, TIMFMT, and TIMSEP.

SQL-routine-body
Specifies a single SQL statement, including a compound statement. See “SQL control statements” on
page 1579 for more information about defining SQL functions.

A non-pipelined table function must contain exactly one RETURN statement. A pipelined table
function must contain at least one RETURN statement. The RETURN statement must be executed
when the function is invoked.

Chapter 7. Statements 1051

A call to a procedure that issues a CONNECT, SET CONNECTION, RELEASE, DISCONNECT, COMMIT,
ROLLBACK and SET TRANSACTION statement is not allowed in a function.

ALTER PROCEDURE (SQL), ALTER FUNCTION (SQL scalar), and ALTER FUNCTION (SQL table) with a
REPLACE keyword are not allowed in an SQL-routine-body.

Notes
General considerations for defining user-defined functions: See “SQL control statements” on page
1579 for general information about defining user-defined functions.

Function ownership: If SQL names were specified:

• If a user profile with the same name as the schema into which the function is created exists, the owner
of the function is that user profile.

• Otherwise, the owner of the function is the user profile or group user profile of the thread executing the
statement.

If system names were specified, the owner of the function is the user profile or group user profile of the
thread executing the statement.

Function authority: If SQL names are used, functions are created with the system authority of *EXCLUDE
on *PUBLIC. If system names are used, functions are created with the authority to *PUBLIC as
determined by the create authority (CRTAUT) parameter of the schema.

If the owner of the function is a member of a group profile (GRPPRF keyword) and group authority is
specified (GRPAUT keyword), that group profile will also have authority to the function.

Pipelined and non-pipelined functions: There are two types of SQL table functions. A table function
which does not contain any PIPE statements within the SQL-routine-body is a non-pipelined table
function. It contains one RETURN statement which returns a table. A pipelined table function is a table
function which contains one or more RETURN statements with no return values and zero or more PIPE
statements within the SQL-routine-body. It returns a table a row at a time. The two types of table
functions are invoked in exactly the same way.

A PIPE statement returns a result row from the table function. To get the next row, control returns in the
SQL-routine-body to the statement following the PIPE statement.

REPLACE rules: When a function is recreated by REPLACE:

• Any existing comment or label is discarded.
• Authorized users are maintained. The object owner could change.
• Current journal auditing is preserved.

If the function is replaced and the function signature or result data types are altered, the results from
any function, materialized query table, procedure, trigger, or view that references the function may be
unpredictable. Any referenced objects should be recreated.

Creating the function: When an SQL function is created, the database manager creates a temporary
source file that will contain C source code with embedded SQL statements. A *SRVPGM object is then
created using the CRTSRVPGM command. The SQL options used to create the service program are the
options that are in effect at the time the CREATE FUNCTION statement is executed. The service program
is created with ACTGRP(*CALLER).

When an SQL function is created, the function's attributes are stored in the created service program
object. If the *SRVPGM object is saved and then restored to this or another system, the attributes are
used to update the catalogs.

If the PROGRAM NAME clause is provided, its name is used for the creation of the service program object.
Otherwise, the specific name is used to determine the name of the source file member and *SRVPGM
object. If the specific name is a valid system name, it will used as the name of member and program. If
the member already exists, it will be overlaid. If a program already exists in the specified library, a unique
name is generated using the rules for generating system table names. If the specific name is not a valid
system name, a unique name is generated using the rules for generating system table names.

1052 IBM i: Db2 for i SQL Reference

Invoking the function: When an SQL function is invoked, it runs in the activation group of the calling
program.

Inline functions: When an SQL table function is inlined, instead of invoking the function as part of a query,
the fullselect in the RETURN statement of the function may be copied (inlined) into the query itself. Such a
function is called an inline function. A table function is an inline function if:

• The SQL function is defined as NO EXTERNAL ACTION.
• The SQL-routine-body contains only a RETURN statement.
• No column in the result table is the XML data type.
• All objects referenced in the function exist when the function is created.
• The SQL-routine-body does not contain a common table expression that references an input parameter.

An inline function is only copied (inlined) into a query if:

• The query is eligible for the SQL Query Engine (SQE).
• The function does not reference a table on a different server.
• The function references an object and the authority attributes of the function and the query are

compatible based on one of the following conditions:

– The function is defined to run under the user's authority (*USER).
– The query is running under the owner's authority (*OWNER) and the owner of the query is the same

as the owner of the function.
– The query is running under the user's authority (*USER), and the user or the user's group profile is the

same as the owner of the function.

Note: If the function is defined as FENCED, the query must not use adopted authority. If the query runs
under the owner's authority (*OWNER) and the function runs under the user’s authority (*USER), the
owner of the query must be the same as the user or the user's group profile.

When a function is inlined, some of the options specified when the function was created are ignored:

• PARALLEL or NOT PARALLEL
• MODIFIES SQL DATA
• Commitment control level
• CONCURRENT ACCESS RESOLUTION
• ALWCPYDTA
• ATOMIC or NOT ATOMIC

If a function is inlined and it contains a reference to a special register, the value of the special register will
be the same as other references to the same special register in the query.

Obfuscated statements: A CREATE FUNCTION statement can be executed in obfuscated form. In an
obfuscated statement, only the function name and parameters are readable followed by the WRAPPED
keyword. The rest of the statement is encoded in such a way that it is not readable but can be decoded
by a database server that supports obfuscated statements. Obfuscated statements can be produced by
invoking the WRAP scalar function. Any debug options that are specified when the function is created
from an obfuscated statement are ignored. A function that is created from an obfuscated statement
cannot be restored to a release where obfuscation is not supported.

Dependent objects: An SQL routine is dependent on objects that are referenced in the SQL-routine-body.
The names of the dependent objects are stored in catalog view SYSROUTINEDEP. If the object reference
in the SQL-routine-body is a fully qualified name or, in SQL naming, if an unqualified name is qualified
by the current schema, then the schema name of the object in SYSROUTINEDEP will be set to the
specified name or the value of the current schema. Otherwise, the schema name is not set to a specific
schema name. Unqualified function names, variable names, and type names will have a schema name of
CURRENT PATH. If the name is not set to an actual schema name, then DROP and ALTER statements will
not be able to determine whether the routine is dependent on the object being altered or dropped.

Chapter 7. Statements 1053

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• The keywords VARIANT and NOT VARIANT can be used as synonyms for NOT DETERMINISTIC and
DETERMINISTIC.

• The keywords NULL CALL and NOT NULL CALL can be used as synonyms for CALLED ON NULL INPUT
and RETURNS NULL ON NULL INPUT.

• The keywords IS DETERMINISTIC may be used as a synonym for DETERMINISTIC.

Example

Define a table function that returns the employees in a specified department number.

CREATE FUNCTION DEPTEMPLOYEES (DEPTNO CHAR(3))
 RETURNS TABLE (EMPNO CHAR(6),
 LASTNAME VARCHAR(15),
 FIRSTNAME VARCHAR(12))
 LANGUAGE SQL
 READS SQL DATA
 NO EXTERNAL ACTION
 DETERMINISTIC
 DISALLOW PARALLEL
 RETURN
 SELECT EMPNO,LASTNAME,FIRSTNME
 FROM EMPLOYEE
 WHERE EMPLOYEE.WORKDEPT =DEPTEMPLOYEES.DEPTNO

1054 IBM i: Db2 for i SQL Reference

CREATE INDEX
The CREATE INDEX statement creates an index on a table at the current server.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• The privilege to create in the schema. For more information, see Privileges necessary to create in a
schema.

• Database administrator authority

The privileges held by the authorization ID of the statement must include at least one of the following:

• The following system authorities:

– *USE to the Create Logical File (CRTLF) command
– *CHANGE to the data dictionary if the library into which the index is created is an SQL schema with a

data dictionary
• Database administrator authority

The privileges held by the authorization ID of the statement must also include at least one of the
following:

• For the referenced table:

– The INDEX privilege on the table
– The system authority *EXECUTE on the library containing the table

• Database administrator authority

If SQL names are specified and a user profile exists that has the same name as the library into which the
table is created, and that name is different from the authorization ID of the statement, then the privileges
held by the authorization ID of the statement must include at least one of the following:

• The system authority *ADD to the user profile with that name
• Database administrator authority

If a distinct type is referenced, the privileges held by the authorization ID of the statement must include at
least one of the following:

• For each distinct type identified in the statement:

– The USAGE privilege on the distinct type, and
– The system authority *EXECUTE on the library containing the distinct type

• Database administrator authority

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Table or View.

Chapter 7. Statements 1055

Syntax
CREATE

UNIQUE

WHERE NOT NULL

ENCODED VECTOR

INDEX index-name

FOR SYSTEM NAME system-object-identifier

ON table-name

(

,

key-expression
ASC

DESC

)

WHERE search-condition

index-options

key-expression
expression

AS
column-name

FOR
COLUMN

system-column-name

index-options

1056 IBM i: Db2 for i SQL Reference

WITH integer
DISTINCT

VALUES
NOT PARTITIONED

PARTITIONED

INCLUDE (

,

aggregate-function-name (expression))

PAGESIZE 64

PAGESIZE 8

16

32

128

256

512

RCDFMT format-name
ADD ALL COLUMNS

ADD KEYS ONLY

ADD

,

column-name

rename-index-columns

media-preference memory-preference

1

rename-index-columns

RENAME (

,

table-system-column-name) TO

(

,

index-system-column-name

index-column-name FOR COLUMN index-system-column-name

)

media-preference
UNIT ANY

UNIT SSD

memory-preference
KEEP IN MEMORY NO

YES

Notes:
1 The index-options may be specified in any order.

Chapter 7. Statements 1057

Description
UNIQUE

Prevents the table from containing two or more rows with the same value of the index key. When
UNIQUE is used, all null values for a column are considered equal. For example, if the key is a single
column that can contain null values, that column can contain only one null value. The constraint is
enforced when rows of the table are updated or new rows are inserted.

The constraint is also checked during the execution of the CREATE INDEX statement. If the table
already contains rows with duplicate key values, the index is not created.

UNIQUE WHERE NOT NULL
Prevents the table from containing two or more rows with the same value of the index key, where
all null values for a column are not considered equal. Multiple null values in a column are allowed.
Otherwise, this is identical to UNIQUE.

ENCODED VECTOR
Specifies that the resulting index will be an encoded vector index (EVI).

An encoded vector index cannot be used to ensure an ordering of rows. It is used by the database
manager to improve the performance of queries. For more information, see the Database Performance
and Query Optimization topic collection.

index-name
Names the index. The name, including the implicit or explicit qualifier, must not be the same as an
index, table, view, alias, or file that already exists at the current server.

If SQL names were specified, the index will be created in the schema specified by the implicit or
explicit qualifier.

If system names were specified, the index name will be created in the schema that is specified by the
qualifier. If not qualified, the index name will be created in the same schema as the table over which
the index is created.

If the index name is not a valid system name and the FOR SYSTEM NAME clause is not used, Db2 for
i will generate a system name. For information about the rules for generating a name, see “Rules for
Table Name Generation” on page 1167.

FOR SYSTEM NAME system-object-identifier
Identifies the system-object-identifier of the index. system-object-identifier must not be the same as a
table, view, alias, or index that already exists at the current server. The system-object-identifier must
be an unqualified system identifier.

When system-object-identifier is specified, index-name must not be a valid system object name.

ON table-name
Identifies the table on which the index is to be created. The table-name must identify a base table
(not a view) that exists at the current server.

If the table is a partitioned table, an alias may be specified which identifies a single partition. The
created index will then only be created over the specified partition.

key-expression
Identifies a column or expression that will be part of the index key.

The number of keys defined for the index must not exceed 120, and the sum of their byte lengths
must not exceed 32766-n, where n is the number of keys specified that allow nulls.

expression
If expression contains only a column-name, it must be an unqualified name that identifies a
column of the table. expression must contain a column reference. The same column-name cannot
be specified more than once if:

• a WHERE clause, INCLUDE clause, or RCDFMT clause is specified,
• an expression is defined as part of an index key, or

1058 IBM i: Db2 for i SQL Reference

• a column is renamed using the AS clause.

If the expression is not a column name, the expression must not reference a column that contains
a field procedure.

A column-name must not identify a LOB, XML, or DATALINK column, or a distinct type based on a
LOB, XML, or DATALINK column. If the expression is not a column name, any intermediate result
expression and the final result expression must not be a DATALINK, LOB, or XML data type. It must
not contain any of the following:

• Subqueries
• Aggregate functions
• Variables
• Global variables
• Parameter markers
• Special registers
• Sequence references
• OLAP specifications
• ROW CHANGE expressions
• REGEXP_LIKE predicate
• User-defined functions other than functions that were implicitly generated with the creation of a

distinct type
• Any function that is not deterministic
• The following built-in scalar functions:

ATAN2 DLURLPATHONLY LOCATE_IN_STRING RPAD

BSON_TO_JSON DLURLSCHEME LPAD SCORE

CARDINALITY DLURLSERVER MAX_CARDINALITY SOUNDEX

CONTAINS DLVALUE MONTHNAME TABLE_NAME

CURDATE ENCRYPT_AES MONTHS_BETWEEN TABLE_SCHEMA

CURTIME ENCRYPT_RC2 NEXT_DAY TIMESTAMP_FORMAT

DATAPARTITIONNAME ENCRYPT_TDES NOW TIMESTAMPDIFF

DATAPARTITIONNUM GENERATE_UNIQUE OVERLAY TRUNC_TIMESTAMP

DAYNAME GETHINT RAISE_ERROR VARCHAR_FORMAT

DBPARTITIONNAME IDENTITY_VAL_LOCAL RAND VERIFY_GROUP_FOR_USER

DECRYPT_BINARY INSERT REGEXP_COUNT WEEK_ISO

DECRYPT_BIT INTERPRET REGEXP_INSTR WRAP

DECRYPT_CHAR JSON_ARRAY REGEXP_REPLACE XMLPARSE

DECRYPT_DB JSON_OBJECT REGEXP_SUBSTR XMLVALIDATE

DIFFERENCE JSON_QUERY REPEAT XSLTRANSFORM

DLURLCOMPLETE 1 JSON_TO_BSON REPLACE

DLURLPATH JSON_VALUE ROUND_TIMESTAMP

1 For DataLinks with an attribute of FILE LINK CONTROL and READ PERMISSION DB.

column-name
Names a column of the index. Do not use the same name for more than one column of the index or
for a system-column-name of the index.

If the expression is not a column name and is not named, a name will be generated for the index
key column. The name will be SQLIXxxxxx, where xxxxx is a number that makes the column name
unique for the index.

Chapter 7. Statements 1059

FOR COLUMN system-column-name
Provides an IBM i name for the column. Do not use the same name for more than one column of
the index or for a column-name of the index.

If the system-column-name is not specified, and the column-name is not a valid system-column-
name, a system column name is generated. The name will be SQLIXxxxxx, where xxxxx is a
number that makes the column name unique for the index.

ASC
Specifies that the index entries are to be kept in ascending order of the column values. ASC is the
default.

DESC
Specifies that the index entries are to be kept in descending order of the column values.

Ordering is performed in accordance with the comparison rules described in “Assignments and
comparisons” on page 89. The null value is higher than all other values.

WHERE search-condition
Specifies the condition to apply for a row to be included in the index. The search-condition cannot
contain a predicate with a subquery. It must not contain any of the items listed as restrictions for
key-expression.

WITH integer DISTINCT VALUES
Specifies the estimated number of distinct key values. This clause may be specified for any type of
index.

For encoded vector indexes this is used to determine the initial size of the codes assigned to each
distinct key value. Only 1, 2, and 4 byte codes are used. If the INCLUDE clause is not specified, the
default value is 255 (a 1-byte code). Otherwise, a 4-byte code is used. During the create or rebuild of
the index if the number of distinct values exceeds the maximum supported by the size of the code, the
size of the code is increased.

For non-encoded vector indexes, this clause is ignored.

PARTITIONED
Specifies that an index partition should be created for each data partition defined for the table using
the specified columns. The table-name must identify a partitioned table. If the index is unique, the
columns of the index must be the same or a superset of the columns of the data partition key.
PARTITIONED is the default if the index is not unique and the table is partitioned.

NOT PARTITIONED
Specifies that a single index should be created that spans all of the data partitions defined for the
table. The table-name must identify a partitioned table. NOT PARTITIONED is the default if the index
is unique and the table is partitioned. An index on a table that is not partitioned is also by default not
partitioned.

If an encoded vector index is specified, NOT PARTITIONED is not allowed.

PAGESIZE
Specifies the logical page used for the index in kilobytes. Indexes with larger logical page sizes are
typically more efficient when scanned during query processing. Indexes with smaller logical page
sizes are typically more efficient for simple index probes and individual key look ups.

The default value for PAGESIZE is determined by the length of the key and has a minimum value of 64.

If an encoded vector index is specified, PAGESIZE is not allowed.

INCLUDE
Specifies aggregate function expressions to be included in the index. These aggregates make it
possible for the index to be used directly to return aggregate results for a query. INCLUDE is only
allowed for an encoded vector index.
aggregate-function-name (expression)

The aggregate function name must be one of the built-in functions AVG, COUNT, COUNT_BIG,
SUM, STDDEV, STDDEV_SAMP, VARIANCE, or VARIANCE_SAMP. The DISTINCT keyword must not

1060 IBM i: Db2 for i SQL Reference

be specified. The expression argument of the aggregate function must not contain any of the items
listed as restrictions for key-expression.

RCDFMT format-name
An unqualified name that designates the IBM i record format name of the index. A format-name is a
system identifier.

If the INCLUDE keyword is specified, RCDFMT is not allowed.

ADD ALL COLUMNS
Specifies that all non-hidden columns of table-name will be added to the format for the index. All
the columns will be defined in the same order as they appear in the format of table-name and will
precede any expressions defined as index keys.

ADD KEYS ONLY
Specifies that only the columns specified as index key columns will be added to the format for the
index. Other columns from table-name will not be added.

ADD column-name
Specifies that the listed columns will be added to the format for the index. The index key columns
will be first, followed by the added columns.

RENAME
Specifies the columns from table-name that will be included in the format for the index. The order
of the columns in the index format will be the same as the order of the columns in the list. The
columns in the index can also be renamed.
table-system-column-name

Identifies the system column name of a column in table-name.
index-system-column-name

Provides the system column name for the corresponding column in the index.
index-column-name

Provides the column name for the corresponding column in the index.
When this clause is used, the following rules apply:

• Each key-expression must contain only a column-name. It can be either the column name or
the system column name of a column in table-name. The key-expression cannot include an AS
clause to rename the column.

• If a list of table-system-column-names is specified, it must contain the same number of names
as are provided in the index column name list.

• If a list of table-system-column-names is not specified, every index-system-column-name must
be the system column name for a column in table-name.

• Each index-column-name and index-system-column-name must be unique and unqualified.
• Every column in key-expression must be included in the RENAME clause.

media-preference
Specifies the preferred storage media for the index.

UNIT ANY
No storage media is preferred. Storage for the index will be allocated from any available storage
media.

UNIT SSD
Solid state disk storage media is preferred. Storage for the index may be allocated from solid state
disk storage media, if available.

Chapter 7. Statements 1061

memory-preference
KEEP IN MEMORY

Specifies whether the data for the index should be brought into a main storage pool when the data is
used for a query.
NO

The data will not be brought into a main storage pool.
YES

The data will be brought into a main storage pool.

Notes
Effects of the statement: CREATE INDEX creates a description of the index. If the named table already
contains data, CREATE INDEX creates the index entries for it. If the table does not yet contain data, the
index entries are created when data is inserted into the table.

Collating sequence: Any index created over columns containing SBCS or mixed data is created with
the collating sequence in effect at the time the statement is executed. For collating sequences other
than *HEX, the key for SBCS data or mixed data is the weighted value of the key based on the collating
sequence.

Index attributes: An index is created as a keyed logical file. When an index is created, the file wait time
and record wait time attributes are set to the default that is specified on the WAITFILE and WAITRCD
keywords of the Create Logical File (CRTLF) command.

The date and time format used for date and time result columns is ISO.

An index created over a distributed table is created on all of the servers across which the table is
distributed. For more information about distributed tables, see DB2 Multisystem.

Index ownership: If SQL names were specified:

• If a user profile with the same name as the schema into which the index is created exists, the owner of
the index is that user profile.

• Otherwise, the owner of the index is the user profile or group user profile of the thread executing the
statement.

If system names were specified, the owner of the index is the user profile or group user profile of the
thread executing the statement.

Index authority: If SQL names are used, indexes are created with the system authority of *EXCLUDE on
*PUBLIC. If system names are used, indexes are created with the authority to *PUBLIC as determined by
the create authority (CRTAUT) parameter of the schema.

If the owner of the index is a member of a group profile (GRPPRF keyword) and group authority is
specified (GRPAUT keyword), that group profile will also have authority to the index.

Record format sharing: An index that defines a key column as an expression or that specifies the
RCDFMT, WHERE, INCLUDE, or AS clauses does not share the format of table-name. Otherwise, the index
will share the format of table-name and its format-name will be the same as the system-object-name of
the index.

Examples

Example 1: Create an index named UNIQUE_NAM on the PROJECT table. The purpose of the index is to
ensure that there are not two entries in the table with the same value for project name (PROJNAME). The
index entries are to be in ascending order.

 CREATE UNIQUE INDEX UNIQUE_NAM
 ON PROJECT(PROJNAME)

1062 IBM i: Db2 for i SQL Reference

Example 2: Create an index named JOB_BY_DPT on the EMPLOYEE table. Arrange the index entries in
ascending order by job title (JOB) within each department (WORKDEPT).

 CREATE INDEX JOB_BY_DPT
 ON EMPLOYEE (WORKDEPT, JOB)

Example 3: Create an index named DEPT_TYPE on the DEPARTMENT table. Arrange the index entries in
ascending order by type of department, which is determined by the second and third characters of the
department number (DEPTNO).

 CREATE INDEX DEPT_TYPE
 ON DEPARTMENT (SUBSTR(DEPTNO,2,2))

Chapter 7. Statements 1063

CREATE MASK
The CREATE MASK statement creates a column mask for column access control at the current server. A
column mask specifies what value should be returned for the specified column.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The authorization ID of the statement must have security administrator authority. See “Administrative
authority” on page 15.

Syntax

CREATE

OR REPLACE

MASK mask-name ON table-name

AS
correlation-name

FOR COLUMN column-name RETURN

case-expression
DISABLE

ENABLE

Description
OR REPLACE

Specifies to replace the definition for the column mask if one exists at the current server. The existing
definition is effectively dropped before the new definition is replaced in the catalog.

mask-name
Names the column mask for column access control. The name, including the implicit or explicit
qualifier, must not be the same as a column mask or a row permission that already exists at the
current server. The mask-name cannot start with QIBM.

If SQL names were specified, the mask will be created in the schema specified by the implicit or
explicit qualifier.

If system names were specified, the mask will be created in the schema that is specified by the
qualifier. If not qualified and there is no default schema, the mask will be created in the same schema
as the table-name.

The schema name for the mask-name must be the same as the schema name for table-name.

table-name
Identifies the table on which the column mask is created. The name must identify a table that exists
at the current server. It must not identify a declared temporary table, table in QTEMP, distributed
table, view, logical file, member alias, file with read triggers, or catalog table.

correlation-name
Specifies a correlation name that can be used within case-expression to designate the table.

FOR COLUMN column-name
Identifies the column to which the mask applies. It must be an unqualified name that identifies a
column of the table. A mask must not already exist for the column.

1064 IBM i: Db2 for i SQL Reference

RETURN case-expression
Specifies a CASE expression to be evaluated to determine the value to return for the column. The
result of the CASE expression is returned in place of the column value in a row. The result data type,
length, null attribute, and CCSID of the CASE expression must be compatible with the data type of
the column. If the column does not allow the null value, the result of the CASE expression cannot
be the NULL value. For more information about the compatibility of data types see “Assignments and
comparisons” on page 89. If the data type of column-name is a user defined data type, the result
data type of the CASE expression must be the same user defined type. Any objects referenced in the
case expression must exist at the current server. The case expression must not reference any of the
following:

• The table for which the column mask is being defined
• A declared global temporary table
• A variable (host variable, SQL variable, SQL parameter, or trigger transition variable)
• A parameter marker
• A user-defined function that is defined as NOT SECURED
• A function that is not deterministic97 or has an external action
• An RRN, RID, HASHED_VALUE, DATAPARTITIONNAME, DATAPARTITIONNUM, DBPARTITIONNAME,

or DBPARTITIONNUM function that references the table for which the column mask is being defined
• An OLAP specification
• A ROW CHANGE expression
• A sequence reference
• A * or name.* in a select clause
• A table in QTEMP
• A member alias
• A distributed table
• A file with read triggers
• A multi-format logical file
• A remote object
• A view that contains any of the above

ENABLE or DISABLE
Specifies that the column mask is to be initially enabled or disabled for column access control.
DISABLE

Specifies that the column mask is to be disabled for column access control. The column mask will
remain ineffective regardless of whether column access control is activated for the table or not.
This is the default.

ENABLE
Specifies that the column mask is to be enabled for column access control. If column access
control is not currently activated for this table, the column mask will become effective when
column access control is activated for the table. If column access control is currently activated for
the table, the column mask becomes effective immediately.

Notes
Prerequisites: In order to create a mask, IBM Advanced Data Security must be installed.

How column masks affect queries: The application of enabled column masks does not interfere with the
operations of other clauses within the statement such as WHERE, GROUP BY, HAVING, SELECT DISTINCT,
or ORDER BY. The rows that are returned in the final result table remain the same, except that the values
in the resulting rows might have been masked by the column masks. As such, if the masked column also

97 STATEMENT DETERMINISTIC functions are allowed but are not recommended.

Chapter 7. Statements 1065

appears in an ORDER BY clause with a sort-key expression, the order is based on the original values of the
column and the masked values in the final result table might not reflect that order. Similarly, the masked
values might not reflect the uniqueness enforced by a SELECT DISTINCT statement. If the masked
column is embedded in an expression, the result of the expression might become different because the
column mask is applied on the column before the expression evaluation can take place. For example, a
column mask on column SSN might change the result of the aggregate function COUNT(DISTINCT SSN)
because the DISTINCT operation is performed on the masked values. However, if the expression in the
query is the same as the expression that is used to mask the column value in the definition of the column
mask, the result of the expression might remain unchanged. For example, the expression in the query is
'XXX-XX-' || SUBSTR(SSN, 8, 4) and the same expression appears in the definition of the column mask.
In this particular example, you can remove the expression from the query to avoid the same expression
being evaluated twice.

Conflicts between the definition of a column mask and SQL: A column mask is created as a stand alone
object, without knowing all of the contexts in which it might be used. To mask the value of a column in the
final result table, the definition of the column mask is merged into a query by Db2. When the definition of
the column mask is brought into the context of the statement, it might conflict with certain SQL semantics
in the statement. Therefore, in some situations, the combination of the statement and the application of
the column mask can return an error. When this happens, either the statement needs to be modified or
the column mask must be dropped or recreated with a different definition.

Column masks and null columns: If the column is not nullable, the definition of its column mask will
not, most likely, consider a null value for the column. After the column access control is activated for the
table, if the table is the null-padded table in an outer join, the value of the column in the final result table
might be a null. To ensure that the column mask can mask a null value, if the table is the null-padded
table in an outer join, Db2 will add "WHEN target-column IS NULL THEN NULL" as the first WHEN clause
to the column mask definition. This forces a null value to always be masked as a null value. For a nullable
column, this removes the ability to mask a null value as something else. Example 4 shows this added
WHEN clause.

Column mask values for SQL data change statements: For INSERT, UPDATE, and MERGE, when a
column is referenced while deriving the values of a new row, if that column has an enabled column mask,
the masked value is used to derive the new values. If the object table also has column access control
activated, the column mask that is applied to derive the new values must return the column itself, not a
constant or an expression. If the column mask does not mask the column to itself, the new value cannot
be used for insert or update and an error is returned. The rules that are used to apply column masks in
order to derive the new values follow the same rules for the final result table of a query. See the data
change statements for how the column masks are used to affect the insertability and updatability.

Column masks and trigger transition variables: Values for OLD ROW and OLD TABLE transition variables
will never contain masked values.

A SET transition-variable assignment statement can assign masked data to the variable. If a violation
check constraint does not exist for the column, the masked data will be inserted or updated in the table's
column and no error will be issued.

Column masks that are created before column access control is activated: The CREATE MASK
statement is an independent statement that can be used to create a column access control mask before
column access control is activated for a table. The only requirement is that the table and the columns
exist before the mask is created. Multiple column masks can be created for a table but a column can
have only one mask. The definition of a mask is stored in the Db2 catalog. Dependency on the table
for which the mask is being created and dependencies on other objects referenced in the definition are
recorded. A column mask can be created as enabled or disabled for column access control. An enabled
column mask does not take effect until the ALTER TABLE statement with the ACTIVATE COLUMN ACCESS
CONTROL clause is used to activate column access control for the table. A disabled column mask remains
ineffective even when column access control is activated for the table. The ALTER MASK statement can
be used to alter between ENABLE and DISABLE. After column access control is activated for a table,
when the table is referenced in a data manipulation statement, all enabled column masks that have been
created for the table are implicitly applied by Db2 to mask the values returned for the columns referenced
in the final result table of the queries or to determine the new values used in the data change statements.

1066 IBM i: Db2 for i SQL Reference

Column masks that are created after column access control is activated: The enabled column masks
become effective as soon as they are committed. Thereafter, when the table is referenced in a data
manipulation statement, all enabled column masks are implicitly applied by Db2 to the statement. Any
disabled column mask remains ineffective even when column access control is activated for the table.

No cascaded effect when column or row access control enforced tables are referenced in column
mask definitions: A column mask definition may reference tables and columns that are currently
enforced by row or column access control. Access control from those tables and columns is ignored when
the table for which the column mask is being created is referenced in a data manipulation statement.

Examples
Example 1: After column access control is activated for table EMPLOYEE, Paul from the payroll
department can see the social security number of the employee whose employee number is 123456.
Mary who is a manager can see only the last four characters of the social security number. Peter who is
neither cannot see the social security number.

CREATE MASK SSN_MASK ON EMPLOYEE
 FOR COLUMN SSN RETURN
 CASE
 WHEN (VERIFY_GROUP_FOR_USER(SESSION_USER,'PAYROLL') = 1)
 THEN SSN
 WHEN (VERIFY_GROUP_FOR_USER(SESSION_USER,'MGR') = 1)
 THEN 'XXX-XX-' || SUBSTR(SSN,8,4)
 ELSE NULL
 END
 ENABLE;

COMMIT;

ALTER TABLE EMPLOYEE
 ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

SELECT SSN FROM EMPLOYEE
 WHERE EMPNO = 123456;

Example 2: In the SELECT statement, column SSN is embedded in an expression that is the same as
the expression used in the column mask SSN_MASK. After column access control is activated for table
EMPLOYEE, the column mask SSN_MASK is applied to column SSN in the SELECT statement. For this
particular expression, the SELECT statement produces the same result as before column access control is
activated for all users. The user can replace the expression in the SELECT statement with column SSN to
avoid the same expression getting evaluated twice.

CREATE MASK SSN_MASK ON EMPLOYEE
 FOR COLUMN SSN RETURN
 CASE
 WHEN (1 = 1)
 THEN 'XXX-XX-' || SUBSTR(SSN,8,4)
 ELSE NULL
 END
 ENABLE;

COMMIT;

ALTER TABLE EMPLOYEE
 ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

SELECT 'XXX-XX-' || SUBSTR(SSN,8,4) FROM EMPLOYEE
 WHERE EMPNO = 123456;

Example 3: Employee with EMPNO 123456 earns bonus $8000 and salary $80000 in May. When the
manager retrieves his salary, the manager receives his salary, not the null value. This is because of no

Chapter 7. Statements 1067

cascaded effect when column mask SALARY_MASK references column BONUS for which column mask
BONUS_MASK is defined.

CREATE MASK SALARY_MASK ON EMPLOYEE
 FOR COLUMN SALARY RETURN
 CASE
 WHEN (BONUS < 10000)
 THEN SALARY
 ELSE NULL
 END
 ENABLE;

COMMIT;

CREATE MASK BONUS_MASK ON EMPLOYEE
 FOR COLUMN BONUS RETURN
 CASE
 WHEN (BONUS > 5000)
 THEN NULL
 ELSE BONUS
 END
 ENABLE;

COMMIT;

ALTER TABLE EMPLOYEE
 ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

SELECT SALARY FROM EMPLOYEE
 WHERE EMPNO = 123456;

Example 4: This example shows Db2 adds "WHEN target-column IS NULL THEN NULL" as the first WHEN
clause to the column mask definition then merges the column mask definition into the statement.

CREATE TABLE EMPLOYEE (EMPID INT,
 DEPTID CHAR(8),
 SALARY DEC(9,2) NOT NULL,
 BONUS DEC(9,2));

CREATE MASK SALARY_MASK ON EMPLOYEE
 FOR COLUMN SALARY RETURN
 CASE
 WHEN SALARY < 10000
 THEN CAST(SALARY*2 AS DEC(9,2))
 ELSE COALESCE(CAST(SALARY/2 AS DEC(9,2)), BONUS)
 END
 ENABLE;

COMMIT;

CREATE MASK BONUS_MASK ON EMPLOYEE
 FOR COLUMN BONUS RETURN
 CASE
 WHEN BONUS > 1000
 THEN BONUS
 ELSE NULL
 END
 ENABLE;

COMMIT;

ALTER TABLE EMPLOYEE
 ACTIVATE COLUMN ACCESS CONTROL;

COMMIT;

SELECT SALARY FROM DEPT
 LEFT JOIN EMPLOYEE ON DEPTNO = DEPTID;

/* When SALARY_MASK is effectively merged into the above statement,
* 'WHEN SALARY IS NULL THEN NULL' is added by Db2 as the
* first WHEN clause, as follows:
*/

SELECT CASE WHEN SALARY IS NULL THEN NULL
 WHEN SALARY < 10000 THEN CAST(SALARY*2 AS DEC(9,2))
 ELSE COALESCE(CAST(SALARY/2 AS DEC(9,2)), BONUS)

1068 IBM i: Db2 for i SQL Reference

 END SALARY
 FROM DEPT
 LEFT JOIN EMPLOYEE ON DEPTNO = DEPTID;

Chapter 7. Statements 1069

CREATE PERMISSION
The CREATE PERMISSION statement creates a row permission for row access control at the current
server. It determines the rows within a table that are available based on the result of the search-condition.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The authorization ID of the statement must have security administrator authority. See “Administrative
authority” on page 15.

Syntax

CREATE

OR REPLACE

PERMISSION permission-name ON table-name

AS
correlation-name

FOR ROWS WHERE search-condition

ENFORCED FOR ALL ACCESS
DISABLE

ENABLE

Description
OR REPLACE

Specifies to replace the definition for the row permission if one exists at the current server. The
existing definition is effectively dropped before the new definition is replaced in the catalog.

permission-name
Names the row permission for row access control. The name, including the implicit or explicit qualifier,
must not be the same as a column mask or a row permission that already exists at the current server.
The permission-name cannot start with QIBM.

If SQL names were specified, the permission will be created in the schema specified by the implicit or
explicit qualifier.

If system names were specified, the permission will be created in the schema that is specified by the
qualifier. If not qualified and there is no default schema, the permission will be created in the same
schema as the table-name.

The schema name for the permission-name must be the same as the schema name for table-name.

table-name
Identifies the table on which the column permission is created. The name must identify a table
that exists at the current server. It must not identify a declared temporary table, table in QTEMP,
distributed table, view, logical file, member alias, file with read triggers, or catalog table.

correlation-name
Specifies a correlation name that can be used within search-condition to designate the table.

FOR ROWS WHERE
Indicates that a row permission is created. A row permission specifies a search condition under which
rows of the table can be accessed.

1070 IBM i: Db2 for i SQL Reference

search-condition
Specifies a condition that can be true, false, or unknown for a row of the table.
The search-condition follows the same rules used by the search condition in a WHERE clause. In
addition, it must not reference any of the following:

• The table for which the row permission is being defined
• A declared global temporary table
• A variable (host variable, SQL variable, SQL parameter, or trigger transition variable)
• A parameter marker
• A user-defined function that is defined as NOT SECURED
• A function that is not deterministic98 or has an external action
• An RRN, RID, HASHED_VALUE, DATAPARTITIONNAME, DATAPARTITIONNUM,

DBPARTITIONNAME, or DBPARTITIONNUM function that references the table for which the row
permission is being defined

• An OLAP specification
• A ROW CHANGE expression
• A sequence reference
• A * or name.* in a select clause
• A table in QTEMP
• A member alias
• A distributed table
• A file with read triggers
• A multi-format logical file
• A remote object
• A view that contains any of the above

ENFORCED FOR ALL ACCESS
Specifies that the row permission applies to all references of the table. If row access control is
activated for the table, when the table is referenced in a data manipulation statement, Db2 implicitly
applies the row permission to control the access of the table. If the reference of the table is for a fetch
operation such as SELECT, the application of the row permission determines what set of rows can be
retrieved by the user who requested the fetch operation. If the reference of the table is for a data
change operation such as INSERT, the application of the row permission determines whether all rows
to be changed are insertable or updatable by the user who requested the data change operation.

ENABLE or DISABLE
Specifies that the row permission is to be initially enabled or disabled for row access control.
DISABLE

Specifies that the row permission is to be disabled for row access control. The row permission will
remain ineffective regardless of whether row access control is activated for the table or not. This is
the default.

ENABLE
Specifies that the row permission is to be enabled for row access control. If row access control is
not currently activated for this table, the row permission will become effective when row access
control is activated for the table. If row access control is currently activated for the table, the row
permission becomes effective immediately.

Notes
Prerequisites: In order to create a permission, IBM Advanced Data Security must be installed.

98 STATEMENT DETERMINISTIC functions are allowed but are not recommended.

Chapter 7. Statements 1071

How row permissions are applied and how they affect certain statements: See the ALTER TABLE
statement with the ACTIVATE ROW ACCESS CONTROL clause for information on how to activate row
access control and how row permissions are applied. See the description of subselect for information on
how the application of row permissions affects the fetch operation. See the data change statements for
information on how the application of row permissions affects the data change operation.

Row permissions that are created before row access control is activated for a table: The CREATE
PERMISSION statement is an independent statement that can be used to create a row permission before
row access control is activated for a table. The only requirement is that the table and the columns exist
before the permission is created. Multiple row permissions can be created for a table.

The definition of the row permission is stored in the Db2 catalog. Dependency on the table for which
the permission is being created and dependencies on other objects referenced in the definition are
recorded. A row permission can be created as enabled or disabled for row access control. An enabled
row permission does not take effect until the ALTER TABLE statement with the ACTIVATE ROW ACCESS
CONTROL clause is used to activate row access control for the table. A disabled row permission remains
ineffective even when row access control is activated for the table. The ALTER PERMISSION statement
can be used to alter between ENABLE and DISABLE.

After row access control is activated for a table, when the table is referenced in a data manipulation
statement, all enabled row permissions that are defined for the table are implicitly applied by Db2 to
control access to the table.

Row permissions that are created after row access control is activated for a table: An enabled row
permission becomes effective as soon as it is committed. Thereafter, when the table is referenced in a
data manipulation statement, all enabled row permissions are implicitly applied to the statement. Any
disabled row permission remains ineffective even when row access control is activated for the table.

No cascaded effect when row or column access control enforced tables are referenced in row
permission definitions: A row permission definition may reference tables and columns that are currently
enforced by row or column access control. Access control from those tables is ignored when the table for
which the row permission is being created is referenced in a data manipulation statement.

DECRESULT option for permissions: The DECRESULT option for permissions will always use maximum
precision of 63, maximum scale of 63, and minimum divide scale of 0.

Examples
Example 1: Secure user-defined function ACCOUNTING_UDF in row permission SALARY_ROW_ACCESS
processes the sensitive data in column SALARY. After row access control is activated for table EMPLOYEE,
Accountant Paul retrieves the salary of employee with EMPNO 123456 who is making $100,000 a
year. Paul may or may not see the row depending on the output value from user-defined function
ACCOUNTING_UDF.

CREATE PERMISSION SALARY_ROW_ACCESS ON EMPLOYEE
 FOR ROWS WHERE VERIFY_GROUP_FOR_USER(SESSION_USER,'MGR','ACCOUNTING') = 1
 AND
 ACCOUNTING_UDF(SALARY) < 120000
 ENFORCED FOR ALL ACCESS
 ENABLE;

COMMIT;

ALTER TABLE EMPLOYEE
ACTIVATE ROW ACCESS CONTROL;

COMMIT;

SELECT SALARY FROM EMPLOYEE
 WHERE EMPNO = 123456;

Example 2: The tellers in a bank can only access customers from their branch. All tellers have secondary
authorization ID TELLER. The customer service representatives are allowed to access all customers of
the bank. All customer service representatives have secondary authorization ID CSR. A row permission is
created for each group of personnel in the bank according to the access rules defined by someone with

1072 IBM i: Db2 for i SQL Reference

security administrator authority. After row access control is activated for table CUSTOMER, in a SELECT
statement the search conditions of both row permissions are merged into the statement and they are
combined with the logical OR operator to control the set of rows accessible by each group.

CREATE PERMISSION TELLER_ROW_ACCESS ON CUSTOMER
 FOR ROWS WHERE VERIFY_GROUP_FOR_USER(SESSION_USER,'TELLER') = 1
 AND
 BRANCH = (SELECT HOME_BRANCH FROM INTERNAL_INFO
 WHERE EMP_ID = SESSION_USER)
 ENFORCED FOR ALL ACCESS
 ENABLE;

COMMIT;

CREATE PERMISSION CSR_ROW_ACCESS ON CUSTOMER
 FOR ROWS WHERE VERIFY_GROUP_FOR_USER(SESSION_USER,'CSR') = 1
 ENFORCED FOR ALL ACCESS
 ENABLE;

COMMIT;

ALTER TABLE CUSTOMER
 ACTIVATE ROW ACCESS CONTROL;

COMMIT;

SELECT * FROM CUSTOMER;

Chapter 7. Statements 1073

CREATE PROCEDURE
The CREATE PROCEDURE statement defines a procedure at the current server.

The following types of procedures can be defined:

• External

The procedure program or service program is written in a programming language such as C, COBOL,
or Java. The external executable is referenced by a procedure defined at the current server along with
various attributes of the procedure. See “CREATE PROCEDURE (external)” on page 1075.

• SQL

The procedure is written exclusively in SQL. The body of an SQL procedure is written in the SQL
procedural language, SQL PL. The procedure body is defined at the current server along with various
attributes of the procedure. See “CREATE PROCEDURE (SQL)” on page 1090.

Notes
Choosing data types for parameters: For portability of procedures across platforms that are not Db2 for
i, do not use the following data types, which might have different representations on different platforms:

• FLOAT. Use DOUBLE or REAL instead.
• NUMERIC. Use DECIMAL instead.

Specifying AS LOCATOR for a parameter: Passing a locator instead of a value can result in fewer bytes
being passed in or out of the procedure. This can be useful when the value of the parameter is very large.
The AS LOCATOR clause specifies that a locator to the value of the parameter is passed instead of the
actual value. Specify AS LOCATOR only for parameters with a LOB or XML data type or a distinct type
based on a LOB or XML data type.

AS LOCATOR cannot be specified for SQL procedures.

Determining the uniqueness of procedures in a schema: At the current server, each procedure signature
must be unique. The signature of a procedure is the qualified procedure name combined with the number
of the parameters (the data types of the parameters are not part of a procedure's signature). This means
that two different schemas can each contain a procedure with the same name that have the same number
of parameters. However, a schema must not contain two procedures with the same name that have the
same number of parameters.

The specific name for a procedure: When defining multiple procedures with the same name and schema
(with different number of parameters), it is recommended that a specific name also be specified. The
specific name can be used to uniquely identify the procedure when dropping, granting to, revoking from,
or commenting on the procedure.

If specific-name is not specified, it is the same as the procedure name. If a function or procedure with
that specific name already exists, a unique name is generated similar to the rules used to generate unique
table names.

Special registers in procedures: The settings of the special registers of the caller are inherited by the
procedure when called and restored upon return to the caller. Special registers may be changed within a
procedure, but these changes do not affect the caller.

1074 IBM i: Db2 for i SQL Reference

CREATE PROCEDURE (external)
The CREATE PROCEDURE (external) statement defines an external procedure at the current server.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For the SYSPROCS catalog view and SYSPARMS catalog table:

– The INSERT privilege on the table, and
– The system authority *EXECUTE on library QSYS2

• Database administrator authority

If the external program or service program exists, the privileges held by the authorization ID of the
statement must include at least one of the following:

• For the external program or service program that is referenced in the SQL statement:

– The system authority *EXECUTE on the library that contains the external program or service program.
– The system authority *EXECUTE on the external program or service program, and
– The system authority *CHANGE on the program or service program. The system needs this authority

to update the program or service program object to contain the information necessary to save/restore
the procedure to another system. If user does not have this authority, the procedure is still created,
but the program or service program object is not updated.

• Database administrator authority

If a distinct type or array type is referenced, the privileges held by the authorization ID of the statement
must include at least one of the following:

• For each distinct type or array type identified in the statement:

– The USAGE privilege on the type, and
– The system authority *EXECUTE on the library containing the distinct type or array type

• Database administrator authority

To replace an existing procedure, the privileges held by the authorization ID of the statement must
include at least one of the following:

• The following system authorities:

– The system authority of *OBJMGT on the program object associated with the procedure
– All authorities needed to DROP the procedure
– The system authority *READ to the SYSPROCS catalog view and SYSPARMS catalog table

• Database administrator authority

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Function or Procedure and Corresponding System Authorities
When Checking Privileges to a Distinct Type.

Chapter 7. Statements 1075

Syntax
CREATE

OR REPLACE

PROCEDURE procedure-name

(
,

parameter-declaration

)

option-list

SET OPTION-statement

parameter-declaration
IN

OUT

INOUT

parameter-name

data-type

AS LOCATOR

XML-cast-type

default-clause

data-type
built-in-type

distinct-type-name

array-type-name

default-clause
DEFAULT NULL

constant

special-register

global-variable

(expression)

XML-cast-type

1076 IBM i: Db2 for i SQL Reference

CHARACTER

CHAR

(1)

(integer) ccsid-clause

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) ccsid-clause LOCATOR

GRAPHIC

(1)

(integer) ccsid-clause

GRAPHIC VARYING

VARGRAPHIC

(integer)

ccsid-clause

DBCLOB

(1M)

(integer

K

M

G

) ccsid-clause LOCATOR

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

) LOCATOR

option-list

Chapter 7. Statements 1077

LANGUAGE C

C++

CL

COBOL

COBOLLE

JAVA

PLI

REXX

RPG

RPGLE

1

PARAMETER STYLE SQL

PARAMETER STYLE GENERAL

PARAMETER STYLE GENERAL WITH NULLS

PARAMETER STYLE JAVA

PARAMETER STYLE DB2GENERAL

NOT DETERMINISTIC

DETERMINISTIC

MODIFIES SQL DATA

READS SQL DATA

CONTAINS SQL

NO SQL

CALLED ON NULL INPUT

INHERIT SPECIAL REGISTERS DYNAMIC RESULT SETS 0

DYNAMIC RESULT SETS integer

NO DBINFO

DBINFO DISALLOW DEBUG MODE

ALLOW DEBUG MODE

DISABLE DEBUG MODE

FENCED

NOT FENCED

PROGRAM TYPE MAIN

PROGRAM TYPE SUB

EXTERNAL

EXTERNAL NAME external-program-name

SPECIFIC specific-name

OLD SAVEPOINT LEVEL

NEW SAVEPOINT LEVEL

COMMIT ON RETURN NO

COMMIT ON RETURN YES

AUTONOMOUS

Notes:
1 The optional clauses can be specified in a different order.

built-in-type

1078 IBM i: Db2 for i SQL Reference

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

normalize-clause

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

)

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

ROWID

XML

ccsid-clause
CCSID integer

normalize-clause

Chapter 7. Statements 1079

normalize-clause
NOT NORMALIZED

NORMALIZED

Description
OR REPLACE

Specifies to replace the definition for the procedure if one exists at the current server. The existing
definition is effectively dropped before the new definition is replaced in the catalog with the exception
that privileges that were granted on the procedure are not affected. This option is ignored if a
definition for the procedure does not exist at the current server. To replace an existing procedure, the
specific-name and procedure-name of the new definition must be the same as the specific-name and
procedure-name of the old definition, or the signature of the new definition must match the signature
of the old definition. Otherwise, a new procedure is created.

procedure-name
Names the procedure. The combination of name, schema name, and the number of parameters must
not identify a procedure that exists at the current server unless OR REPLACE is specified.

For SQL naming, the procedure will be created in the schema specified by the implicit or explicit
qualifier.

For system naming, the procedure will be created in the schema specified by the qualifier. If no
qualifier is specified:

• If the value of the CURRENT SCHEMA special register is *LIBL, the procedure will be created in the
current library (*CURLIB).

• Otherwise, the procedure will be created in the current schema.

(parameter-declaration,...)
Specifies the number of parameters of the procedure and the data type of each parameter. A
parameter for a procedure can be used only for input, only for output, or for both input and output. All
parameters are nullable. Although not required, you can give each parameter a name.

The maximum number of parameters allowed in CREATE PROCEDURE depends on the type of
language and the parameter style:

• For JAVA and ILE programs and service programs, the maximum is 2000.
• For OPM programs and REXX,

– If PARAMETER STYLE GENERAL is specified the maximum is 255.
– If PARAMETER STYLE GENERAL WITH NULLS is specified the maximum is 254.
– If PARAMETER STYLE SQL is specified the maximum is 254.

The maximum number of parameters can be further limited by the maximum number of parameters
allowed by the language.

IN
Identifies the parameter as an input parameter to the procedure. Any changes made to the
parameter within the procedure are not available to the calling SQL application when control is
returned.99 The default is IN.

OUT
Identifies the parameter as an output parameter that is returned by the procedure.

A DataLink or a distinct type based on a DataLink cannot be specified as an output parameter.

99 When the language type is REXX, all parameters must be input parameters.

1080 IBM i: Db2 for i SQL Reference

INOUT
Identifies the parameter as both an input and output parameter for the procedure. If an INOUT
parameter is defined with a default and the default is used when calling the procedure, no value
for the parameter is returned.

A DataLink or a distinct type based on a DataLink cannot be specified as an input and output
parameter.

parameter-name
Names the parameter. The name cannot be the same as any other parameter-name for the
procedure.

data-type
Specifies the data type of the parameter.
built-in-type

Specifies a built-in data type. For a more complete description of each built-in data type, see
“CREATE TABLE” on page 1115.

distinct-type-name
Specifies a distinct type. Any length, precision, scale, or encoding scheme attributes for the
parameter are those of the source type of the distinct type as specified using “CREATE TYPE
(distinct)” on page 1193.

If the name of the distinct type is unqualified, the database manager resolves the schema
name by searching the schemas in the SQL path.

array-type-name
Specifies an array type. Array types are only supported for LANGUAGE JAVA. To use an array
type as a parameter for a Java stored procedure, the parameter style must be JAVA.

If the name of the array type is unqualified, the database manager resolves the schema name
by searching the schemas in the SQL path.

If a CCSID is specified, the parameter will be converted to that CCSID before passing it to the
procedure. If a CCSID is not specified, the CCSID is determined by the default CCSID at the
current server at the time the procedure is invoked.

Date, time, and timestamp parameters are passed to the procedure as character strings in ISO
format.

Some data types are not supported in all languages. For details on the mapping between the
SQL data types and host language data types, see Embedded SQL Programming topic collection.
Built-in data type specifications can be specified if they correspond to the language that is used to
write the procedure.

Any parameter that has an XML type must specify either the XML-cast-type clause or the AS
LOCATOR clause.

AS LOCATOR
Specifies that the parameter is a locator to the value rather than the actual value. You can specify
AS LOCATOR only if the parameter has a LOB or XML data type or a distinct type based on a LOB
or XML data type. If AS LOCATOR is specified, FOR SBCS DATA or FOR MIXED DATA must not be
specified.

AS XML-cast-type
Specifies the data type passed to the procedure for a parameter that is XML type or a distinct type
based on XML type. If LOCATOR is specified, the parameter is a locator to the value rather than the
actual value.

If a CCSID value is specified, only Unicode CCSID values can be specified for graphic data types.
If a CCSID value is not specified, the CCSID is established at the time the procedure is created
according to the SQL_XML_DATA_CCSID QAQQINI option setting. The default CCSID is 1208. See
“XML Values” on page 80 for a description of this option.

Chapter 7. Statements 1081

default
Specifies a default value for the parameter. The default can be a constant, a special register, a
global variable, an expression, or the keyword NULL. The expression is any expression defined
in “Expressions” on page 158, that does not include an aggregate function or column name. If a
default value is not specified, the parameter has no default and cannot be omitted on invocation of
the procedure. The maximum length of the expression string is 64K.

The default expression must not modify SQL data. The expression must be assignment compatible
to the parameter data type. All objects referenced in a default expression must exist when the
procedure is created. When the procedure is called, the default will be evaluated using the
authority of the invoker.

Any comma in the default expression that is intended as a separator of numeric constants in a list
must be followed by a space.

A default cannot be specified:

• for an OUT parameter.
• for a parameter of type array.

LANGUAGE
Specifies the language that the external program or service program is written in. The language clause
is required if the external program is a REXX procedure.

If LANGUAGE is not specified, the LANGUAGE is determined from the attribute information associated
with the external program or service program at the time the procedure is created. If the attribute
information associated with the program or service program does not identify a recognizable language
or the program or service program cannot be found, then the language is assumed to be C.
C

The external program is written in C.
C++

The external program is written in C++.
CL

The external program is written in CL.
COBOL

The external program is written in COBOL.
COBOLLE

The external program is written in ILE COBOL.
JAVA

The external program is written in JAVA.
PLI

The external program is written in PL/I.
REXX

The external program is a REXX procedure.
RPG

The external program is written in RPG.
RPGLE

The external program is written in ILE RPG.

PARAMETER STYLE
Specifies the conventions used to pass parameters to and returning the values from procedures:
SQL

Specifies that in addition to the parameters on the CALL statement, several additional parameters
are passed to the procedure. The parameters are defined to be in the following order:

• The first n parameters are the parameters that are specified on the CREATE PROCEDURE
statement.

1082 IBM i: Db2 for i SQL Reference

• n parameters for indicator variables for the parameters.
• A CHAR(5) output parameter for SQLSTATE. The SQLSTATE returned indicates the success or

failure of the procedure. The SQLSTATE returned is assigned by the external program.

The user may set the SQLSTATE to any valid value in the external program to return an error or
warning from the procedure.

• A VARCHAR(517) input parameter for the fully qualified procedure name.
• A VARCHAR(128) input parameter for the specific name.
• A VARCHAR(1000) output parameter for the message text.

The following additional parameter may be passed as the last parameter:

• A parameter for the dbinfo structure, if DBINFO was specified on the CREATE PROCEDURE
statement.

These parameters are passed according to the specified LANGUAGE. For example, if the language
is C or C++, the VARCHAR parameters are passed as NUL-terminated strings. For more information
about the parameters passed, see the include sqludf in the appropriate source file in library
QSYSINC. For example, for C, sqludf can be found in QSYSINC/H.

PARAMETER STYLE SQL cannot be used with LANGUAGE JAVA.

DB2GENERAL
Specifies that the procedure will use a parameter passing convention that is defined for use with
Java methods.

PARAMETER STYLE DB2GENERAL can only be specified with LANGUAGE JAVA. For details on
passing parameters in JAVA, see the IBM Developer Kit for Java.

GENERAL
Specifies that the procedure will use a parameter passing mechanism where the procedure
receives the parameters specified on the CALL. Additional arguments are not passed for indicator
variables.

PARAMETER STYLE GENERAL cannot be used with LANGUAGE JAVA.

GENERAL WITH NULLS
Specifies that in addition to the parameters on the CALL statement as specified in GENERAL,
another argument is passed to the procedure. This additional argument contains an indicator array
with an element for each of the parameters of the CALL statement. In C, this would be an array of
short INTs. For more information about how the indicators are handled, see the SQL Programming
topic collection.

PARAMETER STYLE GENERAL WITH NULLS cannot be used with LANGUAGE JAVA.

JAVA
Specifies that the procedure will use a parameter passing convention that conforms to the Java
language and ISO/IEC FCD 9075-13:2003, Information technology - Database languages - SQL
- Part 13: Java Routines and Types (SQL/JRT) specification. INOUT and OUT parameters will be
passed as single entry arrays to facilitate returning values.

PARAMETER STYLE JAVA can only be specified with LANGUAGE JAVA. For increased portability,
you should write Java procedures that use the PARAMETER STYLE JAVA conventions. For details
on passing parameters in JAVA, see the IBM Developer Kit for Java topic collection.

Note that the language of the external procedure determines how the parameters are passed. For
example, in C, any VARCHAR or CHAR parameters are passed as NUL-terminated strings. For more
information, see the SQL Programming topic collection. For Java routines, see the IBM Developer Kit
for Java topic collection.

DETERMINISTIC or NOT DETERMINISTIC
Specifies whether the procedure returns the same results each time the procedure is called with the
same IN and INOUT arguments. The default is NOT DETERMINISTIC.

Chapter 7. Statements 1083

NOT DETERMINISTIC
The procedure may not return the same result each time the procedure is called with the same IN
and INOUT arguments, even when the referenced data in the database has not changed.

DETERMINISTIC
The procedure always returns the same results each time the procedure is called with the same
IN and INOUT arguments, provided the referenced data in the database has not changed.

MODIFIES SQL DATA, READS SQL DATA, CONTAINS SQL, or NO SQL
Specifies the classification of SQL statements and nested routines that this procedure can execute.
The database manager verifies that the SQL statements issued by the procedure, and all routines
locally invoked by the procedure, are consistent with this specification. The verification is not
performed when nested remote routines are invoked. For the classification of each statement, see
Appendix B, “Characteristics of SQL statements,” on page 1651. The default is MODIFIES SQL DATA.
This option is ignored for parameter default expressions.
MODIFIES SQL DATA

Specifies that the procedure can execute any SQL statement except statements that are not
supported in procedures.

READS SQL DATA
Specifies that the procedure can execute statements with a data access classification of READS
SQL DATA, CONTAINS SQL, or NO SQL.

CONTAINS SQL
Specifies that the procedure can only execute statements with a data access classification of
CONTAINS SQL or NO SQL.

NO SQL
Specifies that the procedure can execute only SQL statements with a data access classification of
NO SQL.

CALLED ON NULL INPUT
Specifies that the procedure is to be called if any or all argument values are null. This specification
means that the procedure must be coded to test for null argument values.

INHERIT SPECIAL REGISTERS
Specifies that existing values of special registers are inherited upon entry to the procedure.

FENCED or NOT FENCED
This parameter is allowed for compatibility with other products and is not used by Db2 for i.

DYNAMIC RESULT SETS integer
Specifies the maximum number of result sets that can be returned from the procedure. The minimum
value for integer is zero and the maximum value is 32767.

If no DYNAMIC RESULT SETS clause is specified, result sets are returned for all cursors that remain
open when the procedure ends.

Result sets are returned in the order in which the corresponding cursors are opened, unless a SET
RESULT SETS statement is executed in the procedure. If the number of cursors that are still open
for result sets when the procedure ends exceeds the maximum number specified on the DYNAMIC
RESULT SETS clause, a warning is returned on the CALL statement and the number of result sets
specified on the DYNAMIC RESULT SETS clause is returned.

If the SET RESULT SETS statement is issued, the number of results returned is the minimum of
the number of result sets specified on this keyword and the SET RESULT SETS statement. If the
SET RESULT SETS statement specifies a number larger than the maximum number of result sets, a
warning is returned. Note that any result sets from cursors that have a RETURN TO CLIENT attribute
are included in the number of result sets of the outermost procedure.

The result sets are scrollable if a cursor is used to return a result set and the cursor is scrollable. If
a cursor is used to return a result set, the result set starts with the current position. Thus, if 5 FETCH
NEXT operations have been performed before returning from the procedure, the result set starts with
the 6th row of the result set.

1084 IBM i: Db2 for i SQL Reference

Cursor result sets are only returned if the external program does not have an attribute of
ACTGRP(*NEW).

For more information about result sets, see “SET RESULT SETS” on page 1534.

DISALLOW DEBUG MODE, ALLOW DEBUG MODE, or DISABLE DEBUG MODE
Indicates whether the procedure is created so it can be debugged by the Unified Debugger. If DEBUG
MODE is not specified, the procedure will be created with the debug mode specified by the CURRENT
DEBUG MODE special register.

DEBUG MODE can only be specified with LANGUAGE JAVA.

DISALLOW DEBUG MODE
The procedure cannot be debugged by the Unified Debugger. When the DEBUG MODE attribute
of the procedure is DISALLOW, the procedure can be subsequently altered to change the debug
mode attribute.

ALLOW DEBUG MODE
The procedure can be debugged by the Unified Debugger. When the DEBUG MODE attribute of
the procedure is ALLOW, the procedure can be subsequently altered to change the debug mode
attribute.

DISABLE DEBUG MODE
The procedure cannot be debugged by the Unified Debugger. When the DEBUG MODE attribute
of the procedure is DISABLE, the procedure cannot be subsequently altered to change the debug
mode attribute.

PROGRAM TYPE
This parameter is allowed for compatibility with other products. It indicates whether the routine's
external program is a program (*PGM) or a procedure in a service program (*SRVPGM).
SUB

Specifies that the procedure executes as a procedure in a service program. The external program
must be a *SRVPGM object.

MAIN
Specifies that the routine executes as the main entry point in a program. The external program
must be a *PGM object.

DBINFO
Specifies whether additional status information is passed to the procedure when it is called. The
default is NO DBINFO.
NO DBINFO

Additional information is not passed.
DBINFO

An additional argument is passed when the procedure is called.

The argument is a structure that contains information such as the name of the current server, the
application run-time authorization ID, and identification of the version and release of the database
manager that called the procedure. See Table 90 on page 1085 for further details. Detailed
information about the DBINFO structure can be found in include sqludf in the appropriate source
file in library QSYSINC. For example, for C, sqludf can be found in QSYSINC/H.

DBINFO is only allowed with PARAMETER STYLE SQL.

Table 90. DBINFO fields

Field Data Type Description

Relational database VARCHAR(128) The name of the current server.

Authorization ID VARCHAR(128) The run-time authorization ID.

Chapter 7. Statements 1085

Table 90. DBINFO fields (continued)

Field Data Type Description

CCSID information INTEGER
INTEGER
INTEGER

INTEGER
INTEGER
INTEGER

INTEGER
INTEGER
INTEGER

INTEGER

CHAR(8)

The CCSID information of the job. Three sets of three CCSIDs are
returned. The following information identifies the three CCSIDs in
each set:

• SBCS CCSID
• DBCS CCSID
• Mixed CCSID

Following the three sets of CCSIDs is an integer that indicates which
set of three sets of CCSIDs is applicable and 8 bytes of reserved
space.

Each set of CCSIDs is for a different encoding scheme (EBCDIC,
ASCII, and Unicode).

If a CCSID is not explicitly specified for a parameter on the CREATE
PROCEDURE statement, the input string is assumed to be encoded
in the CCSID of the job at the time the procedure is executed. If
the CCSID of the input string is not the same as the CCSID of the
parameter, the input string passed to the external procedure will be
converted before calling the external program.

Target column VARCHAR(128)

VARCHAR(128)

VARCHAR(128)

Not applicable for a call to a procedure.

Version and release CHAR(8) The version, release, and modification level of the database
manager.

Platform INTEGER The server's platform type.

EXTERNAL
Specifies that the CREATE PROCEDURE statement is being used to define a new procedure based on
code written in an external programming language.

If NAME clause is not specified, "NAME procedure-name" is assumed. In this case, procedure-name
must not be longer than 8 characters. The NAME clause is required for a LANGUAGE JAVA procedure
since the default name is not valid for a Java procedure.
NAME external-program-name

Specifies the program or service program that will be executed when the procedure is called by
the CALL statement. The program name must identify a program or service program that exists
at the application server at the time the procedure is called. If the naming option is *SYS and the
name is not qualified:

• The current path will be used to search for the program at the time the procedure is called.
• *LIBL will be used to search for the program or service program at the time COMMENT, GRANT,

LABEL, or REVOKE operations are performed on the procedure.

The validity of the name is checked at the application server. If the format of the name is not
correct, an error is returned.

The external program or service program need not exist at the time the procedure is created, but it
must exist at the time the procedure is called.

1086 IBM i: Db2 for i SQL Reference

CONNECT, SET CONNECTION, RELEASE, DISCONNECT, and SET TRANSACTION statements are
not allowed in a procedure that is running on a remote application server. COMMIT and ROLLBACK
statements are not allowed in an ATOMIC SQL procedure or in a procedure that is running on a
connection to a remote application server.

SPECIFIC specific-name
Specifies a unique name for the function. For more information on specific names, see Specifying a
specific name for a procedure in “CREATE PROCEDURE” on page 1074.

OLD SAVEPOINT LEVEL or NEW SAVEPOINT LEVEL
Specifies whether a new savepoint level is to be created on entry to the procedure.
OLD SAVEPOINT LEVEL

A new savepoint level is not created. Any SAVEPOINT statements issued within the procedure
with OLD SAVEPOINT LEVEL implicitly or explicitly specified on the SAVEPOINT statement are
created at the same savepoint level as the caller of the procedure. This is the default.

NEW SAVEPOINT LEVEL
A new savepoint level is created on entry to the procedure. Any savepoints set within the
procedure are created at a savepoint level that is nested deeper than the level at which this
procedure was invoked. Therefore, the name of any new savepoint set within the procedure will
not conflict with any existing savepoints set in higher savepoint levels (such as the savepoint level
of the calling program or service program) with the same name.

COMMIT ON RETURN
Specifies whether the database manager commits the transaction immediately on return from the
procedure.
NO

The database manager does not issue a commit when the procedure returns. NO is the default.
YES

The database manager issues a commit if the procedure returns successfully. If the procedure
returns with an error, a commit is not issued.

The commit operation includes the work that is performed by the calling application process and
the procedure.100

If the procedure returns result sets, the cursors that are associated with the result sets must have
been defined as WITH HOLD to be usable after the commit.

AUTONOMOUS
Specifies that the procedure is executed in a unit of work that is independent from the calling
application. When this option is specified the database always commits or rolls back the autonomous
procedure's transactional work based on the SQLSTATE that is returned from the procedure. A
SQLSTATE indication of unqualified success or warning will cause the transaction to be committed. All
other SQLSTATEs will cause the autonomous procedure's unit of work to be rolled back.
The invocation of any trigger, function, or procedure from within the autonomous procedure will
be part of the autonomous procedure's unit of work unless the trigger, function, or procedure was
explicitly created to run under a different activation group.
An autonomous procedure cannot be called directly or indirectly from another autonomous
procedure.
If AUTONOMOUS is specified, DYNAMIC RESULT SETS 0 must be specified.

SET OPTION-statement
Specifies the options that will be used for parameter defaults. The default values for the options
depend on the options in effect at create time. For more information, see “SET OPTION” on page
1512.

100 If the external program or service program was created with ACTGRP(*NEW) and the job commitment
definition is not used, the work that is performed in the procedure will be committed or rolled back as a
result of the activation group ending.

Chapter 7. Statements 1087

The following options are used when processing default value expressions: ALWCPYDTA, CONACC,
DATFMT, DATSEP, DECFLTRND, DECMPT, DECRESULT, DFTRDBCOL, LANGID, SQLCURRULE, SQLPATH,
SRTSEQ, TGTRLS, TIMFMT, and TIMSEP. The options CNULRQD, CNULIGN, COMPILEOPT, EXTIND,
NAMING, and SQLCA are not allowed in the CREATE PROCEDURE statement. Other options are
accepted but will be ignored.

Notes
General considerations for defining procedures: See “CREATE PROCEDURE” on page 1074 for general
information about defining procedures.

Language considerations: For information needed to create the programs for a procedure, see
Embedded SQL Programming.

REPLACE rules: When an external procedure is recreated by REPLACE:

• Any existing comment or label is discarded.
• If a different external program is specified:

– Authorized users are not copied to the new program.
– Journal auditing is not changed.

• Otherwise:

– Authorized users are maintained. The object owner will not change.
– Current journal auditing is not changed.

Error handling considerations: Values of arguments passed to a procedure which correspond to OUT
parameters are undefined and those which correspond to INOUT parameters are unchanged when an
error is returned by the procedure.

Creating the procedure: When an external procedure associated with an ILE external program or service
program is created, an attempt is made to save the procedure's attributes in the associated program or
service program object. If the *PGM or *SRVPGM object is saved and then restored to this or another
system, the attributes are used to update the catalogs.

The attributes can be saved for external procedures subject to the following restrictions:

• The external program library must not be QSYS.
• The external program must exist when the CREATE PROCEDURE statement is issued.

If system naming is specified and the external program name is not qualified, the external program
must be found in the library list.

• The external program must be an ILE *PGM or *SRVPGM object.

If the object cannot be updated, the procedure will still be created.

If the external procedure is created in QTEMP, the catalog information is not removed when the job ends.

Calling the procedure: If a DECLARE PROCEDURE statement defines a procedure with the same name
as a created procedure, and a static CALL statement where the procedure name is not identified by
a variable is executed from the same source program, the attributes from the DECLARE PROCEDURE
statement will be used rather than the attributes from the CREATE PROCEDURE statement.

The CREATE PROCEDURE statement applies to static and dynamic CALL statements as well as to a CALL
statement where the procedure name is identified by a variable.

When an external procedure is invoked, it runs in whatever activation group was specified when the
external program or service program was created. However, ACTGRP(*CALLER) should normally be used
so that the procedure runs in the same activation group as the calling program.

The external program or service program for a procedure with the AUTONOMOUS attribute must be
defined to run in activation group QSQAUTOAG. When an autonomous procedure is invoked in a job, every
procedure that runs in the QSQAUTOAG activation group must have been created with the same storage
model. They must all be *TERASPACE or all be *SNGLVL.

1088 IBM i: Db2 for i SQL Reference

Setting of the default value: Parameters of a procedure that are defined with a default value are set to
their default value when the procedure is invoked, but only if a value is not supplied for the corresponding
argument, or the argument is specified as DEFAULT.

Notes for Java procedures: To be able to run Java procedures, you must have the IBM Developer Kit for
Java installed on your system. Otherwise, an SQLCODE of -443 will be returned and a CPDB521 message
will be placed in the job log.

If an error occurs while running a Java procedure, an SQLCODE of -443 will be returned. Depending on the
error, other messages may exist in the job log of the job where the procedure was run.

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• The keywords VARIANT and NOT VARIANT can be used as synonyms for NOT DETERMINISTIC and
DETERMINISTIC.

• The keywords NULL CALL can be used as synonyms for CALLED ON NULL INPUT.
• The keywords SIMPLE CALL can be used as a synonym for GENERAL.
• The value DB2GENRL may be used as a synonym for DB2GENERAL.
• DYNAMIC RESULT SET, RESULT SETS, and RESULT SET may be used as synonyms for DYNAMIC RESULT

SETS.
• The keywords PARAMETER STYLE in the PARAMETER STYLE clause are optional.
• The keywords PARAMETER STYLE DB2SQL can be used as a synonym for PARAMETER STYLE SQL.

Example

Example 1: Create the procedure definition for a procedure, written in Java, that is passed a part number
and returns the cost of the part and the quantity that are currently available.

 CREATE PROCEDURE PARTS_ON_HAND (IN PARTNUM INTEGER,
 OUT COST DECIMAL(7,2),
 OUT QUANTITY INTEGER)
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 EXTERNAL NAME 'parts.onhand'

Example 2: Create the procedure definition for a procedure, written in C, that is passed an assembly
number and returns the number of parts that make up the assembly, total part cost and a result set that
lists the part numbers, quantity and unit cost of each part.

 CREATE PROCEDURE ASSEMBLY_PARTS (IN ASSEMBLY_NUM INTEGER,
 OUT NUM_PARTS INTEGER,
 OUT COST DOUBLE)
 LANGUAGE C
 PARAMETER STYLE GENERAL
 DYNAMIC RESULT SETS 1
 FENCED
 EXTERNAL NAME ASSEMBLY

Chapter 7. Statements 1089

CREATE PROCEDURE (SQL)
The CREATE PROCEDURE (SQL) statement creates an SQL procedure at the current server.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• The privilege to create in the schema. For more information, see Privileges necessary to create in a
schema.

• Database administrator authority

The privileges held by the authorization ID of the statement must include at least one of the following:

• For the SYSPROCS catalog view and SYSPARMS catalog table:

– The INSERT privilege on the table, and
– The system authority *EXECUTE on library QSYS2

• Database administrator authority

The privileges held by the authorization ID of the statement must include at least one of the following:

• The following system authorities:

– *USE on the Create Program (CRTPGM) command, and
• Database administrator authority

If SQL names are specified and a user profile exists that has the same name as the library into which
the procedure is created, and that name is different from the authorization ID of the statement, then the
privileges held by the authorization ID of the statement must include at least one of the following:

• The system authority *ADD to the user profile with that name
• Database administrator authority

If a distinct type or array type is referenced, the privileges held by the authorization ID of the statement
must include at least one of the following:

• For each distinct type or array type identified in the statement:

– The USAGE privilege on the type, and
– The system authority *EXECUTE on the library containing the distinct type or array type

• Database administrator authority

To replace an existing procedure, the privileges held by the authorization ID of the statement must
include at least one of the following:

• The following system authorities:

– The system authority of *OBJMGT on the program or service program object associated with the
procedure

– All authorities needed to DROP the procedure
– The system authority *READ to the SYSPROCS catalog view and SYSPARMS catalog table

• Database administrator authority

1090 IBM i: Db2 for i SQL Reference

For information on the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Function or Procedure and Corresponding System Authorities
When Checking Privileges to a Distinct Type.

Syntax
CREATE

OR REPLACE

PROCEDURE procedure-name

(
,

parameter-declaration

)

procedure-definition

WRAPPED obfuscated-statement-text

procedure-definition
option-list

SET OPTION-statement

SQL-routine-body

parameter-declaration
IN

OUT

INOUT

parameter-name data-type

default-clause

data-type
built-in-type

distinct-type-name

array-type-name

default-clause
DEFAULT NULL

constant

special-register

global-variable

(expression)

option-list

Chapter 7. Statements 1091

LANGUAGE SQL 1
NOT DETERMINISTIC

DETERMINISTIC

MODIFIES SQL DATA

READS SQL DATA

CONTAINS SQL

CALLED ON NULL INPUT INHERIT SPECIAL REGISTERS

DYNAMIC RESULT SETS 0

DYNAMIC RESULT SETS integer SPECIFIC specific-name

PROGRAM NAME external-program-name DISALLOW DEBUG MODE

ALLOW DEBUG MODE

DISABLE DEBUG MODE

FENCED

NOT FENCED

PROGRAM TYPE MAIN

PROGRAM TYPE SUB

OLD SAVEPOINT LEVEL

NEW SAVEPOINT LEVEL

COMMIT ON RETURN NO

COMMIT ON RETURN YES

AUTONOMOUS

CONCURRENT ACCESS RESOLUTION

DEFAULT

USE CURRENTLY COMMITTED

U

WAIT FOR OUTCOME

W

SYSTEM_TIME SENSITIVE YES

SYSTEM_TIME SENSITIVE NO

Notes:
1 The optional clauses can be specified in a different order.

SQL-routine-body

1092 IBM i: Db2 for i SQL Reference

SQL-control-statement

ALLOCATE CURSOR-statement

ALLOCATE DESCRIPTOR-statement

ALTER FUNCTION-statement

ALTER MASK-statement

ALTER PERMISSION-statement

ALTER PROCEDURE-statement

ALTER SEQUENCE-statement

ALTER TABLE-statement

ALTER TRIGGER-statement

ASSOCIATE LOCATORS-statement

COMMENT-statement

COMMIT-statement

CONNECT-statement

CREATE ALIAS-statement

CREATE FUNCTION (external scalar)-statement

CREATE FUNCTION (external table)-statement

CREATE FUNCTION (sourced)-statement

CREATE INDEX-statement

CREATE MASK-statement

CREATE PERMISSION-statement

CREATE PROCEDURE (external)-statement

CREATE SCHEMA-statement

CREATE SEQUENCE-statement

CREATE TABLE-statement

CREATE TYPE-statement

CREATE VIEW-statement

DEALLOCATE DESCRIPTOR-statement

DECLARE GLOBAL TEMPORARY TABLE-statement

DELETE-statement

DESCRIBE-statement

DESCRIBE CURSOR-statement

DESCRIBE INPUT-statement

DESCRIBE PROCEDURE-statement

DESCRIBE TABLE-statement

DISCONNECT-statement

SQL-routine-body (continued)

Chapter 7. Statements 1093

DROP-statement

EXECUTE IMMEDIATE-statement

GET DESCRIPTOR-statement

GRANT-statement

INSERT-statement

LABEL-statement

LOCK TABLE-statement

MERGE-statement

REFRESH TABLE-statement

RELEASE-statement

RELEASE SAVEPOINT-statement

RENAME-statement

REVOKE-statement

ROLLBACK-statement

SAVEPOINT-statement

SELECT INTO-statement

SET CONNECTION-statement

SET CURRENT DEBUG MODE-statement

SET CURRENT DECFLOAT ROUNDING MODE-statement

SET CURRENT DEGREE-statement

SET CURRENT IMPLICIT XMLPARSE OPTION-statement

SET CURRENT TEMPORAL SYSTEM_TIME-statement

SET DESCRIPTOR-statement

SET ENCRYPTION PASSWORD-statement

SET PATH-statement

SET RESULT SETS-statement

SET SCHEMA-statement

SET TRANSACTION-statement

TRANSFER OWNERSHIP-statement

TRUNCATE-statement

UPDATE-statement

VALUES INTO-statement

built-in-type

1094 IBM i: Db2 for i SQL Reference

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

normalize-clause

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

)

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

DATALINK

(200)

(integer) ccsid-clause

ROWID

XML

ccsid-clause
CCSID integer

normalize-clause

normalize-clause

Chapter 7. Statements 1095

NOT NORMALIZED

NORMALIZED

Description
OR REPLACE

Specifies to replace the definition for the procedure if one exists at the current server. The existing
definition is effectively dropped before the new definition is replaced in the catalog with the exception
that privileges that were granted on the procedure are not affected. This option is ignored if a
definition for the procedure does not exist at the current server. To replace an existing procedure, the
specific-name and procedure-name of the new definition must be the same as the specific-name and
procedure-name of the old definition, or the signature of the new definition must match the signature
of the old definition. Otherwise, a new procedure is created.

procedure-name
Names the procedure. The combination of name, schema name, and the number of parameters must
not identify a procedure that exists at the current server unless OR REPLACE is specified.

For SQL naming, the procedure will be created in the schema specified by the implicit or explicit
qualifier.

For system naming, the procedure will be created in the schema specified by the qualifier. If no
qualifier is specified:

• If the value of the CURRENT SCHEMA special register is *LIBL, the procedure will be created in the
current library (*CURLIB).

• Otherwise, the procedure will be created in the current schema.

The schema-name cannot be QSYS2, QSYS, QTEMP, or SYSIBM.

(parameter-declaration,...)
Specifies the number of parameters of the procedure and the data type of each parameter. A
parameter for a procedure can be used only for input, only for output, or for both input and output. All
parameters are nullable.

The maximum number of parameters allowed in an SQL procedure is 2000.

IN
Identifies the parameter as an input parameter to the procedure. Any changes made to the
parameter within the procedure are not available to the calling SQL application when control is
returned. The default is IN.

A parameter that is an array of XML or LOB type is read only.

OUT
Identifies the parameter as an output parameter that is returned by the procedure. If the
parameter is not set within the procedure, the null value is returned.

INOUT
Identifies the parameter as both an input and output parameter for the procedure. If the
parameter is not set within the procedure, its input value is returned. If an INOUT parameter
is defined with a default and the default is used when calling the procedure, no value for the
parameter is returned.

parameter-name
Names the parameter. The name cannot be the same as any other parameter-name for the
procedure.

data-type
Specifies the data type of the parameter. The data type can be a built-in data type or a distinct
data type.

1096 IBM i: Db2 for i SQL Reference

built-in-type
Specifies a built-in data type. For a more complete description of each built-in data type, see
“CREATE TABLE” on page 1115.

distinct-type-name
Specifies a distinct type. The length, precision, or scale attributes for the parameter are those
of the source type of the distinct type (those specified on CREATE TYPE). For more information
on creating a distinct type, see “CREATE TYPE (distinct)” on page 1193.

If the name of the distinct type is unqualified, the database manager resolves the schema
name by searching the schemas in the SQL path.

array-type-name
Specifies an array type.

If the name of the array type is unqualified, the database manager resolves the schema name
by searching the schemas in the SQL path.

If a CCSID is specified, the parameter will be converted to that CCSID prior to passing it to the
procedure. If a CCSID is not specified, the CCSID is determined by the default CCSID at the
current server at the time the procedure is called.

default
Specifies a default value for the parameter. The default can be a constant, a special register, a
global variable, an expression, or the keyword NULL. The expression is any expression defined
in “Expressions” on page 158, that does not include an aggregate function or column name. If a
default value is not specified, the parameter has no default and cannot be omitted on invocation of
the procedure. The maximum length of the expression string is 64K.

The default expression must not modify SQL data. The expression must be assignment compatible
to the parameter data type. All objects referenced in a default expression must exist when the
procedure is created.

Any comma in the default expression that is intended as a separator of numeric constants in a list
must be followed by a space.

A default cannot be specified:

• for an OUT parameter.
• for a parameter of type array.

LANGUAGE SQL
Specifies that this procedure is written exclusively in SQL.

SPECIFIC specific-name
Specifies a unique name for the procedure. For more information on specific names, see Specifying a
specific name for a procedure in “CREATE PROCEDURE” on page 1074.

PROGRAM NAME external-program-name
Specifies the unqualified name of the program or service program to be created for the procedure.
external-program-name must be a valid system name.

DETERMINISTIC or NOT DETERMINISTIC
Specifies whether the procedure returns the same results each time the procedure is called with the
same IN and INOUT arguments. The default is NOT DETERMINISTIC.
NOT DETERMINISTIC

The procedure may not return the same result each time the procedure is called with the same IN
and INOUT arguments, even when the referenced data in the database has not changed.

DETERMINISTIC
The procedure always returns the same results each time the procedure is called with the same
IN and INOUT arguments, provided the referenced data in the database has not changed.

MODIFIES SQL DATA, READS SQL DATA, or CONTAINS SQL
Specifies the classification of SQL statements and nested routines that this procedure can execute.
The database manager verifies that the SQL statements issued by the procedure, and all routines

Chapter 7. Statements 1097

locally invoked by the procedure, are consistent with this specification. The verification is not
performed when nested remote routines are invoked. For the classification of each statement, see
Appendix B, “Characteristics of SQL statements,” on page 1651. The default is MODIFIES SQL DATA.
This option applies to any parameter default expressions.
MODIFIES SQL DATA

Specifies that the procedure can execute any SQL statement except statements that are not
supported in procedures.

READS SQL DATA
Specifies that the procedure can execute statements with a data access classification of READS
SQL DATA, CONTAINS SQL, or NO SQL.

CONTAINS SQL
Specifies that the procedure can only execute statements with a data access classification of
CONTAINS SQL or NO SQL.

CALLED ON NULL INPUT
Specifies that the procedure is to be called if any or all argument values are null. This specification
means that the procedure must be coded to test for null argument values.

INHERIT SPECIAL REGISTERS
Specifies that existing values of special registers are inherited upon entry to the procedure.

DYNAMIC RESULT SETS integer
Specifies the maximum number of result sets that can be returned from the procedure. The minimum
value for integer is zero and the maximum value is 32767. The default is DYNAMIC RESULT SETS 0.

Result sets are returned in the order in which the corresponding cursors are opened, unless a SET
RESULT SETS statement is executed in the procedure. If the number of cursors still open for result
sets when the procedure ends exceeds the maximum number specified on the DYNAMIC RESULT
SETS clause, a warning is returned on the CALL statement and the number of result sets specified on
the DYNAMIC RESULT SETS clause is returned.

If the SET RESULT SETS statement is issued, the number of results returned is the minimum of
the number of result sets specified on this keyword and the SET RESULT SETS statement. If the
SET RESULT SETS statement specifies a number larger than the maximum number of result sets, a
warning is returned. Note that any result sets from cursors that have a RETURN TO CLIENT attribute
are included in the number of result sets of the outermost procedure.

The result sets are scrollable if the cursor is used to return a result set and the cursor is scrollable. If
a cursor is used to return a result set, the result set starts with the current position. Thus, if 5 FETCH
NEXT operations have been performed prior to returning from the procedure, the result set will start
with the 6th row of the result set.

For more information about result sets, see “SET RESULT SETS” on page 1534.

DISALLOW DEBUG MODE, ALLOW DEBUG MODE, or DISABLE DEBUG MODE
Indicates whether the procedure is created so it can be debugged by the Unified Debugger. If DEBUG
MODE is specified, a DBGVIEW option in the SET OPTION statement must not be specified.
DISALLOW DEBUG MODE

The procedure cannot be debugged by the Unified Debugger. When the DEBUG MODE attribute
of the procedure is DISALLOW, the procedure can be subsequently altered to change the debug
mode attribute.

ALLOW DEBUG MODE
The procedure can be debugged by the Unified Debugger. When the DEBUG MODE attribute of
the procedure is ALLOW, the procedure can be subsequently altered to change the debug mode
attribute.

DISABLE DEBUG MODE
The procedure cannot be debugged by the Unified Debugger. When the DEBUG MODE attribute
of the procedure is DISABLE, the procedure cannot be subsequently altered to change the debug
mode attribute.

1098 IBM i: Db2 for i SQL Reference

If DEBUG MODE is not specified, but a DBGVIEW option in the SET OPTION statement is specified, the
procedure cannot be debugged by the Unified Debugger, but may be debugged by the system debug
facilities. If neither DEBUG MODE nor a DBGVIEW option is specified, the debug mode used is from
the CURRENT DEBUG MODE special register.

FENCED or NOT FENCED
This parameter is allowed for compatibility with other products and is not used by Db2 for i.

PROGRAM TYPE MAIN or PROGRAM TYPE SUB
Specifies whether the procedure is created as a program (*PGM) or a procedure in a service program
(*SRVPGM).
PROGRAM TYPE MAIN

Specifies that the procedure is created as a program (*PGM).
PROGRAM TYPE SUB

Specifies that the procedure is created as a procedure in a service program (*SRVPGM).

PROGRAM TYPE SUB procedures usually perform slightly better than PROGRAM TYPE MAIN
procedures.

OLD SAVEPOINT LEVEL or NEW SAVEPOINT LEVEL
Specifies whether a new savepoint level is to be created on entry to the procedure.
OLD SAVEPOINT LEVEL

A new savepoint level is not created. Any SAVEPOINT statements issued within the procedure
with OLD SAVEPOINT LEVEL implicitly or explicitly specified on the SAVEPOINT statement are
created at the same savepoint level as the caller of the procedure. This is the default.

NEW SAVEPOINT LEVEL
A new savepoint level is created on entry to the procedure. Any savepoints set within the
procedure are created at a savepoint level that is nested deeper than the level at which this
procedure was invoked. Therefore, the name of any new savepoint set within the procedure will
not conflict with any existing savepoints set in higher savepoint levels (such as the savepoint level
of the calling program) with the same name.

COMMIT ON RETURN
Specifies whether the database manager commits the transaction immediately on return from the
procedure.
NO

The database manager does not issue a commit when the procedure returns. NO is the default.
YES

The database manager issues a commit if the procedure returns successfully. If the procedure
returns with an error, a commit is not issued.

The commit operation includes the work that is performed by the calling application process and
the procedure.

If the procedure returns result sets, the cursors that are associated with the result sets must have
been defined as WITH HOLD to be usable after the commit.

AUTONOMOUS
Specifies that the procedure is executed in a unit of work that is independent from the calling
application. When this option is specified the database always commits or rolls back the autonomous
procedure's transactional work based on the SQLSTATE that is returned from the procedure. A
SQLSTATE indication of unqualified success or warning will cause the transaction to be committed. All
other SQLSTATEs will cause the autonomous procedure's unit of work to be rolled back.
The invocation of any trigger, function, or procedure from within the autonomous procedure will
be part of the autonomous procedure's unit of work unless the trigger, function, or procedure was
explicitly created to run under a different activation group.
An autonomous procedure cannot be called directly or indirectly from another autonomous
procedure.
If AUTONOMOUS is specified, DYNAMIC RESULT SETS 0 must be specified.

Chapter 7. Statements 1099

CONCURRENT ACCESS RESOLUTION
Specifies whether the database manager should wait for data that is in the process of being updated.
DEFAULT is the default.
DEFAULT

Specifies that the concurrent access resolution is not explicitly set for this procedure. The value
that is in effect when the procedure is called will be used.

WAIT FOR OUTCOME
Specifies that the database manager is to wait for the commit or rollback of data in the process of
being updated.

USE CURRENTLY COMMITTED
Specifies that the database manager is to use the currently committed version of the data when
encountering data that is in the process of being updated.
When the lock contention is between a read transaction and a delete or update transaction, the
clause is applicable to scans with isolation level CS (but not for CS KEEP LOCKS).

SYSTEM_TIME SENSITIVE
Determines whether references to system-period temporal tables in both static and dynamic SQL
statements are affected by the value of the CURRENT TEMPORAL SYSTEM_TIME special register. YES
is the default.
YES

References to system-period temporal tables are affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register.

NO
References to system-period temporal tables are not affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register.

WRAPPED obfuscated-statement-text
Specifies the encoded definition of the procedure. A CREATE PROCEDURE statement can be encoded
using the WRAP scalar function.

SET OPTION-statement
Specifies the options that will be used to create the procedure. These options also apply to any default
value expressions. For example, to create a debuggable procedure, the following statement could be
included:

SET OPTION DBGVIEW = *SOURCE

The default values for the options depend on the options in effect at create time. For more
information, see “SET OPTION” on page 1512.

The options CLOSQLCSR, CNULRQD, CNULIGN, COMPILEOPT, NAMING, and SQLCA are not allowed
in the CREATE PROCEDURE statement. The following options are used when processing default
value expressions: ALWCPYDTA, CONACC, DATFMT, DATSEP, DECFLTRND, DECMPT, DECRESULT,
DFTRDBCOL, LANGID, SQLCURRULE, SQLPATH, SRTSEQ, TGTRLS, TIMFMT, and TIMSEP.

SQL-routine-body
Specifies a single SQL-procedure-statement, including a compound statement. See “SQL control
statements” on page 1579 for more information about defining SQL procedures.

CONNECT, SET CONNECTION, RELEASE, DISCONNECT, and SET TRANSACTION statements are not
allowed in a procedure that is running on a remote application server. COMMIT and ROLLBACK
statements are not allowed in an ATOMIC SQL procedure or in a procedure that is running on a
connection to a remote application server.

ALTER PROCEDURE (SQL), ALTER FUNCTION (SQL scalar), and ALTER FUNCTION (SQL Table) with a
REPLACE keyword are not allowed in an SQL-routine-body.

1100 IBM i: Db2 for i SQL Reference

Notes
General considerations for defining procedures: See “CREATE PROCEDURE” on page 1074 for general
information on defining procedures.

Procedure ownership: If SQL names were specified:

• If a user profile with the same name as the schema into which the procedure is created exists, the
owner of the procedure is that user profile.

• Otherwise, the owner of the procedure is the user profile or group user profile of the thread executing
the statement.

If system names were specified, the owner of the procedure is the user profile or group user profile of the
thread executing the statement.

Procedure authority: If SQL names are used, procedures are created with the system authority of
*EXCLUDE on *PUBLIC. If system names are used, procedures are created with the authority to *PUBLIC
as determined by the create authority (CRTAUT) parameter of the schema.

If the owner of the procedure is a member of a group profile (GRPPRF keyword) and group authority is
specified (GRPAUT keyword), that group profile will also have authority to the procedure.

REPLACE rules: When a procedure is recreated by REPLACE:

• Any existing comment or label is discarded.
• Authorized users are maintained. The object owner could change.
• Current journal auditing is preserved.

Error handling in procedures: Consideration should be given to possible exceptions that can occur for
each SQL statement in the body of a procedure. Any exception SQLSTATE that is not handled within
the procedure using a handler within a compound statement results in the exception SQLSTATE being
returned to the caller of the procedure. Values of arguments passed to a procedure that correspond to
OUT parameters are undefined and those that correspond to INOUT parameters are unchanged when an
error is returned by the procedure.

Creating the procedure: When an SQL procedure is created, SQL creates a temporary source file that
will contain C source code with embedded SQL statements. A program or service program object is then
created using the CRTPGM or CRTSRVPGM command. The SQL options used to create the program are the
options that are in effect at the time the CREATE PROCEDURE statement is executed. If AUTONOMOUS is
specified, the program or service program is created with ACTGRP(QSQAUTOAG). Otherwise, the program
is created with ACTGRP(*CALLER).

When an SQL procedure is created, the procedure's attributes are stored in the created program or service
program object. If the *PGM or *SRVPGM object is saved and then restored to this or another system, the
attributes are used to update the catalogs.

If the PROGRAM NAME clause is provided, its name is used for the creation of the program object.
Otherwise, the specific procedure name is used as the name of the member in the source file and the
name of the program object, if it is a valid system name. If the procedure name is not a valid system
name, a unique name is generated. If a source file member with the same name already exists, the
member is overlaid. If a module or a program with the same name already exists, the objects are not
overlaid, and a unique name is generated. The unique names are generated according to the rules for
generating system table names.

Invoking the procedure: If a DECLARE PROCEDURE statement defines a procedure with the same name
as a created procedure, and a static CALL statement where the procedure name is not identified by
a variable is executed from the same source program, the attributes from the DECLARE PROCEDURE
statement will be used rather than the attributes from the CREATE PROCEDURE statement.

The CREATE PROCEDURE statement applies to static and dynamic CALL statements as well as to a CALL
statement where the procedure name is identified by a variable.

SQL procedures must be called using the SQL CALL statement. When called, the SQL procedure runs in
the activation group of the calling program.

Chapter 7. Statements 1101

SQL procedures are built with the *TERASPACE storage model. When an autonomous SQL procedure
is invoked in a job, every procedure that runs in the QSQAUTOAG activation group must use the
*TERASPACE storage model.

Obfuscated statements: A CREATE PROCEDURE statement can be executed in obfuscated form. In an
obfuscated statement, only the procedure name and parameters are readable followed by the WRAPPED
keyword. The rest of the statement is encoded in such a way that it is not readable but can be decoded
by a database server that supports obfuscated statements. Obfuscated statements can be produced by
invoking the WRAP scalar function. Any debug options that are specified when the procedure is created
from an obfuscated statement are ignored. A procedure that is created from an obfuscated statement
cannot be restored to a release where obfuscation is not supported.

Setting of the default value: Parameters of a procedure that are defined with a default value are set to
their default value when the procedure is invoked, but only if a value is not supplied for the corresponding
argument, or the argument is specified as DEFAULT.

Dependent objects: An SQL routine is dependent on objects that are referenced in the SQL-routine-body.
The names of the dependent objects are stored in catalog view SYSROUTINEDEP. If the object reference
in the SQL-routine-body is a fully qualified name or, in SQL naming, if an unqualified name is qualified
by the current schema, then the schema name of the object in SYSROUTINEDEP will be set to the
specified name or the value of the current schema. Otherwise, the schema name is not set to a specific
schema name. Unqualified function names, variable names, and type names will have a schema name of
CURRENT PATH. If the name is not set to an actual schema name, then DROP and ALTER statements will
not be able to determine whether the routine is dependent on the object being altered or dropped.

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• The keywords VARIANT and NOT VARIANT can be used as synonyms for NOT DETERMINISTIC and
DETERMINISTIC.

• The keywords NULL CALL can be used as synonyms for CALLED ON NULL INPUT.
• DYNAMIC RESULT SET, RESULT SETS, and RESULT SET may be used as synonyms for DYNAMIC RESULT

SETS.

Example

Create an SQL procedure that returns the median staff salary. Return a result set containing the name,
position, and salary of all employees who earn more than the median salary.

 CREATE PROCEDURE MEDIAN_RESULT_SET (OUT medianSalary DECIMAL(7,2))
 LANGUAGE SQL
 DYNAMIC RESULT SETS 1
 BEGIN
 DECLARE v_numRecords INTEGER DEFAULT 1;
 DECLARE v_counter INTEGER DEFAULT 0;
 DECLARE c1 CURSOR FOR
 SELECT salary
 FROM staff
 ORDER BY salary;
 DECLARE c2 CURSOR WITH RETURN FOR
 SELECT name, job, salary
 FROM staff
 WHERE salary > medianSalary
 ORDER BY salary;
 DECLARE EXIT HANDLER FOR NOT FOUND
 SET medianSalary = 6666;
 SET medianSalary = 0;
 SELECT COUNT(*) INTO v_numRecords FROM STAFF;
 OPEN c1;
 WHILE v_counter < (v_numRecords / 2 + 1)
 DO FETCH c1 INTO medianSalary;
 SET v_counter = v_counter + 1;
 END WHILE;
 CLOSE c1;
 OPEN c2;
 END

1102 IBM i: Db2 for i SQL Reference

CREATE SCHEMA
The CREATE SCHEMA statement defines a schema at the current server and optionally creates tables,
views, aliases, indexes, sequences, and distinct types. Comments and labels may be added in the catalog
description of these objects, and privileges can be granted to users.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• The *USE system authority to the following CL commands:

– Create Library (CRTLIB)
– If WITH DATA DICTIONARY is specified, Create Data Dictionary (CRTDTADCT)

• Database administrator authority

The privileges held by the authorization ID of the statement must include at least one of the following:

• The privileges defined for each SQL statement included in the CREATE SCHEMA statement
• Database administrator authority

If the AUTHORIZATION clause is specified, the privileges held by the authorization ID of the statement
must also include at least one of the following:

• The system authority *ADD to the user profile identified by authorization-name
• Database administrator authority

Chapter 7. Statements 1103

Syntax
CREATE SCHEMA

schema-name

FOR
SCHEMA

system-schema-name

AUTHORIZATION authorization-name

IN ASP integer

ASP-name

COMMENT statement
1

CREATE ALIAS statement

CREATE INDEX statement

CREATE SEQUENCE statement

CREATE TABLE statement

CREATE TYPE (Array) statement

CREATE TYPE (Distinct) statement

CREATE VIEW statement

GRANT (Sequence Privileges) statement

GRANT (Table or View Privileges) statement

GRANT (Type Privileges) statement

LABEL statement
1

Notes:
1 Only labels and comments on object types created in the schema are supported in the CREATE
SCHEMA statement.

Description
schema-name

Names the schema. A schema is created using this name. If schema-name is specified, the
authorization ID of the statement is the run-time authorization ID. The name must not be the same
as the name of an existing schema at the current server. The name should not begin with 'SYS' or 'Q'.
Such schema names indicate that the schema is a system schema.

If the schema-name is not a valid system name and a system-schema-name is not specified, SQL will
generate a system name. For information about the rules for generating the name, see “Rules for
Schema Name Generation” on page 1106.

FOR SCHEMA system-schema-name
Identifies the system name of the schema. system-schema-name must not be the same as a schema
that already exists at the current server. The system-schema-name must be an unqualified system
identifier that is a valid system name.

If both schema-name and system-schema-name are specified, they cannot both be valid system
names.

1104 IBM i: Db2 for i SQL Reference

authorization-name
Identifies the authorization ID of the statement. This authorization name is also the schema-name.
The name must not be the same as the name of an existing schema at the current server.

IN ASP
Specifies the auxiliary storage pool (ASP) in which to create the schema.
integer

The integer must be between 1 and 32. If 1 is specified, the schema is created on the system ASP.
ASP-name

The name must identify an auxiliary storage pool that exists at the current server.
If this clause is omitted,

• If the name space of the invoking thread is set to an independent auxiliary storage pool (IASP), the
schema will be created in the IASP name space.

• Otherwise, an ASP of 1 is assumed.

COMMENT statement
Adds or replaces comments in the catalog descriptions of an object created in the schema. Only
comments on objects created in the schema are allowed. See the COMMENT statement “COMMENT”
on page 940.

CREATE ALIAS statement
Creates an alias into the schema. See the CREATE ALIAS statement “CREATE ALIAS” on page 971.

CREATE INDEX statement
Creates an index into the schema. See the CREATE INDEX statement “CREATE INDEX” on page 1055.

CREATE SEQUENCE statement
Creates a sequence into the schema. See the CREATE SEQUENCE statement “CREATE SEQUENCE” on
page 1108.

CREATE TABLE statement
Creates a table into the schema. See the CREATE TABLE statement “CREATE TABLE” on page 1115.

CREATE TYPE (Array) statement
Creates an array type into the schema. See the CREATE TYPE (Array) statement “CREATE TYPE
(array)” on page 1188.

CREATE TYPE (Distinct) statement
Creates a user-defined distinct type into the schema. See the CREATE TYPE (Distinct) statement
“CREATE TYPE (distinct)” on page 1193.

CREATE VIEW statement
Creates a view into the schema. See the CREATE VIEW statement “CREATE VIEW” on page 1206.

GRANT (Sequence Privileges) statement
Grants privileges for sequences in the schema. See the GRANT statement “GRANT (sequence
privileges)” on page 1371.

GRANT (Table or View Privileges) statement
Grants privileges for tables and views in the schema. See the GRANT statement “GRANT (table or
view privileges)” on page 1374.

GRANT (Type Privileges) statement
Grants privileges for types in the schema. See the GRANT statement “GRANT (type privileges)” on
page 1382.

LABEL statement
Adds or replaces labels in the catalog descriptions of an object created in the schema. Only labels on
objects created in the schema are allowed. See the LABEL statement “LABEL” on page 1407.

Notes
Schema attributes: A schema is created as:

• A library: A library groups related objects, and allows you to find objects by name.

Chapter 7. Statements 1105

• A catalog: A catalog contains descriptions of the tables, views, indexes, and other objects in the
schema. A catalog consists of a set of views. For more information, see SQL Programming.

• A journal and journal receiver: A journal QSQJRN and journal receiver QSQJRN0001 is created in the
schema, and is used to record changes to all tables subsequently created in the schema. For more
information, see Journal Management.

An index created over a distributed table is created on all of the servers across which the table is
distributed. For more information about distributed tables, see DB2 Multisystem.

Object ownership: The owner of the schema and created objects is determined as follows:

• If an AUTHORIZATION clause is specified, the specified authorization ID owns the schema and all
objects created by the statement.

• Otherwise, the owner of the schema and all objects created by the statement is the user profile or the
group user profile of the thread executing the statement.

Object authority: If SQL names are used, the schema and any other objects are created with the
system authority of *EXCLUDE on *PUBLIC and the library is created with the create authority parameter
CRTAUT(*EXCLUDE). The owner is the only user having any authority to the schema. If other users require
authority to the schema, the owner can grant authority to the objects created; using the CL command
Grant Object Authority (GRTOBJAUT).

If system names are used, the schema and any other objects are created with the system authority
given to *PUBLIC is determined by the system value QCRTAUT, and the library is created with
CRTAUT(*SYSVAL). For more information about system security, see Security Reference, and SQL
Programming.

If the owner of the schema is a member of a group profile (GRPPRF keyword) and group authority is
specified (GRPAUT keyword), that group profile will also have authority to the schema.

Object names: If a CREATE TABLE, CREATE INDEX, CREATE ALIAS, CREATE TYPE, CREATE SEQUENCE,
or CREATE VIEW statement contains a qualified name for the table, index, alias, distinct type, sequence,
or view being created, the schema name specified in that qualified name must be the same as the name
of the schema being created. Any other object names referenced within the schema definition may be
qualified by any schema name. Unqualified table, index, alias, distinct type, sequence, or view names in
any SQL statement are implicitly qualified with the name of the created schema.

Delimiters are not used between the SQL statements.

SQL statement length: If the CREATE SCHEMA statement is executed via the RUNSQLSTM command,
the maximum length of any individual CREATE TABLE, CREATE INDEX, CREATE TYPE, CREATE ALIAS,
CREATE SEQUENCE, CREATE VIEW, COMMENT, LABEL, or GRANT statements within the CREATE SCHEMA
statement is 2 097 152. Otherwise, the entire CREATE SCHEMA statement is limited to 2 097 152.

Name resolution performance: The name of the schema can affect the performance of statements that
reference objects in the schema. If the length of a schema name is greater than 30, the performance of
finding objects in the schema will be worse than schemas whose name length is less than or equal to
30. To minimize the performance impact, ensure that the first 5 characters of the system name and the
schema name are the same.

Syntax alternatives: The COLLECTION keyword can be used as a synonym for SCHEMA for compatibility
to prior releases. This keyword is non-standard and should not be used.

Deprecated features: The WITH DATA DICTIONARY clause causes an IDDU data dictionary to be created
in the schema. While the clause can still be specified at the end of the CREATE SCHEMA statement and is
still supported; it is not recommended.

A schema created with a data dictionary cannot contain tables with LOB, XML, or DATALINK columns. The
clause has no effect on the creation of catalog views.

Rules for Schema Name Generation
A system name will be generated if a schema is created with a name that is longer than 10 characters.

1106 IBM i: Db2 for i SQL Reference

The SQL name or its corresponding system name may both be used in SQL statements to access the
schema once it is created. However, the SQL name is only recognized by Db2 for i and the system name
must be used in other environments.

If the schema-name is an ordinary identifier and longer than 10 characters, a 10-character system-
schema-name will be generated as:

• The first 5 characters of the name
• A 5 digit unique number

For example:

The system-schema-name for LONGSCHEMANAME would be LONGS00001

If the schema-name is a delimited identifier and longer than 10 characters, a 10-character system-
schema-name will be generated as:

• The first 4 characters from within the delimiters will be used as the first characters of the system-
schema-name.

• If the first 4 characters are all uppercase letters, digits, or underscores, an underscore and a 5 digit
unique number is appended.

• Otherwise, a 4 digit unique number is appended.

For example:

 The system name for "longschemaname" would be "long0001"
 The system name for "LONGSchemaName" would be LONG_00001

Examples

Example 1: Create a schema that has an inventory part table and an index over the part number. Give
authority to the schema to the user profile JONES.

 CREATE SCHEMA INVENTORY

 CREATE TABLE PART (PARTNO SMALLINT NOT NULL,
 DESCR VARCHAR(24),
 QUANTITY INT)

 CREATE INDEX PARTIND ON PART (PARTNO)

 GRANT ALL ON PART TO JONES

Example 2: Create a schema using the authorization ID of SMITH. Create a student table that has a
comment on the student number column.

 CREATE SCHEMA AUTHORIZATION SMITH

 CREATE TABLE SMITH.STUDENT (STUDNBR SMALLINT NOT NULL UNIQUE,
 LASTNAME CHAR(20),
 FIRSTNAME CHAR(20),
 ADDRESS CHAR(50))

 COMMENT ON STUDENT (STUDNBR IS 'THIS IS A UNIQUE ID#')

Chapter 7. Statements 1107

CREATE SEQUENCE
The CREATE SEQUENCE statement creates a sequence at the application server.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• The privilege to create in the schema. For more information, see Privileges necessary to create in a
schema.

• Database administrator authority

The privileges held by the authorization ID of the statement must include at least one of the following:

• The following system authorities:

– *USE to the Create Data Area (CRTDTAARA) command
• Database administrator authority

The privileges held by the authorization ID of the statement must include at least one of the following:

• For the SYSSEQOBJECTS catalog table:

– The INSERT privilege on the table, and
– The system authority *EXECUTE on library QSYS2

• Database administrator authority

If a distinct type is referenced, the privileges held by the authorization ID of the statement must include at
least one of the following:

• For the distinct type identified in the statement:

– The USAGE privilege on the distinct type, and
– The system authority *EXECUTE on the library containing the distinct type

• Database administrator authority

To replace an existing sequence, the privileges held by the authorization ID of the statement must include
at least one of the following:

• The following system authorities:

– The system authority of *OBJMGT on the data area associated with the sequence
– All authorities needed to DROP the sequence
– The system authority *READ to the SYSSEQOBJECTS catalog table

• Database administrator authority

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Sequence and Corresponding System Authorities When
Checking Privileges to a Distinct Type.

1108 IBM i: Db2 for i SQL Reference

Syntax
CREATE

OR REPLACE

SEQUENCE sequence-name

FOR SYSTEM NAME system-object-identifier

AS

INTEGER

data-type

START WITH numeric-constant

INCREMENT BY

1

numeric-constant

NO MINVALUE

MINVALUE numeric-constant

NO MAXVALUE

MAXVALUE numeric-constant

NO CYCLE

CYCLE

CACHE 20

NO CACHE

CACHE integer-constant

NO ORDER

ORDER

1

Notes:
1 The same clause must not be specified more than once.

data-type
built-in-type

distinct-type-name

built-in-type
SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

)

Chapter 7. Statements 1109

Description
OR REPLACE

Specifies to replace the definition for the sequence if one exists at the current server. The existing
definition is effectively dropped before the new definition is replaced in the catalog with the exception
that privileges that were granted on the sequence are not affected. This option is ignored if a definition
for the sequence does not exist at the current server.

sequence-name
Names the sequence. The name, including the implicit or explicit qualifier, must not identify a
sequence or data area that already exists at the current server. If a qualified sequence name is
specified, the schema-name cannot be QSYS2, QSYS, or SYSIBM.

If SQL names were specified, the sequence will be created in the schema specified by the implicit or
explicit qualifier.

If system names were specified, the sequence will be created in the schema that is specified by the
qualifier. If not qualified:

• If the value of the CURRENT SCHEMA special register is *LIBL, the sequence will be created in the
current library (*CURLIB).

• Otherwise, the sequence will be created in the current schema.

FOR SYSTEM NAME system-object-identifier
Identifies the system-object-identifier of the sequence. system-object-identifier must not be the same
as a sequence or data area that already exists at the current server. The system-object-identifier must
be an unqualified system identifier.

When system-object-identifier is specified, sequence-name must not be a valid system object name.

AS data-type
Specifies the data type to be used for the sequence value. The data type can be any exact numeric
type (SMALLINT, INTEGER, BIGINT, DECIMAL, or NUMERIC) with a scale of zero, or a user-defined
distinct type for which the source type is an exact numeric type with a scale of zero. The default is
INTEGER.

built-in-type
Specifies the built-in data type used as the basis for the internal representation of the sequence. If the
data type is DECIMAL or NUMERIC, the precision must be less than or equal to 63 and the scale must
be 0. See “CREATE TABLE” on page 1115 for a more complete description of each built-in data type.

For portability of applications across platforms, use DECIMAL instead of a NUMERIC data type.

distinct-type-name
Specifies that the data type of the sequence is a distinct type (a user-defined data type). If the source
type is DECIMAL or NUMERIC, the precision of the sequence is the precision of the source type of the
distinct type. The precision of the source type must be less than or equal to 63 and the scale must be
0. If a distinct type name is specified without a schema name, the distinct type name is resolved by
searching the schemas on the SQL path.

START WITH numeric-constant
Specifies the first value that is generated for the sequence. The value can be any positive or negative
value that could be assigned to a column of the data type associated with the sequence, without
non-zero digits to the right of the decimal point.

If a value is not explicitly specified when the sequence is defined, the default is the MINVALUE for an
ascending sequence and the MAXVALUE for a descending sequence.

This value is not necessarily the value that a sequence would cycle to after reaching the maximum or
minimum value of the sequence. The START WITH clause can be used to start a sequence outside the
range that is used for cycles. The range used for cycles is defined by MINVALUE and MAXVALUE.

INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the sequence. The value can be any positive or
negative value that could be assigned to a column of the data type associated with the sequence, and

1110 IBM i: Db2 for i SQL Reference

does not exceed the value of a large integer constant, without nonzero digits existing to the right of the
decimal point.

If the value is 0 or positive, this is an ascending sequence. If the value is negative, this is a descending
sequence. The default is 1.

NO MINVALUE or MINVALUE
Specifies the minimum value at which a descending sequence either cycles or stops generating
values, or an ascending sequence cycles to after reaching the maximum value. The default is NO
MINVALUE.
NO MINVALUE

For an ascending sequence, the value is the START WITH value, or 1 if START WITH is not
specified. For a descending sequence, the value is the minimum value of the data type (and
precision, if DECIMAL or NUMERIC) associated with the sequence.

MINVALUE numeric-constant
Specifies the numeric constant that is the minimum value. This value can be any positive or
negative value that could be assigned to a column of the data type associated with the sequence
and without non-zero digits to the right of the decimal point. The value must be less than or equal
to the maximum value.

NO MAXVALUE or MAXVALUE
Specifies the maximum value at which an ascending sequence either cycles or stops generating
values, or a descending sequence cycles to after reaching the minimum value. The default is NO
MAXVALUE.
NO MAXVALUE

For an ascending sequence, the value is the maximum value of the data type (and precision, if
DECIMAL or NUMERIC) associated with the sequence. For a descending sequence, the value is the
START WITH value, or -1 if START WITH is not specified.

MAXVALUE numeric-constant
Specifies the numeric constant that is the maximum value. This value can be any positive or
negative value that could be assigned to a column of the data type associated with the sequence
and without non-zero digits to the right of the decimal point. The value must be greater than or
equal to the minimum value.

NO CYCLE or CYCLE
Specifies whether this sequence should continue to generate values once the maximum or minimum
value of the sequence has been reached. The default is NO CYCLE.
NO CYCLE

Specifies that values will not be generated for the sequence once the maximum or minimum value
for the sequence has been reached.

CYCLE
Specifies that values continue to be generated for this sequence after the maximum or minimum
value has been reached. If this option is used, after an ascending sequence reaches the maximum
value of the sequence, it generates its minimum value. After a descending sequence reaches its
minimum value of the sequence, it generates its maximum value. The maximum and minimum
values for the column determine the range that is used for cycling.

When CYCLE is in effect, then duplicate values can be generated for the sequence.

CACHE or NO CACHE
Specifies whether to keep some preallocated values in memory. Preallocating and storing values in
the cache improves the performance of the NEXT VALUE sequence expression. The default is CACHE
20.
CACHE integer-constant

Specifies the maximum number of sequence values that are preallocated and kept in memory.
Preallocating and storing values in the cache improves performance.

Chapter 7. Statements 1111

In certain situations, such as system failure, all cached sequence values that have not been used
in committed statements are lost, and thus, will never be used. The value specified for the CACHE
option is the maximum number of sequence values that could be lost in these situations.

The minimum value that can be specified is 2.

NO CACHE
Specifies that values for the sequence are not preallocated. If NO CACHE is specified, the
performance of the NEXT VALUE sequence expression will be worse than if CACHE is specified.

ORDER or NO ORDER
Specifies whether the sequence values must be generated in order of request. The default is NO
ORDER.
NO ORDER

Specifies that the sequence numbers do not need to be generated in order of request.
ORDER

Specifies that the sequence numbers are generated in order of request. If ORDER is specified,
the performance of the NEXT VALUE sequence expression will be worse than if NO ORDER is
specified.

Notes
Sequence attributes: A sequence is created as a *DTAARA object. The *DTAARA objects should not be
changed with the Change Data Area (*CHGDTAARA) or any other similar interface because doing so may
cause unexpected failures or unexpected results when attempting to use the SQL sequence through SQL.

Sequence ownership: The owner of the sequence is the user profile or group user profile of the thread
executing the statement.

Sequence authority: If SQL names are used, sequences are created with the system authority of
*EXCLUDE on *PUBLIC. If system names are used, sequences are created with the authority to *PUBLIC
as determined by the create authority (CRTAUT) parameter of the schema.

If the owner of the sequence is a member of a group profile (GRPPRF keyword) and group authority is
specified (GRPAUT keyword), that group profile will also have authority to the sequence.

REPLACE rules: When a sequence is recreated by REPLACE:

• Any existing comment or label is discarded.
• Authorized users are maintained. The object owner could change.
• Current journal auditing is preserved.

Relationship of MINVALUE and MAXVALUE: Typically, MINVALUE will be less than MAXVALUE, but this is
not required. MINVALUE could be equal to MAXVALUE. If START WITH was the same value as MINVALUE
and MAXVALUE, and CYCLE is implicitly or explicitly specified, this would be a constant sequence. In
this case a request for the next value appears to have no effect because all the values generated by the
sequence are in fact the same.

MINVALUE must not be greater than MAXVALUE

Defining constant sequences: It is possible to define a sequence that would always return a constant
value. This could be done by specifying an INCREMENT value of zero and a START WITH value that does
not exceed MAXVALUE, or by specifying the same value for START WITH, MINVALUE and MAXVALUE. For
a constant sequence, each time a NEXT VALUE expression is processed the same value is returned. A
constant sequence can be used as a numeric global variable. ALTER SEQUENCE can be used to adjust the
values that will be generated for a constant sequence.

Defining sequences that cycle: A sequence can be cycled manually by using the ALTER SEQUENCE
statement. If NO CYCLE is implicitly or explicitly specified, the sequence can be restarted or extended
using the ALTER SEQUENCE statement to cause values to continue to be generated once the maximum or
minimum value for the sequence has been reached.

1112 IBM i: Db2 for i SQL Reference

A sequence can be explicitly defined to cycle by specifying the CYCLE keyword. Use the CYCLE option
when defining a sequence to indicate that the generated values should cycle once the boundary is
reached. When a sequence is defined to automatically cycle (for example CYCLE was explicitly specified),
then the maximum or minimum value generated for a sequence may not be the actual MAXVALUE or
MINVALUE specified, if the increment is a value other than 1 or -1. For example, the sequence defined
with START WITH=1, INCREMENT=2, MAXVALUE=10 will generate a maximum value of 9, and will not
generate the value 10.

When defining a sequence with CYCLE, then any application conversion tools (for converting applications
from other vendor platforms to Db2) should also explicitly specify MINVALUE, MAXVALUE and START
WITH.

Caching sequence numbers: A range of sequence numbers can be kept in memory for fast access. When
an application accesses a sequence that can allocate the next sequence number from the cache, the
sequence number allocation can happen quickly. However, if an application accesses a sequence that
cannot allocate the next sequence number from the cache, the sequence number allocation will require
an update to the *DTAARA object.

Choosing a high value for CACHE allows faster access to more successive sequence numbers. However,
in the event of a failure, all sequence values in the cache are lost. If the NO CACHE option is used, the
values of the sequence are not stored in the sequence cache. In this case every access to the sequence
requires an update to the *DTAARA object. The choice of the value for CACHE should be made keeping the
trade-off between performance and application requirements in mind.

Persistence of the most recently generated sequence value: The database manager remembers the
most recently generated value for a sequence within the SQL-session, and returns this value for a
PREVIOUS VALUE expression specifying the sequence name. The value persists until either the next
value is generated for the sequence, the sequence is dropped, altered, or replaced, or until the end of the
application session. The value is unaffected by COMMIT and ROLLBACK statements.

PREVIOUS VALUE is defined to have a linear scope within the application session. Therefore, in a nested
application:

• on entry to a nested function, procedure, or trigger, the nested application inherits the most recently
generated value for a sequence. That is, specifying an invocation of a PREVIOUS VALUE expression in
a nested application will reflect sequence activity done in the invoking application, routine, or trigger
before entering the nested application. An invocation of PREVIOUS VALUE expression in a nested
application results in an error if a NEXT VALUE expression for the specified sequence had not yet been
done in the invoking application, routine, or trigger.

• on return from a function, procedure, or trigger, the invoking application, routine or trigger will be
affected by any sequence activity in the function, procedure, or trigger. That is, an invocation of
PREVIOUS VALUE in the invoking application, routine, or trigger after returning from the nested
application will reflect any sequence activity that occurred in the lower level applications.

Sequence journaling: When a sequence is created, journaling may be automatically started.

• If a data area called QDFTJRN exists in the same schema that the sequence is created into and the user
is authorized to the data area, journaling will be started to the journal named in the data area if all the
following are true:

– The identified schema for the table must not be QSYS, QSYS2, QRECOVERY, QSPL, QRCL, QRPLOBJ,
QGPL, QTEMP, SYSIBM, or any of the IASP equivalents to these libraries.

– The journal specified in the data area must exist and the user must be authorized to start journaling
to the journal.

– The first 10 bytes of the data area must contain the name of the schema in which to find the journal.
– The second 10 bytes must contain the name of the journal.
– The remaining bytes contain the object types being implicitly journaled and the options that affect

when implicit journaling is performed. The object type must include the value *DTAARA or *ALL. The
value *NONE can be used to prevent journaling from being started.

For more information, see the Journal Management topic collection.

Chapter 7. Statements 1113

• If the sequence is created into a schema that has specified (using the STRJRNLIB command) that
journaling should implicitly be started.

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases
of other Db2 products. These keywords are non-standard and should not be used:

• The keywords NOMINVALUE, NOMAXVALUE, NOCYCLE, NOCACHE, and NOORDER can be used as
synonyms for NO MINVALUE, NO MAXVALUE, NO CYCLE, NO CACHE, and NO ORDER.

• A comma can be used to separate multiple sequence options.

Examples

Create a sequence called ORG_SEQ that starts at 1, increments by 1, does not cycle, and caches 24
values at a time:

 CREATE SEQUENCE ORG_SEQ
 START WITH 1
 INCREMENT BY 1
 NO MAXVALUE
 NO CYCLE
 CACHE 24

The options START WITH 1, INCREMENT 1, NO MAXVALUE, and NO CYCLE are the values that would have
been used if they had not been explicitly specified.

1114 IBM i: Db2 for i SQL Reference

CREATE TABLE
The CREATE TABLE statement defines a table at the current server. The definition must include its name
and the names and attributes of its columns. The definition may include other attributes of the table such
as primary key.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• The privilege to create in the schema. For more information, see Privileges necessary to create in a
schema.

• Database administrator authority

The privileges held by the authorization ID of the statement must include at least one of the following:

• The following system authorities:

– *USE to the Create Physical File (CRTPF) command
– *CHANGE to the data dictionary if the library into which the table is created is an SQL schema with a

data dictionary
• Database administrator authority

If SQL names are specified and a user profile exists that has the same name as the library into which the
table is created, and that name is different from the authorization ID of the statement, then the privileges
held by the authorization ID of the statement must include at least one of the following:

• The system authority *ADD to the user profile with that name
• Database administrator authority

To define a foreign key, the privileges held by the authorization ID of the statement must include at least
one of the following on the parent table:

• The REFERENCES privilege or object management authority for the table
• The REFERENCES privilege on each column of the specified parent key
• Ownership of the table
• Database administrator authority

If a field procedure is defined, the privileges held by the authorization ID of the statement must include at
least one of the following:

• The following system authorities:

– The system authority *EXECUTE on the program, and
– The system authority *EXECUTE on the library containing the program

• Database administrator authority

If the LIKE clause or select-statement is specified, the privileges held by the authorization ID of the
statement must include at least one of the following on the tables or views specified in these clauses:

• The SELECT privilege for the table or view
• Ownership of the table or view
• Database administrator authority

Chapter 7. Statements 1115

If a distinct type is referenced, the privileges held by the authorization ID of the statement must include at
least one of the following:

• For each distinct type identified in the statement:

– The USAGE privilege on the distinct type, and
– The system authority *EXECUTE on the library containing the distinct type

• Database administrator authority

To replace an existing table, the privileges held by the authorization ID of the statement must include at
least one of the following:

• The following system authorities:

– The system authority of *OBJMGT on the table
– All authorities needed to DROP the table

• Database administrator authority

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Table or View and Corresponding System Authorities When
Checking Privileges to a Distinct Type.

1116 IBM i: Db2 for i SQL Reference

Syntax

CREATE

OR REPLACE

TABLE table-name

FOR SYSTEM NAME system-object-identifier

(

,

column-definition

period-definition

LIKE table-name

view-name copy-options

unique-constraint

referential-constraint

check-constraint

)

LIKE table-name

view-name copy-options

as-result-table

copy-options

materialized-query-definition

NOT LOGGED INITIALLY

1
NOT VOLATILE

CARDINALITY

VOLATILE
CARDINALITY

RCDFMT format-name media-preference memory-preference

ON REPLACE PRESERVE ALL ROWS

ON REPLACE PRESERVE ROWS

ON REPLACE DELETE ROWS

distribution-clause

partitioning-clause

media-preference
UNIT ANY

UNIT SSD

memory-preference
KEEP IN MEMORY NO

YES

Notes:
1 The optional clauses can be specified in any order.

Chapter 7. Statements 1117

column-definition

column-name

FOR
COLUMN

system-column-name

data-type
1

default-clause

generated-clause

NOT NULL

NOT HIDDEN

IMPLICITLY HIDDEN

column-constraint

FIELDPROC external-program-name

(

,

constant)

datalink-options
2

3

data-type
built-in-type

distinct-type-name

Notes:
1 data-type is optional for row change timestamp columns, row-begin and row-end timestamp
columns, and transaction-start-ID timestamp columns.
2 The datalink-options can only be specified for DATALINKs and distinct types sourced on DATALINKs.
3 The same clause must not be specified more than once.

1118 IBM i: Db2 for i SQL Reference

built-in-type
SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

allocate-clause

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) allocate-clause FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

allocate-clause

DBCLOB

(1M)

(integer

K

M

G

) allocate-clause

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

allocate-clause

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

) allocate-clause

normalize-clause

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

allocate-clause

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

) allocate-clause

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

DATALINK

(200)

(integer) allocate-clause ccsid-clause

ROWID

XML

allocate-clause ccsid-clause

Chapter 7. Statements 1119

allocate-clause
ALLOCATE (integer)

ccsid-clause
CCSID integer

normalize-clause

normalize-clause
NOT NORMALIZED

NORMALIZED

default-clause
WITH

DEFAULT

constant

USER

NULL

CURRENT_DATE

CURRENT_TIME

CURRENT_TIMESTAMP

(6)

(integer)

cast-function-name (constant

USER

CURRENT_DATE

CURRENT_TIME

CURRENT_TIMESTAMP

(6)

(integer)

)

1120 IBM i: Db2 for i SQL Reference

generated-clause

GENERATED
ALWAYS

GENERATED BY DEFAULT

1

identity-options

as-row-change-timestamp-clause

GENERATED
ALWAYS

as-row-transaction-timestamp-clause

as-row-transaction-start-id-clause

as-generated-expression-clause

identity-options
AS IDENTITY

(START WITH

1

numeric-constant

INCREMENT BY

1

numeric-constant

NO MINVALUE

MINVALUE numeric-constant

NO MAXVALUE

MAXVALUE numeric-constant

NO CYCLE

CYCLE

CACHE 20

NO CACHE

CACHE integer

NO ORDER

ORDER

2
)

as-row-change-timestamp-clause
FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP

as-row-transaction-timestamp-clause
AS ROW BEGIN

START

END

as-row-transaction-start-id-clause
AS TRANSACTION START ID

Notes:
1 GENERATED can be specified only if the column has a ROWID data type (or a distinct type that is
based on a ROWID data type), or the column is an identity column, or the column is a row change
timestamp.
2 The same clause must not be specified more than once.

Chapter 7. Statements 1121

as-generated-expression-clause
AS (non-deterministic-expression)

non-deterministic-expression
DATA CHANGE OPERATION

special-register

built-in-global-variable

special-register
CURRENT CLIENT_ACCTNG

CURRENT CLIENT_APPLNAME

CURRENT CLIENT_PROGRAMID

CURRENT CLIENT_USERID

CURRENT CLIENT_WRKSTNNAME

CURRENT SERVER

SESSION_USER

USER

built-in-global-variable
QSYS2.JOB_NAME

QSYS2.SERVER_MODE_JOB_NAME

SYSIBM.CLIENT_HOST

SYSIBM.CLIENT_IPADDR

SYSIBM.CLIENT_PORT

SYSIBM.PACKAGE_NAME

SYSIBM.PACKAGE_SCHEMA

SYSIBM.PACKAGE_VERSION

SYSIBM.ROUTINE_SCHEMA

SYSIBM.ROUTINE_SPECIFIC_NAME

SYSIBM.ROUTINE_TYPE

1122 IBM i: Db2 for i SQL Reference

period-definition

PERIOD
FOR

SYSTEM_TIME (begin-column-name , end-column-name

)

column-constraint

CONSTRAINT constraint-name

PRIMARY KEY

UNIQUE

references-clause

CHECK (check-condition)

ON INSERT VIOLATION SET column-name = DEFAULT

ON UPDATE VIOLATION PRESERVE column-name

1

datalink-options
LINKTYPE URL NO LINK CONTROL

FILE LINK CONTROL file-link-options

MODE DB2OPTIONS

file-link-options

INTEGRITY ALL

READ PERMISSION FS

READ PERMISSION DB

WRITE PERMISSION FS

WRITE PERMISSION BLOCKED

RECOVERY NO

ON UNLINK RESTORE

ON UNLINK DELETE

2

Notes:
1 The same clause must not be specified more than once.
2 All five file-link-options must be specified, but they can be specified in any order.

Chapter 7. Statements 1123

as-result-table

(column-name

FOR
COLUMN

system-column-name

)

AS (select-statement) WITH NO DATA

WITH DATA

copy-options

EXCLUDING IDENTITY
COLUMN ATTRIBUTES

INCLUDING IDENTITY
COLUMN ATTRIBUTES

EXCLUDING
COLUMN

DEFAULTS

INCLUDING
COLUMN

DEFAULTS

USING TYPE DEFAULTS

EXCLUDING IMPLICITLY HIDDEN
COLUMN ATTRIBUTES

INCLUDING IMPLICITLY HIDDEN
COLUMN ATTRIBUTES

EXCLUDING ROW CHANGE TIMESTAMP
COLUMN ATTRIBUTES

INCLUDING ROW CHANGE TIMESTAMP
COLUMN ATTRIBUTES

1124 IBM i: Db2 for i SQL Reference

unique-constraint

CONSTRAINT constraint-name

PRIMARY KEY

UNIQUE

(

,

column-name

)

referential-constraint

CONSTRAINT constraint-name

FOREIGN KEY (

,

column-name)

references-clause

references-clause
REFERENCES table-name

(

,

column-name)

ON DELETE NO ACTION

ON DELETE RESTRICT

CASCADE

SET NULL

SET DEFAULT

ON UPDATE NO ACTION

ON UPDATE RESTRICT

1

check-constraint

CONSTRAINT constraint-name

CHECK (check-condition)

ON INSERT VIOLATION SET column-name = DEFAULT

ON UPDATE VIOLATION PRESERVE column-name

2

distribution-clause
IN NODEGROUP nodegroup-name

DISTRIBUTE BY HASH (

,

column-name)

Notes:
1 The ON DELETE and ON UPDATE clauses may be specified in either order.
2 The same clause must not be specified more than once.

Chapter 7. Statements 1125

partitioning-clause

PARTITION BY
RANGE

range-partition-spec

HASH hash-partition-spec

range-partition-spec

(

,

partition-expression) (

,

partition-element)

partition-expression

column-name
NULLS LAST

NULLS FIRST

partition-element

PARTITION partition-name

boundary-spec

media-preference memory-preference

boundary-spec EVERY (integer-constant

DAY

DAYS

MONTH

MONTHS

YEAR

YEARS

)
1

boundary-spec

starting-clause ending-clause

starting-clause

STARTING
FROM

(

,

constant

MINVALUE

MAXVALUE

)

constant

MINVALUE

MAXVALUE

INCLUSIVE

EXCLUSIVE

Notes:
1 This syntax for a partition-element is valid if there is only one partition-expression with a numeric or
datetime data type.

1126 IBM i: Db2 for i SQL Reference

ending-clause

ENDING
AT

(

,

constant

MINVALUE

MAXVALUE

)

constant

MINVALUE

MAXVALUE

INCLUSIVE

EXCLUSIVE

hash-partition-spec

(

,

column-name) INTO integer PARTITIONS

materialized-query-definition

(column-name

FOR
COLUMN

system-column-name

)

AS (select-statement) refreshable-table-options

refreshable-table-options
DATA INITIALLY DEFERRED

DATA INITIALLY IMMEDIATE

REFRESH DEFERRED

1

MAINTAINED BY USER

ENABLE QUERY OPTIMIZATION

DISABLE QUERY OPTIMIZATION

Notes:
1 The same clause must not be specified more than once. MAINTAINED BY USER must be specified.

Description
OR REPLACE

Specifies to replace the definition for the table if one exists at the current server. The existing
definition is effectively altered before the new definition is replaced in the catalog.

A definition for the table exists if:

• FOR SYSTEM NAME is specified and the system-object-identifier matches the system-object-
identifier of an existing table.

• FOR SYSTEM NAME is not specified and table-name is a system object name that matches the
system-object-identifier of an existing table.

If a definition for the table exists and table-name is not a system object name, table-name can be
changed to provide a new name for the table.

This option is ignored if a definition for the table does not exist at the current server.

Chapter 7. Statements 1127

table-name
Names the table. The name, including the implicit or explicit qualifier, must not identify an alias, file,
index, table, or view that already exists at the current server.

If SQL names were specified, the table will be created in the schema specified by the implicit or
explicit qualifier.

If system names were specified, the table will be created in the schema that is specified by the
qualifier. If not qualified:

• If the value of the CURRENT SCHEMA special register is *LIBL, the table will be created in the
current library (*CURLIB).

• Otherwise, the table will be created in the current schema.

FOR SYSTEM NAME system-object-identifier
Identifies the system-object-identifier of the table. system-object-identifier must not be the same as a
table, view, alias, or index that already exists at the current server. The system-object-identifier must
be an unqualified system identifier.

When system-object-identifier is specified, table-name must not be a valid system object name.

column-definition
Defines the attributes of a column. There must be at least one column definition and no more than 8000
column definitions.

The sum of the row buffer byte counts of the columns must not be greater than 32766 or, if a VARCHAR,
VARGRAPHIC, or VARBINARY column is specified, 32740. Additionally, if a LOB or XML column is
specified, the sum of the row data byte counts of the columns must not be greater than 3 758 096
383 at the time of insert or update. For information about the byte counts of columns according to data
type, see “Maximum row sizes” on page 1164.

column-name
Names a column of the table. Do not qualify column-name and do not use the same name for more
than one column of the table or for a system-column-name of the table.

FOR COLUMN system-column-name
Provides an IBM i name for the column. Do not use the same name for more than one column of the
table or for a column-name of the table.

If the system-column-name is not specified, and the column-name is not a valid system-column-
name, a system column name is generated. For more information about how system column names
are generated, see “Rules for Column Name Generation” on page 1166.

data-type
Specifies the data type of the column.

built-in-type
For built-in-types, use:
SMALLINT

For a small integer.
INTEGER or INT

For a large integer.
BIGINT

For a big integer.
DECIMAL(integer,integer) or DEC(integer,integer)
DECIMAL(integer) or DEC(integer)
DECIMAL or DEC

For a packed decimal number. The first integer is the precision of the number; that is, the total
number of digits; it can range from 1 to 63. The second integer is the scale of the number (the
number of digits to the right of the decimal point). It can range from 0 to the precision of the
number.

1128 IBM i: Db2 for i SQL Reference

You can use DECIMAL(p) for DECIMAL(p,0), and DECIMAL for DECIMAL(5,0).

NUMERIC(integer,integer) or NUM(integer,integer)
NUMERIC(integer) or NUM(integer)
NUMERIC or NUM

For a zoned decimal number. The first integer is the precision of the number, that is, the total
number of digits; it may range from 1 to 63. The second integer is the scale of the number, (the
number of digits to the right of the decimal point). It may range from 0 to the precision of the
number.

You can use NUMERIC(p) for NUMERIC(p,0), and NUMERIC for NUMERIC(5,0).

FLOAT
For a double-precision floating-point number.

FLOAT(integer)
For a single- or double-precision floating-point number, depending on the value of integer. The
value of integer must be in the range 1 through 53. The values 1 through 24 indicate single-
precision, the values 25 through 53 indicate double-precision. The default is 53.

REAL
For single-precision floating point.

DOUBLE PRECISION or DOUBLE
For double-precision floating point.

DECFLOAT(integer)
DECFLOAT

For a IEEE decimal floating-point number. The value of integer must be either 16 or 34 and
represents the number of significant digits that can be stored. If integer is omitted, then the
DECFLOAT column will be capable of representing 34 significant digits.

CHARACTER(integer) or CHAR(integer)
CHARACTER or CHAR

For a fixed-length character string of length integer bytes. The integer can range from 1 through
32766 (32765 if null capable). If FOR MIXED DATA or a mixed data CCSID is specified, the range
is 4 through 32766 (32765 if null capable). If the length specification is omitted, a length of 1 is
assumed.

CHARACTER VARYING (integer) or CHAR VARYING (integer) or VARCHAR (integer)
For a varying-length character string of maximum length integer bytes, which can range from 1
through 32740 (32739 if null capable). If FOR MIXED DATA or a mixed data CCSID is specified, the
range is 4 through 32740 (32739 if null capable).

CHARACTER LARGE OBJECT (integer[K|M|G]) or CHAR LARGE OBJECT (integer[K|M|G]) or CLOB
(integer[K|M|G])
CHARACTER LARGE OBJECT or CHAR LARGE OBJECT or CLOB

For a character large object string of the specified maximum length in bytes. The maximum length
must be in the range of 1 through 2 147 483 647. If FOR MIXED DATA or a mixed data CCSID is
specified, the range is 4 through 2 147 483 647. If the length specification is omitted, a length of
1 megabyte is assumed. A CLOB is not allowed in a distributed table.
integer

The maximum value for integer is 2 147 483 647. The maximum length of the string is integer.
integer K

The maximum value for integer is 2 097 152. The maximum length of the string is 1024 times
integer.

integer M
The maximum value for integer is 2 048. The maximum length of the string is 1 048 576 times
integer.

integer G
The maximum value for integer is 2. The maximum length of the string is 1 073 741 824 times
integer.

Chapter 7. Statements 1129

GRAPHIC(integer)
GRAPHIC

For a fixed-length graphic string of length integer, which can range from 1 through 16383 (16382
if null capable). If the length specification is omitted, a length of 1 is assumed.

VARGRAPHIC(integer) or GRAPHIC VARYING(integer)
For a varying-length graphic string of maximum length integer, which can range from 1 through
16370 (16369 if null capable).

DBCLOB(integer[K|M|G])
DBCLOB

For a double-byte character large object string of the specified maximum length.

The maximum length must be in the range of 1 through 1 073 741 823. If the length specification
is omitted, a length of 1 megabyte is assumed. A DBCLOB is not allowed in a distributed table.

integer
The maximum value for integer is 1 073 741 823. The maximum length of the string is integer.

integer K
The maximum value for integer is 1 028 576. The maximum length of the string is 1024 times
integer.

integer M
The maximum value for integer is 1 024. The maximum length of the string is 1 048 576 times
integer.

integer G
The maximum value for integer is 1. The maximum length of the string is 1 073 741 824 times
integer.

NATIONAL CHARACTER (integer) or NATIONAL CHAR (integer) or NCHAR (integer)
NATIONAL CHARACTER or NATIONAL CHAR or NCHAR

For a fixed-length Unicode graphic string of length integer, which can range from 1 through 16383
(16382 if null capable). If the length specification is omitted, a length of 1 is assumed. The CCSID
is 1200.

NATIONAL CHARACTER VARYING (integer) or NATIONAL CHAR VARYING (integer) or NCHAR
VARYING (integer) or NVARCHAR (integer)

For a varying-length Unicode graphic string of maximum length integer, which can range from 1
through 16370 (16369 if null capable). The CCSID is 1200.

NATIONAL CHARACTER LARGE OBJECT (integer[K|M|G]) or NCHAR LARGE OBJECT (integer[K|M|
G]) or NCLOB(integer[K|M|G])
NATIONAL CHARACTER LARGE OBJECT or NCHAR LARGE OBJECT or NCLOB

For a Unicode double-byte character large object string of the specified maximum length.

The maximum length must be in the range of 1 through 1 073 741 823. If the length specification
is omitted, a length of 1 megabyte is assumed. The CCSID is 1200. An NCLOB is not allowed in a
distributed table.

integer
The maximum value for integer is 1 073 741 823. The maximum length of the string is integer.

integer K
The maximum value for integer is 1 028 576. The maximum length of the string is 1024 times
integer.

integer M
The maximum value for integer is 1 024. The maximum length of the string is 1 048 576 times
integer.

integer G
The maximum value for integer is 1. The maximum length of the string is 1 073 741 824 times
integer.

1130 IBM i: Db2 for i SQL Reference

BINARY(integer)
BINARY

For a fixed-length binary string of length integer. The integer can range from 1 through 32766
(32765 if null capable). If the length specification is omitted, a length of 1 is assumed.

BINARY VARYING (integer) or VARBINARY(integer)
For a varying-length binary string of maximum length integer, which can range from 1 through
32740 (32739 if null capable).

BLOB(integer[K|M|G]) or BINARY LARGE OBJECT(integer[K|M|G])
BLOB or BINARY LARGE OBJECT

For a binary large object string of the specified maximum length. The maximum length must be
in the range of 1 through 2 147 483 647. If the length specification is omitted, a length of 1
megabyte is assumed. A BLOB is not allowed in a distributed table.
integer

The maximum value for integer is 2 147 483 647. The maximum length of the string is integer.
integer K

The maximum value for integer is 2 097 152. The maximum length of the string is 1024 times
integer.

integer M
The maximum value for integer is 2 048. The maximum length of the string is 1 048 576 times
integer.

integer G
The maximum value for integer is 2. The maximum length of the string is 1 073 741 824 times
integer.

DATE
For a date.

TIME
For a time.

TIMESTAMP(integer) or TIMESTAMP
For a timestamp. The integer must be between 0 and 12 and specifies the precision of fractional
seconds from 0 (seconds) to 12 (picoseconds). The default is 6 (microseconds).

DATALINK(integer) or DATALINK
For a DataLink of the specified maximum length. The maximum length must be in the range of 1
through 32717. If FOR MIXED DATA or a mixed data CCSID is specified, the range is 4 through
32717. The specified length must be sufficient to contain both the largest expected URL and any
DataLink comment. If the length specification is omitted, a length of 200 is assumed. A DATALINK
is not allowed in a distributed table.

A DATALINK value is an encapsulated value with a set of built-in scalar functions. The DLVALUE
function creates a DATALINK value. The following functions can be used to extract attributes from
a DATALINK value.

• DLCOMMENT
• DLLINKTYPE
• DLURLCOMPLETE
• DLURLPATH
• DLURLPATHONLY
• DLURLSCHEME
• DLURLSERVER

A DataLink cannot be part of any index. Therefore, it cannot be included as a column of a primary
key, foreign key, or unique constraint.

Chapter 7. Statements 1131

ROWID
For a row ID. Only one ROWID column is allowed in a table. A ROWID is not allowed in a
partitioned table.

XML
For an XML document. Only well-formed documents can be inserted into an XML column. The
CCSID for the column cannot be 65535. The maximum length of the column is always 2 147 483
647 bytes.
An XML column has the following restrictions:

• The column cannot be part of any index.
• The column cannot be part of a primary, unique, or foreign key.
• The column cannot be used in a check constraint.
• A default value (WITH DEFAULT) cannot be specified for the column. If the column is nullable,

the default for the column is the null value.
• The column cannot be specified in the distribution clause of a distributed table.
• The column cannot be specified in the partitioning clause of a partitioned table.

distinct-type-name
Specifies that the data type of the column is a distinct type (a user-defined data type). The length,
precision, and scale of the column are respectively the length, precision, and scale of the source
type of the distinct type. If a distinct type name is specified without a schema name, the distinct
type name is resolved by searching the schemas on the SQL path.

ALLOCATE(integer)
Specifies for VARCHAR, VARGRAPHIC, VARBINARY, XML, and LOB types the space to be reserved
for the column in each row. Column values with lengths less than or equal to the allocated value
are stored in the fixed-length portion of the row. Column values with lengths greater than the
allocated value are stored in the variable-length portion of the row and require additional input/
output operations to retrieve. The allocated value may range from 1 to maximum length of the
string, subject to the maximum row buffer size limit. For information about the maximum row
buffer size, see “Maximum row sizes” on page 1164. If FOR MIXED DATA or a mixed data CCSID is
specified, the range is 4 to the maximum length of the string. If the allocated length specification
is omitted, an allocated length of 0 is assumed. For VARGRAPHIC, the integer is the number
of DBCS or Unicode graphic characters. If a constant is specified for the default value and the
ALLOCATE length is less than the length of the default value, the ALLOCATE length is assumed to
be the length of the default value.

FOR BIT DATA
Specifies that the values of the column are not associated with a coded character set and are
never converted. FOR BIT DATA is only valid for CHARACTER or VARCHAR columns. The CCSID of
a FOR BIT DATA column is 65535. FOR BIT DATA is not allowed for CLOB columns.

FOR SBCS DATA
Specifies that the values of the column contain SBCS (single-byte character set) data. FOR SBCS
DATA is the default for CHAR, VARCHAR, and CLOB columns if the default CCSID at the current
server at the time the table is created is not DBCS-capable or if the length of the column is less
than 4. FOR SBCS DATA is only valid for CHARACTER, VARCHAR, or CLOB columns. The CCSID of
FOR SBCS DATA is determined by the default CCSID at the current server at the time the table is
created.

FOR MIXED DATA
Specifies that the values of the column contain both SBCS data and DBCS data. FOR MIXED DATA
is the default for CHAR, VARCHAR, and CLOB columns if the default CCSID at the current server
at the time the table is created is DBCS-capable and the length of the column is greater than 3.
Every FOR MIXED DATA column is a DBCS-open application server field. FOR MIXED DATA is only
valid for CHARACTER, VARCHAR, or CLOB columns. The CCSID of FOR MIXED DATA is determined
by the default CCSID at the current server at the time the table is created.

1132 IBM i: Db2 for i SQL Reference

CCSID integer
Specifies that the values of the column contain data of CCSID integer. If the integer is an SBCS
CCSID, the column is SBCS data. If the integer is a mixed data CCSID, the column is mixed data
and the length of the column must be greater than 3. For character columns, the CCSID must be
an SBCS CCSID or a mixed data CCSID. For graphic columns, the CCSID must be a DBCS, UTF-16,
or UCS-2 CCSID. If a CCSID is not specified for a graphic column, the CCSID is determined by the
default CCSID at the current server at the time the table is created. For XML columns, the CCSID
must not be 65535. If a CCSID is not specified for an XML column, the CCSID is established at
the time the CREATE TABLE is executed according to the SQL_XML_DATA_CCSID QAQQINI option
setting. The default CCSID is 1208. See “XML Values” on page 80 for a description of this option.
For a list of valid CCSIDs, see Appendix E, “CCSID values,” on page 1695.

CCSID 1208 (UTF-8) or 1200 (UTF-16) data can contain combining characters. Combining
character support allows a resulting character to be comprised of more than one character.
After the first character, up to 300 different non-spacing accent characters (umlauts, accent,
etc.) can follow in the data string. If the resulting character is one that is already defined in the
character set, that character has more than one representation. Normalization replaces the string
of combining characters with the hex value of the defined character. This ensures that the same
character is represented in a single consistent way. If normalization is not performed, two strings
that look identical will not compare equal.

NOT NORMALIZED
The data should not be normalized when passed from the application.

NORMALIZED
The data should be normalized when passed from the application.

DEFAULT
Specifies a default value for the column. This clause cannot be specified more than once in a column-
definition. DEFAULT cannot be specified for the following types of columns because Db2 generates
default values:

• a ROWID column
• an identity column (a column that is defined AS IDENTITY)
• a row change timestamp column
• a row-begin column
• a row-end column
• a transaction-start-ID column
• a generated expression column

For an XML column, the default is NULL unless NOT NULL is specified; in that case there is no default.
If a value is not specified following the DEFAULT keyword, then:

• if the column is nullable, the default value is the null value.
• if the column is not nullable, the default depends on the data type of the column:

Data type Default value

Numeric 0

Fixed-length character or graphic
string

Blanks

Fixed-length binary string Hexadecimal zeros

Varying-length string A string length of 0

Date The current date at the time of INSERT

Time The current time at the time of INSERT

Timestamp The current timestamp at the time of INSERT

Chapter 7. Statements 1133

Data type Default value

Datalink A value corresponding to DLVALUE('','URL','')

distinct-type The default value of the corresponding source type of the
distinct type.

Omission of NOT NULL and DEFAULT from a column-definition is an implicit specification of DEFAULT
NULL.

constant
Specifies the constant as the default for the column. The specified constant must represent
a value that could be assigned to the column in accordance with the rules of assignment as
described in “Assignments and comparisons” on page 89. A floating-point constant or decimal
floating-point constant must not be used for a SMALLINT, INTEGER, DECIMAL, or NUMERIC
column. A decimal constant must not contain more digits to the right of the decimal point than the
specified scale of the column.

USER
Specifies the value of the USER special register at the time of INSERT or UPDATE as the default
value of the column. The data type of the column must be CHAR or VARCHAR with a length
attribute that is greater than or equal to the length attribute of the USER special register. The value
of the USER special register is not converted to the CCSID of the column.

NULL
Specifies null as the default for the column. If NOT NULL is specified, DEFAULT NULL must not be
specified within the same column-definition.

NULL is the only default value allowed for a datalink column.

CURRENT_DATE
Specifies the current date as the default for the column. If CURRENT_DATE is specified, the data
type of the column must be DATE or a distinct type based on a DATE.

CURRENT_TIME
Specifies the current time as the default for the column. If CURRENT_TIME is specified, the data
type of the column must be TIME or a distinct type based on a TIME.

CURRENT_TIMESTAMP or CURRENT_TIMESTAMP(integer)
Specifies the current timestamp as the default for the column. If CURRENT_TIMESTAMP is
specified, the data type of the column must be TIMESTAMP or a distinct type based on a
TIMESTAMP. The timestamp precision of the CURRENT_TIMESTAMP special register used as the
default will always match the timestamp precision of the column, regardless of the precision
specified for the special register.

cast-function-name
This form of a default value can only be used with columns defined as a distinct type, BINARY,
VARBINARY, BLOB, CLOB, DBCLOB, DATE, TIME or TIMESTAMP data types. The following table
describes the allowed uses of these cast-functions.

Data Type Cast Function Name

Distinct type N based on a BINARY,
VARBINARY, BLOB, CLOB, or DBCLOB

BINARY, VARBINARY, BLOB, CLOB, or DBCLOB *

Distinct type N based on a DATE, TIME, or
TIMESTAMP

N (the user-defined cast function that was
generated when N was created) **

or
DATE, TIME, or TIMESTAMP *

Distinct type N based on other data types N (the user-defined cast function that was
generated when N was created) **

1134 IBM i: Db2 for i SQL Reference

Data Type Cast Function Name

BINARY, VARBINARY, BLOB, CLOB, or
DBCLOB

BINARY, VARBINARY, BLOB, CLOB, or DBCLOB *

DATE, TIME, or TIMESTAMP DATE, TIME, or TIMESTAMP *

Notes:

* The name of the function must match the name of the data type (or the source type of the
distinct type) with an implicit or explicit schema name of QSYS2.

** The name of the function must match the name of the distinct type for the column. If qualified
with a schema name, it must be the same as the schema name for the distinct type. If not
qualified, the schema name from function resolution must be the same as the schema name for
the distinct type.

constant
Specifies a constant as the argument. The constant must conform to the rules of a constant
for the source type of the distinct type or for the data type if not a distinct type. For BINARY,
VARBINARY, BLOB, CLOB, DBCLOB, DATE, TIME, and TIMESTAMP functions, the constant
must be a string constant.

USER
Specifies the value of the USER special register at the time of INSERT or UPDATE as the
default value for the column. The data type of the source type of the distinct type of the
column must be CHAR or VARCHAR with a length attribute greater than or equal to the length
attribute of the USER special register. The value of the USER special register is not converted
to the CCSID of the column.

CURRENT_DATE
Specifies the current date as the default for the column. If CURRENT_DATE is specified, the
data type of the source type of the distinct type of the column must be DATE.

CURRENT_TIME
Specifies the current time as the default for the column. If CURRENT_TIME is specified, the
data type of the source type of the distinct type of the column must be TIME.

CURRENT_TIMESTAMP or CURRENT_TIMESTAMP(integer)
Specifies the current timestamp as the default for the column. If CURRENT_TIMESTAMP
is specified, the data type of the source type of the distinct type of the column must be
TIMESTAMP. The timestamp precision of the CURRENT_TIMESTAMP special register used
as the default will always match the timestamp precision of the column, regardless of the
precision specified for the special register.

If the value specified is not valid, an error is returned.

GENERATED
Specifies that the database manager generates values for the column. GENERATED may be specified
if the column is to be considered one of the following types of columns:

• an identity column
• a row change timestamp column

GENERATED must be specified if the column is to be considered one of the following types of
columns:

• a row-begin column
• a row-end column
• a transaction-start-ID column
• a generated expression column

Chapter 7. Statements 1135

It may also be specified if the data type of the column is a ROWID (or a distinct type that is based on a
ROWID). Otherwise, it must not be specified. GENERATED must not be specified with default-clause in
a column definition.
ALWAYS

Specifies that the database manager will always generate a value for the column when a row is
inserted or updated and a default value must be generated. ALWAYS is the recommended value.

BY DEFAULT
Specifies that the database manager will generate a value for the column when a row is inserted
or updated and a default value must be generated, unless an explicit value is specified.

For a ROWID column, the database manager uses a specified value, but it must be a valid unique
row ID value that was previously generated by the database manager or Db2 for i.

For an identity column or row change timestamp column, the database manager inserts or
updates a specified value but does not verify that it is a unique value for the column unless
the identity column or row change timestamp column has a unique constraint or a unique index
that solely specifies the identity column or row change timestamp column.

AS IDENTITY
Specifies that the column is an identity column for the table. A table can have only one identity
column. An identity column is not allowed in a distributed table. AS IDENTITY can be specified only
if the data type for the column is an exact numeric type with a scale of zero (SMALLINT, INTEGER,
BIGINT, DECIMAL, or NUMERIC with a scale of zero, or a distinct type based on one of these data
types). If a DECIMAL or NUMERIC data type is specified, the precision must not be greater than 31.

An identity column is implicitly NOT NULL.

START WITH numeric-constant
Specifies the first value that is generated for the identity column. The value can be any positive or
negative value that could be assigned to the column without non-zero digits existing to the right of
the decimal point.

If a value is not explicitly specified when the identity column is defined, the default is the
MINVALUE for an ascending sequence and the MAXVALUE for a descending sequence. This
value is not necessarily the value that a sequence would cycle to after reaching the maximum
or minimum value of the sequence. The START WITH clause can be used to start a sequence
outside the range that is used for cycles. The range used for cycles is defined by MINVALUE and
MAXVALUE.

INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the identity column. The value must not
exceed the value of a large integer constant without any non-zero digits existing to the right of the
decimal point. The value must be assignable to the column. The default is 1.

If the value is zero or positive, the sequence of values for the identity column ascends. If the value
is negative, the sequence of values descends.

MAXVALUE or MINVALUE
Specifies the maximum value at which an ascending identity column either cycles or stops
generating values, or a descending identity column cycles to after reaching the minimum value.
MAXVALUE numeric-constant

Specifies the numeric constant that is the maximum value that is generated for this identity
column. This value can be any positive or negative value that could be assigned to this column,
but the value must be greater than the minimum value.

If a value is not explicitly specified when the identity column is defined, this is the maximum
value of the data type for an ascending sequence; or the START WITH value, or -1 if START
WITH was not specified, for a descending sequence.

1136 IBM i: Db2 for i SQL Reference

MINVALUE numeric-constant
Specifies the numeric constant that is the minimum value that is generated for this identity
column. This value can be any positive or negative value that could be assigned to this column,
but the value must be less than the maximum value.

If a value is not explicitly specified when the identity column is defined, this is the START
WITH value, or 1 if START WITH was not specified, for an ascending sequence; or the
minimum value of the data type (and precision, if DECIMAL) for a descending sequence.

CACHE or NO CACHE
Specifies whether to keep some preallocated values in memory. Preallocating and storing values
in the cache improves the performance of inserting rows into a table.
CACHE integer

Specifies the number of values of the identity column sequence that the database manager
preallocates and keeps in memory. The minimum value that can be specified is 2, and the
maximum is the largest value that can be represented as an integer. The default is 20.

In certain situations, such as system failure, all cached identity column values that have not
been used in committed statements are lost, and thus, will never be used. The value specified
for the CACHE option is the maximum number of identity column values that could be lost in
these situations.

NO CACHE
Specifies that values for the identity column are not preallocated.

CYCLE or NO CYCLE
Specifies whether this identity column should continue to generate values after reaching either
the maximum or minimum value of the sequence.
CYCLE

Specifies that values continue to be generated for this column after the maximum or minimum
value has been reached. If this option is used, after an ascending sequence reaches the
maximum value of the sequence, it generates its minimum value. After a descending sequence
reaches its minimum value of the sequence, it generates its maximum value. The maximum
and minimum values for the column determine the range that is used for cycling.

When CYCLE is in effect, duplicate values can be generated by the database manager for an
identity column. If a unique constraint or unique index exists on the identity column, and a
non-unique value is generated for it, an error occurs.

NO CYCLE
Specifies that values will not be generated for the identity column once the maximum or
minimum value for the sequence has been reached. This is the default.

ORDER or NO ORDER
Specifies whether the identity values must be generated in order of request.
ORDER

Specifies that the values are generated in order of request.
NO ORDER

Specifies that the values do not need to be generated in order of request. This is the default.
FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP

Specifies that the column is a timestamp and the values will be generated by the database manager.
The database manager generates a value for the column for each row as a row is inserted, and for
every row in which any column is updated. The value generated for a row change timestamp column is
a timestamp corresponding to the time of the insert or update of the row. If multiple rows are inserted
with a single SQL statement, the value for the row change timestamp column may be different for
each row to reflect when each row was inserted. The generated value is not guaranteed to be unique.
A table can have only one row change timestamp column. If data-type is specified, it must be a
TIMESTAMP with a precision of 6 or a distinct type based on a TIMESTAMP with a precision of 6. A row
change timestamp column cannot have a DEFAULT clause and must be NOT NULL.

Chapter 7. Statements 1137

AS ROW BEGIN
Specifies that the column contains timestamp data and that the values are generated by the database
manager. The database manager generates a value for the column for each row as the row is
inserted, and for every row in which any column is updated. The generated value is a timestamp
that corresponds to the start time that is associated with the most recent transaction. If multiple rows
are inserted with a single SQL statement, the values for the transaction start timestamp column are
the same for each row.
For a system-period temporal table, the database manager ensures uniqueness of the generated
values for a row-begin column across transactions. The timestamp value might be adjusted to ensure
that rows inserted into an associated history table have the end timestamp value greater than the
begin timestamp value. This can happen when a conflicting transaction is updating the same row
in the system-period temporal table. The SYSTIME_PERIOD_ADJ QAQQINI option must be set to
*ADJUST for this adjustment to the timestamp value to occur. If multiple rows are inserted or updated
within a single SQL transaction and an adjustment is not needed, the values for the row-begin column
are the same for all the rows and are unique from the values generated for the column for another
transaction.
A row-begin column is intended to be used for a system-period temporal table and is required as
the first column of a SYSTEM_TIME period. A table can have only one row-begin column. If data-type
is not specified, the column is defined as a TIMESTAMP(12). If data-type is specified, it must be
TIMESTAMP(12). It cannot be a distinct type. The column cannot have a DEFAULT clause and must be
defined as NOT NULL. A row-begin column is not updatable.

AS ROW END
Specifies that a value for the data type of the column is assigned by the database manager
whenever a row is inserted or any column in the row is updated. The assigned value is
TIMESTAMP ’9999-12-30-0.00.00.000000000000’. For a system-period temporal table, when a row
is deleted, the value of the row-end column in the historical row reflects when the row was deleted. If
multiple rows are deleted with a single SQL statement, the values for the column in the historical rows
are the same.
A row-end column is intended to be used for a system-period temporal table and is required as the
second column of a SYSTEM_TIME period. A table can have only one row-end column. If data-type
is not specified, the column is defined as TIMESTAMP(12). If data-type is specified, it must be
TIMESTAMP(12). It cannot be a distinct type. The column cannot have a DEFAULT clause and must be
defined as NOT NULL. A row-end column is not updatable.

AS TRANSACTION START ID
Specifies that the value is assigned by the database manager whenever a row is inserted into the
table or any column in the row is updated. The database manager assigns a unique timestamp value
per transaction or the null value. The null value is assigned to the transaction-start-ID column if the
column is nullable and if there is a row-begin column in the table for which the value did not need
to be adjusted. Otherwise the value is generated using a reading of the time-of-day clock during
execution of the first data change statement in the transaction that requires a value to be assigned to
a row-begin column or transaction-start-ID column in the table, or a row in a system-period temporal
table is deleted. If multiple rows are inserted or updated within a single SQL transaction, the values
for the transaction-start-ID column are the same for all the rows and are unique from the values
generated for the column for another transaction.
A transaction-start-ID column is intended to be used for a system-period temporal table and is
required for a system-period temporal table. A table can have only one transaction-start-ID column.
If data-type is not specified, the column is defined as TIMESTAMP(12). If data-type is specified it
must be TIMESTAMP(12). It cannot be a distinct type. A transaction-start-ID column cannot have a
DEFAULT clause. A transaction-start-ID column is not updatable.

DATA CHANGE OPERATION
Specifies that the database manager generates a value for each row that is inserted, for every row
in which any column is updated, and for all rows deleted from a system-period temporal table when
the history table is defined with ON DELETE ADD EXTRA ROW. The column will contain one of the
following values:

1138 IBM i: Db2 for i SQL Reference

I
insert operation

U
update operation

D
delete operation

If data-type is not specified, the column is defined as CHAR(1). If data-type is specified it must be
CHAR(1). It cannot be a distinct type. The column cannot have a DEFAULT clause or a field procedure.

special-register
Specifies that the value of a special register is assigned by the database manager for each row that is
inserted, for every row in which any column is updated, and for all rows deleted from a system-period
temporal table when the history table is defined with ON DELETE ADD EXTRA ROW. The value of the
special register at the time of the data change statement is used. If multiple rows are changed with a
single SQL statement, the value for the column will be the same for all of the rows.
data-type must be defined according to the following table. It cannot be a distinct type.

Special register Data type for the column

CURRENT CLIENT_ACCTNG VARCHAR(255)

CURRENT CLIENT_APPLNAME VARCHAR(255)

CURRENT CLIENT_PROGRAMID VARCHAR(255)

CURRENT CLIENT_USERID VARCHAR(255)

CURRENT CLIENT_WRKSTNNAME VARCHAR(255)

CURRENT SERVER VARCHAR(18)

SESSION_USER VARCHAR(128)

USER VARCHAR(18)

The column cannot have a DEFAULT clause or a field procedure.
built-in-global-variable

Specifies that the value of a built-in global variable is assigned by the database manager for each
row that is inserted, for every row in which any column is updated, and for all rows deleted from a
system-period temporal table when the history table is defined with ON DELETE ADD EXTRA ROW.
The value of the built-in global variable at the time of the data change statement is used. If multiple
rows are changed with a single SQL statement, the value for the column will be the same for all of the
rows.
data-type must be defined according to the following table. It cannot be a distinct type.

Built-in global variable Data type for the column

QSYS2.JOB_NAME VARCHAR(28)

QSYS2.SERVER_MODE_JOB_NAME VARCHAR(28)

SYSIBM.CLIENT_HOST VARCHAR(255)

SYSIBM.CLIENT_IPADDR VARCHAR(128)

SYSIBM.CLIENT_PORT INTEGER

SYSIBM.PACKAGE_NAME VARCHAR(128)

SYSIBM.PACKAGE_SCHEMA VARCHAR(128)

SYSIBM.PACKAGE_VERSION VARCHAR(64)

Chapter 7. Statements 1139

Built-in global variable Data type for the column

SYSIBM.ROUTINE_SCHEMA VARCHAR(128)

SYSIBM.ROUTINE_SPECIFIC_NAME VARCHAR(128)

SYSIBM.ROUTINE_TYPE CHAR(1)

The column cannot have a DEFAULT clause or a field procedure.
NOT NULL

Prevents the column from containing null values. Omission of NOT NULL implies that the column
can be null. NOT NULL is required for a row change timestamp column, a row-begin column, and a
row-end column.

NOT HIDDEN
Indicates the column is included in implicit references to the table in SQL statements. This is the
default.

IMPLICITLY HIDDEN
Indicates the column is not visible in SQL statements unless it is referred to explicitly by name. For
example, SELECT * does not include any hidden columns in the result. A table must contain at least
one column that is not IMPLICITLY HIDDEN.

period-definition
PERIOD FOR

Defines a period for the table.
SYSTEM_TIME (begin-column-name, end-column-name)

Defines a system period with the name SYSTEM_TIME. There must not be a column in the table
with the name SYSTEM_TIME. A table can have only one SYSTEM_TIME period.

begin-column-name
Identifies the column that records the beginning of the period of time in which a row is valid. The
name must identify a column that exists in the table. begin-column-name must not be the same as
end-column-name. begin-column-name must be defined as AS ROW BEGIN.

end-column-name
Identifies the column that records the end of the period of time in which a row is valid. In the
history table that is associated with a system-period temporal table, the history table column that
corresponds to end-column-name in the system-period temporal table is set to reflect the deletion
of the row. The name must identify a column that exists in the table. end-column-name must be
defined as AS ROW END.

column-constraint
CONSTRAINT constraint-name

Names the constraint. A constraint-name must not identify a constraint that was previously
specified in the CREATE TABLE statement and must not identify a constraint that already exists at
the current server.

If the clause is not specified, a unique constraint name is generated by the database manager.

PRIMARY KEY
Provides a shorthand method of defining a primary key composed of a single column. Thus, if
PRIMARY KEY is specified in the definition of column C, the effect is the same as if the PRIMARY
KEY(C) clause is specified as a separate clause.

This clause must not be specified in more than one column definition and must not be specified
at all if the UNIQUE clause is specified in the column definition. The column must not be a LOB,
DATALINK, or XML column. If a sort sequence is specified, the column must not contain a field
procedure.

When a primary key is added, a CHECK constraint is implicitly added to enforce the rule that the
NULL value is not allowed in the column that makes up the primary key.

1140 IBM i: Db2 for i SQL Reference

UNIQUE
Provides a shorthand method of defining a unique constraint composed of a single column. Thus,
if UNIQUE is specified in the definition of column C, the effect is the same as if the UNIQUE (C)
clause is specified as a separate clause.

This clause cannot be specified more than once in a column definition and must not be specified if
PRIMARY KEY is specified in the column definition. The column must not be a LOB, DATALINK, or
XML column. If a sort sequence is specified, the column must not contain a field procedure.

references-clause
The references-clause of a column-definition provides a shorthand method of defining a foreign
key composed of a single column. Thus, if a references-clause is specified in the definition of
column C, the effect is the same as if that references-clause were specified as part of a FOREIGN
KEY clause in which C is the only identified column. The references-clause is not allowed if the
table is a declared global temporary table, a distributed table, or a history table. The column
cannot be a row change timestamp column.

CHECK(check-condition)
The CHECK(check-condition) of a column-definition provides a shorthand method of defining
a check constraint whose check-condition only references a single column. Thus, if CHECK is
specified in the column definition of column C, no columns other than C can be referenced in the
check-condition of the check constraint. The effect is the same as if the check constraint were
specified as a separate clause.

If ON INSERT VIOLATION or ON UPDATE VIOLATION is specified, column C must be referenced in
these clauses.

ROWID, XML, and DATALINK with FILE LINK CONTROL columns cannot be referenced in a CHECK
constraint. For additional restrictions, see “check-constraint” on page 1151.

FIELDPROC
Designates an external-program-name as the field procedure exit routine for the column. It must be
an ILE program that does not contain SQL. It cannot be a service program.
The field procedure encodes and decodes column values. Before a value is inserted in the column, it is
passed to the field procedure for encoding. Before a value from the column is used, it is passed to the
field procedure for decoding.
The field procedure is also invoked during the processing of the CREATE TABLE statement. When so
invoked, the procedure provides Db2 with the column's field description. The field description defines
the data characteristics of the encoded values. By contrast, the information supplied for the column in
the CREATE TABLE statement defines the data characteristics of the decoded values.
constant

Specifies a parameter that is passed to the field procedure when it is invoked. A parameter list is
optional.

A field procedure cannot be defined for a column that is a ROWID or DATALINK or a distinct
type based on a ROWID or DATALINK. The column must not be an identity column, a row change
timestamp column, a row-begin column, a row-end column, a transaction-start-ID column, or a
generated expression column. The column must not have a default value of CURRENT DATE,
CURRENT TIME, CURRENT TIMESTAMP, or USER. The nullability attribute of the encoded and
decoded form of the field must match. The column cannot be referenced in a check condition, unless
it is referenced in a NULL predicate. If it is part of a foreign key, the corresponding parent key column
must use the same field procedure. See SQL Programming for more details on how to create a field
procedure.

datalink-options
Specifies the options associated with a DATALINK data type.
LINKTYPE URL

Defines the type of link as a Uniform Resource Locator (URL).

Chapter 7. Statements 1141

NO LINK CONTROL
Specifies that there will not be any check made to determine that the linked files exist. Only the
syntax of the URL will be checked. There is no database manager control over the linked files.

FILE LINK CONTROL
Specifies that a check should be made for the existence of the linked files. Additional options may
be used to give the database manager further control over the linked files.

If FILE LINK CONTROL is specified, each file can only be linked once. That is, its URL can only be
specified in a single FILE LINK CONTROL column in a single table.

file-link-options
Additional options to define the level of database manager control of the linked files.
INTEGRITY

Specifies the level of integrity of the link between a DATALINK value and the actual file.
ALL

Any file specified as a DATALINK value is under the control of the database manager and
may NOT be deleted or renamed using standard file system programming interfaces.

READ PERMISSION
Specifies how permission to read the file specified in a DATALINK value is determined.
FS

The read access permission is determined by the file system permissions. Such files can
be accessed without retrieving the file name from the column.

DB
The read access permission is determined by the database. Access to the file will only
be allowed by passing a valid file access token, returned on retrieval of the DATALINK
value from the table, in the open operation. If READ PERMISSION DB is specified, WRITE
PERMISSION BLOCKED must be specified.

WRITE PERMISSION
Specifies how permission to write to the file specified in a DATALINK value is determined.
FS

The write access permission is determined by the file system permissions. Such files can
be accessed without retrieving the file name from the column.

BLOCKED
Write access is blocked. The file cannot be directly updated through any interface. An
alternative mechanism must be used to perform updates to the information. For example,
the file is copied, the copy updated, and then the DATALINK value updated to point to the
new copy of the file.

RECOVERY
Specifies whether the database manager will support point in time recovery of files referenced
by values in this column.
NO

Specifies that point in time recovery will not be supported.
ON UNLINK

Specifies the action taken on a file when a DATALINK value is changed or deleted (unlinked).
Note that this is not applicable when WRITE PERMISSION FS is used.
RESTORE

Specifies that when a file is unlinked, the DataLink File Manager will attempt to return the
file to the owner with the permissions that existed at the time the file was linked. In the
case where the user is no longer registered with the file server, the result depends on
the file system that contains the files. If the files are in the AIX® file system, the owner is
"dfmunknown". If the files are in IFS, the owner is QDLFM. This can only be specified when
INTEGRITY ALL and WRITE PERMISSION BLOCKED are also specified.

1142 IBM i: Db2 for i SQL Reference

DELETE
Specifies that the file will be deleted when it is unlinked. This can only be specified when
READ PERMISSION DB and WRITE PERMISSION BLOCKED are also specified.

MODE DB2OPTIONS
This mode defines a set of default file link options. The defaults defined by DB2OPTIONS are:

• INTEGRITY ALL
• READ PERMISSION FS
• WRITE PERMISSION FS
• RECOVERY NO

Chapter 7. Statements 1143

LIKE
table-name or view-name

Specifies that the columns of the table have exactly the same name and description as the columns
of the identified table (table-name) or view (view-name). The name must identify a table or view that
exists at the current server.

The use of LIKE is an implicit definition of n columns, where n is the number of columns in the
identified table or view. The implicit definition includes the following attributes of the n columns (if
applicable to the data type):

• Column name (and system column name)
• Data type, length, precision, and scale
• CCSID
• FIELDPROC (only copied for table-name)

If the LIKE clause is specified immediately following the table-name and not enclosed in parenthesis,
the following column attributes are also included, otherwise they are not included (the default
value, identity, row change timestamp, and hidden attributes can also be controlled by using the
copy-options):

• Default value, if a table-name is specified (view-name is not specified)
• Nullability
• Hidden attributes
• Column heading and text (see “LABEL” on page 1407)

Any REFFLD information for the column will be copied to the new column definition.

If table-name contains a row change timestamp column, row-begin column, row-end column,
transaction-start-ID column, or a generated expression column, the corresponding column of the new
table inherits only the data type of the source column. The new column is not considered a generated
column.

The implicit definition does not include any other optional attributes of the identified table or view.
For example, the new table does not automatically include primary keys, foreign keys, triggers, or a
period. The new table has these and other optional attributes only if the optional clauses are explicitly
specified.

If the specified table or view is a non-SQL created physical file or logical file, any non-SQL attributes
are removed. For example, the date and time format will be changed to ISO.

copy-options
INCLUDING IDENTITY COLUMN ATTRIBUTES or EXCLUDING IDENTITY COLUMN ATTRIBUTES

Specifies whether identity column attributes are inherited.
INCLUDING IDENTITY COLUMN ATTRIBUTES

Specifies that the table inherits the identity attribute, if any, of the columns resulting from select-
statement, table-name, or view-name. In general, the identity attribute is copied if the element of
the corresponding column in the table, view, or select-statement is the name of a table column or
the name of a view column that directly or indirectly maps to the name of a base table column
with the identity attribute. If the INCLUDING IDENTITY COLUMN ATTRIBUTES clause is specified
with the AS select-statement clause, the columns of the new table do not inherit the identity
attribute in the following cases:

• The select list of the select-statement includes multiple instances of an identity column name
(that is, selecting the same column more than once).

• The select list of the select-statement includes multiple identity columns (that is, a join returned
more than one identity column).

1144 IBM i: Db2 for i SQL Reference

• The identity column is included in an expression in the select list.
• The select-statement includes a set operation (UNION or INTERSECT).

If INCLUDING IDENTITY is not specified, the table will not have an identity column.

EXCLUDING IDENTITY COLUMN ATTRIBUTES
Specifies that the table does not inherit the identity attribute, if any, of the columns resulting from
the fullselect, table-name, or view-name.

EXCLUDING COLUMN DEFAULTS or INCLUDING COLUMN DEFAULTS or USING TYPE DEFAULTS
Specifies whether column defaults are inherited.
EXCLUDING COLUMN DEFAULTS

Specifies that the column defaults are not inherited from the definition of the source table. The
default values of the column of the new table are either null or there are no default values. If the
column can be null, the default is the null value. If the column cannot be null, there is no default
value, and an error occurs if a value is not provided for a column on INSERT for the new table.

INCLUDING COLUMN DEFAULTS
Specifies that the table inherits the default values of the columns resulting from the select-
statement, table-name, or view-name. In general, the default values are copied if the element
of the corresponding column in the table, view, or select-statement is the name of a table column
or the name of a view column that directly or indirectly maps to the name of a base table column
with a default value. A default value is the value assigned to a column when a value is not
specified on an INSERT.

Do not specify INCLUDING COLUMN DEFAULTS if you specify USING TYPE DEFAULTS.

If INCLUDING COLUMN DEFAULTS is not specified, the default values are not inherited.

USING TYPE DEFAULTS
Specifies that the default values for the table depend on the data type of the columns that result
from the select-statement, table-name, or view-name. If the column is nullable, then the default
value is the null value. Otherwise, the default value is as follows:

Data type Default value

Numeric 0

Fixed-length character or graphic
string

Blanks

Fixed-length binary string Hexadecimal zeros

Varying-length string A string length of 0

Date The current date at the time of INSERT

Time The current time at the time of INSERT

Timestamp The current timestamp at the time of INSERT

Datalink A value corresponding to DLVALUE('','URL','')

XML There is no default value

distinct-type The default value of the corresponding source type of the
distinct type.

Do not specify USING TYPE DEFAULTS if INCLUDING COLUMN DEFAULTS is specified.

INCLUDING IMPLICITLY HIDDEN COLUMN ATTRIBUTES or EXCLUDING IMPLICITLY HIDDEN
COLUMN ATTRIBUTES

Specifies whether implicitly hidden columns are inherited.

Chapter 7. Statements 1145

INCLUDING IMPLICITLY HIDDEN COLUMN ATTRIBUTES
Specifies that the table inherits implicitly hidden columns from select-statement, table-name, or
view-name and those columns will be defined with the implicitly hidden attribute in the new table.

If INCLUDING IMPLICITLY HIDDEN COLUMN ATTRIBUTES is not specified, the table will not have
any implicitly hidden columns.

EXCLUDING IMPLICITLY HIDDEN COLUMN ATTRIBUTES
Specifies that the table does not inherit implicitly hidden columns from the fullselect, table-name,
or view-name.

INCLUDING ROW CHANGE TIMESTAMP COLUMN ATTRIBUTES or EXCLUDING ROW CHANGE
TIMESTAMP COLUMN ATTRIBUTES

Specifies whether the row change timestamp attribute is inherited.
INCLUDING ROW CHANGE TIMESTAMP COLUMN ATTRIBUTES

Specifies that the table inherits the row change timestamp attribute, if any, of the columns
resulting from select-statement, table-name, or view-name. In general, the row change timestamp
attribute is copied if the element of the corresponding column in the table, view, or select-
statement is the name of a table column or the name of a view column that directly or indirectly
maps to the name of a base table column with the row change timestamp attribute. If the
INCLUDING ROW CHANGE TIMESTAMP COLUMN ATTRIBUTES clause is specified with the AS
select-statement clause, the columns of the new table do not inherit the row change timestamp in
the following cases:

• The select list of the select-statement includes multiple instances of a row change timestamp
column name (that is, selecting the same column more than once).

• The select list of the select-statement includes multiple row change timestamp columns (that is,
a join returned more than one row change timestamp column).

• The row change timestamp column is included in an expression in the select list.
• The select-statement includes a set operation (UNION or INTERSECT).

If INCLUDING ROW CHANGE TIMESTAMP COLUMN ATTRIBUTES is not specified, the table will not
have a row change timestamp column.

EXCLUDING ROW CHANGE TIMESTAMP COLUMN ATTRIBUTES
Specifies that the table does not inherit the row change timestamp attribute, if any, of the columns
resulting from the fullselect, table-name, or view-name.

1146 IBM i: Db2 for i SQL Reference

as-result-table
column-name

Names a column in the table. If a list of column names is specified, it must consist of as many names
as there are columns in the result table of the select-statement. Each column-name must be unique
and unqualified. If a list of column names is not specified, the columns of the table inherit the names
of the columns of the result table of the select-statement.

A list of column names must be specified if the result table of the select-statement has duplicate
column names or an unnamed column. An unnamed column is a column derived from a constant,
function, expression, or set operation (UNION or INTERSECT) that is not named using the AS clause of
the select list.

FOR COLUMN system-column-name
Provides an IBM i name for the column. Do not use the same name for more than one column of the
table or for a column-name of the table.

If the system-column-name is not specified, and the column-name is not a valid system-column-name,
a system column name is generated. For more information about how system column names are
generated, see “Rules for Table Name Generation” on page 1167.

select-statement
Specifies that the columns of the table have the same name and description as the columns that
would appear in the derived result table of the select-statement if the select-statement were to be
executed. The use of AS (select-statement) is an implicit definition of n columns for the table, where n
is the number of columns that would result from the select-statement.

The implicit definition includes the following attributes of the n columns (if applicable to the data
type):

• Column name (and system column name)
• Data type, length, precision, and scale
• CCSID
• Nullability
• FIELDPROC
• Column heading and text (see “LABEL” on page 1407)

The following attributes are not included (some attributes can be included by using the copy-options):

• Default value
• Hidden attribute
• Identity attributes
• Row change timestamp attribute
• Row-begin, row-end, and transaction-start-ID
• Generated expression

The implicit definition does not include any other optional attributes of the identified table or view. For
example, the new table does not automatically include a primary key or foreign key from a table. The
new table has these and other optional attributes only if the optional clauses are explicitly specified.

Any column in the select-clause that is either a direct reference to a column in another table or view
or uses only a CAST to change the result attributes will have REFFLD information generated for the
definition in the file object.

The select-statement must not reference variables, but may reference global variables.

The select-statement must not contain a PREVIOUS VALUE or a NEXT VALUE expression. The UPDATE,
SKIP LOCKED DATA, and USE AND KEEP EXCLUSIVE LOCKS clauses may not be specified.

Chapter 7. Statements 1147

If the select-statement contains an isolation-clause the isolation level specified in the isolation-clause
applies to the entire SQL statement.

WITH DATA
Specifies that the select-statement is executed. After the table is created, the result table rows of the
select-statement are automatically inserted into the table.

WITH NO DATA
Specifies that the select-statement is used only to define the attributes of the new table. The table is
not populated using the results of the select-statement.

1148 IBM i: Db2 for i SQL Reference

unique-constraint
CONSTRAINT constraint-name

Names the constraint. A constraint-name must not identify a constraint that was previously specified
in the CREATE TABLE statement and must not identify a constraint that already exists at the current
server.

If the clause is not specified, a unique constraint name is generated by the database manager.

PRIMARY KEY(column-name,…)
Defines a primary key composed of the identified columns. A table can only have one primary key.
Thus, this clause cannot be specified more than once and cannot be specified at all if the shorthand
form has been used to define a primary key for the table. The identified columns cannot be the
same as the columns specified in another UNIQUE constraint specified earlier in the CREATE TABLE
statement. For example, PRIMARY KEY(A,B) would not be allowed if UNIQUE (B,A) had already been
specified.

Each column-name must be an unqualified name that identifies a column of the table. The same
column must not be identified more than once. The column must not be a LOB, DATALINK, or XML
column. If a sort sequence is specified, the column must not contain a field procedure. The number of
identified columns must not exceed 120, and the sum of their byte counts must not exceed 32766-n,
where n is the number of columns specified that allow nulls. For information about byte-counts see
Table 91 on page 1165.

The unique index is created as part of the system physical file, not a separate system logical file. When
a primary key is added, a CHECK constraint is implicitly added to enforce the rule that the NULL value
is not allowed in any of the columns that make up the primary key.

UNIQUE (column-name,…)
Defines a unique constraint composed of the identified columns. The UNIQUE clause can be specified
more than once. The identified columns cannot be the same as the columns specified in another
UNIQUE constraint or PRIMARY KEY that was specified earlier in the CREATE TABLE statement. For
determining if a unique constraint is the same as another constraint specification, the column lists are
compared. For example, UNIQUE (A,B) is the same as UNIQUE (B,A).

Each column-name must be an unqualified name that identifies a column of the table. The same
column must not be identified more than once. The column must not be a LOB, DATALINK, or XML
column. If a sort sequence is specified, the column must not contain a field procedure. The number of
identified columns must not exceed 120, and the sum of their byte counts must not exceed 32766-n,
where n is the number of columns specified that allows nulls. For information about byte-counts see
Table 91 on page 1165.

A unique index on the identified column is created during the execution of the CREATE TABLE
statement. The unique index is created as part of the system physical file, not as a separate system
logical file.

referential-constraint
CONSTRAINT constraint-name

Names the constraint. A constraint-name must not identify a constraint that was previously specified
in the CREATE TABLE statement and must not identify a constraint that already exists at the current
server.

If the clause is not specified, a unique constraint name is generated by the database manager.

FOREIGN KEY
Each specification of the FOREIGN KEY clause defines a referential constraint. FOREIGN KEY is not
allowed if the table is a declared global temporary table or a distributed table.
(column-name,…)

The foreign key of the referential constraint is composed of the identified columns. Each column-
name must be an unqualified name that identifies a column of the table. The same column must

Chapter 7. Statements 1149

not be identified more than once. The column must not be a LOB, DATALINK, or XML column and
must not be a row change timestamp column. If a sort sequence is specified, the column must not
contain a field procedure. The number of identified columns must not exceed 120, and the sum
of their lengths must not exceed 32766-n, where n is the number of columns specified that allow
nulls.

REFERENCES table-name
The table-name specified in a REFERENCES clause must identify the table being created or a
base table that already exists at the application server, but it must not identify a catalog table, a
declared temporary table, a distributed table, or a history table. If the parent is a partitioned table,
the unique index that enforces the parent unique constraint must be non-partitioned.

A referential constraint is a duplicate if its foreign key, parent key, and parent table are the same
as the foreign key, parent key, and parent table of a previously specified referential constraint.
Duplicate referential constraints are allowed, but not recommended.

Let T2 denote the identified parent table and let T1 denote the table being created.

The specified foreign key must have the same number of columns as the parent key of T2. The
description of the nth column of the foreign key and the description of the nth column of that
parent key must have identical data types, lengths, CCSIDs, and FIELDPROCs.

(column-name,…)
The parent key of the referential constraint is composed of the identified columns. Each
column-name must be an unqualified name that identifies a column of T2. The same column
must not be identified more than once. The column must not be a LOB, DATALINK, or XML
column and must not be a row change timestamp column. If a sort sequence is specified, the
column must not contain a field procedure. The number of identified columns must not exceed
120, and the sum of their byte counts must not exceed 32766-n, where n is the number of
columns specified that allow nulls. For information about byte-counts see Table 91 on page
1165.

The list of column names must be identical to the list of column names in the primary key of
T2 or a UNIQUE constraint that exists on T2. The names need not be specified in the same
order as in the primary key; however, they must be specified in corresponding order to the list
of columns in the foreign key clause. If a column name list is not specified, then T2 must have
a primary key. Omission of the column name list is an implicit specification of the columns of
that primary key.

The referential constraint specified by a FOREIGN KEY clause defines a relationship in which T2 is
the parent and T1 is the dependent.

ON DELETE
Specifies what action is to take place on the dependent tables when a row of the parent table is
deleted. There are five possible actions:

• NO ACTION (default)
• RESTRICT
• CASCADE
• SET NULL
• SET DEFAULT

SET NULL must not be specified unless some column of the foreign key allows null values.

CASCADE must not be specified if T1 contains a DataLink column with FILE LINK CONTROL.

The delete rule applies when a row of T2 is the object of a DELETE or propagated delete operation
and that row has dependents in T1. Let p denote such a row of T2.

• If RESTRICT or NO ACTION is specified, an error occurs and no rows are deleted.
• If CASCADE is specified, the delete operation is propagated to the dependents of p in T1.

1150 IBM i: Db2 for i SQL Reference

• If SET NULL is specified, each nullable column of the foreign key of each dependent of p in T1
is set to null. SET NULL is not allowed if the dependent table is a partitioned table and a foreign
key column is also a partitioning key.

• If SET DEFAULT is specified, each column of the foreign key of each dependent of p in T1 is set
to its default value. SET DEFAULT is not allowed if the dependent table is a partitioned table
and a foreign key column is also a partitioning key unless the default keeps the row in the same
partition.

ON UPDATE
Specifies what action is to take place on the dependent tables when a row of the parent table is
updated.

The update rule applies when a row of T2 is the object of an UPDATE or propagated update
operation and that row has dependents in T1. Let p denote such a row of T2.

• If RESTRICT or NO ACTION is specified, an error occurs and no rows are updated.

check-constraint
CONSTRAINT constraint-name

Names the check constraint. A constraint-name must not identify a constraint that was previously
specified in the CREATE TABLE statement and must not identify a constraint that already exists at the
current server.

If the clause is not specified, a unique constraint name is generated by the database manager.

CHECK (check-condition)
Defines a check constraint. At any time, the check-condition must be true or unknown for every row of
the table.

The check-condition is a search-condition except:

• It can only refer to columns of the table
• The result of any expression in the check-condition cannot be a ROWID, XML, or DATALINK with FILE

LINK CONTROL data type.
• It must not contain any of the following:

– Subqueries
– Aggregate functions
– Variables
– Global variables
– Parameter markers
– Sequence-references
– Complex expressions that contain LOBs (such as concatenation)
– OLAP specifications
– ROW CHANGE expressions
– IS JSON, JSON_EXISTS, or REGEXP_LIKE predicates
– Special registers
– User-defined functions other than functions that were implicitly generated with the creation of a

distinct type
– The following built-in scalar functions:

ATAN2 DLURLPATHONLY LOCATE_IN_STRING RPAD

BSON_TO_JSON DLURLSCHEME LPAD SCORE

CARDINALITY DLURLSERVER MAX_CARDINALITY SOUNDEX

CONTAINS DLVALUE MONTHNAME TABLE_NAME

Chapter 7. Statements 1151

CURDATE ENCRYPT_AES MONTHS_BETWEEN TABLE_SCHEMA

CURTIME ENCRYPT_RC2 NEXT_DAY TIMESTAMP_FORMAT

DATAPARTITIONNAME ENCRYPT_TDES NOW TIMESTAMPDIFF

DATAPARTITIONNUM GENERATE_UNIQUE OVERLAY TRUNC_TIMESTAMP

DAYNAME GETHINT RAISE_ERROR VARCHAR_FORMAT

DBPARTITIONNAME IDENTITY_VAL_LOCAL RAND VERIFY_GROUP_FOR_USER

DECRYPT_BINARY INSERT REGEXP_COUNT WEEK_ISO

DECRYPT_BIT INTERPRET REGEXP_INSTR WRAP

DECRYPT_CHAR JSON_ARRAY REGEXP_REPLACE XMLPARSE

DECRYPT_DB JSON_OBJECT REGEXP_SUBSTR XMLVALIDATE

DIFFERENCE JSON_QUERY REPEAT XSLTRANSFORM

DLURLCOMPLETE 1 JSON_TO_BSON REPLACE

DLURLPATH JSON_VALUE ROUND_TIMESTAMP

1 For DataLinks with an attribute of FILE LINK CONTROL and READ PERMISSION DB.

ON INSERT VIOLATION
Specifies the action to take if the check-condition is false for a row being inserted. If this clause is not
specified, an error will occur if the check-condition is false for an insert.
SET column-name = DEFAULT

The default value for column-name is inserted into the table instead of the value provided by the
insert operation.

column-name must be referenced in the check-condition.

ON UPDATE VIOLATION
Specifies the action to take if the check-condition is false for a row being updated. If this clause is not
specified, an error will occur if the check-condition is false for an update.
PRESERVE column-name

The current value for column-name remains in the table rather than being replaced by the value
provided by the update operation.

column-name must be referenced in the check-condition.

For more information about search-condition, see “Search conditions” on page 227. For more information
about check constraints involving LOB data types and expressions, see the Database Programming topic
collection.

1152 IBM i: Db2 for i SQL Reference

NOT LOGGED INITIALLY
Any changes made to the table by INSERT, DELETE, or UPDATE statements in the same unit of work after
the table is created by this statement are not logged (journaled).

At the completion of the current unit of work, the NOT LOGGED INITIALLY attribute is deactivated and all
operations that are done on the table in subsequent units of work are logged (journaled).

The NOT LOGGED INITIALLY option is useful for situations where a large result set needs to be created
with data from an alternate source (another table or a file) and recovery of the table is not necessary.
Using this option will save the overhead of logging (journaling) the data.

ACTIVATE NOT LOGGED INITIALLY is ignored if the table has a DATALINK column with FILE LINK
CONTROL.

VOLATILE or NOT VOLATILE
Indicates to the optimizer whether the cardinality of table table-name can vary significantly at run time.
Volatility applies to the number of rows in the table, not to the table itself. The default is NOT VOLATILE.

VOLATILE
Specifies that the cardinality of table-name can vary significantly at run time, from empty to large. To
access the table, the optimizer will typically use an index, if possible.

NOT VOLATILE
Specifies that the cardinality of table-name is not volatile. Access plans that reference this table will
be based on the cardinality of the table at the time the access plan is built. NOT VOLATILE is the
default.

RCDFMT
Indicates the record format name of the table.

RCDFMT format-name
An unqualified name that designates the IBM i record format name of the table. A format-name is a
system identifier.

If a record format name is not specified, the format-name is the same as the system-object-name of
the table.

media-preference
Specifies the preferred storage media for the table or partition.

UNIT ANY
No storage media is preferred. Storage for the table or partition will be allocated from any available
storage media. If UNIT ANY is specified on the table, any media-preference that is specified on a
partition is used.

UNIT SSD
Solid state disk storage media is preferred. Storage for the table or partition may be allocated from
solid state disk storage media, if available. If UNIT SSD is specified on the table, any media-preference
specified on a partition is ignored.

memory-preference
KEEP IN MEMORY

Specifies whether the data for the table should be brought into a main storage pool when the data is
used in a query.
NO

The data will not be brought into a main storage pool.

Chapter 7. Statements 1153

YES
The data will be brought into a main storage pool.

ON REPLACE
Specifies the action to take when replacing a table that exists at the current server. This option is ignored
if an existing table is not being replaced.

PRESERVE ALL ROWS
Current rows of the specified table will be preserved. PRESERVE ALL ROWS is not allowed if WITH
DATA is specified with result-table-as.

All rows of all partitions in a partitioned table are preserved. If the new table definition is a range
partitioned table, the defined ranges must be able to contain all the rows from the existing partitions.

If a column is dropped, the column values will not be preserved. If a column is altered, the column
values may be modified.

If the table is not a partitioned table or is a hash partitioned table, PRESERVE ALL ROWS and
PRESERVE ROWS are equivalent.

PRESERVE ROWS
Current rows of the specified table will be preserved. PRESERVE ROWS is not allowed if WITH DATA is
specified with result-table-as.

If a partition of a range partitioned table is dropped, the rows of that partition will be deleted without
processing any delete triggers. To determine if a partition of a range partitioned table is dropped,
the range definitions and the partition names (if any) of the partitions in the new table definition are
compared to the partitions in the existing table definition. If either the specified range or the name of
a partition matches, it is preserved. If a partition does not have a partition-name, its boundary-spec
must match an existing partition.

If a partition of a hash partition table is dropped, the rows of that partition will be preserved.

If a column is dropped, the column values will not be preserved. If a column is altered, the column
values may be modified.

DELETE ROWS
Current rows of the specified table will be deleted. Any existing DELETE triggers are not fired.
DELETE ROWS is not allowed if the table is a system-period temporal table or a history table.

distribution-clause
IN NODEGROUP nodegroup-name

Specifies the nodegroup across which the data in the table will be distributed. The name must identify
a nodegroup that exists at the current server. If this clause is specified, the table is created as a
distributed table across all the systems in the nodegroup.

A LOB, DATALINK, XML, or IDENTITY column is not allowed in a distributed table.

The DB2 Multisystem product must be installed to create a distributed table. For more information
about distributed tables, see the Db2 Multisystem topic collection.

DISTRIBUTE BY HASH (column-name,…)
Specifies the partitioning key. The partitioning key is used to determine on which node in the
nodegroup a row will be placed. Each column-name must be an unqualified name that identifies a
column of the table. The same column must not be identified more than once. If the DISTRIBUTE BY
clause is not specified, the first column of the primary key is used as the partitioning key. If there is no
primary key, the first column of the table that is not floating point, date, time, or timestamp is used as
the partitioning key.

The columns that make up the partitioning key must be a subset of the columns that make up any
unique constraints over the table. Floating point, date, time, timestamp, LOB, XML, DataLink, ROWID,
and columns that have a field procedure cannot be used in a partitioning key.

1154 IBM i: Db2 for i SQL Reference

partitioning-clause
PARTITION BY RANGE

Specifies that ranges of column values are used to determine the target data partition when inserting
a row into the table. The number of partitions must not exceed 256.
partition-expression

Specifies the key data over which the range is defined to determine the target data partition of the
data.
column-name

Identifies a column in the data partitioning key. The partitioning key is used to determine into
which partition in the table a row will be placed. The column-name must be an unqualified
name that identifies a column of the table. The same column must not be identified more than
once.

LOB, XML, DataLink, ROWID, row change timestamp columns, identity columns, and any
column with a field procedure cannot be used in a partitioning key.

The number of identified columns must not exceed 120. The sum of length attributes of the
columns must not be greater than 2000.

NULLS LAST
Indicates that null values compare high.

NULLS FIRST
Indicates that null values compare low.

partition-element
Specifies ranges for a data partitioning key.
PARTITION partition-name

Names the data partition. The name must not be the same as any other data partition for the
table.

If the clause is not specified, a unique partition name is generated by the database manager.

boundary-spec
Specifies the boundaries of a range partition. If more than one partition key is specified, the
boundaries must be specified in ascending sequence. The ranges must not overlap.
starting-clause

Specifies the low end of the range for a data partition. The number of specified starting
values must be the same as the number of columns in the partitioning key. If a starting-
clause is not specified for the first boundary-spec, the default is MINVALUE INCLUSIVE for
each column of the partitioning key. If a starting-clause is not specified for a subsequent
boundary-spec, the previous adjacent boundary-spec must contain an ending-clause. The
default is the same as that ending-clause except that the INCLUSIVE or EXCLUSIVE
attribute is reversed.
STARTING FROM

Introduces the starting-clause.
constant

Specifies a constant that must conform to the rules of a constant for the data type
of the corresponding column of the partition key. If the corresponding column of
the partition key is a distinct type, the constant must conform to the rules of the
source type of the distinct type. The value must not be in the range of any other
boundary-spec for the table.

MINVALUE
Specifies a value that is lower than the lowest possible value for the data
type of the column-name to which it corresponds. If MINVALUE is specified, all
subsequent values in the starting-clause must also be MINVALUE.

Chapter 7. Statements 1155

MAXVALUE
Specifies a value that is greater than the greatest possible value for the data
type of the column-name to which it corresponds. If MAXVALUE is specified, all
subsequent values in the ending-clause must also be MAXVALUE.

INCLUSIVE
Indicates that the specified range values are included in the data partition.

EXCLUSIVE
Indicates that the specified range values are excluded from the data partition. This
specification is ignored when MINVALUE or MAXVALUE is specified.

ending-clause
Specifies the high end of the range for a data partition. The number of specified ending
values must be the same as the number of columns in the data partitioning key. An
ending-clause must be specified for the last boundary-spec. If an ending-clause is not
specified for a previous boundary-spec, the next adjacent boundary-spec must contain a
starting-clause. The default is the same as that starting-clause except that the INCLUSIVE
or EXCLUSIVE attribute is reversed.
ENDING AT

Introduces the ending-clause.
constant

Specifies a constant that must conform to the rules of a constant for the data type
of the corresponding column of the partition key. If the corresponding column of
the partition key is a distinct type, the constant must conform to the rules of the
source type of the distinct type. The value must not be in the range of any other
boundary-spec for the table.

MINVALUE
Specifies a value that is lower than the lowest possible value for the data
type of the column-name to which it corresponds. If MINVALUE is specified, all
subsequent values in the starting-clause must also be MINVALUE.

MAXVALUE
Specifies a value that is greater than the greatest possible value for the data
type of the column-name to which it corresponds. If MAXVALUE is specified, all
subsequent values in the ending-clause must also be MAXVALUE.

INCLUSIVE
Indicates that the specified range values are included in the data partition.

EXCLUSIVE
Indicates that the specified range values are excluded from the data partition. This
specification is ignored when MINVALUE or MAXVALUE is specified.

EVERY integer-constant
Specifies that multiple data partitions will be added where integer-constant specifies the width
of each data partition range. If EVERY is specified, only a single SMALLINT, INTEGER, BIGINT,
DECIMAL, NUMERIC, DATE, or TIMESTAMP column can be specified for the partition key.

The starting value of the first data partition is the specified STARTING value. The starting value
of each subsequent partition is the starting value of the previous partition + integer-constant.
If the starting-clause specified EXCLUSIVE, the starting value of every partition is EXCLUSIVE.
Otherwise, the starting value of every partition is INCLUSIVE.

The ending value of every partition of the range is (the partition's start value + integer-
constant). If the ending-clause specified EXCLUSIVE, the ending value of the last partition
is EXCLUSIVE. Otherwise, the ending value of the last partition is INCLUSIVE. The ending
values of the other partitions is EXCLUSIVE if the starting value is INCLUSIVE. Otherwise, the
ending values of the other partitions is INCLUSIVE.

1156 IBM i: Db2 for i SQL Reference

The number of partitions added is determined by adding integer-constant repeatedly to the
STARTING value until the ENDING value is reached. For example:

 CREATE TABLE FOO
 (A INT)
 PARTITION BY RANGE(A)
 (STARTING(1) ENDING(10) EVERY(2))

is equivalent to the following CREATE TABLE statement:

 CREATE TABLE FOO
 (A INT)
 PARTITION BY RANGE(A)
 (STARTING(1) ENDING(2),
 STARTING(3) ENDING(4),
 STARTING(5) ENDING(6),
 STARTING(7) ENDING(8),
 STARTING(9) ENDING(10))

In the case of dates and timestamps, the EVERY value must be a labeled duration. For
example:

 CREATE TABLE FOO
 (A DATE)
 PARTITION BY RANGE(A)
 (STARTING('2001-01-01') ENDING('2010-01-01') EVERY(3 MONTHS))

PARTITION BY HASH
Specifies that the hash function is used to determine the target data partition when inserting a row
into the table.
(column-name,…)

Specifies the partitioning key. The partitioning key is used to determine into which partition in
the table a row will be placed. Each column-name must be an unqualified name that identifies a
column of the table. The same column must not be identified more than once.

Floating point, LOB, XML, date, time, timestamp, DataLink, ROWID, identity columns, and columns
with a field procedure cannot be used in a partitioning key.

INTO integer PARTITIONS
Specifies the number of partitions. The number of partitions must not exceed 256.

Chapter 7. Statements 1157

materialized-query-definition
column-name

Names a column in the table. If a list of column names is specified, it must consist of as many names
as there are columns in the result table of the select-statement. Each column-name must be unique
and unqualified. If a list of column names is not specified, the columns of the table inherit the names
of the columns of the result table of the select-statement.

A list of column names must be specified if the result table of the select-statement has duplicate
column names or an unnamed column. An unnamed column is a column derived from a constant,
function, expression, or set operation (UNION or INTERSECT) that is not named using the AS clause of
the select list.

FOR COLUMN system-column-name
Provides an IBM i name for the column. Do not use the same name for more than one column of the
table or for a column-name of the table.

If the system-column-name is not specified, and the column-name is not a valid system-column-name,
a system column name is generated. For more information about how system column names are
generated, see “Rules for Table Name Generation” on page 1167.

select-statement
Specifies that the columns of the table have the same name and description as the columns that
would appear in the derived result table of the select-statement if the select-statement were to be
executed. The use of AS (select-statement) is an implicit definition of n columns for the table, where n
is the number of columns that would result from the select-statement.

The implicit definition includes the following attributes of the n columns (if applicable to the data
type):

• Column name (and system column name)
• Data type, length, precision, and scale
• CCSID
• Nullability
• FIELDPROC
• Column heading and text (see “LABEL” on page 1407)

The following attributes are not included:

• Default value
• Hidden attribute
• Identity attributes
• Row change timestamp attribute
• Row-begin, row-end, and transaction-start-ID
• Generated expression

The implicit definition does not include any other optional attributes of the identified table or view. For
example, the new table does not automatically include a primary key or foreign key from a table. The
new table has these and other optional attributes only if the optional clauses are explicitly specified.

The select-statement must not refer to variables or global variables, or include parameter markers. If
an expression in the SELECT clause of the select-statement is not a column name, then the expression
must not reference a column with a field procedure.

The select-statement must not contain a PREVIOUS VALUE or a NEXT VALUE expression. The UPDATE,
SKIP LOCKED DATA, and USE AND KEEP EXCLUSIVE LOCKS clauses may not be specified.

1158 IBM i: Db2 for i SQL Reference

refreshable-table-options
Specifies that the table is a materialized query table and the REFRESH TABLE statement can be used
to populate the table with the results of the select-statement.

A materialized query table whose select-statement contains a GROUP BY clause is summarizing data
from the tables referenced in the select-statement. Such a materialized query table is also known as a
summary table. A summary table is a specialized type of materialized query table.

When a materialized query table is defined, the following select-statement restrictions apply:

• The select-statement cannot contain a reference to another materialized query table or to a view
that refers to a materialized query table.

• The select-statement cannot contain a reference to a declared temporary table, a table in QTEMP, a
program-described file, or a non-SQL logical file in the FROM clause.

• The select-statement cannot contain a data-change-file-reference.
• The select-statement cannot contain a reference to a view that references another materialized

query table or a declared temporary table. When a materialized query table is defined with ENABLE
QUERY OPTIMIZATION, the select-statement cannot contain a reference to a view that contains one
of the restrictions from the following paragraph.

• The select-statement cannot contain an expression with a DataLink or a distinct type based on a
DataLink where the DataLink is FILE LINK CONTROL.

• The select-statement cannot contain a result column that is a not an SQL data type, such as binary
with precision, DBCS-ONLY, or DBCS-EITHER.

When a materialized query table is defined with ENABLE QUERY OPTIMIZATION, the following
additional select-statement restrictions apply:

• Must not include any special registers.
• Must not include any non-deterministic functions.
• The ORDER BY clause is allowed, but is only used by REFRESH. It may improve locality of reference

of data in the materialized query table.
• If the subselect references a view, the select-statement in the view definition must satisfy the

preceding restrictions.

DATA INITIALLY DEFERRED
Specifies that the data is not inserted into the materialized query table when it is created. Use the
REFRESH TABLE statement to populate the materialized query table, or use the INSERT statement
to insert data into a materialized query table.

DATA INITIALLY IMMEDIATE
Specifies that the data is inserted into the materialized query table when it is created.

REFRESH DEFERRED
Specifies that the data in the table can be refreshed at any time using the REFRESH TABLE
statement. The data in the table only reflects the result of the query as a snapshot at the time
when the REFRESH TABLE statement is processed or when it was last updated.

MAINTAINED BY USER
Specifies that the materialized query table is maintained by the user. The user can use INSERT,
DELETE, UPDATE, or REFRESH TABLE statements on the table.

ENABLE QUERY OPTIMIZATION or DISABLE QUERY OPTIMIZATION
Specifies whether this materialized query table can be used for optimization. The default is
ENABLE QUERY OPTIMIZATION.
ENABLE QUERY OPTIMIZATION

Specifies that the materialized query table can be used for query optimization. If the select-
statement specified does not satisfy the restrictions for query optimization, an error is
returned.

Chapter 7. Statements 1159

DISABLE QUERY OPTIMIZATION
Specifies that the materialized query table cannot be used for query optimization. The table
can still be queried directly.

If row level or column level access control is activated for any table that is directly or indirectly referenced
in the select-statement, row access control is implicitly activated for the table being created. This restricts
direct access to the contents of the materialized query table. A query that explicitly references the table
will return a warning that there is no data in the table. To provide access to the materialized query table,
an appropriate row permission can be created or an ALTER TABLE DEACTIVATE ROW ACCESS CONTROL
on the materialized query table can be issued to remove the row level protection if that is appropriate.

Notes
Table attributes: Tables are created as physical files. When a table is created, the file wait time and
record wait time attributes are set to the default that is specified on the WAITFILE and WAITRCD
keywords of the Create Physical File (CRTPF) command.

SQL tables are created so that space used by deleted rows will be reclaimed by future insert requests.
This attribute can be changed via the command CHGPF and specifying the REUSEDLT(*NO) parameter. For
more information about the CHGPF command, see CL Reference.

A distributed table is created on all of the servers across which the table is distributed. For more
information about distributed tables, see Db2 Multisystem.

Table journaling: When a table is created, journaling may be automatically started.

• If a data area called QDFTJRN exists in the same schema that the table is created into and the user is
authorized to the data area, journaling will be started to the journal named in the data area if all the
following are true:

– The identified schema for the table must not be QSYS, QSYS2, QRECOVERY, QSPL, QRCL, QRPLOBJ,
QGPL, QTEMP, SYSIBM, or any of the iASP equivalents to these libraries.

– The journal specified in the data area must exist and the user must be authorized to start journaling
to the journal.

– The first 10 bytes of the data area must contain the name of the schema in which to find the journal.
– The second 10 bytes must contain the name of the journal.
– The remaining bytes contain the object types being implicitly journaled and the options that affect

when implicit journaling is performed. The object type must include the value *FILE or *ALL. The
value *NONE can be used to prevent journaling from being started.

For more information, see Journal Management.
• If the table is created into a schema that has specified (using the STRJRNLIB command) that journaling

should implicitly be started.
• If a data area called QDFTJRN does not exist in the same schema that the table is created into or the

user is not authorized to the data area and the schema has not specified that journaling should be
started, journaling will be started to a journal called QSQJRN if it exists in the same schema that the
table is created into.

Table ownership: If SQL names were specified:

• If a user profile with the same name as the schema into which the table is created exists, the owner of
the table is that user profile.

• Otherwise, the owner of the table is the user profile or group user profile of the thread executing the
statement.

If system names were specified, the owner of the table is the user profile or group user profile of the
thread executing the statement.

Table authority: If SQL names are used, tables are created with the system authority of *EXCLUDE to
*PUBLIC. If system names are used, tables are created with the authority to *PUBLIC as determined by
the create authority (CRTAUT) parameter of the schema.

1160 IBM i: Db2 for i SQL Reference

If the owner of the table is a member of a group profile (GRPPRF keyword) and group authority is
specified (GRPAUT keyword), that group profile will also have authority to the table.

REPLACE rules: When a table is recreated by REPLACE using PRESERVE ROWS, the new definition of the
table is compared to the old definition and logically, for each difference between the two, a corresponding
ALTER operation is performed. When the DELETE ROWS option is used, the table is logically dropped
and recreated; as long as objects dependent on the table remain valid, any modification is allowed. For
more information see Table 86 on page 912 in ALTER TABLE. For columns, constraints, and partitions, the
comparisons are performed based on their names and attributes.

Column names and system column names can be changed by modifying either the column name or the
system column name, leaving the other name unchanged. If neither name matches an existing column, a
new column is created. The existence of another object dependent on a column name may prevent the
name change.

New definition vs existing definition Equivalent ALTER TABLE action

Column

Column exists in both and the attributes are the
same

No change

Column exists in both and the attributes are
different

ALTER COLUMN

Column exists only in new table definition ADD COLUMN

Column exists only in existing table definition DROP COLUMN RESTRICT

Constraint

Constraint exists in both and is the same No change

Constraint exists in both and is different DROP constraint RESTRICT and ADD constraint

Constraint exists only in new table definition ADD constraint

Constraint exists only in existing table definition DROP constraint RESTRICT

materialized-query-definition

materialized-query-definition exists in both and is
the same

No change

materialized-query-definition exists in both and is
different

ALTER MATERIALIZED QUERY

materialized-query-definition exists only in new
table definition

ADD MATERIALIZED QUERY

materialized-query-definition exists only is existing
table definition

DROP MATERIALIZED QUERY

partitioning-clause

partitioning-clause exists in both and is the same No change

partitioning-clause exists in both and is different ADD PARTITION, DROP PARTITION, and ALTER
PARTITION

partitioning-clause exists only in new table
definition

ADD partitioning-clause

partitioning-clause exists only in existing table
definition

DROP PARTITIONING

PERIOD

Chapter 7. Statements 1161

New definition vs existing definition Equivalent ALTER TABLE action

PERIOD exists in both and is the same No change

PERIOD exists only in new table definition ALTER ADD PERIOD

PERIOD exists only in existing table definition ALTER DROP PERIOD
A period cannot be dropped if the table
is a system-period temporal table

NOT LOGGED INITIALLY

NOT LOGGED INITIALLY exists in both No change

NOT LOGGED INITIALLY exists only in new table
definition

NOT LOGGED INITIALLY

NOT LOGGED INITIALLY exists only in existing
table definition

Logged initially

VOLATILE

VOLATILE attribute exists in both and is the same No change

VOLATILE attribute exists only in new table
definition

VOLATILE

VOLATILE attribute exists only in existing table
definition

NOT VOLATILE

media-preference

media-preference exists in both and is the same No change

media-preference exists only in new table
definition

ALTER media-preference

media-preference exists only in existing table
definition

UNIT ANY

memory-preference

memory-preference exists in both and is the same No change

memory-preference exists only in new table
definition

ALTER memory-preference

memory-preference exists only in existing table
definition

KEEP IN MEMORY NO

Any attributes that cannot be specified in the CREATE TABLE statement are preserved:

• Authorized users are maintained. The object owner could change.
• Current journal auditing is preserved. However, unlike other objects, REPLACE of a table will generate a

ZC (change object) journal audit entry.
• Current data journaling is preserved.
• Comments and labels and column headings are preserved unless the REPLACE uses the AS clause.
• Triggers are preserved, if possible. If it is not possible to preserve a trigger, an error is returned.
• Masks and permissions are preserved, if possible. If it is not possible to preserve a mask or permission,

an error is returned.
• Temporal table VERSIONING and the history table are preserved.

1162 IBM i: Db2 for i SQL Reference

• Any views, materialized query tables, and indexes dependent on the table will be preserved or
recreated, if possible. If it is not possible to preserve a dependent view, materialized query table, or
index, an error is returned.

Using an identity column: When a table has an identity column, the database manager can automatically
generate sequential numeric values for the column as rows are inserted into the table. Thus, identity
columns are ideal for primary keys.

Identity columns and ROWID columns are similar in that both types of columns contain values that
the database manager generates. ROWID columns can be useful in direct-row access. ROWID columns
contain values of the ROWID data type, which returns a 40-byte VARCHAR value that is not regularly
ascending or descending. ROWID data values are therefore not well suited to many application uses, such
as generating employee numbers or product numbers. For data that does not require direct-row access,
identity columns are usually a better approach, because identity columns contain existing numeric data
types and can be used in a wide variety of uses for which ROWID values would not be suitable.

When a table is recovered to a point-in-time (using RMVJRNCHG), it is possible that a large gap in the
sequence of generated values for the identity column might result. For example, assume a table has an
identity column that has an incremental value of 1 and that the last generated value at time T1 was 100
and the database manager subsequently generates values up to 1000. Now, assume that the table is
recovered back to time T1. The generated value of the identity column for the next row that is inserted
after the recovery completes will be 1001, leaving a gap from 100 to 1001 in the values of the identity
column.

When CYCLE is specified duplicate values for a column may be generated even when the column is
GENERATED ALWAYS, unless a unique constraint or unique index is defined on the column.

Creating materialized query tables: To ensure that the materialized query table has data before being
used by a query:

• DATA INITIALLY IMMEDIATE should be used to create materialized query tables, or
• the materialized query table should be created with query optimization disabled and then enable the

table for query optimization after it is refreshed.

The isolation level at the time when the CREATE TABLE statement is executed is the isolation level for the
materialized query table. The isolation-clause can be used to explicitly specify the isolation level.

Considerations for implicitly hidden columns: A column that is defined as implicitly hidden is not part of
the result table of a query that specifies * in a SELECT list. However, an implicitly hidden column can be
explicitly referenced in a query. For example, an implicitly hidden column can be referenced in the SELECT
list or in a predicate in a query. Additionally, an implicitly hidden column can be explicitly referenced
in a COMMENT statement, CREATE INDEX statement, ALTER TABLE statement, INSERT statement,
MERGE statement, or UPDATE statement. An implicitly hidden column can be referenced in a referential
constraint. A REFERENCES clause that does not contain a column list refers implicitly to the primary key
of the parent table. It is possible that the primary key of the parent table includes a column defined as
implicitly hidden. Such a referential constraint is allowed.

If the SELECT list of the fullselect of a materialized query definition explicitly refers to an implicitly hidden
column, that column will be part of the materialized query table.

If the SELECT list of the fullselect of a view definition (CREATE VIEW statement) explicitly refers to an
implicitly hidden column, that column will be part of the view, however the view column is not considered
'hidden'.

Considerations for transaction-start-ID columns: A transaction-start-ID column contains a null value if
the column allows null values and there is a row-begin column and the value of the row-begin column is
unique from values for row-begin columns generated for other transactions. Given that the column may
contain null values, it is recommended that one of the following methods be used when retrieving a value
from the column:

COALESCE (transaction_start_id_col, row_begin_col)

CASE WHEN transaction_start_id_col IS NOT NULL

Chapter 7. Statements 1163

 THEN transaction_start_id_col
 ELSE row_begin_col END

Defining a system-period temporal table: A system-period temporal table definition includes the
following:

• A system period named SYSTEM_TIME, which is defined using a row-begin column and a row-end
column. See the descriptions of AS ROW BEGIN, AS ROW END, and period-definition.

• A transaction-start-ID column. See the description of AS TRANSACTION START ID.
• A system-period data versioning definition specified on a subsequent ALTER TABLE statement that
specifies the ADD VERSIONING clause, which includes the name of the associated history table. See
“ADD VERSIONING USE HISTORY TABLE history-table-name” on page 902.

Partitioned table performance: The larger the number of partitions in a partitioned table, the greater the
overhead in SQL data change and SQL data statements. You should create a partitioned table with the
minimum number of partitions that are required to minimize this overhead. It is also highly recommended
that a parallelism degree greater than one be considered when accessing a partitioned table.

Creating a table using a remote select-statement: The select-statement for an as-result-table can refer
to tables on a different server than where the table is being created. This can be done by using a
three-part object name or an alias that is defined to reference a three-part name of a table or view. The
select-statement cannot be for a materialized query table and the result cannot contain a column that
has a field procedure defined. If the remote server is Db2 for LUW or Db2 for z/OS, copy-options are not
allowed. If the remote server is Db2 for LUW, a column list should be explicitly specified before the AS
keyword.

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• INLINE LENGTH is a synonym for ALLOCATE.
• constraint-name (without the CONSTRAINT keyword) may be specified following the FOREIGN KEY

keywords in a referential-constraint
• DEFINITION ONLY is a synonym for WITH NO DATA
• PARTITIONING KEY is a synonym for DISTRIBUTE BY HASH.
• PART is a synonym for PARTITION.
• PARTITION partition-number may be specified instead of PARTITION partition-name. A partition-

number must not identify a partition that was previously specified in the CREATE TABLE statement.

If a partition-number is not specified, a unique partition number is generated by the database manager.
• VALUES is a synonym for ENDING AT.
• SUMMARY between CREATE and TABLE when creating a materialized query table.

Maximum row sizes
There are two maximum row size restrictions referred to in the description of column-definition.

• The maximum row buffer size is 32766 or, if a VARCHAR, VARGRAPHIC, VARBINARY, LOB, or XML
column is specified, 32740.

• The maximum row data size is 3 758 096 383 if a LOB or XML column is specified; this size is
determined when a row is inserted or updated. If a LOB or XML column is not specified, then the
maximum row data size is 32766 or, if a VARCHAR, VARGRAPHIC, or VARBINARY column is specified,
32740.

To determine the length of a row buffer and row data or both, add the corresponding length of each
column of that row based on the byte counts of the data type.

The follow table gives the byte counts of columns by data type for columns that do not allow null values.
If any column allows null values, one byte is required for every eight columns. A column that has a field
procedure could have a different count based on the result of the field procedure.

1164 IBM i: Db2 for i SQL Reference

Table 91. Byte Counts of Columns by Data Type

Data Type Row Buffer Byte Count Row Data Byte Count

SMALLINT 2 2

INTEGER 4 4

BIGINT 8 8

DECIMAL(p, s) The integral part of (p/2) + 1 The integral part of (p/2) + 1

NUMERIC(p, s) p p

FLOAT (single precision) 4 4

FLOAT (double precision) 8 8

DECFLOAT(16) 8 8

DECFLOAT(34) 16 16

CHAR(n) n n

VARCHAR(n) n+2 n+2

CLOB(n) 29+pad n+29

GRAPHIC(n) n*2 n*2

VARGRAPHIC (n) n*2+2 n*2+2

DBCLOB(n) 29+pad n*2+29

BINARY(n) n n

VARBINARY(n) n+2 n+2

BLOB(n) 29+pad n+29

DATE 10 4

TIME 8 3

TIMESTAMP(p) when p is 0, 19; otherwise 20+p The integral part of ((p+1)/2) + 7

DATALINK(n) n+24 n+24

ROWID 42 28

XML 29+pad 2 147 483 647

distinct-type The byte count for the source
type.

The byte count for the source
type.

Notes:

pad is a value from 1 to 15 necessary for boundary alignment.

Precision as described to the database:
• Floating-point fields are defined in the Db2 for i database with a decimal precision, not a bit precision.

The algorithm used to convert the number of bits to decimal is decimal precision = CEILING(n/3.31),
where n is the number of bits to convert. The decimal precision is used to determine how many digits to
display using interactive SQL.

• SMALLINT fields are stored with a decimal precision of 4,0.
• INTEGER fields are stored with a decimal precision of 9,0.

Chapter 7. Statements 1165

• BIGINT fields are stored with a decimal precision of 19,0.

LONG VARCHAR, LONG VARGRAPHIC, and LONG VARBINARY
The non-standard syntax of LONG VARCHAR, LONG VARGRAPHIC, and LONG VARBINARY is supported,
but deprecated. The alternative standard syntax of VARCHAR(integer), VARGRAPHIC(integer), and
VARBINARY(integer) is preferred. VARCHAR(integer), VARGRAPHIC(integer), and VARBINARY(integer) are
recommended. After the CREATE TABLE statement is processed, the database manager considers a
LONG VARCHAR column to be VARCHAR, a LONG VARGRAPHIC column to be VARGRAPHIC, and a LONG
VARBINARY column to be VARBINARY. The maximum length is calculated in a product-specific fashion
that is not portable.

LONG VARCHAR 101

For a varying length character string whose maximum length is determined by the amount of space
available in the row.

LONG VARGRAPHIC 101

For a varying length graphic string whose maximum length is determined by the amount of space
available in the row.

LONG VARBINARY 101

For a varying length binary string whose maximum length is determined by the amount of space
available in the row.

The maximum length of a LONG column is determined as follows. Let:

• i be the sum of the row buffer byte counts of all columns in the table that are not LONG VARCHAR,
LONG VARGRAPHIC, or LONG VARBINARY

• j be the number of LONG VARCHAR, LONG VARGRAPHIC, and LONG VARBINARY columns in the table
• k be the number of columns in the row that allow nulls.

The length of each LONG VARCHAR and LONG VARBINARY column is INTEGER((32716 - i-((k+7)/8))/j).

The length of each LONG VARGRAPHIC column is determined by taking the length calculated for a LONG
VARCHAR column and dividing it by 2. The integer portion of the result is the length.

Rules for System Name Generation
There are specific instances when the system generates a system table, view, index, or column name.
These instances and the name generation rules are described in the following sections.

Rules for Column Name Generation
A system-column-name is generated if the system-column-name is not specified when a table or view is
created and the column-name is not a valid system-column-name.

If the column-name does not contain special characters and is longer than 10 characters, a 10-character
system-column-name will be generated as:

• The first 5 characters of the name
• A 5 digit unique number

For example:

The system-column-name for LONGCOLUMNNAME would be LONGC00001

If the column name is delimited:

• The first 5 characters from within the delimiters will be used as the first 5 characters of the system-
column-name. If there are fewer than 5 characters within the delimiters, the name will be padded on

101 This option is provided for compatibility with other products. It is recommended that VARCHAR(integer),
VARGRAPHIC(integer), or VARBINARY(integer) be specified instead.

1166 IBM i: Db2 for i SQL Reference

the right with underscore (_) characters. Lower case characters are folded to upper case characters. The
only valid characters in a system-column-name are: A-Z, 0-9, @, #, $, and _. Any other characters will
be changed to the underscore (_) character. If the first character ends up as an underscore, it will be
changed to the letter Q.

• A 5 digit unique number is appended to the 5 characters.

For example:

 The system-column-name for "abc" would be ABC__00001
 The system-column-name for "COL2.NAME" would be COL2_00001
 The system-column-name for "C 3" would be C_3__00001
 The system-column-name for "??" would be Q____00001
 The system-column-name for "*column1" would be QCOLU00001

Rules for Table Name Generation
A system name will be generated if a table, view, alias, or index is created without using the FOR SYSTEM
NAME clause and has either:

• A name longer than 10 characters
• A name that contains characters not valid in a system name

The SQL name or its corresponding system name may both be used in SQL statements to access the file
once it is created. However, the SQL name is only recognized by Db2 for i and the system name must be
used in other environments.

There are two separate methods for generating the system name:

• If a data area with the name QGENOBJNAM exists in the same schema that the table is created into, the
user can influence the generated name.

The data area is subject to the following restrictions:

– The user must be authorized to read the data area.
– The data area must have an attribute of CHAR(10).
– The first 5 characters of the data area value must be '?????'.
– The next 5 characters of the data area value must contain 5 numeric digits.

If any of the above conditions are not satisfied or any error occurs while accessing the starting value in
the data area, the default name generation rules will be used as if the data area did not exist at all.

If the data area meets all of the restrictions above, the generated name will be the same as if the default
name generation rules below except that after the first 5 (or 4) characters of the name, the unique
number will initially contain the 5 digits specified in the data area (instead of '00001' or '0001').

For example, if the value of the data area was '?????00999':

 The system name for "??" would be "__00999"
 The system name for "longtablename" would be "lon00999"
 The system name for "LONGTableName" would be LONG00999
 The system name for "A b " would be "A_b00999"

• Otherwise, the default name generation rules are used:

If the name does not contain special characters and is longer than 10 characters, a 10-character system
name will be generated as:

– The first 5 characters of the name
– A 5 digit unique number

For example:

 The system name for LONGTABLENAME would be LONGT00001

If the SQL name contains special characters, the system name is generated as:

Chapter 7. Statements 1167

– The first 4 characters of the name
– A 4 digit unique number

In addition:

– All special characters are replaced by the underscore (_)
– Any trailing blanks are removed from the name
– The name is delimited by double quotes (") if the delimiters are required for the name to be a valid

system name.

For example:

 The system name for "??" would be "__0001"
 The system name for "longtablename" would be "long0001"
 The system name for "LONGTableName" would be LONG0001
 The system name for "A b " would be "A_b0001"

SQL ensures the system name is unique by searching the cross reference file. If the name already exists
in the cross reference file, the number is incremented until the name is no longer a duplicate.

If a unique name cannot be determined using the above rules, an additional character is added to the
counter in the name, and the number is incremented until a unique name can be found or the range
is exhausted. For example, if creating "longtablename" and names "long0001" through "long9999"
already exist, the name would become "lon00001".

Examples
Example 1: Given database administrator authority, create a table named ‘ROSSITER.INVENTORY' with
the following columns:

Part number
Small integer, must not be null

Description
Character of length 0 to 24, allows nulls

Quantity on hand,
Integer allows nulls

 CREATE TABLE ROSSITER.INVENTORY
 (PARTNO SMALLINT NOT NULL,
 DESCR VARCHAR(24),
 QONHAND INT)

Example 2: Create a table named DEPARTMENT with the following columns:

Department number
Character of length 3, must not be null

Department name
Character of length 0 through 36, must not be null

Manager number
Character of length 6

Administrative dept.
Character of length 3, must not be null

Location name
Character of length 16, allows nulls

The primary key is column DEPTNO.

 CREATE TABLE DEPARTMENT
 (DEPTNO CHAR(3) NOT NULL,
 DEPTNAME VARCHAR(36) NOT NULL,
 MGRNO CHAR(6),
 ADMRDEPT CHAR(3) NOT NULL,

1168 IBM i: Db2 for i SQL Reference

 LOCATION CHAR(16),
 PRIMARY KEY(DEPTNO))

Example 3: Create a table named REORG_PROJECTS which has the same column definitions as the
columns in the view PRJ_LEADER.

 CREATE TABLE REORG_PROJECTS
 LIKE PRJ_LEADER

Example 4: Create an EMPLOYEE2 table with an identity column named EMP_NO. Define the identity
column so that Db2 for i will always generate the values for the column. Use the default value, which is 1,
for the first value that should be assigned and for the incremental difference between the subsequently
generated consecutive numbers.

 CREATE TABLE EMPLOYEE2
 (EMPNO INTEGER GENERATED ALWAYS AS IDENTITY,
 ID SMALLINT,
 NAME CHAR(30),
 SALARY DECIMAL(5,2),
 DEPTNO SMALLINT)

Example 5: Assume a very large transaction table named TRANS contains one row for each transaction
processed by a company. The table is defined with many columns. Create a materialized query table for
the TRANS table that contains daily summary data for the date and amount of a transaction.

 CREATE TABLE STRANS
 AS (SELECT YEAR AS SYEAR, MONTH AS SMONTH, DAY AS SDAY, SUM(AMOUNT) AS SSUM
 FROM TRANS
 GROUP BY YEAR, MONTH, DAY)
 DATA INITIALLY DEFERRED
 REFRESH DEFERRED
 MAINTAINED BY USER

Example 6: Create a table, policy_info, that uses a SYSTEM_TIME period and create a history table,
hist_policy_info. Then issue an ALTER TABLE statement to associate the policy_info table with the
hist_policy_info table.

CREATE TABLE policy_info
 (policy_id CHAR(10) NOT NULL,
 coverage INT NOT NULL,
 sys_start TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW BEGIN,
 sys_end TIMESTAMP(12) NOT NULL GENERATED ALWAYS AS ROW END,
 create_id TIMESTAMP(12) GENERATED ALWAYS AS TRANSACTION START ID,
 PERIOD SYSTEM_TIME(sys_start,sys_end));

CREATE TABLE hist_policy_info
 (policy_id CHAR(10) NOT NULL,
 coverage INT NOT NULL,
 sys_start TIMESTAMP(12) NOT NULL,
 sys_end TIMESTAMP(12) NOT NULL,
 create_id TIMESTAMP(12));

ALTER TABLE policy_info
 ADD VERSIONING USE HISTORY TABLE hist_policy_info;

The history table can also be created in the following way since the generated attributes are not copied
for LIKE:

CREATE TABLE hist_policy_info
 LIKE policy_info;

Chapter 7. Statements 1169

CREATE TRIGGER
The CREATE TRIGGER statement defines a trigger at the current server.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• The privilege to create in the schema. For more information, see Privileges necessary to create in a
schema.

• Database administrator authority

The privileges held by the authorization ID of the statement must include at least one of the following:

• Each of the following:

– The ALTER privilege on the table or view on which the trigger is defined,
– The SELECT privilege on the table or view on which the trigger is defined,
– The SELECT privilege on any table or view referenced in the search-condition in the trigger-action,
– The UPDATE privilege on the table on which the trigger is defined, if the BEFORE UPDATE trigger

contains a SET statement that modifies the NEW correlation variable,
– The privileges required to execute each triggered-SQL-statement, and
– The system authority *EXECUTE on the library containing the table or view on which the trigger is

defined.
• Database administrator authority

If an INSTEAD OF trigger is added to a view that is not inherently updatable, the *OBJMGT system
authority is also required on the view.

In addition, the privileges held by the authorization ID of the statement must include at least one of the
following:

• The following system authorities:

– *USE on the Add Physical File Trigger (ADDPFTRG) command,
– *USE on the Create Program (CRTPGM) command

• Database administrator authority

If the SECURED attribute is specified, or the trigger is secured and OR REPLACE is specified :

• The authorization ID of the statement must have security administrator authority. See “Administrative
authority” on page 15.

If SQL names are specified, and a user profile exists that has the same name as the library into which the
trigger is created, and the name is different from the authorization ID of the statement, then the privileges
held by the authorization ID of the statement must include at least one of the following:

• *ALLOBJ and *SECADM special authority
• Database administrator authority

To replace an existing trigger, the privileges held by the authorization ID of the statement must include at
least one of the following:

• The following system authorities:

– The system authority of *OBJMGT on the trigger program object

1170 IBM i: Db2 for i SQL Reference

– All authorities needed to DROP the trigger
• Database administrator authority

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Table or View.

Chapter 7. Statements 1171

Syntax
CREATE

OR REPLACE

TRIGGER trigger-name

trigger-definition

WRAPPED obfuscated-statement-text

trigger-definition
NO CASCADE

BEFORE

AFTER

INSTEAD OF

trigger-event ON table-name

view-name

REFERENCING OLD
ROW AS

correlation-name

NEW
ROW AS

correlation-name

OLD TABLE

OLD_TABLE

AS
table-identifier

NEW TABLE

NEW_TABLE

AS
table-identifier

1

FOR EACH STATEMENT

FOR EACH ROW

MODE DB2SQL

MODE DB2ROW

triggered-action

Notes:
1 The same clause must not be specified more than once.

trigger-event
OR

INSERT

DELETE

UPDATE

OF

,

column-name

1

Notes:
1 Each trigger-event option can be specified only one time.

triggered-action

1172 IBM i: Db2 for i SQL Reference

option-list SET OPTION-statement

WHEN (search-condition)

SQL-trigger-body

option-list

CONCURRENT ACCESS RESOLUTION

DEFAULT

USE CURRENTLY COMMITTED

U

WAIT FOR OUTCOME

W

NOT SECURED

SECURED

ENABLE

DISABLE

PROGRAM NAME external-program-name

1

Notes:
1 The options can be specified in any order. The same clause must not be specified more than once.

SQL-trigger-body

Chapter 7. Statements 1173

SQL-control-statement

fullselect

ALLOCATE CURSOR-statement

ALLOCATE DESCRIPTOR-statement

ALTER FUNCTION-statement

ALTER MASK-statement

ALTER PERMISSION-statement

ALTER PROCEDURE-statement

ALTER SEQUENCE-statement

ALTER TABLE-statement

ASSOCIATE LOCATORS-statement

COMMENT statement

CREATE ALIAS-statement

CREATE FUNCTION (external scalar)-statement

CREATE FUNCTION (external table)-statement

CREATE INDEX-statement

CREATE MASK-statement

CREATE PERMISSION-statement

CREATE PROCEDURE (external)-statement

CREATE SCHEMA-statement

CREATE SEQUENCE-statement

CREATE TABLE-statement

CREATE TYPE-statement

CREATE VIEW-statement

DEALLOCATE DESCRIPTOR-statement

DECLARE declared temporary table-statement

DELETE-statement

DESCRIBE-statement

DESCRIBE CURSOR-statement

DESCRIBE INPUT-statement

DESCRIBE PROCEDURE-statement

DESCRIBE TABLE-statement

Syntax (continued)

1174 IBM i: Db2 for i SQL Reference

DROP-statement

EXECUTE IMMEDIATE-statement

GET DESCRIPTOR-statement

GRANT-statement

INSERT-statement

LABEL-statement

LOCK TABLE-statement

MERGE-statement

REFRESH TABLE-statement

RELEASE-statement

RELEASE SAVEPOINT-statement

RENAME-statement

REVOKE-statement

SAVEPOINT-statement

SELECT INTO-statement

SET CURRENT DEBUG MODE-statement

SET CURRENT DECFLOAT ROUNDING MODE-statement

SET CURRENT DEGREE-statement

SET CURRENT IMPLICIT XMLPARSE OPTION-statement

SET CURRENT TEMPORAL SYSTEM_TIME-statement

SET DESCRIPTOR-statement

SET ENCRYPTION PASSWORD-statement

SET PATH-statement

SET SCHEMA-statement

SET TRANSACTION-statement

SET transition-variable-statement

TRANSFER OWNERSHIP-statement

TRUNCATE-statement

UPDATE-statement

VALUES INTO-statement

Description
OR REPLACE

Specifies to replace the definition for the trigger if one exists at the current server. The existing
definition is effectively dropped before the new definition is replaced in the catalog with the exception
that privileges that were granted on the trigger are not affected. This option is ignored if a definition
for the trigger does not exist at the current server.

trigger-name

Names the trigger. The name, including the implicit or explicit qualifier, must not be the same as a
trigger that already exists at the current server. QTEMP cannot be used as the trigger-name schema
qualifier.

If SQL names were specified, the trigger will be created in the schema specified by the implicit or
explicit qualifier.

Chapter 7. Statements 1175

If system names were specified, the trigger will be created in the schema that is specified by the
qualifier. If not qualified, the trigger will be created in the same schema as the subject table.

If the trigger name is not a valid system name, or if a program with the same name already exists,
the database manager will generate a system name. For information about the rules for generating a
name, see “Rules for Table Name Generation” on page 1167.

NO CASCADE
NO CASCADE is allowed for compatibility with other products and is ignored by Db2 for i.

BEFORE
Specifies that the trigger is a before trigger. The database manager executes the triggered-action
before it applies any changes caused by an insert, delete, or update operation on the subject table. It
also specifies that the triggered-action does not activate other triggers because the triggered-action of
a before trigger cannot contain any updates.

BEFORE must not be specified when a view-name is specified. FOR EACH STATEMENT must not be
specified for a BEFORE trigger.

AFTER
Specifies that the trigger is an after trigger. The database manager executes the triggered-action after
it applies any changes caused by an insert, delete, or update operation on the subject table. AFTER
must not be specified when view-name is also specified.

INSTEAD OF
Specifies that the trigger is an instead of trigger. The associated triggered action replaces the action
against the subject view. Only one INSTEAD OF trigger is allowed for each kind of operation on a given
subject view. The database manager executes the triggered-action instead of the insert, delete, or
update operation on the subject view.

INSTEAD OF must not be specified when table-name is specified. The WHEN clause must not be
specified for an INSTEAD OF trigger. FOR EACH STATEMENT must not be specified for an INSTEAD OF
trigger.

trigger-event
Specifies that the triggered action associated with the trigger is to be executed whenever one of the
events is applied to the subject table or view. Any combination of the events can be specified, but
each event (INSERT, DELETE, UPDATE) can only be specified once.
INSERT

Specifies that the triggered-action associated with the trigger is to be executed whenever there is
an insert operation on the subject table.

A BEFORE INSERT trigger cannot be added to a history table.

DELETE
Specifies that the triggered-action associated with the trigger is to be executed whenever there is
a delete operation on the subject table.

A DELETE trigger cannot be added to a table with a referential constraint of ON DELETE CASCADE.

UPDATE
Specifies that the triggered-action associated with the trigger is to be executed whenever there is
an update operation on the subject table.

An UPDATE trigger event cannot be added to a table with a referential constraint of ON DELETE
SET NULL or ON DELETE SET DEFAULT.

A BEFORE UPDATE trigger cannot be added to a history table.

If an explicit column-name list is not specified, an update operation on any column of the subject
table, including columns that are subsequently added with the ALTER TABLE statement, activates
the triggered-action.

1176 IBM i: Db2 for i SQL Reference

OF column-name, ...
Each column-name specified must be a column of the subject table, and must appear in the
list only once. An update operation on any of the listed columns activates the triggered-action.
This clause cannot be specified for an INSTEAD OF trigger.

ON table-name
Identifies the subject table of a BEFORE or AFTER trigger definition. The name must identify a base
table that exists at the current server, but must not identify a catalog table, a table in QTEMP, or a
declared temporary table.

ON view-name
Identifies the subject view of an INSTEAD OF trigger definition. The name must identify a view that
exists at the current server, but must not identify a catalog view, or a view in QTEMP. The name must
not specify a view that is defined using WITH CHECK OPTION, or a view on which a WITH CHECK
OPTION view has been defined, directly or indirectly

REFERENCING
Specifies the correlation names for the transition tables and the table names for the transition tables.
Correlation-names identify a specific row in the set of rows affected by the triggering SQL operation.
Table-identifiers identify the complete set of affected rows.

Each row affected by the triggering SQL operation is available to the triggered-action by qualifying
columns with correlation-names specified as follows:
OLD ROW AS correlation-name

Specifies a correlation name that identifies the values in the row prior to the triggering SQL
operation. If the trigger event is insert, the value for every column in OLD ROW is the NULL value.

NEW ROW AS correlation-name
Specifies a correlation name which identifies the values in the row as modified by the triggering
SQL operation and any SET statement in a before trigger that has already executed. If the trigger
event is delete, the value for every column in NEW ROW is the NULL value.

The complete set of rows affected by the triggering SQL operation is available to the triggered-action
by using a temporary table name specified as follows:
OLD TABLE AS table-identifier

Specifies the name of a temporary table that identifies the values in the complete set of affected
rows prior to the triggering SQL operation. The OLD TABLE includes the rows that were affected by
the trigger if the current activation of the trigger was caused by statements in the SQL-trigger-body
of a trigger. If the trigger event is insert, the temporary table is empty.

NEW TABLE AS table-identifier
Specifies the name of a temporary table that identifies the state of the complete set of affected
rows as modified by the triggering SQL operation and by any SET statement in a before trigger that
has already been executed. If the trigger event is delete, the temporary table is empty.

Only one OLD and one NEW correlation-name may be specified for a trigger. Only one OLD_TABLE
and one NEW_TABLE table-identifier may be specified for a trigger. All of the correlation-names and
table-identifiers must be unique from one another.

The OLD correlation-name and the OLD_TABLE table-identifier are populated only if the triggering
event is either a delete operation or an update operation. For a delete operation, the OLD correlation-
name captures the values of the columns in the deleted row, and the OLD_TABLE table-identifier
captures the values in the set of deleted rows. For an update operation, OLD correlation-name
captures the values of the columns of a row before the update operation, and the OLD_TABLE table-
identifier captures the values in the set of updated rows.

The NEW ROW correlation-name and the NEW TABLE table-identifier are populated only if the
triggering event is either an INSERT operation or an UPDATE operation. For both operations, the
NEW ROW correlation-name captures the values of the columns in the inserted or updated row,
and the NEW TABLE table-identifier captures the values in the set of inserted or updated rows. For
before triggers, the values of the updated rows include the changes from any SET statements in the
triggered-action of before triggers.

Chapter 7. Statements 1177

The OLD ROW and NEW ROW correlation-name variables cannot be modified in an AFTER trigger or
INSTEAD OF trigger.

The tables below summarizes the allowable combinations of correlation variables and transition
tables.

Granularity: FOR EACH ROW

MODE Activation Time
Triggering
Operation

Correlation
Variables
Allowed

Transition Tables
Allowed

DB2ROW BEFORE DELETE OLD NONE

INSERT NEW

UPDATE OLD, NEW

AFTER or
INSTEAD OF

DELETE OLD

INSERT NEW

UPDATE OLD, NEW

DB2SQL BEFORE DELETE OLD

INSERT NEW

UPDATE OLD, NEW

AFTER or
INSTEAD OF

DELETE OLD OLD TABLE

INSERT NEW NEW TABLE

UPDATE OLD, NEW OLD TABLE, NEW TABLE

Granularity: FOR EACH STATEMENT

MODE Activation Time
Triggering
Operation

Correlation
Variables
Allowed

Transition Tables
Allowed

DB2SQL AFTER or
INSTEAD OF

DELETE NONE OLD TABLE

INSERT NEW TABLE

UPDATE OLD TABLE, NEW
TABLE

A transition variable that has a character data type inherits the CCSID of the column of the subject
table. During the execution of the triggered-action, the transition variables are treated like variables.
Therefore, character conversion might occur.

The temporary transition tables are read-only. They cannot be modified.

The scope of each correlation-name and each table-identifier is the entire trigger definition.

FOR EACH ROW
Specifies that the database manager executes the triggered-action for each row of the subject table
that the triggering operation modifies. If the triggering operation does not modify any rows, the
triggered-action is not executed.

FOR EACH STATEMENT
Specifies that the database manager executes the triggered-action only once for the triggering
operation. Even if the triggering operation does not modify or delete any rows, the triggered action is
still executed once.

FOR EACH STATEMENT cannot be specified for a BEFORE trigger.

1178 IBM i: Db2 for i SQL Reference

FOR EACH STATEMENT cannot be specified for a MODE DB2ROW trigger.

MODE DB2SQL
MODE DB2SQL is valid for AFTER triggers. MODE DB2SQL AFTER triggers are activated after all of the
row operations have occurred.

MODE DB2SQL is only valid for BEFORE triggers if a REFERENCING clause is not specified and the
trigger table is not referenced in the SQL-trigger-body. MODE DB2SQL BEFORE triggers are activated
on each row operation.

MODE DB2ROW
MODE DB2ROW triggers are activated on each row operation.

MODE DB2ROW is valid for both the BEFORE and AFTER activation time.

CONCURRENT ACCESS RESOLUTION
Specifies whether the database manager should wait for data that is in the process of being updated.
DEFAULT is the default.
DEFAULT

Specifies that the concurrent access resolution is not explicitly set for this trigger. The value that is
in effect when the trigger program is invoked will be used.

WAIT FOR OUTCOME
Specifies that the database manager is to wait for the commit or rollback of data in the process of
being updated.

USE CURRENTLY COMMITTED
Specifies that the database manager is to use the currently committed version of the data when
encountering data that is in the process of being updated.
When the lock contention is between a read transaction and a delete or update transaction, the
clause is applicable to scans with isolation level CS (but not for CS KEEP LOCKS).

SECURED or NOT SECURED
Specifies whether the trigger is considered secure for row access control and column access control.
NOT SECURED is the default.
SECURED

Specifies that the trigger is considered secure for row access control and column access control.
SECURED must be specified for a trigger whose subject table is using row access control or
column access control. SECURED must also be specified for a trigger that is created for a view and
one or more of the underlying tables in the view definition is using row access control or column
access control.

NOT SECURED
Specifies that the trigger is considered not secure for row access control and column access
control.
NOT SECURED must not be specified explicitly or implicitly for a trigger whose subject table is
using row access control or column access control. NOT SECURED must also not be specified for a
trigger that is created for a view and one or more of the underlying tables in the view definition is
using row access control or column access control.

ENABLE or DISABLE
Specifies the state for the trigger. ENABLE is the default.
ENABLE

The trigger will be called during I/O operations.
DISABLE

The trigger will not be called during I/O operations.
WRAPPED obfuscated-statement-text

Specifies the encoded definition of the trigger. A CREATE TRIGGER statement can be encoded using
the WRAP scalar function.

Chapter 7. Statements 1179

PROGRAM NAME external-program-name
Specifies the unqualified name of the program to be created for the trigger. external-program-name
must be in the form of a program name. It must not be a service program name.

triggered-action
Specifies the action to be performed when a trigger is activated. The triggered-action is composed of
one or more SQL statements and by an optional condition that controls whether the statements are
executed.
SET OPTION-statement

Specifies the options that will be used to create the trigger. For example, to create a debuggable
trigger, the following statement could be included:

SET OPTION DBGVIEW = *SOURCE

The default values for the options depend on the options in effect at create time. For more
information, see “SET OPTION” on page 1512.

The options CNULIGN, CNULRQD, COMPILEOPT, NAMING, and SQLCA are not allowed in the
CREATE TRIGGER statement. The COMMIT option is allowed, but ignored.

The options DATFMT, DATSEP, TIMFMT, and TIMSEP cannot be used if OLD ROW or NEW ROW is
specified.

WHEN (search-condition)
Specifies a condition that evaluates to true, false, or unknown. The triggered SQL statements
are executed only if the search-condition evaluates to true. If the WHEN clause is omitted, the
associated SQL statements are always executed.

A WHEN clause must not be specified with an INSTEAD OF trigger.

SQL-trigger-body
Specifies a single SQL-procedure-statement, including a compound statement. See “SQL control
statements” on page 1579 for more information about defining SQL triggers using the SQL
Procedural Language (SQL PL).

A call to a procedure that issues a CONNECT, SET CONNECTION, RELEASE, DISCONNECT,
COMMIT, ROLLBACK, SET TRANSACTION, and SET RESULT SETS statement is not allowed in the
triggered-action of a trigger.

An UNDO handler is not allowed in a trigger.

All tables, views, aliases, distinct types, global variables, sequences, user-defined functions, and
procedures referenced in the triggered-action must exist at the current server when the trigger
is created. The table or view that an alias refers to must also exist when the trigger is created.
This includes objects in library QTEMP. While objects in QTEMP can be referenced in the triggered-
action, dropping those objects in QTEMP will not cause the trigger to be dropped.

All transition variable names are column names of the subject table. System column names of the
subject table cannot be used as transition variable names.

The triggered action of a BEFORE trigger on a column of type XML can invoke the XMLVALIDATE
function through a SET statement, leave values of type XML unchanged, or assign them to NULL
using a SET statement.

A dynamic statement in the triggered-action can use 3-part names to access a remote server. A
library with the same name as the trigger program's library must exist on the remote server. Static
statements in the triggered-action cannot use 3-part names.

Static and dynamic statements in the triggered-action can invoke a procedure or a user-defined
function that can access a server other than the current server if the procedure or user-defined
function runs in a different activation group.

1180 IBM i: Db2 for i SQL Reference

Notes
Trigger ownership: If SQL names were specified:

• If a user profile with the same name as the schema into which the trigger is created exists, the owner of
the trigger is that user profile.

• Otherwise, the owner of the trigger is the user profile or group user profile of the thread executing the
statement.

If system names were specified, the owner of the trigger is the user profile or group user profile of the
thread executing the statement.

Trigger authority: The trigger program object authorities are:

• When SQL naming is in effect, the trigger program will be created with the public authority of *EXCLUDE,
and adopt authority from the schema qualifier of the trigger-name if a user profile with that name
exists. If a user profile for the schema qualifier does exist, then the owner of the trigger program will
be the user profile for the schema qualifier. Note that the special authorities *ALLOBJ and *SECADM
are required to create the trigger program object in the schema qualifier library if a user profile exists
that has the same name as the schema qualifier, and the name is different from the authorization
ID of the statement. If a user profile for the schema qualifier does not exist, then the owner of the
trigger program will be the user profile or group user profile of the thread executing the SQL CREATE
TRIGGER statement. The group user profile will be the owner of the trigger program object, only if
OWNER(*GRPPRF) was specified on the user's profile who is executing the statement. If the owner of
the trigger program is a member of a group profile, and if OWNER(*GRPPRF) was specified on the user's
profile, the program will run with the adopted authority of the group profile.

– For an INSTEAD OF TRIGGER, the privilege associated with the trigger event will be granted to the
owner of the view and to the user profile or group user profile of the thread executing the CREATE
TRIGGER statement.

• When System naming is in effect, the trigger program will be created with public authority of *EXCLUDE,
and adopt authority from the user or group user profile of the thread executing the SQL CREATE
TRIGGER statement.

Execution authorization: The user executing the triggering SQL operation does not need authority to
execute a static triggered-SQL-statement. A static triggered-SQL-statement will execute using the authority
of the owner of the trigger.

REPLACE rules: When a trigger is recreated by REPLACE:

• Any existing comment or label is discarded.
• Authorized users are maintained. The object owner could change.
• Current journal auditing is preserved.
• The firing order of the trigger is not maintained.

Activating a trigger: Only insert, delete, or update operations can activate a trigger. A delete operation
that occurs as a result of a referential constraint will not activate a trigger. Hence,

• A trigger with a DELETE trigger event cannot be added to a table with a referential constraint of ON
DELETE CASCADE.

• A trigger with an UPDATE trigger event cannot be added to a table with a referential constraint of ON
DELETE SET NULL or ON DELETE SET DEFAULT.

The activation of a trigger may cause trigger cascading. This is the result of the activation of one trigger
that executes SQL statements that cause the activation of other triggers or even the same trigger again.
The triggered actions may also cause updates as a result of the original modification, which may result in
the activation of additional triggers. With trigger cascading, a significant chain of triggers may be activated
causing significant change to the database as a result of a single delete, insert or update statement. The
number of levels of cascading is limited to 200 or the maximum amount of storage allowed in the job or
process, whichever comes first.

Chapter 7. Statements 1181

Adding triggers to enforce constraints: Adding a trigger to a table that already has rows in it will not
cause the triggered actions to be executed. Thus, if the trigger is designed to enforce constraints on the
data in the table, the data in the existing rows might not satisfy those constraints.

Considerations for implicitly hidden columns: In the body of a trigger, a trigger transition variable that
corresponds to an implicitly hidden column can be referenced. A trigger transition table, that corresponds
to a table with an implicitly hidden column, includes that column as part of the transition table.

Likewise, a trigger transition variable will exist for the column that is defined as implicitly hidden. A trigger
transition variable that corresponds to an implicitly hidden column can be referenced in the body of a
trigger.

Read-only views: The addition of an INSTEAD OF trigger for a view affects the read-only characteristic
of the view. If a read-only view has a dependency relationship with an INSTEAD OF trigger, the type of
operation that is defined for the INSTEAD OF trigger defines whether the view is deletable, insertable, or
updatable.

Transition variable values and INSTEAD OF triggers: All trigger transition variables in an INSTEAD OF
trigger are nullable.

The initial values for new transition variables or new transition table columns visible in an INSTEAD OF
INSERT trigger are set as follows:

• If a value is explicitly specified for a column in the INSERT statement, the corresponding new transition
variable or new transition table column is that explicitly specified value.

• If a value is not explicitly specified for a column in the INSERT statement or the DEFAULT keyword is
specified, the corresponding new transition variable or new transition table column is:

– the default value of the underlying table column if the view column is updatable (without the
INSTEAD OF trigger) and not based on a generated column or ROWID,

– otherwise, the null value.

The initial values for new transition variables or new transition table columns visible in an INSTEAD OF
UPDATE trigger are set as follows:

• If a value is explicitly specified for a column in the UPDATE statement, the corresponding new transition
variable or new transition table column is that explicitly specified value.

• If the DEFAULT keyword is explicitly specified for a column in the UPDATE statement, the corresponding
new transition variable or new transition table column is:

– the default value of the underlying table column if the view column is updatable (without the
INSTEAD OF trigger) and not based on a generated column or ROWID,

– otherwise, the null value.
• Otherwise, the corresponding new transition variable or new transition table column is the existing

value of the column in the row.

Obfuscated statements: A CREATE TRIGGER statement can be executed in obfuscated form. In an
obfuscated statement, only the trigger name is readable followed by the WRAPPED keyword. The rest of
the statement is encoded in such a way that it is not readable but can be decoded by a database server
that supports obfuscated statements. Obfuscated statements can be produced by invoking the WRAP
scalar function. Any debug options that are specified when the trigger is created from an obfuscated
statement are ignored.

A trigger that is created from an obfuscated statement cannot be restored to a release where obfuscation
is not supported. Consequently, a table with a trigger created from an obfuscated statement cannot be
restored to a release where obfuscation is not supported.

Creating a trigger with the SECURED option: The trigger is considered secure after the CREATE
TRIGGER statement is executed. Db2 treats the SECURED attribute as an assertion that declares that the
user has established an audit procedure for all activities in the trigger body. If a secure trigger references
user-defined functions, Db2 assumes those functions are secure without validation. If those functions
can access sensitive data, a user that has security administrator authority needs to ensure that those

1182 IBM i: Db2 for i SQL Reference

functions are allowed to access that data and that an audit procedure is in place for those functions, and
that all subsequent ALTER FUNCTION statements are being reviewed through this audit process.

A trigger must be secure if its subject table is using row access control or column access control.
SECURED must also be specified for a trigger that is created for a view and one or more of the underlying
tables in the view definition is using row access control or column access control activated.

Creating a trigger with the NOT SECURED option: The CREATE TRIGGER statement returns an error
if the subject table of the trigger is using row access control or column access control, or if its subject
table is a view and one or more of the underlying tables in the view is using row access control or column
access control.

Transition variable values and row and column access control: Row and column access control is not
enforced for transition variables and transition tables. If row or column access control is enforced for
the triggering table, row permissions and column masks are not applied to the initial values of transition
variables and transition tables. Row and column access control enforced for the triggering table is also
ignored for transition variables and transition tables that are referenced in the trigger body or are passed
as arguments to user-defined functions invoked within the trigger body. To ensure there are no security
concerns for SQL statements accessing sensitive data in transition variables and transition tables, the
trigger must be created with the SECURED option. If the trigger is not secure, row access control and
column access control cannot be enforced for the triggering table and the CREATE TRIGGER statement
returns an error.

Multiple triggers: Multiple triggers that have the same triggering SQL operation and activation time can
be defined on a table. The triggers are activated based on the mode and the order in which they were
created:

• MODE DB2ROW triggers (and native triggers created via the ADDPFTRG CL command) are fired first in
the order in which they were created

• MODE DB2SQL triggers are fired next in the order in which they were created

For example, a MODE DB2ROW trigger that was created first is executed first, the MODE DB2ROW trigger
that was created second is executed second.

A maximum of 300 triggers can be added to any given source table.

When a trigger is recreated using REPLACE, its position in the activation order is not maintained. It
behaves as if the trigger were dropped and created again.

Adding columns to a subject table or a table referenced in the triggered action: If a column is added to
the subject table after triggers have been defined, the following rules apply:

• If the trigger is an UPDATE trigger that was defined without an explicit column list, then an update to the
new column will cause the activation of the trigger.

• If the SQL statements in the triggered-action refer to the triggering table, the new column is not
accessible to the SQL statements until the trigger is recreated.

• The OLD_TABLE and NEW_TABLE transition tables will contain the new column, but the column cannot
be referenced unless the trigger is recreated.

If a column is added to any table referenced by the SQL statements in the triggered-action, the new
column is not accessible to the SQL statements until the trigger is recreated.

Dropping or revoking privileges on a table referenced in the triggered action: If an object such as a
table, view or alias, referenced in the triggered-action is dropped, the access plans of the statements that
reference the object will be rebuilt when the trigger is fired. If the object does not exist at that time, the
corresponding INSERT, UPDATE or DELETE operation on the subject table will fail.

If a privilege that the creator of the trigger is required to have for the trigger to execute is revoked, the
access plans of the statements that reference the object will be rebuilt when the trigger is fired. If the
appropriate privilege does not exist at that time, the corresponding INSERT, UPDATE or DELETE operation
on the subject table will fail.

Errors executing triggers: If a SIGNAL statement is executed in the SQL-trigger-body, an SQLCODE -438
and the SQLSTATE specified in the SIGNAL statement will be returned.

Chapter 7. Statements 1183

Other errors that occur during the execution of SQL-trigger-body statements are returned using SQLSTATE
09000 and SQLCODE -723.

Special registers in triggers: The values of the special registers are saved before a trigger is activated
and are restored on return from the trigger. The values of the special registers are inherited from the
triggering SQL operation.

Transaction isolation: All triggers, when they are activated, perform a SET TRANSACTION statement
unless the isolation level of the application program invoking the trigger is the same as the default
isolation level of the trigger program. This is necessary so that all of the operations by the trigger are
performed with the same isolation level as the application program that caused the trigger to be run. The
user may put their own SET TRANSACTION statements in an SQL-control-statement in the SQL-trigger-
body of the trigger. If the user places a SET TRANSACTION statement within the SQL-trigger-body of the
trigger, then the trigger will run with the isolation level specified in the SET TRANSACTION statement,
instead of the isolation level of the application program that caused the trigger to be run.

If the application program that caused a trigger to be activated, is running with an isolation level
other than No Commit (COMMIT(*NONE) or COMMIT(*NC)), the operations within the trigger will be run
under commitment control and will not be committed or rolled back until the application commits its
current unit of work. If ATOMIC is specified in the SQL-trigger-body of the trigger, and the application
program that caused the ATOMIC trigger to be activated is running with an isolation level of No Commit
(COMMIT(*NONE) or COMMIT(*NC)), the operations within the trigger will not be run under commitment
control. If the application that caused the trigger to be activated is running with an isolation level of No
Commit (COMMIT(*NONE) or COMMIT(*NC)), then the operations of a trigger are written to the database
immediately, and cannot be rolled back.

If both system triggers defined by the Add Physical File Trigger (ADDPFTRG) CL command and SQL
triggers defined by the CREATE TRIGGER statement are defined for a table, it is recommended that the
system triggers perform a SET TRANSACTION statement so that they are run with the same isolation
level as the original application that caused the triggers to be activated. It is also recommended that the
system triggers run in the Activation Group of the calling application. If system triggers run in a separate
Activation Group (ACTGRP(*NEW)), then those system triggers will not participate in the unit of the work
for the calling application, nor in the unit of work for any SQL triggers. System triggers that run in a
separate Activation Group are responsible for committing or rolling back any database operations they
perform under commitment control. Note that SQL triggers defined by the CREATE TRIGGER statement
always run in the caller's Activation Group.

If the triggering application is running with commitment control, the operations of an SQL trigger, and
any cascaded SQL triggers, will be captured into a sub-unit of work. If the operations of the trigger and
any cascaded triggers are successful, the operations captured in the sub-unit of work will be committed
or rolled back when the triggering application commits or rolls back its current unit of work. Any system
triggers that run in the same Activation Group as the caller, and perform a SET TRANSACTION to the
isolation level of the caller, will also participate in the sub-unit of work. If the triggering application
is running without commit control, then the operations of the SQL triggers will also be run without
commitment control.

If an application that causes a trigger to be activated is running with an isolation level of No Commit
(COMMIT(*NONE) or COMMIT(*NC)), and it issues an INSERT, UPDATE, or DELETE statement that
encounters an error during the execution of the statement, no other system or SQL triggers will be
activated following the error for that operation. However, some number of changes will already have been
performed. If the triggering application is running with commitment control, the operations of any triggers
that are captured in a sub-unit of work will be rolled back when the first error is encountered, and no
additional triggers will be activated for the current INSERT, UPDATE, or DELETE statement.

Performance considerations: Create the trigger under the isolation level that will most often by used
by the application programs that cause the trigger to fire. The SET OPTION statement can be used to
explicitly choose the isolation level.

ROW triggers (especially MODE DB2ROW triggers) perform much better than TABLE level triggers.

1184 IBM i: Db2 for i SQL Reference

Considerations for implicitly hidden columns: A transition variable will exist for any column defined as
implicitly hidden. In the body of a trigger, a transition variable that corresponds to an implicitly hidden
column can be referenced.

Triggered actions in the catalog: At the time the trigger is created, the triggered-action is modified as a
result of the CREATE TRIGGER statement:

• Naming mode is switched to SQL naming.
• All unqualified object references are explicitly qualified
• All implicit column lists (for example, SELECT *, INSERT with no column list, UPDATE SET ROW) are

expanded to be the list of actual column names.

The modified triggered-action is stored in the catalog.

Renaming or moving a table referenced in the triggered action: Any table (including the subject table)
referenced in a triggered-action can be moved or renamed. However, the triggered-action will continue
to reference the old name or schema. An error will occur if the referenced table is not found when the
triggered-action is executed. Hence, you should drop the trigger and then re-create the trigger so that it
refers to the renamed or moved table.

Datetime considerations: If OLD ROW or NEW ROW is specified, the date or time constants and the string
representation of dates and times in variables that are used in SQL statements in the triggered-action
must have a format of ISO, EUR, JIS, USA, or must match the date and time formats specified when the
table was created if it was created using DDS and the CRTPF CL command. If the DDS specifications
contain multiple different date or time formats, the trigger cannot be created.

Operations that invalidate triggers: An inoperative trigger is a trigger that is no longer available to be
activated. If a trigger becomes invalid, no INSERT, UPDATE, or DELETE operations will be allowed on the
subject table or view. A trigger becomes invalid if:

• The SQL statements in the triggered-action reference the subject table or view, the trigger is a self-
referencing trigger, and the table or view is duplicated using the system CRTDUPOBJ CL command, or

• The SQL statements in the triggered-action reference tables or views in the from library and the objects
are not found in the new library when the table or view is duplicated using the system CRTDUPOBJ CL
command, or

• The table or view is restored to a new library using the system RSTOBJ or RSTLIB CL commands, and
the triggered-action references the subject table or subject view, the trigger is a self-referencing trigger.

An invalid trigger must first be dropped before it can be recreated by issuing a CREATE TRIGGER
statement. Note that dropping and recreating a trigger will affect the activation order of a trigger if
multiple triggers for the same triggering operation and activation time are defined for the subject table.

Trigger program object: When a trigger is created, SQL creates a temporary source file that will contain
C source code with embedded SQL statements. A program object is then created using the CRTPGM
command. The SQL options used to create the program are the options that are in effect at the time the
CREATE TRIGGER statement is executed. The program is created with ACTGRP(*CALLER).

The program is created with STGMDL(*SNGLVL). If the trigger runs on behalf of an application that uses
STGMDL(*TERASPACE) and also uses commitment control, the entire application will need to run under a
job scoped commitment definition (STRCMTCTL CMTSCOPE(*JOB)).

The trigger will execute with the adopted authority of the owner of the trigger.

Examples
Example 1: Create two triggers that track the number of employees that a company manages. The
triggering table is the EMPLOYEE table, and the triggers increment and decrement a column with the
total number of employees in the COMPANY_STATS table. The COMPANY_STATS table has the following
properties:

 CREATE TABLE COMPANY_STATS
 (NBEMP INTEGER,

Chapter 7. Statements 1185

 NBPRODUCT INTEGER,
 REVENUE DECIMAL(15,0))

This example uses row triggers to maintain summary data in another table.

Create the first trigger, NEW_HIRE, so that it increments the number of employees each time a new
person is hired; that is, each time a new row is inserted into the EMPLOYEE table, increase the value of
column NBEMP in table COMPANY_STATS by 1.

 CREATE TRIGGER NEW_HIRE
 AFTER INSERT ON EMPLOYEE
 FOR EACH ROW MODE DB2SQL
 UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1

Create the second trigger, FORM_EMP, so that it decrements the number of employees each time an
employee leaves the company; that is, each time a row is deleted from the table EMPLOYEE, decrease the
value of column NBEMP in table COMPANY_STATS by 1.

 CREATE TRIGGER FORM_EMP
 AFTER DELETE ON EMPLOYEE
 FOR EACH ROW MODE DB2SQL
 BEGIN ATOMIC
 UPDATE COMPANY_STATS SET NBEMP = NBEMP - 1;
 END

Example 2: Create a trigger, REORDER, that invokes user-defined function ISSUE_SHIP_REQUEST to issue
a shipping request whenever a parts record is updated and the on-hand quantity for the affected part is
less than 10% of its maximum stocked quantity. User-defined function ISSUE_SHIP_REQUEST orders a
quantity of the part that is equal to the part's maximum stocked quantity minus its on-hand quantity. The
function eliminates any duplicate requests to order the same PARTNO and sends the unique order to the
appropriate supplier.

This example also shows how to define the trigger as a statement trigger instead of a row trigger. For each
row in the transition table that evaluates to true for the WHERE clause, a shipping request is issued for the
part.

 CREATE TRIGGER REORDER
 AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
 REFERENCING NEW_TABLE AS NTABLE
 FOR EACH STATEMENT MODE DB2SQL
 BEGIN ATOMIC
 DECLARE REQUEST_VAR INT;
 SELECT ISSUE_SHIP_REQUEST(MAX_STOCKED - ON_HAND, PARTNO)
 INTO REQUEST_VAR
 FROM NTABLE
 WHERE ON_HAND < 0.10 * MAX_STOCKED;
 END

Example 3: Assume that table EMPLOYEE contains column SALARY. Create a trigger, SAL_ADJ, that
prevents an update to an employee's salary that exceeds 20% and signals such an error. Have the error
that is returned with an SQLSTATE of 75001 and a description. This example shows that the SIGNAL
SQLSTATE statement is useful for restricting changes that violate business rules.

 CREATE TRIGGER SAL_ADJ
 AFTER UPDATE OF SALARY ON EMPLOYEE
 REFERENCING OLD AS OLD_EMP
 NEW AS NEW_EMP
 FOR EACH ROW MODE DB2SQL
 WHEN (NEW_EMP.SALARY > (OLD_EMP.SALARY *1.20))
 BEGIN ATOMIC
 SIGNAL SQLSTATE '75001'('Invalid Salary Increase - Exceeds 20%');
 END

1186 IBM i: Db2 for i SQL Reference

CREATE TYPE
The CREATE TYPE statement defines a user-defined data type at the current server.

The following types of user-defined data types can be defined:

• Array

A user-defined data type that is an ordinary array. The elements of an array type are based on one of the
built-in data types. See “CREATE TYPE (array)” on page 1188.

• Distinct

A user-defined data type that shares a common representation with one of the built-in data types.
Functions that cast between the user-defined distinct type and the source built-in data type are
generated when the user-defined distinct type is created. Optionally, support for comparison operations
to use with the user-defined distinct type can be generated when the user-defined distinct type is
created. See “CREATE TYPE (distinct)” on page 1193.

Chapter 7. Statements 1187

CREATE TYPE (array)
The CREATE TYPE (array) statement defines an array type at the current server.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• The privilege to create in the schema. For more information, see Privileges necessary to create in a
schema.

• Database administrator authority

The privileges held by the authorization ID of the statement must include at least one of the following:

• For the SYSTYPES catalog table:

– The INSERT privilege on the table, and
– The system authority *EXECUTE on library QSYS2

• Database administrator authority

If SQL names are specified and a user profile exists that has the same name as the library into which
the array type is created, and that name is different from the authorization ID of the statement, then the
privileges held by the authorization ID of the statement must include at least one of the following:

• The system authority *ADD to the user profile with that name
• Database administrator authority

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Table or View.

Syntax
CREATE TYPE array-type-name AS built-in-type

ARRAY [
2147483647

integer-constant

]

built-in-type

1188 IBM i: Db2 for i SQL Reference

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(512K)

(integer

K

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(512K)

(integer

K

)

normalize-clause

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

)

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

XML

ccsid-clause

ccsid-clause
CCSID integer

normalize-clause

normalize-clause

Chapter 7. Statements 1189

NOT NORMALIZED

NORMALIZED

Description
array-type-name

Names the array. The name, including the implicit or explicit qualifier, must not be the same as a
distinct type or array type that already exists at the current server.

If SQL names were specified, the array type will be created in the schema specified by the implicit or
explicit qualifier.

If system names were specified, the array type will be created in the schema that is specified by the
qualifier. If not qualified:

• If the value of the CURRENT SCHEMA special register is *LIBL, the array type will be created in the
current library (*CURLIB).

• Otherwise, the array type will be created in the current schema.

If the array type name is not a valid system name, Db2 for i will generate a system name. For
information about the rules for generating a name, see “Rules for Table Name Generation” on page
1167.

array-type-name must not be the name of a built-in data type, or any of the following system-reserved
keywords even if you specify them as delimited identifiers.

= < > >=

<= <> ¬= ¬<

¬< != !< !>

ALL FALSE POSITION XMLAGG

AND FOR RID XMLATTRIBUTES

ANY FROM RRN XMLCOMMENT

ARRAY_AGG HASHED_VALUE SELECT XMLCONCAT

BETWEEN IN SIMILAR XMLDOCUMENT

BOOLEAN INTERVAL SOME XMLELEMENT

CASE IS STRIP XMLFOREST

CAST LIKE SUBSTRING XMLGROUP

CHECK MATCH TABLE XMLNAMESPACES

DATAPARTITIONNAME NODENAME THEN XMLPARSE

DATAPARTITIONNUM NODENUMBER TRIM XMLPI

DBPARTITIONNAME NOT TRUE XMLROW

DBPARTITIONNUM NULL TYPE XMLSERIALIZE

DISTINCT ONLY UNIQUE XMLTEXT

EXCEPT OR UNKNOWN XMLVALIDATE

EXISTS OVERLAPS WHEN XSLTRANSFORM

EXTRACT PARTITION

If a qualified array-type-name is specified, the schema name cannot be QSYS, QSYS2, QTEMP, or
SYSIBM.

1190 IBM i: Db2 for i SQL Reference

built-in-type
Specifies the built-in data type used as the data type for all the elements of the array. See “CREATE
TABLE” on page 1115 for a more complete description of each built-in data type.

If a specific value is not specified for the data types that have length, precision, or scale attributes, the
default attributes of the data type as shown in the syntax diagram are implied.

If the array type is for a string data type, a CCSID is associated with the array type at the time the
array type is created. For more information about data types, see “CREATE TABLE” on page 1115.

ARRAY [integer-constant]
Specifies that the array has a maximum cardinality of integer-constant. The value must be a positive
number greater than 0. If no value is specified, the maximum integer value of 2147483647 is used.
The maximum number of array elements that can be assigned in the array is the number of elements
that fit in 4 gigabytes. Each varying length, LOB, and XML array element is allocated as its maximum
length.

Notes
Additional generated functions: Functions are created to convert to and from the array type, but service
programs are not created, so you cannot grant or revoke privileges to these functions.

Names of the generated cast functions: The unqualified name of one of the cast functions ARRAY.
The name of the cast function that converts to the array type is the name of the array type. The input
parameter of the cast function has the same data type as the ARRAY.

For example, assume that an array type named T_SHOESIZES is created with the following statement:

CREATE TYPE CLAIRE.T_SHOESIZES AS INT ARRAY[]

When the statement is executed, the database manager also generates the following cast functions.
ARRAY converts from the array type to an array, and T_SHOESIZES converts from an array to the array
type.

A generated cast function cannot be explicitly dropped. The cast functions that are generated for an array
type are implicitly dropped when the array type is dropped with the DROP statement.

Array type attributes: An array type is created as a *SQLUDT object.

Array type ownership: If SQL names were specified:

• If a user profile with the same name as the schema into which the array type is created exists, the owner
of the array type is that user profile.

• Otherwise, the owner of the array type is the user profile or group user profile of the thread executing
the statement.

If system names were specified, the owner of the array type is the user profile or group user profile of the
thread executing the statement.

Array type authority: If SQL names are used, array types are created with the system authority of
*EXCLUDE on *PUBLIC. If system names are used, array types are created with the authority to *PUBLIC
as determined by the create authority (CRTAUT) parameter of the schema.

If the owner of the array type is a member of a group profile (GRPPRF keyword) and group authority is
specified (GRPAUT keyword), that group profile will also have authority to the array type.

Examples

Example 1: Create an array type named PHONENUMBERS with a maximum of 5 elements that are of the
DECIMAL(10,0) data type.

 CREATE TYPE PHONENUMBERS AS DECIMAL(10,0) ARRAY[5]

Chapter 7. Statements 1191

Example 2: Create an array type named NUMBERS in the schema GENERIC for which the maximum
number of elements is not known.

CREATE TYPE GENERIC.NUMBERS
 AS BIGINT ARRAY[]

1192 IBM i: Db2 for i SQL Reference

CREATE TYPE (distinct)
The CREATE TYPE (distinct) statement defines a distinct type at the current server. A distinct type is
always sourced on one of the built-in data types.

Successful execution of the statement also generates:

• A function to cast from the distinct type to its source type
• A function to cast from the source type to its distinct type
• As appropriate, support for the use of comparison operators with the distinct type.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• The privilege to create in the schema. For more information, see Privileges necessary to create in a
schema.

• Database administrator authority

The privileges held by the authorization ID of the statement must include at least one of the following:

• For the SYSTYPES catalog table:

– The INSERT privilege on the table, and
– The system authority *EXECUTE on library QSYS2

• Database administrator authority

If SQL names are specified and a user profile exists that has the same name as the library into which the
distinct type is created, and that name is different from the authorization ID of the statement, then the
privileges held by the authorization ID of the statement must include at least one of the following:

• The system authority *ADD to the user profile with that name
• Database administrator authority

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Table or View.

Syntax
CREATE TYPE distinct-type-name AS built-in-type

built-in-type

Chapter 7. Statements 1193

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

allocate-clause

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) allocate-clause FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

allocate-clause

DBCLOB

(1M)

(integer

K

M

G

) allocate-clause

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

allocate-clause

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

) allocate-clause

normalize-clause

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

allocate-clause

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

) allocate-clause

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

DATALINK

(200)

(integer) allocate-clause ccsid-clause

ROWID

XML

allocate-clause ccsid-clause

ccsid-clause
CCSID integer

normalize-clause

normalize-clause

1194 IBM i: Db2 for i SQL Reference

NOT NORMALIZED

NORMALIZED

Description
distinct-type-name

Names the distinct type. The name, including the implicit or explicit qualifier, must not be the same as
a distinct type or array type that already exists at the current server.

If SQL names were specified, the distinct type will be created in the schema specified by the implicit
or explicit qualifier.

If system names were specified, the distinct type will be created in the schema that is specified by the
qualifier. If not qualified:

• If the value of the CURRENT SCHEMA special register is *LIBL, the distinct type will be created in
the current library (*CURLIB).

• Otherwise, the distinct type will be created in the current schema.

If the distinct type name is not a valid system name, Db2 for i will generate a system name. For
information about the rules for generating a name, see “Rules for Table Name Generation” on page
1167.

distinct-type-name must not be the name of a built-in data type, or any of the following system-
reserved keywords even if you specify them as delimited identifiers.

= < > >=

<= <> ¬= ¬<

¬< != !< !>

ALL FALSE POSITION XMLAGG

AND FOR RID XMLATTRIBUTES

ANY FROM RRN XMLCOMMENT

ARRAY_AGG HASHED_VALUE SELECT XMLCONCAT

BETWEEN IN SIMILAR XMLDOCUMENT

BOOLEAN INTERVAL SOME XMLELEMENT

CASE IS STRIP XMLFOREST

CAST LIKE SUBSTRING XMLGROUP

CHECK MATCH TABLE XMLNAMESPACES

DATAPARTITIONNAME NODENAME THEN XMLPARSE

DATAPARTITIONNUM NODENUMBER TRIM XMLPI

DBPARTITIONNAME NOT TRUE XMLROW

DBPARTITIONNUM NULL TYPE XMLSERIALIZE

DISTINCT ONLY UNIQUE XMLTEXT

EXCEPT OR UNKNOWN XMLVALIDATE

EXISTS OVERLAPS WHEN XSLTRANSFORM

EXTRACT PARTITION

If a qualified distinct-type-name is specified, the schema name cannot be QSYS, QSYS2, QTEMP, or
SYSIBM.

Chapter 7. Statements 1195

built-in-type
Specifies the built-in data type used as the basis for the internal representation of the distinct type.
See “CREATE TABLE” on page 1115 for a more complete description of each built-in data type.

For portability of applications across platforms, use the following recommended data type names:

• DOUBLE or REAL instead of FLOAT.
• DECIMAL instead of NUMERIC.

If a specific value is not specified for the data types that have length, precision, or scale attributes, the
default attributes of the data type as shown in the syntax diagram are implied.

If the distinct type is sourced on a string data type, a CCSID is associated with the distinct data type at
the time the distinct type is created. For more information about data types, see “CREATE TABLE” on
page 1115.

Notes
Additional generated functions: Besides the system-generated comparison operators described above,
the following functions become available to convert to and from the source type:

• The distinct type to the source type
• The source type to the distinct type
• INTEGER to the distinct type if the source type is SMALLINT
• DOUBLE to the distinct type if the source type is REAL
• VARCHAR to the distinct type if the source type is CHAR
• VARGRAPHIC to the distinct type if the source type is GRAPHIC

These functions are created as if the following statements were executed (except that the service
programs are not created, so you cannot grant or revoke privileges to these functions):

CREATE FUNCTION source-type-name (distinct-type-name)
 RETURNS source-type-name

CREATE FUNCTION distinct-type-name (source-type-name)
 RETURNS distinct-type-name

Names of the generated cast functions: Table 92 on page 1197 contains details about the generated
cast functions. The unqualified name of the cast function that converts from the distinct type to the
source type is the name of the source data type.

In cases in which a length, precision, or scale is specified for the source data type in the CREATE TYPE
statement, the unqualified name of the cast function that converts from the distinct type to the source
type is simply the name of the source data type. The data type of the value that the cast function returns
includes any length, precision, or scale values that were specified for the source data type on the CREATE
TYPE statement.

The name of the cast function that converts from the source type to the distinct type is the name of the
distinct type. The input parameter of the cast function has the same data type as the source data type,
including the length, precision, and scale.

The cast functions that are generated are created in the same schema as that of the distinct type. A
function with the same name and same function signature must not already exist in the current server.

For example, assume that a distinct type named T_SHOESIZE is created with the following statement:

CREATE TYPE CLAIRE.T_SHOESIZE AS VARCHAR(2) WITH COMPARISONS

When the statement is executed, the database manager also generates the following cast functions.
VARCHAR converts from the distinct type to the source type, and T_SHOESIZE converts from the source
type to the distinct type.

1196 IBM i: Db2 for i SQL Reference

FUNCTION CLAIRE.VARCHAR (CLAIRE.T_SHOESIZE) RETURNS VARCHAR(2)

FUNCTION CLAIRE.T_SHOESIZE (VARCHAR(2) RETURNS CLAIRE.T_SHOESIZE

Notice that function VARCHAR returns a value with a data type of VARCHAR(2) and that function
T_SHOESIZE has an input parameter with a data type of VARCHAR(2).

A generated cast function cannot be explicitly dropped. The cast functions that are generated for a
distinct type are implicitly dropped when the distinct type is dropped with the DROP statement.

For each built-in data type that can be the source data type for a distinct type, the following table gives
the names of the generated cast functions, the data types of the input parameters, and the data types of
the values that the functions returns.

Table 92. CAST Functions on Distinct Types

Source Type Name Function Name Parameter Type Return Type

SMALLINT distinct-type-name SMALLINT distinct-type-name

distinct-type-name INTEGER distinct-type-name

SMALLINT distinct-type-name SMALLINT

INTEGER distinct-type-name INTEGER distinct-type-name

INTEGER distinct-type-name INTEGER

BIGINT distinct-type-name BIGINT distinct-type-name

BIGINT distinct-type-name BIGINT

DECIMAL distinct-type-name DECIMAL(p,s) distinct-type-name

DECIMAL distinct-type-name DECIMAL(p,s)

NUMERIC distinct-type-name NUMERIC(p,s) distinct-type-name

NUMERIC distinct-type-name NUMERIC(p,s)

REAL or FLOAT(n) where
n <= 24

distinct-type-name REAL distinct-type-name

distinct-type-name DOUBLE distinct-type-name

REAL distinct-type-name REAL

DOUBLE or DOUBLE
PRECISION or FLOAT(n)
where n > 24

distinct-type-name DOUBLE distinct-type-name

DOUBLE distinct-type-name DOUBLE

DECFLOAT distinct-type-name DECFLOAT(n) distinct-type-name

DECFLOAT distinct-type-name DECFLOAT(n)

CHAR distinct-type-name CHAR(n) distinct-type-name

CHAR distinct-type-name CHAR(n)

distinct-type-name VARCHAR(n) distinct-type-name

VARCHAR distinct-type-name VARCHAR(n) distinct-type-name

VARCHAR distinct-type-name VARCHAR(n)

CLOB distinct-type-name CLOB(n) distinct-type-name

CLOB distinct-type-name CLOB(n)

Chapter 7. Statements 1197

Table 92. CAST Functions on Distinct Types (continued)

Source Type Name Function Name Parameter Type Return Type

GRAPHIC distinct-type-name GRAPHIC(n) distinct-type-name

GRAPHIC distinct-type-name GRAPHIC(n)

distinct-type-name VARGRAPHIC(n) distinct-type-name

VARGRAPHIC distinct-type-name VARGRAPHIC(n) distinct-type-name

VARGRAPHIC distinct-type-name VARGRAPHIC(n)

DBCLOB distinct-type-name DBCLOB(n) distinct-type-name

DBCLOB distinct-type-name DBCLOB(n)

BINARY distinct-type-name BINARY(n) distinct-type-name

BINARY distinct-type-name BINARY(n)

distinct-type-name VARBINARY(n) distinct-type-name

VARBINARY distinct-type-name VARBINARY(n) distinct-type-name

VARBINARY distinct-type-name VARBINARY(n)

BLOB distinct-type-name BLOB(n) distinct-type-name

BLOB distinct-type-name BLOB(n)

DATE distinct-type-name DATE distinct-type-name

DATE distinct-type-name DATE

TIME distinct-type-name TIME distinct-type-name

TIME distinct-type-name TIME

TIMESTAMP distinct-type-name TIMESTAMP(p) distinct-type-name

TIMESTAMP distinct-type-name TIMESTAMP(p)

DATALINK distinct-type-name DATALINK distinct-type-name

DATALINK distinct-type-name DATALINK

ROWID distinct-type-name ROWID distinct-type-name

ROWID distinct-type-name ROWID

NUMERIC and FLOAT are not recommended when creating a distinct type for a portable application.
DECIMAL and DOUBLE should be used instead.

Built-in functions: The functions described in the above table are the only functions that are generated
automatically when distinct types are defined. Consequently, none of the built-in functions (AVG, MAX,
LENGTH, and so on) are automatically supported for the distinct type. A built-in function can be used on a
distinct type only after a sourced user-defined function, which is based on the built-in function, has been
created for the distinct type. See “Extending or overriding a built-in function:” on page 978.

The schema name of the distinct type must be included in the distinct type for successful use of these
operators and cast functions in SQL statements.

Distinct type attributes: A distinct type is created as a *SQLUDT object.

Distinct type ownership: If SQL names were specified:

• If a user profile with the same name as the schema into which the distinct type is created exists, the
owner of the distinct type is that user profile.

1198 IBM i: Db2 for i SQL Reference

• Otherwise, the owner of the distinct type is the user profile or group user profile of the thread executing
the statement.

If system names were specified, the owner of the distinct type is the user profile or group user profile of
the thread executing the statement.

Distinct type authority: If SQL names are used, distinct types are created with the system authority
of *EXCLUDE on *PUBLIC. If system names are used, distinct types are created with the authority to
*PUBLIC as determined by the create authority (CRTAUT) parameter of the schema.

If the owner of the distinct type is a member of a group profile (GRPPRF keyword) and group authority is
specified (GRPAUT keyword), that group profile will also have authority to the distinct type.

Syntax alternatives: The WITH COMPARISONS clause, which specifies that system-generated
comparison operators are to be created for comparing two instances of the distinct type, can be specified
as the last clause of the statement. Use WITH COMPARISONS only if it is required for compatibility with
other products in the Db2 family.

For compatibility with previous versions of Db2:

• CREATE DISTINCT TYPE can be specified in place of CREATE TYPE.

Examples

Example 1: Create a distinct type named SHOESIZE that is sourced on the built-in INTEGER data type.

 CREATE TYPE SHOESIZE AS INTEGER WITH COMPARISONS

The successful execution of this statement also generates two cast functions. Function
INTEGER(SHOESIZE) returns a value with data type INTEGER, and function SHOESIZE(INTEGER) returns
a value with distinct type SHOESIZE.

Example 2: Create a distinct type named MILES that is sourced on the built-in DOUBLE data type.

 CREATE TYPE MILES
 AS DOUBLE WITH COMPARISONS

The successful execution of this statement also generates two cast functions. Function DOUBLE(MILES)
returns a value with data type DOUBLE, and function MILES(DOUBLE) returns a value with distinct type
MILES.

Example 3: Create a distinct type T_DEPARTMENT that is sourced on the built-in CHAR data type.

 CREATE TYPE CLAIRE.T_DEPARTMENT AS CHAR(3)
 WITH COMPARISONS

The successful execution of this statement also generates three cast functions:

• Function CLAIRE.CHAR takes a T_DEPARTMENT as input and returns a value with data type CHAR(3).
• Function CLAIRE.T_DEPARTMENT takes a CHAR(3) as input and returns a value with distinct type

T_DEPARTMENT.
• Function CLAIRE.T_DEPARTMENT takes a VARCHAR(3) as input and returns a value with distinct type

T_DEPARTMENT.

Chapter 7. Statements 1199

CREATE VARIABLE
The CREATE VARIABLE statement defines a global variable at the application server.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• The privilege to create in the schema. For more information, see Privileges necessary to create in a
schema.

• Database administrator authority

The privileges held by the authorization ID of the statement must include at least one of the following:

• For the SYSVARIABLES catalog table:

– The INSERT privilege on the table, and
– The system authority *EXECUTE on library QSYS2

• Database administrator authority

If a distinct type or sequence is referenced, the privileges held by the authorization ID of the statement
must include at least one of the following:

• For the distinct type or sequence identified in the statement:

– The USAGE privilege on the distinct type or sequence, and
– The system authority *EXECUTE on the library containing the distinct type or sequence

• Database administrator authority

If a function is referenced, the privileges held by the authorization ID of the statement must include at
least one of the following:

• For the function identified in the statement:

– The EXECUTE privilege on the function, and
– The system authority *EXECUTE on the library containing the function

• Database administrator authority

If a global variable is referenced, the privileges held by the authorization ID of the statement must include
at least one of the following:

• For the global variable identified in the statement:

– The READ privilege on the global variable, and
– The system authority *EXECUTE on the library containing the global variable

• Database administrator authority

If a table or view is referenced directly or indirectly, the privileges held by the authorization ID of the
statement must include at least one of the following:

• For each table and view referenced directly or indirectly:

– The SELECT privilege on the table or view, and
– The system authority *EXECUTE on the library containing the table or view

• Database administrator authority

1200 IBM i: Db2 for i SQL Reference

To replace an existing variable, the privileges held by the authorization ID of the statement must include
at least one of the following:

• The following system authorities:

– The system authority of *OBJMGT on the service program for the variable
– All authorities needed to DROP the variable
– The system authority *READ to the SYSVARIABLES catalog table

• Database administrator authority

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Sequence and Corresponding System Authorities When
Checking Privileges to a Distinct Type.

Syntax
CREATE

OR REPLACE

VARIABLE variable-name

FOR SYSTEM NAME system-object-identifier

data-type

DEFAULT NULL

DEFAULT constant

special-register

global-variable

(expression)

data-type
built-in-type

distinct-type-name

built-in-type

Chapter 7. Statements 1201

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

)

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

XML

ccsid-clause

ccsid-clause
CCSID integer

1202 IBM i: Db2 for i SQL Reference

Description
OR REPLACE

Specifies to replace the definition for the variable if one exists at the current server. The existing
definition is effectively dropped before the new definition is replaced in the catalog with the exception
that privileges that were granted on the variable are not affected. This option is ignored if a definition
for the variable does not exist at the current server.

variable-name
Names the global variable. The name, including the implicit or explicit qualifier, must not identify a
global variable that already exists at the current server. If a qualified variable name is specified, the
schema-name cannot be QSYS2, QSYS, QTEMP, or SYSIBM.

If SQL names were specified, the variable will be created in the schema specified by the implicit or
explicit qualifier.

If system names were specified, the variable will be created in the schema that is specified by the
qualifier. If not qualified:

• If the value of the CURRENT SCHEMA special register is *LIBL, the variable will be created in the
current library (*CURLIB).

• Otherwise, the variable will be created in the current schema.

FOR SYSTEM NAME system-object-identifier
Identifies the system-object-identifier of the global variable. system-object-identifier must not be the
same as a global variable that already exists at the current server. The system-object-identifier must
be an unqualified system identifier.

When system-object-identifier is specified, variable-name must not be a valid system object name.

data-type
Specifies the data type or the global variable.

built-in-type
Specifies a built-in data type. See “CREATE TABLE” on page 1115 for a more complete description of
each built-in data type.

distinct-type-name
Specifies a distinct type. The length, precision, and scale of the global variable are, respectively, and
length, precision, and scale of the distinct type. If a distinct type name is specified without a schema
name, the distinct type name is resolved by searching the schemas on the SQL path. The same
limitations that apply to built-in types apply to the source type of the distinct type.

DEFAULT
Specifies a default value for the global variable. The value can be a constant, a special register, a
global variable, an expression, or the keyword NULL. The default value is determined on its first
reference if a value is not explicitly specified. If a default value is not specified, the variable is
initialized to the null value.
The default expression must not modify SQL data or perform an external action. The expression must
be assignment compatible with the data type of the variable.
All tables, views, aliases, distinct types, sequences, global variables, and user-defined functions
referenced in the default expression must exist at the current server when the global variable is
created. The table or view that an alias refers to must also exist when the variable is created.
This includes objects in library QTEMP. While objects in QTEMP can be referenced in the default
expression, dropping those objects in QTEMP will not cause the global variable to be dropped.

Notes
Session scope: Global variables have a session scope. This means that although they are available to all
sessions that are active on the database, their value is private for each session.

Chapter 7. Statements 1203

Modifications to the value of a global variable: Modifications to the value of a global variable are not
under transaction control. The value of the global variable is preserved when a transaction ends with
either a COMMIT or a ROLLBACK statement.

Privileges to use a global variable: An attempt to read from or to write to a global variable created by
this statement requires that the authorization ID attempting this action hold the appropriate privilege on
the global variable. The definer of the variable is implicitly granted all privileges on the variable.

Setting of the default value: A created global variable is instantiated to its default value when it is
first referenced within its given scope. Note that if a global variable is referenced in a statement, it is
instantiated independently of the control flow for that statement.

Using a newly created session global variable: If a global variable is created within a session, it cannot
be used by other sessions until the unit of work has been committed. However, the new global variable
can be used within the session that created the variable before the unit of work commits.

Once a global variable is instantiated for a session, changes to the global variable in another session (such
as DROP or GRANT) might not affect the variable that has been instantiated.

Creating the global variable: A global variable is created as a *SRVPGM object. If the variable name is
a valid system name but a *SRVPGM already exists with that name, an error is issued. If the variable
name is not a valid system name, a unique name is generated using the rules for generating system table
names. For information about the rules for generating a name, see “Rules for Table Name Generation” on
page 1167.

The global variable's definition is saved in the associated service program object. If the *SRVPGM object
is saved and then restored to this or another system, the catalogs are automatically updated with the
definition.

During restore of the global variable:

• If a *SRVPGM object with the same system name exists, the *SRVPGM will be replaced.

If a global variable and an SQL routine have the same name, naming conflicts can be avoided by creating
the global variable first.

Variable ownership: The owner of the variable is the user profile or group user profile of the thread
executing the statement.

Variable authority: If SQL names are used, variables are created with the system authority of *EXCLUDE
on *PUBLIC. If system names are used, variables are created with the authority to *PUBLIC as determined
by the create authority (CRTAUT) parameter of the schema.

If the owner of the variable is a member of a group profile (GRPPRF keyword) and group authority is
specified (GRPAUT keyword), that group profile will also have authority to the variable.

Variable instantiation authorization: When a global variable is instantiated, the DEFAULT clause is
evaluated using the authority of the owner of the global variable.

REPLACE rules: When a variable is recreated by REPLACE:

• Any existing comment or label is discarded.
• Authorized users are maintained. The object owner could change.
• Current journal auditing is preserved.

Examples

Example 1: Create a global variable to indicate what printer to use for the session.

 CREATE VARIABLE MYSCHEMA.MYJOB_PRINTER VARCHAR(30)
 DEFAULT 'Default printer'

1204 IBM i: Db2 for i SQL Reference

Example 2: Create a global variable to indicate the department where an employee works.

 CREATE VARIABLE SCHEMA1.GV_DEPTNO INTEGER
 DEFAULT ((SELECT DEPTNO FROM HR.EMPLOYEES
 WHERE EMPUSER = SESSION_USER))

Example 3: Create a global variable to indicate the security level of the current user.

 CREATE VARIABLE SCHEMA2.GV_SECURITY_LEVEL INTEGER
 DEFAULT (GET_SECURITY_LEVEL (SESSION_USER))

Chapter 7. Statements 1205

CREATE VIEW
The CREATE VIEW statement creates a view on one or more tables or views at the current server.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• The privilege to create in the schema. For more information, see Privileges necessary to create in a
schema.

• Database administrator authority

The privileges held by the authorization ID of the statement must include at least one of the following:

• The following system authorities:

– *USE to the Create Logical File (CRTLF) CL command
– *CHANGE to the data dictionary if the library into which the view is created is an SQL schema with a

data dictionary
• Database administrator authority

The privileges held by the authorization ID of the statement must also include at least one of the
following:

• For each table and view referenced directly through the fullselect, or indirectly through views
referenced in the fullselect:

– The SELECT privilege on the table or view, and
– The system authority *EXECUTE on the library containing the table or view

• Database administrator authority

To replace an existing view, the privileges held by the authorization ID of the statement must include at
least one of the following:

• The following system authorities:

– The system authority of *OBJMGT on the view
– All authorities needed to DROP the view

• Database administrator authority

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Table or View and Corresponding System Authorities When
Checking Privileges to a Distinct Type.

1206 IBM i: Db2 for i SQL Reference

Syntax
CREATE

OR REPLACE RECURSIVE

VIEW view-name

FOR SYSTEM NAME system-object-identifier

(

,

column-name

FOR
COLUMN

system-column-name

)

AS

WITH

,

common-table-expression

fullselect

WITH
CASCADED

LOCAL

CHECK OPTION
RCDFMT format-name

Description
OR REPLACE

Specifies to replace the definition for the view if one exists at the current server. The existing definition
is effectively dropped before the new definition is replaced in the catalog with the exception that
privileges that were granted on the view are not affected. The existing object cannot be a DDS-created
logical file. This option is ignored if a definition for the view does not exist at the current server.

RECURSIVE
Indicates that the view is potentially recursive.

If a fullselect of the view contains a reference to the view itself in a FROM clause, the view is a
recursive view. Views using recursion are useful in supporting applications such as bill of materials
(BOM), reservation systems, and network planning.

The restrictions that apply to a recursive view are similar to those for a recursive common table
expression:

• A list of column-names must be specified following the view-name unless the result columns of the
fullselect are already named.

• The UNION ALL set operator must be specified.
• The first fullselect of the first union (the initialization fullselect) must not include a reference to the

view itself in any FROM clause.
• Each fullselect that is part of the recursion cycle must not include any aggregate functions, GROUP

BY clauses, or HAVING clauses.
• The FROM clauses of each fullselect can include at most one reference to the view that is part of a

recursion cycle.
• The table being defined in the common-table-expression cannot be referenced in a subquery of a

fullselect that defines the common-table-expression.

Chapter 7. Statements 1207

• LEFT OUTER JOIN and FULL OUTER JOIN are not allowed if the common-table-expression is the
right operand. RIGHT OUTER JOIN and FULL OUTER JOIN are not allowed if the common-table-
expression is the left operand.

If a column name of the view is referred to in the iterative fullselect, the attributes of the result
columns are determined using the rules for result columns. For more information see “Rules for result
data types” on page 105.

Recursive views are not allowed if the query specifies:

• a distributed table,
• a table with a read trigger,
• a table referenced directly or indirectly in the fullselect must not be a DDS-created logical file, or
• a logical file built over multiple physical file members.

view-name
Names the view. The name, including the implicit or explicit qualifier, must not be the same as an
alias, file, index, table, or view that already exists at the current server.

If SQL names were specified, the view will be created in the schema specified by the implicit or
explicit qualifier.

If system names were specified, the view will be created in the schema that is specified by the
qualifier. If not qualified and there is no default schema, the view name will be created in the same
schema as the first table specified on the first FROM clause (including FROM clauses in any common
table expressions or nested table expression). If no tables are referenced in the fullselect, the view
will be created in the same schema as the first user defined table function. If no table or user defined
table function is referenced in the fullselect, the current library (*CURLIB) will be used.

If a view name is not a valid system name and the FOR SYSTEM NAME clause is not used, Db2 for i
will generate a system name. For information about the rules for generating the name, see “Rules for
Table Name Generation” on page 1167.

FOR SYSTEM NAME system-object-identifier
Identifies the system-object-identifier of the view. system-object-identifier must not be the same as a
table, view, alias, or index that already exists at the current server. The system-object-identifier must
be an unqualified system identifier.

When system-object-identifier is specified, view-name must not be a valid system object name.

(column-name, …)
Names the columns in the view. If a list of column names is specified, it must consist of as many
names as there are columns in the result table of the fullselect. Each column-name and system-
column-name must be unique and unqualified. If a list of column names is not specified, the columns
of the view inherit the names of the columns and system names of the columns of the result table of
the fullselect.

A list of column names (and system column names) must be specified if the result table of the
subselect has duplicate column names, duplicate system column names, or an unnamed column. For
more information about unnamed columns, see “Names of result columns” on page 740.

FOR COLUMN system-column-name
Provides an IBM i name for the column. Do not use the same name for more than one column of the
view or for a column-name of the view.

If the system-column-name is not specified, and the column-name is not a valid system-column-
name, a system column name is generated. For more information about how system column names
are generated, see “Rules for Column Name Generation” on page 1166.

AS
Defines the view.

1208 IBM i: Db2 for i SQL Reference

WITH common-table-expression
Defines a common table expression for use with the fullselect that follows. For an explanation of
common table expression, see “common-table-expression” on page 790.

fullselect
Defines the view. At any time, the view consists of the rows that would result if the fullselect were
executed.

fullselect must not reference variables, but may reference global variables.

The maximum number of columns allowed in a view is 8000. The column name lengths and the length
of the WHERE clause also reduce this number. The maximum number of base tables allowed in the
view is 256.

For an explanation of fullselect, see “fullselect” on page 783.

common-table-expression defines a common table expression for use with the fullselect that follows.
For more information see “common-table-expression” on page 790.

A declared temporary table must not be referenced in the fullselect unless the view is created in
schema QTEMP.

The ORDER BY, FETCH, and OFFSET clauses may not be specified in the outer fullselect of the view.

WITH CASCADED CHECK OPTION or WITH LOCAL CHECK OPTION
Specifies that every row that is inserted or updated through the view must conform to the definition of
the view. A row that does not conform to the definition of the view is a row that cannot be retrieved
using that view.

CHECK OPTION must not be specified if:

• the view is read-only
• the definition of the view includes a subquery other than a scalar fullselect in the outer select list of

the view
• the definition of the view contains a non-deterministic, MODIFIES SQL DATA, or EXTERNAL ACTION

function in other than the outer select list of the view
• the definition of the view contains a special register in other than the outer select list of the view
• the view references another view and that view has an INSTEAD OF trigger
• the view is recursive

If CHECK OPTION is specified for an updatable view that does not allow inserts, then the check option
applies to updates only.

If CHECK OPTION is omitted, the definition of the view is not used in the checking of any insert
or update operations that use the view. Some checking might still occur during insert or update
operations if the view is directly or indirectly dependent on another view that includes a CHECK
OPTION. Because the definition of the view is not used, rows that do not conform to the definition of
the view might be inserted or updated through the view.

The difference between the two forms of the CHECK OPTION clause, CASCADED and LOCAL, is
meaningful only when a view is dependent on another view. The default is CASCADED. The view upon
which another view is directly or indirectly defined is an underlying view.

CASCADED
The WITH CASCADED CHECK OPTION on a view V is inherited by any updatable view that is
directly or indirectly dependent on V. Thus, if an updatable view is defined on V, the check option
on V also applies to that view, even if WITH CHECK OPTION is not specified on that view. For
example, consider the following updatable views:

CREATE VIEW V1 AS SELECT COL1 FROM T1 WHERE COL1 > 10

CREATE VIEW V2 AS SELECT COL1 FROM V1 WITH CHECK OPTION

CREATE VIEW V3 AS SELECT COL1 FROM V2 WHERE COL1 < 100

Chapter 7. Statements 1209

SQL statement Description of result

INSERT INTO V1 VALUES(5) Succeeds because V1 does not have a CHECK OPTION
clause and it is not dependent on any other view that has
a CHECK OPTION clause.

INSERT INTO V2 VALUES(5) Results in an error because the inserted row does not
conform to the search condition of V1 which is implicitly
part of the definition of V2.

INSERT INTO V3 VALUES(5) Results in an error because V3 is dependent on V2 which
has a CHECK OPTION clause and the inserted row does
not conform to the definition of V2.

INSERT INTO V3 VALUES(200) Succeeds even though it does not conform to the
definition of V3 (V3 does not have the view CHECK
OPTION clause specified); it does conform to the
definition of V2 (which does have the view CHECK
OPTION clause specified).

LOCAL
WITH LOCAL CHECK OPTION is identical to WITH CASCADED CHECK OPTION except that it is still
possible to update a row so that it no longer conforms to the definition of the view when the view
is defined with the WITH LOCAL CHECK OPTION. This can only happen when the view is directly or
indirectly dependent on a view that was defined without either WITH CASCADED CHECK OPTION
or WITH LOCAL CHECK OPTION clauses.

WITH LOCAL CHECK OPTION specifies that the search conditions of the following underlying
views are checked when a row is inserted or updated:

• views that specify WITH LOCAL CHECK OPTION
• views that specify WITH CASCADED CHECK OPTION
• all underlying views of a view that specifies WITH CASCADED CHECK OPTION

In contrast, WITH CASCADED CHECK OPTION specifies that the search conditions of all
underlying views are checked when a row is inserted or updated.

The difference between CASCADED and LOCAL is best shown by example. Consider the following
updatable views where x and y represent either LOCAL or CASCADED:

 V1 defined on table T0
 V2 defined on V1 WITH x CHECK OPTION
 V3 defined on V2
 V4 defined on V3 WITH y CHECK OPTION
 V5 defined on V4

The following table describes which views search conditions are checked during an INSERT or
UPDATE operation:

Table 93. Views whose search conditions are checked during INSERT and UPDATE

View used in
INSERT or UPDATE

x = LOCAL

y = LOCAL

x = CASCADED

y = CASCADED

x = LOCAL

y = CASCADED

x = CASCADED

y = LOCAL

V1 none none none none

V2 V2 V2 V1 V2 V2 V1

V3 V2 V2 V1 V2 V2 V1

V4 V4 V2 V4 V3 V2 V1 V4 V3 V2 V1 V4 V2 V1

V5 V4 V2 V4 V3 V2 V1 V4 V3 V2 V1 V4 V2 V1

1210 IBM i: Db2 for i SQL Reference

RCDFMT format-name
An unqualified name that designates the IBM i record format name of the view. A format-name is a
system identifier.

If a record format name is not specified, the format-name is the same as the system-object-name of
the view.

Notes
View ownership: If SQL names were specified:

• If a user profile with the same name as the schema into which the view is created exists, the owner of
the view is that user profile.

• Otherwise, the owner of the view is the user profile or group user profile of the thread executing the
statement.

If system names were specified, the owner of the view is the user profile or group user profile of the
thread executing the statement.

View authority: If SQL names are used, views are created with the system authority of *EXCLUDE on
*PUBLIC. If system names are used, views are created with the authority to *PUBLIC as determined by
the create authority (CRTAUT) parameter of the schema.

If the owner of the view is a member of a group profile (GRPPRF keyword) and group authority is specified
(GRPAUT keyword), that group profile will also have authority to the view.

The owner always acquires the SELECT privilege WITH GRANT OPTION on the view and the authorization
to drop the view.

The owner can also acquire the INSERT, UPDATE, and DELETE privileges on the view. If the view is not
read-only, then the same privileges will be acquired on the new view as the owner has on the table or view
identified in the first FROM clause of the fullselect. These privileges can be granted only if the privileges
from which they are derived can also be granted.

REPLACE rules: When a view is recreated by REPLACE:

• Any existing comment or label is discarded.
• Authorized users are maintained. The object owner could change.
• Current journal auditing is preserved. However, unlike other objects, REPLACE of a view will generate a

ZC (change object) journal audit entry.
• Any INSTEAD OF triggers defined for the view are dropped (any triggers that reference the view are not

dropped).
• Any views and materialized query tables dependent on the view will be recreated, if possible. If it is not

possible to recreate a dependent view or materialized query table, an error is returned.

Deletable views: A view is deletable if an INSTEAD OF trigger for the delete operation has been defined
for the view, or if all of the following are true:

• The outer fullselect identifies only one base table or deletable view that is not a catalog table or view. It
cannot be a nested table expression, table function, or a table with a FOR SYSTEM_TIME clause.

• The outer fullselect does not include a VALUES clause.
• The outer fullselect does not include a GROUP BY clause or HAVING clause.
• The outer fullselect does not include aggregate functions in the select list.
• The outer fullselect does not include a UNION, UNION ALL, EXCEPT, or INTERSECT operator.
• The outer fullselect does not include the DISTINCT clause.

Updatable views: A view is updatable if an INSTEAD OF trigger for the update operation has been defined
for the view, or if all of the following are true:

• independent of an INSTEAD OF trigger for delete, the view is deletable

Chapter 7. Statements 1211

• at least one column of the view is updatable.

A column of a view is updatable if an INSTEAD OF trigger for the update operation has been defined for
the view, or if the corresponding result column of the subselect is derived solely from a column of a table
or an updatable column of another view (that is, it is not derived from an expression that contains an
operator, scalar function, constant, or a column that itself is derived from such expressions).

Insertable views: A view is insertable if an INSTEAD OF trigger has been defined for the view, or if at least
one column of the view is updatable.

Read-only views: A view is read-only if it is not deletable.

A read-only view cannot be the object of an INSERT, UPDATE, or DELETE statement.

Special registers for temporal support: The value of the CURRENT TEMPORAL SYSTEM_TIME special
register has no impact on the query expression that defines a view while it is being defined. When a view
is used in an SQL statement, the value of the CURRENT TEMPORAL SYSTEM_TIME special register for the
session processing the SQL statement is applied to the view if the value of the SYSTIME option is YES.

Unqualified table names: If the CREATE VIEW statement refers to an unqualified table name, the
following rules are applied to determine which table is actually being referenced:

• If the unqualified name corresponds to one or more common table expression table-identifiers that are
specified in the fullselect, the name identifies the common table expression that is in the innermost
scope.

• Otherwise, the name identifies a persistent table, a temporary table, or a view that is present in the
default schema.

Considerations for implicitly hidden columns: It is possible that the result table of the fullselect will
include a column of the base table that is defined as implicitly hidden. This can occur when the implicitly
hidden column is explicitly referenced in the fullselect of the view definition. However, the corresponding
column of the view does not inherit the implicitly hidden attribute. Columns of a view cannot be defined as
hidden.

Collating sequence: The view is created with the collating sequence in effect at the time the CREATE
VIEW statement is executed. The collating sequence of the view applies to all comparisons involving
SBCS data and mixed data in the view fullselect. When the view is included in a query, an intermediate
result table is generated from the view fullselect. The collating sequence in effect when the query is
executed applies to any selection specified in the query.

View attributes: Views are created as nonkeyed logical files. When a view is created, the file wait time
and record wait time attributes are set to the default that is specified on the WAITFILE and WAITRCD
keywords of the Create Logical File (CRTLF) command.

The date and time format used for date and time result columns is ISO.

A view created over a distributed table is created on all of the systems across which the table is
distributed. If a view is created over more than one distributed table, and those tables are not distributed
using the same nodegroup, then the view is created only on the system that performs the CREATE VIEW
statement. For more information about distributed tables, see the DB2 Multisystem topic collection.

Identity and row change timestamp columns: A column of a view is considered an identity or row
change timestamp column if the element of the corresponding column in the fullselect of the view
definition is the name of an identity or row change timestamp column of a table, or the name of a column
of a view which directly or indirectly maps to the name of an identity or row change timestamp column of
a base table. In all other cases, the columns of a view will not get the identity or row change timestamp
property. For example:

• the select-list of the view definition includes multiple instances of the name of an identity column (that
is, selecting the same column more than once)

• the view definition involves a join
• a column in the view definition includes an expression that refers to an identity column
• the view definition includes a UNION or INTERSECT

1212 IBM i: Db2 for i SQL Reference

Examples
Example 1: Create a view named MA_PROJ over the PROJECT table that contains only those rows with a
project number (PROJNO) starting with the letters ‘MA'.

CREATE VIEW MA_PROJ
 AS SELECT * FROM PROJECT
 WHERE SUBSTR(PROJNO, 1, 2) = 'MA'

Example 2: Create a view as in example 1, but select only the columns for project number (PROJNO),
project name (PROJNAME) and employee in charge of the project (RESPEMP).

CREATE VIEW MA_PROJ
 AS SELECT PROJNO, PROJNAME, RESPEMP FROM PROJECT
 WHERE SUBSTR(PROJNO, 1, 2) = 'MA'

Example 3: Create a view as in example 2, but, in the view, call the column for the employee in charge of
the project IN_CHARGE.

CREATE VIEW MA_PROJ (PROJNO, PROJNAME, IN_CHARGE)
 AS SELECT PROJNO, PROJNAME, RESPEMP FROM PROJECT
 WHERE SUBSTR(PROJNO, 1, 2) = 'MA'

Note: Even though you are changing only one of the column names, the names of all three columns in the
view must be listed in the parentheses that follow MA_PROJ.

Example 4: Create a view named PRJ_LEADER that contains the first four columns (PROJNO, PROJNAME,
DEPTNO, RESPEMP) from the PROJECT table together with the last name (LASTNAME) of the person who
is responsible for the project (RESPEMP). Obtain the name from the EMPLOYEE table by matching EMPNO
in EMPLOYEE to RESEMP in PROJECT.

CREATE VIEW PRJ_LEADER
 AS SELECT PROJNO, PROJNAME, DEPTNO, RESPEMP, LASTNAME
 FROM PROJECT, EMPLOYEE
 WHERE RESPEMP = EMPNO

Example 5: Create a view as in example 4, but in addition to the columns PROJNO, PROJNAME, DEPTNO,
RESEMP and LASTNAME, show the total pay (SALARY + BONUS +COMM) of the employee who is
responsible. Also select only those projects with mean staffing (PRSTAFF) greater than one.

CREATE VIEW PRJ_LEADER (PROJNO, PROJNAME, DEPTNO, RESPEMP, LASTNAME, TOTAL_PAY)
 AS SELECT PROJNO, PROJNAME, DEPTNO, RESPEMP, LASTNAME, SALARY+BONUS+COMM
 FROM PROJECT, EMPLOYEE
 WHERE RESPEMP = EMPNO AND PRSTAFF > 1

Example 6: Create a recursive view that returns a similar result as a common table expression, see
“Example 1: Single level explosion” on page 793.

 CREATE RECURSIVE VIEW RPL (PART, SUBPART, QUANTITY) AS
 SELECT ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY
 FROM PARTLIST ROOT
 WHERE ROOT.PART = '01'
 UNION ALL
 SELECT CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY
 FROM RPL PARENT, PARTLIST CHILD
 WHERE PARENT.SUBPART = CHILD.PART

 SELECT DISTINCT *
 FROMRPL
 ORDER BY PART, SUBPART, QUANTITY

Chapter 7. Statements 1213

DEALLOCATE DESCRIPTOR
The DEALLOCATE DESCRIPTOR statement deallocates an SQL descriptor.

Invocation
This statement can only be embedded in an application program, SQL function, SQL procedure, or trigger.
It cannot be issued interactively. It is an executable statement that cannot be dynamically prepared. It
must not be specified in REXX.

Authorization
None required.

Syntax

DEALLOCATE

SQL

DESCRIPTOR
LOCAL

GLOBAL

SQL-descriptor-name

Description
LOCAL

Specifies the scope of the name of the descriptor to be local to program invocation. The descriptor
known in this local scope is deallocated.

GLOBAL
Specifies the scope of the name of the descriptor to be global to the SQL session. The descriptor
known to any program that executes using the same database connection is deallocated.

SQL-descriptor-name
Names the descriptor to deallocate. The name must identify a descriptor that already exists with the
specified scope.

Notes
Descriptor persistence: Local and global descriptors are also implicitly deallocated. For more
information, see Descriptor persistence

Examples
Deallocate a descriptor called 'NEWDA'.

 EXEC SQL DEALLOCATE DESCRIPTOR 'NEWDA'

1214 IBM i: Db2 for i SQL Reference

DECLARE CURSOR
The DECLARE CURSOR statement defines a cursor.

Invocation
This statement can only be embedded in an application program. It is not an executable statement. It
must not be specified in Java.

Authorization
No authorization is required to use this statement. However to use OPEN or FETCH for the cursor, the
privileges held by the authorization ID of the statement must include at least one of the following:

• For each table or view identified in the SELECT statement of the cursor:

– The SELECT privilege on the table or view, and
– The system authority *EXECUTE on the library containing the table or view

• Database administrator authority

The SELECT statement of the cursor is one of the following:

• The prepared select-statement identified by the statement-name.
• The specified select-statement.

If statement-name is specified:

• The authorization ID of the statement is the run-time authorization ID unless USRPRF(*OWNER) and
DYNUSRPRF(*OWNER) were specified on the CRTSQLxxx command when the program was created. For
more information, see “Authorization IDs and authorization names” on page 61.

• The authorization check is performed when the select-statement is prepared unless DLYPRP(*YES) is
specified on the CRTSQLxxx command.

• The authorization check is performed when the cursor is opened for programs compiled with the
DLYPRP(*YES) parameter.

If the select-statement is specified:

• If USRPRF(*OWNER) or USRPRF(*NAMING) with SQL naming was specified on the CRTSQLxxx
command, the authorization ID of the statement is the owner of the SQL program or package.

• If USRPRF(*USER) or USRPRF(*NAMING) with system naming was specified on the CRTSQLxxx
command, the authorization ID of the statement is the run-time authorization ID.

• In REXX, the authorization ID of the statement is the run-time authorization ID.
• The authorization check is performed when the cursor is opened.

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Table or View.

Chapter 7. Statements 1215

Syntax

DECLARE cursor-name
ASENSITIVE

INSENSITIVE

SENSITIVE
DYNAMIC

NO SCROLL

SCROLL

CURSOR
WITHOUT HOLD

WITH HOLD

WITHOUT RETURN

WITH RETURN
TO CALLER

TO CLIENT

WITHOUT EXTENDED INDICATORS

WITH EXTENDED INDICATORS

1
FOR select-statement

statement-name

Notes:
1 The HOLD, RETURN, and EXTENDED INDICATORS clauses can be specified in any order.

Description
cursor-name

Names a cursor. The name must not be the same as the name of another cursor declared in your
source program.

ASENSITIVE, SENSITIVE, or INSENSITIVE
Specifies whether the cursor is asensitive, sensitive, or insensitive to changes. If statement-name is
specified, the default is the corresponding prepare attribute of the statement. Otherwise, ASENSITIVE
is the default.
ASENSITIVE

Specifies that the cursor may behave as SENSITIVE or INSENSITIVE depending on how the
select-statement is optimized.

SENSITIVE
Specifies that changes made to the database after the cursor is opened are visible in the result
table. The cursor has some level of sensitivity to any updates or deletes made to the rows
underlying its result table after the cursor is opened. The cursor is always sensitive to positioned
updates or deletes using the same cursor. Additionally, the cursor can have sensitivity to changes
made outside this cursor. If the database manager cannot make changes visible to the cursor,
then an error is returned. The database manager cannot make changes visible to the cursor when
the cursor implicitly becomes read-only. (See Result table of a cursor.) If SENSITIVE is specified,
the SELECT statement cannot contain a data-change-table-reference.

INSENSITIVE
Specifies that once the cursor is opened, it does not have sensitivity to inserts, updates, or
deletes performed by this or any other activation group. If INSENSITIVE is specified, the cursor is
read-only and a temporary result is created when the cursor is opened. In addition, the SELECT
statement cannot contain a UPDATE clause and the application must allow a copy of the data
(ALWCPYDTA(*OPTIMIZE) or ALWCPYDTA(*YES)).

NO SCROLL or SCROLL
Specifies whether the cursor is scrollable or not scrollable. If statement-name is specified, the default
is the corresponding prepare attribute of the statement. Otherwise, NO SCROLL is the default.
NO SCROLL

Specifies that the cursor is not scrollable.

1216 IBM i: Db2 for i SQL Reference

SCROLL
Specifies that the cursor is scrollable. The cursor may or may not have immediate sensitivity to
inserts, updates, and deletes done by other activation groups.

WITHOUT HOLD or WITH HOLD
Specifies whether the cursor should be prevented from being closed as a consequence of a commit
operation. If statement-name is specified, the default is the corresponding prepare attribute of the
statement. Otherwise, WITHOUT HOLD is the default.
WITHOUT HOLD

Does not prevent the cursor from being closed as a consequence of a commit operation.
WITH HOLD

Prevents the cursor from being closed as a consequence of a commit operation. A cursor declared
using the WITH HOLD clause is implicitly closed at commit time only if the connection associated
with the cursor is ended during the commit operation.

When WITH HOLD is specified, a commit operation commits all the changes in the current unit
of work, and releases all locks except those that are required to maintain the cursor position.
Afterward, a FETCH statement is required before a Positioned UPDATE or DELETE statement can
be executed.

All cursors are implicitly closed by a CONNECT (Type 1) or rollback operation. All cursors
associated with a connection are implicitly closed by a disconnect of the connection. A cursor
is also implicitly closed by a commit operation if WITH HOLD is not specified, or if the connection
associated with the cursor is in the release-pending state.

If a cursor is closed before the commit operation, the effect is the same as if the cursor was
declared without the WITH HOLD option.

WITHOUT RETURN or WITH RETURN
Specifies that the result table of the cursor is intended to be used as a procedure result set. If
statement-name is specified, the default is the corresponding prepare attribute of the statement.
Otherwise, WITHOUT RETURN is the default.
WITHOUT RETURN

Specifies that the result table of the cursor is not intended to be used as a procedure result set.
WITH RETURN

Specifies that the result table of the cursor is intended to be used as a procedure result set. If the
DECLARE CURSOR statement is not contained within the source code for a procedure, the clause
is ignored.

For SQL procedures, result sets are only returned if a DYNAMIC RESULT SETS clause with a
nonzero maximum number of result sets is specified on the procedure definition.

• Cursors defined by using the WITH RETURN clause that are still open when the procedure ends
define the result sets for the procedure. All other open cursors are closed when the procedure
ends, provided the procedure was not created with CLOSQLCSR(*ENDACTGRP).

• If no cursors in the stored procedure are defined by using the WITH RETURN or WITHOUT
RETURN clause, then any cursor that is open when the stored procedure ends potentially
becomes a result set cursor.

• See the DYNAMIC RESULT SETS clause in “CREATE PROCEDURE (SQL)” on page 1090 for further
considerations that determine a procedure's result sets.

For external procedures:

• Any cursors that are defined by using the WITH RETURN clause (or identified as a result set
cursor in a SET RESULT SETS statement) and that are still open when the procedure ends
define the potential result sets for the procedure, provided the procedure was not created with
CLOSQLCSR(*ENDACTGRP). All other open cursors remain open.

• If no cursors in the stored procedure are defined by using the WITH RETURN or WITHOUT
RETURN clause, and no cursors are identified as a result set cursor in a SET RESULT SETS

Chapter 7. Statements 1217

statement, then any cursor that is open when the stored procedure ends potentially becomes a
result set cursor.

• See the DYNAMIC RESULT SETS clause in “CREATE PROCEDURE (external)” on page 1075 for
further considerations that determine a procedure's result sets.

For non-scrollable cursors, the result set consists of all rows from the current cursor position to
the end of the result table. For scrollable cursors, the result set consists of all rows of the result
table.

TO CALLER
Specifies that the cursor can return a result set to the caller of the procedure. For example, if
the caller is a client application, the result set is returned to the client application.

TO CLIENT
Specifies that the cursor can return a result set to the client application. This cursor is invisible
to any intermediate nested procedures. If a function or trigger called the procedure either
directly or indirectly, result sets cannot be returned to the client and the cursor will be closed
after the procedure finishes.

TO CLIENT may be necessary if the result set is returned from an ILE program with multiple
modules.

WITHOUT EXTENDED INDICATORS or WITH EXTENDED INDICATORS
Specifies whether extended indicators are enabled. If statement-name is specified, the default is the
corresponding prepare attribute of the statement. Otherwise, the default is the attribute specified on
the containing program or service program.
WITHOUT EXTENDED INDICATORS

Specifies that extended indicator variables are not enabled, and only updatable columns are
allowed in the implicit or explicit UPDATE clause or the select-statement.

WITH EXTENDED INDICATORS
Specifies that extended indicator variables are enabled, and non-updatable columns are allowed
in the implicit or explicit UPDATE clause of the select-statement.

select-statement
Specifies the SELECT statement of the cursor. See “select-statement” on page 789 for more
information.

The select-statement must not include parameter markers (except for REXX), but can include
references to variables. In host languages, other than REXX, the declarations of the host variables
must precede the DECLARE CURSOR statement in the source program. In REXX, parameter markers
must be used in place of variables and the statement must be prepared.

statement-name
The SELECT statement of the cursor is the prepared select-statement identified by the statement-
name when the cursor is opened. The statement-name must not be identical to a statement-name
specified in another DECLARE CURSOR statement of the source program. See “PREPARE” on page
1435 for an explanation of prepared statements.

Notes
Placement of DECLARE CURSOR: The DECLARE CURSOR statement must precede all statements that
explicitly reference the cursor by name, except in C and PL/I.

Result table of a cursor: A cursor in the open state designates a result table and a position relative to the
rows of that table. The table is the result table specified by the SELECT statement of the cursor.

A cursor is deletable if all of the following are true:

• The outer fullselect identifies only one base table or deletable view that is not a catalog table or view
and is not in a nested table expression.

• The outer fullselect does not include a VALUES clause.
• The outer fullselect does not include a GROUP BY clause or HAVING clause.

1218 IBM i: Db2 for i SQL Reference

• The outer fullselect does not include aggregate functions in the select list.
• The outer fullselect does not include a UNION, UNION ALL, EXCEPT, or INTERSECT operator.
• The select-clause of the outer fullselect does not include the DISTINCT clause.
• The outer fullselect does not contain a FOR SYSTEM_TIME period specification.
• The outer fullselect does not include a data-change-table-reference in the FROM clause
• The select-statement does not contain an ORDER BY clause and does not contain the UPDATE clause

and SENSITIVE is not specified in the DECLARE CURSOR statement
• The select-statement does not include a FOR READ ONLY clause.
• The result of the outer fullselect does not make use of a temporary table.
• The select-statement does not include the SCROLL keyword, or the SENSITIVE keyword or UPDATE

clause is also specified.
• The select list does not include a DATALINK column unless a UPDATE clause is specified.

A result column in the select list of the outer fullselect associated with a cursor is updatable if all of the
following are true:

• The cursor is deletable.
• The result column is derived solely from a column of a table or an updatable column of a view. That

is, at least one result column must not be derived from an expression that contains an operator, scalar
function, constant, or a column that itself is derived from such expressions.

A cursor is read-only if it is not deletable.

If the UPDATE clause is omitted, only the columns in the SELECT clause of the subselect that can be
updated can be changed.

If UPDATE is specified without a list of column names, then the list of columns that can appear as
targets in the assignment clause of subsequent positioned UPDATE statements identifying this cursor is
determined as follows:

• If WITH EXTENDED INDICATORS is specified, all the columns of the table or view identified in the first
FROM clause of the fullselect.

• Otherwise, only the updatable columns of the table or view identified in the first FROM clause of the
fullselect.

If UPDATE is specified with a list of column names, only the columns specified in the list of column
names can be appear as targets in the assignment clause in subsequent positioned UPDATE statements
identifying this cursor.

Scope of a cursor: The scope of cursor-name is the source program in which it is defined; that is, the
program submitted to the precompiler. Thus, a cursor can only be referenced by statements that are
precompiled with the cursor declaration. For example, a program called from another separately compiled
program cannot use a cursor that was opened by the calling program.

The scope of cursor-name is also limited to the thread in which the program that contains the cursor is
running. For example, if the same program is running in two separate threads in the same job, the second
thread cannot use a cursor that was opened by the first thread.

A cursor can only be referred to in the same instance of the program in the program stack
unless CLOSQLCSR(*ENDJOB), CLOSQLCSR(*ENDSQL), or CLOSQLCSR(*ENDACTGRP) is specified on the
CRTSQLxxx commands.

• If CLOSQLCSR(*ENDJOB) is specified, the cursor can be referred to by any instance of the program on
the program stack.

• If CLOSQLCSR(*ENDSQL) is specified, the cursor can be referred to by any instance of the program on
the program stack until the last SQL program on the program stack ends.

• If CLOSQLCSR(*ENDACTGRP) is specified, the cursor can be referred to by all instances of the module in
the activation group until the activation group ends.

Chapter 7. Statements 1219

Although the scope of a cursor is the program in which it is declared, each package created from the
program includes a separate instance of the cursor and more than one cursor can exist at run time. For
example, assume a program using CONNECT (Type 2) statements connects to location X and location Y in
the following sequence:

EXEC SQL DECLARE C CURSOR FOR…
EXEC SQL CONNECT TO X;
EXEC SQL OPEN C;
EXEC SQL FETCH C INTO…
EXEC SQL CONNECT TO Y;
EXEC SQL OPEN C;
EXEC SQL FETCH C INTO…

The second OPEN C statement does not cause an error because it refers to a different instance of cursor
C.

A SELECT statement is evaluated at the time the cursor is opened. If the same cursor is opened, closed,
and then opened again, the results may be different. If the SELECT statement of a cursor contains
CURRENT DATE, CURRENT TIME, or CURRENT TIMESTAMP, all references to these special registers will
yield the same respective datetime value on each FETCH. The value is determined when the cursor is
opened. Multiple cursors using the same SELECT statement can be opened concurrently. They are each
considered independent activities.

Using sequence expressions: For information regarding using NEXT VALUE and PREVIOUS VALUE
expressions with a cursor, see Using sequence expressions with a cursor.

Blocking of data: For more efficient processing of data, the database manager can block data for read-
only cursors. If a cursor is not going to be used in a Positioned UPDATE or DELETE statement, it should be
declared as FOR READ ONLY.

Usage in REXX: If variables are used on the DECLARE CURSOR statement within a REXX procedure, then
the DECLARE CURSOR must be the object of a PREPARE and EXECUTE.

Temporary results: Certain select-statements may be implemented as temporary result tables.

• A temporary result table is created when:

– INSENSITIVE is specified
– The ORDER BY and GROUP BY clauses specify different columns or columns in a different order.
– The ORDER BY and GROUP BY clauses include a user-defined function or one of the following

scalar functions: DLVALUE, DLURLPATH, DLURLPATHONLY, DLURLSERVER, DLURLSCHEME, or
DLURLCOMPLETE for DataLinks with an attribute of FILE LINK CONTROL and READ PERMISSION
DB.

– The UNION, EXCEPT, INTERSECT, or DISTINCT clauses are specified.
– The ORDER BY or GROUP BY clauses specify columns which are not all from the same table.
– A logical file defined by the JOINDFT data definition specifications (DDS) keyword is joined to another

file.
– A logical file that is based on multiple database file members is specified.
– The CURRENT or RELATIVE scroll options are specified on the FETCH statement when the select

statement of the DECLARE CURSOR contains a GROUP BY clause.
– The FETCH FIRST n ROWS ONLY clause is specified.

• Queries that include a subquery where:

– The outermost query does not provide correlated values to any inner subselects.
– No IN, = ANY, = SOME, or <> ALL subqueries are referenced by the outermost query.

Cursor sensitivity: Scrollable, sensitive cursors with an OFFSET and/or FETCH FIRST clause may return
rows either before the specified offset or after the specified number of rows if:

• update, delete, or insert operations occur against the underlying tables of the cursor while fetching data
through the cursor, and

1220 IBM i: Db2 for i SQL Reference

• the fetch operations against the cursor attempt to return the same rows that were previously fetched by
the cursor.

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• DYNAMIC SCROLL is a synonym for SENSITIVE DYNAMIC SCROLL

Examples
Example 1: Declare C1 as the cursor of a query to retrieve data from the table DEPARTMENT. The query
itself appears in the DECLARE CURSOR statement.

 EXEC SQL DECLARE C1 CURSOR FOR
 SELECT DEPTNO, DEPTNAME, MGRNO
 FROM DEPARTMENT
 WHERE ADMRDEPT = 'A00';

Example 2: Declare C1 as the cursor of a query to retrieve data from the table DEPARTMENT. Assume that
the data will be updated later with a searched update and should be locked when the query executes. The
query itself appears in the DECLARE CURSOR statement.

 EXEC SQL DECLARE C1 CURSOR FOR
 SELECT DEPTNO, DEPTNAME, MGRNO
 FROM DEPARTMENT
 WHERE ADMRDEPT = 'A00'
 FOR READ ONLY WITH RS USE AND KEEP EXCLUSIVE LOCKS;

Example 3: Declare C2 as the cursor for a statement named STMT2.

 EXEC SQL DECLARE C2 CURSOR FOR STMT2;

Example 4: Declare C3® as the cursor for a query to be used in positioned updates of the table EMPLOYEE.
Allow the completed updates to be committed from time to time without closing the cursor.

 EXEC SQL DECLARE C3 CURSOR WITH HOLD FOR
 SELECT *
 FROM EMPLOYEE
 FOR UPDATE OF WORKDEPT, PHONENO, JOB, EDLEVEL, SALARY;

Instead of explicitly specifying the columns to be updated, an UPDATE clause could have been used
without naming the columns. This would allow all the updatable columns of the table to be updated. Since
this cursor is updatable, it can also be used to delete rows from the table.

Example 5: In a C program, use the cursor C1 to fetch the values for a given project (PROJNO) from
the first four columns of the EMPPROJACT table a row at a time and put them into the following host
variables: EMP(CHAR(6)), PRJ(CHAR(6)), ACT(SMALLINT) and TIM(DECIMAL(5,2)). Obtain the value of
the project to search for from the host variable SEARCH_PRJ (CHAR(6)). Dynamically prepare the select-
statement to allow the project to search by to be specified when the program is executed.

void main ()
 {
 EXEC SQL BEGIN DECLARE SECTION;
 char EMP[7];
 char PRJ[7];
 char SEARCH_PRJ[7];
 short ACT;
 double TIM;
 char SELECT_STMT[201];
 EXEC SQL END DECLARE SECTION;
 EXEC SQL INCLUDE SQLCA;

 strcpy(SELECT_STMT, "SELECT EMPNO, PROJNO, ACTNO, EMPTIME \
 FROM EMPPROJACT \
 WHERE PROJNO = ?");
 .
 .
 .
 EXEC SQL PREPARE SELECT_PRJ FROM :SELECT_STMT;

Chapter 7. Statements 1221

 EXEC SQL DECLARE C1 CURSOR FOR SELECT_PRJ;

/* Obtain the value for SEARCH_PRJ from the user. */
 .
 .
 .
 EXEC SQL OPEN C1 USING :SEARCH_PRJ;

 EXEC SQL FETCH C1 INTO :EMP, :PRJ, :ACT, :TIM;

 if (strcmp(SQLSTATE, "02000", 5))
 {
 data_not_found();
 }
 else
 {
 while (strcmp(SQLSTATE, "00", 2) || strcmp(SQLSTATE, "01", 2))
 {
 EXEC SQL FETCH C1 INTO :EMP, :PRJ, :ACT, :TIM;
 }
 }

 EXEC SQL CLOSE C1;
 .
 .
 .
 }

Example 6: The DECLARE CURSOR statement associates the cursor name C1 with the results of the
SELECT. C1 is an updatable, scrollable cursor.

 EXEC SQL DECLARE C1 SENSITIVE SCROLL CURSOR FOR
 SELECT DEPTNO, DEPTNAME, MGRNO
 FROM TDEPT
 WHERE ADMRDEPT = 'A00';

Example 7: Declare a cursor in order to fetch values from four columns and assign the values to variables
using the Serializable (RR) isolation level:

 DECLARE CURSOR1 CURSOR FOR
 SELECT COL1, COL2, COL3, COL4
 FROM TBLNAME WHERE COL1 = :varname
 WITH RR

Example 8: Assume that the EMPLOYEE table has been altered to add a generated column, WEEKLYPAY,
that calculates the weekly pay based on the yearly salary. Declare a cursor to retrieve the system
generated column value from a row to be inserted.

 DECLARE C2 CURSOR FOR
 SELECT E.WEEKLYPAY
 FROM FINAL TABLE
 (INSERT INTO EMPLOYEE
 (EMPNO, FIRSTNME, MIDINIT, LASTNAME, EDLEVEL, SALARY)
 VALUES('000420', 'Peter', 'U', 'Bender', 16, 31842)) AS E;

1222 IBM i: Db2 for i SQL Reference

DECLARE GLOBAL TEMPORARY TABLE
The DECLARE GLOBAL TEMPORARY TABLE statement defines a declared temporary table for the current
application process. The declared temporary table description does not appear in the system catalog. It
is not persistent and cannot be shared with other application processes. Each application process that
defines a declared temporary table of the same name has its own unique description of the temporary
table. When the application process ends, the temporary table is dropped.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
If the LIKE or AS select-statement clause is specified, the privileges held by the authorization ID of the
statement must include at least one of the following on any table or view specified in the LIKE clause or
as-result-table clause:

• The SELECT privilege for the table or view
• Ownership of the table or view
• Database administrator authority

If a distinct type is referenced, the privileges held by the authorization ID of the statement must include at
least one of the following:

• For each distinct type identified in the statement:

– The USAGE privilege on the distinct type, and
– The system authority *EXECUTE on the library containing the distinct type

• Database administrator authority

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Table or View and Corresponding System Authorities When
Checking Privileges to a Distinct Type.

Chapter 7. Statements 1223

Syntax
DECLARE GLOBAL TEMPORARY TABLE table-name

FOR SYSTEM NAME system-object-identifier

(

,

column-definition

period-definition

LIKE table-name

view-name copy-options

)

LIKE table-name

view-name copy-options

as-result-table

WITH REPLACE

ON COMMIT DELETE ROWS

ON COMMIT PRESERVE ROWS

NOT LOGGED
ON ROLLBACK DELETE ROWS

ON ROLLBACK PRESERVE ROWS

1

RCDFMT format-name

2

media-preference

memory-preference

media-preference
UNIT ANY

UNIT SSD

memory-preference
KEEP IN MEMORY NO

YES

column-definition

1224 IBM i: Db2 for i SQL Reference

column-name

FOR
COLUMN

system-column-name

data-type
3

default-clause

generated-clause

FIELDPROC external-program-name

(

,

constant)

NOT NULL

NOT HIDDEN

IMPLICITLY HIDDEN

datalink-options
4

1

data-type
built-in-type

distinct-type-name

Notes:
1 The same clause must not be specified more than once.
2 The optional clauses can be specified in any order.
3 data-type is optional for row change timestamp columns, row-begin and row-end columns, and transaction-
start-ID columns.
4 The datalink-options can only be specified for DATALINKs and distinct-types sourced on DATALINKs.

built-in-type

Chapter 7. Statements 1225

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

allocate-clause

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) allocate-clause FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

allocate-clause

DBCLOB

(1M)

(integer

K

M

G

) allocate-clause

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

allocate-clause

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

) allocate-clause

normalize-clause

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

allocate-clause

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

) allocate-clause

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

DATALINK

(200)

(integer) allocate-clause ccsid-clause

XML

ccsid-clause

ccsid-clause
CCSID integer

normalize-clause

normalize-clause

1226 IBM i: Db2 for i SQL Reference

NOT NORMALIZED

NORMALIZED

allocate-clause
ALLOCATE (integer)

default-clause
WITH

DEFAULT

constant

USER

NULL

CURRENT_DATE

CURRENT_TIME

CURRENT_TIMESTAMP

(6)

(integer)

cast-function-name (constant

USER

CURRENT_DATE

CURRENT_TIME

CURRENT_TIMESTAMP

(6)

(integer)

)

generated-clause

GENERATED
ALWAYS

BY DEFAULT

1

identity-options

as-row-change-timestamp-clause

GENERATED
ALWAYS

as-row-transaction-timestamp-clause

as-row-transaction-start-id-clause

as-generated-expression-clause

Notes:
1 GENERATED can be specified only if the column has a ROWID data type (or a distinct type that is based on a
ROWID data type), or the column is an identity column, or the column is a row change timestamp.

identity-options

Chapter 7. Statements 1227

AS IDENTITY

(START WITH

1

numeric-constant

INCREMENT BY

1

numeric-constant

NO MINVALUE

MINVALUE numeric-constant

NO MAXVALUE

MAXVALUE numeric-constant

NO CYCLE

CYCLE

CACHE 20

NO CACHE

CACHE integer

NO ORDER

ORDER

1
)

Notes:
1 The same clause must not be specified more than once.

as-row-change-timestamp-clause
FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP

as-row-transaction-timestamp-clause
AS ROW BEGIN

START

END

as-row-transaction-start-id-clause
AS TRANSACTION START ID

as-generated-expression-clause
AS (non-deterministic-expression)

non-deterministic-expression
DATA CHANGE OPERATION

special-register

built-in-global-variable

special-register

1228 IBM i: Db2 for i SQL Reference

CURRENT CLIENT_ACCTNG

CURRENT CLIENT_APPLNAME

CURRENT CLIENT_PROGRAMID

CURRENT CLIENT_USERID

CURRENT CLIENT_WRKSTNNAME

CURRENT SERVER

SESSION_USER

USER

built-in-global-variable
QSYS2.JOB_NAME

QSYS2.SERVER_MODE_JOB_NAME

SYSIBM.CLIENT_HOST

SYSIBM.CLIENT_IPADDR

SYSIBM.CLIENT_PORT

SYSIBM.PACKAGE_NAME

SYSIBM.PACKAGE_SCHEMA

SYSIBM.PACKAGE_VERSION

SYSIBM.ROUTINE_SCHEMA

SYSIBM.ROUTINE_SPECIFIC_NAME

SYSIBM.ROUTINE_TYPE

period-definition

PERIOD
FOR

SYSTEM_TIME (begin-column-name , end-column-name

)

datalink-options
LINKTYPE URL NO LINK CONTROL

copy-options

Chapter 7. Statements 1229

EXCLUDING IDENTITY
COLUMN ATTRIBUTES

INCLUDING IDENTITY
COLUMN ATTRIBUTES

EXCLUDING
COLUMN

DEFAULTS

INCLUDING
COLUMN

DEFAULTS

USING TYPE DEFAULTS

EXCLUDING IMPLICITLY HIDDEN
COLUMN ATTRIBUTES

INCLUDING IMPLICITLY HIDDEN
COLUMN ATTRIBUTES

EXCLUDING ROW CHANGE TIMESTAMP
COLUMN ATTRIBUTES

INCLUDING ROW CHANGE TIMESTAMP
COLUMN ATTRIBUTES

1

as-result-table

(column-name

FOR
COLUMN

system-column-name

)

AS (select-statement) WITH NO DATA

WITH DATA copy-options

Notes:
1 The clauses can be specified in any order.

Description
table-name

Names the temporary table. The qualifier, if specified explicitly, must be SESSION, otherwise an
error is returned. If the qualifier is not specified, it is implicitly defined to be SESSION. If a declared
temporary table, or an index or view that is dependent on a declared temporary table already exists
with the same name, an error is returned.

If a persistent table, view, index, or alias already exists with the same name and the schema name
SESSION:

• The declared temporary table is still defined with SESSION.table-name. An error is not issued
because the resolution of a declared temporary table name does not include a permanent library.

• Any references to SESSION.table-name will resolve to the declared temporary table rather than to a
permanent table, view, index, or alias with a name of SESSION.table-name.

The table will be created in library QTEMP.

1230 IBM i: Db2 for i SQL Reference

FOR SYSTEM NAME system-object-identifier
Identifies the system-object-identifier of the table. system-object-identifier must not be the same as a
table, view, alias, or index that already exists at the current server. The system-object-identifier must
be an unqualified system identifier.

When system-object-identifier is specified, table-name must not be a valid system object name.

column-definition
Defines the attributes of a column. There must be at least one column definition and no more than 8000
column definitions.

The sum of the row buffer byte counts of the columns must not be greater than 32766 or, if a VARCHAR,
VARGRAPHIC, or VARBINARY column is specified, 32740. Additionally, if a LOB or XML column is
specified, the sum of the row data byte counts of the columns must not be greater than 3.5 gigabytes. For
information about the byte counts of columns according to data type, see “Maximum row sizes” on page
1164.

column-name
Names a column of the table. Do not qualify column-name and do not use the same name for more
than one column of the table or for a system-column-name of the table.

FOR COLUMN system-column-name
Provides an IBM i name for the column. Do not use the same name for more than one column of the
table or for a column-name of the table.

If the system-column-name is not specified, and the column-name is not a valid system-column-
name, a system column name is generated. For more information about how system column names
are generated, see “Rules for Column Name Generation” on page 1166.

data-type
Specifies the data type of the column.
built-in-type

Specifies a built-in data type. See “CREATE TABLE” on page 1115 for a description of built-in-type.

A ROWID column or a DATALINK column with FILE LINK CONTROL cannot be specified for a
declared temporary table.

distinct-type-name
Specifies that the data type of the column is a distinct type (a user-defined data type). The length,
precision, and scale of the column are respectively the length, precision, and scale of the source
type of the distinct type. If a distinct type name is specified without a schema name, the distinct
type name is resolved by searching the schemas on the SQL path.

DEFAULT
Specifies a default value for the column. This clause cannot be specified more than once in a column-
definition. DEFAULT cannot be specified for the following types of columns because Db2 generates
default values:

• an identity column (a column that is defined AS IDENTITY)
• a row change timestamp column
• a row-begin column
• a row-end column
• a transaction-start-ID column
• a generated expression column

For an XML column, the default is NULL unless NOT NULL is specified; in that case there is no default.
If a value is not specified following the DEFAULT keyword, then:

• if the column is nullable, the default value is the null value.
• if the column is not nullable, the default depends on the data type of the column:

Chapter 7. Statements 1231

Data type Default value

Numeric 0

Fixed-length character or graphic
string

Blanks

Fixed-length binary string Hexadecimal zeros

Varying-length string A string length of 0

Date The current date at the time of INSERT

Time The current time at the time of INSERT

Timestamp The current timestamp at the time of INSERT

Datalink A value corresponding to DLVALUE('','URL','')

distinct-type The default value of the corresponding source type of the
distinct type.

Omission of NOT NULL and DEFAULT from a column-definition is an implicit specification of DEFAULT
NULL.

constant
Specifies the constant as the default for the column. The specified constant must represent
a value that could be assigned to the column in accordance with the rules of assignment as
described in “Assignments and comparisons” on page 89. A floating-point constant or decimal
floating-point constant must not be used for a SMALLINT, INTEGER, DECIMAL, or NUMERIC
column. A decimal constant must not contain more digits to the right of the decimal point than the
specified scale of the column.

USER
Specifies the value of the USER special register at the time of INSERT or UPDATE as the default
value of the column. The data type of the column must be CHAR or VARCHAR with a length
attribute greater than or equal to the length attribute of the USER special register.

NULL
Specifies null as the default for the column. If NOT NULL is specified, DEFAULT NULL must not be
specified within the same column-definition.

CURRENT_DATE
Specifies the current date as the default for the column. If CURRENT_DATE is specified, the data
type of the column must be DATE or a distinct type based on a DATE.

CURRENT_TIME
Specifies the current time as the default for the column. If CURRENT_TIME is specified, the data
type of the column must be TIME or a distinct type based on a TIME.

CURRENT_TIMESTAMP or CURRENT_TIMESTAMP(integer)
Specifies the current timestamp as the default for the column. If CURRENT_TIMESTAMP is
specified, the data type of the column must be TIMESTAMP or a distinct type based on a
TIMESTAMP. The timestamp precision of the CURRENT_TIMESTAMP special register used as the
default will always match the timestamp precision of the column, regardless of the precision
specified for the special register.

cast-function-name
This form of a default value can only be used with columns defined as a distinct type, BINARY,
VARBINARY, BLOB, CLOB, DBCLOB, DATE, TIME or TIMESTAMP data types. The following table
describes the allowed uses of these cast-functions.

Data Type Cast Function Name

Distinct type N based on a BINARY,
VARBINARY, BLOB, CLOB, or DBCLOB

BINARY, VARBINARY, BLOB, CLOB, or DBCLOB *

1232 IBM i: Db2 for i SQL Reference

Data Type Cast Function Name

Distinct type N based on a DATE, TIME, or
TIMESTAMP

N (the user-defined cast function that was
generated when N was created) **

or
DATE, TIME, or TIMESTAMP *

Distinct type N based on other data types N (the user-defined cast function that was
generated when N was created) **

BINARY, VARBINARY, BLOB, CLOB, or
DBCLOB

BINARY, VARBINARY, BLOB, CLOB, or DBCLOB *

DATE, TIME, or TIMESTAMP DATE, TIME, or TIMESTAMP *

Notes:

* The name of the function must match the name of the data type (or the source type of the
distinct type) with an implicit or explicit schema name of QSYS2.

** The name of the function must match the name of the distinct type for the column. If qualified
with a schema name, it must be the same as the schema name for the distinct type. If not
qualified, the schema name from function resolution must be the same as the schema name for
the distinct type.

constant
Specifies a constant as the argument. The constant must conform to the rules of a constant
for the source type of the distinct type or for the data type if not a distinct type. For BINARY,
VARBINARY, BLOB, CLOB, DBCLOB, DATE, TIME, and TIMESTAMP functions, the constant
must be a string constant.

USER
Specifies the value of the USER special register at the time of INSERT or UPDATE as the
default value for the column. The data type of the source type of the distinct type of the
column must be CHAR or VARCHAR with a length attribute greater than or equal to the length
attribute of the USER special register.

CURRENT_DATE
Specifies the current date as the default for the column. If CURRENT_DATE is specified, the
data type of the source type of the distinct type of the column must be DATE.

CURRENT_TIME
Specifies the current time as the default for the column. If CURRENT_TIME is specified, the
data type of the source type of the distinct type of the column must be TIME.

CURRENT_TIMESTAMP or CURRENT_TIMESTAMP(integer)
Specifies the current timestamp as the default for the column. If CURRENT_TIMESTAMP
is specified, the data type of the source type of the distinct type of the column must be
TIMESTAMP. The timestamp precision of the CURRENT_TIMESTAMP special register used
as the default will always match the timestamp precision of the column, regardless of the
precision specified for the special register.

If the value specified is not valid, an error is returned.

GENERATED
Specifies that the database manager generates values for the column. GENERATED may be specified
if the column is to be considered one of the following types of columns:

• an identity column
• a row change timestamp column

GENERATED must be specified if the column is to be considered one of the following types of
columns:

Chapter 7. Statements 1233

• a row-begin column
• a row-end column
• a transaction-start-ID column
• a generated expression column

It may also be specified if the data type of the column is a ROWID (or a distinct type that is based on a
ROWID). Otherwise, it must not be specified. GENERATED must not be specified with default-clause in
a column definition.
ALWAYS

Specifies that the database manager will always generate a value for the column when a row is
inserted or updated and a default value must be generated. ALWAYS is the recommended value.

BY DEFAULT
Specifies that the database manager will generate a value for the column when a row is inserted
or updated and a default value must be generated, unless an explicit value is specified.

For an identity column or row change timestamp column, the database manager inserts or
updates a specified value but does not verify that it is a unique value for the column unless
the identity column or row change timestamp column has a unique constraint or a unique index
that solely specifies the identity column or row change timestamp column.

AS IDENTITY
Specifies that the column is an identity column for the table. A table can have only one identity
column. AS IDENTITY can be specified only if the data type for the column is an exact numeric type
with a scale of zero (SMALLINT, INTEGER, BIGINT, DECIMAL or NUMERIC with a scale of zero, or a
distinct type based on one of these data types). If a DECIMAL or NUMERIC data type is specified, the
precision must not be greater than 31.

An identity column is implicitly NOT NULL. An identity column cannot have a DEFAULT clause. See the
AS IDENTITY clause in “CREATE TABLE” on page 1115 for the descriptions of the identity attributes.

FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP
Specifies that the column is a timestamp and the values will be generated by the database manager.
The database manager generates a value for the column for each row as a row is inserted, and for
every row in which any column is updated. The value generated for a row change timestamp column is
a timestamp corresponding to the time of the insert or update of the row. If multiple rows are inserted
with a single SQL statement, the value for the row change timestamp column may be different for
each row to reflect when each row was inserted. The generated value is not guaranteed to be unique.
A table can have only one row change timestamp column. If data-type is specified, it must be a
TIMESTAMP with a precision of 6 or a distinct type based on a TIMESTAMP with a precision of 6. A row
change timestamp column cannot have a DEFAULT clause and must be NOT NULL.

AS ROW BEGIN
Specifies that the column contains timestamp data and that the values are generated by the database
manager. The database manager generates a value for the column for each row as the row is
inserted, and for every row in which any column is updated. The generated value is a timestamp
that corresponds to the start time that is associated with the most recent transaction. If multiple rows
are inserted with a single SQL statement, the values for the transaction start timestamp column are
the same for each row.
For a system-period temporal table, the database manager ensures uniqueness of the generated
values for a row-begin column across transactions. The timestamp value might be adjusted to ensure
that rows inserted into an associated history table have the end timestamp value greater than the
begin timestamp value. This can happen when a conflicting transaction is updating the same row
in the system-period temporal table. The SYSTIME_PERIOD_ADJ QAQQINI option must be set to
*ADJUST for this adjustment to the timestamp value to occur. If multiple rows are inserted or updated
within a single SQL transaction and an adjustment is not needed, the values for the row-begin column
are the same for all the rows and are unique from the values generated for the column for another
transaction. A row-begin column is required as the begin column of a SYSTEM_TIME period.

1234 IBM i: Db2 for i SQL Reference

A table can have only one row-begin column. If data-type is not specified, the column is defined as
a TIMESTAMP(12). If data-type is specified, it must be TIMESTAMP(12). The column cannot have a
DEFAULT clause and must be defined as NOT NULL. A row-begin column is not updatable.

AS ROW END
Specifies that a value for the data type of the column is assigned by the database manager
whenever a row is inserted or any column in the row is updated. The assigned value is
TIMESTAMP ’9999-12-30-00.00.00.000000000000’.
A row-end column is required as the second column of a SYSTEM_TIME period
A table can have only one row-end column. If data-type is not specified, the column is defined as
TIMESTAMP(12). If data-type is specified, it must be TIMESTAMP(12). The column cannot have a
DEFAULT clause and must be defined as NOT NULL. A row-end column is not updatable.

AS TRANSACTION START ID
Specifies that the value is assigned by the database manager whenever a row is inserted into the
table or any column in the row is updated. The database manager assigns a unique timestamp value
per transaction or the null value. The null value is assigned to the transaction-start-ID column if the
column is nullable and if there is a row-begin column in the table for which the value did not need
to be adjusted. Otherwise the value is generated using a reading of the time-of-day clock during
execution of the first data change statement in the transaction that requires a value to be assigned to
a row-begin column or transaction-start-ID column in the table, or a row in a system-period temporal
table is deleted. If multiple rows are inserted or updated within a single SQL transaction, the values
for the transaction-start-ID column are the same for all the rows and are unique from the values
generated for the column for another transaction.
A transaction-start-ID column is required for a system-period temporal table.
A table can have only one transaction-start-ID column. If data-type is not specified, the column is
defined as TIMESTAMP(12). If data-type is specified it must be TIMESTAMP(12). A transaction-start-
ID column cannot have a DEFAULT clause. A transaction-start-ID column is not updatable.

DATA CHANGE OPERATION
Specifies that the database manager generates a value for each row that is inserted, for every row
in which any column is updated, and for all rows deleted from a system-period temporal table when
the history table is defined with ON DELETE ADD EXTRA ROW. The column will contain one of the
following values:
I

insert operation
U

update operation
D

delete operation
If data-type is not specified, the column is defined as CHAR(1). If data-type is specified it must be
CHAR(1). The column cannot have a DEFAULT clause or a field procedure.

special-register
Specifies that the value of a special register is assigned by the database manager for each row that is
inserted, for every row in which any column is updated, and for all rows deleted from a system-period
temporal table when the history table is defined with ON DELETE ADD EXTRA ROW. The value of the
special register at the time of the data change statement is used. If multiple rows are changed with a
single SQL statement, the value for the column will be the same for all of the rows.
data-type must be defined according to the following table:

Special register Data type for the column

CURRENT CLIENT_ACCTNG VARCHAR(255)

CURRENT CLIENT_APPLNAME VARCHAR(255)

CURRENT CLIENT_PROGRAMID VARCHAR(255)

Chapter 7. Statements 1235

Special register Data type for the column

CURRENT CLIENT_USERID VARCHAR(255)

CURRENT CLIENT_WRKSTNNAME VARCHAR(255)

CURRENT SERVER VARCHAR(18)

SESSION_USER VARCHAR(128)

USER VARCHAR(18)

The column cannot have a DEFAULT clause or a field procedure.
built-in-global-variable

Specifies that the value of a built-in global variable is assigned by the database manager for each
row that is inserted, for every row in which any column is updated, and for all rows deleted from a
system-period temporal table when the history table is defined with ON DELETE ADD EXTRA ROW.
The value of the built-in global variable at the time of the data change statement is used. If multiple
rows are changed with a single SQL statement, the value for the column will be the same for all of the
rows.
data-type must be defined according to the following table:

Built-in global variable Data type for the column

QSYS2.JOB_NAME VARCHAR(28)

QSYS2.SERVER_MODE_JOB_NAME VARCHAR(28)

SYSIBM.CLIENT_HOST VARCHAR(255)

SYSIBM.CLIENT_IPADDR VARCHAR(128)

SYSIBM.CLIENT_PORT INTEGER

SYSIBM.PACKAGE_NAME VARCHAR(128)

SYSIBM.PACKAGE_SCHEMA VARCHAR(128)

SYSIBM.PACKAGE_VERSION VARCHAR(64)

SYSIBM.ROUTINE_SCHEMA VARCHAR(128)

SYSIBM.ROUTINE_SPECIFIC_NAME VARCHAR(128)

SYSIBM.ROUTINE_TYPE CHAR(1)

The column cannot have a DEFAULT clause or a field procedure.
FIELDPROC

Designates an external-program-name as the field procedure exit routine for the column. It must be
an ILE program that does not contain SQL. It cannot be a service program.
The field procedure encodes and decodes column values. Before a value is inserted in the column, it is
passed to the field procedure for encoding. Before a value from the column is used, it is passed to the
field procedure for decoding.
The field procedure is also invoked during the processing of the CREATE TABLE statement. When so
invoked, the procedure provides Db2 with the column's field description. The field description defines
the data characteristics of the encoded values. By contrast, the information supplied for the column in
the CREATE TABLE statement defines the data characteristics of the decoded values.
constant

Specifies a parameter that is passed to the field procedure when it is invoked. A parameter list is
optional.

1236 IBM i: Db2 for i SQL Reference

A field procedure cannot be defined for a column that is a ROWID or DATALINK or a distinct
type based on a ROWID or DATALINK. The column must not be an identity column, a row change
timestamp column, a row-begin column, a row-end column, a transaction-start-ID column, or a
generated expression column. The column must not have a default value of CURRENT DATE,
CURRENT TIME, CURRENT TIMESTAMP, or USER. The column cannot be referenced in a check
condition. If it is part of a foreign key, the corresponding parent key column must use the same
field procedure. See Embedded SQL programming topic collection for an example of a field procedure.

NOT NULL
Prevents the column from containing null values. Omission of NOT NULL implies that the column
can be null. NOT NULL is required for a row change timestamp column, a row-begin column, and a
row-end column.

NOT HIDDEN
Indicates the column is included in implicit references to the table in SQL statements. This is the
default.

IMPLICITLY HIDDEN
Indicates the column is not visible in SQL statements unless it is referred to explicitly by name. For
example, SELECT * does not include any hidden columns in the result. A table must contain at least
one column that is not IMPLICITLY HIDDEN.

datalink-options
Specifies the options associated with a DATALINK data type.
LINKTYPE URL

Defines the type of link as a Uniform Resource Locator (URL).
NO LINK CONTROL

Specifies that there will not be any check made to determine that the linked files exist. Only the
syntax of the URL will be checked. There is no database manager control over the linked files.

period-definition
PERIOD FOR

Defines a period for the table.
SYSTEM_TIME (begin-column-name, end-column-name)

Defines a system period with the name SYSTEM_TIME. There must not be a column in the table
with the name SYSTEM_TIME. A table can have only one SYSTEM_TIME period.

begin-column-name
Identifies the column that records the beginning of the period of time in which a row is valid. The
name must identify a column that exists in the table. begin-column-name must not be the same as
end-column-name. begin-column-name must be defined as AS ROW BEGIN.

end-column-name
Identifies the column that records the end of the period of time in which a row is valid. In the
history table that is associated with a system-period temporal table, the history table column that
corresponds to end-column-name in the system-period temporal table is set to reflect the deletion
of the row. The name must identify a column that exists in the table. end-column-name must be
defined as AS ROW END.

LIKE
table-name or view-name

Specifies that the columns defined in the specified table or view are included in this table. The
table-name or view-name specified in a LIKE clause must identify the table or view that already exists
at the application server.

The use of LIKE is an implicit definition of n columns, where n is the number of columns in the
identified table or view. The implicit definition includes the following attributes of the n columns (if
applicable to the data type):

• Column name (and system column name)

Chapter 7. Statements 1237

• Data type, length, precision, and scale
• CCSID

If the LIKE clause is specified immediately following the table-name and not enclosed in parenthesis,
the following column attributes are also included, otherwise they are not included (the default
value, identity, row change timestamp, and hidden attributes can also be controlled by using the
copy-options):

• Default value, if a table-name is specified (view-name is not specified)
• Identity attributes
• Nullability
• Hidden attributes
• Row change timestamp attribute
• Column heading and text (see “LABEL” on page 1407)

If table-name contains a row change timestamp column, row-begin column, row-end column,
transaction-start-ID column, or generated expression column, the corresponding column of the new
table inherits only the data type of the source column. The new column is not considered a generated
column.

If the specified table or view is a non-SQL created physical file or logical file, any non-SQL attributes
are removed. For example, the date and time format will be changed to ISO.

The implicit definition does not include any other optional attributes of the identified table or view. For
example, the new table does not automatically include a primary key or foreign key from a table. The
new table has these and other optional attributes only if the optional clauses are explicitly specified.

as-result-table
column-name

Names a column of the table. Do not qualify column-name and do not use the same name for more
than one column of the table or for a system-column-name of the table.

FOR COLUMN system-column-name
Provides an IBM i name for the column. Do not use the same name for more than one column of the
table or for a column-name of the table.

If the system-column-name is not specified, and the column-name is not a valid system-column-
name, a system column name is generated. For more information about how system column names
are generated, see “Rules for Column Name Generation” on page 1166.

select-statement
Specifies that the columns of the table are to have the same name and description as the columns
that would appear in the derived result table of the select-statement if the select-statement were to be
executed. The use of AS select-statement is an implicit definition of n columns for the table, where n
is the number of columns that would result from the select-statement. The implicit definition includes
the following attributes of the n columns (if applicable to the data type):

• Column name (and system column name)
• Data type, length, precision, and scale
• CCSID
• Nullability
• Column heading and text (see “LABEL” on page 1407)

The following attributes are not included (some attributes can be included by using the copy-options):

• Default value
• Hidden attribute
• Identity attributes

1238 IBM i: Db2 for i SQL Reference

• Row change timestamp attribute
• Row-begin, row-end, and transaction-start-ID attribute
• Generated expression attribute

The implicit definition does not include any other optional attributes of the tables or views referenced
in the select-statement.

The implicitly defined columns of the table inherit the names of the columns from the result table
of the select-statement. Therefore, a column name must be specified in the select-statement or in
the column name list for all result columns. For result columns that are derived from expressions,
constants, and functions, the select-statement must include the AS column-name clause immediately
after the result column or a name must be specified in the column list preceding the select-statement.

The select-statement must not refer to variables or include parameter markers (question marks). The
select-statement must not contain a PREVIOUS VALUE or a NEXT VALUE expression. The UPDATE,
SKIP LOCKED DATA, and USE AND KEEP EXCLUSIVE LOCKS clauses may not be specified.

If the select-statement contains an isolation-clause the isolation level specified in the isolation-clause
applies to the entire SQL statement.

WITH DATA
Specifies that the select-statement is executed. After the table is created, the result table rows of the
select-statement are automatically inserted into the table.

WITH NO DATA
Specifies that the select-statement is not executed. Therefore, there is no result table with a set of
rows with which to automatically populate the table.

copy-options
INCLUDING IDENTITY COLUMN ATTRIBUTES or EXCLUDING IDENTITY COLUMN ATTRIBUTES

Specifies whether identity column attributes are inherited.
INCLUDING IDENTITY COLUMN ATTRIBUTES

Specifies that the table inherits the identity attribute, if any, of the columns resulting from select-
statement, table-name, or view-name. In general, the identity attribute is copied if the element of
the corresponding column in the table, view, or select-statement is the name of a table column or
the name of a view column that directly or indirectly maps to the name of a base table column
with the identity attribute. If the INCLUDING IDENTITY COLUMN ATTRIBUTES clause is specified
with the AS select-statement clause, the columns of the new table do not inherit the identity
attribute in the following cases:

• The select list of the select-statement includes multiple instances of an identity column name
(that is, selecting the same column more than once).

• The select list of the select-statement includes multiple identity columns (that is, a join returned
more than one identity column).

• The identity column is included in an expression in the select list.
• The select-statement includes a set operation (UNION or INTERSECT).

If INCLUDING IDENTITY is not specified, the table will not have an identity column.

EXCLUDING IDENTITY COLUMN ATTRIBUTES
Specifies that the table does not inherit the identity attribute, if any, of the columns resulting from
the fullselect, table-name, or view-name.

EXCLUDING COLUMN DEFAULTS or INCLUDING COLUMN DEFAULTS or USING TYPE DEFAULTS
Specifies whether column defaults are inherited.
EXCLUDING COLUMN DEFAULTS

Specifies that the column defaults are not inherited from the definition of the source table. The
default values of the column of the new table are either null or there are no default values. If the

Chapter 7. Statements 1239

column can be null, the default is the null value. If the column cannot be null, there is no default
value, and an error occurs if a value is not provided for a column on INSERT for the new table.

INCLUDING COLUMN DEFAULTS
Specifies that the table inherits the default values of the columns resulting from the select-
statement, table-name, or view-name. A default value is the value assigned to a column when
a value is not specified on an INSERT.

Do not specify INCLUDING COLUMN DEFAULTS, if you specify USING TYPE DEFAULTS.

If INCLUDING COLUMN DEFAULTS is not specified, the default values are not inherited.

USING TYPE DEFAULTS
Specifies that the default values for the table depend on the data type of the columns that result
from the select-statement, table-name, or view-name. If the column is nullable, then the default
value is the null value. Otherwise, the default value is as follows:

Data type Default value

Numeric 0

Fixed-length character or graphic
string

Blanks

Fixed-length binary string Hexadecimal zeros

Varying-length string A string length of 0

Date The current date at the time of INSERT

Time The current time at the time of INSERT

Timestamp The current timestamp at the time of INSERT

Datalink A value corresponding to DLVALUE('','URL','')

distinct-type The default value of the corresponding source type of the
distinct type.

Do not specify USING TYPE DEFAULTS if INCLUDING COLUMN DEFAULTS is specified.

INCLUDING IMPLICITLY HIDDEN COLUMN ATTRIBUTES or EXCLUDING IMPLICITLY HIDDEN
COLUMN ATTRIBUTES

Specifies whether implicitly hidden columns are inherited.
INCLUDING IMPLICITLY HIDDEN COLUMN ATTRIBUTES

Specifies that the table inherits implicitly hidden columns from select-statement, table-name, or
view-name and those columns will be defined with the implicitly hidden attribute in the new table.

If INCLUDING IMPLICITLY HIDDEN COLUMN ATTRIBUTES is not specified, the table will not have
any implicitly hidden columns.

EXCLUDING IMPLICITLY HIDDEN COLUMN ATTRIBUTES
Specifies that the table does not inherit implicitly hidden columns from the fullselect, table-name,
or view-name.

INCLUDING ROW CHANGE TIMESTAMP COLUMN ATTRIBUTES or EXCLUDING ROW CHANGE
TIMESTAMP COLUMN ATTRIBUTES

Specifies whether the row change timestamp attribute is inherited.
INCLUDING ROW CHANGE TIMESTAMP COLUMN ATTRIBUTES

Specifies that the table inherits the row change timestamp attribute, if any, of the columns
resulting from select-statement, table-name, or view-name. In general, the row change timestamp
attribute is copied if the element of the corresponding column in the table, view, or select-
statement is the name of a table column or the name of a view column that directly or indirectly
maps to the name of a base table column with the row change timestamp attribute. If the
INCLUDING ROW CHANGE TIMESTAMP COLUMN ATTRIBUTES clause is specified with the AS

1240 IBM i: Db2 for i SQL Reference

select-statement clause, the columns of the new table do not inherit the row change timestamp in
the following cases:

• The select list of the select-statement includes multiple instances of a row change timestamp
column name (that is, selecting the same column more than once).

• The select list of the select-statement includes multiple row change timestamp columns (that is,
a join returned more than one row change timestamp column).

• The row change timestamp column is included in an expression in the select list.
• The select-statement includes a set operation (UNION or INTERSECT).

If INCLUDING ROW CHANGE TIMESTAMP COLUMN ATTRIBUTES is not specified, the table will not
have a row change timestamp column.

EXCLUDING ROW CHANGE TIMESTAMP COLUMN ATTRIBUTES
Specifies that the table does not inherit the row change timestamp attribute, if any, of the columns
resulting from the fullselect, table-name, or view-name.

WITH REPLACE
Specifies that, in the case that a declared temporary table already exists with the specified name,
the existing table is replaced with the temporary table defined by this statement (and all rows of the
existing table are deleted).

When WITH REPLACE is not specified, then the name specified must not identify a declared
temporary table that already exists in the current session.

ON COMMIT
Specifies the action taken on the declared temporary table when a COMMIT operation is performed.
The default is DELETE ROWS.

The ON COMMIT clause does not apply if the declared temporary table is opened under isolation level
No Commit (NC) or if a COMMIT HOLD operation is performed.

DELETE ROWS
All rows of the table will be deleted if no WITH HOLD cursor is open on the table.

PRESERVE ROWS
Rows of the table will be preserved.

NOT LOGGED
Changes to the table are not logged, including creation of the table. When a ROLLBACK (or ROLLBACK
TO SAVEPOINT) operation is performed and the table was changed in the unit of work (or savepoint),
the changes are not rolled back. If the table was created in the unit of work (or savepoint), then that
table will be dropped. If the table was dropped in the unit of work (or savepoint) then the table will be
restored, but with no rows.
ON ROLLBACK

Specifies the action taken on the declared temporary table when a ROLLBACK operation is
performed.

The ON ROLLBACK clause does not apply if the declared temporary table was opened under
isolation level No Commit (NC) or if a ROLLBACK HOLD operation is performed.

DELETE ROWS
All rows of the table will be deleted. This is the default.

PRESERVE ROWS
Rows of the table will be preserved.

RCDFMT format-name
An unqualified name that designates the IBM i record format name of the table. A format-name is a
system identifier.

If a record format name is not specified, the format-name is the same as the system-object-name of
the table.

Chapter 7. Statements 1241

media-preference
Specifies the preferred storage media for the table.
UNIT ANY

No storage media is preferred. Storage for the table will be allocated from any available storage
media.

UNIT SSD
Solid state disk storage media is preferred. Storage for the table may be allocated from solid state
disk storage media, if available.

KEEP IN MEMORY
Specifies whether the data for the table should be brought into a main storage pool when the data is
used in a query.
NO

The data will not be brought into a main storage pool.
YES

The data will be brought into a main storage pool.

Notes
Instantiation, scope, and termination: Let P denote an application process and let T be a declared
temporary table in an application program in P:

• When a program in P issues a DECLARE GLOBAL TEMPORARY TABLE statement, an empty instance of T
is created.

• Any program in P can reference T, and any of those references is a reference to that same instance of
T. (If a DECLARE GLOBAL TEMPORARY statement is specified within a compound statement of an SQL
function, SQL procedure, or trigger; the scope of the declared temporary table is the application process
and not the compound statement.)

If T was declared at a remote server, the reference to T must use the same connection that was
used to declare T and that connection must not have been terminated after T was declared. When the
connection to the database server at which T was declared terminates, T is dropped.

• If T is defined with the ON COMMIT DELETE ROWS clause, when a commit operation terminates a unit
of work in P and no program in P has a WITH HOLD cursor open that is dependent on T, all rows are
deleted.

• If T is defined with the ON ROLLBACK DELETE ROWS clause, when a rollback operation terminates a
unit of work in P, all rows are deleted.

• When the application process that declared T terminates, T is dropped.

Temporary table ownership: The owner of the table is the user profile of the thread executing the
statement.

Temporary table authority: When a declared temporary table is defined, PUBLIC implicitly is granted all
table privileges on the table and authority to drop the table.

Referring to a declared temporary table in other SQL statements: Many SQL statements support
declared temporary tables. To refer to a declared temporary table in an SQL statement other than
DECLARE GLOBAL TEMPORARY TABLE, the table must be implicitly or explicitly qualified with SESSION.

If you use SESSION as the qualifier for a table name but the application process does not include a
DECLARE GLOBAL TEMPORARY TABLE statement for the table name, the database manager assumes that
you are not referring to a declared temporary table. The database manager resolves such table references
to a permanent table.

Restrictions on the use of declared temporary tables:

• Declared temporary tables cannot be specified in an ALTER TABLE, COMMENT, CREATE ALIAS, GRANT,
LABEL, LOCK, RENAME, or REVOKE statement.

• Declared temporary tables cannot be specified as the parent table in referential constraints

1242 IBM i: Db2 for i SQL Reference

• If a declared temporary table is referenced in a CREATE INDEX or CREATE VIEW statement, the index or
view must be created in SESSION (or library QTEMP).

Creating a table using a remote select-statement: The select-statement for an as-result-table can refer
to tables on a different server than where the table is being created. This can be done by using a
three-part object name or an alias that is defined to reference a three-part name of a table or view. The
result of the select-statement cannot contain a column that has a field procedure defined. If the remote
server is Db2 for LUW or Db2 for z/OS, copy-options are not allowed. If the remote server is Db2 for LUW,
a column list should be explicitly specified before the AS keyword.

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• INLINE LENGTH is a synonym for ALLOCATE.
• DEFINITION ONLY is a synonym for WITH NO DATA

Examples
Example 1: Define a declared temporary table with column definitions for an employee number, salary,
commission, and bonus.

 DECLARE GLOBAL TEMPORARY TABLE SESSION.TEMP_EMP
 (EMPNO CHAR(6) NOT NULL,
 SALARY DECIMAL(9, 2),
 BONUS DECIMAL(9, 2),
 COMM DECIMAL(9, 2))
 ON COMMIT PRESERVE ROWS

Example 2: Assume that base table USER1.EMPTAB exists and that it contains three columns, one of
which is an identity column. Declare a temporary table that has the same column names and attributes
(including identity attributes) as the base table.

 DECLARE GLOBAL TEMPORARY TABLE TEMPTAB1
 LIKE USER1.EMPTAB
 INCLUDING IDENTITY
 ON COMMIT PRESERVE ROWS

In the above example, the database manager uses SESSION as the implicit qualifier for TEMPTAB1.

Chapter 7. Statements 1243

DECLARE PROCEDURE
The DECLARE PROCEDURE statement defines an external procedure.

Invocation
This statement can only be embedded in an application program. It is not an executable statement. It
must not be specified in REXX.

Authorization
None.

Syntax
DECLARE procedure-name PROCEDURE

(
,

parameter-declaration

)

option-list

parameter-declaration
IN

OUT

INOUT

parameter-name

data-type

AS LOCATOR

XML-cast-type

data-type
built-in-type

distinct-type-name

XML-cast-type

1244 IBM i: Db2 for i SQL Reference

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) LOCATOR

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

) LOCATOR

option-list

Chapter 7. Statements 1245

LANGUAGE C

C++

CL

COBOL

COBOLLE

JAVA

PLI

REXX

RPG

RPGLE

1

PARAMETER STYLE SQL

PARAMETER STYLE DB2GENERAL

DB2SQL

GENERAL

GENERAL WITH NULLS

JAVA

NOT DETERMINISTIC

DETERMINISTIC

MODIFIES SQL DATA

NO SQL

CONTAINS SQL

READS SQL DATA

CALLED ON NULL INPUT

DYNAMIC RESULT SETS 0

DYNAMIC RESULT SETS integer

NO DBINFO

DBINFO

FENCED

NOT FENCED

PROGRAM TYPE MAIN

PROGRAM TYPE SUB

EXTERNAL

EXTERNAL NAME external-program-name

SPECIFIC specific-name

Notes:
1 The optional clauses can be specified in a different order.

built-in-type

1246 IBM i: Db2 for i SQL Reference

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

normalize-clause

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

)

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

DATALINK

(200)

(integer) ccsid-clause

ROWID

XML

ccsid-clause
CCSID integer

normalize-clause

normalize-clause

Chapter 7. Statements 1247

NOT NORMALIZED

NORMALIZED

Description
procedure-name

Names the procedure. The name must not be the same as the name of another procedure declared in
your source program.

(parameter-declaration,...)
Specifies the number of parameters of the procedure and the data type of each parameter. A
parameter for a procedure can be used only for input, only for output, or for both input and output.
Although not required, you can give each parameter a name.

The maximum number of parameters allowed in CREATE PROCEDURE depends on the type of
language and the parameter style:

• For JAVA and ILE programs and service programs, the maximum is 2000.
• For OPM programs and REXX,

– If PARAMETER STYLE GENERAL is specified the maximum is 255.
– If PARAMETER STYLE GENERAL WITH NULLS is specified the maximum is 254.
– If PARAMETER STYLE SQL is specified the maximum is 254.

The maximum number of parameters can be further limited by the maximum number of parameters
allowed by the language.

IN
Identifies the parameter as an input parameter to the procedure. Any changes made to the
parameter within the procedure are not available to the calling SQL application when control is
returned.102

OUT
Identifies the parameter as an output parameter that is returned by the procedure.

A DataLink or a distinct type based on a DataLink may not be specified as an output parameter.

INOUT
Identifies the parameter as both an input and output parameter for the procedure.

A DataLink or a distinct type based on a DataLink may not be specified as an input and output
parameter.

parameter-name
Names the parameter. The name cannot be the same as any other parameter-name for the
procedure.

data-type
Specifies the data type of the parameter.

The data type must be valid for the language specified in the language clause. All data types are
valid for SQL procedures. DataLinks are not valid for external procedures. For more information
about data types, see “CREATE TABLE” on page 1115, and the SQL Programming topic collection.

If a CCSID is specified, the parameter will be converted to that CCSID prior to passing it to the
procedure. If a CCSID is not specified, the CCSID is determined by the default CCSID at the
current server at the time the procedure is called.

Any parameter that has an XML type must specify the XML-cast-type clause.

102 When the language type is REXX, all parameters must be input parameters.

1248 IBM i: Db2 for i SQL Reference

AS LOCATOR
Specifies that the parameter is a locator to the value rather than the actual value. You can specify
AS LOCATOR only if the parameter has a LOB or XML data type or a distinct type based on a LOB
or XML data type. If AS LOCATOR is specified, FOR SBCS DATA or FOR MIXED DATA must not be
specified.

AS XML-cast-type
Specifies the data type passed to the procedure for a parameter that is XML type or a distinct type
based on XML type. If LOCATOR is specified, the parameter is a locator to the value rather than the
actual value.

If a CCSID value is specified, only Unicode CCSID values can be specified for graphic data types.
If a CCSID value is not specified, the CCSID is established at the time the containing program,
module, or service program is created according to the SQL_XML_DATA_CCSID QAQQINI option
setting. The default CCSID is 1208. See “XML Values” on page 80 for a description of this option.

DYNAMIC RESULT SETS integer
Specifies the maximum number of result sets that can be returned from the procedure. integer must
be greater than or equal to zero and less than 32768. If zero is specified, no result sets are returned.
If the SET RESULT SETS statement is issued, the number of results returned is the minimum of the
number of result sets specified on this keyword and the SET RESULT SETS statement.

For more information about result sets, see “SET RESULT SETS” on page 1534.

LANGUAGE
Specifies the language that the external program is written in. The language clause is required if the
external program is a REXX procedure.

If LANGUAGE is not specified, the LANGUAGE is determined from the program attribute information
associated with the external program. If the program attribute information associated with the
program does not identify a recognizable language, then the language is assumed to be C.
C

The external program is written in C.
C++

The external program is written in C++.
CL

The external program is written in CL.
COBOL

The external program is written in COBOL.
COBOLLE

The external program is written in ILE COBOL.
JAVA

The external program is written in JAVA.
PLI

The external program is written in PL/I.
REXX

The external program is a REXX procedure.
RPG

The external program is written in RPG.
RPGLE

The external program is written in ILE RPG.

PARAMETER STYLE
Specifies the conventions used for passing parameters to and returning the values from procedures:
SQL

Specifies that in addition to the parameters on the CALL statement, several additional parameters
are passed to the procedure. The parameters are defined to be in the following order:

Chapter 7. Statements 1249

• The first N parameters are the parameters that are specified on the DECLARE PROCEDURE
statement.

• N parameters for indicator variables for the parameters.
• A CHAR(5) output parameter for SQLSTATE. The SQLSTATE returned indicates the success or

failure of the procedure. The SQLSTATE returned is assigned by the external program.

The user may set the SQLSTATE to any valid value in the external program to return an error or
warning from the function.

• A VARCHAR(517) input parameter for the fully qualified procedure name.
• A VARCHAR(128) input parameter for the specific name.
• A VARCHAR(1000) output parameter for the message text.

The following additional parameter may be passed as the last parameter:

• A parameter for the dbinfo structure, if DBINFO was specified on the CREATE PROCEDURE
statement.

These parameters are passed according to the specified LANGUAGE. For example, if the language
is C or C++, the VARCHAR parameters are passed as NUL-terminated strings. For more information
about the parameters passed, see the include sqludf in the appropriate source file in library
QSYSINC. For example, for C, sqludf can be found in QSYSINC/H.

PARAMETER STYLE SQL cannot be used with LANGUAGE JAVA.

DB2GENERAL
Specifies that the procedure will use a parameter passing convention that is defined for use with
Java methods.

PARAMETER STYLE DB2GENERAL can only be specified with LANGUAGE JAVA. For details on
passing parameters in JAVA, see the IBM Developer Kit for Java topic collection.

GENERAL
Specifies that the procedure will use a parameter passing mechanism where the procedure
receives the parameters specified on the CALL. Additional arguments are not passed for indicator
variables.

PARAMETER STYLE GENERAL cannot be used with LANGUAGE JAVA.

GENERAL WITH NULLS
Specifies that in addition to the parameters on the CALL statement as specified in GENERAL,
another argument is passed to the procedure. This additional argument contains an indicator array
with an element for each of the parameters of the CALL statement. In C, this would be an array of
short INTs. For more information about how the indicators are handled, see the SQL Programming
topic collection.

PARAMETER STYLE GENERAL WITH NULLS cannot be used with LANGUAGE JAVA.

JAVA
Specifies that the procedure will use a parameter passing convention that conforms to the
Java language and SQLJ Routines specification. INOUT and OUT parameters will be passed as
single entry arrays to facilitate returning values. For increased portability, you should write Java
procedures that use the PARAMETER STYLE JAVA conventions.

PARAMETER STYLE JAVA can only be specified with LANGUAGE JAVA. For details on passing
parameters in JAVA, see the IBM Developer Kit for Java topic collection.

Note that the language of the external function determines how the parameters are passed. For
example, in C, any VARCHAR or CHAR parameters are passed as NUL-terminated strings. For more
information, see SQL Programming. For Java routines, see IBM Developer Kit for Java.

SPECIFIC specific-name
Specifies a qualified or unqualified name that uniquely identifies the procedure. The specific-name,
including the implicit or explicit qualifier, must be the same as the procedure-name.

1250 IBM i: Db2 for i SQL Reference

If no qualifier is specified, the implicit or explicit qualifier of the procedure-name is used. If a qualifier
is specified, the qualifier must be the same as the explicit or implicit qualifier of the procedure-name.

If specific-name is not specified, it is the same as the procedure name.

DETERMINISTIC or NOT DETERMINISTIC
Specifies whether the procedure returns the same results each time the procedure is called with the
same IN and INOUT arguments.
NOT DETERMINISTIC

The procedure may not return the same result each time the procedure is called with the same IN
and INOUT arguments, even when the referenced data in the database has not changed.

DETERMINISTIC
The procedure always returns the same results each time the procedure is called with the same
IN and INOUT arguments, provided the referenced data in the database has not changed.

MODIFIES SQL DATA, READS SQL DATA, CONTAINS SQL, or NO SQL
Specifies which SQL statements, if any, may be executed in the procedure or any routine called
from this procedure. The default is MODIFIES SQL DATA. See Appendix B, “Characteristics of SQL
statements,” on page 1651 for a detailed list of the SQL statements that can be executed under each
data access indication.
MODIFIES SQL DATA

Specifies that the procedure can execute any SQL statement except statements that are not
supported in procedures.

READS SQL DATA
Specifies that SQL statements that do not modify SQL data can be included in the procedure.

CONTAINS SQL
Specifies that SQL statements that neither read nor modify SQL data can be executed by the
procedure.

NO SQL
Specifies that the procedure cannot execute any SQL statements.

CALLED ON NULL INPUT
Specifies that the function is to be invoked, if any, or all, argument values are null, making the function
responsible for testing for null argument values. The function can return a null or nonnull value.

FENCED or NOT FENCED
This parameter is allowed for compatibility with other products and is not used by Db2 for i.

PROGRAM TYPE MAIN or PROGRAM TYPE SUB
This parameter is allowed for compatibility with other products. It indicates whether the routine's
external program is a program (*PGM) or a procedure in a service program (*SRVPGM).
PROGRAM TYPE MAIN

Specifies that the routine executes as the main entry point in a program. The external program
must be a *PGM object.

PROGRAM TYPE SUB
Specifies that the procedure executes as a procedure in a service program. The external program
must be a *SRVPGM object.

DBINFO
Specifies that the database manager should pass a structure containing status information to
the procedure. Table 94 on page 1252 contains a description of the DBINFO structure. Detailed
information about the DBINFO structure can be found in include sqludf in the appropriate source file
in library QSYSINC. For example, for C, sqludf can be found in QSYSINC/H.

DBINFO is only allowed with PARAMETER STYLE DB2SQL.

Chapter 7. Statements 1251

Table 94. DBINFO fields

Field Data Type Description

Relational database VARCHAR(128) The name of the current server.

Authorization ID VARCHAR(128) The run-time authorization ID.

CCSID Information INTEGER
INTEGER
INTEGER

INTEGER
INTEGER
INTEGER

INTEGER
INTEGER
INTEGER

INTEGER

CHAR(8)

The CCSID information of the job. Three sets of three CCSIDs are
returned. The following information identifies the three CCSIDs in
each set:

• SBCS CCSID
• DBCS CCSID
• Mixed CCSID

Following the three sets of CCSIDs is an integer that indicates which
set of three sets of CCSIDs is applicable and eight bytes of reserved
space.

Each set of CCSIDs is for a different encoding scheme (EBCDIC,
ASCII, and Unicode).

If a CCSID is not explicitly specified for a parameter on the CREATE
PROCEDURE statement, the input string is assumed to be encoded
in the CCSID of the job at the time the procedure is executed. If
the CCSID of the input string is not the same as the CCSID of the
parameter, the input string passed to the external procedure will be
converted before calling the external program.

Target Column VARCHAR(128)

VARCHAR(128)

VARCHAR(128)

Not applicable for a call to a procedure.

Version and release CHAR(8) The version, release, and modification level of the database
manager.

Platform INTEGER The server's platform type.

EXTERNAL NAME external-program-name
Specifies the program that will be executed when the procedure is called by the CALL statement. The
program name must identify a program that exists at the application server. The program cannot be an
ILE service program.

The validity of the name is checked at the application server. If the format of the name is not correct,
an error is returned.

If external-program-name is not specified, the external program name is assumed to be the same as
the procedure name.

Notes
DECLARE PROCEDURE scope: The scope of the procedure-name is the source program in which it
is defined; that is, the program submitted to the precompiler. Thus, a program called from another
separately compiled program or module will not use the attributes from a DECLARE PROCEDURE
statement in the calling program.

DECLARE PROCEDURE rules: The DECLARE PROCEDURE statement should precede all CALL statements
that reference that procedure.

1252 IBM i: Db2 for i SQL Reference

The DECLARE PROCEDURE statement only applies to static CALL statements. It does not apply to any
dynamically prepared CALL statements or a CALL statement where the procedure name is identified by a
variable.

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• The keywords VARIANT and NOT VARIANT can be used as synonyms for NOT DETERMINISTIC and
DETERMINISTIC.

• The keywords NULL CALL can be used as synonyms for CALLED ON NULL INPUT.
• The keywords SIMPLE CALL can be used as a synonym for GENERAL.
• The value DB2GENRL may be used as a synonym for DB2GENERAL.
• The keywords PARAMETER STYLE in the PARAMETER STYLE clause are optional.
• The keywords PARAMETER STYLE DB2SQL can be used as a synonym for PARAMETER STYLE SQL.

Example
Declare an external procedure PROC1 in a C program. When the procedure is called using the CALL
statement, a COBOL program named PGM1 in library LIB1 will be called.

 EXEC SQL
 DECLARE PROC1 PROCEDURE
 (CHAR(10), CHAR(10))
 EXTERNAL NAME LIB1.PGM1
 LANGUAGE COBOL GENERAL;

 EXEC SQL
 CALL PROC1 ('FIRSTNAME ','LASTNAME ');

Chapter 7. Statements 1253

DECLARE STATEMENT
The DECLARE STATEMENT statement is used for program documentation. It declares names that are
used to identify prepared SQL statements.

Invocation
This statement can only be embedded in an application program. It is not an executable statement. This
statement is not allowed in Java or REXX.

Authorization
None required.

Syntax

DECLARE

,

statement-name STATEMENT

Description
statement-name

Lists one or more names that are used in your program to identify prepared SQL statements.

Example
This example shows the use of the DECLARE STATEMENT statement in a C program.

EXEC SQL INCLUDE SQLDA;
void main ()
 {
 EXEC SQL BEGIN DECLARE SECTION ;
 char src_stmt[32000];
 char sqlda[32000]
 EXEC SQL END DECLARE SECTION ;
 EXEC SQL INCLUDE SQLCA ;

 strcpy(src_stmt,"SELECT DEPTNO, DEPTNAME, MGRNO \
 FROM DEPARTMENT \
 WHERE ADMRDEPT = 'A00'");

 EXEC SQL DECLARE OBJ_STMT STATEMENT;

 (Allocate storage from SQLDA)

 EXEC SQL DECLARE C1 CURSOR FOR OBJ_STMT;

 EXEC SQL PREPARE OBJ_STMT FROM :src_stmt;
 EXEC SQL DESCRIBE OBJ_STMT INTO :sqlda;

 (Examine SQLDA) (Set SQLDATA pointer addresses)

 EXEC SQL OPEN C1;

 while (strncmp(SQLSTATE, "00000", 5))
 {
 EXEC SQL FETCH C1 USING DESCRIPTOR :sqlda;

 (Print results)

 }

 EXEC SQL CLOSE C1;
 return;
 }

1254 IBM i: Db2 for i SQL Reference

Chapter 7. Statements 1255

DECLARE VARIABLE
The DECLARE VARIABLE statement is used to assign a subtype or CCSID other than the default to a host
variable.

Invocation
This statement can only be embedded in an application program. It is not an executable statement. It
must not be specified in Java or REXX.

Authorization
None required.

Syntax

DECLARE

,

host-variable VARIABLE

FOR SBCS DATA

FOR MIXED DATA

CCSID integer

FOR BIT DATA

DATE

TIME

TIMESTAMP

Description
host-variable

Names a character, graphic, or XML string host variable defined in the program. An indicator variable
cannot be specified for the host-variable. The host-variable definition may either precede or follow a
DECLARE VARIABLE statement that refers to that variable.

FOR BIT DATA
Specifies that the values of the host-variable are not associated with a coded character set and,
therefore, are never converted. The CCSID of a FOR BIT DATA host variable is 65535. FOR BIT DATA
cannot be specified for graphic or XML host-variables.

FOR SBCS DATA
Specifies that the values of the host variable contain SBCS (single-byte character set) data. FOR SBCS
DATA is the default if the CCSID attribute of the job at the application requester is not DBCS-capable
or if the length of the host variable is less than 4. The CCSID of FOR SBCS DATA is determined by
the CCSID attribute of the job at the application requester. FOR SBCS DATA cannot be specified for
graphic or XML host-variables.

FOR MIXED DATA
Specifies that the values of the host variable contain both SBCS data and DBCS data. FOR MIXED
DATA is the default if the CCSID attribute of the job at the application requester is DBCS-capable
and the length of the host variable is greater than 3. The CCSID of FOR DBCS DATA is determined by
the CCSID attribute of the job at the application requester. FOR MIXED DATA cannot be specified for
graphic or XML host-variables.

1256 IBM i: Db2 for i SQL Reference

CCSID integer
Specifies that the values of the host variable contain data of CCSID integer. If the integer is an SBCS
CCSID, the host variable is SBCS data. If the integer is a mixed data CCSID, the host variable is mixed
data. For character host variables, the CCSID specified must be an SBCS or mixed CCSID.

If the variable has a graphic string data type, the CCSID specified must be a DBCS, UTF-16, or UCS-2
CCSID. For a list of valid CCSIDs, see Appendix E, “CCSID values,” on page 1695. Consider specifying
CCSID 1200 or 13488 to indicate UTF-16 or UCS-2 data. If a CCSID is not specified, the CCSID of the
graphic string variable will be the associated DBCS CCSID for the job.

If the variable has an XML data type, the CCSID specified must be an SBCS, mixed, or Unicode CCSID.
The CCSID must be compatible with the XML AS datatype. If a CCSID is not specified, the CCSID value
as specified by the SQL_XML_DATA_CCSID QAQQINI setting is used. See “XML Values” on page 80 for
more information.

For file reference variables, the CCSID specifies the CCSID of the path and file name, not the data
within the file.

DATE
Specifies that the values of the host variable contain data that is a date.

TIME
Specifies that the values of the host variable contain data that is a time.

TIMESTAMP
Specifies that the values of the host variable contain data that is a timestamp.

Notes
Placement restrictions: The DECLARE VARIABLE statement can be specified anywhere in an application
program that SQL statements are valid with the following exceptions:

• If the host language is COBOL or RPG, the DECLARE VARIABLE statement must occur before an SQL
statement that refers to a host variable specified in the DECLARE VARIABLE statement.

• If DATE, TIME, or TIMESTAMP is specified for a NUL-terminated character string in C, the length of the C
declaration will be reduced by one.

Precompiler rules: The following situations result in an error message during precompile:

• A reference is made to a variable that does not exist.
• A reference is made to a numeric variable.
• A reference is made to a variable that has been referred to already.
• A reference is made to a variable that is not unique.
• A reference is made to an ILE RPG variable that is defined as UCS-2.
• A reference is made to an ILE COBOL variable that is defined as NATIONAL.
• The DECLARE VARIABLE statement occurs after an SQL statement where the SQL statement and the

DECLARE VARIABLE statement refer to the same variable.
• The FOR BIT DATA, FOR SBCS DATA, or FOR MIXED DATA clause is specified for a graphic or XML host

variable.
• A SBCS or mixed CCSID is specified for a graphic host variable.
• A DBCS, UTF-16, or UCS-2 CCSID is specified for a character host variable.
• A DBCS CCSID is specified for an XML host variable.
• DATE, TIME, or TIMESTAMP is specified for a host variable that is not character.
• The length of a host variable used for DATE, TIME, or TIMESTAMP is not long enough for the minimum

date, time, or timestamp value.

Chapter 7. Statements 1257

Example
In this example, declare C program variables fred and pete as mixed data, and jean and dave as SBCS data
with CCSID 37.

void main ()
 {
 EXEC SQL BEGIN DECLARE SECTION;
 char fred[10];
 EXEC SQL DECLARE :fred VARIABLE FOR MIXED DATA;

 decimal(6,0) mary;
 char pete[4];
 EXEC SQL DECLARE :pete VARIABLE FOR MIXED DATA;

 char jean[30];
 char dave[9];
 EXEC SQL DECLARE :jean, :dave VARIABLE CCSID 37;
 EXEC SQL END DECLARE SECTION;
 EXEC SQL INCLUDE SQLCA;
 ...

 }

1258 IBM i: Db2 for i SQL Reference

DELETE
The DELETE statement deletes rows from a table or view. Deleting a row from a view deletes the row from
the table on which the view is based if no INSTEAD OF DELETE trigger is defined for this view. If such a
trigger is defined, the trigger will be activated instead.

There are two forms of this statement:

• The Searched DELETE form is used to delete one or more rows (optionally determined by a search
condition).

• The Positioned DELETE form is used to delete exactly one row (as determined by the current position of
a cursor).

Invocation
A Searched DELETE statement can be embedded in an application program or issued interactively. A
Positioned DELETE must be embedded in an application program. Both forms are executable statements
that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For the table or view identified in the statement:

– The DELETE privilege on the table or view, and
– The system authority *EXECUTE on the library containing the table or view

• Database administrator authority

If the search-condition in a Searched DELETE contains a reference to a column of the table or view, then
the privileges held by the authorization ID of the statement must also include one of the following:

• The SELECT privilege on the table or view
• Database administrator authority

If search-condition includes a subquery, the privileges held by the authorization ID of the statement must
also include at least one of the following:

• For each table or view identified in the subquery:

– The SELECT privilege on the table or view, and
– The system authority *EXECUTE on the library containing the table or view

• Database administrator authority

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Table or View.

Syntax
Searched DELETE:

Chapter 7. Statements 1259

DELETE FROM table-name

view-name correlation-clause

WHERE search-condition order-by-clause offset-clause

fetch-clause isolation-clause

concurrent-access-resolution-clause

1

Notes:
1 The same clause must not be specified more than once.

Positioned DELETE:

DELETE FROM table-name

view-name correlation-clause

WHERE CURRENT OF

cursor-name

order-by-clause

ORDER BY

,

sort-key-expression
ASC

DESC

isolation-clause
WITH NC

UR

CS

RS

RR

Description
FROM table-name or view-name

Identifies the table or view from which rows are to be deleted. The name must identify a table or view
that exists at the current server, but it must not identify a catalog table, a view of a catalog table, or a
view that is not deletable. For an explanation of deletable views, see “CREATE VIEW” on page 1206.

correlation-clause
Specifies an alternate name that can be used within the search-condition to designate the table
or view. For an explanation of correlation-clause, see Chapter 6, “Queries,” on page 735. For an
explanation of correlation-name, see “Correlation names” on page 131.

WHERE
Specifies the rows to be deleted. The clause can be omitted, or a search-condition or cursor-name can
be specified. If the clause is omitted, all rows of the table or view are deleted.
search-condition

Is any search condition as described in “Search conditions” on page 227. Each column-name in
the search-condition, other than in a subquery, must identify a column of the table or view.

1260 IBM i: Db2 for i SQL Reference

The search-condition is applied to each row of the table or view and the deleted rows are those for
which the result of the search-condition is true.

If the search-condition contains a subquery, the subquery can be thought of as being executed
each time the search condition is applied to a row, and the results used in applying the search
condition. In actuality, a subquery with no correlated references may be executed only once,
whereas a subquery with a correlated reference may have to be executed once for each row.

If a subquery refers to the object table of the DELETE statement or a dependent table with a
delete rule of CASCADE, SET NULL, or SET DEFAULT, the subquery is completely evaluated before
any rows are deleted.

CURRENT OF cursor-name
Identifies the cursor to be used in the delete operation. The cursor-name must identify a declared
cursor as explained in the Notes for the DECLARE CURSOR statement.

The table or view identified must also be specified in the FROM clause of the select-statement
of the cursor and the cursor must be deletable. For an explanation of deletable cursors, see
“DECLARE CURSOR” on page 1215.

The DECLARE CURSOR statement must not have a period-specification for the table or view used
by the delete statement.

When the DELETE statement is executed, the cursor must be positioned on a row; that row is the
one deleted. After the deletion, the cursor is positioned before the next row of its result table. If
there is no next row, the cursor is positioned after the last row.

order-by-clause
Specifies the order of the rows for application of the offset-clause and fetch-clause. An order-by-clause
should be specified to ensure a predictable order for determining the set of rows to be deleted based
on the offset-clause and fetch-clause.
sort-key-expression

An expression that specifies the value that is to be used to order the rows that qualify for the
delete operation. If a single sort-key-expression is identified, the rows are ordered by the values of
that sort-key-expression. If more than one sort-key-expression is identified, the rows are ordered
by the values of the first sort-key-expression, then by the values of the second sort-key-expression,
and so on.

The result of the sort-key-expression must not be DATALINK or XML.

ASC
Uses the values of the sort-key-expression in ascending order. This is the default.

DESC
Uses the values of the sort-key-expression in descending order.

Ordering is performed in accordance with the comparison rules described in Chapter 2, “Language
elements,” on page 43. The null value is higher than all other values. If your ordering specification
does not determine a complete ordering, rows with duplicate values of the last identified sort-key-
expression have an arbitrary order. If you do not specify ORDER BY, the rows to be deleted have an
arbitrary order.

offset-clause
Limits the effect of the delete by skipping a subset of the qualifying rows. For more information on the
offset-clause, see “offset-clause” on page 779.

fetch-clause
Limits the effect of the delete to a subset of the qualifying rows. For more information on the
fetch-clause, see “fetch-clause” on page 780.

isolation-clause
Specifies the isolation level to be used for this statement.
WITH

Chapter 7. Statements 1261

Introduces the isolation level, which may be one of:

• RR Repeatable read
• RS Read stability
• CS Cursor stability
• UR Uncommitted read
• NC No commit

If isolation-clause is not specified the default isolation is used. For more information on the default
isolation, see “isolation-clause” on page 799.

concurrent-access-resolution-clause
Specifies the concurrent access resolution to use for the select statement. For more information, see
“concurrent-access-resolution-clause” on page 801.

DELETE Rules
Triggers: If the identified table or the base table of the identified view has a delete trigger, the trigger is
activated. A trigger might cause other statements to be executed or return error conditions based on the
deleted values.

Referential Integrity: If the identified table or the base table of the identified table is a parent table,
the rows selected must not have any dependents in a relationship with a delete rule of RESTRICT or NO
ACTION, and the DELETE must not cascade to descendent rows that have dependents in a relationship
with a delete rule of RESTRICT or NO ACTION.

If the delete operation is not prevented by a RESTRICT or NO ACTION delete rule, the selected rows are
deleted. Any rows that are dependents of the selected rows are also affected:

• The nullable columns of the foreign keys of any rows that are their dependents in a relationship with a
delete rule of SET NULL are set to the null value.

• Any rows that are their dependents in a relationship with a delete rule of CASCADE are also deleted, and
the above rules apply, in turn to those rows.

• The columns of the foreign keys of any rows that are their dependents in a relationship with a delete
rule of SET DEFAULT are set to the corresponding default value.

The referential constraints (other than a referential constraint with a RESTRICT delete rule), are
effectively checked at the end of the statement. In the case of a multiple-row delete, this would occur
after all rows were deleted and any associated triggers were activated.

Check Constraints: A check constraint can prevent the deletion of a row in a parent table when there
are dependents in a relationship with a delete rule of SET NULL or SET DEFAULT. If deleting a row in the
parent table would cause a column in a dependent table to be set to null or a default value and the null
or default value would cause a search condition of a check constraint to evaluate to false, the row is not
deleted.

Notes
Delete operation errors: If an error occurs while executing any delete operation, changes from this
statement, referential constraints, and any triggered SQL statements are rolled back (unless the isolation
level is NC for this statement or any other triggered SQL statements).

Locking: Unless appropriate locks already exist, one or more exclusive locks are acquired during the
execution of a successful DELETE statement. Until the locks are released by a commit or rollback
operation, the effect of the DELETE operation can only be perceived by:

• The application process that performed the deletion
• Another application process using isolation level UR or NC

1262 IBM i: Db2 for i SQL Reference

The locks can prevent other application processes from performing operations on the table. For further
information about locking, see the description of the COMMIT, ROLLBACK, and LOCK TABLE statements,
and “Isolation level” on page 23.

If an application process deletes a row on which any of its non-updatable cursors are positioned, those
cursors are positioned before the next row of their result table. Let C be a cursor that is positioned before
the next row R (as the result of an OPEN, a DELETE through C, a DELETE through some other cursor, or a
Searched DELETE). In the presence of INSERT, UPDATE, and DELETE operations that affect the base table
from which R is derived, the next FETCH operation referencing C does not necessarily position C on R. For
example, the operation can position C on R' where R' is a new row that is now the next row of the result
table.

A maximum of 4000000 rows can be deleted or changed in any single DELETE statement when
COMMIT(*RR), COMMIT(*ALL), COMMIT(*CS), or COMMIT(*CHG) was specified. The number of rows
changed includes any rows inserted, updated, or deleted under the same commitment definition as a
result of a trigger, a CASCADE, SET NULL, or SET DEFAULT referential integrity delete rule.

Position of cursor: If an application process deletes a row on which any of its cursors are positioned,
those cursors are positioned before the next row of their result table. Let C be a cursor that is positioned
before row R (as a result of an OPEN, a DELETE through C, a DELETE through some other cursor, or a
Searched DELETE). In the presence of INSERT, UPDATE, and DELETE operations that affect the base table
from which R is derived, the next FETCH operation referencing C does not necessarily position C on R. For
example, the operation can position C on R', where R' is a new row that is now the next row of the result
table.

Number of rows deleted: When a DELETE statement is completed, the number of rows deleted is
returned in the ROW_COUNT condition area item in the SQL Diagnostics Area (or SQLERRD(3) in the
SQLCA). The value in the ROW_COUNT item does not include the number of rows that were deleted as a
result of a CASCADE delete rule or a trigger.

For a description of the SQLCA, see Appendix C, “SQLCA (SQL communication area),” on page 1665.

DELETE Performance: An SQL DELETE statement that does not contain a WHERE clause, offset-clause,
or fetch-clause will delete all rows of a table. In this case, the rows may be deleted using either a
clear operation (if not running under commitment control) or a change file operation (if running under
commitment control). If running under commitment control, the deletes can still be committed or rolled
back. This implementation will be much faster than individually deleting each row, but individual journal
entries for each row will not be recorded in the journal. This technique will only be used if all the following
are true:

• The target table is not a view.
• The target table is not a system-period temporal table.
• A significant number of rows are being deleted.
• The job issuing the DELETE statement does not have an open cursor on the file (not including pseudo-

closed SQL cursors).
• No other job has a lock on the table.
• The table does not have an active delete trigger.
• The table is not the parent in a referential constraint with a CASCADE, SET NULL, or SET DEFAULT delete

rule.
• The user issuing the DELETE statement has *OBJMGT or *OBJALTER system authority on the table in

addition to the DELETE privilege.
• The SQL_FAST_DELETE_ROW_COUNT QAQQINI option allows fast delete.

If this technique is successful, the number of increments (see the SIZE keyword on the CHGPF CL
command) is set to zero.

The TRUNCATE statement can be used to delete all rows from a table.

Referential integrity considerations: The DB2_ROW_COUNT_SECONDARY condition information item in
the SQL Diagnostics Area (or SQLERRD(5) in the SQLCA) shows the number of rows affected by referential

Chapter 7. Statements 1263

constraints. It includes rows that were deleted as the result of a CASCADE delete rule and rows in which
foreign keys were set to NULL or the default value as the result of a SET NULL or SET DEFAULT delete rule.

For a description of DB2_ROW_COUNT_SECONDARY, see “GET DIAGNOSTICS” on page 1332. For a
description of the SQLCA, see Appendix C, “SQLCA (SQL communication area),” on page 1665.

Deleting rows in a table for which row access control is enforced: When a DELETE statement is issued
for a table for which row access control is enforced, the rules specified in the enabled row permissions
determine whether the row can be deleted. Typically those rules are based on the authorization ID of
the statement. The following describes how enabled row permissions and column masks are used during
DELETE:

• Row permissions are used to identify the set of rows to be deleted.

When multiple enabled row permissions are defined for a table, a row access control search condition
is derived by application of the logical OR operator to the search condition in each enabled permission.
This row access control search condition is applied to the table to determine which rows are accessible
to the authorization ID of the DELETE statement. If the WHERE clause is specified in the DELETE
statement, the user-specified predicates are applied on the accessible rows to determine the rows to be
deleted. If there is no WHERE clause, all the accessible rows are the rows to be deleted.

Considerations for a system-period temporal table: If the DELETE statement has a search condition
that contains a correlated subquery that references the history table (explicitly referencing the name of
the history table or implicitly referenced through the use of a period specification in the FROM clause), the
deleted rows that are stored as historical rows are potentially visible for delete operations for the rows
that are subsequently processed for the statement.

If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a non-null value and the value of
the SYSTIME option is YES, the underlying target of the DELETE statement must not be a system-period
temporal table. This restriction applies regardless of whether the system-period temporal table is directly
or indirectly referenced.

Considerations for a history table: When a row of a system-period temporal table is deleted, a historical
copy of the row is inserted into the corresponding history table and the end timestamp of the historical
row is captured in the form of a system determined value that corresponds to the time of the data change
operation. The database manager assigns the value that is generated using a reading of the time-of-day
clock during execution of the first data change statement in the transaction that requires a value to be
assigned to the row begin or transaction start-ID column in a table, or a row in a system-period temporal
table is deleted. The database manager ensures uniqueness of the generated values for an end column in
a history table across transactions. The timestamp value might be adjusted to ensure that rows inserted
into the history table have the end timestamp value greater than the begin timestamp value which can
happen when a conflicting transaction is updating the same row in the system-period temporal table. The
SYSTIME_PERIOD_ADJ QAQQINI option must be set to *ADJUST for this adjustment to the timestamp
value to occur. Otherwise an error is returned.

For a delete operation, the adjustment only affects the value for the end column in the history table
that corresponds to the row-end column in the associated system-period temporal table. Take these
adjustments into consideration on subsequent references to the table when there is a search for the
transaction start time in the row-begin column and row-end column for the SYSTEM_TIME period of the
associated system-period temporal table.

When the history table is defined with ON DELETE ADD EXTRA ROW, the version of the row prior to the
delete is added to the history table. Values for the row begin, row end, and any generated expression
columns are generated when this row is added. This information represents when the row was deleted.

REXX: Variables cannot be used in the DELETE statement within a REXX procedure. Instead, the DELETE
must be the object of a PREPARE and EXECUTE using parameter markers.

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• The keyword NONE can be used as a synonym for NC.
• The keyword CHG can be used as a synonym for UR.

1264 IBM i: Db2 for i SQL Reference

• The keyword ALL can be used as a synonym for RS.
• The FROM keyword is optional.

Examples
Example 1: Delete department (DEPTNO) ‘D11' from the DEPARTMENT table.

 DELETE FROM DEPARTMENT
 WHERE DEPTNO = 'D11'

Example 2: Delete all the departments from the DEPARTMENT table (that is, empty the table).

 DELETE FROM DEPARTMENT

Example 3: Use a Java program statement to delete all the subprojects (MAJPROJ is NULL) from the
PROJECT table on the connection context 'ctx', for a department (DEPTNO) equal to that in the host
variable HOSTDEPT (java.lang.String).

 #sql [ctx] { DELETE FROM PROJECT
 WHERE DEPTNO = :HOSTDEPT
 AND MAJPROJ IS NULL };

Example 4: Code a portion of a Java program that will be used to display retired employees (JOB) and
then, if requested to do so, remove certain employees from the EMPLOYEE table on the connection
context 'ctx'.

 #sql iterator empIterator implements sqlj.runtime.ForUpdate
 (...);
 empIterator C1;

 #sql [ctx] C1 = { SELECT * FROM EMPLOYEE
 WHERE JOB = 'RETIRED' };

 #sql { FETCH C1 INTO ... };
 while (!C1.endFetch()) {
 System.out.println(...);
 ...
 if (condition for deleting row) {
 #sql [ctx] { DELETE FROM EMPLOYEE
 WHERE CURRENT OF C1 };
 }
 #sql { FETCH C1 INTO ... };
 }
 C1.close();

Chapter 7. Statements 1265

DESCRIBE
The DESCRIBE statement obtains information about a prepared statement.

For an explanation of prepared statements, see “PREPARE” on page 1435.

Invocation
This statement can only be embedded in an application program, SQL function, SQL procedure, or trigger.
It is an executable statement that cannot be dynamically prepared. It must not be specified in Java.

Authorization
None required. See “PREPARE” on page 1435 for the authorization required to create a prepared
statement.

Syntax

DESCRIBE
OUTPUT

statement-name

USING

SQL

DESCRIPTOR
LOCAL

GLOBAL

SQL-descriptor-name

INTO descriptor-name

USING NAMES

SYSTEM NAMES

LABELS

ANY

BOTH

ALL

Description
statement-name

Identifies the prepared statement. When the DESCRIBE statement is executed, the name must
identify a prepared statement at the application server.

If the prepared statement is a fullselect or VALUES INTO statement, the information returned
describes the columns in its result table. If the prepared statement is a CALL statement, the
information returned describes the OUT and INOUT parameters of the procedure.

USING
Identifies an SQL descriptor.
LOCAL

Specifies the scope of the name of the descriptor to be local to program invocation.
GLOBAL

Specifies the scope of the name of the descriptor to be global to the SQL session.
SQL-descriptor-name

Names the SQL descriptor. The name must identify a descriptor that already exists with the
specified scope.

See “GET DESCRIPTOR” on page 1319 for an explanation of the information that is placed in the
SQL descriptor.

1266 IBM i: Db2 for i SQL Reference

INTO descriptor-name
Identifies an SQL descriptor area (SQLDA), which is described in Appendix D, “SQLDA (SQL descriptor
area),” on page 1675. Before the DESCRIBE statement is executed, the following variable in the
SQLDA must be set.
SQLN

Indicates the number of SQLVAR entries provided in the SQLDA. SQLN must be set to a value
greater than or equal to zero before the DESCRIBE statement is executed. For information
about techniques to determine the number of occurrences requires, see “Determining how many
SQLVAR occurrences are needed” on page 1678.

The rules for REXX are different. For more information, see the Embedded SQL Programming topic
collection.

When the DESCRIBE statement is executed, the database manager assigns values to the variables of the
SQLDA as follows:

SQLDAID
The first 6 bytes are set to 'SQLDA ' (that is, 5 letters followed by the space character).

The seventh byte is set based on the result columns described:

• If the SQLDA contains two, three, or four SQLVAR entries for every select list item (or, column of the
result table), the seventh byte is set to '2', '3', or '4'. This technique is used in order to accommodate
LOB or distinct type result columns, labels, and system names.

• Otherwise, the seventh byte is set to the space character.

The seventh byte is set to the space character if there is not enough room in the SQLDA to contain the
description of all result columns.

The eighth byte is set to the space character.

SQLDABC
Length of the SQLDA in bytes.

SQLD
If the prepared statement is a SELECT, SQLD is set to the number of columns in its result table
plus the number of extended SQLVAR entries. For information about extended SQLVAR entries see,
“Field descriptions in an occurrence of SQLVAR” on page 1681. If the prepared statement is a CALL
statement, SQLD is set to the number of OUT and INOUT parameters of the procedure. If the prepared
statement is a VALUES INTO, SQLD is set to the number of expressions in the VALUES clause plus the
number of extended SQLVAR entries. Otherwise, SQLD is set to 0.

SQLVAR
If the value of SQLD is 0, or greater than the value of SQLN, no values are assigned to occurrences of
SQLVAR.

If the value of SQLD is n, where n is greater than 0 but less than or equal to the value of SQLN, values
are assigned to the first n occurrences of SQLVAR so that the first occurrence of SQLVAR contains a
description of the first column of the result table (or parameter or expression in the VALUES clause),
the second occurrence of SQLVAR contains a description of the second column of the result table (or
parameter or expression in the VALUES clause), and so on. For information about the values assigned
to SQLVAR occurrences, see “Field descriptions in an occurrence of SQLVAR” on page 1681.

USING
Specifies what value to assign to each SQLNAME variable in the SQLDA. If the requested value does
not exist or if the length of a name is greater than 30, SQLNAME is set to a length of 0.
NAMES

Assigns the name of the column (or parameter). This is the default. For the DESCRIBE of a
prepared statement where the name is explicitly listed in the select-list, the name specified is
returned. The column name returned is case sensitive and without delimiters.

SYSTEM NAMES
Assigns the system column name of the column.

Chapter 7. Statements 1267

LABELS
Assigns the label of the column. (Column labels are defined by the LABEL statement.) Only the
first 20 bytes of the label are returned.

ANY
Assigns the column label. If the column has no label, the column name is used instead.

BOTH
Assigns both the label and name of the column. In this case, two or three occurrences of
SQLVAR per column, depending on whether the result set contains distinct types, are needed to
accommodate the additional information. To specify this expansion of the SQLVAR array, set SQLN
to 2*n or 3*n(where n is the number of columns in the table or view). The first n occurrences of
SQLVAR contain the column names. Either the second or third n occurrences contain the column
labels. If there are no distinct types, the labels are returned in the second set of SQLVAR entries.
Otherwise, the labels are returned in the third set of SQLVAR entries.

ALL
Assigns the label, column name, and system column name. In this case three or four occurrences
of SQLVAR per column, depending on whether the result set contains distinct types, are needed to
accommodate the additional information. To specify this expansion of the SQLVAR array, set SQLN
to 3*n or 4*n (where n is the number of columns in the result table). The first n occurrences of
SQLVAR contain the system column names. The second or third n occurrences contain the column
labels. The third or fourth n occurrences contain the column names if they are different from the
system column name. Otherwise the SQLNAME field is set to a length of zero. If there are no
distinct types, the labels are returned in the second set of SQLVAR entries and the column names
are returned in the third set of SQLVAR entries. Otherwise, the labels are returned in the third set
of SQLVAR entries and the column names are returned in the fourth set of SQLVAR entries.

Notes
PREPARE INTO: Information about a prepared statement can also be obtained by using the INTO clause
of the PREPARE statement.

Allocating the SQL descriptor: Before the DESCRIBE statement is executed, the SQL descriptor must be
allocated using the ALLOCATE DESCRIPTOR statement. If the number of descriptor items allocated is less
than the number of result columns, a warning (SQLSTATE 01005) is returned.

Allocating the SQLDA: In C, COBOL, PL/I, and RPG, before the DESCRIBE or PREPARE INTO statement is
executed, enough storage must be allocated for some number of SQLVAR occurrences. SQLN must then
be set to the number of SQLVAR occurrences that were allocated. To obtain the description of the columns
of the result table of a prepared SELECT statement, the number of occurrences of SQLVAR entries must
not be less than the number of columns. Furthermore, if the columns include LOBs or distinct types, the
number of occurrences of SQLVAR entries should be two times the number of columns. See “Determining
how many SQLVAR occurrences are needed” on page 1678 for more information. Among the possible
ways to allocate the SQLDA are the three described below:

First technique
Allocate an SQLDA with enough occurrences of SQLVAR entries to accommodate any select list that
the application will have to process. At the extreme, the number of SQLVARs could equal two times
the maximum number of columns allowed in a result table. Having done the allocation, the application
can use this SQLDA repeatedly.

This technique uses a large amount of storage that is never deallocated, even when most of this
storage is not used for a particular select list.

Second technique
Repeat the following three steps for every processed select list:

1. Execute a DESCRIBE statement with an SQLDA that has no occurrences of SQLVAR entries; that
is, an SQLDA for which SQLN is zero. The value returned for SQLD is either the required number of
occurrences of SQLVAR entries or the number of result columns. Because there were no SQLVAR
entries, a warning will be issued.103

1268 IBM i: Db2 for i SQL Reference

2. If the seventh byte of SQLDAID field is not a blank, then allocate an SQLDA with (the value in the
seventh byte of SQLDAID) * SQLD occurrences and set SQLN in the new SQLDA to (the value in the
seventh byte of SQLDAID) * SQLD. Otherwise, allocate an SQLDA with SQLD occurrences and set
SQLN in the new SQLDA to the value of SQLD.

3. Execute the DESCRIBE statement again, using this new SQLDA.

This technique allows better storage management than the first technique, but it doubles the number
of DESCRIBE statements.

Third technique
Allocate an SQLDA that is large enough to handle most, and perhaps all, select lists but is also
reasonably small. If an execution of DESCRIBE fails because the SQLDA is too small, allocate a larger
SQLDA and execute DESCRIBE again. For the new SQLDA, use the value of SQLD (or double the value
of SQLD) returned from the first execution of DESCRIBE for the number of occurrences of SQLVAR
entries.

This technique is a compromise between the first two techniques. Its effectiveness depends on a
good choice of size for the original SQLDA.

Considerations for implicitly hidden columns: A DESCRIBE OUTPUT statement only returns information
about implicitly hidden columns if the column (of a base table that is defined as implicitly hidden) is
explicitly specified as part of the SELECT list of the final result table of the query described. If implicitly
hidden columns are not part of the result table of a query, a DESCRIBE OUTPUT statement that returns
information about that query will not contain information about any implicitly hidden columns.

Example
In a C program, execute a DESCRIBE statement with an SQLDA that has no occurrences of SQLVAR
entries. If SQLD is greater than zero, use the value to allocate an SQLDA with the necessary number of
occurrences of SQLVAR entrires and then execute a DESCRIBE statement using that SQLDA.

 EXEC SQL BEGIN DECLARE SECTION;
 char stmt1_str [200];
 EXEC SQL END DECLARE SECTION;
 EXEC SQL INCLUDE SQLDA;
 struct sqlda initialsqlda;
 struct sqlda *sqldaPtr;

 EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

 … /* code to prompt user for a query, then to generate */
 /* a select-statement in the stmt1_str */
 EXEC SQL PREPARE STMT1_NAME FROM :stmt1_str;

 … /* code to set SQLN to zero and to allocate the SQLDA */
 EXEC SQL DESCRIBE STMT1_NAME INTO :initialsqlda;

 if (initialsqlda.sqld == 0); /* statement is a select-statement */
 {
 … /* Code to allocate correct size SQLDA (sets sqldaPtr) */

 if (strcmp(SQLSTATE,"01005") == 0)
 {
 sqldaPtr->sqln = 2*initialsqlda.sqld;
 SETSQLDOUBLED(sqldaPtr, SQLDOUBLED);
 }
 else
 {
 sqldaPtr->sqln = initialsqlda.sqld;
 SETSQLDOUBLED(sqldaPtr, SQLSINGLED);
 }
 EXEC SQL DESCRIBE STMT1_NAME INTO :*sqldaPtr;

 … /* code to prepare for the use of the SQLDA */
 EXEC SQL OPEN DYN_CURSOR;

103 If LOBs or UDTs are not in the result set, the warning is only returned if the standards option is specified.
For information about the standards option, see “Standards compliance” on page xix.

Chapter 7. Statements 1269

 … /* loop to fetch rows from result table */
 EXEC SQL FETCH DYN_CURSOR USING DESCRIPTOR :*sqldaPtr;

 …
 }
 …

1270 IBM i: Db2 for i SQL Reference

DESCRIBE CURSOR
The DESCRIBE CURSOR statement gets information about a cursor. The information, such as column
information, is put into a descriptor.

Invocation
This statement can only be embedded in an application program, SQL function, SQL procedure, or trigger.
It is an executable statement that cannot be dynamically prepared. It must not be specified in Java or
REXX.

Authorization
None required.

Syntax
DESCRIBE CURSOR cursor-name

variable

USING

SQL

DESCRIPTOR
LOCAL

GLOBAL

SQL-descriptor-name

INTO descriptor-name

Description
cursor-name or variable

Identifies a cursor that has already been open or allocated in the source program.

If a variable is specified:

• It must be a character-string variable or Unicode graphic-string. It cannot be a global variable.
• It must not be followed by an indicator variable.
• The cursor name that is contained within the variable must be left-justified and must be padded on

the right with blanks if its length is less than that of the variable.
• The name of the cursor must be in uppercase unless the cursor name is a delimited name.

USING
Identifies an SQL descriptor.
LOCAL

Specifies the scope of the name of the descriptor to be local to program invocation.
GLOBAL

Specifies the scope of the name of the descriptor to be global to the SQL session.
SQL-descriptor-name

Names the SQL descriptor. The name must identify a descriptor that already exists with the
specified scope.
The information returned in the descriptor area describes the columns in the result set associated
with the named cursor. After the DESCRIBE CURSOR is executed, the contents of the descriptor
area are the same as after a DESCRIBE of a SELECT with the following addition.

• DB2_CURSOR_HOLD can be returned from the GET DESCRIPTOR statement to indicate whether
the cursor was declared WITH HOLD in the procedure.

Chapter 7. Statements 1271

See “GET DESCRIPTOR” on page 1319 for an explanation of the information that is placed in the
SQL descriptor.

INTO descriptor-name
Identifies an SQL descriptor area (SQLDA), which is described in Appendix D, “SQLDA (SQL descriptor
area),” on page 1675. Before the DESCRIBE CURSOR statement is executed, the following variable in
the SQLDA must be set.
SQLN

Specifies the number of SQLVAR occurrences provided in the SQLDA. SQLN must be set to a
value greater than or equal to zero before the DESCRIBE CURSOR statement is executed. For
information about techniques to determine the number of occurrences required, see “Determining
how many SQLVAR occurrences are needed” on page 1678.

When the DESCRIBE statement is executed, the database manager assigns values to the variables of
the SQLDA as follows:

SQLDAID
The first 5 bytes are set to 'SQLRS'. Bytes 6 to 8 are reserved. If the cursor is declared WITH HOLD
in the procedure, the high-order bit of the 8th byte is set to 1.

SQLDABC
Length of the SQLDA in bytes.

SQLD
The number of columns in the result table plus the number of extended SQLVAR entries. For
information about extended SQLVAR entries see, “Field descriptions in an occurrence of SQLVAR”
on page 1681.

SQLVAR
If the value of SQLD is 0, or greater than the value of SQLN, no values are assigned to occurrences
of SQLVAR.

If the value of SQLD is n, where n is greater than 0 but less than or equal to the value of SQLN,
values are assigned to the first n occurrences of SQLVAR so that the first occurrence of SQLVAR
contains a description of the first column of the result table, the second occurrence of SQLVAR
contains a description of the second column of the result table, and so on. For information about
the values assigned to SQLVAR occurrences, see “Field descriptions in an occurrence of SQLVAR”
on page 1681.

Notes
Allocating the SQL descriptor: Before the DESCRIBE CURSOR statement is executed, the SQL descriptor
must be allocated using the ALLOCATE DESCRIPTOR statement. If the number of descriptor items
allocated is less than the number of columns in the cursor result set, a warning (SQLSTATE 01005) is
returned.

Allocating the SQLDA: Before the DESCRIBE CURSOR statement is executed, the value of SQLN must be
set to a value greater than or equal to zero to indicate how many occurrences of SQLVAR are provided in
the SQLDA and enough storage must be allocated to contain SQLN occurrences. To obtain the description
of the columns of the cursor result set, the number of occurrences of SQLVAR must not be less than the
number of columns.

For a description of techniques that can be used to allocate the SQLDA, see Appendix D, “SQLDA (SQL
descriptor area),” on page 1675.

Example
Place information about the result set associated with cursor C1 into an SQL descriptor.

 EXEC SQL ALLOCATE DESCRIPTOR 'DESCR1';
 EXEC SQL DESCRIBE CURSOR C1 USING SQL DESCRIPTOR 'DESCR1';

1272 IBM i: Db2 for i SQL Reference

DESCRIBE INPUT
The DESCRIBE INPUT statement obtains information about the IN and INOUT parameter markers of a
prepared statement.

For an explanation of prepared statements, see “PREPARE” on page 1435.

Invocation
This statement can only be embedded in an application program, SQL function, SQL procedure, or trigger.
It is an executable statement that cannot be dynamically prepared. It must not be specified in Java or
REXX.

Authorization
None required. See “PREPARE” on page 1435 for the authorization required to create a prepared
statement.

Syntax
DESCRIBE INPUT statement-name

USING

SQL

DESCRIPTOR
LOCAL

GLOBAL

SQL-descriptor-name

INTO descriptor-name

Description
statement-name

Identifies the prepared statement. When the DESCRIBE INPUT statement is executed, the name must
identify a prepared statement at the current server.

USING
Identifies an SQL descriptor.
LOCAL

Specifies the scope of the name of the descriptor to be local to program invocation.
GLOBAL

Specifies the scope of the name of the descriptor to be global to the SQL session.
SQL-descriptor-name

Names the SQL descriptor. The name must identify a descriptor that already exists with the
specified scope.

See “GET DESCRIPTOR” on page 1319 for an explanation of the information that is placed in the
SQL descriptor.

INTO descriptor-name
Identifies an SQL descriptor area (SQLDA), which is described in Appendix D, “SQLDA (SQL descriptor
area),” on page 1675. Before the DESCRIBE INPUT statement is executed, the following variable in
the SQLDA must be set.
SQLN

Specifies the number of SQLVAR occurrences provided in the SQLDA. SQLN must be set to a value
greater than or equal to zero before the DESCRIBE INPUT statement is executed. For information
about techniques to determine the number of occurrences requires, see “Determining how many
SQLVAR occurrences are needed” on page 1678.

Chapter 7. Statements 1273

When the DESCRIBE INPUT statement is executed, the database manager assigns values to the
variables of the SQLDA as follows:
SQLDAID

The first 6 bytes are set to 'SQLDA ' (that is, 5 letters followed by the space character).

The seventh byte is set based on the parameter markers described:

• If the SQLDA contains two SQLVAR entries for every input parameter marker, the seventh byte is
set to '2'. This technique is used in order to accommodate LOB input parameters.

• Otherwise, the seventh byte is set to the space character.

The seventh byte is set to the space character if there is not enough room in the SQLDA to contain
the description of all input parameter markers.

The eighth byte is set to the space character.

SQLDABC
Length of the SQLDA in bytes.

SQLD
The number of input parameter markers in the prepared statement.

SQLVAR
If the value of SQLD is 0, or greater than the value of SQLN, no values are assigned to occurrences
of SQLVAR.

If the value of SQLD is n, where n is greater than 0 but less than or equal to the value of SQLN,
values are assigned to the first n occurrences of SQLVAR so that the first occurrence of SQLVAR
contains a description of the first input parameter marker, the second occurrence of SQLVAR
contains a description of the second input parameter marker, and so on. For information about the
values assigned to SQLVAR occurrences, see “Field descriptions in an occurrence of SQLVAR” on
page 1681.

Notes
Allocating the SQL descriptor: Before the DESCRIBE INPUT statement is executed, the SQL descriptor
must be allocated using the ALLOCATE DESCRIPTOR statement. The number of descriptor items allocated
must not be less than the number of input parameter markers or an error is returned.

Allocating the SQLDA: Before the DESCRIBE INPUT statement is executed, enough storage must be
allocated for some number of SQLVAR occurrences. SQLN must then be set to the number of SQLVAR
occurrences that were allocated. To obtain the description of the input parameter markers in the prepared
statement, the number of occurrences of SQLVAR must not be less than the number of input parameter
markers. Furthermore, if the input parameter markers include LOBs or distinct types, the number of
occurrences of SQLVAR should be two times the number of input parameter markers. See “Determining
how many SQLVAR occurrences are needed” on page 1678 for more information.

If not enough occurrences are provided to return all sets of occurrences, SQLN is set to the total
number of occurrences necessary to return all information. Otherwise, SQLN is set to the number of
input parameter markers.

Among the possible ways to allocate the SQLDA are the three described below:

First technique
Allocate an SQLDA with enough occurrences of SQLVAR entries to accommodate any number of input
parameter markers that the application will have to process. At the extreme, the number of SQLVARs
could equal two times the maximum number of parameter markers allowed in a prepared statement.
Having done the allocation, the application can use this SQLDA repeatedly.

This technique uses a large amount of storage that is never deallocated, even when most of this
storage is not used for a particular prepared statement.

Second technique
Repeat the following three steps for every processed prepared statement:

1274 IBM i: Db2 for i SQL Reference

1. Execute a DESCRIBE INPUT statement with an SQLDA that has no occurrences of SQLVAR
entries, that is, an SQLDA for which SQLN is zero. The value returned for SQLD is the number
of input parameter markers in the prepared statement. This value is either the required number
of occurrences of SQLVAR entries or half the required number. Because there were no SQLVAR
entries, a warning will be issued. 104

2. If the SQLSTATE accompanying that warning is equal to 01005, allocate an SQLDA with 2 * SQLD
occurrences and set SQLN in the new SQLDA to 2 * SQLD. Otherwise, allocate an SQLDA with SQLD
occurrences and set SQLN in the new SQLDA to the value of SQLD.

3. Execute the DESCRIBE INPUT statement again, using this new SQLDA.

This technique allows better storage management than the first technique, but it doubles the number
of DESCRIBE INPUT statements.

Third technique
Allocate an SQLDA that is large enough to handle most, and perhaps all, parameter markers in
prepared statements but is also reasonably small. If an execution of DESCRIBE INPUT fails because
the SQLDA is too small, allocate a larger SQLDA and execute DESCRIBE INPUT again. For the new
SQLDA, use the value of SQLD (or double the value of SQLD) returned from the first execution of
DESCRIBE INPUT for the number of occurrences of SQLVAR entries.

This technique is a compromise between the first two techniques. Its effectiveness depends on a
good choice of size for the original SQLDA.

Examples
Example 1: In a C program, execute a DESCRIBE INPUT statement with an SQLDA that has enough to
describe any number of input parameter markers a prepared statement might have. Assume that five
parameter markers at most will need to be described and that the input data does not contain LOBs.

 EXEC SQL BEGIN DECLARE SECTION;
 char stmt1_str [200];
 EXEC SQL END DECLARE SECTION;
 EXEC SQL INCLUDE SQLDA;
 struct sqlda initialsqlda;
 struct sqlda *sqldaPtr;

 … /* stmt1_str contains INSERT statement with VALUES */
 /* clause */
 EXEC SQL PREPARE STMT1_NAME FROM :stmt1_str;

 … /* code to set SQLN to five and to allocate the SQLDA */
 EXEC SQL DESCRIBE INPUT STMT1_NAME INTO :SQLDA;

 …

Example 2: Allocate a descriptor called 'NEWDA' large enough to hold 20 item descriptor areas and use it
on DESCRIBE INPUT.

 EXEC SQL ALLOCATE DESCRIPTOR 'NEWDA'
 WITH MAX 20;

 EXEC SQL DESCRIBE INPUT STMT1
 USING SQL DESCRIPTOR 'NEWDA';

104 If LOBs or UDTs are not in the result set, the warning is only returned if the standards option is specified.
For information about the standards option, see “Standards compliance” on page xix.

Chapter 7. Statements 1275

DESCRIBE PROCEDURE
The DESCRIBE PROCEDURE statement gets information about the result sets returned by a procedure.
The information, such as the number of result sets, is put into a descriptor.

Invocation
This statement can only be embedded in an application program, SQL function, SQL procedure, or trigger.
It is an executable statement that cannot be dynamically prepared. It must not be specified in Java or
REXX.

Authorization
None required.

Syntax
DESCRIBE

PROCEDURE

ROUTINE

procedure-name

(
,

parameter-type

)

SPECIFIC PROCEDURE

ROUTINE

specific-name

PROCEDURE variable

USING

SQL

DESCRIPTOR
LOCAL

GLOBAL

SQL-descriptor-name

INTO descriptor-name

parameter-type
data-type

AS LOCATOR

data-type
built-in-type

distinct-type-name

built-in-type

1276 IBM i: Db2 for i SQL Reference

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

)

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

DATALINK

(200)

(integer) ccsid-clause

ROWID

XML

ccsid-clause
CCSID integer

Chapter 7. Statements 1277

Description
procedure-name or specific-name or variable

Identifies the procedure that returned one or more result sets. When the DESCRIBE PROCEDURE
statement is executed, the procedure name must identify a procedure that the requester has already
invoked using the SQL CALL statement.
PROCEDURE or SPECIFIC PROCEDURE

Identifies the procedure to be described. The procedure-name must identify a procedure that
exists at the current server.
PROCEDURE procedure-name

Identifies the procedure by its name. The procedure-name must identify exactly one
procedure. The procedure may have any number of parameters defined for it. If there is
more than one procedure of the specified name in the specified or implicit schema, an error is
returned.

PROCEDURE procedure-name (parameter-type, ...)
Identifies the procedure by its procedure signature, which uniquely identifies the procedure.
The procedure-name (parameter-type, ...) must identify a procedure with the specified
procedure signature. The specified parameters must match the data types in the
corresponding position that were specified when the procedure was created. The number
of data types, and the logical concatenation of the data types is used to identify the specific
procedure instance which is to be labeled on. Synonyms for data types are considered a
match. Parameters that have defaults must be included in this signature.

If procedure-name () is specified, the procedure identified must have zero parameters.

procedure-name
Identifies the name of the procedure.

(parameter-type, ...)
Identifies the parameters of the procedure.

If an unqualified distinct type or array type name is specified, the database manager
searches the SQL path to resolve the schema name for the distinct type or array type.

For data types that have a length, precision, or scale attribute, use one of the following:

• Empty parentheses indicate that the database manager ignores the attribute when
determining whether the data types match. For example, DEC() will be considered
a match for a parameter of a procedure defined with a data type of DEC(7,2).
However, FLOAT cannot be specified with empty parenthesis because its parameter
value indicates a specific data type (REAL or DOUBLE).

• If a specific value for a length, precision, or scale attribute is specified, the value
must exactly match the value that was specified (implicitly or explicitly) in the CREATE
PROCEDURE statement. If the data type is FLOAT, the precision does not have to exactly
match the value that was specified because matching is based on the data type (REAL or
DOUBLE).

• If length, precision, or scale is not explicitly specified, and empty parentheses are
not specified, the default attributes of the data type are implied. The implicit length
must exactly match the value that was specified (implicitly or explicitly) in the CREATE
PROCEDURE statement.

Specifying the FOR DATA clause or CCSID clause is optional. Omission of either clause
indicates that the database manager ignores the attribute when determining whether the
data types match. If either clause is specified, it must match the value that was implicitly
or explicitly specified in the CREATE PROCEDURE statement.

AS LOCATOR
Specifies that the procedure is defined to receive a locator for this parameter. If AS
LOCATOR is specified, the data type must be a LOB or XML or a distinct type based on a

1278 IBM i: Db2 for i SQL Reference

LOB or XML. If AS LOCATOR is specified, FOR SBCS DATA or FOR MIXED DATA must not be
specified.

SPECIFIC PROCEDURE specific-name
Identifies the procedure by its specific name. The specific-name must identify a specific
procedure that exists at the current server.

variable
Specifies a variable that contains a procedure or specific name. If variable is specified:

• It must be a character-string variable or Unicode graphic-string variable. It cannot be a global
variable.

• It must not be followed by an indicator variable.
• The name that is contained within the variable must be left-justified and must be padded on the

right with blanks if its length is less than that of the variable.
• The name must be in uppercase unless it is a delimited name.

If only one procedure with this name has been invoked using the CALL statement, the variable is
used as a procedure name. If multiple procedures with this name have been invoked, the variable
is used as a specific name.

USING
Identifies an SQL descriptor.
LOCAL

Specifies the scope of the name of the descriptor to be local to program invocation.
GLOBAL

Specifies the scope of the name of the descriptor to be global to the SQL session.
SQL-descriptor-name

Names the SQL descriptor. The name must identify a descriptor that already exists with the
specified scope.

After the DESCRIBE PROCEDURE is executed, the following values can be retrieved with the GET
DESCRIPTOR statement:

• DB2_RESULT_SETS_COUNT contains the total number of result sets. A value of 0 indicates there
are no result sets.

There is one descriptor area item for each result set:

• DB2_RESULT_SET_LOCATOR contains the result set locator value associated with the result set.
• DB2_CURSOR_NAME contains the name of the cursor used by the procedure to return the result

set.
• DB2_RESULT_SET_ROWS contains the estimated number of rows in the result set. This is set to

-1 if the number is unknown.

See “GET DESCRIPTOR” on page 1319 for an explanation of the information that is placed in the
SQL descriptor.

INTO descriptor-name
Identifies an SQL descriptor area (SQLDA), which is described in Appendix D, “SQLDA (SQL descriptor
area),” on page 1675. Before the DESCRIBE PROCEDURE statement is executed, the following
variable in the SQLDA must be set.
SQLN

Specifies the number of SQLVAR occurrences provided in the SQLDA. SQLN must be set to a value
greater than or equal to zero before the DESCRIBE PROCEDURE statement is executed.

When the DESCRIBE statement is executed, the database manager assigns values to the variables of
the SQLDA as follows:

SQLDAID
The first 5 bytes are set to 'SQLPR'. Bytes 6 to 8 are reserved.

Chapter 7. Statements 1279

SQLDABC
Length of the SQLDA in bytes.

SQLD
The total number of result sets. A value of 0 indicates there are no result sets.

SQLVAR
If the value of SQLD is 0, or greater than the value of SQLN, no values are assigned to occurrences
of SQLVAR.

If the value of SQLD is n, where n is greater than 0 but less than or equal to the value of
SQLN, values are assigned to the first n occurrences of SQLVAR so that the first occurrence of
SQLVAR contains a description of the first result set, the second occurrence of SQLVAR contains a
description of the second result set, and so on. For each SQLVAR entry:

• The SQLDATA field is set to the result set locator value associated with the result set.
• The SQLIND field is set to the estimated number of rows in the result set. This is set to -1 if the

number is unknown.
• The SQLNAME field is set to the name of the cursor used by the stored procedure to return the

result set. The cursor name is truncated to 30 characters if it is longer than 30 characters.

Notes
DESCRIBE PROCEDURE does not return information about the parameters expected by the procedure.

The CALL to the procedure must precede the DESCRIBE PROCEDURE statement.

Allocating the SQL descriptor: Before the DESCRIBE PROCEDURE statement is executed, the SQL
descriptor must be allocated using the ALLOCATE DESCRIPTOR statement. If the number of descriptor
items allocated is less than the number of result sets for the procedure, a warning (SQLSTATE 01005) is
returned.

Allocating the SQLDA: Before the DESCRIBE PROCEDURE statement is executed, the value of SQLN
must be set to a value greater than or equal to zero to indicate how many occurrences of SQLVAR are
provided in the SQLDA and enough storage must be allocated to contain SQLN occurrences. To obtain the
description of the result sets for the procedure, the number of occurrences of SQLVAR must not be less
than the number result sets.

If not enough occurrences are provided to return all sets of occurrences, SQLN is set to the total number
of occurrences necessary to return all information. Otherwise, SQLN is set to the number of result sets.

Assignment of locator values: If a SET RESULT SETS statement was executed in the procedure, the
SET RESULT SETS statement identifies the result sets. The locator values are assigned to the items
in the descriptor area or the SQLVAR entries in the SQLDA in the order specified on the SET RESULT
SETS statement. If a SET RESULT SETS statement was not executed in the procedure, locator values are
assigned to the items in the descriptor area or to the SQLVAR entries in the SQLDA in the order that the
associated cursors are opened at run time. Locator values are not provided for cursors that are closed
when control is returned to the invoking application. If a cursor was closed and later re-opened before
returning to the invoking application, the most recently executed OPEN CURSOR statement for the cursor
is used to determine the order in which the locator values are returned for the procedure result sets. For
example, assume procedure P1 opens three cursors A, B, and C, closes cursor B, and then issues another
OPEN CURSOR statement for cursor B before returning to the invoking application. The locator values are
assigned in the order A, C, B.

Alternatively, an ASSOCIATE LOCATORS statement can be used to copy the locator values to result set
locator variables.

Example
Place information about the result sets returned by procedure P1 into an SQL descriptor:

1280 IBM i: Db2 for i SQL Reference

 EXEC SQL CALL P1;
 EXEC SQL ALLOCATE DESCRIPTOR 'DESC1';
 EXEC SQL DESCRIBE PROCEDURE P1 USING SQL DESCRIPTOR 'DESC1';

Chapter 7. Statements 1281

DESCRIBE TABLE
The DESCRIBE TABLE statement obtains information about a table or view.

Invocation
This statement can only be embedded in an application program, SQL function, SQL procedure, or trigger.
It is an executable statement that cannot be dynamically prepared. It must not be specified in Java.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For the table or view identified in the statement:

– The system authority of *OBJOPR on the table or view
– The system authority *EXECUTE on the library containing the table or view

• Database administrator authority

Syntax

DESCRIBE TABLE variable
INCLUDING IMPLICITLY HIDDEN COLUMNS

EXCLUDING IMPLICITLY HIDDEN COLUMNS

USING

SQL

DESCRIPTOR
LOCAL

GLOBAL

SQL-descriptor-name

INTO descriptor-name

USING NAMES

SYSTEM NAMES

LABELS

ANY

BOTH

ALL

Description
variable

Identifies the table or view to describe. When the DESCRIBE TABLE statement is executed:

• The name must identify a table or view that exists at the application server.
• The variable must be a character-string or Unicode graphic-string variable and must not include an

indicator variable. It cannot be a global variable.
• The table name that is contained within the variable must be left-justified and must be padded on

the right with blanks if its length is less than that of the variable.
• The name of the table must be in uppercase unless it is a delimited name.

INCLUDING IMPLICITLY HIDDEN COLUMNS or EXCLUDING IMPLICITLY HIDDEN COLUMNS
Specifies whether information should be returned for implicitly hidden column in a table.
INCLUDING IMPLICITLY HIDDEN COLUMNS

Specifies that information is returned for columns defined as implicitly hidden. This is the default.

1282 IBM i: Db2 for i SQL Reference

EXCLUDING IMPLICITLY HIDDEN COLUMNS
Specifies that information is not returned for columns defined as implicitly hidden.

When the DESCRIBE TABLE statement is executed, the database manager assigns values to the variables
of the SQL descriptor or SQLDA as follows:

USING
Identifies an SQL descriptor.
LOCAL

Specifies the scope of the name of the descriptor to be local to program invocation.
GLOBAL

Specifies the scope of the name of the descriptor to be global to the SQL session.
SQL-descriptor-name

Names the SQL descriptor. The name must identify a descriptor that already exists with the
specified scope.

See “GET DESCRIPTOR” on page 1319 for an explanation of the information that is placed in the
SQL descriptor.

INTO descriptor-name
Identifies an SQL descriptor area (SQLDA), which is described in Appendix D, “SQLDA (SQL descriptor
area),” on page 1675. Before the DESCRIBE TABLE statement is executed, the following variable in
the SQLDA must be set.
SQLN

Specifies the number of SQLVAR occurrences provided in the SQLDA. SQLN must be set to a value
greater than or equal to zero before the DESCRIBE TABLE statement is executed. For information
about techniques to determine the number of occurrences requires, see “Determining how many
SQLVAR occurrences are needed” on page 1678.

The rules for REXX are different. For more information, see the Embedded SQL Programming topic
collection.

When the DESCRIBE statement is executed, the database manager assigns values to the variables of
the SQLDA as follows:

SQLDAID
The first 6 bytes are set to 'SQLDA ' (that is, 5 letters followed by the space character).

The seventh byte is set based on the column described:

• If the SQLDA contains two, three, or four SQLVAR entries for every column of the table, the
seventh byte is set to '2', '3', or '4'. This technique is used in order to accommodate LOB or
distinct type result columns, labels, and system names.

• Otherwise, the seventh byte is set to the space character.

The seventh byte is set to the space character if there is not enough room in the SQLDA to contain
the description of all columns.

The eighth byte is set to the space character.

SQLDABC
Length of the SQLDA in bytes.

SQLD
The number of columns in the table plus the number of extended SQLVAR entries. For information
about extended SQLVAR entries see, “Field descriptions in an occurrence of SQLVAR” on page
1681.

SQLVAR
If the value of SQLD is 0, or greater than the value of SQLN, no values are assigned to occurrences
of SQLVAR.

If the value of SQLD is n, where n is greater than 0 but less than or equal to the value of SQLN,
values are assigned to the first n occurrences of SQLVAR so that the first occurrence of SQLVAR

Chapter 7. Statements 1283

contains a description of the first column of the table, the second occurrence of SQLVAR contains
a description of the second column of the table, and so on. For information about the values
assigned to SQLVAR occurrences, see “Field descriptions in an occurrence of SQLVAR” on page
1681.

USING
Specifies what value to assign to each SQLNAME variable in the SQLDA. If the requested value
does not exist or if the length of a name is greater than 30, SQLNAME is set to a length of 0.
NAMES

Assigns the name of the column. The column name returned is case sensitive and without
delimiters. This is the default.

SYSTEM NAMES
Assigns the system column name of the column.

LABELS
Assigns the label of the column. (Column labels are defined by the LABEL statement.) Only the
first 20 bytes of the label are returned.

ANY
Assigns the column label. If the column has no label, the column name is used instead.

BOTH
Assigns both the label and name of the column. In this case, two or three occurrences of
SQLVAR per column, depending on whether the table contains distinct types, are needed
to accommodate the additional information. To specify this expansion of the SQLVAR array,
set SQLN to 2*n or 3*n(where n is the number of columns in the table or view). The first
n occurrences of SQLVAR contain the column names if they are different from the system
column name. Either the second or third n occurrences contain the column labels. If there are
no distinct types, the labels are returned in the second set of SQLVAR entries. Otherwise, the
labels are returned in the third set of SQLVAR entries.

ALL
Assigns the label, column name, and system column name. In this case three or four
occurrences of SQLVAR per column, depending on whether the table contains distinct types,
are needed to accommodate the additional information. To specify this expansion of the
SQLVAR array, set SQLN to 3*n or 4*n (where n is the number of columns in the table).
The first n occurrences of SQLVAR contain the system column names. The second or third n
occurrences contain the column labels. The third or fourth n occurrences contain the column
names. If there are no distinct types, the labels are returned in the second set of SQLVAR
entries and the column names are returned in the third set of SQLVAR entries. Otherwise, the
labels are returned in the third set of SQLVAR entries and the column names are returned in
the fourth set of SQLVAR entries.

Notes
Allocating the SQL descriptor: Before the DESCRIBE TABLE statement is executed, the SQL descriptor
must be allocated using the ALLOCATE DESCRIPTOR statement. If the number of descriptor items
allocated is less than the number of columns in the table or view, a warning (SQLSTATE 01005) is
returned.

Allocating the SQLDA: Before the DESCRIBE TABLE statement is executed, the value of SQLN must be
set to a value greater than or equal to zero to indicate how many occurrences of SQLVAR are provided in
the SQLDA and enough storage must be allocated to contain SQLN occurrences. To obtain the description
of the columns of the table or view, the number of occurrences of SQLVAR must not be less than the
number of columns. Furthermore, if USING BOTH or USING ALL is specified, or if the columns include
LOBs or distinct types, the number of occurrences of SQLVAR should be two, three, or four times the
number of columns. See “Determining how many SQLVAR occurrences are needed” on page 1678 for
more information.

If not enough occurrences are provided to return all sets of occurrences, SQLN is set to the total number
of occurrences necessary to return all information. Otherwise, SQLN is set to the number of columns.

1284 IBM i: Db2 for i SQL Reference

For a description of techniques that can be used to allocate the SQLDA, see Appendix D, “SQLDA (SQL
descriptor area),” on page 1675.

Example
In a C program, execute a DESCRIBE statement with an SQLDA that has no occurrences of SQLVAR. If
SQLD is greater than zero, use the value to allocate an SQLDA with the necessary number of occurrences
of SQLVAR and then execute a DESCRIBE statement using that SQLDA.

 EXEC SQL BEGIN DECLARE SECTION;
 char table_name[201];
 EXEC SQL END DECLARE SECTION;
 EXEC SQL INCLUDE SQLDA;
 EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

 .../*code to prompt user for a table or view */
 .../*code to set SQLN to zero and to allocate the SQLDA */
 EXEC SQL DESCRIBE TABLE :table_name INTO :sqlda;

 … /* code to check that SQLD is greater than zero, to set */
 /* SQLN to SQLD, then to re-allocate the SQLDA */
 EXEC SQL DESCRIBE TABLE :table_name INTO :sqlda;

 .
 .
 .

Chapter 7. Statements 1285

DISCONNECT
The DISCONNECT statement ends one or more connections for unprotected conversations.

Invocation
This statement can only be embedded in an application program or issued interactively. It is an
executable statement that cannot be dynamically prepared. It must not be specified in Java or REXX.

DISCONNECT is not allowed in a trigger or function.

Authorization
If a global variable is referenced in a statement, the privileges held by the authorization ID of the
statement must include at least one of the following:

• For the global variable identified in the statement,

– The READ privilege on the global variable, and
– The system authority *EXECUTE on the library containing the global variable

• Database administrator authority

Syntax
DISCONNECT server-name

variable

CURRENT

ALL

SQL

Description
server-name or variable

Identifies the application server by the specified server name or the server name contained in the
variable. It can be a global variable if it is qualified with schema name. If a variable is specified:

• It must be a character-string variable.
• It must not be followed by an indicator variable.
• The server name must be left-justified within the variable and must conform to the rules for forming

an ordinary identifier.
• If the length of the server name is less than the length of the variable, it must be padded on the right

with blanks.

When the DISCONNECT statement is executed, the specified server name or server name contained
in the variable must identify an existing dormant or current connection of the activation group. The
identified connection cannot use a protected conversation.

CURRENT
Identifies the current connection of the activation group. The activation group must be in the
connected state. The current connection must not use a protected conversation.

ALL or ALL SQL
Identifies all existing connections of the activation group (local as well as remote connections). An
error or warning does not occur if no connections exist when the statement is executed. None of the
connections can use protected conversations.

1286 IBM i: Db2 for i SQL Reference

Notes
DISCONNECT and CONNECT (Type 1): Using CONNECT (Type 1) semantics does not prevent using
DISCONNECT.

Connection restrictions: An identified connection must not be a connection that was used to execute SQL
statements during the current unit of work and must not be a connection for a protected conversation.
To end connections on protected conversations, use the RELEASE statement. Local connections are never
considered to be protected conversations.

The DISCONNECT statement should be executed immediately after a commit operation. If DISCONNECT
is used to end the current connection, the next executed SQL statement must be CONNECT or SET
CONNECTION.

ROLLBACK does not reconnect a connection that has been ended by DISCONNECT.

Successful disconnect: If the DISCONNECT statement is successful, each identified connection is ended.
If the current connection is destroyed, the activation group is placed in the unconnected state.

DISCONNECT closes cursors, releases resources, and prevents further use of the connection.

DISCONNECT ALL ends the connection to the local application server. A connection is ended even though
it has an open cursor defined with the WITH HOLD clause.

Unsuccessful disconnect: If the DISCONNECT statement is unsuccessful, the connection state of the
activation group and the states of its connections are unchanged.

Resource considerations for remote connections: Resources are required to create and maintain remote
connections. Thus, a remote connection that is not going to be reused should be ended as soon as
possible and a remote connection that is going to be reused should not be destroyed.

Examples
Example 1: The connection to TOROLAB1 is no longer needed. The following statement is executed after a
commit operation.

 EXEC SQL DISCONNECT TOROLAB1;

Example 2: The current connection is no longer needed. The following statement is executed after a
commit operation.

 EXEC SQL DISCONNECT CURRENT;

Example 3: The existing connections are no longer needed. The following statement is executed after a
commit operation.

 EXEC SQL DISCONNECT ALL;

Chapter 7. Statements 1287

DROP
The DROP statement drops an object. Objects that are directly or indirectly dependent on that object may
also be dropped.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
To drop a table, view, index, alias, or package, the privileges held by the authorization ID of the statement
must include at least one of the following:

• The following system authorities:

– The system authorities of *OBJOPR and *OBJEXIST on the object to be dropped
– If the object is a table or view, the system authorities of *OBJOPR and *OBJEXIST on any views,

indexes, and logical files that are dependent on that table or view
– If the object is a system-period temporal table, the system authorities of *OBJOPR and *OBJEXIST

on the associated history table
– The system authority *EXECUTE on the library that contains the object to be dropped

• Database administrator authority

To drop a schema, the privileges held by the authorization ID of the statement must include at least one of
the following:

• The following system authorities:

– The system authorities of *OBJEXIST, *OBJOPR, *EXECUTE, and *READ on the library to be dropped.
– The system authorities of *OBJOPR and *OBJEXIST on all objects in the schema and *OBJOPR and

*OBJEXIST on any views, indexes and logical files that are dependent on tables and views in the
schema.

– Any additional authorities required to delete other object types that exist in the schema. For example,
*OBJMGT to the data dictionary if the schema contains a data dictionary, and some system data
authority to the journal receiver. For more information, see Security Reference.

• Database administrator authority

To drop a user-defined type, the privileges held by the authorization ID of the statement must include at
least one of the following:

• The following system authorities:

– The system authorities of *OBJOPR and *OBJEXIST on the type to be dropped
– The system authority *EXECUTE on the library that contains the type to be dropped
– The DELETE privilege on the SYSTYPES, SYSPARMS, and SYSROUTINES catalog tables, and
– The system authority *EXECUTE on library QSYS2

• Database administrator authority

To drop a global variable, the privileges held by the authorization ID of the statement must include at least
one of the following:

• The following system authorities:

– The system authority of *OBJEXIST on the *SRVPGM object for the global variable to be dropped
– The system authority *EXECUTE on the library that contains the global variable to be dropped
– The DELETE privilege on the SYSVARIABLES catalog table, and

1288 IBM i: Db2 for i SQL Reference

– The system authority *EXECUTE on library QSYS2
• Database administrator authority

To drop an XSR object, the privileges held by the authorization ID of the statement must include at least
one of the following:

• The following system authorities:

– The system authorities of *OBJOPR and *OBJEXIST on the *SQLXSR object for the XSR object to be
dropped

– The system authority *EXECUTE on the library that contains the XSR object to be dropped
– The DELETE privilege on the XSROBJECTS, XSROBJECTCOMPONENTS, and XSRANNOTATIONINFO

catalog tables, and
– The system authority *EXECUTE on library QSYS2

• Database administrator authority

To drop a function, the privileges held by the authorization ID of the statement must include at least one
of the following:

• The following system authorities:

– For SQL functions, the system authority *OBJEXIST on the service program object associated with the
function, and

– The DELETE privilege on the SYSFUNCS, SYSPARMS, and SYSROUTINEDEP catalog tables, and
– The system authority *EXECUTE on library QSYS2

• Database administrator authority

To drop a procedure, the privileges held by the authorization ID of the statement must include at least one
of the following:

• The following system authorities:

– For SQL procedures, the system authority *OBJEXIST on the program object associated with the
procedure, and

– The DELETE privilege on the SYSPROCS, SYSPARMS, and SYSROUTINEDEP catalog tables, and
– The system authority *EXECUTE on library QSYS2

• Database administrator authority

To drop a sequence, the privileges held by the authorization ID of the statement must include at least one
of the following:

• The following system authorities:

– The system authority *OBJEXIST on the data area associated with the sequence, and
– The system authority *EXECUTE on the library that contains the sequence to be dropped
– The DELETE privilege on the SYSSEQOBJECTS catalog table, and
– The system authority *EXECUTE on library QSYS2, and
– *USE to the Delete Data Area (DLTDTAARA) command

• Database administrator authority

To drop a trigger, the privileges held by the authorization ID of the statement must include at least one of
the following:

• The following privileges:

– The system authority *USE to the Remove Physical File Trigger (RMVPFTRG) command, and
– For the subject table or view of the trigger:

- The ALTER privilege to the subject table or view, and
- The system authority *EXECUTE on the library containing the subject table or view,

Chapter 7. Statements 1289

– If the trigger being dropped is an SQL trigger:

- The system authority *OBJEXIST on the trigger program object, and
- The system authority *EXECUTE on the library containing the trigger.

• Database administrator authority

To drop a mask or permission:

• The authorization ID of the statement must have security administrator authority. See “Administrative
authority” on page 15.

To drop an object used by a mask or permission:

• The authorization ID of the statement must have security administrator authority. See “Administrative
authority” on page 15.

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Table or View.

1290 IBM i: Db2 for i SQL Reference

Syntax
DROP

ALIAS

IF EXISTS

alias-name

FUNCTION

ROUTINE IF EXISTS

function-name

(
,

parameter-type

)

SPECIFIC FUNCTION

ROUTINE IF EXISTS

specific-name

RESTRICT

INDEX

IF EXISTS

index-name

MASK

IF EXISTS

mask-name

PACKAGE

IF EXISTS

package-name

VERSION
version-id

PERMISSION

IF EXISTS

permission-name

PROCEDURE

ROUTINE IF EXISTS

procedure-name

(
,

parameter-type

)

SPECIFIC PROCEDURE

ROUTINE IF EXISTS

specific-name

RESTRICT

SCHEMA

IF EXISTS

schema-name

RESTRICT

CASCADE

SEQUENCE

IF EXISTS

sequence-name
RESTRICT

TABLE

IF EXISTS

table-name

RESTRICT

CASCADE

TRIGGER

IF EXISTS

trigger-name

TYPE

IF EXISTS

distinct-type-name

array-type-name RESTRICT

CASCADE

VARIABLE

IF EXISTS

variable-name

RESTRICT

CASCADE

VIEW

IF EXISTS

view-name

RESTRICT

CASCADE

XSROBJECT

IF EXISTS

xsrobject-name

parameter-type
data-type

AS LOCATOR

data-type

Chapter 7. Statements 1291

built-in-type

distinct-type-name

array-type-name

built-in-type

1292 IBM i: Db2 for i SQL Reference

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

)

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

XML

ccsid-clause

DATALINK

(200)

(integer) ccsid-clause

ROWID

XML

ccsid-clause
CCSID integer

Chapter 7. Statements 1293

Description
IF EXISTS

Specifies that no error is issued if the specified object does not exist. Unless other conditions or
dependencies prevent the drop operation, a successful SQLSTATE is returned even if no object is
dropped.

ALIAS alias-name
Identifies the alias that is to be dropped. The alias-name must identify an alias that exists at the
current server.

The specified alias is deleted from the schema. Dropping an alias has no effect on any constraint,
view, or materialized query that was defined using the alias. An alias can be dropped whether it is
referenced in a function, package, procedure, program, trigger, or variable.

FUNCTION or SPECIFIC FUNCTION
Identifies the function that is to be dropped. The function must exist at the current server and it must
be a function that was defined with the CREATE FUNCTION statement. The particular function can be
identified by its name, function signature, or specific name.

Functions implicitly generated by the CREATE TYPE statement cannot be dropped using the DROP
statement. They are implicitly dropped when the distinct type is dropped.

The function cannot be dropped if another function is dependent on it. A function is dependent on
another function if it was identified in the SOURCE clause of the CREATE FUNCTION statement. A
function can be dropped whether it is referenced in a function, package, procedure, program, trigger,
variable, or view unless RESTRICT is specified. A function cannot be dropped if it is referenced in a
mask or permission even if RESTRICT is not specified.

The specified function is dropped from the schema. All privileges on the user-defined function
are also dropped. If this is an SQL function or sourced function, the service program (*SRVPGM)
associated with the function is also dropped. If this is an external function, the information that was
saved in the program or service program specified on the CREATE FUNCTION statement is removed
from the object.

FUNCTION function-name
Identifies the function by its name. The function-name must identify exactly one function. The
function may have any number of parameters defined for it. If there is more than one function of
the specified name in the specified or implicit schema, an error is returned.

FUNCTION function-name (parameter-type, ...)
Identifies the function by its function signature, which uniquely identifies the function. The
function-name (parameter-type, ...) must identify a function with the specified function signature.
The specified parameters must match the data types in the corresponding position that were
specified when the function was created. The number of data types, and the logical concatenation
of the data types is used to identify the specific function instance which is to be dropped.
Synonyms for data types are considered a match. Parameters that have defaults must be included
in this signature.

If function-name () is specified, the function identified must have zero parameters.

function-name
Identifies the name of the function.

(parameter-type, ...)
Identifies the parameters of the function.

If an unqualified distinct type name is specified, the database manager searches the SQL path
to resolve the schema name for the distinct type.

For data types that have a length, precision, or scale attribute, use one of the following:

• Empty parentheses indicate that the database manager ignores the attribute when
determining whether the data types match. For example, DEC() will be considered a match
for a parameter of a function defined with a data type of DEC(7,2). However, FLOAT cannot

1294 IBM i: Db2 for i SQL Reference

be specified with empty parenthesis because its parameter value indicates a specific data
type (REAL or DOUBLE).

• If a specific value for a length, precision, or scale attribute is specified, the value must
exactly match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION
statement. If the data type is FLOAT, the precision does not have to exactly match the value
that was specified because matching is based on the data type (REAL or DOUBLE).

• If length, precision, or scale is not explicitly specified, and empty parentheses are not
specified, the default attributes of the data type are implied. The implicit length must
exactly match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION
statement.

Specifying the FOR DATA clause or CCSID clause is optional. Omission of either clause
indicates that the database manager ignores the attribute when determining whether the
data types match. If either clause is specified, it must match the value that was implicitly or
explicitly specified in the CREATE FUNCTION statement.

AS LOCATOR
Specifies that the function is defined to receive a locator for this parameter. If AS LOCATOR is
specified, the data type must be a LOB or XML or a distinct type based on a LOB or XML.

SPECIFIC FUNCTION specific-name
Identifies the function by its specific name. The specific-name must identify a specific function
that exists at the current server.

RESTRICT
Specifies that the function cannot be dropped if it is referenced in an SQL function, SQL procedure,
table, mask, permission, SQL trigger, variable, or view.

RESTRICT not specified
If the function is referenced in a mask or permission, the drop will fail unless the authorization ID
of the statement has security administrator authority.

INDEX index-name
Identifies the index that is to be dropped. The index-name must identify an index that exists at the
current server.

The specified index is dropped from the schema. An index can be dropped whether it is referenced in
a function, package, procedure, program, or trigger.

MASK mask-name
Identifies the mask that is to be dropped. The mask-name must identify a mask that exists at the
current server.

The specified mask is dropped from the schema. A mask can be dropped whether it is referenced in a
function, package, procedure, program, or trigger.

PACKAGE package-name
Identifies the package that is to be dropped. The package-name must identify a package that exists at
the current server.

The specified package is dropped from the schema. All privileges on the package are also dropped.

A package can be dropped whether it is referenced in a function, package, procedure, program, or
trigger.

VERSION version-id
version-id is the version identifier that was assigned to the package when it was created. If
version-id is not specified, a null string is used as the version identifier.

PERMISSION permission-name
Identifies the permission that is to be dropped. The permission-name must identify a permission that
exists at the current server.

The specified permission is dropped from the schema. A permission can be dropped whether it is
referenced in a function, package, procedure, program, or trigger.

Chapter 7. Statements 1295

PROCEDURE or SPECIFIC PROCEDURE
Identifies the procedure that is to be dropped. The procedure-name must identify a procedure that
exists at the current server.

The specified procedure is dropped from the schema. All privileges on the procedure are also
dropped. If this is an SQL procedure, the program (*PGM) or service program (*SRVPGM) associated
with the procedure is also dropped. If this is an external procedure, the information that was saved in
the program specified on the CREATE PROCEDURE statement is removed from the object.

A procedure can be dropped whether it is referenced in a function, package, procedure, program, or
trigger.

PROCEDURE procedure-name
Identifies the procedure by its name. The procedure-name must identify exactly one procedure.
The procedure may have any number of parameters defined for it. If there is more than one
procedure of the specified name in the specified or implicit schema, an error is returned.

PROCEDURE procedure-name (parameter-type, ...)
Identifies the procedure by its procedure signature, which uniquely identifies the procedure.
The procedure-name (parameter-type, ...) must identify a procedure with the specified procedure
signature. The specified parameters must match the data types in the corresponding position
that were specified when the procedure was created. The number of data types, and the logical
concatenation of the data types is used to identify the specific procedure instance which is to be
dropped. Synonyms for data types are considered a match. Parameters that have defaults must be
included in this signature.

If procedure-name () is specified, the procedure identified must have zero parameters.

procedure-name
Identifies the name of the procedure.

(parameter-type, ...)
Identifies the parameters of the procedure.

If an unqualified distinct type or array type name is specified, the database manager searches
the SQL path to resolve the schema name for the distinct type or array type.

For data types that have a length, precision, or scale attribute, use one of the following:

• Empty parentheses indicate that the database manager ignores the attribute when
determining whether the data types match. For example, DEC() will be considered a match
for a parameter of a procedure defined with a data type of DEC(7,2). However, FLOAT cannot
be specified with empty parenthesis because its parameter value indicates a specific data
type (REAL or DOUBLE).

• If a specific value for a length, precision, or scale attribute is specified, the value
must exactly match the value that was specified (implicitly or explicitly) in the CREATE
PROCEDURE statement. If the data type is FLOAT, the precision does not have to exactly
match the value that was specified because matching is based on the data type (REAL or
DOUBLE).

• If length, precision, or scale is not explicitly specified, and empty parentheses are not
specified, the default attributes of the data type are implied. The implicit length must exactly
match the value that was specified (implicitly or explicitly) in the CREATE PROCEDURE
statement.

Specifying the FOR DATA clause or CCSID clause is optional. Omission of either clause
indicates that the database manager ignores the attribute when determining whether the
data types match. If either clause is specified, it must match the value that was implicitly or
explicitly specified in the CREATE PROCEDURE statement.

AS LOCATOR
Specifies that the procedure is defined to receive a locator for this parameter. If AS LOCATOR
is specified, the data type must be a LOB or XML or a distinct type based on a LOB or XML.

1296 IBM i: Db2 for i SQL Reference

SPECIFIC PROCEDURE specific-name
Identifies the procedure by its specific name. The specific-name must identify a specific procedure
that exists at the current server.

RESTRICT
Specifies that the procedure cannot be dropped if it is referenced in an SQL function, SQL
procedure, or SQL trigger.

SCHEMA schema-name
Identifies the schema that is to be dropped. The schema-name must identify a schema that exists at
the current server.

The specified schema is dropped. Each object in the schema is dropped as if the appropriate DROP
statement was executed with the specified drop option (CASCADE, RESTRICT, or neither). See the
DROP description of these object types for information about the handling of objects dependent on
these objects.

DROP SCHEMA is only valid when the commit level is *NONE.

Neither CASCADE nor RESTRICT
Specifies that the schema will be dropped even if it is referenced in a function, package,
procedure, program, table, mask, permission, trigger, or variable in another schema.

CASCADE
Specifies that any objects in the schema and any triggers that reference the schema will be
dropped. Any masks and permissions in a different schema that reference the schema are
dropped if the authorization ID of the statement has security administrator authority.

RESTRICT
Specifies that the schema cannot be dropped if it is referenced in an SQL trigger, mask, or
permission in another schema or if the schema contains any SQL objects other than catalog views,
the journal, and journal receiver.

SEQUENCE sequence-name
Identifies the sequence that is to be dropped. The sequence-name must identify a sequence that
exists at the current server.
RESTRICT

Specifies that the sequence cannot be dropped if it is referenced in an SQL trigger, function,
procedure, or variable.

TABLE table-name
Identifies the table that is to be dropped. The table-name must identify a base table that exists at the
current server, but must not identify a catalog table or a history table for a system-period temporal
table.

The specified table is dropped from the schema. All privileges, constraints, indexes, masks,
permissions, and triggers on the table are also dropped.

Any aliases that reference the specified table are not dropped.

Neither CASCADE nor RESTRICT
Specifies that the table will be dropped even if it is referenced in a constraint, index, trigger,
mask, permission, view, or materialized query table. All indexes, views, and materialized query
tables that reference the table are dropped even if the authorization ID of the statement does
not explicitly have privileges to those objects. If the table is a system-period temporal table, the
history table is also dropped. If the table is referenced in a mask or permission, the drop will fail
unless the authorization ID of the statement has security administrator authority.

CASCADE
Specifies that the table will be dropped even if it is referenced in a constraint, index, trigger,
variable, mask, permission, view, XSR object, or materialized query table. All constraints, indexes,
triggers, variables, views, XSR objects and materialized query tables that reference the table are
dropped even if the authorization ID of the statement does not explicitly have privileges to those
objects. If the table is a system-period temporal table, the history table is also dropped. All masks

Chapter 7. Statements 1297

and permissions that reference the table are dropped if the authorization ID of the statement has
security administrator authority.

RESTRICT
Specifies that the table cannot be dropped if it is referenced in a constraint, index, mask,
permission, trigger, variable, view, XSR object, or materialized query table, or if it is a system-
period temporal table.

TRIGGER trigger-name
Identifies the trigger that is to be dropped. The trigger-name must identify a trigger that exists at the
current server.

The specified trigger is dropped from the schema. If the trigger is an SQL trigger, the program object
associated with the trigger is also deleted from the schema.

If trigger-name specifies an INSTEAD OF trigger on a view, another trigger may depend on that trigger
through an update against the view.

TYPE distinct-type-name or array-type-name
Identifies the type that is to be dropped. The distinct-type-name or array-type-name must identify
a distinct type or array type that exists at the current server. The specified type is deleted from the
schema.
Neither CASCADE nor RESTRICT

Specifies that the type cannot be dropped if any constraints, indexes, masks, permissions,
sequences, tables, variables, and views reference the type.

For every procedure or function R that has parameters or a return value of the type being dropped,
the following DROP statement is effectively executed:

 DROP ROUTINE R

For every trigger T that references the type being dropped, the following DROP statement is
effectively executed:

 DROP TRIGGER T

It is possible that this statement would cascade to drop dependent functions or procedures. If all
of these functions or procedures are in the list to be dropped because of a dependency on the
type, the drop of the type will succeed.

CASCADE
Specifies that the type will be dropped even if it is referenced in a constraint, function,
index, procedure, sequence, table, trigger, variable, or view. All constraints, functions, indexes,
procedures, sequences, tables, triggers, variables, and views that reference the type are dropped.
The cascade processing is limited to cases where the type is used to define the routine parameter
type, sequence type, variable type and column type. All masks and permissions that reference the
type are dropped if the authorization ID of the statement has security administrator authority.

RESTRICT
Specifies that the type cannot be dropped if it is referenced in a constraint, function (other than a
function that was created when the type was created), index, procedure, sequence, table, mask,
permission, trigger, variable, or view. The restrict checking is limited to cases where the type is
used to define the routine parameter type, sequence type, variable type and column type.

VARIABLE variable-name
Identifies the variable that is to be dropped. The variable-name must identify a variable that exists at
the current server. The specified variable is dropped from the schema.
Neither CASCADE nor RESTRICT

Specifies that the variable will be dropped even if it is referenced in a trigger, procedure, function,
mask, permission, view, or another variable. All tables and views that reference the variable are
dropped. If the variable is referenced in a mask or permissions, the drop will fail unless the
authorization ID of the statement has security administrator authority.

1298 IBM i: Db2 for i SQL Reference

CASCADE
Specifies that the variable will be dropped even if it is referenced in a table, trigger, procedure,
function, view, or another variable. All tables, triggers, procedures, functions, views, and variables
that reference the variable are dropped. All masks and permissions that reference the variable are
dropped if the authorization ID of the statement has security administrator authority.

RESTRICT
Specifies that the variable cannot be dropped if it is referenced in a table, trigger, procedure,
function, mask, permission, view, or another variable.

VIEW view-name
Identifies the view that is to be dropped. The view-name must identify a view that exists at the current
server, but must not identify a catalog view.

The specified view is dropped from the schema. When a view is dropped, all privileges and triggers on
that view are dropped.

Neither CASCADE nor RESTRICT
Specifies that the view will be dropped even if it is referenced in a trigger, materialized query
table, mask, permission, or another view. All views and materialized query tables that reference
the view are dropped. If the view is referenced in a mask or permissions, the drop will fail unless
the authorization ID of the statement has security administrator authority.

CASCADE
Specifies that the view will be dropped even if it is referenced in a trigger, variable, materialized
query table, or another view. All triggers, variables, materialized query tables, and views that
reference the view are dropped. All masks and permissions that reference the view are dropped if
the authorization ID of the statement has security administrator authority.

RESTRICT
Specifies that the view cannot be dropped if it is referenced in a trigger, variable, mask,
permission, materialized query table, or another view.

XSROBJECT xsrobject-name
Identifies the XSR object that is to be dropped. The xsrobject-name must identify an XSR object that
exists at the current server. The specified XSR object is dropped.

Notes
Drop effects: Whenever an object is dropped, its description is dropped from the catalog. If the object
is referenced in a function, package, procedure, program, trigger, or variable; any access plans that
reference the object are implicitly prepared again when the access plan is next used. If the object does
not exist at that time, an error is returned.

Chapter 7. Statements 1299

Dependencies: Whenever an object is directly or indirectly dropped, other objects that depend on the
dropped object might also be dropped. The following semantics determine what happens to a dependent
object when the object that it depends on (the underlying object) is dropped:

Three different types of dependencies are shown:
D

Dependent object is dropped.
A

Automatic revalidation is required. The database manager will attempt to revalidate the object when it
is referenced.

R
DROP statement fails.

Table 95. Effect of dropping objects that have dependencies

 Drop Statement

AL
IA

S

CO
N

ST
RA

IN
T

FU
N

CT
IO

N

IN
DE

X

M
AS

K

PE
RM

IS
SI

O
N

PR
O

CE
DU

RE

SC
H

EM
A

SE
Q

UE
N

CE

TA
BL

E

TR
IG

G
ER

TY
PE

VA
RI

AB
LE

VI
EW

DROP ALIAS

DROP FUNCTION R1 A A A A A A A

DROP FUNCTION RESTRICT R R R R R R R R

DROP INDEX

DROP MASK

DROP PACKAGE

DROP PERMISSION

DROP PROCEDURE A A A

DROP PROCEDURE RESTRICT R R R

DROP SCHEMA2 A A A A A A A A

DROP SCHEMA CASCADE3 A D D A A D A A

DROP SCHEMA RESTRICT4 A R R A A R A A

DROP SEQUENCE A A A A

DROP SEQUENCE RESTRICT R R R R

DROP TABLE D A D A A A D A A D

DROP TABLE CASCADE D A D D D A D D D D

DROP TABLE RESTRICT R A R R R A R R R R

DROP TRIGGER

DROP TYPE R D5 R R R D R R D R R

DROP TYPE CASCADE D D D D D D D D D D D

DROP TYPE RESTRICT R R R R R R R R R R R

DROP VARIABLE A A A A D A A D

DROP VARIABLE CASCADE D D D D D D D D

DROP VARIABLE RESTRICT R R R R R R R R

DROP VIEW A A A D A A D

DROP VIEW CASCADE A D D A D D D D

DROP VIEW RESTRICT A R R A R R R R

DROP XSROBJ A A A A A A A

1300 IBM i: Db2 for i SQL Reference

Table 95. Effect of dropping objects that have dependencies (continued)

 Drop Statement

AL
IA

S

CO
N

ST
RA

IN
T

FU
N

CT
IO

N

IN
DE

X

M
AS

K

PE
RM

IS
SI

O
N

PR
O

CE
DU

RE

SC
H

EM
A

SE
Q

UE
N

CE

TA
BL

E

TR
IG

G
ER

TY
PE

VA
RI

AB
LE

VI
EW

Notes:

1. If other user-defined functions are sourced on the function being dropped, the function cannot be dropped.

2. DROP SCHEMA will drop all objects in the schema. Any objects in other schemas that reference the schema will not be changed
and will require automatic revalidation.

3. DROP SCHEMA CASCADE will drop all objects in the schema. Triggers in other schemas that reference the schema will be
dropped. Other objects in other schemas that reference the schema will not be changed and will require automatic revalidation.

4. DROP SCHEMA RESTRICT will fail if any object other than SQL catalog views, journals, and journal receivers exist in the
schema. Objects other than triggers in other schemas that reference the schema will not be changed and will require automatic
revalidation.

5. Any function or procedure that has a parameter or returns value defined as the type will be dropped.

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• The keyword SYNONYM can be used as a synonym for ALIAS.
• The keywords DATA TYPE or DISTINCT TYPE can be used as a synonym for TYPE.
• The keyword PROGRAM can be used as a synonym for PACKAGE.
• The keyword COLLECTION can be used as a synonym for SCHEMA.

For compatibility with other database products, the IF EXISTS clause can be specified following table-
name for DROP TABLE.

Examples
Example 1: Drop your table named MY_IN_TRAY. Do not allow the drop if any views or indexes are created
over this table.

 DROP TABLE MY_IN_TRAY RESTRICT

Example 2: Drop your view named MA_PROJ.

 DROP VIEW MA_PROJ

Example 3: Drop the package named PERS.PACKA.

 DROP PACKAGE PERS.PACKA

Example 4: Drop the distinct type DOCUMENT, if it is not currently in use:

 DROP DISTINCT TYPE DOCUMENT RESTRICT

Example 5: Assume that you are SMITH and that ATOMIC_WEIGHT is the only function with that name in
schema CHEM. Drop ATOMIC_WEIGHT.

 DROP FUNCTION CHEM.ATOMIC_WEIGHT RESTRICT

Example 6: Drop the function named CENTER, using the function signature to identify the function
instance to be dropped.

 DROP FUNCTION CENTER (INTEGER, FLOAT) RESTRICT

Example 7: Drop CENTER, using the specific name to identify the function instance to be dropped.

 DROP SPECIFIC FUNCTION JOHNSON.FOCUS97

Chapter 7. Statements 1301

Example 8: Assume that procedure OSMOSIS is in schema BIOLOGY. Drop OSMOSIS.

 DROP PROCEDURE BIOLOGY.OSMOSIS

Example 9: Assume that trigger BONUS exists in the default schema. Drop BONUS.

 DROP TRIGGER BONUS

1302 IBM i: Db2 for i SQL Reference

END DECLARE SECTION
The END DECLARE SECTION statement marks the end of an SQL declare section.

Invocation
This statement can only be embedded in an application program. It is not an executable statement. It
must not be specified in RPG, Java, or REXX.

Authorization
None required.

Syntax
END DECLARE SECTION

Description
The END DECLARE SECTION statement can be coded in the application program wherever declarations
can appear in accordance with the rules of the host language. It is used to indicate the end of an SQL
declare section. An SQL declare section starts with a BEGIN DECLARE SECTION statement. For more
information about the BEGIN DECLARE SECTION statement, see“BEGIN DECLARE SECTION” on page
928.

The BEGIN DECLARE SECTION and the END DECLARE SECTION statements must be paired and cannot
be nested.

Examples
See “BEGIN DECLARE SECTION” on page 928 for examples using the END DECLARE SECTION statement.

Chapter 7. Statements 1303

EXECUTE
The EXECUTE statement executes a prepared SQL statement.

Invocation
This statement can only be embedded in an application program, SQL function, SQL procedure, or trigger.
It is an executable statement that cannot be dynamically prepared. It must not be specified in Java.

Authorization
If a global variable is referenced in a statement, the privileges held by the authorization ID of the
statement must include at least one of the following:

• For the global variable identified in the statement,

– The READ privilege on the global variable, and
– The system authority *EXECUTE on the library containing the global variable

• Database administrator authority

The authorization rules are those defined for the SQL statement specified by EXECUTE. For example, see
the description of INSERT for the authorization rules that apply when an INSERT statement is executed
using EXECUTE.

The authorization ID of the statement is the run-time authorization ID unless DYNUSRPRF(*OWNER)
was specified on the CRTSQLxxx command when the program was created. For more information, see
“Authorization IDs and authorization names” on page 61.

Syntax
EXECUTE statement-name

USING
ALL

SUBSET

,

variable

SQL-descriptors

USING DESCRIPTOR descriptor-name

SQL-descriptors

INTO

SQL

DESCRIPTOR
LOCAL

GLOBAL

SQL-descriptor-name

USING

SQL
1

DESCRIPTOR
LOCAL

GLOBAL

SQL-descriptor-name

Notes:
1 If an SQL descriptor is specified in the USING clause and the INTO clause is not specified, USING
DESCRIPTOR is not allowed and USING SQL DESCRIPTOR must be specified.

1304 IBM i: Db2 for i SQL Reference

Description
statement-name

Identifies the prepared statement to be executed. When the EXECUTE statement is executed, the
name must identify a prepared statement at the current server. The prepared statement cannot be a
SELECT statement.

USING
Introduces a list of variables whose values are substituted for the parameter markers (question
marks) in the prepared statement. For an explanation of parameter markers, see “PREPARE” on page
1435. If the prepared statement includes parameter markers, the USING clause must be used. USING
is ignored if there are no parameter markers.
USING ALL or USING SUBSET

Identifies host structures or variables.
USING ALL

All the variables in the list are used for substitution of parameter markers in the prepared
statement.

USING SUBSET
Some or all of the variables in the list are used for substitution of parameter markers in the
prepared statement.

• Any host variable with an extended indicator value of UNASSIGNED will be removed from
the list. The result is as if the host variable was not specified in the statement.

• All other indicator values have no special meaning to the EXECUTE statement.

When using this clause, a variable with an indicator value of UNASSIGNED cannot be used for
substitution of parameter markers in the prepared statement.

variable,...
Identifies one or more host structures or variables that must be declared in the program in
accordance with the rules for declaring host structures and variables. A reference to a host
structure is replaced by a reference to each of its variables. The number of variables must be
the same as the number of parameter markers in the prepared statement. The nth variable
corresponds to the nth parameter marker in the prepared statement.

A global variable may only be used if the current connection is a local connection (not a DRDA
connection).

SQL-descriptors
INTO

Identifies an SQL descriptor which contains valid descriptions of the output variables to be
used with the EXECUTE statement. This clause is only valid for a CALL or VALUES INTO
statement. Before the EXECUTE statement is executed, a descriptor must be allocated using
the ALLOCATE DESCRIPTOR statement.
LOCAL

Specifies the scope of the name of the descriptor to be local to program invocation.
GLOBAL

Specifies the scope of the name of the descriptor to be global to the SQL session.
SQL-descriptor-name

Names the SQL descriptor. The name must identify a descriptor that already exists with
the specified scope.

See “GET DESCRIPTOR” on page 1319 for an explanation of the information that is placed
in the SQL descriptor.

USING
Identifies an SQL descriptor which contains valid descriptions of the input variables to be used
with the EXECUTE statement. Before the EXECUTE statement is executed, a descriptor must
be allocated using the ALLOCATE DESCRIPTOR statement.

Chapter 7. Statements 1305

LOCAL
Specifies the scope of the name of the descriptor to be local to program invocation. The
information is returned from the descriptor known in this local scope.

GLOBAL
Specifies the scope of the name of the descriptor to be global to the SQL session. The
information is returned from the descriptor known to any program that executes using the
same database connection.

SQL-descriptor-name
Names the SQL descriptor. The name must identify a descriptor that already exists with
the specified scope.

See “SET DESCRIPTOR” on page 1505 for an explanation of the information in the SQL
descriptor.

DESCRIPTOR descriptor-name
Identifies an SQLDA that must contain a valid description of variables.

Before the EXECUTE statement is processed, the user must set the following fields in the SQLDA.
(The rules for REXX are different. For more information, see the Embedded SQL Programming
topic collection.)

• SQLN to indicate the number of SQLVAR occurrences provided in the SQLDA.
• SQLDABC to indicate the number of bytes of storage allocated for the SQLDA.
• SQLD to indicate the number of variables used in the SQLDA when processing the statement.
• SQLVAR occurrences to indicate the attributes of the variables.

The SQLDA must have enough storage to contain all SQLVAR occurrences. If LOBs or distinct types
are present in the results, there must be additional SQLVAR entries for each parameter. For more
information about the SQLDA, which includes a description of the SQLVAR and an explanation
on how to determine the number of SQLVAR occurrences, see “Determining how many SQLVAR
occurrences are needed” on page 1678.

SQLD must be set to a value greater than or equal to zero and less than or equal to SQLN. It must
be the same as the number of parameter markers in the prepared statement. The nth variable
described by the SQLDA corresponds to the nth parameter marker in the prepared statement.

Note that RPG/400 does not provide the function for setting pointers. Because the SQLDA uses
pointers to locate the appropriate variables, you have to set these pointers outside your RPG/400
application.

Notes
Parameter marker replacement: Before the prepared statement is executed, each parameter marker
in the statement is effectively replaced by its corresponding variable. The replacement of a parameter
marker is an assignment operation in which the source is the value of the variable, and the target is a
variable within the database manager. For a typed parameter marker, the attributes of the target variable
are those specified by the CAST specification. For an untyped parameter marker, the attributes of the
target variable are determined according to the context of the parameter marker. For the rules that affect
parameter markers, see Table 121 on page 1442.

Let V denote a variable that corresponds to parameter marker P. The value of V is assigned to the target
variable for P using storage assignment rules as described in “Assignments and comparisons” on page 89.
Thus:

• V must be compatible with the target.
• If V is a number, the absolute value of its integral part must not be greater than the maximum absolute

value of the integral part of the target.
• If the attributes of V are not identical to the attributes of the target, the value is converted to conform to

the attributes of the target.

1306 IBM i: Db2 for i SQL Reference

• If the target cannot contain nulls, the value of V must not be null.

However, unlike the storage assignment rules:

• If V is a string, the value will be truncated (without an error), if its length is greater than the length
attribute of the target.

When the prepared statement is executed, the value used in place of P is the value of the target variable
for P. For example, if V is CHAR(6) and the target is CHAR(8), the value used in place of P is the value of V
padded with two blanks.

Examples
Example 1: This example of portions of a COBOL program shows how an INSERT statement with
parameter markers is prepared and executed.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 77 EMP PIC X(6).
 77 PRJ PIC X(6).
 77 ACT PIC S9(4) COMP-4.
 77 TIM PIC S9(3)V9(2).
 01 HOLDER.
 49 HOLDER-LENGTH PIC S9(4) COMP-4.
 49 HOLDER-VALUE PIC X(80).
 EXEC SQL END DECLARE SECTION END-EXEC.
 .
 .
 .
 MOVE 70 TO HOLDER-LENGTH.
 MOVE "INSERT INTO EMPPROJACT (EMPNO, PROJNO, ACTNO, EMPTIME)
 - "VALUES (?, ?, ?, ?)" TO HOLDER-VALUE.
 EXEC SQL PREPARE MYINSERT FROM :HOLDER END-EXEC.

 IF SQLCODE = 0
 PERFORM DO-INSERT THRU END-DO-INSERT
 ELSE
 PERFORM ERROR-CONDITION.

 DO-INSERT.
 MOVE "000010" TO EMP.
 MOVE "AD3100" TO PRJ.
 MOVE 160 TO ACT.
 MOVE .50 TO TIM.
 EXEC SQL EXECUTE MYINSERT USING :EMP, :PRJ, :ACT, :TIM END-EXEC.
 END-DO-INSERT.
 .
 .
 .

Example 2: Code an update statement from optional pieces of text, then execute it using the host
variables that apply to the generated statement.

Suppose there are two host variables with corresponding indicators:

PRED1HV and PRED1IND, a VARCHAR(50) variable
PRED2HV and PRED2IND, a DECIMAL(10,2) variable

Build the statement based on selection conditions set by the application. This is pseudocode.

stmt = 'UPDATE MYTABLE SET STATUS = ''COMPLETE'' WHERE DATECOL = CURRENT DATE ';

IF BUILD_PRED1 THEN
 stmt = stmt CONCAT ' AND COL1 = ?';
 PRED1HV = <specified value>;
 PRED1IND = 0;
ELSE
 PRED1IND = -7;

IF BUILD_PRED2 THEN
 stmt = stmt CONCAT ' AND COL2 = ?';
 PRED2HV = <specified value>;
 PRED2IND = 0;
ELSE

Chapter 7. Statements 1307

 PRED2IND = -7;
EXEC SQL PREPARE S1 FROM stmt;

The following EXECUTE statement can be used for any combination of generated predicates and will omit
any host variables that have an indicator value of -7.

EXEC SQL EXECUTE S1 USING SUBSET :PRED1:PRED1IND, PRED2:PRED2IND;

If PREDIND1 has a value of -7, the EXECUTE statement is logically equivalent to:

EXEC SQL EXECUTE S1 USING PRED2:PRED2IND;

1308 IBM i: Db2 for i SQL Reference

EXECUTE IMMEDIATE
EXECUTE IMMEDIATE combines the basic functions of the PREPARE and EXECUTE statements. It can be
used to prepare and execute SQL statements that contain neither variables nor parameter markers.

The EXECUTE IMMEDIATE statement:

• Prepares an executable form of an SQL statement from a character string form of the statement
• Executes the SQL statement

Invocation
This statement can only be embedded in an application program, SQL function, SQL procedure, or trigger.
It is an executable statement that cannot be dynamically prepared. It must not be specified in Java.

Authorization
If a global variable is referenced in a statement, the privileges held by the authorization ID of the
statement must include at least one of the following:

• For the global variable identified in the statement,

– The READ privilege on the global variable, and
– The system authority *EXECUTE on the library containing the global variable

• Database administrator authority

The authorization rules are those defined for the SQL statement specified by EXECUTE IMMEDIATE. For
example, see “INSERT” on page 1395 for the authorization rules that apply when an INSERT statement is
executed using EXECUTE IMMEDIATE.

The authorization ID of the statement is the run-time authorization ID unless DYNUSRPRF(*OWNER)
was specified on the CRTSQLxxx command when the program was created. For more information, see
“Authorization IDs and authorization names” on page 61.

Syntax
EXECUTE IMMEDIATE variable

expression

Description
variable

Identifies a variable that must be declared in accordance with the rules for declaring character-string
or Unicode graphic variables. An indicator variable must not be specified.

expression
An expression of the type described in “Expressions” on page 158, that does not include an aggregate
function or column name. It must return a value that is a character string or a Unicode graphic string.
If a variable is specified in the expression it must not have a CCSID of 65535.105

The value of the identified variable or expression is called a statement string.

The statement string must be one of the following SQL statements:107

105 In a PL/I program, a PL/I string expression can also be specified.
106 The target of the SET variable statement must be a global variable.
107 A select-statement is not allowed. To dynamically process a select-statement, use the PREPARE, DECLARE

CURSOR, and OPEN statements.

Chapter 7. Statements 1309

ALTER LOCK TABLE SET CURRENT IMPLICIT XMLPARSE
OPTION

CALL MERGE SET CURRENT TEMPORAL SYSTEM_TIME

COMMENT REFRESH TABLE SET ENCRYPTION PASSWORD

COMMIT RELEASE SAVEPOINT SET PATH

Compound (dynamic) RENAME SET SCHEMA

CREATE REVOKE SET SESSION AUTHORIZATION

DECLARE GLOBAL TEMPORARY TABLE ROLLBACK SET TRANSACTION

DELETE SAVEPOINT SET variable106

DROP SET CURRENT DEBUG MODE TRANSFER OWNERSHIP

GRANT SET CURRENT DECFLOAT ROUNDING
MODE

TRUNCATE

INSERT SET CURRENT DEGREE UPDATE

LABEL

The statement string must not:

• Begin with EXEC SQL.
• End with END-EXEC or a semicolon.
• Include references to variables. Global variables are allowed.
• Include parameter markers.

When an EXECUTE IMMEDIATE statement is executed, the specified statement string is parsed and
checked for errors. If the SQL statement is not valid, it is not executed and the error condition that
prevents its execution is reported in the stand-alone SQLSTATE and SQLCODE. If the SQL statement
is valid, but an error occurs during its execution, that error condition is reported in the stand-alone
SQLSTATE and SQLCODE. Additional information about the error can be retrieved from the SQL
Diagnostics Area (or the SQLCA).

Note
Performance considerations: If the same SQL statement is to be executed more than once, it is more
efficient to use the PREPARE and EXECUTE statements rather than the EXECUTE IMMEDIATE statement.

Example
Use C to execute the SQL statement in the variable Qstring.

void main ()
 {

 EXEC SQL BEGIN DECLARE SECTION;

 char Qstring[100] = "INSERT INTO WORK_TABLE SELECT * FROM EMPPROJACT
 WHERE ACTNO >= 100";

 EXEC SQL END DECLARE SECTION;
 EXEC SQL INCLUDE SQLCA;
 .
 .
 .
 EXEC SQL EXECUTE IMMEDIATE :Qstring;

 return;
 }

1310 IBM i: Db2 for i SQL Reference

FETCH
The FETCH statement positions a cursor on a row of the result table. It can return zero, one, or multiple
rows, and it assigns the values of the rows returned to variables.

Invocation
This statement can only be embedded in an application program. It is an executable statement that
cannot be dynamically prepared. Multiple row fetch is not allowed in a REXX procedure.

Authorization
See “DECLARE CURSOR” on page 1215 for an explanation of the authorization required to use a cursor.

If a global variable is specified in the INTO variable list, the privileges held by the authorization ID of the
statement must include at least one of the following:

• The WRITE privilege on the global variable.
• Database administrator authority

Syntax

FETCH

NEXT

PRIOR

FIRST

LAST

BEFORE
1

AFTER
2

CURRENT

RELATIVE variable

integer

FROM
cursor-name

single-fetch

multiple-row-fetch

single-fetch

INTO

,

variable

INTO SQL DESCRIPTOR
LOCAL

GLOBAL

SQL-descriptor-name

INTO DESCRIPTOR descriptor-name

multiple-row-fetch

Chapter 7. Statements 1311

FOR variable

integer

ROWS

INTO host-structure-array

USING SQL DESCRIPTOR
LOCAL

GLOBAL

SQL-descriptor-name

USING DESCRIPTOR descriptor-name

INTO row-storage-area

row-storage-area
: host-identifier-1

INDICATOR
: host-identifier-2

Notes:
1 If BEFORE is specified, a single-fetch or multiple-row-fetch must not be specified.
2 If AFTER is specified, a single-fetch or multiple-row-fetch must not be specified.

Description
The following keywords specify a new position for the cursor: NEXT, PRIOR, FIRST, LAST, BEFORE, AFTER,
CURRENT, and RELATIVE. Of those keywords, only NEXT may be used for cursors that have not been
declared SCROLL.
NEXT

Positions the cursor on the next row of the result table relative to the current cursor position. NEXT is
the default if no other cursor orientation is specified.

PRIOR
Positions the cursor on the previous row of the result table relative to the current cursor position.

FIRST
Positions the cursor on the first row of the result table.

LAST
Positions the cursor on the last row of the result table.

BEFORE
Positions the cursor before the first row of the result table.

AFTER
Positions the cursor after the last row of the result table.

CURRENT
Does not reposition the cursor, but maintains the current cursor position. If the cursor has been
declared as DYNAMIC SCROLL and the current row has been updated so its place within the sort order
of the result table is changed, an error is returned.

RELATIVE
Variable or integer is assigned to an integer value k. RELATIVE positions the cursor to the row in the
result table that is either k rows after the current row if k>0, or k rows before the current row if k<0.
If a variable is specified, it must be a numeric variable with zero scale and it must not include an
indicator variable.

Table 96. Synonymous Scroll Specifications

Specification Alternative

RELATIVE +1 NEXT

RELATIVE -1 PRIOR

RELATIVE 0 CURRENT

1312 IBM i: Db2 for i SQL Reference

FROM
This keyword is provided for clarity only. If a scroll position option is specified, then this keyword is
required. If no scrolling option is specified, then the FROM keyword is optional.

cursor-name
Identifies the cursor to be used in the fetch operation. The cursor-name must identify a declared
cursor as explained in “Description” on page 1216 for the DECLARE CURSOR statement or when used
in Java, an instance of an SQLJ iterator. When the FETCH statement is executed, the cursor must be in
the open state.

If a single-fetch or multiple-row-fetch clause is not specified, no data is returned to the user. However,
the cursor is positioned and a row lock may be acquired. For more information about locking, see
“Isolation level” on page 23.

single-fetch
INTO variable,...

Identifies one or more host structures or variables that must be declared in accordance with the
rules for declaring host structures and variables. In the operational form of INTO, a host structure is
replaced by a reference to each of its variables. The first value in the result row is assigned to the first
variable in the list, the second value to the second variable, and so on.

A global variable may only be used if the current connection is a local connection (not a DRDA
connection).

INTO SQL DESCRIPTOR SQL-descriptor-name
Identifies an SQL descriptor which contains valid descriptions of the output variables to be used with
the FETCH statement. Before the FETCH statement is executed, a descriptor must be allocated using
the ALLOCATE DESCRIPTOR statement.
LOCAL

Specifies the scope of the name of the descriptor to be local to program invocation.
GLOBAL

Specifies the scope of the name of the descriptor to be global to the SQL session.
SQL-descriptor-name

Names the SQL descriptor. The name must identify a descriptor that already exists with the
specified scope.

See “SET DESCRIPTOR” on page 1505 for an explanation of the information in the SQL descriptor.

INTO DESCRIPTOR descriptor-name
Identifies an SQLDA that must contain a valid description of zero or more variables.

Before the FETCH statement is processed, the user must set the following fields in the SQLDA.
(The rules for REXX are different. For more information see the Embedded SQL Programming topic
collection.)

• SQLN to indicate the number of SQLVAR occurrences provided in the SQLDA
• SQLDABC to indicate the number of bytes of storage allocated for the SQLDA
• SQLD to indicate the number of variables used in the SQLDA when processing the statement
• SQLVAR occurrences to indicate the attributes of the variables

The SQLDA must have enough storage to contain all SQLVAR occurrences. Therefore, the value in
SQLDABC must be greater than or equal to 16 + SQLN*(80), where 80 is the length of an SQLVAR
occurrence. If LOBs are specified, there must be two SQLVAR entries for each parameter marker and
SQLN must be set to two times the number of parameter markers.

SQLD must be set to a value greater than or equal to zero and less than or equal to SQLN. For more
information, see Appendix D, “SQLDA (SQL descriptor area),” on page 1675.

The USING DESCRIPTOR clause is not supported for a FETCH statement within a Java program.

Chapter 7. Statements 1313

multiple-row-fetch
FOR variable or integer ROWS

Evaluates variable or integer to an integral value that represents the number of rows to fetch. If a
variable is specified, it must be a numeric variable with zero scale and it must not include an indicator
variable. It must not be a global variable. The value must be in the range of 1 to 32767 and the
total size of the rows, excluding LOBs, must be less than 16M. The cursor is positioned on the row
specified by the orientation keyword (for example, NEXT), and that row is fetched. Then the next rows
are fetched (moving forward in the table), until either the specified number of rows have been fetched
or the end of the cursor is reached. After the fetch operation, the cursor is positioned on the last row
fetched.

For example, FETCH PRIOR FROM C1 FOR 3 ROWS causes the previous row, the current row, and the
next row to be returned, in that order. The cursor is positioned on the next row. FETCH RELATIVE -1
FROM C1 FOR 3 ROWS returns the same result. FETCH FIRST FROM C1 FOR :x ROWS returns the first
x rows, and leaves the cursor positioned on row number x.

When a multiple-row-fetch is successfully executed, three statement information items are available
in the SQL Diagnostics Area (or the SQLCA):

• ROW_COUNT (or SQLERRD(3) of the SQLCA) shows the number of rows retrieved.
• DB2_ROW_LENGTH (or SQLERRD(4) of the SQLCA) contains the length of the row retrieved.
• DB2_LAST_ROW (or SQLERRD(5) of the SQLCA) contains +100 if the last row was fetched. 108

INTO host-structure-array
host-structure-array identifies an array of host structures defined in accordance with the rules for
declaring host structures.

The first structure in the array corresponds to the first row, the second structure in the array
corresponds to the second row, and so on. In addition, the first value in the row corresponds to
the first item in the structure, the second value in the row corresponds to the second item in the
structure, and so on. The number of rows to be fetched must be less than or equal to the dimension of
the host structure array.

USING SQL DESCRIPTOR SQL-descriptor-name
Identifies an SQL descriptor.
LOCAL

Specifies the scope of the name of the descriptor to be local to program invocation.
GLOBAL

Specifies the scope of the name of the descriptor to be global to the SQL session.
SQL-descriptor-name

Names the SQL descriptor. The name must identify a descriptor that already exists with the
specified scope.

The COUNT field in the descriptor header must be set to reflect the number of columns in the
result set. The TYPE and DATETIME_INTERVAL_CODE (if applicable) must be set for each column
in the result set.

USING DESCRIPTOR descriptor-name
Identifies an SQLDA that must contain a valid description of zero or more variables that describe the
format of a row in the row-storage-area.

Before the FETCH statement is processed, the user must set the following fields in the SQLDA:

• SQLN to indicate the number of SQLVAR occurrences provided in the SQLDA.
• SQLDABC to indicate the number of bytes of storage allocated for the SQLDA.

108 If the number of rows returned is equal to the number of rows requested, then an end of data warning may
not occur and DB2_LAST_ROW (or SQLERRD(5) of the SQLCA) may not contain +100.

1314 IBM i: Db2 for i SQL Reference

• SQLD to indicate the number of variables used in the SQLDA when processing the statement.
• SQLVAR occurrences to indicate the attributes of the variables.

The values of the other fields of the SQLDA (such as SQLNAME) may not be defined after the FETCH
statement is executed and should not be used.

The SQLDA must have enough storage to contain all SQLVAR occurrences. Therefore, the value in
SQLDABC must be greater than or equal to 16 + SQLN*(80), where 80 is the length of an SQLVAR
occurrence. If LOBs or distinct types are specified, there must be two SQLVAR entries for each
parameter marker and SQLN must be set to two times the number of parameter markers.

SQLD must be set to a value greater than or equal to zero and less than or equal to SQLN. For more
information, see Appendix D, “SQLDA (SQL descriptor area),” on page 1675.

On completion of the FETCH, the SQLDATA pointer in the first SQLVAR entry addresses the returned
value for the first column in the allocated storage in the first row, the SQLDATA pointer in the second
SQLVAR entry addresses the returned value for the second column in the allocated storage in the first
row, and so on. The SQLIND pointer in the first nullable SQLVAR entry addresses the first indicator
value, the SQLIND pointer in the second nullable SQLVAR entry addresses the second indicator value,
and so on. The SQLDA must be allocated on a 16-byte boundary.

INTO row-storage-area
host-identifier-1 specified with a variable identifies an allocation of storage in which to return the
rows. The rows are returned into the storage area in the format described by the SQLDA or SQL
descriptor. host-identifier-1 must be large enough to hold all the rows requested.

host-identifier-2 identifies the optional indicator area. It should be specified if any of the data types
returned are nullable. This variable identifies an allocation of storage in which to return the indicators.
The indicators are returned as small integers. host-identifier-2 must be large enough to contain an
indicator for each nullable value for each row to be returned.

The GET DIAGNOSTICS statement can be used to return the DB2_ROW_LENGTH which indicates the
length of each row returned into the row-storage-area.

The nth variable identified by the INTO clause or described in the SQLDA corresponds to the nth column
of the result table of the cursor. The data type of each variable must be compatible with its corresponding
column.

Each assignment to a variable is made according to the retrieval assignment rules described in “Retrieval
assignment” on page 93.109 If the number of variables is less than the number of values in the row, the
SQLSTATE is set to '01503' (or the SQLWARN3 field of the SQLCA is set to 'W'). Note that there is no
warning if there are more variables than the number of result columns. If the value is null, an indicator
variable must be provided. If an assignment error occurs, the value is not assigned to the variable, and
no more values are assigned to variables. Any values that have already been assigned to variables remain
assigned.

If an error occurs as the result of an arithmetic expression in the SELECT list of an outer SELECT
statement (division by zero, overflow, etc.) or a character conversion error occurs, the result is the null
value. As in any other case of a null value, an indicator variable must be provided. The value of the
variable is undefined. In this case, however, the indicator variable is set to -2. Processing of the statement
continues as if the error had not occurred. (However, a warning is returned.) If you do not provide an
indicator variable, an error is returned. It is possible that some values have already been assigned to
variables and will remain assigned when the error occurs.

multiple-row-fetch is not allowed if any of the result columns are LOBs or if the current connection is to a
remote server.

Notes
Cursor position: An open cursor has three possible positions:

109 If assigning to an SQL-variable or SQL-parameter and the standards option is specified, storage assignment
rules apply. For information on the standards option, see “Standards compliance” on page xix.

Chapter 7. Statements 1315

• Before a row
• On a row
• After the last row

If a cursor is positioned on a row, that row is called the current row of the cursor. A cursor referenced in an
UPDATE or DELETE statement must be positioned on a row. A cursor can only be positioned on a row as a
result of a FETCH statement.

It is possible for an error to occur that makes the state of the cursor unpredictable.

Variable assignment: The nth variable identified by the INTO clause or described in the SQLDA
corresponds to the nth column of the result table of the cursor. The data type of each variable must
be compatible with its corresponding column.

Each assignment to a variable is made according to the Retrieval Assignment rules described in
“Assignments and comparisons” on page 89. If the number of variables is less than the number of values
in the row, the SQLWARN3 field of the SQLCA is set to 'W'. Note that there is no warning if there are more
variables than the number of result columns. If the value is null, an indicator variable must be provided. If
an assignment error occurs, the values in the variables are unpredictable.

If the specified variable is a string and is not large enough to contain the result, a warning (SQLSTATE
01004) is returned (and 'W' is assigned to SQLWARN1 in the SQLCA). The actual length of the result is
returned in the indicator variable associated with the variable, if an indicator variable is provided.

If the specified variable is a C NUL-terminated variable and is not large enough to contain the result and
the NUL-terminator:

• If the *CNULRQD option is specified on the CRTSQLCI or CRTSQLCPPI command (or CNULRQD(*YES) on
the SET OPTION statement), the following occurs:

– The result is truncated.
– The last character is the NUL-terminator.
– A warning (SQLSTATE 01004) is returned (and 'W' is assigned to SQLWARN1 in the SQLCA).

• If the *NOCNULRQD option on the CRTSQLCI or CRTSQLCPPI command (or CNULRQD(*NO) on the SET
OPTION statement) is specified, the following occurs:

– The NUL-terminator is not returned.
– A warning (SQLSTATE 01004) is returned (and 'N' is assigned to SQLWARN1 in the SQLCA).

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• USING DESCRIPTOR may be used as a synonym for INTO DESCRIPTOR in the single-fetch-clause.

Examples
Example 1: In this C example, the FETCH statement fetches the results of the SELECT statement into
the program variables dnum, dname, and mnum. When no more rows remain to be fetched, the not found
condition is returned.

 EXEC SQL DECLARE C1 CURSOR FOR
 SELECT DEPTNO, DEPTNAME, MGRNO FROM TDEPT
 WHERE ADMRDEPT = 'A00';
 EXEC SQL OPEN C1;
 while (SQLCODE==0) {
 EXEC SQL FETCH C1 INTO :dnum, :dname, :mnum;
 }
 EXEC SQL CLOSE C1;

Example 2: This FETCH statement uses an SQLDA.

 FETCH CURS USING DESCRIPTOR :sqlda3

Example 3: This ILE RPG example uses a row storage area to fetch the data.

1316 IBM i: Db2 for i SQL Reference

 DCL-S ONE_ROW_PTR POINTER;
 DCL-DS ONE_ROW BASED(ONE_ROW_PTR);
 DEPTNO CHAR(3);
 DEPTNAME VARCHAR(36);
 MGRNO CHAR(6);
 END-DS;
 DCL-S ONE_ROW_IND_PTR POINTER;
 DCL-DS ONE_ROW_IND BASED(ONE_ROW_IND_PTR);
 DEPTNOIND INT(5);
 DEPTNAMEIND INT(5);
 MGRNOIND INT(5);
 END-DS;
 DCL-S ROWAREA CHAR(450); // 10 records * %SIZE(ONE_ROW)
 DCL-S INDAREA CHAR(60); // 10 records * %SIZE(ONE_ROW_IND)
 DCL-S ROWS_RETURNED INT(5);
 DCL-S I INT(5);

 EXEC SQL DECLARE C1 CURSOR FOR
 SELECT DEPTNO, DEPTNAME, MGRNO FROM CORPDATA.DEPARTMENT;

 // Set up the descriptor
 EXEC SQL ALLOCATE DESCRIPTOR 'FETCH_ROWS' WITH MAX 10;
 EXEC SQL SET DESCRIPTOR 'FETCH_ROWS'
 COUNT = 3; // Descriptor contains 3 items
 EXEC SQL SET DESCRIPTOR 'FETCH_ROWS'
 VALUE 1 TYPE = 1, LENGTH = 3; // First is CHAR(3)
 EXEC SQL SET DESCRIPTOR 'FETCH_ROWS'
 VALUE 2 TYPE = 12, LENGTH = 36; // Second is VARCHAR(36)
 EXEC SQL SET DESCRIPTOR 'FETCH_ROWS'
 VALUE 3 TYPE = 1, LENGTH = 6; // Third is CHAR(6)

 // Fetch the data
 EXEC SQL OPEN C1;
 EXEC SQL FETCH C1 FOR 10 ROWS
 USING SQL DESCRIPTOR 'FETCH_ROWS'
 INTO :ROWAREA:INDAREA;
 EXEC SQL GET DIAGNOSTICS :ROWS_RETURNED = ROW_COUNT;
 EXEC SQL CLOSE C1;

 ONE_ROW_PTR = %ADDR(ROWAREA); // Get first row
 ONE_ROW_IND_PTR = %ADDR(INDAREA); // Indicators for first row
 FOR I = 1 TO ROWS_RETURNED;
 IF MGRNOIND >= 0; // Not a null value
 // Do something with MGRNO
 ENDIF;
 // Handle other values for first row
 ONE_ROW_PTR = ONE_ROW_PTR + %SIZE(ONE_ROW); // Advance to next row
 ONE_ROW_IND_PTR = ONE_ROW_IND_PTR + %SIZE(ONE_ROW_IND);
 ENDFOR;

Chapter 7. Statements 1317

FREE LOCATOR
The FREE LOCATOR statement removes the association between a locator variable and its value.

Invocation
This statement can only be embedded in an application program. It cannot be issued interactively. It is
an executable statement that can be dynamically prepared. However, the EXECUTE statement with the
USING clause must be used to execute the prepared statement. FREE LOCATOR cannot be used with the
EXECUTE IMMEDIATE statement. It must not be specified in Java or REXX.

Authorization
None required.

Syntax

FREE LOCATOR

,

variable

Description
variable,...

Identifies one or more locator variables that must be declared in accordance with the rules for
declaring locator variables. The locator variable type must be a binary large object locator, a character
large object locator, a double-byte character large object locator, or an XML locator.

The variable must currently have a locator assigned to it. That is, a locator must have been assigned
during this unit of work (by a CALL, FETCH, SELECT INTO, assignment statement, SET variable,
or VALUES INTO statement) and must not subsequently have been freed (by a FREE LOCATOR
statement); otherwise, an error is returned.

If more than one locator variable is specified and an error occurs on one of the locators, no locators
will be freed.

Example
Assume that the employee table contains columns RESUME, HISTORY, and PICTURE and that locators
have been established in a program to represent the column values. In a COBOL program, free the CLOB
locator variables LOCRES and LOCHIST, and the BLOB locator variable LOCPIC.

 EXEC SQL
 FREE LOCATOR :LOCRES, :LOCHIST, :LOCPIC
 END-EXEC.

1318 IBM i: Db2 for i SQL Reference

GET DESCRIPTOR
The GET DESCRIPTOR statement gets information from an SQL descriptor.

Invocation
This statement can only be embedded in an application program, SQL function, SQL procedure, or trigger.
It cannot be issued interactively. It is an executable statement that cannot be dynamically prepared. It
must not be specified in REXX.

Authorization
None required.

Syntax

GET

SQL

DESCRIPTOR
LOCAL

GLOBAL

SQL-descriptor-name

,

get-header-info

VALUE integer

integer-variable

,

get-item-info

get-header-info
variable-1 = COUNT

DB2_CURSOR_HOLDABILITY

DB2_CURSOR_RETURNABILITY

DB2_CURSOR_SCROLLABILITY

DB2_CURSOR_SENSITIVITY

DB2_CURSOR_UPDATABILITY

DB2_MAX_ITEMS

DB2_RESULT_SETS_COUNT

DYNAMIC_FUNCTION

DYNAMIC_FUNCTION_CODE

KEY_TYPE

get-item-info

Chapter 7. Statements 1319

variable-2 = CARDINALITY

DATA

DATETIME_INTERVAL_CODE

DB2_BASE_CATALOG_NAME

DB2_BASE_COLUMN_NAME

DB2_BASE_SCHEMA_NAME

DB2_BASE_TABLE_NAME

DB2_CCSID

DB2_COLUMN_CATALOG_NAME

DB2_COLUMN_GENERATED

DB2_COLUMN_GENERATION_TYPE

DB2_COLUMN_HIDDEN

DB2_COLUMN_NAME

DB2_COLUMN_ROW_CHANGE

DB2_COLUMN_SCHEMA_NAME

DB2_COLUMN_TABLE_NAME

DB2_COLUMN_UPDATABILITY

DB2_CORRELATION_NAME

DB2_CURSOR_NAME

DB2_LABEL

DB2_PARAMETER_NAME

DB2_RESULT_SET_LOCATOR

DB2_RESULT_SET_ROWS

DB2_SYSTEM_COLUMN_NAME

INDICATOR

KEY_MEMBER

LENGTH

LEVEL

NAME

NULLABLE

OCTET_LENGTH

PARAMETER_MODE

PARAMETER_ORDINAL_POSITION

PARAMETER_SPECIFIC_CATALOG

PARAMETER_SPECIFIC_NAME

PARAMETER_SPECIFIC_SCHEMA

PRECISION

RETURNED_CARDINALITY

RETURNED_LENGTH

RETURNED_OCTET_LENGTH

SCALE

TYPE

UNNAMED

USER_DEFINED_TYPE_CATALOG

USER_DEFINED_TYPE_CODE

USER_DEFINED_TYPE_NAME

USER_DEFINED_TYPE_SCHEMA

1320 IBM i: Db2 for i SQL Reference

Description
LOCAL

Specifies the scope of the name of the descriptor to be local to program invocation. The information is
returned from the descriptor known in this local scope.

GLOBAL
Specifies the scope of the name of the descriptor to be global to the SQL session. The information
is returned from the descriptor known to any program that executes using the same database
connection.

SQL-descriptor-name
Names the SQL descriptor. The name must identify a descriptor that already exists with the specified
scope.

get-header-info
Returns information about the prepared SQL statement and SQL descriptor.

VALUE
Identifies the item number for which the specified information is retrieved. If the value is greater than
the value of COUNT (from the header information), then no result is returned. If the item number is
greater than the maximum number of items allocated for the descriptor or the item number is less
than 1, an error is returned.
integer

An integer constant in the range of 1 to the number of items in the SQL descriptor.
integer-variable

Identifies a variable declared in the program in accordance with the rules for declaring variables.
It must not be a global variable. The data type of the variable must be SMALLINT, INTEGER,
BIGINT, or DECIMAL or NUMERIC with a scale of zero. The value of integer-variable must be in the
range of 1 to the maximum number of items in the SQL descriptor.

get-item-info
Returns information about a specific item in the SQL descriptor.

get-header-info
variable–1

Identifies a variable declared in the program in accordance with the rules for declaring variables,
but must not be a file reference variable or a global variable. The data type of the variable must be
compatible with the descriptor information item as specified in Table 97 on page 1328. The variable
is assigned (using storage assignment rules) to the corresponding descriptor item. For details on the
assignment rules, see “Assignments and comparisons” on page 89.

COUNT
A count of the number of items in the descriptor.

DB2_CURSOR_HOLDABILITY
The hold status of the cursor. The possible values are:
0

The descriptor is not describing a cursor or the cursor was not declared WITH HOLD.
1

The cursor was declared WITH HOLD.
DB2_CURSOR_RETURNABILITY

The return status of the cursor's result set. The possible values are:
0

The descriptor is not describing a cursor or the cursor's result set is not returnable.
1

The cursor's result set is returnable to the caller of the procedure.
2

The cursor's result set is returnable to the client.

Chapter 7. Statements 1321

DB2_CURSOR_SCROLLABILITY
The scroll status of the cursor. The possible values are:
0

The descriptor is not describing a cursor or the cursor was not declared with SCROLL.
1

The cursor was declared with SCROLL.
DB2_CURSOR_SENSITIVITY

The sensitivity of the cursor. The possible values are:
0

The descriptor is not describing a cursor.
1

The cursor is SENSITIVE DYNAMIC.
3

The cursor is INSENSITIVE.
4

The cursor is ASENSITIVE.
DB2_CURSOR_UPDATABILITY

Specifies whether the cursor can be used in an UPDATE statement with WHERE CURRENT OF cursor-
name. The possible values are:
0

The descriptor is not describing a cursor or the cursor cannot be used in an UPDATE statement
with WHERE CURRENT OF cursor-name.

1
The cursor can be used in an UPDATE statement with WHERE CURRENT OF cursor-name.

DB2_MAX_ITEMS
Represents the value specified as the allocated maximum number of item descriptors on the
ALLOCATE DESCRIPTOR statement. If the WITH MAX clause was not specified, the value is the default
number of maximum items for the ALLOCATE DESCRIPTOR statement.

DB2_RESULT_SETS_COUNT
The number of result sets returned by the procedure. The value will be 0 if this descriptor is not
describing a procedure.

DYNAMIC_FUNCTION
The type of the prepared SQL statement as a character string. For information on statement type, see
Table 100 on page 1352.

DYNAMIC_FUNCTION_CODE
The statement code representing the type of the prepared SQL statement. For information on
statement codes, see Table 100 on page 1352.

KEY_TYPE
The type of key included in the select list. The possible values are:
0

The descriptor is not describing the columns of a query or there are no key columns referenced in
the query, or there is no unique key.

1
The select list includes all the columns of the primary key of the base table referenced by the
query.

2
The table referenced by the query does not have a primary key but the select list includes a set of
columns that are defined as the preferred candidate key. If there is more than one such preferred
candidate key included in the select list, the left-most preferred candidate key is used.

1322 IBM i: Db2 for i SQL Reference

get-item-info
variable–2

Identifies a variable declared in the program in accordance with the rules for declaring variables,
but must not be a file reference variable or a global variable. The data type of the variable must be
compatible with the descriptor information item as specified in Table 97 on page 1328. The variable
is assigned (using storage assignment rules) to the corresponding descriptor item. For details on the
assignment rules, see “Assignments and comparisons” on page 89.

When getting the DATA item, in general the variable must have the same data type, length, precision,
scale, and CCSID as specified in Table 97 on page 1328. For variable-length types, the variable length
must not be less than the LENGTH in the descriptor. For C nul-terminated types, the variable length
must be at least one greater than the LENGTH in the descriptor.

CARDINALITY
The cardinality of the array data type. If this descriptor is the result of a DESCRIBE, this is the
maximum cardinality of the array data type. The cardinality is 0 for all other data types.

DATA
The value for the data described by the item descriptor. If the value of INDICATOR is negative, then
the value of DATA is undefined and the INDICATOR get-item-info must also be specified in the same
statement.

DATETIME_INTERVAL_CODE
Codes that define the specific datetime data type.
0

Descriptor item does not have TYPE value of 9.
1

DATE
2

TIME
3

TIMESTAMP
DB2_BASE_CATALOG_NAME

The server name of the base table for the column represented by the item descriptor.
DB2_BASE_COLUMN_NAME

The name of the column as defined in the base table referenced in the described query, possibly
indirectly through a view. If a column name cannot be defined or is not applicable, this item will
contain the empty string. The name is returned as case sensitive and without delimiters.

DB2_BASE_SCHEMA_NAME
The schema name of the base table for the column represented by the item descriptor. If a schema
name cannot be defined or is not applicable, this item will contain the empty string. The name is
returned as case sensitive and without delimiters.

DB2_BASE_TABLE_NAME
The table name of the underlying base table for the column represented by the item descriptor. If a
table name cannot be defined or is not applicable, this item will contain the empty string. The name is
returned as case sensitive and without delimiters.

DB2_CCSID
The CCSID of character, graphic, or XML data. Value is zero for all types that are not based on
character or graphic string or XML types. Value is 65535 for binary types or character types with the
FOR BIT DATA attribute.

DB2_COLUMN_CATALOG_NAME
The server name of the referenced table or view for the column represented by the item descriptor. If
a column catalog name cannot be defined or is not applicable, this item will contain the empty string.

DB2_COLUMN_GENERATED
Indicates whether a column is generated. Possible values are:

Chapter 7. Statements 1323

0
Not generated

1
GENERATED ALWAYS

2
GENERATED BY DEFAULT

DB2_COLUMN_GENERATION_TYPE
Indicates how the column is generated. Possible values are:
0

Not generated
1

IDENTITY column
2

ROWID column
4

Row change timestamp column
5

ROW BEGIN column
6

ROW END column
7

TRANSACTION START ID column
8

Generated expression column
DB2_COLUMN_HIDDEN

Indicates whether the column represented by the item descriptor is hidden. Possible values are:
0

Not hidden
1

Implicitly hidden
3

Implicitly hidden for optimistic locking
DB2_COLUMN_NAME

The name of the column as defined in the table or view referenced in the described query. If a column
name cannot be defined or is not applicable, this item will contain the empty string. The name is
returned as case sensitive and without delimiters.

DB2_COLUMN_ROW_CHANGE
Indicates whether the column represented by the item descriptor was added as a result of using the
WITH ROW CHANGE COLUMNS prepare attribute. Possible values are:
-1

ROW CHANGE TOKEN (distinct)
-2

ROW CHANGE TOKEN (not distinct)
-3

RID (only valid from a remote relational database)
-4

RID_BIT (only valid from a remote relational database)

1324 IBM i: Db2 for i SQL Reference

DB2_COLUMN_SCHEMA_NAME
The schema name of the referenced table or view for the column represented by the item descriptor.
If a column schema name cannot be defined or is not applicable, this item will contain the empty
string. The name is returned as case sensitive and without delimiters.

DB2_COLUMN_TABLE_NAME
The table or view name of the referenced table or view for the column represented by the item
descriptor. If a column table name cannot be defined or is not applicable, this item will contain the
empty string. The name is returned as case sensitive and without delimiters.

DB2_COLUMN_UPDATABILITY
Indicates whether the column represented by the item descriptor is updatable. Possible values are:
0

Not updatable
1

Updatable
DB2_CORRELATION_NAME

The empty string is always returned.
DB2_CURSOR_NAME

The name of the cursor in the procedure for this result set. This is only set when the descriptor is
describing a procedure.

DB2_LABEL
The label defined for the column. If there is no label for the column, this item will contain the empty
string.

DB2_PARAMETER_NAME
The name of the parameter for the stored procedure. Only returned for a CALL statement. The name is
returned as case sensitive and without delimiters.

DB2_RESULT_SET_LOCATOR
The result set locator for this result set. This is only set when the descriptor is describing a procedure.

DB2_RESULT_SET_ROWS
The estimated number of rows in the result set. It is set to the value -1 if the number is unknown. This
is only set when the descriptor is describing a procedure.

DB2_SYSTEM_COLUMN_NAME
The system name of the column. If a system name cannot be defined or is not applicable, this item
will contain blanks.

INDICATOR
The value for the indicator. A non-negative value is used when the value returned in this descriptor
item is given in the DATA field. When extended indicator variables are not enabled, a negative value is
used when the value returned in this descriptor item is the null value. When extended indicators are
enabled:

• -1, -2, -3, -4, or -6 indicates the value returned in this descriptor is the null value.
• -5 indicates the value returned in this descriptor item is DEFAULT.
• -7 indicates the value returned in this descriptor item is UNASSIGNED.

KEY_MEMBER
An indication of whether this column is part of a key.
0

This column is not part of a key.
1

This column is part of a unique key.
2

This column by itself is a unique key.

Chapter 7. Statements 1325

LENGTH
Returns the maximum length of the data. If the data type is a character or graphic string, an XML type,
or a datetime type, the length represents the number of characters (not bytes). If the data type is a
binary string or any other type, the length represents the number of bytes. For a description of data
type codes and lengths, see Table 98 on page 1330.

LEVEL
The level of the item descriptor. The value is 0.

NAME
The name associated with the select list column described by the item descriptor. The name is
returned as case sensitive and without delimiters.

NULLABLE
Indicates whether the column or parameter marker is nullable.
0

The select list column or parameter marker cannot have a null value.
1

The select list column or parameter marker can have a null value.
OCTET_LENGTH

Returns the maximum length of the data in bytes for all types. For a description of data type codes and
lengths, see Table 98 on page 1330.

PARAMETER_MODE
The mode of the parameter marker in a CALL statement.
0

The descriptor is not associated with a CALL statement.
1

Input only parameter.
2

Input and output parameter.
4

Output only parameter.
PARAMETER_ORDINAL_POSITION

The ordinal position of the parameter marker in a CALL statement. The value is 0 if the descriptor is
not associated with a CALL statement.

PARAMETER_SPECIFIC_CATALOG
The server name of the procedure containing the parameter marker.

PARAMETER_SPECIFIC_NAME
The specific name of the procedure containing the parameter marker. The name is returned as case
sensitive and without delimiters.

PARAMETER_SPECIFIC_SCHEMA
The schema name of the procedure containing the parameter marker. The name is returned as case
sensitive and without delimiters.

PRECISION
Returns the precision for the data:
SMALLINT

5
INTEGER

10
BIGINT

19
NUMERIC and DECIMAL

Defined precision

1326 IBM i: Db2 for i SQL Reference

REAL
24

DOUBLE
53

DECFLOAT(7)
7

DECFLOAT(16)
16

DECFLOAT(34)
34

TIME
0

TIMESTAMP
Defined precision (0-12)

Other data types
0

RETURNED_CARDINALITY
The current cardinality for an array data type returned by FETCH or CALL. The value is 0 when the data
type of the item is not an array.

RETURNED_LENGTH
The returned length in characters for character string, graphic string, and XML data types. The
returned length in bytes for binary string data types.

RETURNED_OCTET_LENGTH
The returned length in bytes for all string data types.

SCALE
Returns the defined scale if the data type is DECIMAL or NUMERIC. The scale is 0 for all other data
types.

TYPE
Returns a data type code representing the data type of the item. For a description of the data type
codes and lengths, see Table 98 on page 1330.

UNNAMED
A value of 1 indicates that the NAME value is generated by the database manager. Otherwise, the
value is zero and NAME is the derived name of the column in the select list.

USER_DEFINED_TYPE_CATALOG
The server name of the user-defined type. If the type is not a user-defined data type, this item
contains the empty string.

USER_DEFINED_TYPE_CODE
Indicates whether the type of the descriptor item is a user-defined type.
0

The descriptor item is not a user-defined type.
1

The descriptor item is a user-defined type.
USER_DEFINED_TYPE_NAME

The name of the user-defined data type. If the type is not a user-defined data type, this item contains
the empty string. The name is returned as case sensitive and without delimiters.

USER_DEFINED_TYPE_SCHEMA
The schema name of the user-defined data type. If the type is not a user-defined data type, this item
contains the empty string. The name is returned as case sensitive and without delimiters.

Chapter 7. Statements 1327

Notes
Data types for items: The following table shows the SQL data type for each descriptor item. When a
descriptor item is assigned to a variable, the variable must be compatible with the data type of the
descriptor item.

Table 97. Data Types for GET DESCRIPTOR Items

Item Name Data Type

Header Information

COUNT INTEGER

DB2_CURSOR_HOLDABILITY INTEGER

DB2_CURSOR_RETURNABILITY INTEGER

DB2_CURSOR_SCROLLABILITY INTEGER

DB2_CURSOR_SENSITIVITY INTEGER

DB2_CURSOR_UPDATABILITY INTEGER

DB2_MAX_ITEMS INTEGER

DB2_RESULT_SETS_COUNT INTEGER

DYNAMIC_FUNCTION VARCHAR(128)

DYNAMIC_FUNCTION_CODE INTEGER

KEY_TYPE INTEGER

Item Information

CARDINALITY BIGINT

DATA Matches the data type specified
by TYPE

DATETIME_INTERVAL_CODE INTEGER

DB2_BASE_CATALOG_NAME VARCHAR(128)

DB2_BASE_COLUMN_NAME VARCHAR(128)

DB2_BASE_SCHEMA_NAME VARCHAR(128)

DB2_BASE_TABLE_NAME VARCHAR(128)

DB2_CCSID INTEGER

DB2_COLUMN_CATALOG_NAME VARCHAR(128)

DB2_COLUMN_GENERATED INTEGER

DB2_COLUMN_GENERATION_TYPE INTEGER

DB2_COLUMN_HIDDEN INTEGER

DB2_COLUMN_NAME VARCHAR(128)

DB2_COLUMN_ROW_CHANGE INTEGER

DB2_COLUMN_SCHEMA_NAME VARCHAR(128)

DB2_COLUMN_TABLE_NAME VARCHAR(128)

DB2_COLUMN_UPDATABILITY INTEGER

1328 IBM i: Db2 for i SQL Reference

Table 97. Data Types for GET DESCRIPTOR Items (continued)

Item Name Data Type

DB2_CORRELATION_NAME VARCHAR(128)

DB2_CURSOR_NAME VARCHAR(128)

DB2_LABEL VARCHAR(60)

DB2_PARAMETER_NAME VARCHAR(128)

DB2_RESULT_SET_LOCATOR Result Set Locator

DB2_RESULT_SET_ROWS BIGINT

DB2_SYSTEM_COLUMN_NAME CHAR(10)

INDICATOR INTEGER

KEY_MEMBER INTEGER

LENGTH INTEGER

LEVEL INTEGER

NAME VARCHAR(128)

NULLABLE INTEGER

OCTET_LENGTH INTEGER

PARAMETER_MODE INTEGER

PARAMETER_ORDINAL_POSITION INTEGER

PARAMETER_SPECIFIC_CATALOG VARCHAR(128)

PARAMETER_SPECIFIC_NAME VARCHAR(128)

PARAMETER_SPECIFIC_SCHEMA VARCHAR(128)

PRECISION INTEGER

RETURNED_CARDINALITY INTEGER

RETURNED_LENGTH INTEGER

RETURNED_OCTET_LENGTH INTEGER

SCALE INTEGER

TYPE INTEGER

UNNAMED INTEGER

USER_DEFINED_TYPE_CATALOG VARCHAR(128)

USER_DEFINED_TYPE_NAME VARCHAR(128)

USER_DEFINED_TYPE_SCHEMA VARCHAR(128)

USER_DEFINED_TYPE_CODE VARCHAR(128)

SQL data type codes and lengths: The following table represents the possible values for TYPE, LENGTH,
OCTET_LENGTH, and DATETIME_INTERVAL_CODE descriptor items.

The values in the following table are assigned by the ISO and ANSI SQL Standard and may change as
the standard evolves. Include sqlscds in the include source files in library QSYSINC should be used when
referencing these values.

Chapter 7. Statements 1329

Table 98. SQL Data Type Codes and Lengths

Data Type Data Type Code Length Octet Length

SMALLINT 5 2 2

INTEGER 4 4 4

BIGINT 25 8 8

DECIMAL 3 (precision/2)+1 (precision/2)+1

NUMERIC(n) 2 n n

REAL 7 4 4

FLOAT 6 8 8

DOUBLE PRECISION 8 8 8

DECFLOAT(7) -360 4 4

DECFLOAT(16) -360 8 8

DECFLOAT(34) -360 16 16

CHARACTER(n) 1 n n

VARCHAR(n) 12 <=n n

CLOB(n) 40 <=n n

GRAPHIC(n) –95 n 2*n

VARGRAPHIC(n) –96 <=n 2*n

DBCLOB(n) -350 <=n 2*n

BINARY(n) –2 n n

VARBINARY(n) –3 <=n n

BLOB(n) 30 n n

DATE (DATETIME_INTERVAL_CODE = 1) 9 Length depends
on date format

Based on CCSID

TIME (DATETIME_INTERVAL_CODE = 2) 9 Length depends
on time format

Based on CCSID

TIMESTAMP (DATETIME_INTERVAL_CODE =
3)

9 19-32,
depending on
precision

19-32 or 38-64,
depending on
precision (based
on CCSID)

DATALINK(n) 70 <=n n

ROWID –904 40 40

XML 137 0 0

C nul terminated CHARACTER(n) 1 <=n n

C nul terminated GRAPHIC(n) –400® <=n 2*n

BLOB File Reference Variable –916 267 267

CLOB File Reference Variable –920 267 267

DBCLOB File Reference Variable –924 267 267

1330 IBM i: Db2 for i SQL Reference

Table 98. SQL Data Type Codes and Lengths (continued)

Data Type Data Type Code Length Octet Length

Result Set Locator -972 8 8

Array 50 N/A N/A

Example
Example 1: Retrieve from the descriptor 'NEWDA' the number of descriptor items.

 EXEC SQL GET DESCRIPTOR 'NEWDA'
 :numitems = COUNT;

Example 2: Retrieve from the first item descriptor of descriptor 'NEWDA' the data type and the octet
length.

 GET DESCRIPTOR 'NEWDA'
 VALUE 1 :dtype = TYPE,
 :olength = OCTET_LENGTH;

Chapter 7. Statements 1331

GET DIAGNOSTICS
The GET DIAGNOSTICS statement obtains information about the previous SQL statement that was
executed.

Invocation
This statement can only be embedded in an application program, SQL function, SQL procedure, or trigger.
It cannot be issued interactively. It is an executable statement that cannot be dynamically prepared. It
must not be specified in REXX.

Authorization
None required.

Syntax

GET
CURRENT

STACKED

DIAGNOSTICS statement-information

condition-information

combined-information

statement-information
,

variable-1 = statement-information-item

variable-1 = DB2_GET_DIAGNOSTICS_DIAGNOSTICS

condition-information
CONDITION variable-2

integer

,

variable-3 = connection-information-item

condition-information-item

combined-information
variable-4 = ALL

,

STATEMENT

CONDITION

CONNECTION variable-5

integer

1

Notes:
1 STATEMENT can only be specified once. If variable-5 or integer is not specified, CONDITION and
CONNECTION can only be specified once.

statement-information-item

1332 IBM i: Db2 for i SQL Reference

COMMAND_FUNCTION

COMMAND_FUNCTION_CODE

DB2_DIAGNOSTIC_CONVERSION_ERROR

DB2_LAST_ROW

DB2_NUMBER_CONNECTIONS

DB2_NUMBER_PARAMETER_MARKERS

DB2_NUMBER_RESULT_SETS

DB2_NUMBER_ROWS

DB2_NUMBER_SUCCESSFUL_SUBSTMTS

DB2_RELATIVE_COST_ESTIMATE

DB2_RETURN_STATUS

DB2_ROW_COUNT_SECONDARY

DB2_ROW_LENGTH

DB2_SQL_ATTR_CONCURRENCY

DB2_SQL_ATTR_CURSOR_CAPABILITY

DB2_SQL_ATTR_CURSOR_HOLD

DB2_SQL_ATTR_CURSOR_ROWSET

DB2_SQL_ATTR_CURSOR_SCROLLABLE

DB2_SQL_ATTR_CURSOR_SENSITIVITY

DB2_SQL_ATTR_CURSOR_TYPE

DB2_SQL_NESTING_LEVEL

DYNAMIC_FUNCTION

DYNAMIC_FUNCTION_CODE

MORE

NUMBER

ROW_COUNT

TRANSACTION_ACTIVE

TRANSACTIONS_COMMITTED

TRANSACTIONS_ROLLED_BACK

connection-information-item

Chapter 7. Statements 1333

CONNECTION_NAME

DB2_AUTHENTICATION_TYPE

DB2_AUTHORIZATION_ID

DB2_CONNECTION_METHOD

DB2_CONNECTION_NUMBER

DB2_CONNECTION_STATE

DB2_CONNECTION_STATUS

DB2_CONNECTION_TYPE

DB2_DYN_QUERY_MGMT

DB2_ENCRYPTION_TYPE

DB2_PRODUCT_ID

DB2_SERVER_CLASS_NAME

DB2_SERVER_NAME

condition-information-item

1334 IBM i: Db2 for i SQL Reference

CATALOG_NAME

CLASS_ORIGIN

COLUMN_NAME

CONDITION_IDENTIFIER

CONDITION_NUMBER

CONSTRAINT_CATALOG

CONSTRAINT_NAME

CONSTRAINT_SCHEMA

CURSOR_NAME

DB2_ERROR_CODE1

DB2_ERROR_CODE2

DB2_ERROR_CODE3

DB2_ERROR_CODE4

DB2_INTERNAL_ERROR_POINTER

DB2_LINE_NUMBER

DB2_MESSAGE_ID

DB2_MESSAGE_ID1

DB2_MESSAGE_ID2

DB2_MESSAGE_KEY

DB2_MODULE_DETECTING_ERROR

DB2_NUMBER_FAILING_STATEMENTS

DB2_OFFSET

DB2_ORDINAL_TOKEN_n

DB2_PARTITION_NUMBER

DB2_REASON_CODE

DB2_RETURNED_SQLCODE

DB2_ROW_NUMBER

DB2_SQLERRD_SET

DB2_SQLERRD1

DB2_SQLERRD2

DB2_SQLERRD3

DB2_SQLERRD4

DB2_SQLERRD5

DB2_SQLERRD6

DB2_TOKEN_COUNT

DB2_TOKEN_STRING

MESSAGE_LENGTH

MESSAGE_OCTET_LENGTH

MESSAGE_TEXT

PARAMETER_MODE

PARAMETER_NAME

PARAMETER_ORDINAL_POSITION

RETURNED_SQLSTATE

ROUTINE_CATALOG

ROUTINE_NAME

ROUTINE_SCHEMA

SCHEMA_NAME

SERVER_NAME

SPECIFIC_NAME

SUBCLASS_ORIGIN

TABLE_NAME

TRIGGER_CATALOG

TRIGGER_NAME

TRIGGER_SCHEMA

Description
CURRENT or STACKED

Specifies which diagnostics area to access.

Chapter 7. Statements 1335

CURRENT
Specifies to access the first diagnostics area. It corresponds to the previous SQL statement that
was executed and that was not a GET DIAGNOSTICS statement. This is the default.

STACKED
Specifies to access the second diagnostics area. The second diagnostics area is only available
within a handler. It corresponds to the previous SQL statement that was executed before the
handler was entered and that was not a GET DIAGNOSTICS statement. If the GET DIAGNOSTICS
statement is the first statement within a handler, then the first diagnostics area and the second
diagnostics area contain the same diagnostics information.

statement-information
Returns information about the last SQL statement executed.
variable–1

Identifies a variable declared in the program in accordance with the rules for declaring variables.
It must not be a global variable. The data type of the variable must be compatible with the
data type as specified in Table 99 on page 1349 for the specified condition information item.
The variable is assigned the value of the specified statement information item according to
the retrieval assignment rules described in “Retrieval assignment” on page 93. If the value is
truncated when assigning it to the variable, a warning (SQLSTATE 01004) is returned and the
GET_DIAGNOSTICS_DIAGNOSTICS item of the diagnostics area is updated with the details of this
condition.

If a specified diagnostic item does not contain diagnostic information, then the variable is set to a
default value based on its data type:

• 0 for an exact numeric diagnostic item,
• an empty string for a VARCHAR diagnostic item,
• and blanks for a CHAR diagnostic item.

condition-information
Returns information about the condition or conditions that occurred when the last SQL statement was
executed.
CONDITION variable–2 or integer

Identifies the diagnostic for which information is requested. Each diagnostic that occurs while
executing an SQL statement is assigned an integer. The value 1 indicates the first diagnostic,
2 indicates the second diagnostic and so on. When the value is 1, the diagnostic information
corresponds to the condition indicated by the SQLSTATE value returned by the execution of the
previous SQL statement (other than a GET DIAGNOSTICS statement). Values of 2 to n represent
other conditions that were reported while executing the SQL statement. The value of 2 is the
earliest condition that occurred, with each additional value happening later in time.
The variable specified must be declared in the program in accordance with the rules for declaring
exact numeric variables with zero scale. It must not be a global variable. The value specified must
not be less than one or greater than the number of available diagnostics.

variable–3
Identifies a variable declared in the program in accordance with the rules for declaring variables.
It must not be a global variable. The data type of the variable must be compatible with the data
type as specified in Table 99 on page 1349 for the specified condition information item. The
variable is assigned the value of the specified condition information item according to the retrieval
assignment rules described in “Retrieval assignment” on page 93. If the value is truncated when
assigning it to the variable, an error is returned and the GET_DIAGNOSTICS_DIAGNOSTICS item of
the diagnostics area is updated with the details of this condition.

If a specified diagnostic item does not contain diagnostic information , then the variable is set to a
default value based on its data type:

• 0 for an exact numeric diagnostic item,
• an empty string for a VARCHAR diagnostic item,

1336 IBM i: Db2 for i SQL Reference

• and blanks for a CHAR diagnostic item.

combined-information
Returns multiple information items combined into one string.
variable–4

Identifies a variable declared in the program in accordance with the rules for declaring
variables. It must not be a global variable. The data type of the variable must be
VARCHAR. The variable is assigned according to the retrieval assignment rules described
in “Retrieval assignment” on page 93. If the length of variable–4 is not sufficient to hold
the full returned diagnostic string, the string is truncated, an error is returned and the
GET_DIAGNOSTICS_DIAGNOSTICS item of the diagnostics area is updated with the details
of this condition.

ALL
Indicates that all diagnostic items that are set for the last SQL statement executed should be
combined into one string. The format of the string is a semicolon separated list of all of the
available diagnostic information in the form:

item-name=character-form-of-the-item-value;

The character form of a positive numeric value will not contain a leading plus sign (+) unless
the item is DB2_RETURNED_SQLCODE. In this case, a leading plus sign (+) is added. For
example:

 NUMBER=1;RETURNED_SQLSTATE=02000;DB2_RETURNED_SQLCODE=+100;

Only items that contain diagnostic information are included in the string. There
are also no entries in this string for the DB2_GET_DIAGNOSTICS_DIAGNOSTICS and
DB2_SQL_NESTING_LEVEL items.

STATEMENT
Indicates that all statement-information-item diagnostic items that contain diagnostic
information for the last SQL statement executed should be combined into one string. The
format is the same as described above for ALL.

CONDITION
Indicates that condition-information-item diagnostic items that contain diagnostic information
for the last SQL statement executed should be combined into one string. If variable–5 or
integer is specified, then the format is the same as described above for the ALL option. If
variable–5 or integer is not specified, then the format includes a condition number entry at the
beginning of the information for that condition in the form:

CONDITION_NUMBER=X;item-name=character-form-of-the-item-value;

where X is the number of the condition. For example:

CONDITION_NUMBER=1;RETURNED_SQLSTATE=02000;DB2_RETURNED_SQLCODE=+100;
CONDITION_NUMBER=2;RETURNED_SQLSTATE=01004;

CONNECTION
Indicates that connection-information-item diagnostic items that contain diagnostic
information for the last SQL statement executed should be combined into one string. If
variable–5 or integer is specified, then the format is the same as described above for ALL.
If variable–5 or integer is not specified, then the format includes a connection number entry at
the beginning of the information for that condition in the form:

DB2_CONNECTION_NUMBER=X;item-name=character-form-of-the-item-value;

where X is the number of the condition. For example:

DB2_CONNECTION_NUMBER=1;CONNECTION_NAME=SVL1;DB2_PRODUCT_ID=DSN07010;

Chapter 7. Statements 1337

variable–5 or integer
Identifies the diagnostic for which ALL CONDITION or ALL CONNECTION information is
requested. The variable specified must be declared in the program in accordance with the
rules for declaring integer variables. It must not be a global variable. The value specified must
not be less than one or greater than the number of available diagnostics.

statement-information-item
COMMAND_FUNCTION

Returns the name of the previous SQL statement. For information about the statement string values,
see Table 100 on page 1352.

COMMAND_FUNCTION_CODE
Returns an integer that identifies the previous SQL statement. For information about the statement
code values, see Table 100 on page 1352.

DB2_DIAGNOSTIC_CONVERSION_ERROR
Returns the value 1 if there was a conversion error when converting a character data value for one of
the GET DIAGNOSTICS statement values. Otherwise, the value zero is returned.

DB2_GET_DIAGNOSTICS_DIAGNOSTICS
After a GET DIAGNOSTICS statement, if any errors or warnings occurred during the execution of the
GET DIAGNOSTICS statement, DB2_GET_DIAGNOSTICS_DIAGNOSTICS returns textual information
about these errors or warnings. The format of the information is similar to what would be returned by
a GET DIAGNOSTICS :hv = ALL statement.

If a request was made for an information item that the server does not understand, for example, if the
server was at a lower DRDA level than the requesting client, DB2_GET_DIAGNOSTICS_DIAGNOSTICS
returns the text 'Item not supported:' followed by a comma separated list of item names that were
requested but that the server does not support.

DB2_LAST_ROW
For a multiple-row-fetch statement, a value of +100 might be returned if the set of rows that have
been fetched contains the last row currently in the result table for cursors that are fetching forward,
or contains the first row currently in the result table, for cursors that are fetching backward. If the
number of rows returned is equal to the number of rows requested, then an end of data warning may
not occur and DB2_LAST_ROW may not contain +100.

If a value of +100 for DB2_LAST_ROW is returned for a cursor that is not sensitive to updates, a
subsequent FETCH would return with the SQLCODE set to +100 and SQLSTATE set to '02000'. For a
cursor that is sensitive to updates, a subsequent FETCH might return more data if any rows have been
inserted before the FETCH was executed.

For statements other than multiple-row-fetch statements, for multiple-row-fetch statements that do
not contain the last row currently in the result table, for cursors that are fetching forwards, or that do
not contain the first row currently in the result table, for cursors that are fetching backwards, or if the
server only returns an SQLCA, the value zero is returned.

DB2_NUMBER_CONNECTIONS
Returns the number of connections that were made in order to get to the server that fulfilled the
request from the client. Each such connection may generate a connection information item area which
would be available for the single condition.

DB2_NUMBER_PARAMETER_MARKERS
For a PREPARE statement, returns the number of parameter markers in the prepared statement.
Otherwise, the value zero is returned.

DB2_NUMBER_RESULT_SETS
For a CALL statement, returns the actual number of result sets returned by the procedure. Otherwise,
the value zero is returned.

DB2_NUMBER_ROWS
If the previous SQL statement was an OPEN or a FETCH which caused the size of the result table to
be known, returns the number of rows in the result table. For SENSITIVE cursors, this value can be

1338 IBM i: Db2 for i SQL Reference

thought of as an approximation since rows inserted and deleted will affect the next retrieval of this
value. Otherwise, the value zero is returned.

DB2_NUMBER_SUCCESSFUL_SUBSTMTS
For embedded compound SQL statements, returns a count of the number of successful sub-
statements. Otherwise, the value zero is returned.

DB2_RELATIVE_COST_ESTIMATE
For a PREPARE statement, returns a relative cost estimate of the resources required for every
execution. It does not reflect an estimate of the time required. When preparing a dynamically defined
statement, this value can be used as an indicator of the relative cost of the prepared statement. The
value varies depending on changes to statistics and can vary between releases of the product. It is an
estimated cost for the access plan chosen by the optimizer. The value zero is returned if the statement
is not a PREPARE statement.

DB2_RETURN_STATUS
Identifies the status value returned from the previous SQL CALL statement. If the previous statement
is not a CALL statement, the value returned has no meaning and is unpredictable. For more
information, see “RETURN statement” on page 1634. Otherwise, the value zero is returned.

For external procedures, if the returned SQLCODE < 0, the SQL_ERROR_CODE1 and
DB2_RETURN_STATUS will be set to -1, otherwise SQL_ERROR_CODE1 and DB2_RETURN_STATUS
are set to 0.

DB2_ROW_COUNT_SECONDARY
Identifies the number of rows associated with secondary actions from the previous SQL statement
that was executed. If the previous SQL statement is a DELETE or MERGE, the value is the total
number of rows affected by referential constraints, including cascaded actions and the processing of
triggered SQL statements from activated triggers. If the previous SQL statement is an INSERT or an
UPDATE, the value is the total number of rows affected as the result of the processing of triggered SQL
statements from activated triggers. Otherwise, the value zero is returned.

If the SQL statement is run using isolation level No Commit, this value may be zero.

DB2_ROW_LENGTH
For FETCH, if the result row does not contain a LOB, returns the length of the row(s) retrieved. For
OPEN, if the result row does not contain a LOB, returns the length of a result row. For FETCH and
OPEN, if the result does contain a LOB, the length returned is unpredictable. Otherwise, the value zero
is returned.

DB2_SQL_ATTR_CONCURRENCY
For an OPEN statement, indicates the concurrency control option of read-only, locking, optimistic
using timestamps, or optimistic using values.

• R indicates read-only.
• L indicates locking.
• T indicates comparing row versions using timestamps or ROWIDs.
• V indicates comparing values.

Otherwise, a blank is returned.
DB2_SQL_ATTR_CURSOR_CAPABILITY

For an OPEN statement, indicates the capability of the cursor, whether a cursor is read-only,
deletable, or updatable.

• R indicates that this cursor can only be used to read.
• D indicates that this cursor can be used to read as well as delete.
• U indicates that this cursor can be used to read, delete as well as update.

Otherwise, a blank is returned.
DB2_SQL_ATTR_CURSOR_HOLD

For an OPEN statement, indicates whether a cursor can be held open across multiple units of work or
not.

Chapter 7. Statements 1339

• N indicates that this cursor will not remain open across multiple units of work.
• Y indicates that this cursor will remain open across multiple units of work.

Otherwise, a blank is returned.
DB2_SQL_ATTR_CURSOR_ROWSET

For an OPEN statement, whether a cursor can be accessed using rowset positioning or not.

• N indicates that this cursor only supports row positioned operations.
• Y indicates that this cursor supports rowset positioned operations.

Otherwise, a blank is returned.
DB2_SQL_ATTR_CURSOR_SCROLLABLE

For an OPEN statement, indicates whether a cursor can be scrolled forward and backward or not.

• N indicates that this cursor is not scrollable.
• Y indicates that this cursor is scrollable.

Otherwise, a blank is returned.
DB2_SQL_ATTR_CURSOR_SENSITIVITY

For an OPEN statement, indicates whether a cursor does or does not show updates to cursor rows
made by other connections.

• I indicates insensitive.
• P indicates partial sensitivity.
• S indicates sensitive.
• U indicates unspecified.

Otherwise, a blank is returned.
DB2_SQL_ATTR_CURSOR_TYPE

For an OPEN statement, indicates whether a cursor type is dynamic, forward-only, or static.

• D indicates a dynamic cursor.
• F indicates a forward-only cursor.
• S indicates a static cursor.

Otherwise, a blank is returned.
DB2_SQL_NESTING_LEVEL

Identifies the current level of nesting or recursion in effect when the GET DIAGNOSTICS statement
was executed. Each level of nesting corresponds to a nested or recursive invocation of a function,
procedure, or trigger. If the GET DIAGNOSTICS statement is executed outside of a level of nesting, the
value zero is returned.

If GET DIAGNOSTICS is issued in a user-defined function that is running in parallel, the nesting level is
not predictable.

DYNAMIC_FUNCTION
Returns a character string that identifies the type of the SQL-statement being prepared or executed
dynamically. For information about the statement string values, see Table 100 on page 1352.

DYNAMIC_FUNCTION_CODE
Returns a number that identifies the type of the SQL-statement being prepared or executed
dynamically. For information about the statement code values, see Table 100 on page 1352.

MORE
Indicates whether more errors were raised than could be handled.

• N indicates that all the errors and warnings from the previous SQL statement were stored in the
diagnostics area.

• Y indicates that more errors and warnings were raised from the previous SQL statement than there
are condition areas in the diagnostics area. The maximum size of the diagnostics area is 90K.

1340 IBM i: Db2 for i SQL Reference

NUMBER
Returns the number of errors and warnings detected by the execution of the previous SQL statement,
other than a GET DIAGNOSTICS statement, that have been stored in the diagnostics area. If the
previous SQL statement returned success (SQLSTATE 00000), or no previous SQL statement has
been executed, the number returned is one. The GET DIAGNOSTICS statement itself may return
information via the SQLSTATE parameter, but does not modify the previous contents of the diagnostics
area, except for the DB2_GET_DIAGNOSTICS_DIAGNOSTICS item.

ROW_COUNT
Identifies the number of rows associated with the previous SQL statement that was executed. If
the previous SQL statement is a DELETE, INSERT, REFRESH, or UPDATE statement, ROW_COUNT
identifies the number of rows deleted, inserted, or updated by that statement, excluding rows
affected by either triggers or referential integrity constraints. If the previous SQL statement is a
MERGE statement, ROW_COUNT identifies the total number of rows deleted, inserted, and updated
by that statement, excluding rows affected by either triggers or referential integrity constraints. If the
previous SQL statement is a multiple-row-fetch, ROW_COUNT identifies the number of rows fetched.
Otherwise, the value zero is returned.

TRANSACTION_ACTIVE
Returns the value 1 if an SQL transaction is currently active, and 0 if an SQL transaction is not
currently active.

TRANSACTIONS_COMMITTED
If the previous statement was a CALL, returns the number of transactions that were committed during
the execution of the SQL or external procedure. Otherwise, the value zero is returned.

TRANSACTIONS_ROLLED_BACK
If the previous statement was a CALL, returns the number of transactions that were rolled back during
the execution of the SQL or external procedure. Otherwise, the value zero is returned.

connection-information-item
CONNECTION_NAME

If the previous SQL statement is a CONNECT, DISCONNECT, or SET CONNECTION, returns the name of
the server specified in the previous statement. Otherwise, the name of the current connection.

DB2_AUTHENTICATION_TYPE
Indicates the authentication type, whether server or client.

• C for client authentication.
• E for DCE security services authentication.
• S for server authentication.

Otherwise, a blank is returned.
DB2_AUTHORIZATION_ID

Returns the authorization id used by connected server. Because of userid translation and
authorization exits, the local userid may not be the authid used by the server.

DB2_CONNECTION_METHOD
For a CONNECT or SET CONNECTION statement, returns the connection method.

• D indicates *DUW (Distributed Unit of Work).
• R indicates *RUW (Remote Unit of Work).

DB2_CONNECTION_NUMBER
Returns the number of the connections.

DB2_CONNECTION_STATE
Indicates the connection state, whether connected or not.

• -1 indicates the connection is unconnected.
• 1 indicates the connection is connected.

Otherwise, the value zero is returned.

Chapter 7. Statements 1341

DB2_CONNECTION_STATUS
Indicates whether committable update can be performed or not.

• 1 indicates committable updates can be performed on the connection for this unit of work.
• 2 indicates no committable updates can be performed on the connection for this unit of work.

Otherwise, the value zero is returned.
DB2_CONNECTION_TYPE

Indicated the connection type (either local, remote, or to a driver program) and whether the
conversation is protected or not.

• 1 indicates a connection to a local relational database.
• 2 indicates a connection to a remote relational database with the conversation unprotected.
• 3 indicates a connection to a remote relational database with the conversation protected.
• 4 indicates a connection to an application requester driver program.

Otherwise, the value zero is returned.
DB2_DYN_QUERY_MGMT

Returns a value of 1 if DYN_QUERY_MGMT database configuration parameter is enabled. Otherwise,
the value zero is returned.

DB2_ENCRYPTION_TYPE
Returns the level of encryption.

• A indicates only the authentication tokens (authid and password) are encrypted.
• D indicates all data is encrypted for the connection.

Otherwise, a blank is returned.
DB2_PRODUCT_ID

Returns a product signature. If the application server is an IBM relational database product, the form
is pppvvrrm, where:

• ppp identifies the product as follows: ARI for Db2 for VM and VSE, DSN for Db2 for z/OS, QSQ for
Db2 for i, and SQL for all other Db2 products

• vv is a two-digit version identifier such as '04'
• rr is a two-digit release identifier such as '01'
• m is a one-digit modification level such as '0'

For example, if the application server is Version 7 of Db2 for z/OS, the value would be 'DSN07010'.
Otherwise, the empty string is returned.

DB2_SERVER_CLASS_NAME
Returns the server class name. For example, Db2 for z/OS, Db2 for AIX, Db2 for Windows, and Db2 for
i.

DB2_SERVER_NAME
For a CONNECT or SET CONNECTION statement, returns the relational database name. Otherwise, the
empty string is returned.

condition-information-item
CATALOG_NAME

If the returned SQLSTATE is:

• class 09 (Triggered Action Exception), or
• class 23 (Integrity Constraint Violation), or
• class 27 (Triggered Data Change Violation), or
• 40002 (Transaction Rollback - Integrity Constraint Violation),

1342 IBM i: Db2 for i SQL Reference

and the constraint that caused the error is a referential, check, or unique constraint, the server name
of the table that owns the constraint is returned.

If the returned SQLSTATE is class 42 (Syntax Error or Access Rule Violation), the server name of the
table that caused the error is returned.

If the returned SQLSTATE is class 44 (WITH CHECK OPTION Violation), the server name of the view
that caused the error is returned. Otherwise, the empty string is returned.

CLASS_ORIGIN
Returns 'ISO 9075' for those SQLSTATEs whose class is defined by ISO 9075. Returns 'ISO/IEC
13249' for those SQLSTATEs whose class is defined by SQL/MM. Returns 'DB2 SQL' for those
SQLSTATEs whose class is defined by IBM Db2 SQL. Returns the value set by user written code if
available. Otherwise, the empty string is returned.

COLUMN_NAME
If the returned SQLSTATE is class 42 (Syntax Error or Access Rule Violation) and the error was caused
by an inaccessible column, the name of the column that caused the error is returned. Otherwise, the
empty string is returned.

CONDITION_IDENTIFIER
If the value of the RETURNED_SQLSTATE corresponds to an unhandled user-defined exception
(SQLSTATE 45000), then the condition name of the user-defined exception is returned.

CONDITION_NUMBER
Returns the number of the conditions.

CONSTRAINT_CATALOG
If the returned SQLSTATE is:

• class 23 (Integrity Constraint Violation), or
• class 27 (Triggered Data Change Violation), or
• 40002 (Transaction Rollback - Integrity Constraint Violation),

the name of the server that contains the table that contains the constraint that caused the error is
returned. Otherwise, the empty string is returned.

CONSTRAINT_NAME
If the returned SQLSTATE is:

• class 23 (Integrity Constraint Violation), or
• class 27 (Triggered Data Change Violation), or
• 40002 (Transaction Rollback - Integrity Constraint Violation),

the name of the constraint that caused the error is returned. Otherwise, the empty string is returned.
CONSTRAINT_SCHEMA

If the returned SQLSTATE is:

• class 23 (Integrity Constraint Violation), or
• class 27 (Triggered Data Change Violation), or
• 40002 (Transaction Rollback - Integrity Constraint Violation),

the name of the schema of the constraint that caused the error is returned. Otherwise, the empty
string is returned.

CURSOR_NAME
If the returned SQLSTATE is class 24 (Invalid Cursor State), the name of the cursor is returned.
Otherwise, the empty string is returned.

DB2_ERROR_CODE1
Returns an internal error code. Otherwise, the value zero is returned.

DB2_ERROR_CODE2
Returns an internal error code. Otherwise, the value zero is returned.

Chapter 7. Statements 1343

DB2_ERROR_CODE3
Returns an internal error code. Otherwise, the value zero is returned.

DB2_ERROR_CODE4
Returns an internal error code. Otherwise, the value zero is returned.

DB2_INTERNAL_ERROR_POINTER
For some errors, this will be a negative value that is an internal error pointer. Otherwise, the value zero
is returned.

DB2_LINE_NUMBER
For a CREATE PROCEDURE for an SQL function, SQL procedure, or SQL trigger where an error is
encountered parsing the SQL procedure body, returns the line number where the error possibly
occurred. Otherwise, the value zero is returned.

DB2_MESSAGE_ID
Returns the message ID corresponding to the MESSAGE_TEXT.

DB2_MESSAGE_ID1
Returns the underlying IBM i CPF escape message that originally caused this error. Otherwise, the
empty string is returned.

DB2_MESSAGE_ID2
Returns the underlying IBM i CPD diagnostic message that originally caused this error. Otherwise, the
empty string is returned.

DB2_MESSAGE_KEY
For a CALL statement, returns the IBM i message key of the error that caused the procedure to fail. For
a trigger error in a DELETE, INSERT, or UPDATE statement, returns the message key of the error that
was signaled from the trigger program. The IBM i QMHRCVPM API can be used to return the message
description and message data for the message key. Otherwise, the value zero is returned.

DB2_MODULE_DETECTING_ERROR
Returns an identifier indicating which module detected the error. For a SIGNAL statement issued from
a routine, the value 'ROUTINE' is returned. For other SIGNAL statements, the value 'PROGRAM' is
returned.

DB2_NUMBER_FAILING_STATEMENTS
For a NOT ATOMIC embedded compound SQL statement, returns the number of statements that
failed. Otherwise, the value zero is returned.

DB2_OFFSET
For a CREATE PROCEDURE for an SQL procedure where an error is encountered parsing the SQL
procedure body, returns the offset into the line number where the error possibly occurred, if available.
For an EXECUTE IMMEDIATE or a PREPARE statement where an error is encountered parsing the
source statement, returns the offset into the source statement where the error possibly occurred.
Otherwise, the value zero is returned.

DB2_ORDINAL_TOKEN_n
Returns the nth token. n must be a value from 1 to 100. For example, DB2_ORDINAL_TOKEN_1 would
return the value of the first token, DB2_ORDINAL_TOKEN_2 the second token. A numeric value for a
token is converted to character before being returned. If there is no value for the token, the empty
string is returned.

DB2_PARTITION_NUMBER
For a partitioned database, returns the partition number of the database partition that encountered
the error or warning. If no errors or warnings were encountered, returns the partition number of the
current node. Otherwise, the value zero is returned.

DB2_REASON_CODE
Returns the reason code for errors that have a reason code token in the message text. Otherwise, the
value zero is returned.

DB2_RETURNED_SQLCODE
Returns the SQLCODE for the specified diagnostic.

1344 IBM i: Db2 for i SQL Reference

DB2_ROW_NUMBER
If the previous SQL statement is a multiple row insert or a multiple row fetch, returns the number
of the row where the condition was encountered, when such a value is available and applicable.
Otherwise, the value zero is returned.

DB2_SQLERRD_SET
Returns Y to indicate that the DB2_SQLERRD1 through DB2_SQLERRD6 items may be set. Otherwise,
a blank is returned.

DB2_SQLERRD1
Returns the value of SQLERRD(1) from the SQLCA returned by the server.

DB2_SQLERRD2
Returns the value of SQLERRD(2) from the SQLCA returned by the server.

DB2_SQLERRD3
Returns the value of SQLERRD(3) from the SQLCA returned by the server.

DB2_SQLERRD4
Returns the value of SQLERRD(4) from the SQLCA returned by the server.

DB2_SQLERRD5
Returns the value of SQLERRD(5) from the SQLCA returned by the server.

DB2_SQLERRD6
Returns the value of SQLERRD(6) from the SQLCA returned by the server.

DB2_TOKEN_COUNT
Returns the number of tokens available for the specified diagnostic.

DB2_TOKEN_STRING
Returns a X'FF' delimited string of the tokens for the specified diagnostic.

MESSAGE_LENGTH
Identifies the length (in characters) of the message text of the error, warning, or successful
completion returned from the previous SQL statement that was executed.

MESSAGE_OCTET_LENGTH
Identifies the length (in bytes) of the message text of the error, warning, or successful completion
returned from the previous SQL statement that was executed.

MESSAGE_TEXT
Identifies the message text of the error, warning, or successful completion returned from the previous
SQL statement that was executed.

When the SQLCODE is 0, the empty string is returned, even if the RETURNED_SQLSTATE value
indicates a warning condition.

PARAMETER_MODE
If the returned SQLSTATE is:

• class 39 (External Routine Invocation Exception), or
• class 38 (External Routine Exception), or
• class 2F (SQL Routine Exception), or
• class 22 (Data Exception), or
• class 23 (Integrity Constraint Violation), or
• class 01 (Warning)

and the condition is related to the ith parameter of the routine, the parameter mode of the ith
parameter is returned. Otherwise, the empty string is returned.

PARAMETER_NAME
If the returned SQLSTATE is:

• class 39 (External Routine Invocation Exception), or
• class 38 (External Routine Exception), or

Chapter 7. Statements 1345

• class 2F (SQL Routine Exception), or
• class 22 (Data Exception), or
• class 23 (Integrity Constraint Violation), or
• class 01 (Warning)

the condition is related to the ith parameter of the routine, and a parameter name was specified for
the parameter when the routine was created, the parameter name of the ith parameter is returned.
Otherwise, the empty string is returned.

PARAMETER_ORDINAL_POSITION
If the returned SQLSTATE is:

• class 39 (External Routine Invocation Exception), or
• class 38 (External Routine Exception), or
• class 2F (SQL Routine Exception), or
• class 22 (Data Exception), or
• class 23 (Integrity Constraint Violation), or
• class 01 (Warning)

and the condition is related to the ith parameter of the routine, the value of i is returned. Otherwise,
the empty string is returned.

RETURNED_SQLSTATE
Returns the SQLSTATE for the specified diagnostic.

ROUTINE_CATALOG
If the returned SQLSTATE is:

• class 39 (External Routine Invocation Exception), or
• class 38 (External Routine Exception), or
• class 2F (SQL Routine Exception), or

and the condition is related to the ith parameter of the routine, or if the returned SQLSTATE is:

• class 22 (Data Exception), or
• class 23 (Integrity Constraint Violation), or
• class 01 (Warning)

and the condition was raised as the result of an assignment to an SQL parameter during an routine
invocation, the server name of the routine is returned. Otherwise, the empty string is returned.

ROUTINE_NAME
If the returned SQLSTATE is:

• class 39 (External Routine Invocation Exception), or
• class 38 (External Routine Exception), or
• class 2F (SQL Routine Exception), or

and the condition is related to the ith parameter of the routine, or if the returned SQLSTATE is:

• class 22 (Data Exception), or
• class 23 (Integrity Constraint Violation), or
• class 01 (Warning)

and the condition was raised as the result of an assignment to an SQL parameter during an routine
invocation, the name of the routine is returned. Otherwise, the empty string is returned.

ROUTINE_SCHEMA
If the returned SQLSTATE is:

• class 39 (External Routine Invocation Exception), or

1346 IBM i: Db2 for i SQL Reference

• class 38 (External Routine Exception), or
• class 2F (SQL Routine Exception), or

and the condition is related to the ith parameter of the routine, or if the returned SQLSTATE is:

• class 22 (Data Exception), or
• class 23 (Integrity Constraint Violation), or
• class 01 (Warning)

and the condition was raised as the result of an assignment to an SQL parameter during an routine
invocation, the schema name of the routine is returned. Otherwise, the empty string is returned.

SCHEMA_NAME
If the returned SQLSTATE is:

• class 09 (Triggered Action Exception), or
• class 23 (Integrity Constraint Violation), or
• class 27 (Triggered Data Change Violation), or
• 40002 (Transaction Rollback - Integrity Constraint Violation),

and the constraint that caused the error is a referential, check, or unique constraint, the schema name
of the table that owns the constraint is returned.

If the returned SQLSTATE is class 42 (Syntax Error or Access Rule Violation), the schema name of the
table that caused the error is returned.

If the returned SQLSTATE is class 44 (WITH CHECK OPTION Violation), the schema name of the view
that caused the error is returned. Otherwise, the empty string is returned.

SERVER_NAME
If the previous SQL statement is a CONNECT, DISCONNECT, or SET CONNECTION, the name of the
server specified in the previous statement is returned. Otherwise, the name of the server where the
statement executed is returned.

SPECIFIC_NAME
If the returned SQLSTATE is:

• class 39 (External Routine Invocation Exception), or
• class 38 (External Routine Exception), or
• class 2F (SQL Routine Exception), or

and the condition is related to the ith parameter of the routine, or if the returned SQLSTATE is:

• class 22 (Data Exception), or
• class 23 (Integrity Constraint Violation), or
• class 01 (Warning)

and the condition was raised as the result of an assignment to an SQL parameter during an routine
invocation, the specific name of the procedure or function is returned. Otherwise, the empty string is
returned.

SUBCLASS_ORIGIN
Returns 'ISO 9075' for those SQLSTATEs whose subclass is defined by ISO 9075. Returns 'ISO/IEC
9579' for those SQLSTATEs whose subclass is defined by RDA. Returns 'ISO/IEC 13249-1', 'ISO/IEC
13249-2', 'ISO/IEC 13249-3', 'ISO/IEC 13249-4', or 'ISO/IEC 13249-5' for those SQLSTATEs whose
subclass is defined SQL/MM. Returns 'DB2 SQL' for those SQLSTATEs whose subclass is defined by
IBM Db2 SQL. Returns the value set by user written code if available. Otherwise, the empty string is
returned.

TABLE_NAME
If the returned SQLSTATE is:

• class 09 (Triggered Action Exception), or

Chapter 7. Statements 1347

• class 23 (Integrity Constraint Violation), or
• class 27 (Triggered Data Change Violation), or
• 40002 (Transaction Rollback - Integrity Constraint Violation),

and the constraint that caused the error is a referential, check, or unique constraint, the table name
that owns the constraint is returned.

If the returned SQLSTATE is class 42 (Syntax Error or Access Rule Violation), the table name that
caused the error is returned.

If the returned SQLSTATE is class 44 (WITH CHECK OPTION Violation), the table name that caused
the error is returned. Otherwise, the empty string is returned.

TRIGGER_CATALOG
If the returned SQLSTATE is:

• class 09 (Triggered Action Exception), or
• class 27 (Triggered Data Change Violation),

the name of the trigger is returned. Otherwise, the empty string is returned.
TRIGGER_NAME

If the returned SQLSTATE is:

• class 09 (Triggered Action Exception), or
• class 27 (Triggered Data Change Violation),

the name of the trigger is returned. Otherwise, the empty string is returned.
TRIGGER_SCHEMA

If the returned SQLSTATE is:

• class 09 (Triggered Action Exception), or
• class 27 (Triggered Data Change Violation),

the schema name of the trigger is returned. Otherwise, the empty string is returned.

Notes
Considerations for the diagnostics area: The GET DIAGNOSTICS statement does not change the
contents of the diagnostics area except for DB2_GET_DIAGNOSTICS_DIAGNOSTICS.

If the GET DIAGNOSTICS statement is specified in an SQL function, SQL procedure, or trigger:

• If information is desired about an error, the GET DIAGNOSTICS statement must be the first executable
statement specified in the handler that will handle the error.

• If information is wanted about a warning:

– If a handler will get control for the warning condition, the GET DIAGNOSTICS statement must be the
first statement specified in that handler.

– If a handler will not get control for the warning condition, the GET DIAGNOSTICS statement must be
the next statement executed after that previous statement.

Otherwise, GET DIAGNOSTICS statement returns information about the last executed statement.

Considerations for the SQLCODE and SQLSTATE SQL variables: The GET DIAGNOSTICS statement
changes the value of the SQLSTATE and SQLCODE SQL variables.

Case of return values: Values for identifiers in returned diagnostic items are not delimited and are case
sensitive. For example, a table name of "abc" would be returned, simply as abc.

Variable assignment: If an assignment error occurs, the values in the variables are unpredictable.

Data types for items: The following table shows, the SQL data type for each diagnostic item. When
a diagnostic item is assigned to a variable, the variable must be compatible with the data type of the
diagnostic item.

1348 IBM i: Db2 for i SQL Reference

Table 99. Data Types for GET DIAGNOSTICS Items

Item Name Data Type

Statement Information Item

COMMAND_FUNCTION VARCHAR(128)

COMMAND_FUNCTION_CODE INTEGER

DB2_DIAGNOSTIC_CONVERSION_ERROR INTEGER

DB2_GET_DIAGNOSTICS_DIAGNOSTICS VARCHAR(32740)

DB2_LAST_ROW INTEGER

DB2_NUMBER_CONNECTIONS INTEGER

DB2_NUMBER_PARAMETER_MARKERS INTEGER

DB2_NUMBER_RESULT_SETS INTEGER

DB2_NUMBER_ROWS DECIMAL(31,0)

DB2_NUMBER_SUCCESSFUL_SUBSTMTS INTEGER

DB2_RELATIVE_COST_ESTIMATE INTEGER

DB2_RETURN_STATUS INTEGER

DB2_ROW_COUNT_SECONDARY DECIMAL(31,0)

DB2_ROW_LENGTH INTEGER

DB2_SQL_ATTR_CONCURRENCY CHAR(1)

DB2_SQL_ATTR_CURSOR_CAPABILITY CHAR(1)

DB2_SQL_ATTR_CURSOR_HOLD CHAR(1)

DB2_SQL_ATTR_CURSOR_ROWSET CHAR(1)

DB2_SQL_ATTR_CURSOR_SCROLLABLE CHAR(1)

DB2_SQL_ATTR_CURSOR_SENSITIVITY CHAR(1)

DB2_SQL_ATTR_CURSOR_TYPE CHAR(1)

DB2_SQL_NESTING_LEVEL INTEGER

DYNAMIC_FUNCTION VARCHAR(128)

DYNAMIC_FUNCTION_CODE INTEGER

MORE CHAR(1)

NUMBER INTEGER

ROW_COUNT DECIMAL(31,0)

TRANSACTION_ACTIVE INTEGER

TRANSACTIONS_COMMITTED INTEGER

TRANSACTIONS_ROLLED_BACK INTEGER

Connection Information Item

CONNECTION_NAME VARCHAR(128)

DB2_AUTHENTICATION_TYPE CHAR(1)

Chapter 7. Statements 1349

Table 99. Data Types for GET DIAGNOSTICS Items (continued)

Item Name Data Type

DB2_AUTHORIZATION_ID VARCHAR(128)

DB2_CONNECTION_METHOD CHAR(1)

DB2_CONNECTION_NUMBER INTEGER

DB2_CONNECTION_STATE INTEGER

DB2_CONNECTION_STATUS INTEGER

DB2_CONNECTION_TYPE SMALLINT

DB2_DYN_QUERY_MGMT INTEGER

DB2_ENCRYPTION_TYPE CHAR(1)

DB2_PRODUCT_ID VARCHAR(8)

DB2_SERVER_CLASS_NAME VARCHAR(128)

DB2_SERVER_NAME VARCHAR(128)

Condition Information Item

CATALOG_NAME VARCHAR(128)

CLASS_ORIGIN VARCHAR(128)

COLUMN_NAME VARCHAR(128)

CONDITION_IDENTIFIER VARCHAR(128)

CONDITION_NUMBER INTEGER

CONSTRAINT_CATALOG VARCHAR(128)

CONSTRAINT_NAME VARCHAR(128)

CONSTRAINT_SCHEMA VARCHAR(128)

CURSOR_NAME VARCHAR(128)

DB2_ERROR_CODE1 INTEGER

DB2_ERROR_CODE2 INTEGER

DB2_ERROR_CODE3 INTEGER

DB2_ERROR_CODE4 INTEGER

DB2_INTERNAL_ERROR_POINTER INTEGER

DB2_LINE_NUMBER INTEGER

DB2_MESSAGE_ID CHAR(10)

DB2_MESSAGE_ID1 VARCHAR(7)

DB2_MESSAGE_ID2 VARCHAR(7)

DB2_MESSAGE_KEY INTEGER

DB2_MODULE_DETECTING_ERROR VARCHAR(128)

DB2_NUMBER_FAILING_STATEMENTS INTEGER

DB2_OFFSET INTEGER

1350 IBM i: Db2 for i SQL Reference

Table 99. Data Types for GET DIAGNOSTICS Items (continued)

Item Name Data Type

DB2_ORDINAL_TOKEN_n VARCHAR(32740)

DB2_PARTITION_NUMBER INTEGER

DB2_REASON_CODE INTEGER

DB2_RETURNED_SQLCODE INTEGER

DB2_ROW_NUMBER INTEGER

DB2_SQLERRD_SET CHAR(1)

DB2_SQLERRD1 INTEGER

DB2_SQLERRD2 INTEGER

DB2_SQLERRD3 INTEGER

DB2_SQLERRD4 INTEGER

DB2_SQLERRD5 INTEGER

DB2_SQLERRD6 INTEGER

DB2_TOKEN_COUNT INTEGER

DB2_TOKEN_STRING VARCHAR(1000)

MESSAGE_LENGTH INTEGER

MESSAGE_OCTET_LENGTH INTEGER

MESSAGE_TEXT VARCHAR(32740)

PARAMETER_MODE VARCHAR(5)

PARAMETER_NAME VARCHAR(128)

PARAMETER_ORDINAL_POSITION INTEGER

RETURNED_SQLSTATE CHAR(5)

ROUTINE_CATALOG VARCHAR(128)

ROUTINE_NAME VARCHAR(128)

ROUTINE_SCHEMA VARCHAR(128)

SCHEMA_NAME VARCHAR(128)

SERVER_NAME VARCHAR(128)

SPECIFIC_NAME VARCHAR(128)

SUBCLASS_ORIGIN VARCHAR(128)

TABLE_NAME VARCHAR(128)

TRIGGER_CATALOG VARCHAR(128)

TRIGGER_NAME VARCHAR(128)

TRIGGER_SCHEMA VARCHAR(128)

SQL statement codes and strings: The following table represents the possible
values for COMMAND_FUNCTION, COMMAND_FUNCTION_CODE, DYNAMIC_FUNCTION, and
DYNAMIC_FUNCTION_CODE diagnostic items.

Chapter 7. Statements 1351

The values in the following table are assigned by the ISO and ANSI SQL Standard and may change as
the standard evolves. Include sqlscds in the include source files in library QSYSINC should be used when
referencing these values.

Table 100. SQL Statement Codes and Strings

Type of statement Statement string
Statement
code

ALLOCATE CURSOR ALLOCATE CURSOR 1

ALLOCATE DESCRIPTOR ALLOCATE DESCRIPTOR 2

ALTER FUNCTION ALTER ROUTINE 17

ALTER MASK ALTER MASK –100

ALTER PERMISSION ALTER PERMISSION –103

ALTER PROCEDURE ALTER ROUTINE 17

ALTER SEQUENCE ALTER SEQUENCE 134

ALTER TABLE ALTER TABLE 4

ALTER TRIGGER ALTER TRIGGER –99

assignment-statement ASSIGNMENT 5

ASSOCIATE LOCATORS ASSOCIATE LOCATORS –6

CALL CALL 7

CASE CASE 86

CLOSE (static SQL) CLOSE CURSOR 9

CLOSE (dynamic SQL) DYNAMIC CLOSE CURSOR 37

COMMENT COMMENT –7

COMMIT COMMIT WORK 11

compound-statement BEGIN END 12

CONNECT CONNECT 13

CREATE ALIAS CREATE ALIAS –8

CREATE FUNCTION CREATE ROUTINE 14

CREATE INDEX CREATE INDEX –14

CREATE MASK CREATE MASK –101

CREATE PERMISSION CREATE PERMISSION –104

CREATE PROCEDURE CREATE ROUTINE 14

CREATE SCHEMA CREATE SCHEMA 64

CREATE SEQUENCE CREATE SEQUENCE 133

CREATE TABLE CREATE TABLE 77

CREATE TRIGGER CREATE TRIGGER 80

CREATE TYPE CREATE TYPE 83

CREATE VARIABLE CREATE VARIABLE –83

1352 IBM i: Db2 for i SQL Reference

Table 100. SQL Statement Codes and Strings (continued)

Type of statement Statement string
Statement
code

CREATE VIEW CREATE VIEW 84

DEALLOCATE DESCRIPTOR DEALLOCATE DESCRIPTOR 15

DECLARE GLOBAL TEMPORARY TABLE DECLARE GLOBAL TEMPORARY TABLE –21

DELETE Positioned (static SQL) DELETE CURSOR 18

DELETE Positioned (dynamic SQL) DYNAMIC DELETE CURSOR 38

DELETE Searched DELETE WHERE 19

DESCRIBE DESCRIBE 20

DESCRIBE CURSOR DESCRIBE CURSOR RESULT SET –72

DESCRIBE PROCEDURE DESCRIBE PROCEDURE –23

DESCRIBE TABLE DESCRIBE TABLE –24

DISCONNECT DISCONNECT 22

DROP ALIAS DROP ALIAS –25

DROP FUNCTION DROP ROUTINE 30

DROP INDEX DROP INDEX –30

DROP MASK DROP MASK –102

DROP PACKAGE DROP PACKAGE –32

DROP PERMISSION DROP PERMISSION –105

DROP PROCEDURE DROP ROUTINE 30

DROP SCHEMA DROP SCHEMA 31

DROP SEQUENCE DROP SEQUENCE 135

DROP TABLE DROP TABLE 32

DROP TRIGGER DROP TRIGGER 34

DROP TYPE DROP TYPE 35

DROP VARIABLE DROP VARIABLE –84

DROP XSROBJECT DROP XSROBJECT –95

DROP VIEW DROP VIEW 36

EXECUTE EXECUTE 44

EXECUTE IMMEDIATE EXECUTE IMMEDIATE 43

FETCH (static SQL) FETCH 45

FETCH (dynamic SQL) DYNAMIC FETCH 39

FOR FOR 46

FREE LOCATOR FREE LOCATOR 98

GET DESCRIPTOR GET DESCRIPTOR 47

GOTO GOTO –37

Chapter 7. Statements 1353

Table 100. SQL Statement Codes and Strings (continued)

Type of statement Statement string
Statement
code

GRANT (any type) GRANT 48

HOLD LOCATOR HOLD LOCATOR 99

IF IF 88

INSERT INSERT 50

ITERATE ITERATE 102

LABEL LABEL –39

LEAVE LEAVE 89

LOCK TABLE LOCK TABLE –40

LOOP LOOP 90

MERGE MERGE 128

OPEN (static SQL) OPEN 53

OPEN (dynamic SQL) DYNAMIC OPEN 40

PREPARE PREPARE 56

Prepared DELETE Positioned (dynamic SQL) PREPARABLE DYNAMIC DELETE CURSOR 54

Prepared UPDATE Positioned (dynamic
SQL)

PREPARABLE DYNAMIC UPDATE CURSOR 55

REFRESH TABLE REFRESH TABLE –41

RELEASE (connection) RELEASE CONNECTION –42

RELEASE SAVEPOINT RELEASE SAVEPOINT 57

RENAME INDEX RENAME INDEX –43

RENAME TABLE RENAME TABLE –44

REPEAT REPEAT 95

RESIGNAL RESIGNAL 91

RETURN RETURN 58

REVOKE (any type) REVOKE 59

ROLLBACK ROLLBACK WORK 62

SAVEPOINT SAVEPOINT 63

SELECT INTO SELECT 65

select-statement (dynamic SQL) SELECT CURSOR 85

SET CONNECTION SET CONNECTION 67

SET CURRENT DEBUG MODE SET CURRENT DEBUG MODE –75

SET CURRENT DECFLOAT ROUNDING
MODE

SET CURRENT DECFLOAT ROUNDING
MODE

–82

SET CURRENT DEGREE SET CURRENT DEGREE –47

1354 IBM i: Db2 for i SQL Reference

Table 100. SQL Statement Codes and Strings (continued)

Type of statement Statement string
Statement
code

SET CURRENT IMPLICIT XMLPARSE
OPTION

SET CURRENT IMPLICIT XMLPARSE OPT –90

SET CURRENT TEMPORAL SYSTEM_TIME SET CURRENT TEMPORAL SYSTEM_TIME –98

SET DESCRIPTOR SET DESCRIPTOR 70

SET ENCRYPTION PASSWORD SET ENCRYPTION PASSWORD –48

SET PATH SET PATH 69

SET RESULT SETS SET RESULT SETS –64

SET SCHEMA SET SCHEMA 74

SET SESSION AUTHORIZATION SET SESSION AUTHORIZATION 76

SET TRANSACTION SET TRANSACTION 75

SET transition-variable ASSIGNMENT 5

SET variable ASSIGNMENT 5

SIGNAL SIGNAL 92

TRANSFER OWNERSHIP TRANSFER OWNERSHIP –77

TRUNCATE TABLE TRUNCATE TABLE –74

UPDATE Positioned (static SQL) UPDATE CURSOR 81

UPDATE Positioned (dynamic SQL) DYNAMIC UPDATE CURSOR 42

UPDATE Searched UPDATE WHERE 82

VALUES STANDALONE FULLSELECT –69

VALUES INTO VALUES INTO –66

WHILE WHILE 97

Unrecognized statement a zero length string 0

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• The keyword EXCEPTION can be used as a synonym for CONDITION.
• The keyword RETURN_STATUS can be used as a synonym for DB2_RETURN_STATUS.

Example
In an SQL procedure, execute a GET DIAGNOSTICS statement to determine how many rows were
updated.

 CREATE PROCEDURE sqlprocg (IN deptnbr VARCHAR(3))
 LANGUAGE SQL
 BEGIN
 DECLARE SQLSTATE CHAR(5);
 DECLARE rcount INTEGER;
 UPDATE CORPDATA.PROJECT
 SET PRSTAFF = PRSTAFF + 1.5
 WHERE DEPTNO = deptnbr;
 GET DIAGNOSTICS rcount = ROW_COUNT;
 /* At this point, rcount contains the number of rows that were updated. */

Chapter 7. Statements 1355

 END

Within an SQL procedure, handle the returned status value from the invocation of a stored procedure
called TRYIT. TRYIT could use the RETURN statement to explicitly return a status value or a status value
could be implicitly returned by the database manager. If the procedure is successful, it returns a value of
zero.

 CREATE PROCEDURE TESTIT ()
 LANGUAGE SQL
 A1: BEGIN
 DECLARE RETVAL INTEGER DEFAULT 0;
 ...
 CALL TRYIT
 GET DIAGNOSTICS RETVAL = RETURN_STATUS;
 IF RETVAL <> 0 THEN
 ...
 LEAVE A1;
 ELSE
 ...
 END IF;
 END A1

In an SQL procedure, execute a GET DIAGNOSTICS statement to retrieve the message text for an error.

 CREATE PROCEDURE divide2 (IN numerator INTEGER,
 IN denominator INTEGER,
 OUT divide_result INTEGER,
 OUT divide_error VARCHAR(70))
 LANGUAGE SQL
 BEGIN
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 GET DIAGNOSTICS CONDITION 1
 divide_error = MESSAGE_TEXT;
 SET divide_result = numerator / denominator;
 END;

1356 IBM i: Db2 for i SQL Reference

GRANT (function or procedure privileges)
This form of the GRANT statement grants privileges on a function or procedure.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For each function or procedure identified in the statement:

– Every privilege specified in the statement
– The system authority of *OBJMGT on the function or procedure
– The system authority *EXECUTE on the library (or directory if this is a Java routine) containing the

function or procedure
• Database administrator authority
• Security administrator authority

If WITH GRANT OPTION is specified, the privileges held by the authorization ID of the statement must
include at least one of the following:

• Ownership of the function or procedure
• Database administrator authority
• Security administrator authority

Chapter 7. Statements 1357

Syntax

GRANT ALL
PRIVILEGES

,

ALTER

EXECUTE

ON

,

FUNCTION

ROUTINE

,

function-name

(
,

parameter-type

)

SPECIFIC FUNCTION

ROUTINE

,

specific-name

PROCEDURE

ROUTINE

,

procedure-name

(
,

parameter-type

)

SPECIFIC PROCEDURE

ROUTINE

,

specific-name

TO

,

USER

GROUP

authorization-name

PUBLIC

WITH GRANT OPTION

parameter-type
data-type

AS LOCATOR

data-type
built-in-type

distinct-type-name

array-type-name

built-in-type

1358 IBM i: Db2 for i SQL Reference

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

1

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

)

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

DATALINK

(200)

(integer) ccsid-clause

ROWID

XML

ccsid-clause
CCSID integer

Notes:

Chapter 7. Statements 1359

1 The value that is specified for precision does not have to match the value that was specified when the
function was created because matching is based on data type (REAL or DOUBLE).

Description
ALL or ALL PRIVILEGES

Grants one or more privileges. The privileges granted are all those grantable privileges that the
authorization ID of the statement has on the specified functions or procedures. Note that granting ALL
PRIVILEGES on a function or procedure is not the same as granting the system authority of *ALL.

If you do not use ALL, you must use one or more of the keywords listed below. Each keyword grants
the privilege described.

ALTER
Grants the privilege to use the ALTER FUNCTION, ALTER PROCEDURE, or COMMENT statement.

EXECUTE
Grants the privilege to execute the function or procedure.

FUNCTION or SPECIFIC FUNCTION
Identifies the function on which the privilege is granted. The function must exist at the current server
and it must be a user-defined function, but not a function that was implicitly generated with the
creation of a distinct type. The function can be identified by its name, function signature, or specific
name.
FUNCTION function-name

Identifies the function by its name. The function-name must identify exactly one function. The
function may have any number of parameters defined for it. If there is more than one function of
the specified name in the specified or implicit schema, an error is returned.

FUNCTION function-name (parameter-type, ...)
Identifies the function by its function signature, which uniquely identifies the function. The
function-name (parameter-type, ...) must identify a function with the specified function signature.
The specified parameters must match the data types in the corresponding position that were
specified when the function was created. The number of data types, and the logical concatenation
of the data types is used to identify the specific function instance on which the privilege is to be
granted. Synonyms for data types are considered a match. Parameters that have defaults must be
included in this signature.

If function-name () is specified, the function identified must have zero parameters.

function-name
Identifies the name of the function.

(parameter-type, ...)
Identifies the parameters of the function.

If an unqualified distinct type name is specified, the database manager searches the SQL path
to resolve the schema name for the distinct type.

For data types that have a length, precision, or scale attribute, use one of the following:

• Empty parentheses indicate that the database manager ignores the attribute when
determining whether the data types match. For example, DEC() will be considered a match
for a parameter of a function defined with a data type of DEC(7,2). However, FLOAT cannot
be specified with empty parenthesis because its parameter value indicates a specific data
type (REAL or DOUBLE).

• If a specific value for a length, precision, or scale attribute is specified, the value must
exactly match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION
statement. If the data type is FLOAT, the precision does not have to exactly match the value
that was specified because matching is based on the data type (REAL or DOUBLE).

• If length, precision, or scale is not explicitly specified, and empty parentheses are not
specified, the default attributes of the data type are implied. The implicit length must

1360 IBM i: Db2 for i SQL Reference

exactly match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION
statement.

Specifying the FOR DATA clause or CCSID clause is optional. Omission of either clause
indicates that the database manager ignores the attribute when determining whether the
data types match. If either clause is specified, it must match the value that was implicitly or
explicitly specified in the CREATE FUNCTION statement.

AS LOCATOR
Specifies that the function is defined to receive a locator for this parameter. If AS LOCATOR is
specified, the data type must be a LOB or XML or a distinct type based on a LOB or XML.

SPECIFIC FUNCTION specific-name
Identifies the function by its specific name. The specific-name must identify a specific function
that exists at the current server.

PROCEDURE or SPECIFIC PROCEDURE
Identifies the procedure on which the privilege is granted. The procedure-name must identify a
procedure that exists at the current server.
PROCEDURE procedure-name

Identifies the procedure by its name. The procedure-name must identify exactly one procedure.
The procedure may have any number of parameters defined for it. If there is more than one
procedure of the specified name in the specified or implicit schema, an error is returned.

PROCEDURE procedure-name (parameter-type, ...)
Identifies the procedure by its procedure signature, which uniquely identifies the procedure.
The procedure-name (parameter-type, ...) must identify a procedure with the specified procedure
signature. The specified parameters must match the data types in the corresponding position
that were specified when the procedure was created. The number of data types, and the logical
concatenation of the data types is used to identify the specific procedure instance which is to be
granted. Synonyms for data types are considered a match. Parameters that have defaults must be
included in this signature.

If procedure-name () is specified, the procedure identified must have zero parameters.

procedure-name
Identifies the name of the procedure.

(parameter-type, ...)
Identifies the parameters of the procedure.

If an unqualified distinct type or array type name is specified, the database manager searches
the SQL path to resolve the schema name for the distinct type or array type.

For data types that have a length, precision, or scale attribute, use one of the following:

• Empty parentheses indicate that the database manager ignores the attribute when
determining whether the data types match. For example, DEC() will be considered a match
for a parameter of a procedure defined with a data type of DEC(7,2). However, FLOAT cannot
be specified with empty parenthesis because its parameter value indicates a specific data
type (REAL or DOUBLE).

• If a specific value for a length, precision, or scale attribute is specified, the value
must exactly match the value that was specified (implicitly or explicitly) in the CREATE
PROCEDURE statement. If the data type is FLOAT, the precision does not have to exactly
match the value that was specified because matching is based on the data type (REAL or
DOUBLE).

• If length, precision, or scale is not explicitly specified, and empty parentheses are not
specified, the default attributes of the data type are implied. The implicit length must exactly
match the value that was specified (implicitly or explicitly) in the CREATE PROCEDURE
statement.

Specifying the FOR DATA clause or CCSID clause is optional. Omission of either clause
indicates that the database manager ignores the attribute when determining whether the

Chapter 7. Statements 1361

data types match. If either clause is specified, it must match the value that was implicitly or
explicitly specified in the CREATE PROCEDURE statement.

AS LOCATOR
Specifies that the procedure is defined to receive a locator for this parameter. If AS LOCATOR
is specified, the data type must be a LOB or XML or a distinct type based on a LOB or XML.

SPECIFIC PROCEDURE specific-name
Identifies the procedure by its specific name. The specific-name must identify a specific procedure
that exists at the current server.

TO
Indicates to whom the privileges are granted.
USER

Specifies that the authorization-name identifies a user profile. If USER is specified, authorization-
name must be a user profile.

GROUP
Specifies that the authorization-name identifies a group profile. If GROUP is specified,
authorization-name must be a group profile.

authorization-name,…
Lists one or more authorization IDs.

PUBLIC
Grants the privileges to a set of users (authorization IDs). For more information, see
“Authorization, privileges and object ownership” on page 15.

WITH GRANT OPTION
Allows the specified authorization-names to grant privileges on the functions or procedures specified
in the ON clause to other users.

If WITH GRANT OPTION is omitted, the specified authorization-names cannot grant privileges on the
functions or procedures specified in the ON clause to another user unless they have received that
authority from some other source (for example, from a grant of the system authority *OBJMGT).

Notes
Corresponding System Authorities: Privileges granted to either an SQL or external function or procedure
are granted to its associated program (*PGM) or service program (*SRVPGM) object. Privileges granted to
a Java external function or procedure are granted to the associated class file or jar file. If the associated
program, service program, class file, or jar file is not found when the grant is executed, an error is
returned.

GRANT and REVOKE statements assign and remove system authorities for SQL objects. The following
table describes the system authorities that correspond to the SQL privileges:

Table 101. Privileges Granted to or Revoked from Non-Java Functions or Procedures

SQL Privilege

Corresponding System Authorities when
Granting to or Revoking from a Function or
Procedure

ALL (Grant or revoke of ALL grants or revokes
only those privileges the authorization ID of the
statement has)

*OBJALTER
*OBJOPR
*EXECUTE
*OBJMGT (Revoke only)

ALTER *OBJALTER

EXECUTE *EXECUTE
*OBJOPR

1362 IBM i: Db2 for i SQL Reference

Table 101. Privileges Granted to or Revoked from Non-Java Functions or Procedures (continued)

SQL Privilege

Corresponding System Authorities when
Granting to or Revoking from a Function or
Procedure

WITH GRANT OPTION *OBJMGT

Table 102. Privileges Granted to or Revoked from Java Functions or Procedures

SQL Privilege

Corresponding Data Authorities
when Granting to or Revoking
from a Java Function or
Procedure

Corresponding Object
Authorities when Granting to or
Revoking from a Java Function
or Procedure

ALL (Grant or revoke of ALL
grants or revokes only those
privileges the authorization ID of
the statement has)

*RWX *OBJEXIST
*OBJALTER
*OBJMGT (Revoke only)

ALTER *R *OBJALTER

EXECUTE *RX *EXECUTE

WITH GRANT OPTION *RWX *OBJMGT

Corresponding System Authorities When Checking Privileges to a Function or Procedure: The
following table describes the system authorities that correspond to the SQL privileges when checking
privileges to a function or procedure. The left column lists the SQL privilege. The right column lists the
equivalent system authorities.

Table 103. Corresponding System Authorities When Checking Privileges to a Non-Java Function or
Procedure

SQL Privilege Corresponding System Authorities

ALTER *OBJALTER

EXECUTE *EXECUTE and *OBJOPR

Table 104. Corresponding System Authorities When Checking Privileges to a Java Function or Procedure

SQL Privilege

Corresponding Data Authorities
when Checking Privileges to a
Java Function or Procedure

Corresponding Object
Authorities when Checking
Privileges to a Java Function or
Procedure

ALTER *R *OBJALTER

EXECUTE *RX *EXECUTE

Built-in functions: Privileges cannot be granted on built-in functions.

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• The keyword RUN can be used as a synonym for EXECUTE.

Chapter 7. Statements 1363

Example
Grant the EXECUTE privilege on procedure PROCA to PUBLIC.

GRANT EXECUTE
 ON PROCEDURE PROCA
 TO PUBLIC

1364 IBM i: Db2 for i SQL Reference

GRANT (package privileges)
This form of the GRANT statement grants privileges on a package.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For each package identified in the statement:

– Every privilege specified in the statement
– The system authority of *OBJMGT on the package
– The system authority *EXECUTE on the library containing the package

• Database administrator authority
• Security administrator authority

If WITH GRANT OPTION is specified, the privileges held by the authorization ID of the statement must
include at least one of the following:

• Ownership of the package
• Database administrator authority
• Security administrator authority

Syntax

GRANT ALL
PRIVILEGES

,

ALTER

EXECUTE

ON PACKAGE

,

package-name

TO

,

USER

GROUP

authorization-name

PUBLIC

WITH GRANT OPTION

Description
ALL or ALL PRIVILEGES

Grants one or more privileges. The privileges granted are all those grantable privileges that the
authorization ID of the statement has on the specified packages. Note that granting ALL PRIVILEGES
on a package is not the same as granting the system authority of *ALL.

If you do not use ALL, you must use one or more of the keywords listed below. Each keyword grants
the privilege described.

Chapter 7. Statements 1365

ALTER
Grants the privilege to use the COMMENT and LABEL statements.

EXECUTE
Grants the privilege to execute statements in a package.

ON PACKAGE package-name
Identifies the packages on which you are granting the privilege. The package-name must identify a
package that exists at the current server.

TO
Indicates to whom the privileges are granted.
USER

Specifies that the authorization-name identifies a user profile. If USER is specified, authorization-
name must be a user profile.

GROUP
Specifies that the authorization-name identifies a group profile. If GROUP is specified,
authorization-name must be a group profile.

authorization-name,…
Lists one or more authorization IDs.

PUBLIC
Grants the privileges to a set of users (authorization IDs). For more information, see
“Authorization, privileges and object ownership” on page 15.

WITH GRANT OPTION
Allows the specified authorization-names to grant privileges on the packages specified in the ON
clause to other users.

If WITH GRANT OPTION is omitted, the specified authorization-names cannot grant privileges on the
packages specified in the ON clause to another user unless they have received that authority from
some other source (for example, from a grant of the system authority *OBJMGT).

Notes
Corresponding System Authorities: GRANT and REVOKE statements assign and remove system
authorities for SQL objects. The following table describes the system authorities that correspond to the
SQL privileges:

Table 105. Privileges Granted to or Revoked from Packages

SQL Privilege
Corresponding System Authorities when
Granting to or Revoking from a Package

ALL (Grant or revoke of ALL grants or revokes
only those privileges the authorization ID of the
statement has)

*OBJALTER
*OBJOPR
*EXECUTE
*OBJMGT (Revoke only)

ALTER *OBJALTER

EXECUTE *EXECUTE
*OBJOPR

WITH GRANT OPTION *OBJMGT

Corresponding System Authorities When Checking Privileges to a Package: The following table
describes the system authorities that correspond to the SQL privileges when checking privileges to a
package. The left column lists the SQL privilege. The right column lists the equivalent system authorities.

1366 IBM i: Db2 for i SQL Reference

Table 106. Corresponding System Authorities When Checking Privileges to a Package

SQL Privilege
Corresponding System Authorities When
Checking Privileges to a Package

ALTER *OBJALTER

EXECUTE *EXECUTE and *OBJOPR

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• The keyword RUN can be used as a synonym for EXECUTE.
• The keyword PROGRAM can be used as a synonym for PACKAGE.

Example
Grant the EXECUTE privilege on package PKGA to PUBLIC.

GRANT EXECUTE
 ON PACKAGE PKGA
 TO PUBLIC

Chapter 7. Statements 1367

GRANT (schema privileges)
This form of the GRANT statement grants privileges on a schema.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For each schema identified in the statement:

– Every privilege specified in the statement
– The system authority of *OBJMGT on the schema

• Database administrator authority
• Security administrator authority

Syntax

GRANT ALL
PRIVILEGES

,

CREATEIN

USAGE

ON SCHEMA

,

schema-name

TO

,

USER

GROUP

authorization-name

PUBLIC

WITH GRANT OPTION

Description
ALL or ALL PRIVILEGES

Grants one or more privileges. The privileges granted are all those grantable privileges that the
authorization ID of the statement has on the specified schemas. Note that granting ALL PRIVILEGES
on a schema is not the same as granting the system authority of *ALL.

If you do not use ALL, you must use one or more of the keywords listed below. Each keyword grants
the privilege described.

CREATEIN
Grants the privilege to create objects in the schema. Other authorities or privileges required to create
the object are still required.

USAGE
Grants the privilege to use the schema. USAGE privilege is required to reference any objects that exist
in the schema.

ON SCHEMA schema-name
Identifies the schemas on which the privilege is granted.

1368 IBM i: Db2 for i SQL Reference

TO
Indicates to whom the privileges are granted.
USER

Specifies that the authorization-name identifies a user profile. If USER is specified, authorization-
name must be a user profile.

GROUP
Specifies that the authorization-name identifies a group profile. If GROUP is specified,
authorization-name must be a group profile.

authorization-name,…
Lists one or more authorization IDs.

PUBLIC
Grants the privileges to a set of users (authorization IDs). For more information, see
“Authorization, privileges and object ownership” on page 15.

WITH GRANT OPTION
Allows the specified authorization-names to grant privileges on the schemas specified in the ON
clause to other users.

Notes
Corresponding System Authorities: GRANT and REVOKE statements assign and remove system
authorities for SQL objects. The following table describes the system authorities that correspond to the
SQL privileges when granting to a schema. The left column lists the SQL privilege. The right column lists
the equivalent system authorities that are granted or revoked.

Table 107. Privileges Granted to or Revoked from Schemas

SQL Privilege
Corresponding System Authorities when
Granting to or Revoking from a Schema

ALL (Grant or revoke of ALL grants or revokes
only those privileges the authorization ID of the
statement has)

*OBJMGT
*OBJOPR
*READ
*EXECUTE
*ADD

CREATEIN *OBJOPR
*READ
*EXECUTE
*ADD110

USAGE *OBJOPR
*READ
*EXECUTE

WITH GRANT OPTION *OBJMGT

Corresponding System Authorities When Checking Privileges to a Schema: The following table
describes the system authorities that correspond to the SQL privileges when checking privileges to a
schema. The left column lists the SQL privilege. The right column lists the equivalent system authorities.

110 Only *ADD is revoked when CREATEIN is revoked.

Chapter 7. Statements 1369

Table 108. Corresponding System Authorities When Checking Privileges to a Schema

SQL Privilege Corresponding System Authorities

CREATEIN *OBJOPR, *READ, *EXECUTE, and *ADD111

USAGE *EXECUTE111

GRANT rules: The GRANT statement will grant only those privileges that the authorization ID of the
statement is allowed to grant. If no privileges were granted, an error is returned.

Example
Example 1: Grant the CREATEIN privilege on schema T_SCORES to user JONES.

GRANT CREATEIN
 ON SCHEMA T_SCORES
 TO JONES;

111 *OBJOPR and *READ are only checked for certain statements (for example CREATEs).

1370 IBM i: Db2 for i SQL Reference

GRANT (sequence privileges)
This form of the GRANT statement grants privileges on a sequence.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For each sequence identified in the statement:

– Every privilege specified in the statement
– The system authority of *OBJMGT on the sequence
– The system authority *EXECUTE on the library containing the sequence

• Database administrator authority
• Security administrator authority

If WITH GRANT OPTION is specified, the privileges held by the authorization ID of the statement must
include at least one of the following:

• Ownership of the sequence
• Database administrator authority
• Security administrator authority

Syntax

GRANT ALL
PRIVILEGES

,

ALTER

USAGE

ON SEQUENCE

,

sequence-name

TO

,

USER

GROUP

authorization-name

PUBLIC

WITH GRANT OPTION

Description
ALL or ALL PRIVILEGES

Grants one or more privileges. The privileges granted are all those grantable privileges that the
authorization ID of the statement has on the specified sequences. Note that granting ALL PRIVILEGES
on a sequence is not the same as granting the system authority of *ALL.

If you do not use ALL, you must use one or more of the keywords listed below. Each keyword grants
the privilege described.

Chapter 7. Statements 1371

ALTER
Grants the privilege to use the ALTER SEQUENCE, COMMENT, and LABEL statements on a sequence.

USAGE
Grants the privilege to use the sequence in NEXT VALUE or PREVIOUS VALUE expressions.

ON SEQUENCE sequence-name
Identifies the sequences on which the privilege is granted. The sequence-name must identify a
sequence that exists at the current server.

TO
Indicates to whom the privileges are granted.
USER

Specifies that the authorization-name identifies a user profile. If USER is specified, authorization-
name must be a user profile.

GROUP
Specifies that the authorization-name identifies a group profile. If GROUP is specified,
authorization-name must be a group profile.

authorization-name,…
Lists one or more authorization IDs.

PUBLIC
Grants the privileges to a set of users (authorization IDs). For more information, see
“Authorization, privileges and object ownership” on page 15.

WITH GRANT OPTION
Allows the specified authorization-names to grant privileges on the sequences specified in the ON
clause to other users.

If WITH GRANT OPTION is omitted, the specified authorization-names cannot grant the USAGE
privilege to others unless they have received that authority from some other source (for example, from
a grant of the system authority *OBJMGT).

Notes
Corresponding System Authorities: GRANT and REVOKE statements assign and remove system
authorities for SQL objects. The following table describes the system authorities that correspond to the
SQL privileges:

Table 109. Privileges Granted to or Revoked from Sequences

SQL Privilege
Corresponding System Authorities when
Granting to or Revoking from a Sequence

ALL (Grant or revoke of ALL grants or revokes
only those privileges the authorization ID of the
statement has)

*OBJALTER
*OBJOPR
*EXECUTE
*READ
*ADD
*DLT
*UPD
*OBJMGT (Revoke only)

ALTER *OBJALTER

1372 IBM i: Db2 for i SQL Reference

Table 109. Privileges Granted to or Revoked from Sequences (continued)

SQL Privilege
Corresponding System Authorities when
Granting to or Revoking from a Sequence

USAGE *OBJOPR
*EXECUTE
*READ
*ADD
*DLT
*UPD

WITH GRANT OPTION *OBJMGT

Corresponding System Authorities When Checking Privileges to a Sequence: The following table
describes the system authorities that correspond to the SQL privileges when checking privileges to a
sequence. The left column lists the SQL privilege. The right column lists the equivalent system authorities.

Table 110. Corresponding System Authorities When Checking Privileges to a Sequence

SQL Privilege Corresponding System Authorities

ALTER *OBJALTER

USAGE *OBJOPR and *EXECUTE and
*READ and *ADD and
*DLT and *UPD

Example
Grant any user the USAGE privilege on a sequence called ORG_SEQ.

GRANT USAGE
 ON SEQUENCE ORG_SEQ
 TO PUBLIC

Chapter 7. Statements 1373

GRANT (table or view privileges)
This form of the GRANT statement grants privileges on tables or views.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For each table or view identified in the statement:

– Every privilege specified in the statement
– The system authority of *OBJMGT on the table or view
– The system authority *EXECUTE on the library containing the table or view

• Database administrator authority
• Security administrator authority

If WITH GRANT OPTION is specified, the privileges held by the authorization ID of the statement must
include at least one of the following:

• Ownership of the table
• Database administrator authority
• Security administrator authority

1374 IBM i: Db2 for i SQL Reference

Syntax

GRANT ALL
PRIVILEGES

,

ALTER

DELETE

INDEX

INSERT

REFERENCES

(

,

column-name)

SELECT

UPDATE

(

,

column-name)

ON
TABLE

,

table-name

view-name

TO

,

USER

GROUP

authorization-name

PUBLIC

WITH GRANT OPTION

Description
ALL or ALL PRIVILEGES

Grants one or more privileges. The privileges granted are all those grantable privileges that the
authorization ID of the statement has on the specified tables or views.

Note that granting ALL PRIVILEGES on a table or view is not the same as granting the system authority
of *ALL.

ALTER
Grants the privilege to alter the specified table or create or drop a trigger on the specified table.
Grants the privilege to use the COMMENT and LABEL statements on tables and views.

DELETE
Grants the privilege to delete rows from the specified table or view. If a view is specified, it must be a
deletable view.

INDEX
Grants the privilege to create an index on the specified table. This privilege cannot be granted on a
view.

Chapter 7. Statements 1375

INSERT
Grants the privilege to insert rows into the specified table or view. If a view is specified, it must be an
insertable view.

REFERENCES
Grants the privilege to add a referential constraint in which each specified table is a parent. If a list
of columns is not specified or if REFERENCES is granted to all columns of the table or view via the
specification of ALL PRIVILEGES, the grantee(s) can add referential constraints using all columns of
each table specified in the ON clause as a parent key, even those added later via the ALTER TABLE
statement. This privilege can be granted on a view, but the privilege is not used for a view.

REFERENCES (column-name,…)
Grants the privilege to add a referential constraint in which each specified table is a parent using only
those columns specified in the column list as a parent key. Each column-name must be an unqualified
name that identifies a column of each table specified in the ON clause. This privilege can be granted
on the columns of a view, but the privilege is not used for a view.

SELECT
Grants the privilege to create a view or read data from the specified table or view. For example, the
SELECT privilege is required if a table or view is specified in a query.

UPDATE
Grants the privilege to update rows in the specified table or view. If a list of columns is not specified
or if UPDATE is granted to all columns of the table or view via the specification of ALL PRIVILEGES,
the grantee(s) can update all updatable columns on each table specified in the ON clause, even those
added later via the ALTER TABLE statement. If a view is specified, it must be an updatable view.

UPDATE (column-name,…)
Grants the privilege to use the UPDATE statement to update only those columns that are identified
in the column list. Each column-name must be an unqualified name that identifies a column of each
table and view specified in the ON clause. If a view is specified, it must be an updatable view and the
specified columns must be updatable columns.

ON table-name or view-name,…
Identifies the tables or views on which the privileges are granted. The table-name or view-name must
identify a table or view that exists at the current server, but must not identify a declared temporary
table.

TO
Indicates to whom the privileges are granted.
USER

Specifies that the authorization-name identifies a user profile. If USER is specified, authorization-
name must be a user profile.

GROUP
Specifies that the authorization-name identifies a group profile. If GROUP is specified,
authorization-name must be a group profile.

authorization-name,…
Lists one or more authorization IDs.

PUBLIC
Grants the privileges to a set of users (authorization IDs). For more information, see
“Authorization, privileges and object ownership” on page 15.

WITH GRANT OPTION
Allows the specified authorization-names to grant privileges on the tables and views specified in the
ON clause to other users.

If WITH GRANT OPTION is omitted, the specified authorization-names cannot grant privileges on the
tables and views specified in the ON clause unless they have received that authority from some other
source (for example, from a grant of the system authority *OBJMGT).

1376 IBM i: Db2 for i SQL Reference

Notes
Corresponding system authorities: The GRANT and REVOKE statements assign and remove system
authorities for SQL objects. The following table describes the system authorities that correspond to the
SQL privileges when granting to a table. The left column lists the SQL privilege. The right column lists the
equivalent system authorities that are granted or revoked.

Chapter 7. Statements 1377

Table 111. Privileges Granted to or Revoked from Tables

SQL Privilege
Corresponding System Authorities when
Granting to or Revoking from a Table

ALL (GRANT or revoke of ALL only grants or
revokes those privileges the authorization ID of the
statement has)

*OBJALTER 112

*OBJMGT (Revoke only)
*OBJOPR
*OBJREF
*ADD
*DLT
*READ
*UPD

ALTER *OBJALTER 113

DELETE *OBJOPR 114

*DLT

INDEX *OBJALTER 113

INSERT *OBJOPR114

*ADD

REFERENCES *OBJREF 113

SELECT *OBJOPR114

*READ

UPDATE *OBJOPR114

*UPD

WITH GRANT OPTION *OBJMGT

The following table describes the system authorities that correspond to the SQL privileges when granting
to a view. The left column lists the SQL privilege. The middle column lists the equivalent system
authorities that are granted to or revoked from the view itself. The right column lists the system
authorities that are granted to all tables and views referenced in the view's definition, and if a view is
referenced, all tables and views referenced in its definition, and so on. 115

If a view references more than one table or view, the *DLT, *ADD, and *UPD system authorities are only
granted to the first table or view in the fullselect of the view definition. The *READ system authority is
granted to all tables and views referenced in the view definition.

112 The SQL INDEX and ALTER privilege correspond to the same system authority of *OBJALTER. Granting both
INDEX and ALTER will not provide the user with any additional authorities.

113 If the WITH GRANT OPTION is given to a user, the user will also be able to perform the functions given by
ALTER and REFERENCES authority.

114 *OBJOPR is only revoked when the last system privilege other than *OBJOPR is also revoked for the
specified authorization ID or PUBLIC.

115 The specified rights are only granted to the tables and views referenced in the view definition if the user
to whom the rights are being granted doesn't already have the rights from another authority source, for
example public authority.

1378 IBM i: Db2 for i SQL Reference

If more than one system authority will be granted with an SQL privilege, and any one of the authorities
cannot be granted, then a warning occurs and no authorities will be granted for that privilege. Unlike
GRANT, REVOKE only revokes system authorities to the view. No system authorities are revoked from the
referenced tables and views.

Table 112. Privileges Granted to or Revoked from Views

SQL Privilege

Corresponding System
Authorities Granted to or
Revoked from View

Corresponding System
Authorities Granted to or
Revoked from Referenced
Tables and Views

ALL (GRANT or REVOKE of ALL
only grants or revokes those
privileges the authorization ID of
the statement has)

*OBJALTER
*OBJMGT (Revoke only)
*OBJOPR
*OBJREF
*ADD
*DLT
*READ
*UPD

*ADD
*DLT
*READ
*UPD

ALTER *OBJALTER 113 None

DELETE *OBJOPR114

*DLT
*DLT

INDEX Not Applicable Not Applicable

INSERT *OBJOPR114

*ADD
*ADD

REFERENCES *OBJREF 113 None

SELECT *OBJOPR114

*READ
*READ

UPDATE *OBJOPR114

*UPD
*UPD

WITH GRANT OPTION *OBJMGT None

Corresponding system authorities when checking privileges to a table or view: The following table
describes the system authorities that correspond to the SQL privileges when checking privileges to a
table. The left column lists the SQL privilege. The right column lists the equivalent system authorities.

Table 113. Corresponding System Authorities when Checking Privileges to a Table

SQL Privilege
Corresponding System Authorities when
Checking Privileges to a Table

ALTER *OBJALTER or *OBJMGT

DELETE *OBJOPR and *DLT

INDEX *OBJALTER or *OBJMGT

INSERT *OBJOPR and *ADD

Chapter 7. Statements 1379

Table 113. Corresponding System Authorities when Checking Privileges to a Table (continued)

SQL Privilege
Corresponding System Authorities when
Checking Privileges to a Table

REFERENCES *OBJREF or *OBJMGT

SELECT *OBJOPR and *READ

UPDATE *OBJOPR and *UPD

The following table describes the system authorities that correspond to the SQL privileges when checking
privileges to a view. The left column lists the SQL privilege. The middle column lists the equivalent system
authorities that are checked on the view itself. The right column lists the system authorities that are
checked on all tables and views referenced in the view's definition, and if a view is referenced, all tables
and views referenced in its definition, and so on.

Table 114. Corresponding System Authorities when Checking Privileges to a View

SQL Privilege
Corresponding System
Authorities to the View

Corresponding System
Authorities to the Referenced
Tables and Views

ALTER *OBJALTER and *OBJMGT None

DELETE116
*OBJOPR and *DLT *DLT

INDEX Not Applicable Not Applicable

INSERT117
*OBJOPR and *ADD *ADD

REFERENCES *OBJREF or *OBJMGT None

SELECT *OBJOPR and *READ *READ

UPDATE118
*OBJOPR and *UPD *UPD

GRANT rules: The GRANT statement will grant only those privileges that the authorization ID of the
statement is allowed to grant. If no privileges were granted, an error is returned.

Examples
Example 1: Grant all privileges on the table WESTERN_CR to PUBLIC.

116 When a view is created, the owner does not necessarily acquire the DELETE privilege on the view. The
owner only acquires the DELETE privilege if the view allows deletes and the owner also has the DELETE
privilege on the first table referenced in the subselect.

117 When a view is created, the owner does not necessarily acquire the INSERT privilege on the view. The
owner only acquires the INSERT privilege if the view allows inserts and the owner also has the INSERT
privilege on the first table referenced in the subselect.

118 When a view is created, the owner does not necessarily acquire the UPDATE privilege on the view. The
owner only acquires the UPDATE privilege if the view allows updates and the owner also has the UPDATE
privilege on the first table referenced in the subselect.

1380 IBM i: Db2 for i SQL Reference

 GRANT ALL PRIVILEGES ON WESTERN_CR
 TO PUBLIC

Example 2: Grant the appropriate privileges on the CALENDAR table so that PHIL and CLAIRE can read it
and insert new entries into it. Do not allow them to change or remove any existing entries.

 GRANT SELECT, INSERT ON CALENDAR
 TO PHIL, CLAIRE

Example 3: Grant column privileges on TABLE1 and VIEW1 to FRED. Note that both columns specified in
this GRANT statement must be found in both TABLE1 and VIEW1.

 GRANT UPDATE(column_1, column_2)
 ON TABLE1, VIEW1
 TO FRED WITH GRANT OPTION

Chapter 7. Statements 1381

GRANT (type privileges)
This form of the GRANT statement grants privileges on a type.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For each distinct type or array type identified in the statement:

– Every privilege specified in the statement
– The system authority of *OBJMGT on the type
– The system authority *EXECUTE on the library containing the type

• Database administrator authority
• Security administrator authority

If WITH GRANT OPTION is specified, the privileges held by the authorization ID of the statement must
include at least one of the following:

• Ownership of the type
• Database administrator authority
• Security administrator authority

Syntax

GRANT ALL
PRIVILEGES

,

ALTER

USAGE

ON TYPE

,

distinct-type-name

array-type-name

TO

,

USER

GROUP

authorization-name

PUBLIC

WITH GRANT OPTION

1382 IBM i: Db2 for i SQL Reference

Description
ALL or ALL PRIVILEGES

Grants one or more privileges. The privileges granted are all those grantable privileges that the
authorization ID of the statement has on the specified distinct types or array types. Note that granting
ALL PRIVILEGES on a type is not the same as granting the system authority of *ALL.

If you do not use ALL, you must use one or more of the keywords listed below. Each keyword grants
the privilege described.

ALTER
Grants the privilege to use the COMMENT and LABEL statement.

USAGE
Grants the privilege to use the type in tables, functions, procedures, or CAST expressions.

ON TYPE distinct-type-name or array-type-name
Identifies the distinct types or array types on which the privilege is granted. The distinct-type-name or
array-type-name must identify a user-defined type that exists at the current server.

TO
Indicates to whom the privileges are granted.
USER

Specifies that the authorization-name identifies a user profile. If USER is specified, authorization-
name must be a user profile.

GROUP
Specifies that the authorization-name identifies a group profile. If GROUP is specified,
authorization-name must be a group profile.

authorization-name,…
Lists one or more authorization IDs.

PUBLIC
Grants the privileges to a set of users (authorization IDs). For more information, see
“Authorization, privileges and object ownership” on page 15.

WITH GRANT OPTION
Allows the specified authorization-names to grant privileges on the types specified in the ON clause to
other users.

If WITH GRANT OPTION is omitted, the specified authorization-names cannot grant the USAGE
privilege to others unless they have received that authority from some other source (for example, from
a grant of the system authority *OBJMGT).

Notes
Corresponding System Authorities: GRANT and REVOKE statements assign and remove system
authorities for SQL objects. The following table describes the system authorities that correspond to the
SQL privileges:

Table 115. Privileges Granted to or Revoked from User-defined Types

SQL Privilege

Corresponding System Authorities when
Granting to or Revoking from a User-defined
Type

ALL (Grant or revoke of ALL grants or revokes
only those privileges the authorization ID of the
statement has)

*OBJALTER
*OBJOPR
*EXECUTE
*OBJMGT (Revoke only)

ALTER *OBJALTER

Chapter 7. Statements 1383

Table 115. Privileges Granted to or Revoked from User-defined Types (continued)

SQL Privilege

Corresponding System Authorities when
Granting to or Revoking from a User-defined
Type

USAGE *EXECUTE
*OBJOPR

WITH GRANT OPTION *OBJMGT

Corresponding System Authorities When Checking Privileges to a User-defined Type: The following
table describes the system authorities that correspond to the SQL privileges when checking privileges to a
type. The left column lists the SQL privilege. The right column lists the equivalent system authorities.

Table 116. Corresponding System Authorities When Checking Privileges to a User-defined Type

SQL Privilege

Corresponding System Authorities when
Granting to or Revoking from a User-defined
Type

ALTER *OBJALTER

USAGE *EXECUTE and *OBJOPR

When USAGE privilege is required: USAGE privilege is required when a type is explicitly referenced in
an SQL statement. For example, in a statement that contains a CAST specification or in a CREATE TABLE
statement. The USAGE privilege is not required when a type is indirectly referenced. For example, when a
view references a column of a table that has a distinct data type.

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• The keywords DATA TYPE or DISTINCT TYPE can be used as a synonym for TYPE.

Example
Grant the USAGE privilege on distinct type SHOE_SIZE to user JONES. This GRANT statement does
not give JONES the privilege to execute the cast functions that are associated with the distinct type
SHOE_SIZE.

GRANT USAGE
 ON DISTINCT TYPE SHOE_SIZE
 TO JONES

1384 IBM i: Db2 for i SQL Reference

GRANT (variable privileges)
This form of the GRANT statement grants privileges on a global variable.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For each global variable identified in the statement:

– Every privilege specified in the statement
– The system authority of *OBJMGT on the global variable
– The system authority *EXECUTE on the library containing the global variable

• Database administrator authority
• Security administrator authority

If WITH GRANT OPTION is specified, the privileges held by the authorization ID of the statement must
include at least one of the following:

• Ownership of the global variable
• Database administrator authority
• Security administrator authority

Syntax

GRANT ALL
PRIVILEGES

,

ALTER

READ

WRITE

ON VARIABLE

,

variable-name

TO

,

USER

GROUP

authorization-name

PUBLIC

WITH GRANT OPTION

Description
ALL or ALL PRIVILEGES

Grants one or more privileges. The privileges granted are all those grantable privileges that the
authorization ID of the statement has on the specified global variables. Note that granting ALL
PRIVILEGES on a global variable is not the same as granting the system authority of *ALL.

If you do not use ALL, you must use one or more of the keywords listed below. Each keyword grants
the privilege described.

Chapter 7. Statements 1385

ALTER
Grants the privilege to use the COMMENT and LABEL statements on a global variables.

READ
Grants the privilege to read the value of a global variable.

WRITE
Grants the privilege to assign a value to a global variable.

ON VARIABLE variable-name
Identifies the global variables on which the privilege is granted. The variable-name must identify a
global variable that exists at the current server.

TO
Indicates to whom the privileges are granted.
USER

Specifies that the authorization-name identifies a user profile. If USER is specified, authorization-
name must be a user profile.

GROUP
Specifies that the authorization-name identifies a group profile. If GROUP is specified,
authorization-name must be a group profile.

authorization-name,…
Lists one or more authorization IDs.

PUBLIC
Grants the privileges to a set of users (authorization IDs). For more information, see
“Authorization, privileges and object ownership” on page 15.

WITH GRANT OPTION
Allows the specified authorization-names to grant privileges on the global variables specified in the
ON clause to other users.

Notes
Corresponding System Authorities: GRANT and REVOKE statements assign and remove system
authorities for SQL objects. The following table describes the system authorities that correspond to the
SQL privileges:

Table 117. Privileges Granted to or Revoked from Global Variables

SQL Privilege
Corresponding System Authorities when
Granting to or Revoking from a Global Variable

ALL (Grant or revoke of ALL grants or revokes
only those privileges the authorization ID of the
statement has)

*OBJALTER
*OBJOPR
*EXECUTE
*UPD
*READ
*OBJMGT (Revoke only)

ALTER *OBJALTER

READ *OBJOPR
*EXECUTE
*READ

WRITE *OBJOPR
*EXECUTE
*UPD

1386 IBM i: Db2 for i SQL Reference

Table 117. Privileges Granted to or Revoked from Global Variables (continued)

SQL Privilege
Corresponding System Authorities when
Granting to or Revoking from a Global Variable

WITH GRANT OPTION *OBJMGT

Corresponding System Authorities When Checking Privileges to a Global Variable: The following table
describes the system authorities that correspond to the SQL privileges when checking privileges to a
global variable. The left column lists the SQL privilege. The right column lists the equivalent system
authorities.

Table 118. Corresponding System Authorities When Checking Privileges to a Global Variable

SQL Privilege Corresponding System Authorities

ALTER *OBJALTER

READ *OBJOPR and *EXECUTE and *READ

WRITE *OBJOPR and *EXECUTE and
*UPD

Example
Grant the READ and WRITE privileges on global variable MYSCHEMA.MYJOB_PRINTER to user ZUBIRI.

GRANT READ, WRITE
 ON VARIABLE MYSCHEMA.MYJOB_PRINTEER
 TO ZUBIRI

Chapter 7. Statements 1387

GRANT (XML schema privileges)
This form of the GRANT statement grants privileges on an XSR object.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For each XSR object identified in the statement:

– Every privilege specified in the statement
– The system authority of *OBJMGT on the XSR object
– The system authority *EXECUTE on the library containing the XSR object

• Database administrator authority
• Security administrator authority

If WITH GRANT OPTION is specified, the privileges held by the authorization ID of the statement must
include at least one of the following:

• Ownership of the XSR object
• Database administrator authority
• Security administrator authority

Syntax

GRANT ALL
PRIVILEGES

,

ALTER

USAGE

ON XSROBJECT

,

xsrobject-name

TO

,

USER

GROUP

authorization-name

PUBLIC

WITH GRANT OPTION

Description
ALL or ALL PRIVILEGES

Grants one or more privileges. The privileges granted are all those grantable privileges that the
authorization ID of the statement has on the specified XSR object. Note that granting ALL PRIVILEGES
on an XSR object is not the same as granting the system authority of *ALL.

If you do not use ALL, you must use one or more of the keywords listed below. Each keyword grants
the privilege described.

1388 IBM i: Db2 for i SQL Reference

ALTER
Grants the privilege to use the COMMENT and LABEL statements.

USAGE
Grants the privilege to use the XSR object for validation or decomposition.

ON XSROBJECT xsrobject-name
Identifies the XSR objects for which the privilege is granted. The xsrobject-name must identify an XSR
object that exists at the current server.

TO
Indicates to whom the privileges are granted.
USER

Specifies that the authorization-name identifies a user profile. If USER is specified, authorization-
name must be a user profile.

GROUP
Specifies that the authorization-name identifies a group profile. If GROUP is specified,
authorization-name must be a group profile.

authorization-name,…
Lists one or more authorization IDs.

PUBLIC
Grants the privileges to a set of users (authorization IDs). For more information, see
“Authorization, privileges and object ownership” on page 15.

WITH GRANT OPTION
Allows the specified authorization-names to grant privileges on the XSR objects specified in the ON
clause to other users.

If WITH GRANT OPTION is omitted, the specified authorization-names cannot grant privileges on the
XSR objects specified in the ON clause to another user unless they have received that authority from
some other source (for example, from a grant of the system authority *OBJMGT).

Notes
GRANT and REVOKE statements assign and remove system authorities for SQL objects. The following
table describes the system authorities that correspond to the SQL privileges:

Table 119. Privileges Granted to or Revoked from XSR Objects

SQL Privilege
Corresponding System Authorities when
Granting to or Revoking from an XSR object

ALL (Grant or revoke of ALL grants or revokes
only those privileges the authorization ID of the
statement has)

*OBJALTER
*OBJOPR
*READ
*EXECUTE
*OBJMGT (Revoke only)

ALTER *OBJALTER

USAGE *OBJOPR
*EXECUTE
*READ

WITH GRANT OPTION *OBJMGT

Corresponding System Authorities When Checking Privileges to an XSR Object: The following table
describes the system authorities that correspond to the SQL privileges when checking privileges to
an XSR object. The left column lists the SQL privilege. The right column lists the equivalent system
authorities.

Chapter 7. Statements 1389

Table 120. Corresponding System Authorities When Checking Privileges to an XSR Object

SQL Privilege Corresponding System Authorities

ALTER *OBJALTER

USAGE *OBJOPR and *EXECUTE and *READ

Example
Grant the USAGE privilege on XSR object XMLSCHEMA to PUBLIC.

GRANT USAGE
 ON XSROBJECT XMLSCHEMA
 TO PUBLIC

1390 IBM i: Db2 for i SQL Reference

HOLD LOCATOR
The HOLD LOCATOR statement allows a LOB or XML locator variable to retain its association with a value
beyond a unit of work.

Invocation
This statement can only be embedded in an application program. It cannot be issued interactively. It is
an executable statement that can be dynamically prepared. However, the EXECUTE statement with the
USING clause must be used to execute the prepared statement. HOLD LOCATOR cannot be used with the
EXECUTE IMMEDIATE statement. It must not be specified in REXX.

Authorization
None required.

Syntax

HOLD LOCATOR

,

variable

Description
variable,...

Identifies a variable that must be declared in accordance with the rules for declaring variable locator
variables. An indicator variable must not be specified. The locator variable type must be a binary large
object locator, a character large object locator, a double-byte character large object locator, or an XML
locator.

After the HOLD LOCATOR statement is executed, each locator variable in the variable list has the hold
property.

The variable must currently have a locator assigned to it. That is, a locator must have been assigned
during this unit of work (by a CALL, FETCH, SELECT INTO, SET variable, or VALUES INTO statement)
and must not subsequently have been freed (by a FREE LOCATOR statement); otherwise, an error is
raised.

If more than one variable is specified in the HOLD LOCATOR statement and an error occurs on one of
the locators, no locators will be held.

Note
A LOB or XML locator variable that has the hold property is freed (has its association between it and its
value removed) when:

• The SQL FREE LOCATOR statement is executed for the locator variable.
• The SQL ROLLBACK statement without a HOLD option is executed.
• The SQL session is terminated.

Example
Assume that the employee table contains columns RESUME, HISTORY, and PICTURE and that locators
have been established in a program to represent the values represented by the columns. Give the CLOB
locator variables LOCRES and LOCHIST, and the BLOB locator variable LOCPIC the hold property.

 HOLD LOCATOR :LOCRES,:LOCHIST,:LOCPIC

Chapter 7. Statements 1391

1392 IBM i: Db2 for i SQL Reference

INCLUDE
The INCLUDE statement inserts application code, including declarations and statements, into a source
program.

Invocation
This statement can only be embedded in an application program. It is not an executable statement. It
must not be specified in Java or REXX.

Authorization
The authorization ID of the statement must have the system authorities *OBJOPR and *READ on the file
that contains the member.

Syntax
INCLUDE SQLCA

SQLDA

name

*LIBL /

*CURLIB /

library-name /

file-name (member-name)

'string'

Description
SQLCA

Indicates the description of an SQL communication area (SQLCA) is to be included. INCLUDE SQLCA
must not be specified if the program includes a stand-alone SQLCODE or a stand-alone SQLSTATE.
An SQLCA can be specified for C, C++, COBOL, and PL/I. If the SQLCA is not specified, the variable
SQLCODE or SQLSTATE must appear in the program.

INCLUDE SQLCA must not be specified more than once in the same program. For more information,
see “SQL diagnostic information” on page 814.

The SQLCA should not be specified for RPG programs. In an RPG program, the precompiler
automatically includes the SQLCA.

For a description of the SQLCA, see Appendix C, “SQLCA (SQL communication area),” on page 1665.

SQLDA
Specifies the description of an SQL descriptor area (SQLDA) is to be included. INCLUDE SQLDA can be
specified in C, C++, COBOL, PL/I, and ILE RPG.

For a description of the SQLDA, see Appendix D, “SQLDA (SQL descriptor area),” on page 1675.

name
Identifies a member or source stream file to be included in the source program.

If precompiling using the SRCFILE parameter, it identifies a member to be included from the file
specified on the INCFILE parameter of the CRTSQLxxx command.

If precompiling using the SRCSTMF parameter, it identifies a file to be included using the path from
the INCDIR parameter of the CRTSQLxxx command. No suffix will be appended to the name.

Chapter 7. Statements 1393

The source can contain any host language statements and any SQL statements other than an
INCLUDE statement. In COBOL, INCLUDE member-name must not be specified in other than the DATA
DIVISION or PROCEDURE DIVISION.

file-name (member-name)
Identifies a source file and member to be included in the source program. The library containing the
source file is specified in one of these ways:
*LIBL

Libraries in the job's library list are searched until the first match is found. This is the default.
*CURLIB

The current library for the job is searched. If no library is specified as the current library for the
job, QGPL is used.

library-name
Identifies the name of the library to search.

The source can contain any host language statements and any SQL statements other than an
INCLUDE statement. In COBOL, INCLUDE must not be specified in other than the DATA DIVISION
or PROCEDURE DIVISION.

Including a source file and member is only allowed when precompiling using the SRCFILE parameter.

'string'
Identifies a file to be included using the path from the INCDIR parameter of the CRTSQLxxx command.
The string will be handled as a normal SQL string literal; the source stream file rules for escaping
characters will not be followed. No suffix will be appended to the string.

The source can contain any host language statements and any SQL statements other than an INCLUDE
statement.

Including a stream file is only allowed when precompiling using the SRCSTMF parameter.

When your program is precompiled, the INCLUDE statement is replaced by source statements.

The INCLUDE statement must be specified at a point in your program where the resulting source
statements are acceptable to the compiler.

Notes
CCSID considerations: If the CCSID of the file specified on the SRCFILE or SRCSTMF parameter is
different from the CCSID of the source for the INCLUDE statement, the INCLUDE source is converted to
the CCSID of the source file.

Example
Include an SQL descriptor area in a C program.

 EXEC SQL INCLUDE SQLDA;

 EXEC SQL DECLARE C1 CURSOR FOR
 SELECT DEPTNO, DEPTNAME, MGRNO FROM TDEPT
 WHERE ADMRDEPT = 'A00';

 EXEC SQL OPEN C1;

 while (SQLCODE==0) {
 EXEC SQL FETCH C1 INTO :dnum, :dname, :mnum;

 /* Print results */

 }

 EXEC SQL CLOSE C1;

1394 IBM i: Db2 for i SQL Reference

INSERT
The INSERT statement inserts rows into a table or view. Inserting a row into a view also inserts the row
into the table on which the view is based if no INSTEAD OF INSERT trigger is defined on this view. If such
a trigger is defined, the trigger will be activated instead.

There are four forms of this statement:

• The INSERT using VALUES form is used to insert one or more rows into the table or view using the values
provided or referenced.

• The INSERT using fullselect form is used to insert one or more rows into the table or view using values
from other tables or views.

• The INSERT using n ROWS form is used to insert multiple rows into the table or view using the values
provided in a host-structure-array.

• The INSERT DEFAULT VALUES form is used to insert a single row using default values for every column.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared with the exception of the n ROWS form, which must be
a static statement embedded in an application program. The n ROWS form is not allowed in a REXX
procedure.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For the table or view identified in the statement:

– The INSERT privilege on the table or view, and
– The system authority *EXECUTE on the library containing the table or view

• Database administrator authority

If a fullselect is specified, the privileges held by the authorization ID of the statement must also include
one of the following:

• For each table or view identified in the fullselect:

– The SELECT privilege on the table or view, and
– The system authority *EXECUTE on the library containing the table or view

• Database administrator authority

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Table or View.

Syntax
INSERT INTO table-name

view-name

insert-specification

DEFAULT VALUES

isolation-clause

insert-specification

Chapter 7. Statements 1395

(

,

column-name)

include-columns

OVERRIDING SYSTEM VALUE

OVERRIDING USER VALUE

VALUES

,

expression

DEFAULT

NULL

(

,

expression

DEFAULT

NULL

)

isolation-clause

insert-multiple-rows

isolation-clause

WITH

RECURSIVE

,

common-table-expression

fullselect

isolation-clause

include-columns
INCLUDE (

,

column-name

FOR
COLUMN

system-column-name

data-type

)

insert-multiple-rows
integer

variable

ROWS VALUES (host-structure-array)

isolation–clause
WITH NC

UR

CS

KEEP LOCKS

RS

lock-clause

RR

lock-clause

1396 IBM i: Db2 for i SQL Reference

lock-clause
USE AND KEEP EXCLUSIVE LOCKS

data-type
built-in-type

distinct-type

built-in-type

Chapter 7. Statements 1397

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

allocate-clause

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CLOB

CHAR LARGE OBJECT

CHARACTER LARGE OBJECT

(1M)

(integer

K

M

G

) allocate-clause FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

allocate-clause

DBCLOB

(1M)

(integer

K

M

G

) allocate-clause

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

allocate-clause

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

) allocate-clause

normalize-clause

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

allocate-clause

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

) allocate-clause

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

DATALINK

(200)

(integer) allocate-clause ccsid-clause

ROWID

XML

allocate-clause ccsid-clause

allocate-clause
ALLOCATE (integer)

ccsid-clause

1398 IBM i: Db2 for i SQL Reference

CCSID integer

normalize-clause

normalize-clause
NOT NORMALIZED

NORMALIZED

Description
INTO table-name or view-name

Identifies the object of the insert operation. The name must identify a table or view that exists at the
current server, but it must not identify a history table, a catalog table, a view of a catalog table, or a
view that is not insertable. For an explanation of insertable views, see “CREATE VIEW” on page 1206.

DEFAULT VALUES
Specifies that a default value will be assigned to every column in the table. This is the same as
specifying a list of values for all the columns with each of the values being the keyword DEFAULT.
The value that is inserted depends on how the column was defined, as described for the DEFAULT
keyword.

(column-name,…)
Specifies the columns for which insert values are provided. Each name must be a name that identifies
a column of the table or view. The same column must not be identified more than once. If extended
indicators are not enabled, a view column that is not updatable must not be identified. If extended
indicators are not enabled and the object of the insert operation is a view with non-updatable
columns, a list of column names must be specified and the list must not identify those columns.
For an explanation of updatable columns in views, see “CREATE VIEW” on page 1206.

Omission of the column list is an implicit specification of a list in which every column of the table or
view is identified in left-to-right order. Any columns defined with the hidden attribute are omitted. This
list is established when the statement is prepared and, therefore, does not include columns that were
added to a table after the statement was prepared.

If the INSERT statement is embedded in an application and the referenced table or view exists at
create program time, the statement is prepared at create program time. Otherwise, the statement is
prepared at the first successful execute of the INSERT statement.

include-columns
Specifies a set of columns that are included, along with the columns of table-name or view-name,
in the intermediate result table of the INSERT statement when it is nested in the FROM clause
of a fullselect. The include-columns are appended to the end of the list of columns specified by
table-name or view-name.
INCLUDE

Specifies a list of columns to be included in the intermediate result table of the INSERT statement.
This clause can only be specified if the INSERT statement is nested in the FROM clause of a
fullselect.

column-name
Specifies a column of the intermediate result table of the INSERT statement. The name cannot be
the same as the name of another include column or a column in table-name or view-name.

FOR COLUMN system-column-name
Provides an IBM i name for the column. The name must not be the same as any column-name or
system-column-name in the INCLUDE column list or in table-name or view-name.

data-type
Specifies the data type of the include column. For a description of data-type, see “CREATE TABLE”
on page 1115. If a DATALINK data-type is used, FILE LINK CONTROL is not allowed.

OVERRIDING SYSTEM VALUE or OVERRIDING USER VALUE
Specifies whether system generated values or user-specified values for a ROWID, identity, or row
change timestamp column are used. If OVERRIDING SYSTEM VALUE is specified, the implicit or

Chapter 7. Statements 1399

explicit list of columns for the INSERT statement must contain a ROWID, identity, or row change
timestamp column defined as GENERATED ALWAYS. If OVERRIDING USER VALUE is specified, the
implicit or explicit list of columns for the INSERT statement must contain a column defined as either
GENERATED ALWAYS or GENERATED BY DEFAULT.
OVERRIDING SYSTEM VALUE

Specifies that the value specified in the VALUES clause or produced by a fullselect for a ROWID,
identity, or row change timestamp column that is defined as GENERATED ALWAYS is used. A
system-generated value is not inserted.
If a value for a row-begin, row-end, transaction-start-ID, or generated expression column is
provided, it must be DEFAULT.

OVERRIDING USER VALUE
Specifies that the value specified in the VALUES clause or produced by a fullselect for a column
that is defined as either GENERATED ALWAYS or GENERATED BY DEFAULT is ignored. Instead, a
system-generated value is inserted, overriding the user-specified value.

If neither OVERRIDING SYSTEM VALUE nor OVERRIDING USER VALUE is specified:

• A value other than DEFAULT cannot be specified for a ROWID, identity, row change timestamp,
row-begin, row-end, transaction-start-ID, or generated expression column that is defined as
GENERATED ALWAYS.

• A value can be specified for a ROWID, identity, or row change timestamp column that is defined
as GENERATED BY DEFAULT. If a value is specified that value is assigned to the column. However,
a value can be inserted into a ROWID column defined BY DEFAULT only if the specified value is
a valid row ID value that was previously generated by Db2 for z/OS or Db2 for i. When a value
is inserted into an identity or row change timestamp column defined BY DEFAULT, the database
manager does not verify that the specified value is a unique value for the column unless the identity
or row change timestamp column is the sole key in a unique constraint or unique index. Without a
unique constraint or unique index, the database manager can guarantee unique values only among
the set of system-generated values as long as NO CYCLE is in effect.

If a value is not specified the database manager generates a new value.

VALUES
Specifies one or more new rows to be inserted.

Each variable in the clause must identify a host structure or variable that is declared in accordance
with the rules for declaring host structures and variables. In the operational form of the statement, a
reference to a host structure is replaced by a reference to each of its variables. For further information
about variables and structures, see “References to host variables” on page 139 and “Host structures”
on page 144.

The number of values for each row in the VALUES clause must equal the number of names in the
implicit or explicit column list and the columns identified in the INCLUDE clause. The first value is
inserted in the first column in the list, the second value in the second column, and so on.

expression
An expression of the type described in “Expressions” on page 158, that does not include a column
name. If expression is a variable, the variable can identify a structure. If extended indicators are
enabled and the expression is not a single variable, the extended indicator values of DEFAULT and
UNASSIGNED must not be used for that expression.

DEFAULT
Specifies that the default value is assigned to a column. The value that is inserted depends on how
the column was defined, as follows:

• If the column is defined as a generated column based on an expression, the column value is
generated by the database manager, based on that expression.

• If the column is a ROWID, an identity column, a row change timestamp column, a row-begin
column, a row-end column, or a transaction-start-ID column, the database manager will
generate a new value.

1400 IBM i: Db2 for i SQL Reference

• If the WITH DEFAULT clause is used, the default inserted is as defined for the column (see
default-clause in column-definition in “CREATE TABLE” on page 1115).

• If the WITH DEFAULT clause or the NOT NULL clause is not used, the value inserted is NULL.
• If the NOT NULL clause is used and the WITH DEFAULT clause is not used or DEFAULT NULL is

used, the DEFAULT keyword cannot be specified for that column.

DEFAULT must be specified for a ROWID or a generated column that was defined as GENERATED
ALWAYS unless OVERRIDING USER VALUE is specified to indicate that any user-specified value
will be ignored and a unique system-generated value will be inserted.

NULL
Specifies the value for a column is the null value. NULL should only be specified for nullable
columns.

WITH common-table-expression
Specifies a common table expression. For an explanation of common table expression, see “common-
table-expression” on page 790.

fullselect
Specifies a set of new rows in the form of the result table of a fullselect. If the result table is empty,
SQLSTATE is set to '02000'.

For an explanation of fullselect, see “fullselect” on page 783.

When the base object of the INSERT and a base object of any subselect in the fullselect are the same
table, the select statement is completely evaluated before any rows are inserted.

The number of columns in the result table must equal the number of names implicitly or explicitly
specified in the column-name list. The value of the first column of the result is inserted in the first
column in the list, the second value in the second column, and so on.

isolation-clause
Specifies the isolation level to be used for this statement.
WITH

Introduces the isolation level, which may be one of:

• RR Repeatable read
• RS Read stability
• CS Cursor stability
• UR Uncommitted read
• NC No commit

If isolation-clause is not specified the default isolation is used. See “isolation-clause” on page 799 for
a description of how the default is determined.

insert-multiple-rows
integer or variable ROWS

Specifies the number of rows to be inserted. If a variable is specified, it must be numeric with zero
scale and cannot include an indicator variable.

VALUES (host-structure-array)
Specifies a set of new rows in the form of an array of host structures. The host-structure-array must be
declared in the program in accordance with the rules for declaring host structure arrays. A parameter
marker may not be used in place of the host-structure-array name.

The number of variables in the host structure must equal the number of names in the implicit or
explicit column list and the columns identified in the INCLUDE clause. The first host structure in the
array corresponds to the first row, the second host structure in the array corresponds to the second
row, and so on. In addition, the first variable in the host structure corresponds with the first column of

Chapter 7. Statements 1401

the row, the second variable in the host structure corresponds with the second column of the row, and
so on.

For an explanation of arrays of host structures see “Host structure arrays” on page 145.

insert-multiple-rows is not allowed if the current connection is to a non-remote server. insert-multiple-
rows is not allowed in a data change reference in an RPG/400 or PL/I program.

INSERT Rules
Default Values: The value inserted in any column that is not in the column list is the default value of the
column. Columns without a default value must be included in the column list. Similarly, if you insert into
a view without an INSTEAD OF INSERT trigger, the default value is inserted into any column of the base
table that is not included in the view. Hence, all columns of the base table that are not in the view must
have a default value.

Assignment: Insert values are assigned to columns in accordance with the storage assignment rules
described in Chapter 2, “Language elements,” on page 43.

Validity: Insert operations must obey the following rules. If they do not, or if any other errors occur during
the execution of the INSERT statement, no rows are inserted unless COMMIT(*NONE) was specified.

• Unique constraints and unique indexes: If the identified table, or the base table of the identified view,
has one or more unique indexes or unique constraints, each row inserted into the table must conform to
the limitations imposed by those indexes and constraints (SQLSTATE 23505).

All uniqueness checks are effectively made at the end of the statement unless COMMIT(*NONE) was
specified. In the case of a multiple-row INSERT statement, this would occur after all rows were
inserted. If COMMIT(*NONE) is specified, checking is performed as each row is inserted.

• Check constraints: If the identified table, or the base table of the identified view, has one or more
check constraints, each check constraint must be true or unknown for each row inserted into the table
(SQLSTATE 23513).

The check constraints are effectively checked at the end of the statement. In the case of a multiple-row
INSERT statement, this would occur after all rows were inserted.

• Views and the CHECK OPTION clause: If a view is identified, the inserted rows must conform to any
applicable CHECK OPTION clause (SQLSTATE 44000). For more information, see “CREATE VIEW” on
page 1206.

Triggers: If the identified table or the base table of the identified view has an insert trigger, the trigger is
activated. A trigger might cause other statements to be executed or raise error conditions based on the
insert values. If the INSERT statement is used as a data-change-table-reference, an AFTER INSERT trigger
that attempts to modify the inserted rows will cause an error.

Referential Integrity: Each nonnull insert value of a foreign key must equal some value of the parent key
of the parent table in the relationship.

The referential constraints (other than a referential constraint with a RESTRICT delete rule) are effectively
checked at the end of the statement. In the case of a multiple-row INSERT statement, this would occur
after all rows were inserted and any associated triggers were activated.

If the INSERT statement is used as a data-change-table-reference, any referential constraint that
attempts to modify the inserted rows will cause an error.

XML values: A value that is inserted into an XML column must be a well-formed XML document.

Inserting rows into a table for which row or column access control is enforced: When an INSERT
statement is issued for a table for which row or column access control is enforced, the rules specified
in the enabled row permissions or column masks determine whether the row can be inserted. Typically
those rules are based on the authorization ID of the statement. The following rules describe how the
enabled row permissions and column masks are used during INSERT:

• When a column is referenced while deriving the values of a new row, if that column has an enabled
column mask, the masked value is used to derive the new values. If the object table also has column

1402 IBM i: Db2 for i SQL Reference

access control activated, the column mask that is applied to derive the new values must return the
column itself, not a constant or an expression. If the column mask does not mask the column to itself,
the new value cannot be used for insert and an error is returned.

If the OVERRIDING USER VALUE clause is specified, the corresponding values in the new row are
ignored, and the above rule for column masks is not applicable to those values.

• If the row can be inserted, and there is a BEFORE INSERT trigger for the table, the trigger is activated.

Within the trigger actions, the new values for insert can be modified in the transition variables. When the
values return from the trigger, the final values for the new values are the ones for insert.

• A row to be inserted must conform to the enabled row permissions.

When multiple enabled row permissions are defined for a table, a row access control search condition
is derived by application of the logical OR operator to the search condition in each enabled row
permission. A row that conforms to all enabled row permissions is a row that, if the row is inserted,
can be retrieved back using the row access control search condition.

• If the rows can be inserted and there is an AFTER INSERT trigger for the table, the trigger is activated.

The preceding rules do not apply to the include-columns. The include-columns will accept whatever
values are assigned to them, which could be either masked or unmasked values.

Masked data can be assigned to a variable used as a value for the insert operation. If an insert violation
check constraint does not exist for the column, the masked data will be inserted in the column and no
error will be issued.

Extended indicator usage: When extended indicators are enabled, indicator values other than positive
values and 0 (zero) through -7 must not be specified. The DEFAULT and UNASSIGNED extended indicator
values must not appear in contexts where they are not supported.

Extended indicators: In an INSERT statement, the extended indicator value of UNASSIGNED has the
effect of setting the column to its default value. If a target column is not updatable, it can only be assigned
the extended indicator value of UNASSIGNED, unless it is a generated column defined as GENERATED
ALWAYS. If the target column is a generated column defined as GENERATED ALWAYS, then it must be
assigned the extended indicator value of DEFAULT or UNASSIGNED.

Extended indicators and insert triggers: The activation of insert triggers is not affected by the use of
extended indicators. If all columns in the implicit or explicit column list have been assigned an extended
indicator value of UNASSIGNED or DEFAULT, an insert where all columns have their respective default
values is attempted and, if successful, the insert trigger is activated.

Extended indicators and deferred error checks: When extended indicators are enabled, validation that
would normally be done during statement preparation to recognize an insert into a non-updatable column
is deferred until the statement is executed.

Notes
Insert operation errors: If an insert value violates any constraints, or if any other error occurs during
the execution of an INSERT statement and COMMIT(*NONE) was not specified, all changes from this
statement and any triggered SQL statements are rolled back. However, other changes in the unit of work
made prior to the error are not rolled back. If COMMIT(*NONE) is specified, changes are not rolled back.

Number of rows inserted: After executing an INSERT statement, the ROW_COUNT statement information
item in the SQL Diagnostics Area (or SQLERRD(3) of the SQLCA) is the number of rows that the database
manager inserted. The ROW_COUNT item does not include the number of rows that were inserted as a
result of a trigger.

For a description of ROW_COUNT, see “GET DIAGNOSTICS” on page 1332. For a description of the
SQLCA, see Appendix C, “SQLCA (SQL communication area),” on page 1665.

Locking: If COMMIT(*RR), COMMIT(*ALL), COMMIT(*CS), or COMMIT(*CHG) is specified, one or more
exclusive locks are acquired during the execution of a successful INSERT statement. Until the locks are
released by a commit or rollback operation, an inserted row can only be accessed by:

Chapter 7. Statements 1403

• The application process that performed the insert
• Another application process using COMMIT(*NONE) or COMMIT(*CHG) through a read-only operation

The locks can prevent other application processes from performing operations on the table. For further
information about locking, see the description of the “COMMIT” on page 950, “ROLLBACK” on page
1482, and “LOCK TABLE” on page 1416 statements. Also, see “Isolation level” on page 23 and Database
Programming.

If the INSERT is used as a data-change-table-reference where FINAL TABLE is specified, locks are placed
on inserted rows until the SELECT is complete. These locks may prevent indirect changes to the inserted
rows from within the same job, such as an AFTER TRIGGER attempting to change an inserted row. These
locks are acquired for all isolation levels, including COMMIT(*NONE).

A maximum of 500 000 000 rows can be inserted or changed in any single INSERT statement when
COMMIT(*RR), COMMIT(*ALL), COMMIT(*CS), or COMMIT(*CHG) was specified. The number of rows
changed includes any rows inserted, updated, or deleted under the same commitment definition as a
result of a trigger.

Generated columns: A generated column that is defined as GENERATED ALWAYS should not be specified
in the column-list unless the corresponding entry in the VALUES list is DEFAULT. The user can specify
the OVERRIDING USER VALUE clause to indicate that any user-specified value will be ignored and the
system-generated value at the time of the INSERT will be inserted into this column.

Inserting into tables with row-begin, row-end, or transaction start-ID columns: When a row is
inserted into a table with these generated columns (for instance, a system-period temporal table), the
database manager assigns values to the following columns:

• A row-begin column is assigned a value that is generated using a reading of the time-of-day clock during
execution of the first data change statement in the transaction that requires a value to be assigned to
the row-begin or transaction start-ID column in a table, or a row in a system-period temporal table is
deleted. The database manager ensures uniqueness of the generated values for a row-begin column
across transactions. If multiple rows are inserted within a single SQL transaction, the values for the
row-begin column are the same for all the rows and are unique from the values generated for the
column for another transaction.

• A row-end column is assigned the maximum value for the column
(9999-12-30-00.00.00.000000000000).

• A transaction start-ID column is assigned a unique timestamp value per transaction or the null value.
The null value is assigned to the transaction start-ID column if the column is nullable. Otherwise, the
value is generated using a reading of the time-of-day clock during execution of the first data change
statement in the transaction that requires a value to be assigned to the row-begin or transaction
start-ID column in a table, or a row in a system-period temporal table is deleted. If multiple rows are
inserted within a single SQL transaction, the values for the transaction start-ID column are the same for
all the rows and are unique from the values generated for the column for another transaction.

Inserting into a system-period temporal table: When a row is inserted into a system-period temporal
table, the database manager assigns values to columns as indicated for tables with row-begin, row-end,
or transaction start-ID columns. Also, when a row is inserted, no rows are added to the history table
associated with the system-period temporal table.

If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a non-null value and the value of
the SYSTIME option is YES, the underlying target of the INSERT statement cannot be a system-period
temporal table. This restriction applies regardless of whether the system-period temporal table is directly
or indirectly referenced.

REXX: Variables cannot be used in the INSERT statement within a REXX procedure. Instead, the INSERT
must be the object of a PREPARE and EXECUTE using parameter markers.

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• The keyword NONE can be used as a synonym for NC.
• The keyword CHG can be used as a synonym for UR.

1404 IBM i: Db2 for i SQL Reference

• The keyword ALL can be used as a synonym for RS.

Examples
Example 1: Insert a new department with the following specifications into the DEPARTMENT table:

• Department number (DEPTNO) is ‘E31'
• Department name (DEPTNAME) is ‘ARCHITECTURE'
• Managed by (MGRNO) a person with number ‘00390'
• Reports to (ADMRDEPT) department ‘E01'.

 INSERT INTO DEPARTMENT
 VALUES ('E31', 'ARCHITECTURE', '00390', 'E01')

Example 2: Insert a new department into the DEPARTMENT table as in example 1, but do not assign a
manager to the new department.

 INSERT INTO DEPARTMENT (DEPTNO, DEPTNAME, ADMRDEPT)
 VALUES ('E31', 'ARCHITECTURE', 'E01')

Example 3: Create a table MA_EMPPROJACT with the same columns as the EMPPROJACT table. Populate
MA_EMPPROJACT with the rows from the EMPPROJACT table with a project number (PROJNO) starting
with the letters ‘MA'.

 CREATE TABLE MA_EMPPROJACT LIKE EMPPROJACT

 INSERT INTO MA_EMPPROJACT
 SELECT * FROM EMPPROJACT
 WHERE SUBSTR(PROJNO, 1, 2) = 'MA'

Example 4: Use a Java program statement to add a skeleton project to the PROJECT table on the
connection context 'ctx'. Obtain the project number (PROJNO), project name (PROJNAME), department
number (DEPTNO), and responsible employee (RESPEMP) from host variables. Use the current date as the
project start date (PRSTDATE). Assign a NULL value to the remaining columns in the table.

 #sql [ctx] { INSERT INTO PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP, PRSTDATE)
 VALUES (:PRJNO, :PRJNM, :DPTNO, :REMP, CURRENT DATE) };

Example 5: Insert two new departments using one statement into the DEPARTMENT table as in example
2, but do not assign a manager to the new departments.

 INSERT INTO DEPARTMENT (DEPTNO, DEPTNAME, ADMRDEPT)
 VALUES ('B11', 'PURCHASING', 'B01'),
 ('E41', 'DATABASE ADMINISTRATION', 'E01')

Example 6: In a PL/I program, use a multiple-row INSERT to add 10 rows to table DEPARTMENT. The host
structure array DEPT contains the data to be inserted.

 DCL 1 DEPT(10),
 3 DEPT CHAR(3),
 3 LASTNAME CHAR(29) VARYING,
 3 WORKDEPT CHAR(6),
 3 JOB CHAR(3);

 EXEC SQL INSERT INTO DEPARTMENT 10 ROWS VALUES (:DEPT);

Example 7: Insert a new project into the EMPPROJACT table using the Read Uncommitted (UR, CHG)
option:

 INSERT INTO EMPPROJACT
 VALUES ('000140', 'PL2100', 30)
 WITH CHG

Chapter 7. Statements 1405

Example 8: Specify an INSERT statement as the data-change-table-reference within a SELECT statement.
Define an extra include column whose values are specified in the VALUES clause, which is then used as an
ordering column for the inserted rows.

 SELECT inorder, ordernum
 FROM FINAL TABLE (INSERT INTO ORDERS (CUSTNO)
 INCLUDE(INSERTNUM INTEGER)
 VALUES (:cnum1, 1),
 (:cnum2, 2)) InsertedOrders
 ORDER BY insertnum

1406 IBM i: Db2 for i SQL Reference

LABEL
The LABEL statement adds or replaces labels in the catalog descriptions of various database objects.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
To label a table, view, alias, column, type, package, sequence, view, or XSR object, the privileges held by
the authorization ID of the statement must include at least one of the following:

• For the table, view, alias, type, package, sequence, variable, XSR object, function or procedure identified
in the statement,

– The ALTER privilege on the table, view, alias, type, package, sequence, variable, XSR object, function
or procedure, and

– The system authority *EXECUTE on the library containing the table, view, alias, type, package,
sequence, variable, XSR object, function or procedure

• Database administrator authority

To label a constraint or trigger, the privileges held by the authorization ID of the statement must include at
least one of the following:

• For the subject table of the constraint or trigger in the statement:

– The ALTER privilege on the subject table, and
– The system authority *EXECUTE on the library that contains the subject table

• Database administrator authority

To label an index, the privileges held by the authorization ID of the statement must include at least one of
the following:

• For the index identified in the statement,

– The system authority *OBJALTER on the index, and
– The system authority *EXECUTE on the library containing the index.

• Database administrator authority

To label a function, the privileges held by the authorization ID of the statement must include at least one
of the following:

• For the SYSFUNCS and SYSROUTINES catalog view and table:

– The UPDATE privilege on SYSROUTINES,
– The system authority *OBJOPR on SYSFUNCS, and
– The system authority *EXECUTE on library QSYS2

• Database administrator authority

To label a procedure, the privileges held by the authorization ID of the statement must include at least
one of the following:

• For the SYSPROCS and SYSROUTINES catalog view and table:

– The UPDATE privilege on SYSROUTINES,
– The system authority *OBJOPR on SYSPROCS, and
– The system authority *EXECUTE on library QSYS2

• Database administrator authority

Chapter 7. Statements 1407

To label a mask or permission:

• The authorization ID of the statement must have security administrator authority. See “Administrative
authority” on page 15.

To label a sequence, the privileges held by the authorization ID of the statement must also include at least
one of the following:

• *USE authority to the Change Data Area (CHGDTAARA) CL command
• Database administrator authority

The authorization ID of the statement has the ALTER privilege on an alias when:

• It is the owner of the alias, or
• It has been granted the system authorities of either *OBJALTER or *OBJMGT to the alias

To label a variable, the privileges held by the authorization ID of the statement must also include at least
one of the following:

• For the SYSVARIABLES catalog table:

– The UPDATE privilege on SYSVARIABLES,
– The system authority *EXECUTE on library QSYS2

• Database administrator authority

To label an XSR object, the privileges held by the authorization ID of the statement must also include at
least one of the following:

• For the XSROBJECTS catalog table:

– The UPDATE privilege on XSROBJECTS,
– The system authority *EXECUTE on library QSYS2

• Database administrator authority

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Table or View, Corresponding System Authorities When
Checking Privileges to a Sequence, and Corresponding System Authorities When Checking Privileges to a
Package.

1408 IBM i: Db2 for i SQL Reference

Syntax
LABEL ON

ALIAS alias-name

COLUMN table-name.column-name

view-name.column-name TEXT

CONSTRAINT constraint-name

FUNCTION

ROUTINE

function-name

(
,

parameter-type

)

SPECIFIC FUNCTION

ROUTINE

specific-name

INDEX index-name

MASK mask-name

PACKAGE package-name

VERSION
version-id

PERMISSION permission-name

PROCEDURE

ROUTINE

procedure-name

(
,

parameter-type

)

SPECIFIC PROCEDURE

ROUTINE

specific-name

SEQUENCE sequence-name

TABLE table-name

view-name

TRIGGER trigger-name

TYPE distinct-type-name

array-type-name

VARIABLE variable-name

XSROBJECT xsrobject-name

IS string-constant

COLUMN
table-name

view-name

(

,

column-name IS string-constant)

COLUMN
table-name

view-name

(

,

column-name TEXT IS string-constant)

parameter-type
data-type

AS LOCATOR

data-type
built-in-type

distinct-type-name

array-type-name

built-in-type

Chapter 7. Statements 1409

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

)

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

DATALINK

(200)

(integer) ccsid-clause

ROWID

XML

ccsid-clause
CCSID integer

1410 IBM i: Db2 for i SQL Reference

Description
ALIAS

Specifies that the label is for an alias. Labels on aliases are implemented as system object text.
alias-name

Identifies the alias to which the label applies. The name must identify an alias that exists at the
current server.

COLUMN
Specifies that the label is for a column. Labels on columns are implemented as system column
headings or column text. Column headings are used when displaying or printing query results.
table-name.column-name or view-name.column-name

Identifies the column to which the label applies. The table-name or view-name must identify a
table or view that exists at the current server, but must not identify a declared temporary table.
The column-name must identify a column of that table or view.

TEXT
Specifies that IBM i column text is specified. If TEXT is omitted, a column heading is specified.

CONSTRAINT
Specifies that the label is for a constraint.
constraint-name

Identifies the constraint to which the label applies. The constraint-name must identify a constraint
that exists at the current server.

FUNCTION or SPECIFIC FUNCTION
Identifies the function on which the label applies. The function must exist at the current server and
it must be a user-defined function. The function can be identified by its name, function signature, or
specific name.
FUNCTION function-name

Identifies the function by its name. The function-name must identify exactly one function. The
function may have any number of parameters defined for it. If there is more than one function of
the specified name in the specified or implicit schema, an error is returned.

FUNCTION function-name (parameter-type, ...)
Identifies the function by its function signature, which uniquely identifies the function. The
function-name (parameter-type, ...) must identify a function with the specified function signature.
The specified parameters must match the data types in the corresponding position that were
specified when the function was created. The number of data types, and the logical concatenation
of the data types is used to identify the specific function instance on which to label. Synonyms
for data types are considered a match. Parameters that have defaults must be included in this
signature.

If function-name () is specified, the function identified must have zero parameters.

function-name
Identifies the name of the function.

(parameter-type, ...)
Identifies the parameters of the function.

If an unqualified distinct type name is specified, the database manager searches the SQL path
to resolve the schema name for the distinct type.

For data types that have a length, precision, or scale attribute, use one of the following:

• Empty parentheses indicate that the database manager ignores the attribute when
determining whether the data types match. For example, DEC() will be considered a match
for a parameter of a function defined with a data type of DEC(7,2). However, FLOAT cannot
be specified with empty parenthesis because its parameter value indicates a specific data
type (REAL or DOUBLE).

Chapter 7. Statements 1411

• If a specific value for a length, precision, or scale attribute is specified, the value must
exactly match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION
statement. If the data type is FLOAT, the precision does not have to exactly match the value
that was specified because matching is based on the data type (REAL or DOUBLE).

• If length, precision, or scale is not explicitly specified, and empty parentheses are not
specified, the default attributes of the data type are implied. The implicit length must
exactly match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION
statement.

Specifying the FOR DATA clause or CCSID clause is optional. Omission of either clause
indicates that the database manager ignores the attribute when determining whether the
data types match. If either clause is specified, it must match the value that was implicitly or
explicitly specified in the CREATE FUNCTION statement.

AS LOCATOR
Specifies that the function is defined to receive a locator for this parameter. If AS LOCATOR is
specified, the data type must be a LOB or XML or a distinct type based on a LOB or XML. If AS
LOCATOR is specified, FOR SBCS DATA or FOR MIXED DATA must not be specified.

SPECIFIC FUNCTION specific-name
Identifies the function by its specific name. The specific-name must identify a specific function
that exists at the current server.

INDEX
Specifies that the label is for an index. Labels on indexes are implemented as system object text.
index-name

Identifies the index to which the label applies. The name must identify an index that exists at the
current server.

MASK
Specifies that the label is for a mask.
mask-name

Identifies the mask to which the label applies. The name must identify a mask that exists at the
current server.

PACKAGE
Specifies that the label is for a package. Labels on packages are implemented as system object text.
package-name

Identifies the package to which the label applies. The name must identify a package that exists at
the current server.

VERSION version-id
version-id is the version identifier that was assigned to the package when it was created. If
version-id is not specified, a null string is used as the version identifier.

PERMISSION
Specifies that the label is for a permission.
permission-name

Identifies the permission to which the label applies. The name must identify a permission that
exists at the current server.

PROCEDURE or SPECIFIC PROCEDURE
Identifies the procedure to which the label applies. The procedure-name must identify a procedure
that exists at the current server.
PROCEDURE procedure-name

Identifies the procedure by its name. The procedure-name must identify exactly one procedure.
The procedure may have any number of parameters defined for it. If there is more than one
procedure of the specified name in the specified or implicit schema, an error is returned.

1412 IBM i: Db2 for i SQL Reference

PROCEDURE procedure-name (parameter-type, ...)
Identifies the procedure by its procedure signature, which uniquely identifies the procedure.
The procedure-name (parameter-type, ...) must identify a procedure with the specified procedure
signature. The specified parameters must match the data types in the corresponding position
that were specified when the procedure was created. The number of data types, and the logical
concatenation of the data types is used to identify the specific procedure instance which is to be
labeled on. Synonyms for data types are considered a match. Parameters that have defaults must
be included in this signature.

If procedure-name () is specified, the procedure identified must have zero parameters.

procedure-name
Identifies the name of the procedure.

(parameter-type, ...)
Identifies the parameters of the procedure.

If an unqualified distinct type or array type name is specified, the database manager searches
the SQL path to resolve the schema name for the distinct type or array type.

For data types that have a length, precision, or scale attribute, use one of the following:

• Empty parentheses indicate that the database manager ignores the attribute when
determining whether the data types match. For example, DEC() will be considered a match
for a parameter of a procedure defined with a data type of DEC(7,2). However, FLOAT cannot
be specified with empty parenthesis because its parameter value indicates a specific data
type (REAL or DOUBLE).

• If a specific value for a length, precision, or scale attribute is specified, the value
must exactly match the value that was specified (implicitly or explicitly) in the CREATE
PROCEDURE statement. If the data type is FLOAT, the precision does not have to exactly
match the value that was specified because matching is based on the data type (REAL or
DOUBLE).

• If length, precision, or scale is not explicitly specified, and empty parentheses are not
specified, the default attributes of the data type are implied. The implicit length must exactly
match the value that was specified (implicitly or explicitly) in the CREATE PROCEDURE
statement.

Specifying the FOR DATA clause or CCSID clause is optional. Omission of either clause
indicates that the database manager ignores the attribute when determining whether the
data types match. If either clause is specified, it must match the value that was implicitly or
explicitly specified in the CREATE PROCEDURE statement.

AS LOCATOR
Specifies that the procedure is defined to receive a locator for this parameter. If AS LOCATOR
is specified, the data type must be a LOB or XML or a distinct type based on a LOB or XML. If
AS LOCATOR is specified, FOR SBCS DATA or FOR MIXED DATA must not be specified.

SPECIFIC PROCEDURE specific-name
Identifies the procedure by its specific name. The specific-name must identify a specific procedure
that exists at the current server.

SEQUENCE
Specifies that the label is for a sequence. Labels on sequences are implemented as system object
text.
sequence-name

Identifies the sequence on which you want to add a label. The sequence-name must identify a
sequence that exists at the current server.

TABLE
Specifies that the label is for a table or a view. Labels on tables or views are implemented as system
object text.

Chapter 7. Statements 1413

table-name or view-name
Identifies the table or view on which you want to add a label. The table-name or view-name
must identify a table or view that exists at the current server, but must not identify a declared
temporary table.

TRIGGER
Specifies that the label is for a trigger.
trigger-name

Identifies the trigger on which you want to add a label. The trigger-name must identify a trigger
that exists at the current server.

TYPE distinct-type-name or array-type-name
Identifies the distinct type or array type to which the label applies. The distinct-type-name or array-
type-name must identify a type that exists at the current server.

VARIABLE variable-name
Identifies the variable to which the label applies. The variable-name must identify a variable that
exists at the current server.

XSROBJECT xsrobject-name
Identifies the XSR object to which the label applies. The xsrobject-name must identify an XSR object
that exists at the current server.

IS
Introduces the label you want to provide.
string-constant

Can be any SQL character-string constant of up to either 60 bytes in length for column headings
or 50 bytes in length for object text or column text. The constant may contain single-byte and
double-byte characters.

The label for a column heading consists of three 20-byte segments. Interactive SQL, the Query for
IBM i, IBM DB2 Query Manager and SQL Development Kit for i, and other products can display or
print each 20-byte segment on a separate line. If the label for a column contains mixed data, each
20-byte segment must be a valid mixed data character string. The shift characters must be paired
within each 20-byte segment.

Notes
Column headings: Column headings are used when displaying or printing query results. The first column
heading is displayed or printed on the first line, the second column heading is displayed or printed on the
second line, and the third column heading is displayed or printed on the third line. The column headings
can be up to 60 bytes in length, where the first 20 bytes is the first column heading, the second 20 bytes
is the second column heading, and the third 20 bytes is the third column heading. Blanks are trimmed
from the end of each 20-byte column heading.

All 60 bytes of column heading information are available in the catalog view SYSCOLUMNS; however, only
the first column heading is returned in an SQLDA on a DESCRIBE or DESCRIBE TABLE statement.

Column text is not returned on a DESCRIBE or DESCRIBE TABLE statement. When the database manager
changes the column heading information in a record format description that is shared, the change is
reflected in all files sharing the format description. To find out if a file shares a format with another file,
use the RCDFMT parameter on the CL command, Display Database Relations (DSPDBR).

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• The keyword PROGRAM can be used as a synonym for PACKAGE.
• The keywords DATA TYPE or DISTINCT TYPE can be used as a synonym for TYPE.

Examples
Example 1: Enter a label on the DEPTNO column of table DEPARTMENT.

1414 IBM i: Db2 for i SQL Reference

 LABEL ON COLUMN DEPARTMENT.DEPTNO
 IS 'DEPARTMENT NUMBER'

Example 2: Enter a label on the DEPTNO column of table DEPARTMENT where the column heading is
shown on two separate lines.

 LABEL ON COLUMN DEPARTMENT.DEPTNO
 IS 'Department Number'

Example 3: Enter a label on the PAYROLL package.

 LABEL ON PACKAGE PAYROLL
 IS 'Payroll Package'

Chapter 7. Statements 1415

LOCK TABLE
The LOCK TABLE statement either prevents concurrent application processes from changing a table or
prevents concurrent application processes from using a table.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For the table identified in the statement,

– The system authority of *OBJOPR on the table, and
– The system authority *EXECUTE on the library containing the table

• Database administrator authority

Syntax
LOCK TABLE table-name IN SHARE MODE

EXCLUSIVE MODE ALLOW READ

EXCLUSIVE MODE

Description
table-name

Identifies the table to be locked. The table-name must identify a base table that exists at the current
server, but must not identify a catalog table or a declared temporary table.

IN SHARE MODE
Prevents concurrent application processes from executing any but read-only operations on the table.

A shared lock (*SHRNUP) is acquired for the application process in which the statement is executed.
Other application processes may also acquire a shared lock (*SHRNUP) and prevent this application
process from executing any but read-only operations.

IN EXCLUSIVE MODE ALLOW READ
Prevents concurrent application processes from executing any but read-only operations on the table.

An exclusive allow read lock (*EXCLRD) is acquired for the application process in which the statement
is executed. Other application processes may not acquire a shared lock (*SHRNUP) and cannot
prevent this application process from executing updates, deletes, and inserts on the table.

IN EXCLUSIVE MODE
Prevents concurrent application processes from executing any operations at all on the table.

An exclusive lock (*EXCL) is acquired for the application process in which the statement is executed.

Notes
Locks obtained: Locking is used to prevent concurrent operations.

The lock is released:

• When the unit of work ends, unless the unit of work is ended by a COMMIT HOLD or ROLLBACK HOLD
• When the first SQL program in the program stack ends, unless CLOSQLCSR(*ENDJOB) or

CLOSQLCSR(*ENDACTGRP) was specified on the CRTSQLxxx command

1416 IBM i: Db2 for i SQL Reference

• When the activation group ends
• When the connection is changed using a CONNECT (Type 1) statement
• When the connection associated with the lock is disconnected using the DISCONNECT statement
• When the connection is in the release-pending state and a successful COMMIT occurs

You may also issue the Deallocate Object (DLCOBJ) command to unlock the table.

Lock wait time: Conflicting locks already held by other application processes will cause your application
to wait up to the default wait time of the job.

Example
Obtain a lock on the DEPARTMENT table.

 LOCK TABLE DEPARTMENT IN EXCLUSIVE MODE

Chapter 7. Statements 1417

MERGE
The MERGE statement updates a target (a table or view) using data from a source (result of a table
reference). Rows in the target that match the input data may be updated or deleted as specified, and rows
that do not exist in the target may be inserted as specified. Updating, deleting, or inserting a row in a view
updates, deletes, or inserts the row into the tables on which the view is based if no INSTEAD OF trigger is
defined on the view.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared. It is not allowed in a REXX procedure.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• Database administrator authority
• If an insert operation is specified:

– The INSERT privilege on the table or view, and
– The system authority *EXECUTE on the library containing the table or view

• If a delete operation is specified:

– The DELETE privilege on the table or view, and
– The system authority *EXECUTE on the library containing the table or view

• If an update operation is specified:

– The UPDATE privilege on the table or view or
– The UPDATE privilege on each column to be updated; and
– The system authority *EXECUTE on the library containing the table or view

If search-condition, insert-operation, or assignment-clause includes a fullselect, the privileges held by the
authorization ID of the statement must also include at least one of the following:

• For each table or view identified in the fullselect:

– The SELECT privilege on the table or view, and
– The system authority *EXECUTE on the library containing the table or view

• Database administrator authority

If table-reference contains any query that references a column of a table or view, the privileges held by the
authorization ID of the statement must also include at least one of the following:

• For each table or view identified in the fullselect:

– The SELECT privilege on the table or view, and
– The system authority *EXECUTE on the library containing the table or view

• Database administrator authority

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Table or View.

1418 IBM i: Db2 for i SQL Reference

Syntax
MERGE INTO table-name

view-name correlation-clause

USING table-reference

ON search-condition

WHEN matching-condition THEN update-operation

delete-operation

insert-operation

signal-statement

ELSE IGNORE ATOMIC

NOT ATOMIC STOP ON SQLEXCEPTION

CONTINUE ON SQLEXCEPTION

isolation-clause

concurrent-access-resolution-clause

correlation-clause
AS

correlation-name

(

,

column-name)

matching-condition

NOT

MATCHED

AND search-condition

update-operation
UPDATE

OVERRIDING SYSTEM VALUE

OVERRIDING USER VALUE

SET assignment-clause

delete-operation
DELETE

insert-operation

Chapter 7. Statements 1419

INSERT

(

,

column-name)

OVERRIDING SYSTEM VALUE

OVERRIDING USER VALUE

VALUES expression

DEFAULT

NULL

(

,

expression

DEFAULT

NULL

)

assignment-clause
,

column-name = expression

DEFAULT

NULL

(

,

 column-name) = (

,

expression

DEFAULT

NULL

row-fullselect

)

ROW = (

,

expression

DEFAULT

NULL

row-fullselect

)

isolation–clause
WITH NC

UR

CS

RS

RR

Description
table-name or view-name

Identifies the target of the update, insert, and delete operations of the merge. The name must identify
a table or view that exists at the current server, but it must not identify a catalog table, a view of
a catalog table, a read-only view, or a non-deletable view independent of any INSTEAD OF triggers
defined for it. If table-name identifies a history table, no update or insert operations can be specified
for the MERGE statement.

1420 IBM i: Db2 for i SQL Reference

AS correlation-name
Can be used within search-condition, matching-condition, or on the right side of an assignment-clause
to designate the target table or view. The correlation-name is used to qualify references to the
columns of the table or view. When a correlation-name is specified, column-names can also be
specified to give names to the columns of the table-name or view-name. If a column list is specified,
there must be a name in the column list for each column in the table or view. For more information,
see “Correlation names” on page 131

USING table-reference
Specifies a set of rows as a result table to be merged into the target. If the result table is empty, a
warning is returned.

ON search-condition
Specifies the predicates used to determine whether a row from source-table matches rows in the
target table.

Each column-name in the search-condition, other than in a subquery, must name a column of the
target table or view or the table-reference. When the search condition includes a subquery in which
the same table is the base object of both the merge and the subquery, the subquery is completely
evaluated before any rows are updated or inserted.

Logically, a right join is performed between the target table and the table-reference using the ON
search-condition. For those rows of the join result table where the search condition is true, the
specified update or delete operation is performed. For those rows of the join result table where the
search condition is not true, the specified insert operation is performed.

The search-condition cannot contain a quantified subquery, IN predicate with a subselect, or
EXISTS subquery. It can contain basic predicate subqueries or scalar-fullselects. It cannot contain
expressions that use aggregate functions or non-deterministic scalar functions.

WHEN matching-condition
Specifies the condition under which the update-operation, delete-operation, insert-operation, or the
signal-statement is executed. Each matching-condition is evaluated in order of specification. Rows
for which the matching-condition evaluates to true are not considered in subsequent matching
conditions.
MATCHED

Indicates the operation to be performed on the rows where the ON search-condition is true. Only
UPDATE, DELETE, or signal-statement can be specified after THEN.
AND search-condition

Specifies a further search condition to be applied against the rows that matched the ON
search condition for the operation to be performed after THEN.

The search-condition must not include a subquery in an EXISTS or IN predicate.

NOT MATCHED
Indicates the operation to be performed on the rows where the ON search-condition is false or
unknown. Only INSERT or signal-statement can be specified after THEN.
AND search-condition

Specifies a further search condition to be applied against the rows that did not match the ON
search condition for the operation to be performed after THEN.

The search-condition must not include a subquery in an EXISTS or IN predicate.

THEN
Specifies the operation to execute when the matching-condition evaluates to true.
update-operation

Specifies the update operation to be executed for the rows where the matching-condition
evaluates to true.
assignment-clause

Specifies a list of column updates.

Chapter 7. Statements 1421

column-name
Identifies a column to be updated. The column-name must identify a column of the target
table or view. The column-name must not identify a view column derived from a scalar
function, constant, or expression. A column name must not be specified more than once.

A view column derived from the same column as another column of the view can be
updated, but both columns cannot be updated in the same MERGE statement.

ROW
Identifies all the columns of the target table or view except for columns defined with the
hidden attribute. If a view is specified, none of the columns of the view may be derived
from a scalar function, constant, or expression.
The number of expressions, NULLs, and DEFAULTs (or the number of result columns from a
row-fullselect) must match the number of columns in the row.
ROW may not be specified for a view that contains a view column derived from the same
column as another column of the view, because both columns cannot be updated in the
same UPDATE.

expression
Indicates the new value of the column. The expression must not include an aggregate
function except when it occurs within a scalar fullselect.

The expression can contain references to columns of the target table-name or view-name.
For each row that is updated, the value of a target column reference in an expression is the
value of the column in the row before the row is updated.

If expression is a reference to a single column of the source table, the source table column
value may have been specified with an extended indicator value. The effects of extended
indicator values apply to the corresponding target columns of the assignment-clause.

When extended indicators are enabled, the extended indicator values of DEFAULT (-5) or
UNASSIGNED (-7) must not be used if expression is more complex than the following
references:

• A single column of the source table
• A single host variable

DEFAULT
Specifies that the default value is assigned to the column. DEFAULT can be specified only
for columns that have a default value. For more information about default values, see the
description of the DEFAULT clause in “CREATE TABLE” on page 1115.

DEFAULT must be specified for a column that was defined as GENERATED ALWAYS unless
OVERRIDING USER VALUE is specified to indicate that any user-specified value will be
ignored and a unique system-generated value will be used. A valid value can be specified
for a column that was defined as GENERATED BY DEFAULT.

NULL
Specifies the null value as the new value of the column. Specify NULL only for nullable
columns.

delete-operation
Specifies the delete operation to be executed for the rows where the matching-condition
evaluates to true.

insert-operation
Specifies the insert operation to be executed for the rows where the matching-condition evaluates
to true.
INSERT

Introduces a list of column names and row value expressions to be used for the insert
operation.

1422 IBM i: Db2 for i SQL Reference

The number of values in the row value expression must equal the number of names in the
implicit or explicit insert column list. The first value is inserted in the first column in the list,
the second value in the second column, and so on.

(column-name,…)
Specifies the columns for which insert values are provided. Each name must be a name that
identifies a column of the table or view. The same column must not be identified more than
once. If extended indicators are not enabled, a view column that is not updatable must not be
identified. If extended indicators are not enabled and the object of the insert operation is a
view with non-updatable columns, a list of column names must be specified and the list must
not identify those columns. For an explanation of updatable columns in views, see “CREATE
VIEW” on page 1206.

Omission of the column list is an implicit specification of a list in which every column of the
table or view is identified in left-to-right order. Any columns defined with the hidden attribute
are omitted. This list is established when the statement is prepared and, therefore, does not
include columns that were added to a table after the statement was prepared.

VALUES
Specifies a new row to be inserted.

Each variable in the clause must identify a variable that is declared in accordance with the
rules for declaring variables. A host structure cannot be used. For further information about
variables, see “References to host variables” on page 139.

expression
An expression of the type described in “Expressions” on page 158, that does not include
an aggregate function or column name.

When extended indicators are enabled, the extended indicator values of DEFAULT (-5)
or UNASSIGNED (-7) must not be used if expression is more complex than the following
references:

• A single column of the source table
• A single host variable
• A host variable being explicitly cast

DEFAULT
Specifies that the default value is assigned to the column. DEFAULT can be specified only
for columns that have a default value. For more information about default values, see the
description of the DEFAULT clause in “CREATE TABLE” on page 1115.

DEFAULT must be specified for a column that was defined as GENERATED ALWAYS unless
OVERRIDING USER VALUE is specified to indicate that any user-specified value will be
ignored and a unique system-generated value will be used. A valid value can be specified
for a column that was defined as GENERATED BY DEFAULT.

NULL
Specifies the value for a column is the null value. NULL should only be specified for
nullable columns.

OVERRIDING SYSTEM VALUE or OVERRIDING USER VALUE
Specifies whether system generated values or user-specified values for a ROWID, identity, or row
change timestamp column are used. If OVERRIDING SYSTEM VALUE is specified, the implicit or
explicit list of columns for the INSERT or the SET clause of the UPDATE must contain a ROWID,
identity, or row change timestamp column defined as GENERATED ALWAYS. If OVERRIDING USER
VALUE is specified, the implicit or explicit list of columns for the INSERT or the SET clause of
the UPDATE must contain a column defined as either GENERATED ALWAYS or GENERATED BY
DEFAULT.
OVERRIDING SYSTEM VALUE

Specifies that the value specified in the VALUES or SET clause for a column that is defined as
GENERATED ALWAYS is used. A system-generated value is not used.

Chapter 7. Statements 1423

If a value for a row-begin, row-end, transaction-start-ID, or generated expression column is
provided, it must be DEFAULT.

OVERRIDING USER VALUE
Specifies that the value specified in the VALUES or SET clause for a column that is defined
as either GENERATED ALWAYS or GENERATED BY DEFAULT is ignored. Instead, a system-
generated value is used, overriding the user-specified value.

If neither OVERRIDING SYSTEM VALUE nor OVERRIDING USER VALUE is specified:

• A value cannot be specified for a ROWID, identity, row change timestamp, row-begin, row-end,
transaction-start-ID, or generated expression column that is defined as GENERATED ALWAYS.

• A value can be specified for a ROWID, identity, or row change timestamp column that is defined
as GENERATED BY DEFAULT. If a value is specified, that value is assigned to the column.
However, a value can be assigned to a ROWID column defined BY DEFAULT only if the specified
value is a valid row ID value that was previously generated by Db2 for z/OS or Db2 for i. When
a value is inserted or updated for an identity or row change timestamp column defined BY
DEFAULT, the database manager does not verify that the specified value is a unique value for
the column unless the identity or row change timestamp column is the sole key in a unique
constraint or unique index. Without a unique constraint or unique index, the database manager
can guarantee unique values only among the set of system-generated values as long as NO
CYCLE is in effect.

If a value is not specified the database manager generates a new value.

signal-statement
Specifies the SIGNAL statement that is to be executed to return an error when the matching-condition
evaluates to true. See “SIGNAL” on page 1551.

ELSE IGNORE
Specifies that no action is to be taken when the matching-condition for all WHEN clauses is false for
a row in the USING table-reference. No action is taken in this case whether or not ELSE IGNORE is
specified.

ATOMIC or NOT ATOMIC
Specifies how to handle errors.
ATOMIC

Specifies that if an error occurs during a update-operation, delete-operation, or insert-operation,
the entire MERGE statement is rolled back. ATOMIC is only honored when the statement is run
with an isolation level other than No Commit.

NOT ATOMIC
Specifies that if an error occurs during a update-operation, delete-operation, or insert-operation,
only that update-operation, delete-operation, or insert-operation is rolled back.
STOP ON SQL EXCEPTION

Specifies that if an error occurs during a update-operation, delete-operation, or insert-
operation, the processing of the MERGE statement stops.

CONTINUE ON SQL EXCEPTION
Specifies that if an error occurs during a update-operation, delete-operation, or insert-
operation, the processing of the MERGE statement continues.

isolation-clause
Specifies the isolation level to be used for this statement.
WITH

Introduces the isolation level, which may be one of:

• RR Repeatable read
• RS Read stability
• CS Cursor stability

1424 IBM i: Db2 for i SQL Reference

• UR Uncommitted read
• NC No commit

If isolation-clause is not specified the default isolation is used. See “isolation-clause” on page 799 for
a description of how the default is determined.

concurrent-access-resolution-clause
Specifies the concurrent access resolution to use for the select statement. For more information, see
“concurrent-access-resolution-clause” on page 801.

MERGE Rules
• More than one update-operation, delete-operation, insert-operation, or signal-statement can be
specified in a single MERGE statement.

• Each row in the target can only be operated on once. A row in the target can only be identified as
MATCHED with one row in the result table of the table-reference. A nested SQL operation (RI or trigger
except INSTEAD OF trigger) cannot specify the target table (or a table within the same hierarchy) as a
target of an UPDATE, DELETE, INSERT, or MERGE statement.

For other rules that affect the update, insert, or delete portion of the MERGE statement, see the "Rules"
section of the corresponding statement description.

Extended indicator usage: When extended indicators are enabled, indicator values other than positive
values and 0 (zero) through -7 must not be set. The DEFAULT and UNASSIGNED extended indicator values
must not appear in contexts where they are not supported.

Extended indicators: In an update operation of the MERGE statement:

• An extended indicator value of UNASSIGNED has the effect of leaving the target column set to its
current value, as if it had not been specified in the statement.

• An extended indicator value of DEFAULT must not be specified for a row-begin, row-end, transaction-
start-ID, or generated expression column.

• An extended indicator value of UNASSIGNED must not be assigned to all of the target columns.

In an insert portion of the MERGE statement, the extended indicator value of UNASSIGNED has the effect
of setting the column to its default value.

MERGE restriction: If the target table of the MERGE statement has triggers or is the parent in a referential
integrity constraint, the update-operation or insert-operation must not contain a global variable, a
function, or a subselect.

Notes
Logical order of processing: For a NOT ATOMIC MERGE statement, each source row is processed
independently as if a separate MERGE statement were executed for each source row. For example, a
source row that causes an update of a target row, will fire any triggers (including statement level triggers)
when the update of the row is performed. Thus, if 5 rows are updated, any update triggers (including
statement level update triggers) will be fired 5 times.

For an ATOMIC MERGE statement, the source rows are processed as if a set of rows is processed by
each WHEN clause. Thus, if 5 rows are updated, any row level update triggers will be fired 5 times, but
n statement level update triggers will be fired, where n is the number of WHEN clauses that contain an
UPDATE, including any WHEN clauses that contain an UPDATE that did not process any of the source
rows. For ATOMIC MERGE, the logical order of processing is:

1. Determine the set of rows to be processed from the source and target. If any of the special registers
CURRENT DATE, CURRENT TIME, or CURRENT TIMESTAMP are used in this statement, only one clock
reading is done for the whole statement.

2. Use the ON clause to classify these rows as either MATCHED or NOT MATCHED.
3. Evaluate any matching-condition in the WHEN clauses.

Chapter 7. Statements 1425

4. Evaluate any expression in any assignment-clause and insert-operation.
5. Execute each signal-statement.
6. Apply each update-operation, delete-operation, or insert-operation to the applicable rows in the order

of specification. The triggers activated by each update-operation, delete-operation, or insert-operation
are executed. Statement level triggers are activated even if no rows satisfy the update-operation,
delete-operation, or insert-operation. Each update-operation, delete-operation, or insert-operation can
affect the triggers of each subsequent update-operation, delete-operation, or insert-operation.

Number of rows updated: After executing a MERGE statement, the ROW_COUNT statement information
item in the SQL Diagnostics Area (or SQLERRD(3) of the SQLCA) is the number of rows operated on by
the MERGE statement, excluding rows identified by the ELSE IGNORE clause. The ROW_COUNT item and
SQLERRD(3) does not include the number of rows that were operated on as a result of triggers. The
value in the DB2_ROW_COUNT_SECONDARY statement information item (or SQLERRD(5) of the SQLCA)
includes the number of these rows.

For a description of ROW_COUNT and DB2_ROW_COUNT_SECONDARY, see “GET DIAGNOSTICS” on page
1332. For a description of the SQLCA, see Appendix C, “SQLCA (SQL communication area),” on page
1665.

GET DIAGNOSTICS considerations: If a MERGE statement completes with one or more errors, the GET
DIAGNOSTICS statement can be used after the MERGE statement to check which input row(s) failed. The
GET DIAGNOSTICS statement-information-item, NUMBER, indicates the number of conditions (errors of
warnings) detected by execution of the MERGE statement. For each condition, the GET DIAGNOSTICS
condition-information-item, DB2_ROW_NUMBER, indicates the input source row that caused an error.

Inserted row cannot also be updated: No attempt is made to update a row in the target that did not
already exist before the MERGE statement was executed; that is, there are no updates of rows that were
inserted by the MERGE statement.

Concurrent row changes in MERGE target: MERGE processing determines affected rows in the MERGE
target before performing any update-operations, delete-operations, or insert-operations. Unless using a
restrictive isolation level such as repeatable read, concurrent processes could insert or modify rows in the
MERGE target between the time when the set of affected target rows is determined and when a specific
row update-operation, delete-operation, or insert-operation is processed. Such concurrent activity could
produce an error. For example, MERGE processing could determine that a source row does not exist in
the target where a column value in the target has a unique key constraint. Before the MERGE attempts to
insert a new row based on the source data, a concurrent process could insert a row with the same key
value. This would cause a duplicate key error when the MERGE processing attempts to insert its row.

Locking: If COMMIT(*RR), COMMIT(*ALL), COMMIT(*CS), or COMMIT(*CHG) is specified, one or more
exclusive locks are acquired during the execution of a successful MERGE statement. Until the locks are
released by a commit or rollback operation, an inserted or updated row can only be accessed by:

• The application process that performed the insert or update
• Another application process using COMMIT(*NONE) or COMMIT(*CHG) through a read-only operation

The locks can prevent other application processes from performing operations on the table. For further
information about locking, see the description of the “COMMIT” on page 950, “ROLLBACK” on page
1482, and “LOCK TABLE” on page 1416 statements. Also, see “Isolation level” on page 23 and Database
Programming.

A maximum of 500 000 000 rows can be acquired in any single MERGE statement when COMMIT(*RR),
COMMIT(*ALL), COMMIT(*CS), or COMMIT(*CHG) was specified. The number of row locks includes any
rows inserted, updated, or deleted in the MERGE target and any rows inserted, updated, or deleted under
the same commitment definition as a result of a trigger. The number of row locks also includes source
rows referenced by the USING table-reference is COMMIT(*ALL) is specified.

Tables with active row and column access controls: For information about how enabled row
permissions and column masks affect the update and insert operations in the MERGE statement, see
the INSERT and UPDATE statement information.

1426 IBM i: Db2 for i SQL Reference

NOT ATOMIC processing: When NOT ATOMIC is specified, the rows of source data are processed
separately. Any reference to special registers (such as CURRENT TIMESTAMP) in the MERGE statement
are evaluated as each row or source data is processed. Statement level triggers are activated as each row
of source data is processed.

If an error occurs during the operation for a row of source data, the row being processed at the time
of the error is not inserted, updated, or deleted. Processing of an individual row is an atomic operation.
Any other changes previously made during the processing of the MERGE statement are not rolled back. If
CONTINUE ON EXCEPTION is specified, execution continues with the next row to be processed.

System-period temporal tables: When a MERGE statement is processed for a system-period temporal
table, the rows are affected in the same way as if the specific data change operation was invoked.

Examples
Example 1: For activities whose description has changed, update the description in the archive table.
For new activities, insert into the archive table. The archive and activities tables both have activity as a
primary key.

MERGE INTO archive ar
 USING (SELECT activity, description FROM activities) ac
 ON (ar.activity = ac.activity)
 WHEN MATCHED THEN
 UPDATE SET description = ac.description
 WHEN NOT MATCHED THEN
 INSERT (activity, description) VALUES(ac.activity, ac.description)

Example 2: Using the shipment table, merge rows into the inventory table, increasing the quantity by part
count in the shipment table for rows that match; else insert the new partno into the inventory table.

MERGE INTO inventory AS in
 USING (SELECT partno, description, count FROM shipment
 WHERE shipment.partno IS NOT NULL) AS sh
 ON (in.partno = sh.partno)
 WHEN MATCHED THEN
 UPDATE SET description = sh.description,
 quantity = in.quantity + sh.count
 WHEN NOT MATCHED THEN
 INSERT (partno, description, quantity)
 VALUES (sh.partno, sh.description, sh.count)

Example 3: Using the transaction table, merge rows into the account table, updating the balance from the
set of transactions against an account ID and inserting new accounts from the consolidated transactions
where they do not already exist.

MERGE INTO account AS a
 USING (SELECT id, SUM(amount) sum_amount FROM transaction
 GROUP BY id) AS t
 ON a.id = t.id
 WHEN MATCHED THEN
 UPDATE SET balance = a.balance + t.sum_amount
 WHEN NOT MATCHED THEN
 INSERT (id, balance) VALUES (t.id, t.sum_amount)

Example 4: Using the transaction_log table, merge rows into the employee_file table, updating the phone
and office columns with the latest transaction_log row based on the transaction time, and inserting a new
employee_file row where the row does not already exist.

MERGE INTO employee_file AS e
 USING (SELECT empid, phone, office
 FROM (SELECT empid, phone, office,
 ROW_NUMBER() OVER (PARTITION BY empid
 ORDER BY transaction_time DESC) rn
 FROM transaction_log) AS nt
 WHERE rn = 1) AS t
 ON e.empid = t.empid
 WHEN MATCHED THEN
 UPDATE SET (phone, office) = (t.phone, t.office)
 WHEN NOT MATCHED THEN

Chapter 7. Statements 1427

 INSERT (empid, phone, office)
 VALUES(t.empid, t.phone, t.office)

Example 5: Using dynamically supplied values for an employee row, update the master employee table
if the data corresponds to an existing employee, or insert the row if the data is for a new employee. The
following example is a fragment of code from a C program.

hv1 =
"MERGE INTO employee AS t
 USING (VALUES(CAST(? AS CHAR(6)), CAST(? AS VARCHAR(12)),
 CAST(? AS CHAR(1)), CAST(? AS VARCHAR(15)),
 CAST(? AS SMALLINT), CAST(? AS INTEGER)))
 s (empno, firstnme, midinit, lastname, edlevel, salary)
 ON t.empno = s.empno
 WHEN MATCHED THEN
 UPDATE SET salary = s.salary
 WHEN NOT MATCHED THEN
 INSERT (empno, firstnme, midinit, lastname, edlevel, salary)
 VALUES (s.empno, s.firstnme, s.midinit, s.lastname, s.edlevel,
 s.salary)";
EXEC SQL PREPARE s1 FROM :hv1;
EXEC SQL EXECUTE s1 USING :hv2, :hv3, :hv4, :hv5, :hv6, :hv7;

Example 6: Update the list of activities organized by Group A in the archive table. Delete all outdated
activities and update the activities information (description and date) in the archive table if they have
been changed. For new upcoming activities, insert into the archive. Signal an error if the data of the
activity is not known. The date of the activities in the archive table must be specified. Each group has an
activities table. For example, activities_groupA contains all activities that they organize, and the archive
table contains all upcoming activities organized by different groups in a company. The archive table has
(group, activity) as the primary key, and data is not nullable. All activities tables have activity as the
primary key. The last_modified column in the archive is defined with CURRENT TIMESTAMP as the default
value.

MERGE INTO archive ar
 USING (SELECT activity, description, date, last_modified
 FROM activities_groupA) ac
 ON (ar.activity = ac.activity) AND ar.group = 'A'
 WHEN MATCHED AND ac.date IS NULL THEN
 SIGNAL SQLSTATE '70001'
 SET MESSAGE_TEXT = 'Activity cannot be modified. Reason: date is not known'
 WHEN MATCHED and ac.date < CURRENT DATE THEN
 DELETE
 WHEN MATCHED AND ar.last_modified < ac.last_modified THEN
 UPDATE SET (description, date, last_modified)
 = (ac.description, ac.date, DEFAULT)
 WHEN NOT MATCHED AND ac.date IS NULL THEN
 SIGNAL SQLSTATE '70002'
 SET MESSAGE_TEXT = 'Activity cannot be inserted. Reason: date is not known'

 WHEN NOT MATCHED AND ac.date >= CURRENT DATE THEN
 INSERT (group, activity, description, date)
 VALUES ('A', ac.activity, ac.description, ac.date)
 ELSE IGNORE

1428 IBM i: Db2 for i SQL Reference

OPEN
The OPEN statement opens a cursor so that it can be used to fetch rows from its result table.

Invocation
This statement can only be embedded in an application program. It is an executable statement that
cannot be dynamically prepared. It must not be specified in Java.

Authorization
If a global variable is referenced in a statement, the privileges held by the authorization ID of the
statement must include at least one of the following:

• For the global variable identified in the statement,

– The READ privilege on the global variable, and
– The system authority *EXECUTE on the library containing the global variable

• Database administrator authority

See “DECLARE CURSOR” on page 1215 for the authorization required to use a cursor.

Syntax
OPEN cursor-name

USING
ALL

SUBSET

,

variable

USING SQL DESCRIPTOR
LOCAL

GLOBAL

SQL-descriptor-name

USING DESCRIPTOR descriptor-name

Description
cursor-name

Identifies the cursor to be opened. The cursor-name must identify a declared cursor as explained in
the Notes for the DECLARE CURSOR statement. When the OPEN statement is executed, the cursor
must be in the closed state.

The SELECT statement associated with the cursor is either:

• The select-statement specified in the DECLARE CURSOR statement, or
• The prepared select-statement identified by the statement-name specified in the DECLARE CURSOR

statement. If the statement has not been successfully prepared, or is not a select-statement, the
cursor cannot be successfully opened.

The result table of the cursor is derived by evaluating the SELECT statement. The evaluation uses the
current values of any special registers specified in the SELECT statement and the current values of
any variables specified in the SELECT statement or the USING clause of the OPEN statement. The
rows of the result table can be derived during the execution of the OPEN statement and a temporary
table can be created to hold them; or they can be derived during the execution of subsequent FETCH
statements. In either case, the cursor is placed in the open state and positioned before the first row of
its result table. If the table is empty the position of the cursor is effectively “after the last row.”

Chapter 7. Statements 1429

USING
Introduces a list of variables whose values are substituted for the parameter markers (question
marks) of a prepared statement. For an explanation of parameter markers, see “PREPARE” on page
1435.

• If a statement-name is specified in the DECLARE CURSOR statement that includes parameter
markers, USING must be used. If the prepared statement does not include parameter markers,
USING is ignored.

• If a select-statement is specified in the DECLARE CURSOR statement, USING may be used to
override the variable values. For more information, see Variable value override.

If the DECLARE CURSOR statement names a prepared statement that includes parameter markers,
you must use USING. If the prepared statement does not include parameter markers, USING is
ignored.
USING ALL or USING SUBSET

Identifies host structures or variables.
USING ALL

All the variables in the list are used for substitution of parameter markers in the prepared
statement.

USING SUBSET
Some or all of the variables in the list are used for substitution of parameter markers in the
prepared statement.

• Any host variable with an extended indicator value of UNASSIGNED will be removed from
the list. The result is as if the host variable was not specified in the statement.

• All other indicator values have no special meaning to the OPEN statement.

variable,…
Identifies host structures or variables that must be declared in the program in accordance
with the rules for declaring host structures and variables. A reference to a host structure is
replaced by a reference to each of its variables. The resulting number of variables must be
the same as the number of parameter markers in the prepared statement. The nth variable
corresponds to the nth parameter marker in the prepared statement.

A global variable may only be used if the current connection is a local connection (not a DRDA
connection).

USING SQL DESCRIPTOR SQL-descriptor-name
Identifies an SQL descriptor.
LOCAL

Specifies the scope of the name of the descriptor to be local to program invocation.
GLOBAL

Specifies the scope of the name of the descriptor to be global to the SQL session.
SQL-descriptor-name

Names the SQL descriptor. The name must identify a descriptor that already exists with the
specified scope.

See “SET DESCRIPTOR” on page 1505 for an explanation of the information in the SQL
descriptor.

USING DESCRIPTOR descriptor-name
Identifies an SQLDA that must contain a valid description of input variables.

Before the OPEN statement is processed, the user must set the following fields in the SQLDA. (The
rules for REXX are different. For more information see Embedded SQL Programming.)

• SQLN to indicate the number of SQLVAR occurrences provided in the SQLDA
• SQLDABC to indicate the number of bytes of storage allocated for the SQLDA
• SQLD to indicate the number of variables used in the SQLDA when processing the statement

1430 IBM i: Db2 for i SQL Reference

• SQLVAR occurrences to indicate the attributes of the variables

The SQLDA must have enough storage to contain all SQLVAR occurrences. If LOBs or distinct types
are present in the results, there must be additional SQLVAR entries for each parameter. For more
information about the SQLDA, which includes a description of the SQLVAR and an explanation on
how to determine the number of SQLVAR occurrences, see Appendix D, “SQLDA (SQL descriptor
area),” on page 1675.

SQLD must be set to a value greater than or equal to zero and less than or equal to SQLN. It must
be the same as the number of parameter markers in the prepared statement. The nth variable
described by the SQLDA corresponds to the nth parameter marker in the prepared statement.

Note that because RPG/400 does not provide the facility for setting pointers and the SQLDA uses
pointers to locate the appropriate variables, you will have to set these pointers outside your RPG/400
application.

Notes
Closed state of cursors: All cursors in a program are in the closed state when:

• The program is called:

– If CLOSQLCSR(*ENDPGM) is specified, all cursors are in the closed state each time the program is
called.

– If CLOSQLCSR(*ENDSQL) is specified, all cursors are in the closed state only the first time the
program is called as long as one SQL program remains on the call stack.

– If CLOSQLCSR(*ENDJOB) is specified, all cursors are in the closed state only the first time the
program is called as long as the job remains active.

– If CLOSQLCSR(*ENDMOD) is specified, all cursors are in the closed state each time the module is
initiated.

– If CLOSQLCSR(*ENDACTGRP) is specified, all cursors are in the closed state only the first time the
module in the program is initiated in the activation group.

• A program starts a new unit of work by executing a COMMIT statement without a HOLD option. Cursors
declared with the HOLD option are not closed by a COMMIT statement without a HOLD option. A
COMMIT HOLD statement does not close cursors whether they are declared with a HOLD option or not.

• A program starts a new unit of work by executing a ROLLBACK statement without a HOLD option. A
ROLLBACK HOLD statement does not close cursors whether they are declared with a HOLD option or
not.

• A CONNECT (Type 1) statement was executed.

A cursor can also be in the closed state because:

• A CLOSE statement was executed.
• A DISCONNECT statement disconnected the connection with which the cursor was associated.
• The connection with which the cursor was associated was in the release-pending state and a successful

COMMIT occurred.
• A CONNECT (Type 1) statement was executed.

To retrieve rows from the result table of a cursor, the FETCH statement must be executed when the
cursor is open. The only way to change the state of a cursor from closed to open is to execute an OPEN
statement.

Effect of temporary tables: If the result table of a cursor is not read-only, its rows are derived during the
execution of subsequent FETCH statements. The same method may be used for a read-only result table.
However, if a result table is read-only, Db2 for i may choose to use the temporary table method instead.
With this method the entire result table is inserted into a temporary table during the execution of the
OPEN statement. When a temporary table is used, the results of a program can differ in several ways:

• An error can occur during OPEN that would otherwise not occur until some later FETCH statement.

Chapter 7. Statements 1431

• The INSERT, UPDATE, and DELETE statements that are executed while the cursor is open cannot affect
the result table.

• Any NEXT VALUE expressions in the SELECT statement are evaluated for every row of the result table
during OPEN. Thus, sequence values are generated, for every row of the result table during OPEN.

• Any functions are evaluated for every row of the result table during OPEN. Thus, any external actions
and SQL statements that modify SQL data within the functions are performed for every row of the result
table during OPEN.

Conversely, if a temporary table is not used, INSERT, UPDATE, and DELETE statements executed while the
cursor is open can affect the result table, and any NEXT VALUE expressions and functions in the SELECT
statement are evaluated as each row is fetched. The effect of such operations is not always predictable.
For example, if cursor CUR is positioned on a row of its result table defined as SELECT * FROM T, and a
row is inserted into T, the effect of that insert on the result table is not predictable because its rows are
not ordered. A subsequent FETCH CUR might or might not retrieve the new row of T.

Parameter marker replacement: When the SELECT statement of the cursor is evaluated, each parameter
marker in the statement is effectively replaced by its corresponding variable. The replacement of a
parameter marker is an assignment operation in which the source is the value of the variable, and the
target is a variable within the database manager. For a typed parameter marker, the attributes of the
target variable are those specified by the CAST specification. For an untyped parameter marker, the
attributes of the target variable are determined according to the context of the parameter marker. For the
rules that affect parameter markers, see Table 121 on page 1442.

Let V denote a variable that corresponds to parameter marker P. The value of V is assigned to the target
variable for P in accordance with the rules for assigning a value to a column. Thus:

• V must be compatible with the target.
• If V is a number, the absolute value of its integral part must not be greater than the maximum absolute

value of the integral part of the target.
• If the attributes of V are not identical to the attributes of the target, the value is converted to conform to

the attributes of the target.
• If the target cannot contain nulls, the value of V must not be null.

However, unlike the rules for assigning a value to a column:

• If V is a string, the value will be truncated (without an error), if its length is greater than the length
attribute of the target.

When the SELECT statement of the cursor is evaluated, the value used in place of P is the value of the
target variable for P. For example, if V is CHAR(6), and the target is CHAR(8), the value used in place of P is
the value of V padded with two blanks.

The USING clause is intended for a prepared SELECT statement that contains parameter markers.
However, it can also be used when the SELECT statement of the cursor is part of the DECLARE CURSOR
statement. In this case the OPEN statement is executed as if each variable in the SELECT statement were
a parameter marker, except that the attributes of the target variables are the same as the attributes of
the variables in the SELECT statement. The effect is to override the values of the variables in the SELECT
statement of the cursor with the values of the variables specified in the USING clause.

Variable value override: The USING clause is intended for a prepared SELECT statement that contains
parameter markers. However, it can also be used when the SELECT statement of the cursor is part of
the DECLARE CURSOR statement. In this case, the OPEN statement is executed as if each variable in the
SELECT statement were a parameter marker, except that the attributes of the target variables are the
same as the attributes of the variables in the SELECT statement. The effect is to override the values of the
variables in the SELECT statement of the cursor with the values of the variables specified in the USING
clause.

Examples
Example 1: Write the embedded statements in a COBOL program that will:

1432 IBM i: Db2 for i SQL Reference

1. Define a cursor C1 that is to be used to retrieve all rows from the DEPARTMENT table for departments
that are administered by (ADMRDEPT) department ‘A00'

2. Place the cursor C1 before the first row to be fetched.

 EXEC SQL DECLARE C1 CURSOR FOR
 SELECT DEPTNO, DEPTNAME, MGRNO FROM DEPARTMENT
 WHERE ADMRDEPT = 'A00' END-EXEC.

 EXEC SQL OPEN C1 END-EXEC.

Example 2: Code an OPEN statement to associate a cursor DYN_CURSOR with a dynamically defined
select-statement in a C program. Assuming two parameter markers are used in the predicate of the
select-statement, two host variable references are supplied with the OPEN statement with the first item
having a data type of integer and the second item having a data type of VARCHAR(64). (The related
host variable definitions, PREPARE statement, and DECLARE CURSOR statement are also shown in the
example below.)

 EXEC SQL BEGIN DECLARE SECTION;
 static short hv_int;
 char hv_vchar64[64];
 char stmt1_str[200];
 EXEC SQL END DECLARE SECTION;

 EXEC SQL PREPARE STMT1_NAME FROM :stmt1_str;

 EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

 EXEC SQL OPEN DYN_CURSOR USING :hv_int, :hv_vchar64;

Example 3: Code an OPEN statement as in example 3, but in this case the number and data types of the
items in the select statement are not known.

 EXEC SQL BEGIN DECLARE SECTION;
 char stmt1_str[200];
 EXEC SQL END DECLARE SECTION;
 EXEC SQL INCLUDE SQLDA;

 EXEC SQL PREPARE STMT1_NAME FROM :stmt1_str;
 EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

 EXEC SQL OPEN DYN_CURSOR USING DESCRIPTOR :sqlda;

Example 4: Code a prepared select statement from optional pieces of text, then open it with only the host
variables that apply to the generated statement.

Suppose there are three host variables with corresponding indicators:

PRED1HV and PRED1IND, a VARCHAR(50) variable
PRED2HV and PRED2IND, a DECIMAL(10,2) variable
PRED3HV and PRED3IND, a TIMESTAMP variable

Build the statement based on selection conditions set by the application. Note that this is pseudocode.

stmt = 'SELECT * FROM MYTABLE WHERE DUEDATE > CURRENT DATE';
IF Selection1 THEN
 stmt = stmt CONCAT ' AND COL1 = ?';
 PRED1HV = <value supplied for selection1>;
 PRED1IND = 0;
ELSE
 PRED1IND = -7; /* Predicate omitted, so omit the host variable on the OPEN */
IF Selection2 THEN
 stmt = stmt CONCAT ' AND COL2 < ?';
 PRED2HV = <value supplied for selection2>;
 PRED2IND = 0;
ELSE
 PRED2IND = -7; /* Predicate omitted, so omit the host variable on the OPEN */
IF Selection3 THEN
 stmt = stmt CONCAT ' AND COL3 = ?';
 PRED3HV = <value supplied for selection3>;
 PRED3IND = 0;
ELSE
 PRED3IND = -7; /* Predicate omitted, so omit the host variable on the OPEN */

Chapter 7. Statements 1433

EXEC SQL DECLARE COND_CURSOR FOR SELECT1;
EXEC SQL PREPARE SELECT1 FROM :stmt;

The following OPEN statement can be used for any combination of generated predicates and will omit any
host variables that have an indicator value of -7. The data types of the host variables must match their use
in the query, so which ones to omit is important.

EXEC SQL OPEN COND_CURSOR USING SUBSET :PREDHV1:PREDIND1, :PREDHV2:PREDIND2, :PREDHV3:PREDIND3;

If PREDIND2 has a value of -7, the OPEN is logically equivalent to:

EXEC SQL OPEN COND_CURSOR USING :PREDHV1:PREDIND1,:PREDHV3:PREDIND3;

1434 IBM i: Db2 for i SQL Reference

PREPARE
The PREPARE statement creates an executable form of an SQL statement from a character-string form of
the statement. The character-string form is called a statement string, and the executable form is called a
prepared statement.

Invocation
This statement can only be embedded in an application program, SQL function, SQL procedure, or trigger.
It is an executable statement that cannot be dynamically prepared. It must not be specified in Java.

Authorization
The authorization rules are the same as those defined for the SQL statement specified by the PREPARE
statement. For example, see “select-statement” on page 789 for the authorization rules that apply when
a SELECT statement is prepared.

If DLYPRP(*NO) is specified on the CRTSQLxxx command, the authorization checking is performed when
the statement is prepared, except:

• If a DROP SCHEMA statement is prepared, privileges on all objects in the schema are not checked until
the statement is executed.

• If a DROP TABLE statement is prepared, privileges on all views, indexes, and logical files that reference
the table are not checked until the statement is executed.

• If a DROP VIEW statement is prepared, privileges on all views that reference the view are not checked
until the statement is executed.

• If a CREATE TRIGGER statement is prepared, privileges on objects referenced in the triggered-action are
not checked until the statement is executed.

• If a DROP, COMMENT, or LABEL of a FUNCTION, PROCEDURE, SEQUENCE, TYPE, TRIGGER, VARIABLE,
or XSROBJECT statement is prepared, authorities are not checked until the statement is executed.

• If a GRANT or REVOKE statement is prepared, authorities are not checked until the statement is
executed.

If DLYPRP(*YES) is specified on the CRTSQLxxx command, all authorization checking is deferred until the
statement is executed or used in an OPEN statement.

The authorization ID of the statement is the run-time authorization ID unless USRPRF(*OWNER) and
DYNUSRPRF(*OWNER) were specified on the CRTSQLxxx command when the program was created. For
more information, see “Authorization IDs and authorization names” on page 61.

If a global variable is referenced in a statement, the privileges held by the authorization ID of the
statement must include at least one of the following:

• For the global variable identified in the statement,

– The READ privilege on the global variable, and
– The system authority *EXECUTE on the library containing the global variable

• Database administrator authority

Chapter 7. Statements 1435

Syntax
PREPARE statement-name

USING

SQL

DESCRIPTOR
LOCAL

GLOBAL

SQL-descriptor-name

INTO descriptor-name

USING NAMES

SYSTEM NAMES

LABELS

ANY

BOTH

ALL

FROM variable

expression

ATTRIBUTES attr-variable

FROM variable

expression

attribute-string

1436 IBM i: Db2 for i SQL Reference

ASENSITIVE

INSENSITIVE

SENSITIVE
DYNAMIC

NO SCROLL

SCROLL

WITHOUT HOLD

WITH HOLD

WITHOUT RETURN

WITH RETURN
TO CALLER

TO CLIENT

offset-clause

fetch-clause

read-only-clause

update-clause

optimize-clause

isolation-clause

concurrent-access-resolution-clause

WITHOUT EXTENDED INDICATORS

WITH EXTENDED INDICATORS

WITHOUT ROW CHANGE COLUMNS

WITH ROW CHANGE COLUMNS POSSIBLY DISTINCT

ALWAYS DISTINCT

1

Notes:
1 The same clause must not be specified more than once. If the options are not specified, their
defaults are whatever was specified for the corresponding options in an associated DECLARE CURSOR
and the prepared SELECT statement.

Description
statement-name

Names the prepared statement. If the name identifies an existing prepared statement, that prepared
statement is destroyed if:

• it was prepared in the same instance of the same program, or
• CLOSQLCSR(*ENDJOB), CLOSQLCSR(*ENDACTGRP), or CLOSQLCSR(*ENDSQL) are specified on the

CRTSQLxxx commands associated with both prepared statements.

The name must not identify a prepared statement that is the SELECT statement of an open cursor of
this instance of the program.

Chapter 7. Statements 1437

USING SQL DESCRIPTOR SQL-descriptor-name
Identifies an SQL descriptor. If USING is specified, and the PREPARE statement is successfully
executed, information about the prepared statement is placed in the SQL descriptor specified by
the SQL-descriptor-name. Thus, the PREPARE statement:

 EXEC SQL PREPARE S1 USING SQL DESCRIPTOR :sqldescriptor FROM :V1;

is equivalent to:

 EXEC SQL PREPARE S1 FROM :V1;
 EXEC SQL DESCRIBE S1 USING SQL DESCRIPTOR :sqldescriptor;

LOCAL
Specifies the scope of the name of the descriptor to be local to program invocation.

GLOBAL
Specifies the scope of the name of the descriptor to be global to the SQL session.

SQL-descriptor-name
Names the SQL descriptor. The name must identify a descriptor that already exists with the
specified scope.

See “GET DESCRIPTOR” on page 1319 for an explanation of the information that is placed in the SQL
descriptor.

INTO
If INTO is used, and the PREPARE statement is successfully executed, information about the prepared
statement is placed in the SQLDA specified by the descriptor-name. Thus, the PREPARE statement:

 EXEC SQL PREPARE S1 INTO :SQLDA FROM :V1;

is equivalent to:

 EXEC SQL PREPARE S1 FROM :V1;
 EXEC SQL DESCRIBE S1 INTO :SQLDA;

descriptor-name
Identifies an SQL descriptor area (SQLDA), which is described in Appendix D, “SQLDA (SQL
descriptor area),” on page 1675. Before the PREPARE statement is executed, the following
variable in the SQLDA must be set (The rules for REXX are different. For more information, see the
Embedded SQL Programming topic collection.) :
SQLN

Indicates the number of variables represented by SQLVAR. (SQLN provides the dimension of
the SQLVAR array.) SQLN must be set to a value greater than or equal to zero before the
PREPARE statement is executed. For information about techniques to determine the number
of occurrences required, see “Determining how many SQLVAR occurrences are needed” on
page 1678.

See “DESCRIBE” on page 1266 for an explanation of the information that is placed in the SQLDA.

USING
Specifies what value to assign to each SQLNAME variable in the SQLDA. If the requested value does
not exist or a name is longer than 30, SQLNAME is set to length 0.
NAMES

Assigns the name of the column. This is the default. For a prepared statement where the names
are explicitly specified in the select-list, the name specified is returned.

SYSTEM NAMES
Assigns the system column name of the column.

LABELS
Assigns the label of the column. (Column labels are defined by the LABEL statement.) Only the
first 20 bytes of the label are returned.

1438 IBM i: Db2 for i SQL Reference

ANY
Assigns the column label. If the column has no label, the label is the column name.

BOTH
Assigns both the label and name of the column. In this case, two or three occurrences of
SQLVAR per column, depending on whether the result set contains distinct types, are needed to
accommodate the additional information. To specify this expansion of the SQLVAR array, set SQLN
to 2*n or 3*n(where n is the number of columns in the table or view). The first n occurrences of
SQLVAR contain the column names. Either the second or third n occurrences contain the column
labels. If there are no distinct types, the labels are returned in the second set of SQLVAR entries.
Otherwise, the labels are returned in the third set of SQLVAR entries.

If the same SQLDA is used on a subsequent FETCH statement, set SQLN to n after the PREPARE is
complete.

ALL
Assigns the label, column name, and system column name. In this case three or four occurrences
of SQLVAR per column, depending on whether the result set contains distinct types, are needed to
accommodate the additional information. To specify this expansion of the SQLVAR array, set SQLN
to 3*n or 4*n (where n is the number of columns in the result table). The first n occurrences of
SQLVAR contain the system column names. The second or third n occurrences contain the column
labels. The third or fourth n occurrences contain the column names if they are different from the
system column name. If there are no distinct types, the labels are returned in the second set of
SQLVAR entries and the column names are returned in the third set of SQLVAR entries. Otherwise,
the labels are returned in the third set of SQLVAR entries and the column names are returned in
the fourth set of SQLVAR entries.

If the same SQLDA is used on a subsequent FETCH statement, set SQLN to n after the PREPARE is
complete.

ATTRIBUTES attr-variable
Specifies the attributes for this cursor that are in effect if a corresponding attribute has not been
specified as part of the outermost fullselect of the associated SELECT statement. If attributes are
specified for the outermost fullselect, they are used instead of the corresponding attributes specified
on the PREPARE statement. In turn, if attributes are specified in the PREPARE statement, they are
used instead of the corresponding attributes specified on a DECLARE CURSOR statement.

All attributes other than USE CURRENTLY COMMITTED and WAIT FOR OUTCOME are ignored if the
prepared statement is not a select-statement.

attr-variable must identify a character-string or Unicode graphic variable that is declared in the
program in accordance with the rules for declaring string variables. attr-variable must be a string
variable (either fixed-length or varying-length) that has a length attribute that does not exceed the
maximum length of a VARCHAR. Leading and trailing blanks are removed from the value of the
variable. The variable must contain a valid attribute-string.

An indicator variable can be used to indicate whether attributes are actually provided on the PREPARE
statement. Thus, applications can use the same PREPARE statement regardless of whether attributes
need to be specified or not. The options that can be specified as part of the attribute-string are as
follows:
ASENSITIVE, SENSITIVE, or INSENSITIVE

Specifies whether the cursor is asensitive, sensitive, or insensitive to changes. For more
information, see “DECLARE CURSOR” on page 1215.

If SENSITIVE is specified, then a fetch-clause must not be specified. If INSENSITIVE is specified,
then an update-clause must not be specified.

NO SCROLL or SCROLL
Specifies whether the cursor is scrollable or not scrollable. For more information, see “DECLARE
CURSOR” on page 1215.

Chapter 7. Statements 1439

WITHOUT HOLD or WITH HOLD
Specifies whether the cursor should be prevented from being closed as a consequence of a
commit operation. For more information, see “DECLARE CURSOR” on page 1215.

WITHOUT RETURN or WITH RETURN
Specifies whether the result table of the cursor is intended to be used as a result set that will be
returned from a procedure. For more information, see “DECLARE CURSOR” on page 1215.

offset-clause
Specifies the number of rows to skip before any rows are retrieved. For more information, see
“offset-clause” on page 779. The offset-row-count must be a constant.

fetch-clause
Specifies that a maximum number of rows should be retrieved. For more information, see “fetch-
clause” on page 780. The fetch-row-count must be a constant. The alternate LIMIT syntax is not
supported.

read-only-clause or update-clause
Specifies whether the result table is read-only or updatable. The update-clause clause must be
specified without column names (FOR UPDATE). For more information, see “read-only-clause” on
page 797 and “update-clause” on page 796.

optimize-clause
Specifies that the database manager should assume that the program does not intend to retrieve
more than integer rows from the result table. For more information, see “optimize-clause” on page
798.

isolation-clause
Specifies an isolation level at which the select statement is executed. For more information, see
“isolation-clause” on page 799.

concurrent-access-resolution-clause
Specifies the concurrent access resolution to use for the select statement. For more information,
see “concurrent-access-resolution-clause” on page 801.

WITHOUT EXTENDED INDICATORS or WITH EXTENDED INDICATORS
Specifies whether the values provided for indicator variables during execution of an INSERT or
UPDATE follow standard SQL semantics for indicating NULL values, or may use extended indicator
values including DEFAULT or UNASSIGNED.
WITH EXTENDED INDICATORS must only be specified when the statement is an INSERT using
VALUES form of the INSERT statement, a MERGE statement, an UPDATE statement, or when the
statement contains an INSERT using VALUES form of the INSERT statement.

WITHOUT ROW CHANGE COLUMNS or WITH ROW CHANGE COLUMNS POSSIBLY DISTINCT or
WITH ROW CHANGE COLUMNS ALWAYS DISTINCT

Specifies whether additional column(s) should be added to the result set of a prepared select-
statement that can be subsequently be used to identify whether a value of a column in the
row might have changed. Additional row change columns are only added if a single table (or an
updatable view) is referenced in the outermost subselect. The DESCRIBE and GET DESCRIPTOR
statements will indicate which rows have been added.
WITHOUT ROW CHANGE COLUMNS

Row change columns are not added to the result set. This is the default.
WITH ROW CHANGE COLUMNS POSSIBLY DISTINCT

Row change columns are added to the result set even if they do not uniquely represent a
single row. The columns added can be used to determine whether a value of a column in the
row might have changed since it was originally fetched.

• If the row change column values have not changed since they were first fetched, then no
columns of the row have been changed since they were first fetched.

• If the row change column values have changed since they were first fetched, then columns
of the row may or may not have changed since the row change values are not guaranteed to
represent a single row.

1440 IBM i: Db2 for i SQL Reference

WITH ROW CHANGE COLUMNS ALWAYS DISTINCT
Row change columns are added to the result set only if they uniquely represent a single row.
Otherwise, no row change columns are added to the result set. The columns added can be
used to determine whether a value of a column in the row has changed since it was originally
fetched. (Note that a table requires a row change timestamp column to guarantee that the row
change columns of a row uniquely identify a single row.)

• If the row change column values have not changed since they were first fetched, then no
columns of the row have been changed since they were first fetched.

• If the row change column values have changed since they were first fetched, then columns
of the row have changed.

A warning is returned (SQLSTATE 0168T) if WITH ROW CHANGE COLUMNS ALWAYS DISTINCT
is specified and the database manager is unable to return distinct row change columns.

FROM
Introduces the statement string. The statement string is the value of the specified expression, string-
expression, or the identified variable.
variable

Identifies a variable that is declared in the program in accordance with the rules for declaring
character-string or Unicode graphic variables. An indicator variable must not be specified.

expression
An expression of the type described in “Expressions” on page 158, that does not include an
aggregate function or column name. It must return a value that is a character string or a Unicode
graphic string. If a variable is specified in the expression it must not have a CCSID of 65535.119

The statement string must be one of the following SQL statements:

ALLOCATE CURSOR INSERT SET CURRENT DEGREE

ALTER LABEL SET CURRENT IMPLICIT XMLPARSE
OPTION

ASSOCIATE LOCATORS LOCK TABLE SET CURRENT TEMPORAL
SYSTEM_TIME

CALL MERGE SET ENCRYPTION PASSWORD

COMMENT REFRESH TABLE SET PATH

COMMIT RELEASE SAVEPOINT SET SCHEMA

Compound (dynamic) RENAME SET SESSION AUTHORIZATION

CREATE REVOKE SET TRANSACTION

DECLARE GLOBAL TEMPORARY TABLE ROLLBACK SET variable120

DELETE SAVEPOINT TRANSFER OWNERSHIP

DROP select-statement TRUNCATE

FREE LOCATOR SET CURRENT DEBUG MODE UPDATE

GRANT SET CURRENT DECFLOAT ROUNDING
MODE

VALUES INTO

HOLD LOCATOR

The statement string must not:

• Begin with EXEC SQL.
• End with END-EXEC or a semicolon.
• Include references to variables. Global variables are allowed.

119 In a PL/I program, a PL/I string expression can also be specified.
120 The target of the SET variable statement must be a global variable.

Chapter 7. Statements 1441

Notes
Parameter markers: Although a statement string cannot include references to host variables, SQL
variables, or SQL parameters, it may include parameter markers or global variables. Parameter markers
can be replaced by the values of variables when the prepared statement is executed. A parameter marker
is a question mark (?) that is used where a variable could be used if the statement string were a static SQL
statement. For an explanation of how parameter markers are replaced by values, see “OPEN” on page
1429 and “EXECUTE” on page 1304.

There are two types of parameter markers:

Typed parameter marker
A parameter marker that is specified along with its target data type. It has the general form:

 CAST(? AS data-type)

This notation is not a function call, but a “promise” that the type of the parameter at run time will
be of the data type specified or some data type that can be converted to the specified data type. For
example, in:

 UPDATE EMPLOYEE
 SET LASTNAME = TRANSLATE(CAST(? AS VARCHAR(12)))
 WHERE EMPNO = ?

the value of the argument of the TRANSLATE function will be provided at run time. The data type of
that value will either be VARCHAR(12), or some type that can be converted to VARCHAR(12). For more
information, refer to “CAST specification” on page 176.

Untyped parameter marker
A parameter marker that is specified without its target data type. It has the form of a single question
mark. The data type of an untyped parameter marker is provided by context. For example, the
untyped parameter marker in the predicate of the above update statement is the same as the data
type of the EMPNO column.

Typed parameter markers can be used in dynamic SQL statements wherever a variable is supported and
the data type is based on the promise made in the CAST function.

Untyped parameters markers can be used in dynamic SQL statements in selected locations where
variables are supported. These locations and the resulting data type are found in the following tables:

Table 121. Untyped Parameter Marker Usage in Expressions (Including Select List, CASE, and VALUES)

Untyped Parameter Marker Location Data Type

Alone in a select list that is not in a subquery Error

Alone in a select list that is in an EXISTS subquery Error

Alone in a select list that is in a subquery The data type of the other operand of the
subquery.121

Alone as offset-row-count in an offset-clause. BIGINT

Alone as fetch-row-count in a fetch-clause. BIGINT

Both operands of a single arithmetic operator,
after considering operator precedence and order of
operation rules.

Includes cases such as:

 ? + ? + 10

DECFLOAT(34)

1442 IBM i: Db2 for i SQL Reference

Table 121. Untyped Parameter Marker Usage in Expressions (Including Select List, CASE, and VALUES)
(continued)

Untyped Parameter Marker Location Data Type

One operand of a single operator in an arithmetic
expression (not a datetime expression)

Includes cases such as:

 ? + ? * 10

The data type of the other operand.

Labelled duration within a datetime expression with
a unit type other than SECONDS. (Note that the
portion of a labelled duration that indicates the
type of units cannot be a parameter marker.)

DECIMAL(15,0)

Labelled duration within a datetime expression with
a type unit of SECONDS. (Note that the portion of
a labelled duration that indicates the type of units
cannot be a parameter marker.)

DECIMAL(27,12)

Any other operand of a datetime expression (for
instance 'timecol + ?' or '? - datecol').

Error

Both operands of a CONCAT operator DBCLOB(1G) CCSID 1200

One operand of a CONCAT operator when the other
operand is a non-CLOB character data type

VARCHAR(32740) with the same CCSID as the
other operand

One operand of a CONCAT operator, when the other
operand is a non-DBCLOB graphic data type

VARGRAPHIC(16370) with the same CCSID as the
other operand

One operand of a CONCAT operator when the other
operand is a non-BLOB binary type

VARBINARY(32740)

One operand of a CONCAT operator, when the other
operand is a large object string

Same as that of the other operand

The expression following the CASE keyword in a
simple CASE expression

Result of applying the “Rules for result data
types” on page 105 to the expressions following
the WHEN keyword that are other than untyped
parameter markers

At least one of the result-expressions in a CASE
expression (both Simple and Searched) with the
rest of the result-expressions either untyped
parameter marker or NULL.

Error

Any or all expressions following WHEN in a simple
CASE expression.

Result of applying the “Rules for result data types”
on page 105 to the expression following CASE
and the expressions following WHEN that are not
untyped parameter markers.

A result-expression in a CASE expression (both
simple and searched) where at least one result-
expression is not NULL and not an untyped
parameter marker.

Result of applying the “Rules for result data types”
on page 105 to all result-expressions that are other
than NULL or untyped parameter markers.

Alone as a column-expression in a single-row
VALUES clause that is not within an INSERT
statement and not within the VALUES clause of in
insert operation of a MERGE statement.

Error

Chapter 7. Statements 1443

Table 121. Untyped Parameter Marker Usage in Expressions (Including Select List, CASE, and VALUES)
(continued)

Untyped Parameter Marker Location Data Type

Alone as a column-expression in a multi-row
VALUES clause that is not within an INSERT
statement, and for which the column-expressions in
the same position in all other row-expressions are
untyped parameter markers.

Error

Alone as a column-expression in a multi-row
VALUES clause that is not within an INSERT
statement, and for which a column-expression
in the same position of at least one other row-
expression is not an untyped parameter marker or
NULL.

Result of applying the “Rules for result data types”
on page 105 to all operands that are other than
untyped parameter markers.

Alone as a column-expression in a single-row
VALUES clause within an INSERT statement.

The data type of the column. If the column is
defined as a user-defined distinct type, then it is
the source data type of the user-defined distinct
type. 121

Alone as a column-expression in a multi-row
VALUES clause within an INSERT statement.

The data type of the column. If the column is
defined as a user-defined distinct type, then it is
the source data type of the user-defined distinct
type. 121

Alone as a column-expression in a VALUES clause of
the source-table for a MERGE statement

Error

Alone as a column-expression in the VALUES clause
of an insert operation of a MERGE statement

The data type of the column. If the column is
defined as a user-defined distinct type, then it is
the source data type of the user-defined distinct
type. 121

Alone as a column-expression on the right side of
assignment-clause for an update operation of a
MERGE statement

The data type of the column. If the column is
defined as a user-defined distinct type, then it is
the source data type of the user-defined distinct
type. 121

Alone as a value on the right hand side of a SET
clause of an UPDATE statement.

The data type of the column. If the column is
defined as a user-defined distinct type, then it is
the source data type of the user-defined distinct
type. 121

As a value in an insert-multiple-rows of an INSERT
statement.

INTEGER

As a value on the right side of a SET special register
statement

The data type of the special register.

As a value in the VALUES clause of the VALUES
INTO statement, where the associated expression
is a global variable.

The data type of the global variable.

As a value in the INTO clause of the VALUES INTO
statement

The data type of the associated expression. 121

As a value in a FREE LOCATOR or HOLD LOCATOR
statement

Locator.

1444 IBM i: Db2 for i SQL Reference

Table 121. Untyped Parameter Marker Usage in Expressions (Including Select List, CASE, and VALUES)
(continued)

Untyped Parameter Marker Location Data Type

As a value for the password in a SET ENCRYPTION
PASSWORD statement

VARCHAR(128)

As a value for the hint in a SET ENCRYPTION
PASSWORD statement

VARCHAR(32)

Table 122. Untyped Parameter Marker Usage in Predicates

Untyped Parameter Marker Location Data Type

Both operands of a comparison operator or
DISTINCT predicate

VARGRAPHIC(16370) CCSID 1200

One operand of a comparison operator or
DISTINCT predicate where the other operand is
other than an untyped parameter marker or a
distinct type.

The data type of the other operand.121

One operand of a comparison operator where the
other operand is a distinct type.

Error

All operands of a BETWEEN predicate VARGRAPHIC(16370) CCSID 1200

Two operands of a BETWEEN predicate Same as that of the only non-parameter marker.

Only one operand of a BETWEEN predicate Result of applying the “Rules for result data types”
on page 105 on all operands that are other than
untyped parameter markers, except the CCSID
attribute is the CCSID of the value specified at
execution time.

All operands of an IN predicate, for example, ? IN
(?,?,?)

VARGRAPHIC(16370) CCSID 1200

The first operand of an IN predicate where the
right hand side is a fullselect, for example, ? IN
(fullselect).

Data type of the selected column

The first operand of an IN predicate where the
right hand side is not a fullselect, for example, ? IN
(?,A,B) or for example, ? IN (A,?,B,?).

Result of applying the “Rules for result data
types” on page 105 on all operands of the IN
list (operands to the right of IN keyword) that are
other than untyped parameter markers, except the
CCSID attribute is the CCSID of the value specified
at execution time.

Any or all operands of the IN list of the IN
predicate, for example, for example, A IN (?,B,?).

Result of applying the “Rules for result data types”
on page 105 on all operands of the IN predicate
(operands to the left and right of the IN predicate)
that are other than untyped parameter markers,
except the CCSID attribute is the CCSID of the
value specified at execution time.

Any operands in a row-value-expression of an IN
predicate, for example, (c1,?) IN ...

Error

Any select list items in a subquery if a row-value-
expression is specified in an IN predicate, for
example, (c1,c2) IN (SELECT ?, c1 FROM ...)

Error

Chapter 7. Statements 1445

Table 122. Untyped Parameter Marker Usage in Predicates (continued)

Untyped Parameter Marker Location Data Type

First operand of the IS JSON predicate CLOB(2G) CCSID 1208

json-expression or sql-json-path-expression of the
JSON_EXISTS predicate.

CLOB(2G) CCSID 1208

All three operands of the LIKE predicate. Match expression (operand 1) and pattern
expression (operand 2) VARCHAR(32740); escape
expression (operand 3) is VARCHAR(1) 122 with the
CCSID of the job.

The match expression of the LIKE predicate
when either the pattern expression or the escape
expression is other than an untyped parameter
marker.

Either VARCHAR(32740) or VARGRAPHIC(16370)
or VARBINARY(32740) depending on the data
type of the first operand that is not an untyped
parameter marker. The CCSID depends on the
CCSID of the first operand.

The pattern expression of the LIKE predicate
when either the match expression or the escape
expression is other than an untyped parameter
marker.

Either VARCHAR(32740) or VARGRAPHIC(16370)
or VARBINARY(32740) depending on the data
type of the first operand that is not an untyped
parameter marker. The CCSID depends on the
CCSID of the first operand.

For information about using fixed-length variables
for the value of the pattern, see “LIKE predicate”
on page 215.

The escape expression of the LIKE predicate
when either the match expression or the pattern
expression is other than an untyped parameter
marker.

Either VARCHAR(1) 122 or VARGRAPHIC(1) or
VARBINARY(1) depending on the result of applying
the “Rules for result data types” on page 105 on all
operands that are other than untyped parameter
markers. The CCSID also depends on result of
applying these rules.

Operand of the NULL predicate VARGRAPHIC(16370) CCSID 1200

Table 123. Untyped Parameter Marker Usage in Built-in Functions

Untyped Parameter Marker Location Data Type

All arguments of BITAND, BITANDNOT, BITOR,
BITXOR, BITNOT, COALESCE, IFNULL, LAND, LOR,
MIN, MAX, NULLIF, VALUE, or XOR

Error

Any argument of COALESCE, IFNULL, LAND, LOR,
MIN, MAX, NULLIF, or VALUE, or XOR where at least
one argument is other than an untyped parameter
marker.

Result of applying the “Rules for result data types”
on page 105 on all arguments that are other than
untyped parameter markers. If the result is a
distinct type, an error is returned.

An argument of BITAND, BITANDNOT, BITOR, and
BITXOR where the other argument is other than an
untyped parameter marker.

If the other argument is SMALLINT, INTEGER, or
BIGINT, the data type of the other argument.
Otherwise, DECFLOAT(34).

First argument of BSON_TO_JSON BLOB(2G)

All arguments of COMPARE_DECFLOAT,
DECFLOAT_SORTKEY, NORMALIZE_DECFLOAT,
QUANTIZE, and TOTALORDER

DECFLOAT(34)

First argument of DAYNAME TIMESTAMP(12)

1446 IBM i: Db2 for i SQL Reference

Table 123. Untyped Parameter Marker Usage in Built-in Functions (continued)

Untyped Parameter Marker Location Data Type

First argument of DECFLOAT_FORMAT VARGRAPHIC(16370) CCSID 1200

Second argument of DECFLOAT_FORMAT Error

First argument of INTERPRET BLOB(2G)

JSON-expression (when FORMAT BSON
is specified) argument of JSON_ARRAY,
JSON_OBJECT, JSON_QUERY, or JSON_VALUE

BLOB(2G)

JSON-expression (when FORMAT BSON is
not specified), key-name-expression, or sql-json-
path-expression arguments of JSON_ARRAY,
JSON_OBJECT, JSON_QUERY, or JSON_VALUE

CLOB(2G) CCSID 1208

First argument of JSON_TO_BSON CLOB(2G) CCSID 1208

Both arguments of LOCATE, POSITION, or POSSTR DBCLOB(1G) CCSID 1200

One argument of LOCATE, POSITION, or POSSTR
when the other argument is a character data type.

VARCHAR(32740) with the CCSID of the other
argument

One argument of LOCATE, POSITION, or POSSTR
when the other argument is a graphic data type.

VARGRAPHIC(16370) with the CCSID of the other
argument

One argument of LOCATE, POSITION, or POSSTR
when the other argument is a binary data type.

VARBINARY(32740)

Both the first and second arguments of
LOCATE_IN_STRING or OVERLAY

DBCLOB(1G) CCSID 1200

The first or second argument of
LOCATE_IN_STRING or OVERLAY when the other
string argument is a character data type.

VARCHAR(32740) with the CCSID of the other
argument

The first or second argument of
LOCATE_IN_STRING or OVERLAY when the other
string argument is a graphic data type.

VARGRAPHIC(16370) with the CCSID of the other
argument

The first or second argument of
LOCATE_IN_STRING or OVERLAY when the other
string argument is a binary data type.

VARBINARY(32740)

The third or fourth argument of
LOCATE_IN_STRING or OVERLAY

INTEGER

The second argument of LPAD or RPAD INTEGER

The third argument of LPAD or RPAD VARCHAR(32740)

The first argument of LTRIM or RTRIM DBCLOB(1G) CCSID 1200

The second argument of LTRIM or RTRIM VARCHAR(32740) if the first argument is a
character type; VARBINARY(32740) if the first
argument is a binary type; VARGRAPHIC(16370)
if the first argument is a graphic type. The CCSID
depends on the CCSID of the first argument.

The argument of UPPER, LOWER, UCASE, and
LCASE

DBCLOB(1G) CCSID 1200

First argument of MONTHNAME TIMESTAMP(12)

Chapter 7. Statements 1447

Table 123. Untyped Parameter Marker Usage in Built-in Functions (continued)

Untyped Parameter Marker Location Data Type

First or second argument of MONTHS_BETWEEN TIMESTAMP(12)

First operand of REGEXP_LIKE, REGEXP_INSTR,
REGEXP_SUBSTR, REGEXP_COUNT, and
REGEXP_REPLACE

DBCLOB(1G) CCSID 1200

Second operand of REGEXP_LIKE, REGEXP_INSTR,
REGEXP_SUBSTR, REGEXP_COUNT, and
REGEXP_REPLACE

DBCLOB(32K) CCSID 1200

Third operand of REGEXP_REPLACE DBCLOB(32K) CCSID 1200

source-string operand of REGEXP_LIKE,
REGEXP_COUNT, REGEXP_INSTR,
REGEXP_SUBSTR, and REGEXP_REPLACE

DBCLOB(32K) CCSID 1200

pattern-expression of REGEXP_LIKE,
REGEXP_COUNT, REGEXP_INSTR,
REGEXP_SUBSTR, and REGEXP_REPLACE

DBCLOB(32K) CCSID 1200

replacement-string operand of REGEXP_REPLACE DBCLOB(32K) CCSID 1200

start operand of REGEXP_LIKE, REGEXP_COUNT,
REGEXP_INSTR, REGEXP_SUBSTR, and
REGEXP_REPLACE

INTEGER

flags operand of REGEXP_LIKE, REGEXP_COUNT,
REGEXP_INSTR, REGEXP_SUBSTR, and
REGEXP_REPLACE

VARCHAR(6)

occurrence operand of REGEXP_INSTR,
REGEXP_SUBSTR, and REGEXP_REPLACE

INTEGER

return-option operand of REGEXP_INSTR INTEGER

group operand of REGEXP_INSTR and
REGEXP_SUBSTR

INTEGER

SUBSTR (first argument) DBCLOB(1G) CCSID 1200

SUBSTR (second and third arguments) INTEGER

The first argument of TRANSLATE Error

The second and third arguments of TRANSLATE VARCHAR(32740) if the first argument is a
character type; VARGRAPHIC(16370) if the first
argument is a graphic type. The CCSID depends on
the CCSID of the first argument.

The fourth argument of TRANSLATE VARCHAR(1) if the first argument is a character
type; VARGRAPHIC(1) if the first argument is a
graphic type. The CCSID depends on the CCSID of
the first argument.

The first argument of TIMESTAMP or
TIMESTAMP_ISO

Error

The second argument of TIMESTAMP TIME

The first argument of TIMESTAMP_FORMAT VARGRAPHIC(16370) CCSID 1200

The first argument of VARCHAR_FORMAT TIMESTAMP(12)

1448 IBM i: Db2 for i SQL Reference

Table 123. Untyped Parameter Marker Usage in Built-in Functions (continued)

Untyped Parameter Marker Location Data Type

The second argument of TIMESTAMP_FORMAT or
VARCHAR_FORMAT

Error

Any argument after the first argument of
VERIFY_GROUP_FOR_USER

VARCHAR(128)

First argument of XMLVALIDATE XML 123

First argument of XMLPARSE CLOB(2G) or DBCLOB(1G) based on the CCSID
value for the query option SQL_XML_DATA_CCSID

First argument of XMLCOMMENT VARCHAR(32740) or VARGRAPHIC(16370) based
on the CCSID value for the query option
SQL_XML_DATA_CCSID

First argument of XMLTEXT VARCHAR(32740) or VARGRAPHIC(16370) based
on the CCSID value for the query option
SQL_XML_DATA_CCSID

Second argument of XMLPI VARCHAR(36740) or VARGRAPHIC(16370) based
on the CCSID value for the query option
SQL_XML_DATA_CCSID

First argument of XMLSERIALIZE XML 124

All arguments of XMLDOCUMENT XML 123

All arguments of XMLCONCAT XML 123

First, second, and third arguments of
XSLTRANSFORM

XML 124

Array index of an ARRAY BIGINT

Unary minus DECFLOAT(34)

Unary plus DECFLOAT(34)

All other arguments of all other scalar functions. Error

Argument of MEDIAN DECFLOAT(34)

First or second argument of CORRELATION,
COVARIANCE, COVARIANCE_SAMP, or any of the
Regression functions

DECFLOAT(34) if the other argument is DECFLOAT.
Otherwise, DOUBLE.

JSON-expression (when FORMAT BSON is
specified) argument of JSON_ARRAYAGG or
JSON_OBJECTAGG

BLOB(2G)

JSON-expression (when FORMAT BSON is not
specified) or key-name-expression argument of
JSON_ARRAYAGG or JSON_OBJECTAGG

CLOB(2G) CCSID 1208

Second argument of LISTAGG VARCHAR(32740) if the first argument is a
character type; VARBINARY(32740) if the first
argument is a binary type; VARGRAPHIC(16370)
if the first argument is a graphic type. The CCSID
depends on the CCSID of the first argument.

Argument or order by expression of
PERCENTILE_CONT or PERCENTILE_DISC

DECFLOAT(34)

Chapter 7. Statements 1449

Table 123. Untyped Parameter Marker Usage in Built-in Functions (continued)

Untyped Parameter Marker Location Data Type

Arguments of all other aggregate functions Error

JSON-expression or sql-json-path-expression
argument of JSON_TABLE

CLOB(2G) CCSID 1208

Table 124. Untyped Parameter Marker Usage in User-defined Routines

Untyped Parameter Marker Location Data Type

Argument of a function The data type of the parameter, as defined when
the function was created

Argument of a procedure The data type of the parameter, as defined when
the procedure was created

Error checking: When a PREPARE statement is executed, the statement string is parsed and checked for
errors. If the statement string is not valid, a prepared statement is not created and an error is returned.

In local and remote processing, the DLYPREP(*YES) option can cause some SQL statements to receive
"delayed" errors. For example, DESCRIBE, EXECUTE, and OPEN might receive an SQLCODE that normally
occurs during PREPARE processing.

Reference and execution rules: Prepared statements can be referred to in the following kinds of
statements, with the following restrictions shown:

Statement The prepared statement restrictions
DESCRIBE None
DECLARE CURSOR Must be SELECT when the cursor is opened
EXECUTE Must not be SELECT

A prepared statement can be executed many times. If a prepared statement is not executed more than
once and does not contain parameter markers, it is more efficient to use the EXECUTE IMMEDIATE
statement rather than the PREPARE and EXECUTE statements.

Extended indicator usage: The EXTENDED INDICATORS clause indicates whether extended indicator
variable values are enabled in the SET assignment-clause of an UPDATE statement, the VALUES
expression-list of an INSERT statement, or the insert operation or update operation of a MERGE
statement.

Extended indicator variables and deferred error checks: When extended indicator variables are
enabled, the UNASSIGNED indicator variable value effectively causes its target column to be omitted
from the statement. Because of this, validation that is normally done during statement preparation is
delayed until statement execution.

Prepared statement persistence: All prepared statements are destroyed when:125

• A CONNECT (Type 1) statement is executed.
• A DISCONNECT statement disconnects the connection with which the prepared statement is

associated.

121 If the data type is DATE, TIME, or TIMESTAMP, then VARCHAR(32740) is used.
122 If the escape expression is MIXED data, the data type is VARCHAR(4).
123 The CCSID for XML is determined as described in “XML Values” on page 80.
124 The CCSID is determined based on the attributes of the data-type specified on the AS clause as

described in “CAST specification” on page 176. If the data-type is a binary string or bit data, then the
SQL_XML_DATA_CCSID is used for the CCSID attribute.

125 Prepared statements may be cached and not actually destroyed. However, a cached statement can only be
used if the same statement is prepared again.

1450 IBM i: Db2 for i SQL Reference

• A prepared statement is associated with a release-pending connection and a successful commit occurs.
• The associated scope (job, activation group, or program) of the SQL statement ends.

Scope of a statement: The scope of statement-name is the source program in which it is defined. You can
only reference a prepared statement by other SQL statements that are precompiled with the PREPARE
statement. For example, a program called from another separately compiled program cannot use a
prepared statement that was created by the calling program.

The scope of statement-name is also limited to the thread in which the program that contains the
statement is running. For example, if the same program is running in two separate threads in the same
job, the second thread cannot use a statement that was prepared by the first thread.

Although the scope of a statement is the program in which it is defined, each package created from the
program includes a separate instance of the prepared statement and more than one prepared statement
can exist at run time. For example, assume a program using CONNECT (Type 2) statements connects to
location X and location Y in the following sequence:

 EXEC SQL CONNECT TO X;
 EXEC SQL PREPARE S FROM :hv1;
 EXEC SQL EXECUTE S;
 .
 .
 .
 EXEC SQL CONNECT TO Y;
 EXEC SQL PREPARE S FROM :hv1;
 EXEC SQL EXECUTE S;

The second prepare of S prepares another instance of S at Y.

A prepared statement can only be referenced in the same instance of the program in the program stack,
unless CLOSQLCSR(*ENDJOB), CLOSQLCSR(*ENDACTGRP), or CLOSQLCSR(*ENDSQL) is specified on the
CRTSQLxxx commands.

• If CLOSQLCSR(*ENDJOB) is specified, the prepared statement can be referred to by any instance of the
program (that prepared the statement) on the program stack. In this case, the prepared statement is
destroyed at the end of the job.

• If CLOSQLCSR(*ENDSQL) is specified, the prepared statement can be referred to by any instance of
the program (that prepared the statement) on the program stack until the last SQL program on the
program stack ends. In this case, the prepared statement is destroyed when the last SQL program on
the program stack ends.

• If CLOSQLCSR(*ENDACTGRP) is specified, the prepared statement can be referred to by all instances of
the module in the program that prepared the statement until the activation group ends. In this case, the
prepared statement is destroyed when the activation group ends.

Allocating the SQL descriptor: If a USING clause is specified, before the PREPARE statement is
executed, the SQL descriptor must be allocated using the ALLOCATE DESCRIPTOR statement. If the
number of descriptor items allocated is less than the number of result columns, a warning (SQLSTATE
01005) is returned.

PREPARE and *LIBL: Normally, any unqualified names of objects are resolved when a statement is
prepared. Hence, any changes to the CURRENT SCHEMA or CURRENT PATH after the statement has been
prepared have no effect on which objects will be referenced when the statement is executed or opened.
However, if system naming is used and an object name is implicitly qualified with *LIBL, the object is
resolved at execute or open time. Any changes to the library list after the statement is prepared but
before execute or open time will affect which objects will be referenced when the statement is executed
or opened.

Examples
Example 1: Prepare and execute a non-select-statement in a COBOL program. Assume the statement is
contained in a variable HOLDER and that the program will place a statement string into the variable based
on some instructions from the user. The statement to be prepared does not have any parameter markers.

Chapter 7. Statements 1451

 EXEC SQL PREPARE STMT_NAME FROM :HOLDER END-EXEC.

 EXEC SQL EXECUTE STMT_NAME END-EXEC.

Example 2: Prepare and execute a non-select-statement as in example 1, except assume the statement to
be prepared can contain any number of parameter markers.

 EXEC SQL PREPARE STMT_NAME FROM :HOLDER END-EXEC.

 EXEC SQL EXECUTE STMT_NAME USING DESCRIPTOR :INSERT_DA END-EXEC.

Assume that the following statement is to be prepared:

 INSERT INTO DEPARTMENT VALUES(?, ?, ?, ?)

To insert department number G01 named COMPLAINTS, which has no manager and reports to
department A00, the structure INSERT_DA should have the following values before executing the
EXECUTE statement.

1452 IBM i: Db2 for i SQL Reference

REFRESH TABLE
The REFRESH TABLE statement refreshes the data in a materialized query table. The statement deletes
all rows in the materialized query table and then inserts the result rows from the select-statement
specified in the definition of the materialized query table.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For the table identified in the statement,

– The system authority *OBJMGT on the table
– The DELETE privilege on the table
– The INSERT privilege on the table
– The system authority *EXECUTE on the library containing the table

• Database administrator authority

For information on the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Table or View.

Syntax

REFRESH TABLE

,

table-name

Description
table-name

Identifies the materialized table to be refreshed. The table-name must identify a materialized query
table that exists at the current server. REFRESH TABLE evaluates the select-statement in the definition
of the materialized query table to refresh the table.

Notes
Refresh use of materialized query tables: No materialized query tables are used to evaluate the select-
statement during the processing of REFRESH TABLE statement.

Refresh isolation level: The isolation level used to evaluate the select-statement is either:

• the isolation level specified on the isolation-level clause of the select-statement, or
• if the isolation-level clause was not specified, the isolation level of the materialized query table recorded

when CREATE TABLE or ALTER TABLE was issued.

Number of rows: After successful execution of a REFRESH TABLE statement, the ROW_COUNT statement
information item in the SQL Diagnostics Area (or SQLERRD(3) in the SQLCA) will contain the number of
rows inserted into the materialized query table.

Example
Refresh the data in the TRANSCOUNT materialized query table.

Chapter 7. Statements 1453

 REFRESH TABLE TRANSCOUNT

1454 IBM i: Db2 for i SQL Reference

RELEASE (connection)
The RELEASE statement places one or more connections in the release-pending state.

Invocation
This statement can only be embedded within an application program or issued interactively. It is an
executable statement that cannot be dynamically prepared. It must not be specified in Java or REXX.

RELEASE is not allowed in a trigger or function.

Authorization
If a global variable is referenced in a statement, the privileges held by the authorization ID of the
statement must include at least one of the following:

• For the global variable identified in the statement,

– The READ privilege on the global variable, and
– The system authority *EXECUTE on the library containing the global variable

• Database administrator authority

Syntax
RELEASE server-name

variable

CURRENT

ALL

SQL

Description
server-name or variable

Identifies a connection by the specified server name or the server name contained in the variable. It
can be a global variable if it is qualified with schema name. If a variable is specified:

• It must be a character-string variable.
• It must not be followed by an indicator variable.
• The server name must be left-justified within the variable and must conform to the rules for forming

an ordinary identifier.
• If the length of the server name is less than the length of the variable, it must be padded on the right

with blanks.

When the RELEASE statement is executed, the specified server name or the server name contained in
the variable must identify an existing connection of the activation group.

CURRENT
Identifies the current connection of the activation group. The activation group must be in the
connected state.

ALL or ALL SQL
Identifies all existing connections of the activation group (local as well as remote connections).

An error or warning does not occur if no connections exist when the statement is executed.

An application server named ALL can only be identified by a variable or a delimited identifier.

Chapter 7. Statements 1455

If the RELEASE statement is successful, each identified connection is placed in the release-pending state
and will therefore be ended during the next commit operation. If the RELEASE statement is unsuccessful,
the connection state of the activation group and the states of its connections are unchanged.

Notes
RELEASE and CONNECT (Type 1): Using CONNECT (Type 1) semantics does not prevent using RELEASE.

Scope of RELEASE: RELEASE does not close cursors, does not release any resources, and does not
prevent further use of the connection.

Resource considerations for remote connections: Resources are required to create and maintain remote
connections. Thus, a remote connection that is not going to be reused should be in the release-pending
state and one that is going to be reused should not be in the release-pending state.

Connection states: ROLLBACK does not reset the state of a connection from release-pending to held.

If the current connection is in the release-pending state when a commit operation is performed, the
connection is ended and the activation group is in the unconnected state. In this case, the next executed
SQL statement must be CONNECT or SET CONNECTION.

RELEASE ALL places the connection to the local release-pending in the release-pending state. A
connection in the release-pending state is ended during a commit operation even though it has an open
cursor defined with the WITH HOLD clause.

Examples
Example 1: The connection to TOROLAB1 is not needed in the next unit of work. The following statement
will cause it to be ended during the next commit operation.

 EXEC SQL RELEASE TOROLAB1;

Example 2: The current connection is not needed in the next unit of work. The following statement will
cause it to be ended during the next commit operation.

 EXEC SQL RELEASE CURRENT;

Example 3: None of the existing connections are needed in the next unit of work. The following statement
will cause it to be ended during the next commit operation.

 EXEC SQL RELEASE ALL;

1456 IBM i: Db2 for i SQL Reference

RELEASE SAVEPOINT
The RELEASE SAVEPOINT statement releases the identified savepoint and any subsequently established
savepoints within a unit of work at the current server.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
None required.

Syntax

RELEASE
TO

SAVEPOINT savepoint-name

Description
savepoint-name

Identifies the savepoint to release. The name must identify a savepoint that exists at the current
server. The named savepoint and all the savepoints at the current server that were subsequently
established in the unit of work are released. After a savepoint is released, it is no longer maintained,
and rollback to the savepoint is no longer possible.

Notes
Savepoint Names: The name of the savepoint that was released can be re-used in another SAVEPOINT
statement, regardless of whether the UNIQUE keyword was specified on an earlier SAVEPOINT statement
specifying this same savepoint name.

Isolation Level Restriction: A RELEASE SAVEPOINT statement is not allowed if commitment control is
not active for the activation group. For information about determining which commitment definition is
used, see “Notes” on page 950 in COMMIT statement.

Example
Assume that a main routine sets savepoint A and then invokes a subroutine that sets savepoints B and
C. When control returns to the main routine, release savepoint A and any subsequently set savepoints.
Savepoints B and C, which were set by the subroutine, are released in addition to A.

 RELEASE SAVEPOINT A

Chapter 7. Statements 1457

RENAME
The RENAME statement renames a table, view, or index. The name and/or the system object name of the
table, view, or index can be changed.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• The following system authorities:

– If the name of the object is changed:

- The system authority of *OBJMGT on the table, view, or index to be renamed
- The system authority *EXECUTE on the library containing the table, view, or index to be renamed

– If the system name of the object is changed:

- The system authority of *OBJMGT on the table, view, or index to be renamed
- The system authorities *EXECUTE and *UPD on the library containing the table, view, or index to be

renamed
• Database administrator authority

Syntax

RENAME
TABLE

table-name

view-name

INDEX index-name

TO

target-identifier

FOR SYSTEM NAME system-object-identifier

SYSTEM NAME system-object-identifer

Description
TABLE table-name or view-name

Identifies the table or view that will be renamed. The table-name or view-name must identify a table
or view that exists at the current server, but must not identify a catalog table or a declared temporary
table. The specified name can be an alias name. The specified table or view is renamed to the new
name. All privileges, constraints, indexes, triggers, views, and logical files on the table or view are
preserved.

Any access plans that reference the table or view are implicitly prepared again when a program that
uses the access plan is next run. Since the program refers to a table or view with the original name, if a
table or view with the original name does not exist at that time, an error is returned.

INDEX index-name
Identifies the index that will be renamed. The index-name must identify an index that exists at the
current server. The specified index is renamed to the new name.

Any access plans that reference the index are not affected by rename.

1458 IBM i: Db2 for i SQL Reference

target-identifier
Identifies the new table-name, view-name, or index-name of the table, view, or index, respectively.
target-identifier must not be the same as a table, view, alias, or index that already exists at the current
server. The target-identifier must be an unqualified SQL identifier.

SYSTEM NAME system-object-identifier
Identifies the new system-object-identifier of the table, view, or index, respectively. system-object-
identifier must not be the same as a table, view, alias, or index that already exists at the current server.
The system-object-identifier must be an unqualified system identifier.

If the name of the object and the system name of the object are the same and target-identifier
is not specified, specifying system-object-identifier will be the new name and system object name.
Otherwise, specifying system-object-identifier will only affect the system name of the object and not
affect the name of the object.

If both target-identifier and system-object-identifier are specified, they cannot both be valid system
object names.

Notes
Effects of the statement: The specified table, view, or index is renamed to the new name. For a renamed
table, all privileges and indexes on the table are preserved. For a renamed index, all privileges are
preserved.

Invalidation of packages and access plans: Any access plans that refer to that table are invalidated. For
more information see “Packages and access plans” on page 12.

Considerations for aliases: If an alias name is specified for table-name, the table must exist at the
current server, and the table that is identified by the alias is renamed. The name of the alias is not
changed and continues to refer to the old table name after the rename.

There is no support for changing the name of an alias with the RENAME statement. To change the name to
which the alias refers, the alias must be dropped and recreated.

Rename rules: The rename operation performed depends on the new name specified.

• If the new name is a valid system identifier,

– the alternative name (if any) is removed, and
– the system object name is changed to the new name.

• If the new name is not a valid system identifier,

– the alternative name is added or changed to the new name, and
– a new system object name is generated if the system object name (of the table or view) was specified

as the table, view, or index to rename. For more information about generated table name rules, see
“Rules for Table Name Generation” on page 1167.

If an alias name is specified for table-name, the alias must exist at the current server, and the table that is
identified by the alias is renamed. The name of the alias is not changed and continues to refer to the old
table after the rename. There is no support for changing the name of an alias.

Examples
Example 1: Change the name of the EMPLOYEE table to CURRENT_EMPLOYEES:

 RENAME TABLE EMPLOYEE
 TO CURRENT_EMPLOYEES

Example 2: Change the name of the unique index using EMPNO, called XEMP1, to UXEMPNO:

 RENAME INDEX XEMP1
 TO UXEMPNO

Chapter 7. Statements 1459

Example 3: Rename a table named MY_IN_TRAY to MY_IN_TRAY_94. The system object name will remain
unchanged (MY_IN_TRAY).

 RENAME TABLE MY_IN_TRAY TO MY_IN_TRAY_94
 FOR SYSTEM NAME MY_IN_TRAY

1460 IBM i: Db2 for i SQL Reference

REVOKE (function or procedure privileges)
This form of the REVOKE statement removes the privileges on a function or procedure.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For each function or procedure identified in the statement:

– Every privilege specified in the statement
– The system authority of *OBJMGT on the function or procedure
– The system authority *EXECUTE on the library (or directory if this is a Java routine) containing the

function or procedure
• Database administrator authority
• Security administrator authority

Chapter 7. Statements 1461

Syntax

REVOKE ALL
PRIVILEGES

,

ALTER

EXECUTE

ON

,

FUNCTION

ROUTINE

,

function-name

(
,

parameter-type

)

SPECIFIC FUNCTION

ROUTINE

,

specific-name

PROCEDURE

ROUTINE

,

procedure-name

(
,

parameter-type

)

SPECIFIC PROCEDURE

ROUTINE

,

specific-name

FROM

,

USER

GROUP

authorization-name

PUBLIC

parameter-type
data-type

AS LOCATOR

data-type
built-in-type

distinct-type-name

array-type-name

built-in-type

1462 IBM i: Db2 for i SQL Reference

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

)

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

DATALINK

(200)

(integer) ccsid-clause

ROWID

XML

ccsid-clause
CCSID integer

Chapter 7. Statements 1463

Description
ALL or ALL PRIVILEGES

Revokes one or more function or procedure privileges from each authorization-name. The privileges
revoked are those privileges on the identified functions or procedures that were granted to the
authorization-names. Note that revoking ALL PRIVILEGES on a function or procedure is not the same
as revoking the system authority of *ALL.

If you do not use ALL, you must use one or more of the keywords listed below. Each keyword revokes
the privilege described.

ALTER
Revokes the privilege to use the ALTER FUNCTION, ALTER PROCEDURE, or COMMENT statement.

EXECUTE
Revokes the privilege to execute a function or procedure.

FUNCTION or SPECIFIC FUNCTION
Identifies the function from which the privilege is revoked. The function must exist at the current
server and it must be a user-defined function, but not a function that was implicitly generated with the
creation of a distinct type. The function can be identified by its name, function signature, or specific
name.
FUNCTION function-name

Identifies the function by its name. The function-name must identify exactly one function. The
function may have any number of parameters defined for it. If there is more than one function of
the specified name in the specified or implicit schema, an error is returned.

FUNCTION function-name (parameter-type, ...)
Identifies the function by its function signature, which uniquely identifies the function. The
function-name (parameter-type, ...) must identify a function with the specified function signature.
The specified parameters must match the data types in the corresponding position that were
specified when the function was created. The number of data types, and the logical concatenation
of the data types is used to identify the specific function instance on which the privilege is to be
revoked. Synonyms for data types are considered a match. Parameters that have defaults must be
included in this signature.

If function-name () is specified, the function identified must have zero parameters.

function-name
Identifies the name of the function.

(parameter-type, ...)
Identifies the parameters of the function.

If an unqualified distinct type name is specified, the database manager searches the SQL path
to resolve the schema name for the distinct type.

For data types that have a length, precision, or scale attribute, use one of the following:

• Empty parentheses indicate that the database manager ignores the attribute when
determining whether the data types match. For example, DEC() will be considered a match
for a parameter of a function defined with a data type of DEC(7,2). However, FLOAT cannot
be specified with empty parenthesis because its parameter value indicates a specific data
type (REAL or DOUBLE).

• If a specific value for a length, precision, or scale attribute is specified, the value must
exactly match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION
statement. If the data type is FLOAT, the precision does not have to exactly match the value
that was specified because matching is based on the data type (REAL or DOUBLE).

• If length, precision, or scale is not explicitly specified, and empty parentheses are not
specified, the default attributes of the data type are implied. The implicit length must
exactly match the value that was specified (implicitly or explicitly) in the CREATE FUNCTION
statement.

1464 IBM i: Db2 for i SQL Reference

Specifying the FOR DATA clause or CCSID clause is optional. Omission of either clause
indicates that the database manager ignores the attribute when determining whether the
data types match. If either clause is specified, it must match the value that was implicitly or
explicitly specified in the CREATE FUNCTION statement.

AS LOCATOR
Specifies that the function is defined to receive a locator for this parameter. If AS LOCATOR is
specified, the data type must be a LOB or XML or a distinct type based on a LOB or XML.

SPECIFIC FUNCTION specific-name
Identifies the function by its specific name. The specific-name must identify a specific function
that exists at the current server.

PROCEDURE or SPECIFIC PROCEDURE
Identifies the procedure from which the privilege is revoked. The procedure-name must identify a
procedure that exists at the current server.
PROCEDURE procedure-name

Identifies the procedure by its name. The procedure-name must identify exactly one procedure.
The procedure may have any number of parameters defined for it. If there is more than one
procedure of the specified name in the specified or implicit schema, an error is returned.

PROCEDURE procedure-name (parameter-type, ...)
Identifies the procedure by its procedure signature, which uniquely identifies the procedure.
The procedure-name (parameter-type, ...) must identify a procedure with the specified procedure
signature. The specified parameters must match the data types in the corresponding position
that were specified when the procedure was created. The number of data types, and the logical
concatenation of the data types is used to identify the specific procedure instance which is to be
revoked. Synonyms for data types are considered a match. Parameters that have defaults must be
included in this signature.

If procedure-name () is specified, the procedure identified must have zero parameters.

procedure-name
Identifies the name of the procedure.

(parameter-type, ...)
Identifies the parameters of the procedure.

If an unqualified distinct type or array type name is specified, the database manager searches
the SQL path to resolve the schema name for the distinct type or array type.

For data types that have a length, precision, or scale attribute, use one of the following:

• Empty parentheses indicate that the database manager ignores the attribute when
determining whether the data types match. For example, DEC() will be considered a match
for a parameter of a procedure defined with a data type of DEC(7,2). However, FLOAT cannot
be specified with empty parenthesis because its parameter value indicates a specific data
type (REAL or DOUBLE).

• If a specific value for a length, precision, or scale attribute is specified, the value
must exactly match the value that was specified (implicitly or explicitly) in the CREATE
PROCEDURE statement. If the data type is FLOAT, the precision does not have to exactly
match the value that was specified because matching is based on the data type (REAL or
DOUBLE).

• If length, precision, or scale is not explicitly specified, and empty parentheses are not
specified, the default attributes of the data type are implied. The implicit length must exactly
match the value that was specified (implicitly or explicitly) in the CREATE PROCEDURE
statement.

Specifying the FOR DATA clause or CCSID clause is optional. Omission of either clause
indicates that the database manager ignores the attribute when determining whether the
data types match. If either clause is specified, it must match the value that was implicitly or
explicitly specified in the CREATE PROCEDURE statement.

Chapter 7. Statements 1465

AS LOCATOR
Specifies that the procedure is defined to receive a locator for this parameter. If AS LOCATOR
is specified, the data type must be a LOB or XML or a distinct type based on a LOB or XML.

SPECIFIC PROCEDURE specific-name
Identifies the procedure by its specific name. The specific-name must identify a specific procedure
that exists at the current server.

FROM
Identifies from whom the privileges are revoked.
USER

Specifies that the authorization-name identifies a user profile. If USER is specified, authorization-
name must be a user profile.

GROUP
Specifies that the authorization-name identifies a group profile. If GROUP is specified,
authorization-name must be a group profile.

authorization-name,…
Lists one or more authorization IDs. Do not specify the same authorization-name more than once.

PUBLIC
Revokes a grant of the privilege to PUBLIC. For more information, see “Authorization, privileges
and object ownership” on page 15.

Notes
Multiple grants: If you revoke a privilege on a function or procedure, it nullifies any grant of the privilege
on that function or procedure, regardless of who granted it.

Revoking WITH GRANT OPTION: The only way to revoke the WITH GRANT OPTION is to revoke ALL.

Privilege warning: Revoking a specific privilege from a user does not necessarily prevent that user
from performing an action that requires that privilege. For example, the user may still have the privilege
through PUBLIC privileges or database administrator authority.

Corresponding system authorities: When a function or procedure privilege is revoked, the corresponding
system authorities are revoked. For information about the system authorities that correspond to SQL
privileges see “GRANT (function or procedure privileges)” on page 1357.

Privileges revoked from either an SQL or external function or procedure are revoked from its associated
program (*PGM) or service program (*SRVPGM) object. Privileges revoked from a Java external function
or procedure are revoked from the associated class file or jar file. If the associated program, service
program, class file, or jar file is not found when the revoke is executed, an error is returned.

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• The keyword RUN can be used as a synonym for EXECUTE.

Example
Revoke the EXECUTE privilege on procedure PROCA from PUBLIC.

 REVOKE EXECUTE
 ON PROCEDURE PROCA
 FROM PUBLIC

1466 IBM i: Db2 for i SQL Reference

REVOKE (package privileges)
This form of the REVOKE statement removes the privileges on a package.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For each package identified in the statement:

– Every privilege specified in the statement
– The system authority of *OBJMGT on the package
– The system authority *EXECUTE on the library containing the package

• Database administrator authority
• Security administrator authority

Syntax

REVOKE ALL
PRIVILEGES

,

ALTER

EXECUTE

ON PACKAGE

,

package-name

FROM

,

USER

GROUP

authorization-name

PUBLIC

Description
ALL or ALL PRIVILEGES

Revokes one or more package privileges from each authorization-name. The privileges revoked are
those privileges on the identified packages that were granted to the authorization-names. Note that
revoking ALL PRIVILEGES on a package is not the same as revoking the system authority of *ALL.

If you do not use ALL, you must use one or more of the keywords listed below. Each keyword revokes
the privilege described.

ALTER
Revokes the privilege to use the COMMENT and LABEL statements.

EXECUTE
Revokes the privilege to execute statements in a package.

ON PACKAGE package-name
Identifies the package from which the EXECUTE privilege is revoked. The package-name must identify
a package that exists at the current server.

Chapter 7. Statements 1467

FROM
Identifies from whom the privileges are revoked.
USER

Specifies that the authorization-name identifies a user profile. If USER is specified, authorization-
name must be a user profile.

GROUP
Specifies that the authorization-name identifies a group profile. If GROUP is specified,
authorization-name must be a group profile.

authorization-name,…
Lists one or more authorization IDs. Do not specify the same authorization-name more than once.

PUBLIC
Revokes a grant of the privilege to PUBLIC. For more information, see “Authorization, privileges
and object ownership” on page 15.

Notes
Multiple grants: If you revoke a privilege on a package, it nullifies any grant of the privilege on that
package, regardless of who granted it.

Revoking WITH GRANT OPTION: The only way to revoke the WITH GRANT OPTION is to revoke ALL.

Privilege warning: Revoking a specific privilege from a user does not necessarily prevent that user
from performing an action that requires that privilege. For example, the user may still have the privilege
through PUBLIC privileges or database administrator authority.

Corresponding system authorities: When a package privilege is revoked, the corresponding system
authorities are revoked. For information about the system authorities that correspond to SQL privileges
see “GRANT (package privileges)” on page 1365.

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• The keyword RUN can be used as a synonym for EXECUTE.
• The keyword PROGRAM can be used as a synonym for PACKAGE.

Example
Example 1: Revoke the EXECUTE privilege on package PKGA from PUBLIC.

 REVOKE EXECUTE
 ON PACKAGE PKGA
 FROM PUBLIC

Example 2: Revoke the EXECUTE privilege on package RRSP_PKG from user FRANK and PUBLIC.

 REVOKE EXECUTE
 ON PACKAGE RRSP_PKG
 FROM FRANK, PUBLIC

1468 IBM i: Db2 for i SQL Reference

REVOKE (schema privileges)
This form of the REVOKE statement removes the privileges on a schema.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For each schema identified in the statement:

– Every privilege specified in the statement
– The system authority of *OBJMGT on the schema

• Database administrator authority
• Security administrator authority

Syntax

REVOKE ALL
PRIVILEGES

,

CREATEIN

USAGE

ON SCHEMA

,

schema-name FROM

,

USER

GROUP

authorization-name

PUBLIC

Description
ALL or ALL PRIVILEGES

Revokes one or more schema privileges from each authorization-name. The privileges revoked are
those privileges on the identified schemas that were granted to the authorization-names. Note that
revoking ALL PRIVILEGES on a schema is not the same as revoking the system authority of *ALL.

If you do not use ALL, you must use one or more of the keywords listed below. Each keyword revokes
the privilege described.

CREATEIN
Revokes the privilege to create objects in the schema.

USAGE
Revokes the privilege to use the schema. USAGE privilege is required to reference any objects that
exist in the schema.

ON SCHEMA schema-name
Identifies the schema from which the privilege is revoked.

Chapter 7. Statements 1469

FROM
Identifies from whom the privileges are revoked.
USER

Specifies that the authorization-name identifies a user profile. If USER is specified, authorization-
name must be a user profile.

GROUP
Specifies that the authorization-name identifies a group profile. If GROUP is specified,
authorization-name must be a group profile.

authorization-name,…
Lists one or more authorization IDs. Do not specify the same authorization-name more than once.

PUBLIC
Revokes a grant of the privilege to PUBLIC. For more information, see “Authorization, privileges
and object ownership” on page 15.

Notes
Multiple grants: If you revoke a privilege on a schema, it nullifies any grant of the privilege on that
schema, regardless of who granted it.

Revoking WITH GRANT OPTION: The only way to revoke the WITH GRANT OPTION is to revoke ALL.

Privilege warning: Revoking a specific privilege from a user does not necessarily prevent that user
from performing an action that requires that privilege. For example, the user may still have the privilege
through PUBLIC privileges or database administrator authority.

Corresponding system authorities: When a schema privilege is revoked, the corresponding system
authorities are revoked. For information on the system authorities that correspond to SQL privileges see
“GRANT (schema privileges)” on page 1368.

Example
Example 1: Revoke the CREATEIN privilege on schema T_SCORES from user JONES.

REVOKE CREATEIN
 ON SCHEMA T_SCORES
 FROM JONES;

1470 IBM i: Db2 for i SQL Reference

REVOKE (sequence privileges)
This form of the REVOKE statement removes the privileges on a sequence.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For each sequence identified in the statement:

– Every privilege specified in the statement
– The system authority of *OBJMGT on the sequence
– The system authority *EXECUTE on the library containing the sequence

• Database administrator authority
• Security administrator authority

Syntax

REVOKE ALL
PRIVILEGES

,

ALTER

USAGE

ON SEQUENCE

,

sequence-name

FROM

,

USER

GROUP

authorization-name

PUBLIC

Description
ALL or ALL PRIVILEGES

Revokes one or more sequence privileges from each authorization-name. The privileges revoked are
those privileges on the identified sequences that were granted to the authorization-names. Note that
revoking ALL PRIVILEGES on a sequence is not the same as revoking the system authority of *ALL.

If you do not use ALL, you must use one or more of the keywords listed below. Each keyword revokes
the privilege described.

ALTER
Revokes the privilege to use the ALTER SEQUENCE, COMMENT, and LABEL statements on a sequence.

USAGE
Revokes the privilege to use the sequence in NEXT VALUE or PREVIOUS VALUE expressions.

ON SEQUENCE sequence-name
Identifies the sequence from which the privilege is revoked. The sequence-name must identify a
sequence that exists at the current server.

Chapter 7. Statements 1471

FROM
Identifies from whom the privileges are revoked.
USER

Specifies that the authorization-name identifies a user profile. If USER is specified, authorization-
name must be a user profile.

GROUP
Specifies that the authorization-name identifies a group profile. If GROUP is specified,
authorization-name must be a group profile.

authorization-name,…
Lists one or more authorization IDs. Do not specify the same authorization-name more than once.

PUBLIC
Revokes a grant of the privilege to PUBLIC. For more information, see “Authorization, privileges
and object ownership” on page 15.

Notes
Multiple grants: If you revoke a privilege on a sequence, it nullifies any grant of the privilege on that
sequence, regardless of who granted it.

Revoking WITH GRANT OPTION: The only way to revoke the WITH GRANT OPTION is to revoke ALL.

Privilege warning: Revoking a specific privilege from a user does not necessarily prevent that user
from performing an action that requires that privilege. For example, the user may still have the privilege
through PUBLIC privileges or database administrator authority.

Corresponding system authorities: When a sequence privilege is revoked, the corresponding system
authorities are revoked. For information on the system authorities that correspond to SQL privileges see
“GRANT (sequence privileges)” on page 1371.

Example
REVOKE the USAGE privilege from PUBLIC on a sequence called ORG_SEQ.

REVOKE USAGE
 ON SEQUENCE ORG_SEQ
 FROM PUBLIC

1472 IBM i: Db2 for i SQL Reference

REVOKE (table or view privileges)
This form of the REVOKE statement removes privileges on a table or view.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For each table or view identified in the statement:

– Every privilege specified in the statement
– The system authority of *OBJMGT on the table or view
– The system authority *EXECUTE on the library containing the table or view

• Database administrator authority
• Security administrator authority

Syntax

REVOKE ALL
PRIVILEGES

,

ALTER

DELETE

INDEX

INSERT

REFERENCES

(

,

column-name)

SELECT

UPDATE

(

,

column-name)

ON
TABLE

,

table-name

view-name

FROM

,

USER

GROUP

authorization-name

PUBLIC

Chapter 7. Statements 1473

Description
ALL or ALL PRIVILEGES

Revokes one or more privileges from each authorization-name. The privileges revoked are those
privileges on the identified tables and views that were granted to the authorization-names. Note that
revoking ALL PRIVILEGES on a table or view is not the same as revoking the system authority of *ALL.

If you do not use ALL, you must use one or more of the keywords listed below. Each keyword revokes
the privilege described, but only as it applies to the tables and views named in the ON clause.

ALTER
Revokes the privilege to alter the specified table and the privilege to add a comment, add a label, or
create an index on the specified table or view.

DELETE
Revokes the privilege to delete rows from the specified table or view.

INDEX
Revokes the privilege to create an index on the specified table.

INSERT
Revokes the privilege to insert rows in the specified table or view.

REFERENCES
Revokes the privilege to add a referential constraint in which the table is a parent.

REFERENCES (column-name,…)
Revokes the privilege to add a referential constraint using the specified column(s) in the parent key.
Each column name must be an unqualified name that identifies a column in each table identified in
the ON clause.

SELECT
Revokes the privilege to use the SELECT or CREATE VIEW statement.

UPDATE
Revokes the privilege to use the UPDATE statement.

UPDATE (column-name,…)
Revokes the privilege to update the specified columns. Each column name must be an unqualified
name that identifies a column in each table identified in the ON clause.

ON table-name or view-name, …
Identifies the table or view from which the privileges are revoked. The table-name or view-name must
identify a table or view that exists at the current server, but must not identify a declared temporary
table.

FROM
Identifies from whom the privileges are revoked.
USER

Specifies that the authorization-name identifies a user profile. If USER is specified, authorization-
name must be a user profile.

GROUP
Specifies that the authorization-name identifies a group profile. If GROUP is specified,
authorization-name must be a group profile.

authorization-name,…
Lists one or more authorization IDs. Do not specify the same authorization-name more than once.

PUBLIC
Revokes a grant of the privilege to PUBLIC. For more information, see “Authorization, privileges
and object ownership” on page 15.

Notes
Multiple grants: If the same privilege is granted to the same user more than once, revoking that privilege
from that user nullifies all those grants.

1474 IBM i: Db2 for i SQL Reference

If you revoke a privilege, it nullifies any grant of that privilege, regardless of who granted it.

Revoking WITH GRANT OPTION: The only way to revoke the WITH GRANT OPTION is to revoke ALL.

Privilege warning: Revoking a specific privilege from a user does not necessarily prevent that user
from performing an action that requires that privilege. For example, the user may still have the privilege
through PUBLIC privileges or database administrator authority.

If more than one system authority will be revoked with an SQL privilege, and any one of the authorities
cannot be revoked, then a warning occurs and no authorities will be revoked for that privilege.

Corresponding system authorities: When a table privilege is revoked, the corresponding system
authorities are revoked, except:

• When revoking authorities to a table or view, *OBJOPR is revoked only when *ADD, *DLT, *READ, and
*UPD have all been revoked.

• When revoking authorities to a view, authorities will not be revoked from any tables or views referenced
in the fullselect of the view definition.

For information about the system authorities that correspond to SQL privileges see “GRANT (table or view
privileges)” on page 1374.

Revoking either the INDEX or ALTER privilege, revokes the system authority *OBJALTER.

Examples
Example 1: Revoke SELECT privileges on table EMPLOYEE from user ENGLES.

 REVOKE SELECT
 ON TABLE EMPLOYEE
 FROM ENGLES

Example 2: Revoke update privileges on table EMPLOYEE previously granted to all users. Note that grants
to specific users are not affected.

 REVOKE UPDATE
 ON TABLE EMPLOYEE
 FROM PUBLIC

Example 3: Revoke all privileges on table EMPLOYEE from users PELLOW and ANDERSON.

 REVOKE ALL
 ON TABLE EMPLOYEE
 FROM PELLOW, ANDERSON

Example 4: Revoke the privilege to update column_1 in VIEW1 from FRED.

 REVOKE UPDATE(column_1)
 ON VIEW1
 FROM FRED

Chapter 7. Statements 1475

REVOKE (type privileges)
This form of the REVOKE statement removes the privileges on a type.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For each distinct type or array type identified in the statement:

– Every privilege specified in the statement
– The system authority of *OBJMGT on the type
– The system authority *EXECUTE on the library containing the type

• Database administrator authority
• Security administrator authority

Syntax

REVOKE ALL
PRIVILEGES

,

ALTER

USAGE

ON TYPE

,

distinct-type-name

array-type-name

FROM

,

USER

GROUP

authorization-name

PUBLIC

Description
ALL or ALL PRIVILEGES

Revokes one or more type privileges from each authorization-name. The privileges revoked are those
privileges on the identified user-defined types that were granted to the authorization-names. Note
that revoking ALL PRIVILEGES on a type is not the same as revoking the system authority of *ALL.

If you do not use ALL, you must use one or more of the keywords listed below. Each keyword revokes
the privilege described.

ALTER
Revokes the privilege to use the COMMENT and LABEL statements.

1476 IBM i: Db2 for i SQL Reference

USAGE
Revokes the privilege to use user-defined types in tables, functions, procedures, or as the source type
in a CREATE TYPE statement.

ON TYPE distinct-type-name or array-type-name
Identifies the distinct type from which the privilege is revoked. The distinct-type-name or array-type-
name must identify a user-defined type that exists at the current server.

FROM
Identifies from whom the privileges are revoked.
USER

Specifies that the authorization-name identifies a user profile. If USER is specified, authorization-
name must be a user profile.

GROUP
Specifies that the authorization-name identifies a group profile. If GROUP is specified,
authorization-name must be a group profile.

authorization-name,…
Lists one or more authorization IDs. Do not specify the same authorization-name more than once.

PUBLIC
Revokes a grant of the privilege to PUBLIC. For more information, see “Authorization, privileges
and object ownership” on page 15.

Notes
Multiple grants: If authorization ID A granted the same privilege to authorization ID B more than once,
revoking that privilege from B nullifies all those grants.

Revoking WITH GRANT OPTION: The only way to revoke the WITH GRANT OPTION is to revoke ALL.

Privilege warning: Revoking a specific privilege from a user does not necessarily prevent that user
from performing an action that requires that privilege. For example, the user may still have the privilege
through PUBLIC privileges or database administrator authority.

Corresponding system authorities: When a type privilege is revoked, the corresponding system
authorities are revoked. For information about the system authorities that correspond to SQL privileges
see “GRANT (type privileges)” on page 1382.

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• The keywords DATA TYPE or DISTINCT TYPE can be used as a synonym for TYPE.

Example
Revoke the USAGE privilege on distinct type SHOESIZE from user JONES.

 REVOKE USAGE
 ON DISTINCT TYPE SHOESIZE
 FROM JONES

Chapter 7. Statements 1477

REVOKE (variable privileges)
This form of the REVOKE statement removes the privileges on a created global variable.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For each variable identified in the statement:

– Every privilege specified in the statement
– The system authority of *OBJMGT on the global variable
– The system authority *EXECUTE on the library containing the global variable

• Database administrator authority
• Security administrator authority

Syntax

REVOKE ALL
PRIVILEGES

,

ALTER

READ

WRITE

ON VARIABLE

,

variable-name

FROM

,

USER

GROUP

authorization-name

PUBLIC

Description
ALL or ALL PRIVILEGES

Revokes one or more global variable privileges from each authorization-name. The privileges revoked
are those privileges on the identified global variables that were granted to the authorization-names.
Note that revoking ALL PRIVILEGES on a global variable is not the same as revoking the system
authority of *ALL.

If you do not use ALL, you must use one or more of the keywords listed below. Each keyword revokes
the privilege described.

ALTER
Revokes the privilege to use COMMENT and LABEL statements on the specified global variables.

READ
Revokes the privilege to read the value of the specified global variables.

1478 IBM i: Db2 for i SQL Reference

WRITE
Revokes the privilege to assign a value to the specified global variables.

ON VARIABLE variable-name
Identifies the global variables from which one or more privileges are to be revoked. Each variable-
name must identify a global variable that exists at the current server.

FROM
Identifies from whom the privileges are revoked.
USER

Specifies that the authorization-name identifies a user profile. If USER is specified, authorization-
name must be a user profile.

GROUP
Specifies that the authorization-name identifies a group profile. If GROUP is specified,
authorization-name must be a group profile.

authorization-name,…
Lists one or more authorization IDs. Do not specify the same authorization-name more than once.

PUBLIC
Revokes a grant of the privilege to PUBLIC. For more information, see “Authorization, privileges
and object ownership” on page 15.

Notes
Multiple grants: If you revoke a privilege on a variable, it nullifies any grant of the privilege on that
variable, regardless of who granted it.

Revoking WITH GRANT OPTION: The only way to revoke the WITH GRANT OPTION is to revoke ALL.

Privilege warning: Revoking a specific privilege from a user does not necessarily prevent that user
from performing an action that requires that privilege. For example, the user may still have the privilege
through PUBLIC privileges or database administrator authority.

Corresponding system authorities: When a global variable privilege is revoked, the corresponding
system authorities are revoked. For information on the system authorities that correspond to SQL
privileges see “GRANT (variable privileges)” on page 1385.

Example
REVOKE the WRITE privilege on a global variable MYSCHEMA.MYJOB_PRINTER from user ZUBIRI.

REVOKE WRITE
 ON VARIABLE MYSCHEMA.MYJOB_PRINTER
 FROM ZUBIRI

Chapter 7. Statements 1479

REVOKE (XML schema privileges)
This form of the REVOKE statement removes the privileges on an XSR object.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For each XSR object identified in the statement:

– Every privilege specified in the statement
– The system authority of *OBJMGT on the XSR object
– The system authority *EXECUTE on the library containing the XSR object

• Database administrator authority
• Security administrator authority

Syntax

REVOKE ALL
PRIVILEGES

,

ALTER

USAGE

ON XSROBJECT

,

xsrobject-name

,

FROM

,

USER

GROUP

authorization-name

PUBLIC

Description
ALL or ALL PRIVILEGES

Revokes one or more XSR object privileges from each authorization-name. The privileges revoked are
those privileges on the identified XSR objects that were granted to the authorization-names. Note that
revoking ALL PRIVILEGES on an XSR object is not the same as revoking the system authority of *ALL.

If you do not use ALL, you must use one or more of the keywords listed below. Each keyword revokes
the privilege described.

ALTER
Revokes the privilege to use the COMMENT and LABEL statements.

USAGE
Revokes the privilege to use an XSR object.

ON XSROBJECT xsrobject-name
Identifies the XSR objects for which the privilege is revoked. The xsrobject-name must identify an XSR
object that exists at the current server.

1480 IBM i: Db2 for i SQL Reference

FROM
Identifies from whom the privileges are revoked.
USER

Specifies that the authorization-name identifies a user profile. If USER is specified, authorization-
name must be a user profile.

GROUP
Specifies that the authorization-name identifies a group profile. If GROUP is specified,
authorization-name must be a group profile.

authorization-name,…
Lists one or more authorization IDs. Do not specify the same authorization-name more than once.

PUBLIC
Revokes a grant of the privilege to PUBLIC. For more information, see “Authorization, privileges
and object ownership” on page 15.

Notes
Multiple grants: If you revoke a privilege on an XSR object, it nullifies any grant of the privilege on that
XSR object, regardless of who granted it.

Revoking WITH GRANT OPTION: The only way to revoke the WITH GRANT OPTION is to revoke ALL.

Privilege warning: Revoking a specific privilege from a user does not necessarily prevent that user
from performing an action that requires that privilege. For example, the user may still have the privilege
through PUBLIC privileges or database administrator authority.

Corresponding system authorities: When an XSR object privilege is revoked, the corresponding system
authorities are revoked. For information about the system authorities that correspond to SQL privileges
see “GRANT (XML schema privileges)” on page 1388.

Example
Revoke the USAGE privilege on XSR object XMLSCHEMA from PUBLIC.

 REVOKE USAGE
 ON XSRSOBJECT XMLSCHEMA
 FROM PUBLIC

Chapter 7. Statements 1481

ROLLBACK
The ROLLBACK statement is used to back out changes.

The ROLLBACK statement can be used to either:

• End a unit of work and back out all the relational database changes that were made by that unit of work.
If relational databases are the only recoverable resources used by the application process, ROLLBACK
also ends the unit of work.

• Back out only the changes made after a savepoint was set within the unit of work without ending the
unit of work. Rolling back to a savepoint enables selected changes to be undone.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

ROLLBACK is not allowed in a trigger if the trigger program and the triggering program run under the
same commitment definition. ROLLBACK is not allowed in a procedure if the procedure is called on a
Distributed Unit of Work connection to a remote application server or if the procedure is defined as
ATOMIC. ROLLBACK is not allowed in a function.

Authorization
None required.

Syntax

ROLLBACK
WORK

HOLD

TO SAVEPOINT

savepoint-name

Description
When ROLLBACK is used without the TO SAVEPOINT clause, the unit of work in which it is executed is
ended. All changes made by SQL schema statements and SQL data change statements during the unit of
work are backed out. For more information see Chapter 7, “Statements,” on page 805.

The generation of identity values is not under transaction control. Values generated and consumed by
inserting rows into a table that has an identity column are independent of executing the ROLLBACK
statement. Also, executing the ROLLBACK statement does not affect the IDENTITY_VAL_LOCAL function.

Special registers are not under transaction control. Executing a ROLLBACK statement does not affect
special registers.

Sequences are not under transaction control. Executing a ROLLBACK statement does not affect the
current value generated and consumed by executing a NEXT VALUE expression.

Global variables are not under transaction control. Executing a ROLLBACK statement does not affect the
value of any instantiated global variable.

The impact of ROLLBACK or ROLLBACK TO SAVEPOINT on the contents of a declared temporary table
is determined by the setting of the ON ROLLBACK clause of the DECLARE GLOBAL TEMPORARY TABLE
statement.

WORK
ROLLBACK WORK has the same effect as ROLLBACK.

1482 IBM i: Db2 for i SQL Reference

HOLD
Specifies a hold on resources. If specified, currently open cursors are not closed cursors whether they
are declared with a HOLD option or not. All resources acquired during the unit of work, except locks
on the rows of tables, are held. Locks on specific rows implicitly acquired during the unit of work,
however, are released.

At the end of a ROLLBACK HOLD, the cursor position is the same as it was at the start of the unit of
work, unless

• ALWBLK(*ALLREAD) was specified when the program or routine that contains the cursor was
created

• ALWBLK(*READ) and ALWCPYDTA(*OPTIMIZE) were specified when the program or routine that
contains the cursor was created

TO SAVEPOINT
Specifies that the unit of work is not to be ended and that only a partial rollback (to a savepoint)
is to be performed. If a savepoint name is not specified, rollback is to the last active savepoint. For
example, if in a unit of work, savepoints A, B, and C are set in that order and then C is released,
ROLLBACK TO SAVEPOINT causes a rollback to savepoint B. If no savepoint is active, an error is
returned.
savepoint-name

Identifies the savepoint to which to roll back. The name must identify a savepoint that exists at
the current server.

After a successful ROLLBACK TO SAVEPOINT, the savepoint continues to exist.

All database changes (including changes made to declared temporary tables that were declared with
the ON ROLLBACK PRESERVE ROWS clause) that were made after the savepoint was set are backed
out. All locks and LOB locators are retained.

The impact on cursors resulting from a ROLLBACK TO SAVEPOINT depends on the statements within
the savepoint:

• If the savepoint contains SQL schema statements on which a cursor is dependent, the cursor is
closed. Attempts to use such a cursor after a ROLLBACK TO SAVEPOINT results in an error.

• Otherwise, the cursor is not affected by the ROLLBACK TO SAVEPOINT (it remains open and
positioned).

Any savepoints at the current server that are set after the one to which rollback is performed are
released. The savepoint to which rollback is performed is not released.

Notes
Recommended coding practices: Code an explicit COMMIT or ROLLBACK statement at the end of an
application process. Either an implicit commit or rollback operation will be performed at the end of
an application process depending on the application environment. Thus, a portable application should
explicitly execute a COMMIT or ROLLBACK before execution ends in those environments where explicit
COMMIT or ROLLBACK is permitted.

Other effects of rollback: Rollback without the TO SAVEPOINT clause and HOLD clause causes the
following to occur:

• All cursors that were opened during the unit of work are closed whether they are declared with a HOLD
option or not.

• All LOB locators, including those that are held, are freed.
• All locks acquired under this unit of work's commitment definition are released.

ROLLBACK has no effect on the state of connections.

Implicit ROLLBACK: The ending of the default activation group causes an implicit rollback. Thus, an
explicit COMMIT or ROLLBACK statement should be issued before the end of the default activation group.

Chapter 7. Statements 1483

A ROLLBACK is automatically performed when:

1. The default activation group ends without a final COMMIT being issued.
2. A failure occurs that prevents the activation group from completing its work (for example, a power

failure).

If the unit of work is in the prepared state because a COMMIT was in progress when the failure
occurred, a rollback is not performed. Instead, resynchronization of all the connections involved in the
unit of work will occur. For more information, see the Commitment control topic collection.

3. A failure occurs that causes a loss of the connection to an application server (for example, a
communications line failure).

If the unit of work is in the prepared state because a COMMIT was in progress when the failure
occurred, a rollback is not performed. Instead, resynchronization of all the connections involved in the
unit of work will occur. For more information, see the Commitment control topic collection.

4. An activation group other than the default activation group ends abnormally.

Row lock limit: A unit of work may include the processing of up to and including 4 million rows, including
rows retrieved during a SELECT INTO or FETCH statement, and rows inserted, deleted, or updated as part
of INSERT, DELETE, and UPDATE operations.127

Unaffected statements: The commit and rollback operations do not affect the DROP SCHEMA statement,
and this statement is not, therefore, allowed if the current isolation level is anything other than No
Commit (NC).

ROLLBACK restrictions: A ROLLBACK statement is not allowed if commitment control is not active for
the activation group. For information about determining which commitment definition is used, see the
commitment definition discussion in the COMMIT statement.

A commit or rollback in a user-defined function in a secondary thread is not allowed.

ROLLBACK has no effect on the state of connections.

If, within a unit of work, a CLOSE is followed by a ROLLBACK, all changes made within the unit of work are
backed out. The CLOSE itself is not backed out and the file is not reopened.

Examples
Example 1: See the “Example” on page 952 under COMMIT for examples using the ROLLBACK statement.

Example 2: After a unit of recovery started, assume that three savepoints A, B, and C were set and that C
was released:

 SAVEPOINT A ON ROLLBACK RETAIN CURSORS;
 ...
 SAVEPOINT B ON ROLLBACK RETAIN CURSORS;

 SAVEPOINT C ON ROLLBACK RETAIN CURSORS;
 ...
 RELEASE SAVEPOINT C

Roll back all database changes only to savepoint A:

 ROLLBACK WORK TO SAVEPOINT A

126 Unless you specified COMMIT(*CHG) or COMMIT(*CS), in which case these rows are not included in this
total.

127 This limit also includes:

• Any rows accessed or changed through files opened under commitment control through high-level
language file processing

• Any rows deleted, updated, or inserted as a result of a trigger or CASCADE, SET NULL, or SET DEFAULT
referential integrity delete rule.

1484 IBM i: Db2 for i SQL Reference

If a savepoint name was not specified (that is, ROLLBACK WORK TO SAVEPOINT), the rollback would be
to the last active savepoint that was set, which is B.

Chapter 7. Statements 1485

SAVEPOINT
The SAVEPOINT statement sets a savepoint within a unit of work to identify a point in time within the unit
of work to which relational database changes can be rolled back.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
None required.

Syntax
SAVEPOINT savepoint-name

UNIQUE

ON ROLLBACK RETAIN CURSORS

ON ROLLBACK RETAIN LOCKS
1

Notes:
1 The ROLLBACK options can be specified in any order.

Description
savepoint-name

Identifies a new savepoint. The specified savepoint-name cannot begin with 'SYS'.
UNIQUE

Specifies that the application program cannot reuse the savepoint name within the unit of work. An
error occurs if a savepoint with the same name as savepoint-name already exists within the unit of
work.

Omitting UNIQUE indicates that the application can reuse the savepoint name within the unit of
work. If savepoint-name identifies a savepoint that already exists within the unit of work and the
savepoint was not created with the UNIQUE option, the existing savepoint is destroyed and a new
savepoint is created. Destroying a savepoint to reuse its name for another savepoint is not the
same as releasing the savepoint. Reusing a savepoint name destroys only one savepoint. Releasing
a savepoint with the RELEASE SAVEPOINT statement releases the savepoint and all savepoints that
have been subsequently set.

ON ROLLBACK RETAIN CURSORS
Specifies that cursors that are opened after the savepoint is set are not closed upon rollback to the
savepoint.

• If SQL schema statements are executed for a table or view within the scope of the SAVEPOINT
statement, any cursor that references that table or view is closed. Attempts to use such a cursor
after a ROLLBACK TO SAVEPOINT results in an error.

• Otherwise, the cursor is not affected by the ROLLBACK TO SAVEPOINT (it remains open and
positioned).

Although these cursors remain open after rollback to the savepoint, they might not be usable.
For example, if rolling back to the savepoint causes the insertion of a row on which the cursor is
positioned to be rolled back, using the cursor to update or delete the row results in an error.

1486 IBM i: Db2 for i SQL Reference

ON ROLLBACK RETAIN LOCKS
Specifies that any locks that are acquired after the savepoint is set are not released on rollback to the
savepoint.

Notes
Savepoint persistence: A savepoint, S, is destroyed when:

• A COMMIT or ROLLBACK (without a TO SAVEPOINT clause) statement is executed.
• A ROLLBACK TO SAVEPOINT statement is executed that specifies savepoint S or a savepoint that was

established earlier than S in the unit of work.
• A RELEASE SAVEPOINT statement is executed that specifies savepoint S or a savepoint that was

established earlier than S in the unit of work.
• A SAVEPOINT statement specifies the same name as an existing savepoint that was not created with

the UNIQUE keyword.

Effect on INSERT: In an application, inserts may be buffered. The buffer will be flushed when
SAVEPOINT, ROLLBACK, or RELEASE TO SAVEPOINT statements are issued.

SAVEPOINT restriction: A SAVEPOINT statement is not allowed if commitment control is not active
for the activation group. For information about determining which commitment definition is used, see
“Notes” on page 950 in COMMIT statement.

Example
Assume that you want to set three savepoints at various points in a unit of work. Name the first savepoint
A and allow the savepoint name to be reused. Name the second savepoint B and do not allow the name to
be reused. Because you no longer need savepoint A when you are ready to set the third savepoint, reuse A
as the name of the savepoint.

 SAVEPOINT A ON ROLLBACK RETAIN CURSORS;
 .
 .
 .
 SAVEPOINT B UNIQUE ON ROLLBACK RETAIN CURSORS;
 .
 .
 .
 SAVEPOINT A ON ROLLBACK RETAIN CURSORS;

Chapter 7. Statements 1487

SELECT
The SELECT statement is a form of query. It can be embedded in an SQLJ application program or issued
interactively.

For detailed information, see “select-clause” on page 737 and Chapter 6, “Queries,” on page 735.

1488 IBM i: Db2 for i SQL Reference

SELECT INTO
The SELECT INTO statement produces a result table consisting of at most one row, and assigns the values
in that row to variables.

Invocation
This statement can only be embedded in an application program. It is an executable statement that
cannot be dynamically prepared. It must not be specified in REXX.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For each table or view identified in the statement,

– The SELECT privilege on the table or view, and
– The system authority *EXECUTE on the library containing the table or view

• Database administrator authority

If a global variable is specified in the INTO variable list, the privileges held by the authorization ID of the
statement must include at least one of the following:

• The WRITE privilege on the global variable.
• Database administrator authority

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Table or View.

Syntax

select-clause INTO

,

variable from-clause

where-clause

group-by-clause having-clause order-by-clause

offset-clause fetch-clause

isolation-clause

concurrent-access-resolution-clause

1

Notes:
1 Each clause may be specified only once.

Description
The result table is derived by evaluating the isolation-clause, concurrent-access-resolution-clause, from-
clause, where-clause, group-by-clause, having-clause, order-by-clause, offset-clause, fetch-clause, and
select-clause, in this order.

Chapter 7. Statements 1489

See Chapter 6, “Queries,” on page 735 for a description of the select-clause, from-clause, where-
clause, group-by-clause, having-clause, order-by-clause, offset-clause, fetch-clause, isolation-clause, and
concurrent-access-resolution-clause.

INTO variable,…
Identifies one or more host structures or variables that must be declared in the program in
accordance with the rules for declaring host structures and variables. In the operational form of the
INTO clause, a reference to a host structure is replaced by a reference to each of its variables. The
first value in the result row is assigned to the first variable in the list, the second value to the second
variable, and so on. The data type of each variable must be compatible with its corresponding column.

Notes
Variable assignment: Each assignment to a variable is performed according to the retrieval assignment
rules described in “Assignments and comparisons” on page 89.128 If the number of variables is less than
the number of values in the row, an SQL warning (SQLSTATE 01503) is returned (and the SQLWARN3 field
of the SQLCA is set to 'W'). Note that there is no warning if there are more variables than the number of
result columns. If a value is null, an indicator variable must be provided for that value.

If the specified variable is character and is not large enough to contain the result, a warning (SQLSTATE
01004) is returned (and 'W' is assigned to SQLWARN1 in the SQLCA). The actual length of the result may
be returned in the indicator variable associated with the variable, if an indicator variable is provided. For
further information, see “Variables” on page 137.

If an assignment error occurs, the value of that variable and any following variables is unpredictable. Any
values that have already been assigned to variables remain assigned.

Multiple assignments: If more than one variable is specified in the INTO clause, the query is completely
evaluated before the assignments are performed. Thus, references to a variable in the select list are
always the value of the variable prior to any assignment in the SELECT INTO statement.

Empty result table: If the result table is empty, the statement assigns '02000' to the SQLSTATE variable
and does not assign values to the variables.

Result tables with more than one row: If more than one row satisfies the search condition, statement
processing is terminated and an error is returned (SQLSTATE 21000). If an error occurs because the result
table has more than one row, values may or may not be assigned to the variables. If values are assigned
to the variables, the row that is the source of the values is undefined and not predictable.

Result column evaluation considerations: If an error occurs while evaluating a result column in the
select list of a SELECT INTO statement, as the result of an arithmetic expression (such as division by
zero, or overflow) or a numeric or character conversion error, the result is the null value. As in any other
case of a null value, an indicator variable must be provided. The value of the variable is undefined. In this
case, however, the indicator variable is set to the value of -2. Processing of the statement continues and
a warning is returned. If an indicator variable is not provided, an error is returned and no more values are
assigned to variables. It is possible that some values have already been assigned to variables and will
remain assigned when the error is returned.

When a datetime value is returned, the length of the variable must be large enough to store the complete
value. Otherwise, depending on how much of the value would have to be truncated, a warning or an error
is returned. See “Datetime assignments” on page 95 for details.

Examples
Example 1: Using a COBOL program statement, put the maximum salary (SALARY) from the EMPLOYEE
table into the host variable MAX-SALARY (DECIMAL(9,2)).

 EXEC SQL SELECT MAX(SALARY)
 INTO :MAX-SALARY

128 If assigning to an SQL-variable or SQL-parameter and the standards option is specified, storage assignment
rules apply. For information about the standards option, see “Standards compliance” on page xix.

1490 IBM i: Db2 for i SQL Reference

 FROM EMPLOYEE WITH CS
 END-EXEC.

Example 2: Using a Java program statement, select the row from the EMPLOYEE table on the connection
context 'ctx' with a employee number (EMPNO) value the same as that stored in the host variable
HOST_EMP (java.lang.String). Then put the last name (LASTNAME) and education level (EDLEVEL) from
that row into the host variables HOST_NAME (String) and HOST_EDUCATE (Integer).

 #sql [ctx] { SELECT LASTNAME, EDLEVEL
 INTO :HOST_NAME, :HOST_EDUCATE
 FROM EMPLOYEE
 WHERE EMPNO = :HOST_EMP };

Example 3: Put the row for employee 528671, from the EMPLOYEE table, into the host structure EMPREC.
Assume that the row will be updated later and should be locked when the query executes.

 EXEC SQL SELECT *
 INTO :EMPREC
 FROM EMPLOYEE
 WHERE EMPNO = '528671'
 WITH RS USE AND KEEP EXCLUSIVE LOCKS
 END-EXEC.

Chapter 7. Statements 1491

SET CONNECTION
The SET CONNECTION statement establishes the current server of the activation group by identifying one
of its existing connections.

Invocation
This statement can only be embedded within an application program or issued interactively. It is an
executable statement that cannot be dynamically prepared. It must not be specified in Java or REXX.

SET CONNECTION is not allowed in a trigger or function.

Authorization
If a global variable is referenced in a statement, the privileges held by the authorization ID of the
statement must include at least one of the following:

• For the global variable identified in the statement,

– The READ privilege on the global variable, and
– The system authority *EXECUTE on the library containing the global variable

• Database administrator authority

Syntax
SET CONNECTION server-name

variable

Description
server-name or variable

Identifies the connection by the specified server name or the server name contained in the variable. It
can be a global variable if it is qualified with schema name. If a variable is specified:

• It must be a character-string variable with a length attribute that is not greater than 18.
• It must not be followed by an indicator variable.
• The server name must be left-justified within the variable and must conform to the rules for forming

an ordinary identifier.
• If the length of the server name is less than the length of the variable, it must be padded on the right

with blanks.

Let S denote the specified server name or the server name contained in the variable. S must identify an
existing connection of the application process. If S identifies the current connection, the state of S and
all other connections of the application process are unchanged, but information about S is placed in the
SQLERRP field of the SQLCA. The following rules apply when S identifies a dormant connection.

If the SET CONNECTION statement is successful:

• Connection S is placed in the current state.
• S is placed in the CURRENT SERVER special register.
• Information about the application server is placed in the connection-information-items in the SQL

Diagnostics Area.
• Information about application server S is also placed in the SQLERRP field of the SQLCA. If the

application server is an IBM relational database product, the information has the form pppvvrrm, where:

– ppp identifies the product as follows:

- ARI for Db2 for VSE and VM

1492 IBM i: Db2 for i SQL Reference

- DSN for Db2 for z/OS
- QSQ for Db2 for i
- SQL for all other Db2 products

– vv is a two-digit version identifier such as '04'
– rr is a two-digit release identifier such as '01'
– m is a one-digit modification level such as '0'

For example, if the application server is Version 4 of Db2 for z/OS, the value of SQLERRP is 'DSN04010'.
• Additional information about the connection is available from the DB2_CONNECTION_STATUS and

DB2_CONNECTION_TYPE connection information items in the SQL Diagnostics Area.

The DB2_CONNECTION_STATUS connection information item indicates the status of connection for this
unit of work. It will have one of the following values:

– 1 - Committable updates can be performed on the connection for this unit of work.
– 2 - No committable updates can be performed on the connection for this unit of work.

The DB2_CONNECTION_TYPE connection information item indicates the type of connection. It will have
one of the following values:

– 1 - Connection is to a local relational database.
– 2 - Connection is to a remote relational database with the conversation unprotected.
– 3 - Connection is to a remote relational database with the conversation protected.
– 4 - Connection is to an application requester driver program.

• Additional information about the connection is also placed in the SQLERRD(4) field of the SQLCA.
SQLERRD(4) will contain a value indicating whether the application server allows committable updates
to be performed. Following is a list of values and their meanings for the SQLERRD(4) field of the SQLCA
on the CONNECT :

– 1 - Committable updates can be performed and either the connection uses an unprotected
conversation, is a connection established to an application requester driver program using a
CONNECT (Type 1) statement, or is a local connection established using a CONNECT (Type 1)
statement.

– 2 - No committable updates can be performed; conversation is unprotected.
– 3 - It is unknown if committable updates can be performed; conversation is protected.
– 4 - It is unknown if committable updates can be performed; conversation is unprotected.
– 5 - It is unknown if committable updates can be performed and the connection is either a local

connection established using a CONNECT (Type 2) statement or a connection to an application
requester driver program established using a CONNECT (Type 2) statement.

• Additional information about the connection is placed in the SQLERRMC field of the SQLCA. Refer to
Appendix B, "SQL Communication Area" for a description of the information in the SQLERRMC field.

• Any previously current connection is placed in the dormant state.

If the SET CONNECTION statement is unsuccessful, the connection state of the activation group and the
states of its connections are unchanged.

Notes
SET CONNECTION for CONNECT (Type 1): The use of CONNECT (Type 1) statements does not
prevent the use of SET CONNECTION, but the statement either fails or does nothing because dormant
connections do not exist.

Status after connection is restored: When a connection is used, made dormant, and then restored to
the current state in the same unit of work, the status of locks, cursors, and prepared statements for that
connection reflects its last use by the activation group.

Chapter 7. Statements 1493

Local connections: A SET CONNECTION to a local connection will fail if the current independent auxiliary
Storage pool (IASP) name space does not match the local connection's relational database.

Example
Execute SQL statements at TOROLAB1, execute SQL statements at TOROLAB2, and then execute more
SQL statements at TOROLAB1.

 EXEC SQL CONNECT TO TOROLAB1;

 (Execute statements referencing objects at TOROLAB1)

 EXEC SQL CONNECT TO TOROLAB2;

 (Execute statements referencing objects at TOROLAB2)

 EXEC SQL SET CONNECTION TOROLAB1;

 (Execute statements referencing objects at TOROLAB1)

The first CONNECT statement creates the TOROLAB1 connection, the second CONNECT statement places
it in the dormant state, and the SET CONNECTION statement returns it to the current state.

1494 IBM i: Db2 for i SQL Reference

SET CURRENT DEBUG MODE
The SET CURRENT DEBUG MODE statement assigns a value to the CURRENT DEBUG MODE special
register.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
None.

Syntax

SET CURRENT DEBUG MODE
 =

DISALLOW

ALLOW

DISABLE

Description
The value of CURRENT DEBUG MODE is replaced by the specified keyword:

DISALLOW
Procedures will be created so they cannot be debugged by the Unified Debugger. When the DEBUG
MODE attribute of a procedure is DISALLOW, the procedure can be subsequently altered to change
the DEBUG MODE attribute.

ALLOW
Procedures will be created so they can be debugged by the Unified Debugger. When the DEBUG MODE
attribute of a procedure is ALLOW, the procedure can be subsequently altered to change the DEBUG
MODE attribute.

DISABLE
Procedures will be created so they cannot be debugged by the Unified Debugger. When the DEBUG
MODE attribute of a procedure is DISABLE, the procedure cannot be subsequently altered to change
the DEBUG MODE attribute.

Notes
Transaction considerations: The SET CURRENT DEBUG MODE statement is not a committable operation.
ROLLBACK has no effect on the current debug mode.

Initial current debug mode: The initial value of the current debug mode is DISALLOW.

Current debug mode scope: The scope of the current debug mode is the activation group.

Example
Example 1: The following statement sets the CURRENT DEBUG MODE to allow subsequent procedures
created by the CREATE PROCEDURE (SQL) statement to be debuggable.

 SET CURRENT DEBUG MODE = ALLOW

Example 2: The following statement sets the CURRENT DEBUG MODE to disallow subsequent procedures
created by the CREATE PROCEDURE (SQL) statement to be debuggable and to prevent those procedures
from being altered to make them debuggable.

Chapter 7. Statements 1495

 SET CURRENT DEBUG MODE = DISABLE

1496 IBM i: Db2 for i SQL Reference

SET CURRENT DECFLOAT ROUNDING MODE
The SET CURRENT DECFLOAT ROUNDING MODE statement changes the value of the CURRENT DECFLOAT
ROUNDING MODE special register.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
If a global variable is referenced in the statement, the privileges held by the authorization ID of the
statement must include at least one of the following:

• For the global variable identified in the statement,

– The READ privilege on the global variable, and
– The system authority *EXECUTE on the library containing the global variable

• Database administrator authority

Syntax

SET CURRENT DECFLOAT ROUNDING MODE
 =

ROUND_CEILING

ROUND_DOWN

ROUND_FLOOR

ROUND_HALF_DOWN

ROUND_HALF_EVEN

ROUND_HALF_UP

ROUND_UP

variable

string-constant

Description
ROUND_CEILING

Round toward +Infinity. If all of the discarded digits are zero or if the sign is negative, the result is
unchanged other than the removal of discarded digits. Otherwise, the result coefficient is incremented
by one (rounded up).

ROUND_DOWN
Round toward zero (truncation). The discarded digits are ignored.

ROUND_FLOOR
Round toward -Infinity. If all of the discarded digits are zero or if the sign is positive, the result is
unchanged other than the removal of the discarded digits. Otherwise, the sign is negative and the
result coefficient is incremented by one.

ROUND_HALF_DOWN
Round to nearest; if equidistant, round down. If the discarded digits represent greater than half (0.5)
of the value of a one in the next left position, then the result coefficient is incremented by one
(rounded up). Otherwise, the discarded digits are ignored.

Chapter 7. Statements 1497

This rounding mode is not recommended when creating a portable application since it is not
supported by the IEEE draft standard for floating-point arithmetic.

ROUND_HALF_EVEN
Round to nearest; if equidistant, round so that the final digit is even. If the discarded digits represent
greater than half (0.5) of the value of a one in the next left position, then the result coefficient is
incremented by one (rounded up). If they represent less than half, then the result coefficient is not
adjusted (that is, the discarded digits are ignored). Otherwise (they represent exactly half), the result
coefficient is unaltered if its rightmost digit is even or incremented by one (rounded up) if its rightmost
digit is odd (to make an even digit).

ROUND_HALF_UP
Round to nearest; if equidistant, round up. If the discarded digits represent greater than or equal to
half (0.5) of the value of a one in the next left position, then the result coefficient is incremented by
one (rounded up). Otherwise, the discarded digits are ignored.

ROUND_UP
Round away from zero. If all of the discarded digits are zero, the result is unchanged other than the
removal of discarded digits. Otherwise, the result coefficient is incremented by one (rounded up).

This rounding mode is not recommended when creating a portable application since it is not
supported by the IEEE draft standard for floating-point arithmetic.

string-constant
A character constant that contains a specification of the rounding mode.

variable
Specifies a variable which contains the value for the CURRENT DECFLOAT ROUNDING MODE. The
content is not folded to uppercase.

The variable:

• Must be a character-string or Unicode graphic-string variable.
• Must not be followed by an indicator variable.
• Must contain one of the seven rounding mode keywords.
• Must be padded on the right with blanks if the variable is fixed length.

Notes
Transaction considerations: The SET CURRENT DECFLOAT ROUNDING MODE statement is not a
committable operation. ROLLBACK has no effect on the CURRENT DECFLOAT ROUNDING MODE.

Initial CURRENT DECFLOAT ROUNDING MODE: The initial value of CURRENT DECFLOAT ROUNDING
MODE in an activation group is established by the first SQL statement that is executed in the activation
group.

• If the first SQL statement in an activation group is executed from an SQL program or SQL package,
the CURRENT DECFLOAT ROUNDING MODE special register is set to the value of the DECFLTRND
parameter.

• Otherwise, the initial value is ROUND_HALF_EVEN.

CURRENT DECFLOAT ROUNDING MODE scope is activation group.

Examples
Example 1: Set the CURRENT DECFLOAT ROUNDING MODE special register to ROUND_DOWN using a
string constant and using a keyword.

 SET CURRENT DECFLOAT ROUNDING MODE = 'ROUND_DOWN'

 SET CURRENT DECFLOAT ROUNDING MODE = ROUND_DOWN

1498 IBM i: Db2 for i SQL Reference

SET CURRENT DEGREE
The SET CURRENT DEGREE statement assigns a value to the CURRENT DEGREE special register.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared. It must not be specified in REXX.

Authorization
The privileges held by the authorization ID of the statement must include *JOBCTL special authority
or be authorized to the SQL Administrator function of IBM i through Application Administration in
System i Navigator. The Change Function Usage (CHGFCNUSG) command, with a function ID of
QIBM_DB_SQLADM, can also be used to change the list of authorized users.

If a global variable is referenced in the statement, the privileges held by the authorization ID of the
statement must include at least one of the following:

• For the global variable identified in the statement,

– The READ privilege on the global variable, and
– The system authority *EXECUTE on the library containing the global variable

• Database administrator authority

Syntax

SET CURRENT DEGREE
 =

string-constant

variable

DEFAULT

Description
The value of CURRENT DEGREE is replaced by the value of the string constant or variable.

string-constant
Specifies a character string constant. The content is not folded to uppercase.

The length of the string-constant must not exceed 5 after trimming any leading and trailing blanks.

variable
Specifies a variable that contains the value for CURRENT DEGREE.

The variable:

• Must be a CHAR, VARCHAR, Unicode GRAPHIC, or Unicode VARGRAPHIC variable. The actual length
of the contents of the variable must not be greater than 5 after trimming any leading and trailing
blanks.

• Must not be the null value.
• Must have contents in uppercase characters. All characters are case-sensitive and are not converted

to uppercase characters.

DEFAULT
If the PARALLEL_DEGREE parameter in a current query options file (QAQQINI) is specified, the
CURRENT DEGREE will be reset to the PARALLEL_DEGREE. Otherwise, the CURRENT DEGREE will be
reset from the degree specified by the QQRYDEGREE system value.

The value of the string constant or variable must be one of the following:

Chapter 7. Statements 1499

1
No parallel processing is allowed.

2 through 32767
Specifies the degree of parallelism that will be used.

ANY
Specifies that the database manager can choose to use any number of tasks for either I/O or SMP
parallel processing.

Use of parallel processing and the number of tasks used is determined based on the number of
processors available in the system, this job's share of the amount of active memory available in the
pool in which the job is run, and whether the expected elapsed time for the operation is limited by
CPU processing or I/O resources. The database manager chooses an implementation that minimizes
elapsed time based on the job's share of the memory in the pool.

NONE
No parallel processing is allowed.

MAX
The database manager can choose to use any number of tasks for either I/O or SMP parallel
processing. MAX is similar to ANY except the database manager assumes that all active memory
in the pool can be used.

IO
The CQE optimizer can use parallel I/O methods only. This setting does not require the SMP feature.
The SQE optimizer considers I/O parallelism with or without this setting.

Notes
Transaction considerations: The SET CURRENT DEGREE statement is not a committable operation.
ROLLBACK has no effect on CURRENT DEGREE.

Initial current degree: The initial value of CURRENT DEGREE is equal to the parallelism degree in
effect from the CHGQRYA CL command, PARALLEL_DEGREE parameter in the current query options file
(QAQQINI), or the QQRYDEGREE system value.

Parallelism degree precedence: The parallelism degree can be controlled in several ways. The actual
parallelism degree used is determined as follows:

• If a SET CURRENT DEGREE statement or a CHGQRYA CL command with a DEGREE keyword has been
executed, the parallelism degree specified by the most recent of either is the value of CURRENT
DEGREE.

• If neither a SET CURRENT DEGREE statement nor a CHGQRYA CL command with a DEGREE keyword has
been executed,

– If a current query options file (QAQQINI) with a PARALLEL_DEGREE parameter has been specified,
the parallelism degree specified by the QAQQINI file is the value of CURRENT DEGREE.

– Otherwise, the parallelism degree specified by the QQRYDEGREE system value is the value of
CURRENT DEGREE.

For more information, see Database Performance and Query Optimization topic collection.

Current degree scope: The scope of CURRENT DEGREE is the job.

Parallel limitations: If the DB2 Symmetric Multiprocessing feature is not installed, a warning is returned
and parallelism is not used.

Some SQL statements cannot use parallelism.

Example
Example 1: The following statement sets the CURRENT DEGREE to inhibit parallelism.

1500 IBM i: Db2 for i SQL Reference

 SET CURRENT DEGREE = '1'

Example 2: The following statement sets the CURRENT DEGREE to allow parallelism.

 SET CURRENT DEGREE = 'ANY'

Chapter 7. Statements 1501

SET CURRENT IMPLICIT XMLPARSE OPTION
The SET CURRENT IMPLICIT XMLPARSE OPTION statement changes the value of the CURRENT IMPLICIT
XMLPARSE OPTION special register.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
If a global variable is referenced in the statement, the privileges held by the authorization ID of the
statement must include at least one of the following:

• For the global variable identified in the statement,

– The READ privilege on the global variable, and
– The system authority *EXECUTE on the library containing the global variable

• Database administrator authority

Syntax

SET CURRENT IMPLICIT XMLPARSE OPTION
 =

STRIP WHITESPACE

PRESERVE WHITESPACE

variable

string-constant

Description
STRIP WHITESPACE

Whitespace is removed on implicit XMLPARSE.
PRESERVE WHITESPACE

Whitespace is not removed on implicit XMLPARSE.
variable

Specifies a variable which contains the value for the CURRENT IMPLICIT XMLPARSE OPTION. The
content is folded to uppercase.

The variable:

• Must be a character-string or Unicode graphic-string variable.
• Must not be followed by an indicator variable.
• Must contain one of the two implicit XMLPARSE options.
• Must be padded on the right with blanks if the variable is fixed length.

string-constant
A character constant that contains a specification of the implicit XMLPARSE option. The value must be
a left justified string that is either 'STRIP WHITESPACE' or 'PRESERVE WHITESPACE' with exactly one
blank character between the keywords. The content is folded to uppercase.

Notes
Transaction considerations: The SET CURRENT IMPLICIT XMLPARSE OPTION statement is not a
committable operation. ROLLBACK has no effect on the CURRENT IMPLICIT XMLPARSE OPTION.

1502 IBM i: Db2 for i SQL Reference

Initial CURRENT IMPLICIT XMLPARSE OPTION: The initial value of CURRENT IMPLICIT XMLPARSE
OPTION is 'STRIP WHITESPACE'.

Both static and dynamic statements are affected by this special register.

The CURRENT IMPLICIT XMLPARSE OPTION scope is the connection.

Example
Set the value of the CURRENT IMPLICIT XMLPARSE OPTION special register to 'PRESERVE WHITESPACE'.

 SET CURRENT IMPLICIT XMLPARSE OPTION = PRESERVE WHITESPACE

Chapter 7. Statements 1503

SET CURRENT TEMPORAL SYSTEM_TIME
The SET CURRENT TEMPORAL SYSTEM_TIME statement changes the value of the CURRENT TEMPORAL
SYSTEM_TIME special register.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
None required.

Syntax

SET CURRENT TEMPORAL SYSTEM_TIME
 =

NULL

expression

Description
NULL

Specifies the null value.
expression

An expression that can be assigned to a TIMESTAMP(12). The expression must not contain a scalar
fullselect or a function that is non-deterministic, external action, or modifies SQL data.

Notes
Transaction considerations: The SET CURRENT TEMPORAL SYSTEM_TIME statement is not a
committable operation. ROLLBACK has no effect on CURRENT TEMPORAL SYSTEM_TIME.

CURRENT TEMPORAL SYSTEM_TIME scope: The scope of the CURRENT TEMPORAL SYSTEM_TIME
special register is the activation group and connection.

Examples
Example 1: Set the CURRENT TEMPORAL SYSTEM_TIME special register to the previous month.

 SET CURRENT TEMPORAL SYSTEM_TIME = CURRENT TIMESTAMP - 1 MONTH

Example 2: Set the CURRENT TEMPORAL SYSTEM_TIME special register to the null value.

 SET CURRENT TEMPORAL SYSTEM_TIME = NULL

1504 IBM i: Db2 for i SQL Reference

SET DESCRIPTOR
The SET DESCRIPTOR statement sets information in an SQL descriptor.

Invocation
This statement can only be embedded in an application program, SQL function, SQL procedure, or trigger.
It cannot be issued interactively. It is an executable statement that cannot be dynamically prepared. It
must not be specified in REXX.

Authorization
None required.

Syntax

SET

SQL

DESCRIPTOR
LOCAL

GLOBAL

SQL-descriptor-name

,

set-header-info

VALUE integer

integer-variable

,

set-item-info

set-header-info
COUNT = constant-1

variable-1

set-item-info
CARDINALITY

DATA

DATETIME_INTERVAL_CODE

DB2_CCSID

INDICATOR

LENGTH

LEVEL

PRECISION

SCALE

TYPE

USER_DEFINED_TYPE_CATALOG

USER_DEFINED_TYPE_NAME

USER_DEFINED_TYPE_SCHEMA

 = constant-2

variable-2

Chapter 7. Statements 1505

Description
LOCAL

Specifies the scope of the name of the descriptor to be local to program invocation. The information
provided is set into the descriptor known in this local scope.

GLOBAL
Specifies the scope of the name of the descriptor to be global to the SQL session. The information
provided is set into the descriptor known to any program that executes using the same database
connection.

SQL-descriptor-name
Names the SQL descriptor. The name must identify a descriptor that already exists with the specified
scope.

set-header-info
Sets attributes into the SQL descriptor. The same descriptor item must not be specified more than
once in a single SET DESCRIPTOR statement.

VALUE
Specifies the item number for which the specified information is set. If the item number is greater
than the maximum number of items allocated for the descriptor or the item number is less than 1, an
error is returned.
integer

An integer constant in the range of 1 to the number of items allocated in the SQL descriptor.
integer-variable

Identifies a variable declared in the program in accordance with the rules for declaring variables.
It must not be a global variable. The data type of the variable must be SMALLINT, INTEGER,
BIGINT, or DECIMAL or NUMERIC with a scale of zero. The value of variable must be in the range
of 1 to the maximum number of items allocated in the SQL descriptor.

set-item-info
Sets information about a specific item into the SQL descriptor. The same descriptor item must not be
specified more than once in a single SET DESCRIPTOR statement. Items that are not applicable to the
specified type are ignored.

set-header-info
COUNT

A count of the number of items that will be specified in the descriptor.
variable–1

Identifies a variable declared in the program in accordance with the rules for declaring variables,
but must not be a file reference variable or a global variable. The data type of the variable must
be compatible with the COUNT header item as specified in Table 97 on page 1328. The variable is
assigned (using storage assignment rules) to the COUNT header item. For details on the assignment
rules, see “Assignments and comparisons” on page 89.

constant–1
Identifies a constant value used to set the COUNT header item. The data type of the constant must
be compatible with the COUNT header item as specified in Table 97 on page 1328. The constant is
assigned (using storage assignment rules) to the COUNT header item. For details on the assignment
rules, see “Assignments and comparisons” on page 89.

set-item-info
CARDINALITY

Specifies the cardinality for the item. This is only allowed when TYPE is an array.
DATA

Specifies the value for the data described by the item descriptor. If the value of INDICATOR is
negative, then the value of DATA is undefined. The assigned value cannot be a constant.

1506 IBM i: Db2 for i SQL Reference

DATETIME_INTERVAL_CODE
Specifies the specific datetime data type. DATETIME_INTERVAL_CODE must be specified if TYPE is
set to 9.
1

DATE
2

TIME
3

TIMESTAMP
DB2_CCSID

Specifies the CCSID of character, graphic, XML, or datetime data. The value is not applicable for all
other data types. If the DB2_CCSID is not specified or 0 is specified:

• For XML data, the SQL_XML_DATA_CCSID QAQQINI option setting will be used.
• Otherwise, the CCSID of the variable will be determined by the CCSID of the job.

INDICATOR
Specifies the value for the indicator. A non-negative indicates a DATA value will be provided for this
descriptor item. When extended indicator variables are not enabled, a negative value indicates the
value described by this descriptor item is the null value. If not set, the value of INDICATOR is 0. When
extended indicator variables are enabled:

• -1, -2, -3, -4, or -6 indicates the value described by this descriptor item is the null value.
• -5 indicates the value described by this descriptor item is the DEFAULT value.
• -7 indicates the value described by this descriptor item is the UNASSIGNED value.
• 0 or a positive value indicates a DATA value will be provided for this descriptor item.

LENGTH
Specifies the maximum length of the data. If the data type is a character or graphic string type, XML
type, or a datetime type, the length represents the number of characters (not bytes). If the data type
is a binary string or any other type, the length represents the number of bytes. If LENGTH is not
specified, a default length will be used. For a description of the defaults, see Table 125 on page 1508.

LEVEL
The level of the item descriptor.
0

Item is a primary descriptor entry.
1

Item is for a secondary descriptor entry. This is for an array entry.
PRECISION

Specifies the precision for descriptor items of data type DECIMAL, NUMERIC, DECFLOAT, DOUBLE,
REAL, FLOAT, and TIMESTAMP. If PRECISION is not specified, a default precision will be used. For a
description of the defaults, see Table 125 on page 1508.

SCALE
Specifies the scale for descriptor items of data type DECIMAL or NUMERIC. If SCALE is not specified, a
default scale will be used. For a description of the defaults, see Table 125 on page 1508.

TYPE
Specifies a data type code representing the data type of the descriptor item. For a description of the
data type codes and lengths, see Table 98 on page 1330. Either TYPE or USER_DEFINED_TYPE_NAME
and USER_DEFINED_TYPE_SCHEMA (but not both) must be specified for each descriptor item.

USER_DEFINED_TYPE_CATALOG
Specifies the server name of the user-defined type. If USER_DEFINED_TYPE_CATALOG is specified,
it must be equal to the current server. Otherwise, the USER_DEFINED_TYPE_CATALOG is the current
server.

Chapter 7. Statements 1507

USER_DEFINED_TYPE_NAME
Specifies the name of the user-defined data type. Either TYPE or USER_DEFINED_TYPE_NAME and
USER_DEFINED_TYPE_SCHEMA (but not both) must be specified for each descriptor item.

USER_DEFINED_TYPE_SCHEMA
Specifies the schema containing the user-defined type. Either TYPE or USER_DEFINED_TYPE_NAME
and USER_DEFINED_TYPE_SCHEMA (but not both) must be specified for each descriptor item.

variable–2
Identifies a variable declared in the program in accordance with the rules for declaring variables,
but must not be a file reference variable or a global variable. The data type of the variable must be
compatible with the descriptor information item as specified in Table 97 on page 1328. The variable
is assigned (using storage assignment rules) to the corresponding descriptor item. For details on the
assignment rules, see “Assignments and comparisons” on page 89.

When setting the DATA item, in general the variable must have the same data type, length, precision,
scale, and CCSID as specified in Table 97 on page 1328. For variable-length types, the variable length
must not be less than the LENGTH in the descriptor. For C nul-terminated types, the variable length
must be at least one greater than the LENGTH in the descriptor.

constant-2
Identifies a constant value used to set the descriptor item. The data type of the constant must have
the same data type, length, precision, scale, and CCSID as specified in Table 97 on page 1328.
The constant is assigned (using storage assignment rules) to the corresponding descriptor item. For
details on the assignment rules, see “Assignments and comparisons” on page 89.

If the descriptor item to be set is DATA, constant-2 cannot be specified.

Notes
Default values for descriptor items: The following table represents the default values for LENGTH,
PRECISION, and SCALE, if they are not specified for a descriptor item.

Table 125. Default LENGTH, PRECISION, and SCALE

Data Type LENGTH PRECISION SCALE

DECIMAL and NUMERIC 5 0

FLOAT 53 0

DECFLOAT 34

CHARACTER, VARCHAR, and CLOB 1

GRAPHIC, VARGRAPHIC, and DBCLOB 1

BINARY, VARBINARY, and BLOB 1

DATE 10

TIME 8

TIMESTAMP 26 6

XML 1

Example
Example 1: Set the number of items in descriptor 'NEWDA' to the value in :numitems.

 EXEC SQL SET DESCRIPTOR 'NEWDA'
 COUNT = :numitems;

Example 2: Set the value of the type and length for the first item descriptor of descriptor 'NEWDA'

1508 IBM i: Db2 for i SQL Reference

 SET DESCRIPTOR 'NEWDA'
 VALUE 1 TYPE = :dtype,
 LENGTH = :olength;

Chapter 7. Statements 1509

SET ENCRYPTION PASSWORD
The SET ENCRYPTION PASSWORD statement sets the default password and hint that will be used by the
encryption and decryption functions. The password is not associated with authentication and is only used
for data encryption and decryption.

For information about using this statement, see “ENCRYPT_AES” on page 394, “ENCRYPT_RC2 or
ENCRPYT” on page 397, “ENCRYPT_TDES” on page 400, and “DECRYPT_BIT, DECRYPT_BINARY,
DECRYPT_CHAR and DECRYPT_DB” on page 377.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
If a global variable is referenced in the statement, the privileges held by the authorization ID of the
statement must include at least one of the following:

• For each global variable identified in the statement,

– The READ privilege on the global variable, and
– The system authority *EXECUTE on the library containing the global variable

• Database administrator authority

Syntax

SET ENCRYPTION PASSWORD
 =

password-variable

password-string-constant

WITH HINT
=

hint-variable

hint-string-constant

Description
password-variable

Specifies a variable that contains an encryption password.

The variable:

• Must be a CHAR, VARCHAR, Unicode GRAPHIC, or Unicode VARGRAPHIC variable. The actual length
of the contents of the variable must be between 6 and 127 inclusive or must be an empty string. If
an empty string is specified, the default encryption password is set to no value.

• Must not be the null value.
• All characters are case-sensitive and are not converted to uppercase characters.

password-string-constant
A character constant. The length of the constant must be between 6 and 127 inclusive or must be an
empty string. If an empty string is specified, the default encryption password is set to no value. The
literal form of the password is not allowed in static SQL or REXX.

WITH HINT
Indicates that a value is specified that will help data owners remember passwords (for example,
'Ocean' as a hint to remember 'Pacific'). If a hint value is specified, the hint is used as the default

1510 IBM i: Db2 for i SQL Reference

for encryption functions. The hint can subsequently be retrieved for an encrypted value using the
GETHINT function. If this clause is not specified and a hint is not explicitly specified on the encryption
function, no hint will be embedded in encrypted data result.
hint-variable

Specifies a variable that contains an encryption password hint.

The variable:

• Must be a CHAR, VARCHAR, Unicode GRAPHIC, or Unicode VARGRAPHIC variable. The actual
length of the contents of the variable must not be greater than 32. If an empty string is
specified, the default encryption password hint is set to no value.

• Must not be the null value.
• All characters are case-sensitive and are not converted to uppercase characters.

hint-string-constant
A character constant. The length of the constant must not be greater than 32. If an empty string is
specified, the default encryption password hint is set to no value.

Notes
Password protection: To prevent inadvertent access to the encryption password, do not specify
password-string-constant in the source for a program, procedure, or function. Instead, use a variable.

When connected to a remote relational database, the specified password itself is sent "in the clear".
That is, the password itself is not encrypted. To protect the password in these cases, consider using a
communications encryption mechanism such as IPSEC (or SSL if connecting between IBM i products).

Transaction considerations: The SET ENCRYPTION PASSWORD statement is not a committable
operation. ROLLBACK has no effect on the default encryption password or default encryption password
hint.

Initial encryption password value: The initial value of both the default encryption password and the
default encryption password hint is the empty string ('').

Encryption password scope: The scope of the default encryption password and default encryption
password hint is the activation group and connection.

Example
Set the ENCRYPTION PASSWORD to the value in :hv1.

SET ENCRYPTION PASSWORD :hv1

Chapter 7. Statements 1511

SET OPTION
The SET OPTION statement establishes the processing options to be used for SQL statements.

Invocation
This statement can be used in a REXX procedure or embedded in an application program. If used
in a REXX procedure, it is an executable statement. If embedded in an application program, it is not
executable and must precede any other SQL statements. This statement cannot be dynamically prepared.

Authorization
None required.

1512 IBM i: Db2 for i SQL Reference

Syntax

SET OPTION

,

ALWBLK = alwblk-option

ALWCPYDTA = alwcpydta-option

BINDOPT = bind-option

CLOSQLCSR = closqlcsr-option

CNULIGN = cnulign-option

CNULRQD = cnulrqd-option

COMMIT = commit-option

COMPILEOPT = compile-option

CONACC = concurrent-access-option

DATFMT = datfmt-option

DATSEP = datsep-option

DBGVIEW = dbgview-option

DECFLTRND = decfltrnd-option

DECMPT = decmpt-option

DECRESULT = decresult-option

DFTRDBCOL = dftrdbcol-option

DLYPRP = dlyprp-option

DYNDFTCOL = dyndftcol-option

DYNUSRPRF = dynusrprf-option

EVENTF = eventf-option

EXTIND = extind-option

INCFILE = incfile-option

LANGID = langid-option

MONITOR = monitor-option

NAMING = naming-option

OPTLOB = optlob-option

OUTPUT = output-option

RDBCNNMTH = rdbcnnmth-option

SQLCA = sqlca-option

SQLCURRULE = sqlcurrule-option

SQLPATH = sqlpath-option

SRTSEQ = srtseq-option

SYSTIME = systime-option

TGTRLS = tgtrls-option

TIMFMT = timfmt-option

TIMSEP = timsep-option

USRPRF = usrprf-option

alwblk-option

Chapter 7. Statements 1513

*READ

*NONE

*ALLREAD

alwcpydta-option
*YES

*NO

*OPTIMIZE

bind-option
*NONE

bind-string-constant

closqlcsr-option
*ENDACTGRP

*ENDMOD

*ENDPGM

*ENDSQL

*ENDJOB

cnulign-option
*YES

*NO

cnulrqd-option
*YES

*NO

commit-option
*CHG

*NONE

*CS

*ALL

*RR

compile-option
*NONE

compile-string-constant

concurrent-access-option
*CURCMT

*WAIT

*DFT

datfmt-option

1514 IBM i: Db2 for i SQL Reference

*JOB

*ISO

*EUR

*USA

*JIS

*MDY

*DMY

*YMD

*JUL

datsep-option
*JOB

*SLASH

'/'

*PERIOD

'.'

*COMMA

','

*DASH

'-'

*BLANK

' '

decfltrnd-option
*CEILING

*DOWN

*FLOOR

*HALFDOWN

*HALFEVEN

*HALFUP

*UP

decmpt-option
*PERIOD

*COMMA

*SYSVAL

*JOB

decresult-option

Chapter 7. Statements 1515

(

31

max-precision

,

31

max-scale

,

0

min-divide-scale

)

dbgview-option
*NONE

*SOURCE

*STMT

*LIST

dftrdbcol-option
*NONE

schema-name

dlyprp-option
*YES

*NO

dyndftcol-option
*YES

*NO

dynusrprf-option
*OWNER

*USER

eventf-option
*YES

*NO

extind-option
*YES

*NO

incfile-option
*LIBL/

*CURLIB/

library-name/

file-name

langid-option
*JOB

*JOBRUN

language-ID

1516 IBM i: Db2 for i SQL Reference

monitor-option
*USER

*SYSTEM

naming-option
*SYS

*SQL

optlob-option
*YES

*NO

output-option
*NONE

*PRINT

rdbcnnmth-option
*DUW

*RUW

sqlca-option
*YES

*NO

sqlcurrule-option
*DB2

*STD

sqlpath-option
*LIBL

path-string-constant

srtseq-option
*JOB

*HEX

*JOBRUN

*LANGIDUNQ

*LANGIDSHR

*LIBL/

*CURLIB/

library-name/

srtseq-table-name

systime-option
*YES

*NO

tgtrls-option
VxRxMx

timfmt-option

Chapter 7. Statements 1517

*HMS

*ISO

*EUR

*USA

*JIS

timsep-option
*JOB

*COLON

':'

*PERIOD

'.'

*COMMA

','

*BLANK

' '

usrprf-option
*OWNER

*USER

*NAMING

Description
ALWBLK

Specifies whether the database manager can use row blocking and the extent to which blocking can
be used for read-only cursors. This option will be ignored in REXX.
*ALLREAD

Rows are blocked for read-only cursors if COMMIT is *NONE, *CHG, or *CS. All cursors in a
program that are not explicitly able to be updated are opened for read-only processing even
though EXECUTE or EXECUTE IMMEDIATE statements may be in the program.

Specifying *ALLREAD:

• Allows row blocking under commitment control level *CHG and *CS in addition to the blocking
allowed for *READ.

• Can improve the performance of almost all read-only cursors in programs, but limits queries in
the following ways:

– The Rollback (ROLLBACK) command, a ROLLBACK statement in host languages, or the
ROLLBACK HOLD SQL statement does not reposition a read-only cursor when:

- ALWBLK(*ALLREAD) was specified when the program or routine that contains the cursor
was created

- ALWBLK(*READ) and ALWCPYDTA(*OPTIMIZE) were specified when the program or routine
that contains the cursor was created

– Dynamic running of a positioned UPDATE or DELETE statement (for example, using EXECUTE
IMMEDIATE), cannot be used to update a row in a cursor unless the DECLARE statement for
the cursor includes the FOR UPDATE clause.

*NONE
Rows are not blocked for retrieval of data for cursors.

1518 IBM i: Db2 for i SQL Reference

Specifying *NONE:

• Guarantees that the data retrieved is current.
• May reduce the amount of time required to retrieve the first row of data for a query.
• Stops the database manager from retrieving a block of data rows that is not used by the program

when only the first few rows of a query are retrieved before the query is closed.
• Can degrade the overall performance of a query that retrieves a large number of rows.

*READ
Rows are blocked for read-only retrieval of data for cursors when:

• *NONE is specified on the COMMIT parameter, which indicates that commitment control is not
used.

• The cursor is declared with a FOR READ ONLY clause or there are no dynamic statements that
could run a positioned UPDATE or DELETE statement for the cursor.

Specifying *READ can improve the overall performance of queries that meet the above conditions
and retrieve a large number of rows.

ALWCPYDTA
Specifies whether a copy of the data can be used in a SELECT statement. This option will be ignored in
REXX.
*OPTIMIZE

The system determines whether to use the data retrieved directly from the database or to use
a copy of the data. The decision is based on which method provides the best performance. If
COMMIT is *CHG or *CS and ALWBLK in not *ALLREAD, or if COMMIT is *ALL or *RR, then a copy of
the data is used only when it is necessary to run a query.

*YES
A copy of the data is used only when necessary.

*NO
A copy of the data is not allowed. If a temporary copy of the data is required to perform the query,
an error message is returned.

BINDOPT
Specifies additional parameters to be used on the CRTPGM or CRTSRVPGM CL command that is used
when creating an SQL function, SQL procedure, or SQL trigger. The BINDOPT string is added to the
CRTPGM or CRTSRVPGM CL command generated by the precompiler. The contents of the string are
not validated. The bind command will issue an error if any parameter is incorrect. The following bind
options cannot be specified in this string since they are set by the precompiler: ACTGRP, ALWRINZ,
AUT, ENTMOD, EXPORT, MODULE, REPLACE, STGMDL, TEXT, TGTRLS, and USRPRF.

This option is only allowed in an SQL function, SQL procedure, or SQL trigger. This option will be
ignored in REXX.

*NONE
No additional parameters will be used on the CRTPGM or CRTSRVPGM CL command.

bind-string-constant
A character constant of no more than 5000 characters containing the bind options.

CLOSQLCSR
Specifies when SQL cursors are implicitly closed, SQL prepared statements are implicitly discarded,
and LOCK TABLE locks are released. SQL cursors are explicitly closed when you issue the CLOSE,
COMMIT, or ROLLBACK (without HOLD) SQL statements. This option will be ignored in REXX.
*ENDACTGRP and *ENDMOD are for use by ILE programs and modules, SQL functions, SQL
procedures, or SQL triggers. *ENDPGM, *ENDSQL, and *ENDJOB are for use by non-ILE programs.

SQL scalar functions, SQL procedures, and SQL triggers use *ENDMOD as the default. SQL table
functions are always created using *ENDACTGRP.

Chapter 7. Statements 1519

*ENDACTGRP
SQL cursors are closed, SQL prepared statements are implicitly discarded, and LOCK TABLE locks
are released when the activation group ends.

*ENDMOD
SQL cursors are closed and SQL prepared statements are implicitly discarded when the module is
exited. LOCK TABLE locks are released when the first SQL program on the call stack ends. Note
that a cursor may only be logically closed and will only be physically closed when the first program
with SQL leaves the stack and only if that program was not compiled with *ENDACTGRP.

*ENDPGM
SQL cursors are closed and SQL prepared statements are discarded when the program ends. LOCK
TABLE locks are released when the first SQL program on the call stack ends.

*ENDSQL
SQL cursors remain open between calls and can be fetched without running another SQL OPEN.
One of the programs higher on the call stack must have run at least one SQL statement. SQL
cursors are closed, SQL prepared statements are discarded, and LOCK TABLE locks are released
when the first SQL program on the call stack ends. If *ENDSQL is specified for a program that is
the first SQL program called (the first SQL program on the call stack), the program is treated as if
*ENDPGM was specified.

*ENDJOB
SQL cursors remain open between calls and can be fetched without running another SQL OPEN.
The programs higher on the call stack do not need to have run SQL statements. SQL cursors are
left open, SQL prepared statements are preserved, and LOCK TABLE locks are held when the
first SQL program on the call stack ends. SQL cursors are closed, SQL prepared statements are
discarded, and LOCK TABLE locks are released when the job ends.

CNULIGN
Specifies whether a NUL-terminator is ignored for character and graphic host variables. This option
will only be used for SQL statements in C and C++ programs.

This option is not allowed in an SQL function, SQL procedure, or SQL trigger.

*YES
Character and graphic host variables defined as NUL-terminated will be treated as fixed length
variables for INSERT and UPDATE statements. NUL-terminators are considered part of the data.

*NO
NUL-terminated character and graphic host variables use NUL-terminators for INSERT and
UPDATE statements.

CNULRQD
Specifies whether a NUL-terminator is returned for character and graphic host variables. This option
will only be used for SQL statements in C and C++ programs.

This option is not allowed in an SQL function, SQL procedure, or SQL trigger.

*YES
Output character and graphic host variables always contain the NUL-terminator. If there is not
enough space for the NUL-terminator, the data is truncated and the NUL-terminator is added.
Input character and graphic host variables require a NUL-terminator.

*NO
For output character and graphic host variables, the NUL-terminator is not returned when the host
variable is exactly the same length as the data. Input character and graphic host variables do not
require a NUL-terminator.

COMMIT
Specifies the isolation level to be used. In REXX, files that are referred to in the source are not
affected by this option. Only tables, views, and packages referred to in SQL statements are affected.
For more information about isolation levels, see “Isolation level” on page 23
*CHG

Specifies the isolation level of Uncommitted Read.

1520 IBM i: Db2 for i SQL Reference

*NONE
Specifies the isolation level of No Commit. If the DROP SCHEMA statement is included in a REXX
procedure, *NONE must be used.

*CS
Specifies the isolation level of Cursor Stability.

*ALL
Specifies the isolation level of Read Stability.

*RR
Specifies the isolation level of Repeatable Read.

COMPILEOPT
Specifies additional parameters to be used on the compiler command. The COMPILEOPT string is
added to the compiler command built by the precompiler. If 'INCDIR(' is anywhere in the string,
the precompiler will call the compiler using the SRCSTMF parameter. The contents of the string is
not validated. The compiler command will issue an error if any parameter is incorrect. Using any of
the keywords that the precompiler passes to the compiler will cause the compiler command to fail
because of duplicate parameters. Refer to the Embedded SQL Programming topic collection for a list
of parameters that the precompiler generates for the compiler command. This option will be ignored
in REXX.

This option is not allowed in an SQL function, SQL procedure, or SQL trigger.

*NONE
No additional parameters will be used on the compiler command.

character-string
A character constant of no more than 5000 characters containing the compiler options.

CONACC
Specifies the concurrent access resolution to use for select statements.
*CURCMT

Specifies that the database manager is to use the currently committed version of data when
encountering a row that is in the process of being updated or deleted. Rows that are in the process
of being inserted are skipped. This value will be honored when possible for isolation level of *CS.

*WAIT
Specifies to wait for a commit or rollback for data that is in the process of being updated or
deleted by another transaction. This value will be honored when possible for isolation levels of
*CS and *ALL.

*DFT
Specifies that the concurrent access option will not be explicitly set for this program. The value
that is in effect when the program is invoked will be used.

DATFMT
Specifies the format used when accessing date result columns. All output date fields are returned in
the specified format. For input date strings, the specified value is used to determine whether the date
is specified in a valid format.

Note: An input date string that uses the format *USA, *ISO, *EUR, or *JIS is always valid.

*JOB:
The format specified for the job is used. Use the Display Job (DSPJOB) command to determine the
current date format for the job.

*ISO
The International Organization for Standardization (ISO) date format (yyyy-mm-dd) is used.

Chapter 7. Statements 1521

*EUR
The European date format (dd.mm.yyyy) is used.

*USA
The United States date format (mm/dd/yyyy) is used.

*JIS
The Japanese Industrial Standard date format (yyyy-mm-dd) is used.

*MDY
The date format (mm/dd/yy) is used.

*DMY
The date format (dd/mm/yy) is used.

*YMD
The date format (yy/mm/dd) is used.

*JUL
The Julian date format (yy/ddd) is used.

DATSEP
Specifies the separator used when accessing date result columns.

Note: This parameter applies only when *JOB, *MDY, *DMY, *YMD, or *JUL is specified on the DATFMT
parameter.

*JOB
The date separator specified for the job is used. Use the Display Job (DSPJOB) command to
determine the current value for the job.

*SLASH or '/'
A slash (/) is used.

*PERIOD or '.'
A period (.) is used.

*COMMA or ','
A comma (,) is used.

*DASH or '-'
A dash (-) is used.

*BLANK or ' '
A blank () is used.

DBGVIEW
Specifies whether the object can be debugged by the system debug facilities and the type of debug
information to be provided by the compiler. The DBGVIEW parameter can only be specified in the
body of SQL functions, procedures, and triggers.

If DEBUG MODE in a CREATE PROCEDURE or ALTER PROCEDURE statement is specified, a DBGVIEW
option in the SET OPTION statement must not be specified.

The possible choices are:

*NONE
A debug view will not be generated.

1522 IBM i: Db2 for i SQL Reference

*SOURCE
Allows the compiled module object to be debugged using SQL statement source. If *SOURCE
is specified, the modified source is stored in source file QSQDSRC in the same schema as the
created function, procedure, or trigger.

*STMT
Allows the compiled module object to be debugged using program statement numbers and
symbolic identifiers.

*LIST
Generates the listing view for debugging the compiled module object.

If DEBUG MODE is not specified, but a DBGVIEW option in the SET OPTION statement is specified, the
procedure cannot be debugged by the Unified Debugger, but can be debugged by the system debug
facilities. If neither DEBUG MODE nor a DBGVIEW option is specified, the debug mode used is from
the CURRENT DEBUG MODE special register.

DECFLTRND
Specifies the DECFLOAT rounding mode used for static SQL statements. The possible choices are:
*CEILING

Round toward +Infinity. If all of the discarded digits are zero or if the sign is negative the result
is unchanged other than the removal of the discarded digits. Otherwise, the result coefficient is
incremented by one (rounded up).

*DOWN
Round toward zero (truncation). The discarded digits are ignored.

*FLOOR
Round toward -Infinity. If all of the discarded digits are zero or if the sign is positive, the result is
unchanged other than the removal of the discarded digits. Otherwise, the sign is negative and the
result coefficient is incremented by one.

*HALFDOWN
Round to nearest; if equidistant, round down. If the discarded digits represent greater than half
(0.5) of the value of a one in the next left position, then the result coefficient is incremented by
one (rounded up). Otherwise, the discarded digits are ignored.

*HALFEVEN
Round to nearest; if equidistant, round so that the final digit is even. If the discarded digits
represent greater than half (0.5) of the value of a one in the next left position, then the result
coefficient is incremented by one (rounded up). If they represent less than half, then the result
coefficient is not adjusted (that is, the discarded digits are ignored). Otherwise (they represent
exactly half), the result coefficient is unaltered if its rightmost digit is even or incremented by one
(rounded up) if its rightmost digit is odd (to make an even digit).

*HALFUP
Round to nearest; if equidistant, round up. If the discarded digits represent greater than or equal
to half (0.5) of the value of a one in the next left position, then the result coefficient is incremented
by one (rounded up). Otherwise, the discarded digits are ignored.

*UP
Round away from zero. If all of the discarded digits are zero, the result is unchanged other than
the removal of discarded digits. Otherwise, the result coefficient is incremented by one (rounded
up).

DECMPT
Specifies the symbol that you want to represent the decimal point. The possible choices are:
*PERIOD

The representation for the decimal point is a period.
*COMMA

The representation for the decimal point is a comma.
*SYSVAL

The representation for the decimal point is the system value (QDECFMT).

Chapter 7. Statements 1523

*JOB
The representation for the decimal point is the job value (DECFMT).

DECRESULT
Specifies the maximum precision, maximum scale, and minimum divide scale that should be used
during decimal operations, such as decimal arithmetic. The specified limits only apply to NUMERIC
and DECIMAL data types.
max-precision

An integer constant that is the maximum precision that should be returned from decimal
operations. The value can be 31 or 63. The default is 31.

max-scale
An integer constant that is the maximum scale that should be returned from decimal operations.
The value can range from 0 to the maximum precision. The default is 31.

min-divide-scale
An integer constant that is the minimum scale that should be returned from division operations.
The value can range from 1 to 9 and cannot be greater than max-scale. The default is 0, where 0
indicates that no minimum scale is specified.

DFTRDBCOL
Specifies the schema name used for the unqualified names of tables, views, indexes, and SQL
packages. This parameter applies only to static SQL statements. This option will be ignored in REXX.
*NONE

The naming convention specified on the OPTION precompile parameter or by the SET OPTION
NAMING option will be used.

schema-name
Specify the name of the schema. This value is used instead of the naming convention specified on
the OPTION precompile parameter or by the SET OPTION NAMING option.

DLYPRP
Specifies whether the dynamic statement validation for a PREPARE statement is delayed until
an OPEN, EXECUTE, or DESCRIBE statement is run. Delaying validation improves performance by
eliminating redundant validation. This option will be ignored in REXX.
*NO

Dynamic statement validation is not delayed. When the dynamic statement is prepared, the
access plan is validated. When the dynamic statement is used in an OPEN or EXECUTE statement,
the access plan is revalidated. Because the authority or the existence of objects referred to by the
dynamic statement may change, you must still check the SQLCODE or SQLSTATE after issuing the
OPEN or EXECUTE statement to ensure that the dynamic statement is still valid.

*YES
Dynamic statement validation is delayed until the dynamic statement is used in an OPEN,
EXECUTE, or DESCRIBE SQL statement. When the dynamic statement is used, the validation is
completed and an access plan is built. If you specify *YES, you should check the SQLCODE and
SQLSTATE after running an OPEN, EXECUTE, or DESCRIBE statement to ensure that the dynamic
statement is valid.

Note: If you specify *YES, performance is not improved if the INTO clause is used on the PREPARE
statement or if a DESCRIBE statement uses the dynamic statement before an OPEN is issued for
the statement.

DYNDFTCOL
Specifies the schema name specified for the DFTRDBCOL parameter is also used for dynamic
statements. This option will be ignored in REXX.
*NO

Do not use the value specified for DFTRDBCOL for unqualified names of tables, views, indexes,
and SQL packages for dynamic SQL statements. The naming convention specified on the OPTION
precompile parameter or by the SET OPTION NAMING option will be used.

1524 IBM i: Db2 for i SQL Reference

*YES
The schema name specified for DFTRDBCOL will be used for the unqualified names of the tables,
views, indexes, and SQL packages in dynamic SQL statements.

DYNUSRPRF
Specifies the user profile to be used for dynamic SQL statements. This option will be ignored in REXX.
*USER

Local dynamic SQL statements are run under the user profile of the job. Distributed dynamic SQL
statements are run under the user profile of the application server job.

*OWNER
Local dynamic SQL statements are run under the user profile of the program's owner. Distributed
dynamic SQL statements are run under the user profile of the SQL package's owner.

EVENTF
Specifies whether an event file will be generated. CoOperative Development Environment/400 (CODE/
400) uses the event file to provide error feedback integrated with the CODE/400 editor.
*YES

The compiler produces an event file for use by CoOperative Development Environment/400
(CODE/400).

*NO
The compiler will not produce an event file for use by CoOperative Development Environment/400
(CODE/400).

EXTIND
Specifies how to treat indicator variable values passed for SQL statements.
*NO

Specifies that extended indicator variables are not enabled and non-updatable columns are not
allowed in the implicit or explicit UPDATE clause of a select-statement.

*YES
Specifies that extended indicator variables are enabled and non-updatable columns are allowed in
the implicit or explicit UPDATE clause of a select-statement.

INCFILE
Specifies the name of the source file to use for INCLUDE SQL statements. It will be used to locate any
source member listed in an INCLUDE SQL statement when a source file name is not specified in the
INCLUDE SQL statement.

This option is only allowed in an SQL function, SQL procedure, or SQL trigger. This option will be
ignored in REXX.

file-name
Specify the name of the source file to be used. The name of the file can be qualified by one of the
following library values:
*LIBL

All libraries in the user and system portions of the job's library list are searched until the first
match is found.

*CURLIB
The current library for the job is searched. If no library is specified as the current library for the
job, the QGPL library is used.

library-name
Specifies the name of the library to be searched.

LANGID
Specifies the language identifier to be used when SRTSEQ(*LANGIDUNQ) or SRTSEQ(*LANGIDSHR) is
specified.
*JOB or *JOBRUN

The LANGID value for the job is used.

Chapter 7. Statements 1525

For distributed applications, LANGID(*JOBRUN) is valid only when SRTSEQ(*JOBRUN) is also
specified.

language-id
Specify a language identifier to be used. For information about the values that can be used for the
language identifier, see the Language identifier topic in the Globalization topic collection.

MONITOR
Specifies whether the statements should be identified as user or system statements when a database
monitor is run.
*USER

The SQL statements are identified as user statements. This is the default.
*SYSTEM

The SQL statements are identified as system statements.
NAMING

Specifies whether the SQL naming convention or the system naming convention is to be used. This
option is not allowed in an SQL function, SQL procedure, or SQL trigger.

The possible choices are:

*SYS
The system naming convention will be used.

*SQL
The SQL naming convention will be used.

OPTLOB
Specifies whether accesses to XML and LOBs can be optimized when accessing through DRDA. The
possible choices are:
*YES

LOB and XML accesses should be optimized. The first FETCH for a cursor determines how the
cursor will be used for LOBs and XML on all subsequent FETCHes. This option remains in effect
until the cursor is closed.

If the first FETCH uses a locator to access a LOB or XML column, no subsequent FETCH for that
cursor can fetch that LOB or XML column into a LOB or XML variable.

If the first FETCH places the LOB or XML column into a LOB or XML variable, no subsequent FETCH
for that cursor can use a locator for that column.

*NO
LOB accesses should not be optimized. There is no restriction on whether a column is retrieved
into a LOB locator or into a LOB variable. This option can cause performance to degrade.

OUTPUT
Specifies whether the precompiler and compiler listings are generated. The OUTPUT parameter can
only be specified in the body of SQL functions, procedures, and triggers. The possible choices are:
*NONE

The precompiler and compiler listings are not generated.
*PRINT

The precompiler and compiler listings are generated.
RDBCNNMTH

Specifies the semantics used for CONNECT statements. This option will be ignored in REXX.
*DUW

CONNECT (Type 2) semantics are used to support distributed unit of work. Consecutive
CONNECT statements to additional relational databases do not result in disconnection of previous
connections.

1526 IBM i: Db2 for i SQL Reference

*RUW
CONNECT (Type 1) semantics are used to support remote unit of work. Consecutive CONNECT
statements result in the previous connection being disconnected before a new connection is
established.

SQLCA
Specifies whether the fields in an SQLCA will be set after each SQL statement. The SQLCA option
is only allowed for ILE C, ILE C++, ILE COBOL, and ILE RPG. This option is not allowed in an SQL
function, SQL procedure, or SQL trigger.

The possible choices are:

*YES
The fields in an SQLCA will be set after each SQL statement. The user program can reference all
the values in the SQLCA following the execution of an SQL statement.

*NO
The fields in an SQLCA will not be set after each SQL statement. The user program should use the
GET DIAGNOSTICS statement to retrieve information about the execution of the SQL statement.

SQLCA(*NO) will typically perform better than SQLCA(*YES).

In other host languages, an SQLCA is required and fields in the SQLCA will be set after each SQL
statement.

SQLCURRULE
Specifies the semantics used for SQL statements.
*DB2

The semantics of all SQL statements will default to the rules established for Db2. The following
semantics are controlled by this option:

• Hexadecimal constants are treated as character data.
• Unicode graphic-string constants are UCS-2 (CCSID 13488).
• Assignments to SQL-variables and SQL-parameters within the body of a routine or a trigger will

use retrieval assignment rules.
• When describing a select statement into an SQLDA and SQLN is smaller than the required

number of SQLVAR entries, SQLSTATE 01005 is returned only when the result table contains
LOBs or UDTs.

*STD
The semantics of all SQL statements will default to the rules established by the ISO and ANSI SQL
standards. The following semantics are controlled by this option:

• Hexadecimal constants are treated as binary data.
• Unicode graphic-string constants are UTF-16 (CCSID 1200).
• Assignments to SQL-variables and SQL-parameters within the body of a routine or a trigger will

use storage assignment rules.
• When describing a select statement into an SQLDA and SQLN is smaller than the required

number of SQLVAR entries, SQLSTATE 01005 is always returned.

SQLPATH
Specifies the path to be used to find procedures, functions, and user defined types in static SQL
statements. This option will be ignored in REXX.
*LIBL

The path used is the library list at runtime.
character-string

A character constant with one or more schema names that are separated by commas. Only system
schema names can be specified.

SRTSEQ
Specifies the collating sequence table to be used for string comparisons in SQL statements.

Chapter 7. Statements 1527

Note: *HEX must be specified if a REXX procedure connects to an application server that is not a Db2
for i or a IBM i product whose release level is prior to V2R3M0.

*JOB or *JOBRUN
The SRTSEQ value for the job is used.

*HEX
A collating sequence table is not used. The hexadecimal values of the characters are used to
determine the collating sequence.

*LANGIDUNQ
The collating sequence table must contain a unique weight for each character in the code page.

*LANGIDSHR
The shared-weight sort table for the LANGID specified is used.

srtseq-table-name
Specify the name of the collating sequence table to be used with this program. The name of the
collating sequence table can be qualified by one of the following library values:
*LIBL

All libraries in the user and system portions of the job's library list are searched until the first
match is found.

*CURLIB
The current library for the job is searched. If no library is specified as the current library for the
job, the QGPL library is used.

library-name
Specify the name of the library to be searched.

SYSTIME
Specifies whether the CURRENT TEMPORAL SYSTEM_TIME special register affects static and dynamic
SQL statements.

The possible choices are:

*YES
Any references to system-period temporal tables are affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register.

*NO
Any references to system-period temporal tables are not affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register.

TGTRLS
Specifies the release of the operating system on which the user intends to use the object being
created. The TGTRLS parameter can only be specified in the body of SQL functions, procedures, and
triggers, or as part of an external function or external procedure create statement.
VxRxMx

Specify the release in the format VxRxMx, where Vx is the version, Rx is the release, and Mx is
the modification level. For example, V7R1M0 is version 7, release 1, modification level 0. The
object can be used on a system with the specified release or with any subsequent release of the
operating system installed.

If you specify a release value which is earlier than the earliest release level currently supported by
the operating system, the level will be upgraded to the current N-2 release value. No message will
be issued.

TIMFMT
Specifies the format used when accessing time result columns. All output time fields are returned in
the specified format. For input time strings, the specified value is used to determine whether the time
is specified in a valid format.

1528 IBM i: Db2 for i SQL Reference

Note: An input time string that uses the format *USA, *ISO, *EUR, or *JIS is always valid.

*HMS
The (hh:mm:ss) format is used.

*ISO
The International Organization for Standardization (ISO) time format (hh.mm.ss) is used.

*EUR
The European time format (hh.mm.ss) is used.

*USA
The United States time format (hh:mm xx) is used, where xx is AM or PM.

*JIS
The Japanese Industrial Standard time format (hh:mm:ss) is used.

TIMSEP
Specifies the separator used when accessing time result columns.

Note: This parameter applies only when *HMS is specified on the TIMFMT parameter.

*JOB
The time separator specified for the job is used. Use the Display Job (DSPJOB) command to
determine the current value for the job.

*COLON or ':'
A colon (:) is used.

*PERIOD or '.'
A period (.) is used.

*COMMA or ','
A comma (,) is used.

*BLANK or ' '
A blank () is used.

USRPRF
Specifies the user profile that is used when the compiled program object is run, including the authority
that the program object has for each object in static SQL statements. The profile of either the program
owner or the program user is used to control which objects can be used by the program object. This
option will be ignored in REXX.
*NAMING

The user profile is determined by the naming convention. If the naming convention is *SQL,
USRPRF(*OWNER) is used. If the naming convention is *SYS, USRPRF(*USER) is used.

*USER
The profile of the user running the program object is used.

*OWNER
The user profiles of both the program owner and the program user are used when the program is
run.

Notes
Default values: The default values for the options depend on the language, object type, and the options in
effect at create time:

• When an SQL procedure, SQL function, or SQL trigger is created, the default values for the options are
those in effect at the time the object is created. For example, if an SQL procedure is created and the

Chapter 7. Statements 1529

current COMMIT option is *CS, *CS is the default COMMIT option. Each option is then updated as it is
encountered within the SET OPTION statement.

• For application programs other than REXX, the default values for the options are specified on the
CRTSQLxxx command. Each option is then updated as it is encountered within a SET OPTION
statement. All SET OPTION statements must precede any other embedded SQL statements.

• At the start of a REXX procedure the options are set to their default value. The default value for each
option is the first value listed in the syntax diagram. When an option is changed by a SET OPTION
statement, the new value will stay in effect until the option is changed again or the REXX procedure
ends.

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• *UR can be used as a synonym for *CHG.
• *NC can be used as a synonym for *NONE.
• *RS can be used as a synonym for *ALL.

Examples
Example 1: Set the isolation level to *ALL and the naming mode to SQL names.

 EXEC SQL SET OPTION COMMIT =*ALL, NAMING =*SQL

Example 2: Set the date format to European, the isolation level to *CS, and the decimal point to the
comma.

 EXEC SQL SET OPTION DATFMT = *EUR, COMMIT = *CS, DECMPT = *COMMA

1530 IBM i: Db2 for i SQL Reference

SET PATH
The SET PATH statement changes the value of the CURRENT PATH special register.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
If a global variable is referenced in the statement, the privileges held by the authorization ID of the
statement must include at least one of the following:

• For each global variable identified in the statement,

– The READ privilege on the global variable, and
– The system authority *EXECUTE on the library containing the global variable

• Database administrator authority

Syntax

SET
CURRENT

FUNCTION

PATH

CURRENT_PATH

 =

,

schema-name

SYSTEM PATH

SESSION_USER

USER

CURRENT USER

CURRENT_USER

SYSTEM_USER

CURRENT
FUNCTION

PATH

CURRENT_PATH

variable

string-constant

*LIBL

1

Notes:
1 SYSTEM PATH, SESSION_USER, USER, CURRENT_USER, SYSTEM_USER, and CURRENT PATH may
each be specified at most once on the right side of the statement.

Chapter 7. Statements 1531

Description
schema-name

Identifies a schema. If a specified schema name is a system schema name, no validation that the
schema exists is made at the time the PATH is set. For example, if a schema-name is misspelled, it
could affect the way subsequent SQL operates. If the specified schema name is not a system schema
name, the schema must exist at the time the PATH is set.

Although not recommended, PATH can be specified as a schema-name if it is specified as "PATH".

SYSTEM PATH
Specifies the schema names for the system path. This value is the same as specifying the schema
names "QSYS","QSYS2","SYSPROC","SYSIBMADM".

SESSION_USER or USER
Specifies the value of the SESSION_USER special register.

CURRENT USER
Specifies the value of the CURRENT USER special register.

SYSTEM_USER
Specifies the value of the SYSTEM_USER special register.

CURRENT PATH
Specifies the value of the CURRENT PATH special register before the execution of this statement.
CURRENT PATH is not allowed if the current path is *LIBL.

variable
Specifies a variable that contains one or more schema names that are separated by commas. It can be
a global variable if it is qualified with schema name.

The variable:

• Must be a CHAR, VARCHAR, Unicode GRAPHIC, or Unicode VARGRAPHIC variable. The actual length
of the contents of the variable must not exceed the maximum length of a path.

• Must not be followed by an indicator variable.
• Must not be the null value.
• Each schema name must conform to the rules for forming an ordinary or delimited identifier.
• Each schema name must not contain lowercase letters or characters that cannot be specified in an

ordinary identifier.
• Must be padded on the right with blanks if the variable is fixed length character.
• If the SET statement is specified in an SQL routine, SQL trigger, or compound statement, variable

cannot be a global variable with an unqualified name.

string-constant
A character constant with one or more schema names that are separated by commas.

The string constant:

• Each schema name must conform to the rules for forming an ordinary or delimited identifier.
• Each schema name must not contain lowercase letters or characters that cannot be specified in an

ordinary identifier.

*LIBL
The path is set to the library list of the current thread.

Notes
Transaction considerations: The SET PATH statement is not a committable operation. ROLLBACK has no
effect on the CURRENT PATH.

Rules for the content of the SQL path:

• A schema name must not appear more than once in the path.

1532 IBM i: Db2 for i SQL Reference

• The number of schemas that can be specified is limited by the total length of the CURRENT PATH
special register. The special register string is built by taking each schema name specified and removing
trailing blanks, delimiting with double quotes, and separating each schema name by a comma. An error
is returned if the length of the resulting string exceeds 3483 bytes. A maximum of 268 schema names
can be represented in the path.

• There is a difference between specifying a single keyword (such as USER, or PATH, or CURRENT_PATH)
as a single keyword, or as a delimited identifier. To indicate that the current value of a special register
specified as a single keyword should be used in the SQL path, specify the name of the special register as
a keyword. If the name of the special register is specified as a delimited identifier instead (for example,
"USER"), it is interpreted as a schema name of that value ('USER'). For example, assuming that the
current value of the USER special register is SMITH, then SET PATH = SYSIBM, USER, "USER" results in
a CURRENT PATH value of "SYSIBM","SMITH","USER".

• The following rules are used to determine whether a value specified in a SET PATH statement is a
variable or a schema-name:

– If name is the same as a parameter or SQL variable in the SQL procedure, name is interpreted as a
parameter or SQL variable, and the value in name is assigned to PATH.

– If name is not the same as a parameter or SQL variable in the SQL procedure, name is interpreted as
schema-name, and the value name is assigned to PATH.

The system path: SYSTEM PATH refers to the system path for a platform. The schemas QSYS, QSYS2,
SYSPROC, and SYSIBMADM do not need to be specified. If not included in the path, they are implicitly
assumed as the last schemas (in this case, it is not included in the CURRENT PATH special register).

The initial value of the CURRENT PATH special register is *LIBL if system naming
was used for the first SQL statement run in the activation group. The initial value is
"QSYS","QSYS2","SYSPROC","SYSIBMADM","X" (where X is the value of the USER special register) if SQL
naming was used for the first SQL statement.

Using the SQL path: The CURRENT PATH special register is used to resolve user-defined types, functions,
and procedures in dynamic SQL statements. For more information see “SQL path” on page 57.

Example
The following statement sets the CURRENT PATH special register.

SET PATH = FERMAT, "McDuff", SYSIBM

The following statement retrieves the current value of the SQL path special register into the host variable
called CURPATH.

EXEC SQL VALUES (CURRENT PATH) INTO :CURPATH;

The value would be "FERMAT","McDuff","SYSIBM" if set by the previous example.

Chapter 7. Statements 1533

SET RESULT SETS
The SET RESULT SETS statement specifies the result sets that can be returned from a procedure.

Invocation
This statement can only be embedded in an application program or SQL procedure. It is an executable
statement that cannot be dynamically prepared. It is not allowed in a Java or REXX procedure.

Authorization
None required.

Syntax

SET RESULT SETS

WITH RETURN
TO CALLER

TO CLIENT

,

ARRAY host-structure-array FOR variable ROWS

CURSOR cursor-name

NONE

Description
WITH RETURN

Specifies that the result table of the cursor is intended to be used as a result set that will be returned
from a procedure.

For non-scrollable cursors, the result set consists of all rows from the current cursor position to the
end of the result table. For scrollable cursors, the result set consists of all rows of the result table.

TO CALLER
Specifies that the cursor can return a result set to the caller of the procedure. For example, if the
caller is a client application, the result set is returned to the client application.

TO CLIENT
Specifies that the cursor can return a result set to the client application. This cursor is invisible
to any intermediate nested procedures. If a function or trigger called the procedure either directly
or indirectly, result sets cannot be returned to the client and the cursor will be closed after the
procedure finishes.

CURSOR cursor-name
Identifies a cursor to be used to define a result set that can be returned from a procedure. The
cursor-name must identify a declared cursor as explained in “Description” on page 1216 for the
DECLARE CURSOR statement. When the SET RESULT SETS statement is executed, the cursor must be
in the open state. It cannot be an allocated cursor.

ARRAY host-structure-array
host-structure-array identifies an array of host structures defined in accordance with the rules for
declaring host structures. The array cannot contain a C NUL-terminated host variable.

The first structure in the array corresponds to the first row of the result set, the second structure in
the array corresponds to the second row of the result set, and so on. In addition, the first value in

1534 IBM i: Db2 for i SQL Reference

the row corresponds to the first item in the structure, the second value in the row corresponds to the
second item in the structure, and so on.

LOBs and XML cannot be returned in an array when using DRDA.

Only one array can be specified in a SET RESULT SETS statement, including any RETURN TO CLIENT
array result sets from nested calls to procedures.

FOR variable ROWS
Specifies the number of rows in the result set. The variable must be a numeric variable with zero
scale, and it must not include an indicator variable. It must not be a global variable. The number of
rows specified must be in the range of 0 to 32767 and must be less than or equal to the dimension of
the host structure array.

NONE
Specifies that no result sets will be returned. Cursors left open when the procedure ends will not be
returned.

Notes
For more information about result sets, see Result sets from procedures and WITH RETURN clause.

External procedures: There are three ways to return result sets from an external procedure:

• If a SET RESULT SETS statement is executed in the procedure, the SET RESULT SETS statement
identifies the result sets. The result sets are returned in the order specified on the SET RESULT SETS
statement.

• If a SET RESULT SETS statement is not executed in the procedure,

– If no cursors have specified a WITH RETURN clause, each cursor that the procedure opens and
leaves open when it returns identifies a result set. The result sets are returned in the order in which
the cursors are opened.

– If any cursors have specified a WITH RETURN clause, each cursor that is defined with the WITH
RETURN clause that the procedure opens and leaves open when it returns identifies a result set. The
result sets are returned in the order in which the cursors are opened.

When a result set is returned using an open cursor, the rows are returned starting with the current cursor
position.

The RESULT SETS clause should be specified on the ALTER PROCEDURE (external), CREATE PROCEDURE
(external) statement, or DECLARE PROCEDURE statement to return result sets from a procedure. The
maximum number of result sets returned cannot be larger than the number specified on the ALTER
PROCEDURE (external), CREATE PROCEDURE (external) statement, or DECLARE PROCEDURE statement.

SQL procedures: In order to return result sets from an SQL procedure, the procedure must be created
with the RESULT SETS clause. Each cursor that is defined with the WITH RETURN clause that the
procedure opens and leaves open when it returns identifies a result set.

• If a SET RESULT SETS statement is executed in the procedure, the SET RESULT SETS statement
identifies which of these result sets to return. The result sets are returned in the order specified on
the SET RESULT SETS statement.

• If a SET RESULT SETS statement is not executed in the procedure the result sets are returned in the
order in which the cursors are opened.

When a result set is returned using an open cursor, the rows are returned starting with the current cursor
position.

The RESULT SETS clause must be specified on the CREATE PROCEDURE (SQL) statement to return any
result sets from an SQL procedure. The maximum number of result sets returned cannot be larger than
the number specified on the CREATE PROCEDURE statement.

Chapter 7. Statements 1535

Example
The following SET RESULT SETS statement specifies cursor X as the result set that will be returned when
the procedure is called. For more information and complete examples showing the use of result sets from
ODBC clients, see the IBM i Access Family topic collection.

 EXEC SQL SET RESULT SETS CURSOR X;

1536 IBM i: Db2 for i SQL Reference

SET SCHEMA
The SET SCHEMA statement changes the value of the CURRENT SCHEMA special register.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
If a global variable is referenced in the statement, the privileges held by the authorization ID of the
statement must include at least one of the following:

• For the global variable identified in the statement,

– The READ privilege on the global variable, and
– The system authority *EXECUTE on the library containing the global variable

• Database administrator authority

Syntax

SET
CURRENT

SCHEMA

CURRENT_SCHEMA

 =
schema-name

SESSION_USER

USER

CURRENT USER

CURRENT_USER

SYSTEM_USER

variable

string-constant

DEFAULT

Description
schema-name

Identifies a schema. If the specified schema name is a system schema name, no validation that the
schema exists is made at the time the current schema is set. If the specified schema name is not a
system schema name, the schema must exist at the time the current schema is set.

If the value specified does not conform to the rules for a schema-name, an error is returned.

SESSION_USER or USER
This value is the SESSION_USER special register.

CURRENT USER
Specifies the value of the CURRENT USER special register.

SYSTEM_USER
This value is the SYSTEM_USER special register.

variable
Specifies a variable which contains a schema name. It can be a global variable if it is qualified with
schema name. The content is not folded to uppercase.

The variable:

Chapter 7. Statements 1537

• Must be a character-string or Unicode graphic variable. The actual length of the contents of the
variable after trimming any trailing blanks must not exceed the length of a schema name. See
Appendix A, “SQL limits,” on page 1643.

• Must not be followed by an indicator variable.
• Must not be the null value.
• Must conform to the rules for forming an ordinary or delimited identifier.
• Must be padded on the right with blanks if the variable is fixed length.
• Must not be the keyword SESSION_USER, CURRENT_USER, SYSTEM_USER, or USER.
• If the SET statement is specified in an SQL routine, SQL trigger, or compound statement, variable

cannot be a global variable with an unqualified name.

string-constant
A character constant with a schema name.

The string constant:

• Must have a length after trimming any trailing blanks that does not exceed the maximum length of a
schema name

• Must include a schema name that is left justified and conforms to the rules for forming an ordinary
or delimited identifier.

• Must not be the keyword SESSION_USER, CURRENT_USER, SYSTEM_USER, or USER.

DEFAULT
The CURRENT SCHEMA is set to its initial value. The initial value for SQL naming is USER. The initial
value for system naming is *LIBL.

Notes
Considerations for keywords: There is a difference between specifying a single keyword (such as USER)
as a single keyword or as a delimited identifier. To indicate that the current value of the USER special
register should be used for setting the current schema, specify USER as a keyword. If USER is specified
as a delimited identifier instead (for example, "USER"), it is interpreted as a schema name of that value
("USER").

Transaction considerations: The SET SCHEMA statement is not a committable operation. ROLLBACK has
no effect on the CURRENT SCHEMA.

Impact on other special registers: Setting the CURRENT SCHEMA special register does not effect the
CURRENT PATH special register. Hence, the CURRENT SCHEMA will not be included in the SQL path and
functions, procedures and user-defined type resolution may not find these objects. To include the current
schema value in the SQL path, whenever the SET SCHEMA statement is issued, also issue the SET PATH
statement including the schema name from the SET SCHEMA statement.

CURRENT SCHEMA: The value of the CURRENT SCHEMA special register is used as the qualifier for some
unqualified names in all dynamic SQL statements except in programs where the DYNDFTCOL has been
specified. If DYNDFTCOL is specified in a program, its schema name is used instead of the CURRENT
SCHEMA schema name. For information about qualification of names, see “Qualification of unqualified
object names” on page 57.

For SQL naming, the initial value of the CURRENT SCHEMA special register is equivalent to USER. For
system naming, the initial value of the CURRENT SCHEMA special register is '*LIBL'.

Syntax alternatives: CURRENT SQLID is accepted as a synonym for CURRENT SCHEMA and the effect
of a SET CURRENT SQLID statement will be identical to that of a SET CURRENT SCHEMA statement. No
other effects, such as statement authorization changes, will occur.

SET SCHEMA is equivalent to calling the QSQCHGDC API.

1538 IBM i: Db2 for i SQL Reference

Examples
Example 1: The following statement sets the CURRENT SCHEMA special register.

 SET SCHEMA = RICK

Example 2: The following example retrieves the current value of the CURRENT SCHEMA special register
into the host variable called CURSCHEMA.

 EXEC SQL VALUES(CURRENT SCHEMA) INTO :CURSCHEMA

The value would be RICK, set by the previous example.

Chapter 7. Statements 1539

SET SESSION AUTHORIZATION
The SET SESSION AUTHORIZATION statement changes the value of the SESSION_USER and USER
special registers. It also changes the name of the user profile associated with the current thread.

Invocation
This statement can be embedded within an application program or issued interactively. It is an executable
statement that can be dynamically prepared. It must not be specified in REXX.

SET SESSION AUTHORIZATION is not allowed in an SQL trigger, SQL function, or SQL procedure.

Authorization
If the authorization name specified on the statement is different than the value in the SYSTEM_USER
special register, the privileges held by the authorization ID of the statement must include the system
authority of *ALLOBJ.

No authorization is required to execute this statement if the authorization name specified on the
statement is the same as the SYSTEM_USER special register.

If a global variable is referenced in the statement, the privileges held by the authorization ID of the
statement must include at least one of the following:

• For the global variable identified in the statement,

– The READ privilege on the global variable, and
– The system authority *EXECUTE on the library containing the global variable

• Database administrator authority

Syntax

SET SESSION AUTHORIZATION

SET SESSION_USER

 =
authorization-name

SESSION_USER

USER

CURRENT USER

CURRENT_USER

SYSTEM_USER

variable

string-constant

Description
authorization-name

Identifies an authorization ID that is to be used as the new value for the SESSION_USER special
register and the runtime authorization ID.

The authorization ID must be a valid user profile or group user profile that exists at the current
server. Several system user profiles that do not have a user profile handle may not be used. For more
information, see the Get Profile Handle API.

CURRENT USER
The SESSION_USER special register and the runtime authorization ID are set to the CURRENT USER
special register.

1540 IBM i: Db2 for i SQL Reference

SESSION_USER or USER
The SESSION_USER special register and the runtime authorization ID are set to the USER special
register.

SYSTEM_USER
The SESSION_USER special register and the runtime authorization ID are set to the SYSTEM_USER
special register.

variable
A variable which contains an authorization ID name. It can be a global variable if it is qualified with
schema name.

The variable:

• Must be a character-string variable.
• If variable has an associated indicator variable, the value of that indicator variable must not indicate

a null value
• Must include an authorization ID that is left justified and must conform to the rules for forming an

ordinary or delimited identifier.
• Must be padded on the right with blanks.
• Must not be the null value.
• Must not be the keyword USER, SESSION_USER, SYSTEM_USER, or CURRENT_USER.

string-constant
A character constant with an authorization ID.

Notes
Other effects of SET SESSION AUTHORIZATION: SET SESSION AUTHORIZATION causes the following
to occur:

• All cursors that were opened during the unit of work are closed.
• All LOB locators are freed.
• All locks acquired under this unit of work's commitment definition are released.
• All prepared statements are destroyed.
• All SQL descriptor areas are deallocated.
• All procedure result sets are cleared.
• The encryption password is reset.
• All open native database files and Integrated File System (IFS) files are closed, including sockets, NTC

sessions, and memory maps.

Other resources are preserved when SET SESSION AUTHORIZATION is executed, including global
variables and declared temporary tables. It is recommended that all declared temporary tables be
dropped or cleared and global variables be cleared before executing the SET SESSION AUTHORIZATION
statement.

SET SESSION AUTHORIZATION restrictions: This statement can only be issued as the first statement
that results in work that might be backed out during the unit of work. The following executable statements
may be issued prior to executing SET SESSION AUTHORIZATION:

• All SQL transaction statements
• All SQL connection statements
• All SQL session statements
• GET DIAGNOSTICS

SET SESSION AUTHORIZATION is not allowed if any connections other than the connection to the current
server exist, including any local connections to a non-default activation group.

Chapter 7. Statements 1541

SET SESSION AUTHORIZATION is not allowed if any held cursors are open or any held locators exist.

SET SESSION AUTHORIZATION scope: The scope of the SET SESSION AUTHORIZATION is the current
thread. Other threads in the application process are unaffected.

Examples
Example 1: The following statement sets the SESSION_USER special register.

 SET SESSION_USER = RAJIV

Example 2: Set the session authorization ID (the SESSION_USER special register) to be the value of the
system authorization ID, which is the ID that established the connection on which the statement has been
issued.

 SET SESSION AUTHORIZATION SYSTEM_USER

1542 IBM i: Db2 for i SQL Reference

SET TRANSACTION
The SET TRANSACTION statement sets the isolation level, read only attribute, or diagnostics area size for
the current unit of work.

Invocation
This statement can be embedded within an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
If a global variable is referenced in the statement, the privileges held by the authorization ID of the
statement must include at least one of the following:

• For the global variable identified in the statement,

– The READ privilege on the global variable, and
– The system authority *EXECUTE on the library containing the global variable

• Database administrator authority

Syntax

SET TRANSACTION

,

ISOLATION LEVEL

SERIALIZABLE

NO COMMIT

READ UNCOMMITTED

READ COMMITTED

REPEATABLE READ

READ ONLY

READ WRITE

DIAGNOSTICS SIZE integer

variable

1

Notes:
1 Only one ISOLATION LEVEL clause, one READ WRITE or READ ONLY clause, and one DIAGNOSTICS
SIZE clause may be specified.

Description
ISOLATION LEVEL

Specifies the isolation level of the transaction. If the ISOLATION LEVEL clause is not specified,
ISOLATION LEVEL SERIALIZABLE is implicit
NO COMMIT

Specifies isolation level NC (COMMIT(*NONE)).
READ UNCOMMITTED

Specifies isolation level UR (COMMIT(*CHG)).
READ COMMITTED

Specifies isolation level CS (COMMIT(*CS)).
REPEATABLE READ

Specifies isolation level RS (COMMIT(*ALL)).

Chapter 7. Statements 1543

SERIALIZABLE
Specifies isolation level RR (COMMIT(*RR)).

READ WRITE or READ ONLY
Specifies whether the transaction allows data change operations.
READ WRITE

Specifies that all SQL operations are allowed. This is the default unless ISOLATION LEVEL READ
UNCOMMITTED is specified.

READ ONLY
Specifies that only SQL operations that do not change SQL data are allowed. If ISOLATION LEVEL
READ UNCOMMITTED is specified, this is the default.

DIAGNOSTICS SIZE
Specifies the maximum number of GET DIAGNOSTICS condition areas for the current transaction.
The GET DIAGNOSTICS statement-information-item MORE will be set to 'Y' for the current statement
if the statement exceeds the maximum number of condition areas for the current transaction. The
maximum size of the diagnostics area is 90K. The specified maximum number of condition areas must
be between 1 and 32767.
integer

An integer constant that specifies the maximum number of condition areas for the current
transaction.

variable
Identifies a variable which contains the maximum number of condition areas for the current
transaction. The variable must be a numeric variable with a zero scale and must not be followed
by an indicator variable.

Notes
Scope of SET TRANSACTION: The SET TRANSACTION statement sets the isolation level for SQL
statements for the current activation group of the process. If that activation group has commitment
control scoped to the job, then the SET TRANSACTION statement sets the isolation level of all other
activation groups with job commit scoping as well.

If an isolation clause is specified in an SQL statement, that isolation level overrides the transaction
isolation level and is used for dynamic SQL statements.

The scope of the SET TRANSACTION statement is based on the context in which it is run. If the SET
TRANSACTION statement is run in a trigger, the isolation level specified applies to all subsequent SQL
statements until another SET TRANSACTION statement occurs or until the trigger completes, whichever
happens first. If the SET TRANSACTION statement is run outside a trigger, the isolation level specified
applies to all subsequent SQL statements (except those statements within a trigger that are executed
after a SET TRANSACTION statement in the trigger) until a COMMIT or ROLLBACK operation occurs.

For more information about isolation levels, see “Isolation level” on page 23.

SET TRANSACTION restrictions: The SET TRANSACTION statement can only be executed when it is the
first SQL statement in a unit of work, unless:

• all previous statements executed in the unit of work are SET TRANSACTION statements or statements
that are executed under isolation level NC, or

• it is executed in a trigger.

In a trigger, SET TRANSACTION with READ ONLY is allowed only on a COMMIT boundary. The SET
TRANSACTION statement can be executed in a trigger at any time, but it is recommended that it be
executed as the first statement in the trigger. The SET TRANSACTION statement is useful within triggers
to set the isolation level for SQL statements in the trigger to the same level as the application which
caused the trigger to be activated.

1544 IBM i: Db2 for i SQL Reference

A SET TRANSACTION statement is not allowed if the current connection is to a remote application server
unless it is in a trigger at the current server. Once a SET TRANSACTION statement is executed, CONNECT
and SET CONNECTION statements are not allowed until the unit of work is committed or rolled back.

SET TRANSACTION is not allowed as the first statement in a secondary thread.

The SET TRANSACTION statement has no effect on WITH HOLD cursors that are still open when the SET
TRANSACTION statement is executed.

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• The keywords NC or NONE can be used as synonyms for NO COMMIT.
• The keywords UR and CHG can be used as synonyms for READ UNCOMMITTED.
• The keyword CS can be used as a synonym for READ COMMITTED.
• The keywords RS or ALL can be used as synonyms for REPEATABLE READ.
• The keyword RR can be used as a synonym for SERIALIZABLE.

Examples
Example 1: The following SET TRANSACTION statement sets the isolation level to NONE (equivalent to
specifying *NONE on the SQL precompiler command).

 EXEC SQL SET TRANSACTION ISOLATION LEVEL NO COMMIT;

Example 2: The following SET TRANSACTION statement sets the isolation level to SERIALIZABLE.

 SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

Chapter 7. Statements 1545

SET transition-variable
The SET transition-variable statement assigns values to new transition variables.

Invocation
This statement can only be used as an SQL statement in a BEFORE trigger. It is an executable statement
that cannot be dynamically prepared.

Authorization
If a row-fullselect is specified, see “fullselect” on page 783 for an explanation of the authorization
required for each subselect.

Syntax
SET

,

transition-variable = expression

NULL

DEFAULT

(

,

transition-variable) = (

,

expression

NULL

DEFAULT

1

row-fullselect
2

)

Notes:
1 The number of expressions, NULLs, and DEFAULTs must match the number of transition-variables.
2 The number of columns in the select list must match the number of transition-variables.

Description
transition-variable

Identifies the column to be updated in the new row. A transition-variable must identify a column in the
subject table of a trigger, optionally qualified by a correlation name that identifies the new value. An
OLD transition-variable must not be identified.

A transition-variable must not be identified more than once in the same SET transition-variable
statement.

The data type of each transition-variable must be compatible with its corresponding result column.
Values are assigned to transition-variables according to the storage assignment rules. For more
information see “Assignments and comparisons” on page 89.

expression
Specifies the new value of the transition-variable. The expression is any expression of the type
described in “Expressions” on page 158. The expression cannot include an aggregate function.

An expression may contain references to OLD and NEW transition-variables. If the CREATE TRIGGER
statement contains both OLD and NEW clauses, references to transition-variables must be qualified
by the correlation-name.

1546 IBM i: Db2 for i SQL Reference

NULL
Specifies the null value. NULL can only be specified for nullable columns.

DEFAULT
Specifies that the default value of the column associated with the transition-variable will be used.
DEFAULT is not allowed if the column is an IDENTITY column, a row change timestamp column, or has
a ROWID data type.

row-fullselect
A fullselect that returns a single result row. The result column values are assigned to each
corresponding transition-variable. If the result of the fullselect is no rows, then null values are
assigned. An error is returned if there is more than one row in the result.

Notes
Multiple assignments: If more than one assignment is included in the same SET transition-variable
statement, all expressions are evaluated before the assignments are performed. Thus, references
to transition-variables in an expression are always the value of the transition-variables prior to any
assignment in the SET statement.

Examples
Example 1: Ensure that the salary column is never greater than 50000. If the new value is greater than
50000, set it to 50000.

CREATE TRIGGER LIMIT_SALARY
 BEFORE INSERT ON EMPLOYEE
 REFERENCING NEW AS NEW_VAR
 FOR EACH ROW MODE DB2SQL
 WHEN (NEW_VAR.SALARY > 50000)
 BEGIN ATOMIC
 SET NEW_VAR.SALARY = 50000;
 END

Example 2: When the job title is updated, increase the salary based on the new job title. Assign the years
in the position to 0.

CREATE TRIGGER SET_SALARY
 BEFORE UPDATE OF JOB ON STAFF
 REFERENCING OLD AS OLD_VAR
 NEW AS NEW_VAR
 FOR EACH ROW MODE DB2SQL
 BEGIN ATOMIC
 SET (NEW_VAR.SALARY, NEW_VAR.YEARS) =
 (OLD_VAR.SALARY * CASE NEW_VAR.JOB
 WHEN 'Sales' THEN 1.1
 WHEN 'Mgr' THEN 1.05
 ELSE 1 END ,0);
 END

Chapter 7. Statements 1547

SET variable
The SET variable statement produces a result table consisting of at most one row and assigns the values
in that row to variables.

Invocation
This statement can be embedded in an application program. It is an executable statement that can be
dynamically prepared if the all variables being set are global variables. It must not be specified in REXX.

Authorization
If a row-fullselect is specified, see “fullselect” on page 783 for an explanation of the authorization
required for each subselect.

If a global variable is specified on the left hand side of the assignment, the privileges held by the
authorization ID of the statement must include at least one of the following:

• The WRITE privilege on the global variable.
• Database administrator authority

Syntax
SET

,

variable = expression

NULL

DEFAULT

(

,

variable) = (

,

expression

NULL

DEFAULT

row-fullselect

)

row-fullselect

WITH

RECURSIVE

,

common-table-expression

fullselect

Description
variable, ...

Identifies one or more variables or host structures that must be declared in accordance with the rules
for declaring variables (see “References to host variables” on page 139). A host structure is logically
replaced by a list of variables that represent each of the elements of the host structure.

The value to be assigned to each variable can be specified immediately following the variable, for
example, variable = expression, variable = expression. Or, sets of parentheses can be used to specify
all the variables and then all the values, for example, (variable, variable) = (expression, expression).

1548 IBM i: Db2 for i SQL Reference

The data type of each variable must be compatible with its corresponding result column. Each
assignment is made according to the rules described in “Assignments and comparisons” on page
89. The number of variables specified to the left of the equal operator must equal the number of
values in the corresponding result specified to the right of the equal operator. If the value is null, an
indicator variable must be provided. If an assignment error occurs, the value is not assigned to the
variable, and no more values are assigned to variables. Any values that have already been assigned to
variables remain assigned.

If an error occurs as the result of an arithmetic expression in the expression or SELECT list of the
subselect (division by zero, or overflow) or a character conversion error occurs, the result is the null
value. As in any other case of a null value, an indicator variable must be provided. The value of the
variable is undefined. In this case, however, the indicator variable is set to -2. Processing of the
statement continues as if the error had not occurred. (However, a warning is returned.) If you do not
provide an indicator variable, an error is returned. It is possible that some values have already been
assigned to variables and will remain assigned when the error occurs.

expression
Specifies the new value of the variable. The expression is any expression of the type described in
“Expressions” on page 158. It must not include a column name.

NULL
Specifies that the new value for the variable is the null value.

DEFAULT
Specifies that the new value for the variable is its initial default value. DEFAULT can only be assigned
to a global variable. Only one variable can be assigned in the SET statement when DEFAULT is used.

row-fullselect
A fullselect that returns a single result row. The result column values are assigned to each
corresponding variable. If the result of the fullselect is no rows, then null values are assigned. An
error is returned if there is more than one row in the result.

WITH common-table-expression
Specifies a common table expression. For an explanation of common table expression, see “common-
table-expression” on page 790.

fullselect
A fullselect that returns a single result row. The result column values are assigned to each
corresponding variable. If the result of the fullselect is no rows, then null values are assigned. An
error is returned if there is more than one row in the result.

Notes
Variable assignment: If the specified variable is character and is not large enough to contain the result,
a warning (SQLSTATE 01004) is returned (and 'W' is assigned to SQLWARN1 in the SQLCA). The actual
length of the result is returned in the indicator variable associated with the variable, if an indicator
variable is provided.

If the specified variable is a C NUL-terminated variable and is not large enough to contain the result and
the NUL-terminator:

• If the *CNULRQD option is specified on the CRTSQLCI or CRTSQLCPPI command (or CNULRQD(*YES) on
the SET OPTION statement), the following occurs:

– The result is truncated.
– The last character is the NUL-terminator.
– The value ‘W' is assigned to SQLWARN1 in the SQLCA.

• If the *NOCNULRQD option on the CRTSQLCI or CRTSQLCPPI command (or CNULRQD(*NO) on the SET
OPTION statement) is specified, the following occurs:

– The NUL-terminator is not returned.
– The value ‘N' is assigned to SQLWARN1 in the SQLCA.

Chapter 7. Statements 1549

Multiple assignments: If more than one assignment is included in the same SET statement, all
expressions and row-fullselects are completely evaluated before the assignments are performed. Thus,
references to a target variable in an expression or row-fullselect are always the value of the target variable
prior to any assignment in the SET statement.

Examples
Example 1: Assign the value of the CURRENT PATH special register to host variable HV1.

 EXEC SQL SET :HV1 = CURRENT PATH;

Example 2: Assume that LOB locator LOB1 is associated with a CLOB value. Assign a portion of the CLOB
value to host variable DETAILS using the LOB locator.

 EXEC SQL SET :DETAILS = SUBSTR(:LOB1,1,35);

1550 IBM i: Db2 for i SQL Reference

SIGNAL
The SIGNAL statement signals an error or warning condition. It causes an error or warning to be returned
with the specified SQLSTATE and optional condition-information-items.

Invocation
This statement can only be embedded in an application program. It is an executable statement that
cannot be dynamically prepared. It must not be specified in REXX.

Authorization
None required.

Syntax

SIGNAL SQLSTATE
VALUE

sqlstate-string-constant

sqlstate-string-variable

signal-information

signal-information

SET

,

MESSAGE_TEXT

CONSTRAINT_CATALOG

CONSTRAINT_SCHEMA

CONSTRAINT_NAME

CATALOG_NAME

SCHEMA_NAME

TABLE_NAME

COLUMN_NAME

CURSOR_NAME

CLASS_ORIGIN

SUBCLASS_ORIGIN

 = variable

diagnostic-string-constant

Description
SQLSTATE VALUE

Specifies the SQLSTATE that will be signalled. The specified value must not be null and must follow
the rules for SQLSTATEs:

• Each character must be from the set of digits ('0' through '9') or non-accented upper case letters ('A'
through 'Z').

• The SQLSTATE class (first two characters) cannot be '00' since this represents successful
completion.

If the SQLSTATE does not conform to these rules, an error is returned.

Chapter 7. Statements 1551

sqlstate-string-constant
The sqlstate-string-constant must be a character string constant with exactly 5 characters.

sqlstate-string-variable
The sqlstate-string-variable must be a character or Unicode graphic variable. It cannot be a global
variable. The actual length of the contents of the variable must be 5.

SET
Introduces the assignment of values to condition-information-items. The condition-information-item
values can be accessed using the GET DIAGNOSTICS statement. The only condition-information-item
that can be accessed in the SQLCA is MESSAGE_TEXT.
MESSAGE_TEXT

Specifies a string that describes the error or warning.

If an SQLCA is used,

• the string is returned in the SQLERRMC field of the SQLCA
• if the actual length of the string is longer than 1000 bytes, it is truncated without a warning.

CONSTRAINT_CATALOG
Specifies a string that indicates the name of the database that contains a constraint related to the
signalled error or warning.

CONSTRAINT_SCHEMA
Specifies a string that indicates the name of the schema that contains a constraint related to the
signalled error or warning.

CONSTRAINT_NAME
Specifies a string that indicates the name of a constraint related to the signalled error or warning.

CATALOG_NAME
Specifies a string that indicates the name of the database that contains a table or view related to
the signalled error or warning.

SCHEMA_NAME
Specifies a string that indicates the name of the schema that contains a table or view related to
the signalled error or warning.

TABLE_NAME
Specifies a string that indicates the name of a table or view related to the signalled error or
warning.

COLUMN_NAME
Specifies a string that indicates the name of a column in the table or view related to the signalled
error or warning.

CURSOR_NAME
Specifies a string that indicates the name of a cursor related to the signalled error or warning.

CLASS_ORIGIN
Specifies a string that indicates the origin of the SQLSTATE class related to the signalled error or
warning.

SUBCLASS_ORIGIN
Specifies a string that indicates the origin of the SQLSTATE subclass related to the signalled error
or warning.

variable
Identifies a variable that must be declared in accordance with the rules for declaring variables
(see “References to host variables” on page 139). The variable contains the value to be assigned
to the condition-information-item. The variable must be defined as CHAR, VARCHAR, Unicode
GRAPHIC, or Unicode VARGRAPHIC variable. It cannot be a global variable.

diagnostic-string-constant
Specifies a character string constant that contains the value to be assigned to the condition-
information-item.

1552 IBM i: Db2 for i SQL Reference

Notes
SQLSTATE values: Any valid SQLSTATE value can be used in the SIGNAL statement. However, it is
recommended that programmers define new SQLSTATEs based on ranges reserved for applications. This
prevents the unintentional use of an SQLSTATE value that might be defined by the database manager in a
future release.

SQLSTATE values are comprised of a two-character class code value, followed by a three-character
subclass code value. Class code values represent classes of successful and unsuccessful execution
conditions.

• SQLSTATE classes that begin with the characters '7' through '9' or 'I' through 'Z' may be defined. Within
these classes, any subclass may be defined.

• SQLSTATE classes that begin with the characters '0' through '6' or 'A' through 'H' are reserved for the
database manager. Within these classes, subclasses that begin with the characters '0' through 'H' are
reserved for the database manager. Subclasses that begin with the characters 'I' through 'Z' may be
defined.

For more information about SQLSTATEs, see the SQL Messages and Codes topic collection.

Assignment: When the SIGNAL statement is executed, the value of each of the specified string-constants
and variables is assigned to the corresponding condition-information-item. However, if the length of a
string-constant or variable is longer than the maximum length of the corresponding condition-information-
item, it is truncated without a warning. For details on the assignment rules, see “Assignments and
comparisons” on page 89. For details on the maximum length of specific condition-information-items, see
“GET DIAGNOSTICS” on page 1332.

Processing a SIGNAL statement: When a SIGNAL statement is issued, the SQLCODE is based on the
SQLSTATE value as follows:

• If the specified SQLSTATE class is either '01' or '02', a warning or not found is signalled and the
SQLCODE is set to +438.

• Otherwise, an exception is signalled and the SQLCODE is set to –438.

Examples
Example 1: Signal SQLSTATE '75002' with a descriptive message text.

 EXEC SQL SIGNAL SQLSTATE '75002'
 SET MESSAGE_TEXT = 'Customer number is not known';

Example 2: Signal SQLSTATE '75002' with a descriptive message text and associate a specific table with
the error.

 EXEC SQL SIGNAL SQLSTATE '75002'
 SET MESSAGE_TEXT = 'Customer number is not known',
 SCHEMA_NAME = 'CORPDATA',
 TABLE_NAME = 'CUSTOMER';

Chapter 7. Statements 1553

TAG
The TAG statement identifies the branch location for a WHENEVER statement in ILE RPG. The statement
can be used to define a host-label instead of defining the label directly with an RPG TAG operation.

Invocation
This statement can only be embedded in an ILE RPG application program. It is not an executable
statement.

Authorization
None required.

Syntax
TAG host-label

Description
host-label

Specifies the label to use for generating an ILE RPG TAG operation. This is intended to identify the
next executable statement for the GOTO clause of a WHENEVER statement.

Note
SQL does not verify the position of the TAG statement or the uniqueness or value of host-label. The ILE
RPG compiler must allow a TAG operation at the SQL TAG statement's location.

Example
In a free-form ILE RPG program, continue processing at HANDLER for an SQL statement that produces an
error.

EXEC SQL WHENEVER SQLERROR GOTO HANDLER;
...
EXEC SQL TAG HANDLER;

1554 IBM i: Db2 for i SQL Reference

TRANSFER OWNERSHIP
The TRANSFER OWNERSHIP statement transfers ownership of a database object.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
To transfer ownership for a table, view, or index, the authorization ID of the statement must be the owner
of the object and the privileges held must include at least one of the following:

• The following system authorities:

– The system authorities of *OBJOPR and *OBJEXIST on the object to be transferred
– The system authority *EXECUTE on the library that contains the object to be transferred

• Database administrator authority
• Security administrator authority

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Table or View.

Syntax

TRANSFER OWNERSHIP OF object TO new-owner
REVOKE PRIVILEGES

PRESERVE PRIVILEGES

object
INDEX index-name

TABLE table-name

VIEW view-name

new-owner
USER authorization-name

CURRENT USER

CURRENT_USER

SESSION_USER

USER

SYSTEM_USER

Description
INDEX index-name

Identifies the index that is to have its ownership transferred. The index-name must identify an index
that exists at the current server.

TABLE table-name
Identifies the table that is to have its ownership transferred. The table-name must identify a base
table that exists at the current server, but must not identify a declared global temporary table or a
catalog table.

Chapter 7. Statements 1555

VIEW view-name
Identifies the view that is to have its ownership transferred. The view-name must identify a view that
exists at the current server, but must not identify a catalog view.

USER authorization-name
Specifies the authorization ID to which ownership of the object is being transferred.

CURRENT USER or CURRENT_USER
Specifies that the value of the CURRENT USER special register is to be used as the authorization ID to
which ownership of the object is being transferred.

SESSION_USER or USER
Specifies that the value of the SESSION_USER special register is to be used as the authorization ID to
which ownership of the object is being transferred.

SYSTEM_USER
Specifies that the value of the SYSTEM_USER special register is to be used as the authorization ID to
which ownership of the object is being transferred.

REVOKE PRIVILEGES or PRESERVE PRIVILEGES
Specifies the privileges of the current owner of the object after the ownership is transferred.
REVOKE PRIVILEGES

Specifies that the current owner will not have any explicit privileges to the object after the transfer
is complete.

PRESERVE PRIVILEGES
Specifies that the current owner of an object that is to have its ownership transferred will continue
to hold any existing privileges on the object after the transfer. For example, any privileges that
were granted to the creator of a view continue to be held by the original owner even after
ownership has been transferred to another user.

Rules
Ownership of most system-defined objects cannot be transferred.

Ownership of objects in a schema whose name starts with 'SYS' or 'Q' cannot be transferred.

An authorization ID that has security administrator authority cannot transfer ownership of an object to
itself, if it is not already the owner of the object.

Notes
• All privileges that the current owner has on the object are transferred to the new owner.
• When the ownership of a database object is transferred, the new owner will not necessarily have

privileges for the object's dependencies.
• If an attempt is made to transfer ownership of an object to its owner, a warning is returned.

Examples
Example 1: Transfer ownership of table T1 to PAUL.

TRANSFER OWNERSHIP OF TABLE WALID.T1
 TO USER PAUL PRESERVE PRIVILEGES

Paul becomes the owner of table WALID.T1 and is granted all the privileges that the previous owner of the
table had. The prior owner retains all privileges as well.

Example 2: Transfer ownership of view V1 to HENRY and remove privileges from the previous owner

 TRANSFER OWNERSHIP OF VIEW V1
 TO USER HENRY

1556 IBM i: Db2 for i SQL Reference

Henry becomes the owner of view V1 and is granted all the privileges that the previous owner of the view
had. The prior owner no longer has any explicit privileges on the view.

Chapter 7. Statements 1557

TRUNCATE
The TRUNCATE statement deletes all of the rows from a table.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For the table identified in the statement:

– The DELETE privilege on the table, and
– The system authority *EXECUTE on the library containing the table.

• Database administrator authority

If the IGNORE DELETE TRIGGERS option is specified, the privileges held by the authorization ID of the
statement must include the following:

• The ALTER privilege on the table and the system authority of *OBJOPR on the table.

If row access control or column access control is activated for the table, the privileges held by the
authorization ID of the statement must include the following:

• The system authorities of *OBJOPR and *OBJEXIST on the table.

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Table or View.

Syntax

TRUNCATE
TABLE

table-name
DROP STORAGE

REUSE STORAGE

IGNORE DELETE TRIGGERS

RESTRICT WHEN DELETE TRIGGERS

CONTINUE IDENTITY

RESTART IDENTITY

IMMEDIATE

Description
table-name

Identifies the table from which rows are to be deleted. The name must identify a table that exists at
the current server. It must not identify a catalog table, a view, or a system-period temporal table.

DROP STORAGE or REUSE STORAGE
Specifies whether to drop or reuse the existing storage that is allocated for the table.
DROP STORAGE

All storage allocated for the table is released and made available. This is the default.
REUSE STORAGE

All storage allocated for the table will continue to be allocated for the table, but the storage will be
considered empty.

1558 IBM i: Db2 for i SQL Reference

IGNORE DELETE TRIGGERS or RESTRICT WHEN DELETE TRIGGERS
Specifies what to do when delete triggers are defined on the table.
IGNORE DELETE TRIGGERS

Specifies that any delete triggers that are defined for the table are not activated by the truncation
operation. This is the default.

RESTRICT WHEN DELETE TRIGGERS
Specifies that an error is returned if delete triggers are defined on the table

CONTINUE IDENTITY or RESTART IDENTITY
Specifies how to handle generation of identity column values.
CONTINUE IDENTITY

If an identity column exists for the table, the next identity column value generated continues
with the next value that would have been generated if the TRUNCATE statement had not been
executed. This is the default.

RESTART IDENTITY
If an identity column exists for the table, the next identity column value generated is the initial
value that was specified when the identity column was defined.

IMMEDIATE
Specifies that the truncate operation is processed immediately and cannot be undone.
The truncated table is immediately available for use in the same unit of work. Although a ROLLBACK
statement is allowed to execute after a TRUNCATE statement, the truncate operation is not undone,
and the table remains in a truncated state. For example, if another data change operation is done on
the table after the TRUNCATE IMMEDIATE statement and then the ROLLBACK statement is executed,
the truncate operation will not be undone, but all other data change operations are undone.
The truncate operation cannot be performed if any session has a cursor open on the table or holds a
lock on the table.
If IMMEDIATE is not specified, a ROLLBACK statement can undo the truncate operation.

Notes
Referential Integrity: The identified table cannot be a parent table in a referential constraint.

Number of rows deleted: The ROW_COUNT condition area item in the SQL Diagnostics Area (or
SQLERRD(3) in the SQLCA) is set to -1 for the truncate operation. The total number of rows that were
deleted from the table is not returned.

If no rows exist in the table, a SQLSTATE value of '02000' is returned.

For a description of the SQLCA, see Appendix C, “SQLCA (SQL communication area),” on page 1665.

Examples
Example 1: Empty an unused inventory table regardless of any existing triggers and return its allocated
space.

TRUNCATE TABLE INVENTORY
 DROP STORAGE
 IGNORE DELETE TRIGGERS

Example 2: Empty an unused inventory table regardless of any existing triggers but preserve its allocated
space for later reuse.

TRUNCATE TABLE INVENTORY
 REUSE STORAGE
 IGNORE DELETE TRIGGERS

Chapter 7. Statements 1559

Example 3: Empty an unused inventory table permanently (a ROLLBACK statement cannot undo the
truncate operation when the IMMEDIATE option is specified) regardless of any existing triggers and
preserve its allocated space for reuse.

TRUNCATE TABLE INVENTORY
 REUSE STORAGE
 IGNORE DELETE TRIGGERS
 IMMEDIATE

1560 IBM i: Db2 for i SQL Reference

UPDATE
The UPDATE statement updates the values of specified columns in rows of a table or view. Updating a row
of a view updates a row of its base table, if no INSTEAD OF UPDATE trigger is defined on this view. If such
a trigger is defined, the trigger will be activated instead.

There are two forms of this statement:

• The Searched UPDATE form is used to update one or more rows (optionally determined by a search
condition).

• The Positioned UPDATE form is used to update exactly one row (as determined by the current position of
a cursor).

Invocation
A Searched UPDATE statement can be embedded in an application program or issued interactively. A
Positioned UPDATE must be embedded in an application program. Both forms are executable statements
that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following:

• For the table or view identified in the statement:

– The UPDATE privilege on the table or view, or
– The UPDATE privilege on each column to be updated; and
– The system authority *EXECUTE on the library containing the table or view

• Database administrator authority

If the expression in the assignment-clause contains a reference to a column of the table or view, or if the
search-condition in a Searched UPDATE contains a reference to a column of the table or view, then the
privileges held by the authorization ID of the statement must also include one of the following:

• The SELECT privilege on the table or view
• security administrator authority

If the search-condition includes a subquery or if the assignment-clause includes a scalar-fullselect or
row-fullselect, see Chapter 6, “Queries,” on page 735 for an explanation of the authorization required for
each subselect.

For information about the system authorities corresponding to SQL privileges, see Corresponding System
Authorities When Checking Privileges to a Table or View.

Chapter 7. Statements 1561

Syntax
Searched UPDATE:

UPDATE table-name

view-name correlation-clause

OVERRIDING SYSTEM VALUE

OVERRIDING USER VALUE

SET assignment-clause

WHERE search-condition order-by-clause offset-clause

fetch-clause isolation-clause

concurrent-access-resolution-clause

Positioned UPDATE:
UPDATE table-name

view-name correlation-clause

OVERRIDING SYSTEM VALUE

OVERRIDING USER VALUE

SET assignment-clause WHERE CURRENT OF

cursor-name

assignment-clause
,

column-name

(column-name)

 = expression

NULL

DEFAULT

(

,

column-name) = (

,

expression

NULL

DEFAULT

row-fullselect

)

ROW = (

,

expression

NULL

DEFAULT

row-fullselect

)

order-by-clause

1562 IBM i: Db2 for i SQL Reference

ORDER BY

,

sort-key-expression
ASC

DESC

isolation-clause
WITH NC

UR

CS

RS

RR

Description
table-name or view-name

Identifies the table or view to be updated. The name must identify a table or view that exists at the
current server, but it must not identify a history table, a catalog table, a view of a catalog table, or a
read-only view. For an explanation of read-only views and updatable views, see “CREATE VIEW” on
page 1206.

correlation-clause
Can be used within search-condition or assignment-clause to designate the table or view. For
an explanation of correlation-clause, see “table-reference” on page 742. For an explanation of
correlation-name, see “Correlation names” on page 131.

OVERRIDING SYSTEM VALUE or OVERRIDING USER VALUE
Specifies whether system-generated values or user-specified values for a ROWID, identity, or row
change timestamp column are used. If OVERRIDING SYSTEM VALUE is specified, the implicit or
explicit list of columns in the SET clause must contain a ROWID, identity, or row change timestamp
column defined as GENERATED ALWAYS. If OVERRIDING USER VALUE is specified, the implicit or
explicit list of columns in the SET clause must contain a column defined as either GENERATED
ALWAYS or GENERATED BY DEFAULT.
OVERRIDING SYSTEM VALUE

Specifies that the value specified in the SET clause for a ROWID, identity, or row change
timestamp column that is defined as GENERATED ALWAYS is used. A system-generated value
is not used.
If a value for a row-begin, row-end, transaction-start-ID, or generated expression column is
provided, it must be DEFAULT.

OVERRIDING USER VALUE
Specifies that the value specified in the SET clause for a column that is defined as either
GENERATED ALWAYS or GENERATED BY DEFAULT is ignored. Instead, a system-generated value
is used, overriding the user-specified value.

If neither OVERRIDING SYSTEM VALUE or OVERRIDING USER VALUE is specified:

• A value cannot be specified for a ROWID, identity, row change timestamp, row-begin, row-end,
transaction-start-ID, or generated expression column that is defined as GENERATED ALWAYS.

• A value can be specified for a ROWID column that is defined as GENERATED BY DEFAULT. If a value
is specified, that value is assigned to the column. However, a value in a ROWID column defined
BY DEFAULT can be updated only if the specified value is a valid row ID value that was previously
generated by Db2 for z/OS or Db2 for i.

• A value can be specified for an identity or row change timestamp column that is defined as
GENERATED BY DEFAULT. When a value of an identity column or row change timestamp column
defined BY DEFAULT is updated, the database manager does not verify that the specified value is
a unique value for the column unless the identity column or row change timestamp column is the

Chapter 7. Statements 1563

sole key in a unique constraint or unique index. Without a unique constraint or unique index, the
database manager can guarantee unique values only among the set of system-generated values as
long as NO CYCLE is in effect.

If a value is not specified the database manager generates a new value.

SET
Introduces the assignment of values to column names.

assignment-clause

column-name
Identifies a column to be updated. The column-name must identify a column of the specified table
or view. If extended indicators are not enabled, that column must be an updatable column. The
same column name must not be specified more than once.

For a Positioned UPDATE:

• If the UPDATE clause was specified in the SELECT statement of the cursor, each column name in
the SET list must also appear in the UPDATE clause.

• If the UPDATE clause was not specified in the SELECT statement of the cursor, the name of any
updatable column may be specified.

For more information, see “update-clause” on page 796.

A view column derived from the same column as another column of the view can be updated, but
both columns cannot be updated in the same UPDATE statement.

If a list of column-names is specified, the number of expressions, NULLs, and DEFAULTS must
match the number of column-names.

ROW
Identifies all the columns of the specified table or view except for columns defined with the
hidden attribute. If a view is specified, none of the columns of the view may be derived from a
scalar function, constant, or expression.

The number of expressions, NULLs, and DEFAULTs (or the number of result columns from a
row-fullselect) must match the number of columns in the row.

For a Positioned UPDATE, if the UPDATE clause was specified in the SELECT statement of the
cursor, each column of the table or view must also appear in the UPDATE clause. For more
information, see “update-clause” on page 796.

ROW may not be specified for a view that contains a view column derived from the same column
as another column of the view, because both columns cannot be updated in the same UPDATE
statement.

expression
Specifies the new value of the column. The expression is any expression of the type described in
“Expressions” on page 158. It must not include an aggregate function.

A column-name in an expression must name a column of the named table or view. For each row
updated, the value of the column in the expression is the value of the column in the row before the
row is updated.

Each variable in the clause must identify a host structure or variable that is declared in accordance
with the rules for declaring host structures and variables. In the operational form of the
statement, a reference to a host structure is replaced by a reference to each of its variables.
If expression is a single host variable, the host variable can include an indicator with an extended
indicator value. If extended indicators are enabled and an expression in the assignment clause
is not a single host variable, the extended indicator values of DEFAULT and UNASSIGNED must
not be used. For further information about variables and structures, see “References to host
variables” on page 139 and “Host structures” on page 144. If a host structure is specified, the
keyword ROW must be specified.

1564 IBM i: Db2 for i SQL Reference

NULL
Specifies the new value for a column is the null value. NULL should only be specified for nullable
columns.

DEFAULT
Specifies that the default value is assigned to a column. The value that is used depends on how
the column was defined, as follows:

• If the column is defined as a generated column based on an expression, the column value will be
generated by the database manager, based on the expression.

• If the column is a ROWID, identity column, row-begin column, row-end column, or transaction-
start-ID column, the database manager will generate a new value.

• If the WITH DEFAULT clause is used, the default used is as defined for the column (see default-
clause in column-definition in “CREATE TABLE” on page 1115).

• If the WITH DEFAULT clause or the NOT NULL clause is not used, the value used is NULL.
• If the column is defined as a row change timestamp column, a new row change timestamp value

is assigned to the column.

If the NOT NULL clause is used and the WITH DEFAULT clause is not used, or if DEFAULT NULL is
used, the DEFAULT keyword cannot be specified for that column.

DEFAULT must be specified for an identity column defined as GENERATED ALWAYS unless
OVERRIDING SYSTEM VALUE is used.

The only value that a row-begin, row-end, transaction-start-ID, or generated expression column
can be set to is DEFAULT.

row-fullselect
A fullselect that returns a single result row. The number of result columns in the select list
must match the number of column-names (or if ROW is specified, the number of columns in
the row) specified for assignment. The result column values are assigned to each corresponding
column-name. If the result of the fullselect is no rows, then null values are assigned. An error is
returned if there is more than one row in the result.

The row-fullselect may contain references to columns of the target table of the UPDATE statement.
For each row updated, the value of such a column in the expression is the value of the column in
the row before the row is updated.

WHERE
Specifies the rows to be updated. The clause can be omitted, or a search-condition or cursor-name
can be specified. If the clause is omitted, all rows of the table or view are updated.
search-condition

Is any search described in “Search conditions” on page 227. Each column-name in the search
condition, other than in a subquery, must name a column of the table or view. When the search
condition includes a subquery in which the same table is the base object of both the UPDATE and
the subquery, the subquery is completely evaluated before any rows are updated.

The search-condition is applied to each row of the table or view. The updated rows are those for
which the results of the search-condition are true.

If the search-condition contains a subquery, the subquery can be thought of as being executed
each time the search-condition is applied to a row, and the results of that subquery used in
applying the search-condition. In actuality, a subquery with no correlated references may be
executed only once. A subquery with a correlated reference may have to be executed once for
each row.

CURRENT OF cursor-name
Identifies the cursor to be used in the update operation. The cursor-name must identify a declared
cursor as explained in “DECLARE CURSOR” on page 1215.

Chapter 7. Statements 1565

The table or view named must also be named in the FROM clause of the SELECT statement of the
cursor, and the result table of the cursor must not be read-only. For an explanation of read-only
result tables, see “DECLARE CURSOR” on page 1215.

The DECLARE CURSOR statement must not have a period-specification for the table or view used
by the update statement.

When the UPDATE statement is executed, the cursor must be positioned on a row; that row is
updated.

order-by-clause
Specifies the order of the rows for application of the offset-clause and fetch-clause. An order-by-clause
should be specified to ensure a predictable order for determining the set of rows to be updated based
on the offset-clause and fetch-clause.
sort-key-expression

An expression that specifies the value that is to be used to order the rows that qualify for
the update operation. If a single sort-key-expression is identified, the rows are ordered by the
values of that sort-key-expression. If more than one sort-key-expression is identified, the rows
are ordered by the values of the first sort-key-expression, then by the values of the second
sort-key-expression, and so on.

The result of the sort-key-expression must not be DATALINK or XML.

ASC
Uses the values of the sort-key-expression in ascending order. This is the default.

DESC
Uses the values of the sort-key-expression in descending order.

Ordering is performed in accordance with the comparison rules described in Chapter 2, “Language
elements,” on page 43. The null value is higher than all other values. If your ordering specification
does not determine a complete ordering, rows with duplicate values of the last identified sort-key-
expression have an arbitrary order. If you do not specify ORDER BY, the rows to be updated have an
arbitrary order.

offset-clause
Limits the effect of the update by skipping a subset of the qualifying rows. For more information on the
offset-clause, see “offset-clause” on page 779.

fetch-clause
Limits the effect of the update to a subset of the qualifying rows. For more information on the
fetch-clause, see “fetch-clause” on page 780.

isolation-clause
Specifies the isolation level to be used for this statement.
WITH

Introduces the isolation level, which may be one of:

• RR Repeatable read
• RS Read stability
• CS Cursor stability
• UR Uncommitted read
• NC No commit

If isolation-clause is not specified the default isolation is used. See “isolation-clause” on page 799 for
a description of how the default is determined.

concurrent-access-resolution-clause
Specifies the concurrent access resolution to use for the select statement. For more information, see
“concurrent-access-resolution-clause” on page 801.

1566 IBM i: Db2 for i SQL Reference

UPDATE Rules
Assignment: Update values are assigned to columns in accordance with the storage assignment rules
described in “Assignments and comparisons” on page 89.

Validity: Updates must obey the following rules. If they do not, or if any other errors occur during the
execution of the UPDATE statement, no rows are updated.

• Fullselects: The row-fullselect or scalar-fullselect shall return no more than one row (SQLSTATE 21000).
• Unique constraints and unique indexes: If the identified table, or the base table of the identified view,

has one or more unique indexes or unique constraints, each row update in the table must conform to
the limitations imposed by those indexes and constraints (SQLSTATE 23505).

All uniqueness checks are effectively made at the end of the statement. In the case of a multiple-row
UPDATE statement of a column involved in a unique index or unique constraint, this would occur after all
rows were updated.

• Check constraints: If the identified table, or the base table of the identified view, has one or more
check constraints, each check constraint must be true or unknown for each row updated in the table
(SQLSTATE 23513).

All check constraints are effectively validated at the end of the statement. In the case of a multiple-row
UPDATE statement, this would occur after all rows were updated.

• Views and the WITH CHECK OPTION: If a view is identified, the updated rows must conform to any
applicable WITH CHECK OPTION (SQLSTATE 44000). For more information, see “CREATE VIEW” on
page 1206.

Triggers: If the identified table or the base table of the identified view has an update trigger, the trigger
is activated. A trigger might cause other statements to be executed or raise error conditions based on the
updated values.

Referential Integrity: The value of the parent key in a parent row must not be changed.

If the update values produce a foreign key that is nonnull, the foreign key must be equal to some value of
the parent key of the parent table of the relationship.

The referential constraints (other than a referential constraint with a RESTRICT delete rule) are effectively
checked at the end of the statement. In the case of a multiple-row UPDATE statement, this would occur
after all rows were updated.

XML values: When an XML column is updated, the new value must be a well-formed XML document.

Updating rows in a table for which row or column access control is enforced: When an UPDATE
statement is issued for a table for which row or column access control is enforced, the rules specified
in the enabled row permissions or column masks determine whether the row can be updated. Typically
those rules are based on the authorization ID of the statement. The following describes how enabled row
permissions and column masks are used during UPDATE:

• Row permissions are used to identify the set of rows to be updated.

When multiple enabled row permissions are defined for a table, a row access control search condition
is derived by application of the logical OR operator to the search condition in each enabled permission.
This row access control search condition is applied to the table to determine which rows are accessible
to the authorization ID of the UPDATE statement. If the WHERE clause is specified in the UPDATE
statement, the user-specified predicates are applied on the accessible rows to determine the rows to be
updated. If there is no WHERE clause, all the accessible rows are the rows to be updated.

• If there are rows to be updated, the following rules determine whether those rows can be updated:

– When a column is referenced while deriving the values of a new row, if the column has an enabled
column mask, the masked value is used to derive the new values. If the object table also has column
access control activated, the column mask that is applied to derive the new values must return the
column itself, not a constant or an expression. If the column mask does not mask the column to itself,
the new value cannot be used for update and an error is returned.

– If the rows are updatable, and there is a BEFORE UPDATE trigger for the table, the trigger is activated.

Chapter 7. Statements 1567

Within the trigger actions, the new values for update might be modified in transition variables. When
the final values are returned from the trigger, the new values are used for the update.

– The rows that are to be updated must conform to the enabled row permissions:

For each row that is to be updated, the old values are replaced with the new values that were
specified in the UPDATE statement. A row that conforms to the enabled row permissions is a row
that, if updated, can be retrieved using the derived row access control search condition.

– If the rows are updatable, and there is an AFTER UPDATE trigger for the table, the trigger is activated.

Masked data can be assigned to a variable used as a value for the update operation. If an update violation
check constraint does not exist for the column, the masked data will be updated into the column and no
error will be issued.

Updating a partitioning key of a partitioned table: If a partitioning key of a row of a partitioned table is
updated such that the row belongs in a different partition:

• The specified target table must not be an alias that references a single partition of the table.
• The specified target table must be journaled.

Extended indicator usage: When extended indicators are enabled, indicator values other than positive
values and 0 (zero) through -7 must not be specified. The DEFAULT and UNASSIGNED extended indicator
values must not appear in contexts in which they are not supported.

Extended indicators: In the assignment-clause of an UPDATE statement, an expression that is a
reference to a single host variable can result in assigning an extended indicator value. Specifying an
indicator value with the extended indicator value of UNASSIGNED has the same effect as if the column
had not been specified in the assignment-clause. Assigning an extended indicator value of DEFAULT
assigns the default value to the column, and must only be specified for a column that is defined with a
default value.

If a target column is not updatable, for example an identity column defined as GENERATED ALWAYS, it
must be assigned the extended indicator variable value of UNASSIGNED, unless it is a generated column
defined as GENERATED ALWAYS. If the target column is a generated column defined as GENERATED
ALWAYS, then it must be assigned the extended indicator variable value of DEFAULT or UNASSIGNED.

An UPDATE statement must not specify the extended indicator value of UNASSIGNED for all target
columns.

Extended indicators and update triggers: If the indicator value for a target column is UNASSIGNED, that
column is not considered to have been updated.

Extended indicators and deferred error checks: When extended indicators are enabled, validation
that would otherwise be done during statement preparation to recognize an update of a non-updatable
column is deferred until the statement is executed.

Considerations for a system-period temporal table: When a row of a system-period temporal table is
updated, the database manager updates the values of the row-begin and transaction-start-ID columns as
follows:

• A row-begin column is assigned a value that is generated using a reading of the time-of-day clock during
execution of the first data change statement in the transaction that requires a value to be assigned to
the row begin or transaction start-ID column in a table, or a row in a system-period temporal table is
deleted. The database manager ensures uniqueness of the generated values for a row-begin column
across transactions. The timestamp value might be adjusted to ensure that rows inserted into an
associated history table have the end timestamp value greater than the begin timestamp value which
can happen when a conflicting transaction is updating the same row in the system-period temporal
table. The SYSTIME_PERIOD_ADJ QAQQINI option must be set to *ADJUST for this adjustment to
the timestamp value to occur. If multiple rows are updated within a single SQL transaction and an
adjustment is not needed, the values for the row-begin column are the same for all the rows and are
unique from the values generated for the column for another transaction.

• A transaction start-ID column is assigned a unique timestamp value per transaction or the null value
The null value is assigned to the transaction start-ID column if the column is nullable and there is a

1568 IBM i: Db2 for i SQL Reference

row-begin column in the table for which the value did not need to be adjusted. Otherwise, the value is
generated using a reading of the time-of-day clock during execution of the first data change statement
in the transaction that requires a value to be assigned to the row begin or transaction start-ID column
in a table, or a row in a system-period temporal table is deleted. If multiple rows are updated within a
single SQL transaction, the values for the transaction start-ID column are the same for all the rows and
are unique from the values generated for the column for another transaction.

If the UPDATE statement has a search condition containing a correlated subquery that references
historical rows (explicitly referencing the name of the history table name or implicitly through the use
of a period specification in the FROM clause), the old version of the updated rows that are inserted as
historical rows (into the history table if any) are potentially visible to update operations for the rows
subsequently processed for the statement.

If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a non-null value and the value of the
SYSTIME option is YES, the underlying target (direct or indirect) of the UPDATE statement cannot be a
system-period temporal table.

If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a non-null value and the value of
the SYSTIME option is YES, the target of an UPDATE statement cannot be a view defined with the WITH
CHECK OPTION if the view definition includes a WHERE clause containing an invocation of an external
routine with a data access indication other than NO SQL.

Considerations for a history table: When a row of a system-period temporal table is updated, a historical
copy of the row is inserted into the corresponding history table and the end timestamp of the historical
row is captured in the form of a system determined value that corresponds to the time of the data change
operation. The database manager assigns the value that is generated using a reading of the time-of-day
clock during execution of the first data change statement in the transaction that requires a value to be
assigned to the row begin or transaction start-ID column in a table, or a row in a system-period temporal
table is deleted. The database manager ensures uniqueness of the generated values for an end column in
a history table across transactions. The timestamp value might be adjusted to ensure that rows inserted
into the history table have the end timestamp value greater than the begin timestamp value which can
happen when a conflicting transaction is updating the same row in the system-period temporal table. The
SYSTIME_PERIOD_ADJ QAQQINI option must be set to *ADJUST for this adjustment to the timestamp
value to occur. Otherwise, an error is returned.

For an update operation, the adjustment only affects the value for the end column corresponding to
the row-end column in the history table associated with the system-period temporal table. Take these
adjustments into consideration on subsequent references to the table whether there is a search for the
transaction start time in the values for the columns corresponding to the row-begin and row-end columns
of the period in the associated system-period temporal table.

Notes
Update operation errors: If an update value violates any constraints, or if any other error occurs during
the execution of the UPDATE statement and COMMIT(*NONE) was not specified, all changes made during
the execution of the statement are backed out. However, other changes in the unit of work made prior to
the error are not backed out. If COMMIT(*NONE) is specified, changes are not backed out.

It is possible for an error to occur that makes the state of the cursor unpredictable.

Number of rows updated: When an UPDATE statement completes execution, the number of rows
updated is returned in the ROW_COUNT statement information item in the SQL Diagnostics Area (and
SQLERRD(3) in the SQLCA). For a description of the SQLCA, see Appendix C, “SQLCA (SQL communication
area),” on page 1665.

For a description of ROW_COUNT, see “GET DIAGNOSTICS” on page 1332. For a description of the
SQLCA, see Appendix C, “SQLCA (SQL communication area),” on page 1665.

Locking: Unless appropriate locks already exist, one or more exclusive locks are acquired by the
execution of a successful UPDATE statement. Until these locks are released by a commit or rollback
operation, the updated rows can only be accessed by:

• The application process that performed the update.

Chapter 7. Statements 1569

• Another application process using COMMIT(*NONE) or COMMIT(*CHG) through a read-only operation

The locks can prevent other application processes from performing operations on the table. For further
information about locking, see the description of the COMMIT, ROLLBACK, and LOCK TABLE statements,
and isolation levels in “Isolation level” on page 23. Also, see the Database Programming topic collection.

A maximum of 500 000 000 rows can be updated or changed in any single UPDATE statement when
COMMIT(*RR), COMMIT(*ALL), COMMIT(*CS), or COMMIT(*CHG) has been specified. The number of rows
changed includes any rows inserted, updated, or deleted under the same commitment definition as a
result of a trigger.

REXX: Variables cannot be used in the UPDATE statement within a REXX procedure. Instead, the UPDATE
must be the object of a PREPARE and EXECUTE using parameter markers.

Datalinks: If the URL value of a DATALINK column is updated, this is the same as deleting the old
DATALINK value then inserting the new one. First, if the old value was linked to a file, that file is unlinked.
Then, unless the linkage attributes of the DATALINK value are empty, the specified file is linked to that
column.

The comment value of a DATALINK column can be updated without relinking the file by specifying an
empty string as the URL path (for example, as the data-location argument of the DLVALUE scalar function
or by specifying the new value to be the same as the old value). If a DATALINK column is updated with a
null, it is the same as deleting the existing DATALINK value.

An error may occur when attempting to update a DATALINK value if the file server of either the existing
value or the new value is no longer registered with the database server

Syntax alternatives: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• The keyword NONE can be used as a synonym for NC.
• The keyword CHG can be used as a synonym for UR.
• The keyword ALL can be used as a synonym for RS.

Examples
Example 1: Change the job (JOB) of employee number (EMPNO) ‘000290' in the EMPLOYEE table to
‘LABORER'.

 UPDATE EMPLOYEE
 SET JOB = 'LABORER'
 WHERE EMPNO = '000290'

Example 2: Increase the project staffing (PRSTAFF) by 1.5 for all projects that department (DEPTNO)
‘D21' is responsible for in the PROJECT table.

 UPDATE PROJECT
 SET PRSTAFF = PRSTAFF + 1.5
 WHERE DEPTNO = 'D21'

Example 3: All the employees except the manager of department (WORKDEPT) ‘E21' have been
temporarily reassigned. Indicate this by changing their job (JOB) to NULL and their pay (SALARY, BONUS,
COMM) values to zero in the EMPLOYEE table.

 UPDATE EMPLOYEE
 SET JOB=NULL, SALARY=0, BONUS=0, COMM=0
 WHERE WORKDEPT = 'E21' AND JOB <> 'MANAGER'

Example 4: In a Java program display the rows from the EMPLOYEE table on the connection context
'ctx' and then, if requested to do so, change the job (JOB) of certain employees to the new job keyed in
(NEWJOB).

 #sql iterator empIterator implements sqlj.runtime.ForUpdate
 with(updateColumns='JOB')

1570 IBM i: Db2 for i SQL Reference

 (…);
 empIterator C1;

 #sql [ctx] C1 = { SELECT * FROM EMPLOYEE };

 #sql { FETCH :C1 INTO … };
 while (!C1.endFetch()) {
 System.out.println(…);
 …
 if (condition for updating row) {
 #sql [ctx] { UPDATE EMPLOYEE
 SET JOB = :NEWJOB
 WHERE CURRENT OF :C1 };
 }

 #sql { FETCH :C1 INTO … };
 }
 C1.close();

Chapter 7. Statements 1571

VALUES
The VALUES statement is a form of query. It can be embedded in an SQLJ application program or issued
interactively.

For detailed information, see “fullselect” on page 783.

1572 IBM i: Db2 for i SQL Reference

VALUES INTO
The VALUES INTO statement produces a result table consisting of at most one row and assigns the values
in that row to variables.

Invocation
This statement can be embedded in an application program. It is an executable statement that can be
dynamically prepared, but cannot be issued interactively unless all variables being assigned are global
variables. It must not be specified in REXX or Java.

Authorization
If a row-fullselect is specified, see Chapter 6, “Queries,” on page 735 for an explanation of the
authorization required for each subselect.

If a global variable is specified on the right hand side of the assignment, the privileges held by the
authorization ID of the statement must include at least one of the following:

• The WRITE privilege on the global variable.
• Database administrator authority

Syntax

VALUES expression

NULL

(

,

expression

NULL

row-fullselect

)

INTO

,

variable

Description
VALUES

Introduces a single row consisting of one or more columns.
expression

Specifies the new value of the variable. The expression is any expression of the type described
in “Expressions” on page 158. It must not include a column name. Host structures are not
supported.

NULL
Specifies that the new value for the variable is the null value.

row-fullselect
A fullselect that returns a single result row. The result column values are assigned to each
corresponding variable. If the result of the fullselect is no rows, then null values are assigned. An
error is returned if there is more than one row in the result.

INTO variable,…
Identifies one or more host structures or variables that must be declared in the program in
accordance with the rules for declaring host structures and variables. In the operational form of
INTO, a reference to a host structure is replaced by a reference to each of its variables. The first value
specified is assigned to the first variable, the second value to the second variable, and so on.

Chapter 7. Statements 1573

Notes
Variable assignment: Each assignment to a variable is performed according to the retrieval assignment
rules described in “Assignments and comparisons” on page 89.129 If the number of variables is less than
the number of values in the row, an SQL warning (SQLSTATE 01503) is returned (and the SQLWARN3 field
of the SQLCA is set to 'W'). Note that there is no warning if there are more variables than the number of
result columns. If a value is null, an indicator variable must be provided for that value.

If the specified variable is character and is not large enough to contain the result, a warning (SQLSTATE
01004) is returned (and 'W' is assigned to SQLWARN1 in the SQLCA). The actual length of the result may
be returned in the indicator variable associated with the variable, if an indicator variable is provided. For
further information, see “Variables” on page 137.

If an assignment error occurs, the value is not assigned to the variable, and no more values are assigned
to variables. Any values that have already been assigned to variables remain assigned.

If the specified variable is a C NUL-terminated host variable and is not large enough to contain the result
and the NUL-terminator:

• If the *CNULRQD option is specified on the CRTSQLCI or CRTSQLCPPI command (or CNULRQD(*YES) on
the SET OPTION statement), the following occurs:

– The result is truncated.
– The last character is the NUL-terminator.
– The value ‘W' is assigned to SQLWARN1 in the SQLCA.

• If the *NOCNULRQD option on the CRTSQLCI or CRTSQLCPPI command (or CNULRQD(*NO) on the SET
OPTION statement) is specified, the following occurs:

– The NUL-terminator is not returned.
– The value ‘N' is assigned to SQLWARN1 in the SQLCA.

Result column evaluation considerations: If an error occurs while evaluating a result column in the
expression list of a VALUES INTO statement as the result of an arithmetic expression (such as division by
zero, or overflow) or a numeric or character conversion error, the result is the null value. As in any other
case of a null value, an indicator variable must be provided. The value of the variable is undefined. In this
case, however, the indicator variable is set to the value of -2. Processing of the statement continues and
a warning is returned. If an indicator variable is not provided, an error is returned and no more values are
assigned to variables. It is possible that some values have already been assigned to variables and will
remain assigned when the error is returned.

When a datetime value is returned, the length of the variable must be large enough to store the complete
value. Otherwise, depending on how much of the value would have to be truncated, a warning or error is
returned. See “Datetime assignments” on page 95 for details.

Multiple assignments: If more than one variable is specified in the INTO clause, all expressions are
evaluated before the assignments are performed. Thus, references to a variable in an expression are
always the value of the variable prior to any assignment in the VALUES INTO statement.

Examples
Example 1: Assign the value of the CURRENT PATH special register to host variable HV1.

 EXEC SQL VALUES CURRENT PATH
 INTO :HV1;

Example 2: Assume that LOB locator LOB1 is associated with a CLOB value. Assign a portion of the
CLOB value to host variable DETAILS using the LOB locator, and assign CURRENT TIMESTAMP to the host
variable TIMETRACK.

129 If assigning to an SQL-variable or SQL-parameter and the standards option is specified, storage assignment
rules apply. For information about the standards option, see “Standards compliance” on page xix.

1574 IBM i: Db2 for i SQL Reference

 EXEC SQL VALUES (SUBSTR(:LOB1,1,35), CURRENT TIMESTAMP)
 INTO :DETAILS, :TIMETRACK;

Chapter 7. Statements 1575

WHENEVER
The WHENEVER statement specifies the action to be taken when a specified exception condition occurs.

Invocation
This statement can only be embedded in an application program. It is not an executable statement.
It must not be specified in Java or REXX. See the Embedded SQL Programming topic collection for
information about handling errors in REXX.

Authorization
None required.

Syntax
WHENEVER NOT FOUND

SQLERROR

SQLWARNING

CONTINUE

GOTO

GO TO :
host-label

DO host-procedure ()

EXSR subroutine

PERFORM host-label

Description
The NOT FOUND, SQLERROR, or SQLWARNING clause is used to identify the type of exception condition.

NOT FOUND
Identifies any condition that results in an SQLSTATE of '02000' or an SQLCODE of +100.

SQLERROR
Identifies any condition that results in a negative SQLCODE'.

SQLWARNING
Identifies any condition that results in an SQLSTATE value where the first two characters are '01' or a
warning condition (SQLWARN0 is 'W'), or that results in a positive SQLCODE other than +100.

The CONTINUE, GO TO, or DO clauses are used to specify the next statement to be executed when the
identified type of exception condition exists.

CONTINUE
Specifies the next sequential instruction of the source program.

GOTO or GO TO host-label
Specifies the statement identified by host-label. For host-label, substitute a single token, optionally
preceded by a colon. The form of the token depends on the host language. In a COBOL program, for
example, it can be a section-name or an unqualified paragraph-name.

DO host-procedure
Indicates that a call should be made to a host language procedure. After the procedure has
completed, execution will continue with the next sequential instruction of the program. This clause
can only be used in C, C++, ILE COBOL, and ILE RPG. The rules for the target of the call depend upon
the host language. No parameters may be passed on the call nor can any results be obtained from the
call.

DO EXSR subroutine
Indicates that an RPG subroutine should be called with the RPG Invoke Subroutine (EXSR) operation.
After the subroutine has completed, execution will continue with the next sequential instruction of the
program. This clause can only be used in ILE RPG.

1576 IBM i: Db2 for i SQL Reference

DO PERFORM host-label
Indicates that a COBOL procedure should be called with the COBOL PERFORM statement. After the
procedure has completed, execution will continue with the next sequential instruction of the program.
This clause can only be used in ILE COBOL. The host-label can be a section-name or an unqualified
paragraph-name.

Notes
WHENEVER statement scope: Every executable SQL statement in a program is within the scope of one
implicit or explicit WHENEVER statement of each type. The scope of a WHENEVER statement is related to
the listing sequence of the statements in the program, not their execution sequence.

An SQL statement is within the scope of the last WHENEVER statement of each type that is specified
before that SQL statement in the source program. If a WHENEVER statement of some type is not specified
before an SQL statement, that SQL statement is within the scope of an implicit WHENEVER statement of
that type in which CONTINUE is specified.

SQL does support nested programs in COBOL, C, and RPG. However, SQL does not honor normal COBOL,
C, and RPG scoping rules. That is, the last WHENEVER statement specified in the program source prior
to the nested procedure is still in effect for that nested program. The label referenced in the WHENEVER
statement must be duplicated within that inner program. Alternatively, the inner program could specify a
new WHENEVER statement.

For ILE RPG, the SQL TAG statement can be used to generate the host-label branch location for the GOTO.
See “TAG” on page 1554.

Examples
The following statements can be embedded in a COBOL program.

• Example 1: Go to the label HANDLER for any statement that produces an error.

 EXEC SQL WHENEVER SQLERROR GOTO HANDLER END-EXEC.

• Example 2: Continue processing for any statement that produces a warning.

 EXEC SQL WHENEVER SQLWARNING CONTINUE END-EXEC.

• Example 3: Go to the label ENDDATA for any statement that does not return data when expected to do
so.

 EXEC SQL WHENEVER NOT FOUND GOTO ENDDATA END-EXEC.

• Example 4: Call the program or procedure specified by the RPG prototype ERRORPROC for any
statement that produces an error.

 EXEC SQL WHENEVER SQLERROR DO ERRORPROC();

• Example 5: Call the program or procedure specified by the C prototype errorproc for any statement that
produces an error.

 EXEC SQL WHENEVER SQLERROR DO errorproc();

Chapter 7. Statements 1577

1578 IBM i: Db2 for i SQL Reference

Chapter 8. SQL procedural language (SQL PL)
SQL can be used as a structured programming language to write the routine body for SQL functions, SQL
procedures, SQL triggers, and compound (dynamic) statements. This is known as the SQL procedural
language, also referred to as SQL PL.

SQL procedures and SQL functions are collectively referred to as SQL routines. SQL procedures are
created by specifying an SQL routine body on the CREATE PROCEDURE statement. SQL functions are
created by specifying an SQL routine body on the CREATE FUNCTION statement. SQL triggers are created
by specifying an SQL routine body on the CREATE TRIGGER statement. A compound (dynamic) statement
is defined by specifying an SQL routine body on the compound (dynamic) statement.

An SQL procedure can also be altered. The OR REPLACE option on the CREATE PROCEDURE or CREATE
FUNCTION statement can be used to replace an SQL routine with a new version. You can also specify a
new SQL routine body on the ALTER PROCEDURE statement or the ALTER FUNCTION statement.

An SQL routine body must be a single SQL statement which may be an SQL control statement.

The SQL routine body is the executable part of the procedure, function, or trigger that is transformed
by the database manager into a program or service program. When an SQL routine, trigger, or global
variable is created, SQL creates temporary source files (QTEMP/QSQLSRC and QTEMP/QSQLT00000) that
will contain C source code with embedded SQL statements. When SQL creates these temporary source
files, a record length of 160 is used and the CCSID value of the source statement is set as the CCSID
value for the new file. If either of these source files exist, they will be modified if needed to have the
same CCSID as the source. The record length of these source files should be 160 or unexpected results
may occur. The name of the source file member is the same as the system name of the routine, trigger, or
global variable. If DBGVIEW(*SOURCE) is specified, SQL creates the root source for the routine or trigger
in source file QSQDSRC in the same library as the procedure, function, or trigger.

An SQL procedure is created as a program (*PGM) or service program (*SRVPGM) object using the
CRTPGM or CRTSRVPGM command. An SQL function is created as a service program object. An SQL
trigger is created as a program object. The program or service program is created in the library that is the
implicit or explicit qualifier of the procedure, function, or trigger name.

When the program or service program is created, the SQL statements, including most control statements,
become embedded SQL statements in the program or service program. The CALL, SIGNAL, RESIGNAL,
and GET DIAGNOSTIC control statements also become embedded SQL statements in the program or
service program.

The specified procedure or function is registered in the SYSROUTINES and SYSPARMS catalog tables, and
an internal link is created from SYSROUTINES to the program. When the procedure is called using the SQL
CALL statement or when the function is invoked in an SQL statement, the program associated with the
routine is called. The specified SQL trigger is registered in the SYSTRIGGERS catalog table.

SQL control statements
Control statements are SQL statements that allow SQL to be used as a structured programming language.
SQL control statements provide the capability to control the logic flow, declare and set variables, and
handle warnings and exceptions. Some SQL control statements include other nested SQL statements.
SQL-control-statement

© Copyright IBM Corp. 1998, 2015 1579

assignment-statement

CALL-statement

CASE-statement

compound-statement

FOR-statement

GET DIAGNOSTICS-statement

GOTO-statement

IF-statement

ITERATE-statement

LEAVE-statement

LOOP-statement

PIPE-statement

REPEAT-statement

RESIGNAL-statement

RETURN-statement

SIGNAL-statement

WHILE-statement

Control statements are supported in SQL procedures, SQL functions, SQL triggers, and compound
(dynamic) statements.

1580 IBM i: Db2 for i SQL Reference

References to SQL parameters and SQL variables
SQL parameters and SQL variables can be referenced anywhere in an SQL procedure statement where an
expression or variable can be specified.

Host variables cannot be specified in SQL functions, SQL procedures, SQL triggers, or compound
(dynamic) statements. SQL parameters can be referenced anywhere in the routine and can be qualified
with the routine name. SQL variables can be referenced anywhere in the compound statement in which
they are declared, including any statement that is directly or indirectly nested within that compound
statement. If the compound statement where the variable is declared has a label, references to the
variable name can be qualified with that label

All SQL parameters and SQL variables are considered nullable except SQL variables that are explicitly
declared as NOT NULL. The name of an SQL parameter or SQL variable in an SQL routine can be the same
as the name of a column in a table or view referenced in the routine. The name of an SQL variable can also
be the same as the name of another SQL variable declared in the same routine. This can occur when the
two SQL variables are declared in different compound-statements. The compound-statement that contains
the declaration of an SQL variable determines the scope of that variable. See “compound-statement” on
page 1597, for more information.

Names that are the same should be explicitly qualified. Qualifying a name clearly indicates whether the
name refers to a column, global variable, SQL variable, or SQL parameter. If the name is not qualified, or
qualified but still ambiguous, the following rules describe how the name is resolved. The name is resolved
by checking for a match in the following order:

• If the tables and views specified in an SQL routine body exist at the time the routine is created, the
name will first be checked as a column name.

• If not found as a column, it will then be checked as an SQL variable name. The SQL variable can be
declared within the compound-statement that contains the reference, or within a compound statement
in which that compound statement is nested. If two SQL variables are within the same scope and have
the same name,130 the SQL variable that is declared in the innermost compound statement is used.

• If not found as an SQL variable name, the name will be checked as an SQL parameter name.

If the name is still not resolved as a column, SQL variable, or SQL parameter and the scope of the name
included a table or view that does not exist at the current server, it will be assumed to be a column or
global variable. If all the tables and views exist at the current server, it will be assumed to be a global
variable. If the SQL_GVAR_BUILD_RULE QAQQINI option is *EXIST and the global variable does not exist,
an error will be issued.

The name of an SQL variable or SQL parameter in an SQL routine can be the same as the name of
an identifier used in certain SQL statements. If the name is not qualified, the following rules describe
whether the name refers to the identifier or to the SQL parameter or SQL variable. Qualified SQL
parameters and SQL variables are not supported for these names.

• In the SET PATH and SET SCHEMA statements, the name is checked as an SQL parameter name or
SQL variable name. If not found as an SQL variable or SQL parameter name, it will then be used as an
identifier.

• In the CONNECT, DISCONNECT, RELEASE, and SET CONNECTION statements, the name is used as an
identifier.

• In the CALL statement, the name is used as an identifier.
• In the ASSOCIATE LOCATORS and DESCRIBE PROCEDURE statements when used in a CREATE

TRIGGER statement, the name is used as an identifier.

130 Which can happen if they are declared in different compound statements.

Chapter 8. SQL procedural language (SQL PL) 1581

References to SQL condition names
The name of an SQL condition can be the same as the name of another SQL condition declared in
the same routine. This can occur when the two SQL conditions are declared in different compound-
statements.

The compound-statement that contains the declaration of an SQL condition name determines the scope
of that condition name. A condition name must be unique within the compound statement in which it
is declared, excluding any declarations in compound statements that are nested within that compound
statement. A condition name can only be referenced within the compound statement in which it is
declared, including any compound statements that are nested within that compound statement. When
there is a reference to a condition name, the condition that is declared in the innermost compound
statement is the condition that is used. See “compound-statement” on page 1597, for more information.

1582 IBM i: Db2 for i SQL Reference

References to SQL cursor names
The name of an SQL cursor can be the same as the name of another SQL cursor declared in the same
routine. This can occur when the two SQL cursors are declared in different compound-statements. The
cursor name specified in a FOR statement can be the same as the name of another SQL cursor declared in
the same compound-statement.

The compound-statement that contains the declaration of an SQL cursor determines the scope of that
cursor name. A cursor name must be unique within the compound statement in which it is declared,
excluding any declarations in compound statements that are nested within that compound statement. A
cursor name can only be referenced within the compound statement in which it is declared, including any
compound statements that are nested within that compound statement. When there is a reference to a
cursor name, the cursor that is declared in the innermost compound statement is the cursor that is used.
See “compound-statement” on page 1597, for more information.

Chapter 8. SQL procedural language (SQL PL) 1583

References to SQL labels
Labels can be specified at the beginning of most SQL procedure statements. If a label is specified on an
SQL procedure statement, it must be unique from other labels within the same scope. A label must not
be the same as any other label within the same compound statement, must not be the same as a label
specified on the compound statement itself, and if the compound statement is nested within another
compound statement, the label must not be the same as the label specified on any higher level compound
statement. The label must not be the same as the name of the SQL function, SQL procedure, or SQL
trigger that contains the SQL procedure statement.

Specifying a label for an SQL procedure statement defines that label and determines the scope of that
label. A label name can only be referenced within the compound statement in which it is defined,
including any statement that is directly or indirectly nested within that compound statement. A label can
be specified as the target of a GOTO, LEAVE, or ITERATE statement, subject to the rules for the statement
that references the label as a target.

1584 IBM i: Db2 for i SQL Reference

Summary of ′name′ scoping in nested compound statements
Nested compound statements can be used within an SQL routine to define the scope of SQL variable
declarations, cursors, condition names, and condition handlers.

Additionally, labels have a defined scope in the context of nested compound statements. However the
rules for name space, and how non-unique names can be referenced, differs depending on the type of
name. The following table summarizes these differences.

Table 126. Summary of ′Name′ Scoping in Nested Compound Statements

Type of name Must be unique within...
Qualification
allowed? Can be referenced within...

SQL variable the compound statement
in which it is declared,
excluding any declarations
in compound statements
that are nested within that
compound statement.

Yes, can be
qualified with
the label of
the compound
statement in
which the
variable was
declared.

the compound statement in which it is
declared, including any compound statements
that are nested within that compound
statement. When multiple SQL variables are
defined with the same name you can use a
label to explicitly refer to a specific variable
that is not the most local in scope.

condition the compound statement
in which it is declared,
excluding any declarations
in compound statements
that are nested within that
compound statement.

No the compound statement in which it is
declared, including any compound statements
that are nested within that compound
statement. Can be used in the declaration of a
condition handler, or in a SIGNAL or RESIGNAL
statement.

Note: When multiple conditions are defined
with the same name there is no way to
explicitly refer to the condition that is not the
most local in scope.

cursor the compound statement
in which it is declared,
excluding any declarations
in compound statements
that are nested within that
compound statement.

No the compound statement in which it is
declared, including any compound statements
that are nested within that compound
statement.

Note: When multiple cursors are defined with
the same name there is no way to explicitly
refer to the cursor that is not the most local
in scope. However, if the cursor is defined as
a result set cursor (for example, the WITH
RETURN clause was specified as part of the
cursor declaration), the invoking application
can access the result set.

label the compound statement
that declared the variable,
including any declarations
in compound statements
that are nested within that
compound statement.

No the compound statement in which it is
declared, including any compound statements
that are nested within that compound
statement.

Use a label to qualify the name of an SQL
variable or as the target of a GOTO, LEAVE, or
ITERATE statement.

Chapter 8. SQL procedural language (SQL PL) 1585

SQL-procedure-statement
An SQL control statement may allow multiple SQL statements to be specified within the SQL control
statement. These statements are defined as SQL procedure statements.

Syntax

1586 IBM i: Db2 for i SQL Reference

SQL-control-statement

ALLOCATE CURSOR-statement

ALLOCATE DESCRIPTOR-statement

ALTER FUNCTION-statement (2)

ALTER MASK-statement

ALTER PERMISSION-statement

ALTER PROCEDURE-statement (2)

ALTER SEQUENCE-statement

ALTER TABLE-statement

ALTER TRIGGER-statement

ASSOCIATE LOCATORS-statement

CLOSE-statement

COMMENT-statement

COMMIT-statement (1)

CONNECT-statement (1)

CREATE ALIAS-statement

CREATE FUNCTION (external scalar)-statement

CREATE FUNCTION (external table)-statement

CREATE FUNCTION (sourced)-statement

CREATE INDEX-statement

CREATE MASK-statement

CREATE PERMISSION-statement

CREATE PROCEDURE (external)-statement

CREATE SCHEMA-statement

CREATE SEQUENCE-statement

CREATE TABLE-statement

CREATE TYPE-statement

CREATE VIEW-statement

DEALLOCATE DESCRIPTOR-statement

DECLARE GLOBAL TEMPORARY TABLE-statement

DELETE-statement

DESCRIBE-statement

DESCRIBE CURSOR-statement

DESCRIBE INPUT-statement

DESCRIBE PROCEDURE-statement

DESCRIBE TABLE-statement

DISCONNECT-statement (1)

DROP-statement

Syntax (continued)

Chapter 8. SQL procedural language (SQL PL) 1587

EXECUTE-statement

EXECUTE IMMEDIATE-statement

FETCH-statement

GET DESCRIPTOR-statement

GRANT-statement

INCLUDE-statement

INSERT-statement

LABEL-statement

LOCK TABLE-statement

MERGE-statement

OPEN-statement

PREPARE-statement

REFRESH TABLE-statement

RELEASE-statement

RELEASE SAVEPOINT-statement

RENAME-statement

REVOKE-statement

ROLLBACK-statement (1)

SAVEPOINT-statement

SELECT INTO-statement

SET CONNECTION-statement (1)

SET CURRENT DEBUG MODE-statement

SET CURRENT DECFLOAT ROUNDING MODE-statement

SET CURRENT DEGREE-statement

SET CURRENT IMPLICIT XMLPARSE OPTION-statement

SET CURRENT TEMPORAL SYSTEM_TIME-statement

SET DESCRIPTOR-statement

SET ENCRYPTION PASSWORD-statement

SET PATH-statement

SET RESULT SETS-statement (1)

SET SCHEMA-statement

SET TRANSACTION-statement (3)

SET transition-variable-statement (4)

TRANSFER OWNERSHIP-statement

TRUNCATE-statement

UPDATE-statement

VALUES INTO-statement

Notes:

1. A COMMIT, ROLLBACK, CONNECT, DISCONNECT, SET CONNECTION, or SET RESULT SETS statement is
only allowed in an SQL procedure.

2. An ALTER PROCEDURE (SQL), ALTER FUNCTION (SQL scalar), or ALTER FUNCTION (SQL table)
statement with a REPLACE keyword is not allowed in an SQL-routine-body.

1588 IBM i: Db2 for i SQL Reference

3. A SET TRANSACTION statement is only allowed in an SQL function or trigger.
4. A SET transition-variable-statement is only allowed in a trigger. A fullselect and VALUES-statement can

also be specified in a trigger.

Notes
Comments: Comments can be included within the body of an SQL procedure. In addition to the double-
dash form of comments (--), a comment can begin with /* and end with */. The following rules apply to
this form of a comment.

• The beginning characters /* must be adjacent and on the same line.
• The ending characters */ must be adjacent and on the same line.
• Comments can be started wherever a space is valid.
• Comments can be continued to the next line.

Detecting and processing error and warning conditions: As an SQL statement is executed, the database
manager stores information about the processing of the statement in a diagnostics area (including the
SQLSTATE and SQLCODE), unless otherwise noted in the description of the SQL statement. A completion
condition indicates the SQL statement completed successfully, completed with a warning condition, or
completed with a not found condition. An exception condition indicates that the SQL statement was not
successful.

A condition handler can be defined in a compound statement to execute when an exception condition,
a warning condition, or a not found condition occurs. The declaration of a condition handler includes
the code that is to be executed when the condition handler is activated. When a condition other than a
successful completion occurs in the processing of SQL-procedure-statement, if a condition handler that
could handle the condition is within scope, one such condition handler will be activated to process the
condition. See “compound-statement” on page 1597 for information about defining condition handlers.
The code in the condition handler can check for a warning condition, not found condition, or exception
condition and take the appropriate action. Use one of the following methods at the beginning of the
body of a condition handler to check the condition in the diagnostics area that caused the handler to be
activated:

• Issue a GET DIAGNOSTICS statement to request the condition information. See “GET DIAGNOSTICS
statement” on page 1607.

• Test the SQL variables SQLSTATE and SQLCODE.

If the condition is a warning and there is not a handler for the condition, the above two methods can also
be used outside of the body of a condition handler immediately following the statement for which the
condition is wanted. If the condition is an error and there is not a handler for the condition, the routine or
trigger terminates with the error condition.

Chapter 8. SQL procedural language (SQL PL) 1589

assignment-statement
The assignment-statement assigns a value to an SQL parameter or SQL variable.

Syntax

label:

SET assignment-clause

assignment-clause:

,

SQL-parameter-name

SQL-variable-name

global-variable

 = expression

NULL

DEFAULT

SQLIND_DEFAULT

SQLIND_UNASSIGNED

(

,

SQL-parameter-name

SQL-variable-name

global-variable

) = (

,

expression

NULL

DEFAULT

)

row-fullselect

array-variable-name [array-index] = expression

NULL

array-variable-name = array-constructor

TRIM_ARRAY function

array-variable-name

NULL

row-fullselect

WITH

RECURSIVE

,

common-table-expression

fullselect

Description
label

Specifies the label for the assignment-statement statement. The label name cannot be the same as
the routine name or another label within the same scope. For more information, see “References to
SQL labels” on page 1584.

SQL-parameter-name
Identifies the SQL parameter that is the assignment target. The SQL parameter must be specified in
parameter-declaration in the CREATE PROCEDURE or CREATE FUNCTION statement.

SQL-variable-name
Identifies the SQL variable that is the assignment target. SQL variables can only be declared in a
compound-statement or be a transition variable.

1590 IBM i: Db2 for i SQL Reference

global-variable
Identifies the global variable that is the assignment target.

expression or NULL
Specifies the expression or value that is the source for the assignment.

DEFAULT
Specifies that the default value for the column associated with the transition variable will be used.
This can only be specified for a global variable and in SQL triggers for transition variables. Only one
global variable can be assigned in the SET statement when DEFAULT is used.

SQLIND_DEFAULT
Specifies that the indicator associated with this variable is assigned the extended indicator value of
DEFAULT. The target of the assignment must be an SQL variable or an SQL parameter. An error is
returned if the variable does not allow a null value. Only one variable can be assigned in the SET
statement when SQLIND_DEFAULT is used.

SQLIND_UNASSIGNED
Specifies that the indicator associated with this variable is assigned the extended indicator value of
UNASSIGNED. The target of the assignment must be an SQL variable or an SQL parameter. An error
is returned if the variable does not allow a null value. Only one variable can be assigned in the SET
statement when SQLIND_UNASSIGNED is used.

row-fullselect
A fullselect that returns a single result row. The result column values are assigned to the
corresponding SQL variable or parameter. If the result of the fullselect is no rows, then null values are
assigned. An error is returned if there is more than one row in the result.

WITH common-table-expression
Specifies a common table expression. For an explanation of common table expression, see “common-
table-expression” on page 790.

fullselect
A fullselect that returns a single result row. The result column values are assigned to each
corresponding variable. If the result of the fullselect is no rows, then null values are assigned. An
error is returned if there is more than one row in the result.

array-variable-name
Identifies an SQL variable or parameter. The variable or parameter must be of an array type.
[array-index]

Numeric expression that specifies which element in the array will be the target of the assignment.
The array index must be of an exact numeric type with zero scale; it cannot be null. Its value must
be between 1 and the maximum cardinality defined for the array.

array-constructor
Specifies the value of an array constructor. See “ARRAY constructor ” on page 172.

TRIM_ARRAY function
Specifies the TRIM_ARRAY scalar function. See “TRIM_ARRAY” on page 611.

Notes
Assignment rules: Assignments in the assignment statement must conform to the SQL retrieval
assignment rules as described in “Assignments and comparisons” on page 89.131

If the assignment is of the form SET A[idx] = rhs, where A is an array variable name, idx is an
expression used as the array index, and rhs is an expression of a compatible type as the array element,
then:

1. If array A is the null value, set A to the empty array.
2. Let C be the cardinality of array A.

131 If assigning to an SQL-variable or SQL-parameter and the standards option is specified, storage assignment
rules apply. For information about the standards option, see “Standards compliance” on page xix.

Chapter 8. SQL procedural language (SQL PL) 1591

3. If idx is less than or equal to C, the value in the position identified by idx is replaced by the value of rhs.
4. If idx is greater than C, then:

a. The value in position i, for i greater than C and less that idx, is set to the null value.
b. The value in position idx is set to the value of rhs.
c. The cardinality of A is set to idx.

Assignments involving SQL parameters: An IN parameter can appear on the left or right side of an
assignment-statement. When control returns to the caller, the original value of the IN parameter is
retained. An OUT parameter can also appear on the left or right side of an assignment-statement. If
used without first being assigned a value, the value is null. When control returns to the caller, the last
value that is assigned to an OUT parameter is returned to the caller. For an INOUT parameter, the first
value of the parameter is determined by the caller, and the last value that is assigned to the parameter is
returned to the caller.

Multiple SQL parameter or SQL variable assignments: If more than one SQL parameter or SQL variable
is specified as the target of the assignment-statement, the targets of the assignment-statement are
completely evaluated before the assignments are performed. Thus, references to an SQL parameter or
SQL variable in a target expression is always the value of the SQL parameter or SQL variable prior to any
assignment.

Extended indicator values: For the extended indicator values of SQLIND_DEFAULT and
SQLIND_UNASSIGNED to be recognized, the SQL routine or SQL trigger must be created with the SET
OPTION EXTIND = *YES. For more information about extended indicator values, see “References to host
variables” on page 139.

Arrays: If an assignment is to an array or array element, only one assignment is allowed in the statement.

Special Registers: If a variable has been declared with an identifier that matches the name of a special
register (such as PATH), then the variable must be delimited to distinguish it from assignment to the
special register (for example, SET "PATH" = 1; for a variable called PATH declared as an integer).

Considerations for SQLSTATE and SQLCODE variables: Assignment to these variables is not allowed.

Example
Example 1: Increase the SQL variable p_salary by 10 percent.

 SET p_salary = p_salary + (p_salary * .10)

Example 2: Set SQL variable p_salary to the null value

 SET p_salary = NULL

Example 3: Set the SQL array variable p_phonenumbers to an array of fixed numbers.

 SET p_phonenumbers = ARRAY[9055553907, 4165554213, 4085553678]

Example 4: Set the SQL array variable p_phonenumbers to an array of numbers retrieved from the
PHONENUMBER table.

 SET p_phonenumbers = ARRAY
 [SELECT NUMBER FROM PHONENUMBERS
 WHERE EMPID = 624]

Example 5:Assign p_mynumber to the first and tenth elements of the SQL array variable
p_phonenumbers. After the first assignment, the cardinality of p_phonenumbers is 1. After the second
assignment, the cardinality is 10, and elements 2 to 9 have been implicitly assigned the null value.

 SET p_phonenumbers[1] = p_mynumber

 SET p_phonenumbers[10] = p_mynumber

1592 IBM i: Db2 for i SQL Reference

CALL statement
The CALL statement invokes a procedure. The syntax of CALL in an SQL function, SQL procedure, or SQL
trigger is a subset of what is supported as a CALL statement in other contexts.

See “CALL” on page 930 for details.

Syntax

label:

CALL procedure-name argument-list

argument-list
(

,

parameter-name =>

expression

DEFAULT

NULL

)

Description
label

Specifies the label for the CALL statement. The label name cannot be the same as the routine name
or another label within the same scope. For more information, see “References to SQL labels” on page
1584.

procedure-name
Identifies the procedure to call. The procedure-name must identify a procedure that exists at the
current server.

argument-list
Identifies a list of values to be passed as parameters to the procedure. The nth unnamed argument
corresponds to the nth parameter in the procedure.

Each parameter defined (using CREATE PROCEDURE) as OUT must be specified as either a SQL-
variable-name or a SQL-parameter-name. A default cannot be specified for an OUT parameter. If
a default is used for an INOUT parameter, then the default expression is used to initialized the
parameter for input to the procedure. No value is returned for this parameter when the procedure
exits.

When a procedure is called, arguments must be specified for all parameters that are not defined to
have a default value. When an argument is assigned to a parameter using the named syntax, then all
the arguments that follow it must also be assigned using the named syntax.

Any references to date, time, or timestamp special register values in the argument list will use one
clock reading for any default expressions and a separate clock reading for any references in the
explicit arguments.

The number of arguments specified must be the same as the number of parameters of a procedure
defined at the current server with the specified procedure-name.

The application requester assumes all parameters that are variables are INOUT parameters. All
parameters that are not variables are assumed to be input parameters. The actual attributes of the
parameters are determined by the current server.

parameter-name
Name of the parameter to which the argument value is assigned. The name must match a
parameter name defined for the procedure. Named arguments correspond to the same named

Chapter 8. SQL procedural language (SQL PL) 1593

parameter regardless of the order in which they are specified in the argument list. When an
argument is assigned to a parameter by name, all the arguments that follow it must also be
assigned by name.
A named argument must be specified only one time (implicitly or explicitly).
Named arguments are not allowed on a call to a procedure that was not defined using a CREATE
PROCEDURE statement.

expression
An expression of the type described in “Expressions” on page 158, that does not include an
aggregate function or column name.

DEFAULT
Specifies the default as defined in the CREATE PROCEDURE statement is used as an argument to
the procedure; otherwise the NULL value is used.

NULL
Specifies a null value as an argument to the procedure.

Notes
Rules for arguments to OUT and INOUT parameters: Each OUT or INOUT parameter must be specified
as an SQL parameter or SQL variable.

Special registers: The initial value of a special register in a procedure is inherited from the caller of
the procedure. A value assigned to a special register within the procedure is used for the entire SQL
procedure and will be inherited by any procedure subsequently called from that procedure. When a
procedure returns to its caller, the special registers are restored to the original values of the caller.

Related information: See “CALL” on page 930 for more information.

Example
Call procedure proc1 and pass SQL variables as parameters.

 CALL proc1(v_empno, v_salary)

1594 IBM i: Db2 for i SQL Reference

CASE statement
The CASE statement selects an execution path based on multiple conditions.

Syntax

label:

CASE simple-when-clause

searched-when-clause else-clause

END CASE

simple-when-clause

expression WHEN expression THEN SQL-procedure-statement ;

searched-when-clause

WHEN search-condition THEN SQL-procedure-statement ;

else-clause

ELSE SQL-procedure-statement ;

Description
label

Specifies the label for the CASE statement. The label name cannot be the same as the routine name
or another label within the same scope. For more information, see “References to SQL labels” on page
1584.

simple-when-clause
The value of the expression prior to the first WHEN keyword is tested for equality with the value of
each expression that follows the WHEN keyword. If the comparison is true, the statements in the
associated THEN clause are executed and processing of the CASE statement ends. If the result is
unknown or false, processing continues to the next comparison. If the result does not match any of
the comparisons, and an ELSE clause is present, the statements in the ELSE clause are executed.

searched-when-clause
The search-condition following the WHEN keyword is evaluated. If it evaluates to true, the statements
in the associated THEN clause are executed and processing of the CASE statement ends. If it
evaluates to false, or unknown, the next search-condition is evaluated. If no search-condition
evaluates to true and an ELSE clause is present, the statements in the ELSE clause are executed.

else-clause
If none of the conditions specified in the simple-when-clause or searched-when-clause are true, then
the statements in the else-clause are executed.

If none of the conditions specified in the WHEN are true, and an ELSE clause is not specified, an error
is issued at runtime, and the execution of the CASE statement is terminated (SQLSTATE 20000).

SQL-procedure-statement
Specifies a statement to execute. See “SQL-procedure-statement” on page 1586.

Chapter 8. SQL procedural language (SQL PL) 1595

Notes
Nesting of CASE statements: CASE statements that use a simple-when-clause can be nested up to three
levels. CASE statements that use a searched-when-clause have no limit to the number of nesting levels.

Considerations for SQLSTATE and SQLCODE variables: When the first SQL-procedure-statement in the
CASE statement is executed, the SQLSTATE and SQLCODE SQL variables reflect the result of evaluating
the expressions or search-conditions of that CASE statement. If a CASE statement does not include
an ELSE clause and none of the search-conditions evaluate to true, then any error returned from the
expression is returned.

Examples
Example 1: Depending on the value of SQL variable v_workdept, update column DEPTNAME in table
DEPARTMENT with the appropriate name.

The following example shows how to do this using the syntax for a simple-when-clause.

 CASE v_workdept
 WHEN 'A00'
 THEN UPDATE department SET
 deptname = 'DATA ACCESS 1';
 WHEN 'B01'
 THEN UPDATE department SET
 deptname = 'DATA ACCESS 2';
 ELSE UPDATE department SET
 deptname = 'DATA ACCESS 3';
 END CASE

Example 2: The following example shows how to do this using the syntax for a searched-when-clause:

 CASE
 WHEN v_workdept = 'A00'
 THEN UPDATE department SET
 deptname = 'DATA ACCESS 1';
 WHEN v_workdept = 'B01'
 THEN UPDATE department SET
 deptname = 'DATA ACCESS 2';
 ELSE UPDATE department SET
 deptname = 'DATA ACCESS 3';
 END CASE

1596 IBM i: Db2 for i SQL Reference

compound-statement
A compound statement groups other statements together in an SQL procedure. A compound statement
allows the declaration of SQL variables, cursors, and condition handlers.

Syntax

label:

BEGIN
NOT ATOMIC

ATOMIC

SQL-variable-declaration

SQL-condition-declaration

return-codes-declaration

INCLUDE-statement

 ;

DECLARE CURSOR-statement

INCLUDE-statement

 ;

handler-declaration

INCLUDE-statement

 ;

SQL-procedure-statement ;

END

label

SQL-variable-declaration

DECLARE

,

SQL-variable-name

data-type
DEFAULT NULL

CONSTANT NULL

DEFAULT constant

NOT NULL
1

CONSTANT constant

array-type-name
DEFAULT NULL

RESULT_SET_LOCATOR VARYING

SQL-condition-declaration

Chapter 8. SQL procedural language (SQL PL) 1597

DECLARE SQL-condition-name CONDITION

FOR

SQLSTATE
VALUE

string-constant

return-codes-declaration

DECLARE SQLSTATE CHARACTER(5)

CHAR(5)

DEFAULT '00000'

DEFAULT string-constant

SQLCODE INTEGER

INT

DEFAULT 0

DEFAULT integer-constant

handler-declaration

DECLARE CONTINUE

EXIT

UNDO

HANDLER FOR specific-condition-value

general-condition-value

2

SQL-procedure-statement

specific-condition-value
,

SQLSTATE
VALUE

string

SQL-condition-name

general-condition-value
,

SQLEXCEPTION

SQLWARNING

NOT FOUND

3

data-type
built-in-type

distinct-type-name

Notes:
1 The DEFAULT and NOT NULL clauses can be specified in either order.
2 specific-condition-value and general-condition-value cannot be specified in the same handler
declaration.
3 The same clause must not be specified more than once.

built-in-type

1598 IBM i: Db2 for i SQL Reference

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

(integer

,0

, integer

)

FLOAT

(53)

(integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

FOR BIT DATA

FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

CLOB

CHAR LARGE OBJECT

CHARACTER LARGE OBJECT

(1M)

(integer

K

M

G

) FOR SBCS DATA

FOR MIXED DATA

ccsid-clause

GRAPHIC

(1)

(integer)

GRAPHIC VARYING

VARGRAPHIC

(integer)

DBCLOB

(1M)

(integer

K

M

G

)

ccsid-clause

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

(1)

(integer)

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

VARYING

NVARCHAR

(integer)

NATIONAL CHARACTER

NCHAR

LARGE OBJECT

NCLOB

(1M)

(integer

K

M

G

)

BINARY

(1)

(integer)

BINARY VARYING

VARBINARY

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

)

DATE

TIME

(0)

TIMESTAMP

(6)

(integer)

DATALINK

(200)

(integer) ccsid-clause

ROWID

XML

ccsid-clause
CCSID integer

Chapter 8. SQL procedural language (SQL PL) 1599

Description
label

Specifies the label for the compound-statement. If the ending label is specified, it must be the same as
the beginning label. The label name cannot be the same as the routine name or another label within
the same scope. For more information, see “References to SQL labels” on page 1584.

ATOMIC
ATOMIC indicates that an unhandled exception condition within the compound-statement causes the
compound-statement to be rolled back. If ATOMIC is specified, COMMIT or ROLLBACK statements
cannot be specified in the compound statement (ROLLBACK TO SAVEPOINT may be specified).

NOT ATOMIC
NOT ATOMIC indicates that an unhandled exception condition within the compound-statement does
not cause the compound-statement to be rolled back. If NOT ATOMIC is specified in the outermost
compound statement of an SQL trigger, it is treated as ATOMIC.

If ATOMIC is specified in an SQL procedure or function, the routine must have a data classification of
MODIFIES SQL DATA.

SQL-variable-declaration
Declares a variable that is local to the compound-statement.
SQL-variable-name

Defines the name of a local SQL variable. The database manager converts all undelimited SQL
variable names to uppercase. The name must not be the same as another SQL variable within
the same compound-statement, excluding any declarations in compound-statements nested within
the compound-statement. Do not name SQL variables the same as column names or parameter
names. See “References to SQL parameters and SQL variables” on page 1581 for how SQL
variable names are resolved when there are columns with the same name involved in a statement.
Variable names should not begin with 'SQL'.

data-type
Specifies the data type of the variable. See “CREATE TABLE” on page 1115 for a description of
data type.

If the data-type is a graphic string data type, consider specifying CCSID 1200 or 13488 to indicate
UTF-16 or UCS-2 data. If a CCSID is not specified, the CCSID of the graphic string variable will be
the associated DBCS CCSID for the job.

array-type-name
Specifies that the SQL variable is an array as defined with the CREATE TYPE (Array) statement.

DEFAULT constant or NULL
Defines the default for the SQL variable. The specified constant must represent a value that
could be assigned to the variable in accordance with the rules of assignment as described
in “Assignments and comparisons” on page 89. The variable is initialized when the compound-
statement in which it is declared is entered. If a default value is not specified, the SQL variable is
initialized to NULL. SQL variables of type XML cannot have a default value specified. SQL variables
of array-type are always initialized to NULL.

NOT NULL
Prevents the SQL variable from containing the NULL value. Omission of NOT NULL implies that the
variable can be null. SQL variables of type XML cannot have NOT NULL specified.

CONSTANT constant or NULL
Specifies that the SQL variable has a fixed value that cannot be changed. An SQL variable that is
defined using CONSTANT cannot be used as the target of any assignment operation. The specified
constant must represent a value that could be assigned to the variable in accordance with the
rules of assignment as described in “Assignments and comparisons” on page 89.

RESULT_SET_LOCATOR VARYING
Specifies the data type for a result set locator variable.

SQL-condition-declaration
Declares a condition name and corresponding SQLSTATE value.

1600 IBM i: Db2 for i SQL Reference

SQL-condition-name
Specifies the name of the condition. The condition name must be unique within the compound-
statement (excluding any declarations in compound-statements nested within the compound-
statement) in which it is declared.

FOR SQLSTATE string-constant
Specifies the SQLSTATE associated with this condition. The string constant must be specified as 5
characters. The SQLSTATE class (the first 2 characters) must not be '00'.

return-codes-declaration
Declares special SQL variables called SQLSTATE and SQLCODE that are set for the first condition in
the diagnostics area after executing an SQL statement other than GET DIAGNOSTICS or an empty
compound-statement. The SQLSTATE and SQLCODE variables can only be declared in the outermost
compound-statement of an SQL procedure, SQL function, or SQL trigger.

The SQLSTATE and SQLCODE special variables are only intended to be used as a means of obtaining
the SQL return codes that resulted from processing the previous SQL statement other than GET
DIAGNOSTICS. If there is any intention to use the SQLSTATE and SQLCODE values, save the values
immediately to other SQL variables to avoid having the values replaced by the SQL return codes
returned after executing the next SQL statement. If a handler is defined that handles an SQLSTATE,
you can use an assignment statement to save that SQLSTATE (or the associated SQLCODE) value in
another SQL variable, if the assignment is the first statement in the handler.

Assignment to these variables is not prohibited; however, it is not recommended. Assignment to these
special variables is ignored by condition handlers. The SQLSTATE and SQLCODE special variables
cannot be set to NULL.

DECLARE CURSOR-statement
Declares a cursor in the routine body. The cursor name must be unique within the compound-
statement, excluding any declarations in compound-statements nested within the compound-
statement.

A cursor-name can only be referenced within the compound-statement in which it is declared,
including any compound-statements nested within the compound-statement.

Use an OPEN statement to open the cursor, and a FETCH statement to read rows using the cursor. If
the cursor in an SQL procedure and is intended for use as a result set:

• specify WITH RETURN when declaring the cursor
• create the procedure using the DYNAMIC RESULT SETS clause with a non-zero value
• do not specify a CLOSE statement in the compound-statement.

Any open cursor that does not meet these criteria is closed at the end of the compound-statement.

For more information about declaring a cursor, refer to “DECLARE CURSOR” on page 1215.

handler-declaration
Specifies a handler, an SQL-procedure-statement to execute when an exception or completion
condition occurs in the compound-statement.

A condition handler declaration cannot reference the same condition value or SQLSTATE value more
than once, and cannot reference an SQLSTATE value and a condition name that represent the same
SQLSTATE value. For a list of SQLSTATE values as well as more information, see the SQL messages and
codes topic collection.

Furthermore, when two or more condition handlers are declared in a compound statement, no two
condition handler declarations may specify the same:

• general condition category or
• specific condition, either as an SQLSTATE value or as a condition name that represents the same

value.

Chapter 8. SQL procedural language (SQL PL) 1601

A condition handler is active for the set of SQL-procedure-statements that follow the handler-
declarations within the compound-statement in which it is declared, including any nested compound
statements.

A handler for a condition may exist at several levels of nested compound statements. For example,
assume that compound statement n1 contains another compound statement n2 which contains
another compound statement n3. When an exception condition occurs within n3, any active handlers
within n3 are first allowed to handle the condition. If no appropriate handler exists in n3, then the
condition is resignalled to n2 and the active handlers within n2 may handle the condition. If no
appropriate handler exists in n2, then the condition is resignalled to n1 and the active handlers within
n1 may handle the condition. If no appropriate handler exists in n1, the condition is considered
unhandled.

There are three types of condition handlers:

CONTINUE
Specifies that after the condition handler is activated and completes successfully, control is
returned to the SQL statement following the one that raised the exception. If the error occurs
while executing a comparison as in an IF, CASE, FOR, WHILE, or REPEAT, control returns to the
statement following the corresponding END IF, END CASE, END FOR, END WHILE, or END REPEAT.

EXIT
Specifies that after the condition handler is activated and completes successfully, control is
returned to the end of the compound statement that declared the condition handler.

UNDO
Specifies that when the condition handler is activated changes made by the compound-statement
are rolled back. When the handler completes successfully, control is returned to the end of the
compound-statement. If UNDO is specified, then ATOMIC must be specified.

UNDO cannot be specified in the outermost compound-statement of an SQL function or SQL
trigger.

The conditions under which the handler is activated are:

SQLSTATE string
Specifies that the handler is invoked when the specific SQLSTATE occurs. The SQLSTATE class (the
first 2 characters) must not be '00'.

SQL-condition-name
Specifies that the handler is invoked when the specific SQLSTATE associated with the condition
name occurs. The SQL-condition-name must be previously defined in a SQL-condition-declaration.

SQLEXCEPTION
Specifies that the handler is invoked when an exception condition occurs. An exception condition
is represented by an SQLSTATE value where the first two characters are not '00', '01', or '02'.

SQLWARNING
Specifies that the handler is invoked when a warning condition occurs. A warning condition is
represented by an SQLSTATE value where the first two characters are '01'.

NOT FOUND
Specifies that the handler is invoked when a NOT FOUND condition occurs. A NOT FOUND
condition is represented by an SQLSTATE value where the first two characters are '02'.

Notes
Nesting compound statements: Compound statements can be nested. Nested compound statements
can be used to scope variable definitions, condition names, condition handlers, and cursors to a subset of
the statements in the compound-statement. This can simplify the processing done for each SQL procedure
statement. Support for nested compound statements enables the use of a compound statement within
the declaration of a condition handler.

Condition handlers: Condition handlers in a compound-statement are similar to WHENEVER statements
used in external SQL application programs. A condition handler can be defined to automatically get

1602 IBM i: Db2 for i SQL Reference

control when an exception, warning, or not found condition occurs. The body of a condition handler
contains code that is executed when the condition handler is activated. A condition handler can be
activated as a result of an exception, warning, or not found condition that is returned by the database
manager for the processing of an SQL statement, or the activating condition can be the result of a SIGNAL
or RESIGNAL statement issued within the procedure body.

A condition handler is declared within a compound statement, and it is active for the set of SQL-
procedure-statements that follow all of the condition handler declarations within the compound statement
in which the condition handler is declared. To be more specific, the scope of a condition handler
declaration H is the list of SQL-procedure-statements that follows the condition handler declarations
contained within the compound statement in which H appears. This means that the scope of H does not
include the statements contained in the body of the condition handler H, implying that a condition handler
cannot handle conditions that arise inside its own body. Similarly, for any two condition handlers H1 and
H2 declared in the same compound statement, H1 will not handle conditions arising in the body of H2,
and H2 will not handle conditions arising in the body of H1.

The declaration of a condition handler specifies the condition that activates it, the type of the condition
handler (CONTINUE, EXIT, or UNDO), and the handler action. The type of the condition handler
determines where control is returned to after successful completion of the handler action.

Condition handler activation: When a condition other than successful completion occurs in the
processing of an SQL-procedure-statement, if a condition handler that could handle the condition is within
scope, one such condition handler will be activated to process the condition.

In a routine with nested compound statements, condition handlers that could handle a specific condition
may exist at several levels of the nested compound statements. The condition handler that is activated
is a condition handler that is declared innermost to the scope in which the condition was encountered. If
more than one condition handler at that nesting level could handle the condition, the condition handler
that is activated is the most appropriate handler declared in that compound statement.

The most appropriate handler is a handler that is defined in the compound-statement which most closely
matches the SQLSTATE of the exception or completion condition.

For example, if the innermost compound statement declares a specific handler for SQLSTATE 22001 as
well as a handler for SQLEXCEPTION, the specific handler for SQLSTATE 22001 is the most appropriate
handler when an SQLSTATE 22001 is encountered. In this case, the specific handler is activated.

When a condition handler is activated, the condition handler action is executed. If the handler action
completes successfully or with an unhandled warning, the diagnostics area is cleared, and the type of the
condition handler (CONTINUE, EXIT, or UNDO handler) determines where control is returned. Additionally,
the SQLSTATE and SQLCODE SQL variables are cleared when a handler completes successfully or with an
unhandled warning.

If the handler action does not complete successfully, and an appropriate handler exists for the
condition encountered in the handler action, that condition handler is activated. Otherwise, the condition
encountered within the condition handler is unhandled.

Unhandled conditions: If a condition is encountered and an appropriate handler does not exist for that
condition, the condition is unhandled.

• If the unhandled condition is an exception, the SQL procedure, SQL function, or SQL trigger containing
the failing statement is terminated with an unhandled exception condition.

• If the unhandled condition is a warning or not found condition, processing continues with the next
statement. Note that the processing of the next SQL statement will cause information about the
unhandled condition in the diagnostics area to be overwritten, and evidence of the unhandled condition
will no longer exist.

Considerations for using SIGNAL or RESIGNAL statements with nested compound statements: If an
SQL-procedure-statement specified in the condition handler is either a SIGNAL or RESIGNAL statement
with an exception SQLSTATE, the compound statement terminates with the specified exception. This
happens even if this condition handler or another condition handler in the same compound statement
specifies CONTINUE, since these condition handlers are not in the scope of this exception. If the
compound statement is nested in another compound statement, condition handlers in the higher level

Chapter 8. SQL procedural language (SQL PL) 1603

compound statement may handle the exception because those condition handlers are within the scope of
the exception.

Null values in SQL parameters and SQL variables: If the value of an SQL parameter or SQL variable is
null and it is used in an SQL statement (such as CONNECT or DESCRIBE) that does not allow an indicator
variable, an error is returned.

Effect on open cursors: Upon exit from the compound-statement for any reason, all open cursors that are
declared in that compound statement are closed, unless they are declared to return result sets or unless
*ENDACTGRP is specified.

Considerations for SQLSTATE and SQLCODE SQL variables: The compound statement itself does
not affect the SQLSTATE and SQLCODE SQL variables. However, SQL statements contained within the
compound statement can affect the SQLSTATE and SQLCODE SQL variables. At the end of the compound
statement the SQLSTATE and SQLCODE SQL variables reflect the result of the last SQL statement
executed within that compound statement that caused a change to the SQLSTATE and SQLCODE SQL
variables. If the SQLSTATE and SQLCODE variables were not changed within the compound statement,
they contain the same values as when the compound statement was entered.

Examples
Create a procedure body with a compound statement that performs the following actions.

1. Declares SQL variables.
2. Declares a cursor to return the salary of employees in a department determined by an IN parameter.
3. Declares an EXIT handler for the condition NOT FOUND (end of file) which assigns the value 6666 to

the OUT parameter medianSalary.
4. Select the number of employees in the given department into the SQL variable v_numRecords.
5. Fetch rows from the cursor in a WHILE loop until 50% + 1 of the employees have been retrieved.
6. Return the median salary.

 CREATE PROCEDURE DEPT_MEDIAN
 (IN deptNumber SMALLINT,
 OUT medianSalary DOUBLE)
 LANGUAGE SQL
 BEGIN
 DECLARE v_numRecords INTEGER DEFAULT 1;
 DECLARE v_counter INTEGER DEFAULT 0;
 DECLARE c1 CURSOR FOR
 SELECT salary FROM staff
 WHERE DEPT = deptNumber
 ORDER BY salary;
 DECLARE EXIT HANDLER FOR NOT FOUND
 SET medianSalary = 6666;
 /* initialize OUT parameter */
 SET medianSalary = 0;
 SELECT COUNT(*) INTO v_numRecords FROM staff
 WHERE DEPT = deptNumber;
 OPEN c1;
 WHILE v_counter < (v_numRecords / 2 + 1) DO
 FETCH c1 INTO medianSalary;
 SET v_counter = v_counter + 1;
 END WHILE;
 CLOSE c1;
 END

1604 IBM i: Db2 for i SQL Reference

FOR statement
The FOR statement executes a statement or group of statements for each row of a table.

Syntax

label:

FOR

for-loop-name AS

cursor-name CURSOR
WITHOUT HOLD

WITH HOLD

FOR

select-statement

DO SQL-procedure-statement ; END FOR

label

Description
label

Specifies the label for the FOR statement. If the ending label is specified, it must be the same as the
beginning label. The label name cannot be the same as the routine name or another label within the
same scope. For more information, see “References to SQL labels” on page 1584.

for-loop-name
Specifies the label for the implicit compound-statement that is generated to implement the FOR
statement. It follows the rules for the label of a compound-statement except that it cannot be used
with an ITERATE, GOTO, or LEAVE statement within the FOR statement. The for-loop-name is used to
qualify the column names returned by the specified select-statement. It must not be the same as any
label within the same scope. For more information, see “References to SQL labels” on page 1584.

Either the for-loop-name or label can be used to qualify other SQL variable names in the statement.

If for-loop-name is specified, then it should be used to qualify any other SQL variable names in the
statement when debugging the SQL function, SQL procedure, or SQL trigger.

cursor-name
Names a cursor.

WITH HOLD
Prevents the cursor from being closed as a consequence of a commit operation. A cursor declared
using the WITH HOLD clause is implicitly closed at commit time only if the connection associated with
the cursor is ended during the commit operation. For more information, see “DECLARE CURSOR” on
page 1215.

select-statement
Specifies the select statement of the cursor.

Each expression in the select list must have a name. If an expression is not a simple column name, the
AS clause must be used to name the expression. If the AS clause is specified, that name is used for
the variable and must be unique.

SQL-procedure-statement
Specifies the SQL statements to be executed for each row of the result table of the cursor. The SQL
statements should not include an OPEN, FETCH, or CLOSE specifying the cursor name of the FOR
statement.

Chapter 8. SQL procedural language (SQL PL) 1605

Notes
FOR statement rules: The FOR statement executes one or multiple statements for each row in a result
table of the cursor. The cursor is defined by specifying a select list that describes the columns and rows
selected. The statements within the FOR statement are executed for each row selected.

The select list must consist of unique column names and the objects referenced in the select-statement
must exist when the function, procedure, or trigger is created.

The cursor specified in a FOR statement cannot be referenced outside the FOR statement and cannot be
specified on an OPEN, FETCH, or CLOSE statement.

Handler warning: Handlers may be used to handle errors that might occur on the open of the cursor or
fetch of a row using the cursor in the FOR statement. Handlers defined to handle these open or fetch
conditions should not be CONTINUE handlers as they may cause the FOR statement to loop indefinitely.

Example
In this example, the FOR statement is used to specify a cursor that selects 3 columns from the employee
table. For every row selected, SQL variable fullname is set to the last name followed by a comma, the first
name, a blank, and the middle initial. Each value for fullname is inserted into table TNAMES.

 BEGIN
 DECLARE fullname CHAR(40);
 FOR vl AS
 c1 CURSOR FOR
 SELECT firstnme, midinit, lastname FROM employee
 DO
 SET fullname =
 lastname || ', ' || firstnme ||' ' || midinit;
 INSERT INTO TNAMES VALUES (fullname);
 END FOR;
 END;

1606 IBM i: Db2 for i SQL Reference

GET DIAGNOSTICS statement
The GET DIAGNOSTICS statement obtains information about the previous SQL statement that was
executed. The syntax of GET DIAGNOSTICS in an SQL function, SQL procedure, or SQL trigger is a subset
of what is supported as a GET DIAGNOSTICS statement in other contexts.

See “GET DIAGNOSTICS” on page 1332 for details.

Syntax

label:

GET
CURRENT

STACKED

DIAGNOSTICS statement-information

condition-information

combined-information

statement-information
,

SQL-variable-name-1

SQL-parameter-name-1

 = statement-information-item

DB2_GET_DIAGNOSTICS_DIAGNOSTICS

condition-information
CONDITION SQL-variable-name-2

SQL-parameter-name-2

integer

,

SQL-variable-name-3

SQL-parameter-name-3

 = connection-information-item

condition-information-item

combined-information
SQL-variable-name-4

SQL-parameter-name-4

 = ALL

,

STATEMENT

CONDITION

CONNECTION SQL-variable-name-5

SQL-parameter-name-5

integer

1

Notes:
1 STATEMENT can only be specified once. If SQL-variable-name-5, SQL-parameter-name-5, or integer
is not specified, CONDITION and CONNECTION can only be specified once.

statement-information-item

Chapter 8. SQL procedural language (SQL PL) 1607

COMMAND_FUNCTION

COMMAND_FUNCTION_CODE

DB2_DIAGNOSTIC_CONVERSION_ERROR

DB2_LAST_ROW

DB2_NUMBER_CONNECTIONS

DB2_NUMBER_PARAMETER_MARKERS

DB2_NUMBER_RESULT_SETS

DB2_NUMBER_ROWS

DB2_NUMBER_SUCCESSFUL_SUBSTMTS

DB2_RELATIVE_COST_ESTIMATE

DB2_RETURN_STATUS

DB2_ROW_COUNT_SECONDARY

DB2_ROW_LENGTH

DB2_SQL_ATTR_CONCURRENCY

DB2_SQL_ATTR_CURSOR_CAPABILITY

DB2_SQL_ATTR_CURSOR_HOLD

DB2_SQL_ATTR_CURSOR_ROWSET

DB2_SQL_ATTR_CURSOR_SCROLLABLE

DB2_SQL_ATTR_CURSOR_SENSITIVITY

DB2_SQL_ATTR_CURSOR_TYPE

DB2_SQL_NESTING_LEVEL

DYNAMIC_FUNCTION

DYNAMIC_FUNCTION_CODE

MORE

NUMBER

ROW_COUNT

TRANSACTION_ACTIVE

TRANSACTIONS_COMMITTED

TRANSACTIONS_ROLLED_BACK

connection-information-item

1608 IBM i: Db2 for i SQL Reference

CONNECTION_NAME

DB2_AUTHENTICATION_TYPE

DB2_AUTHORIZATION_ID

DB2_CONNECTION_METHOD

DB2_CONNECTION_NUMBER

DB2_CONNECTION_STATE

DB2_CONNECTION_STATUS

DB2_CONNECTION_TYPE

DB2_DYN_QUERY_MGMT

DB2_ENCRYPTION_TYPE

DB2_PRODUCT_ID

DB2_SERVER_CLASS_NAME

DB2_SERVER_NAME

condition-information-item

Chapter 8. SQL procedural language (SQL PL) 1609

CATALOG_NAME

CLASS_ORIGIN

COLUMN_NAME

CONDITION_IDENTIFIER

CONDITION_NUMBER

CONSTRAINT_CATALOG

CONSTRAINT_NAME

CONSTRAINT_SCHEMA

CURSOR_NAME

DB2_ERROR_CODE1

DB2_ERROR_CODE2

DB2_ERROR_CODE3

DB2_ERROR_CODE4

DB2_INTERNAL_ERROR_POINTER

DB2_LINE_NUMBER

DB2_MESSAGE_ID

DB2_MESSAGE_ID1

DB2_MESSAGE_ID2

DB2_MESSAGE_KEY

DB2_MODULE_DETECTING_ERROR

DB2_NUMBER_FAILING_STATEMENTS

DB2_OFFSET

DB2_ORDINAL_TOKEN_n

DB2_PARTITION_NUMBER

DB2_REASON_CODE

DB2_RETURNED_SQLCODE

DB2_ROW_NUMBER

DB2_SQLERRD_SET

DB2_SQLERRD1

DB2_SQLERRD2

DB2_SQLERRD3

DB2_SQLERRD4

DB2_SQLERRD5

DB2_SQLERRD6

DB2_TOKEN_COUNT

DB2_TOKEN_STRING

MESSAGE_LENGTH

MESSAGE_OCTET_LENGTH

MESSAGE_TEXT

PARAMETER_MODE

PARAMETER_NAME

PARAMETER_ORDINAL_POSITION

RETURNED_SQLSTATE

ROUTINE_CATALOG

ROUTINE_NAME

ROUTINE_SCHEMA

SCHEMA_NAME

SERVER_NAME

SPECIFIC_NAME

SUBCLASS_ORIGIN

TABLE_NAME

TRIGGER_CATALOG

TRIGGER_NAME

TRIGGER_SCHEMA

1610 IBM i: Db2 for i SQL Reference

Description
label

Specifies the label for the GET DIAGNOSTICS statement. If the ending label is specified, it must be
the same as the beginning label. The label name cannot be the same as the routine name or another
label within the same scope. For more information, see “References to SQL labels” on page 1584.

CURRENT or STACKED
Specifies which diagnostics area to access.
CURRENT

Specifies to access the first diagnostics area. It corresponds to the previous SQL statement that
was executed and that was not a GET DIAGNOSTICS statement. This is the default.

STACKED
Specifies to access the second diagnostics area. The second diagnostics area is only available
within a handler. It corresponds to the previous SQL statement that was executed before the
handler was entered and that was not a GET DIAGNOSTICS statement. If the GET DIAGNOSTICS
statement is the first statement within a handler, then the first diagnostics area and the second
diagnostics area contain the same diagnostics information.

statement-information
Returns information about the last SQL statement executed.
SQL-variable-name-1 or SQL-parameter-name-1

Identifies a variable described in the program in accordance with the rules for declaring SQL
variables and SQL parameters. The data type of the SQL variable or SQL parameter must be
compatible with the data type as specified in Table 99 on page 1349 for the specified condition
information item. The variable is assigned the value of the specified statement information item
according to the retrieval assignment rules described in “Retrieval assignment” on page 93. If the
value is truncated when assigning it to the SQL variable or SQL parameter, a warning is returned
(SQLSTATE 01004) and the GET_DIAGNOSTICS_DIAGNOSTICS item of the diagnostics area is
updated with the details of this condition.

If a specified diagnostic item does not contain diagnostic information , then the SQL variable or
SQL parameter is set to a default value, based on its data type: 0 for an exact numeric diagnostic
item, an empty string for a VARCHAR diagnostic item and blanks for a CHAR diagnostic item.

condition-information
Returns information about the condition or conditions that occurred when the last SQL statement was
executed.
CONDITION SQL-variable-name-2 or SQL-parameter-name-2 or integer

Identifies the diagnostic for which information is requested. Each diagnostic that occurs while
executing an SQL statement is assigned an integer. The value 1 indicates the first diagnostic,
2 indicates the second diagnostic and so on. When the value is 1, the diagnostic information
corresponds to the condition indicated by the SQLSTATE value returned by the execution of the
previous SQL statement (other than a GET DIAGNOSTICS statement). Values of 2 to n represent
other conditions that were reported while executing the SQL statement. The value of 2 is the
earliest condition that occurred, with each additional value happening later in time.
The variable specified must be declared in the program in accordance with the rules for declaring
exact numeric variables with zero scale. It must not be a global variable. The value specified must
not be less than one or greater than the number of available diagnostics.

SQL-variable-name-3 or SQL-parameter-name-3
Identifies a variable described in the program in accordance with the rules for declaring SQL
variables or SQL parameters. The data type of the SQL variable or SQL parameter must be
compatible with the data type as specified in Table 99 on page 1349 for the specified condition
information item. The SQL variable or SQL parameter is assigned the value of the specified
condition information item according to the retrieval assignment rules described in “Retrieval
assignment” on page 93. If the value is truncated when assigning it to the SQL variable or SQL
parameter, a warning is returned (SQLSTATE 01004) and the GET_DIAGNOSTICS_DIAGNOSTICS
item of the diagnostics area is updated with the details of this condition.

Chapter 8. SQL procedural language (SQL PL) 1611

If a specified diagnostic item does not contain diagnostic information , then the SQL variable or
SQL parameter is set to a default value, based on its data type: 0 for an exact numeric diagnostic
item, an empty string for a VARCHAR diagnostic item and blanks for a CHAR diagnostic item.

combined-information
Returns multiple information items combined into one string.

If the GET DIAGNOSTICS statement is specified in an SQL function, SQL procedure, or trigger, the
GET DIAGNOSTICS statement must be the first statement specified in the handler that will handle
the error.

If information is wanted about a warning,

• If a handler will get control for the warning condition, the GET DIAGNOSTICS statement must be
the first statement specified in that handler.

• If a handler will not get control for the warning condition, the GET DIAGNOSTICS statement
must be the next statement executed after that previous statement.

SQL-variable-name-4 or SQL-parameter-name-4
Identifies a variable described in the program in accordance with the rules for declaring
SQL variables or SQL parameters. The data type of the SQL variable or SQL parameter
must be VARCHAR. The SQL variable or SQL parameter is assigned according to the
retrieval assignment rules described in “Retrieval assignment” on page 93. If the length
of SQL-variable-name-4 or SQL-parameter-name-4 is not sufficient to hold the full returned
diagnostic string, the string is truncated, a warning is returned (SQLSTATE 01004) and the
GET_DIAGNOSTICS_DIAGNOSTICS item of the diagnostics area is updated with the details of
this condition.

ALL
Indicates that all diagnostic items that are set for the last SQL statement executed should be
combined into one string. The format of the string is a semicolon separated list of all of the
available diagnostic information in the form:

item-name=character-form-of-the-item-value;

The character form of a positive numeric value will not contain a leading plus sign (+) unless
the item is RETURNED_SQLCODE. In this case, a leading plus sign (+) is added. For example:

 NUMBER=1;RETURNED_SQLSTATE=02000;DB2_RETURNED_SQLCODE=+100;

Only items that contain diagnostic information are included in the string. There
are also no entries in this string for the DB2_GET_DIAGNOSTICS_DIAGNOSTICS and
DB2_SQL_NESTING_LEVEL items.

STATEMENT
Indicates that all statement-information-item diagnostic items that contain diagnostic
information for the last SQL statement executed should be combined into one string. The
format is the same as described above for ALL.

CONDITION
Indicates that condition-information-item diagnostic items that contain diagnostic information
for the last SQL statement executed should be combined into one string. If SQL-variable-
name-5 or SQL-parameter-name-5 or integer is specified, then the format is the same as
described above for the ALL option. If SQL-variable-name-5 or SQL-parameter-name-5 or
integer is not specified, then the format includes a condition number entry at the beginning of
the information for that condition in the form:

CONDITION_NUMBER=X;item-name=character-form-of-the-item-value;

where X is the number of the condition. For example:

CONDITION_NUMBER=1;RETURNED_SQLSTATE=02000;RETURNED_SQLCODE=+100;
CONDITION_NUMBER=2;RETURNED_SQLSTATE=01004;

1612 IBM i: Db2 for i SQL Reference

CONNECTION
Indicates that connection-information-item diagnostic items that contain diagnostic
information for the last SQL statement executed should be combined into one string. If
SQL-variable-name-5 or SQL-parameter-name-5 or integer is specified, then the format is the
same as described above for ALL. If SQL-variable-name-5 or SQL-parameter-name-5 or integer
is not specified, then the format includes a connection number entry at the beginning of the
information for that condition in the form:

CONNECTION_NUMBER=X;item-name=character-form-of-the-item-value;

where X is the number of the condition. For example:

CONNECTION_NUMBER=1;CONNECTION_NAME=SVL1;DB2_PRODUCT_ID=DSN07010;

SQL-variable-name-5 or SQL-parameter-name-5 or integer
Identifies the diagnostic for which ALL CONDITION or ALL CONNECTION information is
requested. The SQL variable or SQL parameter specified must be described in the program
in accordance with the rules for declaring integer SQL variables or SQL parameters. The value
specified must not be less than one or greater than the number of available diagnostics.

statement-information-item
For a description of the statement-information-items, see “statement-information-item” on page
1338.

connection-information-item
For a description of the connection-information-items, see “connection-information-item” on page
1341.

condition-information-item
For a description of the condition-information-items, see “condition-information-item” on page 1342.

Notes
Effect of statement:: The GET DIAGNOSTICS statement does not change the contents of the diagnostics
area except for DB2_GET_DIAGNOSTICS_DIAGNOSTICS.

Considerations for the SQLCODE and SQLSTATE SQL variables: The GET DIAGNOSTICS statement
changes the value of the SQLSTATE and SQLCODE SQL variables.

Case of return values: Values for identifiers in returned diagnostic items are not delimited and are case
sensitive. For example, a table name of "abc" would be returned, simply as abc.

Data types for items: When a diagnostic item is assigned to a SQL variable or SQL parameter, the SQL
variable or SQL parameter must be compatible with the data type of the diagnostic item. For more
information, see Table 99 on page 1349.

Keyword Synonym: The following keywords are synonyms supported for compatibility to prior releases.
These keywords are non-standard and should not be used:

• The keyword EXCEPTION can be used as a synonym for CONDITION.
• The keyword RETURN_STATUS can be used as a synonym for DB2_RETURN_STATUS.

Example
Example 1:: In an SQL procedure, execute a GET DIAGNOSTICS statement to determine how many rows
were updated.

 CREATE PROCEDURE sqlprocg (IN deptnbr VARCHAR(3))
 LANGUAGE SQL
 BEGIN
 DECLARE SQLSTATE CHAR(5);
 DECLARE rcount INTEGER;
 UPDATE CORPDATA.PROJECT
 SET PRSTAFF = PRSTAFF + 1.5
 WHERE DEPTNO = deptnbr;

Chapter 8. SQL procedural language (SQL PL) 1613

 GET DIAGNOSTICS rcount = ROW_COUNT;
 /* At this point, rcount contains the number of rows that were updated. */
 END

Example 2:: Within an SQL procedure, handle the returned status value from the invocation of a stored
procedure called TRYIT. TRYIT could use the RETURN statement to explicitly return a status value or
a status value could be implicitly returned by the database manager. If the procedure is successful, it
returns a value of zero.

 CREATE PROCEDURE TESTIT ()
 LANGUAGE SQL
 A1: BEGIN
 DECLARE RETVAL INTEGER DEFAULT 0;
 ...
 CALL TRYIT
 GET DIAGNOSTICS RETVAL = RETURN_STATUS;
 IF RETVAL <> 0 THEN
 ...
 LEAVE A1;
 ELSE
 ...
 END IF;
 END A1

Example 3:: In an SQL procedure, execute a GET DIAGNOSTICS statement to retrieve the message text for
an error.

 CREATE PROCEDURE divide2 (IN numerator INTEGER,
 IN denominator INTEGER,
 OUT divide_result INTEGER,
 OUT divide_error VARCHAR(70))
 LANGUAGE SQL
 BEGIN
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 GET DIAGNOSTICS EXCEPTION 1
 divide_error = MESSAGE_TEXT;
 SET divide_result = numerator / denominator;
 END;

1614 IBM i: Db2 for i SQL Reference

GOTO statement
The GOTO statement branches to a user-defined label within an SQL function, SQL procedure, or SQL
trigger.

Syntax

label1:

GOTO label2

Description
label1

Specifies the label for the GOTO statement. The label name cannot be the same as the routine name
or another label within the same scope. For more information, see “References to SQL labels” on page
1584.

label2
Specifies the labelled statement where processing is to continue. The labelled statement and the
GOTO statement must both be in the same scope:

• If the GOTO statement is defined in a FOR statement, label2 must be defined inside the same FOR
statement, excluding a nested FOR statement or nested compound statement.

• If the GOTO statement is defined outside a FOR statement, label2 must not be defined within a FOR
statement or nested compound statement.

• If the GOTO statement is defined in a condition handler, label2 must be defined inside the same
handler.

• If the GOTO statement is defined outside a condition handler, label2 must not be defined within a
condition handler.

If label2 is not defined within a scope that the GOTO statement can reach, an error is returned.

Notes
Using a GOTO statement: It is recommended that the GOTO statement be used sparingly. This statement
interferes with normal sequence of processing SQL statements, thus making a routine more difficult to
read and maintain. Before using a GOTO statement, determine whether another statement, such as IF or
LEAVE, can be used in place, to eliminate the need for a GOTO statement.

Effect on open cursors: When a GOTO statement transfers control out of a compound statement, all
open cursors that are declared in the compound statement that contains the GOTO statement are closed,
unless they are declared to return result sets or unless *ENDACTGRP is specified.

Effect on ATOMIC compound statements: When a GOTO statement transfers control out of an ATOMIC
compound statement, the savepoint that was implicitly started when the ATOMIC compound statement
was entered is released.

Considerations for SQLSTATE and SQLCODE variables: The GOTO statement does not affect the
SQLSTATE and SQLCODE SQL variables. At the end of the GOTO statement the SQLSTATE and SQLCODE
SQL variables reflect the result of the last statement executed before that GOTO statement.

Example
In the following statement, the parameters rating and v_empno are passed in to the procedure. The time
in service is returned as a date duration in output parameter return_parm. If the time in service with the
company is less then 6 months, the GOTO statement transfers control to the end of the procedure and
new_salary is left unchanged.

Chapter 8. SQL procedural language (SQL PL) 1615

CREATE PROCEDURE adjust_salary
 (IN v_empno CHAR(6),
 IN rating INTEGER,
 OUT return_parm DECIMAL(8,2))
 LANGUAGE SQL
 MODIFIES SQL DATA
 BEGIN
 DECLARE new_salary DECIMAL(9,2);
 DECLARE service DECIMAL(8,2);
 SELECT salary, CURRENT_DATE - hiredate
 INTO new_salary, service
 FROM employee
 WHERE empno = v_empno;
 IF service < 600
 THEN GOTO exit1;
 END IF;
 IF rating = 1
 THEN SET new_salary = new_salary + (new_salary * .10);
 ELSEIF rating = 2
 THEN SET new_salary = new_salary + (new_salary * .05);
 END IF;
 UPDATE employee
 SET salary = new_salary
 WHERE empno = v_empno;

 EXIT1: SET return_parm = service;
 END

1616 IBM i: Db2 for i SQL Reference

IF statement
The IF statement executes different sets of SQL statements based on the result of search conditions.

Syntax

label:

IF search-condition THEN SQL-procedure-statement ;

ELSEIF search-condition THEN SQL-procedure-statement ;

ELSE SQL-procedure-statement ;

END IF

Description
label

Specifies the label for the IF statement. The label name cannot be the same as the routine name or
another label within the same scope. For more information, see “References to SQL labels” on page
1584.

search-condition
Specifies the search-condition for which an SQL statement should be executed. If the condition is
unknown or false, processing continues to the next search condition, until either a condition is true or
processing reaches the ELSE clause.

SQL-procedure-statement
Specifies an SQL statement to execute if the preceding search-condition is true.

Notes
Considerations for SQLSTATE and SQLCODE SQL variables: When the first SQL-procedure-statement in
the IF statement is executed, the SQLSTATE and SQLCODE SQL variables reflect the result of evaluating
the search-conditions of that IF statement. If an IF statement does not include an ELSE clause and
none of the search-conditions evaluate to true, then when the statement that follows the IF statement is
executed, the SQLSTATE and SQLCODE SQL variables reflect the result of evaluating the search conditions
of that IF statement.

Example
The following SQL procedure accepts two IN parameters: an employee number and an employee rating.
Depending on the value of rating, the employee table is updated with new values in the salary and bonus
columns.

CREATE PROCEDURE UPDATE_SALARY_IF
 (IN employee_number CHAR(6), INOUT rating SMALLINT)
 LANGUAGE SQL
 MODIFIES SQL DATA
 BEGIN
 DECLARE not_found CONDITION FOR SQLSTATE '02000';

Chapter 8. SQL procedural language (SQL PL) 1617

 DECLARE EXIT HANDLER FOR not_found
 SET rating = -1;
 IF rating = 1
 THEN UPDATE employee
 SET salary = salary * 1.10, bonus = 1000
 WHERE empno = employee_number;
 ELSEIF rating = 2
 THEN UPDATE employee
 SET salary = salary * 1.05, bonus = 500
 WHERE empno = employee_number;
 ELSE UPDATE employee
 SET salary = salary * 1.03, bonus = 0
 WHERE empno = employee_number;
 END IF;
 END

1618 IBM i: Db2 for i SQL Reference

INCLUDE statement
The INCLUDE statement inserts application code, including declarations and statements, into an SQL
routine body. The included code can either be SQL code that is immediately added to the routine
definition or ILE C code to be added during the create of the SQL procedure, SQL function, or SQL trigger.

Authorization
The authorization ID of the statement must have the system authorities *OBJOPR and *READ on the file
that contains the member.

Syntax
INCLUDE

SQL member-name

*LIBL /

*CURLIB /

library-name /

file-name (member-name)

'string'

library-name / file-name (member-name)

'string'

Description
The INCLUDE statement must be specified at a point in the source where the included source statements
are syntactically acceptable. Both forms of the INCLUDE statement can be specified as an SQL-procedure-
statement within the body of a compound-statement. An INCLUDE SQL statement can also be specified
within the declarations and handlers of a compound-statement. There is no limit to the number of includes
that can be specified in one statement, but the included source cannot contain an embedded include.
SQL

The included source contains only SQL syntax that is allowed in an SQL-routine-body or SQL-trigger-
body. These statements will be expanded inline as part of the SQL-routine-body or SQL-trigger-body.
They will be processed as if they are directly part of the statement text for the statement. The
statement text saved for the SQL procedure, function, or trigger will contain this included source.
If the QSYS2.GENERATE_SQL procedure is used, the generated source will show the expanded SQL
statements wherever an INCLUDE SQL was used.

member-name
Identifies a member to be included within the SQL procedure, SQL function, or SQL trigger. The
source file and library will be determined using the INCFILE option on the SET OPTION statement.
For more information, see “SET OPTION” on page 1512.

file-name (member-name)
Identifies a source file and member to be included within the SQL procedure, SQL function, or SQL
trigger. The library containing the source file is specified in one of these ways:
*LIBL

All libraries in the job's library list are searched until the first match is found. This is the
default.

*CURLIB
The current library for the job is searched. If no library is specified as the current library for the
job, QGPL is used.

Chapter 8. SQL procedural language (SQL PL) 1619

library-name
Identifies the name of the library.

'string'
Identifies a source stream file to be included. The string will be handled as a normal SQL string
literal; the source stream file rules for escaping characters will not be followed. No suffix will be
appended to the string.

SQL not specified
The included source contains only ILE C language statements or embedded SQL statements prefixed
with EXEC SQL. A corresponding EXEC SQL INCLUDE statement will be generated as part of the
program source that is generated for this SQL procedure, SQL function, or SQL trigger.

If the include requires additional service programs to be bound during the creation of the procedure,
function, or trigger, you can use the BINDOPT option on the SET OPTION statement to add a
BNDSRVPGM parameter to reference exports found in other service programs. For more information,
see “SET OPTION” on page 1512.

library-name / file-name (member-name)
Specifies the fully qualified source file and member containing ILE C language statements to be
included during the creation of the SQL procedure, SQL function, or SQL trigger.

'string'
Specifies the complete path for a source stream file containing ILE C language statements to be
included during the creation of the SQL procedure, SQL function, or SQL trigger.

Notes
CCSID considerations: If the CCSID of the SQL statement is different from the CCSID of the source for
the INCLUDE statement, the INCLUDE source is converted to the CCSID of the SQL statement.

Source considerations: The source of a C include should not exceed 160 source columns. Anything
beyond that position will be truncated.

String literals in an SQL include cannot be longer than the width of the embedding source.

The source of an SQL include should contain complete SQL statements. Although not enforced,
unpredictable results may occur if this rule is violated.

SQL trigger consideration: When an SQL trigger uses the INCLUDE statement to include ILE C, any
operation that requires the trigger program to be rebuilt has a runtime dependency on the include file. If
the trigger program is not found, it can be automatically rebuilt by the database when the trigger is fired,
when the table is copied, or when the table is restored. If the include file is not available, the trigger will
not create and any function requiring the trigger will fail.

Examples

• Use the INCLUDE statement to embed a common condition handler in an SQL function.

CREATE FUNCTION H1 ()
RETURNS INT
DETERMINISTIC
NO EXTERNAL ACTION
NOT FENCED
BEGIN
 DECLARE RES INT;
 INCLUDE SQL SQLINCLUDE(COMMONCOND);

 SET RES = AFUNCTION();
 RETURN RES;
END;

COMMONCOND in file SQLINCLUDE in the library list contains the following. The condition handler
calls an SQL procedure named ERR_PROC for a specific not found condition. As part of the message
handling, it uses the ROUTINE_SCHEMA and ROUTINE_SPECIFIC_NAME built-in global variables to
indicate the source of the error.

1620 IBM i: Db2 for i SQL Reference

DECLARE NO_FUNC CONDITION FOR SQLSTATE '42704';
DECLARE CONTINUE HANDLER FOR NO_FUNC
 BEGIN
 CALL ERR_PROC(SYSIBM.ROUTINE_SCHEMA CONCAT '.' CONCAT
 SYSIBM.ROUTINE_SPECIFIC_NAME CONCAT
 ': Function not found');
 END;

• Use the INCLUDE statement to embed a call to a C function. It will use the Qp0zLprintf interface to
print the input parameter.

CREATE PROCEDURE LPRINTF(P1 VARCHAR(1000))
BEGIN
 IF P1 IS NOT NULL THEN
 INCLUDE QGPL/CINCLUDE(MYLPRINTF);
 END IF;
END;

Member MYLPRINTF in file CINCLUDE in library QGPL contains the following code. Note that this include
has a reference to the function's input parameter. You need to examine the generated C code to
determine what the names are.

{
 /* declare prototype for Qp0zLprintf */
 extern int Qp0zLprintf (char *format, ...);

 /* print input parameter to job log */
 Qp0zLprintf("%.*s\n", LPRINTF.P1.LEN, LPRINTF.P1.DAT);
}

Chapter 8. SQL procedural language (SQL PL) 1621

ITERATE statement
The ITERATE statement causes the flow of control to return to the beginning of a labelled loop.

Syntax

label:

ITERATE target-label

Description
label

Specifies the label for the ITERATE statement. The label name cannot be the same as the routine
name or another label within the same scope. For more information, see “References to SQL labels”
on page 1584.

target-label
Specifies the label of the FOR, LOOP, REPEAT, or WHILE statement to which the flow of control is
passed. target-label must be defined as a label for a FOR, LOOP, REPEAT, or WHILE statement. The
ITERATE statement must be in that FOR, LOOP, REPEAT, or WHILE statement, or in the block of code
that is directly or indirectly nested within that statement, subject to the following restrictions:

• If the ITERATE statement is in a condition handler, target-label must be defined in that condition
handler.

• If the ITERATE statement is not in a condition handler, target-label must not be defined in a
condition handler.

• If the ITERATE statement is in a FOR statement, target-label must be that label on that FOR
statement, or the label must be defined inside that FOR statement.

Notes
Considerations for SQLSTATE and SQLCODE variables: The ITERATE statement does not affect the
SQLSTATE and SQLCODE SQL variables. At the end of the ITERATE statement the SQLSTATE and SQLCODE
SQL variables reflect the result of the last statement executed before that ITERATE statement.

Example
This example uses a cursor to return information for a new department. If the not_found condition
handler was invoked, the flow of control passes out of the loop. If the value of v_dept is 'D11', an ITERATE
statement passes the flow of control back to the top of the LOOP statement. Otherwise, a new row is
inserted into the DEPARTMENT table.

 CREATE PROCEDURE ITERATOR ()
 LANGUAGE SQL
 MODIFIES SQL DATA
 BEGIN
 DECLARE v_dept CHAR(3);
 DECLARE v_deptname VARCHAR(29);
 DECLARE v_admdept CHAR(3);
 DECLARE at_end INTEGER DEFAULT 0;
 DECLARE not_found CONDITION FOR SQLSTATE '02000';
 DECLARE c1 CURSOR FOR
 SELECT deptno,deptname,admrdept
 FROM department
 ORDER BY deptno;
 DECLARE CONTINUE HANDLER FOR not_found
 SET at_end = 1;
 OPEN c1;
 ins_loop:
 LOOP
 FETCH c1 INTO v_dept, v_deptname, v_admdept;
 IF at_end = 1 THEN
 LEAVE ins_loop;

1622 IBM i: Db2 for i SQL Reference

 ELSEIF v_dept ='D11' THEN
 ITERATE ins_loop;
 END IF;
 INSERT INTO department (deptno,deptname,admrdept)
 VALUES('NEW', v_deptname, v_admdept);
 END LOOP;
 CLOSE c1;
 END

Chapter 8. SQL procedural language (SQL PL) 1623

LEAVE statement
The LEAVE statement continues execution by leaving a block or loop.

Syntax

label1:

LEAVE label2

Description
label1

Specifies the label for the LEAVE statement. The label name cannot be the same as the routine name
or another label within the same scope. For more information, see “References to SQL labels” on page
1584.

label2
Specifies the label of the compound, FOR, LOOP, REPEAT, or WHILE statement to exit.

The LEAVE statement cannot be used to leave a handler.

Notes
Effect on open cursors: When a LEAVE statement transfers control out of a compound statement, all
open cursors that are declared in the compound statement that contains the LEAVE statement are closed,
unless they are declared to return result sets or unless *ENDACTGRP is specified.

Considerations for SQLSTATE and SQLCODE variables: The LEAVE statement does not affect the
SQLSTATE and SQLCODE SQL variables. At the end of the LEAVE statement the SQLSTATE and SQLCODE
SQL variables reflect the result of the last statement executed before that LEAVE statement.

Examples
The example contains a loop that fetches data for cursor c1. If the value of SQL variable at_end is not
zero, the LEAVE statement transfers control out of the loop.

 CREATE PROCEDURE LEAVE_LOOP (OUT COUNTER INTEGER)
 LANGUAGE SQL
 BEGIN
 DECLARE v_counter INTEGER;
 DECLARE v_firstnme VARCHAR(12);
 DECLARE v_midinit CHAR(1);
 DECLARE v_lastname VARCHAR(15);
 DECLARE at_end SMALLINT DEFAULT 0;
 DECLARE not_found CONDITION FOR SQLSTATE '02000';
 DECLARE c1 CURSOR FOR
 SELECT firstnme, midinit, lastname
 FROM employee;
 DECLARE CONTINUE HANDLER FOR not_found
 SET at_end = 1;
 SET v_counter = 0;
 OPEN c1;
 fetch_loop:
 LOOP
 FETCH c1 INTO v_firstnme, v_midinit, v_lastname;
 IF at_end <> 0 THEN
 LEAVE fetch_loop;
 END IF;
 SET v_counter = v_counter + 1;
 END LOOP fetch_loop;
 SET counter = v_counter;
 CLOSE c1;
 END

1624 IBM i: Db2 for i SQL Reference

LOOP statement
The LOOP statement repeats the execution of a statement or a group of statements.

Syntax

label:

LOOP SQL-procedure-statement ; END LOOP

label

Description
label

Specifies the label for the LOOP statement. If the ending label is specified, it must be the same as the
beginning label. The label name cannot be the same as the routine name or another label within the
same scope. For more information, see “References to SQL labels” on page 1584.

SQL-procedure statement
Specifies an SQL statement to be executed in the loop

Notes
Considerations for the diagnostics area: At the beginning of the first iteration of the LOOP statement,
and with every subsequent iteration, the diagnostics area is cleared.

Considerations for SQLSTATE and SQLCODE variables: Prior to executing the first SQL-procedure
statement within that LOOP statement, the SQLSTATE and SQLCODE values reflect the last values that
were set prior to the LOOP statement. If the loop is terminated with a GOTO or a LEAVE statement,
the SQLSTATE and SQLCODE values reflect the successful completion of that statement. When the LOOP
statement iterates, the SQLSTATE and SQLCODE values reflect the result of the last SQL statement
executed within the LOOP statement.

Examples
This procedure uses a LOOP statement to fetch values from the employee table. Each time the loop
iterates, the OUT parameter counter is incremented and the value of v_midinit is checked to ensure that
the value is not a single space (' '). If v_midinit is a single space, the LEAVE statement passes the flow of
control outside of the loop.

 CREATE PROCEDURE LOOP_UNTIL_SPACE (OUT COUNTER INTEGER)
 LANGUAGE SQL
 BEGIN
 DECLARE v_counter INTEGER DEFAULT 0;
 DECLARE v_firstnme VARCHAR(12);
 DECLARE v_midinit CHAR(1);
 DECLARE v_lastname VARCHAR(15);
 DECLARE c1 CURSOR FOR
 SELECT firstnme, midinit, lastname
 FROM employee;
 DECLARE CONTINUE HANDLER FOR NOT FOUND
 SET counter = -1;
 OPEN c1;
 fetch_loop:
 LOOP
 FETCH c1 INTO v_firstnme, v_midinit, v_lastname;
 IF v_midinit = ' ' THEN
 LEAVE fetch_loop;
 END IF;
 SET v_counter = v_counter + 1;
 END LOOP fetch_loop;
 SET counter = v_counter;
 CLOSE c1;
 END

Chapter 8. SQL procedural language (SQL PL) 1625

PIPE statement
The PIPE statement returns one row from a table function. An SQL table function that uses a PIPE
statement is referred to as a pipelined function.

Syntax

label:

PIPE (

,

expression

NULL

)

(row-fullselect)

expression

NULL

Description
label

Specifies the label for the PIPE statement. The label name cannot be the same as the routine name
or another label within the same scope. For more information, see “References to SQL labels” on page
1584.

(expression, ...)
Specifies a row value is returned from the function. The number of expressions or NULL keywords in
the list must match the number of columns in the function result. The data types of each expression
must be assignable to the data type of the corresponding column defined for the function result, using
the storage assignment rules as described in “Assignments and comparisons” on page 89.

row-fullselect
Specifies a fullselect that returns a single row. The number of columns in the fullselect must match
the number of columns in the function result. The data types of the result table columns of the
fullselect must be assignable to the data types of the columns defined for the function result, using
the storage assignment rules as described in “Assignments and comparisons” on page 89. If the
result of the row fullselect is no rows, a null value is returned for each column. An error is returned if
there is more than one row in the result.

expression
Specifies a scalar value is returned from the function. The table function must return a single column
and the value of the expression must be assignable to that column.

NULL
Specifies that a null value is returned from the function. If there is more than one result column, a null
value is returned for each column.

Example
Use a PIPE statement to return rows from an SQL table function.

CREATE FUNCTION TRANSFORM() RETURNS TABLE (EMPLOYEE_NAME CHAR(20), UNIQUE# INT)
BEGIN
 DECLARE EMPNAME VARCHAR(15);
 DECLARE MYRECNUM INTEGER DEFAULT 1;
 DECLARE AT_END INTEGER DEFAULT 0;
 DECLARE EMP_CURSOR CURSOR FOR SELECT lastname FROM employee;
 DECLARE CONTINUE HANDLER FOR SQLSTATE '02000'
 SET AT_END = 1;

 OPEN EMP_CURSOR;
 MYLOOP: LOOP
 FETCH EMP_CURSOR INTO EMPNAME;
 IF AT_END = 1 THEN

1626 IBM i: Db2 for i SQL Reference

 LEAVE MYLOOP;
 END IF;
 PIPE (EMPNAME, MYRECNUM); -- return single row
 SET MYRECNUM = MYRECNUM + 1;
 END LOOP;

 CLOSE EMP_CURSOR;
 RETURN;
END;

Chapter 8. SQL procedural language (SQL PL) 1627

REPEAT statement
The REPEAT statement executes a statement or group of statements until a search condition is true.

Syntax

label:

REPEAT SQL-procedure-statement ; UNTIL search-condition

END REPEAT

label

Description
label

Specifies the label for the REPEAT statement. If the ending label is specified, it must be the same as
the beginning label. The label name cannot be the same as the routine name or another label within
the same scope. For more information, see “References to SQL labels” on page 1584.

SQL-procedure-statement
Specifies an SQL statement to be executed in the REPEAT loop.

search-condition
The search-condition is evaluated after each execution of the REPEAT loop. If the condition is true, the
REPEAT loop will exit. If the condition is unknown or false, the looping continues.

Notes
Considerations for the diagnostics area: At the beginning of the first iteration of the REPEAT statement,
and with every subsequent iteration, the diagnostics area is cleared.

Considerations for SQLSTATE and SQLCODE SQL variables: With each iteration of the REPEAT
statement, the SQLSTATE and SQLCODE SQL variables are cleared prior to executing the first SQL-
procedure-statement within the REPEAT statement. At the beginning of the first iteration of the REPEAT
statement, the SQLSTATE and SQLCODE values reflect the last values that were set prior to the REPEAT
statement. At the beginning of iterations 2 through n of the REPEAT statement, the SQLSTATE and
SQLCODE values reflect the result of evaluating the search condition in the UNTIL clause of that REPEAT
statement. If the loop is terminated with a GOTO, ITERATE, or LEAVE statement, the SQLSTATE and
SQLCODE values reflect the successful completion of that statement. Otherwise, after the END REPEAT of
the REPEAT statement completes, the SQLSTATE and SQLCODE values reflect the result of evaluating the
search condition in the UNTIL clause of that REPEAT statement.

Example
A REPEAT statement fetches rows from a table until the not_found condition handler is invoked.

 CREATE PROCEDURE REPEAT_STMT (OUT COUNTER INTEGER)
 LANGUAGE SQL
 BEGIN
 DECLARE v_counter INTEGER DEFAULT 0;
 DECLARE v_firstnme VARCHAR(12);
 DECLARE v_midinit CHAR(1);
 DECLARE v_lastname VARCHAR(15);
 DECLARE at_end SMALLINT DEFAULT 0;
 DECLARE not_found CONDITION FOR SQLSTATE '02000';
 DECLARE c1 CURSOR FOR
 SELECT firstnme, midinit, lastname
 FROM employee;
 DECLARE CONTINUE HANDLER FOR not_found
 SET at_end = 1;

1628 IBM i: Db2 for i SQL Reference

 OPEN c1;
 fetch_loop:
 REPEAT
 FETCH c1 INTO v_firstnme, v_midinit, v_lastname;
 SET v_counter = v_counter + 1;
 UNTIL at_end > 0
 END REPEAT fetch_loop;
 SET counter = v_counter;
 CLOSE c1;
 END

Chapter 8. SQL procedural language (SQL PL) 1629

RESIGNAL statement
The RESIGNAL statement is used within a condition handler to re-raise the current condition, or raise an
alternate condition so that it can be processed at a higher level. It causes an exception, warning, or not
found condition to be returned, along with optional message text.

Issuing the RESIGNAL statement without an operand causes the current condition to be passed
outwards.

Syntax

label:

RESIGNAL

SQLSTATE
VALUE

sqlstate-string-constant

sqlstate-string-variable

SQL-condition-name

signal-information

signal-information
SET MESSAGE_TEXT

CONSTRAINT_CATALOG

CONSTRAINT_SCHEMA

CONSTRAINT_NAME

CATALOG_NAME

SCHEMA_NAME

TABLE_NAME

COLUMN_NAME

CURSOR_NAME

CLASS_ORIGIN

SUBCLASS_ORIGIN

 = SQL-variable-name

SQL-parameter-name

diagnostic-string-constant

Description
label

Specifies the label for the RESIGNAL statement. The label name cannot be the same as the routine
name or another label within the same scope. For more information, see “References to SQL labels”
on page 1584.

SQLSTATE VALUE
Specifies the SQLSTATE that will be resignaled. Any valid SQLSTATE value can be used. The specified
value must follow the rules for SQLSTATEs:

• Each character must be from the set of digits ('0' through '9') or non-accented upper case letters ('A'
through 'Z').

• The SQLSTATE class (first two characters) cannot be '00' since this represents successful
completion.

If the SQLSTATE does not conform to these rules, an error is returned.

1630 IBM i: Db2 for i SQL Reference

sqlstate-string-constant
The sqlstate-string-constant must be a character string constant with exactly 5 characters.

sqlstate-string-variable
The sqlstate-string-variable must be a character or Unicode graphic variable. The actual length of
the contents of the sqlstate-string-variable must be 5.

SQL-condition-name
Specifies the name of the condition that will be returned. The SQL-condition-name must be declared
within the compound-statement.

SET
Introduces the assignment of values to condition-information-items. The condition-information-item
values can be accessed using the GET DIAGNOSTICS statement. The only condition-information-item
that can be accessed in the SQLCA is MESSAGE_TEXT.
MESSAGE_TEXT

Specifies a string that describes the error or warning.

If an SQLCA is used,

• the string is returned in the SQLERRMC field of the SQLCA
• if the actual length of the string is longer than 1000 bytes, it is truncated without a warning.

CONSTRAINT_CATALOG
Specifies a string that indicates the name of the database that contains a constraint related to the
signalled error or warning.

CONSTRAINT_SCHEMA
Specifies a string that indicates the name of the schema that contains a constraint related to the
signalled error or warning.

CONSTRAINT_NAME
Specifies a string that indicates the name of a constraint related to the signalled error or warning.

CATALOG_NAME
Specifies a string that indicates the name of the database that contains a table or view related to
the signalled error or warning.

SCHEMA_NAME
Specifies a string that indicates the name of the schema that contains a table or view related to
the signalled error or warning.

TABLE_NAME
Specifies a string that indicates the name of a table or view related to the signalled error or
warning.

COLUMN_NAME
Specifies a string that indicates the name of a column in the table or view related to the signalled
error or warning.

CURSOR_NAME
Specifies a string that indicates the name of a cursor related to the signalled error or warning.

CLASS_ORIGIN
Specifies a string that indicates the origin of the SQLSTATE class related to the signalled error or
warning.

SUBCLASS_ORIGIN
Specifies a string that indicates the origin of the SQLSTATE subclass related to the signalled error
or warning.

SQL-variable-name
Identifies an SQL variable declared within the compound-statement, that contains the value to be
assigned to the condition-information-item. The SQL variable must be defined as CHAR, VARCHAR,
Unicode GRAPHIC, or Unicode VARGRAPHIC variable.

Chapter 8. SQL procedural language (SQL PL) 1631

SQL-parameter-name
Identifies an SQL parameter declared within the compound-statement, that contains the value
to be assigned to the condition-information-item. The SQL parameter must be defined as CHAR,
VARCHAR, Unicode GRAPHIC, or Unicode VARGRAPHIC variable.

diagnostic-string-constant
Specifies a character string constant that contains the value to be assigned to the condition-
information-item.

Notes
SQLSTATE values: Any valid SQLSTATE value can be used in the RESIGNAL statement. However, it is
recommended that programmers define new SQLSTATEs based on ranges reserved for applications. This
prevents the unintentional use of an SQLSTATE value that might be defined by the database manager in a
future release.

For more information about SQLSTATEs, see the SQL Messages and Codes topic collection.

Assignment: When the RESIGNAL statement is executed, the value of each of the specified string-
constants and variables is assigned to the corresponding condition-information-item. However, if the
length of a string-constant or variable is longer than the maximum length of the corresponding condition-
information-item, it is truncated without a warning. For details on the assignment rules, see “Assignments
and comparisons” on page 89. For details on the maximum length of specific condition-information-items,
see “GET DIAGNOSTICS” on page 1332.

Processing a RESIGNAL statement:

• If the RESIGNAL statement is specified without a SQLSTATE clause or a SQL-condition-name, the SQL
function, SQL procedure, or SQL trigger resignals the identical condition that invoked the handler and
the SQLCODE is not changed.

• When a RESIGNAL statement is issued and an SQLSTATE or SQL-condition-name is specified, the
SQLCODE is based on the SQLSTATE value as follows:

– If the specified SQLSTATE class is either '01' or '02', a warning or not found is signalled and the
SQLCODE is set to +438.

– Otherwise, an exception is returned and the SQLCODE is set to –438.

If the SQLSTATE or condition indicates that an exception is signalled (SQLSTATE class other than '01' or
'02'):,

• If a handler exists in the same compound statement as the RESIGNAL statement, and the compound-
statement contains a handler for SQLEXCEPTION or the specified SQLSTATE or condition; the exception
is handled and control is transferred to that handler.

• If the compound-statement is nested and an outer level compound-statement has a handler for
SQLEXCEPTION or the specified SQLSTATE or condition; the exception is handled and control is
transferred to that handler.

• Otherwise, the exception is not handled and control is immediately returned to the end of the
compound statement.

If the SQLSTATE or condition indicates that a warning (SQLSTATE class '01') or not found (SQLSTATE class
'02') is signalled:

• If a handler exists in the same compound statement as the RESIGNAL statement, and the compound-
statement contains a handler for SQLWARNING (if the SQLSTATE class is '01'), NOT FOUND (if the
SQLSTATE class is '02'), or the specified SQLSTATE or condition; the warning or not found condition is
handled and control is transferred to that handler.

• If the compound-statement is nested and an outer level compound statement contains a handler for
SQLWARNING (if the SQLSTATE class is '01'), NOT FOUND (if the SQLSTATE class is '02'), or the
specified SQLSTATE or condition; the warning or not found condition is not handled and processing
continues with the next statement.

• Otherwise, the warning is not handled and processing continues with the next statement.

1632 IBM i: Db2 for i SQL Reference

Considerations for the diagnostics area: The RESIGNAL statement might modify the contents of
the current diagnostics area. If an SQLSTATE or SQL-condition-name is specified as part of the
RESIGNAL statement, the RESIGNAL statement starts with a clear of the diagnostics area and sets
the RETURNED_SQLSTATE to reflect the specified SQLSTATE or SQL-condition-name. If any signal-
information is specified, the corresponding items in the condition area are assigned the specified
values. DB2_RETURNED_SQLCODE is set to +438 or -438 corresponding to the specified SQLSTATE or
SQL-condition-name.

Example
This example detects a division by zero error. The IF statement uses a SIGNAL statement to invoke
the overflow condition handler. The condition handler uses a RESIGNAL statement to return a different
SQLSTATE value to the client application.

CREATE PROCEDURE divide (IN numerator INTEGER,
 IN denominator INTEGER,
 OUT divide_result INTEGER)
 LANGUAGE SQL
 BEGIN
 DECLARE overflow CONDITION FOR '22003';
 DECLARE CONTINUE HANDLER FOR overflow
 RESIGNAL SQLSTATE '22375';
 IF denominator = 0 THEN
 SIGNAL overflow;
 ELSE
 SET divide_result = numerator / denominator;
 END IF;
 END

Chapter 8. SQL procedural language (SQL PL) 1633

RETURN statement
The RETURN statement returns from a routine. For SQL scalar functions, it returns the result of the
function. For SQL non-pipelined table functions, it returns a table as the result of the function. For SQL
pipelined table functions, it indicates the end of the result table has been reached. For an SQL procedure,
it optionally returns an integer status value.

Syntax

label:

RETURN

expression

NULL

WITH

RECURSIVE

,

common-table-expression

fullselect

Description
label

Specifies the label for the RETURN statement. The label name cannot be the same as the routine
name or another label within the same scope. For more information, see “References to SQL labels”
on page 1584.

expression
Specifies a value that is returned from the routine:

• If the routine is a scalar function, the data type of the result must be assignable to the data type
defined for the function result, using the storage assignment rules as described in “Assignments
and comparisons” on page 89. An aggregate function, or user-defined function that is sourced on an
aggregate function must not be specified for a RETURN statement in an SQL scalar function.

• If the routine is a table function, a scalar expression (other than a scalar fullselect) cannot be
specified.

• If the routine is a procedure, the data type of expression must be INTEGER. If the expression
evaluates to the null value, a value of zero is returned.

NULL
Specifies that the null value is returned from the routine.

• If the routine is a scalar function, the null value is returned.
• If the routine is a table function, NULL must not be specified.
• If the routine is a procedure, NULL must not be specified.

WITH common-table-expression
Specifies one or more common table expressions to be used in the fullselect.

fullselect
Specifies the row or rows to be returned for the routine.

• If the routine is a scalar function, the fullselect must return one column and, at most, one row. The
data type of the result column must be assignable to the data type defined for the function result,
using the storage assignment rules as described in “Assignments and comparisons” on page 89.

1634 IBM i: Db2 for i SQL Reference

• If the routine is a table function, the fullselect can return zero or more rows with one or more
columns. The number of columns in the fullselect must match the number of columns in the
function result. In addition, the data types of the result table columns of the fullselect must be
assignable to the data types of the columns defined for the function result, using the storage
assignment rules as described in “Assignments and comparisons” on page 89.

• If the routine is a procedure, fullselect must not be specified.

Notes
Returning from a table function:

• The last statement executed in the SQL-routine-body must be a RETURN statement.
• For a non-pipelined table function, the RETURN statement indicates the rows to be returned. Exactly

one RETURN statement must be specified and it must contain a fullselect.
• For a pipelined table function, one or more RETURN statements must be specified and they must

contain no return values.

Returning from a procedure:

• If a RETURN statement with a specified return value is used to return from a procedure then the
SQLCODE, SQLSTATE, and message length in the SQLCA or diagnostics area are initialized to zeros, and
message text is set to blanks. An error is not returned to the caller.

• If a RETURN statement is not used to return from a procedure or if a value is not specified on the
RETURN statement,

– if the procedure returns with an SQLCODE that is greater than or equal to zero, the specified target for
DB2_RETURN_STATUS in a GET DIAGNOSTICS statement will be set to a value of 0

– if the procedure returns with an SQLCODE that is less than zero, the specified target for
DB2_RETURN_STATUS in a GET DIAGNOSTICS statement will be set to a value of -1.

• When a value is returned from a procedure, the caller may access the value using:

– the GET DIAGNOSTICS statement to retrieve the DB2_RETURN_STATUS when the SQL procedure
was called from another SQL procedure

– the parameter bound for the return value parameter marker in the escape clause CALL syntax (?
=CALL...) in a ODBC or JDBC application

– directly from the SQLCA returned from processing the CALL of an SQL procedure by retrieving the
value of sqlerrd[0] when the SQLCODE is not less than zero. When the SQLCODE is less than zero, the
sqlerrd[0] value is not set and the application should assume a return status value of -1.

RETURN restrictions:

• RETURN is not allowed in SQL triggers.
• In a compound(dynamic) statement, RETURN cannot specify a return value.

Example
Example 1: Use a RETURN statement to return from an SQL procedure with a status value of zero if
successful, and –200 if not.

 BEGIN
 ...
 GOTO fail;
 ...
 success: RETURN 0
 fail: RETURN -200
...
END

Example 2: Define a scalar function that returns the tangent of a value using the existing sine and cosine
functions.

Chapter 8. SQL procedural language (SQL PL) 1635

 CREATE FUNCTION mytan (x DOUBLE)
 RETURNS DOUBLE
 LANGUAGE SQL
 CONTAINS SQL
 NO EXTERNAL ACTION
 DETERMINISTIC
 RETURN SIN(x)/COS(x)

1636 IBM i: Db2 for i SQL Reference

SIGNAL statement
The SIGNAL statement signals an error or warning condition. It causes an error or warning to be returned
with the specified SQLSTATE and optional condition-information-items. The syntax of SIGNAL in an SQL
function, SQL procedure, or SQL trigger is a similar to what is supported as a SIGNAL statement in other
contexts.

See “SIGNAL” on page 1551 for details.

Syntax

label:

SIGNAL

SQLSTATE
VALUE

sqlstate-string-constant

sqlstate-string-variable

SQL-condition-name

signal-information

signal-information

SET

,

MESSAGE_TEXT

CONSTRAINT_CATALOG

CONSTRAINT_SCHEMA

CONSTRAINT_NAME

CATALOG_NAME

SCHEMA_NAME

TABLE_NAME

COLUMN_NAME

CURSOR_NAME

CLASS_ORIGIN

SUBCLASS_ORIGIN

 = SQL-variable-name

SQL-parameter-name

diagnostic-string-constant

(diagnostic-string-constant)

Description
label

Specifies the label for the SIGNAL statement. The label name cannot be the same as the routine name
or another label within the same scope. For more information, see “References to SQL labels” on page
1584.

SQLSTATE VALUE
Specifies the SQLSTATE that will be signalled. The specified value must not be null and must follow
the rules for SQLSTATEs:

• Each character must be from the set of digits ('0' through '9') or non-accented upper case letters ('A'
through 'Z').

Chapter 8. SQL procedural language (SQL PL) 1637

• The SQLSTATE class (first two characters) cannot be '00' since this represents successful
completion.

If the SQLSTATE does not conform to these rules, an error is returned.

sqlstate-string-constant
The sqlstate-string-constant must be a character string constant with exactly 5 characters.

sqlstate-string-variable
The sqlstate-string-variable must be a character or Unicode graphic variable. The actual length of
the contents of the variable must be 5.

SQL-condition-name
Specifies the name of the condition that will be signalled. The SQL-condition-name must be declared
within the compound-statement.

SET
Introduces the assignment of values to condition-information-items. The condition-information-item
values can be accessed using the GET DIAGNOSTICS statement. The only condition-information-item
that can be accessed in the SQLCA is MESSAGE_TEXT.
MESSAGE_TEXT

Specifies a string that describes the error or warning.

If an SQLCA is used,

• the string is returned in the SQLERRMC field of the SQLCA
• if the actual length of the string is longer than 1000 bytes, it is truncated without a warning.

CONSTRAINT_CATALOG
Specifies a string that indicates the name of the database that contains a constraint related to the
signalled error or warning.

CONSTRAINT_SCHEMA
Specifies a string that indicates the name of the schema that contains a constraint related to the
signalled error or warning.

CONSTRAINT_NAME
Specifies a string that indicates the name of a constraint related to the signalled error or warning.

CATALOG_NAME
Specifies a string that indicates the name of the database that contains a table or view related to
the signalled error or warning.

SCHEMA_NAME
Specifies a string that indicates the name of the schema that contains a table or view related to
the signalled error or warning.

TABLE_NAME
Specifies a string that indicates the name of a table or view related to the signalled error or
warning.

COLUMN_NAME
Specifies a string that indicates the name of a column in the table or view related to the signalled
error or warning.

CURSOR_NAME
Specifies a string that indicates the name of a cursor related to the signalled error or warning.

CLASS_ORIGIN
Specifies a string that indicates the origin of the SQLSTATE class related to the signalled error or
warning.

SUBCLASS_ORIGIN
Specifies a string that indicates the origin of the SQLSTATE subclass related to the signalled error
or warning.

1638 IBM i: Db2 for i SQL Reference

SQL-variable-name
Identifies an SQL variable declared within the compound-statement, that contains the value to be
assigned to the condition-information-item. The SQL variable must be defined as CHAR, VARCHAR,
Unicode GRAPHIC, or Unicode VARGRAPHIC variable.

SQL-parameter-name
Identifies an SQL parameter declared within the compound-statement, that contains the value
to be assigned to the condition-information-item. The SQL parameter must be defined as CHAR,
VARCHAR, Unicode GRAPHIC, or Unicode VARGRAPHIC variable.

diagnostic-string-constant
Specifies a character string constant that contains the value to be assigned to the condition-
information-item.

(diagnostic-string-constant)
Specifies a character string constant that contains the message text.

This form is only allowed in the triggered action of a CREATE TRIGGER statement.

To conform with the ANS and ISO standards, this form should not be used. It is provided for
compatibility with other products.

Notes
SQLSTATE values: Any valid SQLSTATE value can be used in the SIGNAL statement. However, it is
recommended that programmers define new SQLSTATEs based on ranges reserved for applications. This
prevents the unintentional use of an SQLSTATE value that might be defined by the database manager in a
future release.

For more information about SQLSTATEs, see the SQL Messages and Codes topic collection.

Assignment: When the SIGNAL statement is executed, the value of each of the specified string-constants
and variables is assigned to the corresponding condition-information-item. However, if the length of a
string-constant or variable is longer than the maximum length of the corresponding condition-information-
item, it is truncated without a warning. For details on the assignment rules, see “Assignments and
comparisons” on page 89. For details on the maximum length of specific condition-information-items, see
“GET DIAGNOSTICS” on page 1332.

Processing a SIGNAL statement: When a SIGNAL statement is issued, the SQLCODE returned in the
SQLCA is based on the SQLSTATE value as follows:

• If the specified SQLSTATE class is either '01' or '02', a warning or not found is signalled and the
SQLCODE is set to +438.

• Otherwise, an exception is signalled and the SQLCODE is set to –438.

If the SQLSTATE or condition indicates that an exception (SQLSTATE class other than '01' or '02') is
signalled,

• If a handler exists in the same compound statement as the SIGNAL statement, and the compound
statement contains a handler for SQLEXCEPTION or the specified SQLSTATE or condition; the exception
is handled and control is transferred to that handler.

• If the compound-statement is nested and an outer level compound-statement has a handler for
SQLEXCEPTION or the specified SQLSTATE or condition; the exception is handled and control is
transferred to that handler.

• Otherwise, the exception is not handled and control is immediately returned to the end of the
compound statement.

If the SQLSTATE or condition indicates that a warning (SQLSTATE class '01') or not found (SQLSTATE class
'02') is signalled,

• If a handler exists in the same compound statement as the SIGNAL statement, and the compound
statement contains a handler for SQLWARNING (if the SQLSTATE class is '01'), NOT FOUND (if the

Chapter 8. SQL procedural language (SQL PL) 1639

SQLSTATE class is '02'), or the specified SQLSTATE or condition; the warning or not found condition is
handled and control is transferred to that handler.

• If the compound-statement is nested and an outer level compound statement contains a handler for
SQLWARNING (if the SQLSTATE class is '01'), NOT FOUND (if the SQLSTATE class is '02'), or the
specified SQLSTATE or condition; the warning or not found condition is not handled and processing
continues with the next statement.

• Otherwise, the warning is not handled and processing continues with the next statement.

Considerations for the diagnostics area: The SIGNAL statement starts with a clear of the diagnostics
area and then sets the RETURNED_SQLSTATE to reflect the specified SQLSTATE or SQL-condition-name.
If any signal-information is specified, the corresponding items in the condition area are assigned the
specified values. DB2_RETURNED_SQLCODE is set to +438 or -438 corresponding to the specified
SQLSTATE or SQL-condition-name.

Example
An SQL procedure for an order system that signals an application error when a customer number is not
known to the application. The ORDERS table includes a foreign key to the CUSTOMER table, requiring that
the CUSTNO exist before an order can be inserted.

 CREATE PROCEDURE SUBMIT_ORDER
 (IN ONUM INTEGER, IN CNUM INTEGER,
 IN PNUM INTEGER, IN QNUM INTEGER)
 LANGUAGE SQL
 MODIFIES SQL DATA
 BEGIN
 DECLARE EXIT HANDLER FOR SQLSTATE VALUE '23503'
 SIGNAL SQLSTATE '75002'
 SET MESSAGE_TEXT = 'Customer number is not known';
 INSERT INTO ORDERS (ORDERNO, CUSTNO, PARTNO, QUANTITY)
 VALUES (ONUM, CNUM, PNUM, QNUM);
 END

1640 IBM i: Db2 for i SQL Reference

WHILE statement
The WHILE statement repeats the execution of a statement while a specified condition is true.

Syntax

label:

WHILE search-condition DO SQL-procedure-statement ;

END WHILE

label

Description
label

Specifies the label for the WHILE statement. If the ending label is specified, it must be the same as
the beginning label. The label name cannot be the same as the routine name or another label within
the same scope. For more information, see “References to SQL labels” on page 1584.

search-condition
Specifies a condition that is evaluated before each execution of the WHILE loop. If the condition is
true, the SQL-procedure-statements in the WHILE loop are executed.

SQL-procedure-statement
Specifies an SQL statement or statements to execute within the WHILE loop.

Notes
Considerations for the diagnostics area: At the beginning of the first iteration of the WHILE statement,
and with every subsequent iteration, the diagnostics area is cleared.

Considerations for SQLSTATE and SQLCODE SQL variables: With each iteration of the WHILE statement,
when the first SQL-procedure-statement is executed, the SQLSTATE and SQLCODE SQL variables reflect
the result of evaluating the search condition of that WHILE statement. If the loop is terminated with
a GOTO, ITERATE, or LEAVE statement, the SQLSTATE and SQLCODE values reflect the successful
completion of that statement. Otherwise, after the END WHILE of the WHILE statement completes, the
SQLSTATE and SQLCODE reflect the result of evaluating the search condition of that WHILE statement.

Example
This example uses a WHILE statement to iterate through FETCH and SET statements. While the value
of SQL variable v_counter is less than half of number of employees in the department identified by the
IN parameter deptNumber, the WHILE statement continues to perform the FETCH and SET statements.
When the condition is no longer true, the flow of control leaves the WHILE statement and closes the
cursor.

CREATE PROCEDURE dept_median
 (IN deptNumber SMALLINT,
 OUT medianSalary DECIMAL(7,2))
 LANGUAGE SQL
 BEGIN
 DECLARE v_numRecords INTEGER DEFAULT 1;
 DECLARE v_counter INTEGER DEFAULT 0;
 DECLARE c1 CURSOR FOR
 SELECT salary
 FROM staff
 WHERE dept = deptNumber
 ORDER BY salary;
 DECLARE EXIT HANDLER FOR NOT FOUND
 SET medianSalary = 6666;

Chapter 8. SQL procedural language (SQL PL) 1641

 SET medianSalary = 0;
 SELECT COUNT(*) INTO v_numRecords
 FROM staff
 WHERE dept = deptNumber;
 OPEN c1;
 WHILE v_counter < (v_numRecords/2 + 1) DO
 FETCH c1 INTO medianSalary;
 SET v_counter = v_counter +1;
 END WHILE;
 CLOSE c1;
 END

1642 IBM i: Db2 for i SQL Reference

Appendix A. SQL limits
The following tables describe certain SQL and database limits imposed by the Db2 for i database
manager.

Note:

• System storage limits may preclude the limits specified here. For example, see “Maximum row sizes” on
page 1164.

• A limit of storage means that the limit is dependent on the amount of storage available.
• A limit of statement means that the limit is dependent on the limit for the maximum length of a

statement.

Table 127. Identifier Length Limits

Identifier Limits Db2 for i Limit

Longest authorization name 10132

Longest correlation name 128

Longest cursor name 128

Longest descriptor name 128

Longest external program name (string form) 279133

Longest external program name (unqualified form) 10

Longest host identifier134 128

Longest package version-id 64

Longest partition name 10

Longest savepoint name 128

Longest schema name 128

Longest server name 18

Longest statement name 128

Longest SQL condition name 128

Longest SQL label 128

Longest unqualified alias name 128

Longest unqualified column name 128

Longest unqualified constraint name 128

Longest unqualified distinct type name 128

Longest unqualified function name 128

Longest unqualified global variable name 128

Longest unqualified index name 128

Longest unqualified mask name 128

Longest unqualified nodegroup name 10

Longest unqualified package name 10

© Copyright IBM Corp. 1998, 2015 1643

Table 127. Identifier Length Limits (continued)

Identifier Limits Db2 for i Limit

Longest unqualified permission name 128

Longest unqualified procedure name 128

Longest unqualified sequence name 128

Longest unqualified specific name 128

Longest unqualified SQL parameter name 128

Longest unqualified SQL variable name 128

Longest unqualified system column name 10

Longest unqualified system object name 10

Longest unqualified system schema name 10

Longest unqualified table and view name 128

Longest unqualified trigger name 128

Longest unqualified XSR object name 128

Longest XML element name, attribute name, prefix
name, or processing instruction name specified
in XMLELEMENT, XMLFOREST, XMLATTRIBUTES,
XMLNAMESPACES or XMLPI

128

Longest XML path name specified in XMLTABLE 128

Longest XML element name, attribute name, prefix
name, or processing instruction name for a parsed XML
document

1000

Longest XML schema location uniform resource
identifier (URI)

1000

Longest JSON path name 128

Table 128. Numeric Limits

Numeric Limits Db2 for i Limit

Smallest SMALLINT value -32 768

Largest SMALLINT value +32 767

Smallest INTEGER value -2 147 483 648

Largest INTEGER value +2 147 483 647

Smallest BIGINT value -9 223 372 036 854 775 808

Largest BIGINT value +9 223 372 036 854 775 807

Largest decimal precision 63

132 As an application requester, Db2 for i can send an authorization name of up to 255 bytes.
133 For REXX procedures, the limit is 33.
134 For an RPG, COBOL, or REXX program, the limit is 64.

1644 IBM i: Db2 for i SQL Reference

Table 128. Numeric Limits (continued)

Numeric Limits Db2 for i Limit

Maximum exponent (Emax) for REAL values 38

Smallest REAL value135 -3.4x1038

Largest REAL value135 +3.4x1038

Minimum exponent (Emin) for REAL values -38

Smallest positive REAL value135 +1.18x10-38

Largest negative REAL value135 -1.18x10-38

Maximum exponent (Emax) for DOUBLE values 308

Smallest DOUBLE value135 -1.79x10308

Largest DOUBLE value135 +1.79x10308

Minimum exponent (Emin) for DOUBLE values -308

Smallest positive DOUBLE value135 +2.23x10-308

Largest negative DOUBLE value135 -2.23x10-308

Maximum exponent (Emax) for DECFLOAT(16) values 384

Smallest DECFLOAT(16) value136 -9.999999999999999x10384

Largest DECFLOAT(16) value136 9.999999999999999x10384

Minimum exponent (Emin) for DECFLOAT(16) values -383

Smallest positive DECFLOAT(16) value136 1x10-383

Largest negative DECFLOAT(16) value136 -1x10-383

Maximum exponent (Emax) for DECFLOAT(34) values 6144

Smallest DECFLOAT(34) value136 -9.999999999999999999999999999999999x106144

Largest DECFLOAT(34) value136 9.999999999999999999999999999999999x106144

Minimum exponent (Emin) for DECFLOAT(34) values -6143

Smallest positive DECFLOAT(34) value136 1x10-6143

Largest negative DECFLOAT(34) value136 -1x10-6143

Table 129. String Limits

String Limits Db2 for i Limit

Maximum length of CHAR (in bytes) 32765137

Maximum length of VARCHAR (in bytes) 32739137

Maximum length of CLOB (in bytes) 2 147 483 647

135 The values shown are approximate.
136 These are the limits for normal numbers in DECFLOAT. DECFLOAT also contains special values such as

NaN and Infinity that are also valid. DECFLOAT also supports subnormal numbers that are outside of the
documented range.

Appendix A. SQL limits 1645

Table 129. String Limits (continued)

String Limits Db2 for i Limit

Maximum length of GRAPHIC (in double-byte
characters)

16382137

Maximum length of VARGRAPHIC (in double-byte
characters)

16369137

Maximum length of DBCLOB (in double-byte characters) 1 073 741 823

Maximum length of BINARY (in bytes) 32765137

Maximum length of VARBINARY (in bytes) 32739137

Maximum length of BLOB (in bytes) 2 147 483 647

Maximum length of serialized XML (in bytes) 2 147 483 647

Maximum length of character constant 32740

Maximum length of a graphic constant 16370

Maximum length of binary constant 32740

Maximum length of concatenated character string 2 147 483 647

Maximum length of concatenated graphic string 1 073 741 823

Maximum length of concatenated binary string 2 147 483 647

Maximum number of hexadecimal constant digits 32 762

Maximum length of catalog comments 2000138

Maximum length of column label (in bytes) 60

Maximum length of SQL routine label 128

Maximum length of table, package, or alias label 50

Maximum length of C NUL-terminated 32739137

Maximum length of C NUL-terminated graphic 16369137

Table 130. XML Limits

XML Limits Db2 for i Limit

Maximum length of an XML schema document (in bytes) 2 147 483 647

Maximum length of a parsed XML entity 1gigabyte

Maximum depth of an internal XML tree 128

Table 131. JSON Limits

JSON Limits Db2 for i Limit

Maximum length of an JSON document (in bytes) 2 147 483 647

137 If the column is NOT NULL, the maximum is one more.
138 For sequences the limit is 500.

1646 IBM i: Db2 for i SQL Reference

Table 132. Datetime Limits

Datetime Limits Db2 for i Limit

Smallest DATE value 0001-01-01

Largest DATE value 9999-12-31

Smallest TIME value 00:00:00

Largest TIME value 24:00:00

Smallest TIMESTAMP value 0001-01-01-00.00.00.000000000000

Largest TIMESTAMP value 9999-12-31-24.00.00.000000000000

Smallest timestamp precision 0

Largest timestamp precision 12

Table 133. DataLink Limits

Datalink Limits Db2 for i Limit

Maximum length of DATALINK 32718

Maximum length of DATALINK comment 254

Table 134. Database Manager Limits

Database Manager Limits Db2 for i Limit

Relational Database

Maximum number of schemas storage

Maximum number of tables in a relational database storage

Maximum number of nodes in a nodegroup 32

Schemas

Maximum number of objects in a schema approximately 1 000 000

Tables and Views

Maximum number of columns in a table 8000

Maximum number of columns in a view 8000

Maximum length of a row without LOBs including all
overhead

32766

Maximum length of a row with LOBs including all
overhead

3 758 096 383

Maximum number of rows in a non-partitioned table 4 294 967 288

Maximum number of rows in a data partition 4 294 967 288

Maximum size of a non-partitioned table 1.7 terabytes

Maximum size of a data partition 1.7 terabytes

Maximum number of data partitions in a single
partitioned table

256

Maximum number of table partitioning columns 120

Appendix A. SQL limits 1647

Table 134. Database Manager Limits (continued)

Database Manager Limits Db2 for i Limit

Maximum number of tables referenced in a view or
materialized query table

256139

Maximum number of dependent views, materialized
query tables, and indexes on a table or view.

storage

Constraints

Maximum number of constraints on a table 5000

Maximum number of columns in a UNIQUE constraint 120

Maximum combined length of columns in a UNIQUE
constraint (in bytes)

32767137

Maximum number of referencing columns in a foreign
key

120

Maximum combined length of referencing columns in a
foreign key (in bytes)

32767137

Maximum length of a CHECK constraint (in bytes) statement

Triggers

Maximum number of triggers on a table 300

Maximum runtime depth of cascading triggers 200

Indexes

Maximum number of indexes on a table approximately 15000

Maximum number of columns in an index key 120

Maximum length of an index key 32767137

Maximum size of a non-partitioned index 1.7 terabytes

Maximum size of a partition of a partitioned index 1.7 terabytes

SQL

Maximum length of an SQL statement (in bytes) 2 097 152

Maximum number of tables referenced in an SQL
statement

1000139

Maximum number of variables and constants in an SQL
statement

32700140

Maximum number of elements in a select list approximately 8000141

Maximum number of predicates in a WHERE or HAVING
clause

statement

Maximum number of columns in a GROUP BY clause total GROUP BY length

Maximum total length of columns in a GROUP BY clause 3.5 gigabytes142

Maximum number of elements in a CUBE grouping 10

Maximum number of columns in an ORDER BY clause total ORDER BY length

1648 IBM i: Db2 for i SQL Reference

Table 134. Database Manager Limits (continued)

Database Manager Limits Db2 for i Limit

Maximum total length of columns in an ORDER BY
clause

3.5 gigabytes 142

Maximum levels of recursion for hierarchical query 250

Maximum levels allowed for a subquery 256

Maximum number of values in an insert operation 8000

Maximum number of SET clauses in a single update
operation

8000

Routines

Maximum number of parameters in a procedure 2000143

Maximum number of parameters in a function 2000143

Maximum number of return columns in a table function 8000

Maximum number of nested levels for routines storage

Types

Maximum cardinality of an array type 2 147 483 647

Applications

Maximum number of host variable declarations in a
precompiled program

storage144

Maximum length of a host variable value (in bytes) 2 147 483 647

Maximum length of an MQ message CLOB value (in
bytes)

2M

Maximum length of an MQ message varying length
value (in bytes)

32000

Maximum number of declared cursors in a program storage

Maximum number of cursors opened at one time storage 145

Maximum number of rows locked in a unit of work 500 000 000

Maximum number of DDL statements in a unit of work 131 036

Maximum number of locators in a transaction 16 000 000 146

Maximum size of an SQLDA (in bytes) 16 777 215

Maximum number of prepared statements storage

Maximum number of savepoints active at one time storage

Maximum number of simultaneously allocated CLI
handles in a process

160 000 147

Maximum size of a package 1008 megabytes148

Maximum length of a path 8843

Maximum number of schemas in a path 268

Maximum length of a password 127

Appendix A. SQL limits 1649

Table 134. Database Manager Limits (continued)

Database Manager Limits Db2 for i Limit

Maximum length of a hint 32

Maximum size of a program, service program, or
module associated space (in bytes)

16 777 216

Maximum size of the diagnostics area 90K

Maximum size of an array variable 4GB

139 The maximum number of members (and partitions) referenced is also 1000. In DELETE and UPDATE
statements the maximum number is 256.

140 The limit is restricted by internal structures and may be less depending on how the constants are used in
the statement and if very large string constants or variables are used.

141 The limit is based on the size of internal structures generated for the parsed SQL statement.
142 The limit is 32766 if CQE processed the select statement. The limit will be less if an ICU collating sequence

or ALWCPYDTA(*NO) is used.
143 SQL procedures and SQL functions can have up to 2000 parameters. The number of parameters for

external procedures and external functions cannot exceed 2000 and is limited by the maximum number of
parameters allowed by the language.

144 In RPG/400 and PL/I programs when the old parameter passing technique is used, the limit is
approximately 4000. The limit is based on the number of pointers allowed in the program. In all other
cases, the limit is based on operating system constraints.

145 The maximum number of cursors open at one time in a single job is approximately 20 473.
146 The maximum number of locators in a transaction in SQL Server mode is 209 000.
147 The maximum number of allocated handles per DRDA connection is 500.
148 The maximum size of a DRDA package can be increased from 500 megabytes to 1 gigabyte by using a

QAQQINI option.

1650 IBM i: Db2 for i SQL Reference

Appendix B. Characteristics of SQL statements
This appendix contains information on the characteristics of SQL statements pertaining to the various
places where they are used.

• “Actions allowed on SQL statements” on page 1652 shows whether an SQL statement can be executed,
prepared interactively or dynamically, and whether the statement is processed by the requester, the
server or the precompiler.

• “SQL statement data access classification for routines” on page 1655 shows the level of SQL data
access that must be specified to use the SQL statement in a routine.

• “Considerations for using distributed relational database” on page 1658 provides information about the
use of SQL statements when the application server is not the same as the application requester.

© Copyright IBM Corp. 1998, 2015 1651

Actions allowed on SQL statements
Indicates whether an SQL statement can be executed, prepared interactively or dynamically, and whether
the statement is processed by the requester, the server, or the precompiler.

The table below shows whether a specific Db2 statement can be executed, prepared interactively or
dynamically, or processed by the requester, the server, or the precompiler. The letter Y means yes.

Table 135. Actions allowed on SQL statements

SQL statement Executable

Interactively
or

dynamically
prepared

Processed by

Requesting
system Server Precompiler

ALLOCATE CURSOR5 Y Y Y

ALLOCATE DESCRIPTOR4 5 Y Y

ALTER Y Y Y

ASSOCIATE LOCATORS5 Y Y Y

BEGIN DECLARE SECTION4 5 Y

CALL Y Y Y

CLOSE4 Y Y

COMMENT Y Y Y

COMMIT Y Y Y

compound (dynamic) Y Y Y

CONNECT (type 1 and type 2)4 5 Y Y

CREATE Y Y Y

DEALLOCATE DESCRIPTOR4 5 Y Y

DECLARE CURSOR4 Y

DECLARE GLOBAL
TEMPORARY TABLE

Y Y Y

DECLARE PROCEDURE4 5 Y

DECLARE STATEMENT4 5 Y

DECLARE VARIABLE4 5 Y

DELETE Y Y Y

DESCRIBE4 Y Y

DESCRIBE CURSOR4 5 Y Y

DESCRIBE INPUT4 5 Y Y

DESCRIBE PROCEDURE4 5 Y Y

DESCRIBE TABLE4 Y Y

DISCONNECT4 5 Y Y

DROP Y Y Y

1652 IBM i: Db2 for i SQL Reference

Table 135. Actions allowed on SQL statements (continued)

SQL statement Executable

Interactively
or

dynamically
prepared

Processed by

Requesting
system Server Precompiler

END DECLARE SECTION4 5 Y

EXECUTE4 Y Y

EXECUTE IMMEDIATE4 Y Y

FETCH Y Y

FREE LOCATOR4 5 Y Y Y

GET DESCRIPTOR4 5 Y Y

GET DIAGNOSTICS5 Y Y

GRANT Y Y Y

HOLD LOCATOR4 5 Y Y Y

INCLUDE4 5 Y

INSERT Y Y Y

LABEL Y Y Y

LOCK TABLE Y Y Y

MERGE Y Y Y

OPEN4 Y Y

PREPARE4 Y Y

REFRESH TABLE Y Y Y

RELEASE connection4 5 Y Y

RELEASE SAVEPOINT Y Y Y

RENAME Y Y Y

REVOKE Y Y Y

ROLLBACK Y Y Y

SAVEPOINT Y Y Y

SELECT INTO 5 Y Y

SET CONNECTION4 5 Y Y

SET CURRENT DEBUG MODE Y Y Y

SET CURRENT DECFLOAT
ROUNDING MODE

Y Y Y

SET CURRENT DEGREE5 Y Y Y

SET CURRENT IMPLICIT
XMLPARSE OPTION

Y Y Y

SET CURRENT TEMPORAL
SYSTEM_TIME5

Y Y Y

Appendix B. Characteristics of SQL statements 1653

Table 135. Actions allowed on SQL statements (continued)

SQL statement Executable

Interactively
or

dynamically
prepared

Processed by

Requesting
system Server Precompiler

SET DESCRIPTOR4 5 Y Y

SET ENCRYPTION PASSWORD Y Y Y

SET OPTION4 5 Y

SET PATH Y Y Y

SET RESULT SETS3 5 Y Y

SET SCHEMA Y Y Y

SET SESSION AUTHORIZATION5 Y Y Y

SET TRANSACTION Y Y Y

SET transition-variable1 Y Y

SET variable Y Y 6 Y

SIGNAL5 Y Y

SQL-control-statement2 Y Y

TRANSFER OWNERSHIP Y Y Y

TRUNCATE Y Y Y

UPDATE Y Y Y

VALUES1 Y Y

VALUES INTO 5 Y Y Y

WHENEVER4 5 Y

Notes:

1. This statement can only be used in the triggered action of a trigger.
2. This statement can only be used in an SQL function, SQL procedure, or SQL trigger.
3. This statement can only be used in a procedure.
4. This statement is not applicable in a Java program.
5. This statement is not supported in a REXX program.
6. The target of the SET variable statement must be a global variable.

1654 IBM i: Db2 for i SQL Reference

SQL statement data access classification for routines
Indicates the level of SQL data access that must be specified to use the SQL statement in a routine.

The following table indicates whether an SQL statement (specified in the first column) is allowed to
execute in a function or procedure with the specified SQL data access classification. If an executable SQL
statement is encountered in a function or procedure defined with NO SQL, SQLSTATE 38001 is returned.
For other executions contexts, SQL statements that are not supported in any context return SQLSTATE
38003. For other SQL statements not allowed in a CONTAINS SQL context, SQLSTATE 38004 is returned
and in a READS SQL DATA context, SQLSTATE 38002 is returned. During creation of an SQL function or
SQL procedure, a statement that does not match the SQL data access classification will cause SQLSTATE
42895 to be returned.

Table 136. SQL Statement and SQL Data Access Classification

SQL Statement NO SQL CONTAINS SQL READS SQL
DATA

MODIFIES SQL
DATA

ALLOCATE CURSOR Y Y

ALLOCATE DESCRIPTOR Y Y

ALTER ... Y

ASSOCIATE LOCATORS Y Y

BEGIN DECLARE SECTION Y1 Y Y Y

CALL Y Y Y

CLOSE Y Y

COMMENT Y

COMMIT3 Y Y Y

compound (dynamic) Y2 Y2 Y

CONNECT (type 1 and type 2)3

CREATE ... Y

DEALLOCATE DESCRIPTOR Y Y

DECLARE CURSOR Y1 Y Y Y

DECLARE GLOBAL TEMPORARY
TABLE

 Y

DECLARE PROCEDURE Y1 Y Y Y

DECLARE STATEMENT Y1 Y Y Y

DECLARE VARIABLE Y1 Y Y Y

DELETE Y

DESCRIBE Y Y

DESCRIBE CURSOR Y Y

DESCRIBE INPUT Y Y

DESCRIBE PROCEDURE Y Y

DESCRIBE TABLE Y Y

DISCONNECT3

Appendix B. Characteristics of SQL statements 1655

Table 136. SQL Statement and SQL Data Access Classification (continued)

SQL Statement NO SQL CONTAINS SQL READS SQL
DATA

MODIFIES SQL
DATA

DROP ... Y

END DECLARE SECTION Y1 Y Y Y

EXECUTE Y2 Y2 Y

EXECUTE IMMEDIATE Y2 Y2 Y

FETCH Y Y

FREE LOCATOR Y Y Y

GET DESCRIPTOR Y Y

GET DIAGNOSTICS Y Y Y

GRANT ... Y

HOLD LOCATOR Y Y Y

INCLUDE Y1 Y Y Y

INSERT Y

LABEL Y

LOCK TABLE Y Y Y

MERGE Y

OPEN Y Y

PREPARE Y Y Y

REFRESH TABLE Y

RELEASE CONNECTION3

RELEASE SAVEPOINT Y

RENAME Y

REVOKE ... Y

ROLLBACK3 Y Y Y

ROLLBACK TO SAVEPOINT Y

SAVEPOINT Y

SELECT INTO Y Y

SET CONNECTION3

SET CURRENT DEBUG MODE Y Y

SET CURRENT DECFLOAT
ROUNDING MODE

Y Y Y

SET CURRENT DEGREE Y Y

SET CURRENT IMPLICIT
XMLPARSE OPTION

Y Y Y

SET CURRENT TEMPORAL
SYSTEM_TIME

Y Y Y

1656 IBM i: Db2 for i SQL Reference

Table 136. SQL Statement and SQL Data Access Classification (continued)

SQL Statement NO SQL CONTAINS SQL READS SQL
DATA

MODIFIES SQL
DATA

SET DESCRIPTOR Y Y

SET ENCRYPTION PASSWORD Y Y Y

SET OPTION Y1 Y Y Y

SET PATH Y Y Y

SET RESULT SETS Y Y Y

SET SCHEMA Y Y

SET SESSION AUTHORIZATION Y Y

SET TRANSACTION Y Y Y

SET variable Y Y Y

SIGNAL Y Y Y

TRANSFER OWNERSHIP Y

TRUNCATE Y

UPDATE Y

VALUES

VALUES INTO Y Y

WHENEVER Y1 Y Y Y

Note:

1. Although the NO SQL option implies that no SQL statements can be specified, non-executable
statements are not restricted.

2. It depends on the statement being executed. The statement specified for the EXECUTE statement or
any statement executed within a compound (dynamic) statement must be a statement that is allowed
in the context of the particular SQL access level in effect. For example, if the SQL access level in effect
is READS SQL DATA, the statement must not be an INSERT, UPDATE, or DELETE.

3. Connection management and transaction statements are not allowed in a procedure running on a
remote server. COMMIT and ROLLBACK are not allowed in an ATOMIC SQL procedure.

Appendix B. Characteristics of SQL statements 1657

Considerations for using distributed relational database
This section contains information that may be useful in developing applications that use application
servers which are not the same product as their application requesters.

All Db2 products support extensions to IBM SQL. Some of these extensions are product-specific, but
many are already shared by more than one product or support is planned but not yet generally available.

For the most part, an application can use the statements and clauses that are supported by the
database manager of the current server, even though that application might be running through the
application requester of a database manager that does not support some of those statements and
clauses. Restrictions to this general rule are identified by application requester:

• for Db2 for z/OS Application Server application requester, see Table 137 on page 1659
• for Db2 for i Application Server application requester, see Table 138 on page 1660
• for Db2 LUW application requester, see Table 139 on page 1661.

Note that an 'R' in the table indicates that this SQL function is not supported in the specified environment.
An 'R' in every column of the same row means that the function is available only if the current server and
requester are the same product or that the statement is blocked by the application requester from being
processed at the application server.

1658 IBM i: Db2 for i SQL Reference

Table 137. Db2 for z/OS Application Requester

SQL Statement or Function
Db2 for z/OS
Application Server

Db2 for i
Application Server

Db2 LUW
Application Server

COMMIT HOLD R R R

DECLARE STATEMENT

DECLARE TABLE

DECLARE VARIABLE

DESCRIBE TABLE R

DESCRIBE with USING clause R

DISCONNECT R R R

ROWID data types R

DATALINK data types R R R

BINARY and VARBINARY data types R

Host declarations not documented in
language specific appendices

149 149

PREPARE with USING clause R

ROLLBACK HOLD R R R

SET CURRENT PACKAGESET

SET variable R R

SET TRANSACTION R R R

Scrollable Cursor statements R R R

UPDATE cursor - FOR UPDATE clause not
specified

149 The statement is supported if the application requester understands it.

Appendix B. Characteristics of SQL statements 1659

Table 138. Db2 for i Application Requester

SQL Statement or Function
Db2 for z/OS
Application Server

Db2 for i
Application Server

Db2 LUW
Application Server

COMMIT HOLD R R

DECLARE STATEMENT

DECLARE TABLE

DECLARE VARIABLE

DESCRIBE TABLE R

DESCRIBE with USING clause R

DISCONNECT

Host Variables - optional colon R R R

ROWID data types R

DATALINK data types R R

BINARY and VARBINARY data types R

Host declarations not documented in
language specific appendices

149 149

PREPARE with USING clause R

ROLLBACK HOLD R R

SET CURRENT PACKAGESET R R R

SET variable R R R

SET TRANSACTION R R

Scrollable Cursor statements R R

UPDATE cursor - FOR UPDATE clause not
specified

R

1660 IBM i: Db2 for i SQL Reference

Table 139. Db2 LUW application requester

SQL Statement or Function
Db2 for z/OS
Application Server

Db2 for i
Application Server

Db2 LUW
Application Server

COMMIT HOLD R R R

DECLARE STATEMENT R R R

DECLARE TABLE R R R

DECLARE VARIABLE R R R

DESCRIBE TABLE R R R

DESCRIBE with USING clause R R R

DISCONNECT

Host Variables - optional colon R R R

ROWID data types 150 150 R

DATALINK data types R R R

BINARY and VARBINARY data types R R R

Host declarations not documented in
language specific appendices

149 149

PREPARE with USING clause R R R

ROLLBACK HOLD R R R

SET CURRENT PACKAGESET

SET variable R R R

SET TRANSACTION R R R

Scrollable Cursor statements R R R

UPDATE cursor - FOR UPDATE clause not
specified

R

150 The Db2 LUW application requester application requester will process a ROWID data type at the application
server using the compatible VARCHAR(40) FOR BIT DATA data type.

Appendix B. Characteristics of SQL statements 1661

CONNECT (type 1) and CONNECT (type 2) differences
There are two types of CONNECT statements.

They have the same syntax, but they have different semantics:

• CONNECT (type 1) is used for remote unit of work. See “Remote unit of work” on page 37.
• CONNECT (type 2) is used for distributed unit of work. See “CONNECT (type 2)” on page 967.

The following table summarizes the differences between CONNECT (type 1) and CONNECT (type 2) rules:

Table 140. CONNECT (type 1) and CONNECT (type 2) Differences

Type 1 Rules Type 2 Rules

CONNECT statements can only be executed when
the activation group is in the connectable state.
No more than one CONNECT statement can be
executed within the same unit of work.

More than one CONNECT statement can be
executed within the same unit of work. There are
no rules about the connectable state.

If the CONNECT statement fails because the
server name is not listed in the local directory,
the connection state of the activation group is
unchanged.

If a CONNECT statement fails because the
activation group is not in the connectable state,
the SQL connection status of the activation group is
unchanged.

If a CONNECT statement fails for any other reason,
the activation group is placed in the unconnected
state.

If a CONNECT statement fails, the current SQL
connection is unchanged and any subsequent SQL
statements are executed by the current server.

CONNECT ends all existing connections of the
activation group. Accordingly, CONNECT also closes
any open cursors for that activation group.

CONNECT does not end connections and does not
close cursors.

A CONNECT to the current server is executed like
any other CONNECT (type 1) statement.

A CONNECT to the current server causes an error.

Determining the CONNECT rules that apply
A program preparation option is used to specify the type of CONNECT that will be performed by
a program. The program preparation option is specified using the RDBCNNMTH parameter on the
CRTSQLxxx command.

Connecting to servers that only support remote unit of work
CONNECT (type 2) connections to application servers that only support remote unit of work might result
in connections that are read-only.

If a CONNECT (type 2) is performed to an application server that only supports remote unit of work:

• The connection allows read-only operations if, at the time of the connect, there are any dormant
connections that allow updates. In this case, the connection does not allow updates.

• Otherwise, the connection allows updates.

If a CONNECT (type 2) is performed to an application server that supports distributed unit of work:

151 Db2 for i using the initial DRDA support for native TCP/IP is an example of an application server that
supports only remote unit of work.

1662 IBM i: Db2 for i SQL Reference

• The connection allows read-only operations when there are dormant connections that allow updates to
application servers that only support remote unit of work. In this case, the connection allows updates as
soon as the dormant connection is ended.

• Otherwise, the connection allows updates.

Appendix B. Characteristics of SQL statements 1663

1664 IBM i: Db2 for i SQL Reference

Appendix C. SQLCA (SQL communication area)
An SQLCA is a set of variables that may be updated at the end of the execution of every SQL statement. A
program that contains executable SQL statements may provide one, but no more than one SQLCA (unless
a stand-alone SQLCODE or a stand-alone SQLSTATE variable is used instead), except in Java, where the
SQLCA is not applicable.

Instead of using an SQLCA, the GET DIAGNOSTICS statement can be used in all languages to return
return codes and other information about the previous SQL statement. For more information, see “GET
DIAGNOSTICS” on page 1332.

The SQL INCLUDE statement can be used to provide the declaration of the SQLCA in all host languages
except Java, RPG, or REXX. For information about the use of the SQLCA in a REXX procedure, see
the Embedded SQL Programming topic collection. For information about how to access the information
regarding errors and warnings in Java, refer to the IBM Developer Kit for Java topic collection.

In C, COBOL, and PL/I, the name of the storage area must be SQLCA. Every SQL statement must be within
the scope of its declaration.

If a stand-alone SQLCODE or SQLSTATE is specified in the program, the SQLCA must not be included. For
more information, see “SQL diagnostic information” on page 814.

The stand-alone SQLCODE and stand-alone SQLSTATE must not be specified in the Java or REXX
language.

Field descriptions
The names in the following table are those provided by the SQL INCLUDE statement.

For the most part, C (and C++), COBOL, and PL/I use the same names. RPG names are different, because
in RPG/400, they are limited to 6 characters. In ILE RPG, both a long name and the short 6 character
name is supported. Note one instance where PL/I names differ from the COBOL names.

Table 141. Names Provided by the SQL INCLUDE Statement

C Name
COBOL Name
PL/I Name

ILE RPG Name
RPG/400 Name

Field
Data Type Field Value

SQLCAID
sqlcaid

SQLCAID
SQLAID

CHAR(8) An "eye catcher" for storage dumps, containing 'SQLCA'.

SQLCABC
sqlcabc

SQLCABC
SQLABC

INTEGER Contains the length of the SQLCA, 136.

SQLCODE
sqlcode

SQLCODE
SQLCOD

INTEGER Contains an SQL return code.
Code

Meaning
0

Successful execution although SQLWARN indicators
might have been set.

positive
Successful execution, but with a warning condition.

negative
Error condition.

© Copyright IBM Corp. 1998, 2015 1665

Table 141. Names Provided by the SQL INCLUDE Statement (continued)

C Name
COBOL Name
PL/I Name

ILE RPG Name
RPG/400 Name

Field
Data Type Field Value

SQLERRML1
sqlerrml

SQLERRML
SQLERL

SMALLINT Length indicator for SQLERRMC, in the range 0 through
70. 0 means that the value of SQLERRMC is not
pertinent.

SQLERRMC1
sqlerrmc

SQLERRMC
SQLERM

CHAR(70) Contains message replacement text associated with
the SQLCODE. For CONNECT and SET CONNECTION,
the SQLERRMC field contains information about the
connection, see Table 144 on page 1670 for a
description of the replacement text.

SQLERRP
sqlerrp

SQLERRP
SQLERP

CHAR(8) Contains the name of the product and module returning
the error or warning. The first three characters identify
the product:

• ARI for Db2 for VM and VSE
• DSN for Db2 for z/OS
• QSQ for Db2 for i
• SQL for all other Db2 products

See “CONNECT (type 1)” on page 962 or “CONNECT
(type 2)” on page 967 for additional information.

SQLERRD
sqlerrd

SQLERRD
SQLERR2

Array Contains six INTEGER variables that provide diagnostic
information, see Table 143 on page 1668 for a
description of the diagnostic information.

SQLWARN
sqlwarn

SQLWARN
SQLWRN3

CHAR(11) A set of 11 CHAR(1) warning indicators, each containing
blank or 'W' or 'N'.

SQLSTATE
sqlstate

SQLSTATE
SQLSTT

CHAR(5) A return code that indicates the outcome of the most
recently executed SQL statement.

Notes:
1

In COBOL, SQLERRM includes SQLERRML and SQLERRMC. In PL/I, the varying-length string SQLERRM is
equivalent to SQLERRML prefixed to SQLERRMC.

2

In RPG/400, SQLERR is defined as 24 characters (not an array) that are redefined by the fields SQLER1
through SQLER6. The fields are full-word binary. In ILE RPG, SQLERR is also redefined as an array. The
name of the array is SQLERRD.

3

In RPG/400, SQLWRN is defined as 11 characters (not an array) that are redefined by the fields SQLWN0
through SQLWNA. The fields are full-word binary. In ILE RPG, SQLWRN is also redefined as an array. The
name of the array is SQLWARN.

1666 IBM i: Db2 for i SQL Reference

Table 142. SQLWARN Diagnostic Information

C Name
COBOL Name
PL/I Name

ILE RPG Name
RPG/400 Name Field Value

SQLWARN0
sqlwarn[0]

SQLWARN(1)
SQLWN0

Contains 'W' if at least one other indicator contains 'W' or 'N', it is
blank if all other indicators are blank.

SQLWARN1
sqlwarn[1]

SQLWARN(2)
SQLWN1

Contains 'W' if the value of a string column was truncated
when assigned to a host variable. Contains 'N' if *NOCNULRQD
was specified an the CRTSQLCI or CRTSQLCPPI command (or
CNULRQD(*NO) on the SET OPTION statement) and if the value of
a string column was assigned to a C NUL-terminated host variable
and if the host variable was large enough to contain the result but
not large enough to contain the NUL-terminator.

SQLWARN2
sqlwarn[2]

SQLWARN(3)
SQLWN2

Contains 'W' if the null values were eliminated from the argument
of a function; not necessarily set to 'W' for the MIN or MAX
function because its results are not dependent on the elimination
of null values.

SQLWARN3
sqlwarn[3]

SQLWARN(4)
SQLWN3

Contains 'W' if the number of columns is larger than the number of
host variables.

SQLWARN4
sqlwarn[4]

SQLWARN(5)
SQLWN4

Contains 'W' if a prepared UPDATE or DELETE statement does not
include a WHERE clause.

SQLWARN5
sqlwarn[5]

SQLWARN(6)
SQLWN5

Contains a character value of 1 (read only), 2 (read and delete), or
4 (read, delete, and update) to reflect capability of a cursor after
the OPEN statement.

SQLWARN6
sqlwarn[6]

SQLWARN(7)
SQLWN6

Contains 'W' if date arithmetic results in an end-of-month
adjustment.

SQLWARN7
sqlwarn[7]

SQLWARN(8)
SQLWN7

Reserved

SQLWARN8
sqlwarn[8]

SQLWARN(9)
SQLWN8

Contains 'W' if the result of a character conversion contains the
substitution character.

SQLWARN9
sqlwarn[9]

SQLWARN(10)
SQLWN9

Reserved

SQLWARNA
sqlwarn[10]

SQLWARN(11)
SQLWNA

Reserved

Appendix C. SQLCA (SQL communication area) 1667

Table 143. SQLERRD Diagnostic Information

C Name
COBOL Name
PL/I Name

ILE RPG Name
RPG/400 Name Field Value

SQLERRD(1)
sqlerrd[0]

SQLERRD(1)
SQLER1

Contains the last four characters of the CPF escape message if
SQLCODE is less than 0. For example, if the message is CPF5715,
X'F5F7F1F5' is placed in SQLERRD(1).1

For a call to a procedure, contains the return status value
specified on the RETURN statement. If a return status value is
not specified on the RETURN statement or the procedure is an
external procedure,

• 0 is returned if the CALL statement is successful, or
• –1 is returned if the CALL statement is not successful.

SQLERRD(2)
sqlerrd[1]

SQLERRD(2)
SQLER2

Contains the last four characters of a CPD diagnostic message if
the SQL code is less than 0.1

For a CALL statement, SQLERRD(2) contains the number of result
sets.

For an OPEN statement, if the cursor is insensitive to changes,
SQLERRD(2) contains the actual number of rows in the result set.
If the cursor is sensitive to changes, SQLERRD(2) contains an
estimated number of rows in the result set.

SQLERRD(3)
 sqlerrd[2]

SQLERRD(3)
SQLER3

For a CONNECT for status statement, SQLERRD(3) contains
information about the connection status. See “CONNECT (type 2)”
on page 967 for more information.

For INSERT, MERGE, UPDATE, REFRESH, and DELETE, shows the
number of rows affected.

For a TRUNCATE statement, the value will be -1.

For a FETCH statement, SQLERRD(3) contains the number of rows
fetched.

For the PREPARE statement, contains the estimated number of
rows selected. If the number of rows is greater than 2 147 483
647, then 2 147 483 647 is returned.

1668 IBM i: Db2 for i SQL Reference

Table 143. SQLERRD Diagnostic Information (continued)

C Name
COBOL Name
PL/I Name

ILE RPG Name
RPG/400 Name Field Value

SQLERRD(4)
sqlerrd[3]

SQLERRD(4)
 SQLER4

For the PREPARE statement, contains a relative number estimate
of the resources required for every execution. This number varies
depending on the current availability of indexes, file sizes, CPU
model, etc. It is an estimated cost for the access plan chosen by
the Db2 for i Query Optimizer.

For a CONNECT and SET CONNECTION statement, SQLERRD(4)
contains the type of conversation used and whether or not
committable updates can be performed. See “CONNECT (type 2)”
on page 967 for more information.

For a CALL statement, SQLERRD(4) contains the message key of
the error that caused the procedure to fail. The QMHRTVPM API
can be used to return the message description for the message
key.

For a trigger error in a DELETE, INSERT MERGE, or UPDATE
statement, SQLERRD(4) contains the message key of the error
that was signaled from the trigger program. The QMHRTVPM API
can be used to return the message description for the message
key.

For a FETCH statement, if the result row does not contain a LOB,
SQLERRD(4) contains the length of the row(s) retrieved.

For an OPEN statement, if the result row does not contain a LOB,
SQLERRD(4) contains the length of a result row.

SQLERRD(5)
sqlerrd[4]

SQLERRD(5)
SQLER5

For a CONNECT or SET CONNECTION statement, SQLERRD(5)
contains:

• -1 if the connection is unconnected
• 0 if the connection is local
• 1 if the connection is remote

For a DELETE, INSERT, MERGE, or UPDATE statement, shows the
number of rows affected by referential constraints and triggers.

For an EXECUTE IMMEDIATE or PREPARE statement, may contain
the position of a syntax error.

For a multiple-row FETCH statement, SQLERRD(5) contains +100
if the last row currently in the table has been fetched.

For a PREPARE statement, SQLERRD(5) contains the number of
parameter markers in the prepared statement.

SQLERRD(6)
sqlerrd[5]

SQLERRD(6)
SQLER6

Contains the SQL completion message identifier when the
SQLCODE is 0.

In all other cases, it is undefined.

Note:
1

SQLERRD(1) and SQLERRD(2) are set only if appropriate and only if the current server is Db2 for i.

Appendix C. SQLCA (SQL communication area) 1669

Table 144. SQLERRMC Replacement Text for CONNECT and SET CONNECTION

Description Data type

Relational Database Name CHAR(18)

Product Identification (same as SQLERRP) CHAR(8)

User ID of the server job CHAR(10)

Connection method (*DUW or *RUW) CHAR(10)

DDM server class name
QAS

Db2 for i
QDB2

Db2 for z/OS
QDB2/6000

Db2 for AIX
QDB2/HPUX

Db2 for HP-UX**
QDB2/LINUX

Db2 for Linux®

QDB2/NT
Db2 for Windows** NT, 2000, and XP

QDB2/SUN
Db2 for SUN** Solaris**

QSQLDS/VM
Db2 Server for VM

QSQLDS/VSE
Db2 Server for VSE

CHAR(10)

Connection type (same as SQLERRD(4)) SMALLINT

1670 IBM i: Db2 for i SQL Reference

INCLUDE SQLCA declarations
This section shows the equivalent INCLUDE SQLCA declaration for C and C++, COBOL, PL/I, RPG/400, and
ILE RPG.

In C and C++, INCLUDE SQLCA declarations are equivalent to the following:

#ifndef SQLCODE
struct sqlca
{
 unsigned char sqlcaid[8];
 long sqlcabc;
 long sqlcode;
 short sqlerrml;
 unsigned char sqlerrmc[70];
 unsigned char sqlerrp[8];
 long sqlerrd[6];
 unsigned char sqlwarn[11];
 unsigned char sqlstate[5];
};
#define SQLCODE sqlca.sqlcode
#define SQLWARN0 sqlca.sqlwarn[0]
#define SQLWARN1 sqlca.sqlwarn[1]
#define SQLWARN2 sqlca.sqlwarn[2]
#define SQLWARN3 sqlca.sqlwarn[3]
#define SQLWARN4 sqlca.sqlwarn[4]
#define SQLWARN5 sqlca.sqlwarn[5]
#define SQLWARN6 sqlca.sqlwarn[6]
#define SQLWARN7 sqlca.sqlwarn[7]
#define SQLWARN8 sqlca.sqlwarn[8]
#define SQLWARN9 sqlca.sqlwarn[9]
#define SQLWARNA sqlca.sqlwarn[10]
#define SQLSTATE sqlca.sqlstate
#endif
struct sqlca sqlca;

In COBOL, INCLUDE SQLCA declarations are equivalent to the following:

01 SQLCA.
 05 SQLCAID PIC X(8).
 05 SQLCABC PIC S9(9) BINARY.
 05 SQLCODE PIC S9(9) BINARY.
 05 SQLERRM.
 49 SQLERRML PIC S9(4) BINARY.
 49 SQLERRMC PIC X(70).
 05 SQLERRP PIC X(8).
 05 SQLERRD OCCURS 6 TIMES
 PIC S9(9) BINARY.
 05 SQLWARN.
 10 SQLWARN0 PIC X(1).
 10 SQLWARN1 PIC X(1).
 10 SQLWARN2 PIC X(1).
 10 SQLWARN3 PIC X(1).
 10 SQLWARN4 PIC X(1).
 10 SQLWARN5 PIC X(1).
 10 SQLWARN6 PIC X(1).
 10 SQLWARN7 PIC X(1).
 10 SQLWARN8 PIC X(1).
 10 SQLWARN9 PIC X(1).
 10 SQLWARNA PIC X(1).
 05 SQLSTATE PIC X(5).

Note: In COBOL, INCLUDE SQLCA must not be specified outside the Working Storage Section.

In PL/I; INCLUDE SQLCA declarations are equivalent to the following:

DCL 1 SQLCA,
 2 SQLCAID CHAR(8),
 2 SQLCABC BIN FIXED(31),
 2 SQLCODE BIN FIXED(31),
 2 SQLERRM CHAR(70) VAR,
 2 SQLERRP CHAR(8),

Appendix C. SQLCA (SQL communication area) 1671

 2 SQLERRD(6) BIN FIXED(31),
 2 SQLWARN,
 3 SQLWARN0 CHAR(1),
 3 SQLWARN1 CHAR(1),
 3 SQLWARN2 CHAR(1),
 3 SQLWARN3 CHAR(1),
 3 SQLWARN4 CHAR(1),
 3 SQLWARN5 CHAR(1),
 3 SQLWARN6 CHAR(1),
 3 SQLWARN7 CHAR(1),
 3 SQLWARN8 CHAR(1),
 3 SQLWARN9 CHAR(1),
 3 SQLWARNA CHAR(1),
 2 SQLSTATE CHAR(5);

1672 IBM i: Db2 for i SQL Reference

In RPG/400; SQLCA declarations are equivalent to the following:

ISQLCA DS
I 1 8 SQLAID SQL
I B 9 120SQLABC SQL
I B 13 160SQLCOD SQL
I B 17 180SQLERL SQL
I 19 88 SQLERM SQL
I 89 96 SQLERP SQL
I 97 120 SQLERR SQL
I B 97 1000SQLER1 SQL
I B 101 1040SQLER2 SQL
I B 105 1080SQLER3 SQL
I B 109 1120SQLER4 SQL
I B 113 1160SQLER5 SQL
I B 117 1200SQLER6 SQL
I 121 131 SQLWRN SQL
I 121 121 SQLWN0 SQL
I 122 122 SQLWN1 SQL
I 123 123 SQLWN2 SQL
I 124 124 SQLWN3 SQL
I 125 125 SQLWN4 SQL
I 126 126 SQLWN5 SQL
I 127 127 SQLWN6 SQL
I 128 128 SQLWN7 SQL
I 129 129 SQLWN8 SQL
I 130 130 SQLWN9 SQL
I 131 131 SQLWNA SQL
I 132 136 SQLSTT SQL

In ILE RPG; SQLCA declarations are equivalent to the following:

 // SQL COMMUNICATION AREA
DCL-DS SQLCA;
 SQLCAID CHAR(8) INZ(X'0000000000000000');
 SQLAID CHAR(8) OVERLAY(SQLCAID);
 SQLCABC INT(10);
 SQLABC BINDEC(9) OVERLAY(SQLCABC);
 SQLCODE INT(10);
 SQLCOD BINDEC(9) OVERLAY(SQLCODE);
 SQLERRML INT(5);
 SQLERL BINDEC(4) OVERLAY(SQLERRML);
 SQLERRMC CHAR(70);
 SQLERM CHAR(70) OVERLAY(SQLERRMC);
 SQLERRP CHAR(8);
 SQLERP CHAR(8) OVERLAY(SQLERRP);
 SQLERR CHAR(24);
 SQLER1 BINDEC(9) OVERLAY(SQLERR:*NEXT);
 SQLER2 BINDEC(9) OVERLAY(SQLERR:*NEXT);
 SQLER3 BINDEC(9) OVERLAY(SQLERR:*NEXT);
 SQLER4 BINDEC(9) OVERLAY(SQLERR:*NEXT);
 SQLER5 BINDEC(9) OVERLAY(SQLERR:*NEXT);
 SQLER6 BINDEC(9) OVERLAY(SQLERR:*NEXT);
 SQLERRD INT(10) DIM(6) OVERLAY(SQLERR);
 SQLWRN CHAR(11);
 SQLWN0 CHAR(1) OVERLAY(SQLWRN:*NEXT);
 SQLWN1 CHAR(1) OVERLAY(SQLWRN:*NEXT);
 SQLWN2 CHAR(1) OVERLAY(SQLWRN:*NEXT);
 SQLWN3 CHAR(1) OVERLAY(SQLWRN:*NEXT);
 SQLWN4 CHAR(1) OVERLAY(SQLWRN:*NEXT);
 SQLWN5 CHAR(1) OVERLAY(SQLWRN:*NEXT);
 SQLWN6 CHAR(1) OVERLAY(SQLWRN:*NEXT);
 SQLWN7 CHAR(1) OVERLAY(SQLWRN:*NEXT);
 SQLWN8 CHAR(1) OVERLAY(SQLWRN:*NEXT);
 SQLWN9 CHAR(1) OVERLAY(SQLWRN:*NEXT);
 SQLWNA CHAR(1) OVERLAY(SQLWRN:*NEXT);
 SQLWARN CHAR(1) DIM(11) OVERLAY(SQLWRN);
 SQLSTATE CHAR(5);
 SQLSTT CHAR(5) OVERLAY(SQLSTATE);
END-DS SQLCA;

Appendix C. SQLCA (SQL communication area) 1673

1674 IBM i: Db2 for i SQL Reference

Appendix D. SQLDA (SQL descriptor area)
An SQLDA is a set of variables that is used for execution of the SQL DESCRIBE statement, and it may
optionally be used by the PREPARE, OPEN, CALL, FETCH, and EXECUTE statements.

An SQLDA can be used in a DESCRIBE or PREPARE statement, altered with the addresses of storage
areas152, and then used again in a FETCH statement.

SQLDAs are supported for all languages, but predefined declarations are provided only for C (and C++),
COBOL, ILE RPG, PL/I, and REXX. In REXX, the SQLDA is somewhat different than in the other languages;
for information about the use of SQLDAs in REXX, see the Embedded SQL Programming topic collection.

The meaning of the information in an SQLDA depends on its use.

• When an SQLDA is used in a DESCRIBE or PREPARE statement, an SQLDA provides information to an
application program about a prepared select-statement. Each column of the result table is described in
an SQLVAR occurrence or set of related SQLVAR occurrences.

• In OPEN, EXECUTE, CALL, and FETCH, an SQLDA provides information to the database manager about
storage areas for input or output data. Each storage area is described in the SQLVARs.

– For OPEN and EXECUTE of a statement other than CALL, each SQLVAR occurrence or set of related
SQLVAR occurrences describes a storage area that is used to contain an input value which is
substituted for a parameter marker in the associated SQL statement that was previously prepared.

– For FETCH, each SQLVAR occurrence or set of related SQLVAR occurrences describes a storage area
that is used to contain an output value from a row of the result table.

– For CALL and EXECUTE of a prepared CALL statement, each SQLVAR occurrence or set of related
SQLVAR occurrences describes a storage area that is used to contain an input or output value (or
both) that corresponds to an argument in the argument list for the procedure.

An SQLDA consists of four variables in a header followed by an arbitrary number of occurrences of a base
SQLVAR. When the SQLDA desribes either LOBs or distint types the base SQLVARs are followed by the
same number of occurrences of an extended SQLVAR.

Base SQLVAR entry
The base SQLVAR entry is always present. The fields of this entry contain the base information about
the column or variable such as data type code, length attribute (except for LOBs), column name (or
label), CCSID, variable address, and indicator variable address.

Extended SQLVAR entry
The extended SQLVAR entry is needed (for each column) if the result includes any LOB or distinct
type columns. For distinct types, the extended SQLVAR contains the distinct type name. For LOBs, the
extended SQLVAR contains the length attribute of the variable and a pointer to the buffer that contains
the actual length. If locators or file reference variables are used to represent LOBs, an extended
SQLVAR is not necessary.

The extended SQLVAR entry is also needed for each column when:

• USING BOTH is specified, which indicates that column names and labels are returned.
• USING ALL is specified, which indicates that column names, labels, and system column names are

returned.

The fields in the extended SQLVAR that return LOB and distinct type information do not overlap, and
the fields that return LOB and label information do not overlap. Depending on the combination of
labels, LOBs and distinct types, more than one extended SQLVAR entry per column may be required to
return the information. See “Determining how many SQLVAR occurrences are needed” on page 1678.

152 A storage area could be the storage for a variable defined in the program (that may also be a host variable)
or an area of storage explicitly allocated by the application.

© Copyright IBM Corp. 1998, 2015 1675

Field descriptions in an SQLDA header
An SQLDA consists of four variables in a header structure followed by an arbitrary number of occurrences
of a sequence of five variables collectively named SQLVAR. In OPEN, CALL, FETCH, and EXECUTE, each
occurrence of SQLVAR describes a variable. In PREPARE and DESCRIBE, each occurrence describes a
column of a result table.

The SQL INCLUDE statement provides the following field names:

Table 145. Field Descriptions for an SQLDA Header

C Name 153

PL/I Name
COBOL Name

Field
Data Type

Usage in DESCRIBE and PREPARE
(set by the database manager
except for SQLN)

Usage in FETCH, OPEN, CALL, or
EXECUTE (set by the user prior to
executing the statement)

sqldaid
SQLDAID

CHAR(8) An 'eye catcher' for storage dumps,
containing 'SQLDA '.

The 7th byte of the SQLDAID can
be used to determine whether more
than one SQLVAR entry is needed
for each column. For details, see
“Determining how many SQLVAR
occurrences are needed” on page
1678.

A '2' in the 7th byte indicates that
two SQLVAR entries were allocated
for each column.

A '3' in the 7th byte indicates
that three SQLVAR entries were
allocated for each column.

A '4' in the 7th byte indicates that
four SQLVAR entries were allocated
for each column.

sqldabc
SQLDABC

INTEGER Length of the SQLDA. Number of bytes of storage
allocated for the SQLDA. Enough
storage must be allocated
to contain SQLN occurrences.
SQLDABC must be set to a
value greater than or equal to
16+SQLN*(80), where 80 is the
length of an SQLVAR occurrence. If
LOBs or distinct types are specified,
there must be two SQLVAR entries
for each parameter marker.

sqln
SQLN

SMALLINT Unchanged by the database
manager. Must be set to a value
greater than or equal to zero
before the PREPARE or DESCRIBE
statement is executed. It should be
set to a value that is greater than
or equal to the number of columns
in the result or a multiple of the
number of columns in the result
when multiple sets of SQLVAR
entries are necessary. Indicates the
total number of occurrences of
SQLVAR.

Total number of occurrences of
SQLVAR provided in the SQLDA.
SQLN must be set to a value greater
than or equal to zero.

If LOBs or distinct types are
specified, there must be two
SQLVAR entries for each parameter
marker and SQLN must be set to
two times the number of parameter
markers.

153 In this column, the lowercase name is the C Name. The uppercase name is the COBOL, PL/I, or RPG Name.

1676 IBM i: Db2 for i SQL Reference

Table 145. Field Descriptions for an SQLDA Header (continued)

C Name 153

PL/I Name
COBOL Name

Field
Data Type

Usage in DESCRIBE and PREPARE
(set by the database manager
except for SQLN)

Usage in FETCH, OPEN, CALL, or
EXECUTE (set by the user prior to
executing the statement)

sqld
SQLD

SMALLINT The number of columns described
by occurrences of SQLVAR (zero if
the statement being described is
not a select-statement, CALL, or
VALUES INTO).

Number of occurrences of SQLVAR
entries in the SQLDA that are used
when executing the statement.
SQLD must be set to a value greater
than or equal to zero and less than
or equal to SQLN.

Appendix D. SQLDA (SQL descriptor area) 1677

Determining how many SQLVAR occurrences are needed
The number of SQLVAR occurrences needed depends on the statement that the SQLDA was provided
for and the data types of the columns or parameters being described. See the tables above for more
information.

The 7th byte of SQLDAID is always set to the number of sets of SQLVARs necessary when LOBs or UDTs
are in the result set.

If SQLD is not set to a sufficient number of SQLVAR occurrences:

• When LOBs and UDTs are not in the result set, SQLD is set to the total number of SQLVAR occurrences
needed for all sets. When there are LOBs or UDTs in the result set, SQLD is set to the number of columns
in the result table and the seventh byte of SQLDAID indicates the number of sets of SQLVAR entries
needed. The number of required SQLVAR entries can always be determined by multiplying SQLD by the
value in the seventh byte of SQLDAID.

• A warning (SQLSTATE 01594) is returned if at least enough SQLVARs were specified for the Base
SQLVAR Entries. The Base SQLVAR entries are returned, but no extended SQLVARs are returned.

• A warning (SQLSTATE 01005) is returned if enough SQLVARs were not specified for even the Base
SQLVAR Entries. No SQLVAR entries are returned.154

Table 146 on page 1679, Table 147 on page 1679, and Table 148 on page 1679 show how to map the
base and extended SQLVAR entries. For an SQLDA that contains both base and extended SQLVAR entries,
the base SQLVAR entries are in the first block, followed by a block of extended SQLVAR entries, which if
necessary, are followed by a second or third block of extended SQLVAR entries. In each block, the number
of occurrences of the SQLVAR entry is equal to the value in SQLD even though many of the extended
SQLVAR entries might be unused.

154 If LOBs or UDTs are not in the result set, the warning is only returned if the standards option is specified.
For information about the standards option, see “Standards compliance” on page xix.

1678 IBM i: Db2 for i SQL Reference

Table 146. Contents of SQLVAR Arrays for USING NAMES, USING SYSTEM NAMES, USING LABELS or USING ANY

LOBs
DISTINCT
types

7th byte of
SQLDAID

SQLN
Minimum

First Set
(Base)

Second Set
(Extended)

Third Set
(Extended)

Fourth Set
(Extended)

No No Blank n Column
names,
system
column
names, or
labels

Not used Not used Not used

Yes No 2 2n Column
names,
system
column
names, or
labels

LOBs Not used Not used

No Yes 2 2n Column
names,
system
column
names, or
labels

Distinct
types

Not used Not used

Yes Yes 2 2n Column
names,
system
column
names, or
labels

LOBs and
distinct
types

Not used Not used

Table 147. Contents of SQLVAR Arrays for USING BOTH

LOBs
DISTINCT
types

7th byte of
SQLDAID

SQLN
Minimum

First Set
(Base)

Second Set
(Extended)

Third Set
(Extended)

Fourth Set
(Extended)

No No 2 2n Column
names

Labels Not used Not used

Yes No 2 2n Column
names

LOBs and
labels

Not used Not used

No Yes 3 3n Column
names

Distinct
types

Labels Not used

Yes Yes 3 3n Column
names

LOBs and
distinct
types

Labels Not used

Table 148. Contents of SQLVAR Arrays for USING ALL

LOBs
DISTINCT
types

7th byte of
SQLDAID

SQLN
Minimum

First Set
(Base)

Second Set
(Extended)

Third Set
(Extended)

Fourth Set
(Extended)

No No 3 3n System
column
names

Labels Column
names

Not used

Appendix D. SQLDA (SQL descriptor area) 1679

Table 148. Contents of SQLVAR Arrays for USING ALL (continued)

LOBs
DISTINCT
types

7th byte of
SQLDAID

SQLN
Minimum

First Set
(Base)

Second Set
(Extended)

Third Set
(Extended)

Fourth Set
(Extended)

Yes No 3 3n System
column
names

LOBs and
labels

Column
names

Not used

No Yes 4 4n System
column
names

Distinct
types

Labels Column
names

Yes Yes 4 4n System
column
names

LOBs and
distinct
types

Labels Column
names

1680 IBM i: Db2 for i SQL Reference

Field descriptions in an occurrence of SQLVAR
This section includes field descriptions in an occurrence of a base and secondary SQLVAR.

Fields in an occurrence of a base SQLVAR

Table 149. Field Descriptions for an SQLVAR

C Name 155

COBOL Name
PL/I Name
RPG Name

Field
Data Type Usage in DESCRIBE and PREPARE

(set by the database manager)

Usage in FETCH, OPEN, CALL, and
EXECUTE (set by the user prior to
executing the statement)

sqltype
SQLTYPE

SMALLINT Indicates the data type of the column
and whether it can contain nulls. For
a description of the type codes, see
Table 151 on page 1685.

For a distinct type, the data type on
which the distinct type is based is
placed in this field. The base SQLVAR
contains no indication that this is part
of the description of a distinct type.

Indicates the data type of the host
variable and whether an indicator
variable is provided. For a description
of the type codes, see Table 151 on
page 1685.

sqllen
SQLLEN

SMALLINT The length attribute of the column.
For datetime columns, the length of
the string representation of the values.
See Table 151 on page 1685.

For a LOB, the value is 0 regardless
of the length attribute of the LOB.
For XML, the value is 0. Field
SQLLONGLEN in the extended SQLVAR
entry contains the length attribute of
the LOB or XML.

The length attribute of the host
variable. See Table 151 on page 1685.

For a LOB, the value is 0 regardless of
the length attribute of the LOB. Field
SQLLONGLEN in the extended SQLVAR
entry contains the length attribute of
the LOB.

For XML AS BLOB, CLOB, or DBCLOB,
the value is 0.

sqlres
SQLRES

CHAR(12) Reserved. Provides boundary
alignment for SQLDATA.

Reserved. Provides boundary
alignment for SQLDATA.

sqldata
SQLDATA

pointer The CCSID of a string column or XML
column as described in Table 152 on
page 1688.

Contains the address of the host
variable.

For LOB host variables, if the
SQLDATALEN field in the extended
SQLVAR is null, this points to the four-
byte LOB length, followed immediately
by the LOB data.

If the SQLDATALEN field in the
extended SQLVAR is not null, this
points to the LOB data and the
SQLDATALEN field points to the four-
byte LOB length.

155 In this column, the lowercase name is the C Name. The uppercase name is the PL/I, COBOL, and RPG
Name.

Appendix D. SQLDA (SQL descriptor area) 1681

Table 149. Field Descriptions for an SQLVAR (continued)

C Name 155

COBOL Name
PL/I Name
RPG Name

Field
Data Type Usage in DESCRIBE and PREPARE

(set by the database manager)

Usage in FETCH, OPEN, CALL, and
EXECUTE (set by the user prior to
executing the statement)

sqlind
SQLIND

pointer For a select-statement, indicates
whether the column was added as
a result of using the WITH ROW
CHANGE COLUMNS attribute:

• -1 ROW CHANGE TOKEN (distinct)
• -2 ROW CHANGE TOKEN (not

distinct)
• -3 RID
• -4 RID_BIT

Otherwise, reserved.

Contains the address of the indicator
variable. Not used if there is no
indicator variable (as indicated by an
even value of SQLTYPE).

sqlname
SQLNAME

VARCHAR(30) The unqualified name of the column.
If the column does not have a name,
a string is constructed from the
expression and returned.

The name is case sensitive and does
not contain surrounding delimiters.

Contains the CCSID of the host
variable as described in Table 152 on
page 1688.

For XML data, sqlname can be set as
follows to indicate as XML subtype:

The length of sqlname is 8

Bytes 1 and 2: Must be X'0000'.

Bytes 3 and 4: May contain a CCSID.

Bytes 5 and 6 X'0100' XML host
variable (XML AS CLOB, XML AS
DBCLOB, XML AS BLOB, XML AS
CLOB_FILE, XML AS DBCLOB_FILE,
XML AS BLOB_FILE)

Bytes 7 and 8: Must be X'0000'.

1682 IBM i: Db2 for i SQL Reference

Fields in an occurrence of a secondary SQLVAR

Table 150. Field Descriptions for an Extended SQLVAR

C Name 156

COBOL Name
PL/I Name
RPG Name

Field
Data Type

Usage in DESCRIBE and
PREPARE (set by the
database manager)

Usage in FETCH, OPEN, CALL, and
EXECUTE (set by the user prior to
executing the statement)

len.sqllonglen
SQLLONGL
SQLLONGLEN

INTEGER The length attribute of a LOB
column. For XML, the value is
0.

The length attribute of a LOB or XML
host variable. The database manager
ignores the SQLLEN field in the base
SQLVAR for these data types. The
length attribute indicates the number
of bytes for a BLOB, and the number of
characters for a CLOB, DBCLOB, or for
XML.

* CHAR(12) Reserved. Provides boundary
alignment for SQLDATALEN.

Reserved. Provides boundary
alignment for SQLDATALEN.

* pointer Reserved. Reserved.

sqldatalen
SQLDATAL
SQLDATALEN

pointer Not used. Used only for LOB host variables.

If the value of this field is not null, this
field points to a four-byte long buffer
that contains the actual length of the
LOB in bytes (even for DBCLOBs). The
SQLDATA field in the matching base
SQLVAR then points to the LOB data.

If the value of this field is null, the
actual length of the LOB is stored
in the first four bytes pointed to by
the SQLDATA field in the matching
base SQLVAR, and the LOB data
immediately follows the four-byte
length. The actual length indicates
the number of bytes for a BLOB or
CLOB and the number of double-byte
characters for a DBCLOB.

Regardless of whether this field is
used, field SQLLONGLEN must be set.

156 In this column, the lowercase name is the C Name. The first uppercase name is the PL/I and RPG Name.
The second uppercase name is the COBOL Name.

Appendix D. SQLDA (SQL descriptor area) 1683

Table 150. Field Descriptions for an Extended SQLVAR (continued)

C Name 156

COBOL Name
PL/I Name
RPG Name

Field
Data Type

Usage in DESCRIBE and
PREPARE (set by the
database manager)

Usage in FETCH, OPEN, CALL, and
EXECUTE (set by the user prior to
executing the statement)

sqldatatype_name
SQLTNAME
SQLDATATYPE-NAME

VARCHAR (30) The SQLTNAME field of the
extended SQLVAR is set to one
of the following:

• For a distinct type column,
the database manager sets
this to the fully qualified
distinct type name. If the
qualified name is longer
than 30 bytes, it is
truncated.

• For a label, the database
manager sets this to the first
20 bytes of the label.

• For a column name, the
database manager sets this
to the column name.

Not used.

1684 IBM i: Db2 for i SQL Reference

SQLTYPE and SQLLEN
The following table shows the values that may appear in the SQLTYPE and SQLLEN fields of the SQLDA. In
PREPARE and DESCRIBE, an even value of SQLTYPE means the column does not allow nulls, and an odd
value means the column does allow nulls.

Note: In an SQLDA used in DESCRIBE or PREPARE statements, an odd value is returned for an expression
if one operand is nullable or if the expression may result in a -2 mapping-error null value.

In FETCH, OPEN, CALL, and EXECUTE, an even value of SQLTYPE means no indicator variable is provided,
and an odd value means that SQLIND contains the address of an indicator variable.

Table 151. SQLTYPE and SQLLEN values for PREPARE, DESCRIBE, FETCH, OPEN, CALL, or EXECUTE

SQLTYPE

For PREPARE and DESCRIBE For FETCH, OPEN, CALL, and EXECUTE

COLUMN DATA
TYPE SQLLEN

HOST VARIABLE
DATA TYPE SQLLEN

384/385 Date 159 10 Fixed-length
character-string
representation of a
date

Length attribute of
the host variable

388/389 Time 8 Fixed-length
character-string
representation of a
time

Length attribute of
the host variable

392/393 Timestamp 19 for
TIMESTAMP(0)
otherwise 20+p for
TIMESTAMP(p)

Fixed-length
character-string
representation of a
timestamp

Length attribute of
the host variable

396/397 DataLink Length attribute of
the column

DataLink Length attribute of
the host variable

400/401 Not Applicable Not Applicable NUL-terminated
graphic string

Length attribute of
the host variable

404/405 BLOB 0 158 BLOB Not used. 158

408/409 CLOB 0 158 CLOB Not used. 158

412/413 DBCLOB 0 158 DBCLOB Not used. 158

448/449 Varying-length
character string

Length attribute of
the column

Varying-length
character string

Length attribute of
the host variable

452/453 Fixed-length
character string

Length attribute of
the column

Fixed-length
character string

Length attribute of
the host variable

456/457 Long varying-length
character string

Length attribute of
the column

Long varying-length
character string

Length attribute of
the host variable

460/461 Not Applicable Not Applicable NUL-terminated
character string

Length attribute of
the host variable

464/465 Varying-length
graphic string

Length attribute of
the column

Varying-length
graphic string

Length attribute of
the host variable

468/469 Fixed-length graphic
string

Length attribute of
the column

Fixed-length graphic
string

Length attribute of
the host variable

Appendix D. SQLDA (SQL descriptor area) 1685

Table 151. SQLTYPE and SQLLEN values for PREPARE, DESCRIBE, FETCH, OPEN, CALL, or EXECUTE (continued)

SQLTYPE

For PREPARE and DESCRIBE For FETCH, OPEN, CALL, and EXECUTE

COLUMN DATA
TYPE SQLLEN

HOST VARIABLE
DATA TYPE SQLLEN

472/473 Long varying-length
graphic string

Length attribute of
the column

Long graphic string Length attribute of
the host variable

476/477 Not Applicable Not Applicable PASCAL L-string Length attribute of
the host variable

480/481 Floating point 4 for single
precision, 8 for
double precision

Floating point 4 for single
precision, 8 for
double precision

484/485 Packed decimal Precision in byte 1;
scale in byte 2

Packed decimal Precision in byte 1;
scale in byte 2

488/489 Zoned decimal Precision in byte 1;
scale in byte 2

Zoned decimal Precision in byte 1;
scale in byte 2

492/493 Big integer 8 157 Big integer 8

496/497 Large integer 4 157 Large integer 4

500/501 Small integer 2 157 Small integer 2

504/505 Not Applicable Not Applicable DISPLAY SIGN
LEADING SEPARATE

Precision in byte 1;
scale in byte 2

904/905 ROWID 40 ROWID 40

908/909 Varying-length
binary string

Length attribute of
the column

Varying-length
binary string

Length attribute of
the host variable

912/913 Fixed-length binary
string

Length attribute of
the column

Fixed-length binary
string

Length attribute of
the host variable

916/917 Not Applicable Not Applicable BLOB file reference
variable

267

920/921 Not Applicable Not Applicable CLOB file reference
variable

267

924/925 Not Applicable Not Applicable DBCLOB file
reference variable

267

960/961 Not Applicable Not Applicable BLOB locator 4

964/965 Not Applicable Not Applicable CLOB locator 4

968/969 Not Applicable Not Applicable DBCLOB locator 4

972 Not Applicable Not Applicable Result set locator 8

988/989 XML 0 Not Applicable. Use
XML AS CLOB, XML
AS DBCLOB, or XML
AS BLOB

0

996/997 Not Applicable
DECFLOAT(16)
DECFLOAT(34)

Not Applicable
8
16

DECFLOAT(7) 160

DECFLOAT(16)
DECFLOAT(34)

4
8
16

1686 IBM i: Db2 for i SQL Reference

Table 151. SQLTYPE and SQLLEN values for PREPARE, DESCRIBE, FETCH, OPEN, CALL, or EXECUTE (continued)

SQLTYPE

For PREPARE and DESCRIBE For FETCH, OPEN, CALL, and EXECUTE

COLUMN DATA
TYPE SQLLEN

HOST VARIABLE
DATA TYPE SQLLEN

2452/2453 Not Applicable Not Applicable XML locator 4

157 Binary numbers can be represented in the SQLDA with a length of 2, 4, or 8, or with the precision in byte 1
and the scale in byte 2. If the first byte is greater than x'00', it indicates precision and scale.

158 Field SQLLONGLEN in the extended SQLVAR contains the length attribute of the column.
159 Less for *JUL, *YMD, *DMY, and *MDY formats. For more information, see Table 8 on page 76
160 Db2 does not internally store DECFLOAT(7) numbers, but it will support DECFLOAT(7) numbers from

applications. A DECFLOAT(7) variable referenced in an SQL statement will be converted to DECFLOAT(16).

Appendix D. SQLDA (SQL descriptor area) 1687

CCSID values in SQLDATA or SQLNAME
In the OPEN, FETCH, CALL, and EXECUTE statements, the SQLNAME field of the SQLVAR element can be
used to specify a CCSID for string host variables. If the SQLNAME field is used to specify a CCSID, the
SQLNAME length must be set to 8. In addition, the first 4 bytes of SQLNAME must be set as described in
the table below. If no CCSID is specified, the job CCSID is used.

In the DESCRIBE, DESCRIBE TABLE, and PREPARE statements, the SQLDATA field of the SQLVAR element
contains the CCSID of the column of the result table if that column is a string column. The CCSID is
located in bytes 3 and 4 as described in Table 152 on page 1688.

Table 152. CCSID values for SQLDATA or SQLNAME

Data Type
Encoding
Scheme Bytes 1 & 2 Bytes 3 & 4

Character SBCS data X'0000' ccsid

Character Mixed data X'0000' ccsid

Character Bit data X'0000' 65535

Graphic Not Applicable X'0000' ccsid

Any other data type Not Applicable Not Applicable Not Applicable

Unrecognized and unsupported SQLTYPES
The values that appear in the SQLTYPE field of the SQLDA are dependent on the level of data type support
available at the sender as well as the receiver of the data. This is particularly important as new data types
are added to the product.

New data types may or may not be supported by the sender or receiver of the data and may or may not
even be recognized by the sender or receiver of the data. Depending on the situation, the new data type
may be returned, or a compatible data type agreed upon by both the sender and receiver of the data may
be returned or an error may result.

When the sender and receiver agree to use a compatible data type, the following indicates the mapping
that will take place. This mapping will take place when at least one of the sender or receiver does not
support the data type provided. The unsupported data type can be provided by either the application or
the database manager.

Table 153. Compatible Data Types for Unsupported Data Types

Data Type Compatible Data Type

BIGINT DECIMAL(19,0)

ROWID VARCHAR(40) FOR BIT DATA

TIMESTAMP(n) TIMESTAMP(6)

1688 IBM i: Db2 for i SQL Reference

INCLUDE SQLDA declarations
This section shows the equivalent INCLUDE SQLDA declaration for C and C++, COBOL, ILE COBOL, PL/I,
and ILE RPG.

For C and C++
In C and C++, INCLUDE SQLDA declarations are equivalent to the following:

#ifndef SQLDASIZE
struct sqlda
{
 unsigned char sqldaid[8];
 long sqldabc;
 short sqln;
 short sqld;
 struct sqlvar
 {
 short sqltype;
 short sqllen;
 union {
 unsigned char *sqldata;
 long long sqld_result_set_locator; };
 union {
 short *sqlind;
 long sqld_row_change;
 long sqld_result_set_rows; };
 struct sqlname
 {
 short length;
 unsigned char data[30];
 } sqlname;
 } sqlvar[1];
};

struct sqlvar2
 { struct
 { long sqllonglen;
 char reserve1[28];
 } len;
 char *sqldatalen;
 struct sqldistinct_type
 { short length;
 unsigned char data[30];
 } sqldatatype_name;
 };

#define SQLDASIZE(n) (sizeof(struct sqlda)+(n-1) * sizeof(struct sqlvar))
#endif

Figure 11. INCLUDE SQLDA Declarations for C and C++

/***/
/* Macros for using the sqlvar2 fields. */
/***/

/***/
/* '2' in the 7th byte of sqldaid indicates a doubled number of */
/* sqlvar entries. */
/* '3' in the 7th byte of sqldaid indicates a tripled number of */
/* sqlvar entries. */
/* '4' in the 7th byte of sqldaid indicates a quadrupled number of */
/* sqlvar entries. */
/***/
#define SQLDOUBLED '2'
#define SQLSINGLED ' '

/***/
/* GETSQLDOUBLED(daptr) returns 1 if the SQLDA pointed to by */
/* daptr has been doubled, or 0 if it has not been doubled. */
/***/
#define GETSQLDOUBLED(daptr) (((daptr)->sqldaid[6]== \
 (char) SQLDOUBLED) ? \
 (1) : \
 (0))

Appendix D. SQLDA (SQL descriptor area) 1689

/***/
/* SETSQLDOUBLED(daptr, SQLDOUBLED) sets the 7th byte of sqldaid */
/* to '2'. */
/* SETSQLDOUBLED(daptr, SQLSINGLED) sets the 7th byte of sqldaid */
/* to be a ' '. */
/***/
#define SETSQLDOUBLED(daptr, newvalue) \
 (((daptr)->sqldaid[6] =(newvalue)))

/***/
/* GETSQLDALONGLEN(daptr,n) returns the data length of the nth */
/* entry in the sqlda pointed to by daptr. Use this only if the */
/* sqlda was doubled or tripled and the nth SQLVAR entry has a */
/* LOB datatype. */
/***/
#define GETSQLDALONGLEN(daptr,n) ((long) (((struct sqlvar2 *) \
&((daptr)->sqlvar[(n) +((daptr)->sqld)])) ->len.sqllonglen))

/***/
/* SETSQLDALONGLEN(daptr,n,len) sets the sqllonglen field of the */
/* sqlda pointed to by daptr to len for the nth entry. Use this only */
/* if the sqlda was doubled or tripled and the nth SQLVAR entry has */
/* a LOB datatype. */
/***/
#define SETSQLDALONGLEN(daptr,n,length) { \
 struct sqlvar2 *var2ptr; \
 var2ptr = (struct sqlvar2 *) &((daptr)->sqlvar[(n)+ \
 ((daptr)->sqld)]); \
 var2ptr->len.sqllonglen = (long) (length); \
}

/***/
/* SETSQLDALENPTR(daptr,n,ptr) sets a pointer to the data length for */
/* the nth entry in the sqlda pointed to by daptr. */
/* Use this only if the sqlda has been doubled or tripled. */
/***/
#define SETSQLDALENPTR(daptr,n,ptr) { \
 struct sqlvar2 *var2ptr; \
 var2ptr = (struct sqlvar2 *) &((daptr)->sqlvar[(n)+ \
 ((daptr)->sqld)]); \
 var2ptr->sqldatalen = (char *) ptr; \
 }

/***/
/* GETSQLDALENPTR(daptr,n) returns a pointer to the data length for */
/* the nth entry in the sqlda pointed to by daptr. Unlike the inline */
/* value (union sql8bytelen len), which is 8 bytes, the sqldatalen */
/* pointer field returns a pointer to a long (4 byte) integer. */
/* If the SQLDATALEN pointer is zero, a NULL pointer is be returned. */
/* */
/* NOTE: Use this only if the sqlda has been doubled or tripled. */
/***/
#define GETSQLDALENPTR(daptr,n) (\
 (((struct sqlvar2 *) &(daptr)->sqlvar[(n) + \
 (daptr)->sqld])->sqldatalen == NULL) ? \
 ((long *) NULL) : ((long *) ((struct sqlvar2 *) \
 &(daptr)->sqlvar[(n) + (daptr) ->sqld])->sqldatalen))

1690 IBM i: Db2 for i SQL Reference

For COBOL and ILE COBOL
In COBOL and ILE COBOL, INCLUDE SQLDA declarations are equivalent to the following:

1 SQLDA.
 05 SQLDAID PIC X(8).
 05 SQLDABC PIC S9(9) BINARY.
 05 SQLN PIC S9(4) BINARY.
 05 SQLD PIC S9(4) BINARY.
 05 SQLVAR OCCURS 0 TO 409 TIMES DEPENDING ON SQLD.
 10 SQLVAR1.
 15 SQLTYPE PIC S9(4) BINARY.
 15 SQLLEN PIC S9(4) BINARY.
 15 FILLER REDEFINES SQLLEN.
 20 SQLPRECISION PIC X.
 20 SQLSCALE PIC X.
 15 SQLRES PIC X(12).
 15 SQLDATA POINTER.
 15 SQL-RESULT-SET-LOCATOR-R REDEFINES SQLDATA.
 20 SQL-RESULT-SET-LOCATOR PIC S9(18) BINARY.
 15 SQLIND POINTER.
 15 SQL-ROW-CHANGE-SQL-R REDEFINES SQLIND.
 20 SQLD-ROW-CHANGE FIC S9(9) BINARY.
 15 SQL-RESULT-SET-ROWS-R PIC REDEFINES SQLIND.
 20 SQLD-RESULT-SET-ROWS PIC S9(9) BINARY.
 15 SQLNAME.
 49 SQLNAMEL PIC S9(4) BINARY.
 49 SQLNAMEC PIC X(30).
 10 SQLVAR2 REDEFINES SQLVAR1.
 15 SQLVAR2-RESERVED-1 PIC S9(9) BINARY.
 15 SQLLONGLEN REDEFINEDS SQLVAR2-RESERVED-1
 PIC S9(9) BINARY.
 15 SQLVAR2-RESERVED-2 PIC X(28).
 15 SQLDATALEN POINTER.
 15 SQLDATATYPE-NAME.
 49 SQLDATATYPE_NAMEL PIC S9(4) BINARY.
 49 SQLDATATYPE_NAMEC PIC X(30).

Figure 12. INCLUDE SQLDA Declarations for COBOL

Appendix D. SQLDA (SQL descriptor area) 1691

For PL/I
In PL/I, INCLUDE SQLDA declarations are equivalent to the following:

DCL 1 SQLDA BASED(SQLDAPTR),
 2 SQLDAID CHAR(8),
 2 SQLDABC BIN FIXED(31),
 2 SQLN BIN FIXED,
 2 SQLD BIN FIXED,
 2 SQLVAR (99),
 3 SQLTYPE BIN FIXED,
 3 SQLLEN BIN FIXED,
 3 SQLRES CHAR(12),
 3 SQLDATA PTR,
 3 SQLIND PTR,
 3 SQLNAME CHAR(30) VAR,

 1 SQLDA2 BASED(SQLDAPTR),
 2 SQLDAID2 CHAR(8),
 2 SQLDABC2 FIXED(31) BINARY,
 2 SQLN2 FIXED(15) BINARY,
 2 SQLD2 FIXED(15) BINARY,
 2 SQLVAR2 (99),
 3 SQLBIGLEN,
 4 SQLLONGL FIXED(31) BINARY,
 4 SQLRSVDL FIXED(31) BINARY,
 3 SQLDATAL POINTER,
 3 SQLTNAME CHAR(30) VAR;

 DECLARE SQLSIZE FIXED(15) BINARY;
 DECLARE SQLDAPTR PTR;
 DECLARE SQLDOUBLED CHAR(1) INITIAL('2') STATIC;
 DECLARE SQLSINGLED CHAR(1) INITIAL(' ') STATIC;

Figure 13. INCLUDE SQLDA Declarations for PL/I

1692 IBM i: Db2 for i SQL Reference

For ILE RPG
In ILE RPG, INCLUDE SQLDA declarations are equivalent to the following:

// SQL DESCRIPTOR AREA
DCL-DS SQLDA;
 SQLDAID CHAR(8);
 SQLDABC INT(10);
 SQLN INT(5);
 SQLD INT(5);
 SQL_VAR CHAR(80) DIM(SQL_NUM);
 *N POINTER OVERLAY(SQL_VAR:17);
 *N POINTER OVERLAY(SQL_VAR:33);
END-DS SQLDA;
DCL-DS SQLVAR;
 SQLTYPE INT(5);
 SQLLEN INT(5);
 SQLRES CHAR(12);
 SQLINFO1 CHAR(16);
 SQLDATA POINTER OVERLAY(SQLINFO1);
 SQL_RESULT_SET_LOCATOR INT(20) OVERLAY(SQLINFO1);
 SQLINFO2 CHAR(16);
 SQLIND POINTER OVERLAY(SQLINFO2);
 SQL_ROW_CHANGE INT(10) OVERLAY(SQLINFO2);
 SQL_RESULT_SET_ROWS INT(10) OVERLAY(SQLINFO2);
 SQLNAMELEN INT(5);
 SQLNAME CHAR(30);
END-DS SQLVAR;
// EXTENDED SQLDA
DCL-DS SQLVAR2;
 SQLLONGL INT(10);
 SQLRSVDL CHAR(28);
 SQLDATAL POINTER;
 SQLTNAMELN INT(5);
 SQLTNAME CHAR(30);
END-DS SQLVAR2;

Figure 14. INCLUDE SQLDA Declarations for ILE RPG

The user is responsible for the definition of SQL_NUM. SQL_NUM must be defined as a numeric constant
with the dimension required for SQL_VAR.

Since RPG does not support structures within arrays, the SQLDA generates three data structures. The
second and third data structures are used to setup/reference the part of the SQLDA which contains the
field descriptions.

To set the field descriptions of the SQLDA the program sets up the field description in the subfields of
SQLVAR (or SQLVAR2) and then does a MOVEA of SQLVAR (or SQLVAR2) to SQL_VAR, n where n is the
number of the field in the SQLDA. This is repeated until all the field descriptions are set.

When the SQLDA field descriptions are to be referenced the user does a MOVEA of SQL_VAR, n to SQLVAR
(or SQLVAR2) where n is the number of the field description to be processed.

Appendix D. SQLDA (SQL descriptor area) 1693

1694 IBM i: Db2 for i SQL Reference

Appendix E. CCSID values
The tables in this section describe the CCSIDs and conversions provided by the IBM relational database
products.

For more information, see “Character conversion” on page 28.

The following list defines the symbols used in the Db2 product column in the following tables:

X
Indicates that the conversion tables exist to convert from or to that CCSID. This also implies that this
CCSID can be used to tag local data.

C
Indicates that conversion tables exist to convert from that CCSID to another CCSID. This also implies
that this CCSID cannot be used to tag local data, because the CCSID is in a foreign encoding scheme
(for example, a PC-Data CCSID such as 850 cannot be used to tag local data in Db2 for i).

blank
Indicates that the specific product does not support the CCSID at all. Such a CCSID must not be used
unless interoperability with the specific product is not necessary.

This information is current as of the publishing date of this book for the CCSIDs listed. Additional CCSIDs
may have been added since the publishing date and are not in the lists below.

Table 154. Universal Character Set (UTF-8, UTF-16, and UCS-2)

CCSID Description z/OS i AIX HP Sun NT SCO SGI Linux

1200 UTF-16 X X X X X X X X X

1208 UTF-8 Level 3 X X X X X X X X X

13488 UCS-2 Level 1 C X C * C * C * C * C * C * C *

Note: * In Db2 LUW, 13488 is only used to tag the GRAPHIC column of eucJP and eucTW databases.

Table 155. CCSIDs for EBCDIC Group 1 (Latin-1) Countries or Regions

CCSID Description z/OS i AIX HP Sun NT SCO SGI Linux

37 USA, Canada, Netherlands,
Portugal, Brazil, Australia,
New Zealand

X X C C C C C C C

256 Word Processing,
Netherlands

X X

273 Austria, Germany X X C C C C C C C

274 Belgium X C C C C C C C

277 Denmark, Norway X X C C C C C C C

278 Finland, Sweden X X C C C C C C C

280 Italy X X C C C C C C C

284 Spain, Latin America
(Spanish)

X X C C C C C C C

285 United Kingdom X X C C C C C C C

297 France X X C C C C C C C

© Copyright IBM Corp. 1998, 2015 1695

Table 155. CCSIDs for EBCDIC Group 1 (Latin-1) Countries or Regions (continued)

CCSID Description z/OS i AIX HP Sun NT SCO SGI Linux

500 Belgium, Canada,
Switzerland, International
Latin-1

X X C C C C C C C

871 Iceland X X C C C C C C C

924 Latin-0 X X

1047 Latin-0 (with Euro) X X

1140 USA, Canada, Netherlands,
Portugal, Brazil, Australia,
New Zealand

X X C C C C C C C

1141 Austria, Germany X X C C C C C C C

1142 Denmark, Norway X X C C C C C C C

1143 Finland, Sweden X X C C C C C C C

1144 Italy X X C C C C C C C

1145 Spain, Latin America
(Spanish)

X X C C C C C C C

1146 United Kingdom X X C C C C C C C

1147 France X X C C C C C C C

1148 Belgium, Canada,
Switzerland, International
Latin-1

X X C C C C C C C

1149 Iceland X X C C C C C C C

Table 156. CCSIDs for PC-Data and ISO Group 1 (Latin-1) Countries or Regions

CCSID Description z/OS i AIX HP Sun NT SCO SGI Linux

437 USA X C C C C C C C C

819 Latin-1 countries or regions
(ISO 8859-1)

X C X X X C X X X

850 Latin Alphabet Number 1;
Latin-1 countries or regions

X C X C C C C C C

858 Latin Alphabet Number 1;
Latin-1 countries or regions
(with Euro)

X C

860 Portugal (850 subset) X C C C C C C C C

861 Iceland X C

863 Canada (850 subset) X C C C C C C C C

865 Denmark, Norway, Finland,
Sweden

X C

923 Latin-0 X C X X X C C C X

1009 IRV 7-bit X C

1696 IBM i: Db2 for i SQL Reference

Table 156. CCSIDs for PC-Data and ISO Group 1 (Latin-1) Countries or Regions (continued)

CCSID Description z/OS i AIX HP Sun NT SCO SGI Linux

1010 France 7-bit X C

1011 Germany 7-bit X C

1012 Italy 7-bit X C

1013 United Kingdom 7-bit X C

1014 Spain 7-bit X C

1015 Portugal 7-bit X C

1016 Norway 7-bit X C

1017 Denmark 7-bit X C

1018 Finland and Sweden 7-bit X C

1019 Belgium and Netherlands 7-
bit

X C

1051 HP Emulation X C C X C C C C C

1252 Windows ** Latin-1 X C C C C X C C C

1275 Macintosh ** Latin-1 X C

5348 Windows Latin-1 (with Euro) X C

Table 157. CCSIDs for EBCDIC Group 1a (Non-Latin-1 SBCS) Countries or Regions

CCSID Description z/OS i AIX HP Sun NT SCO SGI Linux

420 Arabic (Type 4) X X C C C C C C C

423 Greek X X C C C C C C C

424 Hebrew(Type 4) X X C C C C C C C

425 Arabic (Type 5) X C C C C C C C

870 Latin-2 Multilingual X X C C C C C C C

875 Greek X X C C C C C C C

880 Cyrillic Multilingual X X

905 Turkey Latin-3 Multilingual X X

918 Urdu X X

1025 Cyrillic Multilingual X X C C C C C C C

1026 Turkey Latin-5 X X C C C C C C C

1097 Farsi X X

1112 Baltic Multilingual X X C C C C C C C

1122 Estonia X X C C C C C C C

1123 Ukraine X X C C C C C C C

1137 Devanagari X X C C C C C C C

1153 Latin-2 (with Euro) X X C C C C C C C

Appendix E. CCSID values 1697

Table 157. CCSIDs for EBCDIC Group 1a (Non-Latin-1 SBCS) Countries or Regions (continued)

CCSID Description z/OS i AIX HP Sun NT SCO SGI Linux

1154 Cyrillic (with Euro) X X C C C C C C C

1155 Turkey Latin-5 (with Euro) X X C C C C C C C

1156 Balitic (with Euro) X X C C C C C C C

1157 Estonia (with Euro) X X C C C C C C C

1158 Ukraine (with Euro) X X C C C C C C C

1166 Cyrillic Multilingual (with
Euro)

X

1175 Turkey Latin-5 (with Turkish
lira)

X

4971 Greek (with Euro) X X

5233 Devanagari (with Indian
rupee)

X

8612 Arabic (Type 5) X X

12708 Arabic (Type 7) X

62211 Hebrew (Type 5) X C C C C C C C

62224 Arabic (Type 6) X C C C C C C C

62229 Hebrew (Type 8) C C C C C C C

62233 Arabic (Type 8) C C C C C C C

62234 Arabic (Type 9) C C C C C C C

62235 Hebrew (Type 6) X C C C C C C C

62240 Hebrew (Type 11) C C C C C C C

62245 Hebrew (Type 10) X C C C C C C C

62250 Arabic (Type 12) C C C C C C C

62251 Arabic (Type 6) X C C C C C C C

1698 IBM i: Db2 for i SQL Reference

Table 157. CCSIDs for EBCDIC Group 1a (Non-Latin-1 SBCS) Countries or Regions (continued)

CCSID Description z/OS i AIX HP Sun NT SCO SGI Linux

String Types:
4

Visual / Left-to-Right / Shaped / Symmetrical Swapping Off
5

Implicit / Left-to-Right / Unshaped / Symmetrical Swapping On
6

Implicit / Right-to-Left / Unshaped / Symmetrical Swapping On
7

Visual / Contextual / Unshaped / Symmetrical Swapping Off
8

Visual / Right-to-Left / Shaped / Symmetrical Swapping Off
9

Visual / Right-to-Left / Shaped / Symmetrical Swapping On
10

Implicit / Contextual-Left / Unshaped / Symmetrical Swapping On
11

Implicit / Contextual-Right / Unshaped / Symmetrical Swapping On
12

Implicit / Right-to-Left / Shaped / Symmetrical Swapping On

Table 158. CCSIDs for PC-Data and ISO Group 1a (Non-Latin-1 SBCS) Countries or Regions

CCSID Description z/OS i AIX HP Sun NT SCO SGI Linux

720 Arabic (MS-Dos) X C

737 Greek (MS-Dos) X C C C C X C C C

775 Baltic (MS-Dos) X C

808 Cyrillic (with Euro) X

813 Greek/Latin (ISO 8859-7) X C X X C C X C X

848 Ukraine (with Euro) X

849 Belarus (with Euro) X

851 Greek X C

852 Latin-2 Multilingual X C C C C C C C C

855 Cyrillic Multilingual X C C C C C C C C

856 Arabic (Type 5) X C X C C C C C C

857 Turkey Latin-5 X C C C C C C C C

862 Hebrew (Type 4) X C C C C C C C C

864 Arabic (Type 5) X C C C C C C C C

866 Cyrillic X C C C C C C C C

867 Hebrew (with Euro) (Type
10)

X

Appendix E. CCSID values 1699

Table 158. CCSIDs for PC-Data and ISO Group 1a (Non-Latin-1 SBCS) Countries or Regions (continued)

CCSID Description z/OS i AIX HP Sun NT SCO SGI Linux

868 Urdu X C

869 Greek X C C C C C C C C

872 Cyrillic Multilingual (with
Euro)

X

878 Russian Internet X C

901 Baltic 8-bit (with Euro) X C

902 Estonia 8-bit (with Euro) X C

912 Latin-2 (ISO 8859-2) X C X X C C X C X

914 Latin-4 (ISO 8859-4) X C

915 Cyrillic Multilingual (ISO
8859-5)

X C X X C C X C X

916 Hebrew/Latin (ISO 8859-8)
(Type 5)

X C X C C C C C X

920 Turkey Latin-5 (ISO 8859-9) X C X X C C X C X

921 Baltic 8-bit (ISO 8859-13) X C X C C C C C C

922 Estonia 8-bit X C X C C C C C C

1008 Arabic 8-bit ISO X C

1046 Arabic (Type 5) X C X C C C C C C

1089 Arabic (ISO 8859-6) (Type 5) X C X X C C C C C

1098 Farsi X C

1124 Ukraine 8-bit ISO X C X C C C C C C

1125 Ukraine X C C C C C C C C

1131 Belarus X C C C C C C C C

1250 Windows Latin-2 X C C C C X C C C

1251 Windows Cyrillic X C C C C X C C C

1253 Windows Greek X C C C C X C C C

1254 Windows Turkey X C C C C X C C C

1255 Windows Hebrew (Type 5) X C C C C X C C C

1256 Windows Arabic (Type 5) X C C C C X C C C

1257 Windows Baltic X C C C C X C C C

1280 Macintosh** Greek X C

1281 Macintosh** Turkish X C

1282 Macintosh** Latin-2 X C

1283 Macintosh** Cyrillic X C

4909 ISO 8859-7 Greek/Latin
(with Euro)

X C

1700 IBM i: Db2 for i SQL Reference

Table 158. CCSIDs for PC-Data and ISO Group 1a (Non-Latin-1 SBCS) Countries or Regions (continued)

CCSID Description z/OS i AIX HP Sun NT SCO SGI Linux

4948 Latin-2 Multilingual X C

4951 Cyrillic Multilingual X C

4952 Hebrew X C

4953 Turkey Latin-5 X C

4960 Arabic X C

4965 Greek C

5346 Windows Latin-2 (with Euro) X

5347 Windows Cyrillic (with Euro) X

5349 Windows Greek (with Euro) X

5350 Windows Turkey (with Euro) X

5351 Windows Hebrew (with Euro) X

5352 Windows Arabic (with Euro) X

5353 Windows Baltic Rim (with
Euro)

X

9056 Arabic (Storage Interchange) X C

62208 Hebrew (Type 4) X X X X X X X

62209 Hebrew (Type 10) C C C C C C C C

62210 Hebrew/Latin (ISO 8859-8)
(Type 4)

 C X X C C C C C

62213 Hebrew (Type 5) C C C C C C C C

62215 Windows Hebrew (Type 4) C C C C X C C C

62218 Arabic (Type 4) C C C C C C C C

62220 Hebrew (Type 6) X X X X X C C

62221 Hebrew (Type 6) C C C C C C C C

62222 Hebrew/Latin (ISO 8859-8)
(Type 6)

 C X X C C C C C

62223 Windows Hebrew (Type 6) C C C C X C C C

62225 Arabic (Type 6) C C C C C C C

62226 Arabic (Type 6) X C C C C C C

62227 Arabic (ISO 8859-6) (Type 6) X X C C C C C

62228 Windows Arabic (Type 6) C C C C X C C C

62230 Hebrew (Type 8) X X X X X C C

62231 Hebrew (Type 8) C C C C C C C

62232 Hebrew/Latin (ISO 8859-8)
(Type 8)

 X X C C C C C

62236 Hebrew (Type 10) X X X X X X X

Appendix E. CCSID values 1701

Table 158. CCSIDs for PC-Data and ISO Group 1a (Non-Latin-1 SBCS) Countries or Regions (continued)

CCSID Description z/OS i AIX HP Sun NT SCO SGI Linux

62238 ISO 8859-8 Hebrew/Latin
(Type 10)

 C C C C X C C C

62239 Windows Hebrew (Type 10) C C C C X C C C

62241 Hebrew (Type 11) X X X X X X X

62242 Hebrew (Type 11) C C C C C C C

62243 Hebrew/Latin (ISO 8859-8)
(Type 11)

 X X C C C C C

62244 Windows Hebrew (Type 11) C C C X C C C

62248 Arabic (Type 4) C

String Types:
4

Visual / Left-to-Right / Shaped / Symmetrical Swapping Off
5

Implicit / Left-to-Right / Unshaped / Symmetrical Swapping On
6

Implicit / Right-to-Left / Unshaped / Symmetrical Swapping On
7

Visual / Contextual / Unshaped / Symmetrical Swapping Off
8

Visual / Right-to-Left / Shaped / Symmetrical Swapping Off
9

Visual / Right-to-Left / Shaped / Symmetrical Swapping On
10

Implicit / Contextual-Left / Unshaped / Symmetrical Swapping On
11

Implicit / Contextual-Right / Unshaped / Symmetrical Swapping On
12

Implicit / Right-to-Left / Shaped / Symmetrical Swapping On

Table 159. SBCS CCSIDs for EBCDIC Group 2 (DBCS) Countries or Regions

CCSID Description z/OS i AIX HP Sun NT SCO SGI Linux

290 Japan Katakana (extended) X X C C C C C C C

833 Korea (extended) X X C C C C C C C

836 Simplified Chinese
(extended)

X X C C C C C C C

838 Thailand (extended) X X C C C C C C C

1027 Japan English (extended) X X C C C C C C C

1130 Vietnam X X C C C C C C C

1132 Lao X X

1702 IBM i: Db2 for i SQL Reference

Table 159. SBCS CCSIDs for EBCDIC Group 2 (DBCS) Countries or Regions (continued)

CCSID Description z/OS i AIX HP Sun NT SCO SGI Linux

1159 Traditional Chinese
(extended with Euro)

C C C C C C C

1160 Thai (with Euro) X X C C C C C C C

1164 Vietnam (with Euro) X X C C C C C C C

5123 Japan English (with Euro) X X

8482 Japan Katakana (extended
with Euro)

X C C C C C C C

9030 Thailand (extended) X X

13121 Korea Windows X X

13124 Traditional Chinese X X

28709 Traditional Chinese
(extended)

X X C C C C C C C

Table 160. SBCS CCSIDs for PC-Data Group 2 (DBCS) Countries or Regions

CCSID Description z/OS i AIX HP Sun NT SCO SGI Linux

367 Korea and Simplified
Chinese EUC

X C X C

874 Thailand (extended) X C X X X

891 Korea (non-extended) C C

895 Japan EUC - JISX201 Roman
Set

C C

896 Japan EUC - JISX201
Katakana Set

C

897 Japan (non-extended) C C

903 Simplified Chinese (non-
extended)

C C

904 Traditional Chinese (non-
extended)

X C

1040 Korea (extended) C C

1041 Japan (extended) X C

1042 Simplified Chinese
(extended)

C C

1043 Traditional Chinese
(extended)

X C

1088 Korea (KS Code 5601-89) X C

1114 Traditional Chinese (Big-5) X C

1115 Simplified Chinese GB-Code X C

1126 Korea Windows X C

Appendix E. CCSID values 1703

Table 160. SBCS CCSIDs for PC-Data Group 2 (DBCS) Countries or Regions (continued)

CCSID Description z/OS i AIX HP Sun NT SCO SGI Linux

1129 Vietnam X C X

1133 Lao ISO X C

1162 Thailand (extended) (180
char) (with Euro)

X

1163 ISO Vietnam (with Euro) X

1258 Vietnam X C X

4970 Thailand (extended) X C

5210 Traditional Chinese X C

9066 Thailand (extended) X C

Table 161. DBCS CCSIDs for EBCDIC Group 2 (DBCS) Countries or Regions

CCSID Description z/OS i AIX HP Sun NT SCO SGI Linux

300 Japan - including 4370 user-
defined characters (UDC)

X X C C C C C C C

834 Korea - including 1880 UDC X X C C C C C C C

835 Traditional Chinese -
including 6204 UDC

X X C C C C C C C

837 Simplified Chinese -
including 1880 UDC

X X C C C C C C C

4396 Japan - including 1880 UDC X X C C C C C C C

4930 Korea Windows X X C C C C C C C

4933 Simplified Chinese X X C C C C C C C

9027 Traditional Chinese (with
Euro) - including 6204 UDC

C C C C C C C C

16684 Japan (with Euro) X X C C C C C C C

Table 162. DBCS CCSIDs for PC-Data Group 2 (DBCS) Countries or Regions

CCSID Description z/OS i AIX HP Sun NT SCO SGI Linux

301 Japan - including 1880 UDC X C X C C C C C C

926 Korea - including 1880 UDC C C

927 Traditional Chinese -
including 6204 UDC

X C C C C C C C C

928 Simplified Chinese -
including 1880 UDC

C C

941 Japan Windows X C C C C X C C C

947 Traditional Chinese (Big-5) X C X C C X C C C

951 Korea (KS Code 5601-89) -
including 1880 UDC

X C C C C X C C C

1704 IBM i: Db2 for i SQL Reference

Table 162. DBCS CCSIDs for PC-Data Group 2 (DBCS) Countries or Regions (continued)

CCSID Description z/OS i AIX HP Sun NT SCO SGI Linux

952 Japan (EUC) X208-1990 set C

953 Japan (EUC) X212-1990 set C

971 Korea (EUC) - including 188
UDC

X C X X X C C C C

1351 Japan HP-UX (J15) X C X C C C C C

1362 Korea Windows X C C C C X C C C

1380 Simplified Chinese (GB-
Code) - including 1880 UDC

X C C C C X X C C

1382 Simplified Chinese (EUC) -
including 1360 UDC

X C X X X C X C C

1385 Traditional Chinese X C C C C X C C C

Table 163. Mixed CCSIDs for EBCDIC Group 2 (DBCS) Countries or Regions

CCSID Description z/OS i AIX HP Sun NT SCO SGI Linux

930 Japan Katakana/Kanji
(extended) - including 4370
UDC

X X C C C C C C C

933 Korea (extended) - including
1880 UDC

X X C C C C C C C

935 Simplified Chinese
(extended) - including 1880
UDC

X X C C C C C C C

937 Traditional Chinese
(extended) - including 4370
UDC

X X C C C C C C C

939 Japan English/Kanji
(extended) - including 4370
UDC

X X C C C C C C C

1364 Korea (extended) X X C C C C C C C

1371 Traditional Chinese
(extended with Euro) -
including 4370 UDC

 C C C C C C C

1388 Simplified Chinese X X C C C C C C C

1390 Japan Katakana/Kanji
(extended with Euro) -
including 4370 UDC

X C C C C C C C

1399 Japan English (with Euro) X X C C

5026 Japan Katakana/Kanji
(extended) - including 1880
UDC)

X X C C C C C C C

Appendix E. CCSID values 1705

Table 163. Mixed CCSIDs for EBCDIC Group 2 (DBCS) Countries or Regions (continued)

CCSID Description z/OS i AIX HP Sun NT SCO SGI Linux

5035 Japan English/Kanji
(extended) - including 1880
UDC

X X C C C C C C C

Table 164. Mixed CCSIDs for PC-Data Group 2 (DBCS) Countries or Regions

CCSID Description z/OS i AIX HP Sun NT SCO SGI Linux

932 Japan (non-extended) -
including 1880 UDC

X C X C C C C C C

934 Korea (non-extended)
including 1880 UDC

 C

936 Simplified Chinese (non-
extended) - including 1880
UDC

 C

938 Traditional Chinese (non-
extended) - including 6204
UDC)

X C C C C C C C C

942 Japan (extended) - including
1880 UDC

X C C C C C C C C

943 Japan NT X C C C X X C C C

944 Korea (extended) - including
1880 UDC

C

946 Simplified Chinese
(extended) - including 1880
UDC

 C

948 Traditional Chinese
(extended) - including 6204
UDC

X C C C C C C C C

949 Korea (KS Code 5601-89) -
including 1880 UDC

X C C C C C C C C

950 Traditional Chinese (Big-5) X C X X X X C C X

954 Japan (EUC) C X X X C X C X

956 Japan 2022 TCP C

957 Japan 2022 TCP C

958 Japan 2022 TCP C

959 Japan 2022 TCP C

964 Traditional Chinese (EUC) C X X X C C C C

965 Traditional Chinese 2022
TCP

 C

970 Korea EUC X C X X X C C X X

1363 Korea Windows X C C C C X C C C

1381 Simplified Chinese GB-Code X C C C C X C C C

1706 IBM i: Db2 for i SQL Reference

Table 164. Mixed CCSIDs for PC-Data Group 2 (DBCS) Countries or Regions (continued)

CCSID Description z/OS i AIX HP Sun NT SCO SGI Linux

1383 Simplified Chinese EUC X C X X X C X C X

1386 Simplified Chinese X C X C C X C C C

1392 Simplified Chinese GB18030 C

5039 Japan HP-UX (J15) X C X C C C C C

5050 Japan (EUC) C

5052 Japan 2022 TCP C

5053 Japan 2022 TCP C

5054 Japan 2022 TCP C

5055 Japan 2022 TCP C

5307 Japan HP-UX (J15)
HISTORICAL

X

17354 Korea 2022 TCP C

25546 Korea 2022 TCP C

33722 Japan EUC C

Appendix E. CCSID values 1707

1708 IBM i: Db2 for i SQL Reference

Appendix F. Db2 for i catalog views
The views contained in a Db2 for i catalog are described in this section.

The database manager maintains a set of tables containing information about the data in each relational
database. These tables are collectively known as the catalog. The catalog tables contain information
about tables, user-defined functions, distinct types, parameters, procedures, packages, views, indexes,
aliases, sequences, variables, constraints, triggers, XSR objects, and languages supported by Db2 for i.
The catalog also contains information about all relational databases that are accessible from this system.

There are three classes of catalog views:

• IBM i catalog tables and views

The IBM i catalog tables and views are modeled after the ANS and ISO catalog views, but are not
identical to the ANS and ISO catalog views. These tables and views are compatible with prior releases
of Db2 for i.

These tables and views exist in schemas QSYS and QSYS2.

The catalog tables and views contain information about all tables, parameters, procedures, functions,
distinct types, packages, XSR objects, views, indexes, aliases, sequences, variables, triggers, and
constraints in the entire relational database. When an SQL schema is created, an additional subset
of these views are created into the schema that only contain information about tables, packages, views,
indexes, and constraints in that schema.

• ODBC and JDBC catalog views

The ODBC and JDBC catalog views are designed to satisfy ODBC and JDBC metadata API requests. For
example, SQLCOLUMNS. These views are compatible with views on Db2 LUW Version 8. These views will
be modified as ODBC or JDBC enhances or modifies their metadata APIs.

These views exist in schema SYSIBM.
• ANS and ISO catalog views

The ANS and ISO catalog views are designed to comply with the ANS and ISO SQL standard (the
Information Schema catalog views). These views will be modified as the ANS and ISO standard is
enhanced or modified.

There are several columns in these views that are reserved for future standard enhancements.

There are two versions of these views. One is in schema INFORMATION_SCHEMA161 and the other is in
schema SYSIBM.

Note: Some of these views use special catalog functions as part of the view definition. These functions
exist in SYSIBM and QSYS2. If these functions are used directly in applications, care should be taken
because they may be incompatibly changed in future releases or fix packs.

161 INFORMATION_SCHEMA is the ANS and ISO SQL standard schema name that contains catalog views. It is a
synonym for QSYS2.

© Copyright IBM Corp. 1998, 2015 1709

Notes
Names in the Catalog: In general, all names stored in columns of a catalog table are undelimited and
case sensitive. For example, assume the following table was created:

 CREATE TABLE "colname"/"long_table_name"
 ("long_column_name" CHAR(10),
 INTCOL INTEGER)

If the following select statement is used to return information about the mapping between SQL names
and system names, the following select statement could be used:

 SELECT TABLE_NAME, SYSTEM_TABLE_NAME, COLUMN_NAME, SYSTEM_COLUMN_NAME
 FROM QSYS2/SYSCOLUMNS
 WHERE TABLE_NAME = 'long_table_name' AND
 TABLE_SCHEMA = 'colname'

The following rows would be returned:

TABLE_NAME SYSTEM_TABLE_NAME COLUMN_NAME SYSTEM_COLUMN_NAME

long_table_name "long0001" long_column_name LONG_00001

long_table_name "long0001" INTCOL INTCOL

System Names in the Catalog: In general, the longer SQL column names should be used rather than
the short system column names. The short system column names for IBM i catalog tables and views
are explicitly maintained for compatibility with prior releases and other Db2 products. The short system
column names for the ODBC and JDBC catalog views and the ANS and ISO catalog views are not explicitly
maintained and may change between releases.

Null Values in the Catalog: If the information in a column is not applicable, the null value is returned.
Using the table created above, the following select statement, which queries the NUMERIC_SCALE and
the CHARACTER_MAXIMUM_LENGTH, would return the null value when the data was not applicable to
the data type of the column.

 SELECT COLUMN_NAME, NUMERIC_SCALE, CHARACTER_MAXIMUM_LENGTH
 FROM QSYS2/SYSCOLUMNS
 WHERE TABLE_NAME = 'long_table_name' AND
 TABLE_SCHEMA = 'colname'

The following rows would be returned:

COLUMN_NAME NUMERIC_SCALE CHARACTER_MAXIMUM_LENGTH

long_column_name ? 10

INTCOL 0 ?

Because numeric scale is not valid for a character column, the null value is returned for NUMERIC_SCALE
for the "long_column_name" column. Because character length is not valid for a numeric column, the null
value is returned for CHARACTER_MAXIMUM_LENGTH for the INTCOL column.

Install and Backup Considerations: Certain catalog tables and any views created over the catalog tables
and views should be regularly saved:

• The catalog table QSYS.QADBXRDBD contains relational database information. This table should be
regularly saved.

• When an ILE external function or procedure or an SQL function or procedure is restored, information is
automatically inserted into these catalog tables. This does not occur for non-ILE external functions and
procedures. In order to back up the definitions of non-ILE external functions or procedures, ensure that
the catalog tables SYSROUTINES and SYSPARMS are saved or ensure you have a back up of the SQL
source statements that were used to create these functions and procedures.

1710 IBM i: Db2 for i SQL Reference

• All catalog views in the QSYS2 or SYSIBM schemas are system objects. This means that any user views
created over these catalog views must be deleted when the operating system is installed. All dependent
objects must be deleted as well. To avoid this requirement, you can save views before installation and
then restore them afterwards.

• Catalog tables in the QSYS library are also system objects. However, the catalog tables in the QSYS
library are not deleted during installation. Hence, any views created over these tables are preserved
throughout the installation process.

Granting Privileges to Catalog Views: Tables and views in the catalog are like any other database tables
and views. If you have authorization, you can use SQL statements to look at data in the catalog views
in the same way that you retrieve data from any other table. The tables and views in the catalogs are
shipped with the SELECT privilege to PUBLIC. This privilege may be revoked and the SELECT privilege
granted to individual users.

QSYS Catalog Tables: Most of the catalog views are based on the following tables in the QSYS library
(sometimes called the database cross reference files). These tables are not shipped with the SELECT
privilege to PUBLIC and should not be used directly:

QADBCCST QADBPKG QADBXSFLD

QADBFDEP QADBXCTLS QADBXTRIGB

QADBFCST QADBXCTLSD QADBXTRIGC

QADBIFLD QADBXRDBD QADBXTRIGD

QADBKFLD QADBXREF

Use of SELECT *: New columns are likely to be added to tables and views in the catalog as new
functionality is implemented and as the ISO/ANSI standards evolve. For this reason, it is recommended
that SELECT * not be used when accessing catalog tables and views unless your application is prepared to
tolerate these new columns.

Appendix F. Db2 for i catalog views 1711

IBM i catalog tables and views
The IBM i catalog includes the views and tables in the QSYS2 schema displayed in this section.

Db2 for i name Corresponding ANSI/ISO name Description

“SYSCATALOGS” on page 1714 CATALOGS Information about relational databases

“SYSCHKCST” on page 1715 CHECK_CONSTRAINTS Information about check constraints

“SYSCOLAUTH” on page 1716 COLUMN_PRIVILEGES Information about column privileges

“SYSCOLUMNS” on page 1717 COLUMNS Information about column attributes

“SYSCOLUMNS2” on page 1725 Information about column attributes

“SYSCOLUMNSTAT” on page 1737 Information about column statistics

“SYSCONTROLS” on page 1740 Information about row permissions and column
masks

“SYSCONTROLSDEP” on page 1742 Information about row permission and column
mask dependencies

“SYSCST” on page 1743 TABLE_CONSTRAINTS Information about all constraints

“SYSCSTCOL” on page 1745 CONSTRAINT_COLUMN_USAGE Information about the columns referenced in a
constraint

“SYSCSTDEP” on page 1746 CONSTRAINT_TABLE_USAGE Information about constraint dependencies on
tables

“SYSFIELDS” on page 1748 Information about field procedures

“SYSFUNCS” on page 1753 ROUTINES Information about user-defined functions

“SYSHISTORYTABLES” on page 1758 Information about history tables

“SYSINDEXES” on page 1759 Information about indexes

“SYSINDEXSTAT” on page 1761 Information about index statistics

“SYSJARCONTENTS” on page 1769 Information about jars for Java routines

“SYSJAROBJECTS” on page 1770 Information about jars for Java routines

“SYSKEYCST” on page 1771 KEY_COLUMN_USAGE Information about unique, primary, and foreign
keys

“SYSKEYS” on page 1772 Information about index keys

“SYSMQTSTAT” on page 1773 Information about materialized query table
statistics

“SYSPACKAGE” on page 1777 Information about packages

“SYSPACKAGEAUTH” on page 1779 Information about package privileges

“SYSPACKAGESTAT” on page 1780 Information about package statistics

“SYSPACKAGESTMTSTAT” on page 1786 Information about the SQL statements in
packages

“SYSPARMS” on page 1788 PARAMETERS Information about routine parameters

“SYSPARTITIONDISK” on page 1792 Information about partition disk usage

“SYSPARTITIONINDEXDISK” on page 1794 Information about index disk usage

“SYSPARTITIONINDEXES” on page 1796 Information about partition indexes

“SYSPARTITIONINDEXSTAT” on page 1803 Information about partition index statistics

“SYSPARTITIONMQTS” on page 1809 Information about partition materialized query
tables

“SYSPARTITIONSTAT” on page 1813 Information about partition statistics

“SYSPERIODS” on page 1817 Information about periods

1712 IBM i: Db2 for i SQL Reference

Db2 for i name Corresponding ANSI/ISO name Description

“SYSPROCS” on page 1818 ROUTINES Information about procedures

“SYSPROGRAMSTAT” on page 1821 Information about programs, service programs,
and modules that contain SQL statements

“SYSPROGRAMSTMTSTAT” on page 1831 Information about SQL statements embedded in
programs, service programs, and modules

“SYSREFCST” on page 1833 REFERENTIAL_CONSTRAINTS Information about referential constraints

“SYSROUTINEAUTH” on page 1834 ROUTINE_PRIVILEGES Information about routine privileges

“SYSROUTINEDEP” on page 1835 ROUTINE_TABLE_USAGE Information about function and procedure
dependencies

“SYSROUTINES” on page 1836 ROUTINES Information about functions and procedures

“SYSSCHEMAAUTH” on page 1842 Information about schema privileges

“SYSSCHEMAS” on page 1843 Information about schemas

“SYSSEQUENCEAUTH” on page 1844 USAGE_PRIVILEGES Information about sequence privileges

“SYSSEQUENCES” on page 1845 Information about sequences

“SYSTABLEDEP” on page 1848 Information about materialized query table
dependencies

“SYSTABLEINDEXSTAT” on page 1849 Information about table index statistics

“SYSTABAUTH” on page 1847 TABLE_PRIVILEGES Information about table privileges

“SYSTABLES” on page 1854 TABLES Information about tables and views

“SYSTABLESTAT” on page 1858 Information about table statistics

“SYSTRIGCOL” on page 1861 TRIGGER_COLUMN_USAGE Information about columns used in a trigger

“SYSTRIGDEP” on page 1862 TRIGGER_TABLE_USAGE Information about objects used in a trigger

“SYSTRIGGERS” on page 1863 TRIGGERS Information about triggers

“SYSTRIGUPD” on page 1867 TRIGGERED_UPDATE_COLUMNS Information about columns in the WHEN clause
of a trigger

“SYSTYPES” on page 1868 USER_DEFINED_TYPES Information about built-in data types and distinct
types

“SYSUDTAUTH” on page 1872 UDT_PRIVILEGES Information about type privileges

“SYSVARIABLEAUTH” on page 1873 Information about global variable privileges

“SYSVARIABLEDEP” on page 1874 Information about objects used in global
variables

“SYSVARIABLES” on page 1875 Information about global variables

“SYSVIEWDEP” on page 1881 VIEW_TABLE_USAGE Information about view dependencies on tables

“SYSVIEWS” on page 1883 VIEWS Information about definition of a view

“SYSXSROBJECTAUTH” on page 1885 USAGE_PRIVILEGES Information about XML schema privileges

“XSRANNOTATIONINFO” on page 1886 Information about annotations

“XSROBJECTCOMPONENTS” on page 1887 Information about components in an XML
schema

“XSROBJECTHIERARCHIES” on page 1888 Information about XML schema document
hierarchy relationships

“XSROBJECTS” on page 1889 Information about XML schemas

Appendix F. Db2 for i catalog views 1713

SYSCATALOGS
The SYSCATALOGS view contains one row for each relational database that a user can connect to. The
following table describes the columns in the SYSCATALOGS view.

Table 165. SYSCATALOGS view

Column Name
System Column
Name Data Type Description

CATALOG_NAME LOCATION VARCHAR(18) Relational database name.

CATALOG_STATUS RDBASPSTAT CHAR(10) Status of a relational database.

ACTIVE
The relational database is associated with an
independent auxiliary storage pool (IASP) that is
active, but not yet available.

AVAILABLE
The relational database is available.

VARYOFF
The relational database is associated with an
independent auxiliary storage pool (IASP) that is
varied off.

VARYON
The relational database is associated with an
independent auxiliary storage pool (IASP) that is
varied on, but not yet available.

UNKNOWN
The status of the relational database is unknown.
The status of remote relational databases is always
unknown.

CATALOG_TYPE RDBTYPE CHAR(7) Relational database type.

LOCAL
The relational database is local to this system.

REMOTE
The relational database is on a remote system.

CATALOG_ASPGRP RDBASPGRP VARCHAR(10)

Nullable

Independent auxiliary storage pool (IASP) name.

Contains the null value if the relational database status is
UNKNOWN.

CATALOG_ASPNUM RDBASPNUM VARCHAR(10)

Nullable

Independent auxiliary storage pool (IASP) number.

Contains the null value if the relational database status is
UNKNOWN.

CATALOG_TEXT RDBTEXT VARGRAPHIC(50) CCSID
1200

Nullable

Relational database text description.

1714 IBM i: Db2 for i SQL Reference

SYSCHKCST
The SYSCHKCST view contains one row for each check constraint in the SQL schema. The following table
describes the columns in the SYSCHKCST view.

Table 166. SYSCHKCST view

Column Name
System Column
Name Data Type Description

CONSTRAINT_SCHEMA DBNAME VARCHAR(128) Name of the schema containing the constraint.

CONSTRAINT_NAME RELNAME VARCHAR(128) Name of the constraint

CHECK_CLAUSE CHECK VARGRAPHIC(2000) CCSID
1200

Nullable

Text of the check constraint clause

Contains the null value if the check clause cannot be
expressed without truncation.

ROUNDING_MODE DECFLTRND CHAR(1)

Nullable

The rounding mode for the check constraint:

C
ROUND_CEILING

D
ROUND_DOWN

F
ROUND_FLOOR

G
ROUND_HALF_DOWN

E
ROUND_HALF_EVEN

H
ROUND_HALF_UP

U
ROUND_UP

SYSTEM_CONSTRAINT_SCHEMA SYS_CDNAME CHAR(10) Name of the system schema containing the constraint.

INSERT_ACTION INS_ACTION VARGRAPHIC(500) CCSID
1200

Nullable

If an insert violation action has been defined, contains the
text of the ON INSERT clause. Otherwise, contains the null
value.

UPDATE_ACTION UPD_ACTION VARGRAPHIC(500) CCSID
1200

Nullable

If an update violation action has been defined, contains
the text of the ON UPDATE clause. Otherwise, contains the
null value.

Appendix F. Db2 for i catalog views 1715

SYSCOLAUTH
The SYSCOLAUTH view contains one row for every privilege granted on a column. Note that this catalog
view cannot be used to determine whether a user is authorized to a column because the privilege to
use a column could be acquired through a group user profile or special authority (such as *ALLOBJ).
Furthermore, the privilege to use a column is also acquired through privileges granted on the table.

The following table describes the columns in the SYSCOLAUTH view:

Table 167. SYSCOLAUTH view

Column Name
System Column
Name Data Type Description

GRANTOR GRANTOR VARCHAR(128)

Nullable

Reserved. Contains the null value.

GRANTEE GRANTEE VARCHAR(128) The user profile to which the privilege is granted.

TABLE_SCHEMA DBNAME VARCHAR(128) Name of the schema

TABLE_NAME TBNAME VARCHAR(128) Name of the table

COLUMN_NAME NAME VARCHAR(128) Name of the column

PRIVILEGE_TYPE PRIVTYPE VARCHAR(10) The privilege granted:

UPDATE
The privilege to update the column.

REFERENCES
The privilege to reference the column in a
referential constraint.

IS_GRANTABLE GRANTABLE VARCHAR(3) Indicates whether the privilege is grantable to other
users.

NO
The privilege is not grantable.

YES
The privilege is grantable.

AUTHORIZATION_LIST AUTL VARCHAR(10)

Nullable

Contains the null value.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) System name of the schema

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) System name of the table or view

SYSTEM_COLUMN_NAME SYS_CNAME CHAR(10) System name of the column

1716 IBM i: Db2 for i SQL Reference

SYSCOLUMNS
The SYSCOLUMNS view contains one row for every column of each table and view in the SQL schema
(including the columns of the SQL catalog).

The following table describes the columns in the SYSCOLUMNS view:

Table 168. SYSCOLUMNS view

Column name
System Column
Name Data Type Description

COLUMN_NAME NAME VARCHAR(128) Name of the column. This will be the SQL column
name if one exists; otherwise, it will be the system
column name.

TABLE_NAME TBNAME VARCHAR(128) Name of the table or view that contains the column.
This will be the SQL table or view name if one exists;
otherwise, it will be the system table or view name.

TABLE_OWNER TBCREATOR VARCHAR(128) The owner of the table or view.

ORDINAL_POSITION COLNO INTEGER Numeric place of the column in the table or view,
ordered from left to right.

Appendix F. Db2 for i catalog views 1717

Table 168. SYSCOLUMNS view (continued)

Column name
System Column
Name Data Type Description

DATA_TYPE COLTYPE VARCHAR(8) Type of column:

BIGINT
Big number

INTEGER
Large number

SMALLINT
Small number

DECIMAL
Packed decimal

NUMERIC
Zoned decimal

FLOAT
Floating point; FLOAT, REAL, or DOUBLE
PRECISION

DECFLOAT
Decimal floating-point

CHAR
Fixed-length character string

VARCHAR
Varying-length character string

CLOB
Character large object string

GRAPHIC
Fixed-length graphic string

VARG
Varying-length graphic string

DBCLOB
Double-byte character large object string

BINARY
Fixed-length binary string

VARBIN
Varying-length binary string

BLOB
Binary large object string

DATE
Date

TIME
Time

TIMESTMP
Timestamp

DATALINK
Datalink

ROWID
Row ID

XML
XML

DISTINCT
Distinct type

1718 IBM i: Db2 for i SQL Reference

Table 168. SYSCOLUMNS view (continued)

Column name
System Column
Name Data Type Description

LENGTH LENGTH INTEGER The length attribute of the column; or, in the case of a
decimal, numeric, or nonzero precision binary column,
its precision:

8 bytes
BIGINT

4 bytes
INTEGER

2 bytes
SMALLINT

Precision of number
DECIMAL

Precision of number
NUMERIC

8 bytes
FLOAT, FLOAT(n) where n = 25 to 53, or DOUBLE
PRECISION

4 bytes
FLOAT(n) where n = 1 to 24, or REAL

8 bytes
DECFLOAT(16)

16 bytes
DECFLOAT(34)

Length of string
CHAR

Maximum length of string
VARCHAR or CLOB

Length of graphic string
GRAPHIC

Maximum length of graphic string
VARGRAPHIC or DBCLOB

Length of string
BINARY

Maximum length of binary string
VARBIN or BLOB

4 bytes
DATE

3 bytes
TIME

The integral part of ((p+1)/2)+7 where p is the
precision of the timestamp

TIMESTAMP

Maximum length of datalink URL and comment
DATALINK

40 bytes
ROWID

2147483647 bytes
XML

Same value as the source type
DISTINCT

NUMERIC_SCALE SCALE INTEGER

Nullable

Scale of numeric data.

Contains the null value if the column is not decimal,
numeric, or binary.

IS_NULLABLE NULLS CHAR(1) If the column can contain null values:

N
No

Y
Yes

Appendix F. Db2 for i catalog views 1719

Table 168. SYSCOLUMNS view (continued)

Column name
System Column
Name Data Type Description

IS_UPDATABLE UPDATES CHAR(1) If the column can be updated:

N
No

Y
Yes

LONG_COMMENT REMARKS VARGRAPHIC(2000) CCSID
1200

Nullable

A character string supplied with the COMMENT
statement.

Contains the null value if there is no long comment.

HAS_DEFAULT DEFAULT CHAR(1) If the column has a default value (DEFAULT clause or
null capable):

N
No

Y
Yes

A
The column has a ROWID data type and the
GENERATED ALWAYS attribute.

D
The column has a ROWID data type and the
GENERATED BY DEFAULT attribute.

E
The column is defined with the FOR EACH
ROW ON UPDATE and the GENERATED ALWAYS
attribute.

F
The column is defined with the FOR EACH ROW
ON UPDATE and the GENERATED BY DEFAULT
attribute.

I
The column is defined with the AS IDENTITY and
GENERATED ALWAYS attributes.

J
The column is defined with the AS IDENTITY and
GENERATED BY DEFAULT attributes.

Q
The column is defined with the GENERATED AS
ROW BEGIN attribute.

R
The column is defined with the GENERATED AS
ROW END attribute.

X
The column is defined with the GENERATED AS
TRANSACTION START ID attribute.

a
The column is defined as a generated expression
using a special register.

c
The column is defined as a generated expression
using a global variable.

d
The column is defined as a generated expression
using DATA CHANGE OPERATION.

If the column is for a view, N is returned.

COLUMN_HEADING LABEL VARGRAPHIC(60) CCSID
1200

Nullable

A character string supplied with the LABEL statement
(column headings)

Contains the null value if there is no column heading.

1720 IBM i: Db2 for i SQL Reference

Table 168. SYSCOLUMNS view (continued)

Column name
System Column
Name Data Type Description

STORAGE STORAGE INTEGER The storage requirements for the column:

8 bytes
BIGINT

4 bytes
INTEGER

2 bytes
SMALLINT

(Precision/2) + 1
DECIMAL

Precision of number
NUMERIC

8 bytes
FLOAT, FLOAT(n) where n = 25 to 53, or DOUBLE
PRECISION

4 bytes
FLOAT(n) where n = 1 to 24, or REAL

8 bytes
DECFLOAT(16)

16 bytes
DECFLOAT(34)

Length of string
CHAR or BINARY

Maximum length of string + 2
VARCHAR or VARBIN

Maximum length of string + 29
CLOB or BLOB

Length of string * 2
GRAPHIC

Maximum length of string * 2 + 2
VARGRAPHIC

Maximum length of string * 2 + 29
DBCLOB

4 bytes
DATE

3 bytes
TIME

The integral part of ((p+1)/2)+7 where p is the
precision of the timestamp

TIMESTAMP

Maximum length of datalink URL and comment + 24
DATALINK

42 bytes
ROWID

2147483647 bytes
XML

Same value as the source type
DISTINCT

Note: This column supplies the storage requirements
for all data types.

NUMERIC_PRECISION PRECISION INTEGER

Nullable

The precision of all numeric columns.

Note: This column supplies the precision of all
numeric data types, including decimal floating-point
and single-and double-precision floating point. The
NUMERIC_PRECISION_RADIX column indicates if the
value in this column is in binary or decimal digits.

Contains the null value if the column is not numeric.

Appendix F. Db2 for i catalog views 1721

Table 168. SYSCOLUMNS view (continued)

Column name
System Column
Name Data Type Description

CCSID CCSID INTEGER

Nullable

The CCSID value for CHAR, VARCHAR, CLOB, DATE,
TIME, TIMESTAMP, GRAPHIC, VARGRAPHIC, DBCLOB,
XML, and DATALINK columns.

Contains 65535 if the column is a BINARY, VARBIN,
BLOB, or ROWID.

Contains the null value if the column is a numeric data
type.

TABLE_SCHEMA DBNAME VARCHAR(128) The name of the SQL schema containing the table or
view.

COLUMN_DEFAULT DFTVALUE VARGRAPHIC(2000) CCSID
1200

Nullable

The default value of a column, if one exists. If the
default value of the column cannot be represented
without truncation, then the value of the column is
the string 'TRUNCATED'. The default value is stored in
character form. The following special values also exist:

CURRENT_DATE
The default value is the current date.

CURRENT_TIME
The default value is the current time.

CURRENT_TIMESTAMP
The default value is the current timestamp.

NULL
The default value is the null value and DEFAULT
NULL was explicitly specified.

USER
The default value is the current job user.

special-register
When column HAS_DEFAULT contains the value
'a', the name of the special register.

global-variable
When column HAS_DEFAULT contains the value
'c', the qualified name of the global variable.

DATA CHANGE OPERATION
When column HAS_DEFAULT contains the value
'd'.

Contains the null value if:

• The column has no default value. For example, if the
column has an IDENTITY attribute, is a row ID, or
is a row change timestamp, row begin, row end, or
transaction start ID column; or

• A DEFAULT value was not explicitly specified.

CHARACTER_MAXIMUM_LENGTH CHARLEN INTEGER

Nullable

Maximum length of the string for binary, character, and
graphic string and XML data types.

Contains the null value if the column is not a string.

CHARACTER_OCTET_LENGTH CHARBYTE INTEGER

Nullable

Number of bytes for binary, character, and graphic
string and XML data types.

Contains the null value if the column is not a string.

NUMERIC_PRECISION_RADIX RADIX INTEGER

Nullable

Indicates if the precision specified in column
NUMERIC_PRECISION is specified as a number of
binary or decimal digits

2
Binary; floating-point precision is specified in
binary digits.

10
Decimal; all other numeric types are specified in
decimal digits.

Contains the null value if the column is not numeric.

1722 IBM i: Db2 for i SQL Reference

Table 168. SYSCOLUMNS view (continued)

Column name
System Column
Name Data Type Description

DATETIME_PRECISION DATPRC INTEGER

Nullable

The fractional part of a date, time, or timestamp.

0
For DATE and TIME data types

0-12
For TIMESTAMP data types (number of fractional
seconds).

Contains the null value if the column is not a date,
time, or timestamp.

COLUMN_TEXT LABELTEXT VARGRAPHIC(50) CCSID
1200

Nullable

A character string supplied with the LABEL statement
(column text)

Contains the null value if the column has no column
text.

SYSTEM_COLUMN_NAME SYS_CNAME CHAR(10) The system name of the column

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) The system name of the table or view

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) The system name of the schema

USER_DEFINED_TYPE_SCHEMA TYPESCHEMA VARCHAR(128)

Nullable

The name of the schema if this is a distinct type.

Contains the null value if the column is not a distinct
type.

USER_DEFINED_TYPE_NAME TYPENAME VARCHAR(128)

Nullable

The name of the distinct type.

Contains the null value if the column is not a distinct
type.

IS_IDENTITY IDENTITY VARCHAR(3) This column identifies whether the column is an
identity column.

NO
The column is not an identity column.

YES
The column is an identity column.

IDENTITY_GENERATION GENERATED VARCHAR(10)

Nullable

This column identifies whether the column is
GENERATED ALWAYS or GENERATED BY DEFAULT.

ALWAYS
The column value is always generated.

BY DEFAULT
The column value is generated by default.

Contains the null value if the column is not a ROWID,
identity, row change timestamp, row begin, row end,
transaction start ID, or generated expression.

IDENTITY_START START DECIMAL(31,0)

Nullable

Starting value of the identity column.

Contains the null value if the column is not an
IDENTITY column.

IDENTITY_INCREMENT INCREMENT DECIMAL(31,0)

Nullable

Increment value of the identity column.

Contains the null value if the column is not an
IDENTITY column.

IDENTITY_MINIMUM MINVALUE DECIMAL(31,0)

Nullable

Minimum value of the identity column.

Contains the null value if the column is not an
IDENTITY column.

IDENTITY_MAXIMUM MAXVALUE DECIMAL(31,0)

Nullable

Maximum value of the identity column.

Contains the null value if the column is not an
IDENTITY column.

Appendix F. Db2 for i catalog views 1723

Table 168. SYSCOLUMNS view (continued)

Column name
System Column
Name Data Type Description

IDENTITY_CYCLE CYCLE VARCHAR(3)

Nullable

This column identifies whether the identity column
values will continue to be generated after the
minimum or maximum value has been reached.

NO
Values will not continue to be generated.

YES
Values will continue to be generated.

Contains the null value if the column is not an
IDENTITY column.

IDENTITY_CACHE CACHE INTEGER

Nullable

Specifies the number of identity values that may be
preallocated for faster access. Zero indicates that the
values will not be preallocated.

Contains the null value if the column is not an
IDENTITY column.

IDENTITY_ORDER ORDER VARCHAR(3)

Nullable

Specifies whether the identity values must be
generated in order of the request.

NO
Values do not need to be generated in order of
the request.

YES
Values must be generated in order of the request.

Contains the null value if the column is not an
IDENTITY column.

COLUMN_EXPRESSION EXPRESSION DBCLOB(2097152)

CCSID 1200

Nullable

If the column is an expression, contains the
expression.

Contains the null value if the column is not an
expression.

HIDDEN HIDDEN CHAR(1) Specifies whether the column is included in an implicit
column list.

P
Partially hidden.

N
Not hidden.

HAS_FLDPROC FLDPROC CHAR(1) Specifies whether the column has a field procedure.

N
Column does not have a field procedure.

Y
Column has a field procedure.

1724 IBM i: Db2 for i SQL Reference

SYSCOLUMNS2
The SYSCOLUMNS2 view contains one row for every column of each table and view in the SQL schema
(including the columns of the SQL catalog).

For information related to a single table or view, a query that uses SYSCOLUMNS2 will typically perform
better than querying SYSCOLUMNS. SYSCOLUMNS2 also contains a few more column attributes than
SYSCOLUMNS.

The following table describes the columns in the SYSCOLUMNS2 view:

Table 169. SYSCOLUMNS2 view

Column name
System Column
Name Data Type Description

COLUMN_NAME NAME VARCHAR(128) Name of the column. This will be the SQL column
name if one exists; otherwise, it will be the system
column name.

TABLE_NAME TBNAME VARCHAR(128) Name of the table or view that contains the column.
This will be the SQL table or view name if one exists;
otherwise, it will be the system table or view name.

TABLE_OWNER TBCREATOR VARCHAR(128) The owner of the table or view.

ORDINAL_POSITION COLNO INTEGER Numeric place of the column in the table or view,
ordered from left to right.

Appendix F. Db2 for i catalog views 1725

Table 169. SYSCOLUMNS2 view (continued)

Column name
System Column
Name Data Type Description

DATA_TYPE COLTYPE VARCHAR(8) Type of column:

BIGINT
Big number

INTEGER
Large number

SMALLINT
Small number

DECIMAL
Packed decimal

NUMERIC
Zoned decimal

FLOAT
Floating point; FLOAT, REAL, or DOUBLE
PRECISION

DECFLOAT
Decimal floating-point

CHAR
Fixed-length character string

VARCHAR
Varying-length character string

CLOB
Character large object string

GRAPHIC
Fixed-length graphic string

VARG
Varying-length graphic string

DBCLOB
Double-byte character large object string

BINARY
Fixed-length binary string

VARBIN
Varying-length binary string

BLOB
Binary large object string

DATE
Date

TIME
Time

TIMESTMP
Timestamp

DATALINK
Datalink

ROWID
Row ID

XML
XML

DISTINCT
Distinct type

1726 IBM i: Db2 for i SQL Reference

Table 169. SYSCOLUMNS2 view (continued)

Column name
System Column
Name Data Type Description

LENGTH LENGTH INTEGER The length attribute of the column; or, in the case of a
decimal, numeric, or nonzero precision binary column,
its precision:

8 bytes
BIGINT

4 bytes
INTEGER

2 bytes
SMALLINT

Precision of number
DECIMAL

Precision of number
NUMERIC

8 bytes
FLOAT, FLOAT(n) where n = 25 to 53, or DOUBLE
PRECISION

4 bytes
FLOAT(n) where n = 1 to 24, or REAL

8 bytes
DECFLOAT(16)

16 bytes
DECFLOAT(34)

Length of string
CHAR

Maximum length of string
VARCHAR or CLOB

Length of graphic string
GRAPHIC

Maximum length of graphic string
VARGRAPHIC or DBCLOB

Length of string
BINARY

Maximum length of binary string
VARBIN or BLOB

4 bytes
DATE

3 bytes
TIME

The integral part of ((p+1)/2)+7 where p is the
precision of the timestamp

TIMESTAMP

Maximum length of datalink URL and comment
DATALINK

40 bytes
ROWID

2147483647 bytes
XML

Same value as the source type
DISTINCT

NUMERIC_SCALE SCALE INTEGER

Nullable

Scale of numeric data.

Contains the null value if the column is not decimal,
numeric, or binary.

IS_NULLABLE NULLS CHAR(1) If the column can contain null values:

N
No

Y
Yes

Appendix F. Db2 for i catalog views 1727

Table 169. SYSCOLUMNS2 view (continued)

Column name
System Column
Name Data Type Description

IS_UPDATABLE UPDATES CHAR(1) If the column can be updated:

N
No

Y
Yes

LONG_COMMENT REMARKS VARGRAPHIC(2000) CCSID
1200

Nullable

A character string supplied with the COMMENT
statement.

Contains the null value if there is no long comment.

HAS_DEFAULT DEFAULT CHAR(1) If the column has a default value (DEFAULT clause or
null capable):

N
No

Y
Yes

A
The column has a ROWID data type and the
GENERATED ALWAYS attribute.

D
The column has a ROWID data type and the
GENERATED BY DEFAULT attribute.

E
The column is defined with the FOR EACH
ROW ON UPDATE and the GENERATED ALWAYS
attribute.

F
The column is defined with the FOR EACH ROW
ON UPDATE and the GENERATED BY DEFAULT
attribute.

I
The column is defined with the AS IDENTITY and
GENERATED ALWAYS attributes.

J
The column is defined with the AS IDENTITY and
GENERATED BY DEFAULT attributes.

Q
The column is defined with the GENERATED AS
ROW BEGIN attribute.

R
The column is defined with the GENERATED AS
ROW END attribute.

X
The column is defined with the GENERATED AS
TRANSACTION START ID attribute.

a
The column is defined as a generated expression
using a special register.

c
The column is defined as a generated expression
using a global variable.

d
The column is defined as a generated expression
using DATA CHANGE OPERATION.

If the column is for a view, N is returned.

COLUMN_HEADING LABEL VARGRAPHIC(60) CCSID
1200

Nullable

A character string supplied with the LABEL statement
(column headings)

Contains the null value if there is no column heading.

1728 IBM i: Db2 for i SQL Reference

Table 169. SYSCOLUMNS2 view (continued)

Column name
System Column
Name Data Type Description

STORAGE STORAGE INTEGER The storage requirements for the column:

8 bytes
BIGINT

4 bytes
INTEGER

2 bytes
SMALLINT

(Precision/2) + 1
DECIMAL

Precision of number
NUMERIC

8 bytes
FLOAT, FLOAT(n) where n = 25 to 53, or DOUBLE
PRECISION

4 bytes
FLOAT(n) where n = 1 to 24, or REAL

8 bytes
DECFLOAT(16)

16 bytes
DECFLOAT(34)

Length of string
CHAR or BINARY

Maximum length of string + 2
VARCHAR or VARBIN

Maximum length of string + 29
CLOB or BLOB

Length of string * 2
GRAPHIC

Maximum length of string * 2 + 2
VARGRAPHIC

Maximum length of string * 2 + 29
DBCLOB

4 bytes
DATE

3 bytes
TIME

The integral part of ((p+1)/2)+7 where p is the
precision of the timestamp

TIMESTAMP

Maximum length of datalink URL and comment + 24
DATALINK

42 bytes
ROWID

2147483647 bytes
XML

Same value as the source type
DISTINCT

Note: This column supplies the storage requirements
for all data types.

NUMERIC_PRECISION PRECISION INTEGER

Nullable

The precision of all numeric columns.

Note: This column supplies the precision of all
numeric data types, including decimal floating-point
and single-and double-precision floating point. The
NUMERIC_PRECISION_RADIX column indicates if the
value in this column is in binary or decimal digits.

Contains the null value if the column is not numeric.

Appendix F. Db2 for i catalog views 1729

Table 169. SYSCOLUMNS2 view (continued)

Column name
System Column
Name Data Type Description

CCSID CCSID INTEGER

Nullable

The CCSID value for CHAR, VARCHAR, CLOB, DATE,
TIME, TIMESTAMP, GRAPHIC, VARGRAPHIC, DBCLOB,
XML, and DATALINK columns.

Contains 65535 if the column is a BINARY, VARBIN,
BLOB, or ROWID.

Contains the null value if the column is a numeric data
type.

TABLE_SCHEMA DBNAME VARCHAR(128) The name of the SQL schema containing the table or
view.

COLUMN_DEFAULT DFTVALUE VARGRAPHIC(2000) CCSID
1200

Nullable

The default value of a column, if one exists. If the
default value of the column cannot be represented
without truncation, then the value of the column is
the string 'TRUNCATED'. The default value is stored in
character form. The following special values also exist:

CURRENT_DATE
The default value is the current date.

CURRENT_TIME
The default value is the current time.

CURRENT_TIMESTAMP
The default value is the current timestamp.

NULL
The default value is the null value and DEFAULT
NULL was explicitly specified.

USER
The default value is the current job user.

special-register
When column HAS_DEFAULT contains the value
'a', the name of the special register.

global-variable
When column HAS_DEFAULT contains the value
'c', the qualified name of the global variable.

DATA CHANGE OPERATION
When column HAS_DEFAULT contains the value
'd'.

Contains the null value if:

• The column has no default value. For example, if the
column has an IDENTITY attribute, is a row ID, or
is a row change timestamp, row begin, row end, or
transaction start ID column; or

• A DEFAULT value was not explicitly specified.

CHARACTER_MAXIMUM_LENGTH CHARLEN INTEGER

Nullable

Maximum length of the string for binary, character, and
graphic string and XML data types.

Contains the null value if the column is not a string.

CHARACTER_OCTET_LENGTH CHARBYTE INTEGER

Nullable

Number of bytes for binary, character, and graphic
string and XML data types.

Contains the null value if the column is not a string.

NUMERIC_PRECISION_RADIX RADIX INTEGER

Nullable

Indicates if the precision specified in column
NUMERIC_PRECISION is specified as a number of
binary or decimal digits

2
Binary; floating-point precision is specified in
binary digits.

10
Decimal; all other numeric types are specified in
decimal digits.

Contains the null value if the column is not numeric.

1730 IBM i: Db2 for i SQL Reference

Table 169. SYSCOLUMNS2 view (continued)

Column name
System Column
Name Data Type Description

DATETIME_PRECISION DATPRC INTEGER

Nullable

The fractional part of a date, time, or timestamp.

0
For DATE and TIME data types

0-12
For TIMESTAMP data types (number of fractional
seconds).

Contains the null value if the column is not a date,
time, or timestamp.

COLUMN_TEXT LABELTEXT VARGRAPHIC(50) CCSID
1200

Nullable

A character string supplied with the LABEL statement
(column text)

Contains the null value if the column has no column
text.

SYSTEM_COLUMN_NAME SYS_CNAME CHAR(10) The system name of the column

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) The system name of the table or view

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) The system name of the schema

USER_DEFINED_TYPE_SCHEMA TYPESCHEMA VARCHAR(128)

Nullable

The name of the schema if this is a distinct type.

Contains the null value if the column is not a distinct
type.

USER_DEFINED_TYPE_NAME TYPENAME VARCHAR(128)

Nullable

The name of the distinct type.

Contains the null value if the column is not a distinct
type.

IS_IDENTITY IDENTITY VARCHAR(3) This column identifies whether the column is an
identity column.

NO
The column is not an identity column.

YES
The column is an identity column.

IDENTITY_GENERATION GENERATED VARCHAR(10)

Nullable

This column identifies whether the column is
GENERATED ALWAYS or GENERATED BY DEFAULT.

ALWAYS
The column value is always generated.

BY DEFAULT
The column value is generated by default.

Contains the null value if the column is not a ROWID,
identity, row change timestamp, row begin, row end,
transaction start ID, or generated expression.

IDENTITY_START START DECIMAL(31,0)

Nullable

Starting value of the identity column.

Contains the null value if the column is not an
IDENTITY column.

IDENTITY_INCREMENT INCREMENT DECIMAL(31,0)

Nullable

Increment value of the identity column.

Contains the null value if the column is not an
IDENTITY column.

IDENTITY_MINIMUM MINVALUE DECIMAL(31,0)

Nullable

Minimum value of the identity column.

Contains the null value if the column is not an
IDENTITY column.

IDENTITY_MAXIMUM MAXVALUE DECIMAL(31,0)

Nullable

Maximum value of the identity column.

Contains the null value if the column is not an
IDENTITY column.

Appendix F. Db2 for i catalog views 1731

Table 169. SYSCOLUMNS2 view (continued)

Column name
System Column
Name Data Type Description

IDENTITY_CYCLE CYCLE VARCHAR(3)

Nullable

This column identifies whether the identity column
values will continue to be generated after the
minimum or maximum value has been reached.

NO
Values will not continue to be generated.

YES
Values will continue to be generated.

Contains the null value if the column is not an
IDENTITY column.

IDENTITY_CACHE CACHE INTEGER

Nullable

Specifies the number of identity values that may be
preallocated for faster access. Zero indicates that the
values will not be preallocated.

Contains the null value if the column is not an
IDENTITY column.

IDENTITY_ORDER ORDER VARCHAR(3)

Nullable

Specifies whether the identity values must be
generated in order of the request.

NO
Values do not need to be generated in order of
the request.

YES
Values must be generated in order of the
request.

Contains the null value if the column is not an
IDENTITY column.

COLUMN_EXPRESSION EXPRESSION DBCLOB(2097152)

CCSID 1200

Nullable

If the column is an expression, contains the
expression.

Contains the null value if the column is not an
expression.

HIDDEN HIDDEN CHAR(1) Specifies whether the column is included in an implicit
column list.

P
Partially hidden.

N
Not hidden.

HAS_FLDPROC FLDPROC CHAR(1) Specifies whether the column has a field procedure.

N
Column does not have a field procedure.

Y
Column has a field procedure.

INLINE_LENGTH ALLOCATE INTEGER

Nullable

Specifies the allocated length (ALLOCATE) for a varying
length column.

Contains the null value if the column is not varying
length.

NORMALIZE NORMALIZE CHAR(1)

Nullable

Specifies whether the column data should be
normalized when passed from the application.

0
Column should not be normalized.

1
Column should be normalized.

Contains the null value if the column does not contain
Unicode data.

1732 IBM i: Db2 for i SQL Reference

Table 169. SYSCOLUMNS2 view (continued)

Column name
System Column
Name Data Type Description

DATALINK_LINK_CONTROL DL_LINKC CHAR(1)

Nullable

Specifies whether a check will be performed to
determine if the DATALINK column's linked files exist.

0
No check will be performed.

1
A check will be performed.

Contains the null value if the data type of the column is
not DATALINK.

DATALINK_INTEGRITY DL_INTEG CHAR(1)

Nullable

Specifies the level of integrity of the link between the
DATALINK value and the linked files.

0
ALL

Contains the null value if the data type of the column
is not DATALINK or if the datalink has NO LINK
CONTROL.

DATALINK_READ_PERMISSION DL_READP CHAR(1)

Nullable

Specifies how permission to read the file specified in
the DATALINK value is determined.

0
FS

1
DB

Contains the null value if the data type of the column
is not DATALINK or if the datalink has NO LINK
CONTROL.

DATALINK_WRITE_PERMISSION DL_WRITEP CHAR(1)

Nullable

Specifies how permission to write to the file specified
in the DATALINK value is determined.

0
FS

1
BLOCKED

Contains the null value if the data type of the column
is not DATALINK or if the datalink has NO LINK
CONTROL.

DATALINK_RECOVERY DL_RECOVER CHAR(1)

Nullable

Specifies whether point in time recovery of the linked
files of the DATALINK column is supported.

0
NO

Contains the null value if the data type of the column
is not DATALINK or if the datalink has NO LINK
CONTROL.

DATALINK_UNLINK_CONTROL DL_UNLINKC CHAR(1)

Nullable

Specifies the action the DataLink File Manager will
take when a file is unlinked.

0
RESTORE

1
DELETE

Contains the null value if the data type of the column
is not DATALINK or if the datalink has NO LINK
CONTROL.

DDS_TYPE DDS_TYPE CHAR(1)

Nullable

Specifies the Data Description Specification (DDS)
data type for the column. See the following link for the
list DDS data types: https://www.ibm.com/support/
knowledgecenter/ssw_ibm_i_74/rzakb/ldata.htm

Appendix F. Db2 for i catalog views 1733

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_74/rzakb/ldata.htm
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_74/rzakb/ldata.htm

Table 169. SYSCOLUMNS2 view (continued)

Column name
System Column
Name Data Type Description

SECURE SECURE CHAR(1)

Nullable

Specifies whether the column contains data that
should be secured in a database monitor or plan
cache.

0
The column does not contain data that needs to
be secured in a database monitor or plan cache.

1
The column contains data that needs to be
secured in a database monitor or plan cache.

DATE_FORMAT DATFMT CHAR(3)

Nullable

Date format for the column.

Contains the null value if this column is not a date.

DATE_SEPARATOR DATSEP CHAR(1)

Nullable

Date separator for the column.

Contains the null value if this column is not a date or if
there is no separator value.

TIME_FORMAT TIMFMT CHAR(3)

Nullable

Time format for the column.

Contains the null value if this column is not a time.

TIME_SEPARATOR TIMSEP CHAR(1)

Nullable

Time separator for the column.

Contains the null value if this column is not a time or if
there is no separator value.

REFERENCE_LIBRARY REFFLD_LIB VARCHAR(10)

Nullable

Library for the reference field.

Contains the null value if there is no reference
information for this column.

REFERENCE_FILE REFFLD_FIL VARCHAR(10)

Nullable

File for the reference field.

Contains the null value if there is no reference
information for this column.

REFERENCE_FORMAT REFFLD_FMT VARCHAR(10)

Nullable

Record format name for the reference field.

Contains the null value if there is no reference
information for this column.

REFERENCE_FIELD REFFLD VARCHAR(10)

Nullable

Reference field name

Contains the null value if there is no reference
information for this column.

EDIT_CODE EDTCDE CHAR(1)

Nullable

The edit code for this column.

Contains the null value if there is no edit code.

EDIT_CODE_FILL EDTCDEFILL CHAR(1)

Nullable

Contains an * if the edit code uses asterisk fill. Any
other character is the floating currency symbol.

Contains the null value if there is no edit code or if
there is no fill character.

EDIT_WORD EDTWRD VARCHAR(65)

Nullable

The edit word for this column.

Contains the null value if there is no edit word.

COLUMN_USAGE USAGE VARCHAR(5) Usage for the column.

BOTH
The column can be used for both input and
output.

INPUT
The column can be used for input only. This
means the data can be read but not changed.

JOIN_REFERENCE JREF INTEGER

Nullable

For columns whose names are specified in more than
one physical file, this value identifies which physical
file contains the field.

Contains the null value if there is no join reference
value.

1734 IBM i: Db2 for i SQL Reference

Table 169. SYSCOLUMNS2 view (continued)

Column name
System Column
Name Data Type Description

INTERNAL_FIELD_NAME FIELD_I VARCHAR(10)

Nullable

Internal field name. The name of the physical format
field. If this is a logical format, the name of the
physical field on which the logical field is based.

Contains the null value if there is no internal field
name.

Appendix F. Db2 for i catalog views 1735

SYSCOLUMNS2_SESSION
The SYSCOLUMNS2_SESSION view contains one row for every column of each table and view in the
SESSION (or QTEMP) schema.

The columns returned by the SYSCOLUMNS2_SESSION view are identical to the columns in the
SYSCOLUMNS2 view. See “SYSCOLUMNS2” on page 1725.

1736 IBM i: Db2 for i SQL Reference

SYSCOLUMNSTAT
The SYSCOLUMNSTAT view contains one row for every column in a table partition or table member that
has a column statistics collection. If the table is a distributed table, the partitions that reside on other
database nodes are not contained in this catalog view.

They are contained in the catalog views of the other database nodes. The following table describes the
columns in the SYSCOLUMNSTAT view:

Table 170. SYSCOLUMNSTAT view

Column name
System Column
Name Data Type Description

TABLE_SCHEMA TABSCHEMA VARCHAR(128) Name of the SQL schema that contains the table.

TABLE_NAME TABNAME VARCHAR(128) Name of the table.

TABLE_PARTITION TABPART VARCHAR(128) Name of the table partition or member.

PARTITION_TYPE PARTTYPE CHAR(1) The type of the table partitioning:

blank
The table is not partitioned.

H
This is data hash partitioning.

R
This is data range partitioning.

D
This is distributed database hash partitioning.

PARTITION_NUMBER PARTNBR INTEGER

Nullable

The partition number of this partition. If the table is a
distributed table, contains null.

NUMBER_DISTRIBUTED_PARTITIONS DSTPARTS INTEGER

Nullable

If the table is a distributed table, contains the total
number of partitions. If the table is not a distributed
table, contains null.

NUMBER_COLUMN_NAMES NBRCOLS INTEGER Number of column names in this collection. If only
individual column statistics are wanted, only select
rows where NUMBER_COLUMN_NAMES is one.

Currently, only one name is returned.

COLUMN_NAME COLNAME VARCHAR(1280) Name of the column(s). Up to 10 columns may be
returned.

Currently, only one name is returned.

NUMBER_DISTINCT_VALUES COLCARD BIGINT Number of distinct values in the column. This is an
estimated value determined by the statistics engine at
the time that the column statistics were last collected.

Contains -1 if statistics are not collected.

HIGH2KEY HIGH2KEY VARCHAR(254) Not applicable for Db2 for i. Contains the empty string.

LOW2KEY LOW2KEY VARCHAR(254) Not applicable for Db2 for i. Contains the empty string.

AVERAGE_COLUMN_LENGTH AVGCOLLEN INTEGER Not applicable for Db2 for i. Will always be -1.

NUMBER_NULLS NUMNULLS BIGINT The estimated number of NULL values. -1 if statistics
are not collected.

SUB_COUNT SUB_COUNT SMALLINT Not applicable for Db2 for i. Will always be -1.

SUB_DELIM_LENGTH SUBDLENGTH SMALLINT Not applicable for Db2 for i. Will always be -1.

NUMBER_HISTOGRAM_RANGES NQUANTILES INTEGER Number of histogram ranges available for this
statistics collection. The actual histogram range values
can be obtained using the List Statistics Collection
Details (QDBSTLDS, QdbstListDetailStatistics) API.
Contains -1 if statistics are not collected.

NUMBER_MOST_FREQUENT_VALUES NMOSTFREQ INTEGER Number of most frequent values available. The
actual most frequent values can be obtained using
the List Statistics Collection Details (QDBSTLDS,
QdbstListDetailStatistics) API. Contains -1 if statistics
are not collected.

Appendix F. Db2 for i catalog views 1737

Table 170. SYSCOLUMNSTAT view (continued)

Column name
System Column
Name Data Type Description

AVGDISTINCTPERPAGE AVGDSTPAGE DOUBLE

Nullable

Not applicable for Db2 for i. Will always be NULL.

PAGEVARIANCERATIO PVARRATIO DOUBLE

Nullable

Not applicable for Db2 for i. Will always be NULL.

STATISTICS_NAME STATNAME VARCHAR(128)

Nullable

Unique name of this statistics collection for this table
partition. NULL if statistics are not collected.

INTERNAL_STATISTICS_ID STATID VARCHAR(16) FOR BIT
DATA

Nullable

Internal statistics identifier of this statistics collection
for this table partition. NULL if statistics are not
collected.

STATISTIC_CREATED STATCREATE TIMESTAMP

Nullable

Timestamp when the statistics collection was created.
NULL if statistics are not collected.

STATISTIC_CREATOR STATCUSER VARCHAR(128)

Nullable

User that created the statistic collection. *SYS if
the system created the statistic collection. NULL if
statistics are not collected.

STATISTIC_LAST_UPDATED UPDATEDTS TIMESTAMP

Nullable

Timestamp when the statistics collection was last
updated. NULL if statistics are not collected.

STATISTIC_UPDATER STATUUSER VARCHAR(128)

Nullable

User that last updated the statistic collection. *SYS
if the system automatically updated the statistic
collection. NULL if statistics are not collected.

STATISTICS_SIZE STATSIZE BIGINT

Nullable

Size of the statistics collection for this table partition.
NULL if statistics are not collected.

AGING_MODE AGING_MODE VARCHAR(10) Indicates whether the system can automatically age or
remove statistics collections for this table partition.

*SYS
The statistic collection will be automatically
refreshed or removed by the system when
necessary.

*USER
The statistic collection will only be refreshed or
removed when explicitly requested by the user.

AGING_STATUS AGING_STS CHAR(1)

Nullable

Indicates how current the statistics collection is for
this table partition.

0
There are no indications that the statistics data
needs to be refreshed.

1
There are indications that the statistics data
needs to be refreshed.

NULL if statistics are not collected.

BLOCK_OPTION BLKOPTION CHAR(1) Indicates whether automatic statistics collection
create requests are allowed for this table partition.

0
Automatic system initiated statistics collections
are not blocked.

1
Automatic system initiated statistics collections
are blocked.

CURRENT_LAST_CHANGE UPDATED TIMESTAMP

Nullable

Timestamp when the data in the table partition was
last changed. NULL if statistics are not collected.

CURRENT_ROWS CURROWS BIGINT

Nullable

Current number of valid rows in the table partition.
NULL if statistics are not collected.

1738 IBM i: Db2 for i SQL Reference

Table 170. SYSCOLUMNSTAT view (continued)

Column name
System Column
Name Data Type Description

CURRENT_DELETED_ROWS CURDELROWS BIGINT

Nullable

Current number of deleted rows in the table partition.
NULL if statistics are not collected.

CURRENT_DATA_CHANGES CURDATACHG BIGINT

Nullable

The number of inserts, updates, and deletes that have
ever occurred to this table partition. NULL if statistics
are not collected.

STATISTICS_ROWS STATROWS BIGINT

Nullable

Number of valid rows in the table partition at the time
the statistic was collected. NULL if statistics are not
collected.

STATISTICS_DELETED_ROWS STATDELROW BIGINT

Nullable

Number of deleted rows in the table partition at the
time the statistic was collected. NULL if statistics are
not collected.

STATISTICS_DATA_CHANGES STATDATCHG BIGINT

Nullable

Number of inserts, updates, and deletes that had
occurred to the table partition at the time the statistic
was collected. NULL if statistics are not collected.

TRANSLATION_ATTRIBUTES TRANSATRS VARCHAR(10)

Nullable

Indicates the type of translations that were used on
data values when the statistic was collected.

0
Unique weight translation.

1
Shared weight translation.

9
No translation.

If multiple columns are used in this collection,
multiple translations are possible.

Currently, only one translation is returned.

TRANSLATION_TABLES TRANSTBLS VARCHAR(210)

Nullable

Qualified names of the translation tables, if translation
tables were used on the statistic collection.

The empty string is returned if no translation table was
used. NULL if statistics are not collected.

If multiple columns are used in this collection,
multiple translation tables are possible.

Currently, only one translation table is returned.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) System schema name.

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) System table name.

SYSTEM_TABLE_MEMBER SYS_MNAME CHAR(10) System member name.

SYSTEM_COLUMN_NAME SYS_CNAME VARCHAR(100) System column name. An array of up to 10 names are
possible.

Currently, only one name is returned.

Appendix F. Db2 for i catalog views 1739

SYSCONTROLS
The SYSCONTROLS view contains one row for each row permission or column mask defined by the
CREATE PERMISSION or CREATE MASK statements.

The following table describes the columns in the SYSCONTROLS view:

Table 171. SYSCONTROLS view

Column Name
System Column
Name Data Type Description

RCAC_SCHEMA SCHEMA VARCHAR(128) Schema name of the row permission or column mask.

RCAC_NAME NAME VARCHAR(128) Name of the row permission or column mask.

RCAC_OWNER CREATOR VARCHAR(128) Creator of the row permission or column mask.

TABLE_SCHEMA TBSCHEMA VARCHAR(128) Schema name of the table for which the row
permission or column mask is defined.

TABLE_NAME TBNAME VARCHAR(128) Name of the table for which the row permission or
column mask is defined.

TBCORRELATION TBCORRNAME VARCHAR(128) The correlation name of the table for which the row
permission or column mask is defined. If not specified,
a value is generated.

COLUMN_NAME COLNAME VARCHAR(128) Column name for which the column mask is defined.
Contains a blank for a row permission.

SYSTEM_COLUMN_NAME SYS_CNAME CHAR(10) The system name of the column. Contains a blank for a
row permission

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) The system name of the table.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) The system name of the schema.

CONTROL_TYPE CONTROLTYP CHAR(1) Indicates the type of access control:

R
Row permission

M
Column mask

ENFORCED ENFORCED CHAR(1) Indicates the type of access enforced by the row
permission. Column mask is always 'A':

A
All access

IMPLICIT IMPLICIT CHAR(1) Indicates whether the row permission was implicitly
created:

N
The row permission was not implicitly created or
this is a column mask.

Y
Row permission was implicitly created.

ENABLE ENABLE CHAR(1) Indicates whether the row permission or the column
mask is enabled for access control:

N
Not enabled

Y
Enabled

CREATE_TIME CREATEDTS TIMESTAMP Identifies the timestamp when the row permission or
column mask was created.

LAST_ALTERED ALTERDTS TIMESTAMP

Nullable

Identifies the timestamp when the row permission or
column mask was last changed.

Contains the null value if it has never been altered.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary storage pool
(IASP) number.

1740 IBM i: Db2 for i SQL Reference

Table 171. SYSCONTROLS view (continued)

Column Name
System Column
Name Data Type Description

LABEL LABEL VARGRAPHIC(50) CCSID
1200

Nullable

A character string provided by the LABEL statement.
Contains the null value if a label does not exist.

LONG_COMMENT REMARKS VARGRAPHIC(2000) CCSID
1200

Nullable

A character string supplied with the COMMENT
statement.

Contains the null value if there is no long comment.

RULETEXT RULETEXT DBCLOB(2M) CCSID 1200 The source text of the search condition or expression
portion of the CREATE PERMISSION or CREATE MASK
statement.

Appendix F. Db2 for i catalog views 1741

SYSCONTROLSDEP
The SYSCONTROLSDEP view records the dependencies of row permissions and column masks.

The following table describes the columns in the SYSCONTROLSDEP view:

Table 172. SYSCONTROLSDEP view

Column Name
System Column
Name Data Type Description

RCAC_SCHEMA SCHEMA VARCHAR(128) Schema name of the row permission or column mask.

RCAC_NAME NAME VARCHAR(128) Name of the row permission or column mask.

CONTROL_TYPE CONTROLTYP CHAR(1) Indicates the type of access control:

R
Row permission

M
Column mask

OBJECT_SCHEMA BSCHEMA VARCHAR(128) Name of the schema that contains the object.

OBJECT_NAME BNAME VARCHAR(128) Name of the object the row permission or column
mask is dependent on.

OBJECT_TYPE BTYPE CHAR(24) Indicates the object type of the object referenced in
the row permission or column mask.

COLUMN
The object is a column in a table.

FUNCTION
The object is a function.

MATERIALIZED QUERY TABLE
The object is a materialized query table.

SEQUENCE
The object is a sequence.

TABLE
The object is a table.

TYPE
The object is a distinct type.

VARIABLE
The object is a variable.

VIEW
The object is a view.

COLUMN_NAME BCOLNAME VARCHAR(128) Column name for the object when OBJECT_TYPE has
a value of 'COLUMN'. In this case, OBJECT_NAME
contains the table name for the column.

Contains a blank if object is not a column.

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) The system name of the table upon which the row
permission or column mask is defined.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) The system name of the schema of the table upon
which the row permission or column mask is defined.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary storage pool
(IASP) number.

PARM_SIGNATURE SIGNATURE BLOB(3M)

Nullable

This column identifies the routine signature.

Contains the null value if the object is not a routine.

1742 IBM i: Db2 for i SQL Reference

SYSCST
The SYSCST view contains one row for each constraint in the SQL schema.

The following table describes the columns in the SYSCST view:

Table 173. SYSCST view

Column Name
System Column
Name Data Type Description

CONSTRAINT_SCHEMA CDBNAME VARCHAR(128) Name of the schema containing the constraint.

CONSTRAINT_NAME RELNAME VARCHAR(128) Name of the constraint.

CONSTRAINT_TYPE TYPE VARCHAR(11) Constraint Type

• CHECK

• UNIQUE

• PRIMARY KEY

• FOREIGN KEY

TABLE_SCHEMA TDBNAME VARCHAR(128) Name of the schema containing the table.

TABLE_NAME TBNAME VARCHAR(128) Name of the table which the constraint is created over.
This will be the SQL table name if it exists; otherwise,
it will be the system table name.

IS_DEFERRABLE ISDEFER VARCHAR(3) Indicates whether the constraint checking can be
deferred. Will always be 'NO'.

INITIALLY_DEFERRED INITDEFER VARCHAR(3) Indicates whether the constraint was defined as
initially deferred. Will always be 'NO'.

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) System name of the table.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) System name of the schema containing the table.

CONSTRAINT_KEYS COLCOUNT SMALLINT

Nullable

Specifies the number of key columns if this is a
UNIQUE, PRIMARY KEY, or FOREIGN KEY constraint.

Contains the null value if the constraint is a CHECK
constraint.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary storage pool
(IASP) number.

CONSTRAINT_STATE CST_STATE VARCHAR(11) Indicates whether the constraint is established or
defined:

ESTABLISHED
The referential constraint is established. The
parent table exists.

DEFINED
The referential constraint is defined. The parent
table does not exist.

ENABLED ENABLED VARCHAR(3)

Nullable

Indicates whether the constraint is enabled:

NO
The constraint is disabled.

YES
The constraint is enabled.

Contains the null value if the constraint is defined or is
a unique constraint.

CHECK_PENDING CHECKFLAG VARCHAR(3)

Nullable

Indicates whether the constraint is in check pending
state:

NO
The constraint is not in check pending.

YES
The constraint is in check pending.

Contains the null value if the constraint is defined,
disabled, or is a unique constraint.

Appendix F. Db2 for i catalog views 1743

Table 173. SYSCST view (continued)

Column Name
System Column
Name Data Type Description

CONSTRAINT_TEXT LABEL VARGRAPHIC(50) CCSID
1200

Nullable

A character string provided with the LABEL statement.

Contains the null value if there is no label.

LONG_COMMENT REMARKS VARGRAPHIC(2000) CCSID
1200

Nullable

A character string supplied with the COMMENT
statement.

Contains the null value if there is no long comment.

SYSTEM_CONSTRAINT_SCHEMA SYS_CDNAME CHAR(10) Name of the system schema containing the constraint.

1744 IBM i: Db2 for i SQL Reference

SYSCSTCOL
The SYSCSTCOL view records the columns on which constraints are defined. There is one row for every
column in a unique, primary key, and check constraint and the referencing columns of a referential
constraint.

The following table describes the columns in the SYSCSTCOL view:

Table 174. SYSCSTCOL view

Column Name
System Column
Name Data Type Description

TABLE_SCHEMA TDBNAME VARCHAR(128) Name of the SQL schema that contains the table the
constraint is dependent on.

TABLE_NAME TBNAME VARCHAR(128) Name of the table the constraint is dependent on. This
is the SQL table name if it exists; otherwise, it is the
system table name.

COLUMN_NAME COLUMN VARCHAR(128) Column that the constraint was created over. This is
the SQL column name if it exists; otherwise, it is the
system column name.

CONSTRAINT_SCHEMA CDBNAME VARCHAR(128) Name of the schema of the constraint.

CONSTRAINT_NAME RELNAME VARCHAR(128) Name of the constraint.

SYSTEM_COLUMN_NAME SYS_CNAME CHAR(10) System name of the column.

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) System name of the table.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) System name of the schema containing the table.

SYSTEM_CONSTRAINT_SCHEMA SYS_CDNAME CHAR(10) Name of the system schema containing the constraint.

Appendix F. Db2 for i catalog views 1745

SYSCSTDEP
The SYSCSTDEP view records the tables on which constraints are defined.

The following table describes the columns in the SYSCSTDEP view:

Table 175. SYSCSTDEP view

Column Name
System Column
Name Data Type Description

TABLE_SCHEMA TDBNAME VARCHAR(128) Name of the SQL schema that contains the table on
which the constraint is dependent

TABLE_NAME TBNAME VARCHAR(128) Name of the table on which the constraint is
dependent. This is the SQL table name if it exists
otherwise it is the system table name.

CONSTRAINT_SCHEMA CDBNAME VARCHAR(128) Name of the schema of the constraint.

CONSTRAINT_NAME RELNAME VARCHAR(128) Name of the constraint.

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) System name of the table.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) System name of the schema containing the table.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary storage pool
(IASP) number.

SYSTEM_CONSTRAINT_SCHEMA SYS_CDNAME CHAR(10) Name of the system schema containing the constraint.

1746 IBM i: Db2 for i SQL Reference

SYSDUMMY1
The SYSDUMMY1 table contains exactly one row. It is used for SQL statements in which a table reference
is required, but the contents of the table are not important.

The schema is SYSIBM.

The following table describes the column in the SYSDUMMY1 table:

Table 176. SYSDUMMY1 table

Column name
System Column
Name Data Type Description

IBMREQD IBMREQD VARCHAR(1) Always contains a value of Y.

Appendix F. Db2 for i catalog views 1747

SYSFIELDS
The SYSFIELDS view contains one row for every column that has a field procedure.

The column attributes in SYSFIELDS describe the internal column attributes defined by the field
procedure. The following table describes the columns in the SYSFIELDS view:

Table 177. SYSFIELDS view

Column name
System Column
Name Data Type Description

TABLE_SCHEMA DBNAME VARCHAR(128) The name of the SQL schema containing the table.

TABLE_NAME TBNAME VARCHAR(128) Name of the table that contains the column. This will
be the SQL table name if one exists; otherwise, it will
be the system table name.

COLUMN_NAME NAME VARCHAR(128) Name of the column. This will be the SQL column
name if one exists; otherwise, it will be the system
column name.

ORDINAL_POSITION COLNO INTEGER Numeric place of the column in the table, ordered from
left to right.

1748 IBM i: Db2 for i SQL Reference

Table 177. SYSFIELDS view (continued)

Column name
System Column
Name Data Type Description

DATA_TYPE COLTYPE VARCHAR(8) Type of column:

BIGINT
Big number

INTEGER
Large number

SMALLINT
Small number

DECIMAL
Packed decimal

NUMERIC
Zoned decimal

FLOAT
Floating point; FLOAT, REAL, or DOUBLE
PRECISION

DECFLOAT
Decimal floating-point

CHAR
Fixed-length character string

VARCHAR
Varying-length character string

CLOB
Character large object string

GRAPHIC
Fixed-length graphic string

VARG
Varying-length graphic string

DBCLOB
Double-byte character large object string

BINARY
Fixed-length binary string

VARBIN
Varying-length binary string

BLOB
Binary large object string

DATE
Date

TIME
Time

TIMESTMP
Timestamp

DATALINK
Datalink

ROWID
Row ID

XML
XML

DISTINCT
Distinct type

Appendix F. Db2 for i catalog views 1749

Table 177. SYSFIELDS view (continued)

Column name
System Column
Name Data Type Description

LENGTH LENGTH INTEGER The length attribute of the column; or, in the case of a
decimal, numeric, or nonzero precision binary column,
its precision:

8 bytes
BIGINT

4 bytes
INTEGER

2 bytes
SMALLINT

Precision of number
DECIMAL

Precision of number
NUMERIC

8 bytes
FLOAT, FLOAT(n) where n = 25 to 53, or DOUBLE
PRECISION

4 bytes
FLOAT(n) where n = 1 to 24, or REAL

8 bytes
DECFLOAT(16)

16 bytes
DECFLOAT(34)

Length of string
CHAR

Maximum length of string
VARCHAR or CLOB

Length of graphic string
GRAPHIC

Maximum length of graphic string
VARGRAPHIC or DBCLOB

Length of string
BINARY

Maximum length of binary string
VARBIN or BLOB

4 bytes
DATE

3 bytes
TIME

The integral part of ((p+1)/2)+7 where p is the
precision of the timestamp

TIMESTAMP

Maximum length of datalink URL and comment
DATALINK

40 bytes
ROWID

2147483647 bytes
XML

Same value as the source type
DISTINCT

CHARACTER_MAXIMUM_LENGTH CHARLEN INTEGER

Nullable

Maximum length of the string for binary, character, and
graphic string and XML data types.

Contains the null value if the column is not a string.

CHARACTER_OCTET_LENGTH CHARBYTE INTEGER

Nullable

Number of bytes for binary, character, and graphic
string and XML data types.

Contains the null value if the column is not a string.

NUMERIC_SCALE SCALE INTEGER

Nullable

Scale of numeric data.

Contains the null value if the column is not decimal,
numeric, or binary.

1750 IBM i: Db2 for i SQL Reference

Table 177. SYSFIELDS view (continued)

Column name
System Column
Name Data Type Description

NUMERIC_PRECISION PRECISION INTEGER

Nullable

The precision of all numeric columns.

Note: This column supplies the precision of all
numeric data types, including decimal floating-point
and single-and double-precision floating point. The
NUMERIC_PRECISION_RADIX column indicates if the
value in this column is in binary or decimal digits.

Contains the null value if the column is not numeric.

NUMERIC_PRECISION_RADIX RADIX INTEGER

Nullable

Indicates if the precision specified in column
NUMERIC_PRECISION is specified as a number of
binary or decimal digits

2
Binary; floating-point precision is specified in
binary digits.

10
Decimal; all other numeric types are specified in
decimal digits.

Contains the null value if the column is not numeric.

CCSID CCSID INTEGER

Nullable

The CCSID value for CHAR, VARCHAR, CLOB, DATE,
TIME, TIMESTAMP, GRAPHIC, VARGRAPHIC, DBCLOB,
XML, and DATALINK columns.

Contains 65535 if the column is a BINARY, VARBIN,
BLOB, or ROWID.

Contains the null value if the column is a numeric data
type.

DATETIME_PRECISION DATPRC INTEGER

Nullable

The fractional part of a date, time, or timestamp.

0
For DATE and TIME data types

0-12
For TIMESTAMP data types (number of fractional
seconds).

Contains the null value if the column is not a date,
time, or timestamp.

FIELD_PROC FLDPROC VARCHAR(279)

Nullable

The name of the procedure.

PARMLIST PARMLIST DBCLOB(1M)

CCSID 1200
Nullable

The parameter list following FIELDPROC in the
statement that defined the field procedure with
insignificant blanks removed.

EXITPARM EXITPARM BLOB(1M)

Nullable

The parameter value block of the field procedure. This
is the control block passed to the field procedure
when it is invoked.

SYSTEM_COLUMN_NAME SYS_CNAME CHAR(10) The system name of the column

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) The system name of the table

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) The system name of the schema

Appendix F. Db2 for i catalog views 1751

SYSFILES
The SYSFILES view contains one row for every Db2 for i database file, including native files. This view
includes attributes not returned by QSYS2.SYSTABLES.

See QSYS2.SYSFILES for a description of the view.

1752 IBM i: Db2 for i SQL Reference

SYSFUNCS
The SYSFUNCS view contains one row for each function created by the CREATE FUNCTION statement.

The following table describes the columns in the SYSFUNCS view:

Table 178. SYSFUNCS view

Column Name
System Column
Name Data Type Description

SPECIFIC_SCHEMA SPECSCHEMA VARCHAR(128) Schema name of the routine (function) instance.

SPECIFIC_NAME SPECNAME VARCHAR(128) Specific name of the routine instance.

ROUTINE_SCHEMA FUNCSCHEMA VARCHAR(128) Name of the SQL schema (schema) that contains the
routine.

ROUTINE_NAME FUNCNAME VARCHAR(128) Name of the routine.

ROUTINE_CREATED RTNCREATE TIMESTAMP Identifies the timestamp when the routine was
created.

ROUTINE_DEFINER DEFINER VARCHAR(128) Name of the user that defined the routine.

ROUTINE_BODY BODY VARCHAR(8) The type of the routine body:

EXTERNAL
This is an external routine.

SQL
This is an SQL routine.

EXTERNAL_NAME EXTNAME VARCHAR(279)

Nullable

This column identifies the external program name.

• For SQL functions or ILE service programs, the
external program name is schema-name/service-
program-name(entry-point-name).

• For Java programs, the external program name
is an optional jar-id followed by a fully-qualified-
class-name!method-name or fully-qualified-class-
name.method-name.

• For all other languages, the external program name
is schema-name/program-name.

Contains the null value if this is a system-generated
function.

EXTERNAL_LANGUAGE LANGUAGE VARCHAR(8)

Nullable

If this is an external routine, this column identifies the
external program's language.

C
The external program is written in C.

C++
The external program is written in C++.

CL
The external program is written in CL.

COBOL
The external program is written in COBOL.

COBOLLE
The external program is written in ILE COBOL.

JAVA
The external program is written in JAVA.

PLI
The external program is written in PL/I.

RPG
The external program is written in RPG.

RPGLE
The external program is written in ILE RPG.

Contains the null value if this is not an external routine.

Appendix F. Db2 for i catalog views 1753

Table 178. SYSFUNCS view (continued)

Column Name
System Column
Name Data Type Description

PARAMETER_STYLE PARM_STYLE VARCHAR(7)

Nullable

If this is an external routine, this column identifies the
parameter style (calling convention).

DB2SQL
This is the DB2SQL calling convention.

DB2GNRL
This is the DB2GENERAL calling convention.

GENERAL
This is the GENERAL calling convention.

JAVA
This is the JAVA calling convention.

NULLS
This is the GENERAL WITH NULLS calling
convention.

SQL
This is the SQL standard calling convention.

Contains the null value if this is not an external routine.

IS_DETERMINISTIC DETERMINE VARCHAR(3) This column identifies whether the routine is
deterministic. That is, whether a call to the routine
with the same arguments will always return the same
result.

NO
The routine is not deterministic.

YES
The routine is global deterministic.

STM
The routine is statement deterministic.

SQL_DATA_ACCESS DATAACCESS VARCHAR(8)

Nullable

This column identifies whether a routine contains SQL
and whether it reads or modifies data.

NONE
The routine does not contain any SQL
statements.

CONTAINS
The routine contains SQL statements.

READS
The routine possibly reads data from a table or
view.

MODIFIES
The routine possibly modifies data in a table or
view or issues SQL DDL statements.

SQL_PATH SQL_PATH VARCHAR(3483)

Nullable

If this is an SQL routine, this column identifies the
path.

Contains the null value if this is an external routine.

PARM_SIGNATURE SIGNATURE VARCHAR(16000) This column identifies the routine signature.

NUMBER_OF_RESULTS NUMRESULTS SMALLINT

Nullable

Identifies the number of results.

IN_PARMS IN_PARMS SMALLINT Identifies the number of input parameters. 0 indicates
that there are no input parameters.

LONG_COMMENT REMARKS VARGRAPHIC(2000) CCSID
1200

Nullable

A character string supplied with the COMMENT
statement.

Contains the null value if there is no long comment.

ROUTINE_DEFINITION ROUTINEDEF DBCLOB(2M) CCSID
13488

Nullable

If this is an SQL routine, this column contains the SQL
routine body.

If this is an obfuscated routine, the text starts with
the WRAPPED keyword and is followed by the encoded
form of the statement text.

Contains the null value if this is not an SQL routine.

1754 IBM i: Db2 for i SQL Reference

Table 178. SYSFUNCS view (continued)

Column Name
System Column
Name Data Type Description

FUNCTION_ORIGIN ORIGIN CHAR(1) Identifies the type of function. If this is a procedure,
this column contains a blank.

B
This is a built-in function (defined by Db2 for i).

E
This is a user-defined function.

U
This is a user-defined function that is based on
another function.

S
This is a system-generated function.

FUNCTION_TYPE TYPE CHAR(1) Identifies the form of the function. If this is a
procedure, this column contains a blank.

S
This is a scalar function.

C
This is a column function.

T
This is a table function.

EXTERNAL_ACTION EXT_ACTION CHAR(1)

Nullable

Identifies the whether the invocation of the function
has external effects.

E
This function has external side effects.

N
This function does not have any external side
effects.

IS_NULL_CALL NULL_CALL VARCHAR(3)

Nullable

Identifies whether the function needs to be called if an
input parameter is the null value.

NO
This function need not be called if an input
parameter is the null value. If this is a scalar
function, the result of the function is implicitly
null if any of the operands are null. If this is a
table function, the result of the function is an
empty table if any of the operands are the null
value.

YES
This function must be called even if an input
operand is null.

SCRATCH_PAD SCRATCHPAD INTEGER

Nullable

Identifies whether the address of a static memory area
(scratch pad) is passed to the function.

0
The function does not have a scratch pad.

integer
Indicates the size of the scratch pad passed to
the function.

FINAL_CALL FINAL_CALL VARCHAR(3)

Nullable

Indicates whether a final call to the function should be
made to allow the function to clean up its work areas
(scratch pads).

NO
No final call is made.

YES
A final call to the function is made when the
statement is complete.

PARALLELIZABLE PARALLEL VARCHAR(3)

Nullable

Identifies whether the function can be run in parallel.

NO
The function must be synchronous.

YES
The function can be run in parallel.

Appendix F. Db2 for i catalog views 1755

Table 178. SYSFUNCS view (continued)

Column Name
System Column
Name Data Type Description

DBINFO DBINFO VARCHAR(3)

Nullable

Identifies whether information about the database is
passed to the function.

NO
No database information is passed to the
function.

YES
Information about the database is passed to the
function.

SOURCE_ SPECIFIC_SCHEMA SRCSCHEMA VARCHAR(128)

Nullable

If this is sourced function and the source is user-
defined, this column contains the name of the source
schema. If this is a sourced function and the source is
built-in, this column contains 'QSYS2'.

Contains the null value if this is not a sourced function.

SOURCE_SPECIFIC_NAME SRCNAME VARCHAR(128)

Nullable

If this is sourced function and the source is user-
defined, this column contains the specific name of the
source function name.

Contains the null value if this is not a sourced function.

IS_USER_DEFINED_CAST CAST_FUNC VARCHAR(3)

Nullable

Identifies whether this function is a cast function
created when a distinct type was created.

NO
This function is not a cast function.

YES
This function is a cast function.

CARDINALITY CARD BIGINT

Nullable

Specifies the cardinality for a table function.

Contains the null value if the function is not a table
function or if cardinality was not specified.

FENCED FENCED VARCHAR(3)

Nullable

Identifies whether the function is fenced.

NO
The function is not fenced.

YES
The function is fenced.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary storage pool
(IASP) number.

ROUNDING_MODE DECFLTRND CHAR(1)

Nullable

If this is an SQL function, identifies the DECFLOAT
rounding mode.

C
ROUND_CEILING

D
ROUND_DOWN

F
ROUND_FLOOR

G
ROUND_HALF_DOWN

E
ROUND_HALF_EVEN

H
ROUND_HALF_UP

U
ROUND_UP

Contains the null value if the function is not an SQL
function.

1756 IBM i: Db2 for i SQL Reference

Table 178. SYSFUNCS view (continued)

Column Name
System Column
Name Data Type Description

INLINE INLINE VARCHAR(3)

Nullable

Identifies whether the function can potentially be
inlined.

NO
The function cannot be inlined.

YES
The function can be inlined.

Contains the null value if the function is not an SQL
function.

ROUTINE_TEXT LABEL VARGRAPHIC(50) CCSID
1200

Nullable

Contains the label for a routine. Contains the null value
if a label does not exist.

SECURE SECURE CHAR(1) Indicates whether the function is considered secure
for row access control and column access control.

N
The function is not considered secure for row
access control and column access control.

Y
The function is considered secure for row access
control and column access control.

PIPELINED PIPELINED VARCHAR(3)

Nullable

Identifies whether the table function is pipelined.

NO
The table function is not a pipelined table
function.

YES
The table function is a pipelined function.

Contains the null value if the routine is not a table
function.

Appendix F. Db2 for i catalog views 1757

SYSHISTORYTABLES
The SYSHISTORYTABLES view contains one row for every history table, whether or not the history table is
part of an established versioning relationship.

The following table describes the columns in the SYSHISTORYTABLES view:

Table 179. SYSHISTORYTABLES view

Column name
System Column
Name Data Type Description

HISTORY_TABLE_SCHEMA HSTDBNAME VARCHAR(128) Schema name of the history table.

HISTORY_TABLE_NAME HSTTBNAME VARCHAR(128) Name of the history table.

VERSIONING_STATUS VERSIONSTS CHAR(1) Status of versioning

E
A versioning relationship between the system-
period temporal table and the history table has
been established. The system-period temporal
table is storing previous versions of modified
rows in this history table.

D
A versioning relationship between this history
table and the system-period temporal table has
been defined but not established.

PERIOD_NAME PERIODNAME VARCHAR(128) Name of the period.

TABLE_SCHEMA DBNAME VARCHAR(128)

Nullable

Name of the SQL schema that contains the temporal
table.

Contains the null value if the system-period temporal
table does not exist.

TABLE_NAME TBNAME VARCHAR(128)

Nullable

Name of the temporal table.

Contains the null value if the system-period temporal
table does not exist.

SYSTEM_HISTORY_SCHEMA SYSHSTLIB CHAR(10) System schema name of the history table.

SYSTEM_HISTORY_TABLE_NAME SYSHSTNAME CHAR(10) System name of the history table.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10)

Nullable

System schema name of the temporal table.

Contains the null value if the system-period temporal
table does not exist.

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10)

Nullable

System name of the temporal table.

Contains the null value if the system-period temporal
table does not exist.

1758 IBM i: Db2 for i SQL Reference

SYSINDEXES
The SYSINDEXES view contains one row for every index in the SQL schema created using the SQL CREATE
INDEX statement, including indexes on the SQL catalog.

The following table describes the columns in the SYSINDEXES view:

Table 180. SYSINDEXES view

Column Name
System Column
Name Data Type Description

INDEX_NAME NAME VARCHAR(128) Name of the index. This will be the SQL index name
if one exists; otherwise, it will be the system index
name.

INDEX_OWNER CREATOR VARCHAR(128) Owner of the index

TABLE_NAME TBNAME VARCHAR(128) Name of the table on which the index is defined. This
will be the SQL table name if one exists; otherwise, it
will be the system table name.

TABLE_OWNER TBCREATOR VARCHAR(128) Owner of the table

TABLE_SCHEMA TBDBNAME VARCHAR(128) Name of the SQL schema that contains the table on
which the index is defined

IS_UNIQUE UNIQUERULE CHAR(1) If the index is unique:

D
No (duplicates are allowed)

V
Yes (duplicate NULL values are allowed)

U
Yes

E
Encoded vector index

COLUMN_COUNT COLCOUNT INTEGER Number of columns in the key

INDEX_SCHEMA DBNAME VARCHAR(128) Name of the SQL schema that contains the index

SYSTEM_INDEX_NAME SYS_IXNAME CHAR(10) System index name

SYSTEM_INDEX_SCHEMA SYS_IDNAME CHAR(10) System index schema name

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) System table name

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) System table schema name

LONG_COMMENT REMARKS VARGRAPHIC(2000) CCSID
1200

Nullable

A character string supplied with the COMMENT
statement.

Contains the null value if there is no long comment.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary storage pool
(IASP) number.

INDEX_TEXT LABEL VARGRAPHIC(50) CCSID
1200

A character string supplied with the LABEL statement.

IS_SPANNING_INDEX SPANNING VARCHAR(3)

Nullable

Indicates whether the index is built over multiple
partitions or members:

DISTRIBUTED
The index is built over a distributed table.

NO
The index is not built over multiple partitions or
members.

YES
The index is built over multiple partitions or
members.

Contains the null value if the base table is not a
partitioned table.

INDEX_DEFINER DEFINER VARCHAR(128)

Nullable

Name of the user that defined the index.

Appendix F. Db2 for i catalog views 1759

Table 180. SYSINDEXES view (continued)

Column Name
System Column
Name Data Type Description

ROUNDING_MODE DECFLTRND CHAR(1)

Nullable

Indicates the DECFLOAT rounding mode of the index:

C
ROUND_CEILING

D
ROUND_DOWN

F
ROUND_FLOOR

G
ROUND_HALF_DOWN

E
ROUND_HALF_EVEN

H
ROUND_HALF_UP

U
ROUND_UP

Contains the null value if the index does not have
an expression that references a DECFLOAT column,
function, or constant.

INDEX_HAS_SEARCH_CONDITION IXHASWHERE CHAR(1) If the index has a search condition:

N
The index does not have a search condition.

Y
The index has a search condition.

SEARCH_CONDITION_HAS_UDF IXWHEREUDF CHAR(1) If the index search condition contains a user-defined
function:

N
The index is not sparse or does not contain a
user-defined function.

Y
The index is sparse and the search condition
contains a UDF.

SEARCH_CONDITION IXWHERECON DBCLOB(2M)

CCSID 1200

Nullable

If the index is sparse, contains the search condition.

Contains the null value if the index is not sparse.

INDEX_HAS_INCLUDE_EXPRESSION IXHASINCEX CHAR(1) If the index contains an INCLUDE clause:

N
The index is does not contain an INCLUDE
clause.

Y
The index contains an INCLUDE clause.

INCLUDE_EXPRESSION IXINCEXPR DBCLOB(2M)

CCSID 1200

Nullable

If the index has an INCLUDE clause, contains the list of
INCLUDE expressions.

Contains the null value if there is no include clause.

CREATED CREATED TIMESTAMP The timestamp when the SQL index was created.

1760 IBM i: Db2 for i SQL Reference

SYSINDEXSTAT
The SYSINDEXSTAT view contains one row for every SQL index partition.

Use this view when you want to see information for a specific SQL index or set of SQL indexes. The
information is similar to that returned via Show Indexes in System i Navigator.

The following table describes the columns in the SYSINDEXSTAT view:

Table 181. SYSINDEXSTAT view

Column name
System Column
Name Data Type Description

INDEX_SCHEMA INDSCHEMA VARCHAR(128) Name of the SQL schema that contains the SQL index.

INDEX_NAME INDNAME VARCHAR(128) Name of the SQL index.

INDEX_PARTITION INDPART VARCHAR(128) Partition or member name of the SQL index.

INDEX_OWNER INDOWNER VARCHAR(128) SQL index owner.

INDEX_TEXT LABEL VARGRAPHIC(50) CCSID
1200

Nullable

Text of the SQL index. Contains null if text does not
exist for the SQL index.

TABLE_SCHEMA TABSCHEMA VARCHAR(128) Name of the SQL schema that contains the table.

TABLE_NAME TABNAME VARCHAR(128) Name of the table.

TABLE_PARTITION TABPART VARCHAR(128) Name of the table partition or member.

INDEX_VALID VALID VARCHAR(3) An indication or whether the SQL index is invalid and
needs to be rebuilt:

NO
The SQL index is invalid.

YES
The SQL index is valid.

INDEX_CREATE_TIMESTAMP INDCREATED TIMESTAMP The timestamp when the SQL index was created.

CREATE_TIMESTAMP CREATED TIMESTAMP The timestamp when the SQL index partition was
created.

LAST_BUILD_TIMESTAMP LASTBUILD TIMESTAMP

Nullable

The timestamp when the SQL index was last rebuilt.
Contains null if the SQL index has never been built.

LAST_QUERY_USE LASTQRYUSE TIMESTAMP

Nullable

The timestamp of the last time the SQL index was
used in a query since the last time the usage statistics
were reset. If the SQL index has never been used in
a query since the last time the usage statistics were
reset, contains null.

LAST_STATISTICS_USE LASTSTUSE TIMESTAMP

Nullable

The timestamp of the last time the SQL index was
used by the optimizer for statistics since the last time
the usage statistics were reset. If the SQL index has
never been used for statistics since the last time the
usage statistics were reset, contains null.

QUERY_USE_COUNT QRYUSECNT BIGINT The number of times the SQL index was used in a
query since the last time the usage statistics were
reset. If the SQL index has never been used in a query
since the last time the usage statistics were reset,
contains 0.

QUERY_STATISTICS_COUNT QRYSTCNT BIGINT The number of times the SQL index was used by
the optimizer for statistics since the last time the
usage statistics were reset. If the SQL index has never
been used for statistics since the last time the usage
statistics were reset, contains 0.

LAST_USED_TIMESTAMP LASTUSED TIMESTAMP

Nullable

The timestamp of the last time the SQL index was
used directly by an application for native record I/O or
SQL operations. If the SQL index has never been used,
contains null.

Appendix F. Db2 for i catalog views 1761

Table 181. SYSINDEXSTAT view (continued)

Column name
System Column
Name Data Type Description

DAYS_USED_COUNT DAYSUSED INTEGER The number of days the SQL index was used directly
by an application for native record I/O or SQL
operations since the last time the usage statistics
were reset. If the SQL index has never been used since
the last time the usage statistics were reset, contains
0.

LAST_RESET_TIMESTAMP LASTRESET TIMESTAMP

Nullable

The timestamp of the last time the usage statistics
were reset for the SQL index. For more information see
the Change Object Description (CHGOBJD) command.
If the SQL index's last used timestamp has never been
reset, contains null.

NUMBER_KEY_COLUMNS INDKEYS BIGINT Number of columns that define the SQL index key.

COLUMN_NAMES COLNAMES VARCHAR(1024) A comma separated list of column names that define
the SQL index key. If the length of all the column
names exceeds 1024, '...' is returned at the end of the
column value.

NUMBER_KEYS NUMRIDS BIGINT Number of keys in the SQL index. If the SQL index is
invalid, -1 is returned.

INDEX_SIZE SIZE BIGINT Size (in bytes) of the data space index used by the SQL
index.

NUMBER_PAGES PAGES BIGINT

Nullable

Number of pages in the SQL index. The page unit is the
LOGICAL_PAGE_SIZE of the index. If the SQL index is
invalid or is an encoded vector index, contains null.

LOGICAL_PAGE_SIZE PAGE_SIZE INTEGER

Nullable

The logical page size of the index. If the index is an
encoded vector index, contains null.

UNIQUE UNIQUE VARCHAR(21) Indicates whether an SQL index is unique:

UNIQUE
The SQL index is a UNIQUE index.

UNIQUE WHERE NOT NULL
The SQL index is a UNIQUE WHERE NOT NULL
index.

FIFO
The SQL index is a non-unique first-in-first-out
(FIFO) index.

LIFO
The SQL index is a non-unique last-in-last-out
(LIFO) index.

FCFO
The SQL index is a non-unique first-change-first-
out (FCFO) index.

MAXIMUM_KEY_LENGTH KEY_LENGTH INTEGER

Nullable

Maximum key length of an SQL index. If the SQL index
is an encoded vector index, contains null.

UNIQUE_PARTIAL_KEY_VALUES KEYCARDS VARCHAR(96)

Nullable

The unique partial key values for the SQL index. If
the index is an encoded vector index, the first unique
partial key value is the total number of unique values
for the entire index key. The remaining unique partial
key values returned are not applicable.

OVERFLOW_VALUES OVERFLOW INTEGER

Nullable

The number of distinct key values that have
overflowed the encoded vector index. If the SQL index
is not an encoded vector index, contains null.

EVI_CODE_SIZE CODE_SIZE INTEGER

Nullable

The size of the byte code of the encoded vector index.
If the SQL index is not an encoded vector index,
contains null.

1762 IBM i: Db2 for i SQL Reference

Table 181. SYSINDEXSTAT view (continued)

Column name
System Column
Name Data Type Description

SPARSE SPARSE VARCHAR(3) Indicates whether the SQL index contains keys for all
the rows of its depended on table:

NO
The index contains keys for all the rows of its
depended on table.

YES
The SQL index includes a WHERE clause and
does not contain keys for all the rows of its
depended on table.

DERIVED_KEY DERIVED VARCHAR(3) Indicates whether the any key columns in the SQL
index are expressions:

NO
No key columns of the SQL index are
expressions.

YES
At least one key column is an expression.

PARTITIONED PARTITION VARCHAR(3) Indicates whether the SQL index is partitioned or not
partitioned:

DISTRIBUTED
The index is built over a distributed table.

NO
The SQL index is not partitioned (spans multiple
partitions).

YES
The SQL index is not built over a partitioned table
or built over a partitioned table and is partitioned
(does not span multiple partitions).

Contains the null value if the base table is not a
partitioned table.

ACCPTH_TYPE ACCPTHTYPE VARCHAR(4) Indicates the type of SQL index:

1 TB
The SQL index is a maximum 1 terabyte
(*MAX1TB) binary radix index.

4 GB
The SQL index is a maximum 4 gigabyte
(*MAX4GB) binary radix index.

EVI
The SQL index is an encoded vector index.

SORT_SEQUENCE SRTSEQ VARCHAR(12) Indicates whether the SQL index uses a collating
sequence:

BY HEX VALUE
The SQL index does not use a collating table.

*LANGIDSHR
The SQL index uses a shared weight collating
sequence (SRTSEQ).

*LANGIDUNQ
The SQL index uses a unique weight collating
sequence (SRTSEQ).

ALTSEQ
The SQL index uses an alternate collating
sequence (ALTSEQ).

LANGUAGE_IDENTIFIER LANGID CHAR(3)

Nullable

The language ID of the SQL index. Contains null if the
collating sequence is hex.

SORT_SEQUENCE_SCHEMA SRTSEQSCH CHAR(10)

Nullable

Schema name of the sort sequence to use. Contains
null if there is no sort sequence schema name.

SORT_SEQUENCE_NAME SRTSEQNAM CHAR(10)

Nullable

Name of the sort sequence to use. Contains null if
there is no sort sequence name.

Appendix F. Db2 for i catalog views 1763

Table 181. SYSINDEXSTAT view (continued)

Column name
System Column
Name Data Type Description

ESTIMATED_BUILD_TIME ESTBLDTIME INTEGER Estimated time (in seconds) required to rebuild the
SQL index.

LAST_BUILD_TIME LSTBLDTIME INTEGER

Nullable

Elapsed time (in seconds) the last time the index was
built. Contains null if the last build information is not
available.

LAST_BUILD_KEYS LSTBLDKEYS BIGINT

Nullable

Number of keys the last time the index was built.
Contains null if the last build information is not
available.

LAST_BUILD_DEGREE LSTBLDDEG SMALLINT

Nullable

Parallel degree the last time the index was built.
Contains null if the last build information is not
available.

LAST_BUILD_TYPE LSTBLDTYPE CHAR(1)

Nullable

An indication of whether the last index build was
a complete build or a build from the delayed
maintenance keys:

0
The last rebuild of the index was from the
delayed maintenance keys.

1
The last build or rebuild of the index was a
complete build from the rows in the table.

If the index has never been built, contains null.

LAST_INVALIDATION_TIMESTAMP LSTINVAL TIMESTAMP

Nullable

An indication of when the index was last invalidated. If
the index has never been invalidated, contains null.

LAST_INVALIDATION_REASON_CODE LSTINVRC SMALLINT

Nullable

The reason code when the index was last invalidated.

1
User requested.
LAST_INVALIDATION_REASON_TYPE contains
additional information.

2
Create or build index

3
Load. LAST_INVALIDATION_REASON_TYPE
contains additional information.

4
IPL

5
Runtime error.
LAST_INVALIDATION_REASON_TYPE contains
additional information.

6
Modify index

7
Journal failed to build the index

8
Marked index as fixable during runtime

9
Marked index as fixable during IPL

10
Change end of data

If the index has never been invalidated, contains null.

1764 IBM i: Db2 for i SQL Reference

Table 181. SYSINDEXSTAT view (continued)

Column name
System Column
Name Data Type Description

LAST_INVALIDATION_REASON_TYPE LSTINVRT SMALLINT

Nullable

The reason type when the index was last invalidated.

When LAST_INVALIDATION_REASON_CODE is 1, the
following reason types can be returned:

1
Reorganize

2
Copy

3
ALTER TABLE or CHGPF

4
Converting new member

5
Change to *FRCRBDAP

6
Change to *UNIQUE

160
Change to *REBLD

When LAST_INVALIDATION_REASON_CODE is 3, the
following reason types can be returned:

769
Index was marked for invalidation but the system
crashed before the invalidation occurred

770
Index was associated with the overlaid data
space header during a load

773
Partial load

774
Delayed maintenance mismatch

775
Pad key mismatch

777
Logical page size mismatch

778
Index not restored. File might have been saved
with ACCPTH(*NO) or index did not exist when
file was saved.

779
Index not restored. File might have been saved
with ACCPTH(*NO) or index did not exist when
file was saved.

When LAST_INVALIDATION_REASON_CODE is 5, the
following reason type can be returned:

1281
Index out of sync with file (Retrieve)

1282
Index out of sync with file (Enforce Constraint)

If the index has never been invalidated, contains null.

INDEX_HELD HELD VARCHAR(3) An indication of whether a pending rebuild of the SQL
index is currently held by the user:

NO
A rebuild of the SQL index is not pending or is not
held.

YES
A pending rebuild of the SQL index is held.

Appendix F. Db2 for i catalog views 1765

Table 181. SYSINDEXSTAT view (continued)

Column name
System Column
Name Data Type Description

MAINTENANCE MAINT VARCHAR(11)

Nullable

The maintenance of the SQL index:

REBUILD
The SQL index is not maintained and is rebuilt at
open time.

DELAYED
The SQL index maintenance is delayed until the
index is opened.

DO NOT WAIT
The SQL index is immediately maintained.

If the SQL index is an encoded vector index, contains
null.

DELAYED_MAINT_KEYS DLYKEYS INTEGER

Nullable

Number of keys that need to be inserted into the
binary tree of a delayed maintenance index. If the SQL
index is not a delayed maintenance index, contains
null.

RECOVERY RECOVERY VARCHAR(10)

Nullable

The recovery attribute of the SQL index:

DURING IPL
The SQL index is recovered, if necessary, at IPL.

AFTER IPL
The SQL index is recovered, if necessary, after
IPL.

NEXT OPEN
The SQL index is recovered, if necessary, on the
next open.

If the SQL index is an encoded vector index, contains
null.

ROUNDING_MODE DECFLTRND VARCHAR(8)

Nullable

Indicates the DECFLOAT rounding mode of the index:

CEILING
ROUND_CEILING

DOWN
ROUND_DOWN

FLOOR
ROUND_FLOOR

HALFDOWN
ROUND_HALF_DOWN

HALFEVEN
ROUND_HALF_EVEN

HALFUP
ROUND_HALF_UP

UP
ROUND_UP

Contains the null value if the index does not have
an expression that references a DECFLOAT column,
function, or constant.

DECFLOAT_WARNING DECFLTWRN VARCHAR(3)

Nullable

Indicates whether DECFLOAT warnings are returned:

NO
DECFLOAT warnings are not returned.

YES
DECFLOAT warnings are returned.

Contains the null value if the index does not have
an expression that references a DECFLOAT column,
function, or constant.

LOGICAL_READS LGLREADS BIGINT Number of logical read operations for the SQL index
since the last IPL.

SEQUENTIAL_READS SEQREADS BIGINT Number of sequential read operations for the index
since the last IPL.

RANDOM_READS RANREADS BIGINT Number of random read operations for the index since
the last IPL.

1766 IBM i: Db2 for i SQL Reference

Table 181. SYSINDEXSTAT view (continued)

Column name
System Column
Name Data Type Description

SEARCH_CONDITION IXWHERECON VARGRAPHIC(1024) CCSID
1200

Nullable

If an index is sparse, the search condition of the index.
If the length of the search condition exceeds 1024, '...'
is returned at the end of the column value. Contains
null if the index is not sparse.

SEARCH_CONDITION_HAS_UDF IXWHEREUDF VARCHAR(3)

Nullable

If an index is sparse, indicates whether the search
condition of the index contains a user-defined
function. Contains null if the index is not sparse.

NO
The index search condition does not contain a
UDF.

YES
The index search condition contains a UDF.

KEEP_IN_MEMORY KEEPINMEM VARCHAR(3) Indicates whether the index should be kept in
memory:

NO
No memory preference.

YES
The index should be kept in memory, if possible.

MEDIA_PREFERENCE MEDIAPREF VARCHAR(3) Indicates the media preference of the index:

ANY
No media preference.

SSD
The index should be allocated on Solid State Disk
(SSD), if possible.

INCLUDE_EXPRESSION IXINCEXPR VARGRAPHIC(1024) CCSID
1200

Nullable

Index INCLUDE expression. Contains null if the index
does not have an INCLUDE expression.

OWNING_INDEX_SCHEMA OWNINDSCH VARCHAR(128) Name of the schema of the object that owns the index.

OWNING_INDEX_NAME OWNINDNAME VARCHAR(128) Name of the object that owns the index.

OWNING_INDEX_TYPE OWNINDTYPE VARCHAR(11) The type of the object that owns the index:

INDEX
The owner is an SQL index.

LOGICAL
The owner is part of a logical file.

PHYSICAL
The owner is a part of a keyed physical file.

PRIMARY KEY
The owner is a primary key constraint.

UNIQUE
The owner is a unique constraint.

FOREIGN KEY
The owner is a foreign key constraint.

OWNING_INDEX_OWNER OWNINDOWN VARCHAR(128) The owner of the object that owns the index.

OWNING_SYSTEM_INDEX_SCHEMA OWNSYS_IXD CHAR(10)

Nullable

System index schema name of the owner of the index.
Contains null if the owner is a constraint.

OWNING_SYSTEM_INDEX_NAME OWNSYS_IXN CHAR(10)

Nullable

The system name of the owner of the index. Contains
null if the owner is a constraint.

OWNING_INDEX_TEXT OWNLABEL VARGRAPHIC(50) CCSID
1200

Nullable

Text of the object that owns the index. Contains null if
text does not exist for the object.

OWNING_INDEX_PARTITION OWNINDMMBR VARCHAR(128)

Nullable

Partition or member name of the object that owns the
index. Contains null if the owner is a constraint.

SYSTEM_INDEX_SCHEMA SYS_IXDNAM CHAR(10) System index schema name.

Appendix F. Db2 for i catalog views 1767

Table 181. SYSINDEXSTAT view (continued)

Column name
System Column
Name Data Type Description

SYSTEM_INDEX_NAME SYS_IXNAME CHAR(10) System index name.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) System table schema name.

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) System table name.

SYSTEM_TABLE_MEMBER SYS_MNAME CHAR(10) System member name.

1768 IBM i: Db2 for i SQL Reference

SYSJARCONTENTS
The SYSJARCONTENTS table contains one row for each class defined by a jarid in the SQL schema.

The following table describes the columns in the SYSJARCONTENTS table.

Table 182. SYSJARCONTENTS table

Column Name
System Column
Name Data Type Description

JARSCHEMA JARSCHEMA VARCHAR(128) Name of the schema containing the jar_id.

JAR_ID JAR_ID VARCHAR(128) Name of the jar_id.

CLASS CLASS VARCHAR(128) Name of the class.

CLASS_SOURCE CLASSSRC DBCLOB(10485760) CCSID
13488

Nullable

Reserved. Contains the null value.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary storage pool
(IASP) number.

Appendix F. Db2 for i catalog views 1769

SYSJAROBJECTS
The SYSJAROBJECTS table contains one row for each jarid in the SQL schema.

The following table describes the columns in the SYSJAROBJECTS table.

Table 183. SYSJAROBJECTS table

Column Name
System Column
Name Data Type Description

JARSCHEMA JARSCHEMA VARCHAR(128) Name of the schema containing the jar_id.

JAR_ID JAR_ID VARCHAR(128) Name of the jar_id.

DEFINER DEFINER VARCHAR(128) Name of the owner of the jarid.

JAR_DATA JAR_DATA BLOB(104857600)

Nullable

Byte-codes for the jar.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary storage pool
(IASP) number.

JAR_CREATED CREATEDTS TIMESTAMP Jar created timestamp.

LAST_ALTERED ALTEREDTS TIMESTAMP

Nullable

Reserved. Contains the null value.

DEBUG_MODE DEBUG_MODE CHAR(1) Identifies whether the routine is debuggable.

0
The routine is not debuggable.

1
The routine is debuggable by the Unified
Debugger.

2
The routine is debuggable by the system
debugger.

N
The routine is disabled from being debugged by
the Unified Debugger.

DEBUG_DATA DEBUG_DATA CLOB(1048576)

Nullable

Reserved. Contains the null value.

1770 IBM i: Db2 for i SQL Reference

SYSKEYCST
The SYSKEYCST view contains one or more rows for each UNIQUE KEY, PRIMARY KEY, or FOREIGN KEY
in the SQL schema. There is one row for each column in every unique or primary key constraint and the
referencing columns of a referential constraint.

The following table describes the columns in the SYSKEYCST view:

Table 184. SYSKEYCST view

Column Name
System Column
Name Data Type Description

CONSTRAINT_SCHEMA CDBNAME VARCHAR(128) Name of the schema containing the constraint.

CONSTRAINT_NAME RELNAME VARCHAR(128) Name of the constraint.

TABLE_SCHEMA TDBNAME VARCHAR(128) Name of the schema containing the table.

TABLE_NAME TBNAME VARCHAR(128) Name of the table.

COLUMN_NAME COLNAME VARCHAR(128) Name of the column.

ORDINAL_POSITION COLSEQ INTEGER The position of the column within the key

COLUMN_POSITION COLNO INTEGER The position of the column within the row

TABLE_OWNER CREATOR VARCHAR(128) Owner of the table.

SYSTEM_COLUMN_NAME SYS_CNAME CHAR(10) System name of the column.

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) System name of the table.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) System name of the schema containing the schema
table.

SYSTEM_CONSTRAINT_SCHEMA SYS_CDNAME CHAR(10) Name of the system schema containing the constraint.

Appendix F. Db2 for i catalog views 1771

SYSKEYS
The SYSKEYS view contains one row for every column of an index in the SQL schema, including the keys
for the indexes on the SQL catalog.

The following table describes the columns in the SYSKEYS view:

Table 185. SYSKEYS view

Column Name
System Column
Name Data Type Description

INDEX_NAME IXNAME VARCHAR(128) Name of the index. This will be the SQL index name
if one exists; otherwise, it will be the system index
name.

INDEX_OWNER IXCREATOR VARCHAR(128) Owner of the index

COLUMN_NAME COLNAME VARCHAR(128) Name of the column of the key. This will be the SQL
column name if one exists; otherwise, it will be the
system column name.

COLUMN_POSITION COLNO INTEGER

Nullable

Numeric position of the column in the row.

Contains the null value if the key column is an
expression.

ORDINAL_POSITION COLSEQ INTEGER Numeric position of the column in the key

ORDERING ORDERING CHAR(1) Order of the column in the key:

A
Ascending

D
Descending

INDEX_SCHEMA IXDBNAME VARCHAR(128) Name of the schema containing the index.

SYSTEM_COLUMN_NAME SYS_CNAME CHAR(10) System name of the column

SYSTEM_INDEX_NAME SYS_IXNAME CHAR(10) System name of the index

SYSTEM_INDEX_SCHEMA SYS_IDNAME CHAR(10) System name of the schema containing the index

COLUMN_IS_EXPRESSION IXISEXP CHAR(1) If the key column is an expression:

Y
The key column is not an expression.

N
The key column is an expression.

EXPRESSION_HAS_UDF IXEXPUDF CHAR(1)

Nullable

If the key column is an expression and the expression
contains a user-defined function:

N
The key column is not an expression or the
expression does not contain a user-defined
function.

Y
The key column is an expression and the
expression contains a UDF.

KEY_EXPRESSION IXKEYEXP DBCLOB(2097152)

CCSID 1200

Nullable

If the key column is an expression, contains the
expression.

Contains the column name if the key column is not an
expression.

1772 IBM i: Db2 for i SQL Reference

SYSMQTSTAT
The SYSMQTSTAT view contains one row for every materialized table partition.

Use this view when you want to see information about a specified materialized query table or set of
materialized query tables. The information is similar to that returned via Show Materialized Query Tables
in System i Navigator.

The following table describes the columns in the SYSMQTSTAT view:

Table 186. SYSMQTSTAT view

Column name
System Column
Name Data Type Description

MQT_SCHEMA MQTSCHEMA VARCHAR(128) Name of the SQL schema that contains the
materialized query table.

MQT_NAME MQTNAME VARCHAR(128) Name of the materialized query table.

MQT_PARTITION MQTMEMBER VARCHAR(128) Partition or member name of the materialized query
table.

MQT_OWNER MQTOWNER VARCHAR(128) Materialized query table owner.

MQT_TEXT LABEL VARGRAPHIC(50) CCSID
1200

Nullable

Text of the materialized query table. Contains null if
text does not exist for the materialized query table.

ENABLED ENABLED VARCHAR(3) An indication of whether the materialized query table
is enabled:

NO
The materialized query table is not enabled for
use.

YES
The materialized query table is enabled for use
by the database manager.

CREATE_TIMESTAMP CREATED TIMESTAMP The timestamp when the materialized query table was
created.

REFRESH_TIME REFRESHDTS TIMESTAMP

Nullable

The timestamp when the materialized query table was
last refreshed. Contains null if the materialized query
table has never been refreshed.

LAST_QUERY_USE LASTQRYUSE TIMESTAMP

Nullable

The timestamp of the last time the materialized query
table was used in a query since the last time the usage
statistics were reset. If the materialized query table
has never been used in a query since the last time the
usage statistics were reset, contains null.

LAST_STATISTICS_USE LASTSTUSE TIMESTAMP

Nullable

The timestamp of the last time the materialized query
table was used by the optimizer for statistics since
the last time the usage statistics were reset. If the
materialized query table has never been used for
statistics since the last time the usage statistics were
reset, contains null.

QUERY_USE_COUNT QRYUSECNT BIGINT The number of times the materialized query table was
used in a query since the last time the usage statistics
were reset. If the materialized query table has never
been used in a query since the last time the usage
statistics were reset, contains 0.

QUERY_STATISTICS_COUNT QRYSTCNT BIGINT The number of times the materialized query table was
used by the optimizer for statistics since the last time
the usage statistics were reset. If the materialized
query table has never been used for statistics since
the last time the usage statistics were reset, contains
0.

LAST_USED_TIMESTAMP LASTUSED TIMESTAMP

Nullable

The timestamp of the last time the materialized query
table was used directly by an application for native
record I/O or SQL operations. If the materialized query
table has never been used, contains null.

Appendix F. Db2 for i catalog views 1773

Table 186. SYSMQTSTAT view (continued)

Column name
System Column
Name Data Type Description

DAYS_USED_COUNT DAYSUSED INTEGER The number of days the materialized query table was
used directly by an application for native record I/O or
SQL operations since the last time the usage statistics
were reset. If the materialized query table has never
been used since the last time the usage statistics were
reset, contains 0.

LAST_RESET_TIMESTAMP LASTRESET TIMESTAMP

Nullable

The timestamp of the last time the usage statistics
were reset for the materialized query table. For
more information see the Change Object Description
(CHGOBJD) command. If the materialized query
table's last used timestamp has never been reset,
contains null.

NUMBER_ROWS CARD BIGINT Number of rows in the materialized query table.

MQT_SIZE SIZE BIGINT Size (in bytes) of the materialized query table.

LAST_CHANGE_TIMESTAMP LASTCHG TIMESTAMP

Nullable

The timestamp of the last time the materialized query
table was changed. If the materialized query table
has never been changed since the last time the usage
statistics were reset, contains null.

MAINTENANCE MAINTAIN VARCHAR(6) Indicates the maintenance for the materialized query
table:

SYSTEM
The materialized query table is system
maintained.

USER
The materialized query table is user maintained.

INITIAL_DATA INITIAL VARCHAR(19) Indicates the initial data for the materialized query
table:

INITIALLY DEFERRED
Data is not inserted into the materialized query
table when it is created.

INITIALLY IMMEDIATE
Data is inserted into the materialized query table
when it is created.

REFRESH REFRESH VARCHAR(9) Indicates when the data in the materialized query
table can be refreshed:

DEFERRED
Data in the materialized query table can be
refreshed at any time using the REFRESH TABLE
statement.

ISOLATION ISOLATION VARCHAR(27) Indicates the isolation level used to refresh the
materialized query table:

NO COMMIT
The isolation level is NO COMMIT.

UNCOMMITTED READ
The isolation level is UNCOMMITTED READ.

CURSOR STABILITY
The isolation level is CURSOR STABILITY.

CURSOR STABILITY KEEP LOCKS
The isolation level is CURSOR STABILITY KEEP
LOCKS.

READ STABILITY
The isolation level is READ STABILITY.

REPEATABLE READ
The isolation level is REPEATABLE READ.

1774 IBM i: Db2 for i SQL Reference

Table 186. SYSMQTSTAT view (continued)

Column name
System Column
Name Data Type Description

SORT_SEQUENCE SRTSEQ VARCHAR(12) Indicates whether the materialize query table uses a
collating sequence:

BY HEX VALUE
The materialize query table does not use a
collating table.

*LANGIDSHR
The materialize query table uses a shared weight
sort sequence (SRTSEQ).

*LANGIDUNQ
The materialize query table uses a unique weight
sort sequence (SRTSEQ).

ALTSEQ
The materialize query table uses an alternate
collating sequence (ALTSEQ).

LANGUAGE_IDENTIFIER LANGID CHAR(3)

Nullable

The language ID of the materialize query table.
Contains null if the sort sequence is hex.

SORT_SEQUENCE_SCHEMA SRTSEQSCH CHAR(10)

Nullable

The sort sequence table system schema. Contains null
if the sort sequence is hex.

SORT_SEQUENCE_NAME SRTSEQNAME CHAR(10)

Nullable

The sort sequence table name. Contains null if the sort
sequence is hex.

MQT_RESTORE_DEFERRED MQTRSTDFR VARCHAR(3) An indication of whether a restore of the MQT is
pending the restore of one of its dependents:

NO
The restore of the MQT is not deferred pending
the restore of one of its dependent tables.

YES
The restore of the MQT is deferred pending the
restore of one of its dependent tables.

ROUNDING_MODE DECFLTRND VARCHAR(8)

Nullable

Indicates the DECFLOAT rounding mode of the
materialized query table:

CEILING
ROUND_CEILING

DOWN
ROUND_DOWN

FLOOR
ROUND_FLOOR

HALFDOWN
ROUND_HALF_DOWN

HALFEVEN
ROUND_HALF_EVEN

HALFUP
ROUND_HALF_UP

UP
ROUND_UP

Contains the null value if the materialized query
table does not have an expression that references a
DECFLOAT column, function, or constant.

DECFLOAT_WARNING DECFLTWRN VARCHAR(3)

Nullable

Indicates whether DECFLOAT warnings are returned:

NO
DECFLOAT warnings are not returned.

YES
DECFLOAT warnings are returned.

Contains the null value if the materialized query
table does not have an expression that references a
DECFLOAT column, function, or constant.

MQT_DEFINITION MQTDEF VARGRAPHIC(5000) CCSID
1200

The query of the materialized query table. If the length
of the query exceeds 5000, '...' is returned at the end
of the column value.

Appendix F. Db2 for i catalog views 1775

Table 186. SYSMQTSTAT view (continued)

Column name
System Column
Name Data Type Description

SYSTEM_MQT_SCHEMA SYS_MQDNAM CHAR(10) System materialized query table schema name.

SYSTEM_MQT_NAME SYS_MQNAME CHAR(10) System materialized query table name.

1776 IBM i: Db2 for i SQL Reference

SYSPACKAGE
The SYSPACKAGE view contains one row for each SQL package in the SQL schema.

The following table describes the columns in the SYSPACKAGE view:

Table 187. SYSPACKAGE view

Column Name
System Column
Name Data Type Description

PACKAGE_CATALOG LOCATION VARCHAR(128) Relational database name (RDBNAME) of the SQL
package

PACKAGE_SCHEMA COLLID VARCHAR(128) Name of the schema

PACKAGE_NAME NAME VARCHAR(128) Name of the SQL package

PACKAGE_OWNER OWNER VARCHAR(128) Owner of the SQL package

PACKAGE_CREATOR CREATOR VARCHAR(128) Creator of the SQL package

CREATION_TIMESTAMP TIMESTAMP CHAR(26) Timestamp of when the SQL package was created

DEFAULT_SCHEMA QUALIFIER VARCHAR(128) Implicit name for unqualified tables, views, and
indexes

PROGRAM_NAME PROGNAME VARCHAR(128) Name of program the package was created from

PROGRAM_SCHEMA LIBRARY VARCHAR(128) Name of schema containing the program

PROGRAM_CATALOG RDB VARCHAR(128) Name of the relational database where the program
resides

ISOLATION ISOLATION CHAR(2) Isolation option specification.

RR
Repeatable Read (*RR)

RS
Read Stability (*ALL)

CS
Cursor Stability (*CS)

UR
Uncommitted Read (*CHG)

NO
None (*NONE)

QUOTE QUOTE CHAR(1) Escape character specification.

Y
Quotation mark

N
Apostrophe

COMMA COMMA CHAR(1) Comma option specification.

Y
Comma

N
Period

PACKAGE_TEXT LABEL VARCHAR(50) A character string you supply with the LABEL
statement.

LONG_COMMENT REMARKS VARCHAR(2000) A character string supplied with the COMMENT
statement.

Contains the null value if there is no long comment.

CONSISTENCY_TOKEN CONTOKEN CHAR(8) FOR BIT DATA Consistency token of package

SYSTEM_PACKAGE_NAME SYS_NAME CHAR(10) System name of the package.

SYSTEM_PACKAGE_SCHEMA SYS_DNAME CHAR(10) System name of the schema containing the package.

SYSTEM_DEFAULT_SCHEMA SYS_DDNAME CHAR(10) System name of the implicit qualifier for unqualified
table, views, indexes, and packages.

SYSTEM_PROGRAM_NAME SYS_PNAME CHAR(10) System name of the program.

SYSTEM_PROGRAM_SCHEMA SYS_PDNAME CHAR(10) System name of the schema containing the program

Appendix F. Db2 for i catalog views 1777

Table 187. SYSPACKAGE view (continued)

Column Name
System Column
Name Data Type Description

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary storage pool
(IASP) number.

ROUNDING_MODE DECFLTRND CHAR(1) The rounding mode for the package:

C
ROUND_CEILING

D
ROUND_DOWN

F
ROUND_FLOOR

G
ROUND_HALF_DOWN

E
ROUND_HALF_EVEN

H
ROUND_HALF_UP

U
ROUND_UP

CONCURRENTACCESSRESOLUTION CONCURRENT CHAR(1) Specifies the concurrent access resolution:

blank
Not specified

W
Wait for outcome

U
Use currently committed

1778 IBM i: Db2 for i SQL Reference

SYSPACKAGEAUTH
The SYSPACKAGEAUTH view contains one row for every privilege granted on a package. Note that this
catalog view cannot be used to determine whether a user is authorized to a package because the privilege
to use a package could be acquired through a group user profile or special authority (such as *ALLOBJ).

The following table describes the columns in the SYSPACKAGEAUTH view:

Table 188. SYSPACKAGEAUTH view

Column Name
System Column
Name Data Type Description

GRANTOR GRANTOR VARCHAR(128)

Nullable

Reserved. Contains the null value.

GRANTEE GRANTEE VARCHAR(128) The user profile to which the privilege is granted.

PACKAGE_SCHEMA COLLID VARCHAR(128) Name of the schema

PACKAGE_NAME NAME VARCHAR(128) Name of the SQL package

PRIVILEGE_TYPE PRIVTYPE VARCHAR(10) The privilege granted:

ALTER
The privilege to alter the package.

EXECUTE
The privilege to execute the package.

IS_GRANTABLE GRANTABLE VARCHAR(3) Indicates whether the privilege is grantable to other
users.

NO
The privilege is not grantable.

YES
The privilege is grantable.

AUTHORIZATION_LIST AUTL VARCHAR(10)

Nullable

If the privilege is granted through an authorization,
contains the name of the authorization list.

Contains the null value if the privilege is not granted
through an authorization list.

SYSTEM_PACKAGE_SCHEMA SYS_DNAME CHAR(10) System name of the schema containing the package

SYSTEM_PACKAGE_NAME SYS_NAME CHAR(10) System name of the package

Appendix F. Db2 for i catalog views 1779

SYSPACKAGESTAT
The SYSPACKAGESTAT view contains one row for each SQL package in the SQL schema.

The following table describes the columns in the SYSPACKAGESTAT view:

Table 189. SYSPACKAGESTAT view

Column Name
System Column
Name Data Type Description

PACKAGE_SCHEMA COLLID VARCHAR(128) Name of the schema

PACKAGE_NAME NAME VARCHAR(128) Name of the SQL package

PACKAGE_OWNER OWNER VARCHAR(128) Owner of the SQL package

PACKAGE_CREATOR CREATOR VARCHAR(128) Creator of the SQL package

CREATION_TIMESTAMP TIMESTAMP CHAR(26) Timestamp of when the SQL package was created

DEFAULT_SCHEMA QUALIFIER VARCHAR(128) Implicit name for unqualified tables, views, and
indexes

ISOLATION ISOLATION CHAR(2) Isolation option specification:

RR
Repeatable Read (*RR)

RS
Read Stability (*ALL)

CS
Cursor Stability (*CS)

UR
Uncommitted Read (*CHG)

NC
No Commit (*NONE)

CONCURRENTACCESSRESOLUTION CONCURRENT CHAR(1) Specifies the concurrent access resolution:

blank
Not specified

W
Wait for outcome

U
Use currently committed

SECONDARY_SPACE_COUNT PKG_SPACES INTEGER Number of spaces in the package.

PENDING_FULL PENDFULL VARCHAR(3)

Nullable

Indicates whether the package is pending full.

NO
The package is not pending full.

YES
The package is pending full.

Contains null for a DRDA package.

ADHOC_PACKAGE ADHOC VARCHAR(3)

Nullable

Indicates whether the package is created for single
use only statements.

NO
The package includes statements that are
prepared once and executed many times.

YES
The package includes statements that are
prepared once and executed one time. Package
compression will be activated before a second
secondary space is added to the package.

Contains null for a DRDA package.

PACKAGE_TYPE PKG_TYPE VARCHAR(16) Indicates the type of package.

EXTENDED DYNAMIC
The package is an extended dynamic package.

DRDA
The package is a DRDA package.

NUMBER_STATEMENTS NBRSTMTS INTEGER Number of SQL statements in the package

1780 IBM i: Db2 for i SQL Reference

Table 189. SYSPACKAGESTAT view (continued)

Column Name
System Column
Name Data Type Description

PACKAGE_USED_SIZE PKSIZE INTEGER Number of bytes that are used for SQL statements and
access plans in the package.

NUMBER_DUMMIES NBRDUMMIES INTEGER

Nullable

Number of dummy statements in the package.

Contains null for a DRDA package.

NUMBER_COMPRESSIONS PGM_CMP INTEGER

Nullable

Number of times the package has been compressed.

Contains null for a DRDA package.

STATEMENT_CONTENTION_COUNT CONTENTION BIGINT Number of times contention occurred when
attempting to store a new access plan.

EXTENDED_INDICATOR EXTIND VARCHAR(9) Indicates the EXTIND attribute:

*EXTIND
Extended indicator support is enabled.

*NOEXTIND
Extended indicator support is not enabled.

C_NUL_REQUIRED CNULRQD VARCHAR(10) Indicates the CNULRQD attribute:

*CNULRQD
C nuls are required.

*NOCNULRQD
C nuls are not required.

NAMING NAMING VARCHAR(4) Indicates the NAMING attribute:

*SYS
This is system naming.

*SQL
This is SQL naming.

TARGET_RELEASE TGTRLS VARCHAR(6) Indicates the target release of the package (VxRxMx).

EARLIEST_POSSIBLE_RELEASE MINRLS VARCHAR(6)

Nullable

Indicates the earliest IBM i release that supports all
the SQL statements in the package (VxRxMx).

ANY
The statements are valid on any supported IBM
irelease.

VxRxMx
The statement is valid on IBM i VxRxMx release
or later.

Contains null if the earliest release has not yet been
determined.

RDB RDB VARCHAR(18) Indicates the RDB specified for the package.

rdb-name
The name of the relational database.

*NONE
A relational database was not specified.

CONSISTENCY_TOKEN CONTOKEN VARBINARY(8)

Nullable

Indicates the consistency token of the package.

Contains null if the package is not a DRDA package.

ALLOW_COPY_DATA ALWCPYDTA VARCHAR(9) Indicates the ALWCPYDTA attribute:

*NO
A copy of the data is not allowed.

*OPTIMIZE
A copy of the data is allowed whenever it might
result in better performance.

*YES
A copy of the data is allowed, but only when
necessary.

Appendix F. Db2 for i catalog views 1781

Table 189. SYSPACKAGESTAT view (continued)

Column Name
System Column
Name Data Type Description

LOB_FETCH_OPTIMIZATION OPTLOB VARCHAR(9) Indicates the LOB optimization attribute:

*OPTLOB
The first FETCH for a cursor determines how
the cursor will be used for LOB and XML result
columns on all subsequent FETCHes.

*NOOPTLOB
Any FETCH may retrieve a LOB or XML result
column into either a locator or variable.

DECIMAL_POINT DECPNT VARCHAR(7) Indicates the decimal point for numeric constants
used in SQL statements.

*PERIOD
The decimal point is a period.

*COMMA
The decimal point is a comma.

SQL_STRING_DELIMITER STRDLM VARCHAR(9) Indicates the character used as the string delimiter in
the SQL statements.

*APOSTSQL
The string delimiter is an apostrophe (').

*QUOTESQL
The string delimiter is a quote (").

DATE_FORMAT DATFMT VARCHAR(4) Indicates the DATFMT attribute:

*JOB
The date format specified in the job at runtime is
used.

*USA
The date format is *USA.

*ISO
The date format is *ISO.

*EUR
The date format is *EUR.

*JIS
The date format is *JIS.

*MDY
The date format is *MDY.

*DMY
The date format is *DMY.

*YMD
The date format is *YMD.

*JUL
The date format is *JUL.

DATE_SEPARATOR DATSEP CHAR(1) Indicates the date separator.

TIME_FORMAT TIMFMT VARCHAR(4) Indicates the TIMFMT attribute:

*JOB
The time format specified in the job at runtime is
used.

*USA
The time format is *USA.

*ISO
The time format is *ISO.

*EUR
The time format is *EUR.

*JIS
The time format is *JIS.

*HMS
The date format is *HMS.

TIME_SEPARATOR TIMSEP CHAR(1) Indicates the time separator.

1782 IBM i: Db2 for i SQL Reference

Table 189. SYSPACKAGESTAT view (continued)

Column Name
System Column
Name Data Type Description

DYNAMIC_DEFAULT_SCHEMA DYNDFTCOL VARCHAR(4)

Nullable

Indicates whether the value for DFTRDBCOL should
be used for implicit qualification on dynamic SQL
statements:

*NO
The schema specified in DFTDRBCOL is not used
for dynamic SQL statements.

*YES
The schema specified in DFTDRBCOL is used for
dynamic SQL statements.

Contains null if a default schema was not specified
(DFTRDBCOL).

CURRENT_RULES SQLCURRULE VARCHAR(4) Indicates the SQLCURRULE attribute:

*DB2
The semantics of all SQL statements will default
to the rules established for Db2.

*STD
The semantics of all SQL statements will default
to the rules established by the ISO and ANSI SQL
standards.

ALLOW_BLOCK ALWBLK VARCHAR(8) Indicates the ALWBLK attribute:

*ALLREAD
Rows are blocked for read-only cursors.

*NONE
Rows are not blocked for retrieval of data for
cursors.

*READ
Records are blocked for read-only retrieval of
data for cursors when:

• *NONE is specified for the Commitment
control (COMMIT) parameter.

• The cursor is declared with a FOR READ ONLY
clause or there are no dynamic statements
that could run a positioned UPDATE or DELETE
statement for the cursor.

DELAY_PREPARE DLYPRP VARCHAR(4) Indicates the DLYPRP attribute:

*NO
Dynamic statement validation is performed when
the dynamic statements are prepared.

*YES
Dynamic statement validation is delayed until the
dynamic statements are used.

USER_PROFILE USRPRF VARCHAR(7) Specifies the user profile used for authority checking:

*USER
The profile of the user running statements in the
package is used.

*OWNER
The profiles of both the owner of the package
and the user running statements in the package
is used.

*NAMING
If the naming convention is *SQL, *OWNER is
used. If the naming convention is *SYS, *USER
is used.

Appendix F. Db2 for i catalog views 1783

Table 189. SYSPACKAGESTAT view (continued)

Column Name
System Column
Name Data Type Description

DYNAMIC_USER_PROFILE DYNUSRPRF VARCHAR(6) Specifies the user profile used for dynamic SQL
statements:

*USER
Local dynamic SQL statements are run under the
profile of the job or thread. Distributed dynamic
SQL statements are run under the profile of the
application server job.

*OWNER
Local dynamic SQL statements are run under
the profile of the package's owner. Distributed
dynamic SQL statements are run under the
profile of the SQL package's owner.

SORT_SEQUENCE SRTSEQ VARCHAR(12) Indicates whether the package uses a collating
sequence:

BY HEX VALUE
The package does not use a collating table.

*LANGIDSHR
The package uses a shared weight sort sequence
(SRTSEQ).

*LANGIDUNQ
The package uses a unique weight sort sequence
(SRTSEQ).

ALTSEQ
The package uses an alternate collating
sequence (ALTSEQ).

LANGUAGE_IDENTIFIER LANGID CHAR(3)

Nullable

The language ID sort sequence.

Contains null if the sort sequence is not *LANGIDSHR
or *LANGIDUNQ.

SORT_SEQUENCE_SCHEMA SRTSEQSCH CHAR(10)

Nullable

The sort sequence table system schema. Contains null
if the sort sequence is hex.

SORT_SEQUENCE_NAME SRTSEQNAME CHAR(10)

Nullable

The sort sequence table name. Contains null if the sort
sequence is hex.

RDB_CONNECTION_METHOD RDBCNNMTH VARCHAR(4) Specifies the semantics used for CONNECT
statements:

*RUW
CONNECT (Type 1) semantics are used to
support remote unit of work.

*DUW
CONNECT (Type 2) semantics are used to
support distributed unit of work.

DECRESULT_MAXIMUM_PRECISION DECMAXPRC SMALLINT Specifies the maximum precision.

31
The maximum precision is 31.

63
The maximum precision is 63.

DECRESULT_MAXIMUM_SCALE DECMAXSCL SMALLINT The maximum scale (number of decimal positions to
the right of the decimal point) that should be returned
for result data types.

DECRESULT_MINIMUM_DIVIDE_SCALE DECMINDIV SMALLINT The minimum divide scale (number of decimal
positions to the right of the decimal point) that should
be returned for both intermediate and result data
types.

1784 IBM i: Db2 for i SQL Reference

Table 189. SYSPACKAGESTAT view (continued)

Column Name
System Column
Name Data Type Description

DECFLOAT_ROUNDING_MODE DECFLTRND VARCHAR(8)

Nullable

Indicates the DECFLOAT rounding mode:

CEILING
ROUND_CEILING

DOWN
ROUND_DOWN

FLOOR
ROUND_FLOOR

HALFDOWN
ROUND_HALF_DOWN

HALFEVEN
ROUND_HALF_EVEN

HALFUP
ROUND_HALF_UP

UP
ROUND_UP

DECFLOAT_WARNING DECFLTWRN VARCHAR(3) Indicates whether DECFLOAT warnings are returned.

NO
DECFLOAT warnings are not returned.

YES
DECFLOAT warnings are returned.

SQLPATH SQLPATH VARCHAR(3483)

Nullable

Identifies the SQL path.

Contains the null value if an SQL path is not specified.

LAST_USED_TIMESTAMP LASTUSED TIMESTAMP

Nullable

The timestamp of the last time the package was used.
If the package has never been used, contains null.

DAYS_USED_COUNT DAYSUSED INTEGER The number of days the package was used since
the last time the usage statistics were reset. If the
package has never been used since the last time the
usage statistics were reset, contains 0.

LAST_RESET_TIMESTAMP LASTRESET TIMESTAMP

Nullable

The timestamp of the last time the usage statistics
were reset. If the statistics have never been reset,
contains null.

SYSTEM_PACKAGE_NAME SYS_NAME CHAR(10) System name of the package.

SYSTEM_PACKAGE_SCHEMA SYS_DNAME CHAR(10) System name of the schema containing the package.

IASP_NUMBER IASPNUMBER INTEGER Specifies the independent auxiliary storage pool
(IASP) number.

SYSTEM_TIME_SENSITIVE SYSTIME VARCHAR(3)

Nullable

Specifies whether the CURRENT TEMPORAL
SYSTEM_TIME special register affects static and
dynamic SQL statements in the package.

YES
Any references to system-period temporal tables
are affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register.

NO
Any references to system-period temporal tables
are not affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register.

Contains null, which is treated like NO, if the package
was created prior to 7.3.

NUMBER_COMPRESS_LOCK_CONFLICTS NBRCMPLCK INTEGER The number of times a compress of the package space
was not attempted because of a lock conflict.

Appendix F. Db2 for i catalog views 1785

SYSPACKAGESTMTSTAT
The SYSPACKAGESTMTSTAT view contains one row for each SQL statement in every SQL package.

The following table describes the columns in the SYSPACKAGESTMTSTAT view:

Table 190. SYSPACKAGESTMTSTAT view

Column Name
System Column
Name Data Type Description

PACKAGE_SCHEMA COLLID VARCHAR(128) Name of the schema.

PACKAGE_NAME NAME VARCHAR(128) Name of the SQL package.

SPACE_NAME SPCNAME VARCHAR(10)

Nullable

Generated space name within the package for
extended dynamic packages. Contains the null value
for DRDA packages which have only 1 internal space.

STATEMENT_NUMBER STMTNBR INTEGER Number of this statement in the space.

STATEMENT_NAME STMTNAME VARCHAR(128)

Nullable

Name of the statement.

Contains the null value for DRDA packages.

NUMBER_TIMES_PREPARED NBRPREP INTEGER Number of times this statement has been prepared.

NUMBER_TIMES_EXECUTED NBREXEC INTEGER Number of times this statement has been executed.
This value is not maintained for CALL, SET, or VALUES
INTO statements.

ROWS_AFFECTED ROWCNT INTEGER Total rows fetched, updated, inserted, or deleted for
all executions of the statement. Contains 0 if the
statement is not a FETCH, SET, VALUES INTO, UPDATE,
INSERT, DELETE, or MERGE. Will contain 0 for a SET
or VALUES INTO statement that is not implemented
using a cursor.

COMPRESSES_SINCE_LAST_USED CMPLU INTEGER Number of times the package has had storage
compressed since this statement was last
run. This value is used when processing the
SQL_STMT_COMPRESS_MAX QAQQINI option to
determine when to remove the space used for the QDT
for a statement.

Will always be 0 for DRDA packages.

PARAMETER_MARKER_CONVERTED PMCNVT CHAR(3) For a dynamic statement, indicates whether literals
were converted to parameter markers for statement
reuse.

YES
Literals were converted to parameter markers.

NO
No conversion done or statement is not dynamic.

WITH_HOLD WITHHOLD CHAR(3)

Nullable

Specifies the WITH HOLD option for statement:

YES
WITH HOLD clause specified.

Contains the null value if the clause was not specified.

FETCH_ONLY FETCHONLY CHAR(3)

Nullable

Specifies the FOR READ ONLY option for statement:

YES
FOR READ ONLY clause specified.

Contains the null value if the clause was not specified.

CONCURRENTACCESSRESOLUTION CONCURRENT CHAR(1)

Nullable

Specifies the concurrent access resolution for the
statement:

W
Wait for outcome

U
Use currently committed

S
Skip locked data

Contains the null value if concurrent access was not
specified at the statement level.

1786 IBM i: Db2 for i SQL Reference

Table 190. SYSPACKAGESTMTSTAT view (continued)

Column Name
System Column
Name Data Type Description

NUMBER_REBUILDS NBRREBLD INTEGER Number of times QDT or access plan has been rebuilt.

ISOLATION ISOLATION CHAR(2)

Nullable

Isolation option specification:

RR
Repeatable Read (*RR)

RS
Read Stability (*ALL)

CS
Cursor Stability (*CS)

UR
Uncommitted Read (*CHG)

NC
No Commit (*NONE)

Contains the null value if isolation level was not
specified at the statement level.

NUMBER_ROWS_TO_OPTIMIZE OPTROWS INTEGER

Nullable

Number of rows specified on the OPTIMIZE FOR n
ROWS clause. -1 means that the value *ALL was
specified.

Contains the null value if the clause was not specified.

NUMBER_ROWS_TO_FETCH FETCHROWS INTEGER

Nullable

Number of rows specified on FETCH FIRST n ROWS
clause.

Contains the null value if the clause was not specified.

LAST_QDT_REBUILD_REASON QDTRBLD CHAR(2)

Nullable

Reason code for last QDT rebuild. This corresponds to
column QVC22 in the STRDBMON outfile when QQRID
= 1000.

Contains the null value if the statement does not use a
QDT or has never had a QDT rebuilt.

STATEMENT_TEXT STMTTEXT DBCLOB(2M)
CCSID(1200)

Text of the SQL statement.

SYSTEM_PACKAGE_NAME SYS_NAME CHAR(10) System name of the package.

SYSTEM_PACKAGE_SCHEMA SYS_DNAME CHAR(10) System name of the schema containing the package.

ACCESS_PLAN_LENGTH AP_LENGTH INTEGER Number of bytes that are used for the QDT and access
plan for the statement.

Appendix F. Db2 for i catalog views 1787

SYSPARMS
The SYSPARMS table contains one row for each parameter of a procedure created by the CREATE
PROCEDURE statement or function created by the CREATE FUNCTION statement. The result of a scalar
function and the result columns of a table function are also returned.

The following table describes the columns in the SYSPARMS table:

Table 191. SYSPARMS table

Column Name
System Column
Name Data Type Description

SPECIFIC_SCHEMA SPECSCHEMA VARCHAR(128) Schema name of the routine instance.

SPECIFIC_NAME SPECNAME VARCHAR(128) Specific name of the routine instance.

ORDINAL_POSITION PARMNO INTEGER Numeric place of the parameter in the parameter list,
ordered from left to right from 1 (leftmost parameter)
to n (nth parameter).

For scalar functions, the result of the function has a
value of n+1.

For table functions, the result columns are numbered
from n+1 (leftmost result column) to n+m (mth result
column).

PARAMETER_MODE PARMMODE VARCHAR(5) Type of the parameter:

IN
This is an input parameter.

OUT
This is an output parameter.

INOUT
This is an input/output parameter.

PARAMETER_NAME PARMNAME VARCHAR(128)

Nullable

Name of the parameter.

Contains the null value if the parameter does not have
a name.

1788 IBM i: Db2 for i SQL Reference

Table 191. SYSPARMS table (continued)

Column Name
System Column
Name Data Type Description

DATA_TYPE DATA_TYPE VARCHAR(128) Type of parameter:

BIGINT
Big number

INTEGER
Large number

SMALLINT
Small number

DECIMAL
Packed decimal

NUMERIC
Zoned decimal

DOUBLE PRECISION
Floating point; DOUBLE PRECISION

REAL
Floating point; REAL

DECFLOAT
Decimal floating-point

CHARACTER
Fixed-length character string

CHARACTER VARYING
Varying-length character string

CHARACTER LARGE OBJECT
Character large object string

GRAPHIC
Fixed-length graphic string

GRAPHIC VARYING
Varying-length graphic string

DOUBLE-BYTE CHARACTER LARGE OBJECT
Double-byte character large object string

BINARY
Fixed-length binary string

BINARY VARYING
Varying-length binary string

BINARY LARGE OBJECT
Binary large object string

DATE
Date

TIME
Time

TIMESTAMP
Timestamp

DATALINK
Datalink

ROWID
Row ID

XML
XML

DISTINCT
Distinct type

ARRAY
Array type

NUMERIC_SCALE SCALE INTEGER

Nullable

Scale of numeric data.

Contains the null value if the parameter is not decimal,
numeric, or binary.

NUMERIC_PRECISION PRECISION INTEGER

Nullable

The precision of all numeric parameters.

Note: This column supplies the precision of all
numeric data types, including decimal floating-point
and single-and double-precision floating point. The
NUMERIC_PRECISION_RADIX column indicates if the
value in this column is in binary or decimal digits.

Contains the null value if the parameter is not numeric.

Appendix F. Db2 for i catalog views 1789

Table 191. SYSPARMS table (continued)

Column Name
System Column
Name Data Type Description

CCSID CCSID INTEGER

Nullable

The CCSID value for CHAR, VARCHAR, CLOB, DATE,
TIME, TIMESTAMP, GRAPHIC, VARGRAPHIC, DBCLOB,
and DATALINK parameters.

A CCSID of 0 indicates that the CCSID of the job at run
time is used.

XML parameters use the value of
SQL_XML_DATA_CCSID from the QAQQINI file.

Contains the null value if the parameter is numeric.

CHARACTER_MAXIMUM_LENGTH CHARLEN INTEGER

Nullable

Maximum length of the string for binary, character, and
graphic string and XML data types.

Contains the null value if the parameter is not a string.

CHARACTER_OCTET_LENGTH CHARBYTE INTEGER

Nullable

Number of bytes for binary, character, and graphic
string and XML data types.

Contains the null value if the parameter is not a string.

NUMERIC_PRECISION_RADIX RADIX INTEGER

Nullable

Indicates if the precision specified in column
NUMERIC_PRECISION is specified as a number of
binary or decimal digits:

2
Binary; floating-point precision is specified in
binary digits.

10
Decimal; all other numeric types are specified in
decimal digits.

Contains the null value if the parameter is not numeric.

DATETIME_PRECISION DATPRC INTEGER

Nullable

The fractional part of a date, time, or timestamp.

0
For DATE and TIME data types

0-12
For TIMESTAMP data types (number of fractional
seconds).

Contains the null value if the parameter is not date,
time, or timestamp.

IS_NULLABLE NULLS VARCHAR(3) Indicates whether the parameter is nullable.

NO
The parameter does not allow nulls.

YES
The parameter does allow nulls.

LONG_COMMENT REMARKS VARGRAPHIC(2000) CCSID
1200

Nullable

A character string supplied with the COMMENT
statement.

Contains the null value if there is no long comment.

ROW_TYPE ROWTYPE CHAR(1)

Nullable

Indicates the type of row.

P
Parameter.

R
If the function is a table function, this indicates
a result column. Otherwise, the result before
casting.

C
Result after casting.

DATA_TYPE_SCHEMA TYPESCHEMA VARCHAR(128)

Nullable

Schema of the data type if this is a distinct type.

Contains the null value if the parameter is not a
distinct type.

DATA_TYPE_NAME TYPENAME VARCHAR(128)

Nullable

Name of the data type if this is a distinct type.

Contains the null value if the parameter is not a
distinct type.

1790 IBM i: Db2 for i SQL Reference

Table 191. SYSPARMS table (continued)

Column Name
System Column
Name Data Type Description

AS_LOCATOR ASLOCATOR VARCHAR(3) Indicates whether the parameter was specified as a
locator.

NO
The parameter was not specified as a locator.

YES
The parameter was specified as a locator.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary storage pool
(IASP) number.

NORMALIZE_DATA NORMALIZE VARCHAR(3)

Nullable

Indicates whether the parameter value should be
normalized or not. This attribute only applies to UTF-8
and UTF–16 data.

NO
The value should not be normalized.

YES
The value should be normalized.

DEFAULT DEFAULT DBCLOB(64K)

CCSID 1200

Nullable

The expression string used to calculate the default
value of a parameter, if one exists. If the default value
is the null value, the expression string is the keyword
NULL. Contains the null value if the parameter has no
default.

Appendix F. Db2 for i catalog views 1791

SYSPARTITIONDISK
The SYSPARTITIONDISK view contains one row for every disk unit used to store data of every table
partition or table member. If the table is a distributed table, the partitions that reside on other database
nodes are not contained in this catalog view. They are contained in the catalog views of the other
database nodes.

The following table describes the columns in the SYSPARTITIONDISK view:

Table 192. SYSPARTITIONDISK view

Column name
System Column
Name Data Type Description

TABLE_SCHEMA TABSCHEMA VARCHAR(128) Name of the SQL schema that contains the table.

TABLE_NAME TABNAME VARCHAR(128) Name of the table.

TABLE_PARTITION TABPART VARCHAR(128) Name of the table partition or member.

ASP_NUMBER ASP_NUMBER SMALLINT Auxiliary Storage Pool (ASP) containing the partition.

DISK_TYPE DISK_TYPE VARCHAR(4) Disk type number of the disk.

DISK_MODEL DISK_MODEL VARCHAR(4) Model number of the disk.

UNIT_NUMBER UNITNBR SMALLINT Unit number of the disk.

LOGICAL_MIRRORED_PAIR_STATUS MIRRORPS CHAR(1)

Nullable

Indicates the status of a mirrored pair of disks:

0
Indicates that one mirrored unit of a mirrored
pair is not active.

1
Indicates that both mirrored units of a mirrored
pair are active.

Contains null if the unit is not mirrored.

MIRRORED_UNIT_STATUS MIRRORUS CHAR(1)

Nullable

Indicates the status of a mirrored unit:

1
Indicates that this mirrored unit of a mirrored
pair is active (online with current data).

2
Indicates that this mirrored unit is being
synchronized.

3
Indicates that this mirrored unit is suspended.

Contains null if the unit is not mirrored.

UNIT_MEDIA_CAPACITY UNITMCAP BIGINT Storage capacity (in bytes) of the unit.

UNIT_SPACE_AVAILABLE UNITSPACE BIGINT Space (in bytes) available on the unit for use.

UNIT_SPACE_RESERVED_FOR_SYSTEM UNITSRES BIGINT Space (in bytes) reserved on the unit for use by the
system.

UNIT_SPACE_USED UNITSUSED BIGINT Space (in bytes) on the unit used for the partition.

UNIT_TOTAL_ACCESS_TIME UNITTATIME INTEGER The estimated time, in milliseconds, required to
sequentially read the fixed-length data on the unit for
the partition. The time is based on the amount of data
on the unit and the average access time of the unit.
The estimate assumes there will be no contention
with other threads for the disk.

UNIT_TYPE UNIT_TYPE SMALLINT Indicates the type of disk unit:

0
Not Solid State Disk (SSD).

1
Solid State Disk (SSD).

1792 IBM i: Db2 for i SQL Reference

Table 192. SYSPARTITIONDISK view (continued)

Column name
System Column
Name Data Type Description

DATA_SEGMENT_TYPE SEGMENT SMALLINT Segment type of the disk.

0
Indicates that this segment is for fixed-length
data.

1
Indicates that this segment is for variable-
length data.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) System schema name.

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) System table name.

SYSTEM_TABLE_MEMBER SYS_MNAME CHAR(10) System member name.

Appendix F. Db2 for i catalog views 1793

SYSPARTITIONINDEXDISK
The SYSPARTITIONINDEXDISK view contains one row for every disk unit used to store the index data of
every table partition or table member. If the index is a distributed index, the partitions that reside on other
database nodes are not contained in this catalog view. They are contained in the catalog views of the
other database nodes.

The following table describes the columns in the SYSPARTITIONINDEXDISK view:

Table 193. SYSPARTITIONINDEXDISK view

Column name
System Column
Name Data Type Description

TABLE_SCHEMA TABSCHEMA VARCHAR(128) Name of the SQL schema that contains the table.

TABLE_NAME TABNAME VARCHAR(128) Name of the table.

TABLE_PARTITION TABPART VARCHAR(128) Name of the table partition or member.

PARTITION_TYPE PARTTYPE CHAR(1) The type of the table partitioning:

blank
The table is not partitioned.

H
This is data hash partitioning.

R
This is data range partitioning.

D
This is distributed database hash partitioning.

PARTITION_NUMBER PARTNBR INTEGER

Nullable

The partition number of this partition. If the table is a
distributed table, contains null.

NUMBER_DISTRIBUTED_PARTITIONS DSTPARTS INTEGER

Nullable

If the table is a distributed table, contains the total
number of partitions. If the table is not a distributed
table, contains null.

INDEX_SCHEMA INDSCHEMA VARCHAR(128) Name of the SQL schema that contains the index,
logical file, or constraint.

INDEX_NAME INDNAME VARCHAR(128) Name of the index, logical file, or constraint.

INDEX_MEMBER INDMEMBER VARCHAR(128)

Nullable

Name of the member of the index or logical file. If the
index type is a constraint, the member name is null.

INDEX_TYPE INDTYPE VARCHAR(11) The type of the index:

INDEX
The index is an SQL index.

LOGICAL
The index is part of a logical file.

PHYSICAL
The index is part of a keyed physical file.

PRIMARY KEY
The index is a primary key constraint.

UNIQUE
The index is a unique constraint.

REFERENTIAL
The index is a foreign key constraint.

PARTITIONED PARTITION CHAR(1) Indicates whether the index is partitioned or not
partitioned:

0
An SQL index is not partitioned (spans multiple
partitions).

1
The index is not built over a partitioned table or
built over a partitioned table and is partitioned
(does not span multiple partitions or members).

2
The index is a logical file built over multiple
partitions or members.

1794 IBM i: Db2 for i SQL Reference

Table 193. SYSPARTITIONINDEXDISK view (continued)

Column name
System Column
Name Data Type Description

ASP_NUMBER ASP_NUMBER SMALLINT Auxiliary Storage Pool (ASP) containing the index.

DISK_TYPE DISK_TYPE VARCHAR(4) Disk type number of the disk.

DISK_MODEL DISK_MODEL VARCHAR(4) Model number of the disk.

UNIT_NUMBER UNITNBR SMALLINT Unit number of the disk.

LOGICAL_MIRRORED_PAIR_STATUS MIRRORPS CHAR(1)

Nullable

Indicates the status of a mirrored pair of disks:

0
Indicates that one mirrored unit of a mirrored
pair is not active.

1
Indicates that both mirrored units of a mirrored
pair are active.

Contains null if the unit is not mirrored.

MIRRORED_UNIT_STATUS MIRRORUS CHAR(1)

Nullable

Indicates the status of a mirrored unit:

1
Indicates that this mirrored unit of a mirrored
pair is active (online with current data).

2
Indicates that this mirrored unit is being
synchronized.

3
Indicates that this mirrored unit is suspended.

Contains null if the unit is not mirrored.

UNIT_MEDIA_CAPACITY UNITMCAP BIGINT Storage capacity (in bytes) of the unit.

UNIT_SPACE_AVAILABLE UNITSPACE BIGINT Space (in bytes) available on the unit for use.

UNIT_SPACE_RESERVED_FOR_SYSTEM UNITSRES BIGINT Space (in bytes) reserved on the unit for use by the
system.

UNIT_SPACE_USED UNITSUSED BIGINT Space (in bytes) on the unit used for the index.

UNIT_TYPE UNIT_TYPE SMALLINT Indicates the type of disk unit:

0
Not Solid State Disk (SSD).

1
Solid State Disk (SSD).

SYSTEM_INDEX_SCHEMA SYS_IXDNAME CHAR(10) System index schema name.

SYSTEM_INDEX_NAME SYS_IXNAME CHAR(10) System index name.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) System schema name.

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) System table name.

SYSTEM_TABLE_MEMBER SYS_MNAME CHAR(10) System member name.

Appendix F. Db2 for i catalog views 1795

SYSPARTITIONINDEXES
The SYSPARTITIONINDEXES view contains one row for every index built over a table partition or table
member. If the table is a distributed table, the indexes over partitions that reside on other database nodes
are not contained in this catalog view. They are contained in the catalog views of the other database
nodes.

Use this view when you want to see index information for indexes built on a specified table or set of
tables. The information is similar to that returned via Show Indexes in System i Navigator

The following table describes the columns in the SYSPARTITIONINDEXES view:

Table 194. SYSPARTITIONINDEXES view

Column name
System Column
Name Data Type Description

TABLE_SCHEMA TABSCHEMA VARCHAR(128) Name of the SQL schema that contains the table.

TABLE_NAME TABNAME VARCHAR(128) Name of the table.

TABLE_PARTITION TABPART VARCHAR(128) Name of the table partition or member.

INDEX_NAME INDNAME VARCHAR(128) Name of the index, logical file, or constraint. If the
index type indicates one or more temporary indexes,
INDEX_NAME contains the number of maintained
temporary indexes that currently exist on the table
followed by the string 'MAINTAINED TEMPORARY
INDEXES'.

INDEX_TYPE INDTYPE VARCHAR(11) The type of the index:

INDEX
The index is an SQL index.

LOGICAL
The index is part of a logical file.

PHYSICAL
The index is a part of a keyed physical file.

PRIMARY KEY
The index is a primary key constraint.

UNIQUE
The index is a unique constraint.

FOREIGN KEY
The index is a foreign key constraint.

TEMPORARY
Indicates one or more temporary indexes exist
on the table.

INDEX_SCHEMA INDSCHEMA VARCHAR(128)

Nullable

Name of the SQL schema that contains the index,
logical file, or constraint. Contains null if the row
indicates one or more maintained temporary indexes.

INDEX_OWNER INDOWNER VARCHAR(128)

Nullable

Index owner. Contains null if the row indicates one or
more maintained temporary indexes.

SYSTEM_INDEX_SCHEMA SYS_IXDNAM CHAR(10)

Nullable

System index schema name. Contains null unless the
index type is INDEX or LOGICAL.

SYSTEM_INDEX_NAME SYS_IXNAME CHAR(10)

Nullable

System index name. Contains null unless the index
type is INDEX or LOGICAL.

INDEX_TEXT LABEL VARGRAPHIC(50) CCSID
1200

Nullable

Text of the index, logical file, or constraint. Contains
null if text does not exist for the index.

INDEX_PARTITION INDMEMBER VARCHAR(128)

Nullable

Partition or member name of the index. Contains null
if the row indicates one or more maintained temporary
indexes.

1796 IBM i: Db2 for i SQL Reference

Table 194. SYSPARTITIONINDEXES view (continued)

Column name
System Column
Name Data Type Description

INDEX_VALID VALID VARCHAR(3) An indication or whether the index is invalid and needs
to be rebuilt:

NO
The index is invalid.

YES
The index is valid.

CREATE_TIMESTAMP CREATED TIMESTAMP

Nullable

The timestamp when the index was created. Contains
null if the row indicates one or more maintained
temporary indexes.

LAST_BUILD_TIMESTAMP LASTBUILD TIMESTAMP

Nullable

The timestamp when the index was last rebuilt.
Contains null if the row indicates one or more
maintained temporary indexes.

LAST_QUERY_USE LASTQRYUSE TIMESTAMP

Nullable

The timestamp of the last time the index was used in
a query since the last time the usage statistics were
reset. If the index has never been used in a query
since the last time the usage statistics were reset or if
the row indicates one or more maintained temporary
indexes, contains null.

LAST_STATISTICS_USE LASTSTUSE TIMESTAMP

Nullable

The timestamp of the last time the index was used
by the optimizer for statistics since the last time the
usage statistics were reset. If the index has never
been used for statistics since the last time the usage
statistics were reset or if the row indicates one or
more maintained temporary indexes, contains null.

QUERY_USE_COUNT QRYUSECNT BIGINT The number of times the index was used in a query
since the last time the usage statistics were reset. If
the index has never been used in a query since the last
time the usage statistics were reset, contains 0.

QUERY_STATISTICS_COUNT QRYSTCNT BIGINT The number of times the index was used by the
optimizer for statistics since the last time the usage
statistics were reset. If the index has never been used
for statistics since the last time the usage statistics
were reset, contains 0.

LAST_USED_TIMESTAMP TIMESTAMP

Nullable

The timestamp of the last time the index was used
directly by an application for native record I/O or SQL
operations. If the index has never been used or if
the row indicates one or more maintained temporary
indexes, contains null.

DAYS_USED_COUNT DAYSUSED INTEGER The number of days the index was used directly by
an application for native record I/O or SQL operations
since the last time the usage statistics were reset. If
the index has never been used since the last time the
usage statistics were reset, contains 0.

LAST_RESET_TIMESTAMP LASTRESET TIMESTAMP

Nullable

The timestamp of the last time the usage statistics
were reset for the index. For more information see the
Change Object Description (CHGOBJD) command. If
the index's last used timestamp has never been reset,
contains null.

NUMBER_KEY_COLUMNS INDKEYS BIGINT

Nullable

Number of columns that define the index key. Contains
null if the row indicates one or more maintained
temporary indexes.

COLUMN_NAMES COLNAMES VARCHAR(1024)

Nullable

A comma separated list of column names that define
the index key. If the length of all the column names
exceeds 1024, '...' is returned at the end of the column
value. Contains null if the row indicates one or more
maintained temporary indexes.

NUMBER_KEYS NUMRIDS BIGINT

Nullable

Number of keys in the index. If the index is invalid or is
an encoded vector index, -1 is returned. Contains null
if the row indicates one or more maintained temporary
indexes.

INDEX_SIZE SIZE BIGINT Size (in bytes) of the data space index used by the
index.

Appendix F. Db2 for i catalog views 1797

Table 194. SYSPARTITIONINDEXES view (continued)

Column name
System Column
Name Data Type Description

NUMBER_PAGES PAGES BIGINT

Nullable

Number of pages in the index. The page unit is the
LOGICAL_PAGE_SIZE of the index. If the index is
invalid or is an encoded vector index, contains null.

LOGICAL_PAGE_SIZE PAGE_SIZE INTEGER

Nullable

The logical page size of the index. If the index is an
encoded vector index or if the row indicates one or
more maintained temporary indexes, contains null.

UNIQUE UNIQUE VARCHAR(21)

Nullable

Indicates whether an index is unique:

UNIQUE
The index is a UNIQUE index.

UNIQUE WHERE NOT NULL
The index is a UNIQUE WHERE NOT NULL index.

FIFO
The index is a non-unique first-in-first-out (FIFO)
index.

LIFO
The index is a non-unique last-in-last-out (LIFO)
index.

FCFO
The index is a non-unique first-change-first-out
(FCFO) index.

Contains null if the row indicates one or more
maintained temporary indexes.

MAXIMUM_KEY_LENGTH KEY_LENGTH INTEGER

Nullable

Maximum key length of an index. If the index is an
encoded vector index, contains null.

UNIQUE_PARTIAL_KEY_VALUES KEYCARDS VARCHAR(96)

Nullable

The unique partial key values for the index. If the index
is an encoded vector index, the first unique partial
key value is the total number of unique values for
the entire index key. The remaining unique partial key
values returned are not applicable. If the index is one
or more maintained temporary indexes, contains null.

OVERFLOW_VALUES OVERFLOW INTEGER

Nullable

The number of distinct key values that have
overflowed the encoded vector index. If the index is
not an encoded vector index, contains null.

EVI_CODE_SIZE CODE_SIZE INTEGER

Nullable

The size of the byte code of the encoded vector index.
If the index is not an encoded vector index, contains
null.

SPARSE SPARSE VARCHAR(3)

Nullable

Indicates whether the index contains keys for all the
rows of its depended on table:

NO
The index contains keys for all the rows of its
depended on table.

YES
The index is a select/omit logical file or an SQL
index with a WHERE clause and does not contain
keys for all the rows of its depended on table.

Contains null if the row indicates one or more
maintained temporary indexes.

DERIVED_KEY DERIVED VARCHAR(3)

Nullable

Indicates whether the any key columns in the index
are expressions:

NO
No key columns of the index are expressions.

YES
At least one key column is an expression.

Contains null if the row indicates one or more
maintained temporary indexes.

1798 IBM i: Db2 for i SQL Reference

Table 194. SYSPARTITIONINDEXES view (continued)

Column name
System Column
Name Data Type Description

PARTITIONED PARTITION VARCHAR(20)

Nullable

Indicates whether the index is partitioned or not
partitioned:

NO
An SQL index is not partitioned (spans multiple
partitions).

YES
The index is not built over a partitioned table or
built over a partitioned table and is partitioned
(does not span multiple partitions or members).

MULTI-MEMBER LOGICAL
The index is a logical file built over multiple
partitions or members.

Contains null if the row indicates one or more
maintained temporary indexes.

ACCPTH_TYPE ACCPTHTYPE VARCHAR(4)

Nullable

Indicates the type of index:

1 TB
The index is a maximum 1 terabyte (*MAX1TB)
binary radix index.

4 GB
The index is a maximum 4 gigabyte (*MAX4GB)
binary radix index.

EVI
The index is an encoded vector index.

Contains null if the row indicates one or more
maintained temporary indexes.

SORT_SEQUENCE SRTSEQ VARCHAR(12)

Nullable

Indicates whether the index uses a collating
sequence:

BY HEX VALUE
The index does not use a collating table.

*LANGIDSHR
The index uses a shared weight sort sequence
(SRTSEQ).

*LANGIDUNQ
The index uses a unique weight sort sequence
(SRTSEQ).

ALTSEQ
The index uses an alternate collating sequence
(ALTSEQ).

Contains null if the row indicates one or more
maintained temporary indexes.

LANGUAGE_IDENTIFIER LANGID CHAR(3)

Nullable

The language ID of the index. Contains null if the sort
sequence is hex or if the row indicates one or more
maintained temporary indexes.

SORT_SEQUENCE_SCHEMA SRTSEQSCH CHAR(10)

Nullable

Schema name of the sort sequence to use. Contains
null if there is no schema name.

SORT_SEQUENCE_NAME SRTSEQNAME CHAR(10)

Nullable

Name of the sort sequence to use. Contains null if
there is no sort sequence name.

ESTIMATED_BUILD_TIME ESTBLDTIME INTEGER

Nullable

Estimated time (in seconds) required to rebuild the
index. Contains null if the row indicates one or more
maintained temporary indexes.

LAST_BUILD_TIME LSTBLDTIME INTEGER

Nullable

Elapsed time (in seconds) the last time the index was
built. Contains null if the last build information is not
available.

LAST_BUILD_KEYS LSTBLDKEYS BIGINT

Nullable

Number of keys the last time the index was built.
Contains null if the last build information is not
available.

LAST_BUILD_DEGREE LSTBLDDEG SMALLINT

Nullable

Parallel degree the last time the index was built.
Contains null if the last build information is not
available.

Appendix F. Db2 for i catalog views 1799

Table 194. SYSPARTITIONINDEXES view (continued)

Column name
System Column
Name Data Type Description

LAST_BUILD_TYPE LSTBLDTYPE CHAR(1)

Nullable

An indication of whether the last index build was
a complete build or a build from the delayed
maintenance keys:

0
The last rebuild of the index was from the
delayed maintenance keys.

1
The last build or rebuild of the index was a
complete build from the rows in the table.

If the index has never been built, contains null.

LAST_INVALIDATION_TIMESTAMP LSTINVAL TIMESTAMP

Nullable

An indication of when the index was last invalidated. If
the index has never been invalidated, contains null.

LAST_INVALIDATION_REASON_CODE LSTINVRC SMALLINT

Nullable

The reason code when the index was last invalidated.

Reason code values are listed in the SYSINDEXSTAT
view.

If the index has never been invalidated, contains null.

LAST_INVALIDATION_REASON_TYPE LSTINVRT SMALLINT

Nullable

The reason type when the index was last invalidated.

Reason type values are listed in the SYSINDEXSTAT
view.

If the index has never been invalidated, contains null.

INDEX_HELD HELD VARCHAR(3) An indication or whether a pending rebuild of the index
is currently held by the user:

NO
A rebuild of the index is not pending or is not
held.

YES
A pending rebuild of the index is held.

MAINTENANCE MAINT VARCHAR(11)

Nullable

The maintenance of the index:

REBUILD
The index is not maintained and is rebuilt at open
time.

DELAYED
The index maintenance is delayed until the index
is opened.

DO NOT WAIT
The index is immediately maintained.

If the index is an encoded vector index or if the row
indicates one or more maintained temporary indexes,
contains null.

DELAYED_MAINT_KEYS DLYKEYS INTEGER

Nullable

Number of keys that need to be inserted into the
binary tree of a delayed maintenance index. If the
index is not a delayed maintenance index, contains
null.

RECOVERY RECOVERY VARCHAR(10)

Nullable

The recovery attribute of the index:

DURING IPL
The index is recovered, if necessary, at IPL.

AFTER IPL
The index is recovered, if necessary, after IPL.

NEXT OPEN
The index is recovered, if necessary, on the next
open.

If the index is an encoded vector index or if the row
indicates one or more maintained temporary indexes,
contains null.

1800 IBM i: Db2 for i SQL Reference

Table 194. SYSPARTITIONINDEXES view (continued)

Column name
System Column
Name Data Type Description

ROUNDING_MODE DECFLTRND VARCHAR(8)

Nullable

Indicates the DECFLOAT rounding mode of the index:

CEILING
ROUND_CEILING

DOWN
ROUND_DOWN

FLOOR
ROUND_FLOOR

HALFDOWN
ROUND_HALF_DOWN

HALFEVEN
ROUND_HALF_EVEN

HALFUP
ROUND_HALF_UP

UP
ROUND_UP

Contains the null value if the index does not have
an expression that references a DECFLOAT column,
function, or constant; or if the row indicates one or
more maintained temporary indexes.

DECFLOAT_WARNING DECFLTWRN VARCHAR(3)

Nullable

Indicates whether DECFLOAT warnings are returned:

NO
DECFLOAT warnings are not returned.

YES
DECFLOAT warnings are returned.

Contains the null value if the index does not have
an expression that references a DECFLOAT column,
function, or constant; or if the row indicates one or
more maintained temporary indexes.

LOGICAL_READS LGLREADS BIGINT

Nullable

Number of logical read operations for the index since
the last IPL. Contains null if the row indicates one or
more maintained temporary indexes.

SEQUENTIAL_READS SEQREADS BIGINT Number of sequential read operations for the index
since the last IPL.

RANDOM_READS RANREADS BIGINT Number of random read operations for the index since
the last IPL.

SEARCH_CONDITION IXWHERECON VARGRAPHIC(1024) CCSID
1200

Nullable

If an index is sparse, the search condition of the index.
If the length of the search condition exceeds 1024, '...'
is returned at the end of the column value. Contains
null if the index is not sparse.

SEARCH_CONDITION_HAS_UDF IXWHEREUDF VARCHAR(3)

Nullable

If an index is sparse, indicates whether the search
condition of the index contains a user-defined
function. Contains null if the index is not sparse.

NO
The index search condition does not contain a
UDF.

YES
The index search condition contains a UDF.

KEEP_IN_MEMORY KEEPINMEM VARCHAR(3) Indicates whether the index should be kept in
memory:

NO
No memory preference.

YES
The index should be kept in memory, if possible.

MEDIA_PREFERENCE MEDIAPREF VARCHAR(3) Indicates the media preference of the index:

ANY
No media preference.

SSD
The index should be allocated on Solid State Disk
(SSD), if possible.

Appendix F. Db2 for i catalog views 1801

Table 194. SYSPARTITIONINDEXES view (continued)

Column name
System Column
Name Data Type Description

INCLUDE_EXPRESSION IXINCEXPR VARGRAPHIC(1024) CCSID
1200

Nullable

Index INCLUDE expression. Contains null if the index
does not have an INCLUDE expression.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) System schema name.

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) System table name.

SYSTEM_TABLE_MEMBER SYS_MNAME CHAR(10) System member name.

1802 IBM i: Db2 for i SQL Reference

SYSPARTITIONINDEXSTAT
The SYSPARTITIONINDEXSTAT view contains one row for every index built over a table partition or table
member. Indexes that share another index’s binary tree are not included. If the table is a distributed
table, the indexes over partitions that reside on other database nodes are not contained in this catalog
view. They are contained in the catalog views of the other database nodes.

The following table describes the columns in the SYSPARTITIONINDEXSTAT view:

Table 195. SYSPARTITIONINDEXSTAT view

Column name
System Column
Name Data Type Description

TABLE_SCHEMA TABSCHEMA VARCHAR(128) Name of the SQL schema that contains the table.

TABLE_NAME TABNAME VARCHAR(128) Name of the table.

TABLE_PARTITION TABPART VARCHAR(128) Name of the table partition or member.

PARTITION_TYPE PARTTYPE CHAR(1) The type of the table partitioning:

blank
The table is not partitioned.

H
This is data hash partitioning.

R
This is data range partitioning.

D
This is distributed database hash partitioning.

PARTITION_NUMBER PARTNBR INTEGER

Nullable

The partition number of this partition. If the table is a
distributed table, contains null.

NUMBER_DISTRIBUTED_PARTITIONS DSTPARTS INTEGER

Nullable

If the table is a distributed table, contains the total
number of partitions. If the table is not a distributed
table, contains null.

INDEX_SCHEMA INDSCHEMA VARCHAR(128) Name of the SQL schema that contains the index,
logical file, or constraint.

INDEX_NAME INDNAME VARCHAR(128) Name of the index, logical file, or constraint.

INDEX_MEMBER INDMEMBER VARCHAR(128)

Nullable

Name of the member of the index or logical file. If the
index type is a constraint, the member name is null.

INDEX_TYPE INDTYPE VARCHAR(11) The type of the index:

INDEX
The index is an SQL index.

LOGICAL
The index is part of a logical file.

PHYSICAL
The index is part of a keyed physical file.

PRIMARY KEY
The index is a primary key constraint.

UNIQUE
The index is a unique constraint.

REFERENTIAL
The index is a foreign key constraint.

NUMBER_KEY_COLUMNS INDKEYS BIGINT Number of columns that define the index key.

COLUMN_NAMES COLNAMES VARCHAR(1024) A comma separated list of column names that define
the index key. If the length of all the column names
exceeds 1024, '...' is returned at the end of the column
value.

NUMBER_LEAF_PAGES NLEAF BIGINT Not applicable for Db2 for i. Will always be -1.

NUMBER_LEVELS NLEVELS SMALLINT Not applicable for Db2 for i. Will always be -1.

FIRSTKEYCARD KEYCARD1 BIGINT Number of distinct first key values. If the index is
an encoded vector index, this is the total number of
unique values for the entire index key.

Appendix F. Db2 for i catalog views 1803

Table 195. SYSPARTITIONINDEXSTAT view (continued)

Column name
System Column
Name Data Type Description

FIRST2KEYCARD KEYCARD2 BIGINT Number of distinct keys using the first two columns of
the index. If the index is an encoded vector index, -1 is
returned.

FIRST3KEYCARD KEYCARD3 BIGINT Number of distinct keys using the first three columns
of the index. If the index is an encoded vector index, -1
is returned.

FIRST4KEYCARD KEYCARD4 BIGINT Number of distinct keys using the first four columns of
the index. If the index is an encoded vector index, -1 is
returned.

FULLKEYCARD KEYCARDF BIGINT Number of distinct full key values. If the index has
more than 4 key columns or is an encoded vector
index, -1 is returned.

CLUSTERRATIO CLSRATIO SMALLINT Not applicable for Db2 for i. Will always be -1.

CLUSTERFACTOR CLSFACTOR DOUBLE Not applicable for Db2 for i. Will always be -1.

SEQUENTIAL_PAGES SEQPAGES BIGINT Not applicable for Db2 for i. Will always be -1.

DENSITY DENSITY INTEGER Not applicable for Db2 for i. Will always be -1.

PAGE_FETCH_PAIRS FETCHPAIRS VARCHAR(520) Not applicable for Db2 for i. Will always be an empty
string.

NUMBER_KEYS NUMRIDS BIGINT Number of keys in the index. If the index is invalid or is
an encoded vector index, -1 is returned.

NUMRIDS_DELETED NUMRIDSDLT BIGINT Not applicable for Db2 for i. Will always be 0.

NUM_EMPTY_LEAFS EMPTYLEAFS BIGINT Not applicable for Db2 for i. Will always be 0.

AVERAGE_RANDOM_FETCH_PAGES AVGRNDFTCH DOUBLE Not applicable for Db2 for i. Will always be -1.

AVERAGE_RANDOM_PAGES AVGRNDPAGE DOUBLE Not applicable for Db2 for i. Will always be -1.

AVERAGE_SEQUENCE_GAP AVGSEQGAP DOUBLE Not applicable for Db2 for i. Will always be -1.

AVERAGE_SEQUENCE_FETCH_GAP AVGSEQFGAP DOUBLE Not applicable for Db2 for i. Will always be -1.

AVERAGE_SEQUENCE_PAGES AVGSEQPAGE DOUBLE Not applicable for Db2 for i. Will always be -1.

AVERAGE_SEQUENCE_FETCH_PAGES AVGSEQFPAG DOUBLE Not applicable for Db2 for i. Will always be -1.

AVGPARTITION_CLUSTERRATIO PCLSRATIO SMALLINT Not applicable for Db2 for i. Will always be -1.

AVGPARTITION_CLUSTERFACTOR PCLSFACTOR DOUBLE Not applicable for Db2 for i. Will always be -1.

AVGPARTITION_PAGE_FETCH_PAIRS PFETCHPAIR VARCHAR(520) Not applicable for Db2 for i. Will always be an empty
string.

DATAPARTITION_CLUSTERFACTOR DCLSFACTOR DOUBLE A statistic measuring the "clustering" of the index keys
with regard to data partitions. It is a number between
0 and 1, with 1 representing perfect clustering and 0
representing no clustering.

INDCARD INDCARD BIGINT Number of keys in the index. If the index is invalid or is
an encoded vector index, -1 is returned.

INDEX_VALID VALID CHAR(1) An indication of whether the index is invalid and needs
to be rebuilt:

0
The index is invalid.

1
The index is valid.

2
The index was saved with STG(*FREE).

INDEX_HELD HELD CHAR(1) An indication or whether a pending rebuild of the index
is currently held by the user:

0
A rebuild of the index is not pending or is not
held.

1
A pending rebuild of the index is held.

1804 IBM i: Db2 for i SQL Reference

Table 195. SYSPARTITIONINDEXSTAT view (continued)

Column name
System Column
Name Data Type Description

CREATE_TIMESTAMP CREATED TIMESTAMP The timestamp when the index was created.

LAST_BUILD_TIMESTAMP LASTBUILD TIMESTAMP The timestamp when the index was last rebuilt.

LAST_QUERY_USE LASTQRYUSE TIMESTAMP

Nullable

The timestamp of the last time the index was used in
a query since the last time the usage statistics were
reset. If the index has never been used in a query
since the last time the usage statistics were reset,
contains null.

LAST_STATISTICS_USE LASTSTUSE TIMESTAMP

Nullable

The timestamp of the last time the index was used
by the optimizer for statistics since the last time the
usage statistics were reset. If the index has never
been used for statistics since the last time the usage
statistics were reset, contains null.

QUERY_USE_COUNT QRYUSECNT BIGINT The number of times the index was used in a query
since the last time the usage statistics were reset. If
the index has never been used in a query since the last
time the usage statistics were reset, contains 0.

QUERY_STATISTICS_COUNT QRYSTCNT BIGINT The number of times the index was used by the
optimizer for statistics since the last time the usage
statistics were reset. If the index has never been used
for statistics since the last time the usage statistics
were reset, contains 0.

LAST_USED_TIMESTAMP LASTUSED TIMESTAMP

Nullable

The timestamp of the last time the index was used
directly by an application for native record I/O or SQL
operations. If the index has never been used, contains
null.

DAYS_USED_COUNT DAYSUSED INTEGER The number of days the index was used directly by
an application for native record I/O or SQL operations
since the last time the usage statistics were reset. If
the index has never been used since the last time the
usage statistics were reset, contains 0.

LAST_RESET_TIMESTAMP LASTRESET TIMESTAMP

Nullable

The timestamp of the last time the usage statistics
were reset for the index. For more information see the
Change Object Description (CHGOBJD) command. If
the index's last used timestamp has never been reset,
contains null.

INDEX_SIZE SIZE BIGINT Size (in bytes) of the data space index used by the
index.

ESTIMATED_BUILD_TIME ESTBLDTIME INTEGER Estimated time (in seconds) required to rebuild the
index.

LAST_BUILD_TIME LSTBLDTIME INTEGER

Nullable

Elapsed time (in seconds) the last time the index was
built. Contains null if the last build information is not
available.

LAST_BUILD_KEYS LSTBLDKEYS BIGINT

Nullable

Number of keys the last time the index was built.
Contains null if the last build information is not
available.

LAST_BUILD_DEGREE LSTBLDDEG SMALLINT

Nullable

Parallel degree the last time the index was built.
Contains null if the last build information is not
available.

LAST_BUILD_TYPE LSTBLDTYPE CHAR(1)

Nullable

An indication of whether the last index build was
a complete build or a build from the delayed
maintenance keys:

0
The last rebuild of the index was from the
delayed maintenance keys.

1
The last build or rebuild of the index was a
complete build from the rows in the table.

If the index has never been built, contains null.

LAST_INVALIDATION_TIMESTAMP LSTINVAL TIMESTAMP

Nullable

An indication of when the index was last invalidated. If
the index has never been invalidated, contains null.

Appendix F. Db2 for i catalog views 1805

Table 195. SYSPARTITIONINDEXSTAT view (continued)

Column name
System Column
Name Data Type Description

LAST_INVALIDATION_REASON_CODE LSTINVRC SMALLINT

Nullable

The reason code when the index was last invalidated.

Reason code values are listed in the SYSINDEXSTAT
view.

If the index has never been invalidated, contains null.

LAST_INVALIDATION_REASON_TYPE LSTINVRT SMALLINT

Nullable

The reason type when the index was last invalidated.

Reason type values are listed in the SYSINDEXSTAT
view.

If the index has never been invalidated, contains null.

DELAYED_MAINT_KEYS DLYKEYS INTEGER

Nullable

Number of keys that need to be inserted into the
binary tree of a delayed maintenance index. If the
index is not a delayed maintenance index, contains
null.

SPARSE SPARSE CHAR(1) Indicates whether the index contains keys for all the
rows of its depended on table:

0
The index contains keys for all the rows of its
depended on table.

1
The index is a select/omit logical file or SQL
index with a WHERE clause and does not contain
keys for all the rows of its depended on table.

DERIVED_KEY DERIVED CHAR(1) Indicates whether the any key columns in the index
are expressions:

0
No key columns of the index are expressions.

1
At least one key column is an expression.

PARTITIONED PARTITION CHAR(1) Indicates whether the index is partitioned or not
partitioned:

0
An SQL index is not partitioned (spans multiple
partitions).

1
The index is not built over a partitioned table or
built over a partitioned table and is partitioned
(does not span multiple partitions or members).

2
The index is a logical file built over multiple
partitions or members.

ACCPTH_TYPE ACCPTHTYPE CHAR(1) Indicates the type of index:

0
The index is a maximum 1 terabyte (*MAX1TB)
binary radix index.

1
The index is a maximum 4 gigabyte (*MAX4GB)
binary radix index.

2
The index is an encoded vector index.

1806 IBM i: Db2 for i SQL Reference

Table 195. SYSPARTITIONINDEXSTAT view (continued)

Column name
System Column
Name Data Type Description

UNIQUE UNIQUE CHAR(1) Indicates whether an index is unique:

0
The index is a UNIQUE index.

1
The index is a UNIQUE WHERE NOT NULL index.

2
The index is a non-unique first-in-first-out (FIFO)
index.

3
The index is a non-unique last-in-last-out (LIFO)
index.

4
The index is a non-unique first-change-first-out
(FCFO) index.

SRTSEQ_TYPE SRTSEQ CHAR(1) Indicates whether the index uses a collating
sequence:

0
The index does not use a collating table.

1
The index uses an alternate collating sequence
(ALTSEQ).

2
The index uses a sort sequence (SRTSEQ).

LOGICAL_PAGE_SIZE PAGE_SIZE INTEGER

Nullable

The logical page size of the index. If the index is an
encoded vector index, contains null.

OVERFLOW_VALUES OVERFLOW INTEGER

Nullable

The number of distinct key values that have
overflowed the encoded vector index. If the index is
not an encoded vector index, contains null.

EVI_CODE_SIZE CODE_SIZE INTEGER

Nullable

The size of the byte code of the encoded vector index.
If the index is not an encoded vector index, contains
null.

LOGICAL_READS LGLREADS BIGINT Number of logical read operations for the index since
the last IPL.

PHYSICAL_READS PHYREADS BIGINT Not applicable for Db2 for i. Will always be 0.

SEQUENTIAL_READS SEQREADS BIGINT Number of sequential read operations for the index
since the last IPL.

RANDOM_READS RANREADS BIGINT Number of random read operations for the index since
the last IPL.

SEARCH_CONDITION IXWHERECON VARGRAPHIC(1024) CCSID
1200

If an index is sparse, the search condition of the index.
If the length of the search condition exceeds 1024, '...'
is returned at the end of the column value.

KEEP_IN_MEMORY KEEPINMEM CHAR(1) Indicates whether the index should be kept in
memory:

0
No memory preference.

1
The index should be kept in memory, if possible.

MEDIA_PREFERENCE MEDIAPREF SMALLINT Indicates the media preference of the index:

0
No media preference.

255
The index should be allocated on Solid State Disk
(SSD), if possible.

INCLUDE_EXPRESSION IXINCEXPR VARGRAPHIC(1024) CCSID
1200

Nullable

Index INCLUDE expression. Contains null if the index
does not have an INCLUDE expression.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) System schema name.

Appendix F. Db2 for i catalog views 1807

Table 195. SYSPARTITIONINDEXSTAT view (continued)

Column name
System Column
Name Data Type Description

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) System table name.

SYSTEM_TABLE_MEMBER SYS_MNAME CHAR(10) System member name.

1808 IBM i: Db2 for i SQL Reference

SYSPARTITIONMQTS
The SYSPARTITIONMQTS view contains one row for every materialized table built over a table partition
or table member. If the table is a distributed table, the materialized tables over partitions that reside on
other database nodes are not contained in this catalog view. They are contained in the catalog views of
the other database nodes.

Use this view when you want to see materialized query table information for materialized tables built on
a specified table or set of tables. The information is similar to that returned via Show Materialized Query
Tables in System i Navigator.

The following table describes the columns in the SYSPARTITIONMQTS view:

Table 196. SYSPARTITIONMQTS view

Column name
System Column
Name Data Type Description

TABLE_SCHEMA TABSCHEMA VARCHAR(128) Name of the SQL schema that contains the table.

TABLE_NAME TABNAME VARCHAR(128) Name of the table.

TABLE_PARTITION TABPART VARCHAR(128) Name of the table partition or member.

MQT_NAME MQTNAME VARCHAR(128) Name of the materialized query table.

MQT_SCHEMA MQTSCHEMA VARCHAR(128) Name of the SQL schema that contains the
materialized query table.

MQT_PARTITION MQTMEMBER VARCHAR(128) Partition or member name of the materialized query
table.

MQT_OWNER MQTOWNER VARCHAR(128) Materialized query table owner.

SYSTEM_MQT_SCHEMA SYS_MQDNAM CHAR(10) System materialized query table schema name.

SYSTEM_MQT_NAME SYS_MQNAME CHAR(10) System materialized query table name.

ENABLED ENABLED VARCHAR(3) An indication or whether the materialized query table
is enabled:

NO
The materialized query table is not enabled for
use.

YES
The materialized query table is enabled for use
by the database manager.

CREATE_TIMESTAMP CREATED TIMESTAMP The timestamp when the materialized query table was
created.

REFRESH_TIME REFRESHDTS TIMESTAMP

Nullable

The timestamp when the materialized query table was
last refreshed. Contains null if the materialized query
table has never been refreshed.

LAST_QUERY_USE LASTQRYUSE TIMESTAMP

Nullable

The timestamp of the last time the materialized query
table was used in a query since the last time the usage
statistics were reset. If the materialized query table
has never been used in a query since the last time the
usage statistics were reset, contains null.

LAST_STATISTICS_USE LASTSTUSE TIMESTAMP

Nullable

The timestamp of the last time the materialized query
table was used by the optimizer for statistics since
the last time the usage statistics were reset. If the
materialized query table has never been used for
statistics since the last time the usage statistics were
reset, contains null.

QUERY_USE_COUNT QRYUSECNT BIGINT The number of times the materialized query table was
used in a query since the last time the usage statistics
were reset. If the materialized query table has never
been used in a query since the last time the usage
statistics were reset, contains 0.

QUERY_STATISTICS_COUNT QRYSTCNT BIGINT The number of times the materialized query table was
used by the optimizer for statistics since the last time
the usage statistics were reset. If the materialized
query table has never been used for statistics since
the last time the usage statistics were reset, contains
0.

Appendix F. Db2 for i catalog views 1809

Table 196. SYSPARTITIONMQTS view (continued)

Column name
System Column
Name Data Type Description

LAST_USED_TIMESTAMP LASTUSED TIMESTAMP

Nullable

The timestamp of the last time the materialized query
table was used directly by an application for native
record I/O or SQL operations. If the materialized query
table has never been used, contains null.

DAYS_USED_COUNT DAYSUSED INTEGER The number of days the materialized query table was
used directly by an application for native record I/O or
SQL operations since the last time the usage statistics
were reset. If the materialized query table has never
been used since the last time the usage statistics were
reset, contains 0.

LAST_RESET_TIMESTAMP LASTRESET TIMESTAMP

Nullable

The timestamp of the last time the usage statistics
were reset for the materialized query table. For
more information see the Change Object Description
(CHGOBJD) command. If the materialized query
table's last used timestamp has never been reset,
contains null.

NUMBER_ROWS CARD BIGINT Number of rows in the materialized query table.

MQT_SIZE SIZE BIGINT Size (in bytes) of the materialized query table.

LAST_CHANGE_TIMESTAMP LASTCHG TIMESTAMP

Nullable

The timestamp of the last time the materialized query
table was changed. If the materialized query table
has never been changed since the last time the usage
statistics were reset, contains null.

MAINTENANCE MAINTAIN VARCHAR(6) Indicates the maintenance for the materialized query
table:

SYSTEM
The materialized query table is system
maintained.

USER
The materialized query table is user maintained.

INITIAL_DATA INITIAL VARCHAR(19) Indicates the initial data for the materialized query
table:

INITIALLY DEFERRED
Data is not inserted into the materialized query
table when it is created.

INITIALLY IMMEDIATE
Data is inserted into the materialized query table
when it is created.

REFRESH REFRESH VARCHAR(9) Indicates when the data in the materialized query
table can be refreshed:

DEFERRED
Data in the materialized query table can be
refreshed at any time using the REFRESH TABLE
statement.

IMMEDIATE
Data in the materialized query table is
immediately refreshed.

ISOLATION ISOLATION VARCHAR(27) Indicates the isolation level used to refresh the
materialized query table:

NO COMMIT
The isolation level is NO COMMIT.

UNCOMMITTED READ
The isolation level is UNCOMMITTED READ.

CURSOR STABILITY
The isolation level is CURSOR STABILITY.

CURSOR STABILITY KEEP LOCKS
The isolation level is CURSOR STABILITY KEEP
LOCKS.

READ STABILITY
The isolation level is READ STABILITY.

REPEATABLE READ
The isolation level is REPEATABLE READ.

1810 IBM i: Db2 for i SQL Reference

Table 196. SYSPARTITIONMQTS view (continued)

Column name
System Column
Name Data Type Description

SORT_SEQUENCE SRTSEQ VARCHAR(12) Indicates whether the materialize query table uses a
collating sequence:

BY HEX VALUE
The materialize query table does not use a
collating table.

*LANGIDSHR
The materialize query table uses a shared weight
sort sequence (SRTSEQ).

*LANGIDUNQ
The materialize query table uses a unique weight
sort sequence (SRTSEQ).

ALTSEQ
The materialize query table uses an alternate
collating sequence (ALTSEQ).

LANGUAGE_IDENTIFIER LANGID CHAR(3)

Nullable

The language ID of the materialize query table.
Contains null if the sort sequence is hex.

SORT_SEQUENCE_SCHEMA SRTSEQSCH CHAR(10)

Nullable

Schema name of the sort sequence to use. Contains
null if there is no schema name.

SORT_SEQUENCE_NAME SRTSEQNAM CHAR(10)

Nullable

Name of the sort sequence to use. Contains null if
there is no sort sequence name.

MQT_RESTORE_DEFERRED MQTRSTDFR VARCHAR(3) An indication of whether a restore of the MQT is
pending the restore of one of its dependents:

NO
The restore of the MQT is not deferred pending
the restore of one of its dependent tables.

YES
The restore of the MQT is deferred pending the
restore of one of its dependent tables.

ROUNDING_MODE DECFLTRND VARCHAR(8)

Nullable

Indicates the DECFLOAT rounding mode of the
materialized query table:

CEILING
ROUND_CEILING

DOWN
ROUND_DOWN

FLOOR
ROUND_FLOOR

HALFDOWN
ROUND_HALF_DOWN

HALFEVEN
ROUND_HALF_EVEN

HALFUP
ROUND_HALF_UP

UP
ROUND_UP

Contains the null value if the materialized query
table does not have an expression that references a
DECFLOAT column, function, or constant.

DECFLOAT_WARNING DECFLTWRN VARCHAR(3)

Nullable

Indicates whether DECFLOAT warnings are returned:

NO
DECFLOAT warnings are not returned.

YES
DECFLOAT warnings are returned.

Contains the null value if the materialized query
table does not have an expression that references a
DECFLOAT column, function, or constant.

MQT_DEFINITION MQTDEF VARGRAPHIC(5000) CCSID
1200

The query of the materialized query table. If the length
of the query exceeds 5000, '...' is returned at the end
of the column value.

Appendix F. Db2 for i catalog views 1811

Table 196. SYSPARTITIONMQTS view (continued)

Column name
System Column
Name Data Type Description

MQT_TEXT LABEL VARGRAPHIC(50) CCSID
1200

Nullable

Text of the materialized query table. Contains null if
text does not exist for the materialized query table.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) System schema name.

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) System table name.

SYSTEM_TABLE_MEMBER SYS_MNAME CHAR(10) System member name.

1812 IBM i: Db2 for i SQL Reference

SYSPARTITIONSTAT
The SYSPARTITIONSTAT view contains one row for every table partition or table member. If the table is
a distributed table, the partitions that reside on other database nodes are not contained in this catalog
view. They are contained in the catalog views of the other database nodes.

The following table describes the columns in the SYSPARTITIONSTAT view:

Table 197. SYSPARTITIONSTAT view

Column name
System Column
Name Data Type Description

TABLE_SCHEMA TABSCHEMA VARCHAR(128) Name of the SQL schema that contains the table.

TABLE_NAME TABNAME VARCHAR(128) Name of the table.

TABLE_PARTITION TABPART VARCHAR(128) Name of the table partition or member.

PARTITION_TYPE PARTTYPE CHAR(1) The type of the table partitioning:

blank
The table is not partitioned.

H
This is data hash partitioning.

R
This is data range partitioning.

D
This is distributed database hash partitioning.

PARTITION_NUMBER PARTNBR INTEGER

Nullable

The partition number of this partition. If the table is a
distributed table, contains null.

NUMBER_DISTRIBUTED_PARTITIONS DSTPARTS INTEGER

Nullable

If the table is a distributed table, contains the total
number of partitions. If the table is not a distributed
table, contains null.

NUMBER_ROWS CARD BIGINT Number of valid rows in the table partition or
member.

NUMBER_ROW_PAGES NPAGES BIGINT Number of 64K pages in the partition's data.

NUMBER_PAGES FPAGES BIGINT Same as NUMBER_ROW_PAGES.

OVERFLOW OVERFLOW BIGINT The estimated number of rows that have overflowed
to variable length segments. If the table does not
contain variable length or LOB columns, contains 0.

CLUSTERED CLUSTERED CHAR(1)

Nullable

Not applicable for Db2 for i. Will always be null.

ACTIVE_BLOCKS ACTBLOCKS BIGINT Not applicable for Db2 for i. Will always be -1.

AVGCOMPRESSEDROWSIZE ACROWSIZE BIGINT Not applicable for Db2 for i. Will always be -1.

AVGROWCOMPRESSIONRATIO ACROWRATIO REAL Not applicable for Db2 for i. Will always be -1.

AVGROWSIZE AVGROWSIZE BIGINT Average length (in bytes) of a row in this table. If the
table has variable length or LOB columns, contains
-1.

PCTROWSCOMPRESSED PCTCROWS REAL Not applicable for Db2 for i. Will always be -1.

PCTPAGESSAVED PCTPGSAVED SMALLINT Not applicable for Db2 for i. Will always be -1.

NUMBER_DELETED_ROWS DELETED BIGINT Number of deleted rows in the table partition or
member.

DATA_SIZE SIZE BIGINT Total size (in bytes) of the data space in the partition
or member.

VARIABLE_LENGTH_SIZE VLSIZE BIGINT Size (in bytes) of the variable-length data space
segments in the partition or member.

VARIABLE_LENGTH_SEGMENTS VLSEGMENTS BIGINT The number of variable-length data space segments
in the partition or member.

FIXED_LENGTH_EXTENTS FLEXTENTS BIGINT Not applicable for Db2 for i. Will always be -1.

Appendix F. Db2 for i catalog views 1813

Table 197. SYSPARTITIONSTAT view (continued)

Column name
System Column
Name Data Type Description

VARIABLE_LENGTH_EXTENTS VLEXTENTS BIGINT Not applicable for Db2 for i. Will always be -1.

COLUMN_STATS_SIZE CSTATSSIZE BIGINT Size (in bytes) of the column statistics in the partition
or member.

MAINTAINED_TEMPORARY_INDEX_SIZE MTISIZE BIGINT Size (in bytes) of all maintained temporary indexes
over the partition or member.

NUMBER_DISTINCT_INDEXES DISTINCTIX INTEGER The number of distinct indexes built over the partition
or member. This does not include maintained
temporary indexes.

OPEN_OPERATIONS OPENS BIGINT Number of full opens of the partition or member since
the last IPL.

CLOSE_OPERATIONS CLOSES BIGINT Number of full closes of the partition or member
since the last IPL.

INSERT_OPERATIONS INSERTS BIGINT Number of insert operations for the partition or
member since the last IPL.

BLOCKED_INSERT_OPERATIONS BLKIOPS BIGINT Number of blocked insert operations for the partition
or member since the last IPL.

BLOCKED_INSERT_ROWS BLKIROW BIGINT Number of rows inserted with blocked insert
operations for the partition or member since the last
IPL.

UPDATE_OPERATIONS UPDATES BIGINT Number of update operations for the partition or
member since the last IPL.

DELETE_OPERATIONS DELETES BIGINT Number of delete operations for the partition or
member since the last IPL.

CLEAR_OPERATIONS DSCLEARS BIGINT Number of clear operations (CLRPFM operations) for
the partition or member since the last IPL.

COPY_OPERATIONS DSCOPIES BIGINT Number of data space copy operations (certain
CPYxxx operations) for the partition or member since
the last IPL.

REORGANIZE_OPERATIONS DSREORGS BIGINT Number of data space reorganize operations (non-
interruptible RGZPFM operations) for the partition or
member since the last IPL.

INDEX_BUILDS DSINXBLDS BIGINT Number of creates or rebuilds of indexes that
reference the partition or member since the last IPL.
This does not include maintained temporary indexes.

LOGICAL_READS LGLREADS BIGINT Number of logical read operations for the partition or
member since the last IPL.

PHYSICAL_READS PHYREADS BIGINT Number of physical read operations for the partition
or member since the last IPL.

SEQUENTIAL_READS SEQREADS BIGINT Number of sequential read operations for the
partition or member since the last IPL.

RANDOM_READS RANREADS BIGINT Number of random read operations for the partition
or member since the last IPL.

CREATE_TIMESTAMP CREATED TIMESTAMP Create timestamp of the partition or member.

LAST_CHANGE_TIMESTAMP LASTCHG TIMESTAMP Timestamp of the last change that occurred to the
partition or member.

LAST_SAVE_TIMESTAMP LASTSAVE TIMESTAMP

Nullable

Timestamp of the last save of the partition or
member. If the partition or member has never been
saved, contains null.

LAST_RESTORE_TIMESTAMP LASTRST TIMESTAMP

Nullable

Timestamp of the last restore of the partition or
member. If the partition or member has never been
restored, contains null.

LAST_USED_TIMESTAMP LASTUSED TIMESTAMP

Nullable

Timestamp of the last time the partition or member
was used directly by an application for native record
I/O or SQL operations. If the partition or member has
never been used, contains null.

1814 IBM i: Db2 for i SQL Reference

Table 197. SYSPARTITIONSTAT view (continued)

Column name
System Column
Name Data Type Description

DAYS_USED_COUNT DAYSUSED INTEGER The number of days the partition or member was
used directly by an application for native record I/O
or SQL operations since the last time the usage
statistics were reset. If the partition or member
has never been used since the last time the usage
statistics were reset, contains 0.

LAST_RESET_TIMESTAMP LASTRESET TIMESTAMP

Nullable

The timestamp of the last time the usage statistics
were reset for the table. For more information see the
Change Object Description (CHGOBJD) command. If
the partition or member's last used timestamp has
never been reset, contains null.

NEXT_IDENTITY_VALUE NEXTVALUE DECIMAL(31,0)

Nullable

The next identity value. In some cases, this value may
be an estimate. If the table does not have an identity
value, contains null.

LOWINCLUSIVE LOWINCL CHAR(1)

Nullable

Indicates whether the low key value for the partition
is inclusive.

N
The low key value is not inclusive.

Y
The low key value is inclusive.

If the table is not partitioned by range, contains null.

LOWVALUE LOWVALUE VARGRAPHIC(1024)
CCSID 1200

Nullable

A string representation of the low key value for a
range partition. If the table is not partitioned by
range, contains null.

HIGHINCLUSIVE HIGHINCL CHAR(1)

Nullable

Indicates whether the high key value for the partition
is inclusive.

N
The high key value is not inclusive.

Y
The high key value is inclusive.

If the table is not partitioned by range, contains null.

HIGHVALUE HIGHVALUE VARGRAPHIC(1024)
CCSID 1200

Nullable

A string representation of the high key value for a
range partition. If the table is not partitioned by
range, contains null.

NUMBER_PARTITIONING_KEYS NBRPKEYS INTEGER

Nullable

The number of partitioning keys. If the table is not
partitioned, contains null.

PARTITIONING_KEYS PARTKEYS VARCHAR(2880)

Nullable

The list of partitioning keys. If the table is not
partitioned, contains null.

KEEP_IN_MEMORY KEEPINMEM CHAR(1) Indicates whether the partition should be kept in
memory:

0
No memory preference.

1
The partition should be kept in memory, if
possible.

MEDIA_PREFERENCE MEDIAPREF SMALLINT Indicates the media preference of the partition:

0
No media preference.

255
The partition should be allocated on Solid State
Disk (SSD), if possible.

LAST_SOURCE_UPDATE_TIMESTAMP LASRSRCUPD TIMESTAMP

Nullable

Last source change timestamp to a source member. If
the table is not a source file, contains null.

SOURCE_TYPE SRCTYPE VARCHAR(10)

Nullable

Source type of a source member. If the table is not a
source file, contains null.

Appendix F. Db2 for i catalog views 1815

Table 197. SYSPARTITIONSTAT view (continued)

Column name
System Column
Name Data Type Description

VOLATILE VOLATILE CHAR(1) Indicates whether the table is volatile.

0
Table is not volatile.

1
Table is volatile.

PARTITION_TEXT LABEL VARGRAPHIC(50)
CCSID 1200

Nullable

Text of the partition. Contains null if text does not
exist for the partition.

PARTIAL_TRANSACTION PARTIALTX CHAR(1) Indicates whether the partition contains a partial
transaction:

N
The partition does not contain a partial
transaction.

Y
The partition was saved while active with a
partial transaction.

A subsequent restore of the partition contains
the partial transaction. The user should apply
changes from the journal to complete the
transaction.

R
A rollback abnormally ended prior to
completion.

This left the partition with a partial set of rolled
back rows.

APPLY_STARTING_RECEIVER
 _LIBRARY

APYRCVLIB VARCHAR(10)

Nullable

The library containing the starting journal receiver.

Contains null if APPLY_STARTING_RECEIVER is null.

APPLY_STARTING_RECEIVER APYRCVNAME VARCHAR(10)

Nullable

Indicates that the partition was saved and
subsequently restored. If the table was journaled
when the partition was saved, the starting journal
receiver name will indicate the journal receiver to
start with if APYJRNCHG is then used.

Contains null if PARTIAL_TRANSACTION has a value
of R. Once an APYJRNCHG is performed, the apply
information is cleared.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) System schema name.

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) System table name.

SYSTEM_TABLE_MEMBER SYS_MNAME CHAR(10) System member name.

1816 IBM i: Db2 for i SQL Reference

SYSPERIODS
The SYSPERIODS view contains one row for every period defined for a temporal table in an SQL schema.

The following table describes the columns in the SYSPERIODS view:

Table 198. SYSPERIODS view

Column name
System Column
Name Data Type Description

PERIOD_NAME PERIODNAME VARCHAR(128) Name of the period.

TABLE_SCHEMA DBNAME VARCHAR(128) Name of the SQL schema that contains the table.

TABLE_NAME TBNAME VARCHAR(128) Name of the temporal table.

BEGIN_COLUMN_NAME BGNCOLNAME VARCHAR(128) Period begin column name.

END_COLUMN_NAME ENDCOLNAME VARCHAR(128) Period end column name

PERIOD_TYPE PERIODTYPE CHAR(1) The type of period for this row:

S
System period

HISTORY_TABLE_SCHEMA HSTDBNAME VARCHAR(128)

Nullable

Schema name of the history table.

Contains the null value if versioning has not been
added to the system-period temporal table.

HISTORY_TABLE_NAME HSTTBNAME VARCHAR(128)

Nullable

Name of the history table.

Contains the null value if versioning has not been
added to the system-period temporal table.

ON_DELETE_ADD_EXTRA_ROW ADD_ROW VARCHAR(3)

Nullable

Versioning defined with ON DELETE ADD EXTRA ROW.

YES
ON DELETE ADD EXTRA ROW was specified.

NO
ON DELETE ADD EXTRA ROW was not specified.

Contains the null value if versioning has not been
added to the system-period temporal table.

VERSIONING_STATUS VERSIONSTS CHAR(1)

Nullable

Status of versioning

E
A versioning relationship between the system-
period temporal table and the history table has
been established. The history table is being used
to store previous versions of the system-period
temporal table's modified rows.

D
A versioning relationship between the system-
period temporal table and the history table has
been defined but not established. Operations
on the system-period temporal table will be
prevented until the versioning relationship is
established or versioning of the system-period
temporal table is removed.

Contains the null value if versioning has not been
added to the system-period temporal table.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) System schema name of temporal table.

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) System name of temporal table.

SYSTEM_HISTORY_TABLE_SCHEMA SYSHSTLIB CHAR(10)

Nullable

System schema name of the history table.

Contains the null value if versioning has not been
added to the system-period temporal table.

SYSTEM_HISTORY_TABLE_NAME SYSHSTNAME CHAR(10)

Nullable

System name of the history table.

Contains the null value if versioning has not been
added to the system-period temporal table.

SYSTEM_BEGIN_COLUMN_NAME SYSBGNCOL CHAR(10) Period begin system column name.

SYSTEM_END_COLUMN_NAME SYSENDCOL CHAR(10) Period end system column name

Appendix F. Db2 for i catalog views 1817

SYSPROCS
The SYSPROCS view contains one row for each procedure created by the CREATE PROCEDURE statement.

The following table describes the columns in the SYSPROCS view:

Table 199. SYSPROCS view

Column Name
System Column
Name Data Type Description

SPECIFIC_SCHEMA SPECSCHEMA VARCHAR(128) Schema name of the routine (procedure) instance.

SPECIFIC_NAME SPECNAME VARCHAR(128) Specific name of the routine instance.

ROUTINE_SCHEMA PROCSCHEMA VARCHAR(128) Name of the SQL schema (schema) that contains the
routine.

ROUTINE_NAME PROCNAME VARCHAR(128) Name of the routine.

ROUTINE_CREATED RTNCREATE TIMESTAMP Identifies the timestamp when the routine was
created.

ROUTINE_DEFINER DEFINER VARCHAR(128) Name of the user that defined the routine.

ROUTINE_BODY BODY VARCHAR(8) The type of the routine body:

EXTERNAL
This is an external routine.

SQL
This is an SQL routine.

EXTERNAL_NAME EXTNAME VARCHAR(279)

Nullable

This column identifies the external program name.

• For ILE service programs, the external
program name is schema-name/service-program-
name(entry-point-name).

• For REXX, the external program name is schema-
name/source-file-name(member-name).

• For Java programs, the external program name
is an optional jar-id followed by a fully-qualified-
class-name!method-name or fully-qualified-class-
name.method-name.

• For all other languages, the external program name
is schema-name/program-name.

EXTERNAL_LANGUAGE LANGUAGE VARCHAR(8)

Nullable

If this is an external routine, this column identifies the
external program's language.

C
The external program is written in C.

C++
The external program is written in C++.

CL
The external program is written in CL.

COBOL
The external program is written in COBOL.

COBOLLE
The external program is written in ILE COBOL.

FORTRAN
The external program is written in FORTRAN.

JAVA
The external program is written in JAVA.

PLI
The external program is written in PL/I.

REXX
The external program is a REXX procedure.

RPG
The external program is written in RPG.

RPGLE
The external program is written in ILE RPG.

Contains the null value if this is not an external routine.

1818 IBM i: Db2 for i SQL Reference

Table 199. SYSPROCS view (continued)

Column Name
System Column
Name Data Type Description

PARAMETER_STYLE PARM_STYLE VARCHAR(7)

Nullable

If this is an external routine, this column identifies the
parameter style (calling convention).

DB2GNRL
This is the DB2GENERAL calling convention.

DB2SQL
This is the DB2SQL calling convention.

GENERAL
This is the GENERAL calling convention.

JAVA
This is the JAVA calling convention.

NULLS
This is the GENERAL WITH NULLS calling
convention.

SQL
This is the SQL standard calling convention.

Contains the null value if this is not an external routine.

IS_DETERMINISTIC DETERMINE VARCHAR(3) This column identifies whether the routine is
deterministic. That is, whether a call to the routine
with the same arguments will always return the same
result.

NO
The routine is not deterministic.

YES
The routine is deterministic.

SQL_DATA_ACCESS DATAACCESS VARCHAR(8) This column identifies whether a routine contains SQL
and whether it reads or modifies data.

NONE
The routine does not contain any SQL
statements.

CONTAINS
The routine contains SQL statements.

READS
The routine possibly reads data from a table or
view.

MODIFIES
The routine possibly modifies data in a table or
view or issues SQL DDL statements.

SQL_PATH SQL_PATH VARCHAR(3483)

Nullable

If this is an SQL routine, this column identifies the
path.

Contains the null value if this is not an SQL routine.

PARM_SIGNATURE SIGNATURE VARCHAR(16000) This column identifies the routine signature.

RESULT_SETS RESULTS SMALLINT Identifies the maximum number of result sets
returned. 0 indicates that there are no result sets.

IN_PARMS IN_PARMS SMALLINT Identifies the number of input parameters. 0 indicates
that there are no input parameters.

OUT_PARMS OUT_PARMS SMALLINT Identifies the number of output parameters. 0
indicates that there are no output parameters.

INOUT_PARMS INOUT_PARM SMALLINT Identifies the number of input/output parameters. 0
indicates that there are no input/output parameters.

LONG_COMMENT REMARKS VARGRAPHIC(2000) CCSID
1200

Nullable

A character string supplied with the COMMENT
statement.

Contains the null value if there is no long comment.

ROUTINE_DEFINITION ROUTINEDEF DBCLOB(2M) CCSID
13488

Nullable

If this is an SQL routine, this column contains the SQL
routine body.

If this is an obfuscated routine, the text starts with
the WRAPPED keyword and is followed by the encoded
form of the statement text.

Contains the null value if this is not an SQL routine.

Appendix F. Db2 for i catalog views 1819

Table 199. SYSPROCS view (continued)

Column Name
System Column
Name Data Type Description

DBINFO DBINFO VARCHAR(3)

Nullable

Identifies whether information about the database is
passed to the procedure.

NO
No database information is passed to the
procedure.

YES
Information about the database is passed to the
procedure.

COMMIT_ON_RETURN CMTONRET VARCHAR(3)

Nullable

This column identifies whether the procedure commits
on a successful return from the procedure.

NO
A commit is not performed on successful return
from the procedure.

YES
A commit is performed on successful return from
the procedure.

AUT
Procedure will commit or rollback autonomously.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary storage pool (IASP)
number.

NEW_SAVEPOINT_LEVEL NEWSAVEPTL VARCHAR(3)

Nullable

This column identifies whether the routine starts a new
savepoint level.

NO
A new savepoint level is not started.

YES
A new savepoint level is started.

ROUNDING_MODE DECFLTRND CHAR(1)

Nullable

If this is an SQL procedure, identifies the DECFLOAT
rounding mode.

C
ROUND_CEILING

D
ROUND_DOWN

F
ROUND_FLOOR

G
ROUND_HALF_DOWN

E
ROUND_HALF_EVEN

H
ROUND_HALF_UP

U
ROUND_UP

Contains the null value if the procedure is not an SQL
procedure.

ROUTINE_TEXT LABEL VARGRAPHIC(50) CCSID
1200

Nullable

Contains the label for a routine. Contains the null value
if a label does not exist.

AUTONOMOUS AUTONOMOUS VARCHAR(3) This column identifies whether the procedure is
autonomous.

NO
The procedure is not autonomous.

YES
The procedure is autonomous.

1820 IBM i: Db2 for i SQL Reference

SYSPROGRAMSTAT
The SYSPROGRAMSTAT view contains one row for each program, service program, and module that
contains SQL statements.

The following table describes the columns in the SYSPROGRAMSTAT view:

Table 200. SYSPROGRAMSTAT view

Column Name
System Column
Name Data Type Description

PROGRAM_SCHEMA COLLID VARCHAR(128) Name of the schema.

PROGRAM_NAME NAME VARCHAR(128) Name of the program, service program, or module. For
an SQL procedure, function, or trigger, this is the SQL
object name.

PROGRAM_TYPE PGMTYPE VARCHAR(128) Type of the object

*PGM
The object is a program.

*MODULE
The object is a module.

*SRVPGM
The object is a service program.

MODULE_NAME MODNAME VARCHAR(10)

Nullable

Module name for ILE program or service program.

Contains the null value if this is not an ILE program or
service program, or if the program or service program
is not a procedure or function.

PROGRAM_OWNER OWNER VARCHAR(128) Owner of the program, service program, or module

PROGRAM_CREATOR CREATOR VARCHAR(128) Creator of the program, service program, or module

CREATION_TIMESTAMP TIMESTAMP TIMESTAMP Timestamp of when the program, service program, or
module was created

DEFAULT_SCHEMA QUALIFIER VARCHAR(128)

Nullable

Implicit name for unqualified tables, views, and
indexes.

Contains the null value if a default schema was not
specified (DFTRDBCOL) or if the program is an external
routine without SQL statements.

ISOLATION ISOLATION CHAR(2)

Nullable

Isolation option specification:

RR
Repeatable Read (*RR)

RS
Read Stability (*ALL)

CS
Cursor Stability (*CS)

UR
Uncommitted Read (*CHG)

NC
No Commit (*NONE)

Contains the null value if the program is an external
routine without SQL statements.

CONCURRENTACCESSRESOLUTION CONCURRENT CHAR(1)

Nullable

Specifies the concurrent access resolution:

blank
Not specified

W
Wait for outcome

U
Use currently committed

Contains the null value if the program is an external
routine without SQL statements.

NUMBER_STATEMENTS NBRSTMTS INTEGER Number of SQL statements in the program, service
program or module.

Appendix F. Db2 for i catalog views 1821

Table 200. SYSPROGRAMSTAT view (continued)

Column Name
System Column
Name Data Type Description

PROGRAM_USED_SIZE PGMSIZE INTEGER Number of bytes that are used for SQL statements
and access plans in the program, service program or
module.

NUMBER_COMPRESSIONS PGM_CMP

Nullable

INTEGER

Nullable

Number of times the program or service program has
been compressed.

Contains the null value for modules or if the program is
an external routine without SQL statements.

STATEMENT_CONTENTION_COUNT CONTENTION BIGINT

Nullable

Number of times contention occurred when attempting
to store a new access plan.

Contains the null value for modules or if the program is
an external routine without SQL statements.

ORIGINAL_SOURCE_FILE SOURCE VARCHAR(128)

Nullable

The fully qualified source file and member that was
used to create the program or module.

Contains the null value for SQL routines or if
the program is an external routine without SQL
statements.

ORIGINAL_SOURCE_FILE_CCSID SRC_CCSID INTEGER

Nullable

The CCSID of the source file that was used to create
the program or module.

Contains the null value for SQL routines or if
the program is an external routine without SQL
statements.

ROUTINE_TYPE RTNTYPE VARCHAR(9)

Nullable

Type of the routine.

PROCEDURE
This is a procedure.

FUNCTION
This is a function.

TRIGGER
This is a trigger.

Contains the null value for modules or if the program
or service program is not a procedure, function, or
trigger. An external procedure will not be identified as
PROCEDURE unless NUMBER_EXTERNAL_ROUTINES
is greater than zero.

ROUTINE_BODY BODY VARCHAR(8)

Nullable

The type of the routine body:

EXTERNAL
This is an external routine.

SQL
This is an SQL routine.

Contains the null value for modules or if the program or
service program is not a procedure or function.

FUNCTION_ORIGIN ORIGIN CHAR(1)

Nullable

Identifies the type of function. If this is a procedure,
this column contains a blank.

B
This is a built-in function (defined by Db2 for i).

E
This is a user-defined function.

U
This is a user-defined function that is sourced on
another function.

S
This is a system-generated function.

Contains the null value for modules or if the program or
service program is not a procedure or function.

1822 IBM i: Db2 for i SQL Reference

Table 200. SYSPROGRAMSTAT view (continued)

Column Name
System Column
Name Data Type Description

FUNCTION_TYPE TYPE CHAR(1)

Nullable

Identifies the form of the function. If this is a
procedure, this column contains a blank.

S
This is a scalar function.

C
This is a column function.

T
This is a table function.

Contains the null value for modules or if the program or
service program is not a procedure, function, or trigger.

NUMBER_EXTERNAL_ROUTINES NBREXTRTN SMALLINT

Nullable

Indicates the number of procedure and function
definitions stored in the program or service program.

Contains the null value for modules, triggers, or SQL
routines.

EXTENDED_INDICATOR EXTIND VARCHAR(9)

Nullable

Indicates the EXTIND attribute:

*EXTIND
Extended indicator support is enabled.

*NOEXTIND
Extended indicator support is not enabled.

Contains the null value if the program is an external
routine without SQL statements.

C_NUL_REQUIRED CNULRQD VARCHAR(10)

Nullable

Indicates the CNULRQD attribute:

*CNULRQD
C nuls are required.

*NOCNULRQD
C nuls are not required.

Contains the null value if the program is an external
routine without SQL statements.

NAMING NAMING VARCHAR(4)

Nullable

Indicates the NAMING attribute:

*SYS
This is system naming.

*SQL
This is SQL naming.

Contains the null value if the program is an external
routine without SQL statements.

TARGET_RELEASE TGTRLS VARCHAR(6)

Nullable

Indicates the target release of the program, service
program, or module (VxRxMx).

Contains the null value if the program is an external
routine without SQL statements.

EARLIEST_POSSIBLE_RELEASE MINRLS VARCHAR(6)

Nullable

Indicates the earliest IBM i release that supports all
the SQL statements in the program, service program,
or module (VxRxMx).

*ANY
The statements are valid on any supported IBM i
release.

VxRxMx
The statement is valid on IBM i VxRxMx release
or later.

Contains the null value if the earliest release has not
yet been determined or if the program is an external
routine without SQL statements.

Appendix F. Db2 for i catalog views 1823

Table 200. SYSPROGRAMSTAT view (continued)

Column Name
System Column
Name Data Type Description

RDB RDB VARCHAR(18)

Nullable

Indicates the RDB specified for the program, service
program, or module.

rdb-name
The name of the relational database.

*LOCAL
The database on the local system.

*NONE
A relational database was not specified.

Contains the null value if the program is an external
routine without SQL statements.

CONSISTENCY_TOKEN CONTOKEN VARBINARY(8)

Nullable

Indicates the consistency token of the program.

Contains the null value if the program is an external
routine without SQL statements.

ALLOW_COPY_DATA ALWCPYDTA VARCHAR(9)

Nullable

Indicates the ALWCPYDTA attribute:

*NO
A copy of the data is not allowed.

*OPTIMIZE
A copy of the data is allowed whenever it might
result in better performance.

*YES
A copy of the data is allowed, but only when
necessary.

Contains the null value if the program is an external
routine without SQL statements.

CLOSE_SQL_CURSOR CLOSQLCSR VARCHAR(10)

Nullable

Indicates the CLOSQLCSR attribute:

*ENDACTGRP
SQL cursors are closed and SQL prepared
statements are implicitly discarded, and LOCK
TABLE locks are released when the activation
group ends.

*ENDJOB
SQL cursors are closed and SQL prepared
statements are implicitly discarded, and LOCK
TABLE locks are released when the job ends.

*ENDMOD
SQL cursors are closed and SQL prepared
statements are implicitly discarded when the
module is exited. LOCK TABLE locks are released
when the first SQL program on the call stack
ends.

*ENDPGM
SQL cursors are closed and SQL prepared
statements are implicitly discarded when the
program ends. LOCK TABLE locks are released
when the first SQL program on the call stack
ends.

Contains the null value if the program is an external
routine without SQL statements.

LOB_FETCH_OPTIMIZATION OPTLOB VARCHAR(9) Indicates the LOB optimization attribute:

*OPTLOB
The first FETCH for a cursor determines how
the cursor will be used for LOB and XML result
columns on all subsequent FETCHes.

*NOOPTLOB
Any FETCH may retrieve a LOB or XML result
column into either a locator or variable.

DECIMAL_POINT DECPNT VARCHAR(7) Indicates the decimal point for numeric constants
used in SQL statements.

*PERIOD
The decimal point is a period.

*COMMA
The decimal point is a comma.

1824 IBM i: Db2 for i SQL Reference

Table 200. SYSPROGRAMSTAT view (continued)

Column Name
System Column
Name Data Type Description

SQL_STRING_DELIMITER STRDLM VARCHAR(9) Indicates the character used as the string delimiter in
the SQL statements.

*APOSTSQL
The string delimiter is an apostrophe (').

*QUOTESQL
The string delimiter is a quote (").

DATE_FORMAT DATFMT VARCHAR(4)

Nullable

Indicates the DATFMT attribute:

*JOB
The date format specified in the job at runtime is
used.

*USA
The date format is *USA.

*ISO
The date format is *ISO.

*EUR
The date format is *EUR.

*JIS
The date format is *JIS.

*MDY
The date format is *MDY.

*DMY
The date format is *DMY.

*YMD
The date format is *YMD.

*JUL
The date format is *JUL.

Contains the null value if the program is an external
routine without SQL statements.

DATE_SEPARATOR DATSEP CHAR(1)

Nullable

Indicates the date separator.

Contains the null value if the program is an external
routine without SQL statements.

TIME_FORMAT TIMFMT VARCHAR(4)

Nullable

Indicates the TIMFMT attribute:

*JOB
The time format specified in the job at runtime is
used.

*USA
The time format is *USA.

*ISO
The time format is *ISO.

*EUR
The time format is *EUR.

*JIS
The time format is *JIS.

*HMS
The date format is *HMS.

Contains the null value if the program is an external
routine without SQL statements.

TIME_SEPARATOR TIMSEP CHAR(1)

Nullable

Indicates the time separator.

Contains the null value if the program is an external
routine without SQL statements.

Appendix F. Db2 for i catalog views 1825

Table 200. SYSPROGRAMSTAT view (continued)

Column Name
System Column
Name Data Type Description

DYNAMIC_DEFAULT_SCHEMA DYNDFTCOL VARCHAR(4)

Nullable

Indicates whether the value for DFTRDBCOL should
be used for implicit qualification on dynamic SQL
statements:

*NO
The schema specified in DFTDRBCOL is not used
for dynamic SQL statements.

*YES
The schema specified in DFTDRBCOL is used for
dynamic SQL statements.

Contains the null value if a default schema was not
specified (DFTRDBCOL) or if the program is an external
routine without SQL statements.

CURRENT_RULES SQLCURRULE VARCHAR(4)

Nullable

Indicates the SQLCURRULE attribute:

*DB2
The semantics of all SQL statements will default
to the rules established for Db2.

*STD
The semantics of all SQL statements will default
to the rules established by the ISO and ANSI SQL
standards.

Contains the null value if the program is an external
routine without SQL statements.

ALLOW_BLOCK ALWBLK VARCHAR(8)

Nullable

Indicates the ALWBLK attribute:

*ALLREAD
Rows are blocked for read-only cursors.

*NONE
Rows are not blocked for retrieval of data for
cursors.

*READ
Records are blocked for read-only retrieval of
data for cursors when:

• *NONE is specified for the Commitment
control (COMMIT) parameter.

• The cursor is declared with a FOR READ ONLY
clause or there are no dynamic statements
that could run a positioned UPDATE or DELETE
statement for the cursor.

Contains the null value if the program is an external
routine without SQL statements.

DELAY_PREPARE DLYPRP VARCHAR(4)

Nullable

Indicates the DLYPRP attribute:

*NO
Dynamic statement validation is performed when
the dynamic statements are prepared.

*YES
Dynamic statement validation is delayed until the
dynamic statements are used.

Contains the null value if the program is an external
routine without SQL statements.

USER_PROFILE USRPRF VARCHAR(7)

Nullable

Specifies the user profile used for authority checking:

*USER
The profile of the user running the program is
used.

*OWNER
The profiles of both the owner of the program and
the user running the program is used.

*NAMING
If the naming convention is *SQL, *OWNER is
used. If the naming convention is *SYS, *USER
is used.

Contains the null value if the program is an external
routine without SQL statements.

1826 IBM i: Db2 for i SQL Reference

Table 200. SYSPROGRAMSTAT view (continued)

Column Name
System Column
Name Data Type Description

DYNAMIC_USER_PROFILE DYNUSRPRF VARCHAR(6)

Nullable

Specifies the user profile used for dynamic SQL
statements:

*USER
Local dynamic SQL statements are run under the
profile of the job or thread. Distributed dynamic
SQL statements are run under the profile of the
application server job.

*OWNER
Local dynamic SQL statements are run under
the profile of the program's owner. Distributed
dynamic SQL statements are run under the
profile of the SQL package's owner.

Contains the null value if the program is an external
routine without SQL statements.

SORT_SEQUENCE SRTSEQ VARCHAR(12)

Nullable

Indicates whether the program, service program, or
module uses a collating sequence:

BY HEX VALUE
The SQL index does not use a collating table.

*LANGIDSHR
The SQL index uses a shared weight sort
sequence (SRTSEQ).

*LANGIDUNQ
The SQL index uses a unique weight sort
sequence (SRTSEQ).

ALTSEQ
The SQL index uses an alternate collating
sequence (ALTSEQ).

Contains the null value if the program is an external
routine without SQL statements.

LANGUAGE_IDENTIFIER LANGID CHAR(3)

Nullable

The language ID sort sequence.

Contains the null value if the sort sequence is not
*LANGIDSHR or *LANGIDUNQ or if the program is an
external routine without SQL statements.

SORT_SEQUENCE_SCHEMA SRTSEQSCH CHAR(10)

Nullable

The sort sequence table system schema.

Contains the null value if the sort sequence is hex
or if the program is an external routine without SQL
statements.

SORT_SEQUENCE_NAME SRTSEQNAME CHAR(10)

Nullable

The sort sequence table name.

Contains the null value if the sort sequence is hex
or if the program is an external routine without SQL
statements.

RDB_CONNECTION_METHOD RDBCNNMTH VARCHAR(4)

Nullable

Specifies the semantics used for CONNECT
statements:

*RUW
CONNECT (Type 1) semantics are used to support
remote unit of work.

*DUW
CONNECT (Type 2) semantics are used to support
distributed unit of work.

Contains the null value if the program is an external
routine without SQL statements.

DECRESULT_MAXIMUM_PRECISION DECMAXPRC SMALLINT

Nullable

Specifies the maximum precision.

31
The maximum precision is 31.

63
The maximum precision is 63.

Contains the null value if the program is an external
routine without SQL statements.

Appendix F. Db2 for i catalog views 1827

Table 200. SYSPROGRAMSTAT view (continued)

Column Name
System Column
Name Data Type Description

DECRESULT_MAXIMUM_SCALE DECMAXSCL SMALLINT

Nullable

The maximum scale (number of decimal positions to
the right of the decimal point) that should be returned
for result data types.

Contains the null value if the program is an external
routine without SQL statements.

DECRESULT_MINIMUM_DIVIDE_SCALE DECMINDIV SMALLINT

Nullable

The minimum divide scale (number of decimal
positions to the right of the decimal point) that should
be returned for both intermediate and result data
types.

Contains the null value if the program is an external
routine without SQL statements.

DECFLOAT_ROUNDING_MODE DECFLTRND VARCHAR(8)

Nullable

Indicates the DECFLOAT rounding mode:

CEILING
ROUND_CEILING

DOWN
ROUND_DOWN

FLOOR
ROUND_FLOOR

HALFDOWN
ROUND_HALF_DOWN

HALFEVEN
ROUND_HALF_EVEN

HALFUP
ROUND_HALF_UP

UP
ROUND_UP

Contains the null value if the program is an external
routine without SQL statements.

DECFLOAT_WARNING DECFLTWRN VARCHAR(3)

Nullable

Indicates whether DECFLOAT warnings are returned.

NO
DECFLOAT warnings are not returned.

YES
DECFLOAT warnings are returned.

Contains the null value if the program is an external
routine without SQL statements.

SQLPATH SQLPATH VARCHAR(3483)

Nullable

Identifies the SQL path.

Contains the null value if an SQL path is not specified
or if the program is an external routine without SQL
statements.

1828 IBM i: Db2 for i SQL Reference

Table 200. SYSPROGRAMSTAT view (continued)

Column Name
System Column
Name Data Type Description

DBGVIEW DBGVIEW VARCHAR(9)

Nullable

Specifies the type of source debug information:

*NONE
No debug.

*SOURCE
Debug view includes source and SQL INCLUDE
statements.

*STMT
Debug view includes precompiler generated
statements.

*LIST
Debug view includes the compiled listing.

*LSTDBG
Debug view includes the compiled listing of an
OPM program.

ALLOW
Source debug allowed by the Unified Debugger.

DISALLOW
Source debug not allowed by the Unified
Debugger.

DISABLE
Source debug not allowed by the Unified
Debugger and the DEBUG MODE cannot be
altered.

Contains the null value if the program is an external
routine without SQL statements.

DBGKEY DBGKEY VARCHAR(3)

Nullable

Specifies the type of source debug information:

NO
No encryption key was specified on the debug
encryption key (DBGENCKEY) parameter.

YES
A key was specified on the debug encryption key
(DBGENCKEY) parameter.

Contains the null value if DBGENCKEY is not supported
or if the program is an external routine without SQL
statements.

LAST_USED_TIMESTAMP LASTUSED TIMESTAMP

Nullable

The timestamp of the last time the program, service
program, or module was used.

Contains the null value if the program, service
program, or module has never been used.

DAYS_USED_COUNT DAYSUSED INTEGER The number of days the program, service program,
or module was used since the last time the usage
statistics were reset. If the program, service program,
or module has never been used since the last time the
usage statistics were reset, contains 0.

LAST_RESET_TIMESTAMP LASTRESET TIMESTAMP

Nullable

The timestamp of the last time the usage statistics
were reset.

Contains the null value if the statistics have never been
reset.

SYSTEM_PROGRAM_NAME SYS_NAME CHAR(10) System name of the program, service program, or
module.

SYSTEM_PROGRAM_SCHEMA SYS_DNAME CHAR(10) System name of the schema containing the program,
service program, or module.

IASP_NUMBER IASPNUMBER INTEGER Specifies the independent auxiliary storage pool (IASP)
number.

Appendix F. Db2 for i catalog views 1829

Table 200. SYSPROGRAMSTAT view (continued)

Column Name
System Column
Name Data Type Description

SYSTEM_TIME_SENSITIVE SYSTIME VARCHAR(3)

Nullable

Specifies whether the CURRENT TEMPORAL
SYSTEM_TIME special register affects static and
dynamic SQL statements in the program.

YES
Any references to system-period temporal tables
are affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register.

NO
Any references to system-period temporal tables
are not affected by the value of the CURRENT
TEMPORAL SYSTEM_TIME special register.

Contains the null value, which is treated like NO, if the
program was compiled prior to 7.3, or if the program is
an external routine without SQL statements.

1830 IBM i: Db2 for i SQL Reference

SYSPROGRAMSTMTSTAT
The SYSPROGRAMSTMTSTAT view contains one row for each embedded SQL statement in a program,
module, or service program.

The following table describes the columns in the SYSPROGRAMSTMTSTAT view:

Table 201. SYSPROGRAMSTMTSTAT view

Column Name
System Column
Name Data Type Description

PROGRAM_SCHEMA COLLID VARCHAR(128) Name of the schema.

PROGRAM_NAME NAME VARCHAR(128) Name of the program, service program, or module. For
an SQL procedure, function, or trigger, this is the SQL
object name.

PROGRAM_TYPE PGMTYPE VARCHAR(128) Type of the object :

*PGM
The object is a program.

*MODULE
The object is a module.

*SRVPGM
The object is a service program.

MODULE_NAME MODNAME VARCHAR(10)

Nullable

Module name for ILE program or service program.

Contains the null value if this is not an ILE program or
service program.

STATEMENT_NUMBER STMTNBR INTEGER Statement number in program.

NUMBER_TIMES_EXECUTED NBREXEC INTEGER Number of times this statement has been executed.
This value is not maintained for CALL, SET, or VALUES
INTO statements.

ROWS_AFFECTED ROWCNT INTEGER Total rows fetched, updated, inserted, or deleted for
all executions of the statement. Contains 0 if the
statement is not a FETCH, SET, VALUES INTO, UPDATE,
INSERT, DELETE, or MERGE. Will contain 0 for a SET
or VALUES INTO statement that is not implemented
using a cursor.

NUMBER_HOST_VARIABLES NBRHV INTEGER Total number of host variables specified in the
statement. This includes input and output host
variables.

NUMBER_INPUT_HOST_VARIABLES NBRIHV INTEGER Number of input host variables specified in the
statement.

WITH_HOLD WITHHOLD CHAR(3)

Nullable

Specifies the WITH HOLD option for statement:

YES
WITH HOLD clause specified.

Contains the null value if the clause was not specified.

FETCH_ONLY FETCHONLY CHAR(3)

Nullable

Specifies the FOR READ ONLY option for statement:

YES
FOR READ ONLY clause specified.

Contains the null value if the clause was not specified.

CONCURRENTACCESSRESOLUTION CONCURRENT CHAR(1)

Nullable

Specifies the concurrent access resolution for the
statement:

W
Wait for outcome

U
Use currently committed

S
Skip locked data

Contains the null value if concurrent access was not
specified at the statement level.

NUMBER_REBUILDS NBRREBLD INTEGER Number of times QDT or access plan has been rebuilt.

Appendix F. Db2 for i catalog views 1831

Table 201. SYSPROGRAMSTMTSTAT view (continued)

Column Name
System Column
Name Data Type Description

ISOLATION ISOLATION CHAR(2)

Nullable

Isolation option specification:

RR
Repeatable Read (*RR)

RS
Read Stability (*ALL)

CS
Cursor Stability (*CS)

UR
Uncommitted Read (*CHG)

NC
No Commit (*NONE)

Contains the null value if isolation level was not
specified at the statement level.

NUMBER_ROWS_TO_OPTIMIZE OPTROWS INTEGER

Nullable

Number of rows specified on the OPTIMIZE FOR n
ROWS clause. -1 means that the value *ALL was
specified.

Contains the null value if the clause was not specified.

NUMBER_ROWS_TO_FETCH FETCHROWS INTEGER

Nullable

Number of rows specified on the FETCH FIRST n
ROWS clause.

Contains the null value if the clause was not specified.

LAST_QDT_REBUILD_REASON QDTRBLD CHAR(2)

Nullable

Reason code for last QDT rebuild. This corresponds to
column QVC22 in the STRDBMON outfile when QQRID
= 1000.

Contains the null value if the statement does not use a
QDT or has never had a QDT rebuilt.

STATEMENT_TEXT STMTTEXT DBCLOB(2M)
CCSID(1200)

Text of the SQL statement.

SYSTEM_PROGRAM_NAME SYS_NAME CHAR(10) System name of the program.

SYSTEM_PROGRAM_SCHEMA SYS_DNAME CHAR(10) System name of the schema containing the program.

ACCESS_PLAN_LENGTH AP_LENGTH INTEGER Number of bytes that are used for the QDT and access
plan for the statement.

EARLIEST_POSSIBLE_RELEASE MINRLS VARCHAR(6) The earliest IBM i release that supports this SQL
statement (VxRxMx).

ANY
The statement is valid on any supported IBM i
release.

VxRxMx
The statement is valid on IBM i VxRxMx release
or later.

Contains the null value if the earliest release is not
known.

SQL_DB2_GROUP_LEVEL SQL_LEVEL INTEGER

Nullable

The latest Db2 PTF Group level that SQL language
syntax used in this statement is dependent on.

Contains the null value if no SQL syntax in this
statement was identified as being dependent on a Db2
PTF Group.

SERVICES_DB2_GROUP_LEVEL SERV_LEVEL INTEGER

Nullable

The latest Db2 PTF Group level that a service
referenced in this statement might be dependent on.
This column contains a value if the SQL statement
references an IBM i provided service or Db2 for i
built-in function or built-in global variable. If the SQL
statement includes unqualified references to objects
whose names match IBM i provided services, this
column considers the unqualified name as the IBM i
service.

Contains the null value if no built-in function, built-
in global variable, or IBM i provided service in this
statement was identified as being dependent on a Db2
PTF Group.

1832 IBM i: Db2 for i SQL Reference

SYSREFCST
The SYSREFCST view contains one row for each foreign key in the SQL schema.

The following table describes the columns in the SYSREFCST view:

Table 202. SYSREFCST view

Column Name
System Column
Name Data Type Description

CONSTRAINT_SCHEMA CDBNAME VARCHAR(128) Name of the schema containing the constraint.

CONSTRAINT_NAME RELNAME VARCHAR(128) Name of the constraint.

UNIQUE_CONSTRAINT_SCHEMA UNQDBNAME VARCHAR(128)

Nullable

Name of the SQL schema containing the unique
constraint referenced by the referential constraint.

Contains the null value if the unique constraint does
not exist. This is usually caused by restoring the table
without its parent table.

UNIQUE_CONSTRAINT_NAME UNQNAME VARCHAR(128)

Nullable

Name of the unique constraint referenced by the
referential constraint.

Contains the null value if the unique constraint does
not exist. This is usually caused by restoring the table
without its parent table.

MATCH_OPTION MATCH VARCHAR(7) Match option. Will always be NONE.

UPDATE_RULE UPDATE VARCHAR(11) Update Rule.

• NO ACTION

• RESTRICT

DELETE_RULE DELETE VARCHAR(11) Delete Rule

• NO ACTION

• CASCADE

• SET NULL

• SET DEFAULT

• RESTRICT

COLUMN_COUNT COLCOUNT INTEGER Number of columns in the foreign key.

SYSTEM_CONSTRAINT_SCHEMA SYS_CDNAME CHAR(10) Name of the system schema containing the constraint.

SYSTEM_UNIQUE_CONSTRAINT_SCHEMA SYS_UDNAME CHAR(10)

Nullable

Name of the system schema containing the constraint.

Contains the null value if the unique constraint does
not exist. This is usually caused by restoring the table
without its parent table.

Appendix F. Db2 for i catalog views 1833

SYSROUTINEAUTH
The SYSROUTINEAUTH view contains one row for every privilege granted on a routine. Note that this
catalog view cannot be used to determine whether a user is authorized to a routine because the privilege
to use a routine could be acquired through a group user profile or special authority (such as *ALLOBJ).

The following table describes the columns in the SYSROUTINEAUTH view:

Table 203. SYSROUTINEAUTH view

Column Name
System Column
Name Data Type Description

GRANTOR GRANTOR VARCHAR(128)

Nullable

Reserved. Contains the null value.

GRANTEE GRANTEE VARCHAR(128) The user profile to which the privilege is granted.

ROUTINE_SCHEMA RTNSCHEMA VARCHAR(128) Name of the schema

ROUTINE_NAME RTNNAME VARCHAR(128) Name of the routine

SPECIFIC_SCHEMA SPECSCHEMA VARCHAR(128) Specific name of the schema

SPECIFIC_NAME SPECNAME VARCHAR(128) Specific name of the routine

PRIVILEGE_TYPE PRIVTYPE VARCHAR(10) The privilege granted:

ALTER
The privilege to alter the routine.

EXECUTE
The privilege to execute the routine.

IS_GRANTABLE GRANTABLE VARCHAR(3) Indicates whether the privilege is grantable to other
users.

NO
The privilege is not grantable.

YES
The privilege is grantable.

AUTHORIZATION_LIST AUTL VARCHAR(10)

Nullable

If the privilege is granted through an authorization,
contains the name of the authorization list.

Contains the null value if the privilege is not granted
through an authorization list.

1834 IBM i: Db2 for i SQL Reference

SYSROUTINEDEP
The SYSROUTINEDEP view records the dependencies of routines.

The following table describes the columns in the SYSROUTINEDEP view:

Table 204. SYSROUTINEDEP view

Column name
System Column
Name Data Type Description

SPECIFIC_SCHEMA SPECSCHEMA VARCHAR(128) Schema name of the routine instance.

SPECIFIC_NAME SPECNAME VARCHAR(128) Specific name of the routine instance.

OBJECT_CATALOG BCATALOG VARCHAR(128)

Nullable

Contains the null value
if the relational database
name was not specified.

Name of the relational database that contains the
object.

OBJECT_SCHEMA BSCHEMA VARCHAR(128) Name of the SQL schema that contains the object.

OBJECT_NAME BNAME VARCHAR(128) Name of the object the routine is dependent on.

OBJECT_TYPE BTYPE CHAR(24) Indicates the object type of the object referenced in
the routine:

ALIAS
The object is an alias.

FUNCTION
The object is a function.

INDEX
The object is an index.

MATERIALIZED QUERY TABLE
The object is a materialized query table.

PROCEDURE
The object is a procedure.

SCHEMA
The object is a schema.

SEQUENCE
The object is a sequence.

TABLE
The object is a table.

If the object does not exist at the time the
routine is created or the OBJECT_SCHEMA is
*LIBL, TABLE may be returned even though the
actual object used at run time may be an alias,
materialized query table, or view.

TYPE
The object is a distinct type.

VARIABLE
The object is a variable.

VIEW
The object is a view.

PARM_SIGNATURE SIGNATURE BLOB(3M)

Nullable

This column identifies the routine signature.

Contains the null value if the object is not a routine.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary storage pool
(IASP) number of the object.

NUMBER_OF_PARMS NUMPARMS SMALLINT

Nullable

Identifies the number of parameters.

Contains the null value if the object is not a routine.

Appendix F. Db2 for i catalog views 1835

SYSROUTINES
The SYSROUTINES table contains one row for each procedure created by the CREATE PROCEDURE
statement and each function created by the CREATE FUNCTION statement.

The following table describes the columns in the SYSROUTINES table:

Table 205. SYSROUTINES table

Column Name
System Column
Name Data Type Description

SPECIFIC_SCHEMA SPECSCHEMA VARCHAR(128) Schema name of the routine instance.

SPECIFIC_NAME SPECNAME VARCHAR(128) Specific name of the routine instance.

ROUTINE_SCHEMA RTNSCHEMA VARCHAR(128) Name of the SQL schema (schema) that contains the
routine.

ROUTINE_NAME RTNNAME VARCHAR(128) Name of the routine.

ROUTINE_TYPE RTNTYPE VARCHAR(9) Type of the routine.

PROCEDURE
This is a procedure.

FUNCTION
This is a function.

ROUTINE_CREATED RTNCREATE TIMESTAMP Identifies the timestamp when the routine was
created.

ROUTINE_DEFINER DEFINER VARCHAR(128) Name of the user that defined the routine.

ROUTINE_BODY BODY VARCHAR(8) The type of the routine body:

EXTERNAL
This is an external routine.

SQL
This is an SQL routine.

EXTERNAL_NAME EXTNAME VARCHAR(279)

Nullable

This column identifies the external program name.

• For SQL functions or ILE service programs, the
external program name is schema-name/service-
program-name(entry-point-name).

• For REXX, the external program name is schema-
name/source-file-name(member-name).

• For Java programs, the external program name
is an optional jar-id followed by a fully-qualified-
class-name!method-name or fully-qualified-class-
name.method-name.

• For all other languages, the external program name
is schema-name/program-name.

Contains the null value if this is a system-generated
function.

1836 IBM i: Db2 for i SQL Reference

Table 205. SYSROUTINES table (continued)

Column Name
System Column
Name Data Type Description

EXTERNAL_LANGUAGE LANGUAGE VARCHAR(8)

Nullable

If this is an external routine, this column identifies the
external program's language.

C
The external program is written in C.

C++
The external program is written in C++.

CL
The external program is written in CL.

COBOL
The external program is written in COBOL.

COBOLLE
The external program is written in ILE COBOL.

FORTRAN
The external program is written in FORTRAN.

JAVA
The external program is written in JAVA.

PLI
The external program is written in PL/I.

REXX
The external program is a REXX procedure.

RPG
The external program is written in RPG.

RPGLE
The external program is written in ILE RPG.

Contains the null value if this is not an external routine.

PARAMETER_STYLE PARM_STYLE VARCHAR(7)

Nullable

If this is an external routine, this column identifies the
parameter style (calling convention).

DB2GNRL
This is the DB2GENERAL calling convention.

DB2SQL
This is the DB2SQL calling convention.

GENERAL
This is the GENERAL calling convention.

JAVA
This is the JAVA calling convention.

NULLS
This is the GENERAL WITH NULLS calling
convention.

SQL
This is the SQL standard calling convention.

Contains the null value if this is not an external routine.

IS_DETERMINISTIC DETERMINE VARCHAR(3) This column identifies whether the routine is
deterministic. That is, whether a call to the routine
with the same arguments will always return the same
result.

NO
The routine is not deterministic.

YES
The routine is global deterministic.

STM
The routine is statement deterministic.

Appendix F. Db2 for i catalog views 1837

Table 205. SYSROUTINES table (continued)

Column Name
System Column
Name Data Type Description

SQL_DATA_ACCESS DATAACCESS VARCHAR(8)

Nullable

This column identifies whether a routine contains SQL
and whether it reads or modifies data.

NONE
The routine does not contain any SQL
statements.

CONTAINS
The routine contains SQL statements.

READS
The routine possibly reads data from a table or
view.

MODIFIES
The routine possibly modifies data in a table or
view or issues SQL DDL statements.

SQL_PATH SQL_PATH VARCHAR(3483)

Nullable

If this is an SQL routine, this column identifies the
path.

Contains the null value if this is not an SQL routine.

PARM_SIGNATURE SIGNATURE VARCHAR(16000) This column identifies the routine signature.

NUMBER_OF_RESULTS NUMRESULTS SMALLINT Identifies the number of results.

MAX_DYNAMIC_RESULT_SETS RESULTS SMALLINT Identifies the maximum number of result sets
returned. 0 indicates that there are no result sets.

IN_PARMS IN_PARMS SMALLINT Identifies the number of input parameters. 0 indicates
that there are no input parameters.

OUT_PARMS OUT_PARMS SMALLINT Identifies the number of output parameters. 0
indicates that there are no output parameters.

INOUT_PARMS INOUT_PARM SMALLINT Identifies the number of input/output parameters. 0
indicates that there are no input/output parameters.

PARSE_TREE PARSE_TREE VARCHAR(1024) FOR BIT
DATA

Identifies the parse tree of the CREATE FUNCTION
or CREATE PROCEDURE statement. It is only used
internally.

PARM_ARRAY PARM_ARRAY BLOB(4M) If this is an external routine, this column identifies
the parameter array built from the CREATE FUNCTION
or CREATE PROCEDURE statement. It is only used
internally.

LONG_COMMENT REMARKS VARGRAPHIC(2000) CCSID
1200

Nullable

A character string supplied with the COMMENT
statement.

Contains the null value if there is no long comment.

ROUTINE_DEFINITION ROUTINEDEF DBCLOB(2M) CCSID
13488

Nullable

If this is an SQL routine, this column contains the SQL
routine body.

If this is an obfuscated routine, the text starts with
the WRAPPED keyword and is followed by the encoded
form of the statement text.

Contains the null value if this is not an SQL routine.

FUNCTION_ORIGIN ORIGIN CHAR(1) Identifies the type of function. If this is a procedure,
this column contains a blank.

B
This is a built-in function (defined by Db2 for i).

E
This is a user-defined function.

U
This is a user-defined function that is sourced on
another function.

S
This is a system-generated function.

1838 IBM i: Db2 for i SQL Reference

Table 205. SYSROUTINES table (continued)

Column Name
System Column
Name Data Type Description

FUNCTION_TYPE TYPE CHAR(1) Identifies the form of the function. If this is a
procedure, this column contains a blank.

S
This is a scalar function.

C
This is a column function.

T
This is a table function.

EXTERNAL_ACTION EXTACTION CHAR(1)

Nullable

Identifies whether the invocation of the function has
external effects.

E
This function has external side effects.

N
This function does not have any external side
effects.

Contains the null value if the routine is a procedure.

IS_NULL_CALL NULL_CALL VARCHAR(3)

Nullable

Identifies whether the function needs to be called if an
input parameter is the null value.

NO
This function need not be called if an input
parameter is the null value. If this is a scalar
function, the result of the function is implicitly
null if any of the operands are null. If this is a
table function, the result of the function is an
empty table if any of the operands are the null
value.

YES
This function must be called even if an input
operand is null.

Contains the null value if the routine is a procedure.

SCRATCH_PAD SCRATCHPAD INTEGER

Nullable

Identifies whether the address of a static memory area
(scratch pad) is passed to the function.

0
The function does not have a scratch pad.

integer
Indicates the size of the scratch pad passed to
the function.

Contains the null value if the routine is a procedure.

FINAL_CALL FINAL_CALL VARCHAR(3)

Nullable

Indicates whether a final call to the function should be
made to allow the function to clean up its work areas
(scratch pads).

NO
No final call is made.

YES
A final call to the function is made when the
statement is complete.

Contains the null value if the routine is a procedure.

PARALLELIZABLE PARALLEL VARCHAR(3)

Nullable

Identifies whether the function can be run in parallel.

NO
The function must be synchronous.

YES
The function can be run in parallel.

Contains the null value if the routine is a procedure.

Appendix F. Db2 for i catalog views 1839

Table 205. SYSROUTINES table (continued)

Column Name
System Column
Name Data Type Description

DBINFO DBINFO VARCHAR(3)

Nullable

Identifies whether information about the database is
passed to the routine.

NO
No database information is passed to the routine.

YES
Information about the database is passed to the
routine.

Contains the null value if the routine is a procedure.

SOURCE_SPECIFIC_SCHEMA SRCSCHEMA VARCHAR(128)

Nullable

If this is sourced function and the source is user-
defined, this column contains the name of the source
schema. If this is a sourced function and the source is
built-in, this column contains 'QSYS2'.

Contains the null value if the routine is not a sourced
function.

SOURCE_SPECIFIC_NAME SRCNAME VARCHAR(128)

Nullable

If this is sourced function and the source is user-
defined, this column contains the specific name of the
source function name.

Contains the null value if the routine is not a sourced
function.

IS_USER_DEFINED_CAST CAST_FUNC VARCHAR(3)

Nullable

Identifies whether the this function is a cast function
created when a distinct type was created.

NO
This function is not a cast function.

YES
This function is a cast function.

Contains the null value if the routine is a procedure.

CARDINALITY CARD BIGINT

Nullable

Specifies the cardinality for a table function.

Contains the null value if the function is not a table
function or if cardinality was not specified.

FENCED FENCED VARCHAR(3)

Nullable

Identifies whether a function is fenced.

NO
The function is not fenced.

YES
The function is fenced.

Contains the null value if the routine is a procedure.

COMMIT_ON_RETURN CMTONRET VARCHAR(3)

Nullable

This column identifies whether the procedure commits
on a successful return from the procedure.

NO
A commit is not performed on successful return
from the procedure.

YES
A commit is performed on successful return from
the procedure.

AUT
Procedure will commit or rollback autonomously.

Contains the null value if the routine is a function.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary storage pool
(IASP) number.

NEW_SAVEPOINT_LEVEL NEWSAVEPTL VARCHAR(3)

Nullable

This column identifies whether the routine starts a
new savepoint level.

NO
A new savepoint level is not started.

YES
A new savepoint level is started.

LAST_ALTERED ALTEREDTS TIMESTAMP

Nullable

Timestamp when routine was last altered. Contains
null if the routine has never been altered.

1840 IBM i: Db2 for i SQL Reference

Table 205. SYSROUTINES table (continued)

Column Name
System Column
Name Data Type Description

DEBUG_MODE DEBUG_MODE CHAR(1) Identifies whether the routine is debuggable.

0
The routine is not debuggable.

1
The routine is debuggable by the Unified
Debugger.

2
The routine is debuggable by the system
debugger.

N
The routine is disabled from being debugged by
the Unified Debugger.

DEBUG_DATA DEBUG_DATA CLOB(1M)

Nullable

Reserved. Contains the null value.

ROUNDING_MODE DECFLTRND CHAR(1)

Nullable

If this is an SQL routine, identifies the DECFLOAT
rounding mode.

C
ROUND_CEILING

D
ROUND_DOWN

F
ROUND_FLOOR

G
ROUND_HALF_DOWN

E
ROUND_HALF_EVEN

H
ROUND_HALF_UP

U
ROUND_UP

Contains the null value if the routine is not an SQL
routine.

ROUTINE_TEXT LABEL VARGRAPHIC(50) CCSID
1200

Nullable

Contains the label for a routine. Contains the null value
if a label does not exist.

SECURE SECURE CHAR(1) Indicates whether the routine is considered secure for
row access control and column access control.

N
The routine is not considered secure for row
access control and column access control.

Y
The routine is considered secure for row access
control and column access control.

ROUTINE_ENVIRONMENT RTN_ENV BLOB(16M)

Nullable

Contains internal environment information for a
routine defined with default expressions. Contains the
null value if this is a procedure or function with no
default expressions.

ROUTINE_DEFAULT_QDT RTNDFTQDT BLOB(1M)

Nullable

Contains internal structure for a routine defined with
default expressions. Contains the null value if this is a
procedure or function with no default expressions.

Appendix F. Db2 for i catalog views 1841

SYSSCHEMAAUTH
The SYSSCHEMAAUTH view contains one row for every privilege granted on a schema. Note that this
catalog view cannot be used to determine whether a user is authorized to a schema because the privilege
to use a schema could be acquired through a group user profile or special authority (such as *ALLOBJ).

The following table describes the columns in the SYSSCHEMAAUTH view:

Table 206. SYSSCHEMAAUTH view

Column Name
System Column
Name Data Type Description

GRANTOR GRANTOR VARCHAR(128)

Nullable

Reserved. Contains the null value.

GRANTEE GRANTEE VARCHAR(128) The user profile to which the privilege is granted.

SCHEMA_NAME NAME VARCHAR(128) Name of the schema

PRIVILEGE_TYPE PRIVTYPE VARCHAR(10) The privilege granted:

CREATEIN
The privilege to create objects in the schema.

USAGE
The privilege to use the schema.

IS_GRANTABLE GRANTABLE VARCHAR(3) Indicates whether the privilege is grantable to other
users.

NO
The privilege is not grantable.

YES
The privilege is grantable.

AUTHORIZATION_LIST AUTL VARCHAR(10)

Nullable

If the privilege is granted through an authorization,
contains the name of the authorization list.

Contains the null value if the privilege is not granted
through an authorization list.

SYSTEM_SCHEMA_NAME SYS_NAME CHAR(10) System name of the schema

1842 IBM i: Db2 for i SQL Reference

SYSSCHEMAS
The SYSSCHEMAS view contains one row for every schema in the relational database.

For information related to a single schema, a query that uses table function OBJECT_STATISTICS will
perform much better than querying SYSSCHEMAS. For example:

 SELECT *
 FROM TABLE (QSYS2.OBJECT_STATISTICS('MJATST ','LIB ')) AS A

The following table describes the columns in the SYSSCHEMAS view:

Table 207. SYSSCHEMAS view

Column Name
System Column
Name Data Type Description

SCHEMA_NAME NAME VARCHAR(128) Name of the SQL schema.

SCHEMA_OWNER OWNER VARCHAR(128) Owner of the schema.

SCHEMA_CREATOR CREATOR VARCHAR(128) Name of the user that created the schema.

CREATION_TIMESTAMP TIMESTAMP TIMESTAMP Timestamp when the schema was created.

SCHEMA_SIZE SIZE DECIMAL(15,0) Size of the schema (in bytes).

SCHEMA_TEXT LABEL VARGRAPHIC(50) CCSID
1200

Nullable

A character string supplied with the LABEL statement.

Contains the null value if the schema has no text.

SYSTEM_SCHEMA_NAME SYS_NAME CHAR(10) System schema name.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary storage pool
(IASP) number.

Appendix F. Db2 for i catalog views 1843

SYSSEQUENCEAUTH
The SYSSEQUENCEAUTH view contains one row for every privilege granted on a sequence. Note that
this catalog view cannot be used to determine whether a user is authorized to a sequence because the
privilege to use a sequence could be acquired through a group user profile or special authority (such as
*ALLOBJ).

The following table describes the columns in the SYSSEQUENCEAUTH view:

Table 208. SYSSEQUENCEAUTH view

Column Name
System Column
Name Data Type Description

GRANTOR GRANTOR VARCHAR(128)

Nullable

Reserved. Contains the null value.

GRANTEE GRANTEE VARCHAR(128) The user profile to which the privilege is granted.

SEQUENCE_SCHEMA SEQSCHEMA VARCHAR(128) Name of the schema

SEQUENCE_NAME SEQNAME VARCHAR(128) Name of the sequence

PRIVILEGE_TYPE PRIVTYPE VARCHAR(10) The privilege granted:

ALTER
The privilege to alter the sequence.

USAGE
The privilege to use the sequence.

IS_GRANTABLE GRANTABLE VARCHAR(3) Indicates whether the privilege is grantable to other
users.

NO
The privilege is not grantable.

YES
The privilege is grantable.

AUTHORIZATION_LIST AUTL VARCHAR(10)

Nullable

If the privilege is granted through an authorization,
contains the name of the authorization list.

Contains the null value if the privilege is not granted
through an authorization list.

SYSTEM_SEQ_SCHEMA SYSSSCHEMA CHAR(10) System name of the schema

SYSTEM_SEQ_NAME SYSSNAME CHAR(10) System name of the sequence

1844 IBM i: Db2 for i SQL Reference

SYSSEQUENCES
The SYSSEQUENCES view contains one row for every sequence object in the SQL schema.

The following table describes the columns in the SYSSEQUENCES view:

Table 209. SYSSEQUENCES view

Column name
System Column
Name Data Type Description

SEQUENCE_SCHEMA SEQSCHEMA VARCHAR(128) The name of the SQL schema containing the sequence.

SEQUENCE_NAME SEQNAME VARCHAR(128) Name of the sequence.

MAXIMUM_VALUE MAXVALUE DECIMAL(63,0) Maximum value of the sequence.

MINIMUM_VALUE MINVALUE DECIMAL(63,0) Minimum value of the sequence.

INCREMENT INCREMENT INTEGER Increment value of the sequence.

CYCLE_OPTION CYCLE VARCHAR(3) Identifies whether the sequence values will continue
to be generated after the minimum or maximum value
has been reached.

NO
Values will not continue to be generated.

YES
Values will continue to be generated.

CACHE CACHE INTEGER Specifies the number of sequence values that may be
preallocated for faster access. Zero indicates that the
values will not be preallocated.

ORDER ORDER VARCHAR(3) Specifies whether the sequence values must be
generated in order of the request.

NO
Values do not need to be generated in order of
the request.

YES
Values must be generated in order of the
request.

DATA_TYPE DATA_TYPE VARCHAR(128) Type of sequence:

BIGINT
Big number

INTEGER
Large number

SMALLINT
Small number

DECIMAL
Packed decimal

NUMERIC
Zoned decimal

DISTINCT
Distinct type

NUMERIC_PRECISION PRECISION INTEGER The precision of all numeric columns.

USER_DEFINED_TYPE_SCHEMA TYPESCHEMA VARCHAR(128)

Nullable

The name of the schema if this is a distinct type.

Contains the null value if the sequence is not a distinct
type.

USER_DEFINED_TYPE_NAME TYPENAME VARCHAR(128)

Nullable

The name of the distinct type.

Contains the null value if the sequence is not a distinct
type.

START START DECIMAL(63,0) Starting value of the sequence.

MAXASSIGNEDVAL MAXASNVAL DECIMAL(63,0)

Nullable

Last possible assigned sequence value. This value
includes any values that were cached, but not used.

Contains the null value when the sequence is created.
Is not null after the first value is assigned.

Appendix F. Db2 for i catalog views 1845

Table 209. SYSSEQUENCES view (continued)

Column name
System Column
Name Data Type Description

SEQUENCE_DEFINER DEFINER VARCHAR(128) The authorization ID under which the sequence was
created.

SEQUENCE_CREATED CREATEDTS TIMESTAMP Timestamp when the sequence was created.

LAST_ALTERED_TIMESTAMP ALTEREDTS TIMESTAMP Timestamp when the sequence was last altered.

SEQUENCE_TEXT LABEL VARGRAPHIC(50) CCSID
1200

Nullable

A character string supplied with the LABEL statement
(sequence text).

Contains the null value if the sequence has no
sequence text.

LONG_COMMENT REMARKS VARGRAPHIC(2000) CCSID
1200

Nullable

A character string supplied with the COMMENT
statement.

Contains the null value if there is no long comment.

SYSTEM_SEQ_SCHEMA SYSSSCHEMA CHAR(10) The system name of the schema

SYSTEM_SEQ_NAME SYSSNAME CHAR(10) The system name of the sequence

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary storage pool
(IASP) number.

1846 IBM i: Db2 for i SQL Reference

SYSTABAUTH
The SYSTABAUTH view contains one row for every privilege granted on a table or view. Note that this
catalog view cannot be used to determine whether a user is authorized to a table or view because the
privilege to use a table or view could be acquired through a group user profile or special authority (such as
*ALLOBJ).

The following table describes the columns in the SYSTABAUTH view:

Table 210. SYSTABAUTH view

Column Name
System Column
Name Data Type Description

GRANTOR GRANTOR VARCHAR(128)

Nullable

Reserved. Contains the null value.

GRANTEE GRANTEE VARCHAR(128) The user profile to which the privilege is granted.

TABLE_SCHEMA DBNAME VARCHAR(128) Name of the schema

TABLE_NAME NAME VARCHAR(128) Name of the table

PRIVILEGE_TYPE PRIVTYPE VARCHAR(10) The privilege granted:

ALTER
The privilege to alter the table.

DELETE
The privilege to delete rows from the table.

INDEX
The privilege to create an index on the table.

INSERT
The privilege to insert rows into the table.

REFERENCES
The privilege to reference the table in a
referential constraint.

SELECT
The privilege to select rows from the table.

UPDATE
The privilege to update the table.

IS_GRANTABLE GRANTABLE VARCHAR(3) Indicates whether the privilege is grantable to other
users.

NO
The privilege is not grantable.

YES
The privilege is grantable.

AUTHORIZATION_LIST AUTL VARCHAR(10)

Nullable

If the privilege is granted through an authorization,
contains the name of the authorization list.

Contains the null value if the privilege is not granted
through an authorization list.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) System name of the schema

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) System name of the table or view

Appendix F. Db2 for i catalog views 1847

SYSTABLEDEP
The SYSTABLEDEP view records the dependencies of materialized query tables.

The following table describes the columns in the SYSTABLEDEP view:

Table 211. SYSTABLEDEP view

Column name
System Column
Name Data Type Description

TABLE_SCHEMA TABSCHEMA VARCHAR(128) Name of the SQL schema that contains the table, view
or alias

TABLE_NAME TABNAME VARCHAR(128) Name of the table, view or alias. This is the SQL table,
view or alias name if it exists; otherwise, it is the
system table, view or alias name.

OBJECT_SCHEMA BSCHEMA VARCHAR(128) Name of the SQL schema that contains the object.

OBJECT_NAME BNAME VARCHAR(128) Name of the object the materialized query table is
dependent on.

OBJECT_TYPE BTYPE CHAR(24) Indicates the object type of the object referenced in
the materialized query table:

FUNCTION
The object is a function.

TABLE
The object is a table.

TYPE
The object is a distinct type.

VIEW
The object is a view.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary storage pool
(IASP) number of the object.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) System schema name

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) System table name.

PARM_SIGNATURE SIGNATURE BLOB(3M)

Nullable

This column identifies the routine signature.

Contains the null value if the object is not a routine.

1848 IBM i: Db2 for i SQL Reference

SYSTABLEINDEXSTAT
The SYSTABLEINDEXSTAT view contains one row for every index that has at least one partition or member
built over a table. If the index is over more than one partition or member, the statistics include all those
partitions and members. If the table is a distributed table, the partitions that reside on other database
nodes are not included. They are contained in the catalog views of the other database nodes.

The following table describes the columns in the SYSTABLEINDEXSTAT view:

Table 212. SYSTABLEINDEXSTAT view

Column name
System Column
Name Data Type Description

TABLE_SCHEMA TABSCHEMA VARCHAR(128) Name of the SQL schema that contains the table.

TABLE_NAME TABNAME VARCHAR(128) Name of the table.

PARTITION_TYPE PARTTYPE CHAR(1) The type of the table partitioning:

blank
The table is not partitioned.

H
This is data hash partitioning.

R
This is data range partitioning.

D
This is distributed database hash partitioning.

NUMBER_PARTITIONS NBRPARTS INTEGER Number of partitions or members of the table.

NUMBER_DISTRIBUTED_PARTITIONS DSTPARTS INTEGER

Nullable

If the table is a distributed table, contains the total
number of partitions. If the table is not a distributed
table, contains null.

INDEX_SCHEMA INDSCHEMA VARCHAR(128) Name of the SQL schema that contains the index,
logical file, or constraint.

INDEX_NAME INDNAME VARCHAR(128) Name of the index, logical file, or constraint.

INDEX_TYPE INDTYPE VARCHAR(11) The type of the index:

INDEX
The index is an SQL index.

LOGICAL
The index is part of a logical file.

PRIMARY KEY
The index is a primary key constraint.

UNIQUE
The index is a unique constraint.

REFERENTIAL
The index is a foreign key constraint.

NUMBER_KEY_COLUMNS INDKEYS BIGINT Number of columns that define the index key.

COLUMN_NAMES COLNAMES VARCHAR(1024) A comma separated list of column names that define
the index key. If the length of all the column names
exceeds 1024, '...' is returned at the end of the column
value.

NUMBER_LEAF_PAGES NLEAF BIGINT Not applicable for Db2 for i. Will always be -1.

NUMBER_LEVELS NLEVELS SMALLINT Not applicable for Db2 for i. Will always be -1.

FIRSTKEYCARD KEYCARD1 BIGINT The total number of distinct first key values for all
index partitions. If the index is an encoded vector
index, this is the total number of unique values for the
entire index key.

FIRST2KEYCARD KEYCARD2 BIGINT The total number of distinct keys using the first two
columns for all index partitions. If the index is an
encoded vector index, -1 is returned.

FIRST3KEYCARD KEYCARD3 BIGINT The total number of distinct keys using the first three
columns for all index partitions. If the index is an
encoded vector index, -1 is returned.

Appendix F. Db2 for i catalog views 1849

Table 212. SYSTABLEINDEXSTAT view (continued)

Column name
System Column
Name Data Type Description

FIRST4KEYCARD KEYCARD4 BIGINT The total number of distinct keys using the first four
columns for all index partitions. If the index is an
encoded vector index, -1 is returned.

FULLKEYCARD KEYCARDF BIGINT The total number of distinct full key values for all index
partitions. If the index has more than 4 key columns or
is an encoded vector index, -1 is returned.

CLUSTERRATIO CLSRATIO SMALLINT Not applicable for Db2 for i. Will always be -1.

CLUSTERFACTOR CLSFACTOR DOUBLE Not applicable for Db2 for i. Will always be -1.

SEQUENTIAL_PAGES SEQPAGES BIGINT Not applicable for Db2 for i. Will always be -1.

DENSITY DENSITY INTEGER Not applicable for Db2 for i. Will always be -1.

PAGE_FETCH_PAIRS FETCHPAIRS VARCHAR(520) Not applicable for Db2 for i. Will always be -1.

NUMBER_KEYS NUMRIDS BIGINT The total number of keys for all index partitions. If the
index is invalid or is an encoded vector index, -1 is
returned.

NUMRIDS_DELETED NUMRIDSDLT BIGINT Not applicable for Db2 for i. Will always be 0.

NUM_EMPTY_LEAFS EMPTYLEAFS BIGINT Not applicable for Db2 for i. Will always be 0.

AVERAGE_RANDOM_FETCH_PAGES AVGRNDFTCH DOUBLE Not applicable for Db2 for i. Will always be -1.

AVERAGE_RANDOM_PAGES AVGRNDPAGE DOUBLE Not applicable for Db2 for i. Will always be -1.

AVERAGE_SEQUENCE_GAP AVGSEQGAP DOUBLE Not applicable for Db2 for i. Will always be -1.

AVERAGE_SEQUENCE_FETCH_GAP AVGSEQFGAP DOUBLE Not applicable for Db2 for i. Will always be -1.

AVERAGE_SEQUENCE_PAGES AVGSEQPAGE DOUBLE Not applicable for Db2 for i. Will always be -1.

AVERAGE_SEQUENCE_FETCH_PAGES AVGSEQFPAG DOUBLE Not applicable for Db2 for i. Will always be -1.

AVGPARTITION_CLUSTERRATIO PCLSRATIO SMALLINT Not applicable for Db2 for i. Will always be -1.

AVGPARTITION_CLUSTERFACTOR PCLSFACTOR DOUBLE Not applicable for Db2 for i. Will always be -1.

AVGPARTITION_PAGE_FETCH_PAIRS PFETCHPAIR VARCHAR(520) Not applicable for Db2 for i. Will always be an empty
string.

DATAPARTITION_CLUSTERFACTOR DCLSFACTOR DOUBLE A statistic measuring the "clustering" of the index keys
with regard to data partitions. It is a number between
0 and 1, with 1 representing perfect clustering and 0
representing no clustering.

INDCARD INDCARD BIGINT Number of keys in the index. If the index is invalid or is
an encoded vector index, -1 is returned.

INDEX_VALID VALID CHAR(1) An indication of whether any index is invalid and needs
to be rebuilt:

0
At least one partition or member for the index is
invalid.

1
All partitions or members for the index are valid.

2
The index was saved with STG(*FREE).

INDEX_HELD HELD CHAR(1) An indication of whether a pending rebuild of the index
is currently held by the user:

0
No rebuilds are pending or held for any partition
or member of the index.

1
A pending rebuild for at least one partition or
member for the index is held.

CREATE_TIMESTAMP CREATED TIMESTAMP Maximum timestamp when any partition or member of
the index was created.

LAST_BUILD_TIMESTAMP LASTBUILD TIMESTAMP Maximum timestamp when any partition or member of
the index was last rebuilt.

1850 IBM i: Db2 for i SQL Reference

Table 212. SYSTABLEINDEXSTAT view (continued)

Column name
System Column
Name Data Type Description

LAST_QUERY_USE LASTQRYUSE TIMESTAMP

Nullable

Maximum timestamp of the last time any partition or
member of the index was used in a query since the last
time the usage statistics were reset. If no partition or
member of the index has ever been used in a query
since the last time the usage statistics were reset,
contains null.

LAST_STATISTICS_USE LASTSTUSE TIMESTAMP

Nullable

Maximum timestamp of the last time any partition or
member of the index was used by the optimizer for
statistics since the last time the usage statistics were
reset. If no partition or member of the index has ever
been used for statistics since the last time the usage
statistics were reset, contains null.

QUERY_USE_COUNT QRYUSECNT BIGINT Total number of times any partition or member of the
index was used in a query since the last time the usage
statistics were reset. If no partition or member of the
index has ever been used in a query since the last time
the usage statistics were reset, contains 0.

QUERY_STATISTICS_COUNT QRYSTCNT BIGINT Total number of times any partition or member of the
index was used by the optimizer for statistics since
the last time the usage statistics were reset. If no
partition or member of the index has ever been used
for statistics since the last time the usage statistics
were reset, contains 0.

LAST_USED_TIMESTAMP LASTUSED TIMESTAMP

Nullable

Maximum timestamp of the last time any partition
or member of the index was used directly by an
application for native record I/O or SQL operations.
If no partition or member of the index has ever been
used, contains null.

DAYS_USED_COUNT DAYSUSED INTEGER Maximum number of days any partition or member of
the index was used directly by an application for native
record I/O or SQL operations since the last time the
usage statistics were reset. If no partition or member
of the index has ever been used since the last time the
usage statistics were reset, contains 0.

LAST_RESET_TIMESTAMP LASTRESET TIMESTAMP

Nullable

Maximum timestamp of the last time the usage
statistics were reset for the index. For more
information see the Change Object Description
(CHGOBJD) command. If the index's last used
timestamp has never been reset, contains null.

INDEX_SIZE SIZE BIGINT Size (in bytes) of the data space index used by all
partitions or members of the index.

ESTIMATED_BUILD_TIME ESTBLDTIME INTEGER Maximum estimated time (in seconds) required to
rebuild any partition or member of the index.

LAST_BUILD_TIME LSTBLDTIME INTEGER

Nullable

Elapsed time (in seconds) the last time the index was
built. Contains null if the last build information is not
available.

LAST_BUILD_KEYS LSTBLDKEYS BIGINT

Nullable

Number of keys the last time the index was built.
Contains null if the last build information is not
available.

LAST_BUILD_DEGREE LSTBLDDEG SMALLINT

Nullable

Parallel degree the last time the index was built.
Contains null if the last build information is not
available.

DELAYED_MAINT_KEYS DLYKEYS INTEGER

Nullable

Maximum number of keys that need to be inserted
into the binary tree of any partition or member of
a delayed maintenance index. If the index is not a
delayed maintenance index, contains null.

SPARSE SPARSE CHAR(1) Indicates whether the index contains keys for all the
rows of its depended on table:

0
The index contains keys for all the rows of its
depended on table.

1
The index is a select/omit logical file and does
not contain keys for all the rows of its depended
on table.

Appendix F. Db2 for i catalog views 1851

Table 212. SYSTABLEINDEXSTAT view (continued)

Column name
System Column
Name Data Type Description

DERIVED_KEY DERIVED CHAR(1) Indicates whether the any key columns in the index
are expressions:

0
No key columns of the index are expressions.

1
At least one key column is an expression.
Currently, this is only possible in a DDS-created
logical file or temporary index.

PARTITIONED PARTITION CHAR(1) Indicates whether the index is partitioned or not
partitioned:

0
An SQL index is not partitioned (spans multiple
partitions).

1
The index is not built over a partitioned table or
built over a partitioned table and is partitioned
(does not span multiple partitions or members).

2
The index is a logical file built over multiple
partitions or members.

ACCPTH_TYPE ACCPTHTYPE CHAR(1) Indicates the type of index:

0
The index is a maximum 1 terabyte (*MAX1TB)
binary radix index.

1
The index is a maximum 4 gigabyte (*MAX4GB)
binary radix index.

2
The index is an encoded vector index.

UNIQUE UNIQUE CHAR(1) Indicates whether an index is unique:

0
The index is a UNIQUE index.

1
The index is a UNIQUE WHERE NOT NULL index.

2
The index is a non-unique first-in-first-out (FIFO)
index.

3
The index is a non-unique last-in-last-out (LIFO)
index.

4
The index is a non-unique first-change-first-out
(FCFO) index.

SRTSEQ_TYPE SRTSEQ CHAR(1) Indicates whether the index uses a collating
sequence:

0
The index does not use a collating table.

1
The index uses an alternate collating sequence
(ALTSEQ).

2
The index uses a sort sequence (SRTSEQ).

LOGICAL_PAGE_SIZE PAGE_SIZE INTEGER

Nullable

The logical page size of the index. If the index is an
encoded vector index, contains null.

OVERFLOW_VALUES OVERFLOW INTEGER

Nullable

Maximum number of distinct key values that have
overflowed any partition or member of the encoded
vector index. If the index is not an encoded vector
index, contains null.

EVI_CODE_SIZE CODE_SIZE INTEGER

Nullable

The size of the byte code of the encoded vector index.
If the index is not an encoded vector index, contains
null.

1852 IBM i: Db2 for i SQL Reference

Table 212. SYSTABLEINDEXSTAT view (continued)

Column name
System Column
Name Data Type Description

LOGICAL_READS LGLREADS BIGINT Total number of logical read operations for any
partition or member of the index since the last IPL.

PHYSICAL_READS PHYREADS BIGINT Not applicable for Db2 for i. Will always be 0.

SEQUENTIAL_READS SEQREADS BIGINT Number of sequential read operations for the index
since the last IPL.

RANDOM_READS RANREADS BIGINT Number of random read operations for the index since
the last IPL.

SEARCH_CONDITION IXWHERECON VARGRAPHIC(1024) CCSID
1200

If an index is sparse, the search condition of the index.
If the length of the search condition exceeds 1024, '...'
is returned at the end of the column value.

KEEP_IN_MEMORY KEEPINMEM CHAR(1) Indicates whether the index should be kept in
memory:

0
No memory preference.

1
The index should be kept in memory, if possible.

MEDIA_PREFERENCE MEDIAPREF SMALLINT Indicates the media preference of the index:

0
No media preference.

255
The index should be allocated on Solid State Disk
(SSD), if possible.

INCLUDE_EXPRESSION IXINCEXPR VARGRAPHIC(1024) CCSID
1200

Nullable

Index INCLUDE expression. Contains null if the index
does not have an INCLUDE expression.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) System schema name.

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) System table name.

Appendix F. Db2 for i catalog views 1853

SYSTABLES
The SYSTABLES view contains one row for every table, view or alias in the SQL schema, including the
tables and views of the SQL catalog.

Additional table attributes are available through the QSYS2.SYSFILES view.

The following table describes the columns in the SYSTABLES view:

Table 213. SYSTABLES view

Column name
System Column
Name Data Type Description

TABLE_NAME NAME VARCHAR(128) Name of the table, view or alias. This is the SQL table,
view or alias name if it exists; otherwise, it is the
system table, view or alias name.

TABLE_OWNER CREATOR VARCHAR(128) Owner of the table, view or alias

TABLE_TYPE TYPE CHAR(1) If the row describes a table, view, or alias:

A
Alias

L
Logical file

M
Materialized query table

P
Physical file

T
Table

V
View

COLUMN_COUNT COLCOUNT INTEGER Number of columns in the table or view. Zero for an
alias.

ROW_LENGTH RECLENGTH 162 INTEGER Maximum length of any record in the table. Zero for an
alias.

TABLE_TEXT LABEL VARGRAPHIC(50) CCSID
1200

A character string provided with the LABEL statement.

LONG_COMMENT REMARKS VARGRAPHIC(2000) CCSID
1200

Nullable

A character string supplied with the COMMENT
statement.

Contains the null value if there is no long comment.

TABLE_SCHEMA DBNAME VARCHAR(128) Name of the SQL schema that contains the table, view
or alias

LAST_ALTERED_TIMESTAMP ALTEREDTS TIMESTAMP Timestamp when the table was last altered or created.

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) System table name.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) System schema name

FILE_TYPE FILETYPE CHAR(1) File type

D
Data file or alias

S
Source file

BASE_TABLE_CATALOG LOCATION VARCHAR(18)

Nullable

For an alias, this is the name of the relational database
that contains the table or view the alias is based on.

Contains the null value if the table is not an alias.

BASE_TABLE_SCHEMA TBDBNAME VARCHAR(128)

Nullable

For an alias, this is the name of the SQL schema that
contains the table or view the alias is based on.

Contains the null value if the table is not an alias.

BASE_TABLE_NAME TBNAME VARCHAR(128)

Nullable

For an alias, this is the name of the table or view the
alias is based on.

Contains the null value if the table is not an alias.

1854 IBM i: Db2 for i SQL Reference

Table 213. SYSTABLES view (continued)

Column name
System Column
Name Data Type Description

BASE_TABLE_MEMBER TBMEMBER VARCHAR(10)

Nullable

For an alias, this is the name of the file member the
alias is based on. Contains *FIRST if this is an alias,
but a member name was not specified.

Contains the null value if the table is not an alias.

SYSTEM_TABLE SYSTABLE CHAR(1) System table

N
The table is not a system table.

Y
The table is a system table.

SELECT_OMIT SELECTOMIT CHAR(1) Select/omit logical file

D
The table is a dynamic select/omit logical file.

N
The table is not a select/omit logical file.

Y
The table is a select/omit logical file.

IS_INSERTABLE_INTO INSERTABLE VARCHAR(3) Identifies whether an INSERT is allowed on the table.

NO
An INSERT is not allowed on this table.

YES
An INSERT is allowed on this table.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary storage pool
(IASP) number.

ENABLED ENABLED VARCHAR(3)

Nullable

Indicates whether the materialized query table is
enabled for optimization:

NO
The materialized query table is not enabled for
optmization.

YES
The materialized query table is enabled for
optmization.

Contains the null value if the table is not a materialized
query table.

MAINTENANCE MAINTAIN VARCHAR(6)

Nullable

Indicates whether the materialized query table is user
or system maintained:

USER
The materialized query table is user maintained.

Contains the null value if the table is not a materialized
query table.

REFRESH REFRESH VARCHAR(9)

Nullable

Indicates the materialized query table REFRESH
option:

DEFERRED
The materialized query table is REFRESH
DEFERRED.

Contains the null value if the table is not a materialized
query table.

REFRESH_TIME REFRESHDTS TIMESTAMP

Nullable

Indicates the timestamp of the last materialized query
table REFRESH:

Contains the null value if the table is not a materialized
query table or if the table has never been refreshed.

MQT_DEFINITION MQTDEF DBCLOB(2M) CCSID
13488

Nullable

Indicates the query expression of the materialized
query table:

Contains the null value if the table is not a materialized
query table.

Appendix F. Db2 for i catalog views 1855

Table 213. SYSTABLES view (continued)

Column name
System Column
Name Data Type Description

ISOLATION ISOLATION CHAR(2)

Nullable

Indicates the isolation level used for the select-
statement when refreshing the materialized query
table:

RR
Repeatable Read (*RR)

RS
Read Stability (*ALL)

CS
Cursor Stability (*CS)

UR
Uncommitted Read (*CHG)

NC
No Commit (*NONE)

Contains the null value if the table is not a materialized
query table.

PARTITION_TABLE PART_TABLE VARCHAR(11) Indicates whether the table is a partitioned table:

DISTRIBUTED
The table is a distributed table.

NO
The table is not a partitioned table.

YES
The table is a partitioned table.

TABLE_DEFINER DEFINER VARCHAR(128) Name of the user that defined the table.

MQT_RESTORE_DEFERRED MQTRSTDFR CHAR(1) If the table is a materialized query table:

Y
The MQT is deferred as the result of a restore.

N
The MQT is not deferred.

Contains the null value if the table is not a materialized
query table.

ROUNDING_MODE DECFLTRND CHAR(1) Indicates the DECFLOAT rounding mode of the
materialized query table or view:

C
ROUND_CEILING

D
ROUND_DOWN

F
ROUND_FLOOR

G
ROUND_HALF_DOWN

E
ROUND_HALF_EVEN

H
ROUND_HALF_UP

U
ROUND_UP

Contains the null value if the table is not a view or
MQT, or if the materialized query table or view does
not have an expression that references a DECFLOAT
column, function, or constant.

1856 IBM i: Db2 for i SQL Reference

Table 213. SYSTABLES view (continued)

Column name
System Column
Name Data Type Description

CONTROL CONTROL CHAR(1) Indicates whether the table is enforced by row or
column access control:

blank
No access control enforcement.

R
The table is enforced by row access control.

C
The table is enforced by column access control.

B
The table is enforced by both row and column
access control.

TEMPORAL_TYPE TEMPORALTY CHAR(1) Indicates the type of temporal table:

H
History table for a system-period temporal table

N
Not a temporal table

S
System-period temporal table

162 The length is the number of bytes passed in database buffers, not the internal storage length.

Appendix F. Db2 for i catalog views 1857

SYSTABLESTAT
The SYSTABLESTAT view contains one row for every table. If the table has more than one partition or
member, the statistics include all partitions and members. If the table is a distributed table, the partitions
that reside on other database nodes are not included. They are contained in the catalog views of the other
database nodes.

The following table describes the columns in the SYSTABLESTAT view:

Table 214. SYSTABLESTAT view

Column name
System Column
Name Data Type Description

TABLE_SCHEMA TABSCHEMA VARCHAR(128) Name of the SQL schema that contains the table.

TABLE_NAME TABNAME VARCHAR(128) Name of the table.

PARTITION_TYPE PARTTYPE CHAR(1) The type of the table partitioning:

blank
The table is not partitioned.

H
This is data hash partitioning.

R
This is data range partitioning.

D
This is distributed database hash partitioning.

NUMBER_PARTITIONS NBRPARTS INTEGER

Nullable

The partition number of this partition. If the table is a
distributed table, contains null.

NUMBER_DISTRIBUTED_PARTITIONS DSTPARTS INTEGER

Nullable

If the table is a distributed table, contains the total
number of partitions. If the table is not a distributed
table, contains null.

NUMBER_ROWS CARD BIGINT Number of valid rows in all partitions or members of
the table.

NUMBER_ROW_PAGES NPAGES BIGINT Number of 64K pages in all partitions or members of
the table.

NUMBER_PAGES FPAGES BIGINT Same as NUMBER_ROW_PAGES.

OVERFLOW OVERFLOW BIGINT The estimated number of rows that have overflowed to
variable length segments. If the table does not contain
variable length or LOB columns, contains 0.

CLUSTERED CLUSTERED CHAR(1)

Nullable

Not applicable for Db2 for i. Will always be null.

ACTIVE_BLOCKS ACTBLOCKS BIGINT Not applicable for Db2 for i. Will always be -1.

AVGCOMPRESSEDROWSIZE ACROWSIZE BIGINT Not applicable for Db2 for i. Will always be -1.

AVGROWCOMPRESSIONRATIO ACROWRATIO REAL Not applicable for Db2 for i. Will always be -1.

AVGROWSIZE AVGROWSIZE BIGINT Average length (in bytes) of a row in this table. If the
table has variable length or LOB columns, contains -1.

PCTROWSCOMPRESSED PCTCROWS REAL Not applicable for Db2 for i. Will always be -1.

PCTPAGESSAVED PCTPGSAVED SMALLINT Not applicable for Db2 for i. Will always be -1.

NUMBER_DELETED_ROWS DELETED BIGINT Number of deleted rows in all partitions or members of
the table.

DATA_SIZE SIZE BIGINT Total size (in bytes) of the data spaces in all partitions
or members of the table.

VARIABLE_LENGTH_SIZE VLSIZE BIGINT Size (in bytes) of the variable-length data space
segments in all partitions or members of the table.

VARIABLE_LENGTH_SEGMENTS VLSEGMENTS BIGINT The number of variable-length data space segments in
all partitions or members of the table.

FIXED_LENGTH_EXTENTS FLEXTENTS BIGINT Not applicable for Db2 for i. Will always be -1.

VARIABLE_LENGTH_EXTENTS VLEXTENTS BIGINT Not applicable for Db2 for i. Will always be -1.

1858 IBM i: Db2 for i SQL Reference

Table 214. SYSTABLESTAT view (continued)

Column name
System Column
Name Data Type Description

COLUMN_STATS_SIZE CSTATSSIZE BIGINT Size (in bytes) of the column statistics in all partitions
or members of the table.

MAINTAINED_TEMPORARY_INDEX_SIZE MTISIZE BIGINT Size (in bytes) of all maintained temporary indexes
over any partitions or members of the table.

NUMBER_DISTINCT_INDEXES DISTINCTIX INTEGER The number of distinct indexes built over any
partitions or members of the table. This does not
include maintained temporary indexes.

OPEN_OPERATIONS OPENS BIGINT Number of full opens of all partitions or members of
the table since the last IPL.

CLOSE_OPERATIONS CLOSES BIGINT Number of full closes of all partitions or members of
the table since the last IPL.

INSERT_OPERATIONS INSERTS BIGINT Number of insert operations of all partitions or
members of the table since the last IPL.

BLOCKED_INSERT_OPERATIONS BLKIOPS BIGINT Number of blocked insert operations of all partitions or
members of the table since the last IPL.

BLOCKED_INSERT_ROWS BLKIROW BIGINT Number of rows inserted with blocked insert
operations of all partitions or members of the table
since the last IPL.

UPDATE_OPERATIONS UPDATES BIGINT Number of update operations of all partitions or
members of the table since the last IPL.

DELETE_OPERATIONS DELETES BIGINT Number of delete operations of all partitions or
members of the table since the last IPL.

CLEAR_OPERATIONS DSCLEARS BIGINT Number of clear operations (CLRPFM operations) of all
partitions or members of the table since the last IPL.

COPY_OPERATIONS DSCOPIES BIGINT Number of data space copy operations (certain CPYxxx
operations) of all partitions or members of the table
since the last IPL.

REORGANIZE_OPERATIONS DSREORGS BIGINT Number of data space reorganize operations (non-
interruptible RGZPFM operations) of all partitions or
members of the table since the last IPL.

INDEX_BUILDS DSINXBLDS BIGINT Number of creates or rebuilds of indexes that
reference any partition or member of the table
since the last IPL. This does not include maintained
temporary indexes.

LOGICAL_READS LGLREADS BIGINT Number of logical read operations of all partitions or
members of the table since the last IPL.

PHYSICAL_READS PHYREADS BIGINT Number of physical read operations of all partitions or
members of the table since the last IPL.

SEQUENTIAL_READS SEQREADS BIGINT Number of sequential read operations of all partitions
or members of the table since the last IPL.

RANDOM_READS RANREADS BIGINT Number of random read operations of all partitions or
members of the table since the last IPL.

LAST_CHANGE_TIMESTAMP LASTCHG TIMESTAMP Maximum timestamp of the last change that occurred
to any partition or member of the table. If no partitions
or members exist, the last change that occurred to the
table is returned.

LAST_SAVE_TIMESTAMP LASTSAVE TIMESTAMP

Nullable

Minimum timestamp of the last save of any partition
or member of the table. If no partition or member has
been saved, contains null.

LAST_RESTORE_TIMESTAMP LASTRST TIMESTAMP

Nullable

Maximum timestamp of the last restore any partition
or member of the table. If no partition or member has
been restored, contains null.

LAST_USED_TIMESTAMP LASTUSED TIMESTAMP

Nullable

Maximum timestamp of the last time any partition
or member was used directly by an application for
native record I/O or SQL operations. If no partition or
member has ever been used, contains null.

Appendix F. Db2 for i catalog views 1859

Table 214. SYSTABLESTAT view (continued)

Column name
System Column
Name Data Type Description

DAYS_USED_COUNT DAYSUSED INTEGER Maximum number of days any partition or member
was used directly by an application for native record
I/O or SQL operations since the last time the usage
statistics were reset. If no partition or member has
been used since the last time the usage statistics were
reset, contains 0.

LAST_RESET_TIMESTAMP LASTRESET TIMESTAMP

Nullable

Maximum timestamp of the last time the usage
statistics were reset for the table. For more
information see the Change Object Description
(CHGOBJD) command. If no partition or member's last
used timestamp has ever been reset, contains null.

NUMBER_PARTITIONING_KEYS NBRPKEYS INTEGER

Nullable

The number of partitioning keys. If the table is not
partitioned, contains null.

PARTITIONING_KEYS PARTKEYS VARCHAR(2880)

Nullable

The list of partitioning keys. If the table is not
partitioned, contains null.

VOLATILE VOLATILE CHAR(1) Indicates whether the table is volatile.

0
Table is not volatile.

1
Table is volatile.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) System schema name.

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) System table name.

1860 IBM i: Db2 for i SQL Reference

SYSTRIGCOL
The SYSTRIGCOL view contains one row for each column either implicitly or explicitly referenced in the
WHEN clause or the triggered SQL statements of a trigger.

The following table describes the columns in the SYSTRIGCOL view:

Table 215. SYSTRIGCOL view

Column Name
System Column
Name Data Type Description

TRIGGER_SCHEMA TRIGSCHEMA VARCHAR(128) Name of the schema containing the trigger.

TRIGGER_NAME TRIGNAME VARCHAR(128) Name of the trigger.

TABLE_SCHEMA TABSCHEMA VARCHAR(128) Name of the schema containing the table or view that
contains the column that is referenced in the trigger.

TABLE_NAME TABNAME VARCHAR(128) Name of the table or view that contains the column
that is referenced in the trigger.

COLUMN_NAME TABCOLUMN VARCHAR(128) Name of the column that is referenced in the trigger.

OBJECT_TYPE BTYPE CHAR(24) Indicates the object type of the object that contains
the column referenced in the trigger:

FUNCTION
The object is a function.

MATERIALIZED QUERY TABLE
The object is a materialized query table.

TABLE
The object is a table.

VIEW
The object is a view.

SYSTEM_TRIGGER_SCHEMA SYS_TDNAME CHAR(10) System schema name.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10)

Nullable

System schema name of the table or view that
contains the column that is referenced in the trigger.

Contains the null value if the referenced table does not
exist or if the referenced object is a table function.

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10)

Nullable

System table name of the table or view that contains
the column that is referenced in the trigger.

Contains the null value if the referenced table does not
exist or if the referenced object is a table function.

Appendix F. Db2 for i catalog views 1861

SYSTRIGDEP
The SYSTRIGDEP view contains one row for each object referenced in the WHEN clause or the triggered
SQL statements of a trigger.

The following table describes the columns in the SYSTRIGDEP view:

Table 216. SYSTRIGDEP view

Column Name
System Column
Name Data Type Description

TRIGGER_SCHEMA TRIGSCHEMA VARCHAR(128) Name of the schema containing the trigger.

TRIGGER_NAME TRIGNAME VARCHAR(128) Name of the trigger.

OBJECT_SCHEMA BSCHEMA VARCHAR(128) Name of the schema containing the object referenced
in the trigger.

OBJECT_NAME BNAME VARCHAR(128) Name of the object referenced in the trigger.

OBJECT_TYPE BTYPE CHAR(24) Indicates the object type of the object referenced in
the trigger:

ALIAS
The object is an alias.

FUNCTION
The object is a function.

INDEX
The object is an index.

MATERIALIZED QUERY TABLE
The object is a materialized query table.

PACKAGE
The object is a package.

PROCEDURE
The object is a procedure.

SCHEMA
The object is a schema.

SEQUENCE
The object is a sequence.

TABLE
The object is a table.

TYPE
The object is a distinct type.

VARIABLE
The object is a variable.

VIEW
The object is a view.

PARM_SIGNATURE SIGNATURE BLOB(3M)

Nullable

This column identifies the routine signature.

Contains the null value if the object is not a routine.

SYSTEM_TRIGGER_SCHEMA SYS_TDNAME CHAR(10) System schema name.

SYSTEM_OBJECT_SCHEMA SYS_DNAME CHAR(10)

Nullable

System schema name of the object referenced in the
trigger.

Contains the null value if the referenced object does
not exist or if the referenced object is not an alias,
index, materialized query table, table, or view.

SYSTEM_OBJECT_NAME SYS_ONAME CHAR(10)

Nullable

System object name of the object referenced in the
trigger.

Contains the null value if the referenced object does
not exist or if the referenced object is not an alias,
index, materialized query table, table, or view.

1862 IBM i: Db2 for i SQL Reference

SYSTRIGGERS
The SYSTRIGGERS view contains one row for each trigger in an SQL schema.

The following table describes the columns in the SYSTRIGGERS view:

Table 217. SYSTRIGGERS view

Column Name
System Column
Name Data Type Description

TRIGGER_SCHEMA TRIGSCHEMA VARCHAR(128) Name of the schema containing the trigger.

TRIGGER_NAME TRIGNAME VARCHAR(128) Name of the trigger.

EVENT_MANIPULATION TRIGEVENT VARCHAR(6) Indicates the event that causes the trigger to fire:

DELETE
Trigger fires on a DELETE.

INSERT
Trigger fires on a INSERT.

UPDATE
Trigger fires on a UPDATE.

READ
Trigger fires when a row is read. This is only valid
for triggers created via the ADDPFTRG command.

MULTI
Trigger fires for multiple events.
The EVENTUPDATE, EVENTDELETE, and
EVENTINSERT columns define the events.

EVENT_OBJECT_SCHEMA TABSCHEMA VARCHAR(128) Name of the schema containing the subject table or
view of the trigger.

EVENT_OBJECT_TABLE TABNAME VARCHAR(128) Name of the subject table or view of the trigger.

ACTION_ORDER ORDERSEQNO INTEGER The ordinal position of this trigger in the list of triggers
for the table or view. This indicates the order in which
the trigger will be fired.

ACTION_CONDITION CONDITION DBCLOB(2097152) CCSID
13488

Nullable

Text of the WHEN clause for the trigger.

Contains the null value if there is no WHEN clause or if
this is an obfuscated trigger.

ACTION_STATEMENT TEXT DBCLOB(2097152) CCSID
13488

Nullable

Text of the SQL statements in the trigger action.

If this is an obfuscated trigger, the text starts with the
WRAPPED keyword and is followed by the encoded
form of the statement text.

Contains the null value if this is a trigger created via
the ADDPFTRG command.

ACTION_ORIENTATION GRANULAR VARCHAR(9) Indicates whether this is a ROW or STATEMENT
trigger:

ROW
Trigger fires for each ROW.

STATEMENT
Trigger fires for each statement.

ACTION_TIMING TRIGTIME VARCHAR(7) Indicates whether this is a BEFORE, AFTER, or
INSTEAD OF trigger:

BEFORE
Trigger fires before the triggering event.

AFTER
Trigger fires after the triggering event.

INSTEAD
Trigger fires instead of the triggering event.

TRIGGER_MODE TRIGMODE VARCHAR(6) Indicates the firing mode for the trigger:

DB2SQL
The trigger mode is DB2SQL.

DB2ROW
The trigger mode is DB2ROW.

Appendix F. Db2 for i catalog views 1863

Table 217. SYSTRIGGERS view (continued)

Column Name
System Column
Name Data Type Description

ACTION_REFERENCE_OLD_ROW OLD_ROW VARCHAR(128)

Nullable

Name of the OLD ROW correlation name.

Contains the null value if an OLD ROW correlation
name was not specified.

ACTION_REFERENCE_NEW_ROW NEW_ROW VARCHAR(128)

Nullable

Name of the NEW ROW correlation name.

Contains the null value if a NEW ROW correlation name
was not specified.

ACTION_REFERENCE_OLD_TABLE OLD_TABLE VARCHAR(128)

Nullable

Name of the OLD TABLE correlation name.

Contains the null value if an OLD TABLE correlation
name was not specified.

ACTION_REFERENCE_NEW_TABLE NEW_TABLE VARCHAR(128)

Nullable

Name of the NEW TABLE correlation name.

Contains the null value if a NEW TABLE correlation
name was not specified.

SQL_PATH SQL_PATH VARCHAR(3483)

Nullable

SQL path used when the trigger was created.

Contains the null value if the trigger was created via
the ADDPFTRG command.

CREATED CREATE_DTS TIMESTAMP Timestamp when the trigger was created.

TRIGGER_PROGRAM_NAME TRIGPGM VARCHAR(128) Name of the trigger program.

TRIGGER_PROGRAM_LIBRARY TRIGPGMLIB VARCHAR(128) System name of the schema containing the trigger
program.

OPERATIVE OPERATIVE VARCHAR(1) Indicates whether the trigger is operative.

A table or view that has a trigger that contains a
reference to that same table or view in its triggered–
action is self-referencing. If a self-referencing trigger
is duplicated into another library, restored into another
library, moved into another library, or renamed;
the trigger is marked inoperative since the table
references in the triggered–action are unchanged and
still reference the original schema and table name.

Y
The trigger is operative.

N
The trigger is inoperative.

ENABLED ENABLED VARCHAR(1) Indicates whether the trigger is enabled.

Y
The trigger is enabled.

N
The trigger is disabled.

THREADSAFE THDSAFE VARCHAR(8) Indicates whether the trigger is thread safe.

YES
The trigger is thread safe.

NO
The trigger is not thread safe.

UNKNOWN
The thread safety of the trigger is unknown.

MULTITHREADED_JOB_ACTION MLTTHDACN VARCHAR(8) Indicates the action to take when the trigger program
is called in a multithreaded job.

SYSVAL
Use the QMLTTHDACN system value to
determine the action to take.

MSG
Run the trigger program in a multithreaded job,
but send a diagnostic message.

NORUN
Do not run the trigger program in a multithreaded
job.

RUN
Run the trigger program in a multithreaded job.

1864 IBM i: Db2 for i SQL Reference

Table 217. SYSTRIGGERS view (continued)

Column Name
System Column
Name Data Type Description

ALLOW_REPEATED_CHANGE ALWREPCHG VARCHAR(8) Indicates the condition under which an update event
fires the trigger.

YES
The trigger allows repeated changes to the same
row.

NO
The trigger does not allow repeated changes to
the same row.

TRIGGER_UPDATE_CONDITION TRGUPDCND CHAR(8)

Nullable

Indicates whether an UPDATE trigger is always fired
on an update event or only when a column value is
actually changed.

ALWAYS
The trigger is always fired on an update event.

CHANGE
The trigger is only fired on an update event if a
column value is actually changed.

Contains the null value if the trigger is not an UPDATE
trigger.

TRIGGER_DEFINER DEFINER VARCHAR(128) Name of the user that defined the trigger.

TRIGGER_TEXT LABEL VARGRAPHIC(50) CCSID
1200

Nullable

A character string provided with the LABEL statement.

Contains the null value if there is no label.

LONG_COMMENT REMARKS VARGRAPHIC(2000) CCSID
13488

Nullable

A character string supplied with the COMMENT
statement.

Contains the null value if there is no long comment.

ROUNDING_MODE DECFLTRND CHAR(1)

Nullable

The rounding mode for the trigger:

C
ROUND_CEILING

D
ROUND_DOWN

F
ROUND_FLOOR

G
ROUND_HALF_DOWN

E
ROUND_HALF_EVEN

H
ROUND_HALF_UP

U
ROUND_UP

Contains the null value if the trigger was created via
the ADDPFTRG command.

SYSTEM_TRIGGER_SCHEMA SYS_TDNAME CHAR(10) System schema name.

SYSTEM_EVENT_OBJECT_SCHEMA SYS_DNAME CHAR(10) System schema name of the schema containing the
subject table or view of the trigger.

SYSTEM_EVENT_OBJECT_TABLE SYS_TNAME CHAR(10) System table name of the table or view that contains
the subject table or view of the trigger.

SECURE SECURE CHAR(1) Indicates whether the trigger is considered secure for
row access control and column access control.

N
The trigger is not considered secure for row
access control and column access control.

Y
The trigger is considered secure for row access
control and column access control.

LAST_ALTERED ALTEREDTS TIMESTAMP

Nullable

Timestamp when the trigger was last altered. Contains
the null value if the trigger has never been altered.

Appendix F. Db2 for i catalog views 1865

Table 217. SYSTRIGGERS view (continued)

Column Name
System Column
Name Data Type Description

EVENTUPDATE EVENT_U CHAR(1) Indicates whether an update event fires this trigger.

Y
Yes

N
No

EVENTINSERT EVENT_I CHAR(1) Indicates whether an insert event fires this trigger.

Y
Yes

N
No

EVENTDELETE EVENT_D CHAR(1) Indicates whether a delete event fires this trigger.

Y
Yes

N
No

1866 IBM i: Db2 for i SQL Reference

SYSTRIGUPD
The SYSTRIGUPD view contains one row for each column identified in the UPDATE column list, if any.

The following table describes the columns in the SYSTRIGUPD view:

Table 218. SYSTRIGUPD view

Column Name
System Column
Name Data Type Description

TRIGGER_SCHEMA TRIGSCHEMA VARCHAR(128) Name of the schema containing the trigger.

TRIGGER_NAME TRIGNAME VARCHAR(128) Name of the trigger.

EVENT_OBJECT_SCHEMA TABSCHEMA VARCHAR(128) Name of the schema containing the subject table of
the trigger.

EVENT_OBJECT_TABLE TABNAME VARCHAR(128) Name of the subject table of the trigger.

TRIGGERED_UPDATE_COLUMNS TABCOLUMN VARCHAR(128) Name of a column specified in the UPDATE column list
of the trigger.

SYSTEM_TRIGGER_SCHEMA SYS_TDNAME CHAR(10) System schema name.

SYSTEM_EVENT_OBJECT_SCHEMA SYS_DNAME CHAR(10) System schema name of the schema containing the
subject table or view of the trigger.

SYSTEM_EVENT_OBJECT_TABLE SYS_TNAME CHAR(10) System table name of the table or view that contains
the subject table or view of the trigger.

Appendix F. Db2 for i catalog views 1867

SYSTYPES
The SYSTYPES table contains one row for each built-in data type and each distinct type and array type
created by the CREATE TYPE statement.

The following table describes the columns in the SYSTYPES table:

Table 219. SYSTYPES table

Column Name
System Column
Name Data Type Description

USER_DEFINED_TYPE_SCHEMA TYPESCHEMA VARCHAR(128) Schema name of the data type.

USER_DEFINED_TYPE_NAME TYPENAME VARCHAR(128) Name of the data type.

USER_DEFINED_TYPE_DEFINER DEFINER VARCHAR(128) Name of the user that created the data type.

SOURCE_SCHEMA SRCSCHEMA VARCHAR(128)

Nullable

The schema for the source data type of this data type.

Contains the null value if this is a built-in data type.

SOURCE_TYPE SRCTYPE VARCHAR(128)

Nullable

Name of the source data type of this data type.

Contains the null value if this is a built-in data type.

SYSTEM_TYPE_SCHEMA SYSTSCHEMA CHAR(10) System schema name of the data type.

SYSTEM_TYPE_NAME SYSTNAME CHAR(10) System name of the data type.

METATYPE METATYPE CHAR(1) Indicates the type of data type.

A
Array data type

S
System predefined data type.

T
User-defined distinct type.

1868 IBM i: Db2 for i SQL Reference

Table 219. SYSTYPES table (continued)

Column Name
System Column
Name Data Type Description

LENGTH LENGTH INTEGER The length attribute of the data type; or, in the case
of a decimal, numeric, or nonzero precision binary
column, its precision. For an array data type, it is the
length of a single array element:

8 bytes
BIGINT

4 bytes
INTEGER

2 bytes
SMALLINT

Precision of number
DECIMAL

Precision of number
NUMERIC

8 bytes
FLOAT, FLOAT(n) where n = 25 to 53, or DOUBLE
PRECISION

4 bytes
FLOAT(n) where n = 1 to 24, or REAL

8 bytes
DECFLOAT(16)

16 bytes
DECFLOAT(34)

Length of string
CHARACTER

Maximum length of string
VARCHAR or CLOB

Length of graphic string
GRAPHIC

Maximum length of graphic string
VARGRAPHIC or DBCLOB

Length of binary string
BINARY

Maximum length of binary string
VARBINARY or BLOB

4 bytes
DATE

3 bytes
TIME

The integral part of ((p+1)/2)+7 where p is the
precision of the timestamp

TIMESTAMP

Maximum length of datalink URL and comment
DATALINK

40 bytes
ROWID

2147483647 bytes
XML

Same value as the source type
DISTINCT

NUMERIC_SCALE SCALE SMALLINT

Nullable

Scale of numeric data.

Contains the null value if the data type is not decimal,
numeric, or binary.

CCSID CCSID INTEGER

Nullable

The CCSID value for CHAR, VARCHAR, CLOB, DATE,
TIME, TIMESTAMP, GRAPHIC, VARGRAPHIC, DBCLOB,
XML, and DATALINK data types.

Contains the null value if the data type is numeric.

Appendix F. Db2 for i catalog views 1869

Table 219. SYSTYPES table (continued)

Column Name
System Column
Name Data Type Description

STORAGE STORAGE INTEGER The storage requirements for the data type:

8 bytes
BIGINT

4 bytes
INTEGER

2 bytes
SMALLINT

(Precision/2) + 1
DECIMAL

Precision of number
NUMERIC

8 bytes
FLOAT, FLOAT(n) where n = 25 to 53, or DOUBLE
PRECISION

4 bytes
FLOAT(n) where n = 1 to 24, or REAL

8 bytes
DECFLOAT(16)

16 bytes
DECFLOAT(34)

Length of string
CHAR

Maximum length of string + 2
VARCHAR

Maximum length of string + 29
CLOB

Length of string * 2
GRAPHIC

Maximum length of string * 2 + 2
VARGRAPHIC

Maximum length of string * 2 + 29
DBCLOB

Length of binary string
BINARY

Maximum length of binary string + 2
VARBINARY

Maximum length of string + 29
BLOB

4 bytes
DATE

3 bytes
TIME

The integral part of ((p+1)/2)+7 where p is the
precision of the timestamp

TIMESTAMP

Maximum length of datalink URL and comment + 24
DATALINK

42 bytes
ROWID

2147483647 bytes + 29
XML

Same value as the source type
DISTINCT

Note: This column supplies the storage requirements
for all data types.

NUMERIC_PRECISION PRECISION INTEGER

Nullable

The precision of all numeric data types.

Note: This column supplies the precision of all
numeric data types, including decimal floating-point
and single-and double-precision floating point. The
NUMERIC_PRECISION_RADIX column indicates if the
value in this column is in binary or decimal digits.

Contains the null value if the data type is not numeric.

1870 IBM i: Db2 for i SQL Reference

Table 219. SYSTYPES table (continued)

Column Name
System Column
Name Data Type Description

CHARACTER_MAXIMUM_LENGTH CHARLEN INTEGER

Nullable

Maximum length of the string for binary, character, and
graphic string and XML data types.

Contains the null value if the data type is not a string.

CHARACTER_OCTET_LENGTH CHARBYTE INTEGER

Nullable

Number of bytes for binary, character, and graphic
string and XML data types.

Contains the null value if the data type is not a string.

ALLOCATE ALLOCATE INTEGER

Nullable

Allocated length of the string for binary, varying-length
character, varying-length graphic, and XML data types.

Contains the null value if the data type is numeric or
fixed-length, or an array data type.

NUMERIC_PRECISION_RADIX RADIX INTEGER

Nullable

Indicates if the precision specified in column
NUMERIC_PRECISION is specified as a number of
binary or decimal digits:

2
Binary; floating-point precision is specified in
binary digits.

10
Decimal; all other numeric types are specified in
decimal digits.

Contains the null value if the data type is not numeric.

DATETIME_PRECISION DATPRC INTEGER

Nullable

The fractional part of a date, time, or timestamp.

0
For DATE and TIME data types

0-12
For TIMESTAMP data types (number of fractional
seconds).

Contains the null value if the data type is not date,
time, or timestamp.

CREATE_TIME CRTTIME TIMESTAMP

Nullable

Identifies the timestamp when the data type was
created.

LONG_COMMENT REMARKS VARGRAPHIC(2000) CCSID
1200

Nullable

A character string supplied with the COMMENT
statement.

Contains the null value if there is no long comment.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary storage pool
(IASP) number of the data type.

LAST_ ALTERED ALTEREDTS TIMESTAMP

Nullable

Reserved. Contains the null value.

NORMALIZE_DATA NORMALIZE VARCHAR(3)

Nullable

Indicates whether the parameter value should be
normalized or not. This attribute only applies to UTF-8
and UTF–16 data.

NO
The value should not be normalized.

YES
The value should be normalized.

TYPE_TEXT LABEL VARGRAPHIC(50) CCSID
1200

Nullable

A character string supplied with the LABEL statement
(type text).

Contains the null value if the type has no text.

MAXIMUM_CARDINALITY MAXCARD BIGINT

Nullable

The maximum cardinality of the array data type.

Contains the null value if the type is not an array type.

Appendix F. Db2 for i catalog views 1871

SYSUDTAUTH
The SYSUDTAUTH view contains one row for every privilege granted on a type. Note that this catalog view
cannot be used to determine whether a user is authorized to a type because the privilege to use a type
could be acquired through a group user profile or special authority (such as *ALLOBJ).

The following table describes the columns in the SYSUDTAUTH view:

Table 220. SYSUDTAUTH view

Column Name
System Column
Name Data Type Description

GRANTOR GRANTOR VARCHAR(128)

Nullable

Reserved. Contains the null value.

GRANTEE GRANTEE VARCHAR(128) The user profile to which the privilege is granted.

USER_DEFINED_TYPE_SCHEMA UDT_SCHEMA VARCHAR(128) Name of the schema

USER_DEFINED_TYPE_NAME UDT_NAME VARCHAR(128) Name of the type

PRIVILEGE_TYPE PRIVTYPE VARCHAR(10) The privilege granted:

ALTER
The privilege to alter the type.

USAGE
The privilege to use the type.

IS_GRANTABLE GRANTABLE VARCHAR(3) Indicates whether the privilege is grantable to other
users.

NO
The privilege is not grantable.

YES
The privilege is grantable.

AUTHORIZATION_LIST AUTL VARCHAR(10)

Nullable

If the privilege is granted through an authorization,
contains the name of the authorization list.

Contains the null value if the privilege is not granted
through an authorization list.

SYSTEM_TYPE_SCHEMA SYSTSCHEMA CHAR(10) System name of the schema

SYSTEM_TYPE_NAME SYSTNAME CHAR(10) System name of the type

1872 IBM i: Db2 for i SQL Reference

SYSVARIABLEAUTH
The SYSVARIABLEAUTH view contains one row for every privilege granted on a global variable. Note that
this catalog view cannot be used to determine whether a user is authorized to a global variable because
the privilege to use a global variable could be acquired through a group user profile or special authority
(such as *ALLOBJ).

The following table describes the columns in the SYSVARIABLEAUTH view:

Table 221. SYSVARIABLEAUTH view

Column Name
System Column
Name Data Type Description

GRANTOR GRANTOR VARCHAR(128)

Nullable

Reserved. Contains the null value.

GRANTEE GRANTEE VARCHAR(128) The user profile to which the privilege is granted.

VARIABLE_SCHEMA VARSCHEMA VARCHAR(128) Name of the schema

VARIABLE_NAME VARNAME VARCHAR(128) Name of the global variable

PRIVILEGE_TYPE PRIVTYPE VARCHAR(10) The privilege granted:

ALTER
The privilege to alter the global variable.

READ
The privilege to read the value of the global
variable.

WRITE
The privilege to assign a value to the global
variable.

IS_GRANTABLE GRANTABLE VARCHAR(3) Indicates whether the privilege is grantable to other
users.

NO
The privilege is not grantable.

YES
The privilege is grantable.

AUTHORIZATION_LIST AUTL VARCHAR(10)

Nullable

If the privilege is granted through an authorization,
contains the name of the authorization list.

Contains the null value if the privilege is not granted
through an authorization list.

SYSTEM_VAR_SCHEMA SYSVSCHEMA CHAR(10) System name of the schema

SYSTEM_VAR_NAME SYSVNAME CHAR(10) System name of the global variable

Appendix F. Db2 for i catalog views 1873

SYSVARIABLEDEP
The SYSVARIABLEDEP table records the dependencies of variables.

The following table describes the columns in the SYSVARIABLEDEP table:

Table 222. SYSVARIABLEDEP table

Column name
System Column
Name Data Type Description

VARIABLE_SCHEMA VARSCHEMA VARCHAR(128) Schema name of the variable.

VARIABLE_NAME VARNAME VARCHAR(128) Name of the variable.

OBJECT_SCHEMA BSCHEMA VARCHAR(128) Name of the SQL schema that contains the object.

OBJECT_NAME BNAME VARCHAR(128) Name of the object the variable is dependent on.

OBJECT_TYPE BTYPE CHAR(24) Indicates the object type of the object referenced in
the variable:

ALIAS
The object is an alias.

FUNCTION
The object is a function.

MATERIALIZED QUERY TABLE
The object is a materialized query table.

SCHEMA
The object is a schema.

SEQUENCE
The object is a sequence.

TABLE
The object is a table.

TYPE
The object is a distinct type.

VARIABLE
The object is a variable.

VIEW
The object is a view.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary storage pool
(IASP) number of the object.

PARM_SIGNATURE SIGNATURE BLOB(3M)

Nullable

This column identifies the routine signature.

Contains the null value if the object is not a routine.

1874 IBM i: Db2 for i SQL Reference

SYSVARIABLES
The SYSVARIABLES table contains one row for each global variable.

The following table describes the columns in the SYSVARIABLES table:

Table 223. SYSVARIABLES table

Column Name
System Column
Name Data Type Description

VARIABLE_SCHEMA VARSCHEMA VARCHAR(128) Schema name of the variable.

VARIABLE_NAME VARNAME VARCHAR(128) Name of the variable.

SYSTEM_VAR_SCHEMA SYSVSCHEMA CHAR(10) System schema name.

SYSTEM_VAR_NAME SYSVNAME CHAR(10) System variable name.

VARIABLE_OWNER OWNER VARCHAR(128) Authorization ID of the owner of the global variable.

VARIABLE_DEFINER DEFINER VARCHAR(128) Name of the user that created the variable.

VARIABLE_CREATED CREATDTS TIMESTAMP Identifies the timestamp when the variable was
created.

SCOPE SCOPE CHAR(1) Indicates the scope of the variable:.

S
Session

OWNER_TYPE OWNER_TYPE CHAR(1) Indicates the owner of the variable:

U
The owner is an individual user

S
The variable is system owned.

USER_DEFINED_TYPE_SCHEMA TYPESCHEMA VARCHAR(128)

Nullable

Schema of the data type if this is a distinct type.

Contains the null value if the variable is not a distinct
type.

USER_DEFINED_TYPE_NAME TYPENAME VARCHAR(128)

Nullable

Name of the data type if this is a distinct type.

Contains the null value if the variable is not a distinct
type.

Appendix F. Db2 for i catalog views 1875

Table 223. SYSVARIABLES table (continued)

Column Name
System Column
Name Data Type Description

DATA_TYPE DATA_TYPE VARCHAR(128) Type of variable:

BIGINT
Big number

INTEGER
Large number

SMALLINT
Small number

DECIMAL
Packed decimal

NUMERIC
Zoned decimal

FLOAT
Floating point; FLOAT, REAL, or DOUBLE
PRECISION

DECFLOAT
Decimal floating-point

CHARACTER
Fixed-length character string

VARCHAR
Varying-length character string

CLOB
Character large object string

GRAPHIC
Fixed-length graphic string

VARGRAPHIC
Varying-length graphic string

DBCLOB
Double-byte character large object string

BINARY
Fixed-length binary string

VARBINARY
Varying-length binary string

BLOB
Binary large object string

DATE
Date

TIME
Time

TIMESTAMP
Timestamp

XML
XML

1876 IBM i: Db2 for i SQL Reference

Table 223. SYSVARIABLES table (continued)

Column Name
System Column
Name Data Type Description

LENGTH LENGTH INTEGER The length attribute of the data type; or, in the case
of a decimal, numeric, or nonzero precision binary
variable, its precision:

8 bytes
BIGINT

4 bytes
INTEGER

2 bytes
SMALLINT

Precision of number
DECIMAL

Precision of number
NUMERIC

8 bytes
FLOAT, FLOAT(n) where n = 25 to 53, or DOUBLE
PRECISION

4 bytes
FLOAT(n) where n = 1 to 24, or REAL

8 bytes
DECFLOAT(16)

16 bytes
DECFLOAT(34)

Length of string
CHARACTER

Maximum length of string
VARCHAR or CLOB

Length of graphic string
GRAPHIC

Maximum length of graphic string
VARGRAPHIC or DBCLOB

Length of binary string
BINARY

Maximum length of binary string
VARBINARY or BLOB

4 bytes
DATE

3 bytes
TIME

The integral part of ((p+1)/2)+7 where p is the
precision of the timestamp

TIMESTAMP

2147483647 bytes
XML

Same value as the source type
DISTINCT

NUMERIC_SCALE SCALE INTEGER

Nullable

Scale of numeric data.

Contains the null value if the data type is not decimal,
numeric, or binary.

Appendix F. Db2 for i catalog views 1877

Table 223. SYSVARIABLES table (continued)

Column Name
System Column
Name Data Type Description

STORAGE STORAGE INTEGER The storage requirements for the variable:

8 bytes
BIGINT

4 bytes
INTEGER

2 bytes
SMALLINT

(Precision/2) + 1
DECIMAL

Precision of number
NUMERIC

8 bytes
FLOAT, FLOAT(n) where n = 25 to 53, or DOUBLE
PRECISION

4 bytes
FLOAT(n) where n = 1 to 24, or REAL

8 bytes
DECFLOAT(16)

16 bytes
DECFLOAT(34)

Length of string
CHAR

Maximum length of string + 2
VARCHAR

Maximum length of string + 29
CLOB

Length of string * 2
GRAPHIC

Maximum length of string * 2 + 2
VARGRAPHIC

Maximum length of string * 2 + 29
DBCLOB

Length of binary string
BINARY

Maximum length of binary string + 2
VARBINARY

Maximum length of string + 29
BLOB

4 bytes
DATE

3 bytes
TIME

The integral part of ((p+1)/2)+7 where p is the
precision of the timestamp

TIMESTAMP

2147483647 +29 bytes
XML

Same value as the source type
DISTINCT

Note: This column supplies the storage requirements
for all data types.

NUMERIC_PRECISION PRECISION INTEGER

Nullable

The precision of all numeric data types.

Note: This column supplies the precision of all
numeric data types, including decimal floating-point
and single-and double-precision floating point. The
NUMERIC_PRECISION_RADIX column indicates if the
value in this column is in binary or decimal digits.

Contains the null value if the data type is not numeric.

CCSID CCSID INTEGER

Nullable

The CCSID value for CHAR, VARCHAR, CLOB,
DATE, TIME, TIMESTAMP, GRAPHIC, VARGRAPHIC,
DBCLOB, XML, and DATALINK data types.

Contains the null value if the data type is numeric.

1878 IBM i: Db2 for i SQL Reference

Table 223. SYSVARIABLES table (continued)

Column Name
System Column
Name Data Type Description

CHARACTER_MAXIMUM_LENGTH CHARLEN INTEGER

Nullable

Maximum length of the string for binary, character,
and graphic string data types and the XML data type.

Contains the null value if the data type is not a string
or XML.

CHARACTER_OCTET_LENGTH CHARBYTE INTEGER

Nullable

Number of bytes for binary, character, and graphic
string data types and the XML data type.

Contains the null value if the data type is not a string
or XML.

NUMERIC_PRECISION_RADIX RADIX INTEGER

Nullable

Indicates if the precision specified in column
NUMERIC_PRECISION is specified as a number of
binary or decimal digits:

2
Binary; floating-point precision is specified in
binary digits.

10
Decimal; all other numeric types are specified in
decimal digits.

Contains the null value if the data type is not numeric.

DATETIME_PRECISION DATPRC INTEGER

Nullable

The fractional part of a date, time, or timestamp.

0
For DATE and TIME data types

0-12
For TIMESTAMP data types (number of
fractional seconds).

Contains the null value if the data type is not date,
time, or timestamp.

DEFAULT DEFAULT DBCLOB(2M)

CCSID 1200

The expression used to calculate the initial value of
the global variable when it is first referenced.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary storage pool
(IASP) number of the variable.

VARIABLE_TEXT LABEL VARGRAPHIC(50)

CCSID 1200

Nullable

A character string supplied with the LABEL statement
(type text).

Contains the null value if the type has no text.

LONG_COMMENT REMARKS VARGRAPHIC(2000)

CCSID 1200

Nullable

A character string supplied with the COMMENT
statement.

Contains the null value if there is no long comment.

DEFAULT_SCHEMA QUALIFIER VARCHAR(128)

Nullable

Qualifier for unqualifed tables and views.

SQL_PATH SQL_PATH VARCHAR(3483) Identifies the path.

ROUNDING_MODE DECFLTRND CHAR(1)

Nullable

Identifies the DECFLOAT rounding mode.

C
ROUND_CEILING

D
ROUND_DOWN

F
ROUND_FLOOR

G
ROUND_HALF_DOWN

E
ROUND_HALF_EVEN

H
ROUND_HALF_UP

U
ROUND_UP

Appendix F. Db2 for i catalog views 1879

Table 223. SYSVARIABLES table (continued)

Column Name
System Column
Name Data Type Description

READONLY READONLY CHAR(1)

Nullable

Indicates whether the variable may be modified or
whether it is read-only.

N
Not read-only

S
Read-only because the global variable is
maintained by the database manager.

1880 IBM i: Db2 for i SQL Reference

SYSVIEWDEP
The SYSVIEWDEP view records the dependencies of views on tables, including the views of the SQL
catalog.

The following table describes the columns in the SYSVIEWDEP view:

Table 224. SYSVIEWDEP view

Column name
System Column
Name Data Type Description

VIEW_NAME DNAME VARCHAR(128) Name of the view. This is the SQL view name if it
exists; otherwise, it is the system view name.

VIEW_OWNER DCREATOR VARCHAR(128) Owner of the view

OBJECT_NAME ONAME VARCHAR(128) Name of the object the view is dependent on.

OBJECT_SCHEMA OSCHEMA VARCHAR(128) Name of the SQL schema that contains the object the
view is dependent on.

OBJECT_TYPE OTYPE CHAR(24) Type of object the view was based on:

FUNCTION
Function

MATERIALIZED QUERY TABLE
The object is a materialized query table.

TABLE
Table

TYPE
Distinct type

VARIABLE
The object is a variable.

VIEW
View

VIEW_SCHEMA DDBNAME VARCHAR(128) Name of the schema of the view.

SYSTEM_VIEW_NAME SYS_VNAME CHAR(10) System View name

SYSTEM_VIEW_SCHEMA SYS_VDNAME CHAR(10) System View schema

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10)

Nullable

System Table name.

Contains the null value if the object is a function or
distinct type.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10)

Nullable

System Table schema.

Contains the null value if the object is a function or
distinct type.

TABLE_NAME BNAME VARCHAR(128)

Nullable

Name of the table or view the view is dependent on.
This is the SQL view name if it exists; otherwise, it is
the system view name.

Contains the null value if the object is a function or
distinct type.

TABLE_OWNER BCREATOR VARCHAR(128)

Nullable

Owner of the table or view the view is dependent on.

Contains the null value if the object is a function or
distinct type.

TABLE_SCHEMA BDBNAME VARCHAR(128)

Nullable

Name of the SQL schema that contains the table or
view the view is dependent on.

Contains the null value if the object is a function or
distinct type.

Appendix F. Db2 for i catalog views 1881

Table 224. SYSVIEWDEP view (continued)

Column name
System Column
Name Data Type Description

TABLE_TYPE BTYPE CHAR(1)

Nullable

Type of object the view was based on:

T
Table

P
Physical file

M
Materialized query table

V
View

L
Logical file

Contains the null value if the object is a function or
distinct type.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary storage pool
(IASP) number.

PARM_SIGNATURE SIGNATURE BLOB(3M)

Nullable

This column identifies the routine signature.

Contains the null value if the object is not a routine.

1882 IBM i: Db2 for i SQL Reference

SYSVIEWS
The SYSVIEWS view contains one row for each view in the SQL schema, including the views of the SQL
catalog.

The following table describes the columns in the SYSVIEWS view:

Table 225. SYSVIEWS view

Column Name
System Column
Name Data Type Description

TABLE_NAME NAME VARCHAR(128) Name of the view. This is the SQL view name if it
exists; otherwise, it is the system view name.

VIEW_OWNER CREATOR VARCHAR(128) Owner of the view

SEQNO SEQNO INTEGER Sequence number of this row; will always be 1.

CHECK_OPTION CHECK CHAR(1) The check option used on the view

N
No check option was specified

Y
The local option was specified

C
The cascaded option was specified

VIEW_DEFINITION TEXT VARGRAPHIC(5000) CCSID
1200

Nullable

The query expression portion of the CREATE VIEW
statement.

Contains the null value if the view definition cannot be
contained in the column without truncation.

IS_UPDATABLE UPDATES CHAR(1) Specifies if the view is updatable:

Y
The view is updatable

N
The view is not updatable

TABLE_SCHEMA DBNAME VARCHAR(128) Name of the SQL schema that contains the view.

SYSTEM_VIEW_NAME SYS_VNAME CHAR(10) System view name

SYSTEM_VIEW_SCHEMA SYS_VDNAME CHAR(10) System view schema name

IS_INSERTABLE_INTO INSERTABLE VARCHAR(3) Identifies whether an INSERT is allowed on the view.

NO
An INSERT is not allowed on this view.

YES
An INSERT is allowed on this view.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary storage pool
(IASP) number.

IS_DELETABLE DELETES CHAR(1)

Nullable

Specifies if the view is deletable:

Y
The view is deletable

N
The view is read-only

VIEW_DEFINER DEFINER VARCHAR(128) Name of the user that defined the view.

Appendix F. Db2 for i catalog views 1883

Table 225. SYSVIEWS view (continued)

Column Name
System Column
Name Data Type Description

ROUNDING_MODE DECFLTRND CHAR(1)

Nullable

Indicates the DECFLOAT rounding mode of the view:

C
ROUND_CEILING

D
ROUND_DOWN

F
ROUND_FLOOR

G
ROUND_HALF_DOWN

E
ROUND_HALF_EVEN

H
ROUND_HALF_UP

U
ROUND_UP

Contains the null value if the view does not have
an expression that references a DECFLOAT column,
function, or constant.

1884 IBM i: Db2 for i SQL Reference

SYSXSROBJECTAUTH
The SYSXSROBJECTAUTH view contains one row for every privilege granted on an XML schema. Note that
this catalog view cannot be used to determine whether a user is authorized to a XML schema because the
privilege to use a XML schema could be acquired through a group user profile or special authority (such as
*ALLOBJ).

The following table describes the columns in the SYSXSROBJECTAUTH view:

Table 226. SYSXSROBJECTAUTH view

Column Name
System Column
Name Data Type Description

GRANTOR GRANTOR VARCHAR(128)

Nullable

Reserved. Contains the null value.

GRANTEE GRANTEE VARCHAR(128) The user profile to which the privilege is granted.

XSROBJECTSCHEMA XSRSCHEMA VARCHAR(128) Name of the schema

XSROBJECTNAME XSRNAME VARCHAR(128) Name of the XML schema

PRIVILEGE_TYPE PRIVTYPE VARCHAR(10) The privilege granted:

ALTER
The privilege to alter the XML schema.

USAGE
The privilege to use the XML schema.

IS_GRANTABLE GRANTABLE VARCHAR(3) Indicates whether the privilege is grantable to other
users.

NO
The privilege is not grantable.

YES
The privilege is grantable.

AUTHORIZATION_LIST AUTL VARCHAR(10)

Nullable

If the privilege is granted through an authorization,
contains the name of the authorization list.

Contains the null value if the privilege is not granted
through an authorization list.

SYSTEM_XSR_SCHEMA SYSXSCHEMA CHAR(10) System name of the schema

SYSTEM_XSR_NAME SYSXNAME CHAR(10) System name of the XML schema

Appendix F. Db2 for i catalog views 1885

XSRANNOTATIONINFO
The XSRANNOTATIONINFO table contains one row for each annotation in an XML schema to record the
table and column information about the annotation.

The following table describes the columns in the XSRANNOTATIONINFO table:

Table 227. XSRANNOTATIONINFO table

Column name
System Column
Name Data Type Description

XSROBJECTID OBJECTID BIGINT Internal identifier of the XML schema.

ANNOTATION_ID ANNOID INTEGER Internal identifier of the XML schema annotation.

TABLE_SCHEMA TABSCHEMA VARCHAR(128) Schema of the table to insert the data into.

TABLE_NAME TABNAME VARCHAR(128) Table to insert the data into.

ROWSET ROWSET VARCHAR(1000) Name of the rowset for this annotation.

COLUMN_NAME COLNAME VARCHAR(128) Name of the column for this annotation.

DATA_TYPE COLTYPE INTEGER Data type of the column for this annotation.

INSTANCE_TYPE INSTTYPE INTEGER Type of data that will be provided by parser during
decomposition:

2
decimal

4
long integer

5
integer

6
short integer

16
string

30
datetime

41
float

42
double

TRUNCATE TRUNCATE INTEGER Indication of whether data can be truncated:

0
Data cannot be truncated

1
Data can be truncated

EXPRESSION EXPRESSION VARCHAR(1024)

Nullable

Expression to be applied to data on insert by Db2.

CONDITION CONDITION VARCHAR(1024)

Nullable

Condition to be applied before data is inserted by Db2.

CAST_EXPRESSION CASTEXP VARCHAR(20)

Nullable

Cast expression to be applied when the column data is
inserted by Db2 during decomposition.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary storage pool (IASP)
number.

ROWSET_ORDER ORDER INTEGER RowSet order sequence. Default is 1.

1886 IBM i: Db2 for i SQL Reference

XSROBJECTCOMPONENTS
The XSROBJECTCOMPONENTS table contains one row for each component (document) in an XML
schema.

The following table describes the columns in the XSROBJECTCOMPONENTS table:

Table 228. XSROBJECTCOMPONENTS table

Column name
System Column
Name Data Type Description

XSRCOMPONENTID COMPID BIGINT Internal identifier of the XML schema document.

TARGETNAMESPACE TGTNAMESPC VARCHAR(1000)

Nullable

String identifier for the target namespace.

SCHEMALOCATION SCHEMALOC VARCHAR(1000)

Nullable

String identifier for the schema location.

COMPONENT COMPONENT BLOB(30M)

Nullable

Contents of the XML schema document.

PROPERTIES PROPERTIES BLOB(5M)

Nullable

Additional document property information for the XML
schema document.

CREATED CREATEDTS TIMESTAMP The time when the XSR_REGISTER stored procedure
was executed for the XML schema.

STATUS STATUS CHAR(1) Registration status of the XML schema:

C
Complete

I
Incomplete

IASP_NUMBER IASPNUMBER SMALLINT Indicates the IASP where the catalog table is located.

Appendix F. Db2 for i catalog views 1887

XSROBJECTHIERARCHIES
The XSROBJECTHIERARCHIES table contains one row for each component (document) in an XML schema
to record the XML schema document hierarchy relationship.

The following table describes the columns in the XSROBJECTHIERARCHIES table:

Table 229. XSROBJECTHIERARCHIES table

Column name
System Column
Name Data Type Description

XSROBJECTID OBJECTID BIGINT Internal identifier of the XML schema.

XSRCOMPONENTID COMPID BIGINT Internal identifier of the XML schema document.

HTYPE HTYPE CHAR(1) Hierarchy type:

D
Document

P
Primary document

TARGETNAMESPACE TGTNAMESPC VARCHAR(1000)

Nullable

String identifier for the target namespace.

SCHEMALOCATION SCHEMALOC VARCHAR(1000)

Nullable

String identifier for the schema location.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary storage pool (IASP)
number.

1888 IBM i: Db2 for i SQL Reference

XSROBJECTS
The XSROBJECTS table contains one row for each registered XML schema.

The following table describes the columns in the XSROBJECTS table:

Table 230. XSROBJECTS table

Column name
System Column
Name Data Type Description

XSROBJECTID OBJECTID BIGINT Internal identifier of the XML schema.

XSROBJECTSCHEMA XSRSCHEMA VARCHAR(128) Qualifier of the XML schema name.

XSROBJECTNAME XSRNAME VARCHAR(128) Name of the XML schema

SYSTEM_XSR_SCHEMA SYSXSCHEMA CHAR(10) System library name corresponding to the qualifier of
the XML schema.

SYSTEM_XSR_NAME SYSXNAME CHAR(10) System name of the XSROBJECT that correlates to the
XML schema.

TARGETNAMESPACE TGTNAMESPC VARCHAR(1000)

Nullable

String identifier for the target namespace.

SCHEMALOCATION SCHEMALOC VARCHAR(1000)

Nullable

String identifier for the schema location.

XSR_OBJECT_TEXT LABEL VARGRAPHIC(50)

CCSID 1200

Nullable

A character string supplied with the LABEL statement.

Contains the null value if there is no label.

GRAMMAR GRAMMAR BLOB(250M)

Nullable

The internal binary representation of the XML schema
as the result of an XML_COMPLETE.

PROPERTIES PROPERTIES BLOB(5M)

Nullable

Additional document property information for the XML
schema document.

XSR_SCHEMA_DEFINER DEFINER VARCHAR(128) Authorization ID under which the XML schema was
created.

XSR_SCHEMA_OWNER OWNER VARCHAR(128) Authorization ID that owns the XML schema.

XSR_SCHEMA_CREATED CREATEDTS TIMESTAMP The time when the XML schema document was
registered.

STATUS STATUS CHAR(1) Registration status of the XML schema:

C
Complete

I
Incomplete

DECOMPOSITION DECOMP CHAR(1)

Nullable

Indicates the decomposition status of the XSR object:

Y
Enabled

N
Not enabled

VERSION VERSION VARCHAR(128)

Nullable

Indicates the version used during decomposition.

IASP_NUMBER IASPNUMBER SMALLINT Indicates the IASP where the catalog table is located.

LONG_COMMENT REMARKS VARGRAPHIC(2000)

CCSID 1200

Nullable

A character string supplied with the COMMENT
statement.

Contains the null value if there is no long comment.

Appendix F. Db2 for i catalog views 1889

1890 IBM i: Db2 for i SQL Reference

ODBC and JDBC catalog views
The catalog includes the views and tables in the SYSIBM library displayed in this section.

View Name Description

“SQLCOLPRIVILEGES” on page 1892 Information about privileges granted on columns

“SQLCOLUMNS” on page 1893 Information about column attributes

“SQLFOREIGNKEYS” on page 1903 Information about foreign keys

“SQLFUNCTIONCOLS” on page 1904 Information about function parameters

“SQLFUNCTIONS” on page 1913 Information about functions

“SQLPRIMARYKEYS” on page 1914 Information about primary keys

“SQLPROCEDURECOLS” on page 1915 Information about procedure parameters

“SQLPROCEDURES” on page 1924 Information about procedures

“SQLSCHEMAS” on page 1925 Information about schemas

“SQLSPECIALCOLUMNS” on page 1926 Information about columns of a table that can be used to uniquely identify a row

“SQLSTATISTICS” on page 1932 Statistical information about tables

“SQLTABLEPRIVILEGES” on page 1934 Information about privileges granted on tables

“SQLTABLES” on page 1935 Information about tables

“SQLTYPEINFO” on page 1936 Information about the types of tables

“SQLUDTS” on page 1944 Information about built-in data types and distinct types

Appendix F. Db2 for i catalog views 1891

SQLCOLPRIVILEGES
The SQLCOLPRIVILEGES view contains one row for every privilege granted on a column or a privilege
granted on the column’s table. Note that this catalog view cannot be used to determine whether a user
is authorized to a column because the privilege to use a column could be acquired through a group user
profile or special authority (such as *ALLOBJ).

The following table describes the columns in the view:

Table 231. SQLCOLPRIVILEGES view

Column Name Data Type Description

TABLE_CAT VARCHAR(128) Relational database name.

TABLE_SCHEM VARCHAR(128) Name of the SQL schema that contains the table.

TABLE_NAME VARCHAR(128) Table name.

COLUMN_NAME VARCHAR(128) Column name.

GRANTOR VARCHAR(128)

Nullable

Reserved. Contains the null value.

GRANTEE VARCHAR(128) The user profile to which the privilege is granted.

PRIVILEGE VARCHAR(10) The privilege granted:

UPDATE
The privilege to update the column.

REFERENCES
The privilege to reference the column in a referential constraint.

IS_GRANTABLE VARCHAR(3) Indicates whether the privilege is grantable to other users.

NO
The privilege is not grantable.

YES
The privilege is grantable.

DBNAME VARCHAR(8)

Nullable

Reserved. The column contains the null value.

1892 IBM i: Db2 for i SQL Reference

SQLCOLUMNS
The SQLCOLUMNS view contains one row for every column in a table, view, or alias.

The following table describes the columns in the view:

Table 232. SQLCOLUMNS view

Column Name Data Type Description

TABLE_CAT VARCHAR(128) Relational database name.

TABLE_SCHEM VARCHAR(128) Name of the SQL schema that contains the table.

TABLE_NAME VARCHAR(128) Table name.

COLUMN_NAME VARCHAR(128) Column name.

Appendix F. Db2 for i catalog views 1893

Table 232. SQLCOLUMNS view (continued)

Column Name Data Type Description

DATA_TYPE SMALLINT The data type of the column:

–5
BIGINT

4
INTEGER

5
SMALLINT

3
DECIMAL

2
NUMERIC

8
DOUBLE PRECISION

7
REAL

-360
DECFLOAT

1
CHARACTER

–2
CHARACTER FOR BIT DATA or BINARY

12
VARCHAR

–3
VARCHAR FOR BIT DATA or VARBINARY

-99
CLOB

–95
GRAPHIC

–96
VARGRAPHIC

–350
DBCLOB

–8
NCHAR

–9
NVARCHAR

–10
NCLOB

-98
BLOB

91
DATE

92
TIME

93
TIMESTAMP

70
DATALINK

–100
ROWID

-370
XML

17
DISTINCT

1894 IBM i: Db2 for i SQL Reference

Table 232. SQLCOLUMNS view (continued)

Column Name Data Type Description

TYPE_NAME VARCHAR(261) The name of the data type of the column:

BIGINT
BIGINT

INTeger
INTEGER

SMALLINT
SMALLINT

DECIMAL
DECIMAL

NUMERIC
NUMERIC

FLOAT
DOUBLE PRECISION

REAL
REAL

DECFLOAT
DECFLOAT

CHARacter
CHARACTER

CHARacter FOR BIT DATA
CHARACTER FOR BIT DATA

VARCHAR
VARCHAR

VARCHAR FOR BIT DATA
VARCHAR FOR BIT DATA

CLOB
CLOB

GRAPHIC
GRAPHIC

VARGRAPHIC
VARGRAPHIC

DBCLOB
DBCLOB

NCHAR
NCHAR

NVARCHAR
NVARCHAR

NCLOB
NCLOB

BINARY
BINARY

VARBINARY
VARBINARY

BLOB
BLOB

DATE
DATE

TIME
TIME

TIMESTAMP
TIMESTAMP

DATALINK
DATALINK

ROWID
ROWID

XML
XML

Qualified Type Name
DISTINCT

COLUMN_SIZE INTEGER The length of the column.

BUFFER_LENGTH INTEGER Indicates the length of the column in a buffer.

Appendix F. Db2 for i catalog views 1895

Table 232. SQLCOLUMNS view (continued)

Column Name Data Type Description

DECIMAL_DIGITS SMALLINT

Nullable

Indicates the number of digits for a numeric column.

Contains the null value if the object is not numeric or timestamp.

NUM_PREC_RADIX SMALLINT

Nullable

Indicates the radix of a numeric column.

Contains the null value if the object is not numeric.

NULLABLE SMALLINT Indicates whether the column can contain the null value.

0
The column does not allow nulls.

1
The column does allow nulls.

REMARKS VARCHAR(2000)

Nullable

A character string supplied with the COMMENT statement.

Contains the null value if there is no long comment.

COLUMN_DEF VARCHAR(2000)

Nullable

The default value of the column.

Contains the null value if there is no default value.

1896 IBM i: Db2 for i SQL Reference

Table 232. SQLCOLUMNS view (continued)

Column Name Data Type Description

SQL_DATA_TYPE SMALLINT Indicates the SQL data type of the column.

–5
BIGINT

4
INTEGER

5
SMALLINT

3
DECIMAL

2
NUMERIC

8
DOUBLE PRECISION

7
REAL

-360
DECFLOAT

1
CHARACTER

–2
CHARACTER FOR BIT DATA or BINARY

12
VARCHAR

–3
VARCHAR FOR BIT DATA or VARBINARY

-99
CLOB

–95
GRAPHIC

–96
VARGRAPHIC

–350
DBCLOB

–8
NCHAR

–9
NVARCHAR

–10
NCLOB

-98
BLOB

9
DATE

9
TIME

9
TIMESTAMP

70
DATALINK

–100
ROWID

-370
XML

17
DISTINCT

Appendix F. Db2 for i catalog views 1897

Table 232. SQLCOLUMNS view (continued)

Column Name Data Type Description

SQL_DATETIME_SUB SMALLINT

Nullable

The datetime subtype of the data type:

1
DATE

2
TIME

3
TIMESTAMP

Contains the null value if the column is not a datetime data type.

CHAR_OCTET_LENGTH INTEGER

Nullable

Indicates the length in bytes of the column.

Contains the null value if the column is not a string.

ORDINAL_POSITION INTEGER Indicates the ordinal position of the column in the table.

IS_NULLABLE VARCHAR(3) Indicates whether the column can contain the null value.

NO
The column is not nullable.

YES
The column is nullable.

1898 IBM i: Db2 for i SQL Reference

Table 232. SQLCOLUMNS view (continued)

Column Name Data Type Description

JDBC_DATA_TYPE SMALLINT Indicates the JDBC data type of the column.

–5
BIGINT

4
INTEGER

5
SMALLINT

3
DECIMAL

2
NUMERIC

8
DOUBLE PRECISION

7
REAL

1111
DECFLOAT

1
CHARACTER or GRAPHIC

-15
NCHAR

–2
CHARACTER FOR BIT DATA or BINARY

12
VARCHAR or VARGRAPHIC

-9
NVARCHAR

–3
VARCHAR FOR BIT DATA or VARBINARY

2005
CLOB or DBCLOB

2011
NCLOB

2004
BLOB

91
DATE

92
TIME

93
TIMESTAMP

70
DATALINK

-8
ROWID

2009
XML

2001
DISTINCT

SCOPE_CATALOG VARCHAR(128)

Nullable

Reserved. Contains the null value.

SCOPE_SCHEMA VARCHAR(128)

Nullable

Reserved. Contains the null value.

SCOPE_TABLE VARCHAR(128)

Nullable

Reserved. Contains the null value.

SOURCE_DATA_TYPE SMALLINT

Nullable

The source data type if the data type of the column is a distinct type. For
values see JDBC_DATA_TYPE.

Contains the null value if the data type is not a distinct type.

Appendix F. Db2 for i catalog views 1899

Table 232. SQLCOLUMNS view (continued)

Column Name Data Type Description

DBNAME VARCHAR(8)

Nullable

Reserved. Contains the null value.

PSEUDO_COLUMN SMALLINT Indicates whether this is a ROWID, identity, row change timestamp, row
begin, row end, transaction start ID, or generated expression column.

1
The column is not a ROWID, identity, row change timestamp, row begin,
row end, transaction start ID, or generated expression column.

2
The column is a ROWID, identity, or row change timestamp, row begin,
row end, transaction start ID, or generated expression column.

COLUMN_TEXT VARCHAR(50)

Nullable

The text of the column.

Contains the null value if the column has no column text.

SYSTEM_COLUMN_NAME CHAR(10) The system name of the column.

1900 IBM i: Db2 for i SQL Reference

Table 232. SQLCOLUMNS view (continued)

Column Name Data Type Description

I_DATA_TYPE SMALLINT Indicates the IBM i CLI data type of the column.

19
BIGINT

4
INTEGER

5
SMALLINT

3
DECIMAL

2
NUMERIC

8
DOUBLE PRECISION

7
REAL

-360
DECFLOAT

1
CHARACTER

–2
CHARACTER FOR BIT DATA or BINARY

12
VARCHAR

–3
VARCHAR FOR BIT DATA or VARBINARY

14
CLOB

95
GRAPHIC or NCHAR

96
VARGRAPHIC or NVARCHAR

15
DBCLOB or NCLOB

13
BLOB

91
DATE

92
TIME

93
TIMESTAMP

16
DATALINK

1111
ROWID

-370
XML

2001
DISTINCT

HIDDEN CHAR(1) Specifies whether the column is included in an implicit column list.

P
Partially hidden.

N
Not hidden.

Appendix F. Db2 for i catalog views 1901

Table 232. SQLCOLUMNS view (continued)

Column Name Data Type Description

HAS_DEFAULT CHAR(1) If the column has a default value (DEFAULT clause or null capable):

N
No

Y
Yes

A
The column has a ROWID data type and the GENERATED ALWAYS
attribute.

D
The column has a ROWID data type and the GENERATED BY DEFAULT
attribute.

E
The column is defined with the FOR EACH ROW ON UPDATE and the
GENERATED ALWAYS attribute.

F
The column is defined with the FOR EACH ROW ON UPDATE and the
GENERATED BY DEFAULT attribute.

I
The column is defined with the AS IDENTITY and GENERATED ALWAYS
attributes.

J
The column is defined with the AS IDENTITY and GENERATED BY
DEFAULT attributes.

Q
The column is defined with the GENERATED AS ROW BEGIN attribute.

R
The column is defined with the GENERATED AS ROW END attribute.

X
The column is defined with the GENERATED AS TRANSACTION START ID
attribute.

a
The column is defined as a generated expression using a special register.

c
The column is defined as a generated expression using a global variable.

d
The column is defined as a generated expression using DATA CHANGE
OPERATION.

If the column is for a view, N is returned.

SOURCE_TYPE_NAME VARCHAR(128)

Nullable

If the column data type is a user-defined type, the built-in data type name of
its source type.

Contains the null value if the column data type is not a user-defined type.

SOURCE_SQL_DATA_TYPE SMALLINT

Nullable

If the column data type is a user-defined type, the built-in SQL_DATA_TYPE of
its source type. For values see SQL_DATA_TYPE.

Contains the null value if the column data type is not a user-defined type.

SOURCE_JDBC_DATA_TYPE SMALLINT

Nullable

If the column data type is a user-defined type, the built-in JDBC_DATA_TYPE
of its source type. For values see JDBC_DATA_TYPE.

Contains the null value if the column data type is not a user-defined type.

1902 IBM i: Db2 for i SQL Reference

SQLFOREIGNKEYS
The SQLFOREIGNKEYS view contains one row for every referential constraint key on a table.

The following table describes the columns in the view:

Table 233. SQLFOREIGNKEYS view

Column Name Data Type Description

PKTABLE_CAT VARCHAR(128) Relational database name

PKTABLE_SCHEM VARCHAR(128) Name of the SQL schema containing the parent table.

PKTABLE_NAME VARCHAR(128) Parent table name.

PKCOLUMN_NAME VARCHAR(128) Parent key column name.

FKTABLE_CAT VARCHAR(128) Relational database name

FKTABLE_SCHEM VARCHAR(128) Name of the SQL schema containing the dependent table of the referential
constraint.

FKTABLE_NAME VARCHAR(128) Dependent table name of the referential constraint.

FKCOLUMN_NAME VARCHAR(128) Dependent key name.

KEY_SEQ SMALLINT The position of the column within the key.

UPDATE_RULE SMALLINT Update Rule.

1
RESTRICT

3
NO ACTION

DELETE_RULE SMALLINT Delete Rule:

0
CASCADE

1
RESTRICT

2
SET NULL

3
NO ACTION

4
SET DEFAULT

FK_NAME VARCHAR(128) Name of the referential constraint

PK_NAME VARCHAR(128) Name of the unique constraint

DEFERRABILITY SMALLINT Indicates whether the constraint checking can be deferred. Will always be 7.

UNIQUE_OR_PRIMARY CHAR(7) Indicates the type of parent constraint:

PRIMARY
The parent constraint is a primary key.

UNIQUE
The parent constraint is a unique constraint.

Appendix F. Db2 for i catalog views 1903

SQLFUNCTIONCOLS
The SQLFUNCTIONCOLS view contains one row for every parameter of a function. The result of a scalar
function and the result columns of a table function are also returned.

The following table describes the columns in the view:

Table 234. SQLFUNCTIONCOLS view

Column Name Data Type Description

FUNCTION_CAT VARCHAR(128) Relational database name

FUNCTION_SCHEM VARCHAR(128) Schema name of the function instance.

FUNCTION_NAME VARCHAR(128) Name of the function instance.

COLUMN_NAME VARCHAR(128)

Nullable

Name of a function parameter.

Contains the null value if the parameter does not have a name.

COLUMN_TYPE SMALLINT Type of the parameter:

1
IN

4
RETURN value

5
Result column of a table function

1904 IBM i: Db2 for i SQL Reference

Table 234. SQLFUNCTIONCOLS view (continued)

Column Name Data Type Description

DATA_TYPE SMALLINT The data type of the parameter:

–5
BIGINT

4
INTEGER

5
SMALLINT

3
DECIMAL

2
NUMERIC

8
DOUBLE PRECISION

7
REAL

-360
DECFLOAT

1
CHARACTER

–2
CHARACTER FOR BIT DATA or BINARY

12
VARCHAR

–3
VARCHAR FOR BIT DATA or VARBINARY

-99
CLOB

–95
GRAPHIC or

–96
VARGRAPHIC

–350
DBCLOB

–8
NCHAR

–9
NVARCHAR

–10
NCLOB

-98
BLOB

91
DATE

92
TIME

93
TIMESTAMP

70
DATALINK

–100
ROWID

-370
XML

17
DISTINCT

50
ARRAY

Appendix F. Db2 for i catalog views 1905

Table 234. SQLFUNCTIONCOLS view (continued)

Column Name Data Type Description

TYPE_NAME VARCHAR(261) The name of the data type of the parameter:

BIGINT
BIGINT

INTeger
INTEGER

SMALLINT
SMALLINT

DECIMAL
DECIMAL

NUMERIC
NUMERIC

FLOAT
DOUBLE PRECISION

REAL
REAL

DECFLOAT
DECFLOAT

CHARacter
CHARACTER

CHARacter FOR BIT DATA
CHARACTER FOR BIT DATA

VARCHAR
VARCHAR

VARCHAR FOR BIT DATA
VARCHAR FOR BIT DATA

CLOB
CLOB

GRAPHIC
GRAPHIC

VARGRAPHIC
VARGRAPHIC

DBCLOB
DBCLOB

NCHAR
NCHAR

NVARCHAR
NVARCHAR

NCLOB
NCLOB

BINARY
BINARY

VARBINARY
VARBINARY

BLOB
BLOB

DATE
DATE

TIME
TIME

TIMESTAMP
TIMESTAMP

DATALINK
DATALINK

ROWID
ROWID

XML
XML

Qualified Type Name
DISTINCT

Array Type Name
ARRAY

COLUMN_SIZE INTEGER Length of the parameter.

1906 IBM i: Db2 for i SQL Reference

Table 234. SQLFUNCTIONCOLS view (continued)

Column Name Data Type Description

BUFFER_LENGTH INTEGER Indicates the length of the parameter in a buffer.

DECIMAL_DIGITS SMALLINT

Nullable

Scale of numeric or datetime data.

Contains the null value if the parameter is not decimal, numeric, binary, time
or timestamp.

NUM_PREC_RADIX SMALLINT

Nullable

Indicates if the precision specified in column NUMERIC_PRECISION is
specified as a number of binary or decimal digits:

2
Binary; floating-point precision is specified in binary digits.

10
Decimal; all other numeric types are specified in decimal digits.

Contains the null value if the parameter is not numeric.

NULLABLE SMALLINT Indicates whether the parameter is nullable.

0
The parameter does not allow nulls.

1
The parameter does allow nulls.

REMARKS VARGRAPHIC(2000)
CCSID 1200

Nullable

A character string supplied with the COMMENT statement.

Contains the null value if there is no long comment.

COLUMN_DEF DBCLOB(64K) CCSID
1200

Nullable

The expression string used to calculate the default value of a parameter, if
one exists. If the default value is the null value, the expression string is the
keyword NULL. Contains the null value if the parameter has no default.

Appendix F. Db2 for i catalog views 1907

Table 234. SQLFUNCTIONCOLS view (continued)

Column Name Data Type Description

SQL_DATA_TYPE SMALLINT The SQL data type of the parameter:

–5
BIGINT

4
INTEGER

5
SMALLINT

3
DECIMAL

2
NUMERIC

8
DOUBLE PRECISION

7
REAL

-360
DECFLOAT

1
CHARACTER

–2
CHARACTER FOR BIT DATA or BINARY

12
VARCHAR

–3
VARCHAR FOR BIT DATA or VARBINARY

-99
CLOB

–95
GRAPHIC

–96
VARGRAPHIC

–350
DBCLOB

–8
NCHAR

–9
NVARCHAR

–10
NCLOB

-98
BLOB

9
DATE

9
TIME

9
TIMESTAMP

70
DATALINK

–100
ROWID

-370
XML

17
DISTINCT

50
ARRAY

1908 IBM i: Db2 for i SQL Reference

Table 234. SQLFUNCTIONCOLS view (continued)

Column Name Data Type Description

SQL_DATETIME_SUB SMALLINT

Nullable

The datetime subtype of the parameter:

1
DATE

2
TIME

3
TIMESTAMP

Contains the null value if the data type is not a datetime data type.

CHAR_OCTET_LENGTH INTEGER

Nullable

Indicates the length in characters of the parameter.

Contains the null value if the column is not a string.

ORDINAL_POSITION INTEGER Numeric place of the parameter in the parameter list, ordered from left to
right.

For scalar functions, the result of the function has a value of 0.

For table functions, the result columns are numbered from 1 (leftmost result
column) to n (nth result column).

IS_NULLABLE VARCHAR(3) Indicates whether the parameter is nullable.

NO
The parameter does not allow nulls.

YES
The parameter does allow nulls.

SPECIFIC_NAME VARCHAR(128) Specific name of the function instance

Appendix F. Db2 for i catalog views 1909

Table 234. SQLFUNCTIONCOLS view (continued)

Column Name Data Type Description

JDBC_DATA_TYPE INTEGER The JDBC data type of the parameter:

–5
BIGINT

4
INTEGER

5
SMALLINT

3
DECIMAL

2
NUMERIC

8
DOUBLE PRECISION

7
REAL

1111
DECFLOAT

1
CHARACTER or GRAPHIC

-15
NCHAR

–2
CHARACTER FOR BIT DATA or BINARY

12
VARCHAR or VARGRAPHIC

-9
NVARCHAR

–3
VARCHAR FOR BIT DATA or VARBINARY

2005
CLOB or DBCLOB

2011
NCLOB

2004
BLOB

91
DATE

92
TIME

93
TIMESTAMP

70
DATALINK

-8
ROWID

2009
XML

2001
DISTINCT

2003
ARRAY

1910 IBM i: Db2 for i SQL Reference

Table 234. SQLFUNCTIONCOLS view (continued)

Column Name Data Type Description

I_DATA_TYPE INTEGER Indicates the IBM i CLI data type of the parameter.

19
BIGINT

4
INTEGER

5
SMALLINT

3
DECIMAL

2
NUMERIC

8
DOUBLE PRECISION

7
REAL

-360
DECFLOAT

1
CHARACTER

–2
CHARACTER FOR BIT DATA or BINARY

12
VARCHAR

–3
VARCHAR FOR BIT DATA or VARBINARY

14
CLOB

95
GRAPHIC or NCHAR

96
VARGRAPHIC or NVARCHAR

15
DBCLOB or NCLOB

13
BLOB

91
DATE

92
TIME

93
TIMESTAMP

16
DATALINK

1111
ROWID

-370
XML

2001
DISTINCT

50
ARRAY

SOURCE_DATA_TYPE SMALLINT

Nullable

The source data type if the data type of the parameter is a distinct type. For
values see JDBC_DATA_TYPE.

Contains the null value if the data type is not a distinct type.

SOURCE_TYPE_NAME VARCHAR(128)

Nullable

If the parameter data type is a user-defined type, the built-in data type name
of its source type.

Contains the null value if the parameter data type is not a user-defined type.

SOURCE_SQL_DATA_TYPE SMALLINT

Nullable

If the parameter data type is a user-defined type, the built-in
SQL_DATA_TYPE of its source type. For values see SQL_DATA_TYPE.

Contains the null value if the parameter data type is not a user-defined type.

Appendix F. Db2 for i catalog views 1911

Table 234. SQLFUNCTIONCOLS view (continued)

Column Name Data Type Description

SOURCE_JDBC_DATA_TYPE SMALLINT

Nullable

If the parameter data type is a user-defined type, the built-in
JDBC_DATA_TYPE of its source type. For values see JDBC_DATA_TYPE.

Contains the null value if the parameter data type is not a user-defined type.

MAXIMUM_CARDINALITY BIGINT

Nullable

The maximum cardinality of the array data type.

Contains the null value if the type is not an array type.

1912 IBM i: Db2 for i SQL Reference

SQLFUNCTIONS
The SQLFUNCTIONS view contains one row for every function.

The following table describes the columns in the view:

Table 235. SQLFUNCTIONS view

Column Name Data Type Description

FUNCTION_CAT VARCHAR(128) Relational database name

FUNCTION_SCHEM VARCHAR(128) Name of the schema of the function instance.

FUNCTION_NAME VARCHAR(128) Name of the function.

REMARKS VARGRAPHIC(2000)
CCSID 1200

Nullable

A character string supplied with the COMMENT statement.

Contains the null value if there is no long comment.

FUNCTION_TYPE SMALLINT Type of function:

1
Column or scalar function

2
Table function

SPECIFIC_NAME VARCHAR(128) Specific name of the function instance

Appendix F. Db2 for i catalog views 1913

SQLPRIMARYKEYS
The SQLPRIMARYKEYS view contains one row for every primary constraint key on a table.

The following table describes the columns in the view:

Table 236. SQLPRIMARYKEYS view

Column Name Data Type Description

TABLE_CAT VARCHAR(128) Relational database name

TABLE_SCHEM VARCHAR(128) Name of the schema containing the table with the primary key.

TABLE_NAME VARCHAR(128) Name of the table with the primary key.

COLUMN_NAME VARCHAR(128) Name of a primary key column.

KEY_SEQ SMALLINT The position of the column within the key.

PK_NAME VARCHAR(128) Name of the primary key constraint.

1914 IBM i: Db2 for i SQL Reference

SQLPROCEDURECOLS
The SQLPROCEDURECOLS view contains one row for every parameter of a procedure.

The following table describes the columns in the view:

Table 237. SQLPROCEDURECOLS view

Column Name Data Type Description

PROCEDURE_CAT VARCHAR(128) Relational database name

PROCEDURE_SCHEM VARCHAR(128) Schema name of the procedure instance.

PROCEDURE_NAME VARCHAR(128) Name of the procedure instance.

COLUMN_NAME VARCHAR(128)

Nullable

Name of a procedure parameter.

Contains the null value if the parameter does not have a name.

COLUMN_TYPE SMALLINT Type of the parameter:

1
IN

2
INOUT

4
OUT

Appendix F. Db2 for i catalog views 1915

Table 237. SQLPROCEDURECOLS view (continued)

Column Name Data Type Description

DATA_TYPE SMALLINT The data type of the parameter:

–5
BIGINT

4
INTEGER

5
SMALLINT

3
DECIMAL

2
NUMERIC

8
DOUBLE PRECISION

7
REAL

-360
DECFLOAT

1
CHARACTER

–2
CHARACTER FOR BIT DATA or BINARY

12
VARCHAR

–3
VARCHAR FOR BIT DATA or VARBINARY

-99
CLOB

–95
GRAPHIC

–96
VARGRAPHIC

–350
DBCLOB

–8
NCHAR

–9
NVARCHAR

–10
NCLOB

-98
BLOB

91
DATE

92
TIME

93
TIMESTAMP

70
DATALINK

–100
ROWID

-370
XML

17
DISTINCT

50
ARRAY

1916 IBM i: Db2 for i SQL Reference

Table 237. SQLPROCEDURECOLS view (continued)

Column Name Data Type Description

TYPE_NAME VARCHAR(261) The name of the data type of the parameter:

BIGINT
BIGINT

INTeger
INTEGER

SMALLINT
SMALLINT

DECIMAL
DECIMAL

NUMERIC
NUMERIC

FLOAT
DOUBLE PRECISION

REAL
REAL

DECFLOAT
DECFLOAT

CHARacter
CHARACTER

CHARacter FOR BIT DATA
CHARACTER FOR BIT DATA

VARCHAR
VARCHAR

VARCHAR FOR BIT DATA
VARCHAR FOR BIT DATA

CLOB
CLOB

GRAPHIC
GRAPHIC

VARGRAPHIC
VARGRAPHIC

DBCLOB
DBCLOB

NCHAR
NCHAR

NVARCHAR
NVARCHAR

NCLOB
NCLOB

BINARY
BINARY

VARBINARY
VARBINARY

BLOB
BLOB

DATE
DATE

TIME
TIME

TIMESTAMP
TIMESTAMP

DATALINK
DATALINK

ROWID
ROWID

XML
XML

Qualified Type Name
DISTINCT

Array Type Name
ARRAY

COLUMN_SIZE INTEGER Length of the parameter.

Appendix F. Db2 for i catalog views 1917

Table 237. SQLPROCEDURECOLS view (continued)

Column Name Data Type Description

BUFFER_LENGTH INTEGER Indicates the length of the parameter in a buffer.

DECIMAL_DIGITS SMALLINT

Nullable

Scale of numeric or datetime data.

Contains the null value if the parameter is not decimal, numeric, binary, time
or timestamp.

NUM_PREC_RADIX SMALLINT

Nullable

Indicates if the precision specified in column NUMERIC_PRECISION is
specified as a number of binary or decimal digits:

2
Binary; floating-point precision is specified in binary digits.

10
Decimal; all other numeric types are specified in decimal digits.

Contains the null value if the parameter is not numeric.

NULLABLE SMALLINT Indicates whether the parameter is nullable.

0
The parameter does not allow nulls.

1
The parameter does allow nulls.

REMARKS VARGRAPHIC(2000)
CCSID 1200

Nullable

A character string supplied with the COMMENT statement.

Contains the null value if there is no long comment.

COLUMN_DEF DBCLOB(64K)

CCSID(1200)
Nullable

The expression string used to calculate the default value of a parameter, if
one exists. If the default value is the null value, the expression string is the
keyword NULL. Contains the null value if the parameter has no default.

1918 IBM i: Db2 for i SQL Reference

Table 237. SQLPROCEDURECOLS view (continued)

Column Name Data Type Description

SQL_DATA_TYPE SMALLINT The SQL data type of the parameter:

–5
BIGINT

4
INTEGER

5
SMALLINT

3
DECIMAL

2
NUMERIC

8
DOUBLE PRECISION

7
REAL

-360
DECFLOAT

1
CHARACTER

–2
CHARACTER FOR BIT DATA or BINARY

12
VARCHAR

–3
VARCHAR FOR BIT DATA or VARBINARY

–99
CLOB

–95
GRAPHIC

–96
VARGRAPHIC

–350
DBCLOB

–8
NCHAR

–9
NVARCHAR

–10
NCLOB

–98
BLOB

9
DATE

9
TIME

9
TIMESTAMP

70
DATALINK

–100
ROWID

-370
XML

17
DISTINCT

50
ARRAY

Appendix F. Db2 for i catalog views 1919

Table 237. SQLPROCEDURECOLS view (continued)

Column Name Data Type Description

SQL_DATETIME_SUB SMALLINT

Nullable

The datetime subtype of the parameter:

1
DATE

2
TIME

3
TIMESTAMP

Contains the null value if the data type is not a datetime data type.

CHAR_OCTET_LENGTH INTEGER

Nullable

Indicates the length in characters of the parameter.

Contains the null value if the column is not a string.

ORDINAL_POSITION INTEGER Numeric place of the parameter in the parameter list, ordered from left to
right.

IS_NULLABLE VARCHAR(3) Indicates whether the parameter is nullable.

NO
The parameter does not allow nulls.

YES
The parameter does allow nulls.

SPECIFIC_NAME VARCHAR(128) Specific name of the procedure instance.

1920 IBM i: Db2 for i SQL Reference

Table 237. SQLPROCEDURECOLS view (continued)

Column Name Data Type Description

JDBC_DATA_TYPE INTEGER The JDBC data type of the parameter:

–5
BIGINT

4
INTEGER

5
SMALLINT

3
DECIMAL

2
NUMERIC

8
DOUBLE PRECISION

7
REAL

1111
DECFLOAT

1
CHARACTER or GRAPHIC

-15
NCHAR

–2
CHARACTER FOR BIT DATA or BINARY

12
VARCHAR or VARGRAPHIC

-9
NVARCHAR

–3
VARCHAR FOR BIT DATA or VARBINARY

2005
CLOB or DBCLOB

2011
NCLOB

2004
BLOB

91
DATE

92
TIME

93
TIMESTAMP

70
DATALINK

-8
ROWID

2009
XML

2001
DISTINCT

2003
ARRAY

Appendix F. Db2 for i catalog views 1921

Table 237. SQLPROCEDURECOLS view (continued)

Column Name Data Type Description

I_DATA_TYPE INTEGER Indicates the IBM i CLI data type of the parameter.

19
BIGINT

4
INTEGER

5
SMALLINT

3
DECIMAL

2
NUMERIC

8
DOUBLE PRECISION

7
REAL

-360
DECFLOAT

1
CHARACTER

–2
CHARACTER FOR BIT DATA or BINARY

12
VARCHAR

–3
VARCHAR FOR BIT DATA or VARBINARY

14
CLOB

95
GRAPHIC or NCHAR

96
VARGRAPHIC or NVARCHAR

15
DBCLOB or NCLOB

13
BLOB

91
DATE

92
TIME

93
TIMESTAMP

16
DATALINK

1111
ROWID

-370
XML

2001
DISTINCT

50
ARRAY

SOURCE_TYPE_NAME VARCHAR(128)

Nullable

If the parameter data type is a user-defined type, the built-in data type name
of its source type.

Contains the null value if the parameter data type is not a user-defined type.

SOURCE_SQL_DATA_TYPE SMALLINT

Nullable

If the parameter data type is a user-defined type, the built-in
SQL_DATA_TYPE of its source type. For values see SQL_DATA_TYPE.

Contains the null value if the parameter data type is not a user-defined type.

SOURCE_JDBC_DATA_TYPE SMALLINT

Nullable

If the parameter data type is a user-defined type, the built-in
JDBC_DATA_TYPE of its source type. For values see JDBC_DATA_TYPE.

Contains the null value if the parameter data type is not a user-defined type.

1922 IBM i: Db2 for i SQL Reference

Table 237. SQLPROCEDURECOLS view (continued)

Column Name Data Type Description

MAXIMUM_CARDINALITY BIGINT

Nullable

The maximum cardinality of the array data type.

Contains the null value if the type is not an array type.

Appendix F. Db2 for i catalog views 1923

SQLPROCEDURES
The SQLPROCEDURES view contains one row for every procedure.

The following table describes the columns in the view:

Table 238. SQLPROCEDURES view

Column Name Data Type Description

PROCEDURE_CAT VARCHAR(128) Relational database name

PROCEDURE_SCHEM VARCHAR(128) Name of the schema of the procedure instance.

PROCEDURE_NAME VARCHAR(128) Name of the procedure.

NUM_INPUT_PARAMS INTEGER Identifies the number of input parameters. 0 indicates that there are no input
parameters.

NUM_OUTPUT_PARAMS INTEGER Identifies the number of output parameters. 0 indicates that there are no
output parameters.

NUM_RESULT_SETS SMALLINT Identifies the maximum number of result sets returned. 0 indicates that there
are no result sets.

REMARKS VARGRAPHIC(2000)
CCSID 1200

Nullable

A character string supplied with the COMMENT statement.

Contains the null value if there is no long comment.

PROCEDURE_TYPE SMALLINT Reserved. Contains 0.

NUM_INOUT_PARAMS INTEGER Identifies the number of input/output parameters. 0 indicates that there are
no input/output parameters.

SPECIFIC_NAME VARCHAR(128) Specific name of the procedure instance.

1924 IBM i: Db2 for i SQL Reference

SQLSCHEMAS
The SQLSCHEMAS view contains one row for every schema.

The following table describes the columns in the view:

Table 239. SQLSCHEMAS view

Column Name Data Type Description

TABLE_CAT VARCHAR(128) Relational database name

TABLE_SCHEM VARCHAR(128) Name of the schema.

TABLE_NAME VARCHAR(128)

Nullable

Reserved. Contains the null value.

TABLE_TYPE VARCHAR(128)

Nullable

Reserved. Contains the null value.

REMARKS VARGRAPHIC(2000)
CCSID 1200

Nullable

Reserved. Contains the null value.

TYPE_CAT VARCHAR(128)

Nullable

Reserved. Contains the null value.

TYPE_SCHEM VARCHAR(128)

Nullable

Reserved. Contains the null value.

TYPE_NAME VARCHAR(128)

Nullable

Reserved. Contains the null value.

SELF_REFERENCING_COL_NAME VARCHAR(128)

Nullable

Reserved. Contains the null value.

REF_GENERATION VARCHAR(128)

Nullable

Reserved. Contains the null value.

DBNAME VARCHAR(8)

Nullable

Reserved. Contains the null value.

SCHEMA_TEXT VARGRAPHIC(50)
CCSID 1200

Nullable

A character string that describes the schema.

Contains the empty string if there is no text.

SYSTEM_TABLE_SCHEMA CHAR(10) System schema name.

Appendix F. Db2 for i catalog views 1925

SQLSPECIALCOLUMNS
The SQLSPECIALCOLUMNS view contains one row for every column of a primary key, unique constraint, or
unique index that can identify a row of the table.

The following table describes the columns in the view:

Table 240. SQLSPECIALCOLUMNS view

Column Name Data Type Description

SCOPE SMALLINT Reserved. Contains 0.

COLUMN_NAME VARCHAR(128) Column name

1926 IBM i: Db2 for i SQL Reference

Table 240. SQLSPECIALCOLUMNS view (continued)

Column Name Data Type Description

DATA_TYPE SMALLINT The data type of the column:

–5
BIGINT

4
INTEGER

5
SMALLINT

3
DECIMAL

2
NUMERIC

8
DOUBLE PRECISION

7
REAL

-360
DECFLOAT

1
CHARACTER

–2
CHARACTER FOR BIT DATA

12
VARCHAR

–3
VARCHAR FOR BIT DATA

40
CLOB

–95
GRAPHIC

–96
VARGRAPHIC

–350
DBCLOB

–8
NCHAR

–9
NVARCHAR

–10
NCLOB

–2
BINARY

–3
VARBINARY

30
BLOB

91
DATE

92
TIME

93
TIMESTAMP

70
DATALINK

–100
ROWID

17
DISTINCT

Appendix F. Db2 for i catalog views 1927

Table 240. SQLSPECIALCOLUMNS view (continued)

Column Name Data Type Description

TYPE_NAME VARCHAR(260) The name of the data type of the parameter:

BIGINT
BIGINT

INTeger
INTEGER

SMALLINT
SMALLINT

DECIMAL
DECIMAL

NUMERIC
NUMERIC

FLOAT
DOUBLE PRECISION

REAL
REAL

DECFLOAT
DECFLOAT

CHARacter
CHARACTER

CHARacter FOR BIT DATA
CHARACTER FOR BIT DATA

VARCHAR
VARCHAR

VARCHAR FOR BIT DATA
VARCHAR FOR BIT DATA

CLOB
CLOB

GRAPHIC
GRAPHIC

VARGRAPHIC
VARGRAPHIC

DBCLOB
DBCLOB

NCHAR
NCHAR

NVARCHAR
NVARCHAR

NCLOB
NCLOB

BINARY
BINARY

VARBINARY
VARBINARY

BLOB
BLOB

DATE
DATE

TIME
TIME

TIMESTAMP
TIMESTAMP

DATALINK
DATALINK

ROWID
ROWID

XML
XML

Qualified Type Name
DISTINCT

COLUMN_SIZE INTEGER The length of the column.

BUFFER_LENGTH INTEGER Indicates the length of the column in a buffer.

1928 IBM i: Db2 for i SQL Reference

Table 240. SQLSPECIALCOLUMNS view (continued)

Column Name Data Type Description

DECIMAL_DIGITS SMALLINT

Nullable

Indicates the number of digits for a numeric column.

Contains the null value if the column is not numeric.

PSEUDO_COLUMN SMALLINT Indicates whether this is a ROWID, identity, row change timestamp, row
begin, row end, transaction start ID, or generated expression column.

1
The column is not a ROWID, identity, row change timestamp, row begin,
row end, transaction start ID, or generated expression column.

2
The column is a ROWID, identity, row change timestamp, row begin, row
end, transaction start ID, or generated expression column.

TABLE_CAT VARCHAR(128) Relational database name

TABLE_SCHEM VARCHAR(128) Name of the SQL schema that contains the table.

TABLE_NAME VARCHAR(128) Name of the table.

NULLABLE SMALLINT Indicates whether the column can contain the null value.

0
The column is not nullable.

1
The column is nullable.

Appendix F. Db2 for i catalog views 1929

Table 240. SQLSPECIALCOLUMNS view (continued)

Column Name Data Type Description

JDBC_DATA_TYPE SMALLINT Indicates the JDBC data type of the column.

–5
BIGINT

4
INTEGER

5
SMALLINT

3
DECIMAL

2
NUMERIC

8
DOUBLE PRECISION

7
REAL

1111
DECFLOAT

1
CHARACTER or GRAPHIC

-15
NCHAR

–2
CHARACTER FOR BIT DATA or BINARY

12
VARCHAR or VARGRAPHIC

-9
NVARCHAR

–3
VARCHAR FOR BIT DATA or VARBINARY

2005
CLOB or DBCLOB

2011
NCLOB

2004
BLOB

91
DATE

92
TIME

93
TIMESTAMP

70
DATALINK

-8
ROWID

2009
XML

2001
DISTINCT

1930 IBM i: Db2 for i SQL Reference

Table 240. SQLSPECIALCOLUMNS view (continued)

Column Name Data Type Description

I_DATA_TYPE SMALLINT Indicates the IBM i CLI data type of the column.

19
BIGINT

4
INTEGER

5
SMALLINT

3
DECIMAL

2
NUMERIC

8
DOUBLE PRECISION

7
REAL

-360
DECFLOAT

1
CHARACTER

–2
CHARACTER FOR BIT DATA or BINARY

12
VARCHAR

–3
VARCHAR FOR BIT DATA or VARBINARY

14
CLOB

95
GRAPHIC or NCHAR

96
VARGRAPHIC or NVARCHAR

15
DBCLOB or NCLOB

13
BLOB

91
DATE

92
TIME

93
TIMESTAMP

16
DATALINK

1111
ROWID

-370
XML

2001
DISTINCT

SOURCE_TYPE_NAME VARCHAR(128)

Nullable

If the column data type is a user-defined type, the built-in data type name of
its source type.

Contains the null value if the column data type is not a user-defined type.

SOURCE_SQL_DATA_TYPE SMALLINT

Nullable

If the column data type is a user-defined type, the built-in SQL_DATA_TYPE
of its source type. For values see SQL_DATA_TYPE.

Contains the null value if the column data type is not a user-defined type.

SOURCE_JDBC_DATA_TYPE SMALLINT

Nullable

If the column data type is a user-defined type, the built-in JDBC_DATA_TYPE
of its source type. For values see JDBC_DATA_TYPE.

Contains the null value if the column data type is not a user-defined type.

Appendix F. Db2 for i catalog views 1931

SQLSTATISTICS
The SQLSTATISTICS view contains statistic information about a table.

The following table describes the columns in the view:

Table 241. SQLSTATISTICS view

Column Name Data Type Description

TABLE_CAT VARCHAR(128) Relational database name

TABLE_SCHEM VARCHAR(128) Name of the SQL schema of the table.

TABLE_NAME VARCHAR(128) Name of the table.

NON_UNIQUE SMALLINT

Nullable

Indicates whether an index prohibits duplicate keys on the table.

Contains the null value if the TYPE is 0.

INDEX_QUALIFIER VARCHAR(128)

Nullable

Name of the schema of the index.

Contains the null value if the TYPE is 0.

INDEX_NAME VARCHAR(128)

Nullable

Name of the index.

Contains the null value if the TYPE is 0.

TYPE SMALLINT Indicates the type of information returned:

0
The number of rows in the table.

3
An index on the table.

ORDINAL_POSITION SMALLINT

Nullable

Indicates the ordinal position of the key in the index.

Contains the null value if the TYPE is 0.

COLUMN_NAME DBCLOB(2097152)
CCSID 1200

Nullable

If the key column is an expression, contains the expression. Contains the
column name if the key column is not an expression.

Contains the null value if the TYPE is 0.

ASC_OR_DESC CHAR(1)

Nullable

Order of the column in the key:

A
Ascending

D
Descending

Contains the null value if the TYPE is 0.

CARDINALITY BIGINT

Nullable

The number of valid rows in all partitions or members of the table.

Contains the null value if the TYPE is 3.

PAGES BIGINT

Nullable

The number of 64K pages all partitions or members of the table.

Contains the null value if the TYPE is 3.

FILTER_CONDITION DBCLOB(2097152)
CCSID 1200

Nullable

Indicates whether the index is a sparse index.

search-condition
This is an SQL index with a WHERE clause.

empty-string
This is a DDS-created select/omit index.

Contains the null value if the TYPE is 0 or this is not a sparse index.

1932 IBM i: Db2 for i SQL Reference

Table 241. SQLSTATISTICS view (continued)

Column Name Data Type Description

I_INDEXTYPE INTEGER Contains the type of the index.

0
The TYPE is 0.

1
The index is a PRIMARY KEY or keyed physical file.

2
The index is an SQL index.

3
The index is a keyed logical file.

4
The index is a UNIQUE or REFERENTIAL constraint.

Appendix F. Db2 for i catalog views 1933

SQLTABLEPRIVILEGES
The SQLTABLEPRIVILEGES view contains one row for every privilege granted on a table. Note that this
catalog view cannot be used to determine whether a user is authorized to a table or view because the
privilege to use a table or view could be acquired through a group user profile or special authority (such as
*ALLOBJ).

The following table describes the columns in the view:

Table 242. SQLTABLEPRIVILEGES view

Column Name Data Type Description

TABLE_CAT VARCHAR(128) Relational database name

TABLE_SCHEM VARCHAR(128) Name of the SQL schema of the table.

TABLE_NAME VARCHAR(128) Name of the table.

GRANTOR VARCHAR(128)

Nullable

Reserved. Contains the null value.

GRANTEE VARCHAR(128) The user profile to which the privilege is granted.

PRIVILEGE VARCHAR(10) The privilege granted:

ALTER
The privilege to alter the table.

DELETE
The privilege to delete rows from the table.

INDEX
The privilege to create an index on the table.

INSERT
The privilege to insert rows into the table.

REFERENCES
The privilege to reference the table in a referential constraint.

SELECT
The privilege to select rows from the table.

UPDATE
The privilege to update the table.

IS_GRANTABLE VARCHAR(3) Indicates whether the privilege is grantable to other users.

NO
The privilege is not grantable.

YES
The privilege is grantable.

DBNAME VARCHAR(8)

Nullable

Reserved. Contains the null value.

1934 IBM i: Db2 for i SQL Reference

SQLTABLES
The SQLTABLES view contains one row for every table, view, and alias.

The following table describes the columns in the view:

Table 243. SQLTABLES view

Column Name Data Type Description

TABLE_CAT VARCHAR(128) Relational database name

TABLE_SCHEM VARCHAR(128) Name of the schema containing the table.

TABLE_NAME VARCHAR(128) Name of the table.

TABLE_TYPE VARCHAR(24) Indicates the type of the table:

ALIAS
The table is an alias.

MATERIALIZED QUERY TABLE
The object is a materialized query table.

SYSTEM TABLE
The table is a system table.

TABLE
The table is an SQL table or physical file.

VIEW
The table is an SQL view or logical file.

REMARKS VARGRAPHIC(2000)
CCSID 1200

Nullable

A character string supplied with the COMMENT statement.

Contains the null value if there is no long comment.

TYPE_CAT VARCHAR(128)

Nullable

Reserved. Contains the null value.

TYPE_SCHEM VARCHAR(128)

Nullable

Reserved. Contains the null value.

TYPE_NAME VARCHAR(128)

Nullable

Reserved. Contains the null value.

SELF_REFERENCING_
COLUMN_NAME

VARCHAR(128)

Nullable

Reserved. Contains the null value.

REF_GENERATION VARCHAR(128)

Nullable

Reserved. Contains the null value.

DBNAME VARCHAR(8)

Nullable

Reserved. Contains the null value.

TABLE_TEXT VARGRAPHIC(50)
CCSID 1200

A character string provided with the LABEL statement.

Appendix F. Db2 for i catalog views 1935

SQLTYPEINFO
The SQLTYPEINFO table contains one row for every built-in data type.

The following table describes the columns in the table:

1936 IBM i: Db2 for i SQL Reference

Table 244. SQLTYPEINFO table

Column Name Data Type Description

TYPE_NAME VARCHAR(128) Name of the built-in data type:

BIGINT
BIGINT

INTeger
INTEGER

SMALLINT
SMALLINT

DECIMAL
DECIMAL

NUMERIC
NUMERIC

FLOAT
DOUBLE PRECISION

REAL
REAL

DECFLOAT
DECFLOAT

CHARacter
CHARACTER

CHARacter FOR BIT DATA
CHARACTER FOR BIT DATA

VARCHAR
VARCHAR

VARCHAR FOR BIT DATA
VARCHAR FOR BIT DATA

CLOB
CLOB

GRAPHIC
GRAPHIC

VARGRAPHIC
VARGRAPHIC

DBCLOB
DBCLOB

NCHAR
NCHAR

NVARCHAR
NVARCHAR

NCLOB
NCLOB

BINARY
BINARY

VARBINARY
VARBINARY

BLOB
BLOB

DATE
DATE

TIME
TIME

TIMESTAMP
TIMESTAMP

DATALINK
DATALINK

ROWID
ROWID

XML
XML

Appendix F. Db2 for i catalog views 1937

Table 244. SQLTYPEINFO table (continued)

Column Name Data Type Description

DATA_TYPE SMALLINT The data type of the built-in data type:

–5
BIGINT

4
INTEGER

5
SMALLINT

3
DECIMAL

2
NUMERIC

8
DOUBLE PRECISION

7
REAL

-360
DECFLOAT

1
CHARACTER

–2
CHARACTER FOR BIT DATA or BINARY

12
VARCHAR

–3
VARCHAR FOR BIT DATA or VARBINARY

-99
CLOB

–95
GRAPHIC

–96
VARGRAPHIC

–350
DBCLOB

–8
NCHAR

–9
NVARCHAR

–10
NCLOB

-99
BLOB

91
DATE

92
TIME

93
TIMESTAMP

70
DATALINK

–100
ROWID

-370
XML

2001
DISTINCT

COLUMN_SIZE INTEGER

Nullable

The maximum length of the data type.

LITERAL_PREFIX VARCHAR(128)

Nullable

Indicates the prefix for a string literal.

Contains the null value if the data type is not a string.

1938 IBM i: Db2 for i SQL Reference

Table 244. SQLTYPEINFO table (continued)

Column Name Data Type Description

LITERAL_SUFFIX VARCHAR(128)

Nullable

Indicates the suffix for a string literal.

Contains the null value if the data type is not a string.

CREATE_PARAMS VARCHAR(128)

Nullable

Indicates the parameters supported with the data type.

length
The parameter is a length. Returned for all string data types and
DATALINK.

precision,scale
The parameters include precision and scale. Returned for the DECIMAL
and NUMERIC data types.

precision
The parameters include precision. Returned for the DECFLOAT and
TIMESTAMP data type.

Contains the null value for all other data types.

NULLABLE SMALLINT

Nullable

Indicates whether the data type is nullable.

0
The data type does not allow nulls.

1
The data type does allow nulls.

CASE_SENSITIVE SMALLINT

Nullable

Indicates whether the data type is case sensitive.

0
The data type is not case sensitive.

1
The data type is case sensitive.

SEARCHABLE SMALLINT

Nullable

Indicates whether the data type can be used in a predicate.

0
The data type cannot be used in predicates.

2
The data type can be used in all predicates except the LIKE predicate.

3
The data type can be used in all predicates including the LIKE predicate.

UNSIGNED_ATTRIBUTE SMALLINT

Nullable

Indicates whether the numeric data type is signed or unsigned.

0
The data type is signed.

1
The data type is unsigned.

Contains the null value if the data type is not numeric.

FIXED_PREC_SCALE SMALLINT

Nullable

Indicates whether the data type has a fixed precision and scale.

0
The data type does not have a fixed precision and scale.

1
The data type does have a fixed precision and scale.

Contains the null value if the data type is not numeric.

AUTO_UNIQUE_VALUE SMALLINT

Nullable

Indicates whether the numeric data type is auto-incrementing:

0
The data type is not auto-incrementing.

1
The data type is auto-incrementing.

Contains the null value if the data type is not numeric.

LOCAL_TYPE_NAME VARCHAR(128)

Nullable

Reserved. Contains the null value.

MINIMUM_SCALE SMALLINT

Nullable

Indicates the minimum scale of numeric data types.

Contains the null value if the data type is not numeric.

MAXIMUM_SCALE SMALLINT

Nullable

Indicates the maximum scale of numeric data types.

Contains the null value if the data type is not numeric.

Appendix F. Db2 for i catalog views 1939

Table 244. SQLTYPEINFO table (continued)

Column Name Data Type Description

SQL_DATA_TYPE SMALLINT

Nullable

Indicates the SQL data type value of the data type:

–5
BIGINT

4
INTEGER

5
SMALLINT

3
DECIMAL

2
NUMERIC

8
DOUBLE PRECISION

7
REAL

-360
DECFLOAT

1
CHARACTER

–2
CHARACTER FOR BIT DATA or BINARY

12
VARCHAR

–3
VARCHAR FOR BIT DATA or VARBINARY

-99
CLOB

–95
GRAPHIC

–96
VARGRAPHIC

–350
DBCLOB

–8
NCHAR

–9
NVARCHAR

–10
NCLOB

-98
BLOB

9
DATE

9
TIME

9
TIMESTAMP

70
DATALINK

–100
ROWID

-370
XML

17
DISTINCT

1940 IBM i: Db2 for i SQL Reference

Table 244. SQLTYPEINFO table (continued)

Column Name Data Type Description

SQL_DATETIME_SUB SMALLINT

Nullable

The datetime subtype of the data type:

1
DATE

2
TIME

3
TIMESTAMP

Contains the null value if the data type is not a datetime data type.

NUM_PREC_RADIX INTEGER

Nullable

Indicates if the precision specified in column NUMERIC_PRECISION is
specified as a number of binary or decimal digits:

2
Binary; floating-point precision is specified in binary digits.

10
Decimal; all other numeric types are specified in decimal digits.

Contains the null value if the parameter is not numeric.

INTERVAL_PRECISION SMALLINT

Nullable

Reserved. Contains the null value.

Appendix F. Db2 for i catalog views 1941

Table 244. SQLTYPEINFO table (continued)

Column Name Data Type Description

JDBC_DATA_TYPE SMALLINT The JDBC data type value of the data type:

–5
BIGINT

4
INTEGER

5
SMALLINT

3
DECIMAL

2
NUMERIC

8
DOUBLE PRECISION

7
REAL

1111
DECFLOAT

1
CHARACTER or GRAPHIC

-15
NCHAR

–2
CHARACTER FOR BIT DATA or BINARY

12
VARCHAR or VARGRAPHIC

-9
NVARCHAR

–3
VARCHAR FOR BIT DATA or VARBINARY

2005
CLOB or DBCLOB

2011
NCLOB

2004
BLOB

91
DATE

92
TIME

93
TIMESTAMP

70
DATALINK

-8
ROWID

2009
XML

2001
DISTINCT

1942 IBM i: Db2 for i SQL Reference

Table 244. SQLTYPEINFO table (continued)

Column Name Data Type Description

I_DATA_TYPE SMALLINT Indicates the IBM i CLI data type of the data type.

19
BIGINT

4
INTEGER

5
SMALLINT

3
DECIMAL

2
NUMERIC

8
DOUBLE PRECISION

7
REAL

-360
DECFLOAT

1
CHARACTER

–2
CHARACTER FOR BIT DATA or BINARY

12
VARCHAR

–3
VARCHAR FOR BIT DATA or VARBINARY

14
CLOB

95
GRAPHIC or NCHAR

96
VARGRAPHIC or NVARCHAR

15
DBCLOB or NCLOB

13
BLOB

91
DATE

92
TIME

93
TIMESTAMP

16
DATALINK

1111
ROWID

-370
XML

2001
DISTINCT

Appendix F. Db2 for i catalog views 1943

SQLUDTS
The SQLUDTS view contains one row for every distinct type.

The following table describes the columns in the view:

Table 245. SQLUDTS view

Column Name Data Type Description

TYPE_CAT VARCHAR(128) Relational database name

TYPE_SCHEM VARCHAR(128) Name of the schema containing the user-defined type.

TYPE_NAME VARCHAR(128) Name of the user-defined type.

CLASS_NAME VARCHAR(20) Java class name of the user-defined type.

java.math.BigInteger
BIGINT

java.lang.Integer
INTEGER

java.lang.Short
SMALLINT

java.math.BigDecimal
DECIMAL

java.sql.BigDecimal
NUMERIC

java.lang.Double
DOUBLE PRECISION

java.lang.Float
REAL

java.math.BigDecimal
DECFLOAT

java.lang.String
CHARACTER

byte[]
CHARACTER FOR BIT DATA

java.lang.String
VARCHAR

byte[]
VARCHAR FOR BIT DATA

java.sql.Clob
CLOB

java.lang.String
GRAPHIC

java.lang.String
VARGRAPHIC

java.sql.Clob
DBCLOB

byte[]
BINARY

byte[]
VARBINARY

java.sql.Blob
BLOB

java.sql.Date
DATE

java.sql.Time
TIME

java.sql.Timestamp
TIMESTAMP

java.net.URL
DATALINK

byte[]
ROWID

java.sql.SQLXML
XML

1944 IBM i: Db2 for i SQL Reference

Table 245. SQLUDTS view (continued)

Column Name Data Type Description

DATA_TYPE SMALLINT Reserved. Contains 2001.

BASE_TYPE SMALLINT The source data type of the user-defined data type:

–5
BIGINT

4
INTEGER

5
SMALLINT

3
DECIMAL

2
NUMERIC

8
DOUBLE PRECISION

7
REAL

1111
DECFLOAT

1
CHARACTER or GRAPHIC

-15
NCHAR

–2
CHARACTER FOR BIT DATA or BINARY

12
VARCHAR or VARGRAPHIC

-9
NVARCHAR

–3
VARCHAR FOR BIT DATA or VARBINARY

2005
CLOB or DBCLOB

2011
NCLOB

2004
BLOB

91
DATE

92
TIME

93
TIMESTAMP

70
DATALINK

1111
ROWID

2009
XML

REMARKS VARGRAPHIC(2000)
CCSID 1200

Nullable

A character string supplied with the COMMENT statement.

Contains the null value if there is no comment.

Appendix F. Db2 for i catalog views 1945

ANS and ISO catalog views
There are two versions of some of the ANS and ISO catalog views. The version documented is the normal
set of ANS and ISO views. A second set of views have names that are limited to no more than 18
characters and other than the view names are not documented in this book.

The ANS and ISO catalog includes the following tables in the QSYS2 library:

View Name Shorter View Name Description

“SQL_FEATURES” on page 1974 Information about features
supported by the database manager

“SQL_LANGUAGES” on page 1975 SQL_LANGUAGES_S Information about the supported
languages

“SQL_SIZING” on page 1976 Information about the limits
supported by the database manager

The ANS and ISO catalog includes the following views and tables in the SYSIBM and QSYS2 libraries:

View Name Shorter View Name Description

“AUTHORIZATIONS” on page 1947 Information about authorization IDs

“CHARACTER_SETS” on page 1948 CHARACTER_SETS_S Information about supported
CCSIDs

“CHECK_CONSTRAINTS” on page 1949 Information about check
constraints

“COLUMN_PRIVILEGES” on page 1950 Information about column
privileges

“COLUMNS” on page 1951 COLUMNS_S Information about columns

“INFORMATION_SCHEMA_CATALOG_NAME” on page 1956 CATALOG_NAME Information about the relational
database

“PARAMETERS” on page 1957 PARAMETERS_S Information about procedure
parameters

“REFERENTIAL_CONSTRAINTS” on page 1961 REF_CONSTRAINTS Information about referential
constraints

“ROUTINE_PRIVILEGES” on page 1971 RTNPRIV Information about routine privileges

“ROUTINES” on page 1962 ROUTINES_S Information about routines

“SCHEMATA” on page 1972 SCHEMATA_S Statistical information about
schemas

“SEQUENCES” on page 1973 Information about sequences

“TABLE_CONSTRAINTS” on page 1977 Information about constraints

“TABLE_PRIVILEGES” on page 1978 Information about table privileges

“TABLES” on page 1979 TABLES_S Information about tables

“UDT_PRIVILEGES” on page 1980 UDTPRIV Information about type privileges

“USAGE_PRIVILEGES” on page 1981 USAGEPRIV Information about sequence and
XML schema privileges

“USER_DEFINED_TYPES” on page 1982 UDT_S Information about types

“VARIABLE_PRIVILEGES” on page 1986 VARPRIV Information about global variable
privileges

“VIEWS” on page 1987 Information about views

1946 IBM i: Db2 for i SQL Reference

AUTHORIZATIONS
The AUTHORIZATIONS view contains one row for every authorization ID.

The following table describes the columns in the view:

Table 246. AUTHORIZATIONS view

Column Name Data Type Description

AUTHORIZATION_NAME VARCHAR(128) Authorization ID name

AUTHORIZATION_TYPE VARCHAR(4) The type of authorization ID. Contains 'USER'.

AUTHORIZATION_ATTR VARCHAR(5) The type of user profile. Contains 'USER' or ’GROUP’.

AUTHORIZATION_TEXT VARCHAR(50) The text description for the profile.

Appendix F. Db2 for i catalog views 1947

CHARACTER_SETS
The CHARACTER_SETS view contains one row for every CCSID supported.

The following table describes the columns in the view:

Table 247. CHARACTER_SETS view

Column Name Data Type Description

CHARACTER_SET_CATALOG VARCHAR(128) Relational database name

CHARACTER_SET_SCHEMA VARCHAR(128) The schema name of the character set. Contains 'SYSIBM'.

CHARACTER_SET_NAME VARCHAR(128) The character set name.

FORM_OF_USE VARCHAR(128)

Nullable

Reserved. Contains the null value.

NUMBER_OF_CHARACTERS INTEGER

Nullable

Reserved. Contains the null value.

DEFAULT_COLLATE_CATALOG VARCHAR(128) Reserved.

DEFAULT_COLLATE_SCHEMA VARCHAR(128) Reserved.

DEFAULT_COLLATE_NAME VARCHAR(128) Reserved.

1948 IBM i: Db2 for i SQL Reference

CHECK_CONSTRAINTS
The CHECK_CONSTRAINTS view contains one row for every check constraint.

The following table describes the columns in the view:

Table 248. CHECK_CONSTRAINTS view

Column Name Data Type Description

CONSTRAINT_CATALOG VARCHAR(128) Relational database name

CONSTRAINT_SCHEMA VARCHAR(128) Name of the schema containing the constraint

CONSTRAINT_NAME VARCHAR(128) Name of the constraint

CHECK_CLAUSE VARGRAPHIC(2000)
CCSID 1200

Nullable

Text of the check constraint clause

Contains the null value if the check clause cannot be contained in the
column without truncation.

Appendix F. Db2 for i catalog views 1949

COLUMN_PRIVILEGES
The COLUMN_PRIVILEGES view contains one row for every privilege granted on a column. Note that this
catalog view cannot be used to determine whether a user is authorized to a column because the privilege
to use a column could be acquired through a group user profile or special authority (such as *ALLOBJ).
Furthermore, the privilege to use a column is also acquired through privileges granted on the table.

The following table describes the columns in the view:

Table 249. COLUMN_PRIVILEGES view

Column Name Data Type Description

GRANTOR VARCHAR(128)

Nullable

Reserved. Contains the null value.

GRANTEE VARCHAR(128) The user profile to which the privilege is granted.

TABLE_CATALOG VARCHAR(128) Relational database name

TABLE_SCHEMA VARCHAR(128) Name of the SQL schema that contains the table.

TABLE_NAME VARCHAR(128) Name of the table.

COLUMN_NAME VARCHAR(128) Name of the column.

PRIVILEGE_TYPE VARCHAR(10) The privilege granted:

UPDATE
The privilege to update the column.

REFERENCES
The privilege to reference the column in a referential constraint.

IS_GRANTABLE VARCHAR(3) Indicates whether the privilege is grantable to other users.

NO
The privilege is not grantable.

YES
The privilege is grantable.

1950 IBM i: Db2 for i SQL Reference

COLUMNS
The COLUMNS view contains one row for every column.

The following table describes the columns in the view:

Table 250. COLUMNS view

Column Name Data Type Description

TABLE_CATALOG VARCHAR(128) Relational database name

TABLE_SCHEMA VARCHAR(128) Name of the SQL schema containing the table or view

TABLE_NAME VARCHAR(128) Name of the table or view that contains the column

COLUMN_NAME VARCHAR(128) Name of the column

ORDINAL_POSITION INTEGER Numeric place of the column in the table or view, ordered from left to
right

COLUMN_DEFAULT VARGRAPHIC(2000)
CCSID 1200

Nullable

The default value of a column, if one exists. If the default value of the
column cannot be represented without truncation, then the value of
the column is the string 'TRUNCATED'. The default value is stored in
character form. The following special values also exist:

CURRENT_DATE
The default value is the current date.

CURRENT_TIME
The default value is the current time.

CURRENT_TIMESTAMP
The default value is the current timestamp.

NULL
The default value is the null value and DEFAULT NULL was
explicitly specified.

USER
The default value is the current job user.

special-register
When column HAS_DEFAULT contains the value 'a', the name of
the special register.

global-variable
When column HAS_DEFAULT contains the value 'c', the qualified
name of the global variable.

DATA CHANGE OPERATION
When column HAS_DEFAULT contains the value 'd'.

Contains the null value if:

• The column has no default value. For example, if the column has an
IDENTITY attribute, is a row ID, or is a row change timestamp, row
begin, row end, or transaction start ID column or

• A DEFAULT value was not explicitly specified.

IS_NULLABLE VARCHAR(3) Indicates whether the column can contain null values:

NO
The column cannot contain null values.

YES
The column can contain null values.

Appendix F. Db2 for i catalog views 1951

Table 250. COLUMNS view (continued)

Column Name Data Type Description

DATA_TYPE VARCHAR(128) Type of column:

BIGINT
Big number

INTEGER
Large number

SMALLINT
Small number

DECIMAL
Packed decimal

NUMERIC
Zoned decimal

DOUBLE PRECISION
Double-precision floating point

REAL
Single-precision floating point

DECFLOAT
Decimal floating-point

CHARACTER
Fixed-length character string

CHARACTER VARYING
Varying-length character string

CHARACTER LARGE OBJECT
Character large object string

GRAPHIC
Fixed-length graphic string

GRAPHIC VARYING
Varying-length graphic string

DOUBLE-BYTE CHARACTER LARGE OBJECT
Double-byte character large object string

NATIONAL CHARACTER
National character

NATIONAL CHARACTER VARYING
Varying-length national character

NATIONAL CHARACTER LARGE OBJECT
National character large object

BINARY
Fixed-length binary string

BINARY VARYING
Varying-length binary string

BINARY LARGE OBJECT
Binary large object string

DATE
Date

TIME
Time

TIMESTAMP
Timestamp

DATALINK
Datalink

ROWID
Row ID

XML
XML

USER-DEFINED
Distinct type

CHARACTER_MAXIMUM_LENGTH INTEGER

Nullable

Maximum length of the string for binary, character, and graphic string
and XML data types.

Contains the null value if the column is not a string.

CHARACTER_OCTET_LENGTH INTEGER

Nullable

Number of bytes for binary, character, and graphic string and XML data
types.

Contains the null value if the column is not a string.

1952 IBM i: Db2 for i SQL Reference

Table 250. COLUMNS view (continued)

Column Name Data Type Description

NUMERIC_PRECISION INTEGER

Nullable

The precision of all numeric columns.

Note: This column supplies the precision of all numeric data types,
including single-and double-precision floating point and decimal
floating-point. The NUMERIC_PRECISION_RADIX column indicates if
the value in this column is in binary or decimal digits.

Contains the null value if the column is not numeric.

NUMERIC_PRECISION_RADIX INTEGER

Nullable

Indicates if the precision specified in column NUMERIC_PRECISION is
specified as a number of binary or decimal digits

2
Binary; floating-point precision is specified in binary digits.

10
Decimal; all other numeric types are specified in decimal digits.

Contains the null value if the column is not numeric.

NUMERIC_SCALE INTEGER

Nullable

Scale of numeric data.

Contains the null value if the column is not decimal, numeric, or binary.

DATETIME_PRECISION INTEGER

Nullable

The fractional part of a date, time, or timestamp.

0
For DATE and TIME data types

0-12
For TIMESTAMP data types (number of fractional seconds).

Contains the null value if the column is not a date, time, or timestamp.

INTERVAL_TYPE VARCHAR(128)

Nullable

Reserved. Contains the null value.

INTERVAL_PRECISION INTEGER

Nullable

Reserved. Contains the null value.

CHARACTER_SET_CATALOG VARCHAR(128)

Nullable

Relational database name

Contains the null value if the column is not a string.

CHARACTER_SET_SCHEMA VARCHAR(128)

Nullable

The schema name of the character set. Contains SYSIBM.

Contains the null value if the column is not a string.

CHARACTER_SET_NAME VARCHAR(128)

Nullable

The character set name.

Contains the null value if the column is not a string.

COLLATION_CATALOG VARCHAR(128)

Nullable

Relational database name

Contains the null value if the column is not a string.

COLLATION_SCHEMA VARCHAR(128)

Nullable

The schema of the collation. Contains SYSIBM.

Contains the null value if the column is not a string.

COLLATION_NAME VARCHAR(128)

Nullable

The collation name. Contains IBMDEFAULT.

Contains the null value if the column is not a string.

DOMAIN_CATALOG VARCHAR(128)

Nullable

Reserved. Contains the null value.

DOMAIN_SCHEMA VARCHAR(128)

Nullable

Reserved. Contains the null value.

DOMAIN_NAME VARCHAR(128)

Nullable

Reserved. Contains the null value.

UDT_CATALOG VARCHAR(128)

Nullable

The relational database name if this is a distinct type.

Contains the null value if this is not a distinct type.

Appendix F. Db2 for i catalog views 1953

Table 250. COLUMNS view (continued)

Column Name Data Type Description

UDT_SCHEMA VARCHAR(128)

Nullable

The name of the schema if this is a distinct type.

Contains the null value if this is not a distinct type.

UDT_NAME VARCHAR(128)

Nullable

The name of the distinct type.

Contains the null value if this is not a distinct type.

SCOPE_CATALOG VARCHAR(128)

Nullable

Reserved. Contains the null value.

SCOPE_SCHEMA VARCHAR(128)

Nullable

Reserved. Contains the null value.

SCOPE_NAME VARCHAR(128)

Nullable

Reserved. Contains the null value.

MAXIMUM_CARDINALITY INTEGER

Nullable

Reserved. Contains the null value.

DTD_IDENTIFIER VARCHAR(128)

Nullable

A unique internal identifier for the column.

IS_SELF_REFERENCING VARCHAR(3) Reserved. Contains 'NO'.

IS_IDENTITY VARCHAR(3) This column identifies whether the column is an identity column.

NO
The column is not an identity column.

YES
The column is an identity column.

IDENTITY_GENERATION VARCHAR(10)

Nullable

This column identifies whether the column is GENERATED ALWAYS or
GENERATED BY DEFAULT.

ALWAYS
The column value is always generated.

BY DEFAULT
The column value is generated by default.

Contains the null value if the column is not a ROWID, IDENTITY, or row
change timestamp column.

IDENTITY_START DECIMAL(31,0)

Nullable

Starting value of the identity column.

Contains the null value if the column is not an IDENTITY column.

IDENTITY_INCREMENT DECIMAL(31,0)

Nullable

Increment value of the identity column.

Contains the null value if the column is not an IDENTITY column.

IDENTITY_MAXIMUM DECIMAL(31,0)

Nullable

Maximum value of the identity column.

Contains the null value if the column is not an IDENTITY column.

IDENTITY_MINIMUM DECIMAL(31,0)

Nullable

Minimum value of the identity column.

Contains the null value if the column is not an IDENTITY column.

IDENTITY_CYCLE VARCHAR(3)

Nullable

This column identifies whether the identity column values will continue
to be generated after the minimum or maximum value has been
reached.

NO
Values will not continue to be generated.

YES
Values will continue to be generated.

Contains the null value if the column is not an IDENTITY column.

IS_GENERATED VARCHAR(5) Reserved. Contains 'NEVER'.

GENERATION_EXPRESSION VARCHAR(128)

Nullable

Reserved. Contains the null value.

1954 IBM i: Db2 for i SQL Reference

Table 250. COLUMNS view (continued)

Column Name Data Type Description

IS_SYSTEM_TIME_PERIOD_START VARCHAR(3) This column identifies whether the column is a row begin column.

NO
The column is not a row begin column.

YES
The column is a row begin column.

IS_SYSTEM_TIME_PERIOD_END VARCHAR(3) This column identifies whether the column is a row end column.

NO
The column is not a row end column.

YES
The column is a row end column.

SYSTEM_TIME_PERIOD_TIMESTAMP_GENERATION VARCHAR(6)

Nullable

This column identifies the row begin or row end generation attribute.

ALWAYS
This column is a row begin or row end column that is GENERATED
ALWAYS.

Contains the null value if it is not a row begin or row end column.

IS_UPDATABLE VARCHAR(3) This column identifies whether the column is updatable.

NO
The column cannot be updated.

YES
The column can be updated.

DECLARED_DATA_TYPE VARCHAR(128)

Nullable

Reserved. Contains the null value.

DECLARED_NUMERIC_PRECISION INTEGER

Nullable

Reserved. Contains the null value.

DECLARED_NUMERIC_SCALE INTEGER

Nullable

Reserved. Contains the null value.

Appendix F. Db2 for i catalog views 1955

INFORMATION_SCHEMA_CATALOG_NAME
The INFORMATION_SCHEMA_CATALOG_NAME view contains one row for the relational database.

The following table describes the columns in the view:

Table 251. INFORMATION_SCHEMA_CATALOG_NAME view

Column Name Data Type Description

CATALOG_NAME VARCHAR(128) Relational database name

1956 IBM i: Db2 for i SQL Reference

PARAMETERS
The PARAMETERS view contains one row for each parameter of a routine in the relational database.

The following table describes the columns in the view:

Table 252. PARAMETERS view

Column Name Data Type Description

SPECIFIC_CATALOG VARCHAR(128) Relational database name

SPECIFIC_SCHEMA VARCHAR(128) Schema name of the routine instance

SPECIFIC_NAME VARCHAR(128) Specific name of the routine instance

ORDINAL_POSITION INTEGER Numeric place of the parameter in the parameter list, ordered from left
to right.

PARAMETER_MODE VARCHAR(5) The type of the parameter:

IN
This is an input parameter.

OUT
This is an output parameter.

INOUT
This is an input/output parameter.

IS_RESULT VARCHAR(3) Reserved. Contains 'NO'.

AS_LOCATOR VARCHAR(3) Indicates whether the parameter was specified as a locator.

NO
The parameter was not specified as a locator.

YES
The parameter was specified as a locator.

PARAMETER_NAME VARCHAR(128)

Nullable

The name of the parameter

Contains the null value if the parameter does not have a name.

FROM_SQL_SPECIFIC_CATALOG VARCHAR(128)

Nullable

Reserved. Contains the null value.

FROM_SQL_SPECIFIC_SCHEMA VARCHAR(128)

Nullable

Reserved. Contains the null value.

FROM_SQL_SPECIFIC_NAME VARCHAR(128)

Nullable

Reserved. Contains the null value.

TO_SQL_SPECIFIC_CATALOG VARCHAR(128)

Nullable

Reserved. Contains the null value.

TO_SQL_SPECIFIC_SCHEMA VARCHAR(128)

Nullable

Reserved. Contains the null value.

TO_SQL_SPECIFIC_NAME VARCHAR(128)

Nullable

Reserved. Contains the null value.

Appendix F. Db2 for i catalog views 1957

Table 252. PARAMETERS view (continued)

Column Name Data Type Description

DATA_TYPE VARCHAR(128)

Nullable

Type of the parameter:

BIGINT
Big number

INTEGER
Large number

SMALLINT
Small number

DECIMAL
Packed decimal

NUMERIC
Zoned decimal

DOUBLE PRECISION
Floating point; DOUBLE PRECISION

REAL
Floating point; REAL

DECFLOAT
Decimal floating-point

CHARACTER
Fixed-length character string

CHARACTER VARYING
Varying-length character string

CHARACTER LARGE OBJECT
Character large object string

GRAPHIC
Fixed-length graphic string

GRAPHIC VARYING
Varying-length graphic string

DOUBLE-BYTE CHARACTER LARGE OBJECT
Double-byte character large object string

NATIONAL CHARACTER
National character

NATIONAL CHARACTER VARYING
Varying-length national character

NATIONAL CHARACTER LARGE OBJECT
National character large object

BINARY
Fixed-length binary string

BINARY VARYING
Varying-length binary string

BINARY LARGE OBJECT
Binary large object string

DATE
Date

TIME
Time

TIMESTAMP
Timestamp

DATALINK
Datalink

ROWID
Row ID

XML
XML

USER-DEFINED
Distinct type or array type

CHARACTER_MAXIMUM_LENGTH INTEGER

Nullable

Maximum length of the string for binary, character, and graphic string
and XML data types.

Contains the null value if the parameter is not a string.

CHARACTER_OCTET_LENGTH INTEGER

Nullable

Number of bytes for binary, character, and graphic string and XML data
types.

Contains the null value if the parameter is not a string.

1958 IBM i: Db2 for i SQL Reference

Table 252. PARAMETERS view (continued)

Column Name Data Type Description

CHARACTER_SET_CATALOG VARCHAR(128)

Nullable

Relational database name

Contains the null value if the column is not a string.

CHARACTER_SET_SCHEMA VARCHAR(128)

Nullable

The schema name of the character set. Contains 'SYSIBM'.

Contains the null value if the column is not a string.

CHARACTER_SET_NAME VARCHAR(128)

Nullable

The character set name.

Contains the null value if the column is not a string.

COLLATION_CATALOG VARCHAR(128)

Nullable

Relational database name

Contains the null value if the column is not a string.

COLLATION_SCHEMA VARCHAR(128)

Nullable

The schema of the collation. SYSIBM is returned.

Contains the null value if the column is not a string.

COLLATION_NAME VARCHAR(128)

Nullable

The collation name. IBMDEFAULT is returned.

Contains the null value if the column is not a string.

NUMERIC_PRECISION INTEGER

Nullable

The precision of all numeric parameters.

Note: This column supplies the precision of all numeric data types,
including single-and double-precision floating point and decimal
floating-point. The NUMERIC_PRECISION_RADIX column indicates if
the value in this column is in binary or decimal digits.

Contains the null value if the parameter is not numeric.

NUMERIC_PRECISION_RADIX INTEGER

Nullable

Indicates if the precision specified in column NUMERIC_PRECISION is
specified as a number of binary or decimal digits:

2
Binary; floating-point precision is specified in binary digits.

10
Decimal; all other numeric types are specified in decimal digits.

Contains the null value if the parameter is not numeric.

NUMERIC_SCALE INTEGER

Nullable

Scale of numeric data.

Contains the null value if not decimal, numeric, or binary parameter.

DATETIME_PRECISION INTEGER

Nullable

The fractional part of a date, time, or timestamp.

0
For DATE and TIME data types

0-12
For TIMESTAMP data types (number of fractional seconds).

Contains the null value if the parameter is not a date, time, or
timestamp.

INTERVAL_TYPE VARCHAR(128)

Nullable

Reserved. Contains the null value.

INTERVAL_PRECISION INTEGER

Nullable

Reserved. Contains the null value.

UDT_CATALOG VARCHAR(128)

Nullable

The relational database name if this is a distinct type or array type..

Contains the null value if this is not a distinct type or array type.

UDT_SCHEMA VARCHAR(128)

Nullable

The name of the schema if this is a distinct type or array type.

Contains the null value if this is not a distinct type or array type.

UDT_NAME VARCHAR(128)

Nullable

The name of the distinct type or array type.

Contains the null value if this is not a distinct type or array type.

SCOPE_CATALOG VARCHAR(128)

Nullable

Reserved. Contains the null value.

Appendix F. Db2 for i catalog views 1959

Table 252. PARAMETERS view (continued)

Column Name Data Type Description

SCOPE_SCHEMA VARCHAR(128)

Nullable

Reserved. Contains the null value.

SCOPE_NAME VARCHAR(128)

Nullable

Reserved. Contains the null value.

MAXIMUM_CARDINALITY BIGINT

Nullable

The maximum cardinality of the array type if this parameter is an array
type.

Contains the null value if this parameter is not an array type.

DTD_IDENTIFIER VARCHAR(128)

Nullable

A unique internal identifier for the parameter.

DECLARED_DATA_TYPE VARCHAR(128)

Nullable

Reserved. Contains the null value.

DECLARED_NUMERIC_PRECISION INTEGER

Nullable

Reserved. Contains the null value.

DECLARED_NUMERIC_SCALE INTEGER

Nullable

Reserved. Contains the null value.

PARAMETER_DEFAULT DBCLOB(64K) CCSID
1200

Nullable

The expression string used to calculate the default value of a
parameter, if one exists. If the default value is the null value, the
expression string is the keyword NULL.

Contains the null value if the parameter has no default.

1960 IBM i: Db2 for i SQL Reference

REFERENTIAL_CONSTRAINTS
The REFERENTIAL_CONSTRAINTS view contains one row for each referential constraint.

The following table describes the columns in the view:

Table 253. REFERENTIAL_CONSTRAINTS view

Column Name Data Type Description

CONSTRAINT_CATALOG VARCHAR(128) Relational database name

CONSTRAINT_SCHEMA VARCHAR(128) Name of the schema containing the constraint.

CONSTRAINT_NAME VARCHAR(128) Name of the constraint.

UNIQUE_CONSTRAINT_CATALOG VARCHAR(128) Relational database name containing the unique constraint referenced
by the referential constraint.

UNIQUE_CONSTRAINT_SCHEMA VARCHAR(128) Name of the SQL schema containing the unique constraint referenced
by the referential constraint.

UNIQUE_CONSTRAINT_NAME VARCHAR(128) Name of the unique constraint referenced by the referential constraint.

MATCH_OPTION VARCHAR(7) Reserved. Contains 'NONE'.

UPDATE_RULE VARCHAR(11) Update Rule.

• NO ACTION

• RESTRICT

DELETE_RULE VARCHAR(11) Delete Rule

• NO ACTION

• CASCADE

• SET NULL

• SET DEFAULT

• RESTRICT

COLUMN_COUNT INTEGER Count of columns in the constraint.

Appendix F. Db2 for i catalog views 1961

ROUTINES
The ROUTINES view contains one row for each routine.

The following table describes the columns in the view:

Table 254. ROUTINES view

Column Name Data Type Description

SPECIFIC_CATALOG VARCHAR(128) Relational database name

SPECIFIC_SCHEMA VARCHAR(128) Schema name of the routine instance.

SPECIFIC_NAME VARCHAR(128) Specific name of the routine.

ROUTINE_CATALOG VARCHAR(128) Relational database name

ROUTINE_SCHEMA VARCHAR(128) Name of the SQL schema that contains the routine.

ROUTINE_NAME VARCHAR(128) Name of the routine.

ROUTINE_TYPE VARCHAR(15) Type of the routine.

PROCEDURE
This is a procedure.

FUNCTION
This is a function.

INSTANCE METHOD
This is a built-in data type function created for a distinct type.

MODULE_CATALOG VARCHAR(128)

Nullable

Reserved. Contains the null value.

MODULE_SCHEMA VARCHAR(128)

Nullable

Reserved. Contains the null value.

MODULE_NAME VARCHAR(128)

Nullable

Reserved. Contains the null value.

UDT_CATALOG VARCHAR(128)

Nullable

Relational database name.

Contains the null value if this is not an INSTANCE METHOD.

UDT_SCHEMA VARCHAR(128)

Nullable

Name of the SQL schema that contains the distinct type related to this
function.

Contains the null value if this is not an INSTANCE METHOD.

UDT_NAME VARCHAR(128)

Nullable

Name of the distinct type name related to this function.

Contains the null value if this is not an INSTANCE METHOD.

1962 IBM i: Db2 for i SQL Reference

Table 254. ROUTINES view (continued)

Column Name Data Type Description

DATA_TYPE VARCHAR(128)

Nullable

Type of the result of the function:

BIGINT
Big number

INTEGER
Large number

SMALLINT
Small number

DECIMAL
Packed decimal

NUMERIC
Zoned decimal

DOUBLE PRECISION
Floating point; DOUBLE PRECISION

REAL
Floating point; REAL

DECFLOAT
Decimal floating-point

CHARACTER
Fixed-length character string

CHARACTER VARYING
Varying-length character string

CHARACTER LARGE OBJECT
Character large object string

GRAPHIC
Fixed-length graphic string

GRAPHIC VARYING
Varying-length graphic string

DOUBLE-BYTE CHARACTER LARGE OBJECT
Double-byte character large object string

NATIONAL CHARACTER
National character

NATIONAL CHARACTER VARYING
Varying-length national character

NATIONAL CHARACTER LARGE OBJECT
National character large object

BINARY
Fixed-length binary string

BINARY VARYING
Varying-length binary string

BINARY LARGE OBJECT
Binary large object string

DATE
Date

TIME
Time

TIMESTAMP
Timestamp

DATALINK
Datalink

ROWID
Row ID

XML
XML

USER-DEFINED
Distinct type or Array type

Contains the null value if this is not a scalar function.

CHARACTER_MAXIMUM_LENGTH INTEGER

Nullable

Maximum length of the result string of the function for binary, character, and
graphic string and XML data types.

Contains the null value if this is not a scalar function or the parameter is not
a string.

Appendix F. Db2 for i catalog views 1963

Table 254. ROUTINES view (continued)

Column Name Data Type Description

CHARACTER_OCTET_LENGTH INTEGER

Nullable

Number of bytes for the result string of the function for binary, character,
and graphic string and XML data types.

Contains the null value if this is not a scalar function or the parameter is not
a string.

CHARACTER_SET_CATALOG VARCHAR(128)

Nullable

Relational database name of the result of the function.

Contains the null value if this is not a scalar function or the result is not a
string.

CHARACTER_SET_SCHEMA VARCHAR(128)

Nullable

The schema name of the character set of the result of the function. Contains
'SYSIBM'.

Contains the null value if this is not a scalar function or the result is not a
string.

CHARACTER_SET_NAME VARCHAR(128)

Nullable

The character set name of the result of the function.

Contains the null value if this is not a scalar function or the result is not a
string.

COLLATION_CATALOG VARCHAR(128)

Nullable

Relational database name of the result of the function.

Contains the null value if this is not a scalar function or the result is not a
string.

COLLATION_SCHEMA VARCHAR(128)

Nullable

The schema of the collation of the result of the function. SYSIBM is
returned.

Contains the null value if this is not a scalar function or the result is not a
string.

COLLATION_NAME VARCHAR(128)

Nullable

The collation name of the result of the function. IBMDEFAULT is returned.

Contains the null value if this is not a scalar function or the result is not a
string.

NUMERIC_PRECISION INTEGER

Nullable

The precision of the result of the function.

Note: This column supplies the precision of all numeric data types,
including single-and double-precision floating point and decimal floating-
point. The NUMERIC_PRECISION_RADIX column indicates if the value in
this column is in binary or decimal digits.

Contains the null value if this is not a scalar function or the result is not
numeric.

NUMERIC_PRECISION_RADIX INTEGER

Nullable

Indicates if the precision specified in column NUMERIC_PRECISION is
specified as a number of binary or decimal digits:

2
Binary; floating-point precision is specified in binary digits.

10
Decimal; all other numeric types are specified in decimal digits.

Contains the null value if this is not a scalar function or the result is not
numeric.

NUMERIC_SCALE INTEGER

Nullable

Scale of numeric result of the function.

Contains the null value if this is not a scalar function or the result is not
numeric.

DATETIME_PRECISION INTEGER

Nullable

The fractional part of a date, time, or timestamp result of the function.

0
For DATE and TIME data types

0-12
For TIMESTAMP data types (number of fractional seconds).

Contains the null value if this is not a scalar function or the result is not a
date, time, or timestamp.

INTERVAL_TYPE VARCHAR(128)

Nullable

Reserved. Contains the null value.

INTERVAL_PRECISION INTEGER

Nullable

Reserved. Contains the null value.

1964 IBM i: Db2 for i SQL Reference

Table 254. ROUTINES view (continued)

Column Name Data Type Description

TYPE_UDT_CATALOG VARCHAR(128)

Nullable

The relational database name if the result of the function is a distinct type
or array type.

Contains the null value if this is not a scalar function or the result is not a
distinct type or array type.

TYPE_UDT_SCHEMA VARCHAR(128)

Nullable

The name of the schema if the result of the function is a distinct type or
array type.

Contains the null value if this is not a scalar function or the result is not a
distinct type or array type.

TYPE_UDT_NAME VARCHAR(128)

Nullable

The name of the distinct type if the result of the function is a distinct type or
array type.

Contains the null value if this is not a scalar function or the result is not a
distinct type or array type.

SCOPE_CATALOG VARCHAR(128)

Nullable

Reserved. Contains the null value.

SCOPE_SCHEMA VARCHAR(128)

Nullable

Reserved. Contains the null value.

SCOPE_NAME VARCHAR(128)

Nullable

Reserved. Contains the null value.

MAXIMUM_CARDINALITY BIGINT

Nullable

The maximum cardinality of the array type if the result of the function is an
array type.

Contains the null value is this is not an array type.

DTD_IDENTIFIER VARCHAR(128)

Nullable

A unique internal identifier for the result of the function.

ROUTINE_BODY VARCHAR(8) The type of the routine body:

EXTERNAL
This is an external routine.

SQL
This is an SQL routine.

ROUTINE_DEFINITION DBCLOB(2M) CCSID
13488

Nullable

If this is an SQL routine, this column contains the SQL routine body.

If this is an obfuscated routine, the text starts with the WRAPPED keyword
and is followed by the encoded form of the statement text.

Contains the null value if this is not an SQL routine or if the routine body
cannot be contained in this column without truncation.

EXTERNAL_NAME VARCHAR(279)

Nullable

If this is an external routine, this column identifies the external program
name.

• For REXX, the external program name is schema-name/source-file-
name(member-name).

• For ILE service programs, the external program name is schema-name/
service-program-name(entry-point-name).

• For Java programs, the external program name is an optional jar-id
followed by a fully-qualified-class-name!method-name or fully-qualified-
class-name.method-name.

• For all other languages, the external program name is schema-name/
program-name.

Contains the null value if this is a system-generated function or a function
sourced on a built-in function.

Appendix F. Db2 for i catalog views 1965

Table 254. ROUTINES view (continued)

Column Name Data Type Description

EXTERNAL_LANGUAGE VARCHAR(8)

Nullable

If this is an external routine, this column identifies the external program's
language.

C
The external program is written in C.

C++
The external program is written in C++.

CL
The external program is written in CL.

COBOL
The external program is written in COBOL.

COBOLLE
The external program is written in ILE COBOL.

FORTRAN
The external program is written in FORTRAN.

JAVA
The external program is written in JAVA.

PLI
The external program is written in PL/I.

REXX
The external program is a REXX procedure.

RPG
The external program is written in RPG.

RPGLE
The external program is written in ILE RPG.

Contains the null value if this is not an external routine.

PARAMETER_STYLE VARCHAR(18)

Nullable

If this is an external routine, this column identifies the parameter style
(calling convention).

DB2GENERAL
This is the DB2GENERAL calling convention.

DB2SQL
This is the DB2SQL calling convention.

GENERAL
This is the GENERAL calling convention.

JAVA
This is the JAVA calling convention.

GENERAL WITH NULLS
This is the GENERAL WITH NULLS calling convention.

SQL
This is the SQL standard calling convention.

Contains the null value if this is not an external routine.

IS_DETERMINISTIC VARCHAR(3) This column identifies whether the routine is deterministic. That is, whether
a call to the routine with the same arguments will always return the same
result.

NO
The routine is not deterministic.

YES
The routine is deterministic.

SQL_DATA_ACCESS VARCHAR(17) This column identifies whether a routine contains SQL and whether it reads
or modifies data.

NO SQL
The routine does not contain any SQL statements.

CONTAINS SQL
The routine contains SQL statements.

READS SQL DATA
The routine possibly reads data from a table or view.

MODIFIES SQL DATA
The routine possibly modifies data in a table or view or issues SQL DDL
statements.

1966 IBM i: Db2 for i SQL Reference

Table 254. ROUTINES view (continued)

Column Name Data Type Description

IS_NULL_CALL VARCHAR(3)

Nullable

Identifies whether the function needs to be called if an input parameter is
the null value.

NO
This function need not be called if an input parameter is the null value.
If this is a scalar function, the result of the function is implicitly null if
any of the operands are null. If this is a table function, the result of the
function is an empty table if any of the operands are the null value.

YES
This function must be called even if an input operand is null.

Contains the null value if this is not a function.

SQL_PATH VARCHAR(3483)

Nullable

If this is an SQL routine, this column identifies the path.

Contains the null value if this is not an SQL routine.

SCHEMA_LEVEL_ROUTINE VARCHAR(3) Reserved. Contains 'YES'.

MAX_DYNAMIC_RESULT_SETS SMALLINT Identifies the maximum number of result sets returned. 0 indicates that
there are no result sets.

IS_USER_DEFINED_CAST VARCHAR(3)

Nullable

Identifies whether the this function is a cast function created when a
distinct type was created.

NO
This function is not a cast function.

YES
This function is a cast function.

Contains the null value if the routine is not a function.

IS_IMPLICITLY_INVOCABLE VARCHAR(3)

Nullable

Identifies whether the this function is a cast function created when a
distinct type was created and can be implicitly invoked.

NO
This function is not a cast function.

YES
This function is a cast function and can be implicitly invoked.

Contains the null value if the routine is not a function.

SECURITY_TYPE VARCHAR(22)

Nullable

Reserved. Contains 'IMPLEMENTATION DEFINED' if this is an external
routine.

Contains the null value if the routine is not an external routine.

TO_SQL_SPECIFIC_CATALOG VARCHAR(128)

Nullable

Reserved. Contains the null value.

TO_SQL_SPECIFIC_SCHEMA VARCHAR(128)

Nullable

Reserved. Contains the null value.

TO_SQL_SPECIFIC_NAME VARCHAR(128)

Nullable

Reserved. Contains the null value.

AS_LOCATOR VARCHAR(3)

Nullable

Indicates whether the result was specified as a locator.

NO
The parameter was not specified as a locator.

YES
The parameter was specified as a locator.

Contains the null value if this is not a scalar function.

CREATED TIMESTAMP Identifies the timestamp when the routine was created.

LAST_ALTERED TIMESTAMP

Nullable

Timestamp when routine was last altered. Contains null if the routine has
never been altered.

NEW_SAVEPOINT_LEVEL VARCHAR(3)

Nullable

Indicates whether the routine starts a new savepoint level.

NO
A new savepoint level is not started when the procedure is called.

YES
A new savepoint level is started when the procedure is called.

Appendix F. Db2 for i catalog views 1967

Table 254. ROUTINES view (continued)

Column Name Data Type Description

IS_UDT_DEPENDENT VARCHAR(3) Indicates whether the routine is dependent on a UDT.

NO
The routine is not dependent on a UDT.

YES
The routine is dependent on a UDT.

RESULT_CAST_FROM_DATA_TYPE VARCHAR(128)

Nullable

Type of the parameter:

BIGINT
Big number

INTEGER
Large number

SMALLINT
Small number

DECIMAL
Packed decimal

NUMERIC
Zoned decimal

DOUBLE PRECISION
Floating point; DOUBLE PRECISION

REAL
Floating point; REAL

DECFLOAT
Decimal floating-point

CHARACTER
Fixed-length character string

CHARACTER VARYING
Varying-length character string

CHARACTER LARGE OBJECT
Character large object string

GRAPHIC
Fixed-length graphic string

GRAPHIC VARYING
Varying-length graphic string

DOUBLE-BYTE CHARACTER LARGE OBJECT
Double-byte character large object string

NATIONAL CHARACTER
National character

NATIONAL CHARACTER VARYING
Varying-length national character

NATIONAL CHARACTER LARGE OBJECT
National character large object

BINARY
Fixed-length binary string

BINARY VARYING
Varying-length binary string

BINARY LARGE OBJECT
Binary large object string

DATE
Date

TIME
Time

TIMESTAMP
Timestamp

DATALINK
Datalink

ROWID
Row ID

XML
XML

USER-DEFINED
Distinct Type

1968 IBM i: Db2 for i SQL Reference

Table 254. ROUTINES view (continued)

Column Name Data Type Description

RESULT_CAST_AS_LOCATOR VARCHAR(3)

Nullable

Indicates whether the result is cast from a locator.

NO
The result is not cast from a locator.

YES
The result is cast from a locator.

RESULT_CAST_CHAR_MAX_LENGTH INTEGER

Nullable

Maximum length of the string for binary, character, and graphic string and
XML data types.

Contains the null value if the parameter is not a string.

RESULT_CAST_CHAR_OCTET_LENGTH INTEGER

Nullable

Number of bytes for binary, character, and graphic string and XML data
types.

Contains the null value if the parameter is not a string.

RESULT_CAST_CHAR_SET_CATALOG VARCHAR(128)

Nullable

Relational database name

Contains the null value if the column is not a string.

RESULT_CAST_CHAR_SET_SCHEMA VARCHAR(128)

Nullable

The schema name of the character set. Contains 'SYSIBM'.

Contains the null value if the column is not a string.

RESULT_CAST_CHAR_SET_NAME VARCHAR(128)

Nullable

The character set name.

Contains the null value if the column is not a string.

RESULT_CAST_COLLATION_CATALOG VARCHAR(128)

Nullable

Relational database name

Contains the null value if the column is not a string.

RESULT_CAST_COLLATION_SCHEMA VARCHAR(128)

Nullable

The schema of the collation. SYSIBM is returned.

Contains the null value if the column is not a string.

RESULT_CAST_COLLATION_NAME VARCHAR(128)

Nullable

The collation name. IBMDEFAULT is returned.

Contains the null value if the column is not a string.

RESULT_CAST_NUMERIC_PRECISION INTEGER

Nullable

The precision of all numeric parameters.

Note: This column supplies the precision of all numeric data types,
including single-and double-precision floating point and decimal floating-
point. The NUMERIC_PRECISION_RADIX column indicates if the value in
this column is in binary or decimal digits.

Contains the null value if the parameter is not numeric.

RESULT_CAST_NUMERIC_RADIX INTEGER

Nullable

Indicates if the precision specified in column NUMERIC_PRECISION is
specified as a number of binary or decimal digits:

2
Binary; floating-point precision is specified in binary digits.

10
Decimal; all other numeric types are specified in decimal digits.

Contains the null value if the parameter is not numeric.

RESULT_CAST_NUMERIC_SCALE INTEGER

Nullable

Scale of numeric data.

Contains the null value if not decimal, numeric, or binary parameter.

RESULT_CAST_DATETIME_PRECISION INTEGER

Nullable

The fractional part of a date, time, or timestamp.

0
For DATE and TIME data types

0-12
For TIMESTAMP data types (number of fractional seconds).

Contains the null value if the parameter is not a date, time, or timestamp.

RESULT_CAST_INTERVAL_TYPE VARCHAR(128)

Nullable

Reserved. Contains the null value.

RESULT_CAST_INTERVAL_PRECISION INTEGER

Nullable

Reserved. Contains the null value.

Appendix F. Db2 for i catalog views 1969

Table 254. ROUTINES view (continued)

Column Name Data Type Description

RESULT_CAST_TYPE_UDT_CATALOG VARCHAR(128)

Nullable

The relational database name if this is a distinct type.

Contains the null value if this is not a distinct type.

RESULT_CAST_TYPE_UDT_SCHEMA VARCHAR(128)

Nullable

The name of the schema if this is a distinct type.

Contains the null value if this is not a distinct type.

RESULT_CAST_TYPE_UDT_NAME VARCHAR(128)

Nullable

The name of the distinct type

Contains the null value if this is not a distinct type.

RESULT_CAST_SCOPE_CATALOG VARCHAR(128)

Nullable

Reserved. Contains the null value.

RESULT_CAST_SCOPE_SCHEMA VARCHAR(128)

Nullable

Reserved. Contains the null value.

RESULT_CAST_SCOPE_NAME VARCHAR(128)

Nullable

Reserved. Contains the null value.

RESULT_CAST_MAX_CARDINALITY INTEGER

Nullable

Reserved. Contains the null value.

RESULT_CAST_DTD_IDENTIFIER VARCHAR(128)

Nullable

A unique internal identifier for the parameter.

DECLARED_DATA_TYPE VARCHAR(128)

Nullable

Reserved. Contains the null value.

DECLARED_NUMERIC_PRECISION INTEGER

Nullable

Reserved. Contains the null value.

DECLARED_NUMERIC_SCALE INTEGER

Nullable

Reserved. Contains the null value.

RESULT_CAST_FROM_DECLARED_DATA_TYPE VARCHAR(128)

Nullable

Reserved. Contains the null value.

RESULT_CAST_DECLARED_NUMERIC_PRECISION INTEGER

Nullable

Reserved. Contains the null value.

RESULT_CAST_DECLARED_NUMERIC_SCALE INTEGER

Nullable

Reserved. Contains the null value.

1970 IBM i: Db2 for i SQL Reference

ROUTINE_PRIVILEGES
The ROUTINE_PRIVILEGES view contains one row for every privilege granted on a routine. Note that this
catalog view cannot be used to determine whether a user is authorized to a routine because the privilege
to use a routine could be acquired through a group user profile or special authority (such as *ALLOBJ).

The following table describes the columns in the view:

Table 255. ROUTINE_PRIVILEGES view

Column Name Data Type Description

GRANTOR VARCHAR(128)

Nullable

Reserved. Contains the null value.

GRANTEE VARCHAR(128) The user profile to which the privilege is granted.

SPECIFIC_CATALOG VARCHAR(128) Relational database name

SPECIFIC_SCHEMA VARCHAR(128) Schema name of the routine instance.

SPECIFIC_NAME VARCHAR(128) Specific name of the routine.

ROUTINE_CATALOG VARCHAR(128) Relational database name

ROUTINE_SCHEMA VARCHAR(128) Name of the SQL schema that contains the routine.

ROUTINE_NAME VARCHAR(128) Name of the routine.

PRIVILEGE_TYPE VARCHAR(10) The privilege granted:

ALTER
The privilege to alter the routine.

EXECUTE
The privilege to execute the routine.

IS_GRANTABLE VARCHAR(3) Indicates whether the privilege is grantable to other users.

NO
The privilege is not grantable.

YES
The privilege is grantable.

Appendix F. Db2 for i catalog views 1971

SCHEMATA
The SCHEMATA view contains one row for each schema.

The following table describes the columns in the view:

Table 256. SCHEMATA view

Column Name Data Type Description

CATALOG_NAME VARCHAR(128) Relational database name

SCHEMA_NAME VARCHAR(128) Name of the schema

SCHEMA_OWNER VARCHAR(128) Owner of the schema

DEFAULT_CHARACTER_SET_CATALOG VARCHAR(128) Relational database name

DEFAULT_CHARACTER_SET_SCHEMA VARCHAR(128) The schema name of the default character set. Contains 'SYSIBM'.

DEFAULT_CHARACTER_SET_NAME VARCHAR(128) The default character set name.

SQL_PATH VARCHAR(4096)

Nullable

Reserved. Contains the null value.

1972 IBM i: Db2 for i SQL Reference

SEQUENCES
The SEQUENCES view contains one row for each sequence.

The following table describes the columns in the view:

Table 257. SEQUENCES view

Column Name Data Type Description

SEQUENCE_CATALOG VARCHAR(128) Relational database name

SEQUENCE_SCHEMA VARCHAR(128) SQL schema that contains the sequence

SEQUENCE_NAME VARCHAR(128) Name of the sequence

DATA_TYPE VARCHAR(128) Type of the sequence

NUMERIC_PRECISION INTEGER The precision of the sequence type

NUMERIC_PRECISION_RADIX INTEGER Indicates if the precision specified in column NUMERIC_PRECISION is
specified as a number of binary or decimal digits:

10
All sequence data types are specified in decimal digits.

NUMERIC_SCALE INTEGER All sequence data types use 0 scale

START_VALUE DECIMAL(63,0) Starting value of the sequence

MINIMUM_VALUE DECIMAL(63,0) Minimum value of the sequence

MAXIMUM_VALUE DECIMAL(63,0) Maximum value of the sequence

INCREMENT INTEGER Increment value of the sequence

CYCLE_OPTION VARCHAR(3) Identifies whether the sequence values will continue to be generated
after the minimum or maximum value has been reached.

NO
Values will not continue to be generated

YES
Values will continue to be generated

DECLARED_DATA_TYPE VARCHAR(128)

Nullable

Reserved. Contains the null value.

DECLARED_NUMERIC_PRECISION INTEGER

Nullable

Reserved. Contains the null value.

DECLARED_NUMERIC_SCALE INTEGER

Nullable

Reserved. Contains the null value.

Appendix F. Db2 for i catalog views 1973

SQL_FEATURES
The SQL_FEATURES table contains one row for each feature supported by the database manager.

The following table describes the columns in the table:

Table 258. SQL_FEATURES table

Column Name Data Type Description

FEATURE_ID VARCHAR(7)

Nullable

ANS and ISO feature ID

FEATURE_NAME VARCHAR(128) The name of the ANS and ISO feature.

SUB_FEATURE_ID VARCHAR(7)

Nullable

ANS and ISO subfeature ID

SUB_FEATURE_NAME VARCHAR(256) The name of the ANS and ISO subfeature.

IS_SUPPORTED VARCHAR(3) Indicates whether the feature is supported:

YES
This feature is supported.

NO
This feature is not supported.

IS_VERIFIED_BY VARCHAR(128)

Nullable

Reserved. Contains the null value.

COMMENTS VARCHAR(2000)

Nullable

Reserved. Contains the null value.

1974 IBM i: Db2 for i SQL Reference

SQL_LANGUAGES
The SQL_LANGUAGES table contains one row for every SQL language binding and programming language
for which conformance is claimed.

The following table describes the columns in the SQL_LANGUAGES table:

Table 259. SQL_LANGUAGES table

Column Name Data Type Description

SQL_LANGUAGE_SOURCE VARCHAR(254) Name of the standard.

SQL_LANGUAGE_YEAR VARCHAR(254) Year in which the standard was approved.

SQL_LANGUAGE_CONFORMANCE VARCHAR(254)

Nullable

Level of conformance.

2
For the 1987 and 1989 standards, indicates that Level 2
conformance is claimed.

ENTRY
For the 1992 standard, indicates that Entry Level conformance is
claimed.

CORE
For the 1999 standard, indicates that Core Level is conformance
is claimed.

Contains the null value if conformance is not yet claimed.

SQL_LANGUAGE_INTEGRITY VARCHAR(254)

Nullable

Support of the integrity feature.

YES
conformance is claimed to the integrity feature

NO
conformance is not claimed to the integrity feature

Contains the null value if the standard does not have a separate
integrity feature.

SQL_LANGUAGE_IMPLEMENTATION VARCHAR(254)

Nullable

Reserved. Contains the null value.

SQL_LANGUAGE_BINDING_STYLE VARCHAR(254) The style of binding of the SQL language

EMBEDDED
support for embedded SQL for the language in

SQL_LANGUAGE_PROGRAMMING_LANG

DIRECT
DIRECT SQL is supported (for example Interactive SQL)

CLI
Support for CLI for the language in

SQL_LANGUAGE_PROGRAMMING_LANG

SQL_LANGUAGE_PROGRAMMING_LANG VARCHAR(254)

Nullable

The language supported by EMBEDDED or CLI.

C
The C language is supported.

COBOL
The COBOL language is supported.

PLI
The PL/I language is supported.

Contains the null value if the SQL_LANGUAGE_BINDING_STYLE is
DIRECT.

Appendix F. Db2 for i catalog views 1975

SQL_SIZING
The SQL_SIZING table contains one row for each limit supported by the database manager.

The following table describes the columns in the table:

Table 260. SQL_SIZING table

Column Name Data Type Description

SIZING_ID INTEGER ANS and ISO sizing ID

SIZING_NAME VARCHAR(128) Name of the ANS and ISO sizing.

SUPPORTED_VALUE DECIMAL(21)

Nullable

Indicates the sizing limit.

Contains the null value if the sizing limit is not applicable.

COMMENTS VARCHAR(2000)

Nullable

Reserved. Contains the null value.

1976 IBM i: Db2 for i SQL Reference

TABLE_CONSTRAINTS
The TABLE_CONSTRAINTS view contains one row for each constraint.

The following table describes the columns in the view:

Table 261. TABLE_CONSTRAINTS view

Column Name Data Type Description

CONSTRAINT_CATALOG VARCHAR(128) Relational database name

CONSTRAINT_SCHEMA VARCHAR(128) Name of the schema containing the constraint.

CONSTRAINT_NAME VARCHAR(128) Name of the constraint.

TABLE_CATALOG VARCHAR(128) Relational database name

TABLE_SCHEMA VARCHAR(128) Name of the schema containing the table.

TABLE_NAME VARCHAR(128) Name of the table which the constraint is created over.

CONSTRAINT_TYPE VARCHAR(11) Constraint Type

• CHECK

• UNIQUE

• PRIMARY KEY

• FOREIGN KEY

IS_DEFERRABLE VARCHAR(3) Indicates whether the constraint checking can be deferred. Contains
'NO'.

INITIALLY_DEFERRED VARCHAR(3) Indicates whether the constraint was defined as initially deferred.
Contains 'NO'.

Appendix F. Db2 for i catalog views 1977

TABLE_PRIVILEGES
The TABLE_PRIVILEGES view contains one row for every privilege granted on a table. Note that this
catalog view cannot be used to determine whether a user is authorized to a table because the privilege to
use a table could be acquired through a group user profile or special authority (such as *ALLOBJ).

The following table describes the columns in the view:

Table 262. TABLE_PRIVILEGES view

Column Name Data Type Description

GRANTOR VARCHAR(128)

Nullable

Reserved. Contains the null value.

GRANTEE VARCHAR(128) The user profile to which the privilege is granted.

TABLE_CATALOG VARCHAR(128) Relational database name

TABLE_SCHEMA VARCHAR(128) Name of the SQL schema that contains the table.

TABLE_NAME VARCHAR(128) Name of the table.

PRIVILEGE_TYPE VARCHAR(10) The privilege granted:

ALTER
The privilege to alter the table.

DELETE
The privilege to delete rows from the table.

INDEX
The privilege to create an index on the table.

INSERT
The privilege to insert rows into the table.

REFERENCES
The privilege to reference the table in a referential constraint.

SELECT
The privilege to select rows from the table.

UPDATE
The privilege to update the table.

IS_GRANTABLE VARCHAR(3) Indicates whether the privilege is grantable to other users.

NO
The privilege is not grantable.

YES
The privilege is grantable.

1978 IBM i: Db2 for i SQL Reference

TABLES
The TABLES view contains one row for each table, view, and alias.

The following table describes the columns in the view:

Table 263. TABLES view

Column Name Data Type Description

TABLE_CATALOG VARCHAR(128) Relational database name

TABLE_SCHEMA VARCHAR(128) Name of the SQL schema that contains the table, view or alias.

TABLE_NAME VARCHAR(128) Name of the table, view or alias.

TABLE_TYPE VARCHAR(24) Indicates the type of the table:

ALIAS
The table is an alias.

BASE TABLE
The table is an SQL table or physical file.

MATERIALIZED QUERY TABLE
The object is a materialized query table.

VIEW
The table is an SQL view or logical file.

SELF_REFERENCING_COLUMN_NAME VARCHAR(128)

Nullable

Reserved. Contains the null value.

REFERENCE_GENERATION VARCHAR(128)

Nullable

Reserved. Contains the null value.

USER_DEFINED_TYPE_CATALOG VARCHAR(128)

Nullable

Reserved. Contains the null value.

USER_DEFINED_TYPE_SCHEMA VARCHAR(128)

Nullable

Reserved. Contains the null value.

USER_DEFINED_TYPE_NAME VARCHAR(128)

Nullable

Reserved. Contains the null value.

IS_INSERTABLE_INTO VARCHAR(3) Identifies whether an INSERT is allowed on the table.

NO
An INSERT is not allowed on this table.

YES
An INSERT is allowed on this table.

Appendix F. Db2 for i catalog views 1979

UDT_PRIVILEGES
The UDT_PRIVILEGES view contains one row for every privilege granted on a type. Note that this catalog
view cannot be used to determine whether a user is authorized to a type because the privilege to use a
type could be acquired through a group user profile or special authority (such as *ALLOBJ).

The following table describes the columns in the view:

Table 264. UDT_PRIVILEGES view

Column Name Data Type Description

GRANTOR VARCHAR(128)

Nullable

Reserved. Contains the null value.

GRANTEE VARCHAR(128) The user profile to which the privilege is granted.

UDT_CATALOG VARCHAR(128) Relational database name

UDT_SCHEMA VARCHAR(128) Name of the SQL schema that contains the type.

UDT_NAME VARCHAR(128) Name of the type.

PRIVILEGE_TYPE VARCHAR(10) The privilege granted:

ALTER
The privilege to alter the type.

USAGE
The privilege to use the type.

IS_GRANTABLE VARCHAR(3) Indicates whether the privilege is grantable to other users.

NO
The privilege is not grantable.

YES
The privilege is grantable.

1980 IBM i: Db2 for i SQL Reference

USAGE_PRIVILEGES
The USAGE_PRIVILEGES view contains one row for every privilege granted on a sequence or XML
schema. Note that this catalog view cannot be used to determine whether a user is authorized to a
sequence or XML schema because the privilege to use a sequence or XML schema could be acquired
through a group user profile or special authority (such as *ALLOBJ).

The following table describes the columns in the view:

Table 265. USAGE_PRIVILEGES view

Column Name Data Type Description

GRANTOR VARCHAR(128)

Nullable

Reserved. Contains the null value.

GRANTEE VARCHAR(128) The user profile to which the privilege is granted.

OBJECT_CATALOG VARCHAR(128) Relational database name

OBJECT_SCHEMA VARCHAR(128) Name of the SQL schema that contains the object.

OBJECT_NAME VARCHAR(128) Name of the object.

OBJECT_TYPE VARCHAR(10) The type of the object:

SEQUENCE
The object is a sequence.

XML SCHEMA
The object is an XML schema.

PRIVILEGE_TYPE VARCHAR(10) The privilege granted:

ALTER
The privilege to alter the sequence or XML schema.

USAGE
The privilege to use the sequence or XML schema.

IS_GRANTABLE VARCHAR(3) Indicates whether the privilege is grantable to other users.

NO
The privilege is not grantable.

YES
The privilege is grantable.

Appendix F. Db2 for i catalog views 1981

USER_DEFINED_TYPES
The USER_DEFINED_TYPES view contains one row for each distinct type.

The following table describes the columns in the view163:

Table 266. USER_DEFINED_TYPES view

Column Name Data Type Description

USER_DEFINED_TYPE_CATALOG VARCHAR(128) Relational database name

USER_DEFINED_TYPE_SCHEMA VARCHAR(128) Schema name of the distinct type

USER_DEFINED_TYPE_NAME VARCHAR(128) Name of the user that created the distinct type.

USER_DEFINED_TYPE_CATEGORY VARCHAR(128) Indicates the type of user-defined type. Contains 'DISTINCT'.

IS_INSTANTIABLE VARCHAR(3) Reserved. Contains 'YES'.

IS_FINAL VARCHAR(3) Reserved. Contains 'YES'.

ORDERING_FORM VARCHAR(4) Indicates what kind of predicates are allowed when this distinct type is
a comparand:

FULL
All predicates are allowed.

NONE
No predicates are allowed

ORDERING_CATEGORY VARCHAR(8) Reserved. Contains 'MAP'.

ORDERING_ROUTINE_CATALOG VARCHAR(128)

Nullable

Relational database name

Contains the null value if the ORDERING_FORM is 'NONE'.

ORDERING_ROUTINE_SCHEMA VARCHAR(128)

Nullable

Reserved. Contains 'SYSIBM'.

Contains the null value if the ORDERING_FORM is 'NONE'.

ORDERING_ROUTINE_NAME VARCHAR(128)

Nullable

Reserved. Contains a data type name.

Contains the null value if the ORDERING_FORM is 'NONE'.

REFERENCE_TYPE VARCHAR(16)

Nullable

Reserved. Contains the null value.

163 This view does not contain information about built-in data types.

1982 IBM i: Db2 for i SQL Reference

Table 266. USER_DEFINED_TYPES view (continued)

Column Name Data Type Description

DATA_TYPE VARCHAR(128)

Nullable

Source data type of the distinct type:

BIGINT
Big number

INTEGER
Large number

SMALLINT
Small number

DECIMAL
Packed decimal

NUMERIC
Zoned decimal

DOUBLE PRECISION
Floating point; DOUBLE PRECISION

REAL
Floating point; REAL

DECFLOAT
Decimal floating-point

CHARACTER
Fixed-length character string

CHARACTER VARYING
Varying-length character string

CHARACTER LARGE OBJECT
Character large object string

GRAPHIC
Fixed-length graphic string

GRAPHIC VARYING
Varying-length graphic string

DOUBLE-BYTE CHARACTER LARGE OBJECT
Double-byte character large object string

NATIONAL CHARACTER
National character

NATIONAL CHARACTER VARYING
Varying-length national character

NATIONAL CHARACTER LARGE OBJECT
National character large object

BINARY
Fixed-length binary string

BINARY VARYING
Varying-length binary string

BINARY LARGE OBJECT
Binary large object string

DATE
Date

TIME
Time

TIMESTAMP
Timestamp

DATALINK
Datalink

ROWID
Row ID

XML
XML

USER-DEFINED
Distinct Type

CHARACTER_MAXIMUM_LENGTH INTEGER

Nullable

Maximum length of the distinct type for binary, character, and graphic
string and XML data types.

Contains the null value if the distinct type is not a string.

CHARACTER_OCTET_LENGTH INTEGER

Nullable

Number of bytes of the distinct type for binary, character, and graphic
string and XML data types.

Contains the null value if the distinct type is not a string.

Appendix F. Db2 for i catalog views 1983

Table 266. USER_DEFINED_TYPES view (continued)

Column Name Data Type Description

CHARACTER_SET_CATALOG VARCHAR(128)

Nullable

Relational database name of the distinct type.

Contains the null value if the distinct type is not a string.

CHARACTER_SET_SCHEMA VARCHAR(128)

Nullable

The schema name of the character set of the distinct type. Contains
'SYSIBM'.

Contains the null value if the distinct type is not a string.

CHARACTER_SET_NAME VARCHAR(128)

Nullable

The character set name of the distinct type.

Contains the null value if the distinct type is not a string.

COLLATION_CATALOG VARCHAR(128)

Nullable

Relational database name of the distinct type.

Contains the null value if the distinct type is not a string.

COLLATION_SCHEMA VARCHAR(128)

Nullable

The schema of the collation of the distinct type. SYSIBM is returned.

Contains the null value if the distinct type is not a string.

COLLATION_NAME VARCHAR(128)

Nullable

The collation name of the distinct type. IBMDEFAULT is returned.

Contains the null value if the distinct type is not a string.

NUMERIC_PRECISION INTEGER

Nullable

The precision of the distinct type.

Note: This column supplies the precision of all numeric data types,
including single-and double-precision floating point and decimal
floating-point. The NUMERIC_PRECISION_RADIX column indicates if
the value in this column is in binary or decimal digits.

Contains the null value if the distinct type is not numeric.

NUMERIC_PRECISION_RADIX INTEGER

Nullable

Indicates if the precision specified in column NUMERIC_PRECISION is
specified as a number of binary or decimal digits:

2
Binary; floating-point precision is specified in binary digits.

10
Decimal; all other numeric types are specified in decimal digits.

Contains the null value if the distinct type is not numeric.

NUMERIC_SCALE SMALLINT

Nullable

Scale of numeric distinct type.

Contains the null value if the distinct type is not decimal, numeric, or
binary.

DATETIME_PRECISION INTEGER

Nullable

The fractional part of a date, time, or timestamp distinct type.

0
For DATE and TIME data types

0-12
For TIMESTAMP data types (number of fractional seconds).

Contains the null value if the distinct type is not date, time, or
timestamp.

INTERVAL_TYPE VARCHAR(128)

Nullable

Reserved. Contains the null value.

INTERVAL_PRECISION INTEGER

Nullable

Reserved. Contains the null value.

SOURCE_DTD_IDENTIFIER VARCHAR(128)

Nullable

A unique internal identifier for the source data type.

Contains the null value if the distinct type is not sourced on another
distinct type.

REF_DTD_IDENTIFIER VARCHAR(256)

Nullable

Reserved. Contains the null value.

DECLARED_DATA_TYPE VARCHAR(128)

Nullable

Reserved. Contains the null value.

DECLARED_NUMERIC_PRECISION INTEGER

Nullable

Reserved. Contains the null value.

1984 IBM i: Db2 for i SQL Reference

Table 266. USER_DEFINED_TYPES view (continued)

Column Name Data Type Description

DECLARED_NUMERIC_SCALE INTEGER

Nullable

Reserved. Contains the null value.

MAXIMUM_CARDINALITY BIGINT

Nullable

The maximum cardinality of the array data type.

Contains the null value if the type is not an array type.

Appendix F. Db2 for i catalog views 1985

VARIABLE_PRIVILEGES
The VARIABLE_PRIVILEGES view contains one row for every privilege granted on a global variable. Note
that this catalog view cannot be used to determine whether a user is authorized to a global variable
because the privilege to use a global variable could be acquired through a group user profile or special
authority (such as *ALLOBJ).

The following table describes the columns in the view:

Table 267. VARIABLE_PRIVILEGESS view

Column Name Data Type Description

GRANTOR VARCHAR(128)

Nullable

Reserved. Contains the null value.

GRANTEE VARCHAR(128) The user profile to which the privilege is granted.

VARIABLE_CATALOG VARCHAR(128) Relational database name

VARIABLE_SCHEMA VARCHAR(128) Name of the SQL schema that contains the global variable.

VARIABLE_NAME VARCHAR(128) Name of the global variable.

PRIVILEGE_TYPE VARCHAR(10) The privilege granted:

ALTER
The privilege to alter the global variable.

READ
The privilege to read the value of the global variable.

WRITE
The privilege to assign a value to the global variable.

IS_GRANTABLE VARCHAR(3) Indicates whether the privilege is grantable to other users.

NO
The privilege is not grantable.

YES
The privilege is grantable.

1986 IBM i: Db2 for i SQL Reference

VIEWS
The VIEWS view contains one row for each view.

The following table describes the columns in the view:

Table 268. VIEWS view

Column Name Data Type Description

TABLE_CATALOG VARCHAR(128) Relational database name

TABLE_SCHEMA VARCHAR(128) Name of the SQL schema that contains the view.

TABLE_NAME VARCHAR(128) Name of the view.

VIEW_DEFINITION DBCLOB(2M) CCSID
13488

Nullable

The query expression portion of the CREATE VIEW statement.

CHECK_OPTION VARCHAR(8) The check option used on the view

NONE
No check option was specified

LOCAL
The local option was specified

CASCADED
The cascaded option was specified

IS_UPDATABLE VARCHAR(3) Specifies if the view is updatable:

YES
The view is updatable

NO
The view is read-only

Appendix F. Db2 for i catalog views 1987

1988 IBM i: Db2 for i SQL Reference

Appendix G. Text search argument syntax
A text search argument is specified when searching for terms in text documents. It consists of search
parameters and one or more search terms. The SQL scalar text search functions that use text search
arguments are CONTAINS and SCORE.

For information on CONTAINS and SCORE, see “CONTAINS” on page 341 and “SCORE” on page 565.

For more information on text search, see OmniFind Text Search Server for DB2 for i

© Copyright IBM Corp. 1998, 2015 1989

Syntax

qualified-clause

operator qualified-clause

operator
AND

OR

qualified-clause

modifier

clause

boost

modifier
 +
 -

NOT

clause
unqualified-term

opaque-term

boost

 ^ number

Description
A search argument is a term or sequence of terms, separated by white space, specified when searching in
text documents. It consists of one or more search terms and various optional search parameters.

To perform a simple search, you can enter one or more terms. The search engine returns documents
that contain all of those terms or variations of those terms. For example, if you perform a search on the
term king, documents containing king are returned. By default, the search engine also returns variants of
the search term. Thus, documents containing kings are also returned. Similarly, when you search on two
terms, the search engine returns documents containing both terms. If you want the terms to be searched
as an exact phrase, simply add quotation marks.

The more specific the search term you use, the more precise the results. However, you may also want to
refine your searches by using one or more of the following options:

operator
Specifies whether the search for either or both qualified clauses on either side of the operator must be
satisfied.
AND

The search for both qualified clauses on either side of the operator must be satisfied.
OR

The search for at least one of the qualified clauses on either side of the operator must be satisfied.

Similar to search conditions in SQL, parentheses can be used to determine which qualified clauses
and operators are evaluated first. If parentheses are not specified, AND is applied before OR.

1990 IBM i: Db2 for i SQL Reference

modifier
Each clause can have an occurrence modifier. If a modifier is not specified for a clause, the default is
plus (+).
+

The clause is required in the document.
- or NOT

The clause must not be specified in the document.
?

The clause is optional in the document.
clause

Specifies a search string. In the search string, the question mark and asterisk have special meanings.
Use a question mark (?) to represent any single character, and an asterisk (*) to represent a string
of zero or more characters. If the search string contains multiple words that should be treated as a
phrase, include quotation marks (") around the search string. Blanks within a clause are ignored.
unqualified-term

An unqualified term is simply a term or a phrase. A term can be a word, such as king; an exact
word, such as "king"; or a word that includes a question mark (?) to represent any single character,
and an asterisk (*) to represent a string of zero or more characters, such as king* or king?.
Similarly, a phrase can be a group of words, such as cabbages and kings; an exact phrase, such as
"The King and I"; or a phrase that includes a wildcard, such as "all the king's ho*ses" or "all the
king's ?".

If a character in clause is one of the characters that has a special meaning in the syntax of the
search argument, an escape character (\) can be used to indicate that the subsequent character
should be treated as a regular character in the clause.

opaque-term
An opaque query term is so called because it is not parsed by the linguistic query parser; opaque
terms are identified by their syntax. The opaque term used for text search queries that include
XML markup is @xmlxp,, for example: @xmlxp:'/TagA/TagB[. contains("king")]'

boost
boost can be specified for each clause. boost provides a higher or lower importance to occurrences of
the clause.
number

Specifies a decimal or integer constant that is greater than 0. If boost is not specified for a clause,
the default boost value is 1.

Notes
Case sensitivity: Searches are not case sensitive, so a search in Spanish for the exact term "DOS" could
return documents containing DOS or dos.

Examples: Simple text search
The CONTAINS and SCORE functions can be used to perform a simple text search for a single word or
multiple words in a text search index.

The search engine ignores white space between characters. An empty search argument, or one that
contains only blanks, does not match anything.

The following table shows some examples of simple text search requests.

Appendix G. Text search argument syntax 1991

Table 269. Simple text search examples

Search word types Examples Search results

Single word
king

Returns all documents that contain
the word king or kings. The search
is not case-sensitive.

Multiple words
king lear

Returns all documents that contain
king and lear. The default
operator is the logical operator AND.

The operators AND and + (plus sign) are implicit in every text search. For example, the text search for
King Lear returns the same results as King AND Lear or King + Lear.

You must enter the logical operators NOT, AND, and OR in all uppercase.

Advanced text search operators
You can use advanced text search operators to refine the search results for the CONTAINS function and
the SCORE function.

In the following table, the first column describes the operator that you can use in a text search. (You
must enter the logical operators NOT, AND, and OR in all uppercase letters.) The second column shows a
sample text search that you might enter. The third column describes the types of results that you might
see from the example text search.

Table 270. Advanced search operators and complex text search examples

Operators Examples Search results

AND "King Lear" AND "Othello"

"King Lear" "Othello"

Either text search returns documents
that contain both terms King Lear
and Othello. The AND operator is
the default conjunction operator. If no
logical operator is between the two
terms, the AND operator is used. For
example, the text search King Lear
is the same as the text search King
AND Lear.

OR "King Lear" OR Lear Returns documents that contain either
King Lear or just Lear. The OR
operator links the two terms and finds
a matching document if either of the
terms exist in a document.

NOT "King Lear"
NOT "Norman Lear"

Returns documents that contain King
Lear but not Norman Lear. The NOT
operator cannot be used with only
one term. For example, the following
search will return no results: NOT
"King Lear".

" "

(Exact match)

First text search:

"King Lear"

Second text search:

"king"

The first text search returns the exact
phrase King Lear.

The second text search returns only
the word king and no other forms,
such as kings or kingly.

1992 IBM i: Db2 for i SQL Reference

Table 270. Advanced search operators and complex text search examples (continued)

Operators Examples Search results

*

(Wildcard character)
test*
te*t

Returns documents that can match
possible combinations, such as test,
tests, and tester, or test and
text.

?

(Wildcard character)
test?
te?t

Returns documents that can match
possible combinations, such as
tests, or test and text.

^

(Score boost factor)

some word or phrase^number

First text search:

"King Lear"^4 "Richard III"

Second text search:

title: (software download)^5
pdf viewer -shipping

The first text search forces documents
with the phrase King Lear to appear
higher in the list of search results.

The second text search forces
a document titled software
download to appear higher in the list
of results.

Although a boost factor must be
positive, the boost factor can be less
than 1. For example, 0.2. The boost
factor number has no limit.

+

(Includes)
+Lear King Returns all documents that contain

Lear and King, which is the same as
the text search Lear AND King.

-

(Excludes)
"King Lear" -"Lear Jet" Returns documents that contain King

Lear but not Lear Jet.

() (King OR Lear) AND plays Returns documents that contain either
King or Lear and plays. The
parentheses ensure that plays is
found and either term King or Lear
is present.

\

(Escape character)
\(1\+1\)\:2 Returns documents that contain

(1+1):2. Use the \ to clear special
characters that are part of the text
search syntax. Special characters are
+ - && || ! () { } [] ^ " * ? : \. If
a special character is cleared, the
special character is analyzed as part
of the text search.

Example: Using the CONTAINS function and SCORE function
You can use the CONTAINS function or the SCORE function in the same query to search a text search
index and to return if and how frequently the text document matches the search argument criteria.

The example in the following table uses data from the base table BOOKS with the columns ISBN
(VARCHAR(20)), ABSTRACT (VARCHAR(10000)), and PRICE (INTEGER).

Appendix G. Text search argument syntax 1993

Table 271. The base table BOOKS

ISBN ABSTRACT PRICE

i1 "a b c" 7

i2 "a b d" 10

i3 "a e a" 8

You run the following query:

SELECT ISBN, SCORE(ABSTRACT,'"b"')
FROM BOOKS
WHERE CONTAINS (ABSTRACT,'"b"') = 1

This query returns the following two rows:

i1, 0.3
i3, 0.4

The score values might differ depending on the content of the text column.

1994 IBM i: Db2 for i SQL Reference

XML text search
Based on a subset of the XPath language with extensions for text search, XML text search allows you to
index and search XML documents so that structural elements can be used separately or can be combined
with free text in queries.

Structural elements are tag names, attribute names, and attribute values.

The following list highlights the key features of XML search:
XML structural search

By including special opaque terms in queries, you can search XML documents for structural elements
(tag names, attribute names, and attribute values) and text that is scoped by those elements.

XML query tokenization
Free text in XML query terms is tokenized the same way that text in non-XML query terms is tokenized,
except that (nested) opaque terms are not supported. Synonyms, wildcard characters, phrases, and
lemmatization are supported.

Numeric values
Predicates that compare attribute values to number, date, or dateTime data types are supported.

Complete match
The = (equal sign) operator with a string argument in a predicate calls for a an exact match of all
tokens in the string with all tokens in the identified text span. The order is NOT significant.

No UIMA access
Unstructured Information Management Architecture (UIMA) is used for tokenization in XML search,
but user-written annotators are not supported.

XML text search grammar
A subset of the XPath language, which is defined by an Extended Backus-Naur Form (EBNF) grammar, is
supported by the XML search query parser. Queries that do not conform to the supported grammar are
rejected by the query parser, which throws an exception.

The EBNF grammar has been simplified in the following ways by:

• Removing the largest-scale structures for specifying iteration and ranges
• Eliminating filter expressions
• Disallowing absolute pathnames in predicate expressions
• Recognizing only one axis (tag) and only in the forward direction

The following table shows the supported grammar in EBNF notation.

Table 272. Supported query grammar in EBNF notation

Symbol Production

XMLQuery ::= QueryPrefix NameSpaceDeclaration QueryString
 | QueryPrefix QueryString

QueryPrefix ::= @xmlxp:

QueryString ::= "'" PathExpr "'"

PathExpr ::= RelativePathExpr
| "/" RelativePathExpr?
| "//" RelativePathExpr

Appendix G. Text search argument syntax 1995

Table 272. Supported query grammar in EBNF notation (continued)

RelativePathExpr ::= StepExpr (("/" | "//") StepExpr)*

StepExpr ::= ("." | AbbrevForwardStep) Predicate?

AbbrevForwardStep ::= "@"? (QName | "*")

Predicate ::= "[" PredicateExpr "]"

PredicateExpr ::= Expr
| PredicateExpr ("and" | "or")
| "(" PredicateExpr ")"

Expr ::= ComparisonExpr | ContainmentExpr

ComparisonExpr ::= PathExpr ComparisonOp Literal

ComparisonOp ::= "=" | "<" | ">" | "!=" | "<=" | ">="

Literal ::= StringLiteral | NumericLiteral | DateLiteral

ContainmentExpr ::= PathExpr "contains" "(" StringLiteral ")"
| PathExpr "excludes" "(" StringLiteral ")"

StringLiteral ::= "\"" [^"]* "\""
| "'" [^']* "'"

DateLiteral ::= "xs:date(\"" xmlDate "\")"
| "xs:dateTime(\"" xmlDateTime "\")"

xmlDate ::= yyyy"-"mm"-"dd

xmlDateTime ::= yyyy"-"mm"-"dd [T] hh":"mm":"ss"."uuuuuu

NameSpaceDeclaration ::= defaultNameSpace (NameSpacePrefixDeclaration)*

defaultNameSpace ::= “declare default element namespace
“ StringLiteral “;”

NameSpacePrefixDeclaration :
:= “declare namespace” NameSpacePrefix “=”

StringLiteral “;”

NameSpacePrefix ::= [^”:]+

For more information about QName, see http://www.w3.org/TR/REC-xml-names/#NT-QName.

The following information about XML search queries that use XPath notation might not be obvious from
the EBNF grammar notations:

• Names not normalized: XML tag and attribute names are not normalized when they are indexed. The
names are not changed to lowercase or modified in any way. Case is significant in XML tag and attribute
names to get a match. Therefore, the strings that are used for XML tag and attribute names in queries
must match exactly the names that appear in the source documents.

• Free text normalization: Free text in XML documents (text between tags, not inside a tag itself) and
attribute values are normalized before indexing. Text in XML search queries (in contains or excludes
operators, or in strings that are surrounded by quotation marks) is normalized, too. Features such as
phrases, synonyms, wildcard characters, and lemmas are supported.

• Operator precedence: In XML search predicates, containment operators and comparison operators
take precedence over logical operators, and all logical operators have the same precedence.

1996 IBM i: Db2 for i SQL Reference

http://www.w3.org/TR/REC-xml-names/#NT-QName

Containment operators are contains and excludes. Comparison operators are =, !=, <, >, <= and >=.
Logical operators are "and" and "or." You can use parentheses to ensure the desired precedence.

• Semantics: In XML search predicates, the comparison operators can be applied only to attribute values
and not to tags.

Examples: XPath text search
All valid XPath queries that are sent to the XML parser must be written in a subset of the XPath language
using opaque terms. Opaque terms are not parsed by the linguistic text search parser.

The text search parser recognizes an opaque term by the syntax that is used in the text search. For
example:

@xpath:'query'

where query is the text shown in the examples in the following table.

Table 273. Examples of valid XPath queries

Query Description

/sentences Any document with a top-level tag called
sentences.

//sentences Any document with a tag at any level called
sentences.

/sentence/paragraph Any document with a top-level tag sentence having
a direct child tag paragraph.

/sentence/paragraph/ Any document with a top-level tag sentence having
a direct child tag paragraph.

/book/@author Any document with a top-level book tag having an
attribute author.

/book//@author Any document with a top-level book tag having
a descendant tag at any level with the attribute
author.

/book[@author contains("barnes")
and @title = "the lemon table"]

Any document with a top-level book tag with an
author attribute containing "barnes" (normalized)
and a title attribute that only contains the words
"the," "lemon" and "table" (normalized in that
order).

/book[@author
contains("barnes") and (@title
contains("lemon") or @title
contains("flaubert"))]

Any document with a top-level book tag with the
specified author attribute and either of the two
specified title attributes.

/book[@publishDate > xs:date("2000-01-01")] Top level tag is book and book has an attribute
PublishDate that is greater than the date of
2000-01-01.

/book[purchaseTime >
xs:dateTime("2009-05-20T13:00:00")]

Top level tag is book. book has a direct child
purchaseTime that is a DateTime expression
greater than 2009-05-20T13:00:00.

Appendix G. Text search argument syntax 1997

Table 273. Examples of valid XPath queries (continued)

Query Description

/program[. contains("""hello,
world.""")

Any document with a top-level program tag
containing both the tokens hello and world
(normalized) in that order and in consecutive
positions.

/book[paragraph
contains("foo")]//sentence

Any document with a top-level book tag with a
direct child tag paragraph containing "foo" and,
referring to the book tag, having a descendant tag
sentence at any level.

/auto[@price < 30000.] Any document with a top-level auto tag having an
attribute price with a numeric value that is less
than 30000.

//microbe[@size < 3.0e-06] Any document containing a microbe tag at any level
with a size attribute with a value that is less than
.000003.

1998 IBM i: Db2 for i SQL Reference

Text search language options
The text search language option specifies which language rules to use when performing a text search.

If QUERYLANGUAGE is not specified, the default is the language value of the text search index that is used
when the CONTAINS or SCORE function is invoked. If the language value of the text search index is AUTO,
the default value for QUERYLANGUAGE is en_US. The following table shows the valid language codes that
may be used in the QUERYLANGUAGE option.

Language code Language

ar_AA Arabic

cs_CZ Czech

da_DK Danish

de_CH German (Switzerland)

de_DE German (Germany)

el_GR Greek

en_AU English (Australia)

en_GB English (United Kingdom)

en_US English (United States)

es_ES Spanish (Spain)

fi_FI Finnish

fr_CA French (Canada)

fr_FR French (France)

it_IT Italian

ja_JP Japanese

ko_KR Korean

nb_NO Norwegian Bokmal

nl_NL Dutch

nn_NO Norwegian Nynorsk

pl_PL Polish

pt_BR Portuguese (Brazil)

pt_PT Portuguese (Portugal)

ru_RU Russian

sv_SE Swedish

zh_CN Simplified Chinese

zh_TW Traditional Chinese

Appendix G. Text search argument syntax 1999

2000 IBM i: Db2 for i SQL Reference

Appendix H. Terminology differences
Some terminology used in the ANSI and ISO standards differs from the terminology used in this book and
other product books.

The following table is a cross reference of the SQL 2003 Core standard terms to Db2 SQL

Table 274. ANSI/ISO term to Db2 SQL term cross-reference

ANSI/ISO Term Db2 SQL Term

literal constant

comparison predicate basic predicate

comparison predicate subquery subquery in a basic predicate

degree of table/cursor number of items in a select list

grouped table result table created by a group-by or having clause

grouped view result view created by a group-by or having clause

grouping column column in a group-by clause

outer reference correlated reference

query expression fullselect

query specification subselect

result specification result

set function aggregate function

table expression →──from─clause──┬──────────────┬───────────→
 └─where─clause─┘
→──┬─────────────────┬──┬───────────────┬──→
 └─group─by─clause─┘ └─having─clause─┘

target specification host variable followed by an indicator variable

transaction logical unit of work or unit of work

value expression arithmetic expression

The following table is a cross reference of Db2 SQL terms to the SQL 2003 Core standard terms.

© Copyright IBM Corp. 1998, 2015 2001

Table 275. Db2 SQL term to ANSI/ISO term cross-reference

Db2 SQL Term ANSI/ISO Term

aggregate function set function

arithmetic expression value expression

basic predicate comparison predicate

column in a group-by clause grouping column

correlated reference outer reference

→──from─clause──┬──────────────┬───────────→
 └─where─clause─┘
→──┬─────────────────┬──┬───────────────┬──→
 └─group─by─clause─┘ └─having─clause─┘

table expression

fullselect query expression

host variable followed by an indicator variable target specification

logical unit of work or unit of work transaction

interactive SQL direct SQL

number of items in a select list degree of table/cursor

result result specification

result table created by a group-by or having clause grouped table

result view created by a group-by or having clause grouped view

subquery in a basic predicate comparison predicate subquery

subselect query specification

subselect or fullselect in parenthesis query term

2002 IBM i: Db2 for i SQL Reference

Appendix I. Reserved schema names and reserved
words

This topic describes the restrictions of certain names used by the database manager. In some cases,
names are reserved and cannot be used by application programs. In other cases, certain names are not
recommended for use by application programs though not prevented by the database manager.

Reserved schema names
This is the list of reserved schema names.

The following schema names are reserved:

• QSYS2
• SYSCAT
• SYSFUN
• SYSIBM
• SYSIBMADM
• SYSPROC
• SYSPUBLIC
• SYSSTAT
• SYSTEM

In addition, it is strongly recommended that schema names never begin with the Q prefix or SYS prefix, as
Q and SYS are by convention used to indicate an area reserved by the system.

It is also recommended not to use SESSION as a schema name.

© Copyright IBM Corp. 1998, 2015 2003

Reserved words
This is the list of currently reserved Db2 for i words.

Words may be added at any time. For a list of additional words that may become reserved in the future,
see the IBM SQL and ANSI reserved words in the SQL Reference for Cross-Platform Development (http://
www.ibm.com/developerworks/data/library/techarticle/0206sqlref/0206sqlref.html).

2004 IBM i: Db2 for i SQL Reference

Table 276. SQL Reserved Words

ABSENT
ACCORDING
ACCTNG
ACTION
ACTIVATE
ADD
ALIAS
ALL
ALLOCATE
ALLOW
ALTER
AND
ANY
APPEND
APPLNAME
ARRAY
ARRAY_AGG
ARRAY_TRIM
AS
ASC
ASENSITIVE
ASSOCIATE
AT
ATOMIC
ATTACH
ATTRIBUTES
AUTHORIZATION
AUTONOMOUS
BEFORE
BEGIN
BETWEEN
BINARY
BIND
BIT
BUFFERPOOL
BY
CACHE
CALL
CALLED
CARDINALITY
CASE
CAST
CCSID
CHAR
CHARACTER
CHECK
CL

CLOSE
CLUSTER
COLLECT
COLLECTION
COLUMN
COMMENT
COMMIT
COMPACT
COMPRESS
CONCAT
CONCURRENT
CONDITION
CONNECT
CONNECT_BY_ROOT
CONNECTION
CONSTANT
CONSTRAINT
CONTAINS
CONTENT
CONTINUE
COPY
COUNT
COUNT_BIG
CREATE
CREATEIN
CROSS
CUBE
CUME_DIST
CURRENT
CURRENT_DATE
CURRENT_PATH
CURRENT_SCHEMA
CURRENT_SERVER
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TIMEZONE
CURRENT_USER
CURSOR
CYCLE
DATA
DATABASE
DATAPARTITIONNAME
DATAPARTITIONNUM
DATE
DAY
DAYS
DBINFO

DBPARTITIONNAME
DBPARTITIONNUM
DB2GENERAL
DB2GENRL
DB2SQL
DEACTIVATE
DEALLOCATE
DECLARE
DEFAULT
DEFAULTS
DEFER
DEFINE
DEFINITION
DELETE
DELETING
DENSERANK
DENSE_RANK
DESC
DESCRIBE
DESCRIPTOR
DETACH
DETERMINISTIC
DIAGNOSTICS
DISABLE
DISALLOW
DISCONNECT
DISTINCT
DO
DOCUMENT
DOUBLE
DROP
DYNAMIC
EACH
ELSE
ELSEIF
EMPTY
ENABLE
ENCODING
ENCRYPTION
END
ENDING
END-EXEC (COBOL only)
ENFORCED
ERROR
ESCAPE
EVERY
EXCEPT

EXCEPTION
EXCLUDING
EXCLUSIVE
EXECUTE
EXISTS
EXIT
EXTEND
EXTERNAL
EXTRACT
FENCED
FETCH
FIELDPROC
FILE
FINAL
FIRST_VALUE
FOR
FOREIGN
FORMAT
FREE
FREEPAGE
FROM
FULL
FUNCTION
GBPCACHE
GENERAL
GENERATED
GET
GLOBAL
GO
GOTO
GRANT
GRAPHIC
GROUP
HANDLER
HASH
HASHED_VALUE
HAVING
HINT
HOLD
HOUR
HOURS
ID
IDENTITY
IF
IGNORE
IMMEDIATE
IMPLICITLY

Appendix I. Reserved schema names and reserved words 2005

Table 277. SQL Reserved Words (continued)

IN
INCLUDE
INCLUDING
INCLUSIVE
INCREMENT
INDEX
INDEXBP
INDICATOR
INF
INFINITY
INHERIT
INLINE
INNER
INOUT
INSENSITIVE
INSERT
INSERTING
INTEGRITY
INTERPRET
INTERSECT
INTO
IS
ISNULL
ISOLATION
ITERATE
JAVA
JOIN
JSON_ARRAY
JSON_ARRAYAGG
JSON_EXISTS
JSON_OBJECT
JSON_OBJECTAGG
JSON_QUERY
JSON_TABLE
JSON_VALUE
KEEP
KEY
LABEL
LAG
LANGUAGE
LAST_VALUE
LATERAL
LEAD
LEAVE
LEFT
LEVEL2
LIKE
LIMIT
LINKTYPE
LISTAGG
LOCAL
LOCALDATE

LOCALTIME
LOCALTIMESTAMP
LOCATION
LOCATOR
LOCK
LOCKSIZE
LOG
LOGGED
LONG
LOOP
MAINTAINED
MASK
MATCHED
MATERIALIZED
MAXVALUE
MERGE
MICROSECOND
MICROSECONDS
MINPCTUSED
MINUTE
MINUTES
MINVALUE
MIXED
MODE
MODIFIES
MONTH
MONTHS
NAMESPACE
NAN
NATIONAL
NCHAR
NCLOB
NESTED
NEW
NEW_TABLE
NEXTVAL
NO
NOCACHE
NOCYCLE
NODENAME
NODENUMBER
NOMAXVALUE
NOMINVALUE
NONE
NOORDER
NORMALIZED
NOT
NOTNULL
NTH_VALUE
NTILE
NULL
NULLS

NVARCHAR
OBID
OF
OFFSETOLD
OLD_TABLE
OMIT
ON
ONLY
OPEN
OPTIMIZE
OPTION
OR
ORDER
ORDINALITY
ORGANIZE
OUT
OUTER
OVER
OVERLAY
OVERRIDING
PACKAGE
PADDED
PAGE
PAGESIZE
PARAMETER
PART
PARTITION
PARTITIONED
PARTITIONING
PARTITIONS
PASSING
PASSWORD
PATH
PCTFREE
PERCENT_RANK
PERCENTILE_CONT
PERCENTILE_DISC
PERIOD
PERMISSION
PIECESIZE
PIPE
PLAN
POSITION
PREPARE
PREVVAL
PRIMARY
PRIOR
PRIQTY
PRIVILEGES
PROCEDURE
PROGRAM

PROGRAMID
QUERY
RANGE
RANK
RATIO_TO_REPORT
RCDFMT
READ
READS
RECOVERY
REFERENCES
REFERENCING
REFRESH
REGEXP_LIKE
RELEASE
RENAME
REPEAT
RESET
RESIGNAL
RESTART
RESULT
RESULT_SET_LOCATOR
RETURN
RETURNING
RETURNS
REVOKE
RID
RIGHT
ROLLBACK
ROLLUP
ROUTINE
ROW
ROWNUMBER
ROW_NUMBER
ROWS
RRN
RUN
SAVEPOINT
SBCS
SCHEMA
SCRATCHPAD
SCROLL
SEARCH
SECOND
SECONDS
SECQTY
SECURED
SELECT
SENSITIVE
SEQUENCE
SESSION
SESSION_USER
SET

2006 IBM i: Db2 for i SQL Reference

Table 278. SQL Reserved Words (continued)

SIGNAL
SIMPLE
SKIP
SNAN
SOME
SOURCE
SPECIFIC
SQL
SQLID
SQLIND_DEFAULT
SQLIND_UNASSIGNED
STACKED
START
STARTING
STATEMENT
STATIC
STOGROUP
SUBSTRING
SUMMARY
SYNONYM
SYSTEM_TIME
SYSTEM_USER
TABLE
TABLESPACE
TABLESPACES

TAG
THEN
THREADSAFE
TIME
TIMESTAMP
TO
TRANSACTION
TRANSFER
TRIGGER
TRIM
TRIM_ARRAY
TRUNCATE
TYPE
UNDO
UNION
UNIQUE
UNIT
UNNEST
UNTIL
UPDATE
UPDATING
URI
USAGE
USE
USER

USERID
USING
VALUE
VALUES
VARIABLE
VARIANT
VCAT
VERSION
VERSIONING
VIEW
VOLATILE
WAIT
WHEN
WHENEVER
WHERE
WHILE
WITH
WITHIN
WITHOUT
WRAPPED
WRAPPER
WRITE
WRKSTNNAME
XMLAGG
XMLATTRIBUTES

XMLCAST
XMLCOMMENT
XMLCONCAT
XMLDOCUMENT
XMLELEMENT
XMLFOREST
XMLGROUP
XMLNAMESPACES
XMLPARSE
XMLPI
XMLROW
XMLSERIALIZE
XMLTABLE
XMLTEXT
XMLVALIDATE
XSLTRANSFORM
XSROBJECT
YEAR
YEARS
YES
ZONE

Appendix I. Reserved schema names and reserved words 2007

2008 IBM i: Db2 for i SQL Reference

Appendix J. Related information
The publications listed here provide additional information about topics described or referred to in this
guide.

These manuals are listed with their full titles and order numbers. When these manuals are referred to in
this guide, a shortened version of the title is used.

• Backup and recovery

The manual contains information about planning a backup and recovery strategy, the different types of
media available to save and restore procedures, and disk recovery procedures. It also describes how to
install the system again from backup.

• ILE COBOL Programmer's Guide

This guide provides information needed to design, write, test, and maintain COBOL programs on the IBM
i products.

• ILE RPG Programmer's Guide

This guide provides information you need to design, write, test, and maintain ILE RPG programs on the
IBM i products.

• REXX/400 Programmer's Guide

This guide provides information you need to design, write, test, and maintain REXX/400 programs on
the IBM i products.

• CL programming

This guide provides a wide-ranging discussion of the programming topics, including a general discussion
of objects and libraries, CL programming, controlling flow and communicating between programs,
working with objects in CL programs, and creating CL programs. Other topics include predefined
and impromptu messages and handling, defining and creating user-defined commands and menus,
application testing, including debug mode, breakpoints, traces, and display functions.

• Database file management

This book provides information about using files in application programs.
• Database programming

This book provides a detailed description of the IBM i database organization, including information
about how to create, describe, and update database files on the system.

• Distributed database programming

Provides information about preparing and managing an IBM i product in a distributed relational
database using the Distributed Relational Database Architecture (DRDA). Describes planning, setting
up, programming, administering, and operating a distributed relational database on more than one IBM i
product in a like-system environment.

• Security reference

This guide provides information about system security concepts, planning for security, and setting up
security on the system. It also gives information about protecting the system and data from being
used by people who do not have the proper authorization, protecting the data from intentional or
unintentional damage or destruction, keeping security up-to-date, and setting up security on the
system.

• SQL programming

This book provides an overview of how to design, write, run, and test Db2 for i statements. It also
describes interactive Structured Query Language (SQL).

© Copyright IBM Corp. 1998, 2015 2009

https://public.dhe.ibm.com/systems/power/docs/systemi/v6r1/en_US/sc415728.pdf

• SQL XML programming

This book provides information about using the XML data type with SQL. It includes examples of using
functions and procedures to generate XML and to retrieve all or part of an XML document.

• Embedded SQL programming

This book provides examples of how to write SQL statements in ILE C, ILE C++, COBOL, ILE COBOL,
RPG, ILE RPG, REXX, and PL/I programs.

• Database performance and query optimization

This book provides information about optimizing the performance of your queries using available tools
and techniques.

• IDDU Use

This book describes how to use IBM i interactive data definition utility (IDDU) to describe data
dictionaries, files, and records to the system.

• SQL call level interfaces (ODBC)

This book describes how to use X/Open SQL Call Level Interface to access SQL functions directly
through procedure calls to a service program provided by Db2 for i.

• IBM i Access category in the IBM i Information Center

This information describes how to set up and run ODBC applications on a client using IBM i Access
ODBC. Included in this document are chapters on performance, examples, and configuring specific
applications to run with IBM i Access ODBC.

• IBM Toolbox for Java

This book describes how to set up and run JDBC applications on a client using IBM Toolbox for
Java. Included in this document are chapters on performance, examples, and configuring specific
applications to run with IBM Toolbox for Java.

• IBM Developer Kit for Java

This information provides the details you need to design, write, test, and maintain JAVA programs on the
IBM i product. The book also contains information about the IBM Developer Kit for Java JDBC driver.

• DB2 Multisystem

This book describes the fundamental concepts of distributed relational database files, nodegroups, and
partitioning. The book provides the information you need to create and use database files that are
partitioned across multiple systems. Information is provided on how to configure the systems, how to
create the files, and how the files can be used in applications.

2010 IBM i: Db2 for i SQL Reference

https://public.dhe.ibm.com/systems/power/docs/systemi/v6r1/en_US/sc415704.pdf

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department YBWA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

© Copyright IBM Corp. 1998, 2015 2011

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be
the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Programming interface information
This Db2 for i SQL Reference publication documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of IBM i.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

2012 Notices

http://www.ibm.com/legal/copytrade.shtml

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Oracle, Inc. in the United States, other
countries, or both.

Other product and service names might be trademarks of IBM or other companies.

Terms and conditions
Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative works of these
publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Notices 2013

2014 IBM i: Db2 for i SQL Reference

Index

Special Characters
_ (underscore) in LIKE predicate 215
- (subtraction) 159
? (question mark) 1305
.NET 4
' (apostrophe) 46, 113, 115
" (quotation mark) 46
* (asterisk)

in subselect 737
* (multiply) 159
** (exponentiation) 159
*ALL (read stability) precompiler option 25
*APOST precompiler option 117
*CHG (uncommitted read) precompiler option 26
*CNULRQD precompiler option 94, 1316, 1549, 1574
*CS (cursor stability) precompiler option 26
*DMY date and time format 76
*EUR date and time format 76, 77
*HMS date and time format 77
*ISO date and time format 76, 77
*JIS date and time format 76, 77
*JUL date and time format 76
*MDY date and time format 76
*NC (no commit) precompiler option 26
*NOCNULRQD precompiler option 94, 1316, 1549, 1574
*NONE (no commit) precompiler option 26
*QUOTE precompiler option 117
*RR (repeatable read) precompiler option 25
*RS (read stability) precompiler option 25
*UR (uncommitted read) precompiler option 26
*USA date and time format 76, 77
*YMD date and time format 76
/ (divide) 159
% (percent) in LIKE predicate 215
+ (addition) 159
|| (concatenation operator) 163

A
ABS function 301
ABSVAL function 301
access plan and packages 12
ACOS function 302
ACTIVATE NOT LOGGED INITIALLY

ALTER TABLE statement 902
activation group

threads 22
ADD check-constraint clause

ALTER TABLE statement 895
ADD COLUMN clause

in ALTER TABLE statement 881
ADD materialized query clause

ALTER TABLE statement 899
ADD PARTITION

ALTER TABLE statement 897
ADD unique-constraint clause

ADD unique-constraint clause (continued)
ALTER TABLE statement 892

ADD_MONTHS
function 303

ADO 3
advanced text search operators

CONTAINS function 1992
SCORE function 1992

AFTER clause
in FETCH statement 1312

aggregate function
equivalent term 2002

alias
description 60
dropping 1294

ALIAS clause
COMMENT statement 945
CREATE ALIAS statement 971
DROP statement 1294
LABEL statement 1411

alias-name
description 48
in CREATE ALIAS statement 972
in DROP statement 1294
in LABEL statement 1411

ALL clause
clause of subselect 737
DISCONNECT statement 1286
GRANT (function or procedure privileges) statement
1360
GRANT (package privileges) statement 1365
GRANT (schema privileges) statement 1368
GRANT (sequence privileges) statement 1371
GRANT (type privileges) statement 1383
GRANT (variable privileges) statement 1385
GRANT (XML schema privileges) statement 1388
in USING clause

DESCRIBE statement 1268
DESCRIBE TABLE statement 1284
PREPARE statement 1439

keyword
AVG function 261
COUNT function 263
COUNT_BIG function 264
MAX function 280
MIN function 282
STDDEV function 290
STDDEV_POP function 290
STDDEV_SAMP function 291
SUM function 292
VAR function 293
VAR_POP function 293
VAR_SAMP function 294
VARIANCE function 293
VARIANCE_SAMP function 294

quantified predicate 201
RELEASE statement 1455

Index 2015

ALL clause (continued)
REVOKE (function or procedure privileges) statement
1464
REVOKE (Global variableprivileges) statement 1478
REVOKE (package privileges) statement 1467
REVOKE (schema privileges) statement 1469
REVOKE (sequence privileges) statement 1471
REVOKE (table or view privileges) statement 1474
REVOKE (type privileges) statement 1476
REVOKE (XML schema privileges) statement 1480

ALL PRIVILEGES clause
GRANT (function or procedure privileges) statement
1360
GRANT (package privileges) statement 1365
GRANT (schema privileges) statement 1368
GRANT (sequence privileges) statement 1371
GRANT (table or view privileges) statement 1375
GRANT (type privileges) statement 1383
GRANT (variable privileges) statement 1385
GRANT (XML schema privileges) statement 1388
REVOKE (function or procedure privileges) statement
1464
REVOKE (package privileges) statement 1467
REVOKE (schema privileges) statement 1469
REVOKE (sequence privileges) statement 1471
REVOKE (table or view privileges) statement 1474
REVOKE (type privileges) statement 1476
REVOKE (variable privileges) statement 1478
REVOKE (XML schema privileges) statement 1480

ALL SQL clause
DISCONNECT statement 1286
RELEASE statement 1455

ALLOCATE clause
CREATE TABLE statement 1132

ALLOCATE CURSOR statement 817
ALLOCATE DESCRIPTOR statement 818
ALLOW PARALLEL clause

in CREATE FUNCTION (external scalar) 995
in CREATE FUNCTION (external table) 1015
in CREATE FUNCTION (SQL scalar) 1036
in CREATE FUNCTION (SQL table) 1050

ALLOW READ clause
in LOCK TABLE statement 1416

ALTER clause
GRANT (function or procedure privileges) statement
1360
GRANT (package privileges) statement 1366
GRANT (sequence privileges) statement 1372
GRANT (table or view privileges) statement 1375
GRANT (type privileges) statement 1383
GRANT (variable privileges) statement 1386
GRANT (XML schema privileges) statement 1389
REVOKE (function or procedure privileges) statement
1464
REVOKE (package privileges) statement 1467
REVOKE (sequence privileges) statement 1471
REVOKE (table or view privileges) statement 1474
REVOKE (type privileges) statement 1476
REVOKE (variable privileges) statement 1478
REVOKE (XML schema privileges) statement 1480

ALTER COLUMN clause
ALTER TABLE statement 889

ALTER FUNCTION (external scalar) statement 820
ALTER FUNCTION (external table) statement 825

ALTER FUNCTION (SQL scalar) statement 830
ALTER FUNCTION (SQL table) statement 837
ALTER MASK statement 845
ALTER materialized query clause

ALTER TABLE statement 900
ALTER PARTITION

ALTER TABLE statement 897
ALTER PERMISSION statement 847
ALTER PROCEDURE (external) statement 849
ALTER PROCEDURE (SQL) statement 854
ALTER SEQUENCE statement 864
ALTER TABLE statement 869, 919
ALTER TRIGGER statement 920
ALWBLK clause

in SET OPTION statement 1518
ALWCPYDTA clause

in SET OPTION statement 1519
ambiguous reference 134
AND

truth table 227
ANTILOG function 305
ANY clause

in USING clause
DESCRIBE statement 1268
DESCRIBE TABLE statement 1284
PREPARE statement 1439

quantified predicate 201
application process 17
application program

SQLCA
C 1671
COBOL 1671
ILE RPG 1673
PL/I 1671
RPG/400 1672

SQLDA
C 1689
COBOL 1691
description 1675
ILE COBOL 1691
ILE RPG 1693
PL/I 1692

application requester 35, 1658
application server 35
application servers 1658
application-directed distributed unit of work 39
arithmetic

decimal floating-point 162
arithmetic expression

equivalent term 2002
arithmetic operators 159
ARRAY clause

SET RESULT SETS statement 1534
ARRAY constructor 172
ARRAY element specification 173
array type

assignment 99
comparisons 104

array types
data types

description 82
ARRAY_AGG function 259
ARRAY_MAX_CARDINALITY function 306
ARRAY_TRIM function 307

2016 IBM i: Db2 for i SQL Reference

array-type-name
description 48
in CREATE TYPE (array) statement 1190

AS clause
clause of subselect 738
CREATE VIEW statement 1208, 1209
FROM clause of UPDATE 1563
in FROM clause of DELETE 1260

AS LOCATOR clause
CREATE PROCEDURE (external) 1081
in CREATE FUNCTION (external scalar) 987
in CREATE FUNCTION (external table) 1007, 1008
in CREATE FUNCTION (sourced) 1022
in DECLARE PROCEDURE statement 1249

AS result table
in CREATE TABLE statement 1147
in DECLARE GLOBAL TEMPORARY TABLE statement
1238

ASC clause
CREATE INDEX statement 1060
in OLAP specification 186
of select-statement 778

ASCII function 308
ASENSITIVE clause

in DECLARE CURSOR statement 1216
ASIN function 309
assignment

array type 99
binary strings 93
character strings 93
conversion rules 94
DataLink 96
date and time values 95
distinct type 98
graphic strings 93
LOB Locators 99
numbers 90
Row ID 97
strings 92
XML 96

assignment-clause
UPDATE statement 1564

assignment-statement 1590
ASSOCIATE LOCATORS statement 923
asterisk (*)

in COUNT function 263
in COUNT_BIG function 264
in subselect 737

ATAN2 function 312
ATANH function 311
authorization

description 15
privileges 16
to create in a schema 16

authorization ID
description 61

authorization-name
definition 48
description 62
in CONNECT (type 1) statement 963
in CONNECT (type 2) statement 968
in CREATE SCHEMA statement 1105
in GRANT (function or procedure privileges) statement
1362

authorization-name (continued)
in GRANT (package privileges) statement 1366
in GRANT (schema privileges) statement 1369
in GRANT (sequence privileges) statement 1372
in GRANT (table or view privileges) statement 1376
in GRANT (type privileges) statement 1383
in GRANT (variable privileges) statement 1386
in GRANT (XML schema privileges) statement 1389
in REVOKE (function or procedure privileges) statement
1466
in REVOKE (package privileges) statement 1468
in REVOKE (schema privileges) statement 1470
in REVOKE (sequence privileges) statement 1472
in REVOKE (table or view privileges) statement 1474
in REVOKE (type privileges) statement 1477
in REVOKE (variable privileges) statement 1479
in REVOKE (XML schema privileges) statement 1481

AUTHORIZATIONS view 1947
automatic summary table

in ALTER TABLE statement 900, 901
in CREATE TABLE statement 1159

AVG function 261

B
base table 4
BASE_TABLE function 687
BASE64_DECODE

scalar function 313
BASE64_ENCODE

scalar function 314
basic operations in SQL 89
basic predicate

equivalent term 2002
BEFORE clause

in FETCH statement 1312
BEGIN DECLARE SECTION statement 928, 929
BETWEEN predicate 203
bibliography 2009
big integers 67
BIGINT

data type for ALTER TABLE 881
data type for CREATE FUNCTION (external scalar) 985
data type for CREATE FUNCTION (external table) 1005
data type for CREATE FUNCTION (sourced) 1021
data type for CREATE PROCEDURE (external) 1080
data type for CREATE PROCEDURE (SQL) 1096
data type for CREATE TABLE 1128
data type for CREATE TYPE 1196
data type for DECLARE GLOBAL TEMPORARY TABLE
1231
data type for DECLARE PROCEDURE 1248

BIGINT data type 67
BIGINT function 315
BINARY

data type 72
data type for ALTER TABLE 881
data type for CREATE FUNCTION (external scalar) 985
data type for CREATE FUNCTION (external table) 1005
data type for CREATE FUNCTION (sourced) 1021
data type for CREATE PROCEDURE (external) 1080
data type for CREATE PROCEDURE (SQL) 1096
data type for CREATE TABLE 1131
data type for CREATE TYPE 1196

Index 2017

BINARY (continued)
data type for DECLARE GLOBAL TEMPORARY TABLE
1231
DECLARE PROCEDURE statement 1248

binary data string
constants 115

BINARY function 317
binary string

assignment 93
description 72

bind 2
BINDOPT clause

in SET OPTION statement 1519
bit data 70
BIT_LENGTH function 320
BITAND function 318
BITANDNOT function 318
BITNOT function 318
BITOR function 318
BITXOR function 318
BLOB

data type 72
data type for ALTER TABLE 881
data type for CREATE FUNCTION (external scalar) 985
data type for CREATE FUNCTION (external table) 1005
data type for CREATE FUNCTION (sourced) 1021
data type for CREATE PROCEDURE (external) 1080
data type for CREATE PROCEDURE (SQL) 1096
data type for CREATE TABLE 1131
data type for CREATE TYPE 1196
data type for DECLARE GLOBAL TEMPORARY TABLE
1231
DECLARE PROCEDURE statement 1248

BLOB function 321
BOTH clause

in USING clause
DESCRIBE statement 1268
DESCRIBE TABLE statement 1284
PREPARE statement 1439

BSON_TO_JSON
scalar function 322

built-in data type
ALTER SEQUENCE statement 866
CREATE SEQUENCE statement 1110
CREATE TYPE statement 1196
CREATE VARIABLE statement 1203

built-in function 147
built-in-type

description 1128
in CREATE TABLE 1128
in DECLARE GLOBAL TEMPORARY TABLE statement
1231

C
C

application program
host variable 144

host structure arrays 145
host variable 139
SQLCA (SQL communication area) 1671
SQLDA (SQL descriptor area) 1689

CACHE clause
CREATE SEQUENCE statement 1111

CACHE clause (continued)
in ALTER TABLE statement 892

call level interface (CLI) 3
CALL statement 930, 936, 1593
CALLED ON NULL INPUT clause

CREATE PROCEDURE (external) 1084
in CREATE FUNCTION (external scalar) 992
in CREATE FUNCTION (external table) 1011
in CREATE FUNCTION (SQL scalar) 1035
in CREATE FUNCTION (SQL table) 1049
in CREATE PROCEDURE (SQL) 1098

calling
procedures, external 930

CARDINALITY
GET DESCRIPTOR statement 1323
SET DESCRIPTOR statement 1506

CARDINALITY clause
in CREATE FUNCTION (external table) 1016
in CREATE FUNCTION (SQL table) 1051

CARDINALITY function 323
CASCADE clause

DROP statement 1297–1299
in DROP COLUMN of ALTER TABLE statement 892
in DROP constraint of ALTER TABLE statement 896

CASCADE delete rule
description 7
in ALTER TABLE statement 894
in CREATE TABLE statement 1150

CASCADED CHECK OPTION clause
CREATE VIEW statement 1209

CASE expression 174
CASE statement 1595
CAST specification 176
cast-function

ALTER TABLE statement 883
CREATE TABLE statement 1134
DECLARE GLOBAL TEMPORARY TABLE statement 1232

catalog 17, 1709
catalog table

SQL_FEATURES 1974
SQL_LANGUAGES 1975
SQL_SIZING 1976
SQLTYPEINFO 1936
SYSCONTROLS 1740
SYSCONTROLSDEP 1742
SYSPARMS 1788
SYSROUTINES 1836
SYSTYPES 1868
SYSVARIABLEDEP 1874
SYSVARIABLES 1875
XSRANNOTATIONINFO 1886
XSROBJECTCOMPONENTS 1887
XSROBJECTHIERARCHIES 1888
XSROBJECTS 1889

catalog view
AUTHORIZATIONS 1947
CHARACTER_SETS 1948
CHECK_CONSTRAINTS 1949
COLUMN_PRIVILEGES 1950
COLUMNS 1951
description 1709
INFORMATION_SCHEMA _CATALOG_NAME 1956
PARAMETERS 1957
REFERENTIAL_ CONSTRAINTS 1961

2018 IBM i: Db2 for i SQL Reference

catalog view (continued)
ROUTINE_PRIVILEGES 1971
ROUTINES 1962
SCHEMATA 1972
SEQUENCES 1973
SQLCOLPRIVILEGES 1892
SQLCOLUMNS 1893
SQLFOREIGNKEYS 1903
SQLFUNCTIONCOLS 1904
SQLFUNCTIONS 1913
SQLPRIMARYKEYS 1914
SQLPROCEDURECOLS 1915
SQLPROCEDURES 1924
SQLSCHEMAS 1925
SQLSPECIALCOLUMNS 1926
SQLSTATISTICS 1932
SQLTABLEPRIVILEGES 1934
SQLTABLES 1935
SQLUDTS 1944
SYSCATALOGS 1714
SYSCHKCST 1715
SYSCOLAUTH 1716
SYSCOLUMNS 1717
SYSCOLUMNS2 1725
SYSCOLUMNS2_SESSION 1736
SYSCOLUMNSTAT 1737
SYSCST 1743
SYSCSTCOL 1745
SYSCSTDEP 1746
SYSFIELDS 1748
SYSFILES 1752
SYSFUNCS 1753
SYSHISTORYTABLES 1758
SYSINDEXES 1759
SYSINDEXSTAT 1761
SYSJARCONTENTS 1769
SYSJAROBJECTS 1770
SYSKEYCST 1771
SYSKEYS 1772
SYSMQTSTAT 1773
SYSPACKAGE 1777
SYSPACKAGEAUTH 1779
SYSPACKAGESTAT 1780
SYSPACKAGESTMTSTAT 1786
SYSPARTITIONDISK 1792
SYSPARTITIONINDEXDISK 1794
SYSPARTITIONINDEXES 1796
SYSPARTITIONINDEXSTAT 1803
SYSPARTITIONMQTS 1809
SYSPARTITIONSTAT 1813
SYSPERIODS 1817
SYSPROCS 1818
SYSPROGRAMSTAT 1821
SYSPROGRAMSTMTSTAT 1831
SYSREFCST 1833
SYSROUTINEAUTH 1834
SYSROUTINEDEP 1835
SYSSCHEMAAUTH 1842
SYSSCHEMAS 1843
SYSSEQUENCEAUTH 1844
SYSSEQUENCES 1845
SYSTABAUTH 1847
SYSTABLEDEP 1848
SYSTABLEINDEXSTAT 1849

catalog view (continued)
SYSTABLES 1854
SYSTABLESTAT 1858
SYSTRIGCOL 1861
SYSTRIGDEP 1862
SYSTRIGGERS 1863
SYSTRIGUPD 1867
SYSUDTAUTH 1872
SYSVARIABLEAUTH 1873
SYSVIEWDEP 1881
SYSVIEWS 1883
SYSXSROBJECTAUTH 1885
TABLE_CONSTRAINTS 1977
TABLE_PRIVILEGES 1978
TABLES 1979
UDT_PRIVILEGES 1980
USAGE_PRIVILEGES 1981
USER_DEFINED_TYPES 1982
VARIABLE_PRIVILEGES 1986
VIEWS 1987

CATALOG_NAME
GET DIAGNOSTICS statement 1342
SIGNAL statement 1552

CCSID (coded character set identifier)
default 32
definition 32
specifying

in SQLDATA 1688
in SQLNAME 1688

values 1695, 1707
CCSID clause

CREATE FUNCTION (sourced) 1021
CREATE PROCEDURE (external) 1080
CREATE PROCEDURE (SQL) 1096
CREATE TABLE statement 1132, 1133
data type for ALTER TABLE 881
data type for CREATE FUNCTION (external scalar) 985
data type for CREATE FUNCTION (external table) 1005
data type for CREATE TYPE 1196
data type for DECLARE GLOBAL TEMPORARY TABLE
1231
DECLARE PROCEDURE statement 1248
DECLARE VARIABLE statement 1256

CDRA (Character Data Representation Architecture) 32
CEIL function 324
CEILING function 324
CHAR

data type for ALTER TABLE 881
data type for CREATE FUNCTION (external scalar) 985
data type for CREATE FUNCTION (external table) 1005
data type for CREATE FUNCTION (sourced) 1021
data type for CREATE PROCEDURE (external) 1080
data type for CREATE PROCEDURE (SQL) 1096
data type for CREATE TABLE 1129
data type for CREATE TYPE 1196
data type for DECLARE GLOBAL TEMPORARY TABLE
1231
data type for DECLARE PROCEDURE 1248
function 325

CHAR_LENGTH function 331
character conversion

character set 29
code page 29
code point 29

Index 2019

character conversion (continued)
coded character set 29
combining characters 30
encoding scheme 29
normalization 30
substitution character 29
surrogates 30
Unicode 29

Character Data Representation Architecture (CDRA) 32
character data string

bit data 70
comparison 100
constants 113
empty 69
mixed data 70
SBCS data 70

character set 29
character string

assignment 93
definition 69

CHARACTER_LENGTH function 331
CHARACTER_SETS view 1948
check

ALTER TABLE statement 895
CHECK clause

ALTER TABLE statement 888, 895
CREATE TABLE statement 1141, 1151

check constraint
effect on insert 1402
effect on update 1567

check constraints
delete rules 1262

CHECK OPTION clause
CREATE VIEW statement 1209
effect on update 1567

CHECK_CONSTRAINTS view 1949
check-condition

in CHECK clause of ALTER TABLE statement 895
CHR function 332
CLASS_ORIGIN

GET DIAGNOSTICS statement 1343
RESIGNAL statement 1631
SIGNAL statement 1552, 1638

class-id
description 50

CLIENT ACCTNG special register 121
CLIENT APPLNAME special register 121
CLIENT PROGRAMID special register 121
CLIENT USERID special register 122
CLIENT WRKSTNNAME special register 122
CLIENT_HOST global variable 230
CLIENT_IPADDR global variable 231
CLIENT_PORT global variable 232
CLOB

data type for ALTER TABLE 881
data type for CREATE FUNCTION (external scalar) 985
data type for CREATE FUNCTION (external table) 1005
data type for CREATE FUNCTION (sourced) 1021
data type for CREATE PROCEDURE (external) 1080
data type for CREATE PROCEDURE (SQL) 1096
data type for CREATE TABLE 1129
data type for CREATE TYPE 1196
data type for DECLARE GLOBAL TEMPORARY TABLE
1231

CLOB (continued)
DECLARE PROCEDURE statement 1248

CLOB function 333
CLOSE statement 938, 939
closed state of cursor 1431
CLOSQLCSR clause

in SET OPTION statement 1519
CNULIGN clause

in SET OPTION statement 1520
CNULRQD clause

in SET OPTION statement 1520
COALESCE function 338
COBOL

application program
host structure arrays 145
host variable 139, 144
integers 67
varying-length string variables 69

SQLCA (SQL communication area) 1671
SQLDA (SQL descriptor area) 1691

code page 29
code point 29
collating sequence

ICU 33
interfaces 34, 35

collection
in SQL path 57

collection (see schema)
description 4

column
definition 4
length attribute 69, 72
name

in a result 739
qualified 131

system column name 4
COLUMN clause

COMMENT statement 945
LABEL statement 1411

column function 147, 258
column in a group-by clause

equivalent term 2002
column view

SYSCOLAUTH 1716
COLUMN_NAME

GET DIAGNOSTICS statement 1343
SIGNAL statement 1552

COLUMN_PRIVILEGES view 1950
column-name

definition 48
in ADD PRIMARY clause of ALTER TABLE statement 893
in ADD UNIQUE clause of ALTER TABLE statement 892
in ALTER TABLE statement 881, 889
in CREATE INDEX statement 1059
in CREATE TABLE statement 1128, 1149, 1150
in CREATE VIEW statement 1208
in DECLARE GLOBAL TEMPORARY TABLE statement
1231
in DROP COLUMN of ALTER TABLE statement 892
in FOREIGN KEY clause of ALTER TABLE statement 893
in INSERT statement 1399
in LABEL statement 1411
in MERGE statement 1423
in REFERENCES clause of ALTER TABLE statement 894

2020 IBM i: Db2 for i SQL Reference

column-name (continued)
in UPDATE statement 1564

COLUMNS view 1951
combining characters

CREATE TABLE statement 1133
COMMAND_FUNCTION

GET DIAGNOSTICS statement 1338
COMMAND_FUNCTION_CODE

GET DIAGNOSTICS statement 1338
comment

in catalog table 940
SQL 44, 815

COMMENT statement
name qualification 131

COMMIT
effect on SET TRANSACTION 1545

COMMIT clause
in SET OPTION statement 1520

COMMIT ON RETURN clause
CREATE PROCEDURE (external) 1087
CREATE PROCEDURE (SQL) 1099

commit point 950
COMMIT statement 950, 952
commitment definition 17
common table expression

CREATE VIEW statement 1209
definition 790
recursive 791
select statement 790

COMPARE_DECFLOAT function 339
comparison

array type values 104
compatibility rules 89
conversion rules 101
DataLink 103
date and time values 102
distinct type values 103
numbers 99
predicate

equivalent term 2001
predicate subquery

equivalent term 2001
Row ID 103
strings 100

comparisons
XML 103

compatibility
data types 89
rules 89

COMPILEOPT clause
in SET OPTION statement 1521

composite key 5
compound statement 953
compound-statement 1597
CONCAT (concatenation operator) 163
CONCAT function 340
concatenation operator (CONCAT) 163
concurrency

with LOCK TABLE statement 1416
concurrent-access-resolution-clause

in DELETE statement 1262
in MERGE statement 1425
in PREPARE statement 1440
in UPDATE statement 1566

CONDITION_IDENTIFIER
GET DIAGNOSTICS statement 1343

CONDITION_NUMBER
GET DIAGNOSTICS statement 1343

CONNECT
differences, type 1 and type 2 1662

CONNECT (type 1) statement 962, 966
CONNECT (type 2) statement 967, 970
CONNECT BY clause 754
CONNECT_BY_ISCYCLE pseudo column 757
CONNECT_BY_ISLEAF pseudo column 757
CONNECT_BY_ROOT unary operator 758
connected state 40
connection

changing with SET CONNECTION 1492
ending 1455
releasing 1455
SQL 38

connection states
activation group 40
CONNECT (Type 2) statement 38
distributed unit of work 39
remote unit of work 37

CONNECTION_NAME
GET DIAGNOSTICS statement 1341

constant
DECLARE GLOBAL TEMPORARY TABLE statement 1233
in ALTER TABLE statement 882, 883
in CREATE TABLE statement 1135
in LABEL statement 1414

constants
binary string 115
character string 113
datetime 116
decimal 112
decimal floating-point 112
floating point 112
graphic string 114
hexadecimal 113, 115
integer 112
UCS-2 115
UTF-16 115

CONSTRAINT clause
COMMENT statement 945
in ALTER TABLE statement 888, 892, 893, 895
in CREATE TABLE statement 1140, 1149, 1151
LABEL statement 1411

CONSTRAINT_CATALOG
GET DIAGNOSTICS statement 1343
SIGNAL statement 1552

CONSTRAINT_NAME
GET DIAGNOSTICS statement 1343
SIGNAL statement 1552

CONSTRAINT_SCHEMA
GET DIAGNOSTICS statement 1343
SIGNAL statement 1552

constraint-name
description 48
in ALTER TABLE statement 888, 892, 895
in CONSTRAINT clause of ALTER TABLE statement 893
in CREATE TABLE statement 1140, 1149, 1151
in DROP CHECK clause of ALTER TABLE statement 896
in DROP CONSTRAINT clause of ALTER TABLE
statement 896

Index 2021

constraint-name (continued)
in DROP FOREIGN KEY clause of ALTER TABLE
statement 896
in DROP UNIQUE clause of ALTER TABLE statement 896

constraints
check constraint 5
referential constraint 5
unique constraint 5

CONTAINS function
example 1993

CONTAINS SQL clause
CREATE PROCEDURE (external) 1084
in CREATE FUNCTION (external scalar) 991
in CREATE FUNCTION (external table) 1010
in CREATE FUNCTION (SQL scalar) 1035
in CREATE FUNCTION (SQL table) 1049
in CREATE PROCEDURE (SQL) 1098
in DECLARE PROCEDURE 1251
NO SQL clause

in CREATE FUNCTION (external scalar) 991
CONTINUE clause

WHENEVER statement 1576
control characters 44
conversion of numbers

conversion rule for comparisons 94
scale and precision 91

CORR
aggregate function 262

correlated reference
equivalent term 2002

CORRELATION
aggregate function 262

correlation clause 742
correlation name

defining 131
description 49
FROM clause

of subselect 744
qualifying a column name 131

correlation-name
in DELETE statement 1260
in UPDATE statement 1563

COS function 344
COSH function 345
COT function 346
COUNT

GET DESCRIPTOR statement 1321
SET DESCRIPTOR statement 1506

COUNT function 263
COUNT_BIG function 264
COVAR

aggregate function 265
COVAR_POP

aggregate function 265
COVAR_SAMP

aggregate function 266
COVARIANCE

aggregate function 265
COVARIANCE_SAMP

aggregate function 266
CREATE ALIAS statement 12, 971, 974
CREATE FUNCTION (external scalar) statement 980, 999
CREATE FUNCTION (external table) statement 1000
CREATE FUNCTION (sourced) statement 1018

CREATE FUNCTION (SQL scalar) 1031
CREATE FUNCTION (SQL scalar) statement 1028
CREATE FUNCTION (SQL table) 1045
CREATE FUNCTION (SQL table) statement 1042
CREATE INDEX statement 1055
CREATE MASK statement 1064
CREATE PERMISSION statement 1070
CREATE PROCEDURE (external) statement 1075
CREATE PROCEDURE (SQL) statement 1090, 1102
CREATE SCHEMA statement 1103, 1107
CREATE SEQUENCE statement 1108
CREATE TABLE statement 1115
CREATE TRIGGER statement 1170
CREATE TYPE (array) statement 1188
CREATE TYPE (distinct) statement 1193
CREATE VARIABLE statement 1200
CREATE VIEW statement 11, 1206, 1213
CREATE_WRAPPED procedure 724
CREATEIN clause

GRANT (schema privileges) statement 1368
CREATIN clause

REVOKE (schema privileges) statement 1469
CROSS JOIN clause

in FROM clause 752
CS (cursor stability) 26
CUBE 765
CUME_DIST

in OLAP specification 185
CURDATE function 347
CURRENT

in GET DIAGNOSTICS 1336, 1611
CURRENT clause

in DISCONNECT statement 1286
in FETCH statement 1312
in RELEASE statement 1455

CURRENT CLIENT_ACCTNG special register 121
CURRENT CLIENT_APPLNAME special register 121
CURRENT CLIENT_PROGRAMID special register 121
CURRENT CLIENT_USERID special register 122
CURRENT CLIENT_WRKSTNNAME special register 122
current connection state 39
CURRENT DATE special register 123
CURRENT DEBUG MODE special register 123
current decfloat rounding mode special register

SET CURRENT DECFLOAT ROUNDING MODE 1497
CURRENT DECFLOAT ROUNDING MODE special register 124
CURRENT DEGREE special register 125
current implicit XMLPARSE OPTION special register

SET CURRENT IMPLICIT XMLPARSE OPTION 1502
CURRENT IMPLICIT XMLPARSE OPTION special register 125
current path special register

SET PATH 1531
SET SCHEMA 1537

CURRENT PATH special register 126, 1532
CURRENT SCHEMA special register 127
CURRENT SERVER special register 127
CURRENT TEMPORAL SYSTEM_TIME special register 127,
744
CURRENT TIME special register 128
CURRENT TIMESTAMP special register 129
CURRENT TIMEZONE special register 129
CURRENT USER special register 129, 1532
CURRENT_DATE

ALTER TABLE statement 883, 884

2022 IBM i: Db2 for i SQL Reference

CURRENT_DATE (continued)
CREATE TABLE statement 1134, 1135
DECLARE GLOBAL TEMPORARY TABLE statement 1232,
1233

CURRENT_DATE special register 123
CURRENT_PATH special register 126
CURRENT_SCHEMA special register 127
CURRENT_SERVER special register 127
CURRENT_TIME

ALTER TABLE statement 883, 884
CREATE TABLE statement 1134, 1135
DECLARE GLOBAL TEMPORARY TABLE statement 1232,
1233

CURRENT_TIME special register 128
CURRENT_TIMESTAMP

ALTER TABLE statement 883, 884
CREATE TABLE statement 1134, 1135
DECLARE GLOBAL TEMPORARY TABLE statement 1232,
1233

CURRENT_TIMESTAMP special register 129
CURRENT_TIMEZONE special register 129
cursor

active set 1429
closed by error

FETCH statement 1315
UPDATE 1569

closed state 1431
closing 938
current row 1315
defining 1215
deletable 1218
moving position 1311
positions for open 1315
preparing 1429
read-only 1219
updatable 1219

cursor stability 26
CURSOR_NAME

GET DIAGNOSTICS statement 1343
SIGNAL statement 1552

cursor-name
description 49
in CLOSE statement 938
in DECLARE CURSOR statement 1216
in DELETE statement 1261
in FETCH statement 1313
in OPEN statement 1429
in SET RESULT SETS statement 1534
in UPDATE statement 1565

CURTIME function 348
CYCLE clause

CREATE SEQUENCE statement 1111
in ALTER TABLE statement 892
of recursive common-table-expression 792

D
DATA

GET DESCRIPTOR statement 1323
SET DESCRIPTOR statement 1506

data access classification 1655
DATA DICTIONARY clause

CREATE SCHEMA statement 1106
data representation

data representation (continued)
in DRDA 41

data type
array types 82
binary string 72
character string 69
DataLink 81
datetime 74, 75
description 65, 1128
distinct types 82
in SQLDA 1676
large object (LOB) 73
numeric 66
result columns 740
Row ID 82
user-defined types (UDTs) 82

data type for CREATE FUNCTION (SQL scalar) 1031
data type for CREATE FUNCTION (SQL table) 1045
data-type

CREATE PROCEDURE (external) 1081
in ALTER FUNCTION (SQL scalar) 834
in ALTER FUNCTION (SQL table) 842
in ALTER PROCEDURE (SQL) 861
in ALTER TABLE 881
in ALTER TABLE statement 881, 889
in CAST specification 178
in CREATE FUNCTION (external scalar) 987
in CREATE FUNCTION (external table) 1008
in CREATE FUNCTION (sourced) 1021, 1022
in CREATE FUNCTION (SQL scalar) 1034
in CREATE FUNCTION (SQL table) 1048
in CREATE PROCEDURE (SQL) 1096
in CREATE TABLE 1128
in DECLARE GLOBAL TEMPORARY TABLE 1231
in DECLARE GLOBAL TEMPORARY TABLE statement
1231
in DECLARE PROCEDURE statement 1248

DATABASE
function 349

database manager limits 1647–1650
DataLink

assignment 96
comparison 103
data type

description 81
limits 1647

DATALINK
data type for CREATE FUNCTION (sourced) 1021
data type for CREATE PROCEDURE (SQL) 1096
data type for CREATE TABLE 1131
DECLARE PROCEDURE statement 1248

datalink-options
in ALTER TABLE statement 889
in CREATE TABLE statement 1141
in DECLARE GLOBAL TEMPORARY TABLE statement
1237

DATAPARTITIONNAME function 350
DATAPARTITIONNUM function 351
date

duration 166
strings 76

DATE
arithmetic operations 167
assignment 95

Index 2023

DATE (continued)
data type 74
data type for CREATE TABLE 1131
function 352

date and time
arithmetic operations 167, 170
assignments 95
comparisons 102
data types

string representation 76
default date format 76
default time format 78
format

day/month/year 76
EUR 76, 77
hours/minutes/seconds 77
ISO 76, 77
JIS 76, 77
Julian 76
month/day/year 76
unformatted Julian 76
USA 76, 77
year/month/day 76

datetime
constants 116
data types

description 74, 75
limits 1647

DATETIME_INTERVAL_CODE
GET DESCRIPTOR statement 1323
SET DESCRIPTOR statement 1507

DATFMT clause
in SET OPTION statement 1521

DATSEP clause
in SET OPTION statement 1522

DAY function 354
DAYNAME function 355
DAYOFMONTH function 356
DAYOFWEEK function 357
DAYOFWEEK_ISO function 358
DAYOFYEAR function 359
DAYS function 360
DB2_AUTHENTICATION_TYPE

GET DIAGNOSTICS statement 1341
DB2_AUTHORIZATION_ID

GET DIAGNOSTICS statement 1341
DB2_BASE_CATALOG_NAME

GET DESCRIPTOR statement 1323
DB2_BASE_COLUMN_NAME

GET DESCRIPTOR statement 1323
DB2_BASE_SCHEMA_NAME

GET DESCRIPTOR statement 1323
DB2_BASE_TABLE_NAME

GET DESCRIPTOR statement 1323
DB2_CCSID

GET DESCRIPTOR statement 1323
SET DESCRIPTOR statement 1507

DB2_COLUMN_CATALOG_NAME
GET DESCRIPTOR statement 1323

DB2_COLUMN_GENERATED
GET DESCRIPTOR statement 1323

DB2_COLUMN_GENERATION_TYPE
GET DESCRIPTOR statement 1324

DB2_COLUMN_HIDDEN

DB2_COLUMN_HIDDEN (continued)
GET DESCRIPTOR statement 1324

DB2_COLUMN_NAME
GET DESCRIPTOR statement 1324

DB2_COLUMN_ROW_CHANGE
GET DESCRIPTOR statement 1324

DB2_COLUMN_SCHEMA_NAME
GET DESCRIPTOR statement 1325

DB2_COLUMN_TABLE_NAME
GET DESCRIPTOR statement 1325

DB2_COLUMN_UPDATABILITY
GET DESCRIPTOR statement 1325

DB2_CONNECTION_METHOD
GET DIAGNOSTICS statement 1341

DB2_CONNECTION_NUMBER
GET DIAGNOSTICS statement 1341

DB2_CONNECTION_STATE
GET DIAGNOSTICS statement 1341

DB2_CONNECTION_STATUS
GET DIAGNOSTICS statement 1342

DB2_CONNECTION_TYPE
GET DIAGNOSTICS statement 1342

DB2_CORRELATION_NAME
GET DESCRIPTOR statement 1325

DB2_CURSOR_HOLDABILITY
GET DESCRIPTOR statement 1321

DB2_CURSOR_NAME
GET DESCRIPTOR statement 1325

DB2_CURSOR_RETURNABILITY
GET DESCRIPTOR statement 1321

DB2_CURSOR_SCROLLABILITY
GET DESCRIPTOR statement 1322

DB2_CURSOR_SENSITIVITY
GET DESCRIPTOR statement 1322

DB2_CURSOR_UPDATABILITY
GET DESCRIPTOR statement 1322

DB2_DIAGNOSTIC_ CONVERSION_ERROR
GET DIAGNOSTICS statement 1338

DB2_DYN_QUERY_MGMT
GET DIAGNOSTICS statement 1342

DB2_ENCRYPTION_TYPE
GET DIAGNOSTICS statement 1342

DB2_ERROR_CODE1
GET DIAGNOSTICS statement 1343

DB2_ERROR_CODE2
GET DIAGNOSTICS statement 1343

DB2_ERROR_CODE3
GET DIAGNOSTICS statement 1344

DB2_ERROR_CODE4
GET DIAGNOSTICS statement 1344

DB2_GET_DIAGNOSTICS _DIAGNOSTICS
GET DIAGNOSTICS statement 1338

DB2_INTERNAL_ERROR _POINTER
GET DIAGNOSTICS statement 1344

DB2_LABEL
GET DESCRIPTOR statement 1325

DB2_LAST_ROW
GET DIAGNOSTICS statement 1338

DB2_LINE_NUMBER
GET DIAGNOSTICS statement 1344

DB2_MAX_ITEMS
GET DESCRIPTOR statement 1322

DB2_MESSAGE_ID
GET DIAGNOSTICS statement 1344

2024 IBM i: Db2 for i SQL Reference

DB2_MESSAGE_ID1
GET DIAGNOSTICS statement 1344

DB2_MESSAGE_ID2
GET DIAGNOSTICS statement 1344

DB2_MESSAGE_KEY
GET DIAGNOSTICS statement 1344

DB2_MODULE_DETECTING _ERROR
GET DIAGNOSTICS statement 1344

DB2_NUMBER_CONNECTIONS
GET DIAGNOSTICS statement 1338

DB2_NUMBER_FAILING_ STATEMENTS
GET DIAGNOSTICS statement 1344

DB2_NUMBER_PARAMETER _MARKERS
GET DIAGNOSTICS statement 1338

DB2_NUMBER_RESULT_SETS
GET DIAGNOSTICS statement 1338

DB2_NUMBER_ROWS
GET DIAGNOSTICS statement 1338

DB2_NUMBER_SUCCESSFUL_
GET DIAGNOSTICS statement 1339

DB2_OFFSET
GET DIAGNOSTICS statement 1344

DB2_ORDINAL_TOKEN_n
GET DIAGNOSTICS statement 1344

DB2_PARAMETER_NAME
GET DESCRIPTOR statement 1325

DB2_PARTITION_NUMBER
GET DIAGNOSTICS statement 1344

DB2_PRODUCT_ID
GET DIAGNOSTICS statement 1342

DB2_REASON_CODE
GET DIAGNOSTICS statement 1344

DB2_RELATIVE_COST_ ESTIMATE
GET DIAGNOSTICS statement 1339

DB2_RESULT_SET_LOCATOR
GET DESCRIPTOR statement 1325

DB2_RESULT_SET_ROWS
GET DESCRIPTOR statement 1325

DB2_RESULT_SETS_COUNT
GET DESCRIPTOR statement 1322

DB2_RETURN_STATUS
GET DIAGNOSTICS statement 1339

DB2_RETURNED_SQLCODE
GET DIAGNOSTICS statement 1344

DB2_ROW_COUNT_SECONDARY
GET DIAGNOSTICS statement 1339

DB2_ROW_LENGTH
GET DIAGNOSTICS statement 1339

DB2_ROW_NUMBER
GET DIAGNOSTICS statement 1345

DB2_SERVER_CLASS_NAME
GET DIAGNOSTICS statement 1342

DB2_SERVER_NAME
GET DIAGNOSTICS statement 1342

DB2_SQL_ATTR_CONCURRENCY
GET DIAGNOSTICS statement 1339

DB2_SQL_ATTR_CURSOR _CAPABILITY
GET DIAGNOSTICS statement 1339

DB2_SQL_ATTR_CURSOR _HOLD
GET DIAGNOSTICS statement 1339

DB2_SQL_ATTR_CURSOR _ROWSET
GET DIAGNOSTICS statement 1340

DB2_SQL_ATTR_CURSOR _SCROLLABLE
GET DIAGNOSTICS statement 1340

DB2_SQL_ATTR_CURSOR _SENSITIVITY
GET DIAGNOSTICS statement 1340

DB2_SQL_ATTR_CURSOR_TYPE
GET DIAGNOSTICS statement 1340

DB2_SQL_NESTING_LEVEL
GET DIAGNOSTICS statement 1340

DB2_SQLERRD_SET
GET DIAGNOSTICS statement 1345

DB2_SQLERRD1
GET DIAGNOSTICS statement 1345

DB2_SQLERRD2
GET DIAGNOSTICS statement 1345

DB2_SQLERRD3
GET DIAGNOSTICS statement 1345

DB2_SQLERRD4
GET DIAGNOSTICS statement 1345

DB2_SQLERRD5
GET DIAGNOSTICS statement 1345

DB2_SQLERRD6
GET DIAGNOSTICS statement 1345

DB2_SYSTEM_COLUMN_NAME
GET DESCRIPTOR statement 1325

DB2_TOKEN_COUNT
GET DIAGNOSTICS statement 1345

DB2_TOKEN_STRING
GET DIAGNOSTICS statement 1345

DB2GENERAL clause
CREATE PROCEDURE (external) 1083
DECLARE PROCEDURE 1250
in CREATE FUNCTION (external scalar) 990
in CREATE FUNCTION (external table) 1009

DBCLOB
data type for ALTER TABLE 881
data type for CREATE FUNCTION (external scalar) 985
data type for CREATE FUNCTION (external table) 1005
data type for CREATE FUNCTION (sourced) 1021
data type for CREATE PROCEDURE (external) 1080
data type for CREATE PROCEDURE (SQL) 1096
data type for CREATE TABLE 1130
data type for CREATE TYPE 1196
data type for DECLARE GLOBAL TEMPORARY TABLE
1231
DECLARE PROCEDURE statement 1248
function 361

DBCS (double-byte character set)
description 72
truncated during assignment 95

DBGVIEW clause
in SET OPTION statement 1522

DBINFO clause
CREATE PROCEDURE (external) 1085
in CREATE FUNCTION (external scalar) 992
in CREATE FUNCTION (external table) 1011

DBPARTITIONNAME function 367
DBPARTITIONNUM function 368
DEALLOCATE DESCRIPTOR statement 1214
DEBUG MODE clause

CREATE FUNCTION (SQL scalar) 1036
CREATE PROCEDURE (external) 1085
CREATE PROCEDURE (SQL) 1098

DECFLOAT
data type for CREATE FUNCTION (external scalar) 985
data type for CREATE FUNCTION (external table) 1005
data type for CREATE FUNCTION (sourced) 1021

Index 2025

DECFLOAT (continued)
data type for CREATE PROCEDURE (external) 1080
data type for CREATE PROCEDURE (SQL) 1096
data type for CREATE TABLE 1129
data type for CREATE TYPE 1196
data type for DECLARE GLOBAL TEMPORARY TABLE
1231
data type for DECLARE PROCEDURE 1248

DECFLOAT function 369
DECFLOAT_FORMAT

function 371
DECFLOAT_SORTKEY function 373
DECFLTRND clause

in SET OPTION statement 1523
decimal

constants 112
data type 67
numbers 67

DECIMAL
data type for ALTER TABLE 881
data type for CREATE FUNCTION (external scalar) 985
data type for CREATE FUNCTION (external table) 1005
data type for CREATE FUNCTION (sourced) 1021
data type for CREATE PROCEDURE (external) 1080
data type for CREATE PROCEDURE (SQL) 1096
data type for CREATE TABLE 1128
data type for CREATE TYPE 1196
data type for DECLARE GLOBAL TEMPORARY TABLE
1231
data type for DECLARE PROCEDURE 1248

decimal data
arithmetic 160

decimal floating-point
constants 112
numbers 68

DECIMAL function 374
decimal point

default decimal point 116
declaration

inserting into a program 1393
DECLARE CURSOR statement 1215, 1217, 1222
DECLARE GLOBAL TEMPORARY TABLE statement 1223,
1243
DECLARE PROCEDURE statement 1244, 1253
DECLARE STATEMENT statement 1254, 1255
DECLARE statements

BEGIN DECLARE SECTION statement 928
END DECLARE SECTION statement 1303

DECLARE VARIABLE statement 1256, 1258
DECMPT clause

in SET OPTION statement 1523
DECRESULT clause

in SET OPTION statement 1524
DECRYPT_BIN function 377
DECRYPT_BINARY function 377
DECRYPT_BIT function 377
DECRYPT_CHAR function 377
DECRYPT_DB function 377
DEFAULT

in CALL statement 933, 1594
in SET transition-variable statement
1547
in SET variable statement 1549
in UPDATE statement 1565

DEFAULT clause
ALTER TABLE statement 882
CREATE TABLE statement 1133
in DECLARE GLOBAL TEMPORARY TABLE statement
1231
in INSERT statement 1400
in MERGE statement 1423

default date format 75, 76
default decimal point 116
default decimal separator character

description 68
default schema

name qualification 58
default time format 75, 78
DEFAULT VALUES

in INSERT statement 1399
degree

of table
equivalent term 2001

DEGREES function 380
DELETE

performance 1263
DELETE clause

GRANT (table or view privileges) statement 1375
in ON DELETE clause of ALTER TABLE statement 894
in ON DELETE clause of CREATE TABLE statement 1150
REVOKE (table or view privileges) statement 1474

DELETE ROWS
ALTER TABLE statement 898

delete rules
check constraints 1262
referential constraint 8
referential integrity 1262
triggers 1262

DELETE statement 1259, 1265
delete-connected table 8
deleting SQL objects 1288
delimited identifier

in system names 46
DENSE_RANK

in OLAP specification 185
dependent row 6
dependent table 6
derived table 742
DESC clause

CREATE INDEX statement 1060
in OLAP specification 186
of select-statement 778

descendent row 6
descendent table 6
DESCRIBE CURSOR statement

description 1272
variables

SQLD 1272
SQLDABC 1272
SQLDAID 1272
SQLN 1272
SQLVAR 1272

DESCRIBE INPUT statement
description 1275
variables

SQLD 1274
SQLDABC 1274
SQLDAID 1274

2026 IBM i: Db2 for i SQL Reference

DESCRIBE INPUT statement (continued)
variables (continued)

SQLN 1273
SQLVAR 1274

DESCRIBE PROCEDURE statement
description 1281
variables

SQLD 1280
SQLDABC 1280
SQLDAID 1279
SQLN 1279
SQLVAR 1280

DESCRIBE statement
variables

SQLD 1267
SQLDABC 1267
SQLDAID 1267
SQLN 1267
SQLVAR 1267

DESCRIBE TABLE statement
description 1285
variables

SQLD 1283
SQLDABC 1283
SQLDAID 1283
SQLN 1283
SQLVAR 1283

descriptor-name
description 49
in CALL statement 934
in DESCRIBE statement 1267
in EXECUTE statement 1306
in FETCH statement 1313
in OPEN statement 1430
in PREPARE statement 1438

designator
table 133, 550, 562

DETACH PARTITION
ALTER TABLE statement 899

detecting and processing error and warning conditions
SQL-procedure-statement 1589

DETERMINISTIC clause
CREATE PROCEDURE (external) 1083
in CREATE FUNCTION (external scalar) 991
in CREATE FUNCTION (external table) 1010
in CREATE FUNCTION (SQL scalar) 1034
in CREATE FUNCTION (SQL table) 1048
in CREATE PROCEDURE (SQL) 1097
in DECLARE PROCEDURE 1251

DFTRDBCOL clause
in SET OPTION statement 1524

DIFFERENCE function 381
DIGITS function 382
dirty read 28
DISALLOW PARALLEL clause

in CREATE FUNCTION (external scalar) 995
in CREATE FUNCTION (external table) 1015
in CREATE FUNCTION (SQL scalar) 1036
in CREATE FUNCTION (SQL table) 1050

DISCONNECT statement
DISCONNECT 1287

disconnecting SQL objects 1286
DISTINCT

AVG function 261

DISTINCT (continued)
COUNT function 263
COUNT_BIG function 264
MAX function 280
MIN function 282
STDDEV function 290
STDDEV_POP function 290
STDDEV_SAMP function 291
SUM function 292
VAR function 293
VAR_POP function 293
VAR_SAMP function 294
VARIANCE function 293
VARIANCE_SAMP function 294

DISTINCT clause
subselect 737

DISTINCT predicate 204
distinct type

assignment 98
comparisons 103

DISTINCT TYPE clause
COMMENT statement 940

distinct types
data types

description 82
distinct-type

data type for ALTER SEQUENCE 866
data type for ALTER TABLE 881
data type for CREATE FUNCTION (external scalar) 985
data type for CREATE FUNCTION (external table) 1005
data type for CREATE FUNCTION (sourced) 1021
data type for CREATE PROCEDURE (external) 1080
data type for CREATE PROCEDURE (SQL) 1096
data type for CREATE SEQUENCE 1110
data type for CREATE TABLE 1132
data type for CREATE TYPE 1196
data type for CREATE VARIABLE 1203
data type for DECLARE GLOBAL TEMPORARY TABLE
1231
DECLARE PROCEDURE statement 1248
in DECLARE GLOBAL TEMPORARY TABLE statement
1231

distinct-type-name
description 49
in CREATE TYPE statement 1195

distributed data
CONNECT statement 1662

distributed relational database
application requester 35
application server 35
application-directed distributed unit of work 39
considerations for using 1658, 1660–1662
data representation considerations 41
distributed unit of work 39
remote unit of work 37
use of extensions to IBM SQL on unlike application
servers 1658, 1660–1662

distributed relational database architecture (DRDA) 35
distributed tables

definition 5
syntax 1154

distributed unit of work
mixed environment 1652

division by zero 175

Index 2027

division operator 159
DLCOMMENT function 383
DLLINKTYPE function 384
DLURLCOMPLETE function 385
DLURLPATH function 386
DLURLPATHONLY function 387
DLURLSCHEME function 388
DLURLSERVER function 389
DLVALUE function 390
DLYPRP clause

in SET OPTION statement 1524
dormant connection state 39
DOUBLE

function 392
DOUBLE PRECISION

data type for ALTER TABLE 881
data type for CREATE FUNCTION (external scalar) 985
data type for CREATE FUNCTION (external table) 1005
data type for CREATE FUNCTION (sourced) 1021
data type for CREATE PROCEDURE (external) 1080
data type for CREATE PROCEDURE (SQL) 1096
data type for CREATE TABLE 1129
data type for CREATE TYPE 1196
data type for DECLARE GLOBAL TEMPORARY TABLE
1231
data type for DECLARE PROCEDURE 1248

DOUBLE_PRECISION function 392
double-byte character

in COMMENT statement 948
in LIKE predicates 216
truncated during assignment 94

double-byte character set (DBCS)
truncated during assignment 95

double-precision floating point 68
DRDA (Distributed Relational Database Architecture) 35
DROP CHECK clause

ALTER TABLE statement 896
DROP COLUMN clause

ALTER TABLE statement 892
DROP CONSTRAINT clause

ALTER TABLE statement 896
DROP DEFAULT clause

ALTER TABLE statement 891
DROP FIELDPROC clause

ALTER TABLE statement 891
DROP FOREIGN KEY clause

ALTER TABLE statement 896
DROP GENERATED clause

ALTER TABLE statement 891
DROP IDENTITY clause

ALTER TABLE statement 891
DROP materialized query clause

ALTER TABLE statement 901
DROP NOT NULL clause

ALTER TABLE statement 891
DROP PARTITION

ALTER TABLE statement 897
DROP PARTITIONING

ALTER TABLE statement 897
DROP PRIMARY KEY clause

ALTER TABLE statement 896
DROP ROW CHANGE TIMESTAMP clause

ALTER TABLE statement 891
DROP statement 1288, 1302

DROP UNIQUE clause
ALTER TABLE statement 896

duplicate rows with UNION 784
duration

date 166
labeled 165
time 166
timestamp 166

dynamic select 814
dynamic SQL

defined 812
description 2
execution

EXECUTE IMMEDIATE statement 1309
EXECUTE statement 1304

in USING clause of DESCRIBE statement 1266
obtaining input information with

DESCRIBE INPUT 1273
obtaining statement information with

DESCRIBE 1266
obtaining table information with

DESCRIBE TABLE 1282
preparation and execution 813
PREPARE statement 1435
SQLDA (SQL descriptor area) 1675
statements allowed 1652
use of SQL path 57

DYNAMIC_FUNCTION
GET DESCRIPTOR statement 1322
GET DIAGNOSTICS statement 1340

DYNAMIC_FUNCTION_CODE
GET DESCRIPTOR statement 1322
GET DIAGNOSTICS statement 1340

DYNDFTCOL clause
in SET OPTION statement 1524

DYNUSRPRF clause
in SET OPTION statement 1525

E
EBNF grammar 1995
Embedded SQL for Java (SQLJ) 3
empty character string 69
ENCODED VECTOR clause

CREATE INDEX statement 1058
encoding scheme 29
ENCRYPT function 397
ENCRYPT_AES function 394
ENCRYPT_RC2 function 397
ENCRYPT_TDES function 400
END DECLARE SECTION statement 1303
ending

unit of work 950, 1482
equivalent terms 2001
error

closes cursor 1431
during UPDATE 1569
FETCH statement 1315

escape character in SQL
delimited identifier 46

ESCAPE clause of LIKE predicate 217
evaluation order 171
EVENTF clause

in SET OPTION statement 1525

2028 IBM i: Db2 for i SQL Reference

EXCEPT clause
of fullselect 784

EXCLUDING clause
in CREATE TABLE statement 1144, 1146
in DECLARE GLOBAL TEMPORARY TABLE statement
1239

EXCLUSIVE
ALLOW READ clause

LOCK TABLE statement 1416
IN EXCLUSIVE MODE clause

LOCK TABLE statement 1416
exclusive locks 25
EXCLUSIVE MODE clause

in LOCK TABLE statement 1416
executable statement 812
EXECUTE clause

GRANT (function or procedure privileges) statement
1360
GRANT (package privileges) statement 1366
REVOKE (function or procedure privileges) statement
1464
REVOKE (package privileges) statement 1467

EXECUTE IMMEDIATE statement 1309
EXECUTE statement 1304, 1308
EXISTS predicate 206
EXP function 403
exponentiation operator 159
exposed name 744
expression

ARRAY constructor 172
ARRAY element specification 173
CASE expression 174
CAST specification 176
date and time operands 165
decimal floating-point operands 161
decimal operands 160
distinct type operands 163
floating-point operands 161
grouping 763
in CALL statement 932, 933, 1594
in EXECUTE IMMEDIATE statement 1309
in INSERT statement 1400
in MERGE statement 1423
in PREPARE statement 1441
in statement 1546, 1549
in subselect 738
in UPDATE statement 1564
in VALUES INTO statement 1573
integer operands 159, 160
numeric operands 160
OLAP specifications 181
precedence of operation 171
scalar fullselect 165
scalar subselect 165
sequence reference 193
with arithmetic operators 159
with concatenation operator 163
without operators 159
XMLCAST specification 197

extended dynamic SQL
description 2

external
function 980, 1000

EXTERNAL ACTION clause

EXTERNAL ACTION clause (continued)
in CREATE FUNCTION (external scalar) 993
in CREATE FUNCTION (external table) 1013
in CREATE FUNCTION (SQL scalar) 1035
in CREATE FUNCTION (SQL table) 1049

EXTERNAL clause
CREATE PROCEDURE (external) 1086
in CREATE FUNCTION (external scalar) 996
in CREATE FUNCTION (external table) 1015
in DECLARE PROCEDURE 1252

EXTERNAL NAME clause
CREATE PROCEDURE (external) 1086
in CREATE FUNCTION (external scalar) 996
in CREATE FUNCTION (external table) 1015
in DECLARE PROCEDURE 1252

external-program-name
description 49

EXTIND clause
in SET OPTION statement 1525

EXTRACT
function 404

F
FENCED clause

CREATE PROCEDURE (external) 1084
in CREATE FUNCTION (external scalar) 994
in CREATE FUNCTION (external table) 1013
in CREATE FUNCTION (SQL scalar) 1036
in CREATE FUNCTION (SQL table) 1050
in CREATE PROCEDURE (SQL) 1099

FETCH clause
of select-statement 780

FETCH statement 1311, 1317
fetch-clause

in DELETE statement 1261
in UPDATE statement 1566

FIELDPROC
in ALTER TABLE statement 888, 891
in CREATE TABLE statement 1141, 1236

file reference
variable 142, 143

FINAL CALL clause
in CREATE FUNCTION (external scalar) 994
in CREATE FUNCTION (external table) 1014

FINAL TABLE clause
in FROM clause 747

FIRST clause
in FETCH statement 1312

FIRST_VALUE
in OLAP specification 187

FLOAT
data type for ALTER TABLE 881
data type for CREATE FUNCTION (external scalar) 985
data type for CREATE FUNCTION (external table) 1005
data type for CREATE FUNCTION (sourced) 1021
data type for CREATE PROCEDURE (external) 1080
data type for CREATE PROCEDURE (SQL) 1096
data type for CREATE TABLE 1129
data type for CREATE TYPE 1196
data type for DECLARE GLOBAL TEMPORARY TABLE
1231
data type for DECLARE PROCEDURE 1248

FLOAT function 408

Index 2029

floating point
constants 112
numbers 67

FLOOR function 409
FOR BIT DATA clause

ALTER TABLE 881
CREATE FUNCTION (external scalar) 985
CREATE FUNCTION (external table) 1005
CREATE FUNCTION (sourced) 1021
CREATE PROCEDURE (external) 1080
CREATE PROCEDURE (SQL) 1096
CREATE TABLE statement 1132
CREATE TYPE 1196
DECLARE GLOBAL TEMPORARY TABLE 1231
DECLARE PROCEDURE statement 1248
DECLARE VARIABLE statement 1256

FOR clause
CREATE ALIAS statement 972

FOR COLUMN clause
ALTER TABLE statement 881
CREATE INDEX statement 1060
CREATE TABLE statement 1128
CREATE VIEW statement 1208
in DECLARE GLOBAL TEMPORARY TABLE statement
1231

FOR FETCH ONLY clause
of select-statement 797

FOR MIXED DATA clause
ALTER TABLE 881
CREATE FUNCTION (external scalar) 985
CREATE FUNCTION (external table) 1005
CREATE FUNCTION (sourced) 1021
CREATE PROCEDURE (external) 1080
CREATE PROCEDURE (SQL) 1096
CREATE TABLE statement 1132
CREATE TYPE 1196
DECLARE GLOBAL TEMPORARY TABLE 1231
DECLARE PROCEDURE statement 1248
DECLARE VARIABLE statement 1256

FOR READ ONLY clause
of select-statement 797

FOR ROWS clause
FETCH statement 1314
SET RESULT SETS statement 1535

FOR SBCS DATA clause
ALTER TABLE 881
CREATE FUNCTION (external scalar) 985
CREATE FUNCTION (external table) 1005
CREATE FUNCTION (sourced) 1021
CREATE PROCEDURE (external) 1080
CREATE PROCEDURE (SQL) 1096
CREATE TABLE statement 1132
CREATE TYPE 1196
DECLARE GLOBAL TEMPORARY TABLE 1231
DECLARE PROCEDURE statement 1248
DECLARE VARIABLE statement 1256

FOR statement 1605
FOR UPDATE OF clause

of select-statement 796
foreign key 6
FOREIGN KEY clause

of ALTER TABLE statement 893
of CREATE TABLE statement 1149

FREE LOCATOR statement 1318

FROM clause
correlation-clause 1260
DELETE statement 1260
joined-table 750
of subselect 742
PREPARE statement 1441
REVOKE (function or procedure privileges) statement
1466
REVOKE (package privileges) statement 1468
REVOKE (schema privileges) statement 1470
REVOKE (sequence privileges) statement 1472
REVOKE (table or view privileges) statement 1474
REVOKE (type privileges) statement 1477
REVOKE (variable privileges) statement 1479
REVOKE (XML schema privileges) statement 1481

FULL JOIN clause
in FROM clause 751

FULL OUTER JOIN clause
in FROM clause 751

fullselect
equivalent term 2002
in assignment-statement 1591
in CREATE VIEW statement 736
in SET variable statement 1549
used in CREATE VIEW statement 1209
used in INSERT statement 1401

function
aggregate

ARRAY_AGG 259
AVG 261
CORR 262
CORRELATION 262
COUNT 263
COUNT_BIG 264
COVAR 265
COVAR_POP 265
COVAR_SAMP 266
COVARIANCE 265
COVARIANCE_SAMP 266
GROUPING 267
JSON_ARRAYAGG 268
JSON_OBJECTAGG 273
LISTAGG 277
MAX 280
MEDIAN 281
MIN 282
PERCENTILE_CONT 283
PERCENTILE_DISC 285
REGR_AVGX 287
REGR_AVGY 287
REGR_COUNT 287
REGR_ICPT 287
REGR_INTERCEPT 287
REGR_R2 287
REGR_SLOPE 287
REGR_SXX 287
REGR_SXY 287
REGR_SYY 287
regression functions 287
STDDEV 290
STDDEV_POP 290
STDDEV_SAMP 291
SUM 292
VAR 293

2030 IBM i: Db2 for i SQL Reference

function (continued)
aggregate (continued)

VAR_POP 293
VAR_SAMP 294
VARIANCE 293
VARIANCE_SAMP 294
XMLAGG 295

best fit 150
built-in 147
column 147, 258
commenting 946
creating 975, 980, 1000, 1018, 1028, 1042
dropping 1295
extending a built-in function 978
external 147, 980, 1000
granting 1361
input parameters 977
invocation 156
labeling 1412
locators 977
name restrictions 976
nesting 300
obfuscating 648, 724
overriding a built-in function 978
resolution 149
revoking 1465
scalar

ABS 301
ABSVAL 301
ACOS 302
ADD_MONTHS 303
ANTILOG 305
ARRAY_MAX_CARDINALITY 306
ARRAY_TRIM 307
ASCII 308
ASIN 309
ATAN 310
ATAN2 312
ATANH 311
BASE64_DECODE 313
BASE64_ENCODE 314
BIGINT 315
BINARY 317
BIT_LENGTH 320
BITAND 318
BITANDNOT 318
BITNOT 318
BITOR 318
BITXOR 318
BLOB 321
BSON_TO_JSON 322
CARDINALITY 323
CEIL 324
CEILING 324
CHAR 325
CHAR_LENGTH 331
CHARACTER_LENGTH 331
CHR 332
CLOB 333
COALESCE 338
COMPARE_DECFLOAT 339
CONCAT 340
CONTAINS 341
COS 344

function (continued)
scalar (continued)

COSH 345
COT 346
CURDATE 347
CURTIME 348
DATABASE 349
DATAPARTITIONNAME 350
DATAPARTITIONNUM 351
DATE 352
DAY 354
DAYNAME 355
DAYOFMONTH 356
DAYOFWEEK 357
DAYOFWEEK_ISO 358
DAYOFYEAR 359
DAYS 360
DBCLOB 361
DBPARTITIONNAME 367
DBPARTITIONNUM 368
DECFLOAT 369
DECFLOAT_FORMAT 371
DECFLOAT_SORTKEY 373
DECIMAL 374
DECRYPT_BIN 377
DECRYPT_BINARY 377
DECRYPT_BIT 377
DECRYPT_CHAR 377
DECRYPT_DB 377
DEGREES 380
DIFFERENCE 381
DIGITS 382
DLCOMMENT 383
DLLINKTYPE 384
DLURLCOMPLETE 385
DLURLPATH 386
DLURLPATHONLY 387
DLURLSCHEME 388
DLURLSERVER 389
DLVALUE 390
DOUBLE 392
DOUBLE_PRECISION 392
ENCRYPT 397
ENCRYPT_AES 394
ENCRYPT_RC2 397
ENCRYPT_TDES 400
EXP 403
EXTRACT 404
FLOAT 408
FLOOR 409
GENERATE_UNIQUE 410
GET_BLOB_FROM_FILE 411
GET_CLOB_FROM_FILE 412
GET_DBCLOB_FROM_FILE 413
GET_XML_FILE 414
GETHINT 415
GRAPHIC 416
GREATEST 421
HASH 422
HASHED_VALUE 423
HEX 424
HEXTORAW 425
HOUR 426
HTTP_DELETE 427

Index 2031

function (continued)
scalar (continued)

HTTP_GET 428
HTTP_PATCH 432
HTTP_POST 433
HTTP_PUT 434
IDENTITY_VAL_LOCAL 435
IFNULL 439
INSERT 440
INSTR 448
INTEGER 442
JSON_ARRAY 449
JSON_OBJECT 453
JSON_QUERY 457
JSON_TO_BSON 462
JSON_VALUE 463
JULIAN_DAY 467
LAND 468
LAST_DAY 469
LCASE 470
LEAST 471
LEFT 472
LENGTH 474
LN 476
LNOT 477
LOCATE 478
LOCATE_IN_STRING 480
LOG 482
LOG10 482
LOR 483
LOWER 484
LPAD 485
LTRIM 488
MAX 490
MAX_CARDINALITY 491
MICROSECOND 492
MIDNIGHT_SECONDS 493
MIN 494
MINUTE 495
MOD 496
MONTH 498
MONTHNAME 499
MONTHS_BETWEEN 500
MQREAD 502
MQREADCLOB 504
MQRECEIVE 506
MQRECEIVECLOB 508
MQSEND 510
MULTIPLY_ALT 512
NEXT_DAY 514
NODENAME 367
NODENUMBER 368
NORMALIZE_DECFLOAT 516
NOW 517
NULLIF 518
NVL 519
OCTET_LENGTH 520
OVERLAY 521
PARTITION 423
PI 524
POSITION 525
POSSTR 527
POW 529
POWER 529

function (continued)
scalar (continued)

QUANTIZE 530
QUARTER 532
RADIANS 533
RAISE_ERROR 534
RAND 535
RANDOM 535
REAL 536
REGEXP_COUNT 538
REGEXP_EXTRACT 544
REGEXP_INSTR 540
REGEXP_MATCH_COUNT 538
REGEXP_REPLACE 542
REGEXP_SUBSTR 544
REPEAT 546
REPLACE 548
RID 550
RIGHT 551
ROUND 553
ROUND_TIMESTAMP 555
ROWID 558
RPAD 559
RRN 562
RTRIM 563
SCORE 565
SECOND 568
SIGN 570
SIN 571
SINH 572
SMALLINT 573
SOUNDEX 574
SPACE 575
SQRT 576
STRIP 577
STRLEFT 578
STRPOS 579
STRRIGHT 580
SUBSTR 581
SUBSTRING 583
SYS_CONNECT_BY_PATH 761
TABLE_NAME 585
TABLE_SCHEMA 586
TAN 587
TANH 588
TIME 589
TIMESTAMP 590
TIMESTAMP_FORMAT 592
TIMESTAMP_ISO 597
TIMESTAMPDIFF 598
TO_CHAR 601
TO_CLOB 602
TO_DATE 603
TO_NUMBER 604
TO_TIMESTAMP 605
TOTALORDER 606
TRANSLATE 607
TRIM 609
TRIM_ARRAY 611
TRUNC_TIMESTAMP 614
TRUNCATE 612
UCASE 615
UPPER 616
URL_DECODE 617

2032 IBM i: Db2 for i SQL Reference

function (continued)
scalar (continued)

URL_ENCODE 618
VALUE 619
VARBINARY 620
VARBINARY_FORMAT 621
VARCHAR 623
VARCHAR_BIT_FORMAT 628
VARCHAR_FORMAT 629
VARCHAR_FORMAT_BINARY
637
VARCHAR_FORMAT_BIT 637
VARGRAPHIC 638
VERIFY_GROUP_FOR_USER 644
WEEK 646
WEEK_ISO 647
WRAP 648
XMLATTRIBUTES 297, 650
XMLCOMMENT 651
XMLCONCAT 652
XMLDOCUMENT 654
XMLELEMENT 655
XMLFOREST 658
XMLNAMESPACES 661
XMLPARSE 663
XMLPI 664
XMLROW 665
XMLSERIALIZE 667
XMLTEXT 671
XMLVALIDATE 672
XOR 676
XSLTRANSFORM 677
YEAR 682
ZONED 683

sourced 147, 1018
specific name 977
SQL 147, 1028, 1042
table

BASE_TABLE 687
HTTP_DELETE_VERBOSE 689
HTTP_GET_VERBOSE 690
HTTP_PATCH_VERBOSE 691
HTTP_POST 692
HTTP_PUT_VERBOSE 693
JSON_TABLE 694
MQREADALL 704
MQREADALLCLOB 706
MQRECEIVEALL 708
MQRECEIVEALLCLOB 711
XMLTABLE 714

types 147
user-defined 147

FUNCTION clause
ALTER FUNCTION (external scalar) statement 823
ALTER FUNCTION (external table) statement 828
ALTER FUNCTION (SQL scalar) statement 833
ALTER FUNCTION (SQL table) statement 841
COMMENT statement 940, 945
DROP statement 1294
GRANT (function or procedure privileges) statement
1360
LABEL statement 1411
REVOKE (function or procedure privileges) statement
1464

function invocation
syntax 148

function reference
syntax 148

function resolution 57
function-name

description 50
in ALTER FUNCTION (external scalar) statement 823
in ALTER FUNCTION (external table) statement 828
in ALTER FUNCTION (SQL scalar) statement 833
in ALTER FUNCTION (SQL table) statement 841
in CREATE FUNCTION (external scalar) 986
in CREATE FUNCTION (external table) 1006
in CREATE FUNCTION (sourced) 1021
in CREATE FUNCTION (SQL scalar) 1033
in CREATE FUNCTION (SQL table) 1047
in DROP statement 1294

functions
description 147

G
GENERAL clause

CREATE PROCEDURE (external) 1083
DECLARE PROCEDURE 1250
in CREATE FUNCTION (external scalar) 990

GENERAL WITH NULLS clause
CREATE PROCEDURE (external) 1083
DECLARE PROCEDURE 1250
in CREATE FUNCTION (external scalar) 990

GENERATE_UNIQUE function 410
GENERATED

in ALTER TABLE statement 884
in CREATE TABLE statement 1135
in DECLARE GLOBAL TEMPORARY TABLE statement
1233

GET DESCRIPTOR statement
description 1331

GET DIAGNOSTICS statement
description 1356, 1614

GET_BLOB_FROM_FILE function 411
GET_CLOB_FROM_FILE function 412
GET_DBCLOB_FROM_FILE function 413
GET_XML_FILE function 414
GETHINT function 415
GLOBAL DETERMINISTIC clause

in CREATE FUNCTION (external scalar) 991
in CREATE FUNCTION (external table) 1010
in CREATE FUNCTION (SQL scalar) 1034
in CREATE FUNCTION (SQL table) 1048

global variable
CLIENT_HOST 230
CLIENT_IPADDR 231
CLIENT_PORT 232
JOB_NAME 233
PACKAGE_NAME 234
PACKAGE_SCHEMA 235
PACKAGE_VERSION 236
PROCESS_ID 237
ROUTINE_SCHEMA 238
ROUTINE_SPECIFIC_NAME 239
ROUTINE_TYPE 240
SERVER_MODE_JOB_NAME 241
THREAD_ID 242

Index 2033

global variables 137
GO TO clause

WHENEVER statement 1576
GOTO statement 1615
grand-total 765
GRANT (Fnction or Procedure Privileges) statement 1364
GRANT (function or procedure privileges) statement 1357
GRANT (package privileges) statement 1365, 1367
GRANT (schema privileges) statement 1368
GRANT (sequence privileges) statement 1371, 1373
GRANT (table or view privileges) statement 1374, 1375,
1381
GRANT (type privileges) statement 1382, 1384
GRANT (variable privileges) statement 1385, 1387
GRANT (XML schema privileges) statement 1388, 1390
GRAPHIC

data type for ALTER TABLE 881
data type for CREATE FUNCTION (external scalar) 985
data type for CREATE FUNCTION (external table) 1005
data type for CREATE FUNCTION (sourced) 1021
data type for CREATE PROCEDURE (external) 1080
data type for CREATE PROCEDURE (SQL) 1096
data type for CREATE TABLE 1130
data type for CREATE TYPE 1196
data type for DECLARE GLOBAL TEMPORARY TABLE
1231
data type for DECLARE PROCEDURE 1248
function 416

graphic constant
hexadecimal 114

graphic data string
Unicode data 72

graphic string
assignment 93
constants 114
definition 71

GREATEST
scalar function 421

GROUP BY clause
of subselect 763
results with subselect 739

GROUPING
aggregate function 267

grouping sets 764
GROUPING SETS 764

H
HASH function 422
hash partitions

ALTER TABLE statement 897
HASHED_VALUE function 423
HAVING clause

of subselect 776
results with subselect 739

held connection state 39
HEX function 424
hexadecimal constants 113, 115
HEXTORAW

function 425
hierarchical query 753
hierarchical-query-clause 754
HOLD clause

COMMIT statement 950

HOLD clause (continued)
ROLLBACK statement 1483

HOLD LOCATOR statement 1391, 1392
host identifier 47
host structure

description 144
host structure arrays

description 145
host variable

DECLARE VARIABLE statement 1256
description 50, 139
indicator variable 140

host variable followed by an indicator variable
equivalent term 2002

host-identifier
in host variable 50

host-label
description 50
in WHENEVER statement 1576

host-structure-array
in FETCH statement 1314
in INSERT statement 1401
in SET RESULT SETS statement 1534

host-variable
in DECLARE VARIABLE statement 1256

HOUR function 426
HTTP_DELETE

scalar function 427
HTTP_DELETE_VERBOSE

table function 689
HTTP_GET

scalar function 428
HTTP_GET_VERBOSE

table function 690
HTTP_PATCH

scalar function 432
HTTP_PATCH_VERBOSE

table function 691
HTTP_POST

scalar function 433
table function 692

HTTP_PUT
scalar function 434

HTTP_PUT_VERBOSE
table function 693

I
ICU 33
identifiers

in SQL
delimited 46
description 46
host 47
ordinary 46
system 46

limits 44, 55, 56, 1643
IDENTITY

in ALTER TABLE statement 885, 890
in CREATE TABLE statement 1136
in DECLARE GLOBAL TEMPORARY TABLE statement
1234

IDENTITY_VAL_LOCAL function 435
IF statement 1617

2034 IBM i: Db2 for i SQL Reference

IFNULL function 439
ILE RPG

SQLCA (SQL communication area) 1673
SQLDA (SQL descriptor area) 1693

IMMEDIATE
EXECUTE IMMEDIATE statement 1309, 1310

IN ASP clause
CREATE SCHEMA statement 1105

IN clause
CREATE PROCEDURE (external) 1080
DECLARE PROCEDURE statement 1248
in ALTER PROCEDURE (SQL) 861
in CREATE PROCEDURE (SQL) 1096

IN EXCLUSIVE clause
in LOCK TABLE statement 1416

in FETCH statement 1311
IN predicate 207
IN SHARE MODE clause

in LOCK TABLE statement 1416
INCFILE clause

in SET OPTION statement 1525
INCLUDE clause

CREATE INDEX statement 1060
INCLUDE statement 1393, 1394, 1619
INCLUDING clause

in CREATE TABLE statement 1144, 1146
in DECLARE GLOBAL TEMPORARY TABLE statement
1239

INCREMENT BY clause
ALTER TABLE statement 892
CREATE SEQUENCE statement 1110

index
dropping 1295, 1297

INDEX clause
COMMENT statement 940, 946
CREATE INDEX statement 1055
DROP statement 1295
GRANT (table or view privileges) statement 1375
LABEL statement 1412
RENAME statement 1458
REVOKE (table or view privileges) statement 1474
TRANSFER OWNERSHIP statement 1555

index-name
description 50
in CREATE INDEX statement 1058
in DROP statement 1295
in LABEL statement 1412
in RENAME statement 1458
in TRANSFER OWNERSHIP statement 1555

indicator
array 144
variable 144, 1309

INDICATOR
GET DESCRIPTOR statement 1325
SET DESCRIPTOR statement 1507

infix operators 159
INFORMATION_SCHEMA _CATALOG_NAME view 1956
INHERIT SPECIAL REGISTERS clause

in CREATE FUNCTION (external scalar) 992
in CREATE FUNCTION (external table) 1011
in CREATE FUNCTION (SQL scalar) 1036
in CREATE FUNCTION (SQL table) 1050
in CREATE PROCEDURE (external) 1084
in CREATE PROCEDURE (SQL) 1098

INNER JOIN clause
in FROM clause 751

INOUT clause
CREATE PROCEDURE (external) 1081
DECLARE PROCEDURE statement 1248
in ALTER PROCEDURE (SQL) 861
in CREATE PROCEDURE (SQL) 1096

INPUT SEQUENCE clause
in ORDER BY 778

INSENSITIVE clause
in DECLARE CURSOR statement 1216

INSERT clause
GRANT (table or view privileges) statement 1376
REVOKE (table or view privileges) statement 1474

INSERT function 440
insert rule with referential constraint 7
insert rules

check constraint 1402
INSERT statement 1395, 1406
INSTR

function 448
INTEGER

data type for ALTER TABLE 881
data type for CREATE FUNCTION (external scalar) 985
data type for CREATE FUNCTION (external table) 1005
data type for CREATE FUNCTION (sourced) 1021
data type for CREATE PROCEDURE (external) 1080
data type for CREATE PROCEDURE (SQL) 1096
data type for CREATE TABLE 1128
data type for CREATE TYPE 1196
data type for DECLARE GLOBAL TEMPORARY TABLE
1231
data type for DECLARE PROCEDURE 1248

integer constants 112
INTEGER data type 67
INTEGER function 442
interactive entry of SQL statements 814
interactive SQL 3
INTERPRET 444
INTERSECT clause

of fullselect 784
INTO clause

in FETCH statement 1313–1315
in PREPARE statement 1438
in SELECT INTO statement 1490
in VALUES INTO statement 1573

INTO DESCRIPTOR clause
FETCH statement 1313

INTO keyword
CALL statement 933
DESCRIBE CURSORE statement 1272
DESCRIBE INPUT statement 1273
DESCRIBE PROCEDURE statement 1279
DESCRIBE statement 1267
DESCRIBE TABLE statement 1283
EXECUTE statement 1305
INSERT statement 1399

INTO SQL DESCRIPTOR clause
in FETCH statement 1313

IS clause
COMMENT statement 948
LABEL statement 1414

IS JSON
predicate 209

Index 2035

isolation level
comparison 26
CS 26
cursor stability 26
description 23
interfaces 23, 24
NC 26
no commit 26
read stability

phantom rows 25
repeatable read 25
RR 25
RS 25
set using SET TRANSACTION 1543
uncommitted read (UR) 26

ISOLATION LEVEL clause
SET TRANSACTION statement 1543

isolation-clause
in DELETE statement 1261
in INSERT statement 1401
in MERGE statement 1424
in SELECT INTO statement 1490
in UPDATE statement 1566

ITERATE statement 1622

J
jar-name

description 50
JAVA clause

CREATE PROCEDURE (external) 1083
DECLARE PROCEDURE 1250
in CREATE FUNCTION (external scalar) 990

Java Database Connectivity (JDBC) 3
JOB_NAME global variable 233
JOIN clause

in FROM clause 751
JSON path 213
JSON_ARRAY

scalar function 449
JSON_ARRAYAGG

aggregate function 268
JSON_EXISTS

predicate 211
JSON_OBJECT

scalar function 453
JSON_OBJECTAGG

aggregate function 273
JSON_QUERY

scalar function 457
JSON_TABLE

function 694
JSON_TO_BSON

scalar function 462
JSON_VALUE

scalar function 463
JULIAN_DAY function 467

K
KEEP IN MEMORY clause

ALTER TABLE statement 905
CREATE INDEX statement 1062

KEEP IN MEMORY clause (continued)
CREATE TABLE statement 1153, 1242

KEEP LOCKS 799
key

ALTER TABLE statement 892, 893
composite 5
CREATE TABLE statement 1149
foreign 6
parent 6
primary 6
primary index 6
unique 5
unique index 6

KEY_MEMBER
GET DESCRIPTOR statement 1325

KEY_TYPE
GET DESCRIPTOR statement 1322

L
LABEL statement 1407, 1415
labeled duration 165
LABELS

in catalog tables 1407
in USING clause

DESCRIBE statement 1268
DESCRIBE TABLE statement 1284
PREPARE statement 1438

LAG
in OLAP specification 185

LAND function 468
LANGID clause

in SET OPTION statement 1525
LANGUAGE clause

CREATE PROCEDURE (external) 1082
in CREATE FUNCTION (external scalar) 989
in CREATE FUNCTION (external table) 1008
in CREATE FUNCTION (SQL scalar) 1034
in CREATE FUNCTION (SQL table) 1048
in CREATE PROCEDURE (SQL) 1097
in DECLARE PROCEDURE statement 1249

large integers 67
large object (LOB)

data type 73
description 73
file reference variable 143
locator 73
locator variable 142

LAST clause
in FETCH statement 1312

LAST_DAY
function 469

LAST_VALUE
in OLAP specification 187

lateral correlation 135
LCASE function 470
LEAD

in OLAP specification 185
LEAST

scalar function 471
LEAVE statement 1624
LEFT EXCEPTION JOIN clause

in FROM clause 752
LEFT function 472

2036 IBM i: Db2 for i SQL Reference

LEFT JOIN clause
in FROM clause 751

LEFT OUTER JOIN clause
in FROM clause 751

LENGTH
GET DESCRIPTOR statement 1326
SET DESCRIPTOR statement 1507

LENGTH function 474
LEVEL

GET DESCRIPTOR statement 1326
SET DESCRIPTOR statement 1507

LEVEL pseudo column 757
LIKE clause

in CREATE TABLE statement 1144
in DECLARE GLOBAL TEMPORARY TABLE statement
1237

LIKE predicate 215
LIMIT clause 780
limits

database manager 1647–1650
DataLink 1647
datetime 1647
identifier 55, 56, 1643
in SQL 1643
JSON 1646
numeric 1644, 1645
string 1645, 1646
XML 1646

LISTAGG
aggregate function 277

literal
constant

equivalent term 2001
literals 112
LN function 476
LNOT function 477
LOB

data type 73
description 73
file reference variable 143
locator 73
locator variable 142

LOB Locators
assignment 99

LOCAL CHECK OPTION clause
CREATE VIEW statement 1210

LOCATE function 478
LOCATE_IN_STRING

function 480
locator

declaring variable 142
description 73
FREE LOCATOR statement 1318
HOLD LOCATOR statement 1391

LOCK TABLE statement 1416, 1417
locking

COMMIT statement 950
during UPDATE 1570
LOCK TABLE statement 1416
table spaces 1416

locks
exclusive 25
share 25

LOG function 482

LOG10 function 482
logical operator 227
LONG VARBINARY

data type for CREATE TABLE 1166
LONG VARCHAR

data type for CREATE TABLE 1166
LONG VARGRAPHIC

data type for CREATE TABLE 1166
LOOP statement 1625
LOR function 483
LOWER function 484
LPAD function 485
LTRIM function 488

M
mask

dropping 1295
MASK clause

COMMENT statement 946
DROP statement 1295
LABEL statement 1412

mask-name
description 50
in ALTER MASK statement 845
in CREATE MASK statement 1064
in DROP statement 1295
in LABEL statement 1412

materialized query definition
in CREATE TABLE statement 1158

materialized query table
in ALTER TABLE statement 900, 901
in CREATE TABLE statement 1159

MAX
aggregate function 280
scalar function 490

MAX_CARDINALITY function 491
MAXVALUE clause

CREATE SEQUENCE statement 1111
in ALTER TABLE statement 892

media preference
ALTER TABLE statement 905
CREATE INDEX statement 1061
CREATE TABLE statement 1153

media-preference clause
in DECLARE GLOBAL TEMPORARY TABLE statement
1242

MEDIAN
aggregate function 281

memory preference
ALTER TABLE statement 905
CREATE INDEX statement 1062
CREATE TABLE statement 1153, 1242

MERGE statement 1418
MESSAGE_LENGTH

GET DIAGNOSTICS statement 1345
MESSAGE_OCTET_LENGTH

GET DIAGNOSTICS statement 1345
MESSAGE_TEXT

GET DIAGNOSTICS statement 1345
SIGNAL statement 1552

method-id
description 50

MICROSECOND function 492

Index 2037

MIDNIGHT_SECONDS function 493
MIN

aggregate function 282
scalar function 494

MINUTE function 495
MINVALUE clause

CREATE SEQUENCE statement 1111
in ALTER TABLE statement 892

mixed data
description 70
in LIKE predicates 216
in string assignments 94

MOD function 496
MODE

IN EXCLUSIVE MODE clause
LOCK TABLE statement 1416

IN SHARE MODE clause
LOCK TABLE statement 1416

MODIFIES SQL DATA clause
CREATE PROCEDURE (external) 1084
in CREATE FUNCTION (external scalar) 992
in CREATE FUNCTION (external table) 1010
in CREATE FUNCTION (SQL scalar) 1035
in CREATE FUNCTION (SQL table) 1049
in CREATE PROCEDURE (SQL) 1098
in DECLARE PROCEDURE 1251

MONITOR clause
in SET OPTION statement 1526

MONTH function 498
MONTHNAME function 499
MONTHS_BETWEEN function 500
MORE

GET DIAGNOSTICS statement 1340
MQREAD function 502
MQREADALL function 704
MQREADALLCLOB function 706
MQREADCLOB function 504
MQRECEIVE function 506
MQRECEIVEALL function 708
MQRECEIVEALLCLOB function 711
MQRECEIVECLOB function 508
MQSEND function 510
multiplication operator 159
MULTIPLY_ALT

scalar function 512

N
name

exposed 744
for SQL statements 1254
in INCLUDE statement 1393
subselect 738

NAME
GET DESCRIPTOR statement 1326

name qualification
default schema 58

Name scoping 1585
named columns join

in JOIN clause 751
NAMES

in USING clause
DESCRIBE statement 1267
DESCRIBE TABLE statement 1284

NAMES (continued)
in USING clause (continued)

PREPARE statement 1438
NAMING clause

in SET OPTION statement 1526
naming conventions in SQL 48
NC (no commit) 26
NCHAR

data type for CREATE TABLE 1130
NCLOB

data type for CREATE TABLE 1130
nested programs 1577
nested table expression 742
NEW TABLE clause

in FROM clause 747
NEXT clause

in FETCH statement 1312
NEXT_DAY

function 514
nextval-expression

in sequence reference 193
NO ACTION delete rule

in ALTER TABLE statement 894
in CREATE TABLE statement 1150

NO ACTION update rule
in ALTER TABLE statement 894
in CREATE TABLE statement 1151

NO CACHE clause
in ALTER TABLE statement 892

no commit 26
NO COMMIT clause

SET TRANSACTION statement 1543
NO CYCLE clause

in ALTER TABLE statement 892
NO DBINFO clause

CREATE PROCEDURE (external) 1085
in CREATE FUNCTION (external scalar) 992
in CREATE FUNCTION (external table) 1011

NO EXTERNAL ACTION clause
in CREATE FUNCTION (external scalar) 993
in CREATE FUNCTION (external table) 1013
in CREATE FUNCTION (SQL scalar) 1035
in CREATE FUNCTION (SQL table) 1049

NO FINAL CALL clause
in CREATE FUNCTION (external scalar) 994
in CREATE FUNCTION (external table) 1014

NO ORDER clause
in ALTER TABLE statement 892

NO SCRATCHPAD clause
in CREATE FUNCTION (external scalar) 995
in CREATE FUNCTION (external table) 1015

NO SCROLL clause
in DECLARE CURSOR statement 1216

NO SQL clause
CREATE PROCEDURE (external) 1084
in CREATE FUNCTION (external table) 1010
in DECLARE PROCEDURE 1251

NOCYCLE 754
nodegroup

definition 5
in CREATE TABLE statement 1154

nodegroup-name 51
NODENAME function 367
NODENUMBER function 368

2038 IBM i: Db2 for i SQL Reference

NONE clause
SET RESULT SETS statement 1535

nonexecutable statement 812, 813
nonrepeatable read 28
normalization

CREATE TABLE statement 1133
NORMALIZE_DECFLOAT function 516
NOT DETERMINISTIC clause

CREATE PROCEDURE (external) 1083
in CREATE FUNCTION (external scalar) 991
in CREATE FUNCTION (external table) 1010
in CREATE FUNCTION (SQL scalar) 1034
in CREATE FUNCTION (SQL table) 1048
in CREATE PROCEDURE (SQL) 1097

NOT FENCED clause
CREATE PROCEDURE (external) 1084
in CREATE FUNCTION (external scalar) 994
in CREATE FUNCTION (external table) 1013
in CREATE FUNCTION (SQL scalar) 1036
in CREATE FUNCTION (SQL table) 1050
in CREATE PROCEDURE (SQL) 1099

NOT FOUND clause
WHENEVER statement 1576

NOT LOGGED clause
in DECLARE GLOBAL TEMPORARY TABLE statement
1241

NOT LOGGED INITIALLY
ALTER TABLE statement 902
CREATE TABLE statement 1153

NOT NULL clause
ALTER TABLE statement 887
CREATE TABLE statement 1140
in DECLARE GLOBAL TEMPORARY TABLE statement
1237

NOT PARTITIONED clause
CREATE INDEX statement 1060

NOT VOLATILE
ALTER TABLE statement 905
CREATE TABLE statement 1153

NOW function 517
NTH_VALUE

in OLAP specification 187
NTILE

in OLAP specification 185
NUL-terminated string variables allowed 69
NULL

in CALL statement 933
in CAST specification 178
in SET transition-variable statement
1547
in SET variable statement 1549
in UPDATE statement 1565
in VALUES INTO statement 1573
in XMLCAST specification 197
keyword SET NULL delete rule

description 7
in ALTER TABLE statement 894
in CREATE TABLE statement 1150

keyword SET NULL update rule
in ALTER TABLE statement 894

NULL clause
ALTER TABLE statement 883
in CALL statement 932
in INSERT statement 1401

NULL clause (continued)
in MERGE statement 1423

NULL predicate 219
null value in SQL

assignment 90
defined 66
in grouping expressions 763
in result columns 739
specified by indicator variable 140

null value, SQL
assigned to variable 1490

NULLABLE
GET DESCRIPTOR statement 1326

NULLIF function 518
NULLS FIRST

in CREATE TABLE statement 1155
NULLS FIRST clause

in OLAP specification 186
NULLS LAST

in CREATE TABLE statement 1155
NULLS LAST clause

in OLAP specification 186
NUMBER

GET DIAGNOSTICS statement 1341
number of hash partitions

in CREATE TABLE statement 1157
number of items in a select list

equivalent term 2002
numbers

default decimal separator character 68
precision 67

numeric
assignments 90
comparisons 99
data type 66
data types

default decimal separator character 68
string representation 68

limits 1644, 1645
NUMERIC

data type for ALTER TABLE 881
data type for CREATE FUNCTION (external scalar) 985
data type for CREATE FUNCTION (external table) 1005
data type for CREATE FUNCTION (sourced) 1021
data type for CREATE PROCEDURE (external) 1080
data type for CREATE PROCEDURE (SQL) 1096
data type for CREATE TABLE 1129
data type for CREATE TYPE 1196
data type for DECLARE GLOBAL TEMPORARY TABLE
1231
data type for DECLARE PROCEDURE 1248

NVARCHAR
data type for CREATE TABLE 1130

NVL function 519

O
obfuscating

function 648, 724
procedure 648, 724
trigger 648, 724

object table 133
OCTET_LENGTH

GET DESCRIPTOR statement 1326

Index 2039

OCTET_LENGTH function 520
OFFSET clause

of select-statement 779
offset-clause

in DELETE statement 1261
in UPDATE statement 1566

OLAP specifications 181
OLE DB 3
ON clause

CREATE INDEX statement 1058
ON COMMIT clause

in DECLARE GLOBAL TEMPORARY TABLE statement
1241

ON PACKAGE clause
GRANT (package privileges) statement 1366
REVOKE (package privileges) statement 1467

ON ROLLBACK clause
in DECLARE GLOBAL TEMPORARY TABLE statement
1241

ON SCHEMA clause
GRANT (schema privileges) statement 1368
REVOKE (schema privileges) statement 1469

ON SEQUENCE clause
GRANT (sequence privileges) statement 1372
REVOKE (sequence privileges) statement 1471

ON TABLE clause
GRANT (table or view privileges) statement 1376
REVOKE (table or view privileges) statement 1474

ON TYPE clause
GRANT (type privileges) statement 1383
REVOKE (type privileges) statement 1477

ON VARIABLE clause
GRANT (variable privileges) statement 1386
REVOKE (variable privileges) statement 1479

opaque terms 1997
open state of cursor 1315
OPEN statement 1429, 1434
operand

date and time 165
decimal 160
decimal floating-point 161
distinct type 163
floating point 161
integer 159, 160
numeric 160

operation
assignment 89, 93, 95, 96
comparison 99, 104
description 89

operators
arithmetic 159

OPTIMIZE clause 798
OPTLOB clause

in SET OPTION statement 1526
OR

truth table 227
OR REPLACE

in CREATE TABLE statement 1127
OR REPLACE clause

in CREATE ALIAS statement 971
in CREATE FUNCTION (external scalar) 986
in CREATE FUNCTION (external table) 1006
in CREATE FUNCTION (SQL scalar) 1032
in CREATE FUNCTION (SQL table) 1046

OR REPLACE clause (continued)
in CREATE PROCEDURE (external) 1080
in CREATE PROCEDURE (SQL) 1096
in CREATE SEQUENCE statement 1110
in CREATE TRIGGER statement 1175
in CREATE VARIABLE statement 1203
in CREATE VIEW statement 1207

ORDER BY clause
of select-statement 777

ORDER clause
CREATE SEQUENCE statement 1112
in ALTER TABLE statement 892

ORDER OF clause
in OLAP specification 187
in ORDER BY 778

order of evaluation 171
order-by-clause

in DELETE statement 1261
in OLAP specification 186
in UPDATE statement 1566

ordinary identifier
in SQL 46
in system names 46

OUT clause
CREATE PROCEDURE (external) 1080
DECLARE PROCEDURE statement 1248
in ALTER PROCEDURE (SQL) 861
in CREATE PROCEDURE (SQL) 1096

outer join 751
outer reference

equivalent term 2001
OUTPUT clause

in SET OPTION statement 1526
OVERLAY function 521
OVRDBF (Override with Data Base file) 59
ownership 16

P
package

description 12
dropping 1295
in DRDA 36

PACKAGE clause
COMMENT statement 940
DROP statement 1295
LABEL statement 1412

package view
SYSPACKAGE 1777
SYSPACKAGEAUTH 1779
SYSPACKAGESTAT 1780
SYSPACKAGESTMTSTAT 1786

PACKAGE_NAME global variable 234
PACKAGE_SCHEMA global variable 235
PACKAGE_VERSION global variable 236
package-name

in DROP statement 1295
in LABEL statement 1412
in REVOKE (package privileges) statement 1467

PAGESIZE clause
CREATE INDEX statement 1060

PARAMETER clause
COMMENT statement 946

parameter marker

2040 IBM i: Db2 for i SQL Reference

parameter marker (continued)
in EXECUTE statement 1305
in OPEN statement 1430
in PREPARE statement 1442
replacement 1306, 1432
rules 1442
typed 1442
untyped 1442
usage in expressions, predicates and functions 1442

PARAMETER_MODE
GET DESCRIPTOR statement 1326
GET DIAGNOSTICS statement 1345

PARAMETER_NAME
GET DIAGNOSTICS statement 1345

PARAMETER_ORDINAL_POSITION
GET DESCRIPTOR statement 1326
GET DIAGNOSTICS statement 1346

PARAMETER_SPECIFIC_CATALOG
GET DESCRIPTOR statement 1326

PARAMETER_SPECIFIC_NAME
GET DESCRIPTOR statement 1326

PARAMETER_SPECIFIC_SCHEMA
GET DESCRIPTOR statement 1326

parameter-marker
in CAST specification 178
in XMLCAST specification 197
typed parameter marker 178, 197

parameter-name
CREATE PROCEDURE (external) 1081
description 51
in ALTER FUNCTION (SQL scalar) 834
in ALTER FUNCTION (SQL table) 842
in ALTER PROCEDURE (SQL) 861
in CREATE PROCEDURE (SQL) 1096
in DECLARE PROCEDURE 1248

PARAMETERS view 1957
parent key 6
parent row 6
parent table 6
parentheses

with EXCEPT 785
with INTERSECT 785
with UNION 785

partition by hash
in CREATE TABLE statement 1157

partition by range
in CREATE TABLE statement 1155

PARTITION function 423
partition name

ALTER TABLE statement 897, 898
in CREATE TABLE statement 1155

partition-by-clause
in OLAP specification 186

PARTITIONED clause
CREATE INDEX statement 1060

partitioning clause
ALTER TABLE statement 897

partitioning key
definition 5
in CREATE TABLE statement 1154, 1155, 1157

password
in CONNECT (type 1) statement 963
in CONNECT (type 2) statement 968

path

path (continued)
function resolution 150

PERCENT_RANK
in OLAP specification 186

PERCENTILE_CONT
aggregate function 283

PERCENTILE_DISC
aggregate function 285

period specification
FROM clause 745

permission
dropping 1295

PERMISSION clause
COMMENT statement 946
DROP statement 1295
LABEL statement 1412

permission-name
description 51
in ALTER PERMISSION statement 847
in CREATE PERMISSION statement 1070
in DROP statement 1295
in LABEL statement 1412

phantom row 28
PI function 524
PIPE statement 1626
PL/I

application program
varying-length string variables 69

host structure arrays 145
host variable 139, 144
SQLCA (SQL communication area) 1671
SQLDA (SQL descriptor area) 1692

POSITION function 525
POSSTR function 527
POW function 529
POWER function 529
precedence

level 171
operation 171

PRECISION
GET DESCRIPTOR statement 1326
SET DESCRIPTOR statement 1507

precision of a number 66
predicate

basic 199
BETWEEN 203
description 198
DISTINCT 204
EXISTS 206
IN 207
IS JSON 209
JSON_EXISTS 211
LIKE 215
NULL 219
quantified 201
REGEXP_LIKE 220
trigger event 226

prefix operator 159
PREPARE statement 1435, 1452
prepared SQL statement

dynamically prepared by PREPARE 1435, 1451
executing 1304, 1308
identifying by DECLARE 1254
obtaining information

Index 2041

prepared SQL statement (continued)
obtaining information (continued)

by INTO with PREPARE 1268
with DESCRIBE 1266
with SQLDA 1675

obtaining input information
with DESCRIBE INPUT 1273

SQLDA provides information 1675
statements allowed 1652

PRESERVE ROWS
ALTER TABLE statement 898

prevval-expression
in sequence reference 193

primary index 6
primary key 6
PRIMARY KEY clause

ALTER TABLE statement 888, 893
CREATE TABLE statement 1140, 1149

PRIOR clause
in FETCH statement 1312

PRIOR unary operator 759
privileges

description 15
procedure

choosing parameter data types 1074
commenting 947
CREATE_WRAPPED 724
creating 1074, 1075, 1090
defining 1244
dropping 1297
granting 1362
labeling 1413
locators 1074
obfuscating 648, 724
obtaining information

with DESCRIBE PROCEDURE 1276
RELEASE statement 1455
revoking 1466
ROLLBACK 1482
signature 1074
specific name 1074

PROCEDURE clause
ALTER PROCEDURE (external) statement 852
ALTER PROCEDURE (SQL) statement 860
COMMENT statement 940
DROP statement 1296

Procedure resolution 63
procedure-name

CREATE PROCEDURE (external) 1080
description 51
in ALTER PROCEDURE (external) statement 852
in ALTER PROCEDURE (SQL) statement 860
in CALL statement 931
in CREATE PROCEDURE (SQL) 1096
in DECLARE PROCEDURE 1248
in DROP statement 1296

procedures
SET CONNECTION statement 1492
XDBDECOMPXML 726
XSR_ADDSCHEMADOC 728
XSR_COMPLETE 730
XSR_REGISTER 732
XSR_REMOVE 734

PROCESS_ID global variable 237

PROGRAM TYPE MAIN clause
CREATE PROCEDURE (external) 1085
in CREATE FUNCTION (external scalar) 994
in CREATE FUNCTION (external table) 1014
in CREATE PROCEDURE (SQL) 1099
in DECLARE PROCEDURE 1251

PROGRAM TYPE SUB clause
CREATE PROCEDURE (external) 1085
in CREATE FUNCTION (external scalar) 994
in CREATE FUNCTION (external table) 1014
in CREATE PROCEDURE (SQL) 1099
in DECLARE PROCEDURE 1251

program view
SYSPROGRAMSTAT 1821
SYSPROGRAMSTMTSTAT 1831

pseudo column
CONNECT_BY_ISCYCLE 757
CONNECT_BY_ISLEAF 757
LEVEL 757

PUBLIC clause
GRANT (table or view privileges) statement 1376
in GRANT (function or procedure privileges) statement
1362
in GRANT (package privileges) statement 1366
in GRANT (schema privileges) statement 1369
in GRANT (sequence privileges) statement 1372
in GRANT (type privileges) statement 1383
in GRANT (variable privileges) statement 1386
in GRANT (XML schema privileges) statement 1389
in REVOKE (table or view privileges) statement 1474
REVOKE (function or procedure privileges) statement
1466
REVOKE (package privileges) statement 1468
REVOKE (schema privileges) statement 1470
REVOKE (sequence privileges) statement 1472
REVOKE (type privileges) statement 1477
REVOKE (variable privileges) statement 1479
REVOKE (XML schema privileges) statement 1481

Q
qualification of column names 131
qualifier

reserved 2003
quantified predicate 201
QUANTIZE function 530
QUARTER function 532
query

expression
equivalent term 2001

specification
equivalent term 2001

question mark (?) 1305

R
RADIANS function 533
RAISE_ERROR function 534
RAND function 535
RANDOM function 535
range partitions

ALTER TABLE statement 897
RANK

2042 IBM i: Db2 for i SQL Reference

RANK (continued)
in OLAP specification 185

RATIO_TO_REPORT
in OLAP specification 187

RCDFMT clause
CREATE INDEX statement 1061
CREATE TABLE statement 1153
CREATE VIEW statement 1211
in DECLARE GLOBAL TEMPORARY TABLE statement
1241

RDBCNNMTH clause
in SET OPTION statement 1526

READ clause
GRANT (variable privileges) statement 1386
REVOKE (variable privileges) statement 1478

READ COMMITTED clause
SET TRANSACTION statement 1543

read stability 25
READ UNCOMMITTED clause

SET TRANSACTION statement 1543
read-only-clause 797
READS SQL DATA clause

CREATE PROCEDURE (external) 1084
in CREATE FUNCTION (external scalar) 991
in CREATE FUNCTION (external table) 1010
in CREATE FUNCTION (SQL scalar) 1035
in CREATE FUNCTION (SQL table) 1049
in CREATE PROCEDURE (SQL) 1098
in DECLARE PROCEDURE 1251

REAL
data type for ALTER TABLE 881
data type for CREATE FUNCTION (external scalar) 985
data type for CREATE FUNCTION (external table) 1005
data type for CREATE FUNCTION (sourced) 1021
data type for CREATE PROCEDURE (external) 1080
data type for CREATE PROCEDURE (SQL) 1096
data type for CREATE TABLE 1129
data type for CREATE TYPE 1196
data type for DECLARE GLOBAL TEMPORARY TABLE
1231
data type for DECLARE PROCEDURE 1248

REAL function 536
recovery 17
recursive

common table expression 791
query 791
view 1207

RECURSIVE clause
CREATE VIEW statement 1207

REFERENCES clause
ALTER TABLE statement 888, 893
CREATE TABLE statement 1141, 1150
GRANT (table or view privileges) statement 1376
REVOKE (table or view privileges) statement 1474

referential constraint 5, 6
referential cycle 6
referential integrity

delete rules 1262
update rules 1567

REFERENTIAL_CONSTRAINTS view 1961
referential-constraint clause

of ALTER TABLE statement 893
of CREATE TABLE statement 1149

REFRESH TABLE statement 1453, 1454

REGEXP_COUNT function 538
REGEXP_EXTRACT function 544
REGEXP_INSTR function 540
REGEXP_LIKE predicate 220
REGEXP_MATCH_COUNT function 538
REGEXP_REPLACE function 542
REGEXP_SUBSTR function 544
REGR_AVGX

aggregate function 287
REGR_AVGY

aggregate function 287
REGR_COUNT

aggregate function 287
REGR_ICPT

aggregate function 287
REGR_INTERCEPT

aggregate function 287
REGR_R2

aggregate function 287
REGR_SLOPE

aggregate function 287
REGR_SXX

aggregate function 287
REGR_SXY

aggregate function 287
REGR_SYY

aggregate function 287
regression functions

aggregate function 287
related information 2009
relational database 1
RELATIVE clause

in FETCH statement 1220, 1312
RELEASE SAVEPOINT statement 1457
RELEASE statement 1455, 1456
release-pending connection state 39
remote unit of work

mixed environment 1652
RENAME statement 1458, 1460
renaming SQL objects 1458
REPEAT function 546
REPEAT statement 1628
repeatable read 25
REPEATABLE READ clause

SET TRANSACTION statement 1543
REPLACE clause

in ALTER FUNCTION (SQL scalar) 834
in ALTER FUNCTION (SQL table) 842
in ALTER PROCEDURE (SQL) 861

REPLACE function 548
reserved

qualifiers 2003
schema names 2003
words 2003

reserved words 46, 2003
RESET clause

CONNECT (type 1) statement 963
CONNECT (type 2) statement 968

RESIGNAL statement 1630
RESTART clause

in ALTER TABLE statement 892
RESTRICT clause

DROP statement 1295, 1297–1299
in ALTER FUNCTION (external scalar) 824

Index 2043

RESTRICT clause (continued)
in ALTER FUNCTION (external table) 829
in ALTER FUNCTION (SQL scalar) 834
in ALTER FUNCTION (SQL table) 842
in DROP COLUMN of ALTER TABLE statement 892
in DROP constraint of ALTER TABLE statement 896

RESTRICT delete rule
description 7
in ALTER TABLE statement 894
in CREATE TABLE statement 1150

RESTRICT update rule
in ALTER TABLE statement 894
in CREATE TABLE statement 1151

result
equivalent term 2002

result columns of subselect 740
RESULT SETS clause

CREATE PROCEDURE (external) 1084
in CREATE PROCEDURE (SQL) 1098
in DECLARE PROCEDURE 1249

result specification
equivalent term 2001

result table
temporary 1220

result table created by a group-by or having clause
equivalent term 2002

result view created by a group-by or having clause
equivalent term 2002

result-expression
in CASE specification 174

RETURN statement 1634
RETURN_STATUS

GET DIAGNOSTICS statement 1339
RETURNED_LENGTH

GET DESCRIPTOR statement 1327
RETURNED_OCTET_LENGTH

GET DESCRIPTOR statement 1327
RETURNED_SQLSTATE

GET DIAGNOSTICS statement 1346
RETURNS clause

in ALTER FUNCTION (SQL scalar) 834
in ALTER FUNCTION (SQL table) 842
in CREATE FUNCTION (external scalar) 987
in CREATE FUNCTION (external table) 1007
in CREATE FUNCTION (SQL scalar) 1034
in CREATE FUNCTION (SQL table) 1048

RETURNS NULL ON NULL INPUT clause
in CREATE FUNCTION (external scalar) 992
in CREATE FUNCTION (external table) 1011
in CREATE FUNCTION (SQL scalar) 1035
in CREATE FUNCTION (SQL table) 1049

REVOKE (function or procedure privileges) statement 1461,
1466
REVOKE (package privileges) statement 1467, 1468
REVOKE (schema privileges) statement 1469
REVOKE (sequence privileges) statement 1471, 1472
REVOKE (table or view privileges) statement 1473
REVOKE (type privileges) statement 1476, 1477
REVOKE (variable privileges) statement 1478
REVOKE (XML schema privileges) statement 1480, 1481
REXX

host variable 139
RID function 550
RIGHT EXCEPTION JOIN clause

RIGHT EXCEPTION JOIN clause (continued)
in FROM clause 752

RIGHT function 551
RIGHT JOIN clause

in FROM clause 751
RIGHT OUTER JOIN clause

in FROM clause 751
rollback

definition 19, 20
description 19, 20

ROLLBACK
effect on SET TRANSACTION 1545

ROLLBACK statement 1482, 1485
ROLLUP 765
ROUND function 553
ROUND_TIMESTAMP function 555
routine 12
routine view

SYSROUTINEAUTH 1834
ROUTINE_CATALOG

GET DIAGNOSTICS statement 1346
ROUTINE_NAME

GET DIAGNOSTICS statement 1346
ROUTINE_PRIVILEGES view 1971
ROUTINE_SCHEMA

GET DIAGNOSTICS statement 1346
ROUTINE_SCHEMA global variable 238
ROUTINE_SPECIFIC_NAME global variable 239
ROUTINE_TYPE global variable 240
ROUTINES view 1962
row

deleting 1259
dependent 6
descendent 6
inserting 1395
parent 6
self-referencing 6

ROW BEGIN
in ALTER TABLE statement 890

row change expression 192
ROW clause

in UPDATE statement 1564
ROW END

in ALTER TABLE statement 890
Row ID

assignment 97
comparison 103
data type

description 82
ROW_COUNT

GET DIAGNOSTICS statement 1341
ROW_NUMBER

in OLAP specification 186
row-fullselect

in SET transition-variable statement
1547
in SET variable statement 1549
in UPDATE statement 1565
in VALUES INTO statement 1573

row-storage-area
in FETCH statement 1315

row-value-expression 198
ROWID

data type for ALTER TABLE 881

2044 IBM i: Db2 for i SQL Reference

ROWID (continued)
data type for CREATE FUNCTION (external scalar) 985
data type for CREATE FUNCTION (external table) 1005
data type for CREATE FUNCTION (sourced) 1021
data type for CREATE PROCEDURE (external) 1080
data type for CREATE PROCEDURE (SQL) 1096
data type for CREATE TABLE 1132
data type for CREATE TYPE 1196
DECLARE PROCEDURE statement 1248

ROWID function 558
ROWS clause

INSERT statement 1401
RPAD function 559
RPG

application program
host variable 144
varying-length string variables not allowed 69

host structure arrays 145
host variable 139
integers 67

RPG/400
SQLCA (SQL communication area) 1672

RR (repeatable read) 25
RRN function 562
RS (read stability) 25
RTRIM function 563
rules

names in SQL 48
schema name generation 1106
system name generation 1166
table name generation 1167

run-time authorization ID
description 61

S
savepoint

RELEASE SAVEPOINT statement 1457
ROLLBACK statement 1482
SAVEPOINT statement 1486

SAVEPOINT LEVEL clause
CREATE PROCEDURE (external) 1087
CREATE PROCEDURE (SQL) 1099

SAVEPOINT statement 1486, 1487
savepoint–name

in RELEASE SAVEPOINT statement 1457
in SAVEPOINT statement 1486

SBCS data 70
scalar function 147, 300
scalar-fullselect

definition 165
scalar-subselect

definition 165
SCALE

GET DESCRIPTOR statement 1327
SET DESCRIPTOR statement 1507

scale of data
comparisons in SQL 99
conversion of numbers in SQL 91
determined by SQLLEN variable 1681
in results of arithmetic operations 160
in SQL 67

schema
description 4

schema (continued)
dropping 1297

SCHEMA clause
DROP statement 1297

schema name generation
rules 1106

schema view
SYSSCHEMAAUTH 1842

SCHEMA_NAME
GET DIAGNOSTICS statement 1347
SIGNAL statement 1552

schema-name
definition 51
in CREATE SCHEMA statement 1104
in DROP statement 1297
in REVOKE (schema privileges) statement 1469
reserved names 2003

SCHEMATA view 1972
SCORE function

example 1993
SCRATCHPAD clause

in CREATE FUNCTION (external scalar) 995
in CREATE FUNCTION (external table) 1015

SCROLL clause
in DECLARE CURSOR statement 1217

SEARCH BREADTH FIRST clause
of recursive common-table-expression 791

search condition
description 227
in JOIN clause 750
order of evaluation 228
with DELETE 1260
with HAVING 776
with UPDATE 1565
with WHERE 762

SEARCH DEPTH FIRST clause
of recursive common-table-expression 791

search-condition
in CASE specification 174
in UPDATE statement 1565

searched-when-clause
in CASE specification 174

SECOND function 568
SELECT clause

as syntax component 737
GRANT (table or view privileges) statement 1376
REVOKE (table or view privileges) statement 1474

SELECT INTO statement 1489, 1491
select list

application 739
notation 737

SELECT statement
fullselect 783
subselect 736

select-statement
in DECLARE CURSOR statement 1218

self-referencing row 6
self-referencing table 6
SENSITIVE clause

in DECLARE CURSOR statement 1216
sequence

dropping 1297
SEQUENCE clause

COMMENT statement 947

Index 2045

SEQUENCE clause (continued)
DROP statement 1297
LABEL statement 1413

sequence reference
NEXT VALUE 193
PREVIOUS VALUE 193

sequence view
SYSSEQUENCEAUTH 1844
SYSXSROBJECTAUTH 1885

sequence-name
description 52
in ALTER SEQUENCE statement 865
in CREATE SEQUENCE statement 1110
in DROP statement 1297
in LABEL statement 1413
in REVOKE (sequence privileges) statement 1471
in sequence reference 193

sequences 14
SEQUENCES view 1973
SERIALIZABLE clause

SET TRANSACTION statement 1544
SERVER_MODE_JOB_NAME global variable 241
SERVER_NAME

GET DIAGNOSTICS statement 1347
server-name

description 52
in CONNECT (type 1) statement 962
in CONNECT (type 2) statement 967
in DISCONNECT statement 1286
in RELEASE statement 1455
in SET CONNECTION statement 1492

SESSION_USER special register 130, 1532
SET clause

UPDATE statement 1564
SET CONNECTION statement 1492, 1494
SET CURRENT DEBUG MODE statement 1495
SET CURRENT DECFLOAT ROUNDING MODE statement 1497
SET CURRENT DEGREE statement 1499
SET CURRENT IMPLICIT XMLPARSE OPTION statement
1502
SET CURRENT TEMPORAL SYSTEM_TIME statement 1504
SET DATA TYPE clause

ALTER TABLE statement 889
SET DEFAULT delete rule

description 7
in ALTER TABLE statement 894
in CREATE TABLE statement 1150

SET DEFAULT update rule
in ALTER TABLE statement 894

SET default-clause
ALTER TABLE statement 890

SET DESCRIPTOR statement
description 1509

SET ENCRYPTION PASSWORD statement 1510
set function

equivalent term 2001
SET GENERATED ALWAYS clause

ALTER TABLE statement 890
SET GENERATED BY DEFAULT clause

ALTER TABLE statement 890
SET IMPLICITLY HIDDEN clause

ALTER TABLE statement 890
SET NOT HIDDEN clause

ALTER TABLE statement 890

SET NOT NULL clause
ALTER TABLE statement 890

SET NULL delete rule
description 7
in ALTER TABLE statement 894
in CREATE TABLE statement 1150

SET NULL update rule
in ALTER TABLE statement 894

set operation 785
SET OPTION statement 1512, 1530
SET PATH statement 1531
SET RESULT SETS statement 1534, 1536
SET SCHEMA statement 1537
SET SESSION AUTHORIZATION statement

restrictions 1541
scope 1542

SET TRANSACTION statement 1543, 1545
SET transition-variable statement 1546
SET variable statement 1548
SHARE

IN SHARE MODE clause
LOCK TABLE statement 1416

share locks 25
SHARE MODE clause

in LOCK TABLE statement 1416
shift-in character

not truncated by assignments 94
SIGN function 570
SIGNAL statement 1551, 1637
simple-when-clause

in CASE specification 174
SIN function 571
single row select 1489
single-byte character

in LIKE predicates 216
single-precision floating-point 67
SINH function 572
SKIP LOCKED DATA 801
small integers 67
SMALLINT

data type for ALTER TABLE 881
data type for CREATE FUNCTION (external scalar) 985
data type for CREATE FUNCTION (external table) 1005
data type for CREATE FUNCTION (sourced) 1021
data type for CREATE PROCEDURE (external) 1080
data type for CREATE PROCEDURE (SQL) 1096
data type for CREATE TABLE 1128
data type for CREATE TYPE 1196
data type for DECLARE GLOBAL TEMPORARY TABLE
1231
data type for DECLARE PROCEDURE 1248

SMALLINT data type 67
SMALLINT function 573
SOME quantified predicate 201
sort sequence 33
sort-key-expression

in OLAP specification 186
SOUNDEX function 574
sourced

function 1018
SPACE function 575
special register

CLIENT ACCTNG 121
CLIENT APPLNAME 121

2046 IBM i: Db2 for i SQL Reference

special register (continued)
CLIENT PROGRAMID 121
CLIENT USERID 122
CLIENT WRKSTNNAME 122
CURRENT CLIENT_ACCTNG 121
CURRENT CLIENT_APPLNAME 121
CURRENT CLIENT_PROGRAMID 121
CURRENT CLIENT_USERID 122
CURRENT CLIENT_WRKSTNNAME 122
CURRENT DATE 123
CURRENT DEBUG MODE 123
CURRENT DECFLOAT ROUNDING MODE 124
CURRENT DEGREE 125
CURRENT IMPLICIT XMLPARSE OPTION 125
CURRENT PATH 126
CURRENT SCHEMA 127
CURRENT SERVER 127
CURRENT TEMPORAL SYSTEM_TIME 127
CURRENT TIME 128
CURRENT TIMESTAMP 129
CURRENT TIMEZONE 129
CURRENT USER 129
CURRENT_DATE 123
CURRENT_PATH 126
CURRENT_SERVER 127
CURRENT_TIME 128
CURRENT_TIMESTAMP 129
CURRENT_TIMEZONE 129
in CALL statement 934
SESSION_USER 130
SYSTEM_USER 130
USER 130

SPECIFIC clause
COMMENT statement 946, 947
CREATE PROCEDURE (external) 1087
DROP statement 1295, 1297
GRANT statement 1361, 1362
in CREATE FUNCTION (external scalar) 991
in CREATE FUNCTION (external table) 1010
in CREATE FUNCTION (sourced) 1023
in CREATE FUNCTION (Sourced) 1026
in CREATE FUNCTION (SQL scalar) 1034
in CREATE FUNCTION (SQL table) 1048
in CREATE PROCEDURE (SQL) 1097
in DECLARE PROCEDURE 1250
LABEL statement 1412, 1413
REVOKE statement 1465, 1466

SPECIFIC_NAME
GET DIAGNOSTICS statement 1347

specific-name
description 52
in COMMENT statement 946, 947
in CREATE FUNCTION (Sourced) 1026
in DROP statement 1295, 1297
in GRANT statement 1361, 1362
in LABEL statement 1412, 1413
in REVOKE statement 1465, 1466

SQL
function 1028, 1042

SQL (structured query language)
dynamic SQL 2
extended dynamic SQL 2
static SQL 2

SQL (Structured Query language)

SQL (Structured Query language) (continued)
interactive SQL facility 3

SQL (Structured Query Language)
.NET 4
assignment operation 89
assignments and comparisons 89
binary strings 72
bind 2
call level interface (CLI) 3
character strings 69
characters 43
comparison operation 89
constants 112
data types 65
dates and times 74, 75
dynamic

statements allowed 1652
Embedded SQL for Java (SQLJ) 3
escape character 46
identifiers 46
Java Database Connectivity (JDBC) 3
large object (LOB) 73
limits 1643
naming conventions 48
null value 66
numbers 66
OLE DB 3
Open Database Connectivity (ODBC) 3
tokens 44
variable names used 48

SQL clause
CREATE PROCEDURE (external) 1082
DECLARE PROCEDURE 1249
in CREATE FUNCTION (external scalar) 989
in CREATE FUNCTION (external table) 1009

SQL conditions 1582
SQL control statements 1579
SQL cursors 1583
SQL labels 1584
SQL parameters 1581
SQL path

function resolution 150
SET PATH 1531
SET SCHEMA 1537

SQL procedural language 1579
SQL server mode

threads 22
SQL statement

CREATE FUNCTION (external scalar) 999
CREATE FUNCTION (sourced) 1018
CREATE FUNCTION (SQL table) 1042
CREATE PROCEDURE (external) 1075
CREATE PROCEDURE (SQL) 1090

SQL statements
ALLOCATE CURSOR 817
ALLOCATE DESCRIPTOR 818
ALTER FUNCTION (external scalar) 820
ALTER FUNCTION (external table) 825
ALTER FUNCTION (SQL scalar) 830
ALTER FUNCTION (SQL table) 837
ALTER MASK 845
ALTER PERMISSION 847
ALTER PROCEDURE (external) 849
ALTER PROCEDURE (SQL) 854

Index 2047

SQL statements (continued)
ALTER SEQUENCE 864
ALTER TABLE 869, 919
ALTER TRIGGER 920
ASSOCIATE LOCATORS 923
BEGIN DECLARE SECTION 928, 929
CALL 930, 936
characteristics 1651
CLOSE 938, 939
COMMENT 940, 949
COMMIT 950, 952
compound statement 953
CONNECT (type 1) 962, 966
CONNECT (type 2) 967, 970
CONNECT differences 1662
CREATE ALIAS 971, 974
CREATE FUNCTION (external scalar) 980
CREATE FUNCTION (external table) 1000
CREATE FUNCTION (SQL scalar) 1028
CREATE INDEX 1055
CREATE MASK 1064
CREATE PERMISSION 1070
CREATE PROCEDURE (SQL) 1102
CREATE SCHEMA 1103, 1107
CREATE SEQUENCE 1108
CREATE TABLE 1115
CREATE TRIGGER 1170
CREATE TYPE (array) 1188
CREATE TYPE (distinct) 1193
CREATE VARIABLE 1200
CREATE VIEW 1206, 1213
data access classification 1655
DEALLOCATE DESCRIPTOR 1214
DECLARE CURSOR 1215, 1222
DECLARE GLOBAL TEMPORARY TABLE 1223
DECLARE GLOBAL TEMPORARY TABLE statement 1243
DECLARE PROCEDURE 1244, 1253
DECLARE STATEMENT 1254, 1255
DECLARE VARIABLE 1256, 1258
DELETE 1259, 1265
DESCRIBE 1266, 1270
DESCRIBE CURSOR 1271, 1272
DESCRIBE CURSOR statement 1272
DESCRIBE INPUT 1273, 1275
DESCRIBE INPUT statement 1275
DESCRIBE PROCEDURE 1276, 1281
DESCRIBE PROCEDURE statement 1281
DESCRIBE TABLE 1282, 1285
DESCRIBE TABLE statement 1285
DISCONNECT 1286, 1287
DROP 1288, 1302
END DECLARE SECTION 1303
EXECUTE 1304, 1308
EXECUTE IMMEDIATE 1309, 1310
EXECUTE IMMEDIATE statement 1310
FETCH 1311, 1317
FREE LOCATOR 1318
GET DESCRIPTOR 1319, 1331
GET DIAGNOSTICS 1332, 1356, 1614
GRANT (function or procedure privileges) 1357, 1364
GRANT (package privileges) 1365, 1367
GRANT (schema privileges) 1368
GRANT (sequence privileges) 1371, 1373
GRANT (table or view privileges) 1374, 1381

SQL statements (continued)
GRANT (type privileges) 1382, 1384
GRANT (variable privileges) 1385, 1387
GRANT (XML schema privileges) 1388, 1390
HOLD LOCATOR 1391, 1392
INCLUDE 1393, 1394
INSERT 1395, 1406
LABEL 1407, 1415
LOCK TABLE 1416, 1417
MERGE 1418
names for 1254
OPEN 1429, 1434
PREPARE 1435, 1452
prepared 2
REFRESH TABLE 1453, 1454
RELEASE 1455, 1456
RELEASE SAVEPOINT 1457
RENAME 1458, 1460
REVOKE (function or procedure privileges) 1461, 1466
REVOKE (package privileges) 1467, 1468
REVOKE (schema privileges) 1469
REVOKE (sequence privileges) 1471, 1472
REVOKE (table or view privileges) 1473
REVOKE (type privileges) 1476, 1477
REVOKE (variable privileges) 1478
REVOKE (XML schema privileges) 1480, 1481
ROLLBACK 1482, 1485
SAVEPOINT 1486, 1487
SELECT 1488
SELECT INTO 1489, 1491
SET CONNECTION 1492, 1494
SET CURRENT DEBUG MODE 1495
SET CURRENT DECFLOAT ROUNDING MODE 1497
SET CURRENT DEGREE 1499
SET CURRENT IMPLICIT XMLPARSE OPTION 1502
SET CURRENT TEMPORAL SYSTEM_TIME 1504
SET DESCRIPTOR 1505, 1509
SET ENCRYPTION PASSWORD 1510
SET OPTION 1512, 1530
SET PATH 1531
SET RESULT SETS 1534, 1536
SET SCHEMA 1537
SET SESSION AUTHORIZATION 1540, 1542
SET TRANSACTION 1543, 1545
SET transition-variable 1546
SET variable 1548
SIGNAL 1551
SQL control statements 1579
SQL procedural language 1579
SQL-control-statement

assignment-statement 1590
CALL statement 1593
CASE statement 1595
compound-statement 1597
FOR statement 1605
GET DIAGNOSTICS statement 1607
GOTO statement 1615
IF statement 1617
INCLUDE statement 1619
ITERATE statement 1622
LEAVE statement 1624
LOOP statement 1625
PIPE statement 1626
REPEAT statement 1628

2048 IBM i: Db2 for i SQL Reference

SQL statements (continued)
SQL-control-statement (continued)

RESIGNAL statement 1630
RETURN statement 1634
SIGNAL statement 1637
WHILE statement 1641

SQL-procedure-statement 1586
TAG 1554
TRANSFER OWNERSHIP 1555
TRUNCATE 1558
UPDATE 1561, 1571
VALUES 1572
VALUES INTO 1573
WHENEVER 1576, 1577

SQL_FEATURES table 1974
SQL_LANGUAGES table 1975
SQL_SIZING table 1976
SQL-descriptor-name

description 52
in ALLOCATE DESCRIPTOR statement 818
in CALL statement 933
in DEALLOCATE DESCRIPTOR statement 1214
in DESCRIBE CURSOR statement 1271
in DESCRIBE INPUT statement 1273
in DESCRIBE PROCEDURE statement 1279
in DESCRIBE statement 1266
in DESCRIBE TABLE statement 1283
in EXECUTE statement 1305
in FETCH statement 1313, 1314
in GET DESCRIPTOR statement 1321
in OPEN statement 1306, 1430
in PREPARE statement 1438
in SET DESCRIPTOR statement 1506

SQL-label
description 53

SQL-parameter-name
description 53

SQL-procedure-statement 1586
SQL-variable-name

description 53
SQLCA (SQL communication area)

C 1671
COBOL 1671
contents 1665
description 1665
entry changed by UPDATE 1569
ILE RPG 1673
PL/I 1671
RPG/400 1672

SQLCA (SQL communication area) clause
INCLUDE statement 1393

SQLCA clause
in SET OPTION statement 1527

SQLCODE 815
SQLCOLPRIVILEGES view 1892
SQLCOLUMNS view 1893
SQLCURRULE clause

in SET OPTION statement 1527
SQLD field of SQLDA 1267, 1272, 1274, 1280, 1283, 1677
SQLDA (SQL descriptor area)

C 1689
COBOL 1691
contents 1675
ILE COBOL 1691

SQLDA (SQL descriptor area) (continued)
ILE RPG 1693
PL/I 1692

SQLDA (SQL descriptor area) clause
INCLUDE statement 1393

SQLDABC field of SQLDA 1267, 1272, 1274, 1280, 1283,
1676
SQLDAID field of SQLDA 1267, 1272, 1274, 1279, 1283,
1676
SQLDATA field of SQLDA 1688
SQLDATALEN field of SQLDA 1682
SQLERRMC field of SQLCA

values for CONNECT 1670
values for SET CONNECTION 1670

SQLERROR clause
WHENEVER statement 1576

SQLFOREIGNKEYS view 1903
SQLFUNCTIONCOLS view 1904
SQLFUNCTIONS view 1913
SQLIND field of SQLDA 1681
SQLLEN field of SQLDA 1681, 1685
SQLLONGLEN field of SQLDA 1682
SQLN field of SQLDA 1267, 1272, 1273, 1279, 1283, 1676
SQLNAME field of SQLDA 1681, 1682, 1688
SQLPATH clause

in SET OPTION statement 1527
SQLPRIMARYKEYS view 1914
SQLPROCEDURECOLUMNS view 1915
SQLPROCEDURES view 1924
SQLSCHEMAS view 1925
SQLSPECIALCOLUMNS view 1926
SQLSTATE

description 815
SQLSTATISTICS view 1932
SQLTABLEPRIVILEGES view 1934
SQLTABLES view 1935
SQLTYPE

unsupported 1688
SQLTYPE field of SQLDA 1681, 1685
SQLTYPEINFO table 1936
SQLUDTS view 1944
SQLVAR field of SQLDA

number of occurrences 1678
SQLvariables 1581
SQLWARNING clause

WHENEVER statement 1576
SQRT function 576
SRTSEQ clause

in SET OPTION statement 1527
STACKED

in GET DIAGNOSTICS 1336, 1611
standards option

interfaces xx
START WITH clause

CREATE SEQUENCE statement 1110
STATEMENT DETERMINISTIC clause

in CREATE FUNCTION (external scalar) 991
in CREATE FUNCTION (external table) 1010
in CREATE FUNCTION (SQL scalar) 1034
in CREATE FUNCTION (SQL table) 1048

statement string 1309
statement-name

description 53
in DECLARE CURSOR statement 1218

Index 2049

statement-name (continued)
in DECLARE STATEMENT statement 1254
in DESCRIBE INPUT statement 1273
in DESCRIBE statement 1266
in EXECUTE statement 1305
in PREPARE statement 1437

states
SQL connection 39

STATIC DISPATCH clause
in CREATE FUNCTION (external scalar) 992
in CREATE FUNCTION (external table) 1011
in CREATE FUNCTION (SQL scalar) 1036
in CREATE FUNCTION (SQL table) 1050

static select 813
static SQL

use of SQL path 57
STDDEV function 290
STDDEV_POP function 290
STDDEV_SAMP function 291
string

assignment 92
columns 69
constant

binary 115
character 113
graphic 114
hexadecimal 113, 115

in INCLUDE statement 1394
limitations on use of 74
limits 1645, 1646
variable

CLOB 69
DBCLOB 71
fixed-length 69
varying-length 69

string delimiter 44, 113, 115
STRIP function 577
STRLEFT function 578
STRPOS function 579
STRRIGHT function 580
SUBCLASS_ORIGIN

GET DIAGNOSTICS statement 1347
RESIGNAL statement 1631
SIGNAL statement 1552, 1638

subnormal numbers 68
subquery

description 135, 783
in HAVING clause 776

subquery in a basic predicate
equivalent term 2002

subselect
equivalent term 2002

substitution character 29
SUBSTMTS

GET DIAGNOSTICS statement 1339
SUBSTR function 581
SUBSTRING function 583
subtraction operator 159
SUM function 292
super groups 764
surrogates 30
synonym for qualifying a column name 131
SYS_CONNECT_BY_PATH function 761
SYSCATALOGS view 1714

SYSCHKCST view 1715
SYSCOLAUTH view 1716
SYSCOLUMNS view 1717
SYSCOLUMNS2 view 1725
SYSCOLUMNS2_SESSION view 1736
SYSCOLUMNSTAT view 1737
SYSCONTROLS view 1740
SYSCONTROLSDEP view 1742
SYSCST view 1743
SYSCSTCOL view 1745
SYSCSTDEP view 1746
SYSDUMMY1 table 1747
SYSFIELDS view 1748
SYSFILES view 1752
SYSFUNCS view 1753
SYSHISTORYTABLES view 1758
SYSINDEXES view 1759
SYSINDEXSTAT view 1761
SYSJARCONTENTS view 1769
SYSJAROBJECTS view 1770
SYSKEYCST view 1771
SYSKEYS view 1772
SYSMQTSTAT view 1773
SYSPACKAGE view 1777
SYSPACKAGEAUTH view 1779
SYSPACKAGESTAT view 1780
SYSPACKAGESTMTSTAT view 1786
SYSPARMS table 1788
SYSPARTITIONDISK view 1792
SYSPARTITIONINDEXDISK view 1794
SYSPARTITIONINDEXES view 1796
SYSPARTITIONINDEXSTAT view 1803
SYSPARTITIONMQTS view 1809
SYSPARTITIONSTAT view 1813
SYSPERIODS view 1817
SYSPROCS view 1818
SYSPROGRAMSTAT view 1821
SYSPROGRAMSTMTSTAT view 1831
SYSREFCST view 1833
SYSROUTINEAUTH view 1834
SYSROUTINEDEP view 1835
SYSROUTINES table 1836
SYSSCHEMAAUTH view 1842
SYSSCHEMAS view 1843
SYSSEQUENCEAUTH view 1844
SYSSEQUENCES view 1845
SYSTABAUTH view 1847
SYSTABLEDEP view 1848
SYSTABLEINDEXSTAT view 1849
SYSTABLES view 1854
SYSTABLESTAT view 1858
system column name 4, 11, 1060, 1128, 1208, 1231, 1268,
1284
system identifier 46
SYSTEM NAME clause

RENAME statement 1458
system name generation

rules 1166
SYSTEM NAMES

in USING clause
DESCRIBE statement 1267
DESCRIBE TABLE statement 1284
PREPARE statement 1438

system path 1532

2050 IBM i: Db2 for i SQL Reference

system schema name 1104
system table name 4
SYSTEM USER special register 1532
SYSTEM_USER special register 130
system-column-name

description 53
in ALTER TABLE statement 881
in CREATE INDEX statement 1060
in CREATE TABLE statement 1128
in CREATE VIEW statement 1208
in DECLARE GLOBAL TEMPORARY TABLE statement
1231

system-object-name
definition 53

system-schema-name
definition 53
in CREATE SCHEMA statement 1104

SYSTIME clause
in SET OPTION statement 1528

SYSTRIGCOL view 1861
SYSTRIGDEP view 1862
SYSTRIGGERS view 1863
SYSTRIGUPD view 1867
SYSTYPES table 1868
SYSUDTAUTH view 1872
SYSVARIABLEAUTH view 1873
SYSVARIABLEDEP table 1874
SYSVARIABLES table 1875
SYSVIEWDEP view 1881
SYSVIEWS view 1883
SYSXSROBJECTAUTH view 1885

T
table

altering 869
creating 1115
declared temporary 1223
definition 4
dependent 6
descendent 6
designator 133, 550, 562
distributed 5
dropping 1297, 1298
obtaining information

with DESCRIBE CURSOR 1271
with DESCRIBE TABLE 1282

parent 6
primary key 6
self-referencing 6
system table name 4
temporary 1431

TABLE clause
COMMENT statement 947
DROP statement 1297
LABEL statement 1413
RENAME statement 1458
TRANSFER OWNERSHIP statement 1555

table expression
equivalent term 2001

table function
FROM clause

of subselect 744
table name generation

table name generation (continued)
rules 1167

table reference 742
table view

SYSTABAUTH 1847
TABLE_CONSTRAINTS view 1977
TABLE_NAME

function 585
GET DIAGNOSTICS statement 1347
SIGNAL statement 1552

TABLE_PRIVILEGES view 1978
TABLE_SCHEMA

function 586
table-name

description 53
in ALTER TABLE statement 880
in CREATE ALIAS statement 972
in CREATE INDEX statement 1058
in CREATE TABLE statement 1128, 1150
in DECLARE GLOBAL TEMPORARY TABLE statement
1230
in DELETE statement 1260
in DROP statement 1297
in GRANT (table or view privileges) statement 1376
in INSERT statement 1399
in LABEL statement 1414
in LOCK TABLE statement 1416
in MERGE statement 1420
in REFERENCES clause of ALTER TABLE statement 893
in REFRESH TABLE statement 1453
in RENAME statement 1458
in REVOKE (table or view privileges) statement 1474
in TRANSFER OWNERSHIP statement 1555
in TRUNCATE statement 1558
in UPDATE statement 1563

TABLES view 1979
TAG statement 1554
TAN function 587
TANH function 588
target specification

equivalent term 2001
temporary

result table 1220
temporary tables in OPEN 1431
TEXT clause

LABEL statement 1411
Text search

argument syntax 1989, 1999
text search examples

CONTAINS function 1991
SCORE function 1991

TGTRLS clause
in SET OPTION statement 1528

thread safety 22
THREAD_ID global variable 242
time

arithmetic operations 169
duration 166
strings 76

TIME
assignment 95
data type 75
data type for CREATE TABLE 1131
function 589

Index 2051

timestamp
arithmetic operations 170
duration 166
strings 79

TIMESTAMP
assignment 96
data type 75
data type for CREATE TABLE 1131
function 590

TIMESTAMP_FORMAT
function 592

TIMESTAMP_ISO
function 597

TIMESTAMPDIFF
function 598

TIMFMT clause
in SET OPTION statement 1528

TIMSEP clause
in SET OPTION statement 1529

TO_CHAR
function 601

TO_CLOB function 602
TO_DATE

function 603
TO_NUMBER

function 604
TO_TIMESTAMP

function 605
tokens in SQL 44
TOTALORDER function 606
transaction

equivalent term 2001
TRANSACTION START ID

in ALTER TABLE statement 890
TRANSACTION_ACTIVE

GET DIAGNOSTICS statement 1341
TRANSACTIONS_COMMITTED

GET DIAGNOSTICS statement 1341
TRANSACTIONS_ROLLED_BACK

GET DIAGNOSTICS statement 1341
TRANSFER OWNERSHIP statement 1555
transition table 1177
transition variable 1177
TRANSLATE function 607
trigger

altering 920
creating 1170
delete rules 1262
dropping 1298
obfuscating 648, 724
RELEASE statement 1455
ROLLBACK 1482
SET CONNECTION statement 1492
setting isolation level 1544
update rules 1567

TRIGGER clause
COMMENT statement 940, 947
DROP statement 1298
LABEL statement 1414

trigger event predicate 226
TRIGGER_CATALOG

GET DIAGNOSTICS statement 1348
TRIGGER_NAME

GET DIAGNOSTICS statement 1348

TRIGGER_SCHEMA
GET DIAGNOSTICS statement 1348

trigger-name
description 53
in ALTER TRIGGER statement 921
in DROP statement 1298
in LABEL statement 1414

TRIM function 609
TRIM_ARRAY function 611
TRUNC_TIMESTAMP function 614
TRUNCATE function 612
TRUNCATE statement 1558
truncation of numbers 90
truth table 227
truth valued logic 227
type

creating 1187
dropping 1298
in DROP statement 1298

TYPE
GET DESCRIPTOR statement 1327
SET DESCRIPTOR statement 1507

TYPE clause
COMMENT statement 947
DROP statement 1298
LABEL statement 1414

type view
SYSUDTAUTH 1872

type-name
in REVOKE (type privileges) statement 1477

typed parameter marker 178, 197

U
UCASE function 615
UCS-2 graphic constant

hexadecimal 115
UDF (user-defined function)

external 147
sourced 147
SQL 147

UDT_PRIVILEGES view 1980
unary

minus 159
plus 159

unary operator
CONNECT_BY_ROOT 758
PRIOR 759

uncommitted read 26
unconnected state 40
undefined reference 134
Unicode 29
Unicode data

description 72
Unicode graphic

description 72
UNION ALL clause

of fullselect 784
UNION clause

of fullselect 784
with duplicate rows 784

UNIQUE clause
ALTER TABLE statement 888, 892
CREATE INDEX statement 1058

2052 IBM i: Db2 for i SQL Reference

UNIQUE clause (continued)
CREATE TABLE statement 1141, 1149
in SAVEPOINT statement 1486

unique constraint 5
unique index

update rules 1567
unique key 5
UNIT clause

ALTER TABLE statement 905
CREATE INDEX statement 1061
CREATE TABLE statement 1153
DECLARE GLOBAL TEMPORARY TABLE statement 1242

unit of work
COMMIT 950
ending

closes cursors 1431
COMMIT 950

referring to prepared statements 1435
ROLLBACK 1482

UNNAMED
GET DESCRIPTOR statement 1327

UPDATE
in ON UPDATE clause of ALTER TABLE statement 894
in ON UPDATE clause of CREATE TABLE statement 1151

UPDATE clause
GRANT (table or view privileges) statement 1376
REVOKE (table or view privileges) statement 1474

update rules
check constraint 1567
checking of unique constraints 1567
effect of commitment control 1567
referential integrity 1567
trigger 1567
views with WITH CHECK OPTION 1567

UPDATE statement 1561, 1571
UPPER function 616
UR (uncommitted read) 26
URL_DECODE

scalar function 617
URL_ENCODE

scalar function 618
USAGE clause

GRANT (schema privileges) statement 1368
GRANT (sequence privileges) statement 1372
GRANT (type privileges) statement 1383
GRANT (XML schema privileges) statement 1389
REVOKE (schema privileges) statement 1469
REVOKE (sequence privileges) statement 1471
REVOKE (type privileges) statement 1477
REVOKE (XML schema privileges) statement 1480

USAGE_PRIVILEGES view 1981
USE AND KEEP EXCLUSIVE LOCKS 799
USE CURRENTLY COMMITTED 801
USER clause

ALTER TABLE statement 882, 884
CONNECT (type 1) statement 963
CONNECT (type 2) statement 968
CREATE TABLE statement 1135
DECLARE GLOBAL TEMPORARY TABLE statement 1233

USER special register 130
USER_DEFINED_TYPE_CATALOG

GET DESCRIPTOR statement 1327
SET DESCRIPTOR statement 1507

USER_DEFINED_TYPE_CODE

USER_DEFINED_TYPE_CODE (continued)
GET DESCRIPTOR statement 1327

USER_DEFINED_TYPE_NAME
GET DESCRIPTOR statement 1327
SET DESCRIPTOR statement 1508

USER_DEFINED_TYPE_SCHEMA
GET DESCRIPTOR statement 1327
SET DESCRIPTOR statement 1508

USER_DEFINED_TYPES view 1982
user-defined function

external 147
sourced 147
SQL 147

user-defined type
description 11

user-defined types (UDTs)
data types

description 82
USING clause

CONNECT (type 1) statement 963
CONNECT (type 2) statement 968
DESCRIBE statement 1267
DESCRIBE TABLE statement 1284
EXECUTE statement 1305
in CREATE TABLE statement 1144
in DECLARE GLOBAL TEMPORARY TABLE statement
1239
OPEN statement 1430
PREPARE statement 1438

USING DESCRIPTOR clause
CALL statement 934
EXECUTE statement 1306
OPEN statement 1430

USING keyword
DESCRIBE CURSOR statement 1271
DESCRIBE INPUT statement 1273
DESCRIBE PROCEDURE statement 1279
DESCRIBE statement 1266
DESCRIBE TABLE statement 1283
in JOIN clause 751
PREPARE statement 1438

USRPRF clause
in SET OPTION statement 1529

UTF-16 graphic constant
hexadecimal 115

UTF-8 (universal coded character set)
description 70

V
value expression

equivalent term 2001
VALUE function 619
VALUES clause

INSERT statement 1400, 1401
MERGE statement 1423

VALUES INTO statement 1573
VALUES statement 1572
VAR function 293
VAR_POP function 293
VAR_SAMP function 294
VARBINARY

data type 72
data type for ALTER TABLE 881

Index 2053

VARBINARY (continued)
data type for CREATE FUNCTION (external scalar) 985
data type for CREATE FUNCTION (external table) 1005
data type for CREATE FUNCTION (sourced) 1021
data type for CREATE PROCEDURE (external) 1080
data type for CREATE PROCEDURE (SQL) 1096
data type for CREATE TABLE 1131
data type for CREATE TYPE 1196
data type for DECLARE GLOBAL TEMPORARY TABLE
1231
DECLARE PROCEDURE statement 1248

VARBINARY function 620
VARBINARY_FORMAT

function 621
VARCHAR

data type for ALTER TABLE 881
data type for CREATE FUNCTION (external scalar) 985
data type for CREATE FUNCTION (external table) 1005
data type for CREATE FUNCTION (sourced) 1021
data type for CREATE PROCEDURE (external) 1080
data type for CREATE PROCEDURE (SQL) 1096
data type for CREATE TABLE 1129
data type for CREATE TYPE 1196
data type for DECLARE GLOBAL TEMPORARY TABLE
1231
data type for DECLARE PROCEDURE 1248
function 623

VARCHAR_BIT_FORMAT
function 628

VARCHAR_FORMAT
function 629

VARCHAR_FORMAT_BINARY
function 637

VARCHAR_FORMAT_BIT
function 637

VARGRAPHIC
data type for ALTER TABLE 881
data type for CREATE FUNCTION (external scalar) 985
data type for CREATE FUNCTION (external table) 1005
data type for CREATE FUNCTION (sourced) 1021
data type for CREATE PROCEDURE (external) 1080
data type for CREATE PROCEDURE (SQL) 1096
data type for CREATE TABLE 1130
data type for CREATE TYPE 1196
data type for DECLARE GLOBAL TEMPORARY TABLE
1231
data type for DECLARE PROCEDURE 1248
function 638

variable
description

in Java 141
dropping 1298
file reference 142, 143
in CALL statement 931
in CONNECT (type 1) statement 962, 963
in CONNECT (type 2) statement 967, 968
in DESCRIBE CURSOR statement 1271
in DESCRIBE PROCEDURE statement 1278
in DESCRIBE TABLE statement 1282
in DISCONNECT statement 1286
in EXECUTE IMMEDIATE statement 1309
in EXECUTE statement 1305
in FETCH statement 1313
in FREE LOCATOR statement 1318

variable (continued)
in HOLD LOCATOR statement 1391
in INSERT statement 1401
in OPEN statement 1430
in PREPARE statement 1441
in RELEASE statement 1455
in SELECT INTO statement 1490
in SET CONNECTION statement 1492
in VALUES INTO statement 1573
LOB file reference 143
LOB locator 142
SELECT INTO statement 1490
statement string 1309
substitution for parameter markers 1305
XML file reference 143
XML locator 142

VARIABLE clause
COMMENT statement 947
DROP statement 1298
LABEL statement 1414

variable view
SYSVARIABLEAUTH 1873

VARIABLE_PRIVILEGES view 1986
variable-name

description 54
in CREATE VARIABLE statement 1203
in DROP statement 1298
in REVOKE (variable privileges) statement 1479

VARIANCE function 293
VARIANCE_SAMP function 294
VERIFY_GROUP_FOR_USER function 644
view

catalog 1709
creating 1206
deletable 1211
dropping 1299
insertable 1212
read-only 1212
recursive 1207
updatable 1211
updating with WITH CHECK OPTION views 1567

VIEW clause
CREATE VIEW statement 1206
DROP statement 1299
TRANSFER OWNERSHIP statement 1556

view-name
description 54
in CREATE ALIAS statement 972
in CREATE VIEW statement 1208
in DELETE statement 1260
in DROP statement 1299
in GRANT (table or view privileges) statement 1376
in INSERT statement 1399
in LABEL statement 1414
in MERGE statement 1420
in RENAME statement 1458
in REVOKE (table or view privileges) statement 1474
in TRANSFER OWNERSHIP statement 1556
in UPDATE statement 1563

VIEWS view 1987
VOLATILE

ALTER TABLE statement 905
CREATE TABLE statement 1153

2054 IBM i: Db2 for i SQL Reference

W
WAIT FOR OUTCOME 801
WEEK function 646
WEEK_ISO function 647
WHENEVER statement 1576, 1577
WHERE clause

DELETE statement 1260
of subselect 762
UPDATE statement 1565

WHERE CURRENT OF clause
DELETE statement 1261
UPDATE statement 1565

WHERE NOT NULL clause
in CREATE INDEX statement 1058

WHILE statement 1641
WITH CASCADED CHECK OPTION clause

CREATE VIEW statement 1209
WITH CHECK OPTION clause

CREATE VIEW statement 1209
effect on update 1567

WITH CHECK OPTION clause of CREATE VIEW statement
UPDATE rules 1567

WITH clause
DELETE statement 1261
MERGE statement 1424
UPDATE statement 1401, 1566

WITH DATA DICTIONARY clause
CREATE SCHEMA statement 1106

WITH DEFAULT clause
CREATE TABLE statement 1133
in DECLARE GLOBAL TEMPORARY TABLE statement
1231

WITH DISTINCT VALUES clause
CREATE INDEX statement 1060

WITH EMPTY TABLE
ALTER TABLE statement 902

WITH EXTENDED INDICATORS clause
in DECLARE CURSOR statement 1218

WITH GRANT OPTION clause
in GRANT (function or procedure privileges) statement
1362
in GRANT (package privileges) statement 1366
in GRANT (schema privileges) statement 1369
in GRANT (sequence privileges) statement 1372
in GRANT (table or view privileges) statement 1376
in GRANT (type privileges) statement 1383
in GRANT (variable privileges) statement 1386
in GRANT (XML schema privileges) statement 1389

WITH HOLD clause
in DECLARE CURSOR statement 1217
in FOR statement 1605

WITH LOCAL CHECK OPTION clause
CREATE VIEW statement 1210

WITH NO HOLD clause
in DECLARE CURSOR statement 1217

WITH REPLACE clause
in DECLARE GLOBAL TEMPORARY TABLE statement
1241

WITH RETURN clause
in DECLARE CURSOR statement 1217
in SET RESULT SETS statement 1534

WITHOUT EXTENDED INDICATORS clause
in DECLARE CURSOR statement 1218

WITHOUT RETURN clause
in DECLARE CURSOR statement 1217

words
reserved 46, 2003

WORK clause
in COMMIT statement 950
ROLLBACK statement 1482

WRAP function 648
WRITE clause

GRANT (variable privileges) statement 1386
REVOKE (variable privileges) statement 1479

X
XDBDECOMPXML procedure 726
XML

assignment 96
comparisons 103
data type for ALTER TABLE 881
data type for CREATE PROCEDURE (external) 1080
data type for CREATE PROCEDURE (SQL) 1096
data type for CREATE TABLE 1132
data type for DECLARE GLOBAL TEMPORARY TABLE
1231
DECLARE PROCEDURE statement 1248
file reference variable 143
limits 1646
locator variable 142

XML search
text search grammar 1995

XML text search
features 1995

XMLAGG function 295
XMLATTRIBUTES function 297, 650
XMLCAST specification 197
XMLCOMMENT function 651
XMLCONCAT function 652
XMLDOCUMENT function 654
XMLELEMENT function 655
XMLFOREST function 658
XMLNAMESPACES function 661
XMLPARSE function 663
XMLPI function 664
XMLROW function 665
XMLSERIALIZE function 667
XMLTABLE function 714
XMLTEXT function 671
XMLVALIDATE function 672
XOR function 676
XPath language 1995
XPath queries

examples 1997
opaque terms 1997

XSLTRANSFORM function 677
XSR object

dropping 1299
XSR_ADDSCHEMADOC procedure 728
XSR_COMPLETE procedure 730
XSR_REGISTER procedure 732
XSR_REMOVE procedure 734
XSRANNOTATIONINFO table 1886
XSROBJECT clause

COMMENT statement 940, 948
DROP statement 1299

Index 2055

XSROBJECT clause (continued)
LABEL statement 1414
REVOKE (XML schema privileges) statement 1480

xsrobject-name
description 54
in DROP statement 1299

XSROBJECTCOMPONENTS table 1887
XSROBJECTHIERARCHIES table 1888
XSROBJECTS table 1889

Y
YEAR function 682

Z
ZONED function 683

2056 IBM i: Db2 for i SQL Reference

IBM®

Product Number: 5770-SS1

	Contents
	About SQL reference
	Standards compliance
	Assumptions relating to examples of SQL statements
	How to read the syntax diagrams
	Conventions used in this book
	SQL accessibility

	PDF file for SQL reference
	What's new for IBM i 7.3
	Chapter 1. Concepts
	Relational database
	Structured Query Language
	Schemas
	Tables
	Keys
	Constraints
	Unique constraints
	Referential constraints
	Check constraints

	Indexes
	Triggers

	Views
	User-defined types
	Aliases
	Packages and access plans
	Routines
	Sequences
	Authorization, privileges and object ownership
	Catalog
	Application processes, concurrency, and recovery
	Locking, commit, and rollback
	Unit of work
	Rolling back work
	Threads

	Isolation level
	Repeatable read
	Read stability
	Cursor stability
	Uncommitted read
	No commit
	Comparison of isolation levels

	Storage Structures
	Character conversion
	Character sets and code pages
	Coded character sets and CCSIDs
	Default CCSID

	Collating sequence
	Distributed relational database
	Application servers
	CONNECT (type 1) and CONNECT (type 2)
	Remote unit of work
	Application-directed distributed unit of work
	Data representation considerations

	Chapter 2. Language elements
	Characters
	Tokens
	Identifiers
	SQL identifiers
	System identifiers
	Host identifiers

	Naming conventions
	SQL path
	Qualification of unqualified object names
	Unqualified alias, constraint, external program, index, mask, nodegroup, package, permission, sequence, table, trigger, view, and XSR object names
	Unqualified function, procedure, specific name, type, and variables

	SQL names and system names: special considerations

	Aliases
	Authorization IDs and authorization names
	Procedure resolution
	Data types
	Nulls
	Numbers
	Subnormal numbers and underflow

	Character strings
	Character encoding schemes
	Graphic strings
	Graphic encoding schemes
	Binary strings
	Large objects
	Limitations on use of strings

	Datetime values
	Date
	Time
	Timestamp
	Datetime variables
	String representations of datetime values
	Date strings
	Time strings
	Timestamp strings

	XML Values
	DataLink values
	Row ID values
	User-defined types

	Promotion of data types
	Casting between data types
	Assignments and comparisons
	Numeric assignments
	String assignments
	Binary string assignments
	Character and graphic string assignments

	Datetime assignments
	XML assignments
	DataLink assignments
	Row ID assignments
	Distinct type assignments
	Array type assignments
	Assignments to LOB locators
	Numeric comparisons
	String comparisons
	Datetime comparisons
	XML comparisons
	DataLink comparisons
	Row ID comparisons
	Distinct type comparisons
	Array type comparisons

	Rules for result data types
	Conversion rules for operations that combine strings
	Constants
	Integer constants
	Decimal constants
	Floating-point constants
	Decimal floating-point constants
	Character-string constants
	Graphic-string constants
	Binary-string constants
	Datetime constants
	Decimal point
	Delimiters

	Special registers
	CURRENT CLIENT_ACCTNG
	CURRENT CLIENT_APPLNAME
	CURRENT CLIENT_PROGRAMID
	CURRENT CLIENT_USERID
	CURRENT CLIENT_WRKSTNNAME
	CURRENT DATE
	CURRENT DEBUG MODE
	CURRENT DECFLOAT ROUNDING MODE
	CURRENT DEGREE
	CURRENT IMPLICIT XMLPARSE OPTION
	CURRENT PATH
	CURRENT SCHEMA
	CURRENT SERVER
	CURRENT TEMPORAL SYSTEM_TIME
	CURRENT TIME
	CURRENT TIMESTAMP
	CURRENT USER
	CURRENT TIMEZONE
	SESSION_USER
	SYSTEM_USER
	USER

	Column names
	Qualified column names
	Correlation names
	Column name qualifiers to avoid ambiguity
	Table designators
	Avoiding undefined or ambiguous references

	Column name qualifiers in correlated references
	Unqualified column names in correlated references

	Variables
	Global variables
	References to host variables
	Variables in dynamic SQL
	References to LOB or XML variables
	References to LOB or XML locator variables
	References to LOB or XML file reference variables

	References to XML variables
	Host structures
	Host structure arrays

	Functions
	Types of functions
	Function invocation
	Function resolution
	Determining the best fit
	Best fit considerations

	Expressions
	Without operators
	With arithmetic operators
	Two integer operands
	Integer and decimal operands
	Two decimal operands
	Decimal arithmetic in SQL
	Floating-point operands
	Decimal floating-point operands
	General arithmetic operation rules for DECFLOAT
	Distinct type operands

	With the concatenation operator
	Scalar fullselect
	Datetime operands and durations
	Datetime arithmetic in SQL
	Date arithmetic
	Time arithmetic
	Timestamp arithmetic

	Precedence of operations
	ARRAY constructor
	ARRAY element specification
	CASE expression
	CAST specification
	OLAP specifications
	ROW CHANGE expression
	Sequence reference
	XMLCAST specification

	Predicates
	Basic predicate
	Quantified predicate
	BETWEEN predicate
	DISTINCT predicate
	EXISTS predicate
	IN predicate
	IS JSON predicate
	JSON_EXISTS predicate
	sql-json-path-expression

	LIKE predicate
	NULL predicate
	REGEXP_LIKE predicate
	Trigger event predicates

	Search conditions

	Chapter 3. Built-in global variables
	CLIENT_HOST
	CLIENT_IPADDR
	CLIENT_PORT
	JOB_NAME
	PACKAGE_NAME
	PACKAGE_SCHEMA
	PACKAGE_VERSION
	PROCESS_ID
	ROUTINE_SCHEMA
	ROUTINE_SPECIFIC_NAME
	ROUTINE_TYPE
	SERVER_MODE_JOB_NAME
	THREAD_ID

	Chapter 4. Built-in functions
	Aggregate functions
	ARRAY_AGG
	AVG
	CORR or CORRELATION
	COUNT
	COUNT_BIG
	COVARIANCE or COVAR
	COVAR_SAMP or COVARIANCE_SAMP
	GROUPING
	JSON_ARRAYAGG
	JSON_OBJECTAGG
	LISTAGG
	MAX
	MEDIAN
	MIN
	PERCENTILE_CONT
	PERCENTILE_DISC
	Regression functions
	STDDEV_POP or STDDEV
	STDDEV_SAMP
	SUM
	VAR_POP or VARIANCE or VAR
	VAR_SAMP or VARIANCE_SAMP
	XMLAGG
	XMLGROUP

	Scalar functions
	ABS or ABSVAL
	ACOS
	ADD_MONTHS
	ANTILOG
	ARRAY_MAX_CARDINALITY
	ARRAY_TRIM
	ASCII
	ASIN
	ATAN
	ATANH
	ATAN2
	BASE64_DECODE
	BASE64_ENCODE
	BIGINT
	BINARY
	BITAND, BITANDNOT, BITOR, BITXOR, and BITNOT
	BIT_LENGTH
	BLOB
	BSON_TO_JSON
	CARDINALITY
	CEILING or CEIL
	CHAR
	CHARACTER_LENGTH or CHAR_LENGTH
	CHR
	CLOB
	COALESCE
	COMPARE_DECFLOAT
	CONCAT
	CONTAINS
	COS
	COSH
	COT
	CURDATE
	CURTIME
	DATABASE
	DATAPARTITIONNAME
	DATAPARTITIONNUM
	DATE
	DAY
	DAYNAME
	DAYOFMONTH
	DAYOFWEEK
	DAYOFWEEK_ISO
	DAYOFYEAR
	DAYS
	DBCLOB
	DBPARTITIONNAME
	DBPARTITIONNUM
	DECFLOAT
	DECFLOAT_FORMAT
	DECFLOAT_SORTKEY
	DECIMAL or DEC
	DECRYPT_BIT, DECRYPT_BINARY, DECRYPT_CHAR and DECRYPT_DB
	DEGREES
	DIFFERENCE
	DIGITS
	DLCOMMENT
	DLLINKTYPE
	DLURLCOMPLETE
	DLURLPATH
	DLURLPATHONLY
	DLURLSCHEME
	DLURLSERVER
	DLVALUE
	DOUBLE_PRECISION or DOUBLE
	ENCRYPT_AES
	ENCRYPT_RC2 or ENCRPYT
	ENCRYPT_TDES
	EXP
	EXTRACT
	FLOAT
	FLOOR
	GENERATE_UNIQUE
	GET_BLOB_FROM_FILE
	GET_CLOB_FROM_FILE
	GET_DBCLOB_FROM_FILE
	GET_XML_FILE
	GETHINT
	GRAPHIC
	GREATEST
	HASH
	HASHED_VALUE
	HEX
	HEXTORAW
	HOUR
	HTTP_DELETE
	HTTP_GET
	HTTP_PATCH
	HTTP_POST
	HTTP_PUT
	IDENTITY_VAL_LOCAL
	IFNULL
	INSERT
	INTEGER or INT
	INTERPRET
	INSTR
	JSON_ARRAY
	JSON_OBJECT
	JSON_QUERY
	JSON_TO_BSON
	JSON_VALUE
	JULIAN_DAY
	LAND
	LAST_DAY
	LCASE
	LEAST
	LEFT
	LENGTH
	LN
	LNOT
	LOCATE
	LOCATE_IN_STRING
	LOG10
	LOR
	LOWER
	LPAD
	LTRIM
	MAX
	MAX_CARDINALITY
	MICROSECOND
	MIDNIGHT_SECONDS
	MIN
	MINUTE
	MOD
	MONTH
	MONTHNAME
	MONTHS_BETWEEN
	MQREAD
	MQREADCLOB
	MQRECEIVE
	MQRECEIVECLOB
	MQSEND
	MULTIPLY_ALT
	NEXT_DAY
	NORMALIZE_DECFLOAT
	NOW
	NULLIF
	NVL
	OCTET_LENGTH
	OVERLAY
	PI
	POSITION
	POSSTR
	POWER or POW
	QUANTIZE
	QUARTER
	RADIANS
	RAISE_ERROR
	RANDOM or RAND
	REAL
	REGEXP_COUNT
	REGEXP_INSTR
	REGEXP_REPLACE
	REGEXP_SUBSTR
	REPEAT
	REPLACE
	RID
	RIGHT
	ROUND
	ROUND_TIMESTAMP
	ROWID
	RPAD
	RRN
	RTRIM
	SCORE
	SECOND
	SIGN
	SIN
	SINH
	SMALLINT
	SOUNDEX
	SPACE
	SQRT
	STRIP
	STRLEFT
	STRPOS
	STRRIGHT
	SUBSTR
	SUBSTRING
	TABLE_NAME
	TABLE_SCHEMA
	TAN
	TANH
	TIME
	TIMESTAMP
	TIMESTAMP_FORMAT
	TIMESTAMP_ISO
	TIMESTAMPDIFF
	TO_CHAR
	TO_CLOB
	TO_DATE
	TO_NUMBER
	TO_TIMESTAMP
	TOTALORDER
	TRANSLATE
	TRIM
	TRIM_ARRAY
	TRUNCATE or TRUNC
	TRUNC_TIMESTAMP
	UCASE
	UPPER
	URL_DECODE
	URL_ENCODE
	VALUE
	VARBINARY
	VARBINARY_FORMAT
	VARCHAR
	VARCHAR_BIT_FORMAT
	VARCHAR_FORMAT
	VARCHAR_FORMAT_BINARY
	VARGRAPHIC
	VERIFY_GROUP_FOR_USER
	WEEK
	WEEK_ISO
	WRAP
	XMLATTRIBUTES
	XMLCOMMENT
	XMLCONCAT
	XMLDOCUMENT
	XMLELEMENT
	XMLFOREST
	XMLNAMESPACES
	XMLPARSE
	XMLPI
	XMLROW
	XMLSERIALIZE
	XMLTEXT
	XMLVALIDATE
	XOR
	XSLTRANSFORM
	YEAR
	ZONED

	Table functions
	BASE_TABLE
	HTTP_DELETE_VERBOSE
	HTTP_GET_VERBOSE
	HTTP_PATCH_VERBOSE
	HTTP_POST_VERBOSE
	HTTP_PUT_VERBOSE
	JSON_TABLE
	MQREADALL
	MQREADALLCLOB
	MQRECEIVEALL
	MQRECEIVEALLCLOB
	XMLTABLE

	Chapter 5. Procedures
	CREATE_WRAPPED
	XDBDECOMPXML
	XSR_ADDSCHEMADOC
	XSR_COMPLETE
	XSR_REGISTER
	XSR_REMOVE

	Chapter 6. Queries
	Authorization
	subselect
	select-clause
	Select list notation
	Applying the select list
	Null attributes of result columns
	Names of result columns
	Data types of result columns

	from-clause
	table-reference
	joined-table

	Hierarchical queries
	hierarchical-query-clause
	pseudo columns
	CONNECT_BY_ROOT
	PRIOR
	SYS_CONNECT_BY_PATH

	where-clause
	group-by-clause
	having-clause
	order-by-clause
	offset-clause
	fetch-clause
	Examples of a subselect

	fullselect
	Examples of a fullselect

	select-statement
	common-table-expression
	Recursion example: bill of materials

	update-clause
	read-only-clause
	optimize-clause
	isolation-clause
	concurrent-access-resolution-clause
	Examples of a select-statement

	Chapter 7. Statements
	How SQL statements are invoked
	Embedding a statement in an application program
	Dynamic preparation and execution
	Static invocation of a select-statement
	Dynamic invocation of a select-statement
	Interactive invocation

	SQL diagnostic information
	Detecting and processing error and warning conditions in host language applications
	SQL comments
	ALLOCATE CURSOR
	ALLOCATE DESCRIPTOR
	ALTER FUNCTION (external scalar)
	ALTER FUNCTION (external table)
	ALTER FUNCTION (SQL scalar)
	ALTER FUNCTION (SQL table)
	ALTER MASK
	ALTER PERMISSION
	ALTER PROCEDURE (external)
	ALTER PROCEDURE (SQL)
	ALTER SEQUENCE
	ALTER TABLE
	ALTER TRIGGER
	ASSOCIATE LOCATORS
	BEGIN DECLARE SECTION
	CALL
	CLOSE
	COMMENT
	COMMIT
	compound (dynamic)
	CONNECT (type 1)
	CONNECT (type 2)
	CREATE ALIAS
	CREATE FUNCTION
	CREATE FUNCTION (external scalar)
	CREATE FUNCTION (external table)
	CREATE FUNCTION (sourced)
	CREATE FUNCTION (SQL scalar)
	CREATE FUNCTION (SQL table)
	CREATE INDEX
	CREATE MASK
	CREATE PERMISSION
	CREATE PROCEDURE
	CREATE PROCEDURE (external)
	CREATE PROCEDURE (SQL)
	CREATE SCHEMA
	CREATE SEQUENCE
	CREATE TABLE
	CREATE TRIGGER
	CREATE TYPE
	CREATE TYPE (array)
	CREATE TYPE (distinct)
	CREATE VARIABLE
	CREATE VIEW
	DEALLOCATE DESCRIPTOR
	DECLARE CURSOR
	DECLARE GLOBAL TEMPORARY TABLE
	DECLARE PROCEDURE
	DECLARE STATEMENT
	DECLARE VARIABLE
	DELETE
	DESCRIBE
	DESCRIBE CURSOR
	DESCRIBE INPUT
	DESCRIBE PROCEDURE
	DESCRIBE TABLE
	DISCONNECT
	DROP
	END DECLARE SECTION
	EXECUTE
	EXECUTE IMMEDIATE
	FETCH
	FREE LOCATOR
	GET DESCRIPTOR
	GET DIAGNOSTICS
	GRANT (function or procedure privileges)
	GRANT (package privileges)
	GRANT (schema privileges)
	GRANT (sequence privileges)
	GRANT (table or view privileges)
	GRANT (type privileges)
	GRANT (variable privileges)
	GRANT (XML schema privileges)
	HOLD LOCATOR
	INCLUDE
	INSERT
	LABEL
	LOCK TABLE
	MERGE
	OPEN
	PREPARE
	REFRESH TABLE
	RELEASE (connection)
	RELEASE SAVEPOINT
	RENAME
	REVOKE (function or procedure privileges)
	REVOKE (package privileges)
	REVOKE (schema privileges)
	REVOKE (sequence privileges)
	REVOKE (table or view privileges)
	REVOKE (type privileges)
	REVOKE (variable privileges)
	REVOKE (XML schema privileges)
	ROLLBACK
	SAVEPOINT
	SELECT
	SELECT INTO
	SET CONNECTION
	SET CURRENT DEBUG MODE
	SET CURRENT DECFLOAT ROUNDING MODE
	SET CURRENT DEGREE
	SET CURRENT IMPLICIT XMLPARSE OPTION
	SET CURRENT TEMPORAL SYSTEM_TIME
	SET DESCRIPTOR
	SET ENCRYPTION PASSWORD
	SET OPTION
	SET PATH
	SET RESULT SETS
	SET SCHEMA
	SET SESSION AUTHORIZATION
	SET TRANSACTION
	SET transition-variable
	SET variable
	SIGNAL
	TAG
	TRANSFER OWNERSHIP
	TRUNCATE
	UPDATE
	VALUES
	VALUES INTO
	WHENEVER

	Chapter 8. SQL procedural language (SQL PL)
	SQL control statements
	References to SQL parameters and SQL variables
	References to SQL condition names
	References to SQL cursor names
	References to SQL labels
	Summary of ′name′ scoping in nested compound statements
	SQL-procedure-statement
	assignment-statement
	CALL statement
	CASE statement
	compound-statement
	FOR statement
	GET DIAGNOSTICS statement
	GOTO statement
	IF statement
	INCLUDE statement
	ITERATE statement
	LEAVE statement
	LOOP statement
	PIPE statement
	REPEAT statement
	RESIGNAL statement
	RETURN statement
	SIGNAL statement
	WHILE statement

	Appendix A. SQL limits
	Appendix B. Characteristics of SQL statements
	Actions allowed on SQL statements
	SQL statement data access classification for routines
	Considerations for using distributed relational database
	CONNECT (type 1) and CONNECT (type 2) differences

	Appendix C. SQLCA (SQL communication area)
	Field descriptions
	INCLUDE SQLCA declarations

	Appendix D. SQLDA (SQL descriptor area)
	Field descriptions in an SQLDA header
	Field descriptions in an occurrence of SQLVAR
	SQLTYPE and SQLLEN
	CCSID values in SQLDATA or SQLNAME
	Unrecognized and unsupported SQLTYPES
	INCLUDE SQLDA declarations

	Appendix E. CCSID values
	Appendix F. Db2 for i catalog views
	IBM i catalog tables and views
	SYSCATALOGS
	SYSCHKCST
	SYSCOLAUTH
	SYSCOLUMNS
	SYSCOLUMNS2
	SYSCOLUMNS2_SESSION
	SYSCOLUMNSTAT
	SYSCONTROLS
	SYSCONTROLSDEP
	SYSCST
	SYSCSTCOL
	SYSCSTDEP
	SYSDUMMY1
	SYSFIELDS
	SYSFILES
	SYSFUNCS
	SYSHISTORYTABLES
	SYSINDEXES
	SYSINDEXSTAT
	SYSJARCONTENTS
	SYSJAROBJECTS
	SYSKEYCST
	SYSKEYS
	SYSMQTSTAT
	SYSPACKAGE
	SYSPACKAGEAUTH
	SYSPACKAGESTAT
	SYSPACKAGESTMTSTAT
	SYSPARMS
	SYSPARTITIONDISK
	SYSPARTITIONINDEXDISK
	SYSPARTITIONINDEXES
	SYSPARTITIONINDEXSTAT
	SYSPARTITIONMQTS
	SYSPARTITIONSTAT
	SYSPERIODS
	SYSPROCS
	SYSPROGRAMSTAT
	SYSPROGRAMSTMTSTAT
	SYSREFCST
	SYSROUTINEAUTH
	SYSROUTINEDEP
	SYSROUTINES
	SYSSCHEMAAUTH
	SYSSCHEMAS
	SYSSEQUENCEAUTH
	SYSSEQUENCES
	SYSTABAUTH
	SYSTABLEDEP
	SYSTABLEINDEXSTAT
	SYSTABLES
	SYSTABLESTAT
	SYSTRIGCOL
	SYSTRIGDEP
	SYSTRIGGERS
	SYSTRIGUPD
	SYSTYPES
	SYSUDTAUTH
	SYSVARIABLEAUTH
	SYSVARIABLEDEP
	SYSVARIABLES
	SYSVIEWDEP
	SYSVIEWS
	SYSXSROBJECTAUTH
	XSRANNOTATIONINFO
	XSROBJECTCOMPONENTS
	XSROBJECTHIERARCHIES
	XSROBJECTS

	ODBC and JDBC catalog views
	SQLCOLPRIVILEGES
	SQLCOLUMNS
	SQLFOREIGNKEYS
	SQLFUNCTIONCOLS
	SQLFUNCTIONS
	SQLPRIMARYKEYS
	SQLPROCEDURECOLS
	SQLPROCEDURES
	SQLSCHEMAS
	SQLSPECIALCOLUMNS
	SQLSTATISTICS
	SQLTABLEPRIVILEGES
	SQLTABLES
	SQLTYPEINFO
	SQLUDTS

	ANS and ISO catalog views
	AUTHORIZATIONS
	CHARACTER_SETS
	CHECK_CONSTRAINTS
	COLUMN_PRIVILEGES
	COLUMNS
	INFORMATION_SCHEMA_CATALOG_NAME
	PARAMETERS
	REFERENTIAL_CONSTRAINTS
	ROUTINES
	ROUTINE_PRIVILEGES
	SCHEMATA
	SEQUENCES
	SQL_FEATURES
	SQL_LANGUAGES
	SQL_SIZING
	TABLE_CONSTRAINTS
	TABLE_PRIVILEGES
	TABLES
	UDT_PRIVILEGES
	USAGE_PRIVILEGES
	USER_DEFINED_TYPES
	VARIABLE_PRIVILEGES
	VIEWS

	Appendix G. Text search argument syntax
	Examples: Simple text search
	Advanced text search operators
	Example: Using the CONTAINS function and SCORE function
	XML text search
	XML text search grammar
	Examples: XPath text search

	Text search language options

	Appendix H. Terminology differences
	Appendix I. Reserved schema names and reserved words
	Reserved schema names
	Reserved words

	Appendix J. Related information
	Notices
	Programming interface information
	Trademarks
	Terms and conditions

	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

