
Rational Development Studio for i

ILE COBOL Language Reference
7.1

SC09-2539-07

IBM

Rational Development Studio for i

ILE COBOL Language Reference
7.1

SC09-2539-07

IBM

Note!
Before using this information and the product it supports, be sure to read the general information
under “Notices” on page 693.

This edition applies to Version 7, Release 1, Modification Level 0, of IBM Rational Development Studio for i
(5770-WDS) and to all subsequent releases and modifications until otherwise indicated in new editions. This edition
applies only to reduced instruction set computer (RISC) systems.

This edition replaces SC09-2539-06.

IBM welcomes your comments. You can send your comments to:

IBM Canada Ltd. Laboratory
Information Development
8200 Warden Avenue
Markham, Ontario, Canada L6G 1C7

You can also send your comments by FAX (attention: RCF Coordinator), or you can send your comments
electronically to IBM. See “How to Send Your Comments” for a description of the methods.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1993, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

|
|
|

|

Contents

About this Reference xi
Who Should Use this Reference xi
Prerequisite and Related Information xii
How to Send Your Comments xiii
What's New xiii
What's New this Release? xiv
Changes to this Guide Since V6R1. xv
What's New in V6R1? xv
What's New in V5R4? xvi
What's New in V5R3? xvi
What's New in V5R2? xvii
What's New in V5R1? xviii
What's New in V4R4? xx
What's New in V4R2? xx
What's New in V3R7? xxii
What's New in V3R6/V3R2? xxiii
What's New in V3R1? xxiv
ILE COBOL Syntax Notation. xxvii

How to Read the Syntax Diagrams. xxvii
IBM Extensions xxix
Documentary Syntax xxix
Obsolete Language Elements xxix

DBCS Notation xxx
Industry Standards xxx
An Acknowledgment. xxx
Concepts xxxi
Supporting Information. xxxi

Part 1. COBOL Language Structure 1

Chapter 1. Characters 3
Character-Strings 4

COBOL Words with DBCS Character 5
COBOL Words. 6
Literals 12
PICTURE Character-Strings 18
Comment-Entry Text 18

Separators 19
Rules for Separators 19

Chapter 2. Sections and Paragraphs . . 21
Entries 21
Clauses 21
Sentences 21
Statements. 22
Phrases 22

Chapter 3. Reference Format 23
Sequence Number Area (Columns 1 through 6) . . 23
Indicator Area (Column 7) 23
Area A (Columns 8 through 11). 24

Division Header 24
Section Header 24
Paragraph Header or Paragraph Name 24

Level Indicator (FD and SD) or Level-Number
(01 and 77) 24
DECLARATIVES and END DECLARATIVES . . 24
END PROGRAM Header 25

Area B (Columns 12 through 72) 25
Entries, Sentences, Statements, Clauses 25
Continuation Lines 25

Area A or Area B 26
Comment Lines 26
Debugging Lines 26
Blank Lines 26
Pseudo-Text 26
Compiler-Directing Statements 27

Comment Area (Columns 73 through 80) 27

Chapter 4. Data Reference and Name
Scoping 29
Methods of Data Reference 29

Identifier 29
Qualification 31
Subscripting 33
Reference Modification 37
Function-Identifier 39
User-Defined Data Types 41

Scope of Names 42
Types of Names 42
Nested Programs 43
Global and Local Names 44
External and Internal Objects 46
Data Attribute Specification 47
Resolution of Names 47
Conventions for Program-Names 48

Chapter 5. Transfer of Control. 51
Next Executable Statement 51

Part 2. COBOL Program Structure 53

Chapter 6. General Structure 55
END PROGRAM Header 56

Part 3. Identification Division 59

Chapter 7. Identification Division . . . 61
PROGRAM-ID Paragraph 62

program-name 62
literal 63
RECURSIVE Clause 63
COMMON Clause 64
INITIAL Clause 64

Optional Paragraphs 64
comment-entry 65

© Copyright IBM Corp. 1993, 2010 iii

||
||
##

Part 4. Environment Division 67

Chapter 8. Configuration Section . . . 69
Coding Example. 69
SOURCE-COMPUTER Paragraph 69

computer-name 70
WITH DEBUGGING MODE Clause 70

OBJECT-COMPUTER Paragraph 70
SPECIAL-NAMES Paragraph 72

Coding Example. 75
ALPHABET Clause 75

Coding Examples 78
CLASS Clause 79
CONSOLE Clause 80
CRT STATUS Clause 80

CRT STATUS Clause Considerations 81
CURRENCY SIGN Clause 82
CURSOR Clause 84

CURSOR Clause Considerations 84
DECIMAL-POINT IS COMMA Clause 84
FORMAT Clause 85

SIZE Phrase 87
LOCALE Phrase 87

LINKAGE TYPE Clause 88
LINKAGE TYPE Clause Considerations 89

LOCALE Clause 89
PROGRAM STATUS Clause 90

Chapter 9. Input-Output Section 93
File Categories 93

Database Files 93
Device Files 93
DDM Files. 93
Save Files 94

Paragraphs 94
FILE-CONTROL Paragraph 95

FILE-CONTROL Paragraph - Format 1 -
Sequential Files 95
FILE-CONTROL Paragraph - Format 2 - Relative
Files 96
FILE-CONTROL Paragraph - Format 3 - Indexed
Files 97
FILE-CONTROL Paragraph - Format 4 - Sort or
Merge Files 98
FILE-CONTROL Paragraph - Format 5 -
Transaction Files. 98

SELECT Clause 99
ASSIGN Clause 100

Device. 100
File Name 101
Attribute 102

RESERVE Clause 102
ORGANIZATION Clause 103

ORGANIZATION IS SEQUENTIAL (Format 1) 103
ORGANIZATION IS RELATIVE (Format 2) . . 103
ORGANIZATION IS INDEXED (Format 3) . . 104
ORGANIZATION IS TRANSACTION (Format
4) 104

PADDING CHARACTER Clause 104
RECORD DELIMITER Clause 105

ACCESS MODE Clause 105
ACCESS MODE Clause - Format 1 - Sequential
Files 105
ACCESS MODE Clause - Format 2 - Relative
Files 105
ACCESS MODE Clause - Format 3 - Indexed
Files 106
ACCESS MODE Clause - Format 4 - Transaction
Files 106
Data Organization and Access Modes 107
Data Organization 107
Access Modes 109
Relationship Between Data Organizations and
Access Modes 109

RECORD KEY Clause 110
DUPLICATES Phrase 111
EXTERNALLY-DESCRIBED-KEY 112

ALTERNATE RECORD KEY 113
Usage Considerations. 114

RELATIVE KEY Clause 115
FILE STATUS Clause 116
CONTROL-AREA Clause 117
I-O-CONTROL Paragraph 118

I-O-CONTROL Paragraph - Format 1 -
Sequential Files 118
I-O-CONTROL Paragraph - Format 2 - Relative
and Indexed Files 119
I-O-CONTROL Paragraph - Format 3 - Sort or
Merge Files 119

RERUN Clause 120
SAME AREA Clause 121
SAME RECORD AREA Clause 121
SAME SORT AREA Clause 122
SAME SORT-MERGE AREA Clause 123
MULTIPLE FILE TAPE Clause. 123
COMMITMENT CONTROL Clause 124

Part 5. Data Division 125

Chapter 10. Data Division Overview 127
Data Division Structure 127
File Section 128
Working-Storage Section. 129
Local-Storage Section 129
Linkage Section 130

ADDRESS OF 130
Types of Data 131

File Data 131
Program Data 132

Data Relationships 132
Levels of Data 132
Classes and Categories of Data 135
Alignment Rules 136
Standard Data Format 138
Character-String and Item Size 138
Signed Data 138

Chapter 11. Data Division—File and
Sort Description Entries 139
File Description Entry - Format 1 - Sequential File 139

iv ILE COBOL Reference

File Description Entry - Format 2 - Diskette File 140
File Description Entry - Format 3 - Tapefile . . . 141
File Description Entry - Format 4 - Printer File . . 142
Sort Description Entry - Format 5 - Sort or Merge
Files 143
File Description Entry - Format 6 - Transaction
Files 144
File Section 145
EXTERNAL Clause 145

Considerations for External Files 146
GLOBAL Clause 147
BLOCK CONTAINS Clause 147
RECORD Clause 148

RECORD clause - Format 1. 148
RECORD clause - Format 2. 149
RECORD clause - Format 3. 150
For Tape Files 150
For All Other Files 150
General Considerations for all Formats 151

LABEL RECORDS Clause 151
VALUE OF Clause. 152
DATA RECORDS Clause 152
LINAGE Clause 153

Illustration of LINAGE clause phrases 154
LINAGE-COUNTER Special Register 155

CODE-SET Clause 155

Chapter 12. Data Division—Data
Description Entry. 157
Format 1 157
Format 2 160
Format 3 160
Format 4 161
Format 5 162

CONSTANT Clause 163
LIKE Clause 163
OCCURS Clause 163
INDICATOR Clause 164
VALUE Clause 164

Level-Numbers 164
BLANK WHEN ZERO Clause 165
EXTERNAL Clause 166
FORMAT Clause 167

SIZE Phrase 168
USAGE For a Class Date-Time Item 168
FORMAT Clause and PICTURE CLAUSE
Similarities 168

GLOBAL Clause 170
Sharing Data 171

JUSTIFIED Clause 171
LIKE Clause 172

Comments Generated Based on Inherited
USAGE Characteristics 173
Rules and Restrictions 174
Coding Examples 175

OCCURS Clause 175
Table Handling Concepts 175
Limitations 176
Defining Tables. 176
Referencing Table Elements. 178
Fixed-Length Tables 179

ASCENDING/DESCENDING KEY Phrase . . 179
ASCENDING/DESCENDING KEY Phrase Rules 180
ASCENDING/DESCENDING KEY Phrase
Coding Example 180
INDEXED BY Phrase 181
Variable-Length Tables 181
Subscripting 185
Restrictions on Subscripting 185

PICTURE Clause 185
LOCALE Phrase 187
Symbols Used in the PICTURE Clause 187
Character-String Representation 192
Data Categories and PICTURE Rules 193
PICTURE Clause Editing 197

REDEFINES Clause 203
Redefinition Process 204
REDEFINES Clause Considerations 205
Coding Examples 206
Undefined Results 206

RENAMES Clause 207
Illustrations of Valid and Invalid RENAMES
Clause Specifications 209

SIGN Clause 209
SEPARATE CHARACTER 210

SYNCHRONIZED Clause 211
Benefits of Synchronized Data 211
Specifying the SYNCHRONIZED Clause with
the OCCURS Clause 213
Specifying the SYNCHRONIZED Clause with
the REDEFINES Clause 213
FILLER Items 214
Example of Implicit FILLER 215

TYPE Clause 215
TYPEDEF Clause 217
USAGE Clause 217

Computational Items 219
BINARY Phrase 220
PACKED-DECIMAL Phrase 220
COMPUTATIONAL or COMP Phrase 221
COMPUTATIONAL-1 or COMP-1 Phrase . . . 221
COMPUTATIONAL-2 or COMP-2 Phrase . . . 221
COMPUTATIONAL-3 or COMP-3 Phrase
(Internal Decimal) 221
COMPUTATIONAL-4 or COMP-4 Phrase
(Binary) 222
COMPUTATIONAL-5 or COMP-5 Phrase
(Binary) 222
DISPLAY Phrase 223
DISPLAY-1 Phrase 226
INDEX Phrase 226
NATIONAL Phrase 227
POINTER Phrase 227
PROCEDURE-POINTER Phrase 228

VALUE Clause 229
VALUE Clause - Format 1 - Literal Value . . . 230
VALUE Clause - Format 2 - Condition-Name
Value 232
VALUE Clause - Format 3 - NULL Value . . . 234

Part 6. Procedure Division 235

Contents v

|
||

Chapter 13. Procedure Division. . . . 237
Format 1 - with Sections and Paragraphs 237
Format 2 - with Paragraphs Only. 238
The Procedure Division Header 239

The USING Phrase 240
BY REFERENCE 241
BY VALUE 241
GIVING/RETURNING Phrase 241

Declaratives 242
Procedures 243

Section 243
Paragraph 243
Sample Procedure Division Statements 244

Arithmetic Expressions 245
Exponential Expressions 245
Arithmetic Operators 245

Conditional Expressions 247
Simple Conditions 247
Comparison of Numeric and Nonnumeric
Operands. 253
Sign Condition 258
Switch-Status Condition 259
Complex Conditions 259
Statement Categories 263
Statement Operations. 267

Chapter 14. Procedure Division
Statements 279
ACCEPT Statement 280

Format 1 - Data Transfer 280
Format 2 - System Information Transfer . . . 282
Format 3 - Feedback 284
Format 4 - Local Data Area 285
Format 5 - Program Initialization Parameters 286
Format 6 - Attribute Data 287
Workstation I/O 288
Format 8 - Session I/O 302
Format 9 - Data Area 302

ACQUIRE Statement 305
ADD Statement. 307

ROUNDED Phrase 308
SIZE ERROR Phrases 308
CORRESPONDING Phrase (Format 3) 309
END-ADD Phrase 309

ALTER Statement 310
Coding Example 310

CALL Statement 312
LINKAGE TYPE Phrase 316
IN LIBRARY Phrase 316
USING Phrase 317
BY REFERENCE Phrase 318
BY CONTENT Phrase 319
BY VALUE Phrase 320
LENGTH OF Special Register 321
GIVING/RETURNING phrase 322
ON EXCEPTION Phrase. 323
NOT ON EXCEPTION Phrase 323
ON OVERFLOW Phrase. 324
END-CALL Phrase 324
CALL Statement Considerations 324

Program Termination Statements 325
IBM i Graphics Support 325

CANCEL Statement 327
IN LIBRARY Phrase 328
LINKAGE TYPE Phrase 328

CLOSE Statement 330
CLOSE Statement - Format 1 330
CLOSE Statement - Format 2 - Tape Files . . . 330
CLOSE Statement Considerations. 330
Special Considerations for Device Type
TAPEFILE Only 331
NO REWIND Phrase 331
REEL or UNIT Phrase 331
FOR REMOVAL Phrase 332

COMMIT Statement 333
COMPUTE Statement 334

ROUNDED Phrase 335
SIZE ERROR Phrases 335
END-COMPUTE Phrase 335

CONTINUE Statement 336
DELETE Statement 337

DELETE Statement Considerations 337
Sequential Access Mode 338
Random or Dynamic Access Mode 338
FORMAT Phrase 339
NULL-KEY-MAP IS Phrase 340
INVALID KEY Phrase 340
NOT INVALID KEY Phrase 340
END-DELETE Phrase. 340

DISPLAY Statement 341
Format 1 - Data Transfer 341
DISPLAY Statement Behavior 343
Format 2 – Local Data Area 345
Format 3 – Extended DISPLAY Statement . . . 346
Format 4 – Session I/O 351
Format 5 – Data Area. 352

DIVIDE Statement 355
ROUNDED Phrase 357
REMAINDER Phrase 357
SIZE ERROR Phrases 358
END-DIVIDE Phrase 358

DROP Statement 359
ENTER Statement 360
EVALUATE Statement 361

Coding Examples 362
Interpreting Selection Subjects and Selection
Objects 363
END-EVALUATE Phrase 364
Determining Values 364
Comparing Selection Subjects and Objects . . . 365
Executing the EVALUATE Statement 365

EXIT Statement. 366
EXIT PROGRAM Statement 366

AND CONTINUE RUN UNIT Phrase 367
GOBACK Statement 368
GO TO Statement 369

Unconditional GO TO 369
Conditional GO TO 369
Altered GO TO 370

IF Statement. 371
END-IF Phrase 372

vi ILE COBOL Reference

Transferring Control 372
Nested IF Statements 372

INITIALIZE Statement 373
REPLACING Phrase 374
INITIALIZE Statement Rules 374

INSPECT Statement 376
INSPECT Statement - Format 1 376
INSPECT Statement - Format 2 376
INSPECT Statement - Format 3 377
INSPECT Statement - Format 4 378
INSPECT Statement Considerations 379
Comparison Rules 380
INSPECT Example 381
TALLYING Phrase (Formats 1 and 3) 382
REPLACING Phrase (Formats 2 and 3) 383
BEFORE and AFTER Phrases (All Formats) . . 383
CONVERTING Phrase (Format 4) 384
INSPECT Statement Examples 384

MERGE Statement. 386
ASCENDING/DESCENDING KEY Phrase . . 387
COLLATING SEQUENCE Phrase. 388
USING Phrase 389
GIVING Phrase. 389
OUTPUT PROCEDURE Phrase 390
SORT-RETURN Special Register 391

MOVE Statement 392
MOVE Statement - Format 1 392
MOVE Statement - Format 2 392
MOVE Statement Rules 392
Elementary Moves. 393
Group Moves 399
WHEN-COMPILED Special Register. 399

MULTIPLY Statement. 401
ROUNDED Phrase 402
SIZE ERROR Phrases 402
END-MULTIPLY Phrase 402

OPEN Statement 403
OPEN Statement - Format 1 - Sequential . . . 403
OPEN Statement - Format 2 - Indexed and
Relative 403
OPEN Statement - Format 3 - TRANSACTION 403
OPEN Statement Considerations 404
INPUT Phrase (Sequential Files) 406
OUTPUT Phrase (Sequential Files) 406
I-O Phrase (Sequential Files) 407
NO REWIND Phrase (Sequential Files) 407
REVERSED Phrase (Sequential Files) 408
EXTEND Phrase (Sequential Files) 408
INPUT Phrase (Indexed and Relative Files) . . 408
OUTPUT Phrase (Indexed and Relative Files) 409
I-O Phrase (Indexed and Relative Files). . . . 410
OPEN Statement Programming Notes 410

PERFORM Statement 412
Basic PERFORM Statement 412
PERFORM with TIMES Phrase 414
PERFORM with UNTIL Phrase 414
PERFORM with VARYING Phrase 415

READ Statement 424
Special Considerations for Device Types DISK
and DATABASE 424
Sequential Access Mode 424

Dynamic Access Mode 424
Random Access Mode 425
READ Statement - Format 1 - Sequential
Retrieval/Sequential Access 425
READ Statement - Format 2 - Sequential
Retrieval/Dynamic Access 425
READ Statement - Format 3 - Random Retrieval 426
Sequential Files. 432
Relative Files 433
Indexed Files 434
Multiple Record Processing. 435
Multivolume Files 435
Transaction Files 436

RELEASE Statement 444
RETURN Statement 446

AT END Phrases 447
END-RETURN Phrase 447

REWRITE Statement 448
REWRITE Statement - Format 1 448
REWRITE Statement Considerations 450
Transaction (Subfile) Format 452

ROLLBACK Statement 454
SEARCH Statement 455

SEARCH Statement - Format 1 - Serial Search 455
SEARCH Statement - Format 2 - Binary Search 455
AT END/WHEN Phrases 456
Condition-1 457
NEXT SENTENCE Phrase 457
END-SEARCH Phrase 457
Serial Search. 457
VARYING Phrase 457
Binary Search 459
WHEN Phrase 460
Search Statement Considerations 461
SEARCH Example. 461

SET Statement 463
Format 1 - Initializing Index-names, Identifiers 463
Format 2 - Adjusting Index Values 465
Format 3 - Setting External Switches. 466
Format 4 - Condition-names 466
Format 5 - Pointer Data Item 467
Format 6 - Procedure-Pointer Data Item . . . 468
Format 7 - Adjusting Pointers 469
Format 8 - Locale 470

SORT Statement 472
ASCENDING/DESCENDING KEY Phrase . . 473
DUPLICATES Phrase 475
COLLATING SEQUENCE Phrase. 475
USING Phrase 475
INPUT PROCEDURE Phrase 476
GIVING Phrase. 476
OUTPUT PROCEDURE Phrase 477

START Statement 479
NO LOCK Phrase 480
KEY Phrase 480
FORMAT Phrase 481
NULL-KEY-MAP IS Phrase 481
INVALID KEY Phrase 482
NOT INVALID KEY Phrase 482
END-START Phrase 482
Indexed Files 483

Contents vii

Relative Files 485
STOP Statement 487

RETURN-CODE Special Register 488
STRING Statement 489

DELIMITED BY Phrase 490
INTO Phrase 490
POINTER Phrase 490
ON OVERFLOW Phrases 491
END-STRING Phrase 491
Data Flow 492
STRING Statement Example 493

SUBTRACT Statement 496
ROUNDED Phrase 497
SIZE ERROR Phrases 497
CORRESPONDING Phrase (Format 3) 497
END-SUBTRACT Phrase 498

UNSTRING Statement 499
DELIMITED BY Phrase 500
INTO Phrase 501
POINTER Phrase 502
TALLYING IN Phrase 502
ON OVERFLOW Phrases 502
END-UNSTRING Phrase 503
Data Flow 503
UNSTRING Statement Example 505

WRITE Statement 508
Sequential Files. 508
Indexed and Relative Files 512

XML GENERATE Statement 524
Nested XML GENERATE or XML PARSE
statements 528
Operation of XML GENERATE 528
XML element name formation 530

XML PARSE Statement 532
Control flow. 534
Processing procedures 535
Coded character sets for XML documents . . . 535
Special Registers 537

Chapter 15. Intrinsic Functions 541
Function Definition and Evaluation 541
Specifying a Function. 541
Types of Functions 542
Rules for Usage 543
Arguments 545

Order of Precedence for the Evaluation of
Function Arguments 547

ALL Subscripting 548
Function Definitions 550
ACOS 555
ADD-DURATION 555

Examples 557
ANNUITY 557
ASIN 557
ATAN 558
CHAR. 558
CONVERT-DATE-TIME 559

Examples 560
COS 560
CURRENT-DATE 561
DATE-OF-INTEGER 562

DAY-OF-INTEGER 562
DATE-TO-YYYYMMDD 563

Examples 563
DAY-TO-YYYYDDD 564

Examples 564
DISPLAY-OF 564
EXTRACT-DATE-TIME 567

Examples 568
FACTORIAL. 568
FIND-DURATION. 568

Examples 569
INTEGER 569
INTEGER-OF-DATE 570
INTEGER-OF-DAY 570
INTEGER-PART 571
LENGTH 571
LOCALE-DATE 572

Returned Values 572
LOCALE-TIME 573

Returned Values 573
LOG 573
LOG10 574
LOWER-CASE 574
MAX 575
MEAN 576
MEDIAN 576
MIDRANGE. 577
MIN 577
MOD 578
NATIONAL-OF 579
NUMVAL 580
NUMVAL-C 581
ORD 582
ORD-MAX 582
ORD-MIN 583
PRESENT-VALUE 584
RANDOM 584
RANGE 585
REM 585
REVERSE. 586
SIN. 586
SQRT 587
STANDARD-DEVIATION 587
SUBTRACT-DURATION. 588

Examples 589
SUM 589
TAN 590
TEST-DATE-TIME 590

Examples 591
TRIM 592

Returned Values 592
Examples: 593

TRIML 593
TRIMR 594
UPPER-CASE 594
UTF8STRING 595
VARIANCE 596
WHEN-COMPILED 596
YEAR-TO-YYYY 597

Examples 598

viii ILE COBOL Reference

Part 7. Compiler-Directing
Statements. 599

Chapter 16. Compiler-Directing
Statements 601
*CONTROL (*CBL) Statement 601

*CONTROL (*CBL) and the COPY Statement 602
COPY Statement 602

COPY Statement - Format 1 - Basic 602
SUPPRESS Phrase 604
REPLACING Phrase 604
Replacement and Comparison Rules. 606
Coding Examples 607
COPY Statement - Format 2 - DDS Translate . . 608
COPY Statement - Format 3 - Basic IFS 626

EJECT Statement 627
REPLACE Statement 628

Replacing Algorithm 629
Programming Notes 629

SKIP1/2/3 Statements 630
TITLE Statement 630
USE Statement 631

USE Statement - Format 1 -
EXCEPTION/ERROR 631
USE Statement Programming Notes 633
Precedence Rules for Nested Programs 633
USE FOR DEBUGGING 633

Part 8. Appendixes 635

Appendix A. ILE COBOL Compiler
Limits. 637

Appendix B. Intermediate Results and
Arithmetic Precision 639
Calculating Precision of Intermediate Results . . . 639
Compiler Calculation of Intermediate Results. . . 640

Integer Functions 642
Mixed Functions 644
Floating-Point Data and Intermediate Results 645

Appendix C. EBCDIC and ASCII
Collating Sequences 647
EBCDIC Collating Sequence 647
ASCII Collating Sequence 649

Appendix D. ILE COBOL
Function-Name and Context-Sensitive
Word List 653
Visual Key 653
Function-Names 653
Context-Sensitive Words. 653

Appendix E. ILE COBOL Reserved
Word List 657
Visual Key 657
Reserved Words 657

Appendix F. File Structure Support
Summary and Status Key Values . . . 663
File Structure Support Tables 663
File Status Key Values and Meanings 668
Attribute Data Formats 675

Appendix G. PROCESS Statement . . 679
Corresponding Create Command Options 679

Appendix H. Complex OCCURS
DEPENDING ON 687
Effects of a Change in ODO Value 688
Preventing Errors when Changing the ODO Object
Value 688
Preventing Overlay When Adding Elements to a
Variable Table 689

Appendix I. ACCEPT/DISPLAY and
COBOL/2 Considerations 691

Notices 693
Programming Interface Information 694
Trademarks 694
Acknowledgments. 695

Bibliography. 697

Index 701

Contents ix

x ILE COBOL Reference

About this Reference

This reference describes the Integrated Language Environment COBOL (ILE
COBOL) programming language. It provides information on the structure of the
ILE COBOL programming language and the structure of an ILE COBOL source
program. It also provides a description of all Identification Division paragraphs,
Environment Division clauses, Data Division clauses, Procedure Division
statements, and Compiler-Directing statements.

This book refers to other IBM® publications. These publications are listed in the
“Bibliography” on page 697 with their full title and base order number. When they
are referred to in text, a shortened version of the title is used.
v Statements, Clauses, Special Registers
v Program Structure
v Concepts
v What's New

Who Should Use this Reference
This reference provides information about the ILE COBOL programming language
on the IBM i (formerly OS/400) system. It is intended for people who have a basic
understanding of data processing concepts and of the COBOL programming
language.

Before using this reference, you should be familiar with certain IBM i system
information:
v You should be familiar with your display station (also known as a work station),

and its controls. There are also some elements of its display and certain keys on
the keyboard that are standard regardless of which software system is currently
running at the display station, or which hardware system the display station is
hooked up to. Some of these keys are:
– Cursor movement keys
– Command keys
– Field exit keys
– Insert and Delete keys
– The Error Reset key

v You should know how to operate your display station when it is attached to the
IBM iSeries system and running iSeries software. This means knowing about the
IBM i operating system and the Control Language (CL) to do such things as:
– Sign on and sign off the display station
– Interact with displays
– Use Help
– Enter CL commands
– Call utilities
– Respond to messages
To find out more about this operating system and its control language, refer to
the CL and APIs section of the Programming category in the System i5/OS
Information Center at this Web site -http://www.ibm.com/systems/i/
infocenter/. You can also refer to the CL Programming publication.

v You should be familiar with the Data Management topic in the Information
Center, which provides detailed descriptions of the entries and keywords needed
to describe database files and certain device files external to the user's program.

© Copyright IBM Corp. 1993, 2010 xi

http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/

v You should be familiar with the DDS Reference topic in the Information Center
manual, which provides information on using data management support and
allows an application to work with files.
The manual includes information on:
– Fundamental structure and concepts of data management support on the

system
– Data management support for display stations, printers, tapes, and diskettes,

as well as spooling support
– Overrides and file redirection (temporarily making changes to files when an

application is run)
– Copying files by using system commands to copy data from one place to

another
– Tailoring a system using double-byte data

v You should know how to call and use certain utilities available on the iSeries
system:
– The screen design aid (SDA) is used to design and code displays. This

information is contained in ADTS for AS/400: Screen Design Aid.
– The source entry utility (SEU), is a full-screen editor you can use to enter and

update your source and procedure members. This information is contained in
ADTS for AS/400: Source Entry Utility.

– The programming development manager (PDM) utility is a list-processing
tool you can use to work with lists of libraries, objects, members, and
user-defined options. This information is contained in ADTS/400: Programming
Development Manager.

v You should know how to use the application programming interfaces (APIs)
provided with the IBM i operating system. This information is contained in the .

v You should know how to interpret displayed and printed messages. This
information is contained in the IBM Rational Development Studio for i: ILE COBOL
Programmer's Guide.

v You should be familiar with the concepts and terminology of the Integrated
Language Environment® of the i5/OS® program. This information is contained
in the ILE Concepts manual.

Prerequisite and Related Information
Use the iSeries Information Center as your starting point for looking up iSeries and
AS/400e technical information. You can access the Information Center in two ways:
v From the following Web site:

http://www.ibm.com/systems/i/infocenter/

v From CD-ROMs that ship with your IBM i order.

The iSeries Information Center contains advisors and important topics such as CL
commands, system application programming interfaces (APIs), logical partitions,
clustering, Java™ , TCP/IP, Web serving, and secured networks. It also includes
links to related IBM Redbooks and Internet links to other IBM Web sites such as
the Technical Studio and the IBM home page.

The manuals that are most relevant to the ILE COBOL compiler feature are listed
in the “Bibliography” on page 697.

xii ILE COBOL Reference

How to Send Your Comments
Your feedback is important in helping to provide the most accurate and
high-quality information. IBM welcomes any comments about this book or any
other iSeries documentation.
v If you prefer to send comments by mail, use the the following address:

IBM Canada Ltd. Laboratory
Information Development
8200 Warden Avenue
Markham, Ontario, Canada L6G 1C7

If you are mailing a readers' comment form from a country other than the
United States, you can give the form to the local IBM branch office or IBM
representative for postage-paid mailing.

v If you prefer to send comments by fax , use 1–845–491–7727, attention: RCF
Coordinator.

v If you prefer to send comments electronically, use one of these e-mail addresses:
– Comments on books:

RCHCLERK@us.ibm.com
– Comments on the iSeries Information Center:

RCHINFOC@us.ibm.com

Be sure to include the following:
v The name of the book.
v The publication number of the book.
v The page number or topic to which your comment applies.

What's New
There have been several releases of ILE COBOL. The following is a list of
enhancements made for each release since V3R1 up to the current release:
v “What's New this Release?” on page xiv
v “What's New in V6R1?” on page xv
v “What's New in V5R4?” on page xvi
v “What's New in V5R3?” on page xvi
v “What's New in V5R2?” on page xvii
v “What's New in V5R1?” on page xviii
v “What's New in V4R4?” on page xx
v “What's New in V4R2?” on page xx
v “What's New in V3R7?” on page xxii
v “What's New in V3R6/V3R2?” on page xxiii
v “What's New in V3R1?” on page xxiv

You can use this section to link to and learn about new ILE COBOL functions.

Note: The information for this product is up-to-date with the V7R1 release of ILE
COBOL. If you are using a previous release of the compiler, you will need to
determine what functions are supported on your system. For example, if
you are using a V5R3 system, the functions new to the V7R1 release will not
be supported.

About this Reference xiii

|

|
|

|
|
|
|
|

What's New this Release?
The following list describes the enhancements made to ILE COBOL in V7R1:
v COMPUTATIONAL-5 (native binary) data type

COMPUTATIONAL-5 or COMP-5 is a native binary data type now supported
by the USAGE clause. COMP-5 data items are represented in storage as binary
data, and can contain values up to the capacity of the native binary
representation (2, 4, or 8 bytes). When numeric data is moved or stored into a
COMP-5 item, truncation occurs at the binary field size rather than at the
COBOL picture size limit. When a COMP-5 item is referenced, the full binary
field size is used in the operation. This support will enhance portability to or
from COBOL on other IBM platforms and operating systems.

v Ability to specify a non-numeric literal on the VALUE clause for a national data
item.

v XML GENERATE performance improvements and PROCESS options
Performance improvements have been made for XML GENERATE when the
APPEND option is specified. Users who have a large number of data records to
be appended into a data structure or into a stream file will benefit from these
changes. The improvements include the addition of new PROCESS statement
parameter XMLGEN with option values:
– NOKEEPFILEOPEN / KEEPFILEOPEN

Specify KEEPFILEOPEN to indicate that the XML stream file is to be left open
and not closed when the XML GENERATE statement is complete, so that
subsequent XML GENERATE FILE-STREAM APPEND statements can quickly
append data to the stream file.

– NOASSUMEVALIDCHARS / ASSUMEVALIDCHARS
Specify ASSUMEVALIDCHARS to have XML GENERATE bypass the
checking for special characters (less than "<", greater than ">", ampersand "&",
and the single and double quote symbols), and for characters not supported
by XML that would require being generated as hexadecimal. Otherwise
normal checking will be done with the default NOASSUMEVALIDCHARS.

v Ability to encrypt the listing debug view
A new CRTBNDCBL / CRTCBLMOD parameter is added to support the
encryption of the listing debug view. DBGENCKEY specifies the encryption key
to be used to encrypt program source that is embedded in debug views.

v Larger program support
The CRTBNDCBL / CRTCBLMOD OPTIMIZE parameter now supports a new
*NEVER option value. The *NEVER value allows larger programs to compile by
not generating optimization code for the program. PROCESS statement option
NEVEROPTIMIZE is also added.

v Support for the teraspace storage model
The storage model for a program/module can now be specified using the new
CRTBNDCBL / CRTCBLMOD parameter STGMDL with option values:
– *SNGLVL specifies that the program/module is to be created with single-level

storage model
– *TERASPACE specifies that the program/module is to be created with

teraspace storage model
– *INHERIT specifies that the program/module is to inherit the storage model

of its caller
Additionally, the activation group parameter ACTGRP on the CRTBNDCBL
command now has a new default option value:

xiv ILE COBOL Reference

|

|

|

|
|
|
|
|
|
|
|

|
|

|

|
|
|
|
|

|

|
|
|
|

|

|
|
|
|
|

|

|
|
|

|

|
|
|
|

|

|
|

|
|

|
|

|
|

|
|

– *STGMDL: When STGMDL(*TERASPACE) is specified, the program will be
activated into the QILETS activation group. For all other storage models, the
program will be activated into the QILE activation group when it is called.

v New PROCESS statement options
– ACTGRP is now avaliable as a PROCESS statement parameter with option

values:
- STGMDL
- NEW
- CALLER

– NEVEROPTIMIZE is now available as a PROCESS statement option
– STGMDL is now avaliable as a PROCESS statement parameter with option

values:
- INHERIT
- SNGLVL
- TERASPACE

– XMLGEN is now avaliable as a PROCESS statement parameter with option
values:
- NOKEEPFILEOPEN / KEEPFILEOPEN
- NOASSUMEVALIDCHARS / ASSUMEVALIDCHARS

Note: There may be screen captures in this guide that contain obsolete references
to iSeries.

Changes to this Guide Since V6R1
This V7R1 guide, IBM Rational Development Studio for i: ILE COBOL Reference,
SC09-2539-07, differs in several places from the V6R1 guide, SC09-2539-06. Most of
the changes are related to the enhancements that have been made for V7R1; others
reflect minor technical corrections. To assist you in using this manual, technical
changes and enhancements made in V7R1 are noted with a vertical bar (|).

What's New in V6R1?
The following list describes the enhancements made to ILE COBOL in V6R1:
v National UCS-2 CCSID support

The NTLCCSID parameter has been added to the CRTCBLMOD and
CRTBNDCBL commands, and to the PROCESS statement, to allow you to
specify the UCS-2 CCSID to be used for National data items. With this
parameter, you can specify a CCSID other than the default 13488, such as CCSID
1200, to be used for National items.

v PCML in module support
– The PGMINFO parameter on the CRTCBLMOD and CRTBNDCBL commands

has been enhanced to allow you to specify the location where you want to
put the generated PCML. When the user specifies *PCML as the first
parameter for the PGMINFO keyword, a second parameter specifying a
location of *STMF, *MODULE, or *ALL, can also be specified. *STMF will
cause the PCML to be put into the streamfile specified on the INFOSTMF
parameter, *MODULE will cause the PCML to be put into the generated
module, and *ALL will cause the PCML to be put in all of these locations.

– PROCESS statement option PGMINFO

About this Reference xv

|
|
|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|
|

|

|
|
|
|
|

#

#

#

#
#
#
#
#

#

#
#
#
#
#
#
#
#

#

This option allows the user to request that PCML be added to the module,
and can be specified as PGMINFO(PCML MODULE). If the user had
requested the PCML be added to a streamfile from the create command, the
PCML will be added to both the module and the streamfile.

v Complex OCCURS DEPENDING ON (ODO) debugger support
– Support has been added so the system debugger and the client debugger can

now debug complex OCCURS DEPENDING ON arrays.
v Large Program Support

– The compiler has been enhanced so that larger programs and programs
containing a very large number of data items can now be compiled (subject to
system limitations).

What's New in V5R4?
The following list describes the enhancements made to ILE COBOL in V5R4:
v XML support has been enhanced. A new statement, XML GENERATE , converts

the content of COBOL data records to XML format. XML GENERATE creates
XML documents encoded in Unicode UCS-2 or in one of several single-byte
EBCDIC or ASCII CCSIDs.

v Null-terminated nonnumeric literal
Nonnumeric literals can be null-terminated. They can be used anywhere a
nonnumeric literal can be specified except that null-terminated literals are not
supported in "ALL literal" figurative constants.

v New CRTBNDCBL / CRTCBLMOD option
*NOCOMPRESSDBG/*COMPRESSDBG specifies whether listing view
compression should be performed by the compiler when DBGVIEW option
*LIST or *ALL is specified.

v New intrinsic functions:
– DISPLAY-OF
– NATIONAL-OF
– TRIM
– TRIML
– TRIMR

What's New in V5R3?
The following list describes the enhancements made to ILE COBOL in V5R3:
v Large VALUE clause support

When the *NOSTDTRUNC compiler option is in effect, data items described
with usage BINARY, or COMP-4 that do not have a picture symbol P in their
PICTURE clause can have a value up to the capacity of the native binary
representation.

v CONSTANT data type
A CONSTANT data type is defined by specifying a level-01 entry containing the
CONSTANT clause for a literal. The CONSTANT data item can then be used in
place of the literal.

v XML support
XML PARSE statement provides the interface to a high-speed XML parser that is
part of the COBOL run time. The XML PARSE statement parses an XML
document into its individual pieces and passes each piece, one at a time, to a
user-written processing procedure.

xvi ILE COBOL Reference

#
#
#
#

#

#
#

#

#
#
#

These XML special registers are used to communicate information between the
XML parser and the user-written processing procedure:
– XML-CODE
– XML-EVENT
– XML-NTEXT
– XML-TEXT

v Alternate Record Key support
The ALTERNATE RECORD KEY clause lets you define alternate record keys
associated with indexed files. These alternate keys allow you to access the file
using a different logical ordering of the file records.

v DBCS data item names (DBCS word support)
v 63 digit support

– The maximum length of packed decimal, zoned decimal, and numeric-edited
items has been extended from 31 to 63 digits.

– The ARITHMETIC parameter on the CRTCBLMOD and CRTBNDCBL
commands and on the PROCESS statement has a new EXTEND63 option.

v 7 new ANSI Intrinsic functions:
– INTEGER
– REM
– ANNUITY
– INTEGER-PART
– MOD
– FACTORIAL
– RANDOM

v New CRTBNDCBL / CRTCBLMOD options:
– *NOCRTARKIDX / *CRTARKIDX Specifies whether or not to create

temporary alternate record key indexes if permanent ones cannot be found.
– *STDINZHEX00 Specifies that data items without a value clause are

initialized with hexadecimal zero.
– *EXTEND63 option for the ARITHMETIC parameter increases the precision of

intermediate results for fixed-point arithmetic up to 63 digits.
v New PROCESS statement options:

– PROCESS statement option NOCOMPRESSDBG/COMPRESSDBG indicates
whether listing view compression should be performed by the compiler when
DBGVIEW option *LIST or *ALL is specified

– NOCRTARKIDX/CRTARKIDX
– STDINZHEX00
– EXTEND63 option for the ARITHMETIC parameter

v Program Status Structure
The program status structure is a predefined structure that contains error
information when the COBOL program receives an error. The PROGRAM
STATUS clause is used to specify the error information that is received.

What's New in V5R2?
The following list describes the enhancements made to ILE COBOL in V5R2:
v Recursive program support

About this Reference xvii

An optional RECURSIVE clause has been added to provide support for recursive
programs. These are COBOL programs that can be recursively re-entered.

v Local Storage Section support
A new data section that defines storage allocated and freed on a per-invocation
basis has been added. You can specify the Local-Storage Section in both
recursive and non-recursive programs.

v Java interoperability
Two new features have been added to enhance Java interoperability. These
include:
– UTF8String intrinsic function

This function provides the ability to convert strings to UTF-8 format.
– PCML support

New parameters have been added to the CRTCBLMOD and CRTBNDCBL
commands to give users the ability to tell the compiler to generate PCML
source for their COBOL program. When the user specifies PGMINFO(*PCML)
and the name of a streamfile on the INFOSTMF parameter, the compiler will
generate PCML into the specifed streamfile. The generated PCML makes it
easier for Java programs to call this COBOL program, with less Java code.

v Additional intrinsic functions
Several new intrinsic functions have been added to this release. These include:
– Max
– Median
– Midrange
– Min
– ORD-Max
– ORD-Min
– Present Value
– Range
– Standard Deviation
– Sum
– Variance

v IFS
ILE Cobol source stored in IFS stream files can be compiled. The SRCSTMF and
INCDIR parameters have been added to the CRTCBLMOD and CRTBNDCBL
commands to give users the ability to tell the compiler to compile from source
stored in IFS stream files.

What's New in V5R1?
The following list describes the enhancements made to ILE COBOL in V5R1:
v UCS-2 (Unicode) support

National data, a new type of data item, has been added to provide support for
the coded character set specified in ISO/IEC 10646-1 as UCS-2. The code set is
the basic set defined in the Unicode standard.
– UCS-2 character set

This coded character set provides a unique code for each character appearing
in the principal scripts in use around the world. Each character is represented
by a 16-bit (2-byte) code.

– National data

xviii ILE COBOL Reference

This new type of data item specifies that the item contains data coded using
the UCS-2 code set. An elementary data item whose description contains a
USAGE NATIONAL clause, or an elementary data item subordinate to a
group item whose description contains a USAGE NATIONAL clause, is a
national data item.

– NTLPADCHAR compiler option and PROCESS statement option
This option allows you to specify three values: the SBCS padding character,
DBCS padding character, and national padding character. The appropriate
padding character is used when a value is moved into a national datatype
item and does not fill the national datatype item completely.

– ALL national literal
Allows the word ALL wherever a national hexadecimal literal is allowed, so
that for example you could move all UCS-2 blanks into a national data item.

– PROCESS statement option NATIONAL
When this option is specified, elementary data items defined using the picture
symbol N will have an implied USAGE NATIONAL clause. A USAGE
DISPLAY-1 clause will be implied for these items if the compiler option is not
used.

– National hexadecimal literals
Literals containing national data values may be specified using the syntax:
NX"hexadecimal-character-sequence..."

– Figurative constants
The figurative constant SPACE/SPACES represents one or more UCS-2 single
byte space characters (U+0020) when used with national data items.

v JAVA interoperability support
– QCBLLESRC.JNI file

This file provides the same definitions and prototypes that are provided in
the JNI.h file, but written in COBOL rather than C.

– Data mapping between Java and COBOL datatypes
v Mainframe portability support

– NOCOMPASBIN/COMPASBIN PROCESS statement option indicates whether
USAGE COMPUTATIONAL or COMP has the same meaning as USAGE
COMP-3 or USAGE COMP-4.

– NOLSPTRALIGN/LSPTRALIGN PROCESS statement option indicates
whether data items with USAGE POINTER or PROCEDURE-POINTER are
aligned at multiples of 16 bytes relative to the beginning of the record in the
linkage section.

– Complex OCCURS DEPENDING ON (ODO) support
The following constitute complex ODO:
- Entries subordinate to the subject of an OCCURS or an ODO clause can

contain ODO clauses (table with variable length elements).
- A data item described by an ODO can be followed by a non-subordinate

data item described with ODO clause (variably located table).
- Entries containing an ODO clause can be followed by non-subordinate

items (variably located fields). These non-subordinate items, however,
cannot be the object of an ODO clause.

- The location of any subordinate or non-subordinate item, following an item
containing an ODO clause, is affected by the value of the ODO object.

- The INDEXED BY phrase can be specified for a table that has a subordinate
item that contains an ODO clause.

About this Reference xix

v The LICOPT parameter has been added to the CRTCBLMOD and CRTBNDCBL
commands to allow advanced users to specify Licensed Internal Code options.

What's New in V4R4?
The following list describes the enhancements made to ILE COBOL in V4R4:
v Thread Safety Support

Support for calling ILE COBOL procedures from a threaded application, such as
Domino® or Java. The THREAD parameter has been added to the PROCESS
statement, to enable ILE COBOL modules for multithreaded environments.
Access to the procedures in the module should be serialized.

v 31-digit support
– The maximum length of packed decimal, zoned decimal, and numeric-edited

items has been extended from 18 to 31 numeric digits.
– The ARITHMETIC parameter has been added to the CRTCBLMOD and

CRTBNDCBL commands, and to the PROCESS statement to allow the
arithmetic mode to be set for numeric data. This allows you to specify the
computational behavior of numeric data.

v Euro currency support
– The ability to specify more than one currency sign in a COBOL program to

support the dual currency system that will be in effect for three years starting
in January 1999 among the participating countries.

– The ability to represent multi-character currency signs, so that the
international currency signs (e.g. USD, FRF, DEM, EUR) as well as
single-character currency signs (e.g. "$") can be specified for COBOL numeric
edited fields.

– The OPTION parameter values *MONOPIC/*NOMONOPIC have been added
to the CRTCBLMOD and CRTBNDCBL commands, and MONOPIC/
NOMONOPIC have been added to the PROCESS statement. This allows you
to choose between a moncased or a case sensitive currency symbol in a
PICTURE character-string.

What's New in V4R2?
The following list describes the enhancements made to ILE COBOL in V4R2:
v User-defined data types

A user-defined data type is defined by specifying a level-01 entry containing the
TYPEDEF clause; all entries that are subordinate to the level-01 entry are
considered part of the user-defined data type. A user-defined data type can be
used to define new data items of level-01, -77, or -02 through -49, by specifying
a TYPE clause for the new data item, that references the user-defined data type.

v Program profiling support
The PRFDTA parameter has been added to both the CRTCBLMOD and
CRTBNDCBL commands, and to the PROCESS statement, to allow a program to
be profiled for optimization.

v Null-values support
Null-values support (by way of the NULL-MAP and NULL-KEY-MAP
keywords) has been added to the following statements and clauses to allow the
manipulation of null values in database records:
– ASSIGN clause
– COPY-DDS statement
– DELETE statement

xx ILE COBOL Reference

– READ statement
– REWRITE statement
– START statement
– WRITE statement.

v Locale support
OS/400 Locale objects (*LOCALE) specify certain cultural elements such as a
date format or time format. This cultural information can be associated with ILE
COBOL date, time, and numeric-edited items. The following new characters,
clauses, phrases and statements were added to support this:
– The LOCALE clause of the SPECIAL-NAMES paragraph

- Associates an OS/400 locale object with a COBOL mnemonic-name
– The LOCALE phrase of a date, time, or numeric-edited item

- Allows you to specify a locale mnemonic-name, so that the data item is
associated with an OS/400 locale object

– Along with specific locales defined in the LOCALE clause of the
SPECIAL-NAMES paragraph, a current locale, and a default locale have been
defined. The current locale can be changed with the new SET LOCALE
statement (Format 8).
- A locale object is made up of locale categories, each locale category can be

changed with the SET LOCALE statement.
– Locale categories have names such as LC_TIME and LC_MONETARY. These

names include the underscore character. This character has been added to the
COBOL character set.
- The SUBSTITUTE phrase of the COPY DDS statement has been enhanced

to allow the underscore character to be brought in.
The following new intrinsic functions allow you to return culturally-specific
dates and times as character strings:
– LOCALE-DATE
– LOCALE-TIME.

v Additions to Century support
The following enhancements have been made to the ILE COBOL Century
support:
– A new class of data items, class date-time, has been added. Class date-time

includes date, time, and timestamp categories. Date-time data items are
declared with the new FORMAT clause of the Data Description Entry.

– Using COPY-DDS and the following values for the CVTOPT compiler
parameter, OS/400 DDS data types date, time, and timestamp can be brought
into COBOL programs as COBOL date, time, and timestamp items:
- *DATE
- *TIME
- *TIMESTAMP.

– Using the CVTOPT parameter value *CVTTODATE, packed, zoned, and
character OS/400 DDS data types with the DATFMT keyword can be brought
into COBOL as date items.

– The following new intrinsic functions allow you to do arithmetic on items of
class date-time, convert items to class date-time, test to make sure a date-time
item is valid, and extract part of a date-time item:
- ADD-DURATION
- CONVERT-DATE-TIME
- EXTRACT-DATE-TIME
- FIND-DURATION
- SUBTRACT-DURATION

About this Reference xxi

- TEST-DATE-TIME.

What's New in V3R7?
The following list describes the enhancements made to ILE COBOL in V3R7:
v Century support

The capability for users to work with a 4-digit year has been added in the
following statements and functions:
– ACCEPT statement with the YYYYDDD and YYYYMMDD phrases
– The following intrinsic functions convert a 2-digit year to a 4-digit year:

- DATE-TO-YYYYMMDD
- DAY-TO-YYYYDDD
- YEAR-TO-YYYY

– The following intrinsic functions return a 4-digit year:
- CURRENT-DATE
- DAY-OF-INTEGER
- DATE-OF-INTEGER
- WHEN-COMPILED

v Floating-point support
The *FLOAT value of the CVTOPT parameter on the CRTCBLMOD and
CRTBNDCBL commands allows floating-point data items to be used in ILE
COBOL programs. Also, the affected statements (such as ACCEPT, DISPLAY,
MOVE, COMPUTE, ADD, SUBTRACT, MULTIPLY, and DIVIDE) support
floating-point.

v Data area support
New formats of the ACCEPT and DISPLAY statements have been added to
provide the ability to retrieve and update the contents of OS/400 data areas.

v Intrinsic Functions
The following intrinsic functions have been added:

ACOS LOG10
ASIN LOWER-CASE
ATAN MEAN
CHAR NUMVAL
COS NUMVAL-C
CURRENT-DATE ORD
DATE-OF-INTEGER REVERSE
DAY-OF-INTEGER SIN
DATE-TO-YYYYMMDD SQRT
DAY-TO-YYYYDDD TAN
INTEGER-OF-DATE UPPER-CASE
INTEGER-OF-DAY WHEN-COMPILED
LENGTH YEAR-TO-YYYY
LOG

v Binding Directory parameter—BNDDIR
The BNDDIR parameter has been added to the CRTBNDCBL command to allow
the specification of the list of binding directories that are used in symbol
resolution.

v Activation Group parameter—ACTGRP
The ACTGRP parameter has been added to the CRTBNDCBL command to allow
the specification of the activation group that a program is associated with when
it is called.

xxii ILE COBOL Reference

v Library qualified program objects and data areas
The LIBRARY phrase has been added to the following ILE COBOL statements to
allow OS/400 program objects and data areas to be qualified with an OS/400
library name:
– CALL
– CANCEL
– SET
– ACCEPT
– DISPLAY

v Performance collection data
The ENBPFRCOL parameter has been added to the CRTCBLMOD and
CRTBNDCBL commands, and to the PROCESS statement to allow performance
measurement code to be generated in a module or program. The data collected
can be used by the system performance tool to profile an application's
performance.

v New ILE debugger support
The ILE debugger now allows you to:
– Debug most OPM programs
– Set watch conditions, which are requests to set breakpoints when the value of

a variable (or an expression that determines the address of a storage location)
changes.

What's New in V3R6/V3R2?
The following list describes the enhancements made to ILE COBOL in V3R6 and
V3R2:
v New EXIT PROGRAM phrase

The AND CONTINUE RUN UNIT phrase has been added to the EXIT
PROGRAM statement to allow exiting of a calling program without stopping the
run unit.

v New SET statement pointer format
A new format of the SET statement has been added that enables you to update
pointer references.

v DBCS Data Support
You can now process Double Byte Character Set (DBCS) data in ILE COBOL.
The ILE COBOL compiler supports DBCS, in which each logical character is
represented by two bytes. DBCS provides support for ideographic languages,
such as the IBM Japanese Graphic Character Set, Kanji.

v Support for CALL...BY VALUE and CALL...RETURNING
CALL...BY VALUE and CALL...RETURNING gives you the ability to pass
arguments BY VALUE instead of BY REFERENCE and receive RETURN values.
This allows for greater ease of migration, and improved interlanguage support
as ILE C for OS/400 and ILE RPG for OS/400 both support CALL... BY VALUE
and CALL...RETURNING.

v Support of the BY VALUE and RETURNING phrases of the PROCEDURE
DIVISION Header
The BY VALUE phrase of the PROCEDURE DIVISION header allows COBOL to
receive BY VALUE arguments from a calling COBOL program or other ILE
language such as RPG, C, or C++. The RETURNING phrase of the PROCEDURE
DIVISION header allows COBOL to return a VALUE to the calling ILE
procedure.

About this Reference xxiii

What's New in V3R1?
The following list describes the enhancements made to ILE COBOL in V3R1:
v EXTERNAL data items

You can define data items that are available to every program in the ILE COBOL
run unit by using the EXTERNAL clause. No longer do you need to pass all
variables that are to be shared across programs as arguments on the CALL
statement. This support encourages greater modularity of applications by
allowing data to be shared without using arguments and parameters on the
CALL statement.

v EXTERNAL files
You can define files that are available to every program in the run unit. You can
seamlessly make I/O requests to the same file from any ILE COBOL program
within the run unit that declares the file as EXTERNAL. For external files there
is only one file cursor regardless of the number of programs that use the file.
You can share files across programs, and thereby develop smaller, more
maintainable programs. Using EXTERNAL files provides advantages over using
shared open files since only one OPEN and CLOSE operation is needed for all
participating programs to use the file. However, an EXTERNAL file cannot be
shared among different activation groups nor with programs written in other
programming languages.

v Nested Source Programs
An ILE COBOL source program can contain other ILE COBOL source programs.
These contained programs may refer to some of the resources, such as data
items and files, of the programs within which they are contained or define their
own resources locally, which are only visible in the defining program. As the ILE
COBOL programs are themselves resources, their scope is also controlled by the
nesting structure and the scope attribute attached to the program. This provides
greater flexibility in controlling the set of ILE COBOL programs that can be
called by an ILE COBOL program. Nested ILE COBOL programs provides a
mechanism to hide resources that would otherwise be visible.

v INITIAL Clause
You have a mechanism whereby an ILE COBOL program and any programs
contained within it are placed in their initial state every time they are called.
This is accomplished by specifying INITIAL in the PROGRAM-ID paragraph.
This provides additional flexibility in controlling the COBOL run unit.

v REPLACE statement
The REPLACE statement is useful to replace source program text during the
compilation process. It operates on the entire file or until another REPLACE
statement is encountered, unlike the COPY directive with the REPLACING
phrase. The REPLACE statements are processed after all COPY statements have
been processed. This provides greater flexibility in changing the ILE COBOL text
to be compiled.

v DISPLAY WITH NO ADVANCING statement
By using the NO ADVANCING phrase on the DISPLAY statement, you have the
capability to leave the cursor following the last character that is displayed. This
allows you to string together items to be displayed on a single line from various
points in the ILE COBOL program.

v ACCEPT FROM DAY-OF-WEEK statement
ILE COBOL now allows you to accept the day of the week (Monday = 1,
Tuesday = 2 ...) and assign it to an identifier. This support complements the
existing ACCEPT FROM DAY/DATE/TIME support.

xxiv ILE COBOL Reference

v SELECT OPTIONAL clause for Relative Files
This allows for the automatic creation of relative files even when the file is
opened I-O. This extends the support that is already available for sequential
files.

v Support for Nested COPY statements
Copy members can contain COPY statements thereby extending the power of
the COPY statement. If a COPY member contains a COPY directive, neither the
containing COPY directive nor the contained COPY directive can specify the
REPLACING phrase.

v Enhancements to Extended ACCEPT and DISPLAY statements
You can work with tables on the Extended ACCEPT statement. This allows you
to easily and selectively update the elements of the table.
Variable length tables are also allowed on the Extended ACCEPT and DISPLAY
statements.
Also, the SIZE clause is supported on the extended ACCEPT statement.

v Procedure-pointer support
Procedure-pointer is a new data type that can contain the address of an ILE
COBOL program or a non-ILE COBOL program. Procedure-pointers are defined
by specifying the USAGE IS PROCEDURE-POINTER clause on a data item. This
new data type is useful in calling programs and or ILE procedures that are
expecting this type of data item as its parameter. Procedure-pointer data items
can also be used as the target of a CALL statement to call another program.

v New Special Registers
– RETURN-CODE special register

Allows return information to be passed between ILE COBOL programs.
Typically, this register is used to pass information about the success or failure
of a called program.

– SORT-RETURN special register
Returns information about success of a SORT or MERGE statement. It also
allows you to terminate processing of a SORT/MERGE from within an error
declarative or an input-output procedure.

v New Compiler options
– *PICGGRAPHIC/*NOPICGGRAPHIC

*PICGGRAPHIC is a new parameter for the CVTOPT option which allows the
user to bring DBCS data into their ILE COBOL program.

– *IMBEDERR/*NOIMBEDERR option
*IMBEDERR is a new compiler option which includes compile time errors at
the point of occurrence in the compiler listing as well as at the end of the
listing.

– *FLOAT/*NOFLOAT
*FLOAT is a new parameter for the CVTOPT option which allows you to
bring floating-point data items into your ILE COBOL programs with their
DDS names and a USAGE of COMP-1 (single-precision) or COMP-2
(double-precision).

– *NOSTDTRUNC/*STDTRUNC option
*NOSTDTRUNC is a new compiler option which suppresses the truncation of
values in BINARY data items. This option is useful in migrating applications
from IBM System/390® (S/390®).

– *CHGPOSSGN/*NOCHGPOSSGN option

About this Reference xxv

This option is useful when sharing data between the OS/400® and IBM
S/390®. This option is provided for IBM System/390 compatibility. It changes
the bit representation of signed packed and zoned data items when they are
used in arithmetic statements or MOVE statements and the values in these
data items are positive.

v Quoted system names support
Support has been added to allow literals where system-names are allowed. You
can use whatever names the system supports and is no longer limited to valid
COBOL names.

v There is no COBOL limit on the following functions as these are now
determined by system constraints.
– Number of declared files.
– Number of parameters on the CALL statement and on the Procedure Division

USING phrase. A system limit of 400 for ILE procedures and 255 for program
objects does apply here.

– Number of SORT-MERGE input files and the number of SORT-MERGE keys.
The maximum number of SORT-MERGE input files is 32 and the maximum
length of the SORT-MERGE key is 2000 bytes.

v START with NO LOCK statement.
By using the NO LOCK phrase on the START statement, the file cursor will be
positioned on the first record to be read without placing a lock on the record.
This support is provided for indexed and relative files and complements the
READ with NO LOCK function that is already available.

Note: START with NO LOCK is a new statement in both ILE COBOL and OPM
COBOL/400.

v Static procedure call support
You can develop your applications in smaller, better maintainable module
objects, and link them together as one program object, without incurring the
penalty of dynamic program call overhead. This facility, together with the
common runtime environment provided by the system, also improves your
ability to write mixed language applications. The ILE programming languages
permits the binding of C, RPG, COBOL, and CL into a single program object
regardless of the mix of source languages.
New syntax on the CALL literal statement and a new compiler option have been
added to ILE COBOL to differentiate between static procedure calls and dynamic
program calls.

v Variable Length Record support (RECORD IS VARYING Clause)
You can define and easily use different length records on the same file using
standard ANSI COBOL syntax. Not only does this provide great savings in
storage but it also eases the task of migrating complex applications from other
systems.

v Expanded compiler limits
ILE COBOL now offers expanded compiler limits:
– size of group and elementary data items
– size of fixed and variable length tables
– number of nesting levels for conditional statements
– number of operands in various Procedure Division statements

xxvi ILE COBOL Reference

ILE COBOL Syntax Notation
ILE COBOL basic formats are presented in a uniform system of syntax notation.
This notation, designed to assist you in writing COBOL source statements, is
explained in the following paragraphs:
v COBOL keywords and optional words appear in uppercase letters; for example:

MOVE

They must be spelled exactly as shown. If any keyword is missing, the compiler
considers it as an error.

v Variables representing user-supplied names or values appear in all lowercase
letters; for example:
parmx

v For easier text reference, some words are followed by a hyphen and a digit or a
letter, as in:
identifier–1

This suffix does not change the syntactical definition of the word.
v Arithmetic and logical operators (+, -, *, /, **, >, <, =, >=, and <=) that appear in

syntax formats are required. These operators are special character reserved words.
For a complete listing of ILE COBOL reserved words, see Appendix E, “ILE
COBOL Reserved Word List,” on page 657.

v All punctuation and other special characters appearing in the diagram are
required by the syntax of the format when they are shown; if you leave them
out, an error occurs in the program.

v You must write the required clauses and the optional clauses (when used) in the
order shown in the diagram unless the associated rules explicitly state otherwise.

How to Read the Syntax Diagrams
Throughout this book, syntax is described using the structure defined below.
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line:

►►─── indicates the beginning of a statement

───► indicates that the statement syntax is continued on the next line.

►──── indicates that a statement is continued from the previous line.

───►◄ indicates the end of a statement.
Diagrams of syntactical units other than statements, such as clauses, phrases and
paragraphs, also start with the ►►─── symbol and end with the ───►◄ symbol.

Note: Statements within a diagram of an entire paragraph will not start with
►►─── and end with ───►◄ unless their beginning or ending coincides with
that of the paragraph.

v Required items appear on the horizontal line (the main path). Optional items
appear below the main path:

►► STATEMENT required item
optional item

►◄

v When you can choose from two or more items, they appear vertically, in a stack.

About this Reference xxvii

If you must choose one of the items, one item of the stack appears on the main
path. If choosing an item is optional, the entire stack appears below the main
path:

►► STATEMENT required-choice-1
required-choice-2 optional-choice-1

optional-choice-2

►◄

v An arrow returning to the left above an item indicates that the item can be
repeated:

►► STATEMENT ▼ repeatable-item ►◄

v A repeat arrow above a stack of required or optional choices indicates that you
can make more than one choice from the stacked items, or repeat a single choice:

►► ▼ ▼STATEMENT choice-1
choice-2 choice-3

choice-4

►◄

v An item that appears between two vertical bars identifies a fragment of the
syntax that is defined in greater detail elsewhere in the diagram.

The following example shows how the syntax diagram conventions are used:

Format

►►
(1)

STATEMENT
(2)

identifier-1
literal-1

▼

(3)
item 1

►

► ▼
(4)

TO identifier-m
ROUNDED

►

►
(5)

SIZE ERROR imperative-statement-m
ON

(6)

END-STATEMENT
►◄

item 1:

identifier-2
literal-2
arithmetic-expression-1

xxviii ILE COBOL Reference

Notes:

1 The STATEMENT key word must be specified and coded as shown.

2 This operand is required. Either identifier-1 or literal-1 must be coded.

3 The item 1 fragment is optional; it can be coded or not, as required by the
application. If item 1 is coded, it can be repeated with each entry separated
by one or more COBOL separators. Entry selections allowed for this fragment
are described at the bottom of the diagram.

4 The operand identifier-m and associated TO key word are required and can
be repeated with one or more COBOL separators separating each entry. Each
entry can be assigned the key word ROUNDED.

5 The ON SIZE ERROR phrase with associated imperative-statement-m are
optional. If the ON SIZE ERROR phrase is coded, the key word ON is
optional.

6 The END-STATEMENT key word can be coded to end the statement. It is not
a required delimiter.

IBM Extensions
An IBM extension generally modifies a rule or restriction that immediately
precedes it. The standard is presented first, because some programmers use the ILE
COBOL language without IBM extensions. The extension is then presented for
those who do use them.

IBM extensions within figures or tables are shown in boxes unless they are
explicitly identified as extensions.

Clauses and statements illustrated within syntax diagrams that are ILE COBOL
language extensions to ANSI X3.23b-1985 COBOL are indicated.

IBM Extension

ILE COBOL language extensions to ANSI X3.23b-1985 COBOL that are part of the
text description are enclosed in IBM Extension bars, like this paragraph.

End of IBM Extension

Documentary Syntax
COBOL clauses and statements illustrated within syntax diagrams that are syntax
checked, but are treated as documentation by the ILE COBOL compiler, are
indicated in the syntax diagram with a footnote.

Obsolete Language Elements
Obsolete language elements are ILE COBOL language elements in the X3.23b-1993
COBOL standard that will be deleted from the next revision of this standard.
Obsolete language elements are only syntax checked by the ILE COBOL compiler.

About this Reference xxix

DBCS Notation
DBCS character strings in literals, comments are delimited by shift-out (represented
by <) and shift-in (represented by >) characters. The EBCDIC codes for these
characters are X'0E' and X'0F' respectively. Double-byte characters are represented
thusly: D1D2D3, while DBCS literals look like this: G"<D1D2D3>". If you specify
the APOST option, you may use single quotes instead.

Industry Standards
ILE COBOL is designed to support Standard COBOL. Standard COBOL refers to
the COBOL programming language as defined in the document entitled American
National Standard for Information Systems - Programming Language - COBOL,
ANSI X3.23-1985, ISO 1989:1985, updated with the content of the following
documents, in the order they are listed:
v ANSI X3.23a-1989, American National Standard for Information Systems -

Programming Language - Intrinsic Function Module for COBOL and ISO
1989:1985/ Amd.1:1992

v Programming Languages - COBOL, AMENDMENT 1: Intrinsic function module
v ANSI X3.23b-1993, American National Standard for Information Systems -

Programming Language - Correction Amendment for COBOL
v ISO/IEC 1989 DAM2 Programming Languages - COBOL, AMENDMENT 2:

Correction and clarification amendment for COBOL.
v FIPS Publication 21-4, Federal Information Processing Standard 21-4, COBOL

From this point on, the term Standard COBOL will be used to refer to the ANSI
standard just described.

Portions of this manual are copied from the X3.23b-1993, American National
Standard for Information Systems - Programming Language - COBOL and ISO
1989:1985/Amd 2:1994, Programming languages - COBOL and are reproduced with
permission from these publications (copyright 1985 by the American National
Standards Institute), copies of which you can purchase from the American National
Standard Institute at 1430 Broadway, New York, New York, 10018.

The COBOL language is maintained by the ANSI Technical Committee X3J4.

Refer to Appendix A of the IBM Rational Development Studio for i: ILE COBOL
Programmer's Guide for more information on the industry standards supported by
the ILE COBOL compiler.

An Acknowledgment
The following extract from U.S. Government Printing Office Form Number
1965-0795689 is presented for your information and guidance:

Any organization interested in reproducing the COBOL report and
specifications in whole or in part, using ideas taken from this report as the
basis for an instruction manual or for any other purpose is free to do so.
However, all such organizations are requested to reproduce this section as
part of the introduction to the document. Those using a short passage, as in a
book review, are requested to mention COBOL in acknowledgment of the
source, but need not quote this entire section.

xxx ILE COBOL Reference

COBOL is an industry language and is not the property of any company or
group of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
COBOL Committee as to the accuracy and functioning of the programming
system and language. Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection therewith.

Procedures have been established for the maintenance of COBOL. Inquiries
concerning the procedures for proposing changes should be directed to the
Executive Committee of the Conference on Data Systems Languages.

The authors and copyright holders of copyrighted material:
v Programming for the UNIVAC® I and II, Data Automation Systems

copyrighted 1958, 1959, by Unisys Corporation;
v IBM Commercial Translator, Form No. F28-8013, copyrighted 1959 by IBM;
v FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in the
COBOL specifications. Such authorization extends to the reproduction and
use of COBOL specifications in programming manuals or similar publications.

Concepts
For help on the ILE COBOL language concepts, select from the following topics.
v Characters, character-strings, words, literals, comments, and separators
v Sections and paragraphs
v Reference format for a COBOL source line (Sequence Number Area, Indicator

Area, Area A, Area B, and Comment Area)
v Methods of referencing data and procedures
v Types of COBOL names and their scope
v Methods of transferring control of program flow from one statement to another

statement
v User-defined data types
v Supporting Information

Supporting Information
This section provides the following supporting information:
v ILE COBOL Compiler Limits
v Intermediate Results and Arithmetic Precision
v EBCDIC and ASCII Collating Sequences
v ILE COBOL Function-Name and Context-Sensitive Word List
v ILE COBOL Reserved Word List
v Attribute Data Formats
v ACCEPT/DISPLAY and COBOL/2 Considerations
v Bibliography

About this Reference xxxi

xxxii ILE COBOL Reference

Part 1. COBOL Language Structure

© Copyright IBM Corp. 1993, 2010 1

2 ILE COBOL Reference

Chapter 1. Characters

In COBOL, the indivisible unit of data is the character. The letters of the alphabet,
digits, and special characters that form the COBOL character set are shown in
Table 1.

The Integrated Language Environment* (ILE*) COBOL * language is restricted to
the defined character set. The contents of nonnumeric literals, comment lines,
comment entries, and the values held in data items, can include any of the
characters from the character set currently specified for the system (by the primary
source file's code character set identifier (CCSID)).

IBM Extension

Characters from the Double-Byte Character Set (DBCS) are valid characters in
certain COBOL character-strings. Double-byte characters occupy two adjacent bytes
to represent one character. (See the DBCS information under “Character-Strings”
on page 4 for more information.)

End of IBM Extension

Individual characters are joined to form character strings, separators, and text
words.

A character-string is a character or sequence of contiguous characters that form a
COBOL word, a literal, a PICTURE character-string, or a comment. A
character-string is delimited by separators.

A separator is a string of one or two contiguous punctuation characters used to
delimit character-strings. Separators are described in detail under “Separators” on
page 19.

A text word is a character or sequence of contiguous characters between margin A
(between column 7 and column 8) and margin R (between column 72 and column
73) in a COBOL library, source program, or in pseudo-text that is any of the
following:
v A separator, except for spaces, pseudo-text delimiters, and the delimiters of

non-numeric literals
v A literal, including any required delimiters
v Any other sequence of contiguous COBOL characters bounded by separators,

except comment lines and the word COPY.

Table 1. COBOL Characters—Their Meanings and Uses

Character Meaning Use

A–Z Alphabet (uppercase) Alphabetic characters

a–z Alphabet (lowercase) Alphabetic characters

0–9 Arabic numerals (digits) Numeric characters

Space Punctuation character

. Decimal point or Period Editing character
Punctuation character

© Copyright IBM Corp. 1993, 2010 3

Table 1. COBOL Characters—Their Meanings and Uses (continued)

Character Meaning Use

< Less than Relation character

(Left parenthesis Punctuation character

+ Plus sign Arithmetic operator
Editing character

$ Dollar sign Editing character

* Asterisk Arithmetic operator
Editing character
Comment character

) Right parenthesis Punctuation character

; Semicolon Punctuation character

: Colon Punctuation character

- Minus sign or Hyphen Arithmetic operator
Editing character
Continuation character
Element of COBOL word

_ Underscore Element of user-defined word

/ Stroke or Slash Arithmetic operator
Editing character
Continuation character

, Comma Editing character
Punctuation character

> Greater than Relation character

= Equal sign Punctuation character
Relation character

" Quotation mark Punctuation character

' Apostrophe Punctuation character

Notes:

1. The Apostrophe (') and underscore (_) characters are IBM extensions.

2. Certain other characters may be required within non-numeric literals used to define the
names of system objects, or date and time formats:

The characters # and @ are valid elements within IBM i system names.

The characters @ and % are conversion specifiers that may be used when defining a
date or time format.

Character-Strings
You can use character-strings containing single-byte characters to form:
v COBOL words with DBCS character
v COBOL words
v Literals
v PICTURE character-strings
v Comment-entry text

IBM Extension

You can use character-strings containing user-defined DBCS words to form:
v Literals

4 ILE COBOL Reference

v Comment-entry text

DBCS character-strings are constructed using characters from the Double-Byte
Character Set. DBCS character-strings can be embedded into nonnumeric strings,
including mixed literals. Embedded DBCS character-strings must be delimited by
an opening "shift-out" control character and a closing "shift-in" control character.
DBCS literals may include characters that range from X'00' to X'FE' for both bytes.
DBCS literals cannot include X'0F7F' (or X'0F7D' if the APOST option is selected).

End of IBM Extension

COBOL Words with DBCS Character
The following are the rules for forming user-defined words from DBCS characters:

Use of shift-out shift-in characters:
DBCS user-defined words begin with a shift-out character and end with a
shift-in character.

Value range:
DBCS user-defined words can contain characters whose values range from
hex 41 to hex FE for both bytes.

Contained characters:
DBCS user-defined words can contain only DBCS characters. DBCS
user-defined words can contain characters that correspond to single-byte
EBCDIC characters and those that do not correspond to single-byte
EBCDIC characters. DBCS characters that correspond to single-byte
EBCDIC characters follow the normal rules for COBOL user-defined
words; that is, the characters A - Z, a - z, 0 - 9, and the hyphen (-) are
allowed. The hyphen cannot appear as the first or last character. Any of the
DBCS characters that have no corresponding single-byte EBCDIC character
can be used in DBCS user-defined words.

Continuation rules:
DBCS words cannot be continued across lines.

Maximum length:
14 DBCS characters.

User-defined words:
The following types of user-defined words are supported in ILE COBOL.
The second column indicates whether DBCS characters are allowed in
words of a given type.

Type of user-defined word DBCS characters allowed

Alphabet-name Yes

Class-name (of data) Yes

Condition-name Yes

Data-name Yes

File-name Yes

Index-name Yes

Library-name No

Mnemonic-name Yes

Paragraph-name Yes

Program-name No

Chapter 1. Part 1. COBOL Language Structure 5

Record-name Yes

Section-name Yes

Text-name No

Note: In order to use the user-defined COBOL Words with DBCS character,
PROCESS option GRAPHIC must be in effect, otherwise the DBCS words
will be treated as invalid characters.

COBOL Words
COBOL words must be character-strings from the set of letters, digits, the hyphen,
and the underscore. (The hyphen and the underscore cannot appear as the first or
last character, however.) In the ILE COBOL language, each lowercase letter is
generally equivalent to the corresponding uppercase letter.

The five types of COBOL words are:
v User-defined words
v System-names
v Function-names

IBM Extension

v Context-sensitive words

End of IBM Extension

v Reserved words

The following rules apply to all COBOL words that are not special character words
within a source program:
v The maximum length of a COBOL word is 30 characters.
v With the exception of LENGTH, RANDOM, SUM, and WHEN-COMPILED, a

reserved word cannot be used as a user-defined word, a system-name, a
context-sensitive word, or a function-name.

v The same COBOL word however, may be used as two or more of the following
types of ILE COBOL words:
– User-defined word
– System-name
– Function-name

IBM Extension

– Context-sensitive word

End of IBM Extension

The classification of a specific occurrence of such a COBOL word is determined
by the context of the phrase in which it occurs.

User-Defined Words
The types of user-defined words are listed below, with the rules that must be
followed in forming them.

6 ILE COBOL Reference

Types of User-Defined Words General Rules

alphabet-name
class-name
condition-name
constant-name
data-name
file-name
index-name
locale-name
mnemonic-name
program-name

(for contained programs and
outermost programs that are
called using the PROCEDURE
linkage convention)

record-name
routine-name
type-name

Each word must contain at least one letter.

library-name
program-name

(for outermost programs that
are called using the PROGRAM
linkage convention)

text-name

Each word must contain at least one letter.
The first 10 characters must form a unique
word.

paragraph-name
section-name

The word need not contain an alphabetic
character.

Level-numbers: 01-49,66,77,88
Segment-numbers: 00-99

Each word must be a 1- or 2-digit integer; it
does not have to be unique. (Segmentation
information is syntax checked only.)

The function of each user-defined word is described in the clause or statement in
which it appears.

Constraints for Referencing User-Defined Words: In general, a user-defined
word belongs to one, and only one, of the types listed in the preceding table. A
user-defined word must also be unique within the type to which it belongs.

There are two exceptions to the general rule:
v A level-number or segment-number does not need to be unique. The

user-defined word for any level-number or segment-number can be identical to
the user-defined word for another level-number or segment number.

v A user-defined word can be duplicated within one of the following, provided
that uniqueness of reference can be maintained:
– The group comprising condition-names, data-names, and record-names
– Paragraph-names
– Text-names

For more information about ensuring the uniqueness of reference for such
names, see “Methods of Data Reference” on page 29.

The following types of user-defined words can be referenced by statements and
entries in that program in which the user-defined word is declared:
v paragraph-name
v section-name

Chapter 1. Part 1. COBOL Language Structure 7

The following types of user-defined words can be referenced by any COBOL
program:
v library-name
v program-name
v text-name

The following types of names, when they are declared within a Configuration
Section, can be referenced by statements and entries either in that program which
contains a Configuration Section or in any program contained within that program:
v alphabet-name
v class-name
v condition-name
v mnemonic-name

System-Names
A system-name is a character-string that is defined by IBM to have a specific
meaning to the system. There are four types of system-names:
v computer-name
v language-name
v implementer-name (which includes environment-name and assignment-name)
v locale-name

Computer-name can be written in DBCS characters, but the other system-names
cannot.

Function-Names
A function-name is a word that is one of a specified list of words used in COBOL
source programs.

A function-name specifies the mechanism provided by ILE COBOL to determine
the value of an intrinsic function.

With the exception of the words LENGTH, RANDOM, SUM, and
WHEN-COMPILED, a word that is a function-name, in a different context, can
appear in a program as a user-defined word, a system-name, or a context-sensitive
word.

Context-Sensitive Words

IBM Extension

A context-sensitive word is a COBOL word that is formed according to rules for
reserved words, and may be used as specified in the general formats. The same
word may also be used as a function-name, a user-defined word, or a
system-name.

ILE COBOL context-sensitive words are listed in Appendix D, “ILE COBOL
Function-Name and Context-Sensitive Word List,” on page 653.

End of IBM Extension

Reserved Words
A reserved word is a character-string with a predefined meaning in a COBOL
source program, and can be used only as specified in the language defined
formats.

8 ILE COBOL Reference

ILE COBOL reserved words are listed in Appendix E, “ILE COBOL Reserved Word
List,” on page 657.

There are five types of reserved words:
v Keywords
v Optional words
v Special character words
v Figurative constants
v Special registers

Keywords: Keywords are reserved words that are required within a given clause,
entry, or statement.

Optional Words: Optional words are reserved words that may be included in the
format of a clause, entry, or statement in order to improve readability. They have
no effect on the meaning or execution of the program. Optional words are shown
in formats as uppercase, but appear below the main path.

Special Character Words: There are two types of special character words:
v Arithmetic operators: + - / * **

See “Arithmetic Operators” on page 245.
v Relational operators: < > = <= >=

See “Relation Condition” on page 250.

Figurative Constants: Figurative constants are reserved words that name and
refer to specific constant values.The reserved words for figurative constants and
their meanings are:

ZERO/ZEROS/ZEROES
Represents one of the following, depending on the context:
v The numeric value zero (0)
v One or more occurrences of the nonnumeric character zero (0)

IBM Extension

v The Boolean value B"0"

End of IBM Extension

SPACE/SPACES
Represents one or more blanks or spaces;treated as a nonnumeric literal.
SPACES represent one or more double-byte spaces when used with DBCS data
items. SPACES represent one or more single-byte UCS-2 spaces when used
with national data items.

HIGH-VALUE/HIGH-VALUES
Represents one or more occurrences of the character that has the highest
ordinal position in the collating sequence used. For the NATIVE and EBCDIC
collating sequences, the character is X'FF'; for the STANDARD-1 and
STANDARD-2 collating sequences, the character is X'07'; for other collating
sequences, the actual character used depends on the collating sequence.
HIGH-VALUE is treated as a nonnumeric literal.

LOW-VALUE/LOW-VALUES
Represents one or more occurrences of the character that has the lowest ordinal
position in the collating sequence used. For the NATIVE, EBCDIC,
STANDARD-1, and STANDARD-2 collating sequences, the character is X'00';

Chapter 1. Part 1. COBOL Language Structure 9

for other collating sequences, the actual character used depends on the
collating sequence. LOW-VALUE is treated as a nonnumeric literal.

QUOTE/QUOTES
Represents one or more occurrences of the quotation mark character and must
be nonnumeric. QUOTE, or QUOTES cannot be used in place of a quotation
mark or an apostrophe to enclose a nonnumeric literal.

IBM Extension

When APOST is specified as a compiler option, the figurative constant QUOTE
has the EBCDIC value of an apostrophe.

End of IBM Extension

ALL literal
Represents one or more occurrences of the string of characters comprising the
literal. The literal must be a nonnumeric literal or a figurative constant other
than the ALL literal.

When a figurative constant other than ALL literal is used, the word ALL is
redundant and is used for readability only. The figurative constant ALL literal
must not be used with the INSPECT, STOP, or STRING statements.

Note: The figurative constant ALL literal, when associated with a numeric or
numeric-edited item and when the length of the literal is greater than
one, is an obsolete element and is to be deleted from the next revision of
the ANSI Standard.

IBM Extension

The literal used in an ALL literal can be a Boolean literal, DBCS literal, or
national hexadecimal literal.

End of IBM Extension

IBM Extension

NULL/NULLS
Represents a value used to indicate that a data item defined with the USAGE
IS POINTER clause, USAGE IS PROCEDURE-POINTER clause, ADDRESS OF
phrase, or ADDRESS OF special register does not contain a valid address.
NULL can be used only where explicitly allowed in the syntax format.

In the ILE COBOL language, a value of NULL is undefined.

End of IBM Extension

The singular and plural forms of ZERO, SPACE, HIGH-VALUE, LOW-VALUE,
QUOTE, and NULL are equivalent, and may be used interchangeably. For example,
if DATA-NAME-1 is a 5-character data item, each of the following statements will
fill DATA-NAME-1 with five spaces:
MOVE SPACE TO DATA-NAME-1
MOVE SPACES TO DATA-NAME-1
MOVE ALL SPACES TO DATA-NAME-1

A figurative constant can be used wherever ‘literal’ appears in a format, except
where explicitly prohibited. When a numeric literal appears in a format, only the

10 ILE COBOL Reference

figurative constant ZERO can be used. Figurative constants are not allowed as
function arguments except in an arithmetic expression, where they are arguments
to a function.

IBM Extension

The figurative constant ZERO can be used as a Boolean literal.

End of IBM Extension

The length of a figurative constant depends on the context of the program. The
following rules apply:
v When a figurative constant is associated with a data item (for example, when it

is moved to or compared with another item), the length of the figurative
constant character-string is equal to one (1) or to the number of character
positions in the associated data item, whichever is greater.

v When a figurative constant, other than the ALL literal, is not associated with
another data item (for example, in a STOP, STRING, or UNSTRING statement),
the length of the character-string is one (1) character.

Special Registers: Special registers are reserved words that name storage areas
generated by the compiler. Their primary use is to store information produced
through specific COBOL features. Each such storage area has a fixed name, and
must not be further defined within the program.

In the general formats of this specification, a special register can be used, unless
otherwise restricted, wherever a data-name or identifier is specified provided that
the special register is the same category as the data-name or identifier. If
qualification is allowed, special registers can be qualified as necessary to provide
uniqueness.

When control of a program is transferred for the first time from one program to
another within the run unit by the CALL statement, the compiler initializes the
special register fields to their initial values. The RETURN-CODE and
SORT-RETURN special registers are reset to their initial values in the following
instances:
v Whenever the CANCEL statement is invoked to initialize a referenced

subprogram
v For programs that possess the INITIAL attribute
v For programs that possess the RECURSIVE attribute

In all other cases, the special registers are not reset to their initial values. Instead,
they remain unchanged from the value retained the previous time program control
was transferred via the CALL statement.

You can specify an alphanumeric register in a function wherever an alphanumeric
argument is allowed, unless specifically prohibited.

You can specify a numeric special register in a function wherever a numeric
argument is allowed, unless specifically prohibited.

Each special register is discussed in the section beginning on the indicated page.

Special Register Page

DEBUG-ITEM This register is syntax checked only.

Chapter 1. Part 1. COBOL Language Structure 11

LINAGE-COUNTER 155

IBM Extension

ADDRESS OF 131

DB-FORMAT-NAME 277

LENGTH OF 321

LOCALE OF 169

FORMAT OF 170

RETURN-CODE 488

SORT-RETURN 391

WHEN-COMPILED 399

XML-CODE 537

XML-EVENT 537

XML-NTEXT 539

XML-TEXT 540

End of IBM Extension

Literals
A literal is a character-string whose value is specified either by the characters of
which it is composed, or by the use of a figurative constant (See page “Figurative
Constants” on page 9). There are five types of literals:

IBM Extension

v Boolean
v DBCS
v National hexadecimal

End of IBM Extension

v Nonnumeric
v Numeric

Boolean Literals

IBM Extension

A Boolean literal is a character-string delimited on the left by the separator B" and
on the right by the quotation mark separator. The character-string consists only of
the character 0 or 1. The value of a Boolean literal is the character itself, excluding
the delimiting separators.

End of IBM Extension

DBCS Literals

IBM Extension

DBCS literals have the following format:

12 ILE COBOL Reference

Format

►► G" DBCS-literal " ►◄

Format

►► N" DBCS-literal " ►◄

G" or N"
The opening delimiter for a DBCS literal.

" The closing delimiter for a DBCS literal.

In general, the rules for forming a nonnumeric literal also apply to DBCS literals.
The maximum length of DBCS literals, however, is 28 double-byte characters, and
they cannot be continued across lines.

DBCS literals can be specified in the Data Division:
v In the VALUE clause of DBCS data description entries. If you specify a DBCS

literal in a VALUE clause for a data item, the length of the literal must not
exceed the size indicated by the data item's PICTURE clause. Explicitly defining
a DBCS data item as USAGE DISPLAY-1 specifies that the data item is to be
stored in character form, one character to each 2 bytes.

v With the JUSTIFIED clause.

DBCS literals can be specified in the Procedure Division:
v As the sending item when a DBCS or group item is the receiving item.
v In a relation condition when the comparand is a DBCS or group item.
v As the figurative constants SPACE/SPACES, ALL SPACE/SPACES, or ALL

followed by a DBCS literal. These are the only figurative constants that can be
DBCS literals.

v As an argument to an intrinsic function that supports DBCS.

DBCS literals can be specified wherever nonnumeric literals are allowed, except as
a literal in the following:
v Identification Division

– PROGRAM-ID paragraph
v Environment Division

– ALPHABET clause
– ASSIGN clause
– CLASS clause
– CURRENCY SIGN clause
– LINKAGE clause
– PADDING CHARACTER clause
– RERUN clause

v Procedure Division
– CALL statement (program-name)
– CANCEL statement
– END PROGRAM header
– STOP statement
– DROP statement
– ACQUIRE statement

Chapter 1. Part 1. COBOL Language Structure 13

v COPY
– COPY statement (text-name)
– COPY statement (library-name).

End of IBM Extension

National Hexadecimal Literals

IBM Extension

National hexadecimal literals have the following format:

Format

►► NX" hexadecimal-character-sequence " ►◄

NX"
The opening delimiter for a national hexadecimal literal.

" The closing delimiter for a national hexadecimal literal.

The hexadecimal character sequence consists of groups of four hexadecimal digits
that map to a Universal Character Set Version 2 (UCS-2) or Unicode character.

The maximum length of national hexadecimal literals is 512 national characters.

National hexadecimal literals can be specified in the following places:
v In the VALUE clause of national data description entries
v As the sending item in the procedure division. For more information, see

“MOVE Statement” on page 392.
v As an operand in the relation condition
v As an argument to the intrinsic functions than support national data.

The figurative constant SPACE/SPACES, ALL SPACE/SPACES, or ALL followed
by a national hexadecimal literal can be a national hexadecimal literal. SPACE is
single byte UCS-2 space (NX"0020").

End of IBM Extension

Nonnumeric Literals
A nonnumeric literal is a character-string enclosed in quotation marks ("), and can
contain any allowable character from the EBCDIC character set. The maximum
length of a nonnumeric literal is 256 characters.

A nonnumeric literal must be enclosed in quotation marks (").

If the *APOST compiler option is in effect, the nonnumeric literal must be enclosed
by apostrophes (').

The enclosing quotation marks (or apostrophes) are excluded from the literal when
the program is compiled. An embedded quotation mark must be represented by a
pair of quotation marks ("").

For example,
"THIS ISN""T WRONG"

14 ILE COBOL Reference

IBM Extension

In an apostrophe literal, a double apostrophe ('') is reduced to a single apostrophe
when the double apostrophe is also a delimiter.

For example,
'THIS ISN''T WRONG'

represents
THIS ISN'T WRONG

End of IBM Extension

Any punctuation characters included within a nonnumeric literal are part of the
value of the literal.

Every nonnumeric literal is in the alphanumeric data category. (Data categories are
described in “Classes and Categories of Data” on page 135.)

Hexadecimal Literals:

IBM Extension

You can use hexadecimal notation to form a hexadecimal nonnumeric literal.

Format

►► X" hexadecimal-digits " ►◄

X" The opening delimiter for hexadecimal notation of a nonnumeric literal. (If the
compiler option *APOST or the PROCESS statement option APOST is specified,
the opening delimiter is X'.)

" The closing delimiter for hexadecimal notation of a nonnumeric literal. (If the
compiler option *APOST or the PROCESS statement option APOST is specified,
the closing delimiter is '.)

Hexadecimal digits are characters that range from 0 to 9, a to f, and A to F,
inclusive. Two hexadecimal digits represent a single character, so an even number
of hexadecimal digits must be specified in each case.

The maximum length of a hexadecimal nonnumeric literal is 512 hexadecimal
digits.

The continuation rules are the same as those for nonnumeric literals.

The compiler converts the hexadecimal literal into an ordinary nonnumeric literal.
Hexadecimal nonnumeric literals can be used anywhere nonnumeric literals can
appear.

End of IBM Extension

Chapter 1. Part 1. COBOL Language Structure 15

Mixed Literals:

IBM Extension

Mixed literals are nonnumeric literals that combine single-byte and double-byte
characters. Each string of double-byte characters must be delimited by an opening
"shift-out" control character (hexadecimal 0E) and a closing "shift-in" control
character (hexadecimal 0F), to distinguish it from single-byte data. The control
characters are included in the length of the mixed literal. A double-byte character
string may consist solely of the two control characters.

COBOL statements process mixed literals without sensitivity to the machine
representation. Those statements that operate on a byte-to-byte basis (for example,
STRING and UNSTRING) may produce character strings that are not valid
mixtures of single-byte and double-byte characters. It is the user's responsibility to
be certain that the statements are used correctly.

A mixed literal will only be recognized as such if the program is compiled using
the GRAPHIC option of the PROCESS statement; otherwise, it will be treated as a
simple non-numeric literal.

End of IBM Extension

Null-terminated nonnumeric literals

IBM Extension

Nonnumeric literals can be null-terminated, with the following format:

Format

►► Z" "
single-byte characters
DBCS characters
mixed characters

►◄

Z" The opening delimiter for null-terminated notation of a nonnumeric literal. (If
the compiler option *APOST or the PROCESS statement option APOST is
specified, the opening delimiter is Z'.) Both characters of the opening delimiter
for null-terminated literals (Z" or Z') must be on the same source line.

" The closing delimiter for a null-terminated notation of a nonnumeric literal. (If
the compiler option *APOST or the PROCESS statement option APOST is
specified, the closing delimiter is '.)

If a quotation mark is used in the opening delimiter, it must be used as the
closing delimiter. Similarly, if an apostrophe is used in the opening delimiter, it
must be used as the closing delimiter.

The content of the literal can include single-byte and/or double-byte characters,
except that you cannot specify the single-byte character with the value X'00'. X'00'
is the null character automatically appended to the end of the literal. The content
of the literal is otherwise subject to the same rules and restrictions as a mixed
literal.

16 ILE COBOL Reference

The length of the string of single-byte and/or double-byte characters in the literal
content can be 0 to 255 bytes. The actual length of the literal includes the
terminating null character, giving a maximum length of 256 bytes.

A null-terminated nonnumeric literal has data class and category alphanumeric. It
can be used anywhere a nonnumeric literal can be specified except that
null-terminated literals are not supported in ALL literal figurative constants.

Avoid using a null-terminated literal to specify the external or internal object's
name (such as program name, locale name, library name, procedure name, etc.) in
a COBOL program; otherwise, compiler will replace the terminating null character
by character "0", and a severity 20 error message will be issued to inform the user
of this replacement.

The LENGTH intrinsic function, when applied to a null-terminated literal, returns
the number of bytes in the literal prior to but not including the terminating null.
(The LENGTH special register does not support literal operands.)

End of IBM Extension

Numeric Literals
A numeric literal is a character-string whose characters are selected from the digits
0 through 9, a sign character (+ or -), and the decimal point. If the literal contains
no decimal point, it is an integer. (In this manual, the word integerappearing in a
format represents a numeric literal that contains no decimal point. In some
contexts, this literal is not permitted to have a negative value, or is not permitted
to be zero. These restrictions, and any others that might be applicable, are included
with the description of the format). The following rules apply:
v One through 18 digits are allowed when the (default) compiler option

*NOEXTEND or the PROCESS statement option NOEXTEND is specified.

IBM Extension

v One through 31 digits are allowed when the arithmetic mode compiler option
*EXTEND31 or PROCESS statement option EXTEND31 is specified.

End of IBM Extension

IBM Extension

v One through 63 digits are allowed when the arithmetic mode compiler option
*EXTEND63 or PROCESS statement option EXTEND63 is specified.

End of IBM Extension

v Only one sign character is allowed. If included, it must be the left-most character
of the literal. If the literal is unsigned, it is positive in value.

v Only one decimal point is allowed. If a decimal point is included, it is treated as
an assumed decimal point (that is, as not taking up a character position in the
literal). The decimal point may appear anywhere within the literal except as the
right-most character.

v If enclosed in quotation marks, the compiler treats the literal as a nonnumeric
literal.

The value of a numeric literal is the algebraic quantity expressed by the characters
in the literal. The size of a numeric literal in standard data format characters is
equal to the number of digits specified by the user.

Chapter 1. Part 1. COBOL Language Structure 17

Every numeric literal is in the numeric data category. (Data categories are
described under “Classes and Categories of Data” on page 135.)

Floating-Point Literals:

IBM Extension

Numeric literals may be either fixed-point or floating-point numbers. The rules for
floating-point literal values are:
v A floating-point literal is written in the form:

Format

►►
+
−

mantissa E
+
−

exponent ►◄

v The sign is optional before the mantissa and the exponent; if you omit the sign,
the compiler assumes a positive number.

v The mantissa can contain between 1 and 16 digits. A decimal point must be
included in the mantissa.

v The exponent is represented by an E followed by an optional sign and one, two,
or three digits.

v The magnitude of a floating-point literal value must fall between
2.225073858507201E-308 and 1.797693134862315E+308. For values outside of this
range, an E-level diagnostic will be produced and the value will be replaced by
either 0 or 1.797693134862315E+308, respectively.

Note: The range for MVS™ COBOL is 0.54E-78 to 0.72E+76, and the range for
OS/2® and AIX® is 2.225E-308 to 1.798E+308.

A floating-point literal is of class numeric and category internal floating-point. In
general, a floating-point literal can be used wherever a numeric decimal literal is
allowed.

End of IBM Extension

PICTURE Character-Strings
A PICTURE character-string consists of symbols that are composed of the currency
symbol and certain combinations of characters in the COBOL character set.

Any punctuation character that appears as part of the specification of a PICTURE
character-string is not considered as a punctuation character, but rather as a
symbol used in the specification of that PICTURE character-string. (A chart of
PICTURE clause symbols appears in Table 13 on page 188.)

Comment-Entry Text
A comment is a character-string that can contain any combination of characters
from the EBCDIC character set. It has no effect on the execution of the program.
There are two forms of comments:

Comment entry
This form is described under “Optional Paragraphs” on page 64.

Comment line
This form is described on page “Comment Lines” on page 26.

18 ILE COBOL Reference

Separators
A separator can be a single punctuation character or a string of punctuation
characters.

The following is a list of the COBOL separator characters and their meaning.
Space

, Comma
. Period
; Semicolon
(Left parenthesis
) Right parenthesis
" Quotation mark
== Pseudo-text delimiter
: Colon

IBM Extension

' Apostrophe
B" Opening delimiter for Boolean literal
X" Opening delimiter for hexadecimal nonnumeric literal
G" Opening delimiter for DBCS literal
N" Opening delimiter for DBCS literal
NX" Opening delimiter for national hexadecimal literal
Z" Opening delimiter for null-terminated nonnumeric literal

End of IBM Extension

Rules for Separators
In the following description, brackets enclose each separator. Anywhere a space is
used as a separator, or as part of a separator, more than one space may be used.

A space [�]
A space can immediately precede or follow any separator except:
v The opening pseudo-text delimiter (where the preceding space is required).
v Within quotation marks (or apostrophes if the APOST option is in effect).

Spaces between quotation marks are considered part of the nonnumeric
literal; they are not considered separators.

Period [.�], Comma [,�], Semicolon [;�]
A separator period, comma, or semicolon is composed of a period, comma, or
semicolon followed by a space. The separator period must be used only to
indicate the end of a sentence, or as shown in formats. The separator comma
and separator semicolon may be used anywhere the separator space is used.
v In the Identification Division, separator commas and separator semicolons

can be used in the comment-entries. Each paragraph must end with a
separator period.

v In the Environment Division, separator commas or separator semicolons
may separate clauses and operands within clauses. The SOURCE-
COMPUTER, OBJECT-COMPUTER, SPECIAL-NAMES, and I-O-CONTROL
paragraphs must each end with a separator period. In the FILE-CONTROL
paragraph, each File-Control entry must end with a separator period.

v In the Data Division, separator commas or separator semicolons may
separate clauses and operands within clauses. File (FD), Sort/Merge file
(SD), and data description entries must each end with a separator period.

Separators

Chapter 1. Part 1. COBOL Language Structure 19

v In the Procedure Division, separator commas or separator semicolons may
separate statements within a sentence, and operands within a statement.
Each sentence and each procedure must end with a separator period.

Parentheses [(] . . . [)]
Except in pseudo-text, they must appear as balanced pairs of left and right
parentheses. They delimit subscripts, a list of function arguments, reference
modification, arithmetic expressions, and conditions.

Quotation marks [�"] . . . ["�]
An opening quotation mark must be immediately preceded by a space or a left
parenthesis. A closing quotation mark must be immediately followed by a
separator (space, comma, semicolon, period, or right parenthesis). Quotation
marks must appear as balanced pairs. They delimit nonnumeric literals, except
when the literal is continued (see “Continuation Lines” on page 25).

IBM Extension

Under the *APOST compiler option, or the APOST PROCESS option, an
apostrophe can be used in place of a quotation mark.

End of IBM Extension

Pseudo-text delimiters [�==]... literal-2 [==�]
An opening pseudo-text delimiter must be immediately preceded by a space. A
closing pseudo-text delimiter must be immediately followed by a separator
(space, comma, semicolon, or period). Pseudo-text delimiters must appear as
balanced pairs. They delimit pseudo-text. (See “COPY Statement” on page 602
and “REPLACING Phrase” on page 604.)

Colon [:]
The colon is a separator, and is required when shown in general formats.

IBM Extension

B" is a separator when used to describe a Boolean literal. The B must immediately
precede the quotation mark.

X" is a separator when used to describe a hexadecimal nonnumeric literal. The X
must immediately precede the quotation mark.

G" is a separator when used to describe a DBCS literal. The G must immediately
precede the quotation mark.

N" is a separator when used to describe a DBCS literal. The N must immediately
precede the quotation mark.

NX" is a separator when used to describe a national hexadecimal literal. The NX
must immediately precede the quotation mark.

Z" is a separator when used to describe a null-terminated nonnumeric literal. The
Z must immediately precede the quotation mark.

End of IBM Extension

Note: Any punctuation character included in a PICTURE character-string, a
comment character-string, or a nonnumeric literal is not considered as a
punctuation character, but rather as part of the character-string or literal.

Separators

20 ILE COBOL Reference

Chapter 2. Sections and Paragraphs

Sections and paragraphs define a program. They are subdivided into clauses and
statements. Unless the associated rules explicitly state otherwise, each required
clause or statement must be written in the sequence shown in its format. If
optional clauses or statements are used, they must be written in the sequence
shown in their formats. These rules are true even for clauses and statements
treated as comments.

The grammatical hierarchy follows this form:
v Identification Division

Paragraphs
Entries

Clauses
v Environment Division

Sections
Paragraphs

Entries
Clauses

Phrases
v Data Division

Sections
Entries

Clauses
Phrases

v Procedure Division

Sections
Paragraphs

Sentences
Statements

Phrases

Entries
An entry is a series of clauses ending with a separator period.

Clauses
A clause is an ordered set of consecutive COBOL character-strings that specifies an
attribute of an entry.

Sentences
A sentence is a sequence of one or more statements, ending with a separator
period.

© Copyright IBM Corp. 1993, 2010 21

Statements
A statement is a valid combination of a COBOL verb and its operands. It specifies
an action to be taken by the object program. For descriptions of the different types
of statements, see:
v “Imperative Statements” on page 264
v “Conditional Statements” on page 265
v “Delimited Scope Statements” on page 266
v Chapter 16, “Compiler-Directing Statements,” on page 601.

Phrases
Each clause or statement in the program can be subdivided into smaller units
called phrases.

22 ILE COBOL Reference

Chapter 3. Reference Format

COBOL programs must be written in the COBOL reference format. Figure 1 shows
the reference format for a COBOL 80-character source line.

Sequence Number Area (Columns 1 through 6)
A sequence number identifies each statement to be compiled by the COBOL
compiler. The use of sequence numbers is optional, and may consist of any
character in the character set of the computer. Sequence numbers may be in any
order, and they need not be unique.

IBM Extension

You can use sequence checking at compilation time by specifying SEQUENCE.

If the NUMBER option is specified, the sequence numbers from columns 1 through
6 are used; otherwise the source sequence numbers provided in the source file are
used.

End of IBM Extension

Indicator Area (Column 7)
Use the indicator area to specify:
v The continuation of lines from the previous line onto the current line (see the

information on continuation lines on page “Continuation Lines” on page 25)
v The treatment of text as documentation or comments (see the information on

comments on page “Comment Lines” on page 26)
v Debugging lines (see the information on debugging lines on page “Debugging

Lines” on page 26)

Indicator Area

1 2 3 4 5 6 7 8 9 10 11 12 ... 72 73 ... 80

Sequence Number Area Area A Area B Comment Area

Figure 1. Reference Format for COBOL Source Line

© Copyright IBM Corp. 1993, 2010 23

Area A (Columns 8 through 11)
The following items must begin in Area A:
v Division header
v Section header
v Paragraph header or paragraph name
v Level indicator (FD and SD) or level-number (01 and 77)
v DECLARATIVES and END DECLARATIVES
v END PROGRAM header

Division Header
A division header is a combination of words, followed by a separator period, that
indicates the beginning of a division:
v IDENTIFICATION DIVISION.
v ENVIRONMENT DIVISION.
v DATA DIVISION.
v PROCEDURE DIVISION.

A division header (except when a USING phrase is specified with a Procedure
Division header) must be immediately followed by a separator period. Except for
the USING phrase, no text may appear on the same line.

Section Header
A section header indicates either the beginning of a series of paragraphs (in the
Environment and Procedure Divisions), or the beginning of an entry (in the Data
Division). For example, FILE-CONTROL in the former case, and FILE SECTION in
the latter.

A section header must be immediately followed by a period except when
Procedure Division segment numbers are specified. (Segmentation information is
syntax checked only.)

Paragraph Header or Paragraph Name
A paragraph header or paragraph name indicates the beginning of a paragraph. In
the Environment Division, a paragraph consists of a paragraph header followed by
one or more entries. In the Procedure Division, a paragraph consists of a
paragraph-name followed by one or more sentences.

Level Indicator (FD and SD) or Level-Number (01 and 77)
A level indicator can be either FD or SD. It must begin in Area A and be followed
by a space. (See “File Section” on page 145.) A level-number that must begin in
Area A is a 1- or 2-digit integer with a value of 01 or 77. For more information, see
“Level-Numbers” on page 164.

DECLARATIVES and END DECLARATIVES
DECLARATIVES and END DECLARATIVES are keywords that begin and end
the declaratives part of the source program. In the Procedure Division, each of
these words must begin in Area A and be followed immediately by a separator
period; no other text may appear on the same line. After END DECLARATIVES,
no text may appear before the following section header. (See “Declaratives” on
page 242.)

24 ILE COBOL Reference

END PROGRAM Header
The END PROGRAM header, followed by program-name and a separator period,
indicates the end of a COBOL program. Program-name must be identical to that of
the corresponding PROGRAM-ID paragraph. Every COBOL program (except an
outermost program that contains no nested programs and is not followed by
another COBOL program in a sequence of COBOL programs) must end with this
header.

Area B (Columns 12 through 72)
The following items must begin in Area B:
v Entries
v Sentences
v Statements
v Clauses
v Continuation lines

Entries, Sentences, Statements, Clauses
The first entry, sentence, statement, or clause begins on either the same line as the
header or paragraph-name it follows, or in Area B of the next nonblank line that is
not a comment line. Successive sentences or entries either begin in Area B of the
same line as the preceding sentence or entry or in Area B of the next nonblank line
that is not a comment line.

Within an entry or sentence, successive lines in Area B may have the same format,
or may be indented to clarify program logic. The output listing is indented only if
the input statements are indented. Indentation does not affect the meaning of the
program, and the amount is limited to the width of Area B. See also Chapter 2,
“Sections and Paragraphs,” on page 21.

Continuation Lines
Any sentence, entry, clause, or phrase that requires more than one line can be
continued in Area B of the next line that is neither a comment line nor a blank line.
The line being continued is a continued line; the succeeding lines are continuation
lines. Area A of a continuation line must be blank, though the indicator area must
contain a hyphen. If there is no hyphen the last character of the preceding line is
assumed to be followed by a space.

If there is a hyphen in the indicator area of a line, the first nonblank character of
this continuation line immediately follows the last nonblank character of the
continued line without an intervening space.

If the continued line contains a nonnumeric literal without a closing quotation
mark, all spaces at the end of the continued line (through column 72) are
considered to be part of the literal. The continuation line must contain a hyphen in
the indicator area, and the first nonblank character must be a quotation mark. The
continuation of the literal begins with the character immediately following the
quotation mark. If the last character of a continued line is a single quotation mark
in column 72, the first two nonblank characters in the continuation line must be
two quotes to denote a single quote as part of the nonnumeric literal.

For the pseudo-text delimiter separator (==), the two characters that make up the
separator must occupy the same line.

Chapter 3. Part 1. COBOL Language Structure 25

Area A or Area B
The following items may begin in either Area A or Area B:
v Comment lines
v Debugging lines
v Blank lines
v Pseudo-text
v Compiler-directing statements other than the USE statement

Comment Lines
A comment line is any line with an asterisk (*) or slash (/) in the indicator area
(column 7) of the line. The comment may be written anywhere in Area A and Area
B of that line, and may consist of any combination of characters from the EBCDIC
character set. A comment line may be placed anywhere in the program following
the Identification Division header.

Multiple comment lines are allowed. Each must begin with either an asterisk (*) or
a slash (/) in the indicator area.

An asterisk (*) comment line is printed in the output listing, immediately following
the last preceding line. A slash (/) comment line is printed on the first line of the
next page, and the current page of the output listing is ejected.

The compiler treats a comment line as documentation, and does not check it
syntactically.

IBM Extension

DBCS characters may be imbedded in a comment line, but cannot be continued to
a following line.

End of IBM Extension

Debugging Lines
A debugging line is any line with a 'D' in the indicator area of the line. Debugging
lines can be written in the Environment Division (after the OBJECT-COMPUTER
paragraph), the Data Division, and the Procedure Division. If a debugging line
contains only spaces in Area A and Area B, it is considered a blank line. See
“WITH DEBUGGING MODE Clause” on page 70.

Blank Lines
A blank line contains nothing but spaces from column 7 through column 72. A
blank line may appear anywhere in a program.

Pseudo-Text
The character-strings and separators comprising pseudo-text may start in either
Area A or Area B. If, however, there is a hyphen in the indicator area (column 7) of
a line which follows the opening pseudo-text delimiter, Area A of the line must be
blank, and the rules for continuation lines apply to the formation of text words.

26 ILE COBOL Reference

Compiler-Directing Statements
The following compiler-directing statements may start in Area A or Area B:

IBM Extension

v *CONTROL(*CBL)

End of IBM Extension

v COPY

IBM Extension

v EJECT

End of IBM Extension

v PROCESS
v REPLACE

IBM Extension

v SKIP1/2/3
v TITLE

End of IBM Extension

Comment Area (Columns 73 through 80)
The comment area is available for your own use; for example, to identify your
program.

Chapter 3. Part 1. COBOL Language Structure 27

28 ILE COBOL Reference

Chapter 4. Data Reference and Name Scoping

The general concepts of Data Reference and Scoping of Names are important for
the efficient and correct use of COBOL syntax. In particular, the scoping of names
is important in using nested COBOL programs.

The first part of this section concentrates on the five methods of data reference:
v Qualification
v Subscripting
v Reference modification
v Function-identifier
v User-defined data types

The rest of this section concentrates on the scoping of names.

Methods of Data Reference
References to data and procedures can be either explicit or implicit.

Every user-defined name in a COBOL program names a resource for solving a data
processing problem. To use a resource, a statement in a COBOL program must
contain a reference that uniquely identifies that resource. To ensure uniqueness of
reference, a user-defined name can be qualified, subscripted, or reference modified.
Before looking at this, however, you need to understand the term identifier.

Identifier
In the syntax diagrams, the term identifier refers to a user-defined name that, if
not unique in a program, must be followed by a syntactically correct combination
of qualifiers, subscripts, or reference modifiers necessary for uniqueness of
reference.

Format 1 - Identifier

►► data-name-1 ▼

IN data-name-2
OF

IN file-name-1
OF

►

►

▼(subscript)

(leftmost-character-position:)
length

►◄

data-name-1, data-name-2
Can be a record-name.

file-name-1
Must be identified by an FD or SD entry in the Data Division.

File-name-1 must be uniquely identifiable.

© Copyright IBM Corp. 1993, 2010 29

The following rules apply:
v Duplication of data-names must not occur in those places where the data-name

cannot be made unique by qualification.
v In the same program, where data description entries for any two 01

level-number items have the same data-name, the external clause cannot be
applied to either entry.

v In the same Data Division, the data description entries for any two data items
for which the same data-name is specified must not include the GLOBAL clause.

There are two special cases for the identifier: LINAGE-COUNTER and
condition-name.

LINAGE-COUNTER

Format 2 - LINAGE-COUNTER

►► LINAGE-COUNTER
IN file-name-2
OF

►◄

LINAGE-COUNTER
Must be qualified each time it is referenced if more than one file description
entry containing a LINAGE clause has been specified in the source program.

file-name-2
Must be identified by an FD entry in the Data Division.

File-name-2 must be unique within this program.

condition-name

Format 3 - condition-name

►► condition-name-1 ▼

IN data-name-1
OF

IN file-name-1
OF

►

►

▼(subscript)

►◄

condition-name-1
Can be defined in the Data Division or in the SPECIAL-NAMES paragraph
within the Configuration Section of the Environment Division. If
condition-name is defined in the Configuration Section, it can be referred to in
the program containing the Configuration Section or in a nested program. If
the condition-name is defined in the Data Division, it can be referenced
according to the scoping rules for global and local names (see “Global and
Local Names” on page 44).

If explicitly referenced, a condition-name must be unique or be made unique
through qualification and/or subscripting except when the scope of names
conventions by themselves ensure uniqueness of reference.

30 ILE COBOL Reference

If qualification is used to make a condition-name unique, the associated
conditional variable may be used as the first qualifier. If qualification is used,
the hierarchy of names associated with the conditional variable itself must be
used to make the condition-name unique.

If references to a conditional variable require subscripting, reference to any of
its condition-names also requires the same combination of subscripting.

The format and restrictions on the combined use of qualification and
subscripting of condition-name is exactly that of "identifier" except that
data-name-1 is replaced by condition-name-1.

In the general format of the chapters that follow, "condition-name" refers to a
condition-name qualified or subscripted, as necessary.

data-name-1
Can be a record-name.

file-name-1
Must be identified by an FD or SD entry in the Data Division.

File-name-1 must be unique within this program.

Qualification
A name can be made unique if it exists within a hierarchy of names, and the name
can be identified by specifying one or more higher-level names in the hierarchy.
The higher-level names are called qualifiers, and the process by which such names
are made unique is called qualification.

Qualification is specified by placing one or more phrases after a user-specified
name, with each phrase made up of the word IN or OF followed by a qualifier. (IN
and OF are logically equivalent.)

References to Data Division Names - Format 1

►► data-name-1
condition-name

▼

IN data-name-2
OF

IN file-name-1
OF

►◄

References to Data Division Names - Format 2

►► LINAGE-COUNTER
IN file-name-2
OF

►◄

In any hierarchy, the data name associated with the highest level must be unique,
and cannot be qualified.

You must specify enough qualification to make the name unique; however, it may
not be necessary to specify all the levels of the hierarchy. For example, if there is
more than one file whose records contain the field EMPLOYEE-NO, but only one
of the files has a record named MASTER-RECORD:
v EMPLOYEE-NO OF MASTER-RECORD sufficiently qualifies EMPLOYEE-NO
v EMPLOYEE-NO OF MASTER-RECORD OF MASTER-FILE is valid but

unnecessary.

Chapter 4. Part 1. COBOL Language Structure 31

References to Data Division Names
Data Division names that are explicitly referenced in a program must be either
uniquely defined, or made unique through qualification. Unreferenced data-names
need not be uniquely defined.

A data-name associated with a level-number 01, or with an FD or SD level
indicator in the File Section, is the highest level in a data hierarchy. If referenced, it
must be uniquely defined, because it cannot be qualified. Data items with
level-numbers 02 through 49 are successively lower levels in a data hierarchy, and
if referenced, must be either uniquely defined, or made unique through
qualification. Level-77 data-names, if referenced, must be uniquely defined,
because they cannot be qualified.

References to Procedure Division Names
If explicitly referenced, a paragraph-name must not be duplicated within a section.
When a paragraph-name is qualified by a section-name, the word SECTION must
not appear. A paragraph-name need not be qualified when referred to within the
section in which it appears. A paragraph-name or section-name appearing in a
program cannot be referenced from any other program. A section-name, described
in “Section” on page 243, is the highest (and only) qualifier available for a
paragraph-name and must be unique.

References to Procedure Division Names - Format 1

►► paragraph-name
IN section-name
OF

►◄

References to Procedure Division Names - Format 2

►► section-name ►◄

References to COPY Libraries
If more than one COBOL library is available to the compiler during compilation,
text-name can be qualified each time it is referenced.

References to COPY Libraries - Format 3

►► text-name
(1)

library-name- file-name
IN
OF

►◄

Notes:

1 Required hyphen between library-name-file-name to qualify

For rules on referencing COPY libraries, see “COPY Statement” on page 602.

Qualification Rules
The rules for qualifying a name are:
v A name can be qualified even though it does not need qualification.
v Each qualifier must be of a higher level than the name it qualifies, and must be

within the same hierarchy.

32 ILE COBOL Reference

For example:
01 FIELD-A

02 FIELD-B
05 SUB1

07 SUB2
02 FIELD-C

07 SUB1

A hierarchy includes all subordinate entries to the next equal or higher
level-number. Therefore, in the above example all entries are in the hierarchy of
FIELD-A. All entries from FIELD-B to, but not including, FIELD-C are in the
hierarchy of FIELD-B.
In the hierarchy of FIELD-A, SUB1 can be used twice; once as subordinate to
FIELD-B and once as subordinate to FIELD-C. In references to SUB-1, it must be
qualified as SUB-1 OF FIELD-B or SUB-1 OF FIELD-C. Within FIELD-B or
FIELD-C, SUB1 cannot be subordinate to itself.

v The complete list of qualifiers for one data-name must not be the same as a
partial list of qualifiers for another.

v If a data-name or a condition-name is assigned to more than one data item, it
must be qualified each time it is referred to (for the one exception, see
“REDEFINES Clause” on page 203).

v If reference can be made unique by qualification, data-names may be defined in
more than one place in a given program or compilation unit.

v If there is more than one combination of qualifiers that ensures uniqueness, then
any of these combinations can be used.

v If referenced in the program, a section-name must be unique.
v If referenced in the program, a paragraph-name must be unique within a section.

When a paragraph-name is qualified by a section-name, the word SECTION
must not appear. A paragraph-name need not be qualified when referred to
within the section in which it appears.

v LINAGE-COUNTER must be qualified each time it is referenced if more than
one file description entry containing a LINAGE clause has been specified in the
source program.

v Library-name must be unique in the system. Therefore, the first 10 characters of
library-name must be unique.

v Text-name (member-name) can be qualified by the library-name and file-name in
which it resides. (A hyphen is required between library-name and file-name,
without any intervening spaces.) If no library is specified, the library list is
searched. If no file-name is specified, QCBLLESRC is used.

IBM Extension

File-name is optional for the COPY statement, Format 1. If file-name is not
specified, the default is QCBLLESRC.

End of IBM Extension

Subscripting
Subscripting is a method of providing table references through the use of positive
integers. A subscript is a positive integer (or integer data item) whose value
specifies the occurrence number of a table element.

Chapter 4. Part 1. COBOL Language Structure 33

Subscripting - Format

►► condition-name-1
data-name-1

▼

IN data-name-2
OF

IN file-name-1
OF

►

► ▼(integer-1)
ALL
data-name-3

+ integer-2
−

index-name-1
+ integer-3
−

►◄

condition-name-1
Must be subordinate to a data description entry which contains an OCCURS
clause.

data-name-1
Must contain an OCCURS clause or must be subordinate to a data description
entry which contains an OCCURS clause.

integer-1
Can be signed. If signed, it must be positive.

ALL
Used as a function argument for a function that allows a variable number of
arguments. Can be used only when the subscripted identifier is used as a
function argument and can not be used when condition-name is specified.

data-name-3
Must be a numeric elementary item representing an integer.

Data-name-3 can be qualified.

index-name-1
Corresponds to a data description entry in the hierarchy of the table being
referenced which contains an INDEXED BY phrase specifying the index-name.

integer-2, integer-3
Must be an unsigned integer.

The subscripts, enclosed in parentheses, are written immediately following any
qualification for the name of the table element. The number of subscripts in such a
reference must equal the number of dimensions in the table whose element is
being referenced. That is, there must be a subscript for each OCCURS clause in the
hierarchy containing the data-name including the data-name itself.

When more than one subscript is required, they are written in the order of
successively less inclusive dimensions of the data organization. If a
multi-dimensional table is thought of as a series of nested tables and the most
inclusive or outermost table in the nest is considered to be the major table with the
innermost or least inclusive table being the minor table, the subscripts are written
from left to right in the order major, intermediate, and minor.

34 ILE COBOL Reference

For example, if TABLE-THREE is defined as:
01 TABLE-THREE.

05 ELEMENT-ONE OCCURS 3 TIMES.
10 ELEMENT-TWO OCCURS 3 TIMES.

15 ELEMENT-THREE OCCURS 2 TIMES PIC X(8).

a valid subscripted reference to TABLE-THREE is:
ELEMENT-THREE (2 2 1)

A reference to an item must not be subscripted unless the item is a table element
or an item or condition-name associated with a table element.

Each table element reference must be subscripted except when such a reference
appears:
v In a USE FOR DEBUGGING statement
v As the subject of a SEARCH statement
v In a REDEFINES clause
v In the KEY IS phrase of an OCCURS clause
v In a LIKE clause

The lowest permissible occurrence number represented by a subscript is 1. The
highest permissible occurrence number in any particular case is the maximum
number of occurrences of the item as specified in the OCCURS clause.

Subscripting Using Integers or Data-Names
When an integer or data-name is used to represent a subscript, it can be used to
reference items within different tables. These tables need not have elements of the
same size. The same integer or data-name can appear as the only subscript with
one item and as one of two or more subscripts with another item. A data-name
subscript can be qualified; it cannot be subscripted or indexed. For example, valid
subscripted references to TABLE-THREE—assuming that SUB1, SUB2, and SUB3 are all
items subordinate to SUBSCRIPT-ITEM—include:
ELEMENT-THREE (SUB1 SUB2 SUB3)
ELEMENT-THREE IN TABLE-THREE (SUB1 OF SUBSCRIPT-ITEM, SUB2 OF
SUBSCRIPT-ITEM, SUB3 OF SUBSCRIPT-ITEM)

Subscripting Using Index-Names (Indexing)
Indexing allows such operations as table searching and manipulating specific
items. To use indexing you associate one or more index-names with an item whose
data description entry contains an OCCURS clause. An index associated with an
index-name acts as a subscript, and its value corresponds to an occurrence number
for the item to which the index-name is associated.

The INDEXED BY phrase, which identifies the index-name associated with its
table, is an optional part of the OCCURS clause. There is no separate entry to
describe the index-name since its definition is completely system dependent.
Index-names may be seen as compiler generated registers for the use of this
program only. They are not data, or part of the data hierarchy, and must be unique
in a COBOL program.

Each index name must follow the rules for formation of a user-defined word.

Each index-name refers to a compiler-generated register or storage area.

Chapter 4. Part 1. COBOL Language Structure 35

The initial value of an index at object time is undefined, and the index must be
initialized before it is used as a subscript. The initial value of an index is assigned
with:
v The PERFORM statement with the VARYING phrase, or
v The SEARCH statement with the ALL phrase, or
v The SET statement.

An index-name can only be referenced by a PERFORM, SET, or SEARCH
statement, as a parameter in the USING phrase in a CALL statement, or in a
relational condition comparison.

The use of an integer or data-name as a subscript referencing a table element or an
item within a table element does not cause the alteration of any index associated
with that table.

An index-name can be used to reference only the table to which it is associated by
the INDEXED BY phrase.

Data that is arranged in the form of a table is often searched. The SEARCH
statement provides facilities for producing serial and non-serial (for example,
binary) searches. It is used to search for a table element that satisfies a specific
condition and to adjust the value of the associated index to indicate that table
element.

To be valid during execution, an index value must correspond to a table element
occurrence of neither less than one, nor greater than the highest permissible
occurrence number.

Further information on index-names is given in the description of the INDEXED
BY phrase of the OCCURS clause. See “INDEXED BY Phrase” on page 181.

Relative Subscripting
In relative subscripting, the name of a table element is followed by a subscript of
the form data-name or index-name followed by the operator + or -, and an
unsigned integer literal. The operator + and - must be preceded and followed by a
space. If the subscript contains a data-name, the value of the subscript is the same
as if the data-name had been set up or down by the value of the integer. If the
subscript contains an index-name, the integer is considered to be an occurrence
number, and is converted to an index value before being added to or subtracted
from the index-name. The use of relative indexing does not cause the object
program to alter the value of the index.

The value of an index can be made accessible to an object program by storing the
value in an index data-item. Index data-items are described in the program by a
data description entry containing a USAGE IS INDEX clause. The index value is
moved to the index data-item by the execution of a SET statement.

A valid index value must correspond to a table element occurrence of not less than
one, nor greater than the highest permissible occurrence number.

Further information on index-names is given in the description of the INDEXED
BY phrase of the OCCURS clause. See “INDEXED BY Phrase” on page 181.

36 ILE COBOL Reference

Reference Modification
Reference modification resembles the use of substringing in other computer
languages. Reference modification defines a data item by specifying a starting
position and length for the item.

Format

►►

▼

data-name-1
FUNCTION function-name-1

(argument-1)

►

► (leftmost-character-position:)
length

►◄

data-name-1
Must refer to a data item whose implicit or explicit usage is DISPLAY,
DISPLAY-1, or NATIONAL. Data-name-1 can be qualified or subscripted.

IBM Extension

Must not refer to a Boolean data item.

Must not refer to an item that is defined using the TYPE clause.

End of IBM Extension

function-name-1
Must be an alphanumeric, DBCS, or national function including its arguments.

For more information, see Chapter 15, “Intrinsic Functions,” on page 541.

argument-1
Argument-1 must be an identifier, literal (other than a figurative constant), or
arithmetic expression.

leftmost-character-position
Must be an arithmetic expression. The evaluation of the leftmost-character-
position must result in a positive nonzero integer that is less than or equal to
the number of characters in the data item referenced by data-name-1 or
function-name-1.

length
Must be an arithmetic expression.

The sum of leftmost-character-position and length minus the value one must
be less than or equal to the number of characters in the data item referenced
by data-name-1 or function-name-1. If length is omitted, then the length used
is equal to the number of characters in the data item referenced by
data-name-1 or function-name-1 plus one minus the leftmost-character-
position. The evaluation of length must result in a positive nonzero integer.

Note: If the arithmetic expression creates a fixed-point non-integer, truncation
occurs, resulting in an integer. If the arithmetic expression creates a
floating-point non-integer, rounding occurs, resulting in an integer.

IBM Extension

For DBCS or national data items, position and length refer to the number of

Chapter 4. Part 1. COBOL Language Structure 37

double byte characters.

End of IBM Extension

Reference modification is generally allowed anywhere an identifier referencing an
alphanumeric, DBCS, or national data item is allowed.

IBM Extension

A data item of class date-time cannot be reference modified.

End of IBM Extension

Each character of a data item referenced by data-name-1 or function-name-1 is
assigned an ordinal number incrementing by one from the left-most position to the
right-most position. The left-most position is assigned the ordinal number of one. If
the data description entry for data-name-1 contains a SIGN IS SEPARATE clause,
the sign position is assigned an ordinal number within that data item.

Reference modification creates a unique data item which is a subset of the data
item referenced by data-name-1 or by function-name-1 and its arguments. This
unique data item is considered an elementary item without the JUSTIFIED clause.

When data-name-1 is reference-modified, the unique data item has the same class
and category as that defined for the data item referenced by data-name-1; however,
if the category of data-name-1 is numeric, numeric-edited, alphanumeric-edited, or
external floating-point, the unique data item has the class and category
alphanumeric.

When a function is reference-modified, the unique data item has the class and
category of alphanumeric, DBCS, or national depending on the function
arguments.

If length is not specified, the unique data item created extends from and includes
the character identified by the leftmost-character position up to and including the
right-most character of the data item referenced by data-name-1 or
function-name-1.

Evaluation of Operands
Reference modification for an operand is evaluated as follows:
v If subscripting is specified for the operand, the reference modification is

evaluated immediately after evaluation of the subscript.
v If subscripting is not specified for the operand, the reference modification is

evaluated at the time subscripting would be evaluated if subscripts had been
specified. If an ALL subscript is specified for an operand, the reference-modifier
is applied to each of the implicitly specified elements of the table.

v If reference modification is specified for an intrinsic function, the reference
modification is evaluated immediately after evaluation of the function.

Reference Modification Example
This example transfers the first 25 characters in the variable whole-name to the
variable last-name.
MOVE whole-name(1:25) TO last-name

38 ILE COBOL Reference

Range Errors
An out-of-range reference modification component, such as a leftmost-character-
position of zero, causes system message to be generated. This is the same message
that signals errors in subscript ranges and character-string boundaries. (This
message is generated only when the RANGE option is specified on the
CRTCBLMOD or CRTBNDCBL command.)

Restrictions on Reference Modification

IBM Extension

The INDICATORS phrase does not support reference modification.

End of IBM Extension

The following restrictions apply to the statements listed:

Statement
Restriction

STRING
You cannot reference modify identifier-3.

UNSTRING
You cannot reference modify identifier-1.

START
You can reference modify last occurrence of data-name-1 only.

Function-Identifier
A function-identifier is a syntactically correct sequence of character strings and
separators that uniquely references the data item resulting from the evaluation of a
function.

Format

►► FUNCTION function-name-1

▼(argument-1)

►

►
reference-modifier

►◄

argument-1
Must be an identifier, literal (other than a figurative constant), or arithmetic
expression.

function-name-1
Function-name-1 must be one of the intrinsic function names.

For more information, see Chapter 15, “Intrinsic Functions,” on page 541.

reference-modifier
Can be specified only for alphanumeric, DBCS, or national functions.

Chapter 4. Part 1. COBOL Language Structure 39

References to Alphanumeric Items
A function-identifier that makes reference to an alphanumeric function can be
specified anywhere that an identifier is permitted and where references to
functions are not specifically prohibited, except as follows:
v As a receiving operand of any statement
v Where a data item is required to have particular characteristics (such as class

and category, size, sign, and permissible values) and the evaluation of the
function according to its definition and the particular arguments specified would
not have these characteristics.

References to Integers
A function-identifier that makes reference to an integer or numeric function may be
used wherever an arithmetic expression is allowed.

References to DBCS Items

IBM Extension

A DBCS function can be specified anywhere in the general formats that a DBCS
identifier is permitted, and where the rules associated with the general formats do
not specifically prohibit reference to functions, except as follows:
v As a receiving operand of any statement
v Where the rules associated with the general formats require the data item being

referenced to have particular characteristics (such as class and category, usage,
size, and permissible values) and the evaluation of the function according to its
definition and the particular arguments specified would not have these
characteristics.

A reference modification for a DBCS function is allowed. If reference modification
is specified for a function, the evaluation of the reference modification takes place
immediately after the evaluation of the function.

A DBCS function can be referenced as an argument for a function that allows a
DBCS argument.

End of IBM Extension

References to National Items

IBM Extension

A national function can be specified anywhere in the general formats that a
national identifier is permitted, and where the rules associated with the general
formats do not specifically prohibit reference to functions, except as follows:
v As a receiving operand of any statement
v Where the rules associated with the general formats require the data item being

referenced to have particular characteristics (such as class and category, usage,
size, and permissible values) and the evaluation of the function according to its
definition and the particular arguments specified would not have these
characteristics.

A reference modification for a national function is allowed. If reference
modification is specified for a function, the evaluation of the reference modification
takes place immediately after the evaluation of the function.

40 ILE COBOL Reference

A national function can be referenced as an argument for a function that allows a
national argument.

End of IBM Extension

References to Date-Time Items

IBM Extension

A date-time function can be specified anywhere in the general formats that a
date-time identifier is permitted, and where the rules associated with the general
formats do not specifically prohibit reference to functions, except as follows:
v As a receiving operand of any statement
v Where the rules associated with the general formats require the data item being

referenced to have particular characteristics (such as class and category, usage,
size, and permissible values) and the evaluation of the function according to its
definition and the particular arguments specified would not have these
characteristics.

A date-time function can be referenced as an argument for a function that allows a
date-time argument.

End of IBM Extension

References to Boolean Items

IBM Extension

A boolean function can be specified anywhere in the general formats that a
boolean identifier is permitted, and where the rules associated with the general
formats do not specifically prohibit reference to functions, except as follows:
v As a receiving operand of any statement
v Where the rules associated with the general formats require the data item being

referenced to have particular characteristics (such as class and category, usage,
size, and permissible values) and the evaluation of the function according to its
definition and the particular arguments specified would not have these
characteristics.

A boolean function can be referenced as an argument for a function that allows a
boolean argument.

End of IBM Extension

User-Defined Data Types

IBM Extension

A user-defined data type (or type name) is a 01 level elementary or group item
that contains the TYPEDEF clause. No storage is allocated for such an item. It can
be thought of as a template that describes a data name and its subordinate items.
A type name can then be used to define a data name (or another type name) by
specifying it within a TYPE clause. The defined data name will have the
characteristics of the type name specified in the TYPE clause. If the type name is a

Chapter 4. Part 1. COBOL Language Structure 41

group item, then the defined data name will be a group item with subordinate
items having the same names, hierarchy, and characteristics as the items
subordinate to the type name.

When defining a data name (or type name) by using a user-defined data type in a
TYPE clause, only the following clauses may be used in conjunction with the TYPE
clause to complete the description of the data name:
v EXTERNAL clause
v GLOBAL clause
v OCCURS clause
v TYPEDEF clause
v VALUE clause.

The scoping rules for type names are the same as those for data names.

For more information about the TYPE and TYPEDEF clauses, refer to “TYPE
Clause” on page 215 and “TYPEDEF Clause” on page 217.

TYPEDEF Clause
The TYPEDEF clause declares an elementary or group data item to be a
user-defined data type (or type name). Once the type name has been defined, it
can be used (in a TYPE clause) to define other data items.

►► TYPEDEF
IS

►◄

TYPE Clause
The TYPE clause allows a user-defined data type (or type name) to be used to
define a data item. This is done by specifying the type name (which is declared
using the TYPEDEF clause) in a TYPE clause. If the type name is a group item,
then the defined data item will also be a group item: its subordinate entries will
correspond in name, hierarchy, and characteristics to those subordinate to the type
name.

►► TYPE type-name-1 ►◄

type-name-1
The name of the type name that is to be used to define the subject data name.

End of IBM Extension

Scope of Names
This section contains a brief description of the types of COBOL names, followed by
the rules for name scoping.

Types of Names
alphabet-name

An alphabet-name assigns a name to a specific character set and/or collating
sequence in the SPECIAL-NAMES paragraph of the Environment Division.

42 ILE COBOL Reference

class-name
A class-name assigns a name to the preposition in the SPECIAL-NAMES
paragraph of the Environment Division for which a truth value can be defined.

condition-name
A condition-name associates a value with a conditional variable.

constant-name
A constant-name identifies a constant, which is defined in the data division.

data-name
A data-name names a data item.

file-name
A file-name names a file connector.

index-name
An index-name names an index associated with a specific table.

library-name
A library-name names a COBOL library that is to be used by the compiler for a
given source program compilation.

mnemonic-name
A mnemonic-name assigns a user-defined word to an implementer-name.

paragraph-name
A paragraph-name names a paragraph in the Procedure Division.

program-name
A program-name names a program, either external or internal (nested).

See “Conventions for Program-Names” on page 48.

record-name
A record-name names a record.

section-name
A section-name names a section in the Procedure Division.

symbolic-character
A symbolic-character specifies a user-defined figurative constant.

text-name
A text-name names a library containing source members to be used by the
COPY directive statements.

IBM Extension

type-name
A type-name names a user-defined data type that can be used in a TYPE
clause to define a data item.

End of IBM Extension

Nested Programs
A COBOL program may contain other COBOL programs. The contained (or
nested) programs may themselves contain yet other programs. A contained
program may be directly or indirectly contained within a program.

Chapter 4. Part 1. COBOL Language Structure 43

Figure 2 describes a program structure with directly and indirectly contained
programs.

The same user-defined word may be used in different programs to define different
objects. In a particular program, a reference to an object always refers to the object
defined in that program.

Global and Local Names
Names can have global or local attributes. Some names are always global; other
names are always local; and some names are either local or global depending upon
specifications in the program in which the names are declared.

A program cannot reference any condition-name, data-name, file-name,
index-name, paragraph-name, record-name, section-name, or type-name declared
in any program it contains.

A global name may be used to refer to the object with which it is associated either
from within the program in which the global name is declared or from within any
other program which is contained in the program which declares the global name.

A local name, however, may be used only to refer to the object with which it is
associated from within the program in which the local name is declared.

Figure 2. Nested Program Structure with Directly and Indirectly Contained Programs

44 ILE COBOL Reference

If a data-name, record-name, condition-name, type-name, or file-name is not
declared to be global, the name is local.

Note: Specific rules sometimes prohibit specification of the GLOBAL clause for
certain data description, file description, or record description entries.

constant-name
A constant-name is global if the GLOBAL clause is specified.

data-name
A data-name is global if the GLOBAL clause is specified either in the data
description entry by which the data-name is declared or in another entry to
which that data description entry is subordinate.

file-name
A file-name is global if the GLOBAL clause is specified in the file description
entry for that file-name.

Two programs in a run unit can reference common file connectors in the
following circumstances:
1. An external file connector can be referenced from any program that

describes that file connector.
2. If a program is contained within another program, both programs can refer

to a common file connector by referring to an associated global file-name
declared either in the containing program or in any program that directly
or indirectly contains the containing program.

record-name
A record-name is global if the GLOBAL clause is specified in the record
description entry by which the record-name is declared or, in the case of record
description entries in the File Section, if the GLOBAL clause is specified in the
file description entry for the file-name associated with the record description
entry.

condition-name
A condition-name, when declared in the data description entry, is global if that
entry is subordinate to another entry in which the GLOBAL clause is specified.

A condition-name, when declared within the Configuration Section, is always
global.

program-name
A program-name is neither local nor global. See “Conventions for
Program-Names” on page 48.

section-name and paragraph-name
These names are always local.

library-name and text-name
These names are external to the program and can be referenced by any COBOL
program, provided that the compiler system supports the associated library
and the entities referenced are known to that system.

alphabet-name
An alphabet-name is always global.

class-name
A class-name is always global.

mnemonic-name
A mnemonic-name is always global.

Chapter 4. Part 1. COBOL Language Structure 45

index-name
If a data item possessing the global attribute includes a table accessed with an
index, that index also possesses the global attribute. Therefore, the scope of an
index-name is identical to that of the data-name which names the table whose
index is named by that index-name and the scope of name rules for
data-names apply. Index-names cannot be qualified.

IBM Extension

type-name
A type name is global if the GLOBAL clause is specified in the data description
entry by which the type-name is declared. The GLOBAL attribute of a
type-name is restricted to the type-name, and is not acquired by a data item
that is defined using the type-name in a TYPE clause.

End of IBM Extension

External and Internal Objects
Accessible data items usually require that certain representations of data be stored.
File connectors usually require that certain information concerning files be stored.
The storage associated with a data item or a file connector may be external or
internal to the program in which the object is declared.

A data item or file connector is external if the storage associated with that object is
associated with the run unit rather than with any particular program within the
run unit. An external object may be referenced by any program in the run unit
which describes the object. References to an external object from different programs
using separate descriptions of the object with the same name are always to the
same object. In a run unit, there is only one representative of an external object.

An object is internal if the storage associated with that object is associated only
with the program which describes the object.

External and internal objects may have either global or local names.

A data record described in the Working-Storage Section is given the external
attribute by the presence of the EXTERNAL clause in its data description entry.
Any data item described by a data description entry subordinate to an entry
describing an external record is also given the external attribute. If a record or data
item does not have the external attribute, it is part of the internal data of the
program in which it is described.

A file connector is given the external attribute by the presence of the EXTERNAL
clause in the associated file description entry. If the file connector does not have
the external attribute, it is internal to the program in which the associated
file-name is described. The EXTERNAL clause cannot be specified for sort-merge
files.

The data records described subordinate to a file description entry which does not
contain the EXTERNAL clause, or those subordinate to a sort-merge file
description entry, as well as any data items described subordinate to the data
description entries for such records, are always internal to the program describing
the file-name. If the EXTERNAL clause is included in the file description entry, the
data records and the data items are given the external attribute.

46 ILE COBOL Reference

Data records and subordinate data items described in the Linkage Section of a
program are always considered to be internal to the program describing that data.
Special considerations apply to data described in the Linkage Section whereby an
association is made between the data records described and other data items
accessible to other programs.

Data Attribute Specification
Explicit data attributes are those you specify in actual COBOL coding.

Implicit data attributes are default values. If you do not explicitly code a data
attribute, the compiler assumes a default value.

For example, you need not specify the USAGE of a data item. If it is omitted, the
default is USAGE DISPLAY, which is the implicit data attribute. If, however, you
specify USAGE DISPLAY in COBOL coding, it becomes an explicit data attribute.

Resolution of Names
When a program, program B, is directly or indirectly contained within another
program, program A, both programs may define objects using the same
user-defined word. (Objects include, for example, a condition-name, a data-name, a
file-name, a record-name, a function name, or a type-name.) When such a
duplicated name is referenced in program B, the following rules are used to
determine the referenced object:
1. The referenced object is identified from the set of all names which are defined

in program B and all global names defined in the directly containing program
A and in any programs which directly or indirectly contain program A. Using
this set of names, the normal rules for qualification and any other rules for
uniqueness of reference are applied until one or more objects is identified.

2. If only one object is identified, it is the referenced object.
3. If more than one object is identified, no more than one of them can have a

name local to program B unless each reference to them can be made unique
with appropriate qualification. If zero or one of the objects has a name local to
program B, the following rules apply:
v If the name is declared in program B, the object in program B is the

referenced object.
v Otherwise, if program A is contained within another program, the referenced

object is:
– The object in program A if the name is declared in program A.
– The object in the containing program if the name is not declared in

program A and is declared in the program containing program A. This
rule is applied to further containing programs until a single valid object
has been found.

v When the referenced object is a function, the function definition sometimes
requires the programmer to specify a value or set of values for one or more
arguments that determine the value of the function for that particular
reference. The term function-identifier refers to the term used to reference
an intrinsic function within the Procedure Division of a COBOL source
program. The data item represented by a function is uniquely identified by a
function-name with its arguments, if any.

Chapter 4. Part 1. COBOL Language Structure 47

Conventions for Program-Names
The program-name of a program is specified in the PROGRAM-ID paragraph of
the program's Identification Division. A program-name can be referenced only by
the:
v CALL statement
v CANCEL statement
v END PROGRAM header

IBM Extension

v SET statement

End of IBM Extension

Names of programs constituting a run unit are not necessarily unique, but when
two programs in a run unit are identically named, at least one of those two
programs must be directly or indirectly contained within another separately
compiled program which does not contain the other of those two programs.

The following rules regulate the scope of a program-name.
v If the program-name is that of a program which does not possess the COMMON

attribute and which is directly contained within another program, that
program-name can be referenced only by statements included in that containing
program.

v If the program-name is that of a program which possesses the COMMON
attribute and that is directly contained within another program, that
program-name can be referenced only by statements included in that containing
program and any programs directly or indirectly contained within that
containing program, except that program possessing the COMMON attribute
and any programs contained within it.

v If the program-name is that of an outermost COBOL program in a separately
compiled module object, that program-name can be referenced by statements
included in any other program in the run unit, except programs it directly or
indirectly contains.

Rules Regulating the Scope of Program Names
The following rules apply to referencing a program-name of a program that is
contained within another program. For this discussion, we will say that Program-A
directly contains Program-B and Program-C, Program-C directly contains
Program-D and Program-F, and Program-D directly contains Program-E.

48 ILE COBOL Reference

If Program-D does not possess the COMMON attribute, then Program-D can only
be referenced by the program that directly contains Program-D, that is, Program-C.

If Program-D does possess the COMMON attribute, then Program-D can be
referenced by Program-C since it contains Program-D, and by any programs
contained in Program-C except for Program-D and programs contained in
Program-D. In other words, if Program-D possesses the COMMON attribute,
Program-D can be referenced in Program-C and Program-F, but not by statements
in Program-E, Program-A, Program-B, or Program-D.

Program-A

Program-B

Program-C

Program-D

Program-E

Program-F

Figure 3. Rules Regulating the Scope of Program Names

Chapter 4. Part 1. COBOL Language Structure 49

50 ILE COBOL Reference

Chapter 5. Transfer of Control

In the Procedure Division, unless there is an explicit control transfer or there is no
next executable statement, program flow transfers control from statement to
statement in the order in which the statements are written. (See Note below.) This
normal program flow is an implicit transfer of control.

In addition to the implicit transfers of control between consecutive statements,
implicit transfer of control also occurs when the normal flow is altered without the
execution of a procedure branching statement. The following examples show
implicit transfers of control, overriding statement-to-statement transfer of control:
v After execution of the last statement of a COBOL procedure being executed

under control of another COBOL statement, control implicitly transfers. (COBOL
statements that control COBOL procedure execution are, for example: MERGE,
PERFORM, SORT, and USE.)

v During SORT or MERGE statement execution, when control is implicitly
transferred to an INPUT or OUTPUT procedure.

v During execution of any COBOL statement that causes execution of a declarative
procedure, control is implicitly transferred to that procedure.

v At the end of execution of any declarative procedure, control is implicitly
transferred back to the control mechanism associated with the statement that
caused its execution.

v When a program that has no procedure division or any nondeclarative sections
is called, the calling program issues an implicit EXIT PROGRAM.

COBOL provides explicit control transfers through the execution of any procedure
branching or conditional statement.

Next Executable Statement

Note: The term “next executable statement” refers to the next COBOL statement to
which control is transferred, according to the rules given above. There is no
next executable statement under these circumstances:

v When the program contains no Procedure Division.
v Following the last statement in a declarative section when the paragraph in

which it appears is not being executed under the control of some other COBOL
statement.

v Following the last statement in a program when the paragraph in which it
appears is not being executed under the control of some other COBOL statement
in that program.

v Following the last statement in a declarative section when the statement is in the
range of an active PERFORM statement executed in a different section and this
last statement of the declarative section is not also the last statement of the
procedure that is the exit of the active PERFORM statement.

v Following a STOP RUN, EXIT PROGRAM, or GOBACK statement that transfers
control outside the COBOL program.

v Following the END PROGRAM header.

© Copyright IBM Corp. 1993, 2010 51

When there is no next executable statement and control isnot transferred outside
the COBOL program, the program flow of control is undefined unless the program
execution is in the nondeclarative procedures portion of a program under control
of a CALL statement, in which case an implicit EXIT PROGRAM statement is
executed.

52 ILE COBOL Reference

Part 2. COBOL Program Structure

© Copyright IBM Corp. 1993, 2010 53

54 ILE COBOL Reference

Chapter 6. General Structure

A COBOL source program is a syntactically correct set of COBOL statements.

A COBOL source program may contain other COBOL source programs. These
contained programs may reference some of the resources of the programs within
which they are contained.

This concept of contained programs is known as nesting and the contained
program is known as a nested program. A nested program may be directly or
indirectly contained in another program. For example, if program B is contained in
Program A, it is directly contained if there is no program in program A that also
contains program B. Program B is indirectly contained in program A if there exists
a program contained in Program A that also contains program B.

For more information on contained and containing programs, refer to the section
on nested programs in the IBM Rational Development Studio for i: ILE COBOL
Programmer's Guide.

With the exception of compiler-directing statements and the END PROGRAM
header, the statements, entries, paragraphs, and sections of a COBOL source
program are grouped into the following four divisions:
v Identification Division
v Environment Division
v Data Division
v Procedure Division

The end of a COBOL source program is indicated by either the END PROGRAM
header, if specified, or by the absence of additional source program lines.

The following figure briefly illustrates the general structure of a COBOL program.

COBOL Source Program—Format

►► IDENTIFICATION
(1)

ID

DIVISION. PROGRAM-ID. program-name-1
(1)

literal-1

►

►
INITIAL

IS RECURSIVE PROGRAM

►

► .
identification-division-content

►

►
ENVIRONMENT DIVISION. environment-division-content

►

►
DATA DIVISION. data-division-content

►

© Copyright IBM Corp. 1993, 2010 55

►
PROCEDURE DIVISION. procedure-division-content

►

►

▼

END PROGRAM program-name-1 .
(1)

literal-1
nested program

►◄

nested program:

IDENTIFICATION
(1)

ID

DIVISION. PROGRAM-ID. program-name-2
(1)

literal-2

►

►
COMMON

IS INITIAL PROGRAM
RECURSIVE

INITIAL
RECURSIVE COMMON

►

► .
identification-division-content

►

►
ENVIRONMENT DIVISION. environment-division-content

►

►
DATA DIVISION. data-division-content

►

►
PROCEDURE DIVISION. procedure-division-content

►

►

▼ nested program

END PROGRAM program-name-2
(1)

literal-2

.

Notes:

1 IBM Extension

END PROGRAM Header
The END PROGRAM header indicates the end of a named COBOL source
program. It also separates each program in a sequence of source programs. An
END PROGRAM header is optional for the last program in a sequence of source
programs only if that program does not contain any nested programs.

END PROGRAM Header - Format

►► END PROGRAM program-name-1
(1)

literal-1

. ►◄

56 ILE COBOL Reference

Notes:

1 IBM Extension

program-name-1
A user-defined word that must be identical to a program-name declared in a
preceding PROGRAM-ID paragraph. Refer to program-name in “PROGRAM-ID
Paragraph” on page 62 for the rules for formation of the program-name.

IBM Extension

literal-1
Must be a nonnumeric literal. Refer to literal in “PROGRAM-ID Paragraph” on
page 62 for the rules for formation of the literal.

End of IBM Extension

END PROGRAM Header

Chapter 6. Part 2. COBOL Program Structure 57

END PROGRAM Header

58 ILE COBOL Reference

Part 3. Identification Division

© Copyright IBM Corp. 1993, 2010 59

60 ILE COBOL Reference

Chapter 7. Identification Division

The Identification Division must be the first division in every COBOL source
program. It names the program and may include the date the program was
written, the date of compilation, and other such documentary information about
the program.

Identification Division - Format

►► IDENTIFICATION
(1)

ID

DIVISION. PROGRAM-ID. program-name
(1)

literal

►

►
(2)

COMMON
IS INITIAL PROGRAM

RECURSIVE
INITIAL
RECURSIVE (2)

COMMON

. ►

►

▼

AUTHOR.

comment-entry ▼

INSTALLATION.

comment-entry

►

►

▼

DATE-WRITTEN.

comment-entry

►

►

▼

DATE-COMPILED.

comment-entry

►

►

▼

SECURITY.

comment-entry

►◄

Notes:

1 IBM Extension

2 Allowed only for nested COBOL programs

The first paragraph of the Identification Division must be the PROGRAM-ID
paragraph. The other paragraphs are optional, but, when written, must appear in
the order shown in the format.

© Copyright IBM Corp. 1993, 2010 61

IBM Extension

The abbreviation ID DIVISION may be substituted for the standard division
header, and the optional paragraphs may be in any order.

Note: The SEU Syntax Checker requires that the first sentence of the following
paragraph headers begin on the same line as the paragraph header:
v PROGRAM-ID
v AUTHOR
v INSTALLATION
v DATE-WRITTEN
v DATE-COMPILED
v SECURITY

Figure 4 shows how the coding for the Identification Division should look.

End of IBM Extension

PROGRAM-ID Paragraph
The PROGRAM-ID paragraph specifies the name of the COBOL program. For an
outermost program, it can also specify the name of the program object (*PGM) or
module object (*MODULE), or both. It is required and must be the first paragraph
in the Identification Division.

The name by which the program object is known to the system can be overridden
by the PGM parameter of the CRTBNDCBL command. The name by which the
module object is known can be overridden by the MODULE parameter of the
CRTCBLMOD command. See the IBM Rational Development Studio for i: ILE COBOL
Programmer's Guide for more information on the PGM or MODULE parameter.

program-name
A user-defined word that identifies your program or module object to the system.
For program and module objects, only the first 10 characters of program-name are
used as the identifying name of the object. For an ILE procedure name, the first
250 characters of program-name are used. If the *MONOPRC option is specified on
the CRTBNDCBL or CRTCBLMOD command, the first character of program-name
is forced to be alphabetic; if it is numeric, it is converted as follows:
0 to J
1 through 9 to A through I

If a hyphen is in positions 2 through 10, it is converted to zero (0).

When *PGMID is specified on the CRTBNDCBL or CRTCBLMOD command for the
program or module name and the *NOMONOPRC option is specified, the user

IDENTIFICATION DIVISION.
PROGRAM-ID. IDSAMPLE.
AUTHOR. PROGRAMMER NAME.
INSTALLATION. COBOL DEVELOPMENT CENTER.
DATE-WRITTEN. 12/02/94.
DATE-COMPILED. 12/09/94 12:57:53.
SECURITY. NON-CONFIDENTIAL.

Figure 4. Identification Division Coding Example Showing Sentences Beginning on Same
Lines as Paragraphs

62 ILE COBOL Reference

must ensure that the program name specified in the PROGRAM-ID paragraph
does not contain a non-numeric literal containing lowercase characters as this may
create unusable objects. Care should be taken for multiple source programs where,
even in the absence of *PGMID for the program or module name, unusable objects
may be created for the second and subsequent ILE COBOL procedures containing
non numeric literal with lowercase characters for the PROGRAM-ID paragraph
when SIMPLEPGM = *YES.

literal
Must be a nonnumeric literal.

A nonnumeric literal without the enclosing delimiters becomes the program-name.
The same rules apply for forming module, program, and procedure names as
defined above under program-name. If the *MONOPRC option is specified,
however, lowercase letters in the literal are converted to their uppercase
equivalents.

RECURSIVE Clause

IBM Extension

The RECURSIVE clause is an optional clause that allows COBOL programs to be
recursively re-entered. This clause specifies that the program and any program
contained within it are recursive. ILE COBOL allows the RECURSIVE clause in a
nested program. As well, recursive programs will be able to contain a nested
subprogram. Program-name-1 can be recursively re-entered while a previous
invocation is still active if the RECURSIVE clause is specified. An active program
cannot be recursively re-entered if the RECURSIVE clause is not specified.

The Working-Storage Section of a recursive program defines storage that is
statically allocated and initialized on the first entry to a program, and is available
in a last-used state to any of the recursive invocations. The Local-Storage Section of
a recursive program (as well as a non-recursive program) defines storage that is
automatically allocated, initialized, and deallocated on a per-invocation basis.

Internal file connectors corresponding to FDs in the File Section of a recursive
program are statically allocated. The status of internal file connectors is part of the
last-used state of a program that persists across invocations.

The following language elements are not supported in a recursive program:
v ALTER; see the “ALTER Statement” on page 310
v GO TO without a specified procedure name; see the “GO TO Statement” on

page 369
v RERUN; see the “RERUN Clause” on page 120
v SEGMENTATION
v USE FOR DEBUGGING; see “USE FOR DEBUGGING” on page 633

The RECURSIVE clause shall not be specified if any program that directly or
indirectly contains this program is an inital program.

End of IBM Extension

PROGRAM-ID Paragraph

Chapter 7. Part 3. Identification Division 63

COMMON Clause
The COMMON clause allows the program named by program-name to be called
by its siblings and by programs contained within the siblings. The COMMON
clause can be used only in nested programs.

INITIAL Clause
Specifies that when program-name is called, program-name and any programs
contained within it are set to their initial state. (All working storage items are reset
to their initial values and all INTERNAL files are closed.)

A program is set to its initial state:
v The first time the program is called in a run unit
v Every time the program is called, if it possesses the INITIAL attribute
v The first time the program is called after the execution of a CANCEL statement

referencing the program or a CANCEL statement referencing a program that
directly or indirectly contains the program

v The first time the program is called after the execution of a CALL statement
referencing a program that possesses the INITIAL attribute, and that directly or
indirectly contains the program.
For example, if program A calls program B, and program B has the INITIAL
attribute and also contains program C, program C will be set to its initial state
the first time that it is called after A called B.

When a program is set to its initial state, the following occur:
v The program's internal data contained in the Working-Storage and Local-Storage

sections are initialized. If a VALUE clause is used in the description of the data
item, the data item is initialized to the defined value. If a VALUE clause is not
associated with a data item, the initial value of the data item depends on
whether the *STDINZ, *STDINZHEX00 or the *NOSTDINZ option is specified
on the CRTCBLMOD or CRTBNDCBL command.

v Files with internal file connectors associated with the program are not in the
open mode.

v The control mechanisms for all PERFORM statements contained in the program
are set to their initial states.

v The altered GO TO statements contained in the program are set to their initial
state.

The INITIAL clause shall not be specified if any program that directly or indirectly
contains this program is a recursive program.

Optional Paragraphs
These optional paragraphs in the Identification Division may be omitted.

AUTHOR
Name of the author of the program. It is syntax checked only.

INSTALLATION
Name of the company or location. It is syntax checked only.

DATE-WRITTEN
Date the program was written. It is syntax checked only.

1. Sibling programs are those that are directly contained by the same program.

PROGRAM-ID Paragraph

64 ILE COBOL Reference

DATE-COMPILED
Date the program was compiled.

SECURITY
Level of confidentiality of the program.

comment-entry
The comment-entry in any of the optional paragraphs may be any combination of
characters from the character set of the computer. Do not confuse the
comment-entry with a comment line. (The latter is indicated by a slash or asterisk
in the indicator area.) The comment-entry is written in Area B on one or more
lines. The SEU Syntax Checker, however, requires that the first sentence begin on
the same line as the paragraph header.

Comment-entries serve only as documentation; they do not affect the meaning of
the program. A hyphen in the indicator area (column 7) is not permitted in
comment-entries.

The paragraph name DATE-COMPILED and any comment-entry associated with it
are replaced during compilation with a paragraph of the form:

DATE-COMPILED. current date.

The first eight lines of the comment-entry in the SECURITY paragraph will form
the copyright information in the created module object.

IBM Extension

A comment-entry may contain the *CBL, *CONTROL, EJECT, SKIP1, SKIP2, SKIP3,
or TITLE statements anywhere on the line. These statements will be acted on if
they are alone on a line within the comment-entry, and they will not terminate the
comment-entry.

Comments may combine double-byte and single-byte character-strings.Multiple
lines are allowed in a comment-entry containing double-byte strings, however
shift-out and shift-in characters must be paired in a line.

Note: Mixed strings are described under “Character-Strings” on page 4.

End of IBM Extension

Optional Paragraphs

Chapter 7. Part 3. Identification Division 65

Optional Paragraphs

66 ILE COBOL Reference

Part 4. Environment Division

The Environment Division has two sections:
v The Configuration Section
v The Input-Output Section. (See Chapter 9, “Input-Output Section,” on page 93.)

The Environment Division is optional in a COBOL source program.

Environment Division - Format

►► ENVIRONMENT DIVISION. ►

►
CONFIGURATION SECTION. Configuration Section Paragraphs

►

►
INPUT-OUTPUT SECTION. Input-Output Section Paragraphs

►◄

Configuration Section Paragraphs:

SOURCE-COMPUTER.
source-computer-entry

►

►
OBJECT-COMPUTER.

object-computer-entry

►

►
SPECIAL-NAMES.

special-names-entry

Input-Output Section Paragraphs:

FILE-CONTROL. ▼ file-control-entry ►

►

▼

I-O-CONTROL.

i-o-control-entry

© Copyright IBM Corp. 1993, 2010 67

68 ILE COBOL Reference

Chapter 8. Configuration Section

The Configuration Section is optional. When specified, it can describe the computer
on which the source program is compiled and the computer on which the object
program is executed. However, the Configuration Section must not be specified in
a nested program. The entries specified in the Configuration Section of a program
apply to all programs contained within that program.

In addition, the Configuration Section can:
v Relate IBM-defined environment-names to user-defined mnemonic names
v Specify the collating sequence
v Specify a single or multiple character currency string and a substitute character

for the currency sign
v Interchange the functions of the comma and the period in PICTURE clauses and

numeric literals
v Relate alphabet-names to character sets or collating sequences
v Relate class names to sets of characters
v Specify the type of linkage to be made on a CALL, CANCEL, or SET...ENTRY

statement
v Specify the default formats for a date or time data type.

Each paragraph must contain one, and only one, separator period immediately
after the last entry in the paragraph.

Note: The SEU Syntax Checker requires that the first clause of the following
paragraphs be entered on the same line as the paragraph name:
v SOURCE-COMPUTER
v OBJECT-COMPUTER
v SPECIAL-NAMES

The Configuration Section of the Environment Division contains three paragraphs:
v SOURCE-COMPUTER paragraph
v OBJECT-COMPUTER paragraph
v SPECIAL-NAMES paragraph.

Coding Example
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-I.
OBJECT-COMPUTER. IBM-I.
SPECIAL-NAMES. C01 IS TOP-OF-PAGE.

SOURCE-COMPUTER Paragraph
The SOURCE-COMPUTER paragraph describes the computer on which the source
program is to be compiled.

SOURCE-COMPUTER Paragraph - Format

© Copyright IBM Corp. 1993, 2010 69

|
|
|
|
|

►► SOURCE-COMPUTER.
computer-name .

DEBUGGING MODE
WITH

►◄

computer-name
A system-name. The suggested computer-name is:

IBM-I

Except for the WITH DEBUGGING MODE clause, the SOURCE-COMPUTER
paragraph is syntax checked, and has no effect on the execution of the program.

WITH DEBUGGING MODE Clause
Activates a compile-time switch for debugging lines written in the source program.

A debugging line is a statement that is compiled only when the compile-time
switch is activated. Debugging lines allow you, for example, to check the value of
a data-name at certain points in a procedure.

The WITH DEBUGGING MODE clause causes any USE FOR DEBUGGING
procedure to be compiled. Without this clause, these procedures are treated as
comments and ignored.

To specify a debugging line in your program, code a 'D' or 'd' in column 7
(indicator area). You may include successive debugging lines, but each must have a
'D' or 'd' in column 7 and you may not break character strings across lines.

All your debugging lines must be written so that the program is syntactically
correct, whether the debugging lines are compiled or treated as comments.

The presence or absence of the DEBUGGING MODE clause is determined after all
COPY statements are processed. See “COPY Statement” on page 602 for details.

You may code debugging lines in the Environment (after the OBJECT-COMPUTER
paragraph), Data, or Procedure Divisions.

If a debugging line contains only spaces in Area A and in Area B, it is treated the
same as a blank line.

If the WITH DEBUGGING MODE clause is omitted, debug lines are treated as
comment lines.

OBJECT-COMPUTER Paragraph
The OBJECT-COMPUTER paragraph specifies the system for which the object
program is designated.

OBJECT-COMPUTER Paragraph - Format

►► OBJECT-COMPUTER.
computer-name Entry .

►◄

SOURCE-COMPUTER Paragraph

70 ILE COBOL Reference

|
|

|

Entry:

(1)
MEMORY integer WORDS

SIZE CHARACTERS
MODULES

►

►
SEQUENCE alphabet-name

PROGRAM COLLATING IS

►

►
(1)

SEGMENT-LIMIT segment-number
IS

Notes:

1 Syntax-checked only.

computer-name
A system-name, which is syntax checked but has no effect on the execution of
the program. The suggested computer-name is:

IBM-I

MEMORY SIZE
The amount of main storage needed to run the object program. The MEMORY
SIZE clause is syntax checked only.

integer
Expressed in words, characters, or modules.

PROGRAM COLLATING SEQUENCE IS
The collating sequence used in this program (and any programs it may
contain) is the collating sequence associated with the specified alphabet-name.

alphabet-name
The collating sequence.

PROGRAM COLLATING SEQUENCE determines the truth value of the
following nonnumeric comparisons:
v Those explicitly specified in relation conditions
v Those explicitly specified in condition-name conditions.

The PROGRAM COLLATING SEQUENCE clause also applies to any
nonnumeric merge or sort keys, unless the COLLATING SEQUENCE phrase is
specified in the MERGE or SORT statement. When the PROGRAM
COLLATING SEQUENCE clause is omitted, the EBCDIC collating sequence is
used.

See Appendix C, “EBCDIC and ASCII Collating Sequences,” on page 647 for
more information about these sequences.

SEGMENT-LIMIT IS
Determines which segments will be considered as permanent segments of
the object program. This clause is syntax checked only.

segment-number
Must be an integer varying in value from 1 through 49.

OBJECT-COMPUTER Paragraph

Chapter 8. Part 4. Environment Division 71

|
|

|

SPECIAL-NAMES Paragraph
The SPECIAL-NAMES paragraph:
v Relates IBM-specified environment-names to user-defined mnemonic-names.
v Relates alphabet-names to character sets or collating sequences.
v Relates class names to sets of characters.
v Specifies a single or multiple character currency string and a substitute character

for the currency sign.
v Specifies that the functions of the comma and decimal point are to be

interchanged in PICTURE clauses and numeric literals.

IBM Extension

v Relates locale object names and their associated library to user-defined
mnemonic-names.

v Specifies the default formats for a date or time data type.
v Specifies that ACCEPT or DISPLAY statements are treated as extended ACCEPT

or DISPLAY statements, or as requests to the dynamic screen manager session
services APIs.

v Specifies additional functions associated with ACCEPT statements.
v Specifies the type of linkage used for a CALL or CANCEL of a program, and for

setting a procedure-pointer with the SET statement.

End of IBM Extension

SPECIAL-NAMES Paragraph - Format

►► SPECIAL-NAMES. ►

► ▼

environment-name-1 mnemonic-name-1
IS

environment-name-2 mnemonic-name-2
IS cond
cond

►

► ▼

ALPHABET Clause

▼

CLASS Clause CONSOLE Clause
►

►
(1)

CRT STATUS Clause

▼

(2)
CURRENCY SIGN Clause

►

SPECIAL-NAMES Paragraph

72 ILE COBOL Reference

►
(1)

CURSOR Clause
DECIMAL-POINT Clause

►

► ▼

(1)
LINKAGE TYPE Clause

▼

(1)
FORMAT Clause

►

► ▼

(1)
LOCALE Clause

(1)
PROGRAM STATUS Clause

(3)
.

►◄

cond:

ON condition-1
STATUS IS off phrase

off phrase
ON condition-1

STATUS IS

off phrase:

OFF condition-2
STATUS IS

Notes:

1 IBM Extension

2 Subsequent repetitions are IBM Extensions.

3 The separator period must be used if any of the optional clauses are selected.
Clauses can be entered in any order.

environment-name-1
System devices or standard system actions taken by the compiler.

Table 2 shows the actions that are associated with mnemonic-names for
environment-name-1.

Table 2. Choices of Environment-Name-1 and Action Taken

Environment-name-1 Statement where
mnemonic-name associated
with environment-name is
used

Usage

CSP WRITE Suppress spacing when printing a line. Use only when
the device is PRINTER.

C01 WRITE Skip to the next page. Use only when the device is
PRINTER.

ATTRIBUTE-DATA ACCEPT Retrieve attribute data about a program device acquired
by a transaction file, but only when the file is open.

SPECIAL-NAMES Paragraph

Chapter 8. Part 4. Environment Division 73

Table 2. Choices of Environment-Name-1 and Action Taken (continued)

Environment-name-1 Statement where
mnemonic-name associated
with environment-name is
used

Usage

I-O-FEEDBACK ACCEPT Give information about the last I-O operation on a file,
but only when the file is open.

DATA-AREA ACCEPT, DISPLAY Retrieves or updates a System i5/OS data area.

OPEN-FEEDBACK ACCEPT Give information about a file, but only when the file is
open.

CONSOLE,
SYSTEM-CONSOLE

ACCEPT, DISPLAY Communicate with the system operator’s message
queue (QSYSOPR).

LOCAL-DATA ACCEPT, DISPLAY Retrieve data from, or move data to the local data area
created by the system for every job.

PIP-DATA ACCEPT Retrieve data from the Program Initialization Parameters
(PIP) data area for programs running as part of a
prestart job.

REQUESTOR ACCEPT, DISPLAY Communicate with the user work station (interactive
jobs) or the batch input stream or job log (batch jobs).

SYSIN ACCEPT The equivalent of REQUESTOR (for the ACCEPT
statement only).

SYSOUT DISPLAY The equivalent of REQUESTOR (for the DISPLAY
statement only).

environment-name-2
Environment-name-2 can be defined as UPSI-0 through UPSI-7 or as
SYSTEM-SHUTDOWN; UPSI stands for a one-byte User Programmable Status
Indicator switch.

UPSI-0 through UPSI-7 are COBOL names that identify program switches
defined outside the COBOL program at object time. Their contents are
considered to be alphanumeric. A value of zero is off; a value of one is on.

Each switch represents one byte from the 8-character SWS parameter of the
control language CHGJOB, SBMJOB, JOB, and JOBD commands as follows:

UPSI-0 First byte (leftmost)
UPSI-1 Second byte
UPSI-2 Third byte...
UPSI-7 Eighth byte (rightmost)

SYSTEM-SHUTDOWN is an internal switch that is set to ON status when the
system operator causes the system to be in a shutdown-pending state or when
the job is being canceled in a controlled manner. The associated ON or OFF
condition-names can be referenced anywhere a condition-name is valid. Their
status cannot be altered by the program.

mnemonic-name-1, mnemonic-name-2
Mnemonic-name-1 and mnemonic-name-2 follow the rules of formation for
user-defined names. Mnemonic-name-1 can be used in ACCEPT, DISPLAY, and
WRITE statements. Mnemonic-name-2 can be referenced only in the SET
statement. Mnemonic-name-2 can qualify condition-1 or condition-2 names.

SPECIAL-NAMES Paragraph

74 ILE COBOL Reference

Mnemonic-names and environment-names need not be unique. If you choose a
mnemonic-name that is also an environment name, its definition as a
mnemonic-name takes precedence over its definition as an environment-name
for a given reference to such a name.

ON STATUS IS, OFF STATUS IS
UPSI switches process special conditions within a program, such as
year-beginning or year-ending processing. For example, at the beginning of the
Procedure Division, an UPSI switch can be tested; if it is ON, the special
branch is taken. (See “Switch-Status Condition” on page 259.)

condition-1, condition-2
If environment-name-2 references an external switch, the on/off status of that
switch can be associated with condition-names, such as condition-1,
condition-2. The status of the switch can be obtained through the
condition-names. Condition-names follow the rules for user-defined names. At
least one character must be alphabetic. The value associated with the
condition-name is considered to be alphanumeric.

In the Procedure Division, the UPSI switch status is tested through the
associated condition-name. Each condition-name is the equivalent of a level-88
item; the associated mnemonic-name, if specified, is considered the conditional
variable and can be used for qualification.

Any names declared in a program's SPECIAL-NAMES paragraph can be
referenced from any contained program.

Coding Example
This coding example assigns mnemonic-names to some commonly used
environment-names in the SPECIAL-NAMES paragraph.

SPECIAL-NAMES. SYSTEM-CONSOLE IS SYSTM
REQUESTOR IS WORK-STATION
C01 IS NEXT-PAGE
LOCAL-DATA IS LOCAL-DATA-AREA
ATTRIBUTE-DATA IS ATTRB-DATA
SYSTEM-SHUTDOWN IS SHUTDOWN-SWITCH

ON STATUS IS SHUTDOWN-PENDING
UPSI-0 IS UPSI-SWITCH-0

ON STATUS IS U0-ON
OFF STATUS IS U0-OFF

UPSI-1 IS UPSI-SWITCH-1
ON STATUS IS U1-ON
OFF STATUS IS U1-OFF

IBM-ASCII IS STANDARD-1
CURRENCY SIGN IS "Y".

ALPHABET Clause
The ALPHABET clause provides a means of relating an alphabet-name to a
specified character code set or collating sequence.

ALPHABET Clause - Format

►► ALPHABET alphabet-name-1
IS

►

SPECIAL-NAMES Paragraph

Chapter 8. Part 4. Environment Division 75

►

▼

▼

STANDARD-1
STANDARD-2
NATIVE
EBCDIC

(1)
NLSSORT

literal-1
THROUGH literal-2
THRU

ALSO literal-3

►◄

Notes:

1 IBM Extension

It specifies a collating sequence when used in either:
v The PROGRAM COLLATING SEQUENCE clause of the OBJECT-COMPUTER

paragraph
v The COLLATING SEQUENCE phrase of the SORT or MERGE statement.

It specifies a character code set when specified in
v The FD entry CODE-SET clause.

Note: The EBCDIC collating sequence is used when the alphabet-name clause is
omitted.

v ALPHABET Clause Coding Examples.

alphabet-name-1
Alphabet-name-1 follows the rules for user-defined names. At least one
character must be alphabetic. Alphabet-name-1 identifies a specific character
code set or collating sequence.

STANDARD-1
Specifies the ASCII character set.

STANDARD-2
Specifies the International Reference Version of the ISO 7-bit code defined in
International Standard 646, 7-bit Coded Character Set for Information
Processing Interchange.

NATIVE
Specifies the EBCDIC character set.

EBCDIC
Specifies the EBCDIC character set.

NLSSORT
Use the SRTSEQ and LANGID specifications in the compiler options (or
implied defaults) for alternate collating sequence aspects of the alphabet-name.
An alphabet-name associated with NLSSORT can be referred to only in the
PROGRAM COLLATING SEQUENCE clause or in the COLLATING
SEQUENCE phrase of the SORT and MERGE statements.

literal-1, literal-2, literal-3
Specifies that the collating sequence is to be determined by the program,
according to the following rules:

ALPHABET Clause

76 ILE COBOL Reference

v The order in which literals appear specifies the ordinal number, in ascending
sequence, of the character(s) in this collating sequence.

v Each numeric literal specified must be an unsigned integer and must have a
value from 1 through 256 (the maximum number of characters in the
EBCDIC character set). The value of each literal specifies the relative
position of a character within the EBCDIC character set. For example:
– literal 112 represents the EBCDIC character ?
– literal 234 represents the EBCDIC character Z
– literal 241 represents the EBCDIC numeric character 0.
Appendix C, “EBCDIC and ASCII Collating Sequences,” on page 647, lists
the ordinal number for each character in the EBCDIC and ASCII collating
sequences.

v Each character in a nonnumeric literal represents that actual character in the
EBCDIC character set. (If the nonnumeric literal contains more than one
character, each character, starting with the leftmost, is assigned a
successively ascending position within this collating sequence.)

v Any EBCDIC characters not explicitly specified assume positions in this
collating sequence higher than any of the explicitly specified characters. The
relative order of the unspecified characters remains unchanged from the
EBCDIC collating sequence.

v Within one alphabet-name clause, a given character must not be specified
more than once.

v Each nonnumeric literal associated with a THROUGH or ALSO phrase must
be 1 character in length (if it is longer, only the first character is kept, and a
warning is issued)

v When the THROUGH phrase is specified, the contiguous EBCDIC characters
beginning with the character specified by literal-1 and ending with the
character specified by literal-2 are assigned successively ascending positions
in this collating sequence. This sequence may be either ascending or
descending within the original EBCDIC sequence. For example, if the
characters Z through S are specified, then for this collating sequence the
ascending values are: ZYXWVUTS.

v When the ALSO phrase is specified, the EBCDIC characters specified as
literal-1, literal-3, and so on, are assigned to the same position in this
collating sequence. For example, if you specify:
"D" ALSO "N" ALSO "%"

the characters D, N, and % are all considered to be in the same position in
the collating sequence.

v If specified as literals in the SPECIAL-NAMES paragraph, the figurative
constants HIGH-VALUE and LOW-VALUE are associated with hex FF and
hex 00 respectively.

v After all clauses in the SPECIAL-NAMES paragraph are processed, the
character having the highest ordinal position in this collating sequence is
associated with the figurative constant HIGH-VALUE. If more than one
character has the highest position, because of specification of the ALSO
phrase, the last character specified (or defaulted to when some characters in
the native collating sequence are not explicitly specified) is considered to be
the HIGH-VALUE character for procedural statements such as DISPLAY, or
as the sending field in a MOVE statement. (If all characters within the native
collating sequence were explicitly specified, and the ALSO phrase example
from above were specified as the high-order characters of this collating
sequence, the HIGH-VALUE character would be %.)

ALPHABET Clause

Chapter 8. Part 4. Environment Division 77

v After all clauses in the SPECIAL-NAMES paragraph are processed, the
character having the lowest ordinal position in this collating sequence is
associated with the figurative constant LOW-VALUE. If more than one
character has the lowest position, because of specification of the ALSO
phrase, the first character specified is the LOW-VALUE character. (If the
ALSO phrase example given above were specified as the low-order
characters of the collating sequence, the LOW-VALUE character would be
D.)

When literal-1, literal-2, or literal-3 is specified, the alphabet-name must not be
referred to in a CODE-SET clause (see “CODE-SET Clause” on page 155).

IBM Extension

DBCS literals and floating-point literals may not be used in a user-specified
collating sequence.

End of IBM Extension

Coding Examples
The following examples illustrate some uses for the ALPHABET clause.

If PROGRAM COLLATING SEQUENCE IS USER-SEQUENCE; if the
alphabet-name clause is specified as USER-SEQUENCE IS “D”, “E”, “F”; and if
two Data Division items are defined as follows:

77 ITEM-1 PIC X(3) VALUE "ABC".
77 ITEM-2 PIC X(3) VALUE "DEF".

then the following comparison is true:
IF ITEM-1 > ITEM-2

Characters D, E, and F are in ordinal positions 1, 2, and 3 of this collating
sequence. Characters A, B, and C are in ordinal positions 197, 198, and 199 of this
collating sequence.

If the alphabet-name clause is USER-SEQUENCE IS 1 THRU 247, 251 THRU 256,
“7”, ALSO “8”, ALSO “9”; if all 256 EBCDIC characters have been specified; and if
the two Data Division items are specified as follows:

77 ITEM-1 PIC X(3) VALUE HIGH-VALUE.
77 ITEM-2 PIC X(3) VALUE "789".

then both of the following comparisons are true:
IF ITEM-1 = ITEM-2 . . .
IF ITEM-2 = HIGH-VALUE . . .

They compare as true because the values “7”, “8”, and “9” all occupy the same
position (HIGH-VALUE) in this USER-SEQUENCE collating sequence.

If the alphabet-name clause is specified as USER-SEQUENCE IS “E”, “D”, “F”and
a table in the Data Division is defined as follows:

05 TABLE A OCCURS 6 ASCENDING KEY IS
KEY-A INDEXED BY INX-A.
10 FIELD-A ...
10 KEY-A ...

ALPHABET Clause

78 ILE COBOL Reference

and if the contents in ascending sequence of each occurrence of KEY-A are A, B, C,
D, E, G, then the results of the execution of a SEARCH ALL statement for this
table will be invalid because the contents of KEY-A are not in ascending order. The
proper ascending order would be E, D, A, B, C, G.

CLASS Clause
The CLASS clause relates a name to the specified set of characters listed in that
clause.

CLASS Clause - Format

►► CLASS class-name-1
IS

▼ literal-4
THROUGH literal-5
THRU

►◄

class-name-1
Class-name-1 is a user-defined word and must contain at least one alphabetic
character. The class-name in the CLASS clause can be a DBCS user-defined
word. Class-name-1 can be referenced only in a class condition. See “Class
Condition” on page 247 for more information. The characters specified by the
values of the literals in this clause define the exclusive set of characters of
which class-name-1 consists.

literal-4, literal-5
If numeric, must be unsigned integers and must have a value from 1 through
256 (the maximum number of characters in the EBCDIC character set).

The value of each literal specifies the relative position, or ordinal number, of a
character within the EBCDIC character set. Appendix C, “EBCDIC and ASCII
Collating Sequences,” on page 647 lists the ordinal number for each character
in the EBCDIC collating sequence.

IBM Extension

Cannot be specified as floating-point literals, DBCS literals, or national
hexadecimal literals.

End of IBM Extension

If nonnumeric, the literal is the actual character within the EBCDIC character
set. If the value of the nonnumeric literal contains multiple characters, each
character in the literal is included in the set of characters identified by
class-name.

If the nonnumeric literal is associated with a THROUGH phrase, it must be
one character in length.

THROUGH, THRU
If THROUGH is specified, class-name includes those characters beginning with
the value of literal-4 and ending with the value of literal-5. In addition, the
characters specified by a THROUGH phrase may specify characters in either
ascending or descending order.

ALPHABET Clause

Chapter 8. Part 4. Environment Division 79

CONSOLE Clause

IBM Extension

If CONSOLE IS CRT is specified, any ACCEPT or DISPLAY statement that has no
phrases specific to a particular format (such as LOCAL-DATA or PIP-DATA), is
treated as an extended ACCEPT or DISPLAY statement.

Similarly, if CONSOLE IS DISPLAY is specified, any ACCEPT or DISPLAY
statement that has no phrases specific to a particular format is treated as a request
to the dynamic screen manager session services APIs. For information on theses
APIs, see the CL and APIs section of the Programming category in the System i5/OS
Information Center at this Web site -http://www.ibm.com/systems/i/infocenter/.

CONSOLE Clause - Format

►►
(1)

CONSOLE CRT
IS DISPLAY

►◄

Notes:

1 IBM Extension

If no CONSOLE IS clause is specified, any ACCEPT or DISPLAY statement that has
no phrases specific to a particular format is treated as a standard ANSI COBOL
ACCEPT or DISPLAY statement.

See the “Extended ACCEPT and Extended DISPLAY Considerations” on page 300
and the “Format 3 – Extended DISPLAY Statement” on page 346 for descriptions of
the conditions which determine whether ACCEPT or DISPLAY statements are
extended or standard.

End of IBM Extension

CRT STATUS Clause

IBM Extension

The CRT STATUS clause specifies a data item into which a status value is moved
after an extended ACCEPT statement.

CRT STATUS Clause - Format

►►
(1)

CRT STATUS data-name-2
IS

►◄

Notes:

1 IBM Extension

data-name-2
Must be described in the WORKING-STORAGE or LOCAL-STORAGE
SECTIONS and must be a 6-byte alphanumeric field or a 6-byte unsigned

CONSOLE Clause

80 ILE COBOL Reference

http://www.ibm.com/systems/i/infocenter/

zoned integer. If data-name-2 is referenced from a nested program, it must be
defined as global in the outermost program.

CRT STATUS Clause Considerations
If the CRT STATUS clause is specified in the SPECIAL-NAMES paragraph, every
extended ACCEPT statement places a value into data-name-2 to indicate the
outcome of the ACCEPT operation. Data-name-2 consists of status keys which are
set to indicate possible conditions resulting from the completion of the operation.

CRT Status Key 1
The first two bytes of data-name-2 form CRT Status Key 1 and should be described
as PIC 99. It indicates the condition that caused the termination of the ACCEPT
operation. The possible values are:

0 Indicates a terminating key such as an enter key, or an auto skip from the
final field

1 Indicates a function key

9 Indicates an error

If the ACCEPT statement contains an ON EXCEPTION phrase, any value in CRT
Status Key 1, except 0, will cause the execution of the imperative statement in the
ON EXCEPTION phrase.

CRT Status Key 2
The next two bytes of data-name-2 form CRT Status Key 2, and contain a code
giving further details of the condition that terminated the ACCEPT operation. Its
format and possible values depend on the value in CRT Status Key 1, as shown in
the following table.

Table 3. Valid Combinations of CRT STATUS Keys 1 and 2

KEY 1 KEY 2 Meaning

Format Value

0 PIC 99 0 The operator pressed a terminating key

0 PIC 99 1 Auto skip from the last field¹

1 PIC 99 1-24 The function key number

9 PIC 99 0 Error condition (no items fall within the
screen)

Note: ¹ When auto skip from the last field takes place, the value of 1 for CRT STATUS
KEY 2 is returned to supported controllers, and the value of 0 is returned to those
controllers not supported. This relationship is shown in Table 4.

Table 4. Auto Skip Value Returned by Controller Type

Type of Controller Auto Skip Value of 1 Returned

IBM i controllers:
Local workstation controllers
Remote 5251 model 12
Remote 5294
Remote 5394

Remote 3174
Remote 3274

Yes
Not applicable
No
Yes, if installed with new workstation
controller code
No, with *NOUNDSPCHR option
No, with *NOUNDSPCHR option

CRT STATUS Clause

Chapter 8. Part 4. Environment Division 81

Table 4. Auto Skip Value Returned by Controller Type (continued)

Type of Controller Auto Skip Value of 1 Returned

PC attachments:
DOS and Operating System/2® (OS/2)

operating
environments

No

System to system passthru:
iSeries system to iSeries system
System/36™ to iSeries system
System/38™ to iSeries system

Yes
No
No

CRT Status Key 3
The last two bytes of data-name-2 form CRT Status Key 3. If CRT Status Key 1 is 0,
CRT Status Key 3 contains the code for the keyboard key that terminated the
ACCEPT operation. Otherwise, if CRT Status Key 1 is 9, an error is signaled by the
operating system, and CRT Status Key 3 will be set to 99.

The codes for the keys are:
v 00 Enter key
v 90 Roll up key
v 91 Roll down key
v 93 Help key
v 94 Clear key

Help and Clear keys accept data only on local IBM i workstations.

End of IBM Extension

CURRENCY SIGN Clause
The CURRENCY SIGN clause is used to define a currency string that will be:
v Inserted into a numeric-edited data item when it is used as a receiving item
v Removed from a numeric-data item (de-edited) when determining the unedited

numeric value of the item.

In addition, the clause may also be used to specify the symbol that is to be used to
represent a currency string within a PICTURE character-string. This symbol is
referred to as the currency symbol.

CURRENCY SIGN Clause - Format

►► CURRENCY literal-6
SIGN IS

►

►
(1)

PICTURE SYMBOL literal-7
WITH

►◄

Notes:

1 IBM Extension

CRT STATUS Clause

82 ILE COBOL Reference

IBM Extension

Note: The CURRENCY SIGN clause can be repeated to allow for more than one
currency string in a COBOL program. However, the value of a currency
symbol must not be duplicated.

End of IBM Extension

When the CURRENCY SIGN clause is omitted, the dollar sign ($) must be used for
both the value of the currency string and the currency symbol.

literal-6 without PICTURE SYMBOL phrase
Specifies the value of the currency string as well as the character that will be
used as the currency symbol. It must be a single-character, nonnumeric literal,
and must not be any of the following:
v Digits zero (0) through nine (9)
v Uppercase alphabetic characters A B C D P R S V X Z, or their lower case

equivalents
v A space
v Special characters * + - / , . ; () = "
v A figurative constant

IBM Extension

v The uppercase alphabetic character E if the program defines an external
floating-point item.

v Uppercase alphabetic characters G and N if the program defines a DBCS or
national item.

v Lowercase alphabetic characters e, g, and n.

End of IBM Extension

The currency symbol is case sensitive and must be specified throughout your
program with the same case as used in the CURRENCY SIGN clause.
However, unless the OPTION parameter value *NOMONOPIC, or the
PROCESS statement option NOMONOPIC is specified, an alphabetic currency
symbol used in a PICTURE character-string will be considered to be uppercase,
regardless of its actual representation. Therefore an alphabetic currency symbol
must always be entered as uppercase, unless the NOMONOPIC option is
specified.

literal-6 with PICTURE SYMBOL phrase
If the PICTURE SYMBOL phrase is specified, literal-6 specifies the value of the
currency string and literal-7 represents the currency symbol. Literal-6 may
have any length (multiple characters) and may consist of any characters from
the computer's character set except for the following:
v Digits zero (0) through nine (9)
v Special characters * + - / . ,
v A space or spaces without any other characters

literal-7
If the PICTURE SYMBOL phrase is specified, literal-7 specifies the character
that will be used as the currency symbol. It must be a single-character,
nonnumeric literal, and must not have the same value as any other currency
symbol defined in the program. The value of this character is subject to the
same restrictions as those that apply to the currency sign (literal-6) when the
PICTURE SYMBOL phrase is omitted.

CURRENCY SIGN Clause

Chapter 8. Part 4. Environment Division 83

CURSOR Clause

IBM Extension

The CURSOR clause specifies the data item that will contain the cursor address
used by the extended ACCEPT statement.

CURSOR Clause - Format

►►
(1)

CURSOR data-name-1
IS

►◄

Notes:

1 IBM Extension

data-name-1
Must be a 4- or 6-byte alphanumeric field or a 4- or 6-byte unsigned zoned
integer field. If data-name-1 is 4 characters in length, the first two characters
are interpreted as line number, and the second two as column number. If
data-name-1 is 6 characters in length, the first three characters are interpreted
as line number, and the second three as column number.

The clause has no effect if data-name-1 contains an invalid position value (such
as zeros, a nonnumeric value, or a value that is beyond the range of the
screen).

Data-name-1 must be described in the WORKING-STORAGE or
LOCAL-STORAGE SECTIONS. If data-name-1 is referenced from a nested
program, it must be defined as global in the outermost program.

CURSOR Clause Considerations
At the start of an extended ACCEPT operation, if data-name-1 contains a value
that is a valid character position on the screen, that position is used as the initial
position for the cursor. A valid position is a coordinate that lies on the screen (that
is, within the range from line 1, column 1, to line 24, column 80). After the
ACCEPT operation, if the position in data-name-1 was valid, data-name-1 is
updated to show the position of the cursor at the end of the operation.

If the CURSOR IS identifier contains an invalid value (such as spaces, low-values,
high-values or a value outside of the screen range), the cursor is positioned at the
start of the first input field that is active on the screen.

CURSOR IS has no effect on the positioning of fields on the screen.

End of IBM Extension

DECIMAL-POINT IS COMMA Clause
The DECIMAL-POINT IS COMMA clause exchanges the functions of the period
and the comma in PICTURE character strings and in numeric literals.

DECIMAL-POINT IS COMMA Clause - Format

CURSOR Clause

84 ILE COBOL Reference

►► DECIMAL-POINT COMMA
IS

►◄

FORMAT Clause

IBM Extension

The FORMAT clause is used to specify a default format for a DATA DIVISION
date or time item. The format clause can also specify the default date or time
format for an intrinsic function.

FORMAT Clause - Format

►► FORMAT DATE
OF TIME IS

►

► literal-8
SIZE Phrase 1

LOCALE Phrase 1
SIZE integer-4 LOCALE

IS IS mnemonic-name-4

►◄

SIZE Phrase 1:

SIZE integer-3
IS

LOCALE Phrase 1:

LOCALE
IS mnemonic-name-3

literal-8
Specifies the default format of a date or time item. Literal-8 must be a
nonnumeric literal at least 2 characters in length. Literal-8 must contain one or
more conversion specifiers and zero or more separators. For more information
about the effects of literal-8 on the LOCALE phrase, refer to “LOCALE Phrase”
on page 87. For a list of the conversion specifiers that can be used in literal-8,
refer to Table 5 on page 86.

The following rules apply:
v When no LOCALE phrase is specified with literal-8, the conversion

specifications are replaced with values based on the COBOL locale. For more
information about the COBOL locale, refer to IBM Rational Development
Studio for i: ILE COBOL Programmer's Guide.

v For a date item, literal-8 must contain a conversion specifier that will result
in the day of the year. If literal-8 contains a year and month conversion
specification, but no day conversion specification, the first day of the month
is assumed. For a list of IBM i date formats and their literal-8 equivalents,
refer to Table 10 on page 169.

v If no FORMAT clause is specified for a date item, the default date item
format is ISO.

v If literal-8 is not specified, the LOCALE phrase must be specified.

DECIMAL-POINT IS COMMA Clause

Chapter 8. Part 4. Environment Division 85

v For a time item, literal-8 must contain an hour and minute conversion
specification. If no seconds (or milliseconds) are specified, a value of 0 is
assumed. For a list of IBM i time formats and their literal-8 equivalents, refer
to Table 11 on page 169.

v If no FORMAT clause is specified for a time item, the default time item
format is ISO.

Table 5 lists the conversion specifiers that can be used in literal-8.

Table 5. Conversion Specifiers that Can Be Used in Literal-8

Specifier Description Length Allowed For

@C Replaced by the century as an integer [0,9] (0⁴ 20th century) 1 bytes D

%d Replaced by the day of month as an integer [01,31] 2 bytes D

%D Same as %m/%d/%y 8 bytes D

%H Replaced by the hour (24-hour clock) as an integer [00,23] 2 bytes T

%I Replaced by the hour (12-hour clock) as an integer [01,12] 2 bytes T

%j Replaced by the day of the year as an integer [001,366] 3 bytes D

%m Replaced by the month as an integer [01,12] 2 bytes D

%M Replaced by the minute as an integer [00,59] 2 bytes T

%p Replaced by the locale's equivalent of either a.m. or p.m. locale T

@p AM and PM can be any mix of upper and lower case 2 bytes T

%r Replaced by the time in a.m. and p.m. notation; in the POSIX
locale this is equivalent to %I:%M:%S %p

locale, at least 8
bytes

T

%R Replaced by the time in 24 hour notation [%H:%M] 5 bytes T

%S Replaced by the second as an integer [00,61] 2 bytes T

@Sh Replaced by the hundredths of a second as an integer [00,99] 2 bytes T

@Sm Replaced by the millionths of a second as an integer
[000000,999999]

6 bytes T

@So Replaced by the thousandths of a second as an integer
[000,999]

3 bytes T

@St Replaced by the tenths of a second as an integer [0,9] 1 bytes T

%y Replaced by the year without century as an integer [00,99] 2 bytes D

%Y Replaced by the year with century as an integer usually 4 bytes D

@Y Replaced by the year with century as an integer 4 bytes D

%% Replaced by a % 1 byte D, T

@@ Replaced by a @ 1 byte D, T

Table 5 notes:

1. Conversion specifiers are case-sensitive.

2. The Allowed For column symbols have the following meaning:
v D - DATE item
v T - TIME item

3. The Length column is based on the default COBOL locale, which is an EBCDIC single-byte encoding scheme
(CCSID 37).

4. By default, a value of zero represents the twentieth century (1900 to 1999). This value is based on the base
century specified in the DATTIM PROCESS statement option.

FORMAT Clause

86 ILE COBOL Reference

SIZE Phrase
The SIZE phrase specifies the total size of the date or time item in number of
digits. The number of digits must be greater than or equal to the size of the format
literal. The size of the format literal is determined by replacing the conversion
specifiers with their largest value, and doing conversions, if necessary, to the
runtime CCSID. For more information refer to the description of the CCSID
parameter for CRTCBLMOD described in the IBM Rational Development Studio for i:
ILE COBOL Programmer's Guide.

The SIZE phrase must be specified for a date or time item when the length of that
item cannot be determined at compile time. The compiler cannot determine the
size of a date or time item when:
v Both literal-8 and the LOCALE phrase are specified, which means the actual

length of the date or time item will be partially determined at runtime from the
specified locale.

v Literal-8 is specified without a LOCALE phrase, and one of the conversion
specifications within literal-8 may result in a variable length item.

v Literal-8 is not specified, which means the actual length of the date or time item
will be completely determined at runtime from the specified locale.

integer-3, integer-4
Integer-3 and integer-4 specify the size of the default date or time item in
number of digits. Integer-3 or integer-4 must be specified if the size of the date
or time item cannot be determined at compile time. For a date and time item,
integer-3 and integer-4 must be equal to or greater than 4. The maximum size
of an item of class date-time is 256, if the item has a USAGE of DISPLAY, or 31
for a USAGE of PACKED-DECIMAL.

LOCALE Phrase
The LOCALE phrase is used to specify the culturally specific locale that is to be
used for formatting date and time items.

When the LOCALE phrase is specified without literal-8, the date or time item’s
format and separator is completely based on a locale. When the LOCALE phrase is
specified with literal-8, literal-8 determines the format of the item, but the value
used to replace any conversion specifier that is dependent on a locale for its exact
representation (for example, %p) will be based on the locale.

mnemonic-name-3, mnemonic-name-4
If mnemonic-name-3 or mnemonic-name-4 is specified, the locale used for the
date or time item is the one associated with mnemonic-name-3 or
mnemonic-name-4 in the SPECIAL-NAMES paragraph. If mnemonic-name-3 or
mnemonic-name-4 is not specified, the current locale is used. To determine the
current locale, refer to the description in the IBM Rational Development Studio
for i: ILE COBOL Programmer's Guide.

Mnemonic-name-3 and mnemonic-name-4 must be locale mnemonic names.
Locale mnemonic names are specified with the LOCALE clause of the
SPECIAL-NAMES paragraph see “LOCALE Clause” on page 89.

End of IBM Extension

FORMAT Clause

Chapter 8. Part 4. Environment Division 87

LINKAGE TYPE Clause

IBM Extension

The LINKAGE TYPE clause specifies the type of linkage to be made on a CALL to
or a CANCEL of the program specified by literal-7, and to the type of linkage to be
made on the SET statement.

LINKAGE TYPE Clause - Format

►►
(1)

LINKAGE
TYPE IS

environment-name-3
PROGRAM
PROCEDURE

FOR ►

► ▼ literal-7
USING linkage-arguments

►◄

linkage-arguments:

▼

▼

ALL DESCRIBED
IS
ARE

integer-1
THRU integer-2
THROUGH

Notes:

1 IBM Extension

environment-name-3
Environment-name-3 can be defined as:

PGM Linkage to a program object (*PGM) is generated.

PRC Linkage to an ILE procedure is generated.

SYS Linkage to a system-supplied procedure is generated.

PROGRAM
Linkage to a program object (*PGM) is generated. This is synonymous to an
environment-name-3 of PGM.

PROCEDURE
Linkage to an ILE procedure is generated. This is synonymous to an
environment-name-3 of PRC.

literal-7
Literal-7 is the name of the program object or procedure. Literal-7 can contain
an extended-name. It can be at most 10 characters long for program names and
256 characters long for procedure names. Literal-7 is affected by the
OPTION(*MONOPRC) parameter. When *MONOPROC is specified, lowercase

LINKAGE TYPE Clause

88 ILE COBOL Reference

characters are converted to uppercase and the rules for formation of a
program-name are followed. See program-name in “PROGRAM-ID Paragraph”
on page 62 for details.

USING
Specifies which parameters are to have their operational descriptors made
available to the called procedure. These parameters must be defined as
elementary data items with a USAGE of DISPLAY or DISPLAY-1. They may
not be reference modified.

The USING clause is allowed for a linkage type of procedure and applies only
to a CALL statement.

integer-1, integer-2
Must be a positive non-zero integer. Specifies the ordinal position of any
parameter described using operational descriptors.

Integer-2 must be greater than integer-1.

DESCRIBED
The parameters specified by integer-1 through integer-2 are passed along
with corresponding operational descriptors. If ALL is specified, all
parameters defined for the procedure are passed along with corresponding
operational descriptors, where applicable.

LINKAGE TYPE Clause Considerations
There are several ways to affect the type of linkage generated for a CALL,
CANCEL, or SET. They are listed in order of precedence. The LINKAGE phrase of
the CALL, CANCEL, or SET statement has the highest precedence. If no LINKAGE
phrase is specified on the statement and there is no visible nested program, the
LINKAGE TYPE clause is used if specified. The order of precedence is:
v The LINKAGE phrase of the statement
v CALL or CANCEL to a nested program
v The LINKAGE TYPE clause of the SPECIAL-NAMES paragraph
v The LINKLIT parameter of the CRTCBLMOD or CRTBNDCBL command

End of IBM Extension

LOCALE Clause

IBM Extension

The LOCALE clause is used to define locale mnemonic names and their IBM i
equivalent locale object name and library.

LOCALE Clause - Format

►► LOCALE locale-name-1
literal-4

LIBRARY literal-5
IN

►

► mnemonic-name-5
IS

►◄

LINKAGE TYPE Clause

Chapter 8. Part 4. Environment Division 89

locale-name-1
Specifies a system-specific name that refers to a locale object. For ILE COBOL,
the only supported locale-name-1 is POSIX.

literal-4
Literal-4 must be a locale object name. It must be a nonnumeric literal with a
maximum length of 10 characters.

literal-5
Literal-5 is used to specify the name of the operating system library in which
the locale object is to be found. It must be an nonnumeric literal with a
maximum length of 10 characters. The special value *LIBL (search using the
job's library list) may be specified. If the LIBRARY phrase is omitted, the job's
library list is used to search for the locale object.

mnemonic-name-5
Mnemonic-name-5 provides a reference to the locale identified by
locale-name-1 or the values specified for literal-4 and literal-5. It can only be
used in a FORMAT clause, PICTURE clause, Format 8 of the SET statement, or
in the argument list of some intrinsic functions.

End of IBM Extension

PROGRAM STATUS Clause

IBM Extension

The PROGRAM STATUS clause specifies a data item into which values from the
predefined program status structure are moved after an error occurs in the
program.

PROGRAM STATUS Clause - Format

►► PROGRAM STATUS data-name-1
IS START POSITION integer-1

IS

►◄

data-name–1
Must be an alphanumeric field described in the WORKING-STORAGE
SECTION. If data-name-1 is referenced from a nested program, it must be
defined as global in the outermost program. The length of data-name-1 must
be in multiples of the lengths of the program status structure subfields.

integer–1
Specifies the start position of the program status structure. If integer-1 is not
specified, then the start position is assumed to be 0. Integer-1 must match the
start position of a program status structure subfield..

If the PROGRAM STATUS clause is specified in the SPECIAL-NAMES paragraph,
data-name-1 is updated with values from the predefined program status structure.
This structure contains subfields that provide you with information about the
program exception/error that occurred. Table 6 provides the layout of the subfields
of the data structure and the information that it contains.

Table 6. Contents of the Program Status Data Structure

Start position Length Format Description

LOCALE Clause

90 ILE COBOL Reference

Table 6. Contents of the Program Status Data Structure (continued)

0 10 Character Program name.

10 10 Character Program library name.

20 10 Character Module name.

30 10 Character Statement number. *N if not
available.

40 6 Character Optimization level.

46 7 Character Exception message identifier.

53 10 Character Job name.

63 6 Character Job number.

69 1 Character Job type.

70 10 Character User profile running the
program.

80 14 Character Timestamp (in the format
YYYYMMDDHHMMSS) for
the time that the error
occurred.

You select the subfield(s) from the program status structure that gets moved into
data-name-1 by coding its length and the start position. The compiler uses the
length and start position to determine the program status subfield(s) that
data-name-1 gets mapped onto. The length and start position must match one or
more predefined subfields of the program status structure.

End of IBM Extension

Program Status Clause

Chapter 8. Part 4. Environment Division 91

Program Status Clause

92 ILE COBOL Reference

Chapter 9. Input-Output Section

The Input-Output Section defines each file, identifies its external storage medium,
assigns the file to one or more input/output devices, and specifies information
needed for transmission of data between the external medium and the COBOL
program.

File Categories
The IBM i system has four categories of files: database files, device files, DDM
files, and save files.

This manual uses the term file to mean any of these files.

Database Files
Database files allow information to be permanently stored on the system. A
database file is subdivided into groups of records called members. There are two
types of database files: physical files and logical files.

A physical file is a file that contains data records (similar to disk files on other
systems).

A logical file is a database file through which data from one or more physical files
can be accessed. The format and organization of this data is different from that of
the data in the physical file(s). Each logical file can define a different access path
(index) for the data in the physical file(s), and can exclude and reorder the fields
defined in the physical file(s).

Distributed Files
Distributed files allow a database file to be spread across multiple System i5/OS
servers, while retaining the look and capability of a single database. Performance
of large queries can be enhanced by splitting database requests across multiple
systems. Distributed files behave in much the same way as DATABASE files.
However, since files are distributed across multiple systems, the arrival sequence
or relative number cannot be relied upon, and additional time is required for the
data link to pass the data between the systems whenever the remote system is
accessed.

For more information about accessing distributed files, refer to the IBM Rational
Development Studio for i: ILE COBOL Programmer's Guide.

Device Files
A device file reads from or writes to a device or remote system. It controls the
transfer of data between the physical device or remote system and the program.

DDM Files
Distributed Data Management (DDM) allows you to access data that reside on
remote systems that support DDM. You can retrieve, add, update, or delete data
records in a file that resides on another system.

© Copyright IBM Corp. 1993, 2010 93

For more information about accessing remote files, refer to the DB2 Universal
Database for AS/400 section of the Database and File Systems category in the System
i5/OS Information Center at this Web site - http://www.ibm.com/systems/i/
infocenter/.

Save Files
A save file is a file that is used to prepare data in a format that is correct for
backup and recovery purposes or for transportation to another system. It contains
the output that is produced from the Save Library (SAVLIB) or Save Object
(SAVOBJ) CL commands. For information about save files, see the DB2 Universal
Database for AS/400 section of the Database and File Systems category in the System
i5/OS Information Center at this Web site - http://www.ibm.com/systems/i/
infocenter/.

Paragraphs
The Input-Output section of the Environment Division contains two paragraphs:
v FILE-CONTROL paragraph
v I-O-CONTROL paragraph.

INPUT-OUTPUT Section - Format

►► INPUT-OUTPUT SECTION. FILE-CONTROL. ▼ file-control-entry ►

►

▼

I-O-CONTROL.

i-o-control-entry .

►◄

FILE-CONTROL paragraph
Names and associates the files with the external media.

The keyword FILE-CONTROL may appear only once, at the beginning of the
FILE-CONTROL paragraph. It must begin in Area A, and be followed by a
separator period.

file-control-entry
Must begin in Area B with a SELECT clause. It must end with a separator
period. See “FILE-CONTROL Paragraph” on page 95.

I-O-CONTROL paragraph
Specifies information needed for transmission of data between external media
and the COBOL program.

input-output-control-entry
The series of entries must end with a separator period. See
“I-O-CONTROL Paragraph” on page 118.

The exact contents of the Input-Output Section depend on the file organization and
access methods used. See “ORGANIZATION Clause” on page 103 and “ACCESS
MODE Clause” on page 105.

94 ILE COBOL Reference

http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/

FILE-CONTROL Paragraph
The FILE-CONTROL paragraph associates each file in the COBOL program with
an external medium, and specifies file organization, access mode, and other
information.

COBOL allows for four distinct kinds of file input and output:
v Sequential
v Relative
v Indexed

IBM Extension

v Transaction

End of IBM Extension

The FILE-CONTROL paragraph begins with the word "FILE-CONTROL", followed
by a separator period. It must contain one and only one entry for each file
described in an FD or SD entry in the Data Division. Within each entry, the
SELECT clause must appear first. The other clauses may appear in any order.

Each data-name must appear in a Data Division data description entry. Each
data-name can be qualified but cannot be subscripted or indexed.

FILE-CONTROL Paragraph - Format 1 - Sequential Files

FILE-CONTROL Paragraph - Format 1 - Sequential

►► FILE-CONTROL. SELECT file-name
OPTIONAL

►

► ▼
(1)

ASSIGN assignment-name-1
TO literal-1

►

►
(2)

RESERVE integer
AREA
AREAS

SEQUENTIAL
ORGANIZATION

IS

►

►
(2)

PADDING data-name-6
CHARACTER IS literal-2

►

FILE-CONTROL Paragraph

Chapter 9. Part 4. Environment Division 95

►
(2)

RECORD DELIMITER STANDARD-1
IS assignment-name-2

►

►
ACCESS SEQUENTIAL

MODE IS

►

►
STATUS data-name-1

FILE IS (3)
data-name-5

. ►◄

Notes:

1 Subsequent repetitions syntax-checked only.

2 Syntax-checked only.

3 IBM Extension

FILE-CONTROL Paragraph - Format 2 - Relative Files

FILE-CONTROL Paragraph - Format 2 - Relative

►► FILE-CONTROL. SELECT file-name
OPTIONAL

►

► ▼
(1)

ASSIGN assignment-name-1
TO literal-1

►

►
(2)

RESERVE integer
AREA
AREAS

RELATIVE
ORGANIZATION

IS

►

►
ACCESS SEQUENTIAL

MODE IS rel-key
RANDOM rel-key
DYNAMIC

►

FILE-CONTROL Paragraph

96 ILE COBOL Reference

►
STATUS data-name-1

FILE IS (3)
data-name-5

. ►◄

rel-key:

RELATIVE data-name-4
KEY IS

Notes:

1 Subsequent repetitions syntax-checked only.

2 Syntax-checked only.

3 IBM Extension

FILE-CONTROL Paragraph - Format 3 - Indexed Files

FILE-CONTROL Paragraph - Format 3 - Indexed

►► FILE-CONTROL. SELECT file-name ▼
(1)

ASSIGN assignment-name-1
TO literal-1

►

►
(2)

RESERVE integer
AREA
AREAS

INDEXED
ORGANIZATION

IS

►

►
ACCESS SEQUENTIAL

MODE IS RANDOM
DYNAMIC

RECORD
KEY IS

►

►
(3)

EXTERNALLY-DESCRIBED-KEY
data-name-2 (3)

DUPLICATES
WITH

►

►
ALTERNATE RECORD data-name-3

KEY IS DUPLICATES
with

►

FILE-CONTROL Paragraph

Chapter 9. Part 4. Environment Division 97

►
STATUS data-name-1

FILE IS (3)
data-name-5

. ►◄

Notes:

1 Subsequent repetitions syntax-checked only.

2 Syntax-checked only.

3 IBM Extension

FILE-CONTROL Paragraph - Format 4 - Sort or Merge Files

FILE-CONTROL Paragraph - Format 4 - Sort or Merge

►►
(1)

FILE-CONTROL. SELECT file-name ASSIGN
TO

►

► ▼ assignment-name-1
literal-1

. ►◄

Notes:

1 Syntax checked only.

FILE-CONTROL Paragraph - Format 5 - Transaction Files

IBM Extension

FILE-CONTROL Paragraph - Format 5 - Transaction

►► FILE-CONTROL. SELECT file-name ►

► ▼
(1)

ASSIGN assignment-name-1
TO literal-1

►

► TRANSACTION
ORGANIZATION

IS

►

FILE-CONTROL Paragraph

98 ILE COBOL Reference

►
ACCESS SEQUENTIAL

MODE IS rel-key
DYNAMIC rel-key

►

►
STATUS data-name-1

FILE IS data-name-5

►

►
CONTROL-AREA data-name-7

IS

. ►◄

rel-key:

RELATIVE
KEY IS

data-name-4

Notes:

1 Subsequent repetitions syntax checked only.

See the chapter on Transaction Files in the IBM Rational Development Studio for i:
ILE COBOL Programmer's Guide for more information on working with transaction
files.

End of IBM Extension

SELECT Clause
The SELECT clause chooses a file.

SELECT Clause - Format - Sequential & Relative Files

►► SELECT file-name
OPTIONAL

►◄

SELECT Clause - Indexed, Sort/Merge, & Transaction Files

►► SELECT file-name ►◄

SELECT OPTIONAL (Format Sequential & Relative Files)
May be specified only for sequential and relative files opened in the input, I-O
or extend mode. You must specify SELECT OPTIONAL for such input files
that are not necessarily present each time the object program is executed.

file-name
Must be identified by an FD or SD entry in the Data Division. A file-name
must conform to the rules for a COBOL user-defined name, must contain at
least one alphabetic character, and must be unique within this program.

FILE-CONTROL Paragraph

Chapter 9. Part 4. Environment Division 99

ASSIGN Clause
The ASSIGN clause associates a file with an external medium.

ASSIGN Clause - Format

►► ▼
(1)

ASSIGN assignment-name-1
TO literal-1

►◄

Notes:

1 Subsequent repetitions syntax checked only.

For sort or merge files (associated with an SD entry), no external medium is used.
The related ASSIGN clause is syntax checked only.

assignment-name-1, literal-1
The assignment-name-1 or literal-1 makes the association between the file and
the external medium.

Any assignment-name-1 or literal-1 after the first is syntax checked, but has no
effect on the execution of the program

Assignment-name-1 or literal-1 consists of 3 parts:
v Device
v File name
v Attribute

It has the following general structure:

Format

►► device –file–name
–attribute

►◄

Device
This part specifies the type of device that the file will use. The compiler can then
check whether the file is described and used in a consistent manner. See the IBM
Rational Development Studio for i: ILE COBOL Programmer's Guide for further
information.

Notes:

1. The compiler does not check whether the device associated with the external
file is of the type specified in the device portion of assignment-name-1 or
literal-1.

2. The compiler provides no diagnostics unless the I-O verbs were used in an
inconsistent manner.

3. When the program runs, the operating system could either issue an escape
message or ignore the function if it was not applicable to the device. For
further information on overriding files, refer to the File Systems and Management
section of the Database and File Systems category in the System i5/OS
Information Center at this Web site - http://www.ibm.com/systems/i/
infocenter/.

ASSIGN Clause

100 ILE COBOL Reference

http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/

IBM Extension

The device that the file will use can be changed at run time with the OVRxxxF CL
command. To ensure consistent results, the device type associated with the file
should correspond to that given in the assignment-name.

End of IBM Extension

Device can be any of the following:

Device Associated file

PRINTER
PRINTER should be specified for program described printer files only.

FORMATFILE
FORMATFILE should be specified for externally described printer files
only. For more information on how to use externally described printer files
see the section on FORMATFILE files in the IBM Rational Development
Studio for i: ILE COBOL Programmer's Guide.

TAPEFILE
Tape file

DISKETTE
Diskette file

DISK Any physical database file or single format logical database file. When
DISK is the device, database extensions cannot be used, but dynamic file
creation is supported. See the IBM Rational Development Studio for i: ILE
COBOL Programmer's Guide for more information about DISK files. See
“OPEN Statement Considerations” on page 404 for information about
Dynamic File Creation.

DATABASE
Any database file (or DDM file). When DATABASE is the device,
externally described data and database extensions can be used, but
dynamic file creation is not supported.

WORKSTATION
Display file or ICF file.

File Name
This part of assignment-name must be a 1 through 10-character system name of the
actual external file– physical or logical database, or device. This external file has to
be created before compiling the program only when it is used by a COPY
statement, DDS (data description specifications) or DD format, within this
program.

A quoted file name can be specified within literal-1. For example, if an IBM i
system file has a quoted name of "sysfile", the entry for literal-1 is coded as
follows:
"device-""sysfile""-SI"

For database files, the member name cannot be specified in the program. If a
member other than the first member is to be specified, the Override with Database
File (OVRDBF) CL command must be used at execution time to specify the
member name.

ASSIGN Clause

Chapter 9. Part 4. Environment Division 101

This file name is the name of the IBM i object that is displayed by the Display
Program References (DSPPGMREF) command. Since no external medium is used
for an SD file, the DSPPGMREF command does not list any files defined for an SD
file.

The file name can be changed at execution time with the TOFILE parameter of the
OVRxxxF CL command. To ensure consistent results, the device type associated
with the TOFILE parameter should be the same as that specified for
assignment-name-1 or literal-1.

Attribute
This part of assignment-name-1 or literal-1 can be SI or ALWNULL.

SI Indicates that a separate indicator area has been specified in the DDS for a
FORMATFILE or WORKSTATION file.

ALWNULL
When ALWNULL is specified, the program can manipulate null-capable fields
in a database file. This keyword can only be used with device type
DATABASE.

See the IBM Rational Development Studio for i: ILE COBOL Programmer's Guide for
details on the use of the SI or ALWNULL attribute and further information about
the ASSIGN clause.

The valid entries for each field of assignment-name-1 or literal-1 vary with the
device. The valid combinations of fields are shown in Table 7.

Table 7. Valid Entries for Assignment-Name-1 and Literal-1

Device File Name Default File
Name

SI ALWNULL

PRINTER O QPRINT N N

FORMATFILE R O N

TAPEFILE O QTAPE N N

DISKETTE O QDKT N N

DISK R N N

DATABASE R N O

WORKSTATION R O N

Key:
R=Required
O=Optional
N=Not Allowed

RESERVE Clause
The RESERVE clause reserves input-output areas. It is syntax checked, but treated
as documentation.

ASSIGN Clause

102 ILE COBOL Reference

RESERVE Clause - Format

►►
(1)

RESERVE integer
AREA
AREAS

►◄

Notes:

1 Syntax-checked only.

ORGANIZATION Clause
The ORGANIZATION clause specifies the logical structure of the file. The file
organization is established at the time the file is created and cannot subsequently
be changed.

IBM Extension

For database files, the ORGANIZATION clause indicates the current program
usage of the file in the program. Therefore, the same database file can use
SEQUENTIAL, RELATIVE, or INDEXED (assuming a keyed sequence access path
exists) in the ORGANIZATION clause. This is true regardless of what is specified
in other programs that use this file.

A keyed sequence access path is always created when a key is specified in the DDS
that was used as input to the Create Physical File (CRTPF) or the Create Logical
File (CRTLF) CL command.

End of IBM Extension

ORGANIZATION IS SEQUENTIAL (Format 1)

ORGANIZATION Clause - Sequential Files

►►
ORGANIZATION

IS

SEQUENTIAL ►◄

A predecessor-successor relationship of the records in the files is established by the
order in which records are placed in the file when it is created or extended (arrival
sequence access path).

ORGANIZATION IS RELATIVE (Format 2)

ORGANIZATION Clause - Relative Files

►►
ORGANIZATION

IS

RELATIVE ►◄

The position of each record in the file is determined by its relative record number
within the arrival sequence access path.

RESERVE Clause

Chapter 9. Part 4. Environment Division 103

ORGANIZATION IS INDEXED (Format 3)

ORGANIZATION Clause - Indexed Files

►►
ORGANIZATION

IS

INDEXED ►◄

The position of each logical record in the file is determined by the key sequence
access path created with the file and maintained by the system. The access path is
based on an embedded key within the file’s records.

ORGANIZATION IS TRANSACTION (Format 4)

IBM Extension

ORGANIZATION Clause - Transaction Files

►►
ORGANIZATION

IS

(1)
TRANSACTION ►◄

Notes:

1 IBM Extension

Signifies interaction between a COBOL program and either a workstation user or
another system. For more information on transaction files, see the IBM Rational
Development Studio for i: ILE COBOL Programmer's Guide.

End of IBM Extension

PADDING CHARACTER Clause
The PADDING CHARACTER clause specifies the character which is to be used for
block padding on sequential files.

The PADDING CHARACTER clause is syntax checked, but no compile-time or
run-time verification checking is done, and the clause has no effect on the
execution of the program.

PADDING CHARACTER Clause - Format

►►
(1)

PADDING
CHARACTER IS

data-name-6
literal-2

►◄

Notes:

1 Syntax-checked only.

data-name-6
Must be defined in the Data Division as an alphanumeric one-character data
item, and must not be defined in the File Section. Data-name-6 can be
qualified.

ORGANIZATION Clause

104 ILE COBOL Reference

literal-2
Must be a 1-character nonnumeric literal.

For EXTERNAL files, if data-name-6 is specified, it must reference an EXTERNAL
data item.

RECORD DELIMITER Clause
The RECORD DELIMITER clause indicates the method of determining the length
of a variable-length record on an external medium. It can be specified only for
variable-length records.

The RECORD DELIMITER clause is syntax checked, but no compile-time or
run-time verification checking is done, and the clause is treated as documentation

RECORD DELIMITER Clause - Format

►►
(1)

RECORD DELIMITER
IS

STANDARD-1
assignment-name-2

►◄

Notes:

1 Syntax-checked only.

STANDARD-1
If STANDARD-1 is specified, the external medium must be a magnetic tape
file.

assignment-name-2
Can be any COBOL word.

ACCESS MODE Clause
The ACCESS MODE clause defines the manner in which the records of the file are
made available for processing. If the ACCESS MODE clause is not specified,
SEQUENTIAL access is assumed.

ACCESS MODE Clause - Format 1 - Sequential Files

ACCESS MODE Clause - Format 1 - Sequential Files

►► ACCESS SEQUENTIAL
MODE IS

►◄

ACCESS MODE Clause - Format 2 - Relative Files

ACCESS MODE Clause - Format 2 - Relative Files

►► ACCESS
MODE IS

SEQUENTIAL
Rel Key

RANDOM Rel Key
DYNAMIC

►◄

PADDING CHARACTER Clause

Chapter 9. Part 4. Environment Division 105

Rel Key:

RELATIVE data-name-4
KEY IS

ACCESS MODE Clause - Format 3 - Indexed Files

ACCESS MODE Clause - Format 3 - Indexed Files

►► ACCESS
MODE IS

SEQUENTIAL
RANDOM
DYNAMIC

►◄

ACCESS MODE Clause - Format 4 - Transaction Files

IBM Extension

ACCESS MODE Clause - Format 4 - Transaction Files

►► ACCESS
MODE IS

SEQUENTIAL
Rel Key

DYNAMIC Rel Key

►◄

Rel Key:

RELATIVE data-name-4
KEY IS

End of IBM Extension

ACCESS MODE IS SEQUENTIAL
Can be specified for all three kinds of files.

Sequential
Records in the file are accessed in the sequence established when the file
was created or extended (arrival sequence).

Relative
Records in the file are accessed in the ascending sequence of relative record
numbers of existing records in the file.

Indexed
Records in the file are accessed in the sequence of ascending record key
values according to the collating sequence of the file.

IBM Extension

When using an externally described file, if the DDS keyword DESCEND is
used when the field is specified as a key field, the records in the file are
accessed in the sequence of descending record key values within the index.
Either the DESCEND keyword, or the ASCEND keyword (if DESCEND is
not specified) appears under the heading RETRIEVAL in a comment table

ACCESS MODE Clause

106 ILE COBOL Reference

in the COBOL source program listing.

End of IBM Extension

ACCESS MODE IS RANDOM
Can be specified for relative and indexed files only. Also, ACCESS MODE IS
RANDOM must not be specified for file names specified in the USING or
GIVING phrase of a SORT or MERGE statement.

Relative
The value placed in a relative key data item specifies the record to be
accessed.

Indexed
The value placed in a record key data item for the current key of reference
specifies the record to be accessed.

ACCESS MODE IS DYNAMIC
Can be specified for relative and indexed files only.

Relative
Records in the file may be accessed sequentially or randomly, depending
on the form of the specific input-output request.

Indexed
Records in the file may be accessed sequentially or randomly, depending
on the form of the specific input-output request.

Data Organization and Access Modes
Data organization is the permanent logical structure of the file. You tell the
computer how to retrieve records from the file by specifying the access mode. In
COBOL you can specify any of four types of data organization, and three access
modes. Sequentially organized data may only be accessed sequentially; however,
data that has indexed or relative organization may be accessed with any of the
three access methods.

Data Organization
In a COBOL program, data organization can be
v Sequential
v Relative
v Indexed

IBM Extension

v Transaction

End of IBM Extension

Sequential Organization
The physical order in which the records are placed in the file determines the
sequence of records. The relationships among records in the file do not change,
except that the file can be extended. There are no keys. Both database files and
device files can have sequential organization.

Each record in the file, except the first, has a unique predecessor record, and each
record, except the last, also has a unique successor record.

ACCESS MODE Clause

Chapter 9. Part 4. Environment Division 107

Relative Organization
Think of the file as a string of record areas, each of which contains a single record.
Each record area is identified by a relative record number; the access method stores
and retrieves a record, based on its relative record number. For example, the first
record area is addressed by relative record number 1, and the 10th is addressed by
relative record number 10. Relative files must be assigned to DISK or DATABASE.

Table 8 summarizes conditions affecting relative output files.

Table 8. Initialization of Relative Output Files

File Access and CL
Specifications

Conditions at
Opening Time

Conditions at
Closing Time

 File Boundary

Sequential *INZDLT Records not written
are initialized

All increments

Sequential *INZDLT
*NOMAX size

CLOSE succeeds File
status is 0Q

Up to boundary of
records written

Sequential
*NOINZDLT

Up to boundary of
records written

Random or dynamic Records are
initialized File is
open

All increments

Random or dynamic
*NOMAX size

OPEN fails File
status is 9Q

File is empty

To recover from a file status of 9Q, use the CHGPF (Change Physical File)
command as described in the associated run-time message text.

Relative record number processing can be used for a physical file or for a logical
file that is based on only one physical file.

Extending the file boundary
After file creation time, the size of a file can be extended. If a file status 0Q is
received for a file, you may need to add more records to the file before processing
it. You can use the INZPFM (Initialize Physical File Member) command to add
deleted records to the file.

For example, suppose you create a file of 10 000 records with 3 increments of
1 000 records each:
1. You initialize the (first 10 000) records.
2. You realize you need to store more data. So, you run the INZPFM command

with the RECORDS(*DLT) option again, until you have all 13 000 records
initialized.

3. You receive a requirement to store even more data - but you have already used
up all 13 000 records! If you run the INZPFM command again, you will receive
an interactive error message (of severity 99) prompting you either to
a. Cancel the INZPFM request
b. Go ahead with the request (say, initialize another 1 000 records).

4. If you choose the second option in the previous step, you now have 14 000
initialized records. You have thus increased the size of the file past the
previously defined maximum.

ACCESS MODE Clause

108 ILE COBOL Reference

Indexed Organization
Each record in the file has an embedded key (called a key data item) that is
associated with an index. An index provides a logical path to the data records,
according to the contents of the associated embedded record key data items. Only
database and DISK files can have indexed organization.

When records are inserted, updated, or deleted, they are identified solely by the
values of their prime keys. Specify the name of the prime key data item on the
RECORD KEY clause of the FILE-CONTROL paragraph.

IBM Extension

A logical file that is opened for OUTPUT does not remove all records in the
physical file on which it is based. Instead, the file is opened to allow only write
operations, and the records are added to the file.

End of IBM Extension

TRANSACTION Organization

IBM Extension

Workstation and data communication files can have TRANSACTION organization.
See the Transaction Files chapter in the IBM Rational Development Studio for i: ILE
COBOL Programmer's Guide.

End of IBM Extension

Access Modes
Access mode is a COBOL term that defines the manner in which data in a logical
or physical file is to be processed. The three access modes are sequential, random,
and dynamic.

Sequential-Access Mode
Allows reading and writing records of a file in a serial manner; the order of
reference is determined by the position of a record in the file.

Random-Access Mode
Allows reading and writing records in a programmer-specified manner; the control
of successive references to the file is expressed by specifically defined keys
supplied by the user.

Dynamic-Access Mode
Allows a specific input-output request to determine the access mode. Therefore,
records may be processed sequentially and/or randomly.

Relationship Between Data Organizations and Access Modes

Sequential Files
Files with sequential organization are accessed sequentially. The sequence in which
records are accessed is the order in which the records were originally written.

Relative Files
All three access modes are allowed.

ACCESS MODE Clause

Chapter 9. Part 4. Environment Division 109

In the sequential access mode, the sequence in which records are accessed is the
ascending order of the relative record numbers of all records that currently exist
within the file.

In the random access mode, you control the sequence in which records are
accessed. The desired record is accessed by placing its relative record number in a
RELATIVE KEY data item; the RELATIVE KEY must not be defined within the
record description entry for this file.

In the dynamic access mode, you may change from sequential access to random
access, using the appropriate forms of input-output statements.

Indexed Files
All three access modes are allowed.

In the sequential access mode, the sequence in which records are accessed is
determined by the prime record key value. Records having the same duplicate
value in an alternate record key which is the key of reference are made available in
the same order in which they were released by execution of WRITE statements, or
REWRITE statements which create such duplicate values.

In the random access mode, you control the sequence in which records are
accessed. The desired record is accessed by placing the value of its record key in
the RECORD KEY data item. If a set of records has alternate record key values,
only the first record written is available.

In the dynamic access mode, you may change from sequential access to random
access, using appropriate forms of input-output statements.

Transaction Files

IBM Extension

See the Transaction Files chapter in the IBM Rational Development Studio for i: ILE
COBOL Programmer's Guide for a discussion of access mode considerations for
transaction files.

End of IBM Extension

RECORD KEY Clause
The RECORD KEY clause must be specified for an indexed file. The RECORD KEY
clause specifies the data item within the record that is the record key for an
indexed file.

RECORD KEY Clause - Format

►►
(1)

RECORD EXTERNALLY-DESCRIBED-KEY
KEY IS data-name-2

►

ACCESS MODE Clause

110 ILE COBOL Reference

►
(1)

DUPLICATES
WITH

►◄

Notes:

1 IBM Extension

DUPLICATES Phrase

IBM Extension

The DUPLICATES phrase can only be specified for files assigned duplicate record
keys. This allows the file to have keys with the same values. If the file has multiple
formats, two keys in different formats have the same values only when the key
lengths and the contents of the keys are the same.

For example, given a file with the following two formats:
v Format F1 with keys A, B, C
v Format F2 with keys A, B, D.

If fields C and D are the same length, have the same data type, and have the same
values, the file would contain two records with a duplicate key. The term duplicate
key applies only to a complete record key for the format. A record key for the
format consists of the key field(s) defined for a DDS format for records residing on
the database. The term does not apply to the common key for the file (only fields
A and B in the above example).

Users can indicate DUPLICATES on the RECORD KEY clause. A file status of 95 is
returned after a successful open when:
v The DUPLICATES phrase is specified in the COBOL program and the file was

created with UNIQUE specified in DDS.
v The DUPLICATES phrase is not specified in the COBOL program and the file

was created allowing nonunique keys.

Processing files when either of these conditions exist can cause unpredictable
results.

In a file that allows duplicates and is processed randomly or dynamically, the
duplicate record that is updated or deleted must be the proper one. To ensure this,
the last input/output statement processed prior to the REWRITE or DELETE
operation must be a successfully processed READ statement without the NO
LOCK phrase.

If the DDS file level keyword LIFO (last-in-first-out) is specified, the duplicate
records within a physical file are retrieved in a last-in-first-out order.

End of IBM Extension

data-name-2
Data-name-2 is the RECORD KEY data item. It must be described as a
fixed-length alphanumeric item within a record description entry associated

RECORD KEY Clause

Chapter 9. Part 4. Environment Division 111

with the file. It must not reference a group item that contains a variable
occurrence data item. Data-name-2 may be qualified, but it must not be
subscripted.

The length of the record key is restricted; the key length, in bytes, cannot
exceed 2 000. For more information, see the DB2 Universal Database for AS/400
section of the Database and File Systems category in the System i5/OS
Information Center at this Web site - http://www.ibm.com/systems/i/
infocenter/.

If the indexed file contains variable-length records, data-name-2 must be
contained within the first “x” positions of the record, where “x” equals the
minimum record size specified for the file.

For EXTERNAL files, all file description entries in the run unit that are
associated with the EXTERNAL file must specify the same data description
entry for data-name-2 with the same relative location within the associated
record; otherwise the results are undefined.

IBM Extension

The RECORD KEY data item, data-name-2, can be a date-time item or numeric
item when the file is assigned to a DATABASE device type. The numeric item
can have a usage of DISPLAY, COMP-1, COMP-2, COMP (COMP-3), COMP-4,
COMP-5, PACKED-DECIMAL, or BINARY. The numeric item can also be an
external floating-point data item.

ILE COBOL supports a wide range of date and time data item formats. Many
of these formats are not supported by DDS; in this case, the underlying DDS
field must be defined as a character or numeric field. In cases where COBOL
defines a date-time item, but the underlying DDS field is not date-time,
retrieving or writing records to the database will be in the order determined by
the underlying DDS data type.

End of IBM Extension

The keys are ordered within the collating sequence used when the file was
created.

The data description of data-name-2 and its relative location within the record
must be the same as the ones used when the file was defined in DDS.

The record description that defines data-name-2 will always be used to access
the record key field for the I-O operation.

EXTERNALLY-DESCRIBED-KEY

IBM Extension

The reserved word EXTERNALLY-DESCRIBED-KEY can specify that the keys for
this file are those that are externally described in DDS. The keys are determined by
the record formats that are copied by the COPY statement, DDS, DD, DDSR, or
DDR format, under the FD for this file.

The key can start at different offsets within the buffer for each format. In this
situation, care must be used when changing from one record format to another,
using a random READ or START statement. The key must be placed in the record
format at the correct offset in the format that will be used in the random access of
the file. Unpredictable results can occur if the key for the desired record is based

RECORD KEY Clause

112 ILE COBOL Reference

|
|
|
|
|

http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/

on data that was part of the last record read. This is because the movement of the
data to the key field can involve overlapping fields.

The key within a format can be made up of multiple, noncontiguous (not adjacent)
fields. Only those record formats copied in within the FD for the file should be
referenced by the FORMAT phrase. If a format is referenced that is defined within
the file, but that format has not been copied into the program, the key is built
using the key fields defined for the first record format that was copied. This can
cause unpredictable results.

If a portion of the key is declared in the logical file only as an element of a
concatenated item (rather than an independently-declared item), the result of the
CONCAT operation must not be a variable-length item.

The reserved word EXTERNALLY-DESCRIBED-KEY cannot be specified with the
ALTERNATE RECORD KEY clause.

End of IBM Extension

ALTERNATE RECORD KEY
The ALTERNATE RECORD KEY clause specifies the data item within the record
that is an alternate record key for an indexed file. These alternate keys allow the
ILE COBOL program to access the file using a different logical ordering of the file
records.

►►
ALTERNATE RECORD data-name-3

KEY IS DUPLICATES
with

►◄

data-name-3

Data-name-3 is the ALTERNATE RECORD KEY data item. It must be described
as a fixed length alphanumeric item within a record description entry
associated with the file. It must not reference a group item that contains a
variable occurrence data item. Data-name-3 may be qualified, but it must not
be subscripted.

The length of the alternate record key is restricted; the alternate key length, in
bytes, cannot exceed 2000. If the indexed file contains variable-length records,
data-name-3 must be contained within the first "x" positions of the record,
where "x" equals the minimum record size specified for the file.

For EXTERNAL files, all file description entries in the run unit that are
associated with the EXTERNAL file must specify:
v the same data description entry for data-name-3
v the same relative location within the associated record
v the same number of alternate record keys
v the same DUPLICATES phrase.

IBM Extension

The ALTERNATE RECORD KEY data item, data-name-3, can be a date-time item
or numeric item when the file is assigned to a DATABASE device type. The
numeric item can have a usage of DISPLAY, COMP-1, COMP-2, COMP (COMP-3),
COMP-4, COMP-5, PACKED-DECIMAL, or BINARY. The numeric item can also be

RECORD KEY Clause

Chapter 9. Part 4. Environment Division 113

|

|
|
|
|

an external floating-point data item. ILE COBOL supports a wide range of date
and time data item formats. Many of these formats are not supported by DDS; in
this case, the underlying DDS field must be defined as a character or numeric
field. In cases where ILE COBOL defines a date-time item, but the underlying DDS
field is not a date-time, retrieving records will be in the order determined by the
underlying DDS data type.

End of IBM Extension

IBM Extension

The keys are ordered within the collating sequence used when the file was created.
The data description of data-name-3, its relative location within the record and its
length must be the same as those used when the file was defined in DDS. The
leftmost character position of data-name-3 must not be the same as the leftmost
character position of the RECORD KEY or of any other ALTERNATE RECORD
KEY. If the DUPLICATES phrase is not specified, the values contained in the
ALTERNATE RECORD KEY data item must be unique among records in the file. If
the alternate key index is temporary, the order of retrieval of duplicate records is
not guaranteed to be in any specific order. If the alternate key index is permanent,
the DDS file level keywords, LIFO, FIFO, FCFO can be used to specify the order of
retrieval of duplicate records. For more information on alternate key indexes, refer
to the IBM Rational Development Studio for i: ILE COBOL Programmer's Guide.

End of IBM Extension

Usage Considerations
v The sequencing of alternate keys is the same as the primary key. If the primary

key spans multiple DDS key fields in the file, the alternate key sequence is
determined by the first primary key field. If permanent alternate indexes are
used, the key sequence of the logical file must also be the same as the physical
file. That is, if the DDS keyword DESCEND is specified in the physical file DDS,
it must also be specified in the logical file DDS. Otherwise, ILE COBOL will not
be able to find the permanent alternate index.

v Files with alternate keys cannot have a primary record key that is externally
defined.

v The maximum number of alternate keys allowed per file is 253.
v Blocking is implicitly disabled for files with alternate keys.
v Parameter values specified on an override command, other than TOFILE, MBR,

LVLCHK, WAITRCD, SEQONLY, and INHWRT are ignored when ILE COBOL
builds an alternate index.

v In order to use alternate record keys, the database file must meet the following
requirements. Otherwise, the OPEN operation will fail and the file status will be
set to 39.
1. The field(s) in the database file that is to be used as an alternate key must be

an input, output, or both input/output field.
2. The database file cannot be a Distributed Data Management (DDM) file.
3. The database file must not share an open data path.
4. The DUPLICATES clause specified for each key in the program must match

the duplicates attribute of the database file. This includes the primary key. If
you are using permanent alternate indexes, the DDS keyword UNIQUE is
use to specify unique keys. The absence of this keyword implies that the file
allows duplicate keys. If you are using temporary alternate indexes and the

ALTERNATE RECORD KEY Clause

114 ILE COBOL Reference

|
|
|
|
|
|

DUPLICATES clause is not specified, you must ensure that existing records
in the database file do not have duplicate values in the fields that are defined
as keys in the program.

v The following will cause an OPEN operation to fail with the file status set to 90.
1. ILE COBOL will open one additional file for each alternate key. These files

are opened with open identifiers that begin with "QARK". Open identifiers
must be unique within the activation group that the program is running in.
The OPEN operation will fail if ILE COBOL detects a non-unique open
identifier. This may be possible if you use the OPNDBF and/or OPNQRYF
commands along with your ILE COBOL program and specify open
identifiers that begin with "QARK".

2. If the CRTARKIDX option is not specified, and a permanent index cannot be
found by ILE COBOL, the OPEN operation will fail.

3. The maximum number of contiguous DDS fields that can be used to form an
alternate key is 156. If this limit is exceeded, the OPEN operation will fail.

RELATIVE KEY Clause
The RELATIVE KEY clause identifies a data-name that specifies the relative record
number for a specific logical record within a relative file.

RELATIVE KEY Clause - Format

►► RELATIVE
KEY IS

data-name-4 ►◄

data-name-4
Must be defined as an unsigned integer data item whose description does not
contain the PICTURE symbol P. Data-name-4 must not be defined in a record
description entry associated with this relative file. That is, the RELATIVE KEY
is not part of the record. Data-name-4 can be qualified.

For reads under sequential access, the RELATIVE KEY data item is updated
with the relative record number of the record being made available.

Data-name-4 is required for ACCESS IS SEQUENTIAL only when the START
statement is to be used. It is always required for ACCESS IS RANDOM and
ACCESS IS DYNAMIC. When the START statement is issued, the system uses
the contents of the RELATIVE KEY data item to determine the record at which
sequential processing is to begin.

If a value is placed in data-name-4, and a START statement is not issued, the
value is ignored and processing begins with the first record in the file.

IBM Extension

When the file is opened, the POSITION parameter on the OVRDBF CL
command can be used to set the file position indicator. This causes processing
to begin with a record other than the first record. For further information, see
the CL and APIs section of the Programming category in the System i5/OS
Information Center at this Web site -http://www.ibm.com/systems/i/
infocenter/.

End of IBM Extension

If a relative file is to be referenced by a START statement, you must specify the
RELATIVE KEY clause for that file.

ALTERNATE RECORD KEY Clause

Chapter 9. Part 4. Environment Division 115

http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/

The ACCESS MODE IS RANDOM clause must not be specified for file-names
specified in the USING or GIVING phrase of a SORT or MERGE statement.

For EXTERNAL files, data-name-4 must reference an external data item, and
the RELATIVE KEY phrase in each associated file control entry must reference
that same external data item. (Relative keys are used with subfiles.)

Refer to the Transaction File chapter in the IBM Rational Development Studio for
i: ILE COBOL Programmer's Guide for transaction file considerations.

FILE STATUS Clause
The FILE STATUS clause monitors the execution of each input-output request for
the file.

FILE STATUS Clause - Format

►►
FILE

STATUS
IS

data-name-1
(1)

data-name-5

►◄

Notes:

1 IBM Extension

When the FILE STATUS clause is specified, the system moves a value into the
status key data item after each input-output request that explicitly or implicitly
refers to this file. The value indicates the status of execution of the statement. (See
the “Status Key” description under “Common Processing Facilities” on page 274.)

When the compiler generates code to block output records or unblock input
records, file status values that are caused by operating system exceptions are set
only when a block is processed. See Appendix F, “File Structure Support Summary
and Status Key Values” for a description of the possible values. See the IBM
Rational Development Studio for i: ILE COBOL Programmer's Guide for more
information on blocking output records and unblocking input records.

data-name-1
The status key data item must be defined in the Data Division as a 2-character
alphanumeric item. Data-name-1 must not be defined in the File Section.
Data-name-1 can be qualified.

IBM Extension

data-name-5
An optional status key data item may be specified for file processing.

For transaction files, the data item must be a 4-character alphanumeric item.

For non-transaction files, the data item must be a 6-byte group item. The item
is treated as documentation for all non-transaction files except for those that
are dynamically created. Extended file status is set to 0900 for files that are
created dynamically when OPEN OUTPUT is specified. Data-name-5 can be
qualified.

End of IBM Extension

RELATIVE KEY Clause

116 ILE COBOL Reference

CONTROL-AREA Clause

IBM Extension

This clause specifies device-dependent and system-dependent information used to
control input/output operations for TRANSACTION files.

CONTROL-AREA Clause - Format

►►
(1)

CONTROL-AREA data-name-7
IS

►◄

Notes:

1 IBM Extension

data-name-7
A data-item (2, 12, or 22 characters long) defined in the LINKAGE,
LOCAL-STORAGE or WORKING-STORAGE SECTIONS, of the following
format:

01 data-name-7
05 function-key PIC X(2)
05 device-name PIC X(10)
05 record-format PIC X(10)

Where:

function-key
Is a 2-digit number inserted in the field by the workstation interface that
identifies the function key the operator pressed to initiate the transaction.

Number Meaning

00 Enter key

01-24 Function keys 1 through 24

90 Roll up / Page down key

91 Roll down / Page up key

92 Print key

93 Help key

94 Clear key

95 Home key

99 Undefined

device-name
The program device name

record-format
The DDS record format name that was referenced by the last input/output
statement run.

End of IBM Extension

CONTROL-AREA Clause

Chapter 9. Part 4. Environment Division 117

I-O-CONTROL Paragraph
The I-O-CONTROL paragraph of the INPUT-OUTPUT SECTION specifies the
storage areas to be shared by different files. This paragraph is optional in a
COBOL program.

The keyword I-O-CONTROL may appear only once, at the beginning of the
paragraph. The word I-O-CONTROL must begin in Area A, and must be followed
by a separator period.

Each clause within the paragraph may be separated from the next by a separator
comma or a separator semicolon. The order in which I-O-CONTROL paragraph
clauses are written is not significant. The I-O-CONTROL paragraph ends with a
separator period.

I-O-CONTROL Paragraph - Format 1 - Sequential Files

I-O-CONTROL Paragraph - Format 1 - Sequential

►► I-O-CONTROL. ►

►

▼

▼

(1)
RERUN records .

ON assignment-name-1
file-name-1

SAME files
RECORD AREA FOR

multiple file tape

(2)
COMMITMENT CONTROL file-name-6

FOR

►◄

records:

integer-1 RECORDS file-name-2
EVERY END REEL OF

OF UNIT
integer-2 CLOCK-UNITS
condition-name-1

files:

▼file-name-3 file-name-4

multiple file tape:

(1)
MULTIPLE FILE

TAPE CONTAINS
►

I-O-CONTROL Paragraph

118 ILE COBOL Reference

► ▼ file-name-5
POSITION integer-2

Notes:

1 Syntax-checked only.

2 IBM Extension

I-O-CONTROL Paragraph - Format 2 - Relative and Indexed
Files

I-O-CONTROL Paragraph - Format 2 - Relative/Indexed

►► I-O-CONTROL. ►

►

▼

▼

(1)
RERUN records .

ON assignment-name-1
file-name-1

SAME files
RECORD AREA FOR

(2)
COMMITMENT CONTROL file-name-6

FOR

►◄

records:

integer-1 RECORDS file-name-2
EVERY OF

integer-2 CLOCK-UNITS
condition-name-1

files:

▼file-name-3 file-name-4

Notes:

1 Syntax-checked only.

2 IBM Extension

I-O-CONTROL Paragraph - Format 3 - Sort or Merge Files

I-O-CONTROL Paragraph - Format 3 - Sort/Merge

►► I-O-CONTROL. ►

I-O-CONTROL Paragraph

Chapter 9. Part 4. Environment Division 119

►

▼ SAME RECORD files .
(1) AREA FOR

SORT
(1)

SORT-MERGE

►◄

files:

▼file-name-3 file-name-4

Notes:

1 Syntax-checked only.

RERUN Clause
The RERUN clause specifies that checkpoint records are to be taken.

The RERUN clause is syntax checked, but is treated as documentation.

RERUN Clause - Format

►►
(1)

RERUN
ON file-name-1

assignment-name-1
EVERY

►

► integer-1 RECORDS file-name-2
END REEL OF

OF UNIT
integer-2 CLOCK-UNITS
condition-name-1

►◄

Notes:

1 Syntax-checked only.

file-name-1
The name of a sequentially organized file. The file named in the RERUN clause
must be a file defined in the same program as the I-O-CONTROL paragraph,
even if the file is defined as GLOBAL.

assignment-name-1
This name can be any user defined word. The file named in the RERUN clause
must be a file defined in the same program as the I-O-CONTROL paragraph,
even if the file is defined as GLOBAL.

EVERY integer-1 RECORDS
A checkpoint record is to be written for every integer-1 record in file-name-2
that is processed.

When multiple integer-1 RECORDS phrases are specified, no two of them may
specify the same file-name-2.

I-O-CONTROL Paragraph

120 ILE COBOL Reference

Integer-1 must be an unsigned integer. It specifies the number of records to be
processed before the RERUN information is written.

EVERY END OF REEL/UNIT
No two multiple END OF REEL or END OF UNIT phrases can specify the
same file-name-2. The definition of UNIT is determined by each
assignment-name-1.

EVERY integer-2 CLOCK-UNITS
Only one RERUN clause containing the CLOCK-UNITS phrase can be
specified.

SAME AREA Clause
The SAME AREA clause specifies that two or more files, that do not represent sort
or merge files, are to use the same main storage area during processing. The SAME
AREA clause is syntax checked, but is treated as documentation.

SAME AREA Clause - Format

►►
(1)

SAME file-name-3
AREA FOR

▼ file-name-4 ►◄

Notes:

1 Syntax-checked only.

The files named in a SAME AREA clause need not have the same organization or
access.

file-name-3, file-name-4, ...
Must be specified in the FILE-CONTROL paragraph of the same program as
the I-O-CONTROL paragraph. They cannot reference an external file connector.

SAME RECORD AREA Clause
The SAME RECORD AREA clause specifies that two or more files are to use the
same main storage area for processing the current logical record. All of the files
may be open at the same time.

Note: The SAME RECORD AREA clause is intended to make efficient use of main
storage. However, IBM i virtual storage architecture eliminates the need for
this clause, and the clause is supported for compatibility rather than for
performance. Use of the SAME RECORD AREA clause actually degrades
performance and increases program size.

SAME RECORD AREA Clause - Format

►► SAME RECORD file-name-3
AREA FOR

▼ file-name-4 ►◄

A logical record in the shared storage area is considered to be both of the
following:

RERUN Clause

Chapter 9. Part 4. Environment Division 121

v A logical record of each opened output file using the SAME RECORD AREA
clause

v A logical record of the most recently read input file using the SAME RECORD
AREA clause.

The SAME RECORD AREA clause allows transfer of data from one file to another
with no explicit data manipulation because the input/output record areas of
named files are identical, and all are available to the user.

More than one SAME RECORD AREA clause may be included in a program.
However:
v A specific file-name must not appear in more than one SAME RECORD AREA

clause.
v If one or more file-names of a SAME AREA clause appear in a SAME RECORD

AREA clause, all the file-names in that SAME AREA clause must appear in that
SAME RECORD AREA clause. However, the SAME RECORD AREA clause may
contain additional file-names that do not appear in the SAME AREA clause.

v If the SAME RECORD AREA is specified for several files, the record description
entries or the file description entries for these files must not include the
GLOBAL clause.

v The SAME RECORD AREA clause cannot be used with EXTERNAL files.

SAME SORT AREA Clause
The SAME SORT AREA clause optimizes the storage area assignment to a given
SORT statement.

The SAME SORT AREA clause is syntax checked, but is treated as documentation.

SAME SORT AREA Clause - Format

►► ▼
(1)

SAME SORT file-name-3 file-name-4
AREA FOR

►◄

Notes:

1 Syntax-checked only.

When the SAME SORT AREA clause is specified, at least one file-name specified
must be a sort file. Files that are not sort files may also be specified. The following
rules apply:
v More than one SAME SORT AREA clause may be specified. However, a given

sort file must not be named in more than one such clause.
v If a file that is not a sort file is named in both a SAME AREA clause and in one

or more SAME SORT AREA clauses, all the files in the SAME AREA clause must
also appear in that SAME SORT AREA clause.

v Files named in a SAME SORT AREA clause need not have the same organization
or access.

v Files named in a SAME SORT AREA clause that are not sort files do not share
storage with each other unless the user names them in a SAME RECORD AREA
clause.

SAME RECORD AREA Clause

122 ILE COBOL Reference

SAME SORT-MERGE AREA Clause
The SAME SORT-MERGE AREA clause optimizes the storage area assignment to a
given SORT or MERGE statement.

The SAME SORT-MERGE AREA clause is syntax checked, but is treated as
documentation.

SAME SORT-MERGE AREA Clause - Format

►►
(1)

SAME SORT-MERGE file-name-3
AREA FOR

▼ file-name-4 ►◄

Notes:

1 Syntax-checked only.

When the SAME SORT-MERGE AREA clause is specified, at least one file-name
specified must be a sort or merge file. Files that are not sort or merge files may
also be specified. The following rules apply:
v More than one SAME SORT-MERGE AREA clause may be specified. However, a

given sort or merge file must not be named in more than one such clause.
v If a file that is not a sort or merge file is named in both a SAME AREA clause

and in one or more SAME SORT-MERGE AREA clauses, all the files in the
SAME AREA clause must also appear in that SAME SORT-MERGE AREA clause.

v Files named in a SAME SORT-MERGE AREA clause need not have the same
organization or access.

v Files named in a SAME SORT-MERGE AREA clause that are not sort or merge
files do not share storage with each other unless the user names them in a
SAME RECORD AREA clause.

MULTIPLE FILE TAPE Clause
This clause specifies that two or more files share the same reel of tape. The
function is provided by the system through the use of command language.

The MULTIPLE FILE TAPE clause is syntax checked, but is treated as
documentation. See the CRTTAPF, CHGTAPF, and OVRTAPF commands in the CL
and APIs section of the Programming category in the System i5/OS Information
Center at this Web site - http://www.ibm.com/systems/i/infocenter/.

MULTIPLE FILE TAPE Clause - Format

►►
(1)

MULTIPLE FILE
TAPE CONTAINS

►

► ▼ file-name-5
POSITION integer-2

►◄

SAME SORT-MERGE AREA Clause

Chapter 9. Part 4. Environment Division 123

http://www.ibm.com/systems/i/infocenter/

Notes:

1 Syntax-checked only.

integer-2
Must be an unsigned integer. It specifies the relative position of the file on the
tape.

file-name-5
Names the files that share the tape.

COMMITMENT CONTROL Clause

IBM Extension

The COMMITMENT CONTROL clause specifies the files that will be placed under
commitment control when they are opened.

COMMITMENT CONTROL Clause - Format

►►
(1)

COMMITMENT CONTROL
FOR

▼ file-name-6 ►◄

Notes:

1 IBM Extension

File-name-6 must be specified in the FILE CONTROL paragraph of the same
program as the I-O-CONTROL paragraph in which the COMMITMENT
CONTROL clause appears.

These files will then be affected by the COMMIT and ROLLBACK statements. The
COMMIT statement allows the synchronization of changes to database records
while preventing other jobs from modifying those records until the COMMIT is
complete. The ROLLBACK statement provides a method of cancelling changes
made to database files when those changes should not be made permanent.

The COMMITMENT CONTROL clause can specify only files assigned to a device
type of DATABASE. Files under commitment control may have an organization of
sequential, relative or indexed, and may have any access mode valid for a
particular organization.

The system locks records contained in files under commitment control when these
records are accessed. Records remain locked until released by a COMMIT or
ROLLBACK statement. For more information about record locking for files under
commitment control, see the IBM Rational Development Studio for i: ILE COBOL
Programmer's Guide.

Note: Always try to use files in a consistent manner to avoid record locking
problems, and to avoid reading records that have not yet been permanently
committed to the database. Typically, a file should either always be accessed
under commitment control or never be accessed under commitment control.

End of IBM Extension

MULTIPLE FILE TAPE Clause

124 ILE COBOL Reference

Part 5. Data Division

© Copyright IBM Corp. 1993, 2010 125

126 ILE COBOL Reference

Chapter 10. Data Division Overview

The Data Division of a COBOL source program describes, in a structured manner,
all the data to be processed by the object program; also the relationship between
physical and logical records. The Data Division is optional in a COBOL source
program.

This section outlines the structure of the Data Division and explains the types of
data.

Data Division Structure
The Data Division must begin with the words DATA DIVISION, followed by a
period and a space.

The Data Division is divided into four sections:

File Section
Describes externally stored data (including sort-merge files).

Working-Storage Section
Describes internal data.

Local-Storage Section
Describes internal data that is allocated on a per-invocation basis.

Linkage Section
Describes data made available by another program. It appears in the called
program and describes data items that are provided by the calling program
and are referred to by the called program. The called program can be a nested
program. For more information on nested programs, see the IBM Rational
Development Studio for i: ILE COBOL Programmer's Guide.

Each section has a specific logical function within a COBOL source program, and
each may be omitted from the source program when that logical function is not
needed. If included, the sections must be written in the order shown.

Data Division - Format

►► DATA DIVISION.

▼FILE SECTION.
file-section-entries

►

►

▼WORKING-STORAGE SECTION.
record-description-entry
data-item-description-entry

►

© Copyright IBM Corp. 1993, 2010 127

►

▼LOCAL-STORAGE SECTION.
record-description-entry
data-item-description-entry

►

►

▼LINKAGE SECTION.
record-description-entry
data-item-description-entry

►◄

file-section-entries:

file-description-entry ▼ record-description-entry

File Section
The File Section describes:
v All externally stored files
v Each sort-merge file.

file-description-entry
Represents the highest level of organization in the File Section. It provides
information about the physical structure and identification of a file, and gives
the record-name(s) associated with that file.

For the format and the clauses required in a file description entry, see
Chapter 11, “Data Division—File and Sort Description Entries,” on page 139.

record-description-entry
A set of data description entries that describe the particular record(s) contained
within a particular file, or describe a type-name (by using the TYPEDEF
clause). For the format and the clauses required in a record description entry,
see Chapter 12, “Data Division—Data Description Entry,” on page 157.

More than one record description entry may be specified; each entry that does
not describe a type-name is an alternative description of the same record
storage area.

Data areas described in the File Section are not available for processing unless
the file containing the data area is open. Type-names defined in the FILE
SECTION may be used in the WORKING-STORAGE, LOCAL-STORAGE, or
LINKAGE SECTIONS to define other data items.

Group items (including tables) are limited to a length of 16 711 568 bytes.

The initial value of a data item in the File Section is undefined.

IBM Extension

The record description entry for a file can be specified using the Format 2 COPY
statement (DD, DDR, DDS, or DDSR option). This allows the field descriptions for

Data Division Structure

128 ILE COBOL Reference

a record format to be exactly as defined in DDS. Also, programs are easier to write
because the record format description is maintained in only one place. See
Chapter 16, “Compiler-Directing Statements,” on page 601 for further information
on this format of the COPY statement.

End of IBM Extension

Working-Storage Section
The Working-Storage Section describes data records that are not part of external
data files but are developed and processed internally by the program. Type-names
may be defined in the WORKING-STORAGE SECTION.

record-description-entry
See “File Section” on page 128 for a description. Data entries in the
Working-Storage Section that bear a definite hierarchic relationship to one
another must be grouped into records structured by level number.

data-item-description-entry
Independent items in the Working-Storage Section that bear no hierarchic
relationship to one another need not be grouped into records, provided that
they do not need to be further subdivided. Each is defined in a separate
data-item description entry that begins with either the level number 77 or 01.
For the format and the clauses required in a data-item description entry, see
Chapter 12, “Data Division—Data Description Entry,” on page 157.

The initial value of any data item in the Working-Storage Section, except an index
data item, is specified by associating a VALUE clause with the item. The initial
value of any index data item, or of any data item not associated with a VALUE
clause, is undefined.

Note: A maximum of 16 711 568 bytes is permitted for group items (including
tables).

Local-Storage Section

IBM Extension

The Local-Storage Section defines storage that is allocated and freed on a
per-invocation basis. On each invocation, data items defined in the Local-Storage
Section are reallocated and initialized to the value assigned in their VALUE
clauses. Data items defined in the Local-Storage Section cannot specify the
EXTERNAL clause. The Local-Storage Section must begin with the header
LOCAL-STORAGE SECTION followed by a separator period.

record-description-entry
See “File Section” on page 128 for a description.

data-item-description-entry
See “Working-Storage Section” for a description.

You can specify the Local-Storage Section in recursive programs, and in
non-recursive programs.

End of IBM Extension

Data Division Structure

Chapter 10. Part 5. Data Division 129

Linkage Section
The Linkage Section describes data made available from another program through
the CALL statement. It can also be used to describe the format of data accessed by
using the ADDRESS OF special register. For example, you can set the ADDRESS
OF special register for a Linkage Section item to data that is dynamically allocated
using ILE bindable APIs.

record-description-entry
See “File Section” on page 128 for a description.

data-item-description-entry
See “Working-Storage Section” on page 129 for a description.

Record description entries and data item description entries in the Linkage Section
provide names and descriptions of the data item, but not the storage. Storage is
not reserved in the program because the data area exists elsewhere. Type-names
may be defined in the LINKAGE SECTION.

Any data description clause may be used to describe items in the Linkage Section,
with these exceptions:
v The VALUE clause may not be specified for items other than level-88 items.

IBM Extension

If the VALUE clause is specified for items other than level-88 in the Linkage
section, it is treated as a comment.

End of IBM Extension

v The EXTERNAL clause cannot be specified in the Linkage section.
v The GLOBAL clause cannot be specified in the Linkage section.

IBM Extension

v The GLOBAL clause can be specified for a data-name or condition-name in the
LINKAGE section, with level number 01. When GLOBAL is specified in a
LINKAGE section data item, a contained source program can refer directly to
the item by the name of the data item. For more information on coding the
LINKAGE section, see the IBM Rational Development Studio for i: ILE COBOL
Programmer's Guide.

End of IBM Extension

Note: A maximum of 16 711 568 bytes is permitted for group items (including
tables).

ADDRESS OF

IBM Extension

ADDRESS OF refers to the calculated address of a data item. The data item can be
reference modified or subscripted. You may take the ADDRESS OF any Data
Division item that is not a type-name or a subordinate of a type-name, and that
does not have level number 66 or 88. Such an address can be referenced, but not
changed.

Data Division Structure

130 ILE COBOL Reference

The ADDRESS OF an item is implicitly defined as USAGE IS POINTER.

ADDRESS OF Special Register
The ADDRESS OF special register is the starting address of the data structure from
which all calculated addresses are determined.

It exists for each record (level number 01 or 77) in the Linkage Section, except for
those records that redefine each other. In such cases, the special register is similarly
redefined.

This special register is implicitly defined as USAGE IS POINTER, and you can
change it.

If you reference modify the ADDRESS OF identifier, it is no longer the starting
address of a data structure. It is a calculated address.

You can specify the ADDRESS OF or ADDRESS OF special register as an argument
to the LENGTH function. If the ADDRESS OF or ADDRESS OF special register is
used as the argument to the LENGTH function, the result is always 16,
independent of the identifier specified for ADDRESS OF.

A function-identifier is not allowed in either the ADDRESS OF or the ADDRESS
OF special register.

A date-time data item can be used in expressions involving the ADDRESS OF or
ADDRESS OF special register.

End of IBM Extension

Types of Data
Two types of data can be processed: file data and program data.

File Data

A file is a collection of data records existing on some input-output device. (See
“File Section” on page 145.) A file can be considered to be a group of physical
records; it can also be considered to be a group of logical records.

A physical record is a unit of data that is treated as an entity when moved into or
out of storage. The size of a physical record is determined by the particular
input-output device on which it is stored. The size does not necessarily have a
direct relationship to the size or content of the logical information contained in the
file.

A logical record is a unit of data whose subdivisions have a logical relationship. A
logical record may itself be a physical record (that is, be contained completely
within one physical unit of data); several logical records may be contained within
one physical record, or one logical record may extend across several physical
records.

File description entries specify the physical aspects of the data (such as the size
relationship between physical and logical records, the size and name(s) of the
logical record(s).)

Data Division Structure

Chapter 10. Part 5. Data Division 131

Record description entries describe the logical records in the file, including the
category and format of data within each field of the logical record, different values
the data might be assigned.

After the relationship between physical and logical records has been established,
only logical records are made available to you. For this reason, a reference in this
manual to “records” means logical records, unless the term “physical records” is
used.

Program Data
Program data is created by the program itself, instead of being read from a file.

The concept of logical records applies to program data as well as to file data.
Program data can thus be grouped into logical records, and be defined by a series
of record description entries. Items that need not be so grouped can be defined in
independent data item description entries.

Data Relationships
The relationships among all data to be used in a program are defined in the Data
Division, through a system of level indicators and level-numbers.

A level indicator, with its descriptive entry, identifies each file in a program. Level
indicators represent the highest level of any data hierarchy with which they are
associated; FD is the file description level indicator and SD is the sort-merge file
description level indicator.

A level-number, with its descriptive entry, indicates the properties of specific data.
Level-numbers can be used to describe a data hierarchy; they can indicate that this
data has a special purpose, and while they can be associated with (and subordinate
to) level indicators, they can also be used independently to describe internal data
or data common to two or more programs. (See “Level-Numbers” on page 164 for
level-number rules.)

Levels of Data
After a record has been defined, it can be subdivided to provide more detailed
data references.

For example, in a customer file for a department store, one complete record could
contain all data pertaining to one customer. Subdivisions within that record could
be: customer name, customer address, account number, department number of sale,
unit amount of sale, dollar amount of sale, previous balance, plus other pertinent
information.

The basic subdivisions of a record (that is, those fields not further subdivided) are
called elementary items. Thus, a record can be made up of a series of elementary
items, or it may itself be an elementary item.

It may be necessary to refer to a set of elementary items; thus, elementary items
can be combined into group items. Groups themselves can be combined into a
more inclusive group that contains one or more subgroups. Thus, within one
hierarchy of data items, an elementary item can belong to more than one group
item.

Types of Data

132 ILE COBOL Reference

A system of level-numbers specifies the organization of elementary and group
items into records. Special level-numbers are also used; they identify data items
used for special purposes.

Levels of Data in a Record Description Entry
Each group and elementary item in a record requires a separate entry, and each
must be assigned a level-number.

A level-number is a 1- or 2-digit integer between 01 and 49, or one of three special
level-numbers: 66, 77, or 88. The following level-numbers are used to structure
records:

01 This level-number specifies the record itself, and is the most inclusive
level-number possible. A level-01 entry may be either a group item or an
elementary item. It must begin in Area A. Type-names (defined using the
TYPEDEF clause) must be level-01 items.

02-49
These level-numbers specify group and elementary items within a record. They
may begin in Area A or Area B. Less inclusive data items are assigned higher
(not necessarily consecutive) level-numbers in this series.

A group item includes all group and elementary items following it, until a
level-number less than or equal to the level-number of this group is encountered.

All elementary or group items immediately subordinate to one group item must be
assigned identical level-numbers higher than the level-number of this group item.

If a type-name is a group item, and it is used in a TYPE clause to define a new
data item, then the new data item will have subordinate items of the same name,
description, and hierarchy as those of the type-name. There is no limit to the
number of levels that can result because:
v The subject of a TYPE clause may have a level number as high as 49, and a

type-name may describe a group item with as many levels as 49
v Type declarations may reference other type declarations.

Coding Example

IBM Extension

The ILE COBOL compiler accepts nonstandard level-numbers that are not identical
to others at the same level. For example, the following two data description entries
are equivalent:
01 EMPLOYEE-RECORD.

05 EMPLOYEE-NAME.
10 FIRST PICTURE X(10).
10 LAST PICTURE X(10).

05 EMPLOYEE-ADDRESS.
10 STREET PICTURE X(10).
10 CITY PICTURE X(10).

01 EMPLOYEE-RECORD.
05 EMPLOYEE-NAME.

10 FIRST PICTURE X(10).
10 LAST PICTURE X(10).

04 EMPLOYEE-ADDRESS.
08 STREET PICTURE X(10).
08 CITY PICTURE X(10).

Data Relationships

Chapter 10. Part 5. Data Division 133

Because 04 is less than 05, it is not subordinate to EMPLOYEE-NAME, yet because
it is greater than 01 it is subordinate to EMPLOYEE-RECORD. If 07 was used in
place of 04, EMPLOYEE-ADDRESS would be subordinate to EMPLOYEE-NAME
(which in this example would be undesirable).

Such coding practices are not recommended, and this extension is provided only
for compatibility.

End of IBM Extension

Conceptual Example
Figure 5 illustrates the concept. Note that all groups immediately subordinate to
the level-01 entry have the same level-number. Note also that elementary items
from different subgroups do not necessarily have the same level numbers, and that
elementary items can be specified at any level within the hierarchy.

Special Level-Numbers
Special level-numbers identify items that do not structure a record. The special
level-numbers are:

01 RECORD–ENTRY.

05 GROUP–1.

10 SUBGROUP–1.

15 ELEM–1 PIC… .

15 ELEM–2 PIC... .

10 SUBGROUP–2.

05 GROUP–2.

15 SUBGROUP–3.

25 ELEM–5 PIC… .

25 ELEM–6 PIC… .

15 ELEM–3 PIC… .

15 ELEM–4 PIC… .

15 SUBGROUP–4 PIC… .

05 ELEM–7 PIC… .

This entry includes

This entry includes

This entry includes

This entry includes

This entry includes

This entry includes

This entry includes itself.

This entry includes itself.

ELEM–7SUBGROUP–4ELEM–6ELEM–5ELEM–4ELEM–3ELEM–2ELEM–1

GROUP–1

SUBGROUP–1 SUBGROUP–2

GROUP–2

SUBGROUP–3

RECORD-ENTRY

The storage arrangement of the record-description entry is illustrated below.

The COBOL record-description
entry written as follows: is subdivided as indicated below:

Figure 5. Levels in a Record Description

Data Relationships

134 ILE COBOL Reference

66 Identifies items that must contain only a RENAMES clause; such items regroup
previously defined data items. (For details, see “RENAMES Clause” on page
207.)

77
Identifies data item description entries — independent Working-Storage,
Local-Storage or Linkage Section items that are not subdivisions of other items,
and are not subdivided themselves. Level-77 items must begin in Area A.

88 Identifies any condition-name entry that is associated with a particular value of
a conditional variable. The condition-name entry must contain only a VALUE
clause. (For details, see “VALUE Clause” on page 229.)

Note: Level-77 and level-01 entries in the Working-Storage, Local-Storage and
Linkage Sections that are referenced in the program must be given unique
data-names, because neither can be qualified. Subordinate data-names that
are referenced in the program must be either uniquely defined, or made
unique through qualification. Unreferenced data-names need not be
uniquely defined.

Indentation
Successive data description entries may begin in the same column as preceding
entries, or may be indented. Indentation is useful for documentation, but does not
affect the action of the compiler.

Classes and Categories of Data
Most data used in a COBOL program can be divided into classes and categories,
except pointers, procedure-pointers, and index data items. Every elementary item
in a program belongs to one of the classes as well as one of the categories. Every
group item belongs to the alphanumeric class even if the subordinate elementary
items belong to another class and category. Table 9 shows the relationship of data
classes and categories.

The data category of an item is determined by its PICTURE character-string,
BLANK WHEN ZERO, and USAGE attribute. For details, see “Data Categories and
PICTURE Rules” on page 193.

IBM Extension

The data category of an item can also be determined by its FORMAT clause. A
FORMAT clause defines category date, time, and timestamp items.

Boolean data is an IBM extension that provides a means of modifying and passing
the values of the indicators associated with the display screen formats and
externally described printer files. A Boolean value of 0 is the off status of the
indicator, and a Boolean value of 1 is the on status of the indicator.

A Boolean literal contains a single 0 or 1, is enclosed in quotation marks, and is
immediately preceded by an identifying B. A Boolean literal is defined as either
B"0" or B"1".

A Boolean character occupies one byte.

When the figurative constant ZERO is associated with a Boolean data item or a
Boolean literal, it represents the Boolean literal B"0".

Data Relationships

Chapter 10. Part 5. Data Division 135

The reserved word ALL is valid with a Boolean literal.

End of IBM Extension

Every data item that is an intrinsic function is an elementary item, and belongs to
the category alphanumeric, numeric, DBCS, national, boolean, date, time, or
timestamp and to the corresponding class; the category of each intrinsic function is
determined by the definition of the function.

Classes and Categories of Data
Table 9. Classes and Categories of Data

Level of Item Class Category

Elementary Alphabetic Alphabetic

Numeric Numeric
Internal Floating-Point¹
External Floating-Point¹

Alphanumeric Numeric Edited
Alphanumeric Edited
Alphanumeric

Date-Time¹ Date¹
Time¹
Timestamp¹

Boolean¹ Boolean¹

DBCS¹ DBCS¹
DBCS-edited¹

National¹ National¹

Group Alphanumeric Alphabetic
Numeric
Internal Floating-Point¹
External Floating-Point¹
Numeric Edited
Date¹
Time¹
Timestamp¹
Alphanumeric Edited
Alphanumeric
Boolean¹
DBCS¹
DBCS-edited¹
National¹

Note: ¹ IBM Extension

Alignment Rules
The standard alignment rules for positioning data in an elementary item depend
on the category of a receiving item (that is, an item into which the data is moved;
see “Elementary Moves” on page 393).

Numeric
1. The data is aligned on the assumed decimal point and if necessary, truncated

or padded with zeros. (An assumed decimal point - PICTURE character P or V
- is one that has logical meaning but that does not exist as an actual character
in the data.)

Data Relationships

136 ILE COBOL Reference

2. If an assumed decimal point is not explicitly specified, the receiving item is
treated as though an assumed decimal point is specified immediately to the
right of the field. The data is then treated according to the preceding rule.

Numeric-edited
The data is aligned on the decimal point, and (if necessary) truncated or padded
with zeros at either end, except when editing causes replacement of leading zeros.

However, if the LOCALE phrase of the PICTURE clause is specified in its data
description entry, alignment and zero-fill or truncation takes place as described in
“LOCALE Phrase” on page 187.

Internal Floating-point

IBM Extension

A decimal point is assumed immediately to the left of the field. The data is aligned
then on the leftmost digit position following the decimal point, with the exponent
adjusted accordingly.

End of IBM Extension

External Floating-point

IBM Extension

The data is aligned on the leftmost digit position; the exponent is adjusted
accordingly.

End of IBM Extension

Alphanumeric, Alphanumeric-edited, Alphabetic
1. The data is aligned at the leftmost character position, and (if necessary)

truncated or padded with spaces to the right.
2. If the JUSTIFIED clause is specified for this receiving item, the above rule is

modified as described in “JUSTIFIED Clause” on page 171.

IBM Extension

3. For a DBCS receiving item the data is aligned at the leftmost character
position,and (if necessary) truncated or padded with DBCS spaces to the right.

4. If the JUSTIFIED clause was specified for the DBCS receiving item, the above
rule is modified as described in “JUSTIFIED Clause” on page 171.

5. For a national receiving item the data is aligned at the leftmost character
position,and (if necessary) truncated or padded with national (UCS-2) spaces to
the right.

6. If the JUSTIFIED clause was specified for the national receiving item, the above
rule is modified as described in “JUSTIFIED Clause” on page 171.

End of IBM Extension

Date, Time, and Timestamp

IBM Extension
1. For class date-time items with a USAGE of DISPLAY, data is aligned at the

leftmost character position, and (if necessary) padded with spaces to the right.

Data Relationships

Chapter 10. Part 5. Data Division 137

2. For class date-time items with a USAGE of PACKED-DECIMAL, data is aligned
at the rightmost digit position, and (if necessary) padded with zeros to the left.

End of IBM Extension

Standard Data Format
For the ILE COBOL language, the default data format is the EBCDIC character set.

Character-String and Item Size
In your program, the size of an elementary item is determined through the number
of character positions specified in its PICTURE character-string. In storage,
however, the size is determined by the actual number of bytes the item occupies,
as determined by the combination of its PICTURE character-string and its USAGE
clause.

IBM Extension

The size of an elementary item with a PICTURE clause that includes the LOCALE
phrase is determined from integer-1 of the SIZE phrase.

For internal floating-point items, the size of the item in storage is determined by its
USAGE clause. USAGE COMPUTATIONAL-1 reserves 4 bytes of storage for the
item; USAGE COMPUTATIONAL-2 reserves 8 bytes of storage.

The size of an elementary item of class date-time is determined from the FORMAT
literal or from the integer in the SIZE phrase.

End of IBM Extension

Normally, when an arithmetic item is moved from a longer field into a shorter one,
the compiler truncates the data to the number of characters represented in the
shorter item's PICTURE character-string.

For example, if a sending field with PICTURE S99999, and containing the value
+12345, is moved to a BINARY receiving field with PICTURE S99, the data is
truncated to +45. For additional information see “USAGE Clause” on page 217.

Signed Data
There are two categories of algebraic signs used in COBOL: operational signs and
editing signs.

Operational signs (+, -) are associated with signed numeric items, and indicate
their algebraic properties. The internal representation of an algebraic sign depends
on the item's USAGE clause, and, optionally, upon its SIGN clause. Zero is
considered a unique value, regardless of the operational sign. An unsigned field is
always assumed to be either positive or zero.

Editing signs are associated with numeric edited items; editing signs are PICTURE
symbols (+, -, CR, DB) that identify the sign of the item in edited output.

Data Relationships

138 ILE COBOL Reference

Chapter 11. Data Division—File and Sort Description Entries

In a COBOL program, the File Description (FD) Entry (or Sort Description (SD)
Entry for sort/merge files) represents the highest level of organization in the File
Section.

File Description Entry - Format 1 - Sequential File

File Description Entry - Format 1a - Formatfile, Database

►► FD file-name
EXTERNAL

IS
GLOBAL

IS

►

►
BLOCK integer2

CONTAINS integer1 TO CHARACTERS
RECORDS

►

►
RECORD integer3

CONTAINS integer6 TO integer7 CHARACTERS

►

►
(1)

LABEL RECORD STANDARD
IS OMITTED

RECORDS
ARE

►

►

▼
(1)

VALUE OF system-name-1 data-name-1
IS literal-1

►

►

▼
(1)

DATA RECORD data-name-2
IS

RECORDS
ARE

. ►◄

Notes:

1 Syntax-checked only.

File Description Entry - Format 1b - Disk

►► FD file-name
EXTERNAL

IS
GLOBAL

IS

►

© Copyright IBM Corp. 1993, 2010 139

►
BLOCK integer2

CONTAINS integer1 TO CHARACTERS
RECORDS

►

►
RECORD integer3

CONTAINS CHARACTERS
integer6 TO integer7

CONTAINS CHARACTERS
varying

DEPENDING data-name-1
ON

►

►
(1)

LABEL RECORD STANDARD
IS OMITTED

RECORDS
ARE

►

►

▼
(1)

VALUE OF system-name-1 data-name-1
IS literal-1

►

►

▼
(1)

DATA RECORD data-name-2
IS

RECORDS
ARE

. ►◄

varying:

VARYING
IS IN SIZE integer-4

FROM

►

►
TO integer-5 CHARACTERS

Notes:

1 Syntax-checked only.

File Description Entry - Format 2 - Diskette File

File Description Entry - Format 2 - Diskette

►► FD file-name
EXTERNAL

IS
GLOBAL

IS

►

Data Division-File and Sort Description Entries

140 ILE COBOL Reference

►
(1)

BLOCK integer2
CONTAINS integer1 TO CHARACTERS

RECORDS

►

►
RECORD integer3

CONTAINS integer6 TO integer7 CHARACTERS

►

►
(1)

LABEL RECORD STANDARD
IS OMITTED

RECORDS
ARE

►

►

▼
(1)

VALUE OF system-name-1 data-name-1
IS literal-1

►

►

▼
(1)

DATA RECORD data-name-2
IS

RECORDS
ARE

►

►
CODE-SET alphabet-name-1

IS

. ►◄

Notes:

1 Syntax-checked only.

File Description Entry - Format 3 - Tapefile

File Description Entry - Format 3 - Tapefile

►► FD file-name
EXTERNAL

IS
GLOBAL

IS

►

►
BLOCK integer2

CONTAINS integer1 TO CHARACTERS
RECORDS

►

►
RECORD integer3

CONTAINS CHARACTERS
integer6 TO integer7

CONTAINS CHARACTERS
varying

DEPENDING data-name-1
ON

►

Data Division-File and Sort Description Entries

Chapter 11. Part 5. Data Division 141

►
LABEL RECORD STANDARD

IS OMITTED
RECORDS

ARE

►

►

▼
(1)

VALUE OF system-name-1 data-name-1
IS literal-1

►

►

▼
(1)

DATA RECORD data-name-2
IS

RECORDS
ARE

►

►
CODE-SET alphabet-name-1

IS

. ►◄

varying:

VARYING
IS IN SIZE integer-4

FROM

►

►
TO integer-5 CHARACTERS

Notes:

1 Syntax-checked only.

File Description Entry - Format 4 - Printer File

File Description Entry - Format 4 - Printer

►► FD file-name
EXTERNAL

IS
GLOBAL

IS

►

►
BLOCK integer2

CONTAINS integer1 TO CHARACTERS
RECORDS

►

►
RECORD integer3

CONTAINS integer6 TO integer7 CHARACTERS

►

Data Division-File and Sort Description Entries

142 ILE COBOL Reference

►
(1)

LABEL RECORD STANDARD
IS OMITTED

RECORDS
ARE

►

►

▼
(1)

VALUE OF system-name-1 data-name-1
IS literal-1

►

►

▼
(1)

DATA RECORD data-name-2
IS

RECORDS
ARE

linage clause
►

►
CODE-SET alphabet-name-1

IS

. ►◄

linage clause:

LINAGE
IS

data-name-3
integer-8 LINES

►

►
FOOTING data-name-4

WITH AT integer-9

►

►
TOP data-name-5

LINES AT integer-10

►

►
BOTTOM data-name-6

LINES AT integer-11

Notes:

1 Syntax-checked only.

Sort Description Entry - Format 5 - Sort or Merge Files

File Description Entry - Format 5 - Sort/Merge

►► SD file-name ►

Data Division-File and Sort Description Entries

Chapter 11. Part 5. Data Division 143

►
RECORD integer3

CONTAINS CHARACTERS
integer6 TO integer7

CONTAINS CHARACTERS
varying

DEPENDING data-name-1
ON

►

►

▼
(1)

DATA RECORD data-name-2
IS

RECORDS
ARE

. ►◄

varying:

VARYING
IS IN SIZE integer-4

FROM

►

►
TO integer-5 CHARACTERS

Notes:

1 Syntax-checked only.

File Description Entry - Format 6 - Transaction Files

IBM Extension

File Description Entry - Format 6 - Transaction

►► FD file-name
EXTERNAL

IS
GLOBAL

IS

►

►
RECORD integer3

CONTAINS integer6 TO integer7 CHARACTERS

►

►
(1)

LABEL RECORD STANDARD
IS OMITTED

RECORDS
ARE

►

Data Division-File and Sort Description Entries

144 ILE COBOL Reference

►

▼
(1)

DATA RECORD data-name-2
IS

RECORDS
ARE

. ►◄

Notes:

1 Syntax-checked only.

End of IBM Extension

File Section
The File Section must contain a level indicator for each input and output file.
v For all files except sort/merge, the File Section must contain an FD entry. The

last clause of an FD entry must be immediately followed by a separator period.
v For each sort or merge file, the File Section must contain an SD entry. The last

clause of an SD entry must be immediately followed by a separator period.

file-name
Must follow the level indicator (FD or SD), and must be the same as that
specified in the associated SELECT clause. The file-name must adhere to the
rules of formation for a user-defined word: at least one character must be
alphabetic. The file-name must be unique within this program.

One or more record description entries must follow the file-name. A record
description entry may describe a type-name. Each entry, which is not a
type-name, implies a redefinition of the same storage area.

The clauses that follow file-name are optional; they may appear in any order.

EXTERNAL Clause
The EXTERNAL clause specifies that a file connector is external.

EXTERNAL Clause - Format

►► EXTERNAL
IS

►◄

In a run unit, there is only one representation of an external file; an external file
can be referenced by any COBOL program in the run unit that describes the file.

In the File Section, the EXTERNAL clause can be specified only in file description
entries. The records appearing in the file description entry need not have the same
name in corresponding external file description entries. In addition, the number of
such records need not be the same in corresponding file description entries.
However, the maximum record length for corresponding external file description
entries must be the same.

For EXTERNAL files, the value of all BLOCK CONTAINS clauses of corresponding
EXTERNAL files must match within the run unit. This conformance is in terms of
character positions only - not upon whether the value was specified as
CHARACTERS or as RECORDS.

Data Division-File and Sort Description Entries

Chapter 11. Part 5. Data Division 145

All file description entries in the run unit that are associated with an external file
connector must have:
v A LINAGE clause, if any file description entry has a LINAGE clause.
v The same corresponding values for integer-8, integer-9, integer-10, and

integer-11, if specified.
v The same corresponding external data items referenced by data-name-3,

data-name-4, data-name-5, and data-name-6.

Use of the EXTERNAL clause does not imply that the associated file-name is a
global name.

The TYPEDEF clause cannot be specified in the same data description entry as the
EXTERNAL clause, however, the TYPE clause can.

Considerations for External Files
In general, all definitions of an external file should be identical. If there is a
mismatch, the program will fail at start up when the definitions are compared. The
following attributes of external files are compared:
v If any of the definitions corresponding to the file are externally described (for

example, by using Format 2 of the COPY statement), all other definitions must
also be externally described. The level check information associated with all
definitions must match.

v The name specified on the ASSIGN TO clause must be the same for all
definitions. This includes the device type.

v The ORGANIZATION and ACCESS modes must be the same for all definitions
of the file.

v The OPTIONAL phrase, if specified, must be specified for all definitions of the
file.

v The external data item specified for the RELATIVE KEY phrase must be in the
same physical location and occupy the same number of bytes for all definitions
of the file.

v The location of the record key within the associated record must be the same for
all definitions of the file.

v The blocking information associated with the file must be the same for all file
definitions. This includes whether blocking is to be performed and the size of
the block.

v The values for the maximum or minimum number of characters on the RECORD
clause must be the same for all definitions of the file.

v The character set specified on the CODE-SET clause must be the same for all
definitions of the file.

v The value specified for the DUPLICATES phrase must be the same for all
definitions of the file.

v All of the values specified for the LINAGE clause must be the same for each
definition of the file.

v The specification of the attribute for the ASSIGN clause (separate indicators)
must be the same for all definitions of the file.

v The specification for the COMMITMENT CONTROL clause must be the same
for all definitions of the file.

v The specification for the *DUPKEYCHK or the *INZDLT compile-time option
must be the same for all modules containing definitions of the file.

EXTERNAL Clause

146 ILE COBOL Reference

v The specifications of the CCSID parameter for the CRTCBLMOD or
CRTBNDCBL command must be the same for all modules containing definitions
of the file.

GLOBAL Clause
The GLOBAL clause specifies that the file connector named by a file-name is a
global name.

GLOBAL Clause - Format

►► GLOBAL
IS

►◄

A global file-name is available to the program that declares it and to every
program that is contained directly or indirectly in that program.

A file-name is global if the GLOBAL clause is specified in the file description entry
for that file-name. A record-name is global if the GLOBAL clause is specified in the
record description entry by which the record-name is declared or, in the case of
record description entries in the File Section, if the GLOBAL clause is specified in
the file description entry for the file-name associated with the record description
entry. Such record description entries may describe a type-name.

The GLOBAL clause can be specified in the same data description entry as the
TYPEDEF clause. The scope of the clause applies to the type-name only, and not to
any data items which are defined using a global type-name with a TYPE clause.

BLOCK CONTAINS Clause
The BLOCK CONTAINS clause specifies the size of the physical records.

BLOCK CONTAINS Clause - Format

►► BLOCK
CONTAINS integer-1 TO

integer-2
CHARACTERS
RECORDS

►◄

This clause can be omitted when each physical record contains only one complete
logical record.

This clause is syntax checked for FORMATFILE and printer files. To activate this
clause for other types of files, use OPTION parameter value *BLK, or PROCESS
option BLK.

integer-1, integer-2
Must be nonzero unsigned integers. They specify the number of characters or
records. If integer-2 is zero, the system will determine the blocking size.

CHARACTERS
Specifies the number of character positions required to store the physical
record, no matter what USAGE the characters have within the data record.

EXTERNAL Clause

Chapter 11. Part 5. Data Division 147

If only integer-2 is specified, it specifies the exact character size of the physical
record. When integer-1 and integer-2 are both specified, they represent,
respectively, the minimum and maximum character sizes of the physical
record.

Integer-1 and integer-2 must include any control bytes and padding contained
in the physical record. (Logical records do not include padding.)

For non-tape files, only integer-2 controls the blocking factor. If integer-2 is
zero, the system default blocking factor applies.

The CHARACTERS phrase is the default. CHARACTERS must be specified
when the physical record contains padding.

In general, the length of a variable length record on a RELEASE, REWRITE, or
WRITE statement is determined by data-name-1, if specified. If data-name-1 is
not specified and the record description does not contain a table, the length is
the number of characters in the record description. If data-name-1 is not
specified and the record contains a table, the length is the sum of the fixed part
of the record and the current length of the table.

When variable length records are used for disk files, the BLOCK CONTAINS
clause specifies the size of the block. The size of the actual record is contained
in data-name-1 after a READ operation. To WRITE a variable length record,
data-name-1 must be set to the length of the record.

For tape files, each variable record contains a four-byte header and each block
contains a four-byte header when the data is transferred to tape. However,
these four-byte headers are provided by the system and are of no concern to
the COBOL user except that the maximum size of a variable record is restricted
to 32 764.

When variable records are used for tape files, the BLOCK CONTAINS clause
specifies the maximum physical record length, while the logical record length
for each record is inferred by the compiler from the record name used in a
WRITE statement. If an explicit length is required after a READ statement, the
user can obtain it through the I-O-FEEDBACK mnemonic-name.

RECORDS
Specifies the number of logical records contained in each physical record.

Maximum record size is 32 767; maximum block size is 32 767. These
maximums include any control bytes required for variable blocked records;
thus, the maximum size data record for a variable-blocked record is 32 759.

RECORD Clause
The RECORD clause specifies the number of character positions for fixed-length or
variable-length records.

RECORD clause - Format 1
Format 1 specifies the number of character positions for fixed length records.

RECORD Clause - Format 1

►► RECORD integer-3
CONTAINS CHARACTERS

►◄

BLOCK CONTAINS Clause

148 ILE COBOL Reference

integer-3
Must be an unsigned integer that specifies the number of character positions
contained in each record in the file.

When the maximum record length determined from the record description entries
does not match the length specified in the RECORD clause, the maximum will be
used.

RECORD clause - Format 2
Format 2 is the recommended format when dealing with variable records.

RECORD Clause - Format 2

►► RECORD VARYING
IS IN SIZE integer-4

FROM

►

►
TO integer-5 CHARACTERS DEPENDING data-name-1

ON

►◄

integer-4
Specifies the minimum number of character positions to be contained in any
record of the file. If integer-4 is not specified, the minimum number of
character positions to be contained in any record of the file is equal to the
smallest number of character positions described for a record in that file. If
specified, integer-4 must be nonzero and less than integer-5.

integer-5
Specifies the maximum number of character positions in any record of the file.
If integer-5 is not specified, the maximum number of character positions in any
record of the file is equal to the greatest number of character positions
described for a record in that file.

data-name-1
Must be an elementary unsigned integer.

If data-name-1 is specified:
v The number of character positions in the record must be placed into the data

item referenced by data-name-1 before any RELEASE, REWRITE, or WRITE
statement is executed for the file.

v The execution of a DELETE, RELEASE, REWRITE, START, or WRITE
statement or the unsuccessful execution of a READ or RETURN statement
does not alter the contents of the data item referenced by data-name-1.

v After the successful execution of a READ or RETURN statement for the file,
the contents of the data item referenced by data-name-1 indicate the number
of character positions in the record just read.

The number of character positions associated with a record description is
determined by the sum of the number of character positions in all elementary data
items (excluding redefinitions and renamings), plus any implicit FILLER due to
synchronization.

RECORD Clause

Chapter 11. Part 5. Data Division 149

If a table is specified, the minimum and maximum number of table elements
described in the record are used in the summation above, to determine the
minimum and maximum number of character positions associated with the record
description.

If the number of character positions in the logical record to be written is less than
integer-4 or greater than integer-5, the output statement is unsuccessful and, except
during execution of a RELEASE statement, the associated I-O status key is set to a
value indicating the cause of the condition.

During the execution of a RELEASE, REWRITE, or WRITE statement, the number
of character positions in the record is determined by the following conditions:
v If data-name-1 is specified, by the content of the data item referenced by

data-name-1.
v If data-name-1 is not specified and the record does not contain a variable

occurrence data item, by the number of character positions in the record.
v If data-name-1 is not specified and the record contains a variable occurrence

data item, by the sum of the fixed portion and that portion of the table
described by the number of occurrences at the time of execution of the output
statement.

During the execution of a READ ... INTO or RETURN ... INTO statement, the
number of character positions in the current record that participate as the sending
data items in the implicit MOVE statement is determined by the following
conditions:
v If data-name-1 is specified, by the content of the data item referenced by

data-name-1.
v If data-name-1 is not specified, by the value that would have been moved into

the data item referenced by data-name-1 had data-name-1 been specified.

RECORD clause - Format 3
Format 3 specifies the number of character positions for either fixed or variable
length records. (The latter is only applicable to tape files.)

RECORD Clause - Format 3

►► RECORD integer-6 TO integer-7
CONTAINS CHARACTERS

►◄

For Tape Files
In this case, the records are variable, and the following descriptions apply.

integer-6, integer-7
Must be unsigned integers. Integer-6 specifies the size of the smallest data
record, and integer-7 specifies the size of the largest data record.

For All Other Files
If Format 3 is used for non-tape files, the records are treated as fixed length
records the size of the largest data record. The logical records are truncated or
padded to the length of the record as defined in the CRTxxxF CL command. User
length in the following table is defined as the largest record associated with the
given file, as specified by its record description.

RECORD Clause

150 ILE COBOL Reference

Input/Output
Type

User Length Less Than
File Record Length

User Length Greater Than File Record
Length

Input Truncation Pad with blanks.

Output Pad with blanks Truncation if old file (non-empty); for new
(empty files) the larger record length is used.

Note: The maximum record length for a file is 32 767.

General Considerations for all Formats
When the RECORD clause is used, the record size must be specified as the number
of character positions needed to store the record internally. That is, it must specify
the number of bytes occupied internally by the characters of the record, not the
number of characters used to represent the data item within the record. The size of
a record is determined according to the rules for obtaining the size of a group
item.

When the RECORD clause is omitted, the compiler determines the record lengths
from the record descriptions. When one of the entries within a record description
contains an OCCURS DEPENDING ON clause, the compiler uses the maximum
value of the variable-length item to calculate the number of character positions
needed to store the record internally.

If the associated file connector is an external file connector, all file description
entries in the run unit that are associated with that file connector must specify the
same maximum number of character positions.

LABEL RECORDS Clause
The LABEL RECORDS clause indicates the presence or absence of labels. This
clause is only significant for FD - Format 3 (TAPEFILE). For all other FD formats,
this clause is syntax checked only, then treated as documentation.

LABEL RECORDS Clause - Format

►►
(1)

LABEL RECORD
IS

RECORDS
ARE

STANDARD
OMITTED

►◄

Notes:

1 Syntax-checked only.

If it is not specified for a file, label records for that file must conform to the system
label specifications.

STANDARD
Labels conforming to system specifications exist for this file.

OMITTED
No labels exist for this file.

RECORD Clause

Chapter 11. Part 5. Data Division 151

VALUE OF Clause
The VALUE OF clause describes an item in the label records associated with this
file. The clause is syntax checked, then treated as documentation.

VALUE OF Clause - Format

►►
(1)

VALUE OF ▼ system-name-1 data-name-1
IS literal-1

►◄

Notes:

1 Syntax-checked only.

system-name-1
Must follow the rules for formation of a user-defined word.

literal-1
Can be any literal.

IBM Extension

Floating-point literals cannot be used.

End of IBM Extension

data-name-1
Should be qualified when necessary, but cannot be subscripted. It must be
described in the Working-Storage Section, and cannot be described with the
USAGE IS INDEX clause.

DATA RECORDS Clause
The DATA RECORDS clause is syntax checked and it serves only as documentation
for the names of data records associated with this file.

DATA RECORDS Clause - Format

►►
(1)

DATA RECORD
IS

RECORDS
ARE

▼ data-name-2 ►◄

Notes:

1 Syntax-checked only.

data-name-2
The names of record description entries associated with this file. Data-name-2
must not be a type-name.

The specification of more than one data-name indicates that this file contains more
than one type of data record. Two or more record descriptions for this file occupy
the same storage area. These records need not have the same description or length.
The order in which the data-names are listed is not significant.

VALUE OF Clause

152 ILE COBOL Reference

LINAGE Clause
The LINAGE clause specifies the depth of a logical page in terms of number of
lines. Optionally, it also specifies the line number at which the footing area begins,
as well as the top and bottom margins of the logical page. (The logical page and
the physical page don't necessarily have to be of the same size.)

The LINAGE clause can be specified only for files assigned to the device
PRINTER. See “ASSIGN Clause” on page 100.

IBM i printer files offer a number of powerful features through DDS that can be
used to advantage. Such files are declared in ILE COBOL programs as
FORMATFILE. For more information on printer files, see the DB2 Universal
Database for AS/400 section of the Database and File Systems category in the System
i5/OS Information Center at this Web site - http://www.ibm.com/systems/i/
infocenter/.

LINAGE Clause - Format

►► LINAGE
IS

data-name-3
integer-8 LINES

►

►
FOOTING data-name-4

WITH AT integer-9

►

►
TOP data-name-5

LINES AT integer-10

►

►
BOTTOM data-name-6

LINES AT integer-11

►◄

The LINAGE clause does not affect the number of lines in the selected device file;
it only affects the logical page mechanism within the COBOL program.

At execution time, the printer file being used determines the physical page size.
This information is used to issue appropriate space and eject commands to
produce the logical page as defined in the LINAGE clause. Thus, the logical page
can contain multiple physical pages, or one physical page can contain multiple
logical pages.

All integers must be unsigned. All data-names must be described as unsigned
integer data items.

data-name-3, integer-8
The number of lines that can be written and/or spaced on this logical page.
The area of the page that these lines represent is called the page body. The
value must be greater than zero.

WITH FOOTING AT
Integer-9 or the value in data-name-4 specifies the first line number of the
footing area within the page body. The footing line number must be greater
than zero, and not greater than the last line of the page body. The footing area
extends between those two lines.

LINAGE Clause

Chapter 11. Part 5. Data Division 153

http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/

LINES AT TOP
Integer-10 or the value in data-name-5 specifies the number of lines in the top
margin of the logical page. The value may be zero.

LINES AT BOTTOM
Integer-11 or the value in data-name-6 specifies the number of lines in the
bottom margin of the logical page. The value may be zero.

Figure 6 illustrates the use of each phrase of the LINAGE clause.

Illustration of LINAGE clause phrases

The logical page size specified in the LINAGE clause is the sum of all values
specified in each phrase except the FOOTING phrase. If the LINES AT TOP and/or
the LINES AT BOTTOM phrase is omitted, the assumed value for top and bottom
margins is zero. Each logical page immediately follows the preceding logical page,
with no additional spacing provided.

If the FOOTING phrase is specified and the value of data-name-4 or integer-9 is
equal to the LINAGE value of data-name-3 or integer-8, one line (the last line of
the logical page) is available for footing information.

If the FOOTING phrase is omitted, its assumed value is equal to that of the page
body (integer-8 or data-name-3).

At the time an OPEN OUTPUT statement is executed, the values of integer-8,
integer-9, integer-10, and integer-11, if specified, are used to determine the page
body, first footing line, top margin, and bottom margin of the logical page for this
file. See Figure 6. These values are then used for all logical pages printed for this
file during a given execution of the program.

At the time an OPEN statement with the OUTPUT phrase is executed for the file,
data-name-3, data-name-4, data-name-5, and data-name-6 determine the page body,
first footing line, top margin, and bottom margin for the first logical page only.

)
) LINES AT TOP integer-10 (top margin)
)

logical
page depthpage body

WITH FOOTING integer-9

LINAGE integer-8

footing area

)
) LINES AT BOTTOM integer-11 (bottom margin)
)

Figure 6. LINAGE Clause Phrases

LINAGE Clause

154 ILE COBOL Reference

At the time a WRITE statement with the ADVANCING PAGE phrase is executed
or a page overflow condition occurs, the values of data-name-3, data-name-4,
data-name-5, and data-name-6, if specified, are used to determine the page body,
first footing line, top margin, and bottom margin for the next logical page.

LINAGE-COUNTER Special Register
A separate LINAGE-COUNTER special register is generated for each FD entry
containing a LINAGE clause (when more than one is generated, you must qualify
each LINAGE-COUNTER with its related file-name).

The implicit description of LINAGE-COUNTER is one of the following:
v If the LINAGE clause specifies data-name-3, LINAGE-COUNTER has the same

PICTURE and USAGE as data-name-3.
v If the LINAGE clause specifies integer-8, LINAGE-COUNTER is a binary item

large enough to hold the binary representation of integer-8.

The value in LINAGE-COUNTER at any given time is the line number at which
the device is positioned within the current page. LINAGE-COUNTER may be
referred to in Procedure Division statements; it cannot be modified by them.

LINAGE-COUNTER is initialized to 1 when an OPEN statement for this file is
executed.

LINAGE-COUNTER is automatically modified by any WRITE statement for this
file. (See “WRITE Statement” on page 508.)

If the file description for a sequential file contains the LINAGE clause and the
EXTERNAL clause, the LINAGE-COUNTER data item is an external data item.
Similarly, if it contains the LINAGE and GLOBAL clauses, the LINAGE-COUNTER
data item is a global data item.

You can specify the LINAGE-COUNTER special register wherever an integer
argument to a function is allowed.

CODE-SET Clause
The CODE-SET clause specifies the character code used to represent data on
DISKETTE and TAPEFILE.

CODE-SET Clause - Format

►► CODE-SET alphabet-name-1
IS

►◄

When the CODE-SET clause is specified, an alphabet-name identifies the character
code convention used to represent data on the input-output device.

The CODE-SET clause also specifies the algorithm for converting the character
codes on the input-output medium from/to the internal EBCDIC character set.

Alphabet-name-1 must be defined in the SPECIAL-NAMES paragraph as
STANDARD-1 (for ASCII-encoded files), STANDARD-2 (for ISO 7-bit encoded

LINAGE Clause

Chapter 11. Part 5. Data Division 155

files), NATIVE (for EBCDIC-encoded files), or EBCDIC (for EBCDIC-encoded files).
When NATIVE is specified, the CODE-SET clause is syntax checked, but it has no
effect on the execution of the program.

When the CODE-SET clause is specified for a file, all data in this file must have
USAGE DISPLAY, and, if signed numeric data is present, it must be described with
the SIGN IS SEPARATE clause.

When the CODE-SET clause is omitted, the EBCDIC character set is assumed.

Note: The IBM i system only supports ASCII and ISO for tape and diskette files.
Therefore, if the CODE-SET clause specifies a character code set of
STANDARD-1 (ASCII), or STANDARD-2 (ISO) for a file that is not a tape or
diskette file, a warning message is issued and the EBCDIC character set will
be used.

IBM Extension

If the CODE-SET clause is omitted, the CODE parameter of the Create Diskette File
(CRTDKTF) or the Create Tape File (CRTTAPF) CL command is used.

The CODE-SET clause can be changed at execution time by specifying the CODE
parameter on the Override with Diskette File (OVRDKTF) or the Override with
Tape File (OVRTAPF) CL command. For more information on these commands, see
the CL and APIs section of the Programming category in the System i5/OS
Information Center at this Web site -http://www.ibm.com/systems/i/infocenter/.

End of IBM Extension

CODE SET Clause

156 ILE COBOL Reference

http://www.ibm.com/systems/i/infocenter/

Chapter 12. Data Division—Data Description Entry

A data description entry specifies the characteristics of a data item. Data items
have attributes, which may be either implicit (default values), or explicit.

This section describes the coding of data description entries and record description
entries (which are sets of data description entries). The single term data
description entry is used in this section to refer to data and record description
entries.

Data description entries that define independent data items do not make up a
record. These are known as data item description entries.

The data description entry has four general formats.

Format 1
Format 1 is used for data description entries in all Data Division sections.
Level-number in this format can be any number from 01-49, as well as 77.

Data Description Entry - General Format 1

►► level-number
data-name-1

(1)
FILLER

REDEFINES data-name-2
(2)

LIKE data-name-3
(integer)

(2)
TYPEDEF

IS

►

►
EXTERNAL

IS
BLANK ZERO

WHEN

►

►
FORMAT Clause GLOBAL

IS
JUST
JUSTIFIED (3)

RIGHT

►

►
OCCURS clause - Format 1
OCCURS clause - Format 2

►

►
PICTURE character-string
PIC IS SIZE and LOCALE Phrases

►

►
LEADING

SIGN TRAILING SEPARATE
IS CHARACTER

►

© Copyright IBM Corp. 1993, 2010 157

►
VALUE literal

IS
SYNCHRONIZED
SYNC (3)

LEFT
(3)

RIGHT

►

►
(2)

TYPE type-name-1
BINARY

USAGE COMPUTATIONAL
IS COMP

(2)
COMPUTATIONAL-1

(2)
COMP-1

(2)
COMPUTATIONAL-2

(2)
COMP-2

(2)
COMPUTATIONAL-3

(2)
COMP-3

(2)
COMPUTATIONAL-4

(2)
COMP-4

(2)
COMPUTATIONAL-5

(2)
COMP-5
DISPLAY

(2)
DISPLAY-1
INDEX
NATIONAL
PACKED-DECIMAL

(2)
POINTER

(2)
PROCEDURE-POINTER

►◄

Notes:

1 Cannot be used with the TYPEDEF clause.

2 IBM Extension

3 Syntax-checked only

Data Description Entry - General Format 1 (continued)

►► ►◄

OCCURS clause - Format 1:

OCCURS integer-2 key-indexed-by phrase
TIMES

OCCURS clause - Format 2:

OCCURS integer-1 TO integer-2 DEPENDING data-name-1
TIMES ON

►

Data Division-Data Description Entry

158 ILE COBOL Reference

|||

► key-indexed-by phrase

key-indexed-by phrase:

▼

▼
(1)

ASCENDING data-name-2
(1) KEY IS

DESCENDING

►

►

▼INDEXED index-name-1
BY

Size and Locale Phrases:

(2)
SIZE integer-3 LOCALE

IS mnemonic-name-1
IS

FORMAT Clause:

(2)
FORMAT DATE

OF TIME IS
TIMESTAMP

►

►
literal-2

phrase 1
phrase 2

phrase 1:

SIZE integer-4
IS LOCALE

mnemonic-name-2
IS

phrase 2:

SIZE integer-5 LOCALE
IS mnemonic-name-3

IS

Data Division-Data Description Entry

Chapter 12. Part 5. Data Division 159

Notes:

1 Cannot be used with boolean data type

2 IBM Extension

The clauses may be written in any order with three exceptions:
v If data-name or FILLER is specified, it must immediately follow the

level-number.
v When specified, the REDEFINES clause must be the first entry following

data-name-1 or FILLER. If data-name-1 or FILLER is not specified, the
REDEFINES clause must be the first entry following the level-number. The data
item being described is treated as though FILLER has been specified.

v When specified, the TYPEDEF clause must be the first entry following
data-name-1. The TYPEDEF clause cannot be specified with FILLER. The
TYPEDEF clause and the REDEFINES clause cannot both be specified for
data-name-1.

Not all clauses are compatible with each other. For details, see the descriptions of
the individual clauses.

Clauses must be separated by a space, a separator comma, or a separator
semicolon.

Format 2
Format 2 regroups previously defined items.

Data Description Entry - General Format 2

►► 66 data-name-1 RENAMES data-name-2
THROUGH data-name-3
THRU

. ►◄

A level-66 entry cannot rename another level-66 entry, nor can it rename a level-01,
level-77, or level-88 entry.

All level-66 entries associated with one record must immediately follow the last
data description entry in that record.

Details are contained in “RENAMES Clause” on page 207.

Format 3
Format 3 describes condition-names.

Data Description Entry - General Format 3

►► 88 condition-name VALUE
IS

VALUES
ARE

►

Data Division-Data Description Entry

160 ILE COBOL Reference

► ▼ literal-1
THROUGH literal-2
THRU

. ►◄

condition-name
A user-specified name that associates a value, a set of values, or a range of
values with a conditional variable.

A conditional variable is a data item that can assume one or more values, that
can, in turn, be associated with a condition-name.

Format 3 can be used to describe both elementary and group items. Further
information on condition-name entries can be found under “Condition-Name
Condition” on page 249.

Format 4

IBM Extension

This format describes Boolean data. Boolean data items are items that are limited
to a value of 1 or 0.

Note: When you use indicators in a COBOL program, you must describe them as
Boolean data items using the data description entry for Boolean data.

Data Description Entry - Format 4 - Boolean Data

►► level-number
data-name-1

(1)
FILLER

REDEFINES data-name-2
LIKE data-name-3

TYPEDEF
IS

►

►
EXTERNAL

IS
GLOBAL

IS
(2)

JUST
JUSTIFIED RIGHT

►

►
OCCURS clause - Format 1
OCCURS clause - Format 2

INDICATOR integer-3
INDICATORS
INDIC

►

►
PICTURE 1
PIC IS

VALUE boolean-literal
IS

►

►
(2)

SYNCHRONIZED
SYNC LEFT

RIGHT

TYPE type-name-1
►

Data Division-Data Description Entry

Chapter 12. Part 5. Data Division 161

►
DISPLAY

USAGE
IS

. ►◄

OCCURS clause - Format 1:

OCCURS integer-2
TIMES

▼

▼INDEXED index-name-1
BY

OCCURS clause - Format 2:

OCCURS integer-1 TO integer-2
TIMES

DEPENDING data-name-4
ON

►

► ▼

▼INDEXED index-name-1
BY

Notes:

1 Cannot be used with the TYPEDEF clause.

2 Syntax-checked only

The special considerations for the clauses used with the Boolean data follow. All
other rules for clauses are the same as those for other data.

End of IBM Extension

Format 5

IBM Extension

Format 5 describes constant-names. Constant-name can only be described as a
Level-01 entry. Further information on constant-name can be found under
“CONSTANT Clause” on page 163.

End of IBM Extension

Data Division-Data Description Entry

162 ILE COBOL Reference

IBM Extension

►► 1 constant-name-1 CONSTANT AS literal-1
01 GLOBAL LENGTH OF data-name-2

IS

►◄

End of IBM Extension

CONSTANT Clause

IBM Extension

The CONSTANT clause is used to associate a constant name with a literal. The
constant name can then be used in place of a literal. The CONSTANT clause can
only be specified for level 01 entries for elementary constant name. The
CONSTANT clause can also be defined as another previously defined constant
name.

A Constant name needs to be defined in a CONSTANT clause before its use. It can
be used in Data Division and Procedure Division where literal or integer is
allowed, except in the compiler-directing statements, such as COPY statement and
TITLE statement.

Constant-name-1 may be used anywhere that a format specifies a literal of the
class and category of constant-name-1. The class and category of constant-name-1
is the same as that of literal-1 or is an integer if LENGTH OF phrase is specified. If
constant-name-1 is an integer, it may also be used to specify repetition in a picture
string.

Literal-1 cannot be a figurative constant.

If the LENGTH OF phrase is specified, the value of constant-name-1 is determined
as specified in the LENGTH intrinsic function with the exception that when
data-name-2 is a variable-length data item described with the OCCURS
DEPENDING ON clause, the maximum size of the data item is used.

End of IBM Extension

LIKE Clause

The length of the data item cannot be changed using this clause.

OCCURS Clause
When the OCCURS clause and the INDICATOR clause are both specified at an
elementary level, a table of Boolean data items is defined with each element in the
table corresponding to an external indicator. The first element in the table
corresponds to the indicator number specified in the INDICATOR clause; the
second element corresponds to the indicator that sequentially follows the indicator
specified by the INDICATOR clause.

For example, if the following is coded:
07 SWITCHES PIC 1

OCCURS 10 TIMES
INDICATOR 16.

Data Division-Data Description Entry

Chapter 12. Part 5. Data Division 163

then SWITCHES (1) corresponds to indicator 16, SWITCHES (2) corresponds to
indicator 17,..., and SWITCHES (10) corresponds to indicator 25.

INDICATOR Clause
If indicator fields are in a separate indicator area, the INDICATOR clause
associates an indicator defined in DDS with a Boolean data item. If indicator fields
are in the record area, the INDICATOR clause is syntax checked, but is treated as
documentation.

Integer-3 must be a value of 1 through 99.

The INDICATOR clause must be specified at an elementary level only.

VALUE Clause
The VALUE clause specifies the initial content of a Boolean data item. The
allowable values for Boolean literals are B“0”, B“1”, and ZERO.

Level-Numbers
The level-number specifies the hierarchy of data within a record, and identifies
special-purpose data entries. A level-number begins a data description entry, a
type-name, a renaming or redefining item, or a condition-name entry. A
level-number has a value taken from the set of integers between 1 and 49, or from
one of the special level-numbers, 66, 77, or 88.

level-number
Level-numbers must be followed either by a separator period; or by a space
followed by its associated data-name-1, FILLER, or appropriate data
description clause. Level number 01 and 77 must begin in Area A.
Level-number 77 must be followed by a space followed by its associated
data-name-1. Level numbers 02 through 49, 66, and 88 may begin in Area A or
B.

Single-digit level-numbers 1 through 9 may be substituted for level-numbers 01
through 09.

Successive data description entries may start in the same column as the first or
they may be indented according to the level-number. Indentation does not
affect the magnitude of a level-number.

When level-numbers are indented, each new level-number may begin any
number of spaces to the right of Area A. The extent of indentation to the right
is limited only by the width of Area B.

For more information, see “Levels of Data” on page 132 and “Standard Data
Format” on page 138.

IBM Extension

Elementary items or group items that are immediately subordinate to one
group item can have unequal level-numbers.

End of IBM Extension

data-name-1
Explicitly identifies the data being described.

Data Division-Data Description Entry

164 ILE COBOL Reference

If specified, data-name-1 identifies a data item used in the program. The data
item must be the first word following the level-number.

The data item can be changed during program execution.

Data-name-1 must be specified for:
v Level-66, level-77, and level-88 items
v Entries containing a GLOBAL, EXTERNAL, or TYPEDEF clause
v Record description entries associated with file description entries having

GLOBAL or EXTERNAL clauses.

FILLER
Is a data item that is not explicitly referred to in a program. The keyword
FILLER is optional. If specified, FILLER must be the first word following the
level-number.

The keyword FILLER may be used with a conditional variable, if explicit
reference is never made to the conditional variable but only to values it may
assume. FILLER may not be used with a condition-name or a type-name.

In a MOVE CORRESPONDING statement, or in an ADD CORRESPONDING
or SUBTRACT CORRESPONDING statement, FILLER items are ignored. In an
INITIALIZE statement, elementary FILLER items are ignored.

If data-name-1 or FILLER clause is omitted, the data item being described is
treated as though FILLER had been specified.

BLANK WHEN ZERO Clause
The BLANK WHEN ZERO clause specifies that an item contains nothing but
spaces when its value is zero.

BLANK WHEN ZERO Clause - Format

►► BLANK ZERO
WHEN

►◄

The BLANK WHEN ZERO clause may be specified only for elementary numeric or
numeric-edited items. These items must be described, either implicitly or explicitly,
as USAGE IS DISPLAY. When the BLANK WHEN ZERO clause is specified for a
numeric item, the item is considered a numeric-edited item.

The BLANK WHEN ZERO clause must not be specified for level-66 or level-88
items.

The BLANK WHEN ZERO clause must not be specified for an entry containing the
PICTURE symbols S or *.

The BLANK WHEN ZERO clause is not allowed with:
v USAGE IS INDEX clause

IBM Extension

v Items of class date-time
v External or internal floating-point items
v USAGE IS POINTER clause
v items described with the USAGE IS PROCEDURE-POINTER clause

Level-Numbers

Chapter 12. Part 5. Data Division 165

v DBCS items
v National items
v TYPE clause.

End of IBM Extension

EXTERNAL Clause
The EXTERNAL clause specifies that the storage associated with a data item is
associated with the run unit rather than with any particular program within the
run unit.

EXTERNAL Clause - Format

►► EXTERNAL
IS

►◄

An external data item can be referenced by any program in the run unit that
describes the data item. References to an external data item from different
programs using separate descriptions of the data item are always to the same data
item. In a run unit, there is only one representation of an external data item.

The EXTERNAL clause can be specified in either 01 level entries in the
Working-Storage Section or in file description entries. If there are two data
description entries with the same data name in the same Data Division, only one
entry can contain the EXTERNAL clause. Index-names, condition-names, and
renaming (level-66) items in an external data record do not possess the EXTERNAL
attribute.

The data contained in the record named by the data-name clause is external and
can be accessed and processed by any program in the run unit that describes and,
optionally, redefines it. This data is subject to the following rules:
v If two or more programs within a run unit describe the same external data

record, each record-name of the associated record description entries must be the
same and the records must define the same number of standard data format
characters. However, a program that describes an external record can contain a
data description entry including the REDEFINES clause that redefines the
complete external record, and this complete redefinition need not occur
identically in other programs in the run unit.

v Use of the EXTERNAL clause does not imply that the associated data-name is a
global name.

v The VALUE clause must not be used in any data description entry which
includes, or is subordinate to an entry which includes, the EXTERNAL clause.
The VALUE clause can be specified for condition-name entries associated with
such data description entries.

v The TYPEDEF clause cannot be specified in the same data description entry as
the EXTERNAL clause.

See Chapter 4, “Data Reference and Name Scoping,” on page 29 for more
information.

BLANK WHEN ZERO Clause

166 ILE COBOL Reference

FORMAT Clause

IBM Extension

The FORMAT clause specifies the general characteristics and editing requirements
of an elementary date, time, or timestamp item.

FORMAT Clause - Format

►► FORMAT DATE
OF TIME IS

TIMESTAMP
literal-2

phrase 1
phrase 2

►◄

phrase 1:

SIZE integer-4
IS LOCALE

mnemonic-name-1
IS

phrase 2:

SIZE integer-5 LOCALE
IS mnemonic-name-2

IS

The FORMAT clause must be specified for every elementary date, time, or
timestamp item, except the subject of a RENAMES clause.

Neither literal-2 nor the SIZE phrase may be specified for a timestamp item. This
has a fixed format, which is 26 characters in length and equivalent to a literal-2
value of "@Y-%m-%d-%H.%M.%S.@Sm".

If literal-2 or the LOCALE phrase is not specified for a date or time item, the
format of the item is determined from the SPECIAL-NAMES FORMAT clause.

A data item of class date-time cannot be reference modified.

When the FORMAT clause is specified, the following clauses cannot be specified:
v PICTURE clause.
v SIGN clause.
v BLANK WHEN ZERO clause.
v JUSTIFIED clause.
v LIKE clause. A LIKE clause can, however, be used to define the FORMAT of a

data item. You cannot change the size of a date, time, or timestamp item with a
LIKE clause. When a LIKE clause is referring to a date, time, or timestamp item,
a comment is generated with the appropriate FORMAT clause information that
is inherited

v TYPE clause.

The following general rules apply:

FORMAT Clause

Chapter 12. Part 5. Data Division 167

v A condition-name can be associated with a date-time item. The VALUE clause of
the condition-name can be specified with a THRU phrase.

v A SYNCHRONIZED clause is treated as documentation.
v The OCCURS, REDEFINES, and RENAMES clauses can be associated with date,

time, or timestamp items.
v If a LIKE clause is specified, a FORMAT clause cannot be specified.
v Any associated VALUE clause must specify a non-numeric literal. The literal is

treated exactly as specified; no formatting is done.

literal-2
Specifies the format of a date or time item. Literal-2 must be a non-numeric
literal, at least 2 characters long. The contents of literal-2 is made up of
separators and conversion specifiers. For a list of valid conversion specifiers,
see Table 5 on page 86. For further rules on the contents of literal-2, see the
description of the FORMAT clause used in the SPECIAL-NAMES paragraph in
“FORMAT Clause” on page 85.

SIZE Phrase
For a more detailed description of the SIZE phrase, refer to “SIZE Phrase” on page
87. This section describes the parameters that you specify for this SIZE phrase.

integer-3, integer-4
Integer-3 and integer-4 determine the size of the date or time item in number
of digits. Integer-3 or integer-4 must be specified if the size of the date or time
item cannot be determined at compile time. For a date or time item, the values
of both integer-3 and integer-4 must be equal to or greater than 4.

mnemonic-name-1, mnemonic-name-2
For more information about mnemonic-name-1 or mnemonic-name2, refer to
the description in “LOCALE Phrase” and “LOCALE Phrase” on page 87.

USAGE For a Class Date-Time Item
If no USAGE clause is specified for an item of class date-time, USAGE DISPLAY is
assumed. A USAGE of DISPLAY or PACKED-DECIMAL (COMP-3) can be
explicitly specified for a date-time item. A USAGE of PACKED-DECIMAL can be
specified for an item of class date-time, if literal-2 contains only conversion
specifiers, and those specifiers will result in numeric digits.

FORMAT Clause and PICTURE CLAUSE Similarities
A FORMAT clause defines an implicit PICTURE clause. Although there is no
PICTURE character-string that can easily describe a date or time item, for some
formats, an approximate definition does exist. For example, a date item with a
FORMAT '%y,%m,%d' is similar to the PICTURE 99/99/99, where the '/' PICTURE
symbol is replaced with a ','.

LOCALE Phrase
The LOCALE phrase specifies the culturally-appropriate format of the date, time,
or timestamp item.

When the LOCALE phrase is specified, without literal-2, the format and separator
used for the date and time items is completely based on the locale.

When the LOCALE phrase is specified with literal-2, literal-2 determines the
format of the item, but the conversion specifications are replaced with items based
on the locale.

FORMAT Clause

168 ILE COBOL Reference

mnemonic-name-1, mnemonic-name-2
If a mnemonic-name is specified, the locale used for the date or time item is
one associated with the mnemonic-name in the LOCALE clause of the
SPECIAL-NAMES paragraph. If a mnemonic-name is not specified, the current
locale is used. For more information about how to determine the current locale,
refer to the IBM Rational Development Studio for i: ILE COBOL Programmer's
Guide.

LOCALE OF Special Register
The LOCALE OF special register returns the equivalent of a locale mnemonic-name
associated with the specified data item. If the data item does not have a locale
associated with it, the keyword COBOL is returned. The LOCALE OF special
register cannot be modified, and can only be specified in the PROCEDURE
DIVISION where a locale mnemonic-name is allowed.

A date-time data item can be used in expressions using the LOCALE OF special
register.

DDS Data Types and FORMAT Literal Equivalent
In DDS, a date data type's format is specified with the DATFMT parameter. Valid
DATFMT parameters include *MDY and *ISO. Along with the DATFMT keyword,
a DATSEP keyword specifies a one-character value to be used as a separator
between the month, day, and year value. A complete list of DATFMT parameters
and their allowed DDS Date separators, along with their COBOL format literal
equivalents, is shown in Table 10.

In DDS, a time data type's format is specified with the TIMFMT parameter. Valid
TIMFMT parameters include *HMS and *ISO. Along with the TIMFMT keyword, a
TIMSEP keyword specifies a one-character value to be used as a separator between
the hours, minutes, and second value. A complete list of TIMFMT parameters and
their allowed DDS Time separators, along with their COBOL format literal
equivalents, is shown in Table 11.

Table 10. DDS Date Data Types and Their Equivalent ILE COBOL Format
IBM i
Format

COBOL-Generated Format Description Format Valid
Separators

Length

*MDY %m/%d/%y Month/Day/Year mm/dd/yy /-.,space 8

*DMY %d/%m/%y Day/Month/Year dd/mm/yy /-.,space 8

*YMD %y/%m/%d Year/Month/Day yy/mm/dd /-.,space 8

*JUL %y/%j Julian yy/ddd /-.,space 6

*ISO @Y-%m-%d International Standards Organization yyyy-mm-dd - 10

*USA %m/%d/@Y IBM USA Standard mm/dd/yyyy / 10

*EUR %d.%m.@Y IBM European Standard dd.mm.yyyy . 10

*JIS @Y-%m-%d Japanese Industrial Standard Christian Era yyyy-mm-dd - 10

Table 11. DDS Time Data Types and Their Equivalent ILE COBOL Format
IBM i
Format

COBOL-Generated Format Description Format Valid
Separators

Length

*HMS %H:%M:%S Hours:Minutes:Seconds hh:mm:ss :.,space 8

*ISO %H.%M.%S International Standards Organization hh.mm.ss . 8

*USA %I:%M @p IBM USA Standard. AM and PM can be any mix of
upper and lower case.

hh:mm AM or
hh:mm PM

: 8

*EUR %H.%M.%S IBM European Standard hh.mm.ss . 8

*JIS %H:%M:%S Japanese Industrial Standard Christian Era hh:mm:ss : 8

FORMAT Clause

Chapter 12. Part 5. Data Division 169

FORMAT OF Special Register
The FORMAT OF phrase of the PROCEDURE DIVISION creates an implicit special
register, called the FORMAT OF special register, whose contents equal the
FORMAT literal of the data item referenced by the identifier. The FORMAT OF
special register can only be specified for data items of class date-time. The length
of this special register depends on the literal or locale specified in the FORMAT
phrase for the data item.

The FORMAT OF special register has the implicit definition:
USAGE DISPLAY, PICTURE X(n)
where n equals the number of bytes of the implicit or explicit
FORMAT literal.

For example, consider the following data description entry for date data item
date2:

05 date2 FORMAT DATE IS ’%d,%m,%y’.

The following MOVE statement uses the intrinsic function CONVERT-DATE-TIME
to convert date data item date3 into the format of date data item date2. The
FORMAT OF phrase creates an implicit special register whose content would be
%d,%m,%y.

MOVE FUNCTION CONVERT-DATE-TIME(date3, DATE, FORMAT OF date2)
TO alpha-num-date.

The length of the special register in this example is 8.

The following rules apply:
v The FORMAT OF special register cannot be modified, and can only be specified

in the PROCEDURE DIVISION, where a FORMAT non-numeric literal is
allowed.

v A separate FORMAT OF special register exists for each identifier referenced with
the FORMAT OF phrase

End of IBM Extension

GLOBAL Clause
The GLOBAL clause specifies that a data-name or constant-name is available to the
program that declares it and to every program contained within the program that
declares it, as long as the contained program does not itself have a declaration for
that name. All data-names subordinate to, or condition-names or index-names
associated with a global name, are global names.

GLOBAL Clause - Format

►► GLOBAL
IS

►◄

A data-name is global if the GLOBAL clause is specified either in the data
description entry by which the data-name is declared or in another entry to which
that data description entry is subordinate.

FORMAT Clause

170 ILE COBOL Reference

IBM Extension

The GLOBAL clause can be specified in the Linkage and Local-Storage Sections,
but only in data description entries whose level-number is 01.

End of IBM Extension

In the same Data Division, the data description entries for any two data items for
which the same data-name is specified must not include the GLOBAL clause.

A statement in a program contained directly or indirectly within a program which
describes a global name can reference that name without describing it again.

IBM Extension

If the TYPEDEF clause is specified with the GLOBAL clause, the scope of the
GLOBAL clause applies to the type-name, and to any data items subordinate to the
type-name. The GLOBAL attribute is not acquired by a data item that is defines
using a global type-name within a TYPE clause.

End of IBM Extension

Sharing Data
Two programs in a run unit can reference common data in the following
circumstances:
1. The data content of an external data record can be referenced from any

program provided that program has described that data record.
2. If a program is contained within another program, both programs can refer to

data possessing the global attribute either in the containing program or in any
program that directly or indirectly contains the containing program.

3. A parameter passed by reference can be shared between the calling program
and the called program.

JUSTIFIED Clause
The JUSTIFIED clause overrides standard positioning rules for a receiving item of
the alphabetic or alphanumeric categories.

JUSTIFIED Clause - Format

►► JUSTIFIED
JUST (1)

RIGHT

►◄

Notes:

1 Syntax-checked only

The JUSTIFIED clause may be specified only at the elementary level. RIGHT is an
optional word that is syntax checked only and has no effect on the execution of the
program.

The JUSTIFIED clause cannot be specified for numeric or numeric-edited items.

GLOBAL Clause

Chapter 12. Part 5. Data Division 171

IBM Extension

It can be specified for DBCS, DBCS-edited, and national items.

End of IBM Extension

The JUSTIFIED clause is not allowed for:
v Level-66 (RENAMES) entries
v Level-88 (condition-name) entries
v Items described with the USAGE IS INDEX clause

IBM Extension

v Items described with the USAGE IS POINTER clause
v Items described with the USAGE IS PROCEDURE-POINTER clause
v External or internal floating-point items
v Items with the TYPE clause.

End of IBM Extension

IBM Extension

The JUSTIFIED clause can be specified for an alphanumeric edited item.

End of IBM Extension

When the JUSTIFIED clause is omitted, the rules for standard alignment are
followed (see “Alignment Rules” on page 136).

When the JUSTIFIED clause is specified for a receiving item, the data is aligned at
the rightmost character position in the receiving item. Also:
v If the sending item is larger than the receiving item, the leftmost characters are

truncated.
v If the sending item is smaller than the receiving item, the unused character

positions at the left are filled with spaces.

The JUSTIFIED clause does not affect initial values, as determined by the VALUE
clause.

LIKE Clause

IBM Extension

The LIKE clause allows you to define the PICTURE, USAGE, SIGN, and FORMAT
characteristics of a data item by copying them from a previously defined data item.
It also allows you to make the length of the data item you define different from
the length of the original item.

LIKE Clause - Format

►►
(1)

LIKE data-name-1
(integer)

►◄

JUSTIFIED Clause

172 ILE COBOL Reference

Notes:

1 IBM Extension

data-name-1
Can refer to an elementary item, a group item, an index-name, or a type-name.
The item referred to by data-name-1 is known as the object of the LIKE clause.

integer
Specifies the difference in length between the new and existing items.

It can be signed.

If a blank or a + precedes the integer, the new item is longer. If a − precedes
the integer, the new item is shorter.

You cannot use the integer option to:
v Change the length of an edited item
v Change the length of an index, pointer, or procedure-pointer item
v Change the number of decimal places in a data item
v Change the length of an internal or external floating-point data item
v Change the length of a date, time, or timestamp item

Note that an item whose attributes include BLANK WHEN ZERO is treated as
an edited item.

The LIKE clause causes the new data item to inherit specific characteristics from
the existing data item. These characteristics are the PICTURE, USAGE, SIGN,
BLANK WHEN ZERO, and FORMAT attributes of the existing item.

The compiler generates comments to identify the characteristics of the new item.
These comments appear after the statement containing the LIKE clause.

Note that the default USAGE IS DISPLAY and SIGN IS TRAILING characteristics
do not print as comments.

The FORMAT characteristics that can be inherited include:
v The category of the item: date, time, or timestamp
v A FORMAT literal
v A SIZE phrase and LOCALE phrase.

For more information about the FORMAT clause, refer to “FORMAT Clause” on
page 167.

Comments Generated Based on Inherited USAGE
Characteristics

The different USAGE clauses that you can specify for the original item result in a
limited number of comments. Table 12 illustrates this.

Table 12. Comments Generated based on Inherited USAGE Characteristics

Inherited USAGE Clause Generated Comment

PACKED-DECIMAL
COMPUTATIONAL
COMPUTATIONAL-3

* USAGE IS PACKED-DECIMAL

COMP-1
COMUTATIONAL-1

* USAGE IS COMPUTATIONAL-1

LIKE Clause

Chapter 12. Part 5. Data Division 173

Table 12. Comments Generated based on Inherited USAGE Characteristics (continued)

Inherited USAGE Clause Generated Comment

COMP-2
COMUTATIONAL-2

* USAGE IS COMPUTATIONAL-2

BINARY
COMP-4
COMPUTATIONAL-4

* USAGE IS BINARY

COMP-5
COMPUTATIONAL-5

* USAGE COMP-5

INDEX *USAGE IS INDEX

NATIONAL *USAGE IS NATIONAL

DISPLAY This is the default usage, so a comment is
not generated.

DISPLAY-1 * USAGE IS DISPLAY-1

POINTER * USAGE IS POINTER

PROCEDURE-POINTER * USAGE IS PROCEDURE-POINTER

The characteristics of the data item that you define using the LIKE clause are
shown in the listing of your compiled program.

Rules and Restrictions
You can use the LIKE clause at level-numbers 01 through 49, and at level-number
77.

If you specify data-name or FILLER entries, you can put the LIKE clause in any
position after them. Otherwise, you can put it in any position after the
level-number.

You can specify one or more other clauses before or after the LIKE clause:
v JUSTIFIED
v SYNCHRONIZED
v BLANK WHEN ZERO
v VALUE
v OCCURS.

Note that you can specify BLANK WHEN ZERO only if it has not previously been
inherited.

You cannot use the LIKE clause with the following clauses:
v REDEFINES
v SIGN
v USAGE
v PICTURE
v FORMAT
v TYPE
v TYPEDEF.

If you specify any inherited clauses in the LIKE clause, a duplication error will
result.

LIKE Clause

174 ILE COBOL Reference

|
|
|

|
|
|

||

For numeric items, the total number of numeric characters in the new item cannot
be zero. But if the item contains decimals, the number of characters in the integer
portion can be zero.

If a PICTURE clause specifies a mixture of alphabetic, numeric, or alphanumeric
characters, and the LIKE clause has length modification, the new PICTURE clause
specifies alphanumeric characters.

You cannot use the LIKE clause to define an item that is subordinate to the item
that you name in the clause.

The object of a LIKE clause cannot contain the TYPE clause in its data description.
If the object of a LIKE clause is a group item, then none of the items subordinate
to this group can be defined using the TYPE clause. If the object of a LIKE clause
is subordinate to a (level-01) group item, and an item which is subordinate to the
level-01 group item contains a TYPE clause, then the type-name referenced in the
TYPE clause must be fully defined at the point in the DATA DIVISION when the
LIKE clause is used.

Coding Examples
To create data item DEPTH with the same attributes as data item HEIGHT, you
simply write:

DEPTH LIKE HEIGHT

To create data item PROVINCE with the same attributes as data item STATE,
except one byte longer, you write:

PROVINCE LIKE STATE (+1)

End of IBM Extension

OCCURS Clause
The Data Division clauses that are used for table handling are the OCCURS clause
and USAGE IS INDEX clause (For the USAGE IS INDEX description, see “USAGE
Clause” on page 217.) Format 1 of the OCCURS clause handles fixed-length tables.
Format 2 of the OCCURS clause handles variable-length tables.

Table Handling Concepts
A table is a set of logically consecutive items, each of which has the same data
description as the other items in the set. COBOL provides a method of data
reference which makes it possible to refer to all or to part of one table as an entity.

In COBOL, a table is defined with an OCCURS clause in its data description. The
OCCURS clause specifies that the named item is to be repeated as many times as
stated. The item so named is considered a table element, and its name and
description apply to each repetition (or occurrence) of the item. Because the
occurrences are not given unique data-names, reference to a particular occurrence
can be made only by specifying the data-name of the table element, together with
the occurrence number of the desired item within the element.

The occurrence number is known as a subscript and the technique of supplying the
occurrence number of individual table elements is called subscripting. Subscripting
is described in a subsequent section.

LIKE Clause

Chapter 12. Part 5. Data Division 175

The data-name of the data item containing the OCCURS clause is known as the
subject of the OCCURS clause. When the subject of an OCCURS clause (or any
data-item subordinate to it) is referenced, it must be subscripted or indexed unless:
v The subject of the OCCURS clause is used as the subject of the SEARCH

statement.
v The subject (or subordinate data item) is the object of the ASCENDING/

DESCENDING KEY clause.
v The subordinate data item is the object of the REDEFINES clause.

When the subject of an OCCURS clause is subscripted or indexed, it represents one
occurrence within the table. Otherwise, the subject represents the entire table.

IBM Extension

An item whose usage is POINTER or PROCEDURE-POINTER can contain an
OCCURS clause, or be subordinate to an item declared with an OCCURS clause.

Tables containing pointer or procedure-pointer data items are subject to pointer
alignment as defined under “Pointer Alignment” on page 228. Where necessary,
the compiler adds FILLER items to align the pointers in the first element of the
table, plus a FILLER item at the end of the element to align the next pointer. This
continues until all pointers in the table have been aligned.

A boolean, external or internal floating-point, date, time, or timestamp item can
contain an OCCURS clause, or be subordinate to an item declared with an
OCCURS clause.

End of IBM Extension

Limitations
You should be aware of the following limitations when you work with tables:
v The number of occurrences of an item in the OCCURS clause can be up to a

maximum of 16 711 568.
v Table elements, including subordinate elements, have a size limit of 16 711 568

bytes.
v The OCCURS clause cannot appear in a data description entry that:

– Has a level-number of 01, 66, 77, or 88.
– Describes a redefined data item. However, a redefined item can be

subordinate to an item containing an OCCURS clause.

Defining Tables
The ILE COBOL compiler allows tables in one to seven dimensions.

To define a one-dimensional table, set up a group item that includes one OCCURS
clause. Remember that the OCCURS clause cannot appear in a data description
entry whose level-number is 01, 66, 77, or 88.

For example:
01 TABLE-ONE.
05 ELEMENT-ONE OCCURS 3 TIMES.

10 ELEMENT-A PIC X(4).
10 ELEMENT-B PIC 9(4).

OCCURS Clause

176 ILE COBOL Reference

TABLE-ONE is the group item that contains the table. ELEMENT-ONE is an
element of a one-dimensional table that occurs three times. ELEMENT-A and
ELEMENT-B are elementary items subordinate to ELEMENT-ONE.

To define a three-dimensional table, a one-dimensional table is defined within each
occurrence of another one-dimensional table, which is itself contained within each
occurrence of another one-dimensional table. For example:
01 TABLE-THREE.
05 ELEMENT-ONE OCCURS 3 TIMES.

10 ELEMENT-TWO OCCURS 3 TIMES.
15 ELEMENT-THREE OCCURS 2 TIMES

PICTURE X(8).

TABLE-THREE is the group item that contains the table. ELEMENT-ONE is an
element of a one-dimensional table that occurs three times. ELEMENT-TWO is an
element of a two-dimensional table that occurs three times within each occurrence
of ELEMENT-ONE. ELEMENT-THREE is an element of a three-dimensional table
that occurs two times within each occurrence of ELEMENT-TWO. Figure 7 shows
the storage layout for TABLE-THREE.

OCCURS Clause

Chapter 12. Part 5. Data Division 177

Referencing Table Elements
Whenever the user refers to a table element, or to any item associated with a table
element, the reference must indicate which occurrence is intended.

For a one-dimensional table, the occurrence number of the desired element gives
the complete information. For tables of more than one dimension, an occurrence
number for each dimension must be supplied. In the three-dimensional table
defined in the previous discussion, for example, a reference to ELEMENT-THREE
must supply the occurrence number for ELEMENT-ONE, ELEMENT-TWO, and
ELEMENT-THREE.

B 0 / , $
CR
DB

+
-

+
-

+
-

+
- $ $ 9

A
X S V P P

9

A
X

S

V

P

P

1

$

$

B

0

/

,

$

E

E

+
-

+
-

CR
DB

+
-

+
-

O
th

e
r

S
y
m

b
o
ls

In
s
e
rt

io
n
 S

y
m

b
o
ls

In
s
e
rt

io
n
 S

y
m

b
o
ls

Second
Symbol

Symbol
Insertion Symbols Insertion Symbols Other Symbols

Non-floating Floating

F
lo

a
ti
n
g

N
o
n
-f

lo
a
ti
n
g

First

G

N

G N
Z
*

Z
*

Z
*

Z
*

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X X X X X X X X X X X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XXX

X

X

X

X X

X

X X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X X

X X X X

X

X

XX X X

X X X

XXXXX

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

.

.

X

1

Figure 7. Storage Layout for TABLE-THREE

OCCURS Clause

178 ILE COBOL Reference

Fixed-Length Tables
Fixed-length tables are specified using the OCCURS clause. Because seven
subscripts or indexes are allowed, six nested levels and one outermost level of the
Format 1 OCCURS clause are allowed. The Format 1 OCCURS clause may be
specified as subordinate to the OCCURS DEPENDING ON clause. In this way, a
table of up to seven dimensions may be specified.

OCCURS Clause - Format 1 - Fixed-Length Tables

►► OCCURS integer-2
TIMES

►

► ▼

▼ASCENDING data-name-2
DESCENDING KEY IS

►

►

▼INDEXED index-name-1
BY

►◄

integer-2
Specifies the exact number of occurrences, and must be greater than zero.

In the ILE COBOL language, integer-2 must be between 1 and 16 711 568
bytes.

ASCENDING/DESCENDING KEY Phrase
Data is arranged in ascending or descending order (depending on the keyword
specified) according to the values contained in data-name-2. The data-names are
listed in their descending order of significance.

ASCENDING/DESCENDING KEY Phrase - Format

►► ▼ ▼
(1)

ASCENDING data-name-2
(1) KEY IS

DESCENDING

►◄

Notes:

1 Cannot be used with boolean data type

OCCURS Clause

Chapter 12. Part 5. Data Division 179

The order is determined by the rules for comparison of operands (see “Relation
Condition” on page 250). The ASCENDING and DESCENDING KEY data items
are used in OCCURS clauses and the SEARCH ALL statement for a binary search
of the table element.

data-name-2
Must be the name of the subject entry, or the name of an entry subordinate to
the subject entry.

If data-name-2 names the subject entry, that entire entry becomes the
ASCENDING/DESCENDING KEY, and is the only key that may be specified
for this table element.

If data-name-2 does not name the subject entry, then data-name-2:
v Must be subordinate to the subject of the table entry itself
v Must not be subordinate to, or follow, any other entry that contains an

OCCURS clause
v Must not contain an OCCURS clause

ASCENDING/DESCENDING KEY Phrase Rules
When the ASCENDING/DESCENDING KEY phrase is specified, the following
rules apply:
v Keys must be listed in decreasing order of significance.
v You must arrange the data in the table in ASCENDING or DESCENDING

sequence according to the collating sequence in use.
v A key can have DISPLAY, BINARY, PACKED-DECIMAL, or COMPUTATIONAL

usage.

IBM Extension

v The KEY phrase can be specified in the OCCURS clause for a DBCS item.
v A key can have COMPUTATIONAL-1, COMPUTATIONAL-2,

COMPUTATIONAL-3, COMPUTATIONAL-4, or COMPUTATIONAL-5 usage.
v A key can have DISPLAY-1 usage.
v A key can be an item of class date-time.

End of IBM Extension

ASCENDING/DESCENDING KEY Phrase Coding Example
The following example illustrates the specification of ASCENDING KEY data
items:
WORKING-STORAGE SECTION.
01 TABLE-RECORD.

05 EMPLOYEE-TABLE OCCURS 100 TIMES
ASCENDING KEY IS WAGE-RATE EMPLOYEE-NO
INDEXED BY A, B.

10 EMPLOYEE-NAME PIC X(20).
10 EMPLOYEE-NO PIC 9(6).
10 WAGE-RATE PIC 9999V99.
10 WEEK-RECORD OCCURS 52 TIMES

ASCENDING KEY IS WEEK-NO INDEXED BY C.
15 WEEK-NO PIC 99.
15 AUTHORIZED-ABSENCES PIC 9.
15 UNAUTHORIZED-ABSENCES PIC 9.
15 LATE-ARRIVALS PIC 9.

OCCURS Clause

180 ILE COBOL Reference

|
|

The keys for EMPLOYEE-TABLE are subordinate to that entry, while the key for
WEEK-RECORD is subordinate to that subordinate entry.

In the preceding example, records in EMPLOYEE-TABLE must be arranged in
ascending order of WAGE-RATE, and in ascending order of EMPLOYEE-NO
within WAGE-RATE. Records in WEEK-RECORD must be arranged in ascending
order of WEEK-NO. If they are not, results of any SEARCH ALL statement will be
unpredictable.

INDEXED BY Phrase
The INDEXED BY phrase specifies the indexes that can be used with this table.
The INDEXED BY phrase is required if indexing is used to refer to this table
element. See “Subscripting Using Index-Names (Indexing)” on page 35.

The value of an index is made accessible to a program by storing the value in an
index data-item. Index data-items are described in the program by a data
description entry containing the USAGE IS INDEX clause. The index value is
moved to the index data-item through the SET statement.

Indexes normally are allocated in static memory associated with the program
containing the table. Consequently, indexes are in the last-used state when a
program is re-entered. However, in the following cases, indexes are allocated on a
per-invocation basis. Thus, you must SET the value of the index on every entry for
indexes on tables in the following sections:
v Local-Storage Section.
v Linkage Section of a program compiled with the RECURSIVE attribute.

INDEXED BY Phrase - Format

►► INDEXED
BY

▼ index-name-1 ►◄

index-name-1
Must follow the rules for formation of user-defined words. At least one
character must be alphabetic.

Each index-name specifies an index to be created by the compiler for use by
the program. These index-names are not data-names, and are not identified
elsewhere in the COBOL program; instead, they can be regarded as private
special registers for the use of this object program only. As such, they are not
data, or part of any data hierarchy; as such, each must be unique.

If a data item possessing the GLOBAL attribute includes a table accessed with
an index, the index defined for the table also possess the GLOBAL attribute.

Variable-Length Tables
Variable-length tables are specified using Format 2 of the OCCURS clause.

OCCURS Clause - Format 2 - Variable-Length Tables

►► OCCURS integer-1 TO integer-2 DEPENDING
TIMES ON

►

OCCURS Clause

Chapter 12. Part 5. Data Division 181

► data-name-1 ▼

▼ASCENDING data-name-2
DESCENDING KEY IS

►

►

▼INDEXED index-name-1
BY

►◄

The length of the subject item is fixed; it is only the number of repetitions of the
subject item that is variable.

integer-1
The minimum number of occurrences.

The value of integer-1 must be greater than or equal to zero; it must also be
less than the value of integer-2.

integer-2
The maximum number of occurrences.

data-name-1
Specifies the object of the OCCURS DEPENDING ON clause; that is, the
(integer) data item whose current value represents the current number of
occurrences of the subject item. The contents of items whose occurrence
numbers exceed the value of the object are unpredictable.

The object of the OCCURS DEPENDING ON clause must not occupy any storage
position within the range of any table (that is, any storage position from the first
character position in the table through the last character position in the table).

The object of the OCCURS DEPENDING ON clause may not be variably located;
the object cannot follow an item that contains an OCCURS DEPENDING ON
clause.

At the time that the group item (or any data item that contains a subordinate
OCCURS DEPENDING ON item or that follows but is not subordinate to the
OCCURS DEPENDING ON item) is referenced, the value of the object of the
OCCURS DEPENDING ON clause must fall within the range integer-1 through
integer-2. This rule does not apply when the group being referenced is used in a
CALL BY REFERENCE statement, provided that the group is not variably-located.

If the OCCURS clause is specified in a data description entry included in a record
description entry containing the EXTERNAL clause, data-name-1 must reference a
data item possessing the EXTERNAL attribute which is described in the same Data
Division.

If the data description entry is subordinate to one containing the GLOBAL clause,
data-name-1 must be a global name and must reference a data item which is
described in the same Data Division.

OCCURS Clause

182 ILE COBOL Reference

When a group item containing a subordinate OCCURS DEPENDING ON item is
referred to, the part of the table area used in the operation is determined as
follows:
v If the object is outside the group, only that part of the table area that is specified

by the object at the start of the operation will be used.
v If the object is included in the same group and the group data item is referenced

as a sending item, only that part of the table area that is specified by the value
of the object at the start of the operation will be used in the operation.

v If the object is included in the same group and the group data item is referenced
as a receiving item, the maximum length of the group item will be used in the
operation.

When reference modification is applied to a group item containing a
variable-length table, reference modification creates a unique data item from the
referenced data item. The length of this referenced data item is determined by first
applying the previous rules. Subsequently, the rules for reference modification are
applied to determine the length of the unique data item.

If a group item containing a variable-length table is used as an argument in the
CALL statement USING phrase, the size of the storage for that parameter from the
called program's point of view depends on how the argument is passed. If it is
passed BY REFERENCE, the maximum size is described by the data description of
the argument in the calling program. If it is passed BY CONTENT, the group item
is considered as a sending item.

If the group item is followed by a non-subordinate item, the actual length (rather
than the maximum length) will be used. At the time the subject of entry is
referenced (or any data item subordinate or superordinate to the subject of entry is
referenced), the object of the OCCURS DEPENDING ON clause must fall within
the range integer-1 through integer-2.

The subject of an OCCURS clause is the data-name of the data item containing the
OCCURS clause. The subject of an OCCURS clause may be subordinate to a
type-name. Except for the OCCURS clause itself, data description clauses used
with the subject apply to each occurrence of the item described.

Subscripting or indexing is required whenever the subject is used in a statement
other than SEARCH or USE FOR DEBUGGING, unless it is the object of a
REDEFINES clause. In this case, the subject refers to one occurrence within a table
element.

Subscripting and indexing are not allowed when the subject is used in a SEARCH or
USE FOR DEBUGGING statement, or when it is the object of a REDEFINES clause.
In this case, the subject represents an entire table element.

Note that the previous two restrictions do not apply to the LENGTH OF special
register.

In one record description entry, any entry that contains an OCCURS DEPENDING
ON clause may be followed only by items subordinate to it, or by a level-66 item.

OCCURS Clause

Chapter 12. Part 5. Data Division 183

The OCCURS DEPENDING ON clause may not be specified as subordinate to
another OCCURS clause.

IBM Extension

The following constitute complex OCCURS DEPENDING ON:
v Subordinate items can contain OCCURS DEPENDING ON clauses.
v Entries containing an OCCURS DEPENDING ON clause can be followed by

non-subordinate items. Non-subordinate items, however, cannot be the object of
an OCCURS DEPENDING ON clause.

v The location of any subordinate or non-subordinate item, following an item
containing an OCCURS DEPENDING ON clause, is affected by the value of the
OCCURS DEPENDING ON object.

v Entries subordinate to the subject of an OCCURS DEPENDING ON clause can
contain OCCURS DEPENDING ON clauses.

v When implicit redefinition is used in a File Description (FD) entry, subordinate
level items can contain OCCURS DEPENDING ON clauses.

v The INDEXED BY phrase can be specified for a table that has a subordinate item
that contains an OCCURS DEPENDING ON clause.

For more information on complex OCCURS DEPENDING ON, see Appendix H,
“Complex OCCURS DEPENDING ON,” on page 687.

End of IBM Extension

All data-names used in the OCCURS clause may be qualified; they may not be
subscripted or indexed.

The OCCURS or OCCURS DEPENDING ON clause cannot be specified in a data
description entry that:
v Has a level number of 01, 66, 77, or 88.
v Describes a redefined data item. (However, a redefined item can be subordinate

to an item containing an OCCURS clause.) See “REDEFINES Clause” on page
203.

The ASCENDING/DESCENDING KEY and INDEXED BY clauses are described
under “Fixed-Length Tables” on page 179.

Note: If you use the OCCURS DEPENDING ON clause, the table must contain no
more than 16 711 568 occurrences, the length of a table element must be no
more than 16 711 568 bytes, and the length of the whole table must be no
more than 16 711 568 bytes.

IBM Extension

Complex OCCURS DEPENDING ON is supported as an extension to the COBOL
85 Standard. The basic forms of complex ODO permitted by the compiler are:
v A data item described by an OCCURS clause with the DEPENDING ON option

is followed by a non-subordinate element or group (variably-located item).
v A data item described by an OCCURS clause with the DEPENDING ON option

is followed by a non-subordinate data item described by an OCCURS clause
with the DEPENDING ON option (variably-located table).

OCCURS Clause

184 ILE COBOL Reference

v A data item described by an OCCURS clause with the DEPENDING ON option
is nested within another data item described by an OCCURS clause with the
DEPENDING ON option (table with variable-length elements).

v Index-name for a table with variable-length elements.

Complex ODO is tricky to use and can make maintaining your code more difficult.
If you choose to use it in order to save disk space, follow the guidelines in
Appendix H, “Complex OCCURS DEPENDING ON,” on page 687.

End of IBM Extension

Subscripting
Subscripting is a method of providing table references through the use of
subscripts. A subscript is a positive integer whose value specifies the occurrence
number of a table element.

Subscripting is related to the OCCURS clause through the number of dimensions
in a table. For example, a 4-dimensional table will require four subscripts. You may
think of subscripting as the COBOL way of identifying elements in a
multidimensional array, which was defined through the OCCURS clause.

For detailed information, see “Subscripting” on page 33.

If the RANGE option is specified or implied, the system ensures that the subscript
value is valid. If the RANGE option is not active, it is your responsibility to ensure
that the subscript value is valid. The RANGE option does not cause the system to
verify that index entries are valid; it is your responsibility to ensure valid index
values.

Note: See the IBM Rational Development Studio for i: ILE COBOL Programmer's Guide
for comprehensive information on the CRTCBLMOD and CRTBNDCBL
commands, and the PROCESS statement.

Restrictions on Subscripting
1. A data-name must not be subscripted or indexed when it is being used as a

subscript or qualifier.
2. An index may be modified only by a PERFORM, SEARCH, or SET statement.
3. When a literal is used in a subscript, it must be a positive or unsigned integer.
4. When a literal is used in relative subscripting and indexing, it must be an

unsigned integer.

PICTURE Clause
The PICTURE clause specifies the general characteristics and editing requirements
of an elementary item.

PICTURE Clause - Format

►► PICTURE
PIC

character-string
IS

►

OCCURS Clause

Chapter 12. Part 5. Data Division 185

►
(1)

SIZE integer-1 LOCALE
IS mnemonic-name-1

IS

►◄

Notes:

1 IBM Extension

The PICTURE clause must be specified for every elementary item except an index
data item, the subject of a LIKE, RENAMES, or TYPE clause.

The PICTURE character-string may contain a maximum of 90 characters. It consists
of certain COBOL characters used as symbols. The allowable combinations
determine the category of the elementary data item, except when the locale phrase
is specified. A LOCALE phrase in a PICTURE clause defines a category
numeric-edited item.

DECIMAL-POINT IS COMMA, when specified in the SPECIAL-NAMES
paragraph, exchanges the functions of the period and the comma in PICTURE
character strings and in numeric literals.

A currency symbol is presented in a PICTURE character-string by either the dollar
sign ($) or by a currency symbol specified in the CURRENCY SIGN clause in the
SPECIAL-NAMES paragraph.

The currency symbol represents one or more character positions into which a
currency-string is to be placed.

If multiple currency symbols are defined in the program, only one of the symbols
may be repeated within the same PICTURE character-string.

When a single currency symbol appears in a picture string, it is a fixed insertion
symbol. The size of the edited item will be increased by the number of characters
contained in the corresponding currency-string.

When a string of two or more of the same currency symbols appear in a picture
string, they are being used as floating insertion symbols. The size of the edited
item will be increased by the number of characters contained in the corresponding
currency-string for the first currency symbol present, and by a further character for
each additional currency symbol in the PICTURE character-string.

The PICTURE clause is not allowed in:
v Descriptions of items described with USAGE IS INDEX

IBM Extension

v Internal floating-point (USAGE IS COMP-1 or USAGE IS COMP-2) data items
v USAGE IS POINTER or USAGE IS PROCEDURE-POINTER data items
v Date, time, or timestamp items
v Descriptions of items containing the TYPE clause.

End of IBM Extension

PICTURE Clause

186 ILE COBOL Reference

LOCALE Phrase

IBM Extension

When the LOCALE phrase is specified in the PICTURE clause, editing is carried
out according to the locale specifications. The following rules apply:
v A BLANK WHEN ZERO clause takes precedence over locale editing.
v When mnemonic-name-1 is specified, the locale used for editing and de-editing

the item is the one associated with mnemonic-name-1 in the SPECIAL-NAMES
paragraph. Otherwise the current locale is used.

Note: Switching locales between the editing and de-editing stages of an item can
cause unpredictable results. You must ensure that the locale used for
editing an item is the same as the locale used for de-editing an item.

v If a currency sign symbol (cs) is specified in the picture string, the position,
length, and character-string used for the currency sign are determined from the
locale.

v The decimal separator, thousands separator, and grouping are determined by the
locale.

v Decimal point alignment and zero replacement take place as described in
“Alignment Rules” on page 136.

v If + is specified in the PICTURE character string, the way in which positive and
negative numbers are represented is determined by a locale.

v The sending data is aligned on the decimal point, and (if necessary) truncated or
padded with zeros at either end within the receiving character positions of the
receiving data item. The data is also right-justified, with grouping and
separators applied according to the locale specification. Leading zeros are
replaced by blanks.

If, after formatting, the number of digit positions specified in the PICTURE
character string do not fit into the receiving item, and there are excess digits in the
sending item, digits are truncated on the left and an operating system escape
message is issued.

End of IBM Extension

Symbols Used in the PICTURE Clause
The meaning of each PICTURE clause symbol is defined in the following tables:
v If the LOCALE phrase is not specified, see Table 13 on page 188
v If the LOCALE phrase is specified, see Table 14 on page 190

The sequence in which PICTURE clause symbols must be specified is shown in:
v Figure 8 on page 191, if the LOCALE phrase is not specified
v Figure 9 on page 192, if the LOCALE phrase is specified.

More detailed explanations of PICTURE clause symbols follow the figures.

Any punctuation character appearing within the PICTURE character-string is not
considered a punctuation character, but rather a PICTURE character-string symbol.

If the OPTION parameter value *NOMONOPIC, or the PROCESS statement option
NOMONOPIC is specified, the currency symbol used in the PICTURE
character-string is case sensitive. That is, the lowercase letters corresponding to the
uppercase letters for the PICTURE symbols A, B, C, D, E, G, N, P, R, S, V, X, and Z

PICTURE Clause

Chapter 12. Part 5. Data Division 187

are equivalent to their uppercase representations in a PICTURE character-string.
All other lowercase letters are not equivalent to their corresponding uppercase
representations.

If the OPTION parameter value *MONOPIC, or the PROCESS statement option
MONOPIC is specified, all alphabetic characters in a PICTURE character-string will
be converted to uppercase (monocasing).

Table 13. PICTURE Clause Symbol Meanings When LOCALE Phrase NOT Specified

Symbol Meaning

A A character position that can contain only a letter of the alphabet or a space.

B A character position into which the space occupies 1 byte for non-DBCS data and 2 bytes for DBCS
data.

E
IBM Extension

Marks the start of the exponent in an external floating-point item. It occupies 1 byte of storage.

End of IBM Extension

P An assumed decimal scaling position. It is used to specify the location of an assumed decimal point
when the point is not within the number that appears in the data item. The scaling position character
P is not counted in the size of the data item. Scaling position characters are counted in determining the
maximum number of digit positions (63) in numeric-edited items or in items that appear as arithmetic
operands. The scaling position character P may appear only as a continuous string of Ps in the leftmost
or rightmost digit positions within a PICTURE character-string. Because the scaling position character
P implies an assumed decimal point (to the left of the Ps, if the Ps are leftmost PICTURE characters; to
the right of the Ps, if the Ps are rightmost PICTURE characters), the assumed decimal point symbol, V,
is redundant as either the leftmost or rightmost character within such a PICTURE description.

In certain operations that reference a data item whose PICTURE character-string contains the symbol P,
the algebraic value of the data item is used rather than the actual character representation of the data
item. This algebraic value assumes the decimal point in the prescribed location and zero in place of the
digit position specified by the symbol P. The size of the value is the number of digit positions
represented by the PICTURE character-string. These operations are any of the following:
v Any operation requiring a numeric sending operand.
v A MOVE statement where the sending operand is numeric and its PICTURE character-string

contains the symbol P.
v A MOVE statement where the sending operand is numeric-edited and its PICTURE character-string

contains the symbol P and the receiving operand is numeric or numeric-edited.
v A comparison operation where both operands are numeric.

In all other operations the digit positions specified with the symbol P are ignored and are not counted
in the size of the operand.

S An indicator of the presence (but not the representation nor, necessarily, the position) of an operational
sign. It must be written as the leftmost character in the PICTURE string. An operational sign indicates
whether the value of an item involved in an operation is positive or negative. The symbol S is not
counted in determining the size of the elementary item, unless an associated SIGN clause specifies the
SEPARATE CHARACTER phrase. Because hardware instructions use signs, you can improve
performance by including the S in picture clauses whenever possible.

V An indicator of the location of the assumed decimal point. It may appear only once in a character
string. The V does not represent a character position and, therefore, is not counted in the size of the
elementary item. When the assumed decimal point is to the right of the rightmost symbol in the string,
the V is redundant.

X A character position that may contain any allowable character from the EBCDIC character set.

PICTURE Clause

188 ILE COBOL Reference

Table 13. PICTURE Clause Symbol Meanings When LOCALE Phrase NOT Specified (continued)

Symbol Meaning

Z A leading numeric character position; when that position contains a zero, the zero is replaced by a
space character. Each Z is counted in the size of the item.

9 A character position that contains a numeral and is counted in the size of the item.

1
IBM Extension

A character position that contains a Boolean value of B"1" or B"0". Usage must be explicitly or
implicitly defined as DISPLAY.

End of IBM Extension

0 A character position into which the numeral zero is inserted. Each zero is counted in the size of the
item.

/ A character position into which the slash character is inserted. Each slash is counted in the size of the
item.

, A character position into which a comma is inserted. This character is counted in the size of the item.
If the comma insertion character is the last symbol in the PICTURE character-string, the PICTURE
clause must be the last clause of the data description entry and must be immediately followed by the
separator period.

. An editing symbol that represents the decimal point for alignment purposes. In addition, it represents
a character position into which a period is inserted. This character is counted in the size of the item. If
the period insertion character is the last symbol in the PICTURE character string, the PICTURE clause
must be the last clause of that data description entry and must be immediately followed by the
separator period.
Note: For a given program, the functions of the period and comma are exchanged if the clause
DECIMAL-POINT IS COMMA is specified in the SPECIAL-NAMES paragraph. In this exchange, the
rules for the period apply to the comma and the rules for the comma apply to the period wherever
they appear in a PICTURE clause.

+
−

CR
DB

Editing sign control symbols. Each represents the character position into which the editing sign control
symbol is placed. The symbols are mutually exclusive in one character string. Each character used in
the symbol is counted in determining the size of the data item.

* A check protect symbol—a leading numeric character position into which an asterisk is placed when
that position contains a zero. Each asterisk (*) is counted in the size of the item.

$ A character position into which a currency symbol is placed. The currency symbol in a character string
is represented either by the symbol $ or by the single character specified in the CURRENCY SIGN
clause in the SPECIAL-NAMES paragraph of the Environment Division. The currency symbol is
counted in the size of the item.

G
IBM Extension

A DBCS position, occupying two bytes of storage, counting as one character. It cannot be specified for
a non DBCS item. USAGE must be explicitly defined as DISPLAY-1.

End of IBM Extension

PICTURE Clause

Chapter 12. Part 5. Data Division 189

Table 13. PICTURE Clause Symbol Meanings When LOCALE Phrase NOT Specified (continued)

Symbol Meaning

N
IBM Extension

v If usage is explicitly defined as NATIONAL, a national (UCS-2 or Unicode) character position.
v If usage is explicitly defined as DISPLAY-1, a DBCS position that occupies two bytes of storage

counting as one character.
v If the USAGE clause is not specified for an elementary item, or for any group to which the data item

belongs, the following rules apply:
– If the NATIONAL compiler option is in effect, USAGE NATIONAL is implied.
– Otherwise, USAGE DISPLAY-1 is implied.

End of IBM Extension

Table 14. PICTURE Clause Symbol Meanings When LOCALE Phrase IS Specified

Symbol Meaning

9 A character position that contains a numeral and is counted in the number of numerals that may
appear in the edited item.

. An editing symbol that represents the decimal point for alignment purposes. If the period insertion
character is the last symbol in the PICTURE character string, the PICTURE clause must be the last
clause of that data description entry and must be immediately followed by the separator period. The
decimal point character used at runtime is taken from the locale.
Note: For a given program, the functions of the period and comma are exchanged if the clause
DECIMAL-POINT IS COMMA is specified in the SPECIAL-NAMES paragraph. In this exchange, the
rules for the period apply to the comma and the rules for the comma apply to the period wherever
they appear in a PICTURE clause.

+ Editing sign control symbol. The + indicates that the edited item is to be signed in accordance with the
specified locale. If + is not specified, the edited item will be unsigned.

cs The currency symbol in the character string indicates that the edited item is to include the currency
string associated with the specified locale.

Figure 8 on page 191 shows the sequence in which PICTURE clause symbols must
be specified if the LOCALE phrase is not specified. See the notes at the end of the
figure. Figure 9 on page 192 shows the sequence in which PICTURE clause
symbols must be specified if the LOCALE phrase is specified.

PICTURE Clause

190 ILE COBOL Reference

Notes to Figure 8:

1. An X at an intersection indicates that the symbol(s) at the top of the column
may, in a given character-string, appear anywhere to the left of the symbol(s) at
the left of the row.

2. The $ character, however it is represented in the appropriate character set, is
the default value for the currency symbol.

3. At least one of the symbols A, X, Z, 9, or *, or at least two of the symbols +, −,
or $ must be present in a PICTURE string.

IBM Extension

4. The symbols G or N can appear alone in the PICTURE character-string.

End of IBM Extension

5. Nonfloating insertion symbols + and −, floating insertion symbols Z, *, +, −,
and $, and the symbol P appear twice in the above PICTURE character
precedence table. The leftmost column and uppermost row for each symbol
represents its use to the left of the decimal point position. The second
appearance of the symbol in the table represents its use to the right of the
decimal point position. ({ }) indicate items that are mutually exclusive.

6. Braces ({}) indicate items that are mutually exclusive.

IBM Extension

9 CS . +

CS

.

+

9

Second

Symbol

First

Symbol

X X X X

X

XXX

Symbols
S

y
m

b
o

ls

Figure 8. PICTURE Clause Symbol Sequence When LOCALE Phrase NOT Specified

PICTURE Clause

Chapter 12. Part 5. Data Division 191

End of IBM Extension

Character-String Representation
The following symbols may appear more than once in one PICTURE
character-string:
A B P X Z 9 0 / , + − * $

IBM Extension

G N

End of IBM Extension

The following symbols may appear only once in one PICTURE character-string:
S V . CR DB

IBM Extension

E 1

End of IBM Extension

If the LOCALE phrase is specified, only the symbol 9 can appear more than once.
If the LOCALE phrase is specified, the following symbols may appear only once in
one PICTURE character string:
. + cs

An integer enclosed in parentheses immediately following any of the symbols that
may occur more than once in a PICTURE character string specifies the number of
consecutive occurrences of that symbol. The integer may be specified by a constant
name. The number of consecutive occurrences cannot exceed 16 711 568.

For example, the following two PICTURE clause specifications are equivalent:
PICTURE IS $99999.99CR

PICTURE IS $9(5).9(2)CR

9 CS . +

CS

.

+

9

Second

Symbol

First

Symbol

X X X X

X

XXX

Symbols

S
y
m

b
o

ls

Figure 9. PICTURE Clause Symbol Sequence When LOCALE Phrase Specified

PICTURE Clause

192 ILE COBOL Reference

Each time any of the above symbols appears in the character-string, it represents
an occurrence of that character or set of allowable characters in the data item.

Data Categories and PICTURE Rules
The allowable combinations of PICTURE symbols determine the data category of
the item.
v Alphabetic items
v Numeric Items
v Numeric-edited items
v Alphanumeric items
v Alphanumeric-edited items

IBM Extension

v Boolean items
v DBCS items
v DBCS-edited items
v National items
v External floating-point items

End of IBM Extension

Note: If the LOCALE phrase is specified in a PICTURE clause, the category of data
defined by that PICTURE clause is numeric-edited only.

Alphabetic Items
v The PICTURE character-string can contain only the symbol A.
v The contents of the item in standard data format must consist of any of the

letters of the English alphabet and the space character.
v USAGE DISPLAY must be specified or implied.
v Any associated VALUE clause must specify a nonnumeric literal containing only

alphabetic characters or the figurative constant SPACE.

Numeric Items
v Types of numeric items are:

– Binary
– Packed decimal (internal decimal)
– Zoned decimal (external decimal).

v The PICTURE character-string can contain only the symbols 9, P, S, and V.
v The number of digit positions must range from 1 through 18, inclusive.

IBM Extension

v For packed and zoned decimal numeric items, the number of digit positions can
range from 1 through 63, inclusive.

End of IBM Extension

v If unsigned, the contents of the item in standard data format must contain a
combination of the Arabic numerals 0-9. If signed, it may also contain a +, −, or
other representation of the operational sign.

PICTURE Clause

Chapter 12. Part 5. Data Division 193

v The USAGE of the item can be DISPLAY, BINARY, COMPUTATIONAL, or
PACKED-DECIMAL.

IBM Extension

v The USAGE of the item can be COMPUTATIONAL-3, COMPUTATIONAL-4, or
COMPUTATIONAL-5.

End of IBM Extension

v A VALUE clause associated with an elementary numeric item must specify a
numeric literal or the figurative constant ZERO. A VALUE clause associated with
a group item consisting of elementary numeric items must specify a nonnumeric
literal or a figurative constant, because the group is considered alphanumeric. In
both cases, the literal is treated exactly as specified; no editing is performed.

Examples of numeric items:
PICTURE Valid Range of Values
9999 0 through 9999
S99 -99 through +99
S999V9 -999.9 through +999.9
PPP999 0 through .000999
S999PPP -1000 through -999000 and

+1000 through +999000 or zero

Numeric-Edited Items
v The PICTURE character-string can contain the following symbols:

B P V Z 9 0 / , . + - CR DB * $

The combinations of symbols allowed are determined from the PICTURE clause
symbol order allowed (see Figure 8 on page 191), and the editing rules (see
“PICTURE Clause Editing” on page 197). The following additional rules also
apply:
– Either the BLANK WHEN ZERO clause must be specified for the item, or the

string must contain at least one of the following symbols:
B / Z 0 , . * + - CR DB $

– The number of digit positions represented in the character-string must be in
the range 1 through 18, inclusive.

IBM Extension

– The number of digit positions represented in the character-string must be in
the range 1 through 63, inclusive.

End of IBM Extension

– The total length of the resultant character positions must be 127 or less.
v The contents of those character positions representing digits in standard data

format must be one of the 10 Arabic numerals.
v USAGE DISPLAY must be specified or implied.
v Any associated VALUE clause must specify a nonnumeric literal or a figurative

constant. The literal is treated exactly as specified; no editing is done.

PICTURE Clause

194 ILE COBOL Reference

|
|

If the LOCALE Phrase is Specified:

IBM Extension

v The PICTURE character-string can contain the following symbols:
9 . + cs (currency symbol for the locale)

and of those symbols the following can only be used once:
. + cs

v The number of character positions that can be used is specified in integer-1 in
the SIZE phrase.

v USAGE DISPLAY must be specified or implied.
v Any associated VALUE clause must specify a nonnumeric literal or a figurative

constant. The literal is treated exactly as specified; no editing is done.
v If the receiving item is a numeric-edited data item and the LOCALE phrase of

the PICTURE clause is specified in its data description entry, the data is aligned
as described in “LOCALE Phrase” on page 187.

End of IBM Extension

Alphanumeric Items
v The PICTURE character-string must consist of either of the following:

– The symbol X
– Combinations of the symbols A, X, and 9. (A character-string containing all

As or all 9s does not define an alphanumeric item.)
v The item is treated as if the character-string contained only the symbol X.

– The contents of the item in standard data format may be any allowable
characters from the EBCDIC character set.

– USAGE DISPLAY must be specified or implied.
– Any associated VALUE clause must specify a nonnumeric literal or a

figurative constant.

Alphanumeric-edited Items
v The PICTURE character-string can contain the following symbols:

A X 9 B 0 /

v The string must contain at least one A or X, and at least one B or 0 (zero) or /.
v The contents of the item in standard data format may be any allowable character

from the EBCDIC character set.
v The total length of the resultant character positions must be 127 or less.
v USAGE DISPLAY must be specified or implied.
v Any associated VALUE clause must specify a nonnumeric literal or a figurative

constant. The literal is treated exactly as specified; no editing is done.

Boolean Items

IBM Extension

The following rules apply:
1. The PICTURE character-string can contain only the symbol 1.
2. Only one character 1 can be specified.
3. The USAGE of an item can only be DISPLAY.

PICTURE Clause

Chapter 12. Part 5. Data Division 195

4. An associated VALUE clause must specify a Boolean literal (B"1" or B"0") or
zero.

5. The following clauses cannot be specified for a Boolean item:
v SIGN clause
v BLANK WHEN ZERO clause
v ASCENDING/DESCENDING KEY clause.

6. The INDICATOR clause can be specified.

(See the IBM Rational Development Studio for i: ILE COBOL Programmer's Guide for
more information about indicators.)

End of IBM Extension

DBCS Items

IBM Extension

1. The PICTURE character-string can contain the symbol(s) G or N.
2. Each G or N represents a single DBCS character position (2 bytes).
3. When PICTURE clause symbol G is used, USAGE DISPLAY-1 must be

specified.
4. When PICTURE clause symbol N is used, USAGE DISPLAY-1 must be

implicitly or explicitly specified.
5. Associated VALUE clauses must specify a DBCS literal or the figurative

constant SPACE/SPACES.

End of IBM Extension

DBCS-Edited Items

IBM Extension

1. The PICTURE character-string is a combination of G's and B's with at least one
of each.

2. Each G, and B represents a single DBCS character position (2 bytes).
3. USAGE DISPLAY-1 must be specified.
4. Associated VALUE clauses must specify a DBCS literal or the figurative

constant SPACE/SPACES.

End of IBM Extension

National Items

IBM Extension

1. The PICTURE character-string can contain the symbol(s) N.
2. The contents of the item must be UCS-2 characters and must not be characters

requiring multiple encoding units.
3. Each N represents a single UCS-2 character.
4. When PICTURE clause symbol N is used, USAGE NATIONAL must be

implicitly or explicitly specified.
5. Associated VALUE clauses must specify a non-numeric literal, a national

hexadecimal literal, or the figurative constant SPACE/SPACES.

End of IBM Extension

PICTURE Clause

196 ILE COBOL Reference

#
#

|
|

External Floating-Point Items

IBM Extension

v The PICTURE string must have the following form:

Format

►► +
−

mantissa E +
−

exponent ►◄

+ OR −
A sign character must immediately precede both the mantissa and the
exponent. A + sign indicates that a positive sign is used in the output to
represent positive values and that a negative sign represents negative values.
A − sign indicates that a blank is used in the output to represent positive
values and that a negative sign represents negative values. Each sign
position occupies one byte of storage.

mantissa
The mantissa may contain the symbols:
9 . V

An actual decimal point is represented with a period (.) while an assumed
decimal point is represented by a V. Either an actual or an assumed decimal
point must be present in the mantissa; the decimal point can be leading,
embedded, or trailing. The mantissa can contain from 1 to 16 numeric
characters. The . and V are not included in the count of numeric characters.

E Is used to indicate the separation of the mantissa and the exponent. It is
required.

exponent
The exponent must consist of the symbols 99 or 999.

v The OCCURS, REDEFINES, LIKE, RENAMES, and TYPEDEF clauses can be
associated with external floating-point items.

v The SIGN clause is accepted as documentation and has no effect on the
representation of the sign.

v The SYNCHRONIZED clause is treated as documentation.
v The following clauses are not valid with external floating-point items:

– BLANK WHEN ZERO
– JUSTIFIED
– VALUE

End of IBM Extension

PICTURE Clause Editing
There are two general methods of editing in a PICTURE clause:
v Insertion editing

– Simple insertion
– Special insertion
– Fixed insertion
– Floating insertion.

v Suppression and replacement editing
– Zero suppression and replacement with asterisks

PICTURE Clause

Chapter 12. Part 5. Data Division 197

– Zero suppression and replacement with spaces.

The type of editing allowed for an item depends on its data category. The type of
editing that is valid for each category is shown below:

Table 15. Valid Editing for Each Data Category

Category Type of Editing

Alphabetic None

IBM Extension

Boolean

End of IBM Extension

None

IBM Extension

DBCS

End of IBM Extension

None

IBM Extension

National

End of IBM Extension

None

IBM Extension

DBCS-edited

End of IBM Extension

Simple insertion

Numeric None

Alphanumeric None

Alphanumeric edited Simple insertion

Numeric edited All

IBM Extension

External floating-point

End of IBM Extension

Special insertion

Simple Insertion Editing
This type of editing is valid for numeric-edited, and alphanumeric-edited items.

PICTURE Clause

198 ILE COBOL Reference

IBM Extension

This type of editing is valid for DBCS-edited items.

End of IBM Extension

Each insertion symbol is counted in the size of the item, and represents the
position within the item where the equivalent characters will be inserted.

Table 16. Simple Insertion Editing – Valid Insertion Symbols for Each Data Category

Category Valid Insertion Symbols

Alphabetic None

IBM Extension

Boolean

End of IBM Extension

None

IBM Extension

DBCS

End of IBM Extension

None

IBM Extension

National

End of IBM Extension

None

IBM Extension

DBCS-edited

End of IBM Extension

B

Numeric None

Alphanumeric None

Alphanumeric edited B 0 / - . , &

Numeric edited B 0 / ,

Examples of simple insertion editing:
PICTURE Value of Data Edited Results
X(10)/XX ALPHANUMER01 ALPHANUMER/01
X(5)BX(7) ALPHANUMERIC ALPHA NUMERIC
99,B999,B000 1234 01, 234, 000
99,999 12345 12,345
GGBBGG D1D2D3D4 D1D2 D3D4

PICTURE Clause

Chapter 12. Part 5. Data Division 199

Special Insertion Editing
This type of editing is valid only for:
v Numeric-edited items

IBM Extension

v External floating-point items.

End of IBM Extension

The period (.) is the special insertion symbol; it also represents the actual decimal
point for alignment purposes.

The period insertion symbol is counted in the size of the item, and represents the
position within the item where the actual decimal point is inserted.

Either the actual decimal point or the symbol V as the assumed decimal point, but
not both, must be specified in one PICTURE character-string.

Examples of special insertion editing:
PICTURE Value of Data Edited Results
999.99 1.234 001.23
999.99 12.34 012.34
999.99 123.45 123.45
999.99 1234.5 234.50
+999.99E+99 12345 +123.45E+02

Fixed Insertion Editing
This type of editing is valid only for numeric-edited items. The following insertion
symbols are used:
v Currency symbol, for example $
v + − CR DB (editing-sign control symbols)

In fixed insertion editing, only one currency symbol and one editing-sign control
symbol can be specified in one PICTURE character-string.

The currency symbol represents the position at which a currency sign is to appear.
A currency sign may be the currency symbol itself, or a currency-string one or
more characters in length that is specified in the CURRENCY SIGN clause of the
SPECIAL-NAMES paragraph. The size of the edited item will be increased by the
number of characters contained in the corresponding currency-string.

Unless it is preceded by a + or − symbol, the currency symbol must be the first
character in the character-string.

When either + or − is used as a symbol, it must be the first or last character in the
character-string.

When CR or DB is used as a symbol, it must occupy the rightmost two character
positions in the character-string. If these two character positions contain the
symbols CR or DB, the uppercase letters are the insertion characters.

Editing sign control symbols produce results that depend on the value of the data
item, as shown below:

PICTURE Clause

200 ILE COBOL Reference

Editing Symbol Result: Result:
in PICTURE Data Item Data Item
Character-String Positive or Zero Negative
+ + -
- space -
CR 2 spaces CR
DB 2 spaces DB

Examples of fixed insertion editing:
PICTURE Value of Data Edited Result
999.99+ +6555.556 555.55+

+9999.99 -6555.555 -6555.55
9999.99 +1234.56 1234.56
$999.99 -123.45 $123.45
U999.99 -123.45 EUR123.45 ▌1▐
-$999.99 -123.456 -$123.45
-u999.99 -123.456 -USD123.45 ▌2▐
-$999.99 +123.456 $123.45
$9999.99CR +123.45 $0123.45
$9999.99DB -123.45 $0123.45DB

▌1▐ For a currency sign defined as: CURRENCY SIGN IS "EUR" PICTURE SYMBOL
"U"

▌2▐ For a currency sign defined as: CURRENCY SIGN IS "USD" PICTURE SYMBOL
"u"

Note: Beware of situations where sign truncation would lead to negative amounts
being shown as credits.

Floating Insertion Editing
This type of editing is valid only for numeric-edited items. The following symbols
are used:
v Currency symbol, for example $
v + −

Within one PICTURE character-string, these symbols are mutually exclusive as
floating insertion symbols.

Floating insertion editing is specified by including two or more consecutive
floating insertion symbols in the PICTURE character-string.

A currency symbol represents a currency sign, which may either be the currency
symbol itself, or a currency-string one or more characters in length that is specified
in the CURRENCY SIGN clause of the SPECIAL-NAMES paragraph. The size of
the edited item will be increased by the number of characters contained in the
corresponding currency-string for the first currency symbol present, and by a
further character for each additional currency symbol in the PICTURE
character-string.

If the floating insertion symbol represents a single character, the symbols are used
to represent all character positions into which the corresponding character could be
inserted. The leftmost floating insertion symbol in the character-string represents
the leftmost limit at which the character can appear in the data item. The rightmost
floating insertion symbol represents the rightmost limit at which the character can
appear.

If the floating insertion symbol represents a multiple-character currency-string, the
symbols are used to represent all the positions into which the final character of the

PICTURE Clause

Chapter 12. Part 5. Data Division 201

currency-string could be inserted. The leftmost floating insertion symbol in the
character-string represents the leftmost limit at which the final character of the
currency-string can appear in the data item. The rightmost floating insertion
symbol represents the rightmost limit at which the final character of the
currency-string can appear.

The second leftmost floating insertion symbol in the character-string represents the
leftmost limit at which numeric data can appear within the data item. Floating
insertion symbols at or to the right of this limit represent numeric character
positions. They may be replaced by numeric data, starting with the leading
nonzero numeric character.

Any simple-insertion symbols (B 0 / ,) within or to the immediate right of the
string of floating insertion symbols are considered part of the floating
character-string. If the period (.) special-insertion symbol is included within the
floating string, it is considered to be part of the character-string.

In a PICTURE character-string, there are two ways to represent floating insertion
editing and thus, two ways in which editing is performed:
1. Any or all leading numeric character positions to the left of the decimal point

are represented by the floating insertion symbol. When editing is performed, a
single floating sign insertion symbol (+ or -), or the currency sign, is placed to
the immediate left of the first nonzero digit in the data, or of the decimal point,
whichever is farther to the left. Any unused positions to the left of the insertion
symbol or currency sign are filled with spaces.

2. All the numeric character positions are represented by the floating insertion
symbol. When editing is performed, then:
v If the value of the data is zero, the entire data item will contain spaces.
v If the value of the data is nonzero, the result is the same as in rule 1.

To avoid truncation, the minimum size of the PICTURE character-string must be:
v The number of character positions in the sending item, plus
v The number of nonfloating insertion symbols in the receiving item, plus
v The number of characters in the floating insertion symbol.

Examples of floating insertion editing:
PICTURE Value of Data Edited Result

$$$$.99 .123 $.12
$$$9.99 .12 $0.12

$,$$$,999.99 -1234.56 $1,234.56
U,UUU,UU9.99- -1234.56 EUR1,234.56-
u,uuu,uu9.99 1234.56 USD1,234.56
+,+++,999.99 -123456.789 -123,456.78
$$,$$$,$$$.99CR -1234567 $1,234,567.00CR
++,+++,+++.+++ 0000.00

Note: Beware of situations where sign truncation would lead to negative amounts
being shown as credits.

Zero Suppression and Replacement Editing
This type of editing is valid only for numeric-edited items. In zero suppression
editing, the symbols Z and * are used. These symbols are mutually exclusive in
one PICTURE character-string.

The following symbols are mutually exclusive as floating symbols within one
PICTURE character-string:

Z * + - Currency symbol (for example, $)

PICTURE Clause

202 ILE COBOL Reference

Specify zero suppression and replacement editing with a string of one or more of
the allowable symbols to represent leftmost character positions in which zero
suppression and replacement editing can be performed.

Any simple insertion symbols (B 0 / ,) within or to the immediate right of the
string of floating editing symbols are considered part of the string. If the period (.)
special insertion symbol is included within the floating editing string, it is
considered to be part of the character-string.

In a PICTURE character-string, there are two ways to represent zero suppression,
and two ways in which editing is performed:
v Any or all of the leading numeric character positions to the left of the decimal

point are represented by suppression symbols. When editing is performed, any
leading zero in the data that appears in the same character position as a
suppression symbol is replaced by the replacement character. Suppression stops
at the leftmost character:
– That does not correspond to a suppression symbol
– That contains nonzero data
– That is the decimal point.

v All the numeric character positions in the PICTURE character-string are
represented by the suppression symbols. When editing is performed, and the
value of the data is nonzero, the result is the same as in the preceding rule. If
the value of the data is zero, then:
– If Z has been specified, the entire data item will contain spaces.
– If * has been specified, the entire data item, except the actual decimal point,

will contain asterisks.

Note: Do not specify both the asterisk (*) as a suppression symbol and the BLANK
WHEN ZERO clause for the same entry.

Examples of zero suppression and replacement editing:
PICTURE Value of Data Edited Result

****.** 0000.00 ****.**
ZZZZ.ZZ 0000.00
ZZZZ.99 0000.00 .00
****.99 0000.00 ****.00
ZZ99.99 0000.00 00.00
Z,ZZZ.ZZ+ +123.456 123.45+
*,***.**+ -123.45 **123.45-

,*,***.** +12345678.9 12,345,678.90+
$Z,ZZZ,ZZZ.ZZCR +12345.67 $ 12,345.67

$B*,***,***.**BBDB -12345.67 $ ***12,345.67 DB

REDEFINES Clause
The REDEFINES clause allows you to use different data description entries to
describe the same computer storage area.

REDEFINES Clause - Format

►► level-number
data-name-1
FILLER

REDEFINES data-name-2 ►◄

When specified, the REDEFINES clause must be the first entry following
data-name-1 or FILLER. If data-name-1 or FILLER is not specified, the REDEFINES

PICTURE Clause

Chapter 12. Part 5. Data Division 203

clause must be the first entry following the level-number, and the data item being
described is treated as though FILLER has been specified.

The level-numbers of data-name-1 and data-name-2 must be identical, and must
not be level 66 or level 88.

data-name-1/FILLER
Identifies an alternate description for the same area, and is the redefining item
or the REDEFINES subject.

data-name-2
Is the redefined item or the REDEFINES object. Contrast it with data-name-1,
which is the REDEFINES clause subject.

IBM Extension

Bothdata-name-1 and data-name-2 can specify a pointer, procedure-pointer,
external or internal floating-point data item, DBCS, national, date, time, or
timestamp item.

End of IBM Extension

The following rules apply when coding the REDEFINES clause.

When more than one level-01 entry is written subordinate to an FD entry (and the
level-01 entry is not a type-name), a condition known as implicit redefinition
occurs. That is, the second level-01 entry implicitly redefines the storage allotted
for the first entry. In such level-01 entries, the REDEFINES clause and TYPE clause
must not be specified. In addition, the TYPE clause must not be specified in any
items subordinate to any of the level-01 entries.

Redefinition Process
Redefinition begins at data-name-1 and ends when a level-number less than or
equal to that of data-name-1 is encountered. No entry having a level-number
numerically lower than those of data-name-1 and data-name-2 may occur between
these entries. For example:
05 A PICTURE X(6).
05 B REDEFINES A.

10 B-1 PICTURE X(2).
10 B-2 PICTURE 9(4).

05 C PICTURE 99V99.

In this example, A is the redefined item, and B is the redefining item. Redefinition
begins with B and includes the two subordinate items B-1 and B-2. Redefinition
ends when the level-05 item C is encountered.

The data description entry for the redefined item cannot containan OCCURS
clause. However, the redefined item may be subordinate to an item whose data
description entry contains an OCCURS clause. In this case, the reference to the
redefined item in the REDEFINES clause may not be subscripted. The original
item, the redefined item, and all items subordinate to them cannot contain an
OCCURS DEPENDING ON clause.

If the GLOBAL clause is used in the data description entry which contains the
REDEFINES clause, only the subject of the clause possesses the global attribute.

REDEFINES Clause

204 ILE COBOL Reference

The EXTERNAL clause must not be specified on the same data description entry as
a REDEFINES clause. If the object is GLOBAL or EXTERNAL, the subject does not
inherit the attribute.

Data-name-1, the redefining item, may be smaller than data-name-2, the redefined
item. It may only be larger than the redefined item if the redefined item is
specified with a level-number of 01 and is not declared to be an external data
record.

One or more redefinitions of the same storage area are permitted. The entries
giving the new descriptions of the storage area must be in the same section, and
must immediately follow the description of the redefined area without intervening
entries that define new character positions. Multiple redefinitions must all use the
data-name of the original entry that defined this storage area. For example:
05 A PICTURE 9999.
05 B REDEFINES A PICTURE 9V999.
05 C REDEFINES A PICTURE 99V99.

The redefining entry (identified by data-name-1), and any subordinate entries,
must not contain any VALUE clauses. The redefining entry cannot contain a
TYPEDEF clause. The redefining and redefined entries, and any subordinate entries
must not contain a TYPE clause.

REDEFINES Clause Considerations
Data items within an area can be redefined without changing their lengths. For
example:
05 NAME-2.

10 SALARY PICTURE XXX.
10 SO-SEC-NO PICTURE X(9).
10 MONTH PICTURE XX.

05 NAME-1 REDEFINES NAME-2.
10 WAGE PICTURE XXX.
10 EMP-NO PICTURE X(9).
10 YEAR PICTURE XX.

Data item lengths and types can also be changed within a redefined area. For
example:
05 NAME-2.

10 SALARY PICTURE XXX.
10 SO-SEC-NO PICTURE X(9).
10 MONTH PICTURE XX.

05 NAME-1 REDEFINES NAME-2.
10 WAGE PICTURE 999V999.
10 EMP-NO PICTURE X(6).
10 YEAR PICTURE XX.

When an area is redefined, all descriptions of the area are always in effect; that is,
redefinition does not cause any data to be erased and never supersedes a previous
description. Thus, if B REDEFINES C has been specified, either of the two
procedural statements, MOVE X TO B and MOVE Y TO C, could be executed at
any point in the program.

In the first case, the area described as B would assume the value and format of X.
In the second case, the same physical area (described now as C) would assume the
value and format of Y. Note that, if the second statement is executed immediately
after the first, the value of Y replaces the value of X in the one storage area.

REDEFINES Clause

Chapter 12. Part 5. Data Division 205

|
|

|
|
|
|
|
|
|
|

The usage of a redefining data item need not be the same as that of a redefined
item. This does not, however, cause any change in existing data. For example:
05 B PICTURE 99 USAGE DISPLAY VALUE 8.
05 C REDEFINES B PICTURE S99 USAGE COMPUTATIONAL-4.
05 A PICTURE S99 USAGE COMPUTATIONAL-4.

The bit configuration of the DISPLAY value 8 is
1111 0000 1111 1000.

Redefining B does not change the bit configuration of the data in the storage area.
Therefore, the following two statements produce different results:
ADD B TO A
ADD C TO A

In the first case, the value 8 is added to A (because B has USAGE DISPLAY). In the
second statement, the value -48 is added to A (because C has USAGE
COMPUTATIONAL-4) because the bit configuration (truncated to 2 decimal digits)
in the storage area has the binary value -48.

The above example demonstrates how the improper use of redefinition may give
unexpected or incorrect results.

Coding Examples
The REDEFINES clause may be specified for an item within the scope of an area
being redefined (that is, an item subordinate to a redefined item). For example:
05 REGULAR-EMPLOYEE.

10 LOCATION PICTURE A(8).
10 GRADE PICTURE X(4).
10 SEMI-MONTHLY-PAY PICTURE 9999V99.
10 WEEKLY-PAY REDEFINES SEMI-MONTHLY-PAY

PICTURE 999V999.
05 TEMPORARY-EMPLOYEE REDEFINES REGULAR-EMPLOYEE.

10 LOCATION PICTURE A(8).
10 FILLER PICTURE X(6).
10 HOURLY-PAY PICTURE 99V99.

The REDEFINES clause may also be specified for an item subordinate to a
redefining item. For example:
05 REGULAR-EMPLOYEE.

10 LOCATION PICTURE A(8).
10 GRADE PICTURE X(4).
10 SEMI-MONTHLY-PAY PICTURE 999V999.

05 TEMPORARY-EMPLOYEE REDEFINES REGULAR-EMPLOYEE.
10 LOCATION PICTURE A(8).
10 FILLER PICTURE X(6).
10 HOURLY-PAY PICTURE 99V99.
10 CODE-H REDEFINES HOURLY-PAY PICTURE 9999.

Undefined Results
Undefined results may occur when:
v A redefining item is moved to a redefined item (that is, if B REDEFINES C and the

statement MOVE B TO C is executed).
v A redefined item is moved to a redefining item (that is, if B REDEFINES C and if

the statement MOVE C TO B is executed).

REDEFINES Clause

206 ILE COBOL Reference

RENAMES Clause
The RENAMES clause specifies alternative, possibly overlapping, groupings of
elementary data items.

RENAMES Clause - Format

►► 66 data-name-1 RENAMES data-name-2 .
THROUGH data-name-3
THRU

►◄

One or more RENAMES entries can be written for a logical record. All RENAMES
entries associated with one logical record must immediately follow that record's
last data description entry.

data-name-1
Identifies an alternative grouping of data items.

A level-66 entry cannot rename a level-01, level-77, level-88, or another level-66
entry.

Data-name-1 cannot be used as a qualifier; it can be qualified only by the
names of level indicator entries or level-01 entries.

IBM Extension

Data-name-1 can specify a DBCS data item if data-name-2 specifies a DBCS
data item and the THROUGH phrase is not specified.

Data-name-1 can specify a national data item if data-name-2 specifies a
national data item and the THROUGH phrase is not specified.

If data-name-2 references one of the following data items, and the THROUGH
phrase is not specified, data-name-1 can be one of the following types of data
items:
v DBCS
v National
v Pointer or procedure-pointer
v Internal or external floating-point
v Date, time, or timestamp

End of IBM Extension

data-name-2, data-name-3
Identify the original grouping of elementary data items; that is, they must be
elementary or group items within the associated level-01 entry, and must not
be the same data-name. Both data-names may be qualified.

The OCCURS clause must not be specified in the data entries for data-name-2
and data-name-3, or for any group entry to which they are subordinate. In
addition, the OCCURS DEPENDING ON clause must not be specified for any
item defined between data-name-2 and data-name-3.

IBM Extension

The TYPE clause must not be specified in the data descriptions of data-name-2,
data-name-3, and items defined between data-name-2 and data-name-3, or any
subordinates of these items. If data-name-2, data-name-3, or any items defined
between data-name-2 and data-name-3 are subordinate to a group item defined

RENAMES Clause

Chapter 12. Part 5. Data Division 207

using the TYPE clause, then data-name-1 must be subordinate to the same
group item.

End of IBM Extension

When data-name-3 is specified, data-name-1 is treated as a group item that
includes all elementary items:
v Starting with data-name-2 (if it is an elementary item) or the first elementary

item within data-name-2 (if it is a group item)
v Ending with data-name-3 (if it is an elementary item) or the last elementary

item within data-name-3 (if it is a group item)

The leftmost character in data-name-3 must not precede that in data-name-2;
the rightmost character in data-name-3 must follow that in data-name-2. This
means that data-name-3 cannot be subordinate to data-name-2.

When data-name-3 is not specified, all of the data attributes of data-name-2
become the data attributes for data-name-1. That is:
v When data-name-2 is a group item, data-name-1 is treated as a group item.
v When data-name-2 is an elementary item, data-name-1 is treated as an

elementary item.

Figure 10 illustrates valid and invalid RENAMES clause specifications.

RENAMES Clause

208 ILE COBOL Reference

Illustrations of Valid and Invalid RENAMES Clause
Specifications

SIGN Clause
The SIGN clause specifies the position and mode of representation of the
operational sign for a numeric entry.

COBOL Specifications Storage Layouts

Example 1 (Valid)

01 RECORD–I .

05 DN–1... .

DN–4DN–3DN–2DN–1

RECORD–I

DN-6

05 DN–2... .

05 DN–3... .

05 DN–4... .

66 DN–6 RENAMES DN–1 THROUGH DN–3 .

Example 2 (Valid)

01 RECORD–II .

05 DN–1 .

DN–5DN–2ADN–2

RECORD–II

DN–1A

10 DN–2... .

05 DN–1A REDEFINES DN–1 .

05 DN–5... .

66 DN–6 RENAMES DN–2 THROUGH DN–3.

10 DN–2A... .

10 DN–3A... .

10 DN–3... .

10 DN–3B... .

DN–1

DN–3BDN–3DN–3A

DN–6

Example 3 (Invalid)

01 RECORD–III .

05 DN–2 .

DN–5DN–4DN–3

RECORD–III
DN–2

10 DN–3... .

10 DN–4... .

05 DN–5... .

66 DN–6 RENAMES DN–2 THROUGH DN–3 .

Example 4 (Invalid)

01 RECORD–IV .

05 DN–1 .

DN–3DN–2BDN–2A

RECORD–IV

10 DN–2A... .

10 DN–2C REDEFINES DN–2B .

05 DN–3... .

66 DN–4 RENAMES DN–1 THROUGH DN–3.

10 DN–2B... .

15 DN–2... .

15 DN–2D... .

DN–1

DN–2DDN–2

DN–4 is indeterminate

DN-6 is indeterminate

Figure 10. RENAMES Clause—Valid and Invalid Specifications

RENAMES Clause

Chapter 12. Part 5. Data Division 209

SIGN Clause - Format

►►
SIGN

IS

LEADING
TRAILING SEPARATE

CHARACTER

►◄

The SIGN clause may be specified only for a signed numeric data description entry
(that is, one whose PICTURE character-string contains an S), or for a group item
that contains at least one such elementary entry. USAGE IS DISPLAY must be
specified, explicitly or implicitly.

The SIGN clause is required only when an explicit description of the properties
and/or position of the operational sign is necessary.

When specified, the SIGN clause defines the position and mode of representation
of the operational sign for the numeric data description entry to which it applies,
or for each signed numeric data description entry subordinate to the group to
which it applies.

If a SIGN clause is specified in either an elementary or group entry subordinate to
a group item for which a SIGN clause is specified, the SIGN clause for the
subordinate entry takes precedence for the subordinate entry.

If you specify the CODE-SET clause in an FD entry, any signed numeric data
description entries associated with that file description entry must be described
with the SIGN IS SEPARATE clause.

Every numeric data description entry whose PICTURE contains the symbol S is a
signed numeric data description entry. If the SIGN clause is also specified for such
an entry, and conversion is necessary for computations or comparisons, the
conversion takes place automatically.

IBM Extension

The SIGN clause is treated as documentation for external floating-point items. For
internal floating-point items, the SIGN clause is invalid.

The SIGN clause cannot be specified if the FORMAT clause is specified.

The TYPE clause cannot be specified in the same data description entry as the
SIGN clause.

End of IBM Extension

SEPARATE CHARACTER
If the SEPARATE CHARACTER phrase is not specified, then:
v The operational sign is presumed to be associated with the LEADING or

TRAILING digit position, whichever is specified, of the elementary numeric data
item. (In this instance, specification of SIGN IS TRAILING is the equivalent of
the standard action of the compiler.)

v The character S in the PICTURE character string is not counted in determining
the size of the item (in terms of standard data format characters).

If the SEPARATE CHARACTER phrase is specified, then:

SIGN Clause

210 ILE COBOL Reference

v The operational sign is presumed to be the LEADING or TRAILING character
position, whichever is specified, of the elementary numeric data item. This
character position is not a digit position.

v The character S in the PICTURE character string is counted in determining the
size of the data item (in terms of standard data format characters).

v + is the character used for the positive operational sign.
v - is the character used for the negative operational sign.

SYNCHRONIZED Clause
The SYNCHRONIZED clause specifies the alignment of an elementary item in
storage. To use the SYNCHRONIZED clause, specify the *SYNC compiler option
on the CRTCBLMOD or CRTBNDCBL command.

SYNCHRONIZED Clause - Format

►► SYNCHRONIZED
SYNC (1)

LEFT
(1)

RIGHT

►◄

Notes:

1 Syntax-checked only.

When specified, the LEFT and the RIGHT phrases are syntax checked, but they
have no effect on the execution of the program.

If synchronization is not specified, data is placed contiguously without filler space.
If synchronization is specified, data is aligned along addresses which may be
wholly divisible by 1, 2, 4, 8, or 16 bytes (where allowed - see Table 17 on page
213). This may require the (implicit) use of filler space, should the preceding data
item not use all the bytes between boundaries.

Benefits of Synchronized Data
What is the benefit of synchronizing data? Improved performance in terms of its
accessibility. The penalty is some wasted storage, due to increased record size
(filler spaces become part of the record).

Level 01 items and pointers are aligned on 16-byte boundaries always, whether
synchronization is specified or not. You are allowed to specify synchronization
only for elementary items. It is not permitted for group items.

Figure 11 on page 212 illustrates the concept:

SIGN Clause

Chapter 12. Part 5. Data Division 211

Figure 11 shows that A and B are always aligned on 16 byte boundaries. Without
synchronization, A2 and A3 are stored contiguously regardless of size. With
synchronization, a 4 byte boundary is chosen (due to A3's type), and A3 is aligned
accordingly. There is a one byte filler between A2 and A3. However, A3 should be
accessed faster.

Synchronization and Offsets
In the preceding figure, note that A and B do not have to be following each other
in actual storage. In other words, you cannot know if B starts 16 bytes after A's
start, or 48 bytes (16 x 3), or 16 x N bytes. You must not attempt to retrieve
synchronized data by specifying offsets.

IBM Extension

The SYNCHRONIZED clause is implicit for pointer data and procedure-pointer
data items. Pointer data and procedure-pointer data items declared in the Linkage
Section are not synchronized.

The SYNCHRONIZED clause cannot be specified in the same data description
entry as the TYPE clause.

The SYNCHRONIZED clause is ignored for a DBCS, national, external
floating-point, date, time, or timestamp data item.

The SYNCHRONIZED clause for a COMPUTATIONAL-1 data item aligns the data
on a fullword boundary.

The SYNCHRONIZED clause for a COMPUTATIONAL-2 data item aligns the data
on a doubleword boundary.

End of IBM Extension

WITHOUT SYNCHRONIZATION

WITH SYNCHRONIZATION

Data
Storage
Representation item A2 item A3

item A

f
i
l
l
e
 r itemB

item B2

Bytes 0 3 7 16

item A2 item A3

item A ItemB

Item B2

Data
Storage
Representation

Bytes 0 3 4 8 16

01 A
05 A2 PIC X(3)
05 A3 PIC 9(5) BINARY

01 B
05 B2 PIC X(16)

fi
lle

r

f
i
l
l
e
 r

Figure 11. Data Storage Representation Without and With Synchronization

SYNCHRONIZED Clause

212 ILE COBOL Reference

Depending on the USAGE that is specified for an item, the SYNCHRONIZED
clause has a particular effect. Table 17 shows how the USAGE of an item
determines the effect of the SYNCHRONIZED clause upon it.

Table 17. Data Item USAGE and the SYNCHRONIZED Clause

If the USAGE is... The SYNCHRONIZED clause...

DISPLAY is syntax checked but does not affect execution

DISPLAY-1 (DBCS) is ignored

NATIONAL is ignored

PACKED-DECIMAL is syntax checked but does not affect execution

COMPUTATIONAL-1 aligns the data on a fullword boundary

COMPUTATIONAL-2 aligns the data on a doubleword boundary

COMPUTATIONAL-3 is syntax checked but does not affect execution

BINARY:
PIC S9(1) through PIC S9(4)

aligns data item at a multiple of 2 relative to
the beginning of the record

BINARY:
PIC S9(5) through PIC S9(9)

aligns data item at a multiple of 4 relative to
the beginning of the record

BINARY:
PIC S9(10) through PIC S9(18)

aligns data item at a multiple of 8 relative to
the beginning of the record

COMPUTATIONAL-4 functions the same as for USAGE BINARY

COMPUTATIONAL-5 functions the same as for USAGE BINARY

COMPUTATIONAL is syntax checked but does not affect execution

INDEX is not permitted

POINTER aligns data item at a multiple of 16 relative to
the beginning of the record

PROCEDURE-POINTER functions the same as for USAGE POINTER

The length of an elementary item is not affected by the SYNCHRONIZED clause.

Specifying the SYNCHRONIZED Clause with the OCCURS
Clause

When the SYNCHRONIZED clause is specified for an item within the scope of the
OCCURS clause, each occurrence of the item is synchronized.

Specifying the SYNCHRONIZED Clause with the REDEFINES
Clause

When the SYNCHRONIZED clause is specified for an item that also contains a
REDEFINES clause, the data item that is redefined must have the proper boundary
alignment for the data item that redefines it. No padding characters are added for
items containing the REDEFINES clause. For example, if you write the following,
be sure that data item A begins at a multiple of 4 bytes relative to the beginning of
the record:
02 A PICTURE X(4).
02 B REDEFINES A PICTURE S9(9) BINARY SYNC.

When the SYNCHRONIZED clause is specified for a binary item that is the first
elementary item subordinate to an item that contains a REDEFINES clause, the
item must not require the addition of unused character positions.

SYNCHRONIZED Clause

Chapter 12. Part 5. Data Division 213

||

FILLER Items
The FILLER item is treated as if it were an item with a level number equal to that
of the preceding item. The size of this implicit FILLER item is calculated as
follows:
v The total number of characters occupied by all elementary data items preceding

the aligned item are added together, including any implicit FILLER items
previously added.

v This sum is divided by the factor m used as a multiplier in the above calculation
of alignment (2, 4, 8, or 16).

v If the remainder r of this division is equal to zero, no implicit FILLER item is
required. If the remainder is not equal to zero, the size of the implicit FILLER
item is equal to m - r.

The size of the implicit FILLER item is not included in the size of any group item
that contains it.

Group items are naturally defined as alphanumeric. Any FILLER items are
initialized with spaces. Implicit FILLER items generated through the
SYNCHRONIZED clause, then, are also initialized with spaces under the (default)
*STDINZ compiler option. Under the *NOSTDINZ or *STDINZHEX00 options,
these implicit FILLER items will contain hexadecimal zeroes.

An implicit FILLER item may also be added by the compiler when a group item is
defined with an OCCURS clause and contains data items that are subject to
alignment. To determine whether an implicit FILLER is to be added, the following
action is taken:
v The compiler calculates the size of the group item, including all necessary

implicit FILLER items.
v This sum is divided by the largest m required by any elementary item within the

group.
v If r is equal to zero, no implicit FILLER item is required. If r is not equal to

zero, an implicit FILLER item of size m - r must be added.

An implicit FILLER item may be inserted at the end of each occurrence of the
group item containing the OCCURS clause. This is done to synchronize subsequent
occurrences.

Items at level 01 or 77 are aligned according to the following rules:

Area Level Number Boundary Alignment

Working-Storage Section 01
77

16 bytes
16 bytes

Local-Storage Section 01
77

16 bytes
16 bytes

File Section 01 Compiler assumes a 16-byte boundary
for synchronizing items.

Linkage Section 01
77

Compiler assumes a 16-byte boundary
for synchronizing items. Pointer data
and procedure-pointer data items are
not synchronized.

SYNCHRONIZED Clause

214 ILE COBOL Reference

Example of Implicit FILLER
The following COBOL data description will produce the computer storage
allocation shown in Figure 12.

01 UNSYNCHRONIZED-RECORD
02 UNSYNCHRONIZED-DATA-1 PIC 9(3) DISPLAY.
02 UNSYNCHRONIZED-DATA-2 PIC X(2).

01 COMPOUND-REPEATED-RECORD.
02 ELEMENTARY-ITEM-1 PIC X (2).
02 GROUP-ITEM OCCURS 3 TIMES.
03 ELEMENTARY-ITEM-2 PIC X.
03 ELEMENTARY-ITEM-3 PIC S9(2) BINARY SYNC.
03 ELEMENTARY-ITEM-4 PIC S9(4) V9(2) BINARY SYNC.
03 ELEMENTARY-ITEM-5 PIC X (5).

@ Indicates implicit FILLER bytes allocated because of automatic
synchronization or a record (01-level) description

Indicates implicit FILLER bytes allocated when the following data item is
explicitly synchronized

* The first byte of a BINARY item that has been synchronized

$ Indicates implicit FILLER bytes allocated when a non-elementary item is
subject to an OCCURS clause

9 Indicates bytes allocated for a numeric DISPLAY character

X Indicates bytes allocated for an alphanumeric DISPLAY character

C Indicates bytes allocated for a BINARY data storage

TYPE Clause

IBM Extension

The TYPE clause indicates that the data description of the subject of the entry is
specified by a user-defined data type. The user-defined data type is defined using
the TYPEDEF clause, which is described in “TYPEDEF Clause” on page 217.

Unsynchronized-
Record

Compound-Repeated-Record

UD1

Group-Item (1) Group-Item (2) and so
forth

E11 E14 E14E15 E15
U
D
2

E
1
2

E
1
2

E
1
3

E
1
3

9 9

2

4 4 4 44

16 16 16 16 1616

2 2 2 22 22 22

9 x x x x x x xx xx xx xx xx # # #*$# # #* * *C C CC CC CC@ @@

Figure 12. Computer Storage Allocation

SYNCHRONIZED Clause

Chapter 12. Part 5. Data Division 215

►► TYPE type-name-1 ►◄

The following general rules apply:
v If type-name-1 (defined using the TYPEDEF clause) describes a group item, then

the subject of the TYPE clause is a group item whose subordinate elements have
the same names, descriptions, and hierarchies as the subordinate elements of
type-name-1.

Note: Since the subject of the TYPE clause may have a level number as high as
49 and type-name-1 may be a group item with 49 levels, the number of
levels of this hierarchy may exceed 49. In fact, since descriptions of
type-names may reference other type-names, there is no limit to the
number of levels in this hierarchy.

v If a VALUE clause is specified in the data description of the subject of the TYPE
clause, any VALUE clause specified in the description of type-name-1 is ignored
for this entry.

v The scoping rules for type names are similar to the scoping rules for data names.
v Reference modification is not allowed for an elementary item that is the subject

of a TYPE clause.
v The description of type-name-1, including its subordinate data items, cannot

contain a LIKE clause that references the subject of the TYPE clause (referencing
type-name-1), or any group item to which the subject of the TYPE clause is
subordinate.

v The description of type-name-1, including its subordinate data items, cannot
contain a TYPE clause that references the record to which the subject of the
TYPE clause (that references type-name-1), is subordinate
For example, A is a group item defined using the TYPEDEF clause. B is also a
group item defined using the TYPEDEF clause, but which also includes a
subordinate item of TYPE A. This being the case, the type definition for A
cannot include items of TYPE B.

v The subject of a TYPE clause cannot be renamed in whole, or in part.
v The subject of a TYPE clause cannot be redefined explicitly or implicitly.
v If the subject of a TYPE clause is subordinate to a group item, the data

description of the group item cannot contain the USAGE clause.
v The TYPE clause cannot occur in a data description entry with the BLANK

WHEN ZERO, FORMAT, JUSTIFIED, LIKE, PICTURE, REDEFINES, RENAMES,
SIGN, SYNCHRONIZED, or USAGE clause.

v The TYPE clause can be specified in a data description entry with the
EXTERNAL, GLOBAL, OCCURS, TYPEDEF, and VALUE clauses.

For more information about using the TYPE and TYPEDEF clauses, refer to the
IBM Rational Development Studio for i: ILE COBOL Programmer's Guide.

End of IBM Extension

SYNCHRONIZED Clause

216 ILE COBOL Reference

TYPEDEF Clause

IBM Extension

The TYPEDEF clause is used to create a new user-defined data type, type-name.
The name of the new user-defined data type is the subject of the TYPEDEF clause.
Data-name-1 must be specified with the TYPEDEF clause: FILLER cannot be used.
The TYPEDEF clause must immediately follow data-name-1. After defining a new
data type using the TYPEDEF clause, data items can be declared as this new data
type using the TYPE clause. For more information about the TYPE clause, refer to
“TYPE Clause” on page 215.

►► TYPEDEF
IS

►◄

The TYPEDEF clause can only be specified for level 01 entries, which can also be
group items. If a group item is specified, all subordinate items of the group
become part of the type declaration. No storage is allocated for a type declaration.

The TYPEDEF clause cannot be specified in the same data description entry as the
following clauses:
v EXTERNAL
v REDEFINES
v LIKE.

All of the other data description clauses, if they are specified, are assumed by any
data item that is defined using the user-defined data type (within the TYPE
clause).

TYPEDEF cannot be used with complex OCCURS DEPENDING ON. This means
that you cannot specify an OCCURS DEPENDING ON clause within a table that is
part of a TYPEDEF. For more information, see Appendix H, “Complex OCCURS
DEPENDING ON,” on page 687.

The TYPEDEF clause can only be specified in the WORKING-STORAGE,
LOCAL-STORAGE, LINKAGE, or FILE sections of a program.

The TYPE clause can be specified in the same data description entry as the
TYPEDEF clause.

End of IBM Extension

USAGE Clause
The USAGE clause specifies the format in which data is represented in storage.
The format may be restricted if certain Procedure Division statements are used.

USAGE Clause - Format

SYNCHRONIZED Clause

Chapter 12. Part 5. Data Division 217

►►
USAGE

IS

BINARY
COMPUTATIONAL
COMP

(1)
COMPUTATIONAL-1

(1)
COMP-1

(1)
COMPUTATIONAL-2

(1)
COMP-2

(1)
COMPUTATIONAL-3

(1)
COMP-3

(1)
COMPUTATIONAL-4

(1)
COMP-4

(1)
COMPUTATIONAL-5

(1)
COMP-5
DISPLAY

(1)
DISPLAY-1
INDEX

(1)
NATIONAL
PACKED-DECIMAL

(1)
POINTER

(1)
PROCEDURE-POINTER

►◄

Notes:

1 IBM Extension

The following table outlines the phrase that is used for the various data items
specified by the USAGE clause.

Table 18. Usage Clause Data Items

Data Item Phrase in USAGE Clause

Binary (computational item) BINARY or
COMPUTATIONAL-41 or
COMP-41

Native binary (computational item) COMPUTATIONAL-51 or
COMP-51

Packed-decimal/Internal decimal
(computational item)

PACKED-DECIMAL or
COMPUTATIONAL or
COMP or
COMPUTATIONAL-31 or
COMP-31

Internal floating point (computational item) COMPUTATIONAL-11 or
COMP-11 (4–byte)
COMPUTATIONAL-21 or
COMP-21 (8–byte)

USAGE Clause

218 ILE COBOL Reference

||

||
|

Table 18. Usage Clause Data Items (continued)

Data Item Phrase in USAGE Clause

Numeric DISPLAY items
External decimal (zoned decimal)
External floating-point1

DISPLAY

Non-numeric DISPLAY items
Alphabetic
Alphanumeric
Alphanumeric-edited
Numeric-edited items
Boolean1

Date time, and timestamp1

DISPLAY

DBCS1

DBCS-edited1
DISPLAY-1

National1 NATIONAL

Index INDEX

Pointer1 POINTER

Procedure-pointer1 PROCEDURE-POINTER

Notes:

1. IBM Extension

The USAGE clause can be specified for an entry at any level (other than 66 or 88).
However, if it is specified at the group level, it applies to each elementary item in
the group rather than to the group itself. The usage of an elementary item must
not contradict the usage specified on the owning group item.

When the USAGE clause is not specified at either the group or elementary level, it
is assumed that the usage is DISPLAY.

IBM Extension

The TYPE clause cannot be specified in the same data description entry as the
USAGE clause.

Data description entries with a TYPE clause cannot be subordinate to a data
description entry that contains a USAGE clause. For example, the following is
illegal:
01 FLAGS USAGE DISPLAY.

05 F-STATUS TYPE CHAR.
05 FLAG-ACTIVE TYPE CHAR.

End of IBM Extension

Computational Items
A computational item is a value used in arithmetic operations. Computational
items must be numeric. These include binary, packed-decimal, and internal floating
point data items.

If the USAGE of a group item is described with any of these items, the elementary
items within the group have this usage. The group itself is considered nonnumeric

USAGE Clause

Chapter 12. Part 5. Data Division 219

and cannot be used in numeric operations, except for those using the
CORRESPONDING phrase (see “CORRESPONDING Phrase” on page 268).

The maximum length of a computational item is 18 decimal digits.

IBM Extension

The maximum length of a packed-decimal computational item is 31 decimal digits.

End of IBM Extension

The PICTURE of a computational item may contain only:

9 One or more numeric character positions

S One operational sign

V One implied decimal point

P One or more decimal scaling positions.

IBM Extension

Unlike other computational items, COMPUTATIONAL-1 and COMPUTATIONAL-2
items (internal floating-point) cannot have PICTURE strings.

End of IBM Extension

BINARY Phrase
The BINARY phrase is specified for binary data items. Such items have a decimal
equivalent consisting of the decimal digits 0 through 9, plus a sign.

The amount of storage occupied by a binary item depends on the number of
decimal digits defined in its PICTURE clause:

Digits in PICTURE Clause Storage Occupied

1 through 4 2 bytes

5 through 9 4 bytes

10 through 18 8 bytes

The leftmost bit of the storage area is the operational sign.

PACKED-DECIMAL Phrase
The PACKED-DECIMAL phrase is specified for internal decimal items. Such an
item appears in storage in packed-decimal format. There are 2 digits for each
character position, except for the trailing character position, which is occupied by
the low-order digit and the sign. Such an item may contain any of the digits 0
through 9, plus a sign, representing a value not exceeding 18 decimal digits. The
sign representation is shown in Figure 13 on page 225.

IBM Extension

The maximum length of a packed-decimal computational item is 63 decimal digits.

PACKED-DECIMAL may also be specified for date and time items whose
FORMAT literal contains only conversion specifiers. These conversion specifiers

USAGE Clause

220 ILE COBOL Reference

must only be able to contain numeric digits.

End of IBM Extension

COMPUTATIONAL or COMP Phrase
The COMPUTATIONAL or COMP phrase is specified for internal decimal items.
Such an item appears in storage as 2 digits per byte, with the sign contained in the
4 rightmost bits of the rightmost byte. An internal decimal item can contain any of
the digits 0 through 9 plus a sign. If the PICTURE of an internal decimal item does
not contain an S, the sign position is occupied by a bit configuration that is
interpreted as positive. Of all USAGEs, USAGE COMP is the most efficient in
terms of operational performance.

For the ILE COBOL compiler, the COMPUTATIONAL phrase is synonymous with
v USAGE COMP-4(Binary), if option COMPASBIN is specified
v Otherwise, PACKED-DECIMAL.

COMPUTATIONAL-1 or COMP-1 Phrase

IBM Extension

The COMPUTATIONAL-1 or COMP-1 phrase is specified for internal
floating-point items (single precision). COMP-1 items are 4 bytes long. The sign is
contained in the first bit of the leftmost byte and the exponent is contained in the
next 8 bits. The last 23 bits contain the mantissa. For conditional expressions, the
class condition cannot be used for COMP-1 or COMPUTATIONAL-1 internal
floating-point data items.

End of IBM Extension

COMPUTATIONAL-2 or COMP-2 Phrase

IBM Extension

The COMPUTATIONAL-2 or COMP-2 phrase is specified for internal
floating-point items (double precision). COMP-2 items are 8 bytes long. The sign is
contained in the first bit of the leftmost byte and the next 11 bits contain the
exponent. The remaining 52 bits contain the mantissa. For conditional expressions,
the class condition cannot be used for COMPUTATIONAL-2 or COMP-2 internal
floating-point data items.

End of IBM Extension

COMPUTATIONAL-3 or COMP-3 Phrase (Internal Decimal)

IBM Extension

This is the equivalent of PACKED-DECIMAL.

To improve compilation performance, specify odd numbers of numeric character
positions in the picture clauses for COMP-3 (packed decimal) items. Internally, the
rightmost byte of a packed decimal item contains a digit and a sign, and any other
bytes contain two digits. If you use the more efficient configuration, the compiler
does not need to supply the missing digit.

USAGE Clause

Chapter 12. Part 5. Data Division 221

The contents of the leftmost (unused) digit position of the storage allocated for a
packed decimal item that contains an even number of digits can change when the
value of the item is changed. This might lead to unexpected results if, for example,
the item is redefined, forms part of a group field, or is used as a key to an indexed
file.

End of IBM Extension

COMPUTATIONAL-4 or COMP-4 Phrase (Binary)

IBM Extension

This is the equivalent of BINARY.

End of IBM Extension

COMPUTATIONAL-5 or COMP-5 Phrase (Binary)

IBM Extension

These data items are represented in storage as binary data. The data items can
contain values up to the capacity of the native binary representation (2, 4 or 8
bytes), rather than being limited to the value implied by the number of nines in
the picture for the item (as is the case for USAGE BINARY data). When numeric
data is moved or stored into a COMP-5 item, truncation occurs at the binary field
size rather than at the COBOL picture size limit. When a COMP-5 item is
referenced, the full binary field size is used in the operation.

The *NOSTDTRUNC compiler option or the NOSTDTRUNC PROCESS option
causes BINARY data items (USAGE BINARY, COMP-4) to be handled as if they
were declared USAGE COMP-5. The only exception is that unsigned BINARY data
items always have a sign bit, so the maximum and minimum values for an
unsigned BINARY data item are the same as for a signed BINARY data item.

The following table shows several picture character strings, the resulting storage
representation, and the range of values for data items described with USAGE
COMP-5.

Table 19. Storage Representation for COMP-5 Data Items

Picture Storage representation Numeric values

S9(1) through S9(4) Binary halfword (2 bytes) -32768 through +32767

S9(5) through S9(9) Binary fullword (4 bytes) -2,147,483,648 through
+2,147,483,647

S9(10) through S9(18) Binary doubleword (8 bytes) -9,223,372,036,854,775,808
through
+9,223,372,036,854,775,807

9(1) through 9(4) Binary halfword (2 bytes) 0 through 65535

9(5) through 9(9) Binary fullword (4 bytes) 0 through 4,294,967,295

9(10) through 9(18) Binary doubleword (8 bytes) 0 through
18,446,744,073,709,551,615

The picture for a COMP-5 data item can specify a scaling factor (that is, decimal
positions or implied integer positions). In this case, the maximal capacities listed in

USAGE Clause

222 ILE COBOL Reference

|

|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

||

|||

|||

|||
|

|||
|
|

|||

|||

|||
|
|

|
|

the table above must be scaled appropriately. For example, a data item described
with PICTURE S99V99 COMP-5 is represented in storage as a binary halfword,
and supports a range of values from -327.68 to +327.67.

Usage note: When the ON SIZE ERROR phrase is used on an arithmetic statement
and a receiver is defined with USAGE COMP-5, the maximum value that the
receiver can contain is the value implied by the item's decimal PICTURE
character-string. Any attempt to store a value larger than this maximum will result
in a size error condition.

End of IBM Extension

DISPLAY Phrase
The data item is stored in character form, 1 character for each 8-bit byte. This
corresponds to the format used for printed output. DISPLAY can be explicit or
implicit.

USAGE IS DISPLAY is valid for the following types of items:
v Alphabetic
v Alphanumeric
v Alphanumeric-edited
v Numeric-edited
v External decimal (numeric)

IBM Extension

v Boolean
v Date, time, and timestamp
v External floating-point.

End of IBM Extension

IBM Extension

For conditional expressions, the class condition cannot be used for external
floating-point data items, which have a USAGE DISPLAY.

End of IBM Extension

Alphabetic, alphanumeric, alphanumeric-edited, and numeric-edited items are
discussed in “Data Categories and PICTURE Rules” on page 193.

The PICTURE character-string of a zoned item can contain only 9s, the operational
sign symbol S, the assumed decimal point V, and one or more Ps.

External Decimal (Numeric)
External decimal items are sometimes referred to as zoned decimal items. Each
digit of a number is represented by a single byte. The 4 high-order bits of each
byte are zone bits; the 4 high-order bits of the low-order byte represent the sign of
the item. If the number is positive, these four bits contain a hexadecimal F. If the
number is negative, these four bits contain a hexadecimal D. The 4 low-order bits
of each byte contain the value of the digit.

USAGE Clause

Chapter 12. Part 5. Data Division 223

|
|
|

|
|
|
|
|

The maximum length of an external decimal item is 18 digits.

IBM Extension

The maximum length of an external decimal item is 63 digits.

End of IBM Extension

External Floating Point (Numeric)

IBM Extension

An external floating point item is a character string which has the following
format:

mantissa sign
+ or - (mandatory)

mantissa
A numeric value between 1 and 16 digits in length that may in addition
contain either a period (.) to denote an explicit decimal point, or a V to
denote an implicit decimal point. The decimal point symbol may appear in
any position of the mantissa.

E A constant that introduces the exponent.

exponent sign
+ or - (mandatory)

exponent
A two- or three-digit numeric value.

End of IBM Extension

Figure 13 on page 225 shows the internal representation of numeric items as
specified by the USAGE clause. Numeric DISPLAY items include external decimal
and external floating point data items. The computational numeric items are also
shown in this figure: binary, internal decimal, and internal floating point data
items.

USAGE Clause

224 ILE COBOL Reference

ITEM DESCRIPTION VALUE INTERNAL REPRESENTATION*

External
Decimal

PIC S9999 DISPLAY +1234
–1234

1234

F1 F2 F3 F4
F1 F2 F3 D4
F1 F2 F3 F4

PIC 9999 DISPLAY +1234
–1234

1234

F1 F2 F3 F4
F1 F2 F3 F4
F1 F2 F3 F4

PIC S9999 DISPLAY SIGN LEADING +1234
–1234

1234

F1 F2 F3 F4
D1 F2 F3 F4
F1 F2 F3 F4

PIC S9999 DISPLAY SIGN TRAILING
SEPARATE

+1234
–1234

1234

F1 F2 F3 F4 4E
F1 F2 F3 F4 60
F1 F2 F3 F4 4E

PIC S9999 DISPLAY SIGN LEADING
SEPARATE

+1234
–1234

1234

4E F1 F2 F3 F4
60 F1 F2 F3 F4
4E F1 F2 F3 F4

Internal
Decimal

PIC S9999 {COMP }

PIC 9999 {COMP }

{COMP–3}

{COMP–3}

+1234
–1234

01 23 4F
01 23 4D

+1234
–1234

01 23 4F
01 23 4F

Binary PIC S9999 COMP–4 +1234
–1234

04 D2
FB 2E

PIC 9999 COMP–4 +1234
–1234

04 D2
04 D2

Internal
Floating
Point

COMP–1 +1234
–1234

44 9A 40 00
C4 9A 40 00

40 93 48 00 00 00 00 00
C0 93 48 00 00 00 00 00

Internal
Floating
Point

COMP–2 +1234
–1234

External
Floating
Point

PIC +9(2) 9(2)E+99 DISPLAY. +1234

–1234

4E F1 F2 4B F3
F4 C5 4E F0 F2

60 F1 F2 4B F3
F4 C5 4E F0 F2

* The internal representation of each byte is shown as two hex digits.
The bit configuration for each digit is as follows:

0
1
2
3
4
5
6
7

8
9
A
B
C
D
E
F

0000
0001
0010
0011
0100
0101
0110
0111

1000
1001
1010
1011
1100
1101
1110
1111

NOTES:
1. The leftmost bit of a binary number represents the sign: 0 is positive, 1 is negative.
2 Negative binary numbers are represented in twos complement form.
3 Hex 4E represents the EBCDIC character +, Hex 60 represents the EBCDIC character –.
4 Specifications of SIGN TRAILING (without the SEPARATE CHARACTER option) is equivalent

of the standard action of the compiler.

Hex Digit Hex DigitBit Configuration Bit Configuration

Note: The internal representation of native binary COMP-5 numeric items is the same as the
internal representation of binary COMP-4 numeric items.

Figure 13. Internal Representation of Numeric Items

USAGE Clause

Chapter 12. Part 5. Data Division 225

|
|

DISPLAY-1 Phrase

IBM Extension

The DISPLAY-1 phrase defines an item as DBCS or DBCS-edited.

End of IBM Extension

INDEX Phrase
A data item defined with the INDEX phrase is an index data item.

An index data item is a 4-byte elementary item (not necessarily connected with
any table) that can be used to save index-name values for future reference.
Through a SET statement, an index data item can be assigned an index-name
value.

The index-name value is the displacement, which corresponds to an occurrence
number in the table. The index-name value equals:
(occurrence-number − 1) * entry length

Any attempt to set an index-name to a value greater than 999 999 999 will leave
the index-name value undefined.

Direct references to an index data item can be made only in a SEARCH statement,
a SET statement, a relation condition, the USING phrase of the Procedure Division
header, or the USING phrase of the CALL statement.

An index data item can be part of a group item referred to in a MOVE statement
or an input/output statement.

An index data item saves values that represent table occurrences, yet is not
necessarily defined as part of any table. Thus, when it is referred to directly in a
SEARCH or SET statement, or indirectly in a MOVE or input/output statement,
there is no conversion of values when the statement is executed.

The USAGE IS INDEX clause may be written at any level. If a group item is
described with the USAGE IS INDEX clause, the elementary items within the
group are index data items; the group itself is not an index data item, and the
group name may not be used in SEARCH and SET statements or in relation
conditions. The USAGE clause of an elementary item cannot contradict the USAGE
clause of a group to which the item belongs.

An index data item cannot be a conditional variable.

The JUSTIFIED, PICTURE, BLANK WHEN ZERO, SYNCHRONIZED, TYPE,
VALUE, or FORMAT clauses cannot be used to describe group or elementary items
described with the USAGE IS INDEX clause.

If a source program is to be portable to other systems, it must not depend on the
content of the index data item when stored in external records (since the content is
system specific).

USAGE Clause

226 ILE COBOL Reference

NATIONAL Phrase

IBM Extension

The NATIONAL phrase defines an item as national. The picture string of the
corresponding data item can only contain one N or multple Ns.

End of IBM Extension

POINTER Phrase

IBM Extension

A data item defined with the USAGE IS POINTER clause is a pointer data item.

A pointer data item is a 16-byte elementary item that can be used to accomplish
base addressing. Pointer data items can be compared for equality, or moved to
other pointer items.

A pointer data item may only be used in:
v A SET statement (Format 5 and 7 only)
v A relation condition
v The USING phrase of a CALL statement or Procedure Division header
v Expressions involving ADDRESS OF or LENGTH OF.
v The argument on an intrinsic function

The USAGE IS POINTER clause may be written at any level except 66 or 88.

If a group item is described with the USAGE IS POINTER clause, the elementary
items within the group are pointer data items. The group itself, however, is not a
pointer data item and cannot be used in the syntax where a pointer data item is
allowed.

Pointer data items can be part of a group that is referred to in a MOVE statement
or an I/O statement. If, however, a pointer data item is part of a group, there is no
conversion of pointer values to another internal representation when the statement
runs.

A pointer data item can be the subject or object of a REDEFINES clause.

A VALUE clause for a pointer data item can contain NULL or NULLS only.

A pointer data item does not belong to a class or category, and it cannot be used as
a conditional variable.

The JUSTIFIED, PICTURE, SIGN, TYPE, BLANK WHEN ZERO, and FORMAT
clauses cannot be used to describe group or elementary items defined with the
USAGE IS POINTER clause.

Pointer data items are ignored in CORRESPONDING operations.

A pointer data item can be written to a file, but if you later read the record
containing the pointer data item, the item will no longer represent a valid address.

USAGE IS POINTER is implicitly specified for the ADDRESS OF special register.

USAGE Clause

Chapter 12. Part 5. Data Division 227

You cannot treat ILE COBOL pointer data items as ordinary numbers.

Pointer Alignment
For the purposes of this section on pointer alignment, the term pointer refers to
both pointer data items and procedure-pointer data items.

When a pointer is referenced, or is the subject of a REDEFINES clause, the object
item must be in alignment. In other words, it must be located at an offset that is a
multiple of 16 bytes from the beginning of the record.

A data item described as a pointer in the Working-Storage, Local-Storage or File
sections is aligned. If the pointer is part of a structure that begins at level-number
01, the compiler aligns the beginning of the structure. After that, the compiler puts
FILLER items in front of the pointer to make sure that it is also in alignment. The
compiler issues a warning when it adds these FILLER items.

In the Linkage section:
v If the process option NOLSPTRALIGN is in effect, the compiler does not add

FILLER items to the structure. The compiler issues warnings regarding its
assumption that you have aligned the 01-level items.

v If the process option LSPTRALIGN is in effect, the data item described as
pointer is also aligned.

If a pointer is the subject of a REDEFINES clause in the Linkage section, and the
object of the clause is not a pointer, you will receive a warning that you need to
maintain pointer alignment. For the same situation in the Working-Storage,
Local-Storage or File sections, an error will result if you do not align the object of
the clause.

You can specify the SYNCHRONIZED clause along with USAGE IS POINTER or
USAGE IS PROCEDURE-POINTER clause, but this clause is already implicit for
pointers.

If the pointer is part of a table, the first item in the table is aligned, and to make
sure that all occurrences of the pointer are also aligned, a filler item might be
added to the end of the table.

To avoid adding FILLER items to data structures, place pointers at the beginning
of the structures.

End of IBM Extension

PROCEDURE-POINTER Phrase

IBM Extension

A data item defined with the PROCEDURE-POINTER phrase is a
procedure-pointer data item. It is a 16-byte elementary item containing the address
of an entry point to an ILE procedure or program object (*PGM), such as:
v The entry point of the outermost ILE COBOL program (an ILE procedure) in the

compilation unit defined by the PROGRAM-ID statement
v An entry point of a non-COBOL program, such as an ILE C function (an ILE

procedure)
v An entry point of a program (*PGM).

USAGE Clause

228 ILE COBOL Reference

A procedure-pointer data item may only be used in:
v The SET statement
v A relation condition
v The USING phrase of a CALL statement, or the Procedure Division header
v Expressions involving ADDRESS OF and LENGTH OF
v The CALL statement as a target
v The argument on an intrinsic function

Like pointer data items, procedure-pointer data items must be in alignment.

Usage Rules
v The USAGE IS PROCEDURE-POINTER clause cannot be written at level-88.
v In a group item described with the USAGE IS PROCEDURE-POINTER clause,

the elementary items within the group are procedure-pointer data items (the
group itself is not a procedure-pointer).

v The USAGE clause of an elementary item cannot contradict the USAGE clause of
a group to which the item belongs.

v Procedure-pointer data items can be part of a group that is referred to in a
MOVE statement, or an input/output statement. However, there is no
conversion of values when the statement is executed.

v A procedure-pointer data item can be written to a file, but if you later read the
same record containing the procedure-pointer, the item will no longer represent
a valid address.

v GLOBAL, EXTERNAL, OCCURS, SYNCHRONIZED, and LIKE clauses may be
used with USAGE IS PROCEDURE-POINTER.

v A procedure-pointer may be the subject or object of a REDEFINES clause.
v A VALUE clause for a procedure-pointer data item can contain only NULL or

NULLS.
v JUSTIFIED, PICTURE, TYPE, BLANK WHEN ZERO, and FORMAT clauses

cannot describe group or elementary items defined with the USAGE IS
PROCEDURE-POINTER clause.

v A procedure-pointer data item cannot be a conditional variable, does not belong
to any class or category, and is ignored in CORRESPONDING operations.

End of IBM Extension

VALUE Clause
The VALUE clause specifies the initial contents of a data item or the value(s)
associated with a condition-name.

The use of the VALUE clause differs depending on the Data Division section in
which it is specified.

IBM Extension

In the Linkage section, a VALUE clause used in entries other than condition-names
is treated as a comment.

End of IBM Extension

In the File and Linkage sections, the VALUE clause must be used only in
condition-name and type-name entries. In the Working-Storage and Local-Storage

USAGE Clause

Chapter 12. Part 5. Data Division 229

Sections, the VALUE clause may be used in condition-name entries, type-name
entries, or in specifying the initial value of any data item. The data item assumes
the specified value at the beginning of program execution. If the initial value is not
explicitly specified, it is unpredictable.

VALUE Clause - Format 1 - Literal Value

VALUE Clause - Format 1 - Literal Value

►► VALUE literal
IS

►◄

Format 1 specifies the initial value of a data item. Initialization is independent of
any BLANK WHEN ZERO or JUSTIFIED clause specified.

A Format 1 VALUE clause specified in a data description entry that contains, or is
subordinate to an OCCURS clause, causes every occurrence of the associated data
item to be assigned the specified value. Each structure that contains the
DEPENDING ON phrase of the OCCURS clause is assumed to contain the
maximum number of occurrences for the purposes of VALUE initialization.

The VALUE clause must not be specified for a data description entry that contains,
or is subordinate to, an entry containing an EXTERNAL clause or a REDEFINES
clause. This rule does not apply to condition-name entries.

If the VALUE clause is specified at the group level, the literal must be a
nonnumeric literal or a figurative constant other than NULL or NULLS. The group
area is initialized without consideration for the subordinate entries within this
group. In addition, the VALUE clause must not be specified for subordinate entries
within this group.

For group entries, the VALUE clause must not be specified if the entry also
contains a USAGE (other than USAGE DISPLAY) clause.

The VALUE clause must not conflict with other clauses in the data description
entry, or in the data description of this entry's hierarchy.

IBM Extension

Any VALUE clause associated with COMPUTATIONAL-1 or COMPUTATIONAL-2
(internal floating-point) items must specify a floating-point literal. The
condition-name VALUE phrase must also specify a floating-point literal. In
addition, the figurative constant ZERO and both integer and decimal forms of the
zero literal can be specified in a floating-point VALUE clause or condition-name
VALUE phrase.

For more information on floating-point literal values, see “Floating-Point Literals”
on page 18.

A VALUE clause cannot be specified for external floating-point items.

A VALUE clause associated with a DBCS item must contain a DBCS literal or the
figurative constant SPACE or SPACES.

VALUE Clause

230 ILE COBOL Reference

A VALUE clause associated with a national item must contain a non-numeric
literal, a national hexadecimal literal, or the figurative constant SPACE or SPACES.

A VALUE clause may be specified in the data description entry for a type-name.
Such a VALUE clause is used to initialize any data name (which is not a
type-name), that is defined using a TYPE clause that references such a type-name.
If a VALUE clause is specified in the data description of the subject of a TYPE
clause, any VALUE clause specified in the description of the associated type-name
is ignored for this entry.

A data item cannot contain a VALUE clause if the prior data item contains an
OCCURS clause with the DEPENDING ON phrase. A variably located item cannot
contain the VALUE clause.

A VALUE clause associated with a date, time, or timestamp item must be a
non-numeric literal. The literal is aligned according to alignment rules. No
formatting of the literal is done to match conversion specifiers or LOCALE
definition, except if the USAGE of the item is PACKED-DECIMAL, in which case
the non-numeric literal is converted to packed.

End of IBM Extension

Rules for Literal Values
v Wherever a literal is specified, a figurative constant may be substituted.
v If the item is numeric, all VALUE clause literals must be numeric. If the literal

defines the value of a Working-Storage item, the literal is aligned according to
the rules for numeric moves, with one additional restriction: The literal must not
have a value that requires truncation of nonzero digits. If the literal is signed,
the associated PICTURE character-string must contain a sign symbol (S).

v With an exception, numeric literals in a VALUE clause of an item must have a
value that is within the range of values indicated by the PICTURE clause for
that item. For example, for a PICTURE of 99PPP, the literal must fall within the
range of 1 000 through 99 000, or it must be zero. For a PICTURE of PPP99, the
literal must fall within the range of 0.000 00 through 0.000 99.
The exceptions are the following:
– Data items described with usage COMP-5 that do not have a picture symbol

P in their PICTURE clause.
– When the *NOSTDTRUNC compiler option is in effect, data items described

with usage BINARY or COMP-4 that do not have a picture symbol P in their
PICTURE clause.

A VALUE clause for these items can have a value up to the capacity of the
native binary representation.

v If the item is a group item, or an elementary alphabetic, alphanumeric,
alphanumeric-edited, or numeric-edited item, all VALUE clause literals must be
nonnumeric literals. The literal is aligned according to the alignment rules, with
one additional restriction: the number of characters in the literal must not exceed
the size of the item.

IBM Extension

If the item is Boolean, the VALUE clause must be a Boolean literal.

End of IBM Extension

VALUE Clause

Chapter 12. Part 5. Data Division 231

|
|

|
|
|
|
|

|

|
|

|
|
|

|
|

v The functions of the editing characters in a PICTURE clause are ignored in
determining the initial appearance of the item described. However, editing
characters are included in determining the size of the item. Therefore, any
editing characters must be included in the literal. For example, if the item is
defined as PICTURE +999.99 and the value is to be +12.34, then the VALUE
clause should be specified as VALUE '+012.34'.

v A maximum of 32 767 bytes can be initialized by means of a single VALUE
clause. A maximum of 65 472 bytes can be initialized by all of the VALUE
clauses contained within a single program.

VALUE Clause - Format 2 - Condition-Name Value

VALUE Clause - Format 2 - Condition-Name Value

►► 88 condition-name VALUE
IS

VALUES
ARE

►

► ▼ literal-1
THROUGH literal-2
THRU

. ►◄

This format associates a value, values, and/or range(s) of values with a
condition-name. Each such condition-name requires a separate level-88 entry.
Level-number 88 and condition-name are not part of the Format 2 VALUE clause
itself. They are included in the format only for clarity.

condition-name
A user-specified name that associates a value with a conditional variable. If the
associated conditional variable requires subscripts or indexes, each procedural
reference to the condition-name must be subscripted or indexed as required for
the conditional variable.

Condition-names are tested procedurally in condition-name conditions (see
“Conditional Expressions” on page 247).

literal-1
When literal-1 is specified alone, the condition-name is associated with a single
value.

literal-1 THROUGH literal-2
The condition-name is associated with at least one range of values. Whenever
the THROUGH phrase is used, literal-1 must be less than literal-2.

IBM Extension

If the associated conditional variable is a DBCS data item, all the literals specified
for the THROUGH phrase must be DBCS literals (or the figurative constants
SPACE, SPACES). The range of DBCS literals specified for the THROUGH phrase
is based on the binary collating sequence of the hexadecimal values of the DBCS
characters.

VALUE Clause

232 ILE COBOL Reference

If the associated conditional variable is a national data item, all the literals
specified for the THROUGH phrase must be non-numeric literals, national
hexadecimal literals (or the figurative constants SPACE, SPACES). The range of the
literals specified for the THROUGH phrase is based on the binary collating
sequence of the hexadecimal values of the national characters.

End of IBM Extension

Rules for Condition-Name Values
v The VALUE clause is required in a condition-name entry, and must be the only

clause in the entry. Each condition-name entry is associated with a preceding
conditional variable. Thus, every level-88 entry must always be preceded either
by the entry for the conditional variable, or by another level-88 entry when
several condition-names apply to one conditional variable. Each such level-88
entry implicitly has the PICTURE characteristics of the conditional variable.

v The condition-name entries associated with a particular conditional variable
must immediately follow the conditional variable entry. The conditional variable
can be any data description entry except:
– A level-66 item (RENAMES clause)
– A data item whose USAGE IS INDEX
– An item whose USAGE IS POINTER or PROCEDURE-POINTER.

v A condition-name can be associated with a group item data description entry. In
this case:
– The condition-name value must be specified as a nonnumeric literal or

figurative constant.
– The size of the condition-name value must not exceed the sum of the sizes of

all the elementary items within the group.
– No element within the group may contain a JUSTIFIED or SYNCHRONIZED

clause.
– No USAGE other than DISPLAY may be specified within the group.

v Condition-names can be specified both at the group level and at subordinate
levels within the group.

v The relation test implied by the definition of a condition-name at the group level
is performed in accordance with the rules for comparison of nonnumeric
operands, regardless of the nature of elementary items within the group.

IBM Extension

v The VALUE clause is allowed for internal floating-point data items.
v The VALUE clause is allowed for DBCS items. Relation tests for DBCS data

items are performed according to the rules for comparison of DBCS items.
v The VALUE clause is allowed for national items. Relation tests for national data

items are performed according to the rules for comparison of national items.
v A condition-name can be associated with a date, time, or timestamp item. In this

case:
– The condition-name value must be specified as a non-numeric literal
– Each condition-name implicitly has the FORMAT characteristics of the

conditional variable. Thus, any relation test involving this condition-name is
performed in accordance with the rules for comparing items of class
date-time.

– A THROUGH phrase can be specified when a conditional variable is of class
date-time. In this case, the time or date of literal-1 must be less than literal-2.

VALUE Clause

Chapter 12. Part 5. Data Division 233

|
|
|
|
|

End of IBM Extension

v A space, a separator comma, or a separator semicolon, must separate successive
operands.

v Each entry must end with a separator period.
v The type of literal in a condition-name entry must be consistent with the data

type of its conditional variable.

VALUE Clause - Format 3 - NULL Value

IBM Extension

VALUE Clause - Format 3 - NULL Value

►►
(1)

VALUE
IS

NULL
NULLS

►◄

Notes:

1 IBM Extension

This format assigns an address that is not valid to a pointer data item or a
procedure-pointer data item. A value of NULL is an undefined value.

VALUE IS NULL can only be specified for elementary items described implicitly or
explicitly as USAGE IS POINTER or USAGE IS PROCEDURE-POINTER.

End of IBM Extension

VALUE Clause

234 ILE COBOL Reference

Part 6. Procedure Division

© Copyright IBM Corp. 1993, 2010 235

236 ILE COBOL Reference

Chapter 13. Procedure Division

The Procedure Division is optional in a COBOL source program. The Procedure
Division consists of optional declaratives, and procedures that contain sections
and/or paragraphs, sentences, and statements.

The structure of the Procedure Division is as follows:
v Format 1 - with Sections and Paragraphs
v Format 2 - with Paragraphs Only.

Execution begins with the first statement in the Procedure Division, excluding
declaratives. Statements are executed in the order in which they are presented for
compilation, unless the statement rules dictate some other order of execution.

The Procedure Division ends at the END PROGRAM header, before the beginning
of the next COBOL source program, or at the physical end of the program. The
physical end of the program is the physical position in a source program after
which no further statements appear.

Format 1 - with Sections and Paragraphs

Procedure Division - Format 1

►► PROCEDURE DIVISION

▼USING Using-phrase

►

►
(1)

RETURNING data-name-2
ADDRESS OF

(1)
GIVING

. ►

►

▼DECLARATIVES. Sections-2 END DECLARATIVES.

▼ Sections-1 ►◄

Using-phrase:

© Copyright IBM Corp. 1993, 2010 237

▼ data-name-1
(1)

REFERENCE
BY

(1)
VALUE

BY

Sections-1:

section-name SECTION
segment-number

►

►

▼

▼

paragraph-name.

sentence

Sections-2:

section-name SECTION . USE statement.
segment-number

►

►

▼

▼

paragraph-name.

sentence

Notes:

1 IBM Extension

Format 2 - with Paragraphs Only

Procedure Division - Format 2

►► PROCEDURE DIVISION

▼USING Using-phrase

►

238 ILE COBOL Reference

►
(1)

RETURNING data-name-2
ADDRESS OF

(1)
GIVING

. ►

► ▼

▼

paragraph-name.

sentence

►◄

Notes:

1 IBM Extension

The Procedure Division Header
The Procedure Division, if specified, is identified by the following header.

Procedure Division - Header - Format

►► PROCEDURE DIVISION

▼USING Using-phrase

►

►
(1)

RETURNING data-name-2
ADDRESS OF

(1)
GIVING

. ►◄

Notes:

1 IBM Extension

SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..

004010 PROCEDURE DIVISION.
004020 DECLARATIVES.
004030 SECTION-NAME SECTION.
004040 PARAGRAPH-NAMES.
004050 PROGRAMMING STATEMENTS.
004060* COMMENTS.
004070 END DECLARATIVES.
004080 SECTION-NAME SECTION.
004090 PARAGRAPH-NAME.
004100 PROGRAMMING STATEMENTS.

Figure 14. Coding Example to Show Procedure Division Organization

Chapter 13. Part 6. Procedure Division 239

The USING phrase is required only if the object program is to be invoked by a
CALL statement and that statement includes a USING phrase.

The USING Phrase
The USING phrase makes data items defined in a calling program available to a
called subprogram.

The following rules for the USING phrase assume that the calling and called
programs are written in COBOL.
v The USING phrase is specified in the Procedure Division header if, and only if,

this program is a subprogram invoked by a CALL statement that itself contains
a USING phrase. For each CALL USING statement in a calling program, there
must be a corresponding USING phrase specified in a called subprogram

v The USING phrase is valid in the Procedure Division header of a called
subprogram.

v Each USING identifier must be defined as a level-01 or level-77 item in the
Linkage Section of the called subprogram

v A USING identifier must not contain a REDEFINES clause
v A particular user-defined word cannot appear more than once as data-name-1
v In a calling program, the USING phrase is valid for the CALL statement; each

USING identifier must be defined as a level-01, level-77, or an elementary item
in the Data Division

v The maximum number of data-names that can be specified is 255 when a
program is called with a LINKAGE TYPE of program. For programs called with
LINKAGE TYPE of procedure, the maximum number of data-names is 400.

v The order of appearance of USING identifiers in both calling and called
subprograms determines the correspondence of single sets of data available to
both programs. The correspondence is positional and not by name.
Corresponding identifiers must contain the same number of characters, although
their data descriptions need not be the same. For index-names, no
correspondence is established; index-names in calling and called programs
always refer to separate indexes.

v The identifiers specified in a CALL USING statement name data items available
to the calling program that can be referred to in the called program; a given
identifier can appear more than once. These items are defined in any Data
Division section.

v A USING identifier containing the GLOBAL clause can be specified in only one
Procedure Division header in a compilation unit.

IBM Extension

v An identifier can appear more than once in a Procedure Division USING phrase.
In that case, the last value assigned to the identifier by a CALL USING
statement is used.

End of IBM Extension

v Data items defined in the Linkage Section of the called program may be
referenced within the Procedure Division of that program if, and only if, they
satisfy one of the following conditions:
– They are operands of the USING phrase of the Procedure Division header

Procedure Division Header

240 ILE COBOL Reference

– They are defined with a REDEFINES or RENAMES clause, the object of
which satisfies the above condition

IBM Extension

– They are used as arguments of the ADDRESS OF special register

End of IBM Extension

– They are items subordinate to any item which satisfies the condition in the
rules above

– They are condition-names or index-names associated with data items that
satisfy any of the above conditions.

BY REFERENCE

IBM Extension

The BY REFERENCE phrase applies to all parameters that follow until overridden
by another BY REFERENCE or BY VALUE phrase.

When a CALL argument is passed BY CONTENT or by REFERENCE, BY
REFERENCE must be specified or implied for the corresponding formal parameter
on the PROCEDURE DIVISION header.

BY REFERENCE is the default if neither BY REFERENCE or BY VALUE is
specified.

You can use the BY REFERENCE phrase to pass an internal or external
floating-point, DBCS, date, time, or timestamp data item.

End of IBM Extension

BY VALUE

IBM Extension

The BY VALUE phrase applies to all parameters that follow until overridden by
another BY VALUE or BY REFERENCE phrase.

You can use the BY VALUE phrase to pass an internal or external floating-point,
date, time, or timestamp data item.

End of IBM Extension

GIVING/RETURNING Phrase

IBM Extension

GIVING and RETURNING are equivalent.

data-name-2
Data-name-2 is an output-only parameter. It specifies a data item to be returned as
a program result. You must define data-name-2 in the LINKAGE or
WORKING-STORAGE section. It can not be subscripted or reference modified.

Procedure Division Header

Chapter 13. Part 6. Procedure Division 241

Data-name-2 can be an internal or external floating-point, DBCS, date, time, or
timestamp data item.

When a program returns to its invoker, the value in data-name-2 is implicitly
stored into the identifier specified in the CALL RETURNING phrase.

The existence of the RETURNING phrase has no effect on the setting of the
RETURN-CODE special register.

If the calling program is COBOL, it must specify the GIVING/RETURNING
phrase of the CALL statement. In addition, data-name-2 and the corresponding
CALL RETURNING identifier in the calling program must have the same number
of character positions and must be of the same USAGE clause, SIGN clause and
category.

Do not use the PROCEDURE DIVISION RETURNING phrase in main programs.
The results are unpredictable. You should only specify the PROCEDURE DIVISION
RETURNING phrase on called subprograms. For main programs, use the
RETURN-CODE special register to return a value to the operating environment.

Items referenced in the RETURNING/GIVING phrase of the PROCEDURE
DIVISION header cannot contain the TYPE phrase.

ADDRESS OF special register
For information about this special register, see page 131.

End of IBM Extension

Declaratives
Declaratives provide one or more special-purpose sections that are executed when
an exception-condition occurs.

When Declarative Sections are specified, they must be grouped at the beginning of
the Procedure Division, and the entire Procedure Division must be divided into
sections.

Each Declarative Section starts with a USE sentence that identifies the section's
function; the series of procedures that follow specify what actions are to be taken
when the exception condition occurs. Each Declarative Section ends with another
section-name followed by a USE sentence, or with the keywords END
DECLARATIVES. See “USE Statement” on page 631 for more information on the
USE statement. See “Precedence Rules for Nested Programs” on page 633 on using
the GLOBAL phrase.

The entire group of Declarative Sections is preceded by the key word
DECLARATIVES, written on the line after the Procedure Division header; the
group is followed by the keywords END DECLARATIVES. The keywords
DECLARATIVES and END DECLARATIVES must each begin in Area A and be
followed by a separator period. No other text may appear on the same line.

In the declaratives part of the Procedure Division, each section header (with an
optional segment number) must be followed by a separator period, a USE
sentence, and a separator period. No other text may appear on the same line.

Procedure Division Header

242 ILE COBOL Reference

The USE sentence itself is never executed; instead, the USE sentence defines the
conditions that execute the succeeding procedural paragraphs, which specify the
actions to be taken. After the procedure is executed, control is returned to the
routine that caused the execution of it.

Within a declarative procedure, there must be no reference to any nondeclarative
procedure.

A procedure-name associated with a USE statement can be referenced in a different
declarative section or in a nondeclarative procedure only with a PERFORM
statement.

A declarative is run as a separate invocation from any other declaratives or from
the nondeclarative part of the COBOL program. See the section on using
declaratives in the error handling chapter of the IBM Rational Development Studio for
i: ILE COBOL Programmer's Guide.

Within a declarative procedure, no statement should be included that would cause
the execution of a USE procedure that had been previously invoked and had not
yet returned control to the invoking routine.

The declarative procedure is exited when the last statement in the procedure is
executed.

Procedures
Within the Procedure Division, a procedure consists of:
v A section or a group of sections
v A paragraph or group of paragraphs.

Note: A COBOL procedure should not be confused with an ILE procedure (an ILE
COBOL source program).

A procedure-name is a user-defined name that identifies a section or a paragraph.

Section
A section consists of a section header optionally followed by one or more
paragraphs. A section-header is a section-name followed by: the keyword
SECTION, an optional segment-number, and a separator period. The
section-header must begin in Area A. Segment-numbers are explained in the IBM
Rational Development Studio for i: ILE COBOL Programmer's Guide.

A section-name is a user-defined word that identifies a section. If referenced, a
section-name must be unique within the program in which it is defined, because it
cannot be qualified.

A section ends immediately before the next section header, or at the end of the
Procedure Division, or, in the declaratives portion, at the keywords END
DECLARATIVES.

Paragraph
A paragraph consists of a paragraph-name followed by a separator period,
optionally followed by one or more sentences.

Declaratives

Chapter 13. Part 6. Procedure Division 243

A paragraph-name is a user-defined word that identifies a paragraph. A
paragraph-name, because it can be qualified, need not be unique. The
paragraph-name must begin in Area A. A paragraph ends immediately before the
next paragraph-name or section header, or at the end of the Procedure Division. In
the declaratives portion, a paragraph ends immediately before the next paragraph,
the next USE statement, or at the keywords END DECLARATIVES. If one
paragraph in a program is contained within a section, all paragraphs of the
program must be contained in sections.

Sentence
A sentence consists of one or more statements terminated by a separator period.

Statement
A statement is a syntactically valid combination of identifiers and symbols (literals,
relational-operators, and so forth) beginning with a COBOL verb.

Execution begins with the first statement in the Procedure Division, excluding
declaratives. Statements are executed in the order in which they are presented for
compilation, unless the statement rules dictate some other order of execution.

The Procedure Division ends at the physical end of the program; that is, the
physical position in a source program after which no further statements appear.

Identifier
An identifier is a syntactically correct combination of a data-name, with its
qualifiers, subscripts, and reference modifiers as required for uniqueness of
reference, that names a data item. In any Procedure Division reference (except the
class test or function argument in a test intrinsic function), the contents of an
identifier must be compatible with the class specified through its PICTURE or
FORMAT clause, or results are unpredictable.

Sample Procedure Division Statements
. 1 2 3 4 5 6 7

PROCEDURE DIVISION.
DECLARATIVES.
ERROR-IT SECTION.

USE AFTER STANDARD ERROR PROCEDURE ON INPUT-DATA.
ERROR-ROUTINE.

IF CHECK-IT = "30" ADD 1 TO DECLARATIVE-ERRORS.
END DECLARATIVES.
BEGIN-NON-DECLARATIVES SECTION.
100-BEGIN-IT.

OPEN INPUT INPUT-DATA OUTPUT REPORT-OUT.
110-READ-IT.

READ INPUT-DATA RECORD
AT END MOVE "Y" TO EOF-SW.

IF EOF-SW NOT = "Y" ADD 1 TO RECORDS-IN.
200-MAIN-ROUTINE.

PERFORM PROCESS-DATA UNTIL EOF-SW = "Y".
PERFORM FINAL-REPORT THRU FINAL-REPORT-EXIT.
DISPLAY "TOTAL RECORDS IN = " RECORDS-IN

UPON WORK-STATION.
DISPLAY "DECLARATIVE ERRORS = " DECLARATIVE-ERRORS

UPON WORK-STATION.
STOP RUN.
PROCESS-DATA.

IF RECORD-ID = "G"
PERFORM PROCESS-GEN-INFO

ELSE

Procedures

244 ILE COBOL Reference

IF RECORD-CODE = "C"
PERFORM PROCESS-SALES-DATA

ELSE
PERFORM UNKNOWN-RECORD-TYPE.

Arithmetic Expressions
Expressions calculate values which can then be used as operands in conditional
and arithmetic statements. Arithmetic expressions are built up from operands and
operators under a strict hierarchy and precedence.

In general, any arithmetic expression can be:
1. An elementary numeric item such as:
v A numeric literal (integer or decimal)
v An identifier describing an elementary numeric item
v The figurative constant ZERO (ZEROS, ZEROES)
v Numeric functions

2. An arithmetic expression surrounded by parentheses
3. An arithmetic expression preceded by a unary operator (+, −)
4. Two arithmetic expressions separated by a binary arithmetic operator (+, −, *, ⁄,

**)

Identifiers and literals appearing in arithmetic expressions must represent either
numeric elementary items or numeric literals on which arithmetic may be
performed.

Exponential Expressions
If an exponential expression is evaluated as both a positive and a negative number,
the result will always be the positive number. The square root of 4, for example,
always results in +2.

If the value of an expression to be raised to a power is zero, the exponent must
have a value greater than zero. Otherwise, the size error condition exists. In any
case where no real number exists as the result of the evaluation, the size error
condition exists.

Unless the exponent is a literal integer with a value of 2, the results of
exponentiation are truncated after the thirteenth fractional digit. The results of
exponentiation when the exponent is noninteger are accurate to seven digits.

Arithmetic Operators
Five binary and two unary arithmetic operators can be used in arithmetic
expressions. They are represented by specific characters that must be preceded and
followed by a space.

Binary Operator
Meaning

+ Addition

− Subtraction

* Multiplication

/ Division

** Exponentiation

Procedures

Chapter 13. Part 6. Procedure Division 245

Unary Operator
Meaning

+ Multiplication by +1

− Multiplication by −1

Parentheses are used to highlight or modify the order of evaluation of complex
expressions. This improves both readability and maintainability.

Left and right parentheses must be paired in an arithmetic expression with the left
parenthesis appearing before its corresponding right parenthesis.

Expressions within parentheses are evaluated first and parenthetical pairs can be
nested within other pairs. Evaluation proceeds from the least inclusive pairing
outward.

When the order of evaluation is not made explicit by parentheses, expressions are
evaluated left-to-right following the hierarchy listed below:
1. Unary operator
2. Exponentiation
3. Multiplication and division
4. Addition and subtraction.

An arithmetic expression may begin only with a left parenthesis, a unary operator,
or an operand (that is, an identifier or a literal). It may end only with a right
parenthesis or an operand. An arithmetic expression must contain at least one
reference to an identifier or a literal.

If the first operator in an arithmetic expression is a unary operator, it must be
immediately preceded by a left parenthesis if that arithmetic expression
immediately follows an identifier or another arithmetic expression.

Table 20 shows permissible arithmetic symbol pairs. An arithmetic symbol pair is
the combination of two such symbols in sequence. In the figure:

Yes Indicates a permissible pairing.

No Indicates that the pairing is not permitted.

Table 20. Valid Arithmetic Symbol Pairs

Second Symbol

First Symbol Identifier
or Literal

* / ** + - Unary + or
Unary −

()

Identifier or Literal No Yes No No Yes

* / ** + - Yes No Yes Yes No

Unary + or Unary − Yes No No Yes No

(Yes No Yes Yes No

) No Yes No No Yes

Arithmetic Expressions

246 ILE COBOL Reference

Conditional Expressions
A conditional expression causes the object program to select alternative paths of
control, depending on the truth value of a test. Conditional expressions are
specified in EVALUATE, IF, PERFORM, and SEARCH statements.

A conditional expression can be specified in either
v simple conditions
v complex conditions

Both simple and complex conditions can be enclosed within any number of paired
parentheses; the parentheses do not change whether the condition is simple or
complex.

Simple Conditions
There are five simple conditions:
v Class condition
v Condition-name condition
v Relation condition
v Sign condition
v Switch-status condition

A simple condition has a truth value of either true or false.

Class Condition
The class condition determines whether the content of a data item is alphabetic,
alphabetic-lower, alphabetic-upper, numeric, or contains only the characters in the
set of characters specified by the CLASS clause as defined in the SPECIAL-NAMES
paragraph of the Environment Division.

Class Condition - Format

►► identifier
IS NOT

NUMERIC
ALPHABETIC
ALPHABETIC-LOWER
ALPHABETIC-UPPER

(1)
DBCS

(1)
KANJI
class-name

►◄

Notes:

1 IBM Extension

identifier
Must reference a data item whose usage is DISPLAY. When the identifier is a
group item of zero length and NOT is specified in the class condition, the
result is always true. If NOT is not specified, the result is always false.

If identifier is a function identifier, it must reference an alphanumeric, DBCS,
or date-time function.

NOT
When used, NOT and the next keyword define the class test to be executed for
truth value. For example, NOT NUMERIC is a truth test for determining that a
data item is nonnumeric.

Conditional Expressions

Chapter 13. Part 6. Procedure Division 247

NUMERIC
The data item consists entirely of the characters 0 through 9, with or without
an operational sign.

If its PICTURE does not contain an operational sign, the item being tested is
determined to be numeric only if the contents are numeric and an operational
sign is not present.

If its PICTURE does contain an operational sign, the item being tested is
determined to be numeric only if the item is an elementary item, the contents
are numeric, and a valid operational sign is present.

In the EBCDIC character set, valid embedded operational positive signs are
hexadecimal F, C, E, and A. Negative signs are hexadecimal D and B. The
preferred positive sign is hexadecimal F, and the preferred negative sign is
hexadecimal D. For items described with the SIGN IS SEPARATE clause, valid
operational signs are + (hex 4E) and − (hex 60).

IBM Extension

For numeric and date-time data items, the identifier being tested can be
described implicitly or explicitly as USAGE DISPLAY, USAGE
PACKED-DECIMAL, USAGE COMP, or USAGE COMP-3.

End of IBM Extension

ALPHABETIC
The data item referenced by the identifier consists entirely of any combination
of the lowercase or uppercase alphabetic characters A through Z, and the
space.

ALPHABETIC-LOWER
The data item referenced by the identifier consists entirely of any combination
of the lowercase alphabetic characters a through z, and the space.

ALPHABETIC-UPPER
The data item referenced by the identifier consists entirely of any combination
of the uppercase alphabetic characters A through Z, and the space.

class-name
The data item referenced by the identifier consists entirely of the characters
listed in the definition of class-name in the SPECIAL-NAMES paragraph.

The class-name test must not be used with an identifier described as numeric.

IBM Extension

DBCS
Identifier consists entirely of DBCS characters, with the following rules:
v For DBCS data items, the identifier being tested must be described explicitly

or implicitly as USAGE DISPLAY-1.
v A range check is performed on the data portion of the item for valid DBCS

character representation. The valid range is X'41' through X'FE' for both
bytes. X'4040' is a DBCS blank.

KANJI
Identifier consists entirely of DBCS characters, with the following rules:
v For DBCS data items, the identifier being tested must be described explicitly

or implicitly as USAGE DISPLAY-1.

Conditional Expressions

248 ILE COBOL Reference

v A range check is performed on the data portion of the item for valid DBCS
character representation. The valid range is X'41' through X'7F' for the first
byte, and X'41' through X'FE' for the second byte. X'4040' is a DBCS blank.

End of IBM Extension

The class test is not valid for items whose usage is INDEX, POINTER, or
PROCEDURE-POINTER because these items do not belong to any class or
category.

IBM Extension

The class condition cannot be used for external floating-point (USAGE DISPLAY)
or internal floating-point (USAGE COMP-1 and USAGE COMP-2) items.

End of IBM Extension

Table 21 shows valid forms of the class test.

Table 21. Valid Forms of the Class Test

Type of Identifier Valid Forms of the Class Test

Alphabetic ALPHABETIC
ALPHABETIC-LOWER
ALPHABETIC-UPPER
class-name

NOT ALPHABETIC
NOT ALPHABETIC-LOWER
NOT ALPHABETIC-UPPER
NOT class-name

Alphanumeric,
Alphanumeric-edited,
or Numeric-edited

ALPHABETIC
ALPHABETIC-LOWER
ALPHABETIC-UPPER
NUMERIC
class-name

NOT ALPHABETIC
NOT ALPHABETIC-LOWER
NOT ALPHABETIC-UPPER
NOT NUMERIC
NOT class-name

External-Decimal
Internal-Decimal

NUMERIC NOT NUMERIC

IBM Extension
DBCS
DBCS-edited

End of IBM Extension

DBCS
KANJI

NOT DBCS
NOT KANJI

IBM Extension
Date-Time

End of IBM Extension

NUMERIC
class-name

NOT NUMERIC
NOT class-name

Condition-Name Condition
A condition-name condition tests a conditional variable to determine whether its
value is equal to any value(s) associated with the condition-name.

Condition-Name Condition - Format

►► condition-name ►◄

Conditional Expressions

Chapter 13. Part 6. Procedure Division 249

A condition-name is used in conditions as an abbreviation for the relation
condition. The rules for comparing a conditional variable with a condition-name
value are the same as those specified for relation conditions.

If the condition-name has been associated with a range of values (or with several
ranges of values), the conditional variable is tested to determine whether or not its
value falls within the range(s), including the end values. The result of the test is
true if one of the values corresponding to the condition-name equals the value of
its associated conditional variable.

IBM Extension

Condition-names with floating-point and DBCS values are allowed.

End of IBM Extension

The following example illustrates the use of conditional variables and
condition-names:
01 NUMBER PIC 99.

88 FIVE VALUE 5.
88 ONE-DIGIT-EVEN VALUE 0, 2, 4, 6, 8
88 TWO-DIGIT-NUMBER VALUE 10 THRU 99

NUMBER is the conditional variable; FIVE, ONE-DIGIT-EVEN,
TWO-DIGIT-NUMBER are condition-names.

The following IF statements can be added to the above example to determine the
age group of a specific record:
IF FIVE... (Tests for value 5)
IF ONE-DIGIT-EVEN (Tests for values 0, 2, 4, 6, 8)
IF TWO-DIGIT-NUMBER (Tests for values 10 thru 99)

Depending on the evaluation of the condition-name condition, alternative paths of
execution are taken by the object program.

Relation Condition
A relation condition compares two operands, either of which may be an identifier,
a literal, an arithmetic expression, index-name or a function-identifier. The relation
condition must contain at least one reference to an identifier.

Relation Condition - Format

►► operand-1
IS (1)

NOT

GREATER
THAN

>
LESS

THAN
<
EQUAL

TO
=

GREATER OR EQUAL
THAN TO

>=
LESS OR EQUAL

THAN TO
<=

►

Conditional Expressions

250 ILE COBOL Reference

► operand-2 ►◄

Notes:

1 NOT GREATER THAN OR EQUAL TO, NOT >=,
NOT LESS THAN OR EQUAL TO, and NOT <=, are IBM Extensions.

operand-1
The subject of the relation condition. Can be an identifier, literal,
function-identifier, arithmetic expression, or index-name.

operand-2
The object of the relation condition. Can be an identifier, literal,
function-identifier, arithmetic expression, or index-name.

The relational operator specifies the type of comparison to be made. Each relational
operator must be preceded and followed by a space.

Relational Operator Can Be Written

IS GREATER THAN IS >

IS NOT GREATER THAN IS NOT >

IS LESS THAN IS <

IS NOT LESS THAN IS NOT <

IS EQUAL TO IS =

IS NOT EQUAL TO IS NOT =

IS GREATER THAN OR EQUAL TO
IS >=

IS LESS THAN OR EQUAL TO
IS <=

IBM Extension

IS NOT GREATER THAN OR EQUAL TO
IS NOT >=

IS NOT LESS THAN OR EQUAL TO
IS NOT <=

End of IBM Extension

DBCS Items:

IBM Extension

DBCS data items and literals can be used with all relational operators.
Comparisons (between two DBCS items only) are based on the binary collating
sequence of the hexadecimal values of the DBCS characters. If the items are not of
the same length, the smaller item is padded with DBCS spaces to the right.

End of IBM Extension

Conditional Expressions

Chapter 13. Part 6. Procedure Division 251

Pointer Data Items:

IBM Extension

Pointer data items are items defined explicitly as USAGE IS POINTER. Otherwise,
they are ADDRESS OF data items or ADDRESS OF special registers, which are
implicitly defined as USAGE IS POINTER.

Only EQUAL and NOT EQUAL are allowed as relational operators when you
specify pointer data items. The operands are equal if the two addresses used in the
comparison would both result in the same storage location.

This relation condition is allowed in IF, PERFORM, EVALUATE, and SEARCH
Format 1 statements. It is not allowed in SEARCH Format 2 (SEARCH ALL)
statements, because there is not a meaningful ordering that can be applied to
pointer data items.

ADDRESS Comparison - Format

►► ADDRESS OF identifier-1
identifier-2
NULL
NULLS

IS NOT
EQUAL

TO
=

►

► ADDRESS OF identifier-3
identifier-4
NULL
NULLS

►◄

identifier-1, identifier-3
May specify any level item defined in the Data Division Section, except level
66 and level 88.

identifier-2, identifier-4
Must be described as USAGE IS POINTER.

NULL(S)
Can be used only if the other operand is one of these:
v An item whose usage is POINTER
v The ADDRESS OF an item
v The ADDRESS OF special register.

That is, NULL=NULL is not allowed.

End of IBM Extension

Procedure-pointer Data Items:

IBM Extension

Procedure-pointer data items are items defined explicitly as USAGE IS
PROCEDURE-POINTER.

Only EQUAL and NOT EQUAL are allowed as relational operators when you
specify procedure-pointer data items. The operands are equal if the two addresses
used in the comparison would both result in the same storage location.

Conditional Expressions

252 ILE COBOL Reference

This relation condition is allowed in IF, PERFORM, EVALUATE, and SEARCH
Format 1 statements. It is not allowed in SEARCH Format 2 (SEARCH ALL)
statements, because there is not a meaningful ordering that can be applied to
procedure-pointer data items.

Procedure-Pointer Comparison - Format

►► identifier-1
NULL
NULLS

IS NOT
EQUAL

TO
=

identifier-2
NULL
NULLS

►◄

identifier-1, identifier-2
Must be described as USAGE IS PROCEDURE-POINTER (see
“PROCEDURE-POINTER Phrase” on page 228 for more information).

NULL(S)
Used only if the other operand is defined as USAGE IS PROCEDURE-
POINTER. NULL=NULL is not allowed.

End of IBM Extension

Comparison of Numeric and Nonnumeric Operands
Rules for numeric and nonnumeric comparisons are given in the following tables.
If either of the operands is a group item, nonnumeric comparison rules apply.

Table 22 summarizes permissible comparisons with nonnumeric operands.

Table 23 on page 254 summarizes permissible comparisons with numeric operands.

The symbols used in Table 22 and Table 23 on page 254 are as follows:
v NN = Comparison for nonnumeric operands.
v NU = Comparison for numeric operands.
v NL = Comparison for national operands.
v NLN = Comparison for national and nonnational operands.
v DT = Comparison for date-time operands.
v Blank = Comparison is not allowed.

Table 22. Permissible Comparisons with Nonnumeric Second Operands

FIRST OPERAND
SECOND OPERAND

GR AL AN ANE NE FC¹ NNL DB DBE DA TI TS NL

NONNUMERIC OPERAND

Group (GR) NN NN NN NN NN NN NN NN NN NN NN

Alphabetic (AL) NN NN NN NN NN NN NN NLN

Alphanumeric (AN) NN NN NN NN NN NN NN NN NN NN NLN

Alphanumeric Edited
(ANE)

NN NN NN NN NN NN NN NN NN NN

Numeric Edited (NE) NN NN NN NN NN NN NN NU NU NU

Figurative Constant (FC¹) NN NN NN NN NN NL⁴

Nonnumeric Literal (NNL) NN NN NN NN NN NN NN NN NLN

DBCS items (DB)³ NN NN NLN

DBCS-edited items (DBE)³ NN NN

Conditional Expressions

Chapter 13. Part 6. Procedure Division 253

Table 22. Permissible Comparisons with Nonnumeric Second Operands (continued)

FIRST OPERAND
SECOND OPERAND

GR AL AN ANE NE FC¹ NNL DB DBE DA TI TS NL

Date (DA)³ NN NN NN NU NN DT DT

Time (TI)³ NN NN NN NU NN DT DT

Timestamp (TS)³ NN NN NN NU NN DT DT DT

National (NL) NN NLN NLN NL⁴ NLN NLN NL

NUMERIC OPERAND

Figurative Constant ZERO
(ZR)

NN NN NN NN NN

Numeric Literal (NL) NN NN NN NN NN NU NU NU

External Decimal (ED)² NN NN NN NN NN NN NN NU NU NU

Binary (BI) NU NU NU

Arithmetic Expression
(AE)

NU NU NU

Boolean data item or
Boolean Literal (BO)³

Internal Decimal (ID) NU NU NU

Internal Floating-Point
(IFP)³

External Floating-Point
(EFP)³

NN³ NN³ NN³ NN³ NN³ NN³ NN³

Floating-Point Literal
(FPL)³

Table 23. Permissible Comparisons with Numeric Second Operands

FIRST OPERAND
SECOND OPERAND

ZR NL ED BI AE BO ID IFP³ EFP³ FPL³

NONNUMERIC OPERAND

Group (GR) NN NN NN² NN³

Alphabetic (AL) NN NN NN² NN³

Alphanumeric (AN) NN NN NN² NN³

Alphanumeric Edited (ANE) NN NN NN² NN³

Numeric Edited (NE) NN NN NN² NN³

Figurative Constant (FC¹) NN² NN³

Nonnumeric Literal (NNL) NN² NN³

Date (DA) NU NU² NU NU NU

Time (TI) NU NU² NU NU NU

Timestamp (TS) NU NU² NU NU NU

NUMERIC OPERAND

Figurative Constant ZERO (ZR) NU NU NU NU³ NU NU³ NU³

Numeric Literal (NL) NU NU NU NU NU³ NU³

External Decimal (ED) NU NU NU NU NU NU NU³ NU³ NU³

Binary (BI) NU NU NU NU NU NU NU³ NU³ NU³

Conditional Expressions

254 ILE COBOL Reference

Table 23. Permissible Comparisons with Numeric Second Operands (continued)

Arithmetic Expression (AE) NU NU NU NU NU NU NU³ NU³ NU³

Boolean data item or Boolean
Literal (BO)³

NU³ NU³

Internal Decimal (ID) NU NU NU NU NU NU NU³ NU³ NU³

Internal Floating-Point (IFP)³ NU³ NU³ NU³ NU³ NU³ NU³ NU³ NU³ NU³

External Floating-Point (EFP)³ NU³ NU³ NU³ NU³ NU³ NU³ NU³ NU³ NU³

Floating-Point Literal (FPL)³ NU³ NU³ NU³ NU³ NU³ NU³

Notes to Table 22 on page 253 and Table 23 on page 254:

¹ Includes all figurative constants except ZERO and NULL

² Integer item only

³ IBM extension

⁴ Only for SPACE

Comparing Numeric Operands
The algebraic values of numeric operands are compared.
v The length (number of digits) of the operands is not significant.
v Unsigned numeric operands are considered positive.
v Zero is considered to be a unique value, regardless of sign.
v Comparison of numeric operands is permitted, regardless of the type of USAGE

specified for each.

Comparing Nonnumeric Operands
Comparisons of nonnumeric operands are made with respect to the collating
sequence of the character set in use.

When the PROGRAM COLLATING SEQUENCE clause is specified in the
OBJECT-COMPUTER paragraph, the collating sequence associated with the
alphabet-name clause in the SPECIAL-NAMES paragraph is used. Otherwise, the
native EBCDIC character set is used.

The size of each operand is the total number of characters in that operand. There
are two cases to consider:

Operands of Equal Size
Characters in corresponding positions of the two operands are compared,
beginning with the leftmost character and continuing through the rightmost
character.

If all pairs of characters through the last pair test as equal, the operands are
considered equal.

If a pair of unequal characters is encountered, the characters are tested to
determine their relative positions in the collating sequence. The operand
containing the character higher in the sequence is considered the greater
operand.

Operands of Unequal Size
If the operands are of unequal size, the comparison is made as though the
shorter operand were extended to the right with enough spaces to make the
operands equal in size.

Conditional Expressions

Chapter 13. Part 6. Procedure Division 255

Comparing Numeric and Nonnumeric Operands
The nonnumeric comparison rules, discussed above, apply. In addition, when
numeric and nonnumeric operands are being compared, their USAGE must be the
same. In such comparisons:
v The numeric operand must be described as an integer literal or data item.
v Noninteger literals and data items must not be compared with nonnumeric

operands.

IBM Extension

v External floating-point items can be compared with nonnumeric operands.

End of IBM Extension

If either of the operands is a group item, the nonnumeric comparison rules,
discussed above, apply. In addition to those rules:
v If the nonnumeric operand is a literal or an elementary data item, the numeric

operand is treated as though it were moved to an alphanumeric elementary data
item of the same size, and the contents of this alphanumeric data item were then
compared with the nonnumeric operand.

v If the nonnumeric operand is a group item, the numeric operand is treated as
though it were moved to a group item of the same size, and the contents of this
group item were compared then with the nonnumeric operand.
(See “MOVE Statement” on page 392.)

Comparing Boolean Operands

IBM Extension

Boolean operands are used only in the [NOT] EQUAL TO relation condition.
Boolean operands cannot be compared to non-Boolean operands. Boolean data
items and literals must be one position in length. Two Boolean operands are equal
if they both have a value of Boolean 1 or Boolean 0.

End of IBM Extension

Comparing DBCS Operands

IBM Extension

The rules for comparing DBCS or DBCS-edited operands are the same as those for
the comparison of nonnumeric operands. The comparison is based on a binary
collating sequence of the hexadecimal values of the DBCS characters. The
PROGRAM COLLATING clause of the OBJECT-COMPUTER paragraph will have
no effect on this.

End of IBM Extension

Comparing National Operands

IBM Extension

An operand of class NATIONAL may be compared to another operand of class
NATIONAL. The result of such a comparison is based on the binary collating
sequence of the hexadecimal values of the UCS-2 character set. If two operands

Conditional Expressions

256 ILE COBOL Reference

have unequal size, the shorter one is padded to the right with the padding
character specified in the Padding Character compile option or the equvilant
process option. The default is the UCS-2 double-byte space character (NX"3000").

End of IBM Extension

Comparing National and Non-National Operands

IBM Extension

An operand of class NATIONAL may be compared with an Alphabetic data item,
an Alphanumeric data item, a DBCS data item, a Nonnumeric literal, or a DBCS
literal.

The data item or literal that is not a national item is treated as though it were
moved, in accordance with the rules of the MOVE statement, to an elemntary data
item of class national and the same logical length. The converted value is then
compared to the national operand. If the items are of different length, the shorter
item is padded to the right with the padding character specified in the Padding
Character compile option, or the equivalant process option. The default is the
UCS-2 single-byte space character if the non-national operand is a single-byte item,
or the UCS-2 double-byte space character (NX"3000") if the non-national operand is
a double-byte item.

End of IBM Extension

Comparing Date-Time Operands

IBM Extension

If an item of class date-time is compared to a nonnumeric operand (except for
numeric-edited operands), the date-time item is treated as if it were nonnumeric.

During the comparison of an item of class date-time to an numeric-edited or
numeric operand, the date-time item is de-edited. De-editing results in a numeric
integer. This numeric integer is then numerically compared with the other operand.

During the comparison of one date-time item with another, the items are first
converted to a common date, time, or timestamp format, and then compared.
Characters that are part of a format literal, but which are not conversion specifiers
(for example the / or - characters), have no effect on a date-time comparison.

When comparing a date item to a timestamp item, only the date portion of the
timestamp is considered. When comparing a time item to a timestamp item, only
the time portion of the timestamp is considered.

End of IBM Extension

Comparing Index-Names and Index Data Items
Comparisons involving index-names and/or index data items conform to the
following rules:
v The comparison of two index-names is a comparison of the corresponding

occurrence numbers.
v In the comparison of an index-name with a data item (other than an index data

item), or in the comparison of an index-name with a literal, the occurrence

Conditional Expressions

Chapter 13. Part 6. Procedure Division 257

number of the index-name is compared with the data item or literal.

IBM Extension

v In the comparison of an index-name with an arithmetic expression, the
occurrence number that corresponds to the value of the index-name is compared
with the arithmetic expression.
Since an integer function may be used wherever an arithmetic expression may
be used, this extension allows you to compare an index-name to an integer or
numeric function.

End of IBM Extension

v In the comparison of an index data item with an index-name or another index
data item, the actual values are compared without conversion. Results of any
other comparison involving an index data item are undefined.

Table 24 shows valid comparisons involving index-names and index data items.

Table 24. Comparisons Involving Index Names and Index Data Items

Operands
Compared

Index-Name Index Data
Item

Data-Name Literal Arithmetic
Expression

Index-Name Compare
occurrence
number

Compare
without
conversion

Compare
occurrence
number with
data-name

Compare
occurrence
number with
literal

Compare
occurrence
number with
arithmetic
expression

Index Data
Item

Compare
without
conversion

Compare
without
conversion

Not
permitted

Not
permitted

Not
permitted

Sign Condition
The sign condition determines whether or not the algebraic value of a numeric
operand is greater than, less than, or equal to zero.

Sign Condition - Format

►► operand-1
IS NOT

POSITIVE
NEGATIVE
ZERO

►◄

operand
Must be defined as a numeric identifier, or it must be defined as an arithmetic
expression that contains at least one reference to an identifier.

IBM Extension

The operand can be defined as a floating-point identifier.

End of IBM Extension

An unsigned operand is either POSITIVE or ZERO.

Conditional Expressions

258 ILE COBOL Reference

NOT
An algebraic test is executed for the truth value of the sign condition. For
example, NOT ZERO is regarded as true when the operand tested is positive
or negative in value.

Switch-Status Condition
The switch-status condition determines the on or off status of an UPSI switch, by
testing the value associated with the condition-name. (The value associated with
the condition-name is considered to be alphanumeric.) The result of the test is true
if the UPSI switch is set to the value (0 or 1) corresponding to condition-name.

Switch-Status Condition - Format

►► condition-name ►◄

condition-name
Must be defined in the SPECIAL-NAMES paragraph as associated with the ON
or OFF value of an UPSI switch. (See “SPECIAL-NAMES Paragraph” on page
72.)

Complex Conditions
A complex condition is formed by combining simple conditions, combined
conditions, and/or complex conditions with logical operators, or negating these
conditions with logical negation.

Each logical operator must be preceded and followed by a space. The following
chart shows the logical operators and their meanings.

Table 25. Logical Operators and Their Meanings

Logical
Operator

 Name Meaning

AND Logical conjunction The truth value is true when both
conditions are true.

 OR Logical inclusive OR The truth value is true when either or both
conditions are true.

 NOT Logical negation Reversal of truth value (the truth value is
true if the condition is false).

Unless modified by parentheses, the following precedence rules (from highest to
lowest) apply:
1. Arithmetic operations
2. Simple conditions
3. NOT
4. AND
5. OR

The truth value of a complex condition (whether parenthesized or not) is the truth
value that results from the interaction of all the stated logical operators on either of
the following:
v The individual truth values of simple conditions
v The intermediate truth values of conditions logically combined or logically

negated.

Conditional Expressions

Chapter 13. Part 6. Procedure Division 259

A complex condition can be either of the following:
v A negated simple condition
v A combined condition (which can be negated).

Negated Simple Conditions
A simple condition is negated through the use of the logical operator NOT. The
negated simple condition gives the opposite truth value of the simple condition.

Negated Simple Condition - Format

►► NOT simple-condition ►◄

Combined Conditions
Two or more conditions can be logically connected to form a combined condition.

Combined Conditions - Format

►► condition-1 ▼ AND condition-2
OR

►◄

The condition to be combined may be any of the following:
v A simple-condition
v A negated simple-condition
v A combined condition
v A negated combined condition (that is, the NOT logical operator followed by a

combined condition enclosed in parentheses)
v Combinations of the preceding conditions, specified according to the rules in the

following table.

Table 26. Combined Conditions—Permissible Element Sequences

Combined
condition
element

Leftmost When not leftmost,
can be immediately
preceded by:

Rightmost When not rightmost,
can be immediately
followed by:

simple-
condition

Yes OR
NOT
AND
(

Yes OR
AND
)

OR
AND

No simple-condition
)

No simple-condition
NOT
(

NOT Yes OR
AND
(

No simple-condition
(

(Yes OR
NOT
AND
(

No simple-condition
NOT
(

) No simple-condition
)

Yes OR
AND
)

Conditional Expressions

260 ILE COBOL Reference

Parentheses are never needed when either ANDs or ORs (but not both) are used
exclusively in one combined condition. However, parentheses may be needed to
modify the implicit precedence rules to maintain the correct logical relation of
operators and operands.

There must be a one-to-one correspondence between left and right parentheses,
with each left parenthesis to the left of its corresponding right parenthesis.

The following table illustrates the relationships between logical operators and
conditions C1 and C2.

Table 27. Logical Operators and Evaluation Results of Combined Conditions

Value for
C1

Value for
C2

C1 AND
C2

C1 OR
C2

NOT (C1
AND C2)

NOT C1
AND C2

NOT (C1
OR C2)

NOT C1
OR C2

True True True True False False False True

False True False True True True False True

True False False True True False False False

False False False False True False True True

Evaluating Conditional Expressions: If parentheses are used, logical evaluation of
combined conditions proceeds in the following order:
1. Conditions within parentheses are evaluated first.
2. Within nested parentheses, evaluation proceeds from the least inclusive

condition to the most inclusive condition.

If parentheses are not used (or are not at the same level of inclusiveness), the
combined condition is evaluated in the following order:
1. Arithmetic expressions.
2. Simple-conditions in the following order:

a. Relation
b. Class
c. Condition-name
d. Switch-status
e. Sign.

3. Negated simple-conditions in the same order as item 2.
4. Combined conditions, in the following order:

a. AND
b. OR.

5. Negated combined conditions in the following order:
a. AND
b. OR.

6. Consecutive operands at the same evaluation-order level are evaluated from left
to right. However, the truth value of a combined condition can sometimes be
determined without evaluating the truth value of all the component conditions.

The component conditions of a combined condition are evaluated from left to
right. If the truth value of one condition is not affected by the evaluation of further
elements of the combined condition, these elements are not evaluated. However,
the truth value of the condition will always be the same (as if the condition had
been evaluated in full), as described earlier in this paragraph.

Conditional Expressions

Chapter 13. Part 6. Procedure Division 261

Values are established for arithmetic expressions and functions if and when the
conditions containing them are evaluated. Similarly, negated conditions are
evaluated if and when it is necessary to evaluate the complex condition that they
represent.

For example:

NOT A IS GREATER THAN B OR A + B IS EQUAL
TO C AND D IS POSITIVE

is evaluated as if parenthesized as follows:

(NOT (A IS GREATER THAN B)) OR (((A+B) IS EQUAL
TO C) AND (D IS POSITIVE))

The order of evaluation in this example is as follows:
1. (NOT (A IS GREATER THAN B)) is evaluated. If true, the rest of the condition is

not evaluated, as the expression is true.
2. (A+B) is evaluated, giving some intermediate result, x.
3. (x IS EQUAL TO C) is evaluated. If false, the rest of the condition is not

evaluated, as the expression is false.
4. (D IS POSITIVE) is evaluated, giving the final truth value of the expression.

Abbreviated Combined Relation Conditions
When relation-conditions are written consecutively without intervening
parentheses, any relation-condition after the first can be abbreviated in one of two
ways:
v Omission of the subject
v Omission of the subject and relational operator.

Abbreviated Combined Relation Conditions - Format

►► relation-condition ►

► ▼ AND object
OR IS (1) GREATER

NOT THAN
>
LESS

THAN
<
EQUAL

TO
=

greater or equal
>=

less or equal
<=

►◄

Conditional Expressions

262 ILE COBOL Reference

greater or equal:

GREATER OR EQUAL
THAN TO

less or equal:

LESS OR EQUAL
THAN TO

Notes:

1 NOT GREATER THAN OR EQUAL TO, NOT >=,
NOT LESS THAN OR EQUAL TO, and NOT <=, are IBM Extensions.

An object is any data item or expression that can be compared to the subject of the
preceding relation condition.

In any consecutive sequence of relation-conditions, both forms of abbreviation can
be specified. The abbreviated condition is evaluated as if:
1. The last stated subject is the missing subject.
2. The last stated relational operator is the missing relational operator.

The resulting combined condition must comply with the rules for element
sequence in combined conditions, as shown in Table 28.

The word NOT is considered part of the relational operator in the forms NOT
GREATER THAN, NOT >, NOT LESS THAN, NOT <, NOT EQUAL TO, and NOT
=.

NOT in any other position is considered a logical operator (and thus results in a
negated relation-condition).

The following examples illustrate abbreviated combined relation conditions, with
and without parentheses, and their unabbreviated equivalents.

Table 28. Abbreviated Combined Relation Conditions

Abbreviated Combined Relation Condition Equivalent

A = B AND NOT < C OR D ((A = B) AND (A NOT < C)) OR (A NOT <
D)

A NOT > B OR C (A NOT > B) OR (A NOT > C)

NOT A = B OR C (NOT (A = B)) OR (A = C)

NOT (A = B OR < C) NOT ((A = B) OR (A < C))

NOT (A NOT = B AND C AND NOT D) NOT ((((A NOT = B) AND (A NOT = C))
AND (NOT (A NOT = D))))

Statement Categories
There are four categories of COBOL statements:
v Imperative
v Conditional
v Delimited scope
v Compiler directing.

Conditional Expressions

Chapter 13. Part 6. Procedure Division 263

Imperative Statements
An imperative statement either specifies an unconditional action to be taken by
the program, or is a conditional statement terminated by its explicit scope
terminator (see “Delimited Scope Statements” on page 266). A series of imperative
statements can be specified whenever an imperative statement is allowed.

Table 29 lists COBOL imperative statements.

Table 29. Types of Imperative Statements

Type Imperative Statement

Arithmetic ADD¹
COMPUTE¹
DIVIDE¹
INSPECT (TALLYING)
MULTIPLY¹
SUBTRACT¹

Data Manipulation ACCEPT (DATE, DAY, DAY-OF-WEEK, TIME)
INITIALIZE
INSPECT (CONVERTING)
INSPECT (REPLACING)
MOVE
SET
STRING²
UNSTRING²

IBM Extension
XML GENERATE6

XML PARSE6

End of IBM Extension

Ending STOP RUN
EXIT PROGRAM

IBM Extension

GOBACK

End of IBM Extension

Statement Categories

264 ILE COBOL Reference

Table 29. Types of Imperative Statements (continued)

Type Imperative Statement

Input/Output ACCEPT⁶ identifier
CLOSE
DELETE³
DISPLAY⁶
OPEN
READ⁴
REWRITE³
SET (for UPSI switches)
START³
STOP literal
WRITE⁵

IBM Extension

ACQUIRE
COMMIT
DROP
ROLLBACK

End of IBM Extension

Ordering MERGE
RELEASE
RETURN
SORT

Procedure Branching ALTER
EXIT
GO TO
PERFORM

Subprogram Linkage CALL⁷
CANCEL

Table Handling SET

Notes to Table 29 on page 264:

¹ Without the ON SIZE ERROR or NOT ON SIZE ERROR phrase.

² Without the NOT ON OVERFLOW or ON OVERFLOW phrase.

³ Without the INVALID KEY or NOT INVALID KEY phrase.

⁴ Without the AT END, NOT AT END, INVALID KEY, NO DATA, or NOT
INVALID KEY phrase.

⁵ Without the INVALID KEY, NOT INVALID KEY, END-OF-PAGE, or NOT
END-OF-PAGE phrase.

⁶ Without the ON EXCEPTION or NOT ON EXCEPTION phrase.

⁷ Without the ON OVERFLOW, ON EXCEPTION, or NOT ON EXCEPTION
phrase.

Conditional Statements
A conditional statement specifies that the truth value of a condition is to be
determined, and that the subsequent action of the object program is dependent on
this truth value. (See “Conditional Expressions” on page 247.)

Statement Categories

Chapter 13. Part 6. Procedure Division 265

Figure 15 lists COBOL statements that are conditional, or that become conditional
when a condition is included (for example: ON SIZE ERROR, or ON OVERFLOW)
and the statement is not terminated by its explicit scope terminator.

Delimited Scope Statements
A delimited scope statement uses an explicit scope terminator to turn a conditional
statement into an imperative statement; the resulting imperative statement can
then be nested. Explicit scope terminators may also be used to terminate the scope
of an imperative statement. Explicit scope terminators are provided for all COBOL
verbs that may have conditional phrases.

Unless explicitly specified otherwise, a delimited scope statement may be specified
wherever an imperative statement is allowed by the rules of the language.

Explicit Scope Terminators: An explicit scope terminator marks the end of certain
Procedure Division statements. A conditional statement that is delimited by its
explicit scope terminator is considered an imperative statement and must follow
the rules for imperative statements.

The following are explicit scope terminators:
END-ACCEPT END-PERFORM
END-ADD END-READ
END-CALL END-RETURN
END-COMPUTE END-REWRITE

Arithmetic Ordering
ADD...ON SIZE ERROR RETURN...AT END
ADD...NOT ON SIZE ERROR RETURN...NOT AT END
COMPUTE...ON SIZE ERROR
COMPUTE...NOT ON SIZE ERROR
DIVIDE...ON SIZE ERROR
DIVIDE...NOT ON SIZE ERROR
MULTIPLY...ON SIZE ERROR
MULTIPLY...NOT ON SIZE ERROR
SUBTRACT...ON SIZE ERROR
SUBTRACT...NOT ON SIZE ERROR
Data Manipulation Subprogram Linkage
STRING...ON OVERFLOW CALL...ON OVERFLOW
STRING...NOT ON OVERFLOW CALL...ON EXCEPTION
UNSTRING...ON OVERFLOW CALL...NOT ON EXCEPTION
UNSTRING...NOT ON OVERFLOW
XML GENERATE...ON EXCEPTION
XML GENERATE...NOT ON EXCEPTION
XML PARSE...ON EXCEPTION
XML PARSE...NOT ON EXCEPTION
Decision Table Handling
IF SEARCH...WHEN
EVALUATE
Input/Output
ACCEPT...ON EXCEPTION READ...NO DATA
ACCEPT...NOT ON EXCEPTION REWRITE...INVALID KEY
DELETE...INVALID KEY REWRITE...NOT INVALID KEY
DELETE...NOT INVALID KEY START...INVALID KEY
DISPLAY...ON EXCEPTION START...NOT INVALID KEY
DISPLAY...NOT ON EXCEPTION WRITE...AT END~OF~PAGE
READ...AT END WRITE...NOT AT END~OF~PAGE
READ...NOT AT END WRITE...INVALID KEY
READ...INVALID KEY WRITE...NOT INVALID KEY
READ...NOT INVALID KEY

Figure 15. Conditional Statements

Statement Categories

266 ILE COBOL Reference

END-DELETE END-SEARCH
END-DISPLAY END-START
END-DIVIDE END-STRING
END-EVALUATE END-SUBTRACT
END-IF END-UNSTRING
END-MULTIPLY END-WRITE

IBM Extension

END-XML

End of IBM Extension

Implicit Scope Terminators: The separator period at the end of any sentence is an
implicit scope terminator that terminates the scope of any previous statement that
is not yet terminated. When a statement is contained within another statement, the
next phrase of the containing statement following the contained statement is an
implicit scope terminator that ends the scope of the contained statement.

A conditional statement not terminated by its scope terminator cannot be contained
within another statement.

Except for nesting conditional statements within IF statements, nested statements
must be imperative statements, and must follow the rules for imperative
statements. You should not nest conditional statements.

Compiler-Directing Statements
These are statements that direct the compiler to take a specified action. They are
discussed in Chapter 16, “Compiler-Directing Statements,” on page 601.

Type Compiler-Directing Statement

Library COPY

Declarative USE

Documentation ENTER

Compiler options PROCESS

Source text REPLACE

Source Listing
IBM Extension

*CBL
*CONTROL
EJECT
SKIP1
SKIP2
SKIP3
TITLE

End of IBM Extension

Statement Operations
COBOL statements perform the following types of operations:
v Arithmetic
v Data manipulation
v Input/output
v Ordering

Statement Categories

Chapter 13. Part 6. Procedure Division 267

v Subprogram linkage
v Table handling
v Procedure branching

Common Phrases and Concepts
There are several phrases and concepts common to arithmetic and data
manipulation statements:
v CORRESPONDING phrase
v GIVING phrase
v ROUNDED phrase
v SIZE ERROR phrase
v Overlapping operands

CORRESPONDING Phrase: The CORRESPONDING phrase (CORR) allows
ADD, SUBTRACT, and MOVE operations to be performed on elementary data
items of the same name if the group items to which they belong are specified.

Both identifiers following the keyword CORRESPONDING must be group items.
In this discussion, these identifiers are referred to as identifier-1 and identifier-2.

A pair of data items (subordinate items), one from identifier-1 and one from
identifier-2, correspond if the following conditions are true:
v In an ADD or SUBTRACT statement, both of the data items are elementary

numeric data items. Other data items are ignored.
v In a MOVE statement, at least one of the data items is an elementary item, and

the move is permitted by the move rules.
v The two subordinate items have the same name and the same qualifiers up to

but not including identifier-1 and identifier-2.
v The subordinate items are not identified by the keyword FILLER.
v Neither identifier-1 nor identifier-2 is described as a level 66 or 88 item, nor is

the usage of either item INDEX, POINTER, or PROCEDURE-POINTER. Neither
identifier-1 nor identifier-2 can be reference modified. The name of the data item
must be unique after application of the implied qualifiers.

v The subordinate items do not include a REDEFINES, RENAMES, OCCURS,
USAGE IS INDEX, USAGE IS POINTER, or USAGE IS PROCEDURE-POINTER
clause in their descriptions; if such a subordinate item is a group, the items
subordinate to it are also ignored.
However, identifier-1 and identifier-2 themselves may contain or be subordinate
to items containing a REDEFINES or OCCURS clause in their descriptions.

v Identifier-1 and identifier-2 can be subordinate to a FILLER item.
For example, if two data hierarchies are defined as follows:
05 ITEM-1 OCCURS 6 INDEXED BY X.

10 ITEM-A PIC S9(3).
10 ITEM-B PIC 99V9.
10 ITEM-C PIC X(4).
10 ITEM-D REDEFINES ITEM-C PIC 9(4).
10 ITEM-E PIC 9(4) USAGE COMP.
10 ITEM-F USAGE INDEX.
10 ITEM-G PIC X(4).

05 ITEM-2.
10 ITEM-A PIC 99.
10 ITEM-B PIC 9V9.
10 ITEM-C PIC A(4).

Statement Operations

268 ILE COBOL Reference

10 ITEM-D PIC 9(4).
10 ITEM-E PIC 9(9) USAGE COMP.
10 ITEM-F USAGE INDEX.
10 ITEM-G PIC X(4).

Then, if ADD CORR ITEM-2 TO ITEM-1(X) is specified,
– ITEM-A and ITEM-A(X); ITEM-B and ITEM-B(X); ITEM-E and ITEM-E(X) are

considered to be corresponding and are added together
– ITEM-C and ITEM-C(X); ITEM-G and ITEM-G(X) are not included, because

they are not numeric
– ITEM-D and ITEM-D(X) are not included, because ITEM-D(X) includes a

REDEFINES clause in its data description.
– ITEM-F and ITEM-F(X) are not included, because they are defined as USAGE

IS INDEX

When you use the (default) *PRTCORR compiler option or the PRTCORR option of
the PROCESS statement, the compiler inserts comment lines in the compiler listing
after each statement that contains the CORRESPONDING phrase. These comment
lines, which print immediately before the next valid source statement, identify the
elementary items that are affected within the groups named.

GIVING Phrase: The data item referenced by the identifier that follows the word
GIVING is set to the calculated result of the arithmetic operation. Because this
identifier is not involved in the computation, it may be a numeric edited item.

Giving Phrase - Format

►► GIVING ▼ identifier-1
ROUNDED

►◄

ROUNDED Phrase: After decimal point alignment, the number of places in the
fraction of the result of an arithmetic operation is compared with the number of
places provided for the fraction of the resultant identifier.

When the size of the fractional result exceeds the number of places provided for its
storage, truncation occurs unless ROUNDED is specified. When ROUNDED is
specified, the least significant digit of the resultant identifier is increased by 1
whenever the most significant digit of the excess is greater than or equal to 5. The
maximum number of digits that can be accurately rounded is 62.

When the resultant identifier is described by a PICTURE clause containing
rightmost Ps, and when the number of places in the calculated result exceeds the
number of integer positions specified, rounding or truncation occurs, relative to the
rightmost integer position for which storage is allocated.

IBM Extension

In a floating-point arithmetic operation, the ROUNDED phrase has no effect; the
result of a floating-point operation is always rounded. For more information on
floating-point arithmetic expressions, see the IBM Rational Development Studio for i:
ILE COBOL Programmer's Guide.

End of IBM Extension

Statement Operations

Chapter 13. Part 6. Procedure Division 269

SIZE ERROR Phrases:

SIZE ERROR Phrase - Format

►► SIZE ERROR imperative-statement-1
ON

►◄

A size error condition can occur in three different ways:
v When the absolute value of the result of an arithmetic evaluation, after decimal

point alignment, exceeds the largest value that can be contained in the result
field

v When division by zero occurs
v In an exponential expression, when

– Zero is raised to the exponent zero
– Zero is raised to a negative exponent
– A negative number is raised to a fractional exponent

The size error condition applies only to final results, not to any intermediate
results.

If the resultant identifier is defined with USAGE IS BINARY, COMP-4, or COMP-5,
the largest value that can be contained in it is the maximum value implied by its
associated decimal PICTURE character-string.

If the ROUNDED phrase is specified, rounding takes place before size error
checking.

When a size error occurs, the subsequent action of the program depends on
whether or not the ON SIZE ERROR phrase is specified.

If the ON SIZE ERROR phrase is specified and a size error condition occurs, the
value of the resultant identifier affected by the size error is not altered—that is, the
error results are not placed in the receiving identifier. Values of other resultant
identifiers are not affected, as long as no size error occurred for them. After
completion of the execution of the arithmetic operation, the imperative statement
in the ON SIZE ERROR phrase is executed. If no explicit transfer of control is
executed upon completion of the imperative statement specified in the ON SIZE
ERROR phrase, control is transferred to the end of the arithmetic statement and
the NOT ON SIZE ERROR phrase, if specified, is ignored.

If the ON SIZE ERROR phrase is not specified and a size error condition exists
after the execution of the arithmetic operations specified by an arithmetic
statement, the value of the affected resultant identifier is undefined. Values of other
resultant identifiers are not affected, as long as no size error occurred for them.
After completion of the arithmetic operations, control is transferred to the end of
the arithmetic statement and the NOT ON SIZE ERROR phrase, if specified, is
ignored.

For ADD CORRESPONDING and SUBTRACT CORRESPONDING statements, if
an individual arithmetic operation causes a size error condition, the ON SIZE
ERROR imperative statement is not executed until all the individual additions or
subtractions have been completed.

Statement Operations

270 ILE COBOL Reference

|
|
|

NOT ON SIZE ERROR: If the NOT ON SIZE ERROR phrase has been specified
and, after execution of an arithmetic operation, a size error condition does not
exist, the NOT ON SIZE ERROR phrase is executed.

When both ON SIZE ERROR and NOT ON SIZE ERROR phrases are specified,
and the statement in the phrase that is executed does not contain any explicit
transfer of control, then, if necessary, an implicit transfer of control is made after
execution of the phrase to the end of the arithmetic statement.

Overlapping Operands: When a sending and a receiving item in any statement
share a part or all of their storage areas, yet are not defined by the same data
description entry, the result of the execution of such a statement is unpredictable.
In addition, the results are unpredictable for some statements in which sending
and receiving items are defined by the same data description entry. These cases are
addressed in the general rules associated with those statements.

Arithmetic Statements
The arithmetic statements are used for computations. Individual operations are
specified by the ADD, SUBTRACT, MULTIPLY, and DIVIDE statements. These
operations can be combined symbolically in a formula, using the COMPUTE
statement.

Arithmetic Statement Operands: The data description of operands in an
arithmetic statement need not be the same. Throughout the calculation, the
compiler performs any necessary data conversion and decimal point alignment.

Size of Operands: The maximum size of each operand is 18 decimal digits.

IBM Extension

The maximum size of a zoned decimal or an internal decimal operand is 63
decimal digits.

End of IBM Extension

From each operand, you can determine the number of decimal digits in the
composite of operands. The composite of operands is a hypothetical data item
resulting from aligning the operands at the decimal point and then superimposing
them on one another.

For example, assume that each item is defined as follows in the Data Division:
A PICTURE 9(7)V9(5).
B PICTURE 9(11)V99.
C PICTURE 9(12)V9(3).

If the following statement is executed, the composite of operands consists of 17
decimal digits:
ADD A B TO C

It has the following implicit description:
Composite-of-Operands PICTURE 9(12)V9(5).

Statement Operations

Chapter 13. Part 6. Procedure Division 271

If the composite of operands is 18 digits or less, enough places are carried so that
no significant digits are lost during execution.

IBM Extension

When the (default) compiler option *NOEXTEND or the PROCESS statement
option NOEXTEND is specified, the composite of operands can have a maximum
length of 30 decimal digits.

The composite of operands can have a maximum length of 31 decimal digits when
the arithmetic mode compiler option *EXTEND31 or PROCESS statement option
EXTEND31 is specified.

The composite of operands can have a maximum length of 63 decimal digits when
the arithmetic mode compiler option *EXTEND63 or PROCESS statement option
EXTEND63 is specified.

Note: If the composite of operands exceeds the specified maximum, significant
digits may be lost during execution.

End of IBM Extension

The following table shows the maximum number of decimal digits that are
allowed for the composite of operands in arithmetic statements.

Compiler Option/Process Statement Maximum Length of Composite (decimal
digits)

*NOEXTEND/NOEXTEND 18

IBM Extension

30

End of IBM Extension

*EXTEND31/EXTEND31 18

IBM Extension

31

End of IBM Extension

*EXTEND63/EXTEND63
IBM Extension

63

End of IBM Extension

The following list shows how the composite of operands is determined for
arithmetic statements:

Statement Determination of the Composite of Operands

Statement Operations

272 ILE COBOL Reference

ADD Superimposing all operands in a given statement (except those
following the word GIVING)

COMPUTE Restriction does not apply

DIVIDE Superimposing all receiving data items, except the REMAINDER
data item

MULTIPLY Superimposing all receiving data items

SUBTRACT Superimposing all operands in a given statement (except those
following the word GIVING)

In all arithmetic statements, it is important to define data with enough digits and
decimal places to ensure the desired accuracy in the final result. For more
information on arithmetic precision, see Appendix B, “Intermediate Results and
Arithmetic Precision,” on page 639.

Multiple Results: When an arithmetic statement has multiple results, execution
conceptually proceeds as follows:
v The statement performs all arithmetic operations to find the result to be placed

in the receiving items, and stores that result in a temporary location.
v A sequence of statements transfers or combines the value of this temporary

result with each single receiving field. The statements are considered to be
written in the same left-to-right order as the multiple results are listed.

For example, executing the following statement:
ADD A, B, C, TO C, D(C), E.

is equivalent to executing the following series of statements:
ADD A, B, C GIVING TEMP.
ADD TEMP TO C.
ADD TEMP TO D(C).
ADD TEMP TO E.

In the above example, TEMP is a compiler-supplied temporary result field. When
the addition operation for D(C) is performed, the subscript C contains the new
value of C.

Note: Intermediate results generated during the execution of arithmetic statements
are system-specific and can affect program portability. Use of the individual
arithmetic statements ADD, SUBTRACT, MULTIPLY, and DIVIDE, rather
than COMPUTE, reduces the risk of getting inconsistent results.

Data Manipulation Statements
The following COBOL statements move and inspect data: ACCEPT, INITIALIZE,
INSPECT, MOVE, READ, RELEASE, RETURN, REWRITE, SET, STRING,
UNSTRING, and WRITE.

IBM Extension

XML PARSE, XML GENERATE.

End of IBM Extension

Statement Operations

Chapter 13. Part 6. Procedure Division 273

Input-Output Statements
COBOL input-output statements transfer data to and from files stored on external
media, and also control low-volume data that is obtained from or sent to an
input/output device.

In COBOL, the unit of file data made available to the program is a record, and you
need only be concerned with such records. Provision is automatically made for
such operations as the movement of data into buffers and/or internal storage,
validity checking, error correction (where feasible), blocking and deblocking, and
volume switching procedures.

The description of the file in the Environment Division and Data Division governs
which input-output statements are allowed in the Procedure Division.

See Appendix F, “File Structure Support Summary and Status Key Values,” on page
663 for a file structure support summary.

Discussions in the following section use the terms volume and reel. The term
volume refers to all non-unit-record input-output devices. The term reel applies
only to tape devices. Treatment of direct access devices in the sequential access
mode is logically equivalent to the treatment of tape devices.

Common Processing Facilities: There are several common processing facilities
that apply to more than one input-output statement. The common processing
facilities provided are:
v Status key
v INVALID KEY condition
v INTO/FROM identifier phrase
v File position indicator.

Status Key: If the FILE STATUS clause is specified in the FILE-CONTROL entry, a
value is placed in the specified status key (the 2-character data item named in the
FILE STATUS clause) during execution of any request on that file; the value
indicates the status of that request. The value is placed in the status key before
execution of any EXCEPTION/ERROR declarative or INVALID KEY/AT END
phrase associated with the request.

The first character of the status key is known as status key 1 (high order digit); the
second character is known as status key 2 (low order digit). The combinations of
possible values and their meanings are shown in Table 51 on page 668.

INVALID KEY Condition: The invalid key condition can occur during execution of
a START, READ, WRITE, REWRITE, or DELETE statement.

(For details of the causes for the condition, see the appropriate statement in
Chapter 14, “Procedure Division Statements,” on page 279.) When an invalid key
condition occurs, the input-output statement that caused the condition is
unsuccessful. When the invalid key condition exists after an input-output
operation, the following actions are taken:
1. If there is an applicable file status clause (but not an applicable USE

procedure), the file status is updated, and control returns to the program.
2. Control will be transferred to the imperative statement of an INVALID KEY

phrase, if specified.

Statement Operations

274 ILE COBOL Reference

3. If an explicit or implicit EXCEPTION/ERROR procedure is specified for the
file, the procedure runs; if no such procedure is specified, the results are
unpredictable.

4. In the absence of a file status clause, USE procedure, or INVALID KEY phrase
to handle the error, a run-time message is issued, giving you the option to end
or return to the program.

When the invalid key condition does not exist after an input-output operation, the
INVALID KEY phrase is ignored, if specified, and the following actions are taken:
1. If an exception condition that is not an invalid key condition exists, control is

transferred according to the rules of the USE statement following the running
of any USE AFTER EXCEPTION procedure.

2. If no exception condition exists, control is transferred to the end of the
input-output statement or the imperative statement specified in the NOT
INVALID KEY phrase, if it is specified.

For more information about error handling and the role of the INVALID KEY
phrase, see the chapter on exception and error handling in the IBM Rational
Development Studio for i: ILE COBOL Programmer's Guide.

INTO/FROM Identifier Phrase: This phrase is valid for READ, RETURN, RELEASE,
REWRITE, and WRITE statements. The identifier specified must be the name of an
entry in the Working-Storage, Local-Storage or the Linkage Sections, or of a record
description for another previously opened file. Record-name, identifier must not
refer to the same storage area.

INTO/FROM Identifier Phrase - Format

►► READ file-name-1
RETURN RECORD INTO identifier-1
RELEASE record-name-1
REWRITE FROM identifier-1
WRITE

►◄

The result of the execution of a READ or RETURN statement with the INTO
phrase is equivalent to the application of the following rules in the order specified:
1. The execution of the same READ or RETURN statement without the INTO

phrase.
2. The current record is moved from the record area to identifier-1 according to

the rules for the MOVE statement without the CORRESPONDING phrase. The
size of the current record is determined by rules specified in the RECORD
clause. If the file description entry contains a RECORD IS VARYING clause, the
implied move is a group move. The implied MOVE statement does not occur if
the execution of the READ or RETURN statement was unsuccessful. Any
subscripting or reference modification associated with identifier-1 is evaluated
after the record has been read or returned and immediately before it is moved
to the data item. The record is available both in the record area and in
identifier-1.

The result of the execution of a RELEASE, REWRITE, or WRITE statement with the
FROM phrase is equivalent to the execution of the following statements in the
order specified:
1. The statement

MOVE identifier-1 TO record-name-1

Statement Operations

Chapter 13. Part 6. Procedure Division 275

according to the rules specified for the MOVE statement.
2. The same RELEASE, REWRITE, or WRITE statement without the FROM

phrase.

After the execution of the RELEASE, REWRITE or WRITE statement is complete,
the information in identifier-1 is available, but the information in record-name-1 is
not available, except as specified by the SAME RECORD AREA clause.

File Position Indicator: The file position indicator is a conceptual entity used in this
document to facilitate exact specification of the next record to be accessed within a
given file during certain sequences of input-output operations. The concept of a
file position indicator has no meaning for a file opened in the output or extend
mode. The setting of the file position indicator is affected only by the OPEN,
READ, RETURN, ROLLBACK and START statements as follows:
v The OPEN statement positions the file position indicator to the first record in the

file.

IBM Extension

The file position indicator can be positioned to any record in the file by using
the POSITION parameter of the Override with database file (OVRDBF)
command.

End of IBM Extension

v For a sequential access READ statement, or a dynamic access READ NEXT
statement, the following considerations apply:
– If an OPEN or START statement positioned the file position indicator, the

record identified by the file position indicator is made available. If this record
no longer exists, the next existing record is made available.

– If a previous READ statement positioned the file position indicator, the file
position indicator is updated to point to the next existing record in the file;
that record is then made available.

IBM Extension

v For a dynamic access READ FIRST statement, the file position indicator is
positioned to point to the first record in the file; that record is then made
available.

v For a dynamic access READ LAST statement, the file position indicator is
positioned to point to the last record in the file; that record is then made
available.

v For a dynamic access READ PRIOR statement, the file position indicator is
positioned to point to the previous existing record in the file; that record is then
made available.

End of IBM Extension

v For the RETURN statement, the following considerations apply:
– The first RETURN statement positions the file position indicator to the first

record in the file, and that record is then made available.
– If a previous RETURN statement positioned the file position indicator, the file

position indicator is updated to point to the next existing record in the file,
and the record is then made available.

Statement Operations

276 ILE COBOL Reference

IBM Extension

v For the ROLLBACK statement, the following considerations apply to any file
under commitment control:
– The ROLLBACK statement sets the file position indicator to the pointer’s

position at the previous commitment boundary. This is important to
remember if you are doing sequential processing.

– The file position indicator is set to the pointer’s position at the OPEN if no
COMMIT statement has been issued since the file was opened.

– The file position indicator is undefined for any file under commitment control
that is not open.

End of IBM Extension

v The START statement positions the file position indicator to the first record in
the file that satisfies the implicit or explicit comparison specified in the START
statement.

The concept of the file position indicator has no meaning for files with an access
mode of random or for TRANSACTION files.

DB-FORMAT-NAME Special Register:

IBM Extension

After the execution of an input/output statement, for a FORMATFILE or
DATABASE file, the DB-FORMAT-NAME special register is modified according to
the following rules:
v After completion of a successful READ, WRITE, REWRITE, START, or DELETE

operation, the record format name used in the I-O operation is implicitly moved
to the special register.

v After an unsuccessful input/output operation, DB-FORMAT-NAME contains the
record format name used in the last successful input/output operation.

v DB-FORMAT-NAME is implicitly defined as PICTURE X(10) and GLOBAL in
the outermost program.

You may specify the DB-FORMAT-NAME special register in a function whenever
an alphanumeric argument is allowed.

End of IBM Extension

Procedure Branching Statements: Statements, sentences, and paragraphs in the
Procedure Division are executed sequentially, except when a procedure-branching
statement (listed below) is used.
v ALTER
v EXIT
v GO TO
v PERFORM

Statement Operations

Chapter 13. Part 6. Procedure Division 277

Statement Operations

278 ILE COBOL Reference

Chapter 14. Procedure Division Statements

© Copyright IBM Corp. 1993, 2010 279

ACCEPT Statement
The ACCEPT statement transfers data into the specified identifier. There is no
editing or error checking of the incoming data.

Format 1 - Data Transfer

ACCEPT Statement - Format 1 - Data Transfer

►► ACCEPT identifier-1
FROM mnemonic-name

(1)
environment-name

►

►
(1)

END-ACCEPT

►◄

Notes:

1 IBM Extension

Format 1 transfers data from an input device into identifier-1. Incoming data is
transferred as a character string aligned on the leftmost character position. No data
conversion will occur. If the size of identifier-1 is greater than the record length of
the input device, then additional data will be requested after the transfer of one
record has been completed. The additional data will be transferred into identifier-1
starting at the position immediately to the right of the last character previously
transferred from the device. This process will continue until identifier-1 has been
filled. If on any transfer the device record holds more characters than are needed
to fill identifer-1, then the excess data will be truncated.

Since all data is transferred as a character string, identifier-1 will normally be
defined, explicitly or implicitly, with usage DISPLAY. The ACCEPT statement will,
however, handle data in other formats, provided it is possible to enter the data on
the input device in a format that corresponds to the internal representation of
identifier-1.

Format 1 is useful for exception situations in a program when operator
intervention (to supply a given message, code, or exception indicator) is required.
The operator must, of course, be supplied with the appropriate messages with
which to reply.

identifier-1
The receiving data item.

IBM Extension

If the description of identifier-1 contains a TYPE clause, the type-name
referenced in that clause must be elementary.

Identifier-1 may be defined with usage DISPLAY-1, that is, it may be a DBCS
or DBCS-edited item. The data on the input device must then be delimited by
a shift-out and a shift-in character; these will be removed when the data is
transferred.

Identifier-1 may also be defined as a NATIONAL item. The data accepted will
be converted from the code set specified by the job's current CCSID.

ACCEPT Statement

280 ILE COBOL Reference

Identifier-1 may not be a date, time, or timestamp item.

End of IBM Extension

mnemonic-name
Must be specified in the SPECIAL-NAMES paragraph, where it will be
associated with an environment-name that refers to an input device. The input
device can be the workstation used by an interactive job, the job input stream
of a batch job, or the system operator’s console.

IBM Extension

environment-name
The environment-name CONSOLE or SYSIN may be specified in place of a
mnemonic-name.

End of IBM Extension

Source of Input Data
The source of input data is dependent upon the type of program initiation as
follows:

Method of
Program
Initiation

Data Source (Input Device)

When Associated with Environment-Name When FROM
Phrase OmittedCONSOLE or

SYSTEM-CONSOLE
SYSIN or
REQUESTOR

BATCH System operator’s message
queue

Job input stream Job input stream

INTERACTIVE System operator’s message
queue

Workstation Workstation

The job input stream consists of data that accompanies a CL command. If there is
no data in the input stream, or if there is insuffient data to fill identifier-1, an
exception occurs.

When the input is from the job input stream, the following rules apply:
v An input record size of 80 characters is assumed.
v If identifier-1 is up to 80 characters in length, the input data must appear as the

first characters within the input record. Any characters beyond the length of
identifier-1 are truncated.

v If identifier-1 is longer than 80 characters, succeeding input records are read
until the storage area of identifier-1 is filled. If the length of identifier-1 is not an
exact multiple of 80 characters, the last input record is truncated.

When the device is the workstation, the input record size is 100. When the device
is the system operator's message queue, the input record size is 58. The following
steps occur:
1. A system-generated inquiry message containing the program-name, the text

“AWAITING REPLY FOR POSITION(S)”, and the beginning and ending
positions is automatically sent to the system operator's message queue or
workstation operator. Previous DISPLAYs can also appear on the ACCEPT
screen.

2. Processing is suspended.

ACCEPT Statement

Chapter 14. Part 6. Procedure Division 281

3. The reply is moved into identifier-1, and processing is resumed after a reply is
made by the operator to the inquiry in step 1. The reply value is made
available to the program as it was typed, in uppercase or lowercase.

4. If identifier-1 is longer than the input record size, succeeding input records are
read (steps 1-3) until identifier-1 is filled.

If the incoming reply is longer than identifier-1, the character positions beyond the
length of identifier-1 are truncated.

Note: If the device is the same as that used for READ statements, results are
unpredictable.

Coding Example
The following is an example of a batch job file member that contains a job input
stream:

//BCHJOB JOB(ADD021) JOBD(QUSER/ACCTEST)
CALL PGM(QSYS/ACCPT1X)
123456789012345
//ENDBCHJOB

The following is an example of a COBOL program that uses a Format 1 ACCEPT
statement to read the job input stream:

IDENTIFICATION DIVISION.
PROGRAM-ID. ACCPT1X.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-ISERIES.
OBJECT-COMPUTER. IBM-ISERIES.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 TRANS-DATA PIC X(15).
PROCEDURE DIVISION.
BEGIN.

ACCEPT TRANS-DATA.
DISPLAY TRANS-DATA.
STOP RUN.

When the batch job file member is used to call ACCPT1X, the ACCEPT statement
reads the batch job file member from the line that immediately follows the CALL
command. This causes "123456789012345" to be accepted into TRANS-DATA.

Format 2 - System Information Transfer
System information contained in the specified conceptual data items DATE, DAY,
DAY-OF-WEEK, or TIME can be transferred into the identifier. DATE, DAY,
DAY-OF-WEEK, and TIME are conceptual data items and, therefore, are not
described in the COBOL program. The transfer must follow the rules for the
MOVE statement without the CORRESPONDING phrase. See “MOVE Statement”
on page 392.

ACCEPT Statement - Format 2 - System Info Transfer

►► ACCEPT identifier-1 FROM DATE
(1)

YYYYMMDD
DAY

(1)
YYYYDDD

DAY-OF-WEEK
TIME

►

ACCEPT Statement

282 ILE COBOL Reference

►
(1)

END-ACCEPT

►◄

Notes:

1 IBM Extension

identifier-1
The receiving data item.

IBM Extension

If the description of identifier-1 contains a TYPE clause, the type-name
referenced in that clause must be elementary.

End of IBM Extension

Format 2 accesses the current date and time of day, as carried by the system. This
can be useful in identifying when a particular run of an object program was
executed. It can also be used to supply the date in headings and footings.

Note: The current date and time are also accessible using the CURRENT-DATE
Intrinsic Function (see “CURRENT-DATE” on page 561).

DATE, DAY, DAY-OF-WEEK, and TIME
The conceptual data items DATE, DAY, DAY-OF-WEEK, and TIME implicitly have
USAGE DISPLAY.

DATE (Without the YYYYMMDD Phrase)
Has the implicit PICTURE 9(6).

The sequence of data elements (from left to right) is:
2 digits for year of century
2 digits for month of year
2 digits for day of month

Thus, 16 November 1963 is expressed as:
631116

IBM Extension

DATE (With the YYYYMMDD Phrase)
Has the implicit PICTURE 9(8).

The sequence of data elements (from left to right) is:
4 digits for year in the Gregorian calendar
2 digits for month of year
2 digits for day of month

Thus, 16 November 1963 is expressed as:
19631116

End of IBM Extension

DAY (Without the YYYYDDD Phrase)
Has the implicit PICTURE 9(5).

The sequence of data elements (from left to right) is:

ACCEPT Statement

Chapter 14. Part 6. Procedure Division 283

2 digits for year of century
3 digits for day of year

Thus 25 December 1988 is expressed as:
88360

IBM Extension

DAY (With the YYYYDDD Phrase)
Has the implicit PICTURE 9(7).

The sequence of data elements (from left to right) is:
4 digits for year in the Gregorian calendar
3 digits for day of year

Thus, 31 December 1995 is expressed as:
1995365

End of IBM Extension

DAY-OF-WEEK
Has the implicit PICTURE 9(1).

The single data element represents the day of the week thus:
1 represents Monday
2 represents Tuesday
3 represents Wednesday
4 represents Thursday
5 represents Friday
6 represents Saturday
7 represents Sunday

Thus Thursday is expressed as: 4

TIME
Has the implicit PICTURE 9(8).

The sequence of data elements (from left to right) is:
2 digits for hour of day
2 digits for minute of hour
2 digits for second of minute
2 digits for hundredths of second

Thus 12.25 seconds after 2:41 PM is expressed as:
14411225

Format 3 - Feedback

IBM Extension

This format is used to transfer feedback information from an active file to the
identifier.

ACCEPT Statement - Format 3 - Feedback

►► ACCEPT identifier-1 FROM mnemonic-name
FOR file-name-1

►

ACCEPT Statement

284 ILE COBOL Reference

►
(1)

END-ACCEPT

►◄

Notes:

1 IBM Extension

Identifier-1 can be any fixed-length group item or an elementary alphabetic,
alphanumeric, or external decimal item. Identifier-1 cannot be a date-time item. If
the description of identifier-1 contains a TYPE clause, the type-name referenced in
that clause must be elementary.

Identifier-1 can also be an internal or external floating-point data item.

File-name-1 must be defined in an FD entry, and must be open prior to the
execution of the ACCEPT statement. If file-name-1 is not open, the contents of
identifier-1 remain unchanged.

The FROM phrase specifies a mnemonic-name that must be associated with an
environment-name of OPEN-FEEDBACK or I-O-FEEDBACK in the
SPECIAL-NAMES paragraph.

When the FOR phrase is specified, the feedback information is from the file
specified in the phrase. When the FOR phrase is not specified, the feedback
information is from the last file opened or used in an input or output operation of
the current program.

See IBM Rational Development Studio for i: ILE COBOL Programmer's Guide for a
discussion of the I-O-FEEDBACK and OPEN-FEEDBACK areas. For a layout and
description of the fields contained in the feedback areas, see the DB2 Universal
Database for AS/400 section of the Database and File Systems category in the System
i5/OS Information Center at this Web site - http://www.ibm.com/systems/i/
infocenter/.

End of IBM Extension

Format 4 - Local Data Area

IBM Extension

This format is used to transfer data to identifier-1 from the system-defined local
data area created for a job.

ACCEPT Statement - Format 4 - Local Data Area

►► ACCEPT identifier-1 FROM mnemonic-name
(1)

FOR identifier-2
literal-1

►

►
END-ACCEPT

►◄

ACCEPT Statement

Chapter 14. Part 6. Procedure Division 285

http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/

Notes:

1 Syntax-checked only.

This format is only applicable when the mnemonic-name in the SPECIAL-NAMES
paragraph is associated with the environment-name LOCAL-DATA.

The move into identifier-1 takes place according to the rules for the MOVE
statement for a group move without the CORRESPONDING phrase. Identifier-1
cannot be a date-time item. If the description of identifier-1 contains a TYPE clause,
the type-name referenced in that clause must be elementary.

Identifier-1 can be an internal or external floating-point data item.

Identifier-1 can be a DBCS or national data item.

When the FOR phrase is specified, it is syntax checked during compilation but
treated as a comment during execution. The value of literal-1 or identifier-2
indicates the program device name of the device that is associated with the local
data area. There is only one local data area for each job, and all devices in a job
access the same local data area. Literal-1, if specified, must be nonnumeric and 10
characters or less in length. Identifier-2, if specified, must refer to an alphanumeric
data item, 10 characters or less in length. For more information about the local data
area, see the CL Programming manual.

End of IBM Extension

Format 5 - Program Initialization Parameters

IBM Extension

You use this format to transfer data from the PIP (Program Initialization
Parameters) data area into the identifier.

ACCEPT Statement - Format 5 - PIP Data Area

►► ACCEPT identifier-1 FROM mnemonic-name ►

►
EXCEPTION imperative-statement-1

ON

►

►
NOT EXCEPTION imperative-statement-2

ON
END-ACCEPT

►◄

This format only applies when you associate the mnemonic-name in the
SPECIAL-NAMES paragraph with the environment-name PIP-DATA.

The move into identifier-1 takes place according to the rules for the MOVE
statement for a group move without the CORRESPONDING phrase. Identifier-1
cannot be a date-time item. If the description of identifier-1 contains a TYPE clause,
the type-name referenced in that clause must be elementary.

Identifier-1 can be an internal or external floating-point data item.

ACCEPT Statement

286 ILE COBOL Reference

If the PIP data area exists, the job is a prestart job, and any imperative statement
specified in the NOT ON EXCEPTION phrase is processed.

If the PIP data area does not exist, the job is not a prestart job, and any imperative
statement specified in the ON EXCEPTION phrase is processed. If the PIP data
area does not exist, the job is not a prestart job, and any imperative statement
specified in the ON EXCEPTION phrase is processed. In the absence of the ON
EXCEPTION phrase, a run-time message is issued if the PIP data area does not
exist.

The END-ACCEPT explicit scope terminator serves to delimit the scope of the
ACCEPT statement. END-ACCEPT permits a conditional ACCEPT statement to be
nested in another conditional statement. END-ACCEPT may also be used with an
imperative ACCEPT statement. For more information, see “Delimited Scope
Statements” on page 266.

Note that you cannot update the PIP data area using COBOL. For more
information about the PIP data area, see the IBM Rational Development Studio for i:
ILE COBOL Programmer's Guide and the CL Programming book.

End of IBM Extension

Format 6 - Attribute Data

IBM Extension

The ACCEPT statement retrieves information (attribute data) about a particular
program device associated with a TRANSACTION file.

ACCEPT Statement - Format 6 - Attribute Data

►► ACCEPT identifier-1 FROM mnemonic-name ►

►
FOR identifier-2

literal-1 FOR file-name-1
END-ACCEPT

►◄

This format of the ACCEPT statement may only be used for files with an
organization of TRANSACTION. Identifier-1 cannot be a date-time item. If the
description of identifier-1 contains a TYPE clause, the type-name referenced in that
clause must be elementary.

Identifier-1 can be an internal or external floating-point data item.

Identifier-1 can be a DBCS or national data item.

If file-name-1 is not open at the time the ACCEPT is executed, message LNR7205 is
issued.

Mnemonic-name must be associated with the environment-name
ATTRIBUTE-DATA in the SPECIAL-NAMES paragraph.

If file-name-1 is not specified, the default file for the ACCEPT statement is the first
TRANSACTION file specified in a SELECT clause of the FILE-CONTROL
paragraph.

ACCEPT Statement

Chapter 14. Part 6. Procedure Division 287

Literal-1 or the contents of identifier-2, if specified, indicates the program device
name for which attribute data is made available.

For an ICF file, this device must have been defined (through a ADDICFDEVE,
CHGICFDEVE, or OVRICFDEVE command) as available to be acquired by the file,
but need not have actually been acquired. For a display file, if the program device
name is not the name of the display device, then the device must have been
specified in the DEV parameter when the file was created, changed, or overridden,
and before the OPEN is issued for the file. Literal-1, if specified, must be
nonnumeric and 10 characters or less in length. The contents of identifier-2, if
specified, must be an alphanumeric data item 10 characters or less in length. If an
invalid program device name is specified, message LNR7205 is issued and
execution terminates.

If both FOR phrases are omitted (indicating the default TRANSACTION file is
being used) the ACCEPT statement uses the program device from which a READ,
WRITE, REWRITE, or ACCEPT (Attribute Data) operation on the default file was
most recently performed. If the only prior operation on the file was an OPEN, the
ACCEPT statement uses the program device implicitly acquired by the file when
the file was opened. When both FOR phrases are omitted, a program device must
have been acquired in order to use this format of the ACCEPT statement. See the
ICF Programming manual for more information on acquiring devices.

Program device attributes are moved into identifier-1 from the appropriate
attribute data format, according to the rules for a group MOVE without the
CORRESPONDING phrase.

Attribute Data Formats
The attribute data retrieved by the ACCEPT statement depends on whether the
data and the associated fields are applicable to a workstation or to a
communications device. See Appendix F, “File Structure Support Summary and
Status Key Values,” on page 663 for format descriptions.

The ATTRIBUTE-DATA mnemonic name can be used only to obtain information
about a program device acquired by a TRANSACTION file. Attribute data does not
provide information about the status of a completed or attempted I-O operation.
To obtain information about I-O operations, use the Format 3 ACCEPT statement
with the I-O-FEEDBACK or OPEN-FEEDBACK mnemonic names.

End of IBM Extension

Workstation I/O

IBM Extension

An ACCEPT statement is considered an extended ACCEPT statement if it:
v has an AT phrase, or
v has a FROM phrase with the CRT option, or
v has a MODE IS BLOCK phrase, or
v has a WITH phrase, or
v has an ON EXCEPTION phrase or a NOT ON EXCEPTION phrase, (and

PIP-DATA is not specified for mnemonic-name), or
v does not have a FROM phrase, but CONSOLE IS CRT is specified in the

SPECIAL-NAMES paragraph.

An ACCEPT statement is considered a standard ACCEPT statement if it:

ACCEPT Statement

288 ILE COBOL Reference

v has a FROM phrase (other than FROM CRT) and CONSOLE IS CRT is specified
in the SPECIAL-NAMES paragraph, or

v does not have a FROM phrase and CONSOLE IS CRT is not specified.

ACCEPT Statement - Format 7 - Workstation I/O

►► ACCEPT identifier-1 ▼

line-column-phrase
FROM CRT
MODE BLOCK

IS
with-phrase

►

►
EXCEPTION imperative-statement-1

ON

►

►
NOT EXCEPTION imperative-statement-2

ON
END-ACCEPT

►◄

line-column-phrase:

▼ LINE identifier-2
AT COLUMN NUMBER integer-1

COL
AT identifier-3

integer-2

with-phrase:

ACCEPT Statement

Chapter 14. Part 6. Procedure Division 289

WITH ▼ AUTO
AUTO-SKIP
BELL
BEEP

BLINK
FULL
LENGTH-CHECK

HIGHLIGHT
REQUIRED
EMPTY-CHECK

REVERSE-VIDEO
SECURE
NO-ECHO

UNDERLINE
RIGHT-JUSTIFY
SPACE-FILL
TRAILING-SIGN
UPDATE
ZERO-FILL
SIZE identifier-4

IS integer-3
(1)

PROMPT identifier-5
CHARACTER IS literal-1

(1)
FOREGROUND-COLOR integer-4
FOREGROUND-COLOUR IS

(1)
BACKGROUND-COLOR integer-5
BACKGROUND-COLOUR IS

(1)
LEFT-JUSTIFY

Notes:

1 Syntax-checked only.

identifier-1
A data item whose value can be updated.

Identifier-1 can be an internal or external floating-point data item.

Fields accepted or displayed require an attribute byte before and after the field.
To accomplish this, space must be available on the screen for, at a minimum,
the initial display attribute. For this reason, line 1 and column 1 cannot be
used for data because that position is required for the first display attribute.
The lowest position that can be used on the screen for data is line 1, column 2.

For example:

ACCEPT Statement

290 ILE COBOL Reference

The AT phrase sets the starting line and column for the fields that will be
accepted or displayed. It does not indicate the position of the initial display
attribute.

It is your responsibility to ensure that each field is positioned on the screen to
prevent attribute bytes from overlaying data bytes, and to prevent data bytes
from overlaying attribute bytes. You should also be aware that the ending
attribute byte will be the normal attribute defined for the specific workstation.
Therefore, you should ensure that the attributes are specified in the correct
order to obtain the expected results.

You should initially clear the screen by using a DISPLAY statement that
contains the WITH BLANK SCREEN phrase.

When identifier-1 does not fit within the screen, then alphanumeric data is
truncated and numeric data is not put on the screen.

If identifier-1 is a group item and there is no MODE IS BLOCK phrase, those
elementary subordinate items that have names other than FILLER are
displayed. They are displayed simultaneously and positioned on the screen in
the order that their descriptions appear in the DATA DIVISION, separated by
the lengths of the FILLER items in the group. For this purpose, the first
position on a line is regarded as immediately following the last position on the
previous line.

When items are separated by FILLERs, the attribute bytes are included in the
FILLER length, so a FILLER of one or two bytes would contain both the
trailing and leading attributes of separate items. In the case of a one-byte
FILLER, the trailing and leading attributes would occupy the same byte. Since
data items are normally separated by one attribute byte, one-byte FILLER
items are not necessary.

REDEFINES, POINTER, PROCEDURE-POINTER, and INDEX-NAME data are
ignored when found in the group item without the MODE IS BLOCK phrase.

ACCEPT Statement

Chapter 14. Part 6. Procedure Division 291

The extended ACCEPT statement predisplays the value of identifier-1,
accepting only the changed value from the workstation after the ENTER key is
pressed. Simply pressing the ENTER key does not cause an update of the
predisplayed data item.

The accepted value is the image of the characters taken from the screen
positions designated to the data item, and delimited by the cursor position at
the time the FIELD EXIT key is pressed.

The FIELD EXIT key will convert all trailing spaces in the alphabetic and
alphanumeric fields to hexadecimal zeroes when the default compiler option
*UNDSPCHR is in effect. For example:
DATA DIVISION.

01 STRUC1.
03 F11 PIC AA VALUE ’A’.
03 F12 PIC 9(4) VALUE 123.
03 F13 PIC XXX VALUE ’B’.

PROCEDURE DIVISION.
ACCEPT STRUC1 AT 2102.

The ACCEPT statement in the example predisplays three fields:
v F11 starts at line 21, column 2. Its attribute byte occupies line 21, column 1.
v F12 starts at line 21, column 5. Its attribute byte occupies line 21, column 4.
v F13 starts at line 21, column 10. Its attribute byte occupies line 21, column 9.

Here is the visual result at line 21:

Note that numeric field F12 is right-justified, and its first position consists of a
space.

When you place the cursor at the end of field F13 and press the FIELD EXIT
key in response to the values of the three fields, the values of the fields remain
unchanged. Trailing spaces (X'40') in F11 and F13 do, however, become
hexadecimal zeroes, so the test IF F13='B��' will fail after the ACCEPT
operation.

To avoid trailing hexadecimal zeroes, use the SPACE-FILL phrase. If existing
programs already include extended ACCEPT statements without this phrase,
and program changes are costly or not the desired solution, you can consider
using the *NOUNDSPCHR compiler option. Use this option exclusively for
programs in which the extended ACCEPT and extended DISPLAY statements
handle displayable characters only.

The displayable-only characters will be handled if:
v Extended DISPLAY statements do not use binary, internal floating-point, or

packed data (directly or redefined).
v Extended ACCEPT statements do not use binary, internal floating-point, or

packed data redefined as alphanumeric fields.

Note: The MODE IS BLOCK phrase is an implied redefinition of a data group
to an alphanumeric field.

00000000011111111112

12345678901234567890

123A B

Start of F11

Start of F12

Start of F13

ACCEPT Statement

292 ILE COBOL Reference

For example:
01 STRUC2.

03 F21 PIC 99.
03 F22 PIC 9(10) USAGE COMP-3 VALUE 1111123.
03 F23 PIC X(5).

ACCEPT STRUC2 MODE IS BLOCK AT 0102 will contain nondisplayable
characters because it will be handled as one alphanumeric field 13 bytes long.

When the program runs on a workstation with a remote controller and with
5250 emulation, the ILE COBOL run time changes compiler option
*UNDSPCHR, if it is in effect, to *NOUNDSDPCHR and sends an
informational message to the user. When your system configuration
encompasses a variety of workstation controllers, use of the *NOUNSDPCHR
option is recommended to achieve consistency of results. To enforce this option
effectively, specify NOUNDSPCHR on the PROCESS statement in the COBOL
source program.

Considerations for Floating-Point Data Items
You should consider the following when using floating-point data items with the
ACCEPT statement.

It is possible that when an external floating-point literal is ACCEPTed, slight
inaccuracies can result. This is especially true if the floating-point data item is
moved after it is ACCEPTed. The floating-point data type is an approximation, and
when an external floating-point literal is moved, it is first converted to a true
floating-point value (IEEE), which can also affect its accuracy.

For example, consider the following ACCEPT:
77 external-float-1 PIC +9(3).9(13)E+9(3).

ACCEPT external-float-1 FROM CRT.
DISPLAY "EXTERNAL-FLOAT-1=" external-float-1.

The displayed result after +123455779012.3453E+297 is ACCEPTed is:
EXTERNAL-FLOAT-1=+123.4557790123452E+306

Data Categories
The following table shows the data categories handled by the extended ACCEPT
statement. These data categories are also supported by the extended DISPLAY
statement. (The extended ACCEPT and DISPLAY statements do not support data
items with scaling positions in the PICTURE clause.)

Table 30. Data Categories Handled by Extended ACCEPT

Category Initial Display Entering Data Data Item
Updated

Alphabetic A, B, C D B, C

Numeric (internal, binary,
decimal or packed decimal)

B, C, E, F, F1, F2 D, G, H O

Numeric (zoned decimal) B, C, F, F1, F2 D, G, H O

Numeric-edited A, I J, H K, O

Alphanumeric A, B, C D B, C

Alphanumeric-edited A, I J L

Boolean A, B, C D, M, N B, C

DBCS A, B, C D B, C

ACCEPT Statement

Chapter 14. Part 6. Procedure Division 293

Table 30. Data Categories Handled by Extended ACCEPT (continued)

Category Initial Display Entering Data Data Item
Updated

DBCS-edited A, B, C D B, C, L

Internal floating-point A, I, I1, P Q O

External floating-point A, I, I1 Q O

A Left justified (by default).

B For RIGHT-JUSTIFY, trailing spaces and hexadecimal zeros are removed,
and data is moved to the rightmost position.

C For ZERO-FILL, trailing spaces and hexadecimal zeros are converted to
zeros if data is left-justified. Leading spaces are converted to zeros if data
is right-justified.

If only SPACE-FILL is specified, trailing hexadecimal zeros are converted
to spaces.

D If RIGHT-JUSTIFY and ZERO-FILL (or SPACE-FILL) are specified, the
workstation will right-justify and zero-fill or space-fill the field when the
field exit key is pressed. ZERO-FILL does not work with DBCS.

If only ZERO-FILL (or SPACE-FILL) is specified, the workstation does not
make any conversions.

E A binary or packed number is converted to zoned decimal before it is
displayed.

F The following conditions occur:
v The number is padded with spaces on the left before it is displayed.
v Initially, the decimal point is inserted for decimal digits, to divide the

integer from the fractional digits.
v One position is reserved for the decimal point if there are fractional

digits.
v If DECIMAL-POINT IS COMMA is specified in the SPECIAL-NAMES

paragraph, then the meanings of comma and period are reversed. Note,
there is no association with the system value QDECFMT.

v One position is reserved for the sign, if a number is signed.
v If the number has a negative sign, the sign is displayed. By default, the

sign is leading.

F1 When ZERO-FILL is specified, leading zeros are displayed.

F2 When TRAILING-SIGN is specified, the sign occupies the rightmost
position.

G Digits, blanks, and the following symbols are accepted:
v − (minus)
v + (plus)
v . (period)
v , (comma)

The sign must be entered in the leading or trailing position. The decimal
point must be entered before the fractional digits. Digits are not justified. A
comma separates each group of three integer digits.

H A number has the following characteristics:

ACCEPT Statement

294 ILE COBOL Reference

1. The sign symbol value is optional and if present, may precede any digit
value (a leading sign) or may follow the digit value (a trailing sign).
Valid signs are positive and negative. The sign symbol, if it is a leading
sign, may be preceded by blank characters. If the sign symbol is a
trailing sign, it must be the rightmost character in the field. Only one
sign symbol is allowed.

2. Up to 31 decimal digits may be specified. Valid decimal digits are in
the range 0 through 9. The first decimal digit may be preceded by
blank characters but blank characters located to the right of the leftmost
decimal digit are not valid.
The decimal digits may be divided into two parts: an integer part and a
fractional part. Digits to the left of the decimal point are interpreted as
integer values. Digits to the right are interpreted as fractional values. If
no decimal point symbol is included, the value is interpreted as an
integer value. If the decimal point symbol precedes the leftmost
decimal digit, the digit value is interpreted as a fractional value, and
the leftmost decimal digit must be adjacent to the decimal point
symbol. If the decimal point follows the rightmost decimal digit, the
digit value is interpreted as an integer value, and the rightmost decimal
digit must be adjacent to the decimal point.
Decimal digits in the integer portion may optionally have comma
symbols separating groups of three digits. The leftmost group may
contain one, two, or three decimal digits, and each succeeding group
must be preceded by the comma symbol and contain three digits. The
comma symbol must be adjacent to a decimal digit on either side.
Decimal digits in the fractional portion may not be separated by
commas and must be adjacent to one another.

I The number is edited according to the implicit or explicit PIC symbol.
ZERO-FILL, SPACE-FILL, and RIGHT-JUSTIFY do not affect an edited or
floating-point field.

I1 TRAILING-SIGN does not affect an edited or floating-point field.

J Data should be entered with edited symbols.

K All editing symbols are removed, then the resulting number is moved back
with editing into the numeric-edited field. A run-time message will be
issued if nonnumeric characters are detected.

L Data is moved back into the field and no editing is performed. It is the
user's responsibility to ensure that the edited format is followed.

M Digits, blanks, and the following symbols are accepted:
v - (minus)
v + (plus)
v . (period)
v , (comma)

N Any character that is not a zero or a one will generate an error message.

O The numeric field is aligned on the assumed decimal position. See
“Alignment Rules” on page 136 for the rules about positioning data.

P An internal floating-point number is converted to external floating-point
before it is displayed.
v A COMP-1 item will display as if it had an external floating-point

PICTURE clause of -.9(8)E-99

ACCEPT Statement

Chapter 14. Part 6. Procedure Division 295

v A COMP-2 item will display as if it had an external floating-point
PICTURE clause of -.9(17)E-999

Q Data must be entered following the rules for formation of a floating-point
literal (see “Floating-Point Literals” on page 18). The exponent is optional.

The phrases following identifier-1 can be in any order. All phrases specified apply
to the previous identifier.

AT Phrase
The AT phrase indicates the absolute address on the screen at which the ACCEPT
operation is to start. If the AT phrase is not specified, the ACCEPT operation starts
at line 1, column 2. It does not indicate the starting position of the leading
attribute.

The LINE phrase specifies the line at which the screen item starts on the screen.

The COLUMN phrase specifies the column at which the screen item starts on the
screen.

COL is an abbreviation for COLUMN.

The LINE and COLUMN phrases can appear in any order.

identifier-2, integer-1
Identifier-2 and integer-1 must be an unsigned numeric integer with a value
greater than or equal to zero and less than 9 digits. If the value for LINE or
COLUMN is negative, the absolute value is taken. Identifier-2 or integer-1 is
moved into a PIC 9(3) number.

Identifier-2 cannot be an internal or external floating-point data item.

Certain combinations of line and column numbers have special meaning:
v Until the column comes within range, out of range column values are reduced

by the line length and the line value is incremented. A column number may
cause the line number to be incremented several times.

v Out of range line values cause the screen to scroll up one line. The effect is the
same as if the line number of the bottom line had been specified. The screen is
never scrolled more than one line up regardless of the line specified.

v If column and line numbers are both out of range, out of range columns are
handled first followed by out of range lines (according to rules above).

v If the line and column numbers given are both zero, the ACCEPT starts at the
position following that where the preceding ACCEPT operation finished.
Column 1 of each line is considered to follow the last column of the previous
line.

v If the line number is zero, but a non-zero column number is specified, the
ACCEPT starts at the specified column, on the line following that where the
preceding display operation finished.

v If the column number is zero, but a non-zero line number is specified, the
ACCEPT starts on the specified line, at the column following that where the
preceding display operation finished.

identifier-3, integer-2
Identifier-3 must be a PIC 9(4) or a PIC 9(6) field. Identifier-3 cannot be an
internal or external floating-point data item.

Integer-2 must be a 4- or 6-byte numeric field.

ACCEPT Statement

296 ILE COBOL Reference

If identifier-3 or integer-2 is 4 digits long, the first 2 digits specify the line, and
the second 2 digits specify the column. If identifier-3 or integer-2 is 6 digits
long, the first 3 digits specify the line, the second 3 digits specify the column.

FROM CRT Phrase
Indicates that the ACCEPT statement is extended.

MODE IS BLOCK Phrase
The identifier is to be treated as an elementary item; thus, even if it is a group item
it is accepted as one item.

ON EXCEPTION Phrases
If ON EXCEPTION is specified, imperative-statement-1 is executed if the ACCEPT
operation finishes with anything other than a normal completion. That is, if the
CRT Status Key 1 is other than 0.

The use of the ON EXCEPTION phrase does not prevent the generation of a
run-time message for such conditions as workstation boundaries or out-of-screen
ranges.

If NOT ON EXCEPTION is specified, imperative-statement-2 is executed if the
ACCEPT operation finishes with a normal completion.

END-ACCEPT Phrase
END-ACCEPT is optional. It is required if ACCEPT statements are nested.

WITH Phrase
The WITH phrase allows the user to specify certain options for the ACCEPT
operation. These options are described in the following phrases.

AUTO (AUTO-SKIP) Phrase
When a field has been filled by operator input, the cursor automatically steps to
the next input field, rather than waiting for a terminating character to be entered.
If the field is the last in a group, AUTO-SKIP acts as if the ENTER key had been
pressed.

AUTO and AUTO-SKIP may be used interchangeably.

BELL (BEEP) Phrase
An audible alarm sounds each time the item containing this phrase is accepted.

BELL and BEEP may be used interchangeably.

BLINK Phrase
The screen item blinks when it appears on the screen.

FULL (LENGTH-CHECK) Phrase
The operator must either leave the screen item completely empty or fill it entirely
with data. The FIELD-EXIT, FIELD+, FIELD- keys are not allowed. Any attempt to
use the delete key on the data within the input field, followed by the enter key, is
also not allowed. The FULL phrase can be satisfied by data that is initially
displayed.

If this phrase is specified at a group level, it applies to all suitable subordinate
elementary items.

The FULL phrase is effective during the execution of any ACCEPT statement.

ACCEPT Statement

Chapter 14. Part 6. Procedure Division 297

FULL and LENGTH-CHECK may be used interchangeably.

HIGHLIGHT Phrase
The screen item is in high-intensity mode when it appears on the screen.

REQUIRED (EMPTY-CHECK) Phrase
The REQUIRED phrase is used to ensure that a field does not remain empty.

For alphanumeric items, this means that the field must contain at least one
character other than a space or a hexadecimal zero. For numeric items, the field
must contain a value of other than zero.

If a field remains empty when this phrase is specified, a run-time message will be
issued which requires the user to press the reset key and then to re-enter the data.

REQUIRED and EMPTY-CHECK may be used interchangeably.

REVERSE-VIDEO Phrase
The screen item is displayed in reverse image.

SECURE (NO-ECHO) Phrase
Operator-keyed data is prevented from appearing on the screen. This phrase may
be specified on a group screen item, in which case it applies to all suitable
elementary items which are subordinate to that item. When the SECURE phrase is
specified, only spaces and cursor appear in the screen item.

SECURE and NO-ECHO may be used interchangeably.

UNDERLINE Phrase
The screen item is underlined when it appears on the screen.

RIGHT-JUSTIFY Phrase
Operator-keyed characters are moved on the screen to the rightmost character
positions of the field. Trailing spaces and trailing hexadecimal zeros are removed.

This option affects only non-edited data items. This takes effect upon display of the
initial data in the data item and also upon termination of the ACCEPT operation.
This is the only way in which numeric data are handled.

If the data item is defined with the JUSTIFIED RIGHT clause in the DATA
DIVISION, then the data item is treated as if the RIGHT-JUSTIFY phrase had been
specified.

SIZE Phrase
Specifies the size of the data item on the screen. You can use this phrase with
elementary data items only.

The SIZE phrase has no effect if the size you specify is zero. In this case, the length
of the field is used to display the data item.

If you specify a size that is less than the size implied by the associated PICTURE
clause, only the leftmost portion of the data item appears on the workstation
display.

When the size specified for a numeric or numeric-edited data item is less than that
implied by the PICTURE clause, truncation of the rightmost positions occurs when

ACCEPT Statement

298 ILE COBOL Reference

the value is displayed, or predisplayed in the ACCEPT operation. The data item is
then updated following the rules for the MOVE operation.

If you specify a SIZE literal whose value causes the field length to exceed the
screen size, alphanumeric data will be truncated and numeric data will be ignored
and not displayed.

For justified items, only the rightmost portion appears when you specify a size that
is smaller than the length of the item.

If the size you specify is greater than the size implied by the PICTURE clause, the
displayed version of the item is padded with spaces. The padding occurs on the
right.

SPACE-FILL Phrase
For non-edited data items, trailing hexadecimal zeros are converted to spaces, and
the items appear on the screen with zero-suppression in all character positions.
This takes effect when initial data in the data item is displayed and again when the
ACCEPT operation into the data item is terminated. This option has no effect on
edited fields.

TRAILING-SIGN Phrase
The operational sign appears in the rightmost character position of the field. This
takes effect upon display of initial data in the data item and also upon termination
of the ACCEPT operation. This option affects only signed, non-edited numeric data
items. When this option is not specified, the sign precedes the number.

UPDATE Phrase
The current contents of the data item are displayed before the operator is
prompted to key in any new data; the initial data is then treated as though it were
operator-keyed.

Predisplaying by Data Type: In the absence of the UPDATE phrase, you can
control the predisplaying of some data. To predisplay only numeric-edited data,
specify the *ACCUPDNE option of the EXTDSPOPT parameter. To predisplay all
data, use the default option, *ACCUPDALL.

ZERO-FILL Phrase
Non-edited data items appear on the screen with no zero-suppression. For
left-justified data, trailing spaces and trailing hexadecimal zeros are converted to
zeros. For right-justified data, leading spaces are converted to zeros.

This takes effect when initial data in the data item is displayed and again when the
ACCEPT operation into the data item is terminated. It has no effect on edited
fields.

Phrases Syntax Checked Only
The following phrases are syntax checked

Syntax checked and then treated as documentation by the compiler.
v PROMPT CHARACTER

– The PROMPT CHARACTER clause causes the empty character positions on
the screen to be marked.

ACCEPT Statement

Chapter 14. Part 6. Procedure Division 299

identifier-5
Identifier-5 must be a single-character alphabetic or alphanumeric
data item. Identifier-5 must not be subject to an OCCURS clause.

Literal-1
Literal-1 must be a 1-character nonnumeric literal or a figurative
constant.

v FOREGROUND-COLOR or FOREGROUND-COLOUR

– The FOREGROUND-COLOR/FOREGROUND-COLOUR clause specifies the
foreground color of the screen item.

integer-4
Integer-4 must be an unsigned numeric integer.

v BACKGROUND-COLOR or BACKGROUND-COLOUR

– The BACKGROUND-COLOR/BACKGROUND-COLOUR clause specifies the
background color of the screen item.

integer-5
Integer-5 must be an unsigned numeric integer.

v LEFT-JUSTIFY

Format 7 Considerations
If identifier-1 is a group item and there is no MODE IS BLOCK phrase, those
elementary subordinate items that have names other than FILLER are accepted.
They are positioned on the screen in the order that their descriptions appear in the
DATA DIVISION, and are separated by the lengths of the FILLER items in the
group.

For this purpose, the first position on a line is regarded as immediately following
the last position on the previous line. The items are accepted in the same order.

Unless otherwise specified in the CURSOR clause, the cursor initially points at the
start of the first item. As the ACCEPT operation into each item terminates, the
cursor moves to the start of the next item.

The CURSOR clause has no effect on the position of the fields; it can only change
the cursor position for the ACCEPT statement according to stated rules.

Numeric items with PICTURE clauses containing the symbol P are not supported
by the extended ACCEPT statement.

Unless you specify MODE IS BLOCK, data items must not contain fixed-length
tables. Data items must not contain variable-length tables whether or not you
specify MODE IS BLOCK.

Extended ACCEPT and Extended DISPLAY Considerations
The following considerations are common to both the extended ACCEPT and the
extended DISPLAY statements.

Screen Format: Extended ACCEPT and DISPLAY operations support a 24-line by
80-column screen format.

When extended ACCEPT or DISPLAY operations are processed, no other display
file should be open by the program. If TRANSACTION files are coded in a
program that contains extended ACCEPT or DISPLAY statements, it is the user's
responsibility to ensure that TRANSACTION I/O does not interfere with extended

ACCEPT Statement

300 ILE COBOL Reference

ACCEPT or DISPLAY statements. Conversely, the user should ensure that extended
ACCEPT or DISPLAY statements do not interfere with TRANSACTION I/O
operations.

Subscripting and Reference Modification: Subscripted items, and reference
modified items are both supported.

Performance: Unless you specify the EXTDSPOPT(*NODFRWRT) parameter (no
deferred writing) in the CRTCBLMOD or CRTBNDCBL command, the ILE COBOL
compiler buffers all extended DISPLAY statements until the next ACCEPT
statement is encountered. While the *NODFRWRT option allows you to associate
data errors with the statements that cause them by performing DISPLAY
statements as they are encountered, the deferred writing (*DFRWRT) option
improves performance by buffering data streams generated by consecutive
DISPLAY statements.

DBCS Processing: DBCS programs can run on a DBCS system only if they have
been compiled on a DBCS system:
v The user must code shift-in and shift-out characters properly to permit the

continuation of DBCS items. See the appendix on Double-Byte Character Set
support in the IBM Rational Development Studio for i: ILE COBOL Programmer's
Guide for the rules about continuing DBCS items.

v DBCS content is governed by the rules discussed in the appendix on
Double-Byte Character Set support in the IBM Rational Development Studio for i:
ILE COBOL Programmer's Guide.

v Unless the user specifies the *NOUNDSPCHAR (no undisplayable characters)
option of the extended display parameter of the CRTCBLMOD or CRTBNDCBL
command, or the equivalent process statement option, data is passed to the
screen exactly as sent. If the *NOUNDSPCHAR option is specified, the data is
examined by the workstation for the presence of control information. In that
case, output data must contain only valid displayable characters.

v When the length of an alphabetic or an alphanumeric field is less than 4 bytes,
an error is not generated if a value of less than hexadecimal 40 is encountered.

Combinations of Phrases: When one ACCEPT or DISPLAY statement contains the
UNDERLINE, HIGHLIGHT and REVERSE-VIDEO phrases in one WITH phrase,
the HIGHLIGHT phrase is ignored. A warning message (LNC0265) is generated at
compilation time if this combination is coded. In an extended DISPLAY statement,
the UPON CRT-UNDER phrase is equivalent to the UNDERLINE phrase. To
protect a field from being displayed on the screen, use the SECURE option.

TRANSACTION Files: Using extended ACCEPT/DISPLAY statements and
TRANSACTION files in the same program is not recommended. If extended
ACCEPT/DISPLAY statements are used in the same program as TRANSACTION
files, then the TRANSACTION file should be closed when the extended
ACCEPT/DISPLAY statements are performed. Unpredictable results will occur if
an extended ACCEPT/DISPLAY statement is performed when a TRANSACTION
file is open. A severe error may be generated or data on the workstation may be
overlapped or intermixed.

Remote Workstations: Extended ACCEPT and extended DISPLAY statements do
not run on remote workstations attached to 5251 Model 12 controllers.

The EXTDSPOPT(*NOUNDSPCHR) parameter in the CRTCBLMOD or
CRTBNDCBL command allows you to use extended ACCEPT and extended

ACCEPT Statement

Chapter 14. Part 6. Procedure Division 301

DISPLAY statements at remote workstations attached to 3174 and 3274 controllers,
provided that your data does not contain undisplayable characters. The CLEAR
and HELP keys cannot be used to accept data when using remote controllers.

Differences from COBOL/2* Processing: The ILE COBOL extended ACCEPT and
DISPLAY statements are similar to the ACCEPT and DISPLAY statements (Format
2). The exceptions are discussed in Appendix I, “ACCEPT/DISPLAY and
COBOL/2 Considerations,” on page 691.

End of IBM Extension

Format 8 - Session I/O

IBM Extension

The ACCEPT statement retrieves information from the ILE common session
manager.

ACCEPT Statement - Format 8 - Session I/O

►► ACCEPT identifier-1
FROM DISPLAY END-ACCEPT

►◄

If the description of identifier-1 contains a TYPE clause, the type-name referenced
in that clause must be elementary.

For this format of the ACCEPT statement the FROM phrase is optional if the
CONSOLE IS DISPLAY clause is specified in the SPECIAL-NAMES paragraph.

Format 8 transfers data from the ILE common session manager into identifier-1.
The incoming data is received in one of the following formats:
v USAGE IS DISPLAY format. The data is not converted.
v USAGE IS DISPLAY-1 format. The shift-out and shift-in characters that surround

the data are stripped off.
v USAGE IS NATIONAL format, The data is converted from the code set specified

by the job's current CCSID.

The ILE common session manager is used to manage the ACCEPT statement. For
further information on the screen I/O session services, refer to the “Dynamic
Screen Manager” section in the CL and APIs section of the Programming category in
the System i5/OS Information Center at this Web site -http://www.ibm.com/
systems/i/infocenter/.

End of IBM Extension

Format 9 - Data Area

IBM Extension

The ACCEPT statement retrieves information from the data area specified in the
FOR phrase.

ACCEPT Statement

302 ILE COBOL Reference

http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/

ACCEPT Statement - Format 9 - Data Area

►► ACCEPT identifier-1 FROM mnemonic-name FOR identifier-2
literal-1

►

►
LIBRARY identifier-3

IN literal-2
AT identifier-4

integer-1

►

►
WITH LOCK EXCEPTION imperative-statement-1

ON

►

►
NOT EXCEPTION imperative-statement-2

ON
END-ACCEPT

►◄

identifier-1
Identifier-1 can be class alphanumeric, numeric, DBCS, or national.

If the description of identifier-1 contains a TYPE clause, the type-name referenced
in that clause must be elementary.

FROM Phrase
The FROM phrase specifies a mnemonic-name that must be associated with an
environment name of DATA-AREA in the SPECIAL NAMES paragraph.

FOR Phrase
Identifies the operating system data area to retrieve information from. If the
specified data area cannot be found at runtime, an ON EXCEPTION error occurs.

identifier-2
Must be an alphanumeric data item. The contents of identifier-2 must represent
a valid operating system data area name. Operating system data area names
are at most 10 characters long, thus the first 10 characters of identifier-2 are
used to form the data area name.

literal-1
Must be nonnumeric and at most 10 characters long.

LIBRARY Phrase
Is used to specify the name of the operating system library in which the data area
is to be found. The special values *LIBL (search using the job's library list) or
*CURLIB (search the current library) may be specified. If the LIBRARY phrase is
omitted, the job's library list is used to search for the data area.

identifier-3
Must be an alphanumeric data item. Since IBM i library names are at most ten
characters long , only the first ten characters of identifier-3 are used to form
the library name.

literal-2
Must be nonnumeric and at most 10 characters long.

Identifier-2, identifier-3, literal-1, and literal-2 are not affected by the *MONOPRC
compiler option. They can contain an operating system quoted name (for details,
see "Rules for Specifying Names" in the CL and APIs section of the Programming

ACCEPT Statement

Chapter 14. Part 6. Procedure Division 303

category in the System i5/OS Information Center at this Web site
-http://www.ibm.com/systems/i/infocenter/).

AT Phrase
The AT phrase indicates the starting position in the data area from which text is
received.

If the AT phrase is not specified, a starting position of 1 is assumed.

identifier-4, integer-1
Identifier-4 and integer-1 must be positive numeric integers with a value that
ranges from 1 to the maximum data area size (2000).

WITH LOCK Phrase
While the ACCEPT statement is retrieving information into identifier-1, the data
area is locked with an LSRD (Lock Shared for Read) lock to prevent the data area
from being changed. After identifier-1 is accepted, the WITH LOCK phrase places
a LEAR (Lock Exclusive Allow Read) lock on the data area. If a lock cannot be
placed on the data area, an exception condition occurs.

To maintain a lock on the data area after the transfer of data, specify this phrase. If
a lock existed on the data area prior to this statement and the statement did not
contain a WITH LOCK phrase, the lock is released.

(NOT) ON EXCEPTION Phrase
If an error occurs while accessing the data-area, then any imperative statement
specified in the ON EXCEPTION phrase is processed. In the absence of the ON
EXCEPTION phrase, a run-time message is issued. If the data area is accessed
successfully, any imperative statement specified in the NOT ON EXCEPTION
phrase is processed.

END-ACCEPT Phrase
The END-ACCEPT explicit scope terminator serves to delimit the scope of the
ACCEPT statement. END-ACCEPT permits a conditional ACCEPT statement to be
nested in another conditional statement. END-ACCEPT may also be used with an
imperative ACCEPT statement. For more information, see the section on
“Delimited Scope Statements” on page 266.

End of IBM Extension

ACCEPT Statement

304 ILE COBOL Reference

http://www.ibm.com/systems/i/infocenter/

ACQUIRE Statement

IBM Extension

The ACQUIRE statement acquires a program device for a TRANSACTION file.

ACQUIRE Statement - Format - TRANSACTION

►► ACQUIRE identifier
literal

FOR file-name ►◄

identifier, literal
The literal you specify, or the contents of the identifier, will specify the
program device name to be acquired by the specified file. The literal must be
nonnumeric and 10 characters or less in length. The identifier must refer to an
alphanumeric data item 10 characters or less in length.

file-name
File-name must be the name of a file with an organization of TRANSACTION,
and the file must be open when the ACQUIRE statement is run. A compilation
error message is issued if the organization is not TRANSACTION.

For a description of conditions that must be met before a communication device
can be acquired, see the ICF Programming manual. For a description of conditions
that must be met before a display station can be acquired, refer to the DB2
Universal Database for AS/400 section of the Database and File Systems category in the
System i5/OS Information Center at this Web site - http://www.ibm.com/
systems/i/infocenter/r.

Successful completion of the ACQUIRE operation makes the program device
available for input and output operations. If the ACQUIRE is unsuccessful, the file
status value is set to 9H and any applicable USE AFTER EXCEPTION/ERROR
procedure is invoked.

Only one program device may be implicitly acquired when a file is opened. If a
file is an ICF file, the single implicitly acquired program device is determined by
the ACQPGMDEV parameter of the CRTICFF CL command. If the file is a display
file, the single implicitly acquired program device is determined by the first entry
in the DEV parameter of the CRTDSPF CL command. Additional program devices
must be explicitly acquired.

A program device is explicitly acquired by using the ACQUIRE statement. For an
ICF file, the program device must have been defined to the file with the
ADDICFDEVE or OVRICFDEVE command before the file is opened. For a display
file, if the program device name is not the name of the display device, then the
device must have been specified in the DEV parameter when the file was created,
changed, or overridden, and before the OPEN is issued for the file.

For more information on these CL commands for display stations, see the CL and
APIs section of the Programming category in the System i5/OS Information Center
at this Web site -http://www.ibm.com/systems/i/infocenter/. See the ICF
Programming manual for information on these CL commands for communication
devices. The ACQUIRE statement can also be used as an aid in recovering from
I-O errors. For more information on recovery procedures, see the section on
“Communications Recovery” in the IBM Rational Development Studio for i: ILE
COBOL Programmer's Guide.

ACQUIRE Statement

Chapter 14. Part 6. Procedure Division 305

http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/

ACQUIRE Statement

306 ILE COBOL Reference

ADD Statement
The ADD statement adds two or more numeric operands and stores the result.

ADD Statement - Format 1 - ADD

►► ADD ▼ identifier-1
literal-1

TO ▼ identifier-2
ROUNDED

►

►
SIZE ERROR imperative-statement-1

ON

►

►
NOT SIZE ERROR imperative-statement-2

ON
END-ADD

►◄

In Format 1, identifiers and literals preceding the keyword TO are added together,
and this initial sum is added to and stored in identifier-2. The initial sum is also
added to each successive occurrence of identifier-2, in the left-to-right order in
which identifier-2 is specified.

ADD Statement - Format 2 - ADD GIVING

►► ADD ▼ identifier-1
literal-1 TO

identifier-2
literal-2

►

► ▼GIVING identifier-3
ROUNDED

►

►
SIZE ERROR imperative-statement-1

ON

►

►
NOT SIZE ERROR imperative-statement-2

ON
END-ADD

►◄

In Format 2, the values of the operands preceding the word GIVING are added
together, and the sum is stored as the new value of each data item referenced by
identifier-3.

ADD Statement

Chapter 14. Part 6. Procedure Division 307

ADD Statement - Format 3 - ADD CORRESPONDING

►► ADD CORRESPONDING
CORR

identifier-4 TO identifier-5
ROUNDED

►

►
SIZE ERROR imperative-statement-1

ON

►

►
NOT SIZE ERROR imperative-statement-2

ON
END-ADD

►◄

In Format 3, elementary data items within identifier-4 are added to and stored in
the corresponding elementary items within identifier-5.

For all Formats:

identifier-1, identifier-2
Must be an elementary numeric item.

identifier-3
Must be an elementary numeric item or a numeric-edited item.

identifier-4, identifier-5
Must be a group item.

literal-1, literal-2
Must be a numeric literal.

In Format 1, the composite of operands is determined by using all of the operands
in a given statement.

In Format 2, the composite of operands is determined by using all of the operands
in a given statement excluding the data items that follow the word GIVING.

In Format 3, the composite of operands is determined separately for each pair of
corresponding data items.

For more information on the composite of operands, see the “Size of Operands” on
page 271.

IBM Extension

Floating-point data items and literals can be used anywhere a numeric data item or
literal can be specified.

End of IBM Extension

ROUNDED Phrase
See “ROUNDED Phrase” on page 269.

SIZE ERROR Phrases
See “SIZE ERROR Phrases” on page 270.

ADD Statement

308 ILE COBOL Reference

CORRESPONDING Phrase (Format 3)
See “CORRESPONDING Phrase” on page 268.

END-ADD Phrase
This explicit scope terminator delimits the scope of the ADD statement. END-ADD
converts a conditional ADD statement into an imperative statement so that it can
be nested in another conditional statement.

For more information, see “Delimited Scope Statements” on page 266.

ADD Statement

Chapter 14. Part 6. Procedure Division 309

ALTER Statement
The ALTER statement changes the transfer point specified in a GO TO statement.

Note: The ALTER statement encourages the use of unstructured programming
practices. The EVALUATE statement provides the same function as the
ALTER statement and helps to ensure that your program will be
well-structured.

ALTER Statement - Format

►► ALTER ▼ procedure-name-1 TO procedure-name-2
PROCEED TO

►◄

The ALTER statement modifies the GO TO statement in the paragraph named by
procedure-name-1. Subsequent executions of the modified GO TO statement(s)
transfer control to procedure-name-2.

procedure-name-1
Must be a Procedure Division paragraph that contains only one sentence: a GO
TO statement without the DEPENDING ON phrase.

procedure-name-2
Must be a Procedure Division section or paragraph.

If procedure-name-1 or procedure-name-2 are within a declarative procedure,
neither can reference any nondeclarative procedure. In the nondeclarative portion
of the program, there must be no reference to procedure-names that appear in an
EXCEPTION/ERROR declarative procedure, except that PERFORM statements
may refer to an EXCEPTION/ERROR procedure or procedures associated with it.

Before the ALTER statement is executed, when control reaches the paragraph
specified in procedure-name-1, the GO TO statement transfers control to the
paragraph specified in the GO TO statement. After execution of the ALTER
statement, however, the next time control reaches the paragraph specified in
procedure-name-1, the GO TO statement transfers control to the paragraph
specified in procedure-name-2.

Note: Do not use the ALTER statement in programs that have the RECURSIVE
attribute.

Coding Example
The ALTER statement acts as a program switch, allowing, for example, one
sequence of execution during initialization and another sequence during the bulk
of file processing. Because altered GO TO statements are difficult to debug, it is
preferable to test a switch, and based on the value of the switch, execute a
particular code sequence. For example:

PARAGRAPH-1.
GO TO BYPASS-PARAGRAPH.

PARAGRAPH-1A.
.
.

BYPASS-PARAGRAPH.
.
.

ALTER Statement

310 ILE COBOL Reference

ALTER PARAGRAPH-1 TO PROCEED TO
PARAGRAPH-2.

.

.
PARAGRAPH-2.

.

.

Before the ALTER statement is executed, when control reaches PARAGRAPH-1, the
GO TO statement transfers control to BYPASS-PARAGRAPH. After execution of
the ALTER statement, however, the next time control reaches PARAGRAPH-1, the
GO TO statement transfers control to PARAGRAPH-2.

Altered GO TO statements in programs with the INITIAL attribute are returned to
their initial state each time the program is entered.

ALTER Statement

Chapter 14. Part 6. Procedure Division 311

CALL Statement
The CALL statement transfers control from one program to another within the run
unit.

The program containing the CALL statement is the calling program; the program
identified in the CALL statement is the called subprogram. The calling program
must contain a CALL statement at the point where another program is to be called.

IBM Extension

In ILE COBOL, a subprogram may be a COBOL program, a program written in
another IBM i language, or an ILE procedure.

End of IBM Extension

Processing of the CALL statement passes control to the first nondeclarative
instruction of the called subprogram. Control returns to the calling program at the
instruction following the CALL statement. If the called subprogram has no
procedure division or nondeclarative section in the Procedure Division, the called
subprogram issues an implicit EXIT PROGRAM.

Whenever program control is transferred by the CALL statement and the called
program directly or indirectly executes its caller, a recursive call has been made.
Programs defined with the RECURSIVE attribute can execute a CALL statement
that directly or indirectly executes itself. ILE COBOL does not allow recursion in
non-recursive programs. A run time error message will be generated if recursion is
attempted for a non-recursive program. For more information on calling programs
and the associated concepts and terminology, see the IBM Rational Development
Studio for i: ILE COBOL Programmer's Guide.

The RETURN-CODE special register can be used to pass return code information
from a program to its caller. See “RETURN-CODE Special Register” on page 488
for further information.

CALL statement processing passes control to the called subprogram. If a CALL
statement has a linkage of program object and the CALL statement names a
program that does not exist in the specified library at run time, an error message is
issued. The ON EXCEPTION or OVERFLOW phrase can be used to specify an
error handling procedure.

A called subprogram is in its initial state the first time it is called within a run unit.
It is also in its initial state the first time it is called after a CANCEL statement.

A program is in its initial state each time it is called if it is an initial program (if its
PROGRAM-ID paragraph contains the INITIAL clause). On all other entries into
the called subprogram, the subprogram is in its last-used state, except in the case
of the PERFORM statement control mechanisms; these are always set to their initial
state.

Whenever an implicit or explicit STOP RUN occurs, the Languages and Utilities
return code is set to 0. Otherwise, it is set to 2. The RETURN-CODE register is
copied to the user portion of the work control block. See the RTVJOBA and
DSPJOB commands in the CL Programming book for more information about return
codes.

CALL Statement

312 ILE COBOL Reference

The user return code is set to 0 at the start of the processing of any COBOL
program, and before a call is made to another program.

CALL Statement - Format 1

►► CALL ►

► identifier-1
literal-1

(1)
LINKAGE environment-name-1

TYPE IS PROGRAM
(1)

PROGRAM

►

►
(1)

LIBRARY identifier-5
IN literal-4 ▼USING BY Phrase

►

►
ON EXCEPTION Phrase NOT ON EXCEPTION Phrase

OVERFLOW imperative statement-3
ON

END-CALL
►◄

BY Phrase:

▼

▼

identifier-2
REFERENCE (1)

BY ADDRESS OF
(1)

file-name-1

CONTENT identifier-2
BY (1)

ADDRESS OF
(1)

LENGTH OF
(1)

literal-2
(1)

file-name-1

ON EXCEPTION Phrase:

EXCEPTION imperative statement-1
ON

NOT ON EXCEPTION Phrase:

NOT EXCEPTION imperative statement-2
ON

Notes:

1 IBM Extension

CALL Statement

Chapter 14. Part 6. Procedure Division 313

CALL Statement - Format 2

►► CALL ►

► identifier-1
literal-1

(1)
LINKAGE environment-name-1

TYPE IS PROCEDURE
(1)

PROCEDURE

►

►

▼USING BY Phrase

►

►
(1)

RETURNING identifier-4
(1) INTO ADDRESS OF

GIVING

►

►
ON EXCEPTION Phrase NOT ON EXCEPTION Phrase

OVERFLOW imperative statement-3
ON

END-CALL
►◄

BY Phrase:

▼

▼

identifier-2
REFERENCE (1)

BY ADDRESS OF
(1)

file-name-1
(1)

OMITTED

CONTENT identifier-2
BY (1)

ADDRESS OF
(1)

LENGTH OF
(1)

literal-2
(1)

file-name-1
(1)

OMITTED
BY VALUE Phrase

BY VALUE Phrase:

CALL Statement

314 ILE COBOL Reference

▼
(1)

VALUE identifier-3
BY ADDRESS OF

LENGTH OF
literal-3

float-literal-1 SIZE IS Phrase
integer-1

SIZE IS Phrase:

SIZE integer-2
IS

ON EXCEPTION Phrase:

EXCEPTION imperative statement-1
ON

NOT ON EXCEPTION Phrase:

NOT EXCEPTION imperative statement-2
ON

Notes:

1 IBM Extension

identifier-1
Must be an alphanumeric or a procedure-pointer data item.

For an alphanumeric data item, the following rules apply:
v If the linkage is to a program object, the contents of identifier-1 must

conform to the rules for formation of a program-name. The first 10
characters of identifier-1 are used to make the correspondence between the
calling and the called program.

v If the linkage is to a procedure, the first 256 characters of identifier-1 are
used. The called procedure must be in the same compilation unit as the
calling procedure.

v Depending on the compiler option *MONOPRC, the contents of identifier-1
might need to be uppercase and conform to the rules for formation of
program-names.

Procedure-pointer data items must be set to the address of a program or a
procedure using the SET statement prior to the CALL. For information on
setting procedure-pointer data items, see “Format 6 - Procedure-Pointer Data
Item” on page 468.

literal-1
The CALL linkage determines the type of program called and thus also
restricts the content and size of literal-1. The linkage made is either to a
program object or an ILE procedure. If the linkage is to a program object, then
literal-1 must be nonnumeric, uppercase (except for an extended system name),
and must conform to the rules for formation of program-names. The first 10

CALL Statement

Chapter 14. Part 6. Procedure Division 315

characters of the literal are used to make the correspondence between the
calling program and the called subprogram. Literal-1 can contain an extended
name.

If the linkage is to an ILE procedure, then literal-1 must be nonnumeric and at
most 256 characters long. Depending on the compiler option *MONOPRC,
literal-1 might need to be uppercase and conform to the rules for formation of
program-names. The literal must specify the program-name of the called
subprogram.

LINKAGE TYPE Phrase

IBM Extension

The LINKAGE TYPE phrase is used to specify the type of linkage to be made on
the CALL to literal-1.

environment-name-1
The type of linkage the compiler will generate for the CALL.
Environment-name-1 can be defined as:

PGM Linkage to a program object (*PGM) is generated.

PRC Linkage to an ILE procedure is generated.

PROGRAM
Linkage to a program object (*PGM)

PROCEDURE
Linkage to an ILE procedure

If the LINKAGE TYPE phrase is not specified on the CALL statement, the linkage
generated for the CALL can be changed by specifying one of: the LINKAGE TYPE
clause of the SPECIAL-NAMES paragraph, or the LINKLIT parameter of the
CRTCBLMOD or CRTBNDCBL command.

End of IBM Extension

IN LIBRARY Phrase

IBM Extension

The LIBRARY phrase allows you to qualify IBM i program objects with an IBM i
library name. If the LIBRARY phrase is not specified, the program object is
searched for using the job’s library list (*LIBL).

identifier-5
Must be an alphanumeric data item. The contents of identifier-5 must represent
a valid IBM i library name. IBM i library names can be a maximum of 10
characters long. The first 10 characters of identifier-5 are used to form the
library name.

literal-4
Must be nonnumeric and can be a maximum of 10 characters.

Identifier-5 and literal-4 are not affected by the *MONOPRC compiler option, and
may contain an IBM i extended name.

End of IBM Extension

CALL Statement

316 ILE COBOL Reference

USING Phrase
Included in the CALL statement when parameters need to be passed to the called
subprogram. If this is also written in COBOL, it must contain a USING phrase in
its Procedure Division header. Procedure Division header of the called subprogram.
The number of operands in both USING phrases must be identical. For CALL
statements with a LINKAGE TYPE of program the maximum number of operands
is 255, and for LINKAGE TYPE of procedure the maximum number of operands is
400.

The sequence of identifiers in the USING phrase of the CALL statement and in the
corresponding USING phrase in the called subprogram's Procedure Division
header determines the correspondence between the identifiers used by the calling
and called programs. This correspondence is by position, rather than by name. For
more information about the USING phrase, see “The USING Phrase” on page 240.

The attributes of the data passed depend on the requirements of the called
subprogram. If a called program requires several parameters, you must specify the
identity of each parameter, rather than a group item that consists of the
parameters.

IBM Extension

Some procedures (for example, the ILE CEEDATE and CEEDAYS APIs) require
that the operational descriptor of one or more parameters is made available. This
requirement must be satisfied by including, in the SPECIAL-NAMES paragraph, a
LINKAGE TYPE clause for the procedure with a USING phrase that specifies the
appropriate parameter. In addition, any such parameter must be defined as an
elementary data item with a USAGE of DISPLAY or DISPLAY-1, and it may not be
reference modified.

End of IBM Extension

The values of the parameters referenced in the USING phrase of the CALL
statement are made available to the called subprogram at the time the CALL
statement is executed.

USING Phrase Example

Calling Program Description (PGMA) Called Program Description (PGMB)

WORKING-STORAGE
SECTION.
01 ARG-LIST.

05 PARTCODE PIC A.
05 PARTNO PIC X(4).
05 U-SALES PIC 9(5).
.
.
.

PROCEDURE DIVISION.
.
.
.

CALL PGMB
USING ARG-LIST.

LINKAGE SECTION.
01 PARAM-LIST.

10 PART-ID PIC X(5).
10 SALES PIC 9(5).
.
.
.

PROCEDURE DIVISION USING
PARAM-LIST.

Note: In the calling program, the code for parts (PARTCODE) and the part number
(PARTNO) are referred to separately. In the called subprogram, the code for

CALL Statement

Chapter 14. Part 6. Procedure Division 317

parts and the part number are combined into one data item (PART-ID);
therefore in the called subprogram, a reference to PART-ID is the only valid
reference to them.

BY REFERENCE Phrase
The value of a parameter passed through the BY REFERENCE phrase is evaluated
when the CALL statement runs. This value is assigned to the corresponding
parameter of the called program. The number of characters in each parameter must
be equal; however, the data descriptions need not be the same.

When an ILE COBOL parameter is passed BY REFERENCE, a pointer to the
original data item passes to the called program. Because of this, a change to a
parameter in a called program will result in a change to a data item in a calling
program.

identifier-2
Must be defined as a level-01, level-77, or elementary data item in the File,
Working-Storage, Local-Storage or Linkage Sections. Must not be a
function-identifier.

IBM Extension

It can be a:
v Data item of any level in the Data Division
v Pointer data item (an item defined implicitly or explicitly as USAGE IS

POINTER)
v Procedure-pointer data item
v DBCS data item
v National data item
v Floating-point data item
v Date-time data item.

End of IBM Extension

IBM Extension

ADDRESS OF special register
For information about this special register, see page 131. Note that the
calculated ADDRESS OF is not allowed in this case.

file-name-1
Must appear in an FD entry. It passes a null pointer data item.

OMITTED
For standard parameters when a parameter is passed BY REFERENCE, a
pointer to the original data item is passed to the called program. When
OMITTED is specified, a NULL pointer is passed to the called program. In this
case, the called program will use its default value.

OMITTED can only be specified on calls to programs with a LINKAGE TYPE
of procedure.

End of IBM Extension

CALL Statement

318 ILE COBOL Reference

BY CONTENT Phrase
The value of a parameter passed through the BY CONTENT phrase is evaluated
when the CALL statement runs. This value is assigned to the corresponding
parameter of the called program.

For each ILE COBOL item passed BY CONTENT, a copy of the item is made in the
calling program, and a pointer to this copy passes to the called program. Changes
made to the parameter in the called program do not affect the data item of the
calling program. The number of characters in each parameter must be equal;
however, the data descriptions need not be the same.

identifier-2
Must be defined as a level-01, level-77, or elementary data item in the File,
Working-Storage, Local-Storage or Linkage Sections. It must not be a
function-identifier.

IBM Extension

It can be a:
v Data item of any level in the Data Division
v Pointer data item (an item defined implicitly or explicitly as USAGE IS

POINTER)
v Procedure-pointer data item
v DBCS data item
v National data item
v Floating-point data item
v Date-time data item.

End of IBM Extension

IBM Extension

ADDRESS OF special register
For information about this special register, see page 131.

ADDRESS OF a data item
For information about this, see page 130.

LENGTH OF special register
The LENGTH OF special register contains the number of bytes used by a data
item referenced by an identifier. For more information, see “LENGTH OF
Special Register” on page 321.

literal-2
Can be:
v A nonnumeric literal
v A figurative constant
v A Boolean literal
v A DBCS literal
v National hexadecimal literal.

file-name-1
Must appear in an FD entry. It passes a pointer data item.

OMITTED
For standard parameters when a parameter is passed BY CONTENT, a pointer
to a copy of the data item is passed to the called program. When OMITTED is

CALL Statement

Chapter 14. Part 6. Procedure Division 319

specified, a NULL pointer is passed to the called program. In this case, the
called program will use its default value.

OMITTED can only be specified on calls to programs with a LINKAGE TYPE
of procedure.

End of IBM Extension

BY VALUE Phrase

IBM Extension

When the BY VALUE phrase is specified, the value of the parameter is passed, not
a reference to the sending data item. The called program can modify the formal
parameter corresponding to the BY VALUE parameter, but any such changes do
not affect the parameter since the called program has access to a temporary copy
of the sending data item.

While BY VALUE parameters are primarily intended for communication with
non-COBOL programs (such as C), they can also be used for COBOL-to-COBOL
invocations. In this case, BY VALUE must be specified or implied for both the
parameter in the CALL USING phrase and the corresponding formal parameter in
the PROCEDURE DIVISION USING phrase.

The BY CONTENT, BY VALUE and BY REFERENCE phrases apply to the
parameters that follow them until another BY CONTENT, BY VALUE or BY
REFERENCE phrase is encountered. If none of these phrases appear before the first
parameter, BY REFERENCE is assumed.

The BY VALUE phrase is not allowed for programs called with linkage type of
program.

identifier-3
Must be defined as a level-01, level-77, or elementary data item in the File,
Working-Storage, Local-Storage or Linkage Sections.

It can be:
v A data item of any level in the Data Division
v A pointer data item (an item defined implicitly or explicitly as USAGE IS

POINTER)
v A procedure-pointer data item
v A DBCS data item
v A national data item
v A floating-point data item
v A date-time data item
v Reference modified, however, the length of the reference modified item must

be known at compile time.

ADDRESS OF special register
For information about this special register, see page 131.

ADDRESS OF a data item
For information about this, see page 130.

CALL Statement

320 ILE COBOL Reference

LENGTH OF special register
The LENGTH OF special register contains the number of bytes used by a data
item referenced by an identifier. For more information, see “LENGTH OF
Special Register.”

literal-3
Can be:
v A nonnumeric literal
v A figurative constant
v A Boolean literal
v A DBCS literal
v A national hexadecimal literal.

float-literal-1
A floating-point literal is passed as an 8 byte internal float (COMP-2), unless
the SIZE phrase is specified. For floating-point items the size phrase can be 4
or 8.

integer-1
Can be a signed or unsigned integer.

Integer-1 is passed as a binary value. If integer-2 is not specified then integer-1
will be passed as a 4-byte binary value. Integer-2 specifies the size of integer-1.
This can be one of 1, 2, 4 or 8.

End of IBM Extension

LENGTH OF Special Register

IBM Extension

The LENGTH OF phrase creates an implicit special register whose contents equal
the current length, in bytes, of the data item referenced by the identifier.

The LENGTH OF special register has the implicit definition:
USAGE IS BINARY, PICTURE 9(9)

You can use it anywhere in the Procedure Division where you can use a numeric
data item having the same definition as the implied definition of the LENGTH OF
special register.

It can appear in the starting position or length expression of a reference modifier.
However, the LENGTH OF special register cannot be applied to any operand that
is reference modified.

The LENGTH OF operand may not be a function, but the LENGTH OF special
register will be allowed in a function where an integer parameter is allowed.

If the LENGTH OF special register is used as the argument to the LENGTH
function, the result will always be 4, independent of the argument specified for
LENGTH OF.

It cannot be either of the following:
v A receiving data item
v A subscript

CALL Statement

Chapter 14. Part 6. Procedure Division 321

You can use LENGTH OF in the BY CONTENT phrase of the CALL statement.

A date-time data item can be used in expressions using the LENGTH OF special
register. The identifier may also be a type-name, or an item that is subordinate to a
type-name.

For a table element, the LENGTH OF special register contains the length, in bytes,
of one occurrence. To refer to a table element in this case, you do not need to use a
subscript.

For a variable-length element, the LENGTH OF special register contains the length
based on the current contents of the occurs depending on (ODO) variable.

The register returns a value for any identifier whose length can be determined,
even if the area referenced by the identifier is currently not available to the
program. For example, an identifier that is part of a 01-level record in a File
Definition is not available until the corresponding file is open; however, the
LENGTH OF such an identifier can be determined before the file is open.

If, for a variable-length item, the contents of the ODO variable are not available,
the LENGTH OF special register is undefined. For example, if an ODO variable is
defined in the 01-level record of a file that is not open, no LENGTH OF value
exists, and an error results.

A separate LENGTH OF special register exists for each identifier referenced with
the LENGTH OF phrase.

For example:
MOVE LENGTH OF A TO B
DISPLAY LENGTH OF A, A
ADD LENGTH OF A TO B
CALL "PROGX" USING BY REFERENCE A BY CONTENT LENGTH OF A

Note: The number of bytes occupied by a COBOL item is also accessible through
the intrinsic function LENGTH (see “LENGTH” on page 571). LENGTH
supports nonnumeric literals in addition to data names.

End of IBM Extension

GIVING/RETURNING phrase

IBM Extension

The GIVING/RETURNING phrase is not allowed for programs called with a
linkage type of program. GIVING and RETURNING are equivalent.

identifier-4
The RETURNING data item which must be defined in the DATA DIVISION.
The return value of the called program is implicitly stored into identifier-4.
Identifier-4 cannot be reference modified.

Identifier-4 can be a date-time data item.

ADDRESS OF special register
For information about this special register, see page 131.

CALL Statement

322 ILE COBOL Reference

You can specify the RETURNING phrase on calls to ILE procedures that return a
value. If you specify the RETURNING phrase on a CALL to a COBOL
subprogram:
v The called subprogram must specify the RETURNING phrase on its

PROCEDURE DIVISION header.
v Identifier-4 and the corresponding PROCEDURE DIVISION RETURNING

identifier in the target program must have the same number of character
positions and must be of the same USAGE and SIGN clause and category. If
identifier-4 is defined using a TYPE clause, the item referenced in the
GIVING/RETURNING phrase of the PROCEDURE DIVISION header of the
called program must also be defined using a TYPE clause: the same type-name
must be referenced in both TYPE clauses. When control returns to the calling
program, identifier-4 or its ADDRESS of special register will contain the return
value.

If an EXCEPTION or OVERFLOW occurs, identifier-4 is not changed.

The existence of the RETURNING phrase has no effect on the setting of the
RETURN-CODE special register.

Items referenced in the RETURNING/GIVING phrase of the CALL statement
cannot contain the TYPE phrase.

End of IBM Extension

ON EXCEPTION Phrase
This phrase handles the exceptions that result from program existence, program
activation, authority, and storage if the original receiver of the exception is the
caller. At that time, one of the following occurs:
1. If the ON EXCEPTION phrase appears in the CALL statement, control transfers

to imperative-statement-1. Processing then continues according to the rules for
each statement specified in imperative-statement-1.
If a procedure-branching or conditional statement causing explicit transfer of
control runs, control transfers according to the rules for that statement.
Otherwise, once imperative-statement-1 has run, control transfers to the end of
the CALL statement, and the NOT ON EXCEPTION phrase, if specified, is
ignored.

2. If the ON EXCEPTION phrase does not appear in the CALL statement, the
NOT ON EXCEPTION phrase, if specified, is ignored.

NOT ON EXCEPTION Phrase
If an exception condition does not occur (in other words, the called subprogram
can be made available), control transfers to the called program. After control
returns from the called program, the ON EXCEPTION phrase, if specified, is
ignored, and control transfers to the end of the CALL statement (or to
imperative-statement-2, if the NOT ON EXCEPTION phrase is specified).

If control transfers to imperative-statement-2, processing continues according to the
rules for each statement specified in imperative-statement-2.

If a procedure-branching or conditional statement causing explicit transfer of
control runs, control transfers according to the rules for that statement. Otherwise,
once imperative-statement-2 has run, control transfers to the end of the CALL
statement.

CALL Statement

Chapter 14. Part 6. Procedure Division 323

If you specify this phrase in conjunction with the ON OVERFLOW phrase, an error
will result.

ON OVERFLOW Phrase
The ON OVERFLOW phrase has the same effect as the ON EXCEPTION phrase.

END-CALL Phrase
This phrase delimits the scope of the CALL statement. END-CALL permits a
conditional CALL statement to be nested in another conditional statement.
END-CALL can also be used with an imperative CALL statement.

For more information, see “Delimited Scope Statements” on page 266.

CALL Statement Considerations

Call identifier
You can use CALL identifier (where identifier is not a procedure-pointer) to call a
nested ILE COBOL program or a program object. The contents of the identifier
determine, at run time, whether a nested program is called or a program object is
called.

An open pointer that associates an identifier with an object is set the first time you
use the identifier in a CALL statement.

If you carry out a call by an identifier to a program object that you subsequently
delete or rename, you must use the CANCEL statement to null the open pointer
associated with the identifier. This ensures that when you next use the identifier to
call your program object, the associated open pointer will be set again.

The value of the open pointer changes if you change the value of the identifier and
perform a call using this new value.

CALL procedure-pointer
You can perform a static procedure call or a dynamic program call using the CALL
procedure-pointer statement.

Before using the CALL procedure-pointer statement, you must use the Format 6 SET
Statement to set the value of the procedure-pointer data item. To set the
procedure-pointer data item to an ILE procedure, specify LINKAGE TYPE IS
PROCEDURE in the SET statement. To set the procedure-pointer data item to a
program object, specify LINKAGE TYPE IS PROGRAM.

You can also use the LINKAGE TYPE clause of the SPECIAL-NAMES paragraph
or the LINKLIT parameter of the CRTCBLMOD or CRTBNDCBL command to
determine which type of object the procedure-pointer data item is set to. Refer to
“LINKAGE TYPE Clause” on page 88 for information on using the LINKAGE
TYPE clause or the IBM Rational Development Studio for i: ILE COBOL Programmer's
Guidefor information on using LINKLIT parameter.

Length of Parameters
If the length of any parameter (in bytes), as defined in the calling program, does
not match the length expected by the called program, unexpected results could
occur in the called or calling program. See the section on “Passing and Sharing
Data between Programs” in the IBM Rational Development Studio for i: ILE COBOL
Programmer's Guidefor details.

CALL Statement

324 ILE COBOL Reference

Program Termination Statements
The STOP RUN, EXIT PROGRAM, and GOBACK statements are used to return
control from a called ILE COBOL program. The action taken for each program
termination statement when an error occurs, or a program ends depends on
whether control is returned from a main program or a subprogram. For details on
the behavior of the EXIT PROGRAM, STOP RUN, and GOBACK statements under
various conditions, see the section “Returning from an ILE COBOL Program” in
the IBM Rational Development Studio for i: ILE COBOL Programmer's Guide . For
details on each individual program termination statement, see:
v “EXIT PROGRAM Statement” on page 366
v “GOBACK Statement” on page 368
v “STOP Statement” on page 487

IBM i Graphics Support

IBM Extension

You can use the CALL statement to access the following IBM i graphics routines:
v Graphical Data Display Manager (GDDM), a set of graphics primitives for

drawing pictures
v Presentation Graphics Routines (PGR), a set of business charting routines.

You access all these graphics routines with the same format of the CALL statement:

CALL GDDM Statement - Format

►►
(1)

CALL "GDDM" USING routine-name ▼

data-name-1
►◄

Notes:

1 IBM Extension

Routine-name is the name of the graphics routine you want to use.

The data-names that follow routine-name are the parameters necessary to use
certain graphics routines. The number of parameters that you must specify varies,
depending on which routine you select. When you select a graphics routine, make
sure each parameter is the correct size and data type as required by that routine.

The following are examples of calling graphics routines. Remember, you must use
the CALL literal format and define each parameter as required by the graphics
routine you use.

MOVE "FSINIT" TO OS-400-GRAPHICS-ROUTINE-NAME.
CALL "GDDM" USING OS-400-GRAPHICS-ROUTINE-NAME.

.

.
MOVE "GSFLD" TO OS-400-GRAPHICS-ROUTINE-NAME.
CALL "GDDM" USING OS-400-GRAPHICS-ROUTINE-NAME,

PIC-ROW, PIC-COL,
PIC-DEPTH, PIC-WIDTH.

For more information about graphics routines and their parameters, see the GDDM
Programming Guide book and the GDDM Reference.

CALL Statement

Chapter 14. Part 6. Procedure Division 325

CALL Statement

326 ILE COBOL Reference

CANCEL Statement
The CANCEL statement ensures that the next time the referenced subprogram is
called it will be entered in its initial state.

CANCEL Statement - Format

►► CANCEL ▼ identifier-1 In Library Phrase
literal-1

Linkage Phrase

►◄

Linkage Phrase:

(1)
LINKAGE environment-name-1

TYPE IS PROGRAM
PROCEDURE

(1)
PROGRAM

(1)
PROCEDURE

In Library Phrase:

(1)
LIBRARY identifier-2

IN literal-2

Notes:

1 IBM Extension

literal-1
The name of the subprogram to be canceled. Literal-1 can contain an extended
name. The CANCEL linkage determines the type of program to be canceled
and thus also restricts the content and size of literal-1. The linkage made is
either to a program object or an ILE procedure. If the linkage is to a program
object, then literal-1 must be nonnumeric, uppercase (except for an extended
system name), and must conform to the rules for formation of program-names.
The first 10 characters of the literal are used to make the correspondence
between the calling program and the called subprogram.

If the linkage is to an ILE procedure, then literal-1 must be nonnumeric and at
most 250 characters long. Depending on the compiler option *MONOPRC,
literal-1 might need to be uppercase and conform to the rules for formation of
program-names. The literal must specify the program-name of the called
subprogram.

identifier-1
Must be an alphanumeric data item where the following rules apply:

CANCEL Statement

Chapter 14. Part 6. Procedure Division 327

v If the linkage is to a program object, the contents of identifier-1 must
conform to the rules for formation of a program-name. The first 10
characters of identifier-1 are used to make the correspondence between the
calling and the called program.

v If the linkage is to a procedure, the first 250 characters of identifier-1 are
used.

v If the compiler option *MONOPRC is specified, the contents of identifier-1
need to be uppercase and must conform to the rules for formation of
program-names.

Each literal or contents of the identifier specified in the CANCEL statement
must be the same as the literal or contents of the identifier specified in an
associated CALL statement.

IN LIBRARY Phrase

IBM Extension

This phrase is only valid for canceling an IBM i program object. That is, a linkage
of type program must be specified, either implicitly or explicitly, on the CANCEL
statement.

identifier-2
Must be an alphanumeric data item. The contents of identifier-2 must represent
a valid IBM i library name. IBM i library names are at most 10 characters long.
The first 10 characters of identifier-2 are used to form the library name.

literal-2
Must be nonnumeric and can be a maximum of 10 characters long.

Identifier-2 and literal-2 are not affected by the *MONOPRC compiler option, and
can contain an IBM i extended name.

End of IBM Extension

LINKAGE TYPE Phrase

IBM Extension

The LINKAGE TYPE phrase is used to specify the type of program that the
CANCEL statement targets. It could target a program object (*PGM) or an ILE
procedure.

environment-name-1
The type of program that the CANCEL statement will affect.
Environment-name-1 can be defined as:

PGM
A program object (*PGM)

PRC
An ILE procedure

PROGRAM
A program object (*PGM) is canceled.

PROCEDURE
An ILE procedure is canceled.

CANCEL Statement

328 ILE COBOL Reference

If the LINKAGE TYPE phrase is not specified on the CANCEL statement, the type
of program canceled can be changed by specifying one of: the LINKAGE TYPE
clause of the SPECIAL-NAMES paragraph, or the LINKLIT parameter of the
CRTCBLMOD or CRTBNDCBL command.

End of IBM Extension

After a CANCEL statement for a called subprogram has been executed, that
subprogram no longer has a logical connection to the program. The contents of
data items in external data records described by the subprogram are not changed
when a subprogram is canceled. If a CALL statement is executed later by any
program in the run unit naming the same subprogram, that subprogram will be
entered in its initial state.

A CANCEL statement closes all open INTERNAL files.

You can cancel a called subprogram in any of the following ways:
v By referencing it as the operand of a CANCEL statement
v By terminating the run unit of which the subprogram is a member (This can be

done by a STOP RUN in the same run unit or by a GOBACK from the main
program of the run unit.)

v By executing an EXIT PROGRAM statement in the called subprogram if that
subprogram possesses the INITIAL attribute

v By executing the GOBACK statement in the called subprogram if that
subprogram possesses the INITIAL attribute.

A CANCEL statement operates only on the program specified, and not on any
program that may have been called by the canceled program.

Called subprograms may contain CANCEL statements. A called subprogram must
not contain a CANCEL statement that directly or indirectly cancels its calling
program or any other program higher than itself in the calling hierarchy. If a called
subprogram attempts to cancel its calling program, the CANCEL statement in the
subprogram is ignored.

A program named in a CANCEL statement must not refer to any program that has
been called and has not yet returned control to the calling program. For example:
A calls B and B calls C (When A receives control,

it can cancel C.)
A calls B and A calls C (When C receives control,

it can cancel B.)

No action is taken when a CANCEL statement is executed naming a program that
has not been called in the run unit, or that names a program that was called and
subsequently canceled. In both cases, control passes to the next statement.

See the IBM Rational Development Studio for i: ILE COBOL Programmer's Guide for
more information on canceling procedures and program objects.

CANCEL Statement

Chapter 14. Part 6. Procedure Division 329

CLOSE Statement
The CLOSE statement terminates the processing of volumes and files, with
optional rewind and/or lock or removal, where applicable.

CLOSE Statement - Format 1

CLOSE Statement - Format 1

►► CLOSE ▼ file-name-1
LOCK

WITH

►◄

CLOSE Statement - Format 2 - Tape Files

CLOSE Statement - Format 2 - Tape Files

►► CLOSE ▼ file-name-1
REEL
UNIT REMOVAL

FOR
NO REWIND

WITH LOCK

►◄

file-name-1
Designates the file upon which the CLOSE statement is to operate. If more
than one file name is specified, the files need not have the same organization
or access. File-name-1 must not be a sort or merge file.

CLOSE Statement Considerations
A CLOSE statement may be executed only for a file in an open mode. After
successful execution of a CLOSE statement without the REEL or UNIT phrase:
v The record area associated with the file-name-1 is no longer available.

Unsuccessful execution of a CLOSE statement leaves availability of the record
data undefined.

v An OPEN statement for the file must be executed before any other input/output
statement.

The following considerations apply to the use of the CLOSE statement:
v If the file is in an open status and the execution of a CLOSE statement is

unsuccessful, the EXCEPTION/ERROR procedure (if specified) for this file is
executed.

v If a CLOSE statement without a REEL or UNIT phrase has not been processed
before the end of the run unit is reached, or before the program is cancelled,
then the file is closed implicitly.

v If the SELECT OPTIONAL clause is specified in the file-control entry for this
file, and the file is not present at run time, standard end-of-file processing is not
performed.

CLOSE Statement

330 ILE COBOL Reference

v If the FILE STATUS clause is specified in the FILE-CONTROL entry, the
associated status key is updated when the CLOSE statement is executed. For
more information about the status key, see “Common Processing Facilities” on
page 274.

v For Relative Files Only: To extend a relative file boundary beyond the current
number of records and within the file size, use the INZPFM command to add
deleted records before processing the file. You will need to do this when more
records need to be added to the file, and file status 0Q has been received. Any
attempt to extend a relative file beyond its current size results in a boundary
violation.

WITH LOCK Phrase
COBOL ensures that this file cannot be reopened by this COBOL program during
this processing of the program. External files closed WITH LOCK cannot be
opened again within the run unit. This includes any other programs that have
defined the external file.

Special Considerations for Device Type TAPEFILE Only
Files with device type TAPEFILE can be divided into the following two categories:

Sequential Single Volume
A sequential file that is entirely contained on one volume (reel). More than one file
may be present on this volume.

Sequential Multivolume
A sequential file that is contained on more than one volume. The file either may
contain more data than can be held on a single volume, or it may have been
deliberately divided over multiple volumes.

The following phrases apply only to device type TAPEFILE:
v NO REWIND phrase
v REEL or UNIT phrase
v FOR REMOVAL phrase

If none of these phrases is specified, the CLOSE statement causes the current
volume to be positioned at its beginning.

For sequential multivolume files, a CLOSE statement that does not include a REEL
or UNIT phrase has no effect on any volume other than the current volume.

NO REWIND Phrase
The current volume is left in its present position.

REEL or UNIT Phrase
When the REEL or UNIT phrase is specified for an output file, it indicates that a
sequential multivolume file is being created, and that no more records are to be
written to the current volume of the file. The following processing takes place:
1. Standard labels are written at the end of the current volume.
2. A message is issued asking for a new volume to be mounted to receive the

continuation of the file.
3. Standard labels are written at the start of the new volume.
4. The next WRITE statement that is processed writes a record to the newly

mounted volume.

CLOSE Statement

Chapter 14. Part 6. Procedure Division 331

When the REEL or UNIT phrase is specified for a sequential multivolume file that
is open for input, the current volume is positioned to read the standard labels. If
this is the last volume of the file, the program continues, and the next READ
statement that is processed will cause the AT END condition to occur. If this is not
the last volume of the file:
1. A message is issued asking for the next volume of the file to be mounted.
2. The standard labels at the start of the next volume are processed.
3. The next READ statement that is processed requests the first record on the

newly mounted volume.

The REEL or UNIT phrase is optional for sequential single volume files open for
input. It is syntax-checked only, and performs no function at run time.

FOR REMOVAL Phrase
For sequential multivolume files, the addition of the FOR REMOVAL phrase to the
REEL or UNIT phrase causes the current volume to be rewound and unloaded.
The system is then notified that the volume is logically removed from this run
unit. The volume can be addressed again, however, after the file has been closed
by a CLOSE statement without the REEL or UNIT phrase, and then reopened.

The use of the FOR REMOVAL phrase is optional for sequential single volume files
open for input. It is syntax-checked only, and performs no function at run time.

IBM Extension

For sequential multivolume files, the system will always rewind and unload the
volume when the REEL or UNIT phrase is specified on the CLOSE statement, even
if the FOR REMOVAL phrase is not included.

A file will be closed implicitly if the end of the run unit is reached, or if the
program is cancelled, before a CLOSE statement without a REEL or UNIT phrase
has been processed. If this occurs, then the current volume will be left positioned
as defined by the ENDOPT keyword held in the system description of the file. This
keyword, which may take the values LEAVE, REWIND, or UNLOAD, is set up
when the file description is created by the CRTTAPF command. It may be changed
using the CHGTAPF command, or overridden using the OVRTAPF command.

End of IBM Extension

CLOSE Statement

332 ILE COBOL Reference

COMMIT Statement

IBM Extension

The COMMIT statement provides a way of synchronizing changes to data base
records while preventing other jobs from modifying those records until the
COMMIT is performed. The format of the COMMIT statement is:

COMMIT Statement - Format

►► COMMIT ►◄

When the COMMIT statement is executed, all changes made to files under
commitment control, for the current commitment definition since the previous
commitment boundary, are made permanent. A commitment boundary is
established by the successful execution of a ROLLBACK or COMMIT statement. If
no COMMIT or ROLLBACK has been issued in the current job, a commitment
boundary is established by the first OPEN of any file under commitment control in
the job. Changes are made to all files under commitment control, not just to files
under commitment control in the COBOL program that issues the COMMIT
statement.

When a COMMIT is executed, all record locks held by the current commitment
definition since the last commitment boundary for files under commitment control
are released and the records become available. Commitment control can be scoped
at the job level or the activation group level. Commitment control scopes to the
activation group by default. This is important when your application involves
non-ILE COBOL programs that run in a different activation group, such as a CL
program.

The COMMIT statement only affects files under commitment control. If a COMMIT
is executed and there are no files opened under commitment control, the COMMIT
statement has no effect and no commitment boundary is established.

The COMMIT statement does not:
v Modify the I-O-FEEDBACK area for any file
v Change the file position indicator for any file
v Set a file status value for any file.

For more information on commitment control, see the IBM Rational Development
Studio for i: ILE COBOL Programmer's Guide.

End of IBM Extension

COMMIT Statement

Chapter 14. Part 6. Procedure Division 333

COMPUTE Statement
The COMPUTE statement assigns the value of an arithmetic expression to one or
more data items.

With the COMPUTE statement, arithmetic operations can be combined without the
restrictions on receiving data items imposed by the rules for the ADD, SUBTRACT,
MULTIPLY, and DIVIDE statements.

COMPUTE Statement - Format

►► COMPUTE ▼ identifier-1
ROUNDED

=
EQUAL

arithmetic-expression ►

►
SIZE ERROR imperative-statement-1

ON

►

►
NOT SIZE ERROR imperative-statement-2

ON
END-COMPUTE

►◄

If portability is desired, however, you should use ADD, SUBTRACT, MULTIPLY,
and DIVIDE rather than COMPUTE. This is because of potentially different
system-specific intermediate results.

When arithmetic operations are combined, the COMPUTE statement may be more
efficient than the separate arithmetic statements written in series.

identifier-1
Must be either elementary numeric item(s) or elementary numeric-edited
item(s).

IBM Extension

Can be an elementary floating-point data item.

End of IBM Extension

arithmetic-expression
Can be any arithmetic expression, as defined in “Arithmetic Expressions” on
page 245.

When the COMPUTE statement is executed, the value of the arithmetic
expression is calculated, and this value is stored as the new value of each data
item referenced by identifier-1.

An arithmetic expression consisting of a single identifier, numeric function, or
numeric literal allows the user to set the value of the data item(s) referenced
by identifier-1 equal to the value of that identifier or literal.

COMPUTE Statement

334 ILE COBOL Reference

ROUNDED Phrase
See “ROUNDED Phrase” on page 269.

SIZE ERROR Phrases
See “SIZE ERROR Phrases” on page 270.

END-COMPUTE Phrase
This explicit scope terminator serves to delimit the scope of the COMPUTE
statement. END-COMPUTE permits a conditional COMPUTE statement to be
nested in another conditional statement. END-COMPUTE may also be used with
an imperative COMPUTE statement.

For more information, see “Delimited Scope Statements” on page 266.

COMPUTE Statement

Chapter 14. Part 6. Procedure Division 335

CONTINUE Statement
The CONTINUE statement allows you to specify a no operation statement.
CONTINUE indicates that no executable instruction is present.

CONTINUE Statement - Format

►► CONTINUE ►◄

The CONTINUE statement can be used anywhere a conditional statement or an
imperative statement can be used. It has no effect on the execution of the program.

CONTINUE Statement

336 ILE COBOL Reference

DELETE Statement
The DELETE statement removes a record from an indexed or relative file. For
indexed files, the key may then be reused for record addition. For relative files, the
space is then available for a new record with the same RELATIVE KEY value.

When the DELETE statement is executed, the associated file must be open in I-O
mode.

DELETE Statement - Format

►► DELETE file-name
RECORD (1)

FORMAT identifier-1
IS literal-1

►

►
(1)

NULL-KEY-MAP identifier-2
IS

►

►
INVALID imperative-statement-1

KEY

►

►
NOT INVALID imperative-statement-2

KEY
END-DELETE

►◄

Notes:

1 IBM Extension

file-name
Must be defined in an FD entry in the Data Division and must be the name of
an indexed or relative file.

After successful execution of a DELETE statement, the record is logically removed
from the file and can no longer be accessed. Execution of the DELETE statement
does not affect the contents of the record area associated with the file-name (or the
content of the data item referenced by the data-name specified in the DEPENDING
ON phrase of the RECORD clause associated with file-name).

If the FILE STATUS clause is specified in the File-Control entry, the associated
status key is updated when the DELETE statement is executed.

The file position indicator is not affected by the processing of the DELETE
statement.

DELETE Statement Considerations

IBM Extension

The action of this statement can be inhibited at program run time by the inhibit
write (INHWRT) parameter of the Override with Database File (OVRDBF) CL
command. When this parameter is specified, non-zero file status codes are not set
for data dependent errors. Duplicate key and data conversion errors are examples
of data dependent errors. For more information on the OVRDBF command, see the

DELETE Statement

Chapter 14. Part 6. Procedure Division 337

CL and APIs section of the Programming category in the System i5/OS Information
Center at this Web site -http://www.ibm.com/systems/i/infocenter/.

End of IBM Extension

Sequential Access Mode
For an indexed or relative file in sequential access mode,
v When the DELETE statement is processed, the system logically removes the

record retrieved and locked by the READ statement.
The last input/output statement must have been a successfully processed READ
statement without the NO LOCK phrase.

IBM Extension

If the last input/output statement was a successfully processed READ statement
with the NO LOCK phrase:
– The file status key, if defined, is set to 9S.
– The EXCEPTION/ERROR procedure, if any, is run.
– The DELETE statement is not processed.

End of IBM Extension

If the last input/output statement was not a successfully processed READ
statement, the file status key (if defined) is set to 43.
See the IBM Rational Development Studio for i: ILE COBOL Programmer's Guide for
information about file and record locking.

v For a file in sequential access mode, the INVALID KEY and NOT INVALID KEY
phrases must not be specified; however, an EXCEPTION/ERROR procedure
may be specified.
For information about error handling, see “Common Processing Facilities” on
page 274.

Random or Dynamic Access Mode
In random and dynamic access modes, the results of using the DELETE statement
depend on the file organization.

When it is a relative file, the system logically removes the record identified by the
contents of the RELATIVE KEY data item. The space is then available for a new
record with the same RELATIVE KEY value. If the file does not contain such a
record, an INVALID KEY condition exists.

On an indexed file, the system logically removes the record identified by the
contents of the RECORD KEY data item. If the file does not contain such a record,
an INVALID KEY condition exists.

IBM Extension

When EXTERNALLY-DESCRIBED-KEY is specified for the file, the key fields in the
record area for the format specified by the FORMAT phrase are used to find the
record to be deleted. If the FORMAT phrase is not specified, the first format

2. The key fields in the record area are the locations in the buffer selected in accordance with a record format or specification in
order to build a search argument.

DELETE Statement

338 ILE COBOL Reference

http://www.ibm.com/systems/i/infocenter/

defined in the program for the file is used to find the record to be deleted.

End of IBM Extension

Duplicates Phrase

IBM Extension

If this phrase was specified for the file, the last input/output statement processed
for this file before the processing of the DELETE statement must have been a
successfully processed READ statement without the NO LOCK phrase. The record
read by that statement is the record that is deleted.

In this case, the FORMAT phrase is not used to find the record to be deleted. The
READ statement is required to ensure that the proper record is deleted when there
are duplicates.

If a successful READ operation did not occur before the delete operation:
v The file status key, if defined, is set to 94.
v The EXCEPTION/ERROR procedure, if any, is run.
v The DELETE statement is not processed.

If the last input/output statement was a successfully processed READ statement
with the NO LOCK phrase:
v The file status key, if defined, is set to 9S.
v The EXCEPTION/ERROR procedure, if any, is run.
v The DELETE statement is not processed.

If the value of the RECORD KEY data item has been changed since the record was
read:
v The file status key, if defined, is set to 21.
v An INVALID KEY condition exists.
v The DELETE statement is not processed.

End of IBM Extension

FORMAT Phrase

IBM Extension

The FORMAT phrase applies only to indexed files of device type DATABASE. It is
required when processing a file that has multiple record formats and has unique
keys. If the record key is defined with duplicates, the FORMAT phrase is incorrect
and is ignored.

The value specified in the FORMAT phrase contains the name of the record format
to use for this I-O operation. The system uses this to specify or select which record
format must be operated on.

If an identifier is specified, it must be a character string of ten characters or less,
and it must be the name of one of the following:
v A Working-Storage Section entry
v A Linkage Section entry
v A record description entry for a previously opened file.

DELETE Statement

Chapter 14. Part 6. Procedure Division 339

If a literal is specified, it must be an uppercase character string of ten characters or
less. A value of all blanks is treated as though the FORMAT phrase were not
specified. If the value is not valid for a file, a FILE STATUS of 9K is returned and a
USE procedure is invoked, if applicable for the file.

End of IBM Extension

NULL-KEY-MAP IS Phrase

IBM Extension

For a description of the NULL-KEY-MAP IS phrase, refer to the description given
for the START statement, “NULL-KEY-MAP IS Phrase” on page 481.

End of IBM Extension

INVALID KEY Phrase
The INVALID KEY phrase must be specified for files for which an applicable USE
procedure is not specified. For more information, refer to “INVALID KEY
Condition” on page 274.

NOT INVALID KEY Phrase
After the successful processing of a DELETE statement for which there is a NOT
INVALID KEY phrase, control transfers to the imperative statement associated with
the phrase.

END-DELETE Phrase
This explicit scope terminator delimits the scope of the DELETE statement. It
permits a conditional DELETE statement to be nested in another conditional
statement. END-DELETE can also be used with an imperative DELETE statement.

DELETE Statement

340 ILE COBOL Reference

DISPLAY Statement
The DISPLAY statement transfers the contents of each operand to the output
device. The contents are displayed on the output device in the order, left to right,
in which the operands are listed.

Format 1 - Data Transfer

DISPLAY Statement - Format 1 - Data Transfer

►► DISPLAY ▼ identifier-1
literal-1 mnemonic-name

UPON (1)
environment-name

►

►
(2)

NO ADVANCING
WITH

(1)
END-DISPLAY

►◄

Notes:

1 IBM Extension

2 Syntax-checked only.

identifier-1

IBM Extension

If the description of identifier-1 contains a TYPE clause, the type-name
specified in that clause must be elementary.

End of IBM Extension

If it is numeric and is not described as external decimal, the identifier is
converted automatically to external format, as follows:
v Binary or internal decimal items are converted to external decimal. Negative

signed values cause a low-order sign to be displayed. For example, if SIGN
with SEPARATE CHARACTER is not specified and two numeric items have
the values -34 and 34, they are displayed as 3M and 34, respectively. If SIGN
with SEPARATE CHARACTER is specified, a + or a - sign is displayed as
either leading or trailing, depending on how the number was specified.

Note: Group items containing packed, binary, floating-point, or date-time
data (COMP, COMP-1, COMP-2, COMP-3, PACKED-DECIMAL,
BINARY, COMP-4, or COMP-5) should not be displayed on a display
station. Such data can contain display station control characters which
can cause undesirable and unpredictable results.

IBM Extension

DISPLAY Statement

Chapter 14. Part 6. Procedure Division 341

|
|
|
|
|
|

|
|
|
|
|

|

v Can be an internal or external floating-point data item. Internal
floating-point numbers are converted to external floating-point numbers for
display, such that:
– A COMP-1 item will display as if it had an external floating-point

PICTURE clause of -.9(8)E-99
– A COMP-2 item will display as if it had an external floating-point

PICTURE clause of -.9(17)E-999
It is possible that when an external floating-point literal is displayed, slight
inaccuracies can result. This is especially true if the DISPLAY takes place
after a MOVE. The floating-point data type is an approximation, and when
an external floating-point literal is moved, it is first converted to a true
floating-point value (IEEE), which can also affect its accuracy.
For example, consider the following DISPLAY:
77 external-float-1 PIC +9(3).9(13)E+9(3).

MOVE +123455779012.3453E+297 to external-float-1.
DISPLAY "EXTERNAL-FLOAT-1=" external-float-1.

The displayed result after the MOVE is:
EXTERNAL-FLOAT-1=+123.4557790123452E+306

End of IBM Extension

v No other identifiers require conversion.

IBM Extension

v Elementary DBCS and national data items are transferred to the output
device. DBCS, national, and SBCS operands can be specified using a single
DISPLAY verb. Data output will be converted to the code set specified by
the job's current CCSID.

End of IBM Extension

literal-1
May be any figurative constant. When a figurative constant is specified, only a
single occurrence of that figurative constant is displayed.

Each numeric literal must be an unsigned integer.

IBM Extension

Floating-point literals are allowed.

Signed noninteger numeric literals are allowed.

DBCS and national hexadecimal literals are allowed. The ALL figurative
constant can be used with DBCS and national hexadecimal literals in a
DISPLAY verb.

End of IBM Extension

UPON
The UPON phrase specifies a mnemonic-name that must be associated with
either the workstation (REQUESTOR) or the system operator's message queue
(CONSOLE or SYSTEM-CONSOLE).

DISPLAY Statement

342 ILE COBOL Reference

IBM Extension

environment-name May be specified in place of mnemonic-name. Valid
environment-names are CONSOLE and SYSOUT.

End of IBM Extension

When the UPON phrase is omitted, the DISPLAY statement sends output to
the REQUESTOR.

WITH NO ADVANCING
This phrase is syntax checked only and ignored. For a description of a
functional WITH NO ADVANCING phrase see “Format 4 – Session I/O” on
page 351.

DISPLAY Statement Behavior
The DISPLAY statement transfers the data in the sending field to the output
device. The size of the sending field is the total character count of all operands
listed. If the hardware device is capable of receiving data of the same size as the
data item being transferred, then the data item is transferred. If the hardware
device is not capable of receiving data of the same size as the data item being
transferred, then one of the following applies:
v If the total character count is less than the device maximum logical record size,

the remaining rightmost characters are padded with spaces.
v If the total character count exceeds the maximum, as many records are written

as are needed to display all operands. Any operand being printed or displayed
when the end of a record is reached is continued in the next record.

IBM Extension

v If a DBCS or national operand must be split across multiple records, it splits
only on a double-byte boundary.

End of IBM Extension

After the last operand has been transferred to the output device, the device is reset
to the leftmost position of the next line of the device.

The logical record length depends on the device as follows:

Output Maximum Logical Record Size

Job log 120 characters

Workstation 58 characters

System operator's message queue 58 characters

IBM Extension

If a DBCS or national item or literal is specified in a DISPLAY verb, the size of the
sending field is the total character count of all operands listed, with each DBCS or
national character counted twice, plus all necessary shift codes for DBCS.

End of IBM Extension

DISPLAY Statement

Chapter 14. Part 6. Procedure Division 343

When a program in a batch job processes a DISPLAY statement without the UPON
phrase, or with an UPON phrase associated with the REQUESTOR, the output is
sent to the job log in an informational message of severity 99. You can change the
severity of this message using the Change Message Description (CHGMSGD) CL
command. For more information, see theCL and APIs section of the Programming
category in the System i5/OS Information Center at this Web site
-http://www.ibm.com/systems/i/infocenter/

For an interactive job that uses display device files, DISPLAY statements are not
normally used. If you do use them, the following considerations apply.

When an interactive job processes a DISPLAY statement, the logical record appears
on the screen in the Program Messages display.

The following screen shows a sample Program Messages display.

v ▌1▐ System messages for this session.
v ▌2▐Program messages for this session.

This display contains messages from the current program processing, as well as
messages relating to other activities in the session.

When a DISPLAY statement is processed, the characteristics of the display device
file on the screen determine whether or not to suspend program processing:
v RSTDSP(*NO)

If you specify this parameter when you change or create the display device file,
DISPLAY statement processing suspends program processing, and the Program
Messages display appears on the screen. Press Enter to resume program
processing and immediately return the previous display to the screen.

v RSTDSP(*YES)
If you specify this parameter when you change or create the display device file,
or run the DISPLAY statement from the Command Entry display, DISPLAY
statement processing does not suspend program processing.
The Program Messages display appears on the screen and remains there until
either:
– The program processes a nonsubfile READ or WRITE statement for the file.

The Program Messages display then disappears, and the previous display
returns to the screen.

– The program ends.

Note: If you want to suspend program processing, code an ACCEPT statement
after the DISPLAY statement. This suspends program processing until you
press Enter.

Display Program Messages

JOB 000745/QPGMR/WS1 started on 02/17/92 at 14:50:22 in subsystem QINTER▌1▐
SAMPLE PROGRAM MESSAGE FROM PREVIOUS CALL OF PROGRAM.▌2▐
SAMPLE PROGRAM MESSAGE FROM CURRENT CALL OF PROGRAM.▌2▐

DISPLAY Statement

344 ILE COBOL Reference

http://www.ibm.com/systems/i/infocenter/

To view output records after the program terminates, press the F10 key from the
Command Entry display.

For additional information on interactive processing, see the IBM Rational
Development Studio for i: ILE COBOL Programmer's Guide . For additional
information on the RSTDSP parameter, see the CHGDSPF and CRTDSPF
commands in the CL and APIs section of the Programming category in the System
i5/OS Information Center at this Web site -http://www.ibm.com/systems/i/
infocenter/.

When a program started by a workstation operator sends a DISPLAY to the system
operator’s message queue (separate from the workstation), program processing is
not suspended.

The location of the output data is dependent upon the type of program initiation
as follows:

Method of
Initiation

Mnemonic-Name Associated
with SYSTEM-CONSOLE

Mnemonic-Name
Associated with
REQUESTOR

UPON Phrase
Omitted

BATCH System operator’s message
queue

Job log Job log

INTERACTIVE System operator’s message
queue

Workstation Workstation

Format 2 – Local Data Area

IBM Extension

This format is used to transfer data to the system-defined local data area created
for a job.

DISPLAY Statement - Format 2 - Local Data Area

►► DISPLAY ▼ identifier-1
literal-1

UPON mnemonic-name ►

►
(1)

FOR identifier-2
literal-2

END-DISPLAY
►◄

Notes:

1 Syntax-checked only.

This format is only applicable when the mnemonic-name in the SPECIAL-NAMES
paragraph is associated with the environment-name LOCAL-DATA.

DISPLAY Statement

Chapter 14. Part 6. Procedure Division 345

http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/

The conversion and display rules for identifier-1 and literal-1 are described under
“Format 1 - Data Transfer” on page 341. However, the restriction that if the
description of identifier-1 contains a TYPE clause, that the type-name referenced be
elementary, does not apply.

Identifier-2 and literal-2 cannot be floating-point data items.

Identifier-1can be a date-time data item.

Identifier-1 can be a DBCS or national data item.

The DISPLAY statement’s literal operands, or the contents of the DISPLAY
statement’s identifier operands, are written to the system-defined local data area of
the job containing the program that issues the DISPLAY. The data is written to the
local data area according to the rules of the MOVE statement for a group move,
without the CORRESPONDING phrase, and without padding on the right with
spaces.

The FOR phrase, when specified, is syntax checked during compilation but is
treated as comments during execution. The value of literal-2 or identifier-2
indicates the program device name of the device that is writing data to the local
data area. There is only one local data area for each job, and all devices in a job
access the same local data area. Literal-2, if specified, must be nonnumeric and 10
characters or less in length, and identifier-2, if specified, must refer to an
alphanumeric data item 10 characters or less in length.

For more information about the local data area, see the CL Programming manual
and the IBM Rational Development Studio for i: ILE COBOL Programmer's Guide.

End of IBM Extension

Format 3 – Extended DISPLAY Statement

IBM Extension

A DISPLAY statement is considered an extended DISPLAY statement if it has one
of the following:
v An AT phrase
v An UPON CRT or UPON CRT-UNDER phrase
v A MODE IS BLOCK phrase
v A WITH phrase
v No UPON phrase and a CONSOLE IS CRT specified in the SPECIAL-NAMES

paragraph.

A DISPLAY statement is considered a standard DISPLAY statement if it has one of
the following:
v An UPON phrase (other than UPON CRT or UPON CRT-UNDER)
v No UPON phrase and no CONSOLE IS CRT specified in the SPECIAL-NAMES

paragraph.

DISPLAY Statement - Format 3 - Workstation I/O

DISPLAY Statement

346 ILE COBOL Reference

►► DISPLAY ▼ identifier-1
literal-1
line-column-phrase

UPON CRT
CRT-UNDER

MODE BLOCK
IS

with-phrase

END-DISPLAY
►◄

line-column-phrase:

▼ LINE identifier-2
AT COLUMN NUMBER integer-1

COL
AT identifier-3

integer-2

with-phrase:

WITH ▼ BELL
BEEP

BLINK
HIGHLIGHT
REVERSE-VIDEO
UNDERLINE
BLANK SCREEN

LINE
SIZE identifier-4

IS integer-3
(1)

FOREGROUND-COLOR integer-4
(1) IS

FOREGROUND-COLOUR
(1)

BACKGROUND-COLOR integer-5
(1) IS

BACKGROUND-COLOUR

Notes:

1 Syntax-checked only.

Part of this statement can be repeated to allow the display of several data items. If
the first identifier has no AT, LINE, or COLUMN phrase, it begins in line 1,
column 2. Each subsequent data item begins at the currently available screen
position following the previous data item.

If identifier-1 or literal-1 is not specified, neither the MODE IS BLOCK phrase nor
the WITH phrase is allowed.

Identifier-1cannot be a date-time item.

DISPLAY Statement

Chapter 14. Part 6. Procedure Division 347

When identifier-1 does not fit within the screen, then alphanumeric data is
truncated and numeric data is not put on the screen.

If identifier-1 is a group item and there is no MODE IS BLOCK phrase, those
elementary subordinate items that have names other than FILLER are displayed.
They are displayed simultaneously, and positioned on the screen in the order that
their descriptions appear in the DATA DIVISION, separated by the lengths of the
FILLER items in the group. For this purpose, the first position on a line is regarded
as immediately following the last position on the previous line. When items are
separated by FILLERs, the attribute bytes are included in the FILLER length. Thus
a FILLER of one or two bytes would contain both the trailing and leading
attributes of separate items. In the case of a one-byte FILLER, the trailing and
leading attributes would occupy the same byte. Since data items are normally
separated by one attribute byte, one-byte FILLERs are not necessary.

If no identifier or literal is present, the DISPLAY operation changes the screen
position without actually displaying any data.

The phrases following the identifier or literal can be in any order. All phrases
specified apply to the previous identifier or literal, if one was specified. The WITH
and MODE phrases cannot be specified if an identifier or literal was not previously
specified.

Identifiers or literals in a DISPLAY statement follow one after another, separated
by one attribute byte, unless an AT, LINE, or COLUMN phrase is specified. If no
AT, LINE, or COLUMN phrase appears in the statement, the first identifier or
literal begins at line 1, column 2, followed immediately by all other identifiers or
literals.

AT Phrase
The AT phrase indicates the absolute address on the screen at which the DISPLAY
operation is to start. It does not indicate the starting position of the leading
attribute.

The LINE phrase specifies the line at which the screen item starts on the screen.

The COLUMN phrase specifies the column at which the screen item starts on the
screen.

COL is an abbreviation for COLUMN.

The LINE and COLUMN phrases can appear in any order.

identifier-2, integer-1
Identifier-2 and integer-1 must be unsigned numeric integers greater than or
equal to zero, and less than 9 digits. If LINE or COLUMN is negative, the
absolute value is taken.

Identifier-2 cannot be a floating-point data item.

Line and Column Combinations
Certain combinations of line and column numbers have special meaning:
v Until the column comes within range, out-of-range column values are reduced

by the line length, and the line value is incremented. A column number, then,
can cause the line number to be incremented several times.

DISPLAY Statement

348 ILE COBOL Reference

v Out-of-range line values cause the screen to scroll up one line. The effect is the
same as if the line number of the bottom line were specified. The screen is never
scrolled up by more than one line, regardless of the line specified.

v If column and line numbers are both out of range, out-of-range columns are
handled first, followed by out-of-range lines (according to the preceding rules).

v If the line and column numbers given are both zero, the DISPLAY operation
starts at the position following the one at which the preceding DISPLAY
operation finished. Column 1 of each line is considered to follow the last column
of the previous line.

v If the line number is zero, but the column number is not, the DISPLAY operation
starts at the specified column on the line following the one at which the
preceding DISPLAY operation finished.

v If the column number is zero, but the line number is not, the DISPLAY operation
starts on the specified line at the column following the one at which the
preceding DISPLAY operation finished.

identifier-3, integer-2
Identifier-3 must be a PIC 9(4) or a PIC 9(6) field. Integer-2 must be a 4- or
6-byte numeric field.

If identifier-3 or integer-2 is 4 digits long, the first two digits specify the line,
and the second two digits specify the column. If identifier-3 or integer-2 is 6
digits long, the first three digits specify the line, and the second three digits
specify the column.

Identifier-3 cannot be a floating-point data item.

UPON CRT/CRT-UNDER Phrase
Indicates that the DISPLAY statement is extended.

CRT-UNDER also underlines the displayed data item preceding the UPON
CRT-UNDER phrase.

MODE IS BLOCK Phrase
The identifier is treated as an elementary item. Even if it is a group item, it is
displayed as one item.

WITH Phrase
The WITH phrase allows the user to specify certain options for the DISPLAY
operation. These options are described in the following phrases.

BELL (BEEP) Phrase
An audible alarm sounds each time the item containing this phrase is displayed.

BELL and BEEP can be used interchangeably.

The BLANK Phrase
BLANK is effective each time the screen item containing this clause is displayed.

BLANK LINE erases from the current cursor position to the end of the current line.
BLANK SCREEN erases the entire screen and places the cursor at line 1, column 2.

The erasing is done before the item is displayed.

BLINK Phrase
The screen item blinks when it appears on the screen.

DISPLAY Statement

Chapter 14. Part 6. Procedure Division 349

HIGHLIGHT Phrase
The screen item is in high-intensity mode when it appears on the screen.

REVERSE-VIDEO Phrase
The screen item is displayed in reverse image.

SIZE Phrase
Specifies the current size of the data item on the screen. You can use this phrase
with elementary data items only.

identifier-4, integer-3
Identifier-4 must be an unsigned numeric integer, and must not be subject to
an OCCURS clause. Integer-3 must be unsigned.

If identifier-4 or integer-3 has a sign, the compiler uses the absolute value, and
issues a warning message.

Identifier-4 cannot be a floating-point data item.

The SIZE phrase has no effect if the size you specify is zero. In this case, the length
of the field is used to display the data item.

If you specify a size that is less than the size implied by the associated PICTURE
clause, only the leftmost portion of the data item appears on the workstation
display.

When the size specified for a numeric or a numeric-edited data item is less than
that implied by the PICTURE clause, truncation of the rightmost positions occurs
when the value is displayed, or predisplayed in the ACCEPT operation. The data
item is then updated following the rules for the MOVE operation.

If you specify a SIZE literal whose value causes the field length to exceed the
screen size, alphanumeric data will be truncated and numeric data will be ignored
and not displayed.

For justified items, only the rightmost portion appears when you specify a size that
is smaller than the length of the item.

If the size you specify is greater than the size implied by the PICTURE clause, the
displayed version of the item is padded with spaces. The padding occurs on the
right.

ALL figurative constants are displayed as many times as necessary to reach the
length you specify. If the display wraps around to a new line, the new line starts at
the beginning of the constant.

SIZE Phrase Example
The following is an example of displaying a figurative constant where the size
specified is greater than the figurative constant and wraps around to a new line:

DISPLAY ALL ’ABCD’ AT 0270 WITH SIZE 15.

This constant will be displayed on the screen starting with line 2, column 70:
0000000001 677777777778
1234567890................901234567890

Line 1
Line 2 ABCDABCDABC
Line 3 ABCD

DISPLAY Statement

350 ILE COBOL Reference

Notice the differences between the following examples:

Statement 1 DISPLAY ’WORKSTATION’ AT 0275 WITH SIZE 10
Statement 2 DISPLAY ALL ’WORKSTATION’ AT 0275 WITH SIZE 10

0000000001 677777777778
1234567890................901234567890

Statement 1 WORKST
ATIO

Statement 2 WORKST
WORK

UNDERLINE Phrase
The screen item is underlined when it appears on the screen.

Format 3 Considerations
A data item can contain a table whether or not MODE IS BLOCK has been
specified. Fixed-length and variable-length tables are treated as group items
(MODE IS BLOCK is not specified) that are repeated from the first occurrence to
the last occurrence of the table.

Some extended DISPLAY statement considerations also apply to the extended
ACCEPT statement. (See “Extended ACCEPT and Extended DISPLAY
Considerations” on page 300 for more information.)

The ILE COBOL extended DISPLAY statement is similar to the IBM COBOL/2
DISPLAY statement (Format 2). The exceptions are discussed in Appendix I,
“ACCEPT/DISPLAY and COBOL/2 Considerations,” on page 691.

End of IBM Extension

Format 4 – Session I/O

IBM Extension

This format is used to transfer data to the ILE common session manager.

DISPLAY Statement - Format 4 - Session I/O

►► DISPLAY ▼ identifier-1
literal-1 UPON DISPLAY

►

►
NO ADVANCING

WITH
END-DISPLAY

►◄

This format is only applicable when the UPON DISPLAY phrase is specified or the
CONSOLE IS DISPLAY clause is specified in the SPECIAL-NAMES paragraph.

The DISPLAY statement's literal operands or the contents of the DISPLAY
statement's identifier operands, are written to the ILE common session manager.
The data is written to the session manager according to the rules outlined in

DISPLAY Statement

Chapter 14. Part 6. Procedure Division 351

format 1 — Data Transfer (refer to the description of identifier-1 and literal-1
under “Format 1 - Data Transfer” on page 341). If the contents of identifier-1 or
literal-1 span more than one line, writing of data continues at the first position of
the next line of the ILE common session manager.

If the WITH NO ADVANCING phrase is not specified a new line character is
written to the session manager; if it is specified, the session manager will be
positioned immediately following the last character of the last operand displayed.

Identifier-1can be date-time data item.

Identifier-1 can be a DBCS or national data item. If identifier-1 is national item, the
output data will be converted to the code set specified by the job's current CCSID.

End of IBM Extension

Format 5 – Data Area

IBM Extension

This statement is used to transfer data to the data area specified in the FOR
phrase.

DISPLAY Statement - Format 5 - Data Area

►► DISPLAY ▼ identifier-1
literal-1

UPON mnemonic-name FOR identifier-2
literal-2

►

►
LIBRARY identifier-3

IN literal-3
AT identifier-4

integer-1

►

►
WITH LOCK EXCEPTION imperative-statement-1

ON

►

►
NOT EXCEPTION imperative-statement-2

ON
END-DISPLAY

►◄

This format is only applicable when the mnemonic-name in the SPECIAL-NAMES
paragraph is associated with the environment-name DATA-AREA.

The DISPLAY statement's literal operands, or the contents of the DISPLAY
statement's identifier operands, are written to the data area according to the rules
of the MOVE statement for a group move without the CORRESPONDING phrase,
and without padding on the right with spaces.

DISPLAY Statement

352 ILE COBOL Reference

identifier-1/literal-1
The conversion and display rules for identifier-1 and literal-1 are described
under “Format 1 - Data Transfer” on page 341.

Identifier-1 can be date-time data item.

UPON
mnemonic-name in the SPECIAL-NAMES paragraph must be associated with the
environment-name DATA-AREA.

When the UPON phrase is omitted, the DISPLAY statement sends output to the
REQUESTOR.

FOR Phrase
Identifies the operating system data area to which to write information. If the data
area specified cannot be located or accessed at run time an ON EXCEPTION
condition exists.

identifier-2
Must be an alphanumeric data item. The contents of identifier-2 must represent
a valid operating system data area name. Operating system data area names
are at most 10 characters long, thus the first 10 characters of identifier-2 are
used to form the data area name.

literal-2
Must be nonnumeric and at most 10 characters long.

IN LIBRARY Phrase
Is used to specify the name of the operating system library in which the data area
is to be found. The special values *LIBL (search using the job's library list) or
*CURLIB (search the current library) may be specified. If the LIBRARY phrase is
omitted, the job's library list is used to search for the data area.

identifier-3
Must be an alphanumeric data item. Since operating system library names are
at most ten characters long , only the first ten characters of identifier-3 are
used to form the library name.

literal-3
Must be nonnumeric and at most 10 characters long.

Identifier-2, identifier-3, literal-1, and literal-2 are not affected by the *MONOPRC
compiler option. They can contain an operating system quoted name (for details,
see "Rules for Specifying Names" in the CL and APIs section of the Programming
category in the System i5/OS Information Center at this Web site
-http://www.ibm.com/systems/i/infocenter/).

AT Phrase
The AT phrase indicates the starting position in the data area to which text is
written.

If the AT phrase is not specified, a starting position of 1 is assumed.

identifier-4, integer-1
Identifier-4 and integer-1 must be positive numeric integers with a value that
ranges from 1 to the maximum data area size (2000).

DISPLAY Statement

Chapter 14. Part 6. Procedure Division 353

http://www.ibm.com/systems/i/infocenter/

WITH LOCK Phrase
Before data is transferred to the specified data area in the FOR phrase, a lock must
be obtained. If a lock cannot be obtained, the data is not transferred, and an ON
EXCEPTION condition exists.

To maintain a lock on the data area after the transfer of data, specify this phrase. If
a lock existed on the data area prior to this statement and the statement did not
contain a WITH LOCK phrase, the lock is released.

(NOT) ON EXCEPTION
If an error occurs while accessing the data-area, any imperative statement specified
in the ON EXCEPTION phrase is processed. In the absence of the ON EXCEPTION
phrase, a run time message is issued. If the data area is accessed successfully, any
imperative statement specified in the NOT ON EXCEPTION phrase is processed.

END-DISPLAY Phrase
The END-DISPLAY explicit scope terminator serves to delimit the scope of the
DISPLAY statement. END-DISPLAY permits a conditional DISPLAY statement to be
nested in another conditional statement. END-DISPLAY can also be used with an
imperative DISPLAY statement. For more information, see “Delimited Scope
Statements” on page 266.

End of IBM Extension

DISPLAY Statement

354 ILE COBOL Reference

DIVIDE Statement
The DIVIDE statement divides one numeric data item into or by one or more
others, and stores the result in the quotient and remainder.

DIVIDE Statement - Format 1 - INTO

►► DIVIDE identifier-1
literal-1

INTO ▼ identifier-2
ROUNDED

►

►
SIZE ERROR imperative-statement-1

ON

►

►
NOT SIZE ERROR imperative-statement-2

ON
END-DIVIDE

►◄

In Format 1, the value of identifier-1 or literal-1 is divided into the value of
identifier-2; the quotient is then placed in identifier-2. This process is repeated for
each successive occurrence of identifier-2.

DIVIDE Statement - Format 2 - INTO GIVING

►► DIVIDE identifier-1
literal-1

INTO identifier-2
literal-2

►

► ▼GIVING identifier-3
ROUNDED

►

►
SIZE ERROR imperative-statement-1

ON

►

►
NOT SIZE ERROR imperative-statement-2

ON
END-DIVIDE

►◄

In Format 2, the value of identifier-1 or literal-1 is divided into the value of
identifier-2 or literal-2. The value of the quotient is stored in each data item
referenced by identifier-3.

DIVIDE Statement

Chapter 14. Part 6. Procedure Division 355

DIVIDE Statement - Format 3 - BY GIVING

►► DIVIDE identifier-1
literal-1

BY identifier-2
literal-2

►

► ▼GIVING identifier-3
ROUNDED

►

►
SIZE ERROR imperative-statement-1

ON

►

►
NOT SIZE ERROR imperative-statement-2

ON
END-DIVIDE

►◄

In Format 3, the value of identifier-1 or literal-1 is divided by the value of
identifier-2 or literal-2. This quotient is stored in each data item referenced by
identifier-3.

DIVIDE Statement - Format 4 - INTO GIVING REMAINDER

►► DIVIDE identifier-1
literal-1

INTO identifier-2
literal-2

►

► GIVING identifier-3
ROUNDED

REMAINDER identifier-4 ►

►
SIZE ERROR imperative-statement-1

ON

►

►
NOT SIZE ERROR imperative-statement-2

ON
END-DIVIDE

►◄

In Format 4, the value of identifier-1 or literal-1 is divided into identifier-2 or
literal-2. This quotient is stored in identifier-3, and the value of the remainder is
stored in identifier-4.

DIVIDE Statement - Format 5 - BY GIVING REMAINDER

►► DIVIDE identifier-1
literal-1

BY identifier-2
literal-2

►

► GIVING identifier-3
ROUNDED

REMAINDER identifier-4 ►

DIVIDE Statement

356 ILE COBOL Reference

►
SIZE ERROR imperative-statement-1

ON

►

►
NOT SIZE ERROR imperative-statement-2

ON
END-DIVIDE

►◄

In Format 5, the value of identifier-1 or literal-1 is divided by identifier-2 or
literal-2. This quotient is stored in identifier-3, and the value of the remainder is
stored in identifier-4.

For all Formats:

identifier-1, identifier-2
Must be an elementary numeric item.

identifier-3, identifier-4
Must be an elementary numeric or numeric-edited item.

literal1, literal2
Must be a numeric literal.

The composite of operands is determined by superimposing all of the receiving
data items, excluding the REMAINDER data item. For more information on the
composite of operands, see the “Size of Operands” on page 271.

IBM Extension

In Formats 1 through 3, floating-point data items and literals can be used
anywhere that a numeric data item or literal can be specified.

In Formats 4 and 5, floating-point data items or literals cannot be used.

End of IBM Extension

ROUNDED Phrase
For Formats 1, 2, and 3, see “ROUNDED Phrase” on page 269.

For Formats 4 and 5, the quotient used to calculate the remainder is in an
intermediate field. The value of the intermediate field is truncated rather than
rounded.

REMAINDER Phrase
The result of subtracting the product of the quotient and the divisor from the
dividend is stored in identifier-4. If identifier-3, the quotient, is a numeric-edited
item, the quotient used to calculate the remainder is an intermediate field that
contains the unedited quotient.

IBM Extension

The REMAINDER phrase is not valid if the receiver or any of the operands are
floating-point items.

End of IBM Extension

DIVIDE Statement

Chapter 14. Part 6. Procedure Division 357

Any subscripts for identifier-4 in the REMAINDER phrase are evaluated after the
result of the divide operation is stored in identifier-3 of the GIVING phrase.

SIZE ERROR Phrases
For Formats 1, 2, and 3, see “SIZE ERROR Phrases” on page 270.

For Formats 4 and 5, if the size error occurs in the quotient, no remainder
calculation is meaningful. Therefore, the contents of the quotient field (identifier-3)
and the remainder field (identifier-4) are unchanged.

If size error occurs in the remainder, the contents of the remainder field
(identifier-4) are unchanged.

In either of these cases, you must analyze the results to determine which situation
has actually occurred.

For information on the NOT ON SIZE ERROR phrase, see page “NOT ON SIZE
ERROR” on page 271.

END-DIVIDE Phrase
This explicit scope terminator delimits the scope of the DIVIDE statement.
END-DIVIDE converts a conditional DIVIDE statement into an imperative
statement so that it can be nested in another conditional statement.

For more information, see “Delimited Scope Statements” on page 266.

DIVIDE Statement

358 ILE COBOL Reference

DROP Statement

IBM Extension

The DROP statement releases a program device that has been acquired by a
TRANSACTION file.

DROP Statement - Format

►► DROP identifier
literal

FROM file-name ►◄

literal, identifier
Literal or the contents of identifier indicates the program device name of the
device to be dropped. Literal, if specified, must be nonnumeric and 10
characters or less in length. Identifier, if specified, must refer to an
alphanumeric data item, 10 characters or less in length.

file-name
File-name must refer to a file with an organization of TRANSACTION, and the
file must be open in order to be used in the DROP statement. If no DROP
statement is issued, program devices attached to a TRANSACTION file are
implicitly released when that file is finally closed.

Program devices specified in a DROP statement must have been acquired by the
TRANSACTION file, either through an explicit ACQUIRE or through an implicit
ACQUIRE at OPEN time.

After successful execution of the DROP statement, the program device is no longer
available for input or output operations through the TRANSACTION file. The
device may be reacquired if necessary. The contents of the record area associated
with a released program device are no longer available, even if the device is
reacquired.

If the DROP statement is unsuccessful, any applicable USE AFTER
EXCEPTION/ERROR procedures are executed.

The DROP statement can also be used as an aid in recovering from I-O errors. For
more information, see the Transaction File Recovery procedures in the IBM Rational
Development Studio for i: ILE COBOL Programmer's Guide.

End of IBM Extension

DROP Statement

Chapter 14. Part 6. Procedure Division 359

ENTER Statement
The ENTER statement allows the use of more than one source language in the
same source program. It is syntax checked only.

ENTER Statement - Format

►►
(1)

ENTER language-name .
routine-name

►◄

Notes:

1 Syntax-checked only.

language-name
A system name that has no defined meaning. It must follow the rules for
formation of a user-defined word. At least one character must be alphabetic.

routine-name
Must follow the rules for formation of a user-defined word. At least one
character must be alphabetic.

ENTER Statement

360 ILE COBOL Reference

EVALUATE Statement
The EVALUATE statement provides a shorthand notation for a series of nested IF
statements. It can evaluate multiple conditions. That is, the IF statements can be
made up of compound conditions. The subsequent action of the object program
depends on the results of these evaluations.

EVALUATE Statement - Format

►► EVALUATE identifier-1
literal-1
expression-1
TRUE
FALSE

▼ ALSO identifier-2
literal-2
expression-2
TRUE
FALSE

►

► ▼ ▼

▼

WHEN phrase imperative-stmt-1

ALSO phrase

►

►
WHEN OTHER imperative-stmt-2 END-EVALUATE

►◄

WHEN phrase:

WHEN ANY
condition-1
TRUE
FALSE

identifier-3
NOT literal-3 THROUGH identifier-4

arith-expr-1 THRU literal-4
arith-expr-2

ALSO phrase:

ALSO ANY
condition-2
TRUE
FALSE

identifier-5
NOT literal-5 THROUGH identifier-6

arith-expr-3 THRU literal-6
arith-expr-4

EVALUATE Statement

Chapter 14. Part 6. Procedure Division 361

The following example shows the coding for an EVALUATE statement and the
equivalent coding for an IF statement.

Coding Examples
Simple Example of the EVALUATE Statement:

EVALUATE MENU-INPUT
WHEN "0"

PERFORM INIT-PROC
WHEN "1" THRU "9"

PERFORM PROCESS-PROC
WHEN "R"

PERFORM READ-PARMS
WHEN "X"

PERFORM CLEANUP-PROC
WHEN OTHER

PERFORM ERROR-PROC
END-EVALUATE.

The Equivalent IF Statement:

IF (MENU-INPUT = "0") THEN
PERFORM INIT-PROC

ELSE
IF (MENU-INPUT ≥ "1") AND (MENU-INPUT ≤ "9") THEN

PERFORM PROCESS-PROC
ELSE

IF (MENU-INPUT = "R") THEN
PERFORM READ-PARMS

ELSE
IF (MENU-INPUT = "X") THEN

PERFORM CLEANUP-PROC
ELSE

PERFORM ERROR-PROC
END-IF

END-IF
END-IF

END-IF.

The following is a more complex example of an EVALUATE statement and the
equivalent IF statement.

Complex Example of the EVALUATE Statement:

EVALUATE A = B ALSO C > D ALSO TRUE
WHEN TRUE ALSO TRUE ALSO E = F + 15

imp-stat-1
WHEN TRUE ALSO TRUE ALSO E > 12

imp-stat-2
WHEN TRUE ALSO FALSE ALSO ANY

imp-stat-3
WHEN FALSE ALSO TRUE ALSO ANY

imp-stat-4
WHEN FALSE ALSO FALSE ALSO ANY

imp-stat-5
END-EVALUATE.

The Equivalent IF Statement:

IF A = B THEN
IF C > D THEN

IF E = F + 15 THEN

EVALUATE Statement

362 ILE COBOL Reference

imp-stat-1
ELSE

IF E > 12 THEN
imp-stat-2

END-IF
END-IF

ELSE
imp-stat-3

END-IF
ELSE

IF C > D THEN
imp-stat-4

ELSE
imp-stat-5

END-IF
END-IF.

Interpreting Selection Subjects and Selection Objects
Operands before the WHEN phrase

Individually, they are called selection subjects.
Collectively, they are called a set of selection subjects.

Operands in the WHEN phrase

Individually, they are called selection objects.
Collectively, they are called a set of selection objects.

ALSO
Separates selection subjects within a set of selection subjects; separates
selection objects within a set of selection objects.

THROUGH and THRU
Are equivalent. Two operands connected by a THRU phrase must be of the
same class. The two operands thus connected constitute a single selection
object.

The number of selection objects within each set of selection objects must be equal
to the number of selection subjects. Each selection object within a set of selection
objects must correspond to the selection subject having the same ordinal position
within the set of selection subjects, according to the following rules:
v Identifiers, literals, or arithmetic expressions appearing within a selection object

must be valid operands for comparison to the corresponding operand in the set
of selection subjects.

v Condition-1, condition-2, or the word TRUE or FALSE appearing as a selection
object must correspond to a conditional expression or the word TRUE or FALSE
in the set of selection subjects.

v Condition-1, and condition-2 may be any form of a conditional expression.
v The word ANY may correspond to a selection subject of any type.
v Conditional expressions may be simple or complex conditions.

IBM Extension

v Where numeric literals are permitted, floating-point literals are permitted.
v Identifiers can reference items whose usage is implicitly or explicitly defined as

POINTER or PROCEDURE-POINTER.
v Identifiers can reference DBCS, national, or floating-point data items.

EVALUATE Statement

Chapter 14. Part 6. Procedure Division 363

v Identifiers can reference date-time data items.
v Where nonnumeric literals are permitted, DBCS and national hexadecimal

literals are permitted also.

End of IBM Extension

END-EVALUATE Phrase
This explicit scope terminator serves to delimit the scope of the EVALUATE
statement. END-EVALUATE permits a conditional EVALUATE statement to be
nested in another conditional statement. For more information, see “Delimited
Scope Statements” on page 266.

Determining Values
The execution of the EVALUATE statement operates as if each selection subject and
selection object were evaluated and assigned a numeric or nonnumeric value, a
range of numeric or nonnumeric values, or a truth value. These values are
determined as follows:
v Any selection subject specified by identifier-1, identifier-2,... and any selection

object specified by identifier-3 and/or identifier-5 without the NOT or THRU
phrase, are assigned the value and class of the data item that they reference.

v Any selection subject specified by literal-1, literal-2,... and any selection object
specified by literal-3 and/or literal-5 without the NOT or THRU phrase, are
assigned the value and class of the specified literal. If literal-3 and/or literal-5 is
the figurative constant ZERO, it is assigned the class of the corresponding
selection subject.

v Any selection subject in which expression-1, expression-2,... is specified as an
arithmetic expression, and any selection object without the NOT or THRU
phrase in which arithmetic-expression-1 and/or arithmetic-expression-3 is
specified, are assigned numeric values according to the rules for evaluating an
arithmetic expression. (See “Arithmetic Expressions” on page 245.)

Note: Comparing one arithmetic expression to another is system-specific. The
truth status of the comparison may depend on the intermediate results
created on that system.

v Any selection subject in which expression-1, expression-2, ... is specified as a
conditional expression, and any selection object in which condition-1 and/or
condition-2 is specified, are assigned a truth value according to the rules for
evaluating conditional expressions. (See “Conditional Expressions” on page 247.)

v Any selection subject or any selection object specified by the words TRUE or
FALSE is assigned a truth value. The truth value "true" is assigned to those
items specified with the word TRUE, and the truth value "false" is assigned to
those items specified with the word FALSE.

v Any selection object specified by the word ANY is not further evaluated.
v If the THRU phrase is specified for a selection object without the NOT phrase,

the range of values is all values that, when compared to the selection subject, are
greater than or equal to the first operand and less than or equal to the second
operand, according to the rules for comparison. If the first operand is greater
than the second operand, there are no values in the range.

Note: Results of comparisons with nonnumeric operands may not be consistent
across systems, if the comparisons depend on the system's native collating
sequence.

EVALUATE Statement

364 ILE COBOL Reference

v If the NOT phrase is specified for a selection object, the values assigned to that
item are all values not equal to the value, or range of values, that would have
been assigned to the item had the NOT phrase been omitted.

Comparing Selection Subjects and Objects
The execution of the EVALUATE statement then proceeds as if the values assigned
to the selection subjects and selection objects were compared to determine whether
any WHEN phrase satisfies the set of selection subjects. This comparison proceeds
as follows:
1. Each selection object within the set of selection objects for the first WHEN

phrase is compared to the selection subject having the same ordinal position
within the set of selection subjects. One of the following conditions must be
satisfied if the comparison is to be satisfied:
a. If the items being compared are assigned numeric or nonnumeric values, or

a range of numeric or nonnumeric values, the comparison is satisfied if the
value, or one value in the range of values, assigned to the selection object is
equal to the value assigned to the selection subject, according to the rules
for comparison.

b. If the items being compared are assigned truth values, the comparison is
satisfied if the items are assigned identical truth values.

c. If the selection object being compared is specified by the word ANY, the
comparison is always satisfied, regardless of the value of the selection
subject.

2. If the above comparison is satisfied for every selection object within the set of
selection objects being compared, the WHEN phrase containing that set of
selection objects is selected as the one satisfying the set of selection subjects.

3. If the above comparison is not satisfied for every selection object within the set
of selection objects being compared, that set of selection objects does not satisfy
the set of selection subjects.

4. This procedure is repeated for subsequent sets of selection objects in the order
of their appearance in the source program, until either a WHEN phrase
satisfying the set of selection subjects is selected or until all sets of selection
objects are exhausted.

Executing the EVALUATE Statement
After the comparison operation is completed, execution of the EVALUATE
statement proceeds as follows:
v If a WHEN phrase is selected, execution continues with the first

imperative-statement-1 following the selected WHEN phrase. Note that multiple
WHEN statements are allowed for a single imperative-statement-1.

v If no WHEN phrase is selected and a WHEN OTHER phrase is specified,
execution continues with imperative-statement-2.

v If no WHEN phrase is selected and no WHEN OTHER phrase is specified,
execution continues with the next executable statement following the scope
delimiter.

v The scope of execution of the EVALUATE statement is terminated when
execution reaches the end of the scope of the selected WHEN phrase or WHEN
OTHER phrase, or when no WHEN phrase is selected and no WHEN OTHER
phrase is specified.

EVALUATE Statement

Chapter 14. Part 6. Procedure Division 365

EXIT Statement
The EXIT statement provides a common end point for a series of paragraphs.

EXIT Statement - Format

►► EXIT ►◄

The EXIT statement assigns a name to a given point in a program. The EXIT
statement has no other effect on the compilation or execution of the program. The
EXIT statement must be preceded by a paragraph-name and must appear in a
sentence by itself. This sentence must be the only sentence in the paragraph.

The EXIT statement is useful for documenting the end point in a series of
paragraphs. If an EXIT paragraph is written as the last paragraph in a declarative
procedure or a series of performed procedures, it identifies the point to which
control is transferred:
v When control reaches an EXIT paragraph that is the end of a range of

procedures governed by an active PERFORM or USE statement, control is
transferred in accordance with the rules for that PERFORM or USE statement.

v When control reaches an EXIT paragraph that is not the end of a range of
procedures governed by an active PERFORM or USE statement, control passes
through the EXIT statement to the first statement of the next paragraph.

Without an EXIT statement, the end of the sequence is difficult to determine,
unless you know the logic of the program.

EXIT PROGRAM Statement
The EXIT PROGRAM statement specifies the end of a called program and returns
control to the calling program. It must not be used in the range of a global
declarative unless it is in a different program called by the statement in the range
of the global declarative.

EXIT PROGRAM Statement

►► EXIT PROGRAM
(1)

AND CONTINUE RUN UNIT

►◄

Notes:

1 IBM Extension

AND CONTINUE RUN UNIT
Exits the called program without stopping the run unit.

If control reaches an EXIT PROGRAM statement in a program that does not
possess the INITIAL attribute while operating under the control of a calling
program, control returns to the CALL statement of the calling program.

The program state of the calling program is identical to that which existed at the
time it executed the CALL statement except that the contents of data items and the
contents of the data files shared between the two programs may have been

EXIT Statement

366 ILE COBOL Reference

changed. The program state of the called program is not altered except that the
ends of the ranges of all PERFORM statements executed by that called program are
considered to have been reached.

The execution of an EXIT PROGRAM statement in a called program that possesses
the INITIAL attribute performs an implicit CANCEL of the referenced program.

If control reaches an EXIT PROGRAM statement without the continue phrase in the
main program, control passes through the exit point to the next executable
statement.

The EXIT PROGRAM statement should appear as the last statement in a series of
imperative statements within a sentence.

When there is no next executable statement in a called program, an implicit EXIT
PROGRAM statement is assumed, and executed.

The RETURN-CODE special register can be used to pass return code information
from a program to its caller. See “RETURN-CODE Special Register” on page 488
for further information.

AND CONTINUE RUN UNIT Phrase

IBM Extension

If control reaches an EXIT PROGRAM statement with the continue phrase in the
main program, control passes to the CALL statement of the calling program. In a
named activation group:
v The activation group remains active
v The main program is left in its last used state, except that the ends of the ranges

of all PERFORM statements executed by that called program are considered to
have been reached.

However, in a *NEW activation group when a main program returns control to the
caller, the activation group is ended. The activation group will close all files scoped
to the activation group. Any pending commit operation scoped to the activation
group will be implicitly committed. All resources allocated to the activation group
will be returned back to the system. As a result of the activation group ending, all
programs that were active in the activation group are placed in their initial state.

End of IBM Extension

EXIT PROGRAM Statement

Chapter 14. Part 6. Procedure Division 367

GOBACK Statement

IBM Extension

The GOBACK statement functions like the EXIT PROGRAM statement when it is
coded as part of a program that is a subprogram in a COBOL run unit, and like
the STOP RUN statement when coded in a program that is a main program in a
COBOL run unit.

The GOBACK statement specifies the logical end of a called program.

GOBACK Statement - Format

►► GOBACK ►◄

A GOBACK statement should appear as the only statement, or as the last of a
series of imperative statements, in a sentence because statements following the
GOBACK statement are not executed.

If control reaches a GOBACK statement while a CALL statement is active, control
returns to the point in the calling program immediately following the CALL
statement, as in the EXIT PROGRAM statement.

The RETURN-CODE special register can be used to pass return code information
before executing a GOBACK statement. See “RETURN-CODE Special Register” on
page 488.

In a multi-threaded environment (for example, when the THREAD(SERIALIZE)
PROCESS option has been specified), the GOBACK statement returns to the caller
of the program without terminating the thread and run unit. For further
information, see the chapter on Preparing ILE COBOL Programs for
Multithreading in the IBM Rational Development Studio for i: ILE COBOL
Programmer's Guide.

For further information about COBOL run units, see the chapter on Calling and
Sharing Data Between ILE COBOL Programs in the IBM Rational Development
Studio for i: ILE COBOL Programmer's Guide.

End of IBM Extension

GOBACK Statement

368 ILE COBOL Reference

|
|
|
|
|
|

GO TO Statement
The GO TO statement transfers control from one part of the Procedure Division to
another. There are three types of GO TO statements:
v Unconditional
v Conditional
v Altered

If procedure-name or procedure-name-1 are within a declarative procedure, neither
can reference another declarative procedure or any nondeclarative procedure. In
the nondeclarative portion of the program, there must be no reference to
procedure-names that appear in an EXCEPTION/ERROR declarative procedure,
except that PERFORM statements may refer to an EXCEPTION/ERROR procedure
or procedures associated with it.

Unconditional GO TO
An unconditional GO TO statement transfers control to the first statement in the
paragraph or section named in procedure-name, unless the GO TO statement has
been modified by an ALTER statement. (See “ALTER Statement” on page 310.)

GO TO Statement - Format 1 - Unconditional

►► GO procedure-name
TO

►◄

procedure-name
Must be a section or paragraph in the same Procedure Division as the GO TO
statement.

An unconditional GO TO statement, when it appears in a sequence of imperative
statements, must be the last statement in the sequence.

When a paragraph is referred to by an ALTER statement, the paragraph must
consist of a paragraph-name followed by an unconditional or altered GO TO
statement.

Conditional GO TO
The conditional GO TO statement transfers control to one of a series of procedures,
depending on the value of the data item referenced by the identifier.

GO TO Statement - Format 2 - Conditional

►► GO
TO

▼ procedure-name-1 DEPENDING identifier
ON

►◄

procedure-name-1
Must be a section or paragraph in the Procedure Division.

identifier
Must be a numeric elementary data item which is an integer.

GO TO Statement

Chapter 14. Part 6. Procedure Division 369

IBM Extension

Cannot be a floating-point data item.

End of IBM Extension

If 1, control is transferred to the first statement in the procedure named by the
first occurrence of procedure-name-1;

If 2, control is transferred to the first statement in the procedure named by the
second occurrence of procedure-name-1, and so forth.

If the value of identifier is anything other than a value within the range of 1
through n (where n is the number of procedure-names specified in this GO TO
statement), no control transfer occurs. Instead, control passes to the next
statement in the normal sequence of execution.

Altered GO TO
The altered GO TO statement transfers control to the first statement of the
paragraph named in the ALTER statement.

An ALTER statement referring to the paragraph containing this GO TO statement
must have been executed before this GO TO statement is executed. You cannot
specify the altered GO TO statement in a program that has the RECURSIVE
attribute.

GO TO Statement - Format 3 - Altered

►► GO .
TO

►◄

The altered GO TO statement can not be specified in a program that has the
RECURSIVE attribute.

GO TO Statement

370 ILE COBOL Reference

IF Statement
The IF statement evaluates a condition and provides for alternative actions in the
object program, depending on the evaluation.

IF Statement — Format

►► IF condition
THEN

►

► ▼

▼

▼ ▼

statement-1
NEXT SENTENCE

ELSE statement-2
NEXT SENTENCE

statement-1 ELSE statement-2
END-IF

END-IF

►◄

The scope of an IF statement can be terminated by any of the following:
v An END-IF phrase at the same level of nesting
v A separator period
v If nested, by an ELSE phrase associated with an IF statement at a higher level of

nesting

condition
May be any simple or complex condition, as described in “Conditional
Expressions” on page 247.

statement-1, statement-2
Can be any one of the following:
v An imperative statement
v A conditional statement
v An imperative statement followed by a conditional statement

NEXT SENTENCE
If the END-IF phrase is specified, the NEXT SENTENCE phrase must not be
specified.

IBM Extension

NEXT SENTENCE can be specified with END-IF.

End of IBM Extension

ELSE NEXT SENTENCE
May be omitted if it immediately precedes a separator period that ends the IF
statement.

IF Statement

Chapter 14. Part 6. Procedure Division 371

END-IF Phrase
This explicit scope terminator serves to delimit the scope of the IF statement.
END-IF permits a conditional IF statement to be nested in another conditional
statement.

For more information, see “Delimited Scope Statements” on page 266.

Transferring Control
If the condition tested is true, one of the following actions takes place:
v Statement-1, if specified, is executed. If statement-1 contains a procedure

branching statement, control is transferred, according to the rules for that
statement. If statement-1 does not contain a procedure-branching statement, the
ELSE phrase, if specified, is ignored, and control passes to the next executable
statement after the corresponding (implicit or explicit) END-IF or separator
period.

v NEXT SENTENCE, if specified, is executed; that is, the ELSE phrase, if specified,
is ignored, and control passes to the statement following the closest separator
period.

If the condition tested is false, one of the following actions takes place:
v ELSE statement-2, if specified, is executed. If statement-2 contains a

procedure-branching statement, control is transferred, according to the rules for
that statement. If statement-2 does not contain a procedure-branching statement,
control is passed to the next executable statement after the corresponding
END-IF or separator period.

v ELSE NEXT SENTENCE, if specified, is executed and control passes to the
statement following the closest separator period.

v If ELSE NEXT SENTENCE is omitted, control passes to the next executable
statement after the corresponding END-IF or separator period.

Note: When ELSE or ELSE NEXT SENTENCE are omitted, all statements
following the condition and preceding the corresponding END-IF or the
separator period for the sentence are considered to be part of statement-1.

Nested IF Statements
The presence of one or more IF statements within the initial IF statement
constitutes a “nested IF statement”. Nesting statements is much like specifying
subordinate arithmetic expressions enclosed in parentheses and combined in larger
arithmetic expressions.

IF statements contained within IF statements are considered as paired IF, ELSE,
and END-IF combinations, proceeding from left to right. Thus, any ELSE or
END-IF encountered is considered to apply to the immediately preceding IF that
has not been already paired with an ELSE or END-IF.

IF Statement

372 ILE COBOL Reference

INITIALIZE Statement
The INITIALIZE statement sets selected categories of data fields to predetermined
values. It is functionally equivalent to one or more MOVE statements.

INITIALIZE Statement - Format

►► INITIALIZE ▼ identifier-1 ►

►

▼REPLACING ALPHABETIC BY Phrase
ALPHANUMERIC
NUMERIC
ALPHANUMERIC-EDITED
NUMERIC-EDITED

(1)
DBCS

(1)
DBCS-EDITED

(1)
NATIONAL

►◄

BY Phrase:

BY
DATA

identifier-2
literal-1

Notes:

1 IBM Extension

identifier-1
Receiving area(s).

identifier-2, literal-1
Sending area(s).

Identifier-1 can be a subscripted or reference-modified item. A complete table can
be initialized if identifier-1 is a group item that contains the complete table.

Neither identifier-1 nor any item subordinate to it may contain the DEPENDING
ON phrase of the OCCURS clause. The data description entry for identifier-1 must
not contain a RENAMES clause. An index data item may not be an operand of
INITIALIZE.

Note: You cannot use the INITIALIZE statement to initialize a variably located
item or group that follows a DEPENDING ON phrase of an OCCURS clause
within the same 01 level.

INITIALIZE Statement

Chapter 14. Part 6. Procedure Division 373

IBM Extension

A floating-point data item or literal can be used anywhere a numeric identifier or
literal is specified.

A DBCS or national data item or literal can be used anywhere an identifier or
literal is specified.

End of IBM Extension

REPLACING Phrase
When the REPLACING phrase is used:
v The category of identifier-2 or literal-1 must be compatible with the category

indicated in the corresponding REPLACING phrase, according to the rules for
MOVE.

IBM Extension

A floating-point data item or floating-point literal is treated as if it is in the
NUMERIC category.

End of IBM Extension

v The same category cannot be repeated in a REPLACING phrase.
v The keyword following the word REPLACING corresponds to a category of data

shown in “Classes and Categories of Data” on page 135.

When the REPLACING phrase is not used:
v SPACE is the implied sending field for alphabetic, alphanumeric, and

alphanumeric-edited items.

IBM Extension

v SPACE is the implied sending field for DBCS and national items.

End of IBM Extension

v ZERO is the implied sending field for numeric, and numeric-edited items.

INITIALIZE Statement Rules
1. Whether identifier-1 references an elementary or group item, all operations are

performed as if a series of MOVE statements had been written, each of which
had an elementary item as a receiving field.
If the REPLACING phrase is specified:
v If identifier-1 references a group item, any elementary item within the data

item referenced by identifier-1 is initialized only if it belongs to the category
specified in the REPLACING phrase.

v If identifier-1 references an elementary item, that item is initialized only if it
belongs to the category specified in the REPLACING phrase.

This initialization takes place as if the data item referenced by identifier-2 or
literal-1 acts as the sending operand in an implicit MOVE statement to the
identified item.
All such elementary receiving fields, including all occurrences of table items
within the group, are affected, with the following exceptions:

INITIALIZE Statement

374 ILE COBOL Reference

v Index, pointer, and procedure-pointer data items
v Elementary FILLER data items
v Items that are subordinate to identifier-1 and contain a REDEFINES clause,

or any items subordinate to such an item. (However, identifier-1 may contain
a REDEFINES clause or be subordinate to a redefining item.)

v BOOLEAN data items
v Data items described with the FORMAT clause as DATE, TIME, or

TIMESTAMP .
2. The areas referenced by identifier-1 are initialized in the order (left to right) of

the appearance of identifier-1 in the statement. Within a group receiving field,
affected elementary items are initialized in the order of their definition within
the group.

3. If identifier-1 occupies the same storage area as identifier-2, the result of the
execution of this statement is undefined, even if these operands are defined by
the same data description entry.

4. If identifier-1 is a group item, then all of the items within that group item are
considered as being referenced in the program.

INITIALIZE Statement

Chapter 14. Part 6. Procedure Division 375

#
#

INSPECT Statement
The INSPECT statement specifies that characters in a data item are to be counted
(tallied), or replaced (or both).
v It will count the occurrence of a specific character (alphabetic, numeric, or

special character) in a data item.
v It will fill all or portions of a data item with spaces or zeros.
v It will translate characters from one collating sequence to another.

INSPECT Statement - Format 1

INSPECT Statement - Format 1

►► INSPECT identifier-1 TALLYING ►

► ▼ ▼ ▼

▼

identifier-2 FOR CHARACTERS
phrase 1

ALL phrase 2
LEADING

►◄

phrase 1:

BEFORE
AFTER INITIAL

identifier-4
literal-2

phrase 2:

identifier-3
literal-1

▼

BEFORE identifier-4
AFTER INITIAL literal-2

INSPECT Statement - Format 2

INSPECT Statement - Format 2

►► INSPECT identifier-1 REPLACING ►

INSPECT Statement

376 ILE COBOL Reference

► ▼ ▼

▼

CHARACTERS BY identifier-5
literal-3 phrase 1

ALL phrase 2
LEADING
FIRST

►◄

phrase 1:

BEFORE
AFTER INITIAL

identifier-4
literal-2

phrase 2:

identifier-3
literal-1

BY identifier-5
literal-3

►

► ▼

BEFORE identifier-4
AFTER INITIAL literal-2

INSPECT Statement - Format 3

INSPECT Statement - Format 3

►► INSPECT identifier-1 TALLYING ►

► ▼ ▼ ▼

▼

identifier-2 FOR CHARACTERS
phrase 1

ALL phrase 2
LEADING

REPLACING ►

INSPECT Statement

Chapter 14. Part 6. Procedure Division 377

► ▼ ▼

▼

CHARACTERS BY identifier-5
literal-3 phrase 1

ALL phrase 3
LEADING
FIRST

►◄

phrase 1:

BEFORE
AFTER INITIAL

identifier-4
literal-2

phrase 2:

identifier-3
literal-1

▼

BEFORE identifier-4
AFTER INITIAL literal-2

phrase 3:

identifier-3
literal-1

BY identifier-5
literal-3

►

► ▼

BEFORE identifier-4
AFTER INITIAL literal-2

INSPECT Statement - Format 4

INSPECT Statement - Format 4

►► INSPECT identifier-1 CONVERTING identifier-6
literal-4

TO identifier-7
literal-5

►

► ▼

BEFORE identifier-4
AFTER INITIAL literal-2

►◄

identifier-1
Is the inspected item; an elementary or group item with USAGE DISPLAY.

INSPECT Statement

378 ILE COBOL Reference

In Format-1, identifier-1 is a sending item. In the other formats, it is treated as
a sending data item for the purpose of determining its length.

identifier-2
Must be an elementary numeric data item.

identifier-3 . . . identifier-7
Must be elementary data items with USAGE DISPLAY.

For use in the INSPECT statement, the content of each data item referenced by
all identifiers except identifier-2 (the count field) is treated as follows:

ALPHABETIC OR ALPHANUMERIC ITEM
Treated as a character string.

ALPHANUMERIC-EDITED, NUMERIC-EDITED, OR UNSIGNED NUMERIC (EXTERNAL
DECIMAL) ITEM

Treated as if defined as alphanumeric with the INSPECT statement
referring to the alphanumeric item.

SIGNED NUMERIC (EXTERNAL DECIMAL) ITEM
Treated as if moved to an unsigned external decimal item of the same
length, and then redefined as alphanumeric, with the INSPECT statement
referring to the alphanumeric item. If the sign is a separate character, the
byte containing the sign is not examined and, therefore, not replaced.

literal-1 . . . literal-5
Must be nonnumeric and may be any figurative constant that does not begin
with the word ALL. If literal-1, literal-2, or literal-4 is a figurative constant, it
refers to an implicit one character data item.

INSPECT Statement Considerations

IBM Extension

If any identifiers or literals other than identifier-2 (the count field) are DBCS items,
then all of them must be DBCS items.

Identifier-2 cannot be a DBCS item. DBCS characters, not bytes of data, are tallied
in identifier-2.

All identifiers, except identifier-2 (the count field), can be external floating-point
items. External floating-point items are treated as if redefined as alphanumeric
with the INSPECT statement referring to the alphanumeric item.

End of IBM Extension

Except when the BEFORE or AFTER phrase is specified, inspection begins at the
leftmost character position of the inspected item (identifier-1) and proceeds
character-by-character to the rightmost position.

The operands of the following phrases are compared in the left-to-right order in
which they are specified in the INSPECT statement:
v TALLYING (literal-1 or identifier-3, . . .)
v REPLACING (literal-3 or identifier-5, . . .)

If any identifier is subscripted, reference modified, or is a function-identifier, the
subscript, reference-modifier, or function is evaluated only once as the first
operation in the execution of the INSPECT statement.

INSPECT Statement

Chapter 14. Part 6. Procedure Division 379

Comparison Rules
1. When both the TALLYING and REPLACING phrases are specified, the

INSPECT statement is executed as if an INSPECT TALLYING statement were
specified, immediately followed by an INSPECT REPLACING statement.

2. The first comparand is compared with an equal number of leftmost contiguous
characters in the inspected item. The comparand matches the inspected
characters only if both are equal, character-for-character.

3. If no match occurs for the first comparand, the comparison is repeated for each
successive comparand until either a match is found or all comparands have
been acted upon.

4. If a match is found, tallying or replacing takes place, as described in the
following TALLYING/REPLACING phrase descriptions. In the inspected item,
the first character following the rightmost matching character is now
considered to be in the leftmost character position. The process described in
rules 2 and 3 is then repeated.

5. If no match is found, then, in the inspected item, the first character following
the leftmost inspected character is now considered to be in the leftmost
character position. The process described in rules 2 and 3 is then repeated.

6. If the CHARACTERS phrase is specified, an implied one-character item is used
in the process described in rules 2 and 3. The implied character is always
considered to match the inspected character in the inspected item.

7. The actions taken in rules 1 through 6 (defined as the comparison cycle) are
repeated until the rightmost character in the inspected item has either been
matched or has been considered as being in the leftmost character position.
Inspection is then terminated.

When the BEFORE or AFTER phrase is specified, the preceding rules are modified
as described in “BEFORE and AFTER Phrases (All Formats)” on page 383.

Figure 16 on page 381 is an example of INSPECT statement results.

INSPECT Statement

380 ILE COBOL Reference

INSPECT Example
The following example shows an INSPECT statement.

* * * 0 * *

INSPECT ID-1 TALLYING ID-2 FOR ALL "**" REPLACING ALL "**" BY ZEROS.

* *

* 0

0 *

* *

* *

* *

* * * *

1

1

1

2

* 0

0 *

* *

* *

* *

* *

2

Execution for
TALLYING phrase:

Execution for
REPLACING phrase:

At the end of
inspection:

ID-2
contains:

ID-2 before
execution
(initialized by
programmer)

0

* *

* *

0 0 * 0 * *

=

=

=

=

=

(true)

(false)

(false)

(true)

(true)

=

=

=

(false)

(false)

(true)

0 0 * 0 0 0

0 0 * 0 0 0

ID-1 before
execution

1st Comparison

2nd Comparison

TALLYING
comparand:

ID-1
changed to

ID-1
unchanged

ID-1
unchanged

ID-1
changed to

3rd Comparison

4th Comparison

5th Comparison

6th Comparison

7th Comparison

8th Comparison

ID-2
contains:

ID-1
contains:

Figure 16. Example of INSPECT Statement Execution Results

INSPECT Statement

Chapter 14. Part 6. Procedure Division 381

.. 1 2 3 4 5 6 7

DATA DIVISION.
WORKING-STORAGE SECTION.
01 ID-1 PIC X(10) VALUE "ACADEMIANS".
01 CONTR-1 PIC 99 VALUE 00.
01 CONTR-2 PIC 99 VALUE ZEROS.
PROCEDURE DIVISION.
* THIS ILLUSTRATES AN INSPECT STATEMENT WITH 2 VARIABLES.
100-BEGIN-PROCESSING.

DISPLAY CONTR-1 SPACE CONTR-2.
101-MAINLINE-PROCESSING.

PERFORM COUNT-IT THRU COUNT-EXIT.
STOP RUN.

COUNT-IT.
INSPECT ID-1
TALLYING CONTR-1
FOR CHARACTERS BEFORE INITIAL "AD"

CONTR-2
FOR ALL "MIANS".

DISPLAY-COUNTS.
DISPLAY "CONTR-1 = " CONTR-1.
DISPLAY "CONTR-2 = " CONTR-2.
DISPLAY "*********EOJ*********"

COUNT-EXIT.
EXIT.

Resultant Output:

00 00
CONTR-1 = 02
CONTR-2 = 01
*********EOJ*********

TALLYING Phrase (Formats 1 and 3)
identifier-2

The count field. It must be an elementary numeric item defined without the
symbol P in its PICTURE character-string. You must initialize identifier-2
before the INSPECT statement is executed.

identifier-3 or literal-1
The tallying operand (the item whose occurrences are tallied) If the tallying
operand is a figurative constant, it is considered to be a 1-character
nonnumeric literal.

When neither the BEFORE nor AFTER phrase is specified, the following actions
take place when the INSPECT TALLYING statement is executed:
v If ALL is specified, the count field is increased by 1 for each non-overlapping

occurrence in the inspected item of this tallying operand, beginning at the
leftmost character position and continuing to the rightmost.

v If LEADING is specified, the count field is increased by 1 for each contiguous
non-overlapping occurrence of this tallying operand in the inspected item,
provided that the leftmost such occurrence is at the point where comparison
began in the first comparison cycle for which this tallying operand is eligible to
participate.

v If CHARACTERS is specified, the count field is increased by 1 for each character
(including the space character) in the inspected item. Thus, execution of the
INSPECT TALLYING statement increases the value in the count field by the
number of characters in the inspected item.

INSPECT Statement

382 ILE COBOL Reference

REPLACING Phrase (Formats 2 and 3)
identifier-3 or literal-1

The subject field.

identifier-5 or literal-3
The substitution field.

The subject field and the substitution field must have the same length. The
following replacement rules apply:
v If the subject field is a figurative constant, it is considered to be a 1-character

nonnumeric literal. Each character in the inspected item equivalent to the
figurative constant is replaced by the single-character substitution field, which
must be 1 character in length.

v If the substitution field is a figurative constant, the substitution field is
considered to be the same length as the subject field. Each non-overlapping
occurrence of the subject field in the inspected item is replaced by the
substitution field.

v When the subject and substitution fields are character-strings, each
non-overlapping occurrence of the subject field in the inspected item is replaced
by the character-string specified in the substitution field.

v Once replacement has occurred in a given character position in the inspected
item, no further replacement for that character position is made in this execution
of the INSPECT statement.

When the CHARACTERS phrase is used, literal-3 or identifier-5 must be 1
character in length, and literal-2 or identifier-4 must be 1 character in length.

When neither the BEFORE nor AFTER phrase is specified, the following actions
take place when the INSPECT REPLACING statement is executed:
v If CHARACTERS is specified, the substitution field must be 1 character in

length. Each character in the inspected field is replaced by the substitution field,
beginning at the leftmost character and continuing to the rightmost.

v If ALL is specified, each non-overlapping occurrence of the subject field in the
inspected item is replaced by the substitution field, beginning at the leftmost
character and continuing to the rightmost.

v If LEADING is specified, each contiguous non-overlapping occurrence of the
subject field in the inspected item is replaced by the substitution field, provided
that the leftmost such occurrence is at the point where comparison began in the
first comparison cycle for which this substitution field is eligible to participate.

v If FIRST is specified, the leftmost occurrence of the subject field in the inspected
item is replaced by the substitution field.

BEFORE and AFTER Phrases (All Formats)
No more than one BEFORE phrase and one AFTER phrase can be specified for any
one ALL, LEADING, CHARACTERS, FIRST or CONVERTING phrase. When these
phrases are specified, the preceding rules for counting and replacing are modified.

identifier-4, literal-2
These are not counted or replaced. However, counting and/or replacing of the
inspected item is bounded by the presence of the identifiers and literals. If the
delimiter (identifier-4 or literal-2) is a figurative constant, it is considered to be
1 character in length.

INSPECT Statement

Chapter 14. Part 6. Procedure Division 383

When BEFORE is specified, counting and/or replacing of the inspected item begins
at the leftmost character and continues until the first occurrence of the delimiter is
encountered. If no delimiter is present in the inspected item, counting and/or
replacing continues toward the rightmost character.

When AFTER is specified, counting and/or replacing of the inspected item begins
with the first character to the right of the delimiter and continues toward the
rightmost character in the inspected item. If no delimiter is present in the inspected
item, no counting or replacement takes place.

CONVERTING Phrase (Format 4)
A string of replacement values may be expressed by this phrase. The size of the
receiving location (identifier-7 or literal-5) must be the same size as the sending
location (identifier-6 or literal-4). When a figurative constant is used as literal-5, the
size of the figurative constant is equal to the size of literal-4 or identifier-6. The
same character must not appear more than once either in literal-4 or identifier-6.

A Format 4 INSPECT statement is interpreted and executed as if a Format 2
INSPECT statement had been written with a series of ALL phrases (one for each
character of literal-4), specifying the same identifier-1. The effect is as if each single
character of literal-4 were referenced as literal-1, and the corresponding single
character of literal-5 referenced as literal-3. Correspondence between the characters
of literal-4 and the characters of literal-5 is by ordinal position within the data
item.

If identifier-4, identifier-6, or identifier-7 occupies the same storage area as
identifier-1, the result of the execution of this statement is undefined, even if they
are defined by the same data description entry.

INSPECT Statement Examples
The following examples illustrate some uses of the INSPECT statement. In all
instances, the programmer has initialized the COUNTR field to zero before the
INSPECT statement is executed.
INSPECT ID-1

REPLACING CHARACTERS BY ZERO.

ID-1 Before COUNTR After ID-1 After

1234567 0 0000000

HIJKLMN 0 0000000

INSPECT ID-1
TALLYING COUNTR FOR CHARACTERS
REPLACING CHARACTERS BY SPACES.

ID-1 Before COUNTR After ID-1 After

1234567 7

HIJKLMN 7

INSPECT ID-1
REPLACING CHARACTERS BY ZEROS

BEFORE INITIAL QUOTE.

ID-1 Before COUNTR After ID-1 After

456"ABEL 0 000"ABEL

INSPECT Statement

384 ILE COBOL Reference

ID-1 Before COUNTR After ID-1 After

ANDES"12 0 00000"12

"TWAS BR 0 "TWAS BR

INSPECT ID-1
TALLYING COUNTR FOR CHARACTERS AFTER INITIAL "S"
REPLACING ALL "A" BY "O".

ID-1 Before COUNTR After ID-1 After

ANSELM 3 ONSELM

SACKET 5 SOCKET

PASSED 3 POSSED

INSPECT ID-1
TALLYING COUNTR FOR LEADING "0"
REPLACING FIRST "A" BY "2"

AFTER INITIAL "C".

ID-1 Before COUNTR After ID-1 After

00ACADEMY00 2 00AC2DEMY00

0000ALABAMA 4 0000ALABAMA

CHATAM0000 0 CH2THAM0000

INSPECT ID-1
CONVERTING "ABCD" TO "XYZX"

AFTER QUOTE
BEFORE "#".

ID-1 Before ID-1 After

AC"AEBDFBCD#AB"D AC"XEYXFYZX#AB"D

INSPECT Statement

Chapter 14. Part 6. Procedure Division 385

MERGE Statement
The MERGE statement combines two or more identically sequenced files (that is,
files that have already been sorted according to an identical set of
ascending/descending keys) on one or more keys and makes records available in
merged order to an output procedure or output file.

A MERGE statement may appear anywhere in the Procedure Division except in a
Declarative Section. The maximum number of USING or GIVING files is 32.

IBM Extension

It is not necessary to sequence input files prior to a merge operation.

End of IBM Extension

MERGE Statement — Format

►► MERGE file-name-1 ▼ ▼ASCENDING data-name-1
ON DESCENDING KEY

►

►
SEQUENCE alphabet-name

COLLATING IS

►

► ▼USING file-name-2 file-name-3

▼

OUTPUT PROCEDURE Phrase

GIVING file-name-4

►◄

OUTPUT PROCEDURE Phrase:

OUTPUT PROCEDURE procedure-name-1
IS

►

►
THROUGH procedure-name-2
THRU

file-name-1
The name given in the SD entry that describes the record.

No file-name may be repeated in the MERGE statement.

Do not specify a pair of file names in the MERGE statement that already share
storage through a SAME AREA, SAME SORT AREA, or SAME SORT-MERGE
AREA clause. However, you may specify file names in the MERGE statement
that share the SAME RECORD AREA clause if they are also associated with
the GIVING clause (file-name-4).

MERGE Statement

386 ILE COBOL Reference

When the MERGE statement is executed, all records contained in file-name-2,
file-name-3,... are accepted by the merge program and then merged according to
the key(s) specified.

Null-capable fields are supported, but null values are only supported for
DATABASE files that have ALWNULL specified on their ASSIGN clause.

ASCENDING/DESCENDING KEY Phrase
This phrase specifies that records are to be processed in an ascending or
descending sequence (depending on the phrase specified), based on the specified
merge keys.

data-name-1
Is a key data-name. Records are processed in ascending or descending order on
this key.

Data-name-1 specifies the KEY data item on which the merge is based. Each such
data-name identifies a data item in a record associated with file-name-1. The
data-names following the word KEY are listed from left to right in the MERGE
statement in order of decreasing significance without regard to how they are
divided into KEY phrases. The left-most data-name is the major key, the next
data-name is the next most significant key, and so forth.

The following rules apply:
v A specific KEY data item must be physically located in the same position and

have the same data format in each input file; however, it need not have the same
data-name.

v If file-name-1 has more than one record description, the KEY data items need be
described in only one of the record descriptions.

v If file-name-1 contains variable-length records, all of the KEY data-items must be
contained within the first n character positions of the record, where n equals the
minimum record size specified for file-name-1.

v KEY data items must not contain an OCCURS clause or be subordinate to an
item that contains an OCCURS clause.

v KEY data items can be qualified, but they cannot be subscripted or indexed.
v KEY data items cannot be variably-located.

IBM Extension

v KEY data items can be floating-point or date-time items.
v KEY data items can be reference modified, but they cannot be subscripted or

indexed.

End of IBM Extension

v The total length (in bytes) of the KEY data items must not exceed 2 000
v Variable length fields can not be used in a MERGE key as a variable length field.

Variable length fields are converted into group items by ILE COBOL. Since
variable length fields are converted into group items, they are compared as
alphanumeric data items when used in a MERGE key.

The direction of the merge operation depends on the specification of the
ASCENDING or DESCENDING keywords as follows:

MERGE Statement

Chapter 14. Part 6. Procedure Division 387

v When ASCENDING is specified, the sequence is from the lowest key value to
the highest key value.

v When DESCENDING is specified, the sequence is from the highest key value to
the lowest.

v If the KEY data item is alphabetic, alphanumeric, alphanumeric-edited, or
numeric-edited, the sequence of key values depends on the collating sequence
used (see “COLLATING SEQUENCE Phrase” below). If the KEY data item is
DBCS or DBCS-edited, the sequence of key values is based on a binary collating
sequence of the hexadecimal values of the DBCS characters. The COLLATING
SEQUENCE phrase is ignored.

IBM Extension

v If the KEY is an external floating-point item, the key is treated as alphanumeric.
The sequence in which the records are merged depends on the collating
sequence used.

v If the KEY is an internal floating-point item, the sequence of key values is in
numeric order.

v If the KEY is a date-time item, only some formats will be sorted as date or time
items. ILE COBOL supports many more date-time formats than IBM i DDS. In
general, ILE COBOL date-time formats that match an IBM i DDS format are
sorted as a date or time item; all other formats are treated as alphanumeric
items, and are sorted based on their hexadecimal value.

End of IBM Extension

The key comparisons are performed according to the rules for comparison of
operands in a relation condition (see “Relation Condition” on page 250).

COLLATING SEQUENCE Phrase
This phrase specifies the collating sequence to be used in nonnumeric comparisons
for the KEY data items in this merge operation.

alphabet-name
Must be specified in the SPECIAL-NAMES paragraph ALPHABET clause. Any
one of the alphabet-name clause phrases can be specified with the following
results:
v When NATIVE is specified, the EBCDIC collating sequence is used for all

nonnumeric comparisons.
v When NLSSORT is specified, the collating sequence is determined by the

LANGID and SRTSEQ parameters of the CRTCBLMOD and CRTBNDCBL
commands.

v When the literal phrase is specified, the collating sequence established by the
specification of literals in the alphabet-name clause is used for all
nonnumeric comparisons.

v When STANDARD-1 is specified, the ASCII collating sequence is used for all
nonnumeric comparisons.

v When STANDARD-2 is specified, the International Reference Version of the
ISO 7-bit code defined in International Standard 646, 7-bit Coded Character
Set for Information Processing Interchange is used.

When the COLLATING SEQUENCE phrase is omitted, the PROGRAM
COLLATING SEQUENCE clause (if specified) in the OBJECT-COMPUTER
paragraph specifies the collating sequence to be used.

MERGE Statement

388 ILE COBOL Reference

When both the COLLATING SEQUENCE phrase and the PROGRAM COLLATING
SEQUENCE clause are omitted, the EBCDIC collating sequence is used.

USING Phrase
file-name-2, file-name-3, ...

Specifies input files.

When the USING phrase is specified, all the records on file-name-2, file-name-3,...
(that is, the input files) are transferred automatically to file-name-1. At the time the
MERGE statement is executed, these files must not be open; the compiler generates
code that opens, reads and closes the input files automatically. If
EXCEPTION/ERROR procedures are specified for these files, the COBOL compiler
makes the necessary linkage to these procedures.

All input files must be described in an FD entry in the Data Division, and their
record descriptions must describe records of the same size as the record described
for the merge file. If the elementary items that make up these records are not
identical, input records must have an equal number of character positions as the
merge record.

The input files must have sequential, relative or indexed organization.

If file-name-1 contains variable length records, the size of the records contained in
the input files must be no less than the smallest record nor greater than the largest
record described for file-name-1. If file-name-1 contains fixed-length records, the
size of the records contained in the input files must be no greater than the largest
record described for file-name-1.

GIVING Phrase
file-name-4, ...

Specifies input files.

When the GIVING phrase is specified, all the merged records in file-name-1 are
automatically transferred to the output file (file-name-4). At the start of execution
of the MERGE statement, the file referenced by file-name-4 must not be open. For
each of the files referenced by file-name-4, the execution of the MERGE statement
causes the following actions to be taken:
1. The processing of the file is initiated. The initiation is performed as if an OPEN

statement with the OUTPUT phrase had been executed.
2. The merged logical records are returned and written onto the file. Each record

is written as if a WRITE statement without any optional phrases had been
executed. The records overwrite the previous contents, if any, of the file.

IBM Extension

If file-name-1 is a logical database file, the records are added to the end of the
file.

End of IBM Extension

If the file referenced by file-name-4 is an INDEXED file then the associated key
data-name for that file must have an ASCENDING KEY phrase in the merge
statement. This same data-name must occupy the identical character positions
in its record as the data item associated with the prime record key for the file.

MERGE Statement

Chapter 14. Part 6. Procedure Division 389

For a relative file, the relative key data item for the first record returned
contains the value '1'; for the second record returned, the value '2', and so on.
After execution of the MERGE statement, the content of the relative key data
item indicates the last record returned to the file.

3. The processing of the file is terminated, as if a CLOSE statement without
optional phrases had been executed.

Note: When duplicate keys are found when writing to an indexed file, the MERGE
will terminate and the merged data in all GIVING files will be incomplete.

These implicit functions are performed such that any associated USE AFTER
EXCEPTION/ERROR procedures are executed; however, the execution of such a
USE procedure must not cause the execution of any statement manipulating the
file referenced by, or accessing the record area associated with, file-name-4. On the
first attempt to write beyond the externally defined boundaries of the file, any USE
AFTER STANDARD EXCEPTION/ERROR procedure specified for the file is
executed. If control is returned from that USE procedure or if no such USE
procedure is specified, the processing of the file is terminated.

The output file must be described in an FD entry in the Data Division, and its
record description(s) must describe records of the same size as the record described
for the merge file. If the elementary items that make up these records are not
identical, the output record must have an equal number of character positions as
the merge record.

The output file must have a sequential, relative or indexed organization.

The output file should be created without a keyed sequence access path.
Otherwise, the MERGE statement cannot override the collating sequence defined in
the data description specifications (DDS).

If the output files (file-name-4) contain variable-length records, the size of the
records contained in file-name-1 must be no less than the largest record described
in the output files. If the output files contain fixed-length records, the size of the
records contained in file-name-1 must be no greater than the largest record
described for the output files.

OUTPUT PROCEDURE Phrase
This phrase specifies the name of a procedure that is to select or modify output
records from the merge operation.

procedure-name-1
Specifies the first (or only) section or paragraph in the OUTPUT PROCEDURE.

procedure-name-2
Identifies the last section or paragraph of the OUTPUT PROCEDURE.

The OUTPUT PROCEDURE can consist of any procedure needed to select, modify,
or copy the records that are made available one at a time by the RETURN
statement in merged order from the file referenced by file-name-1. The range
includes all statements that are executed as the result of a transfer of control by
CALL, EXIT, GO TO, and PERFORM statements in the range of the output
procedure. The range also includes all statements in declarative procedures that are
executed as a result of the execution of statements in the range of the output
procedure. The range of the output procedure must not cause the execution of any
MERGE, RELEASE, or SORT statement.

MERGE Statement

390 ILE COBOL Reference

If an output procedure is specified, control passes to it after the file referenced by
file-name-1 has been sequenced by the MERGE statement.

Note: The OUTPUT PROCEDURE phrase is similar to a basic PERFORM
statement. For example, if you name a procedure in an OUTPUT
PROCEDURE, that procedure is executed during the merging operation just
as if it were named in a PERFORM statement. As with the PERFORM
statement, execution of the procedure is terminated after the last statement
completes execution. The last statement in an OUTPUT PROCEDURE can be
the EXIT statement (see “EXIT Statement” on page 366).

SORT-RETURN Special Register

IBM Extension

The SORT-RETURN special register is the name of a binary data item and is
available to both sort and merge programs.

The SORT-RETURN special register has the implicit definition:
01 SORT-RETURN GLOBAL PICTURE S9(4) USAGE BINARY VALUE ZERO.

When used in nested programs, the SORT-RETURN special register is implicitly
defined as GLOBAL in the outermost COBOL program. The SORT-RETURN
special register contains a return code of 0 (successful) or 16 (unsuccessful) at the
completion of a sort/merge operation.

You can set the SORT-RETURN special register to 16 in an error declarative or
input/output procedure to terminate a sort/merge operation before all records are
processed. The operation is terminated before a record is RETURNed or
RELEASEd. You may specify the SORT-RETURN special register in a function
wherever an integer argument is allowed.

End of IBM Extension

MERGE Statement

Chapter 14. Part 6. Procedure Division 391

MOVE Statement
The MOVE statement transfers data between areas of storage.

MOVE Statement - Format 1

MOVE Statement - Format 1

►► MOVE identifier-1
literal-1

TO ▼ identifier-2 ►◄

MOVE Statement - Format 2

MOVE Statement — Format 2

►► MOVE CORRESPONDING
CORR

identifier-1 TO identifier-2 ►◄

identifier-1, literal-1
Sending item.

identifier-2
Receiving item or items.

In Format 1, all identifiers may be either group or elementary items. The data in
the sending item is moved into the data item referenced by each identifier-2 in the
order in which identifier-2 is specified. See “Elementary Moves” on page 393 and
“Group Moves” on page 399.

In Format 2, identifier-1 and identifier-2 must be group items. Selected items in
identifier-1 are moved to identifier-2, according to the rules for the
CORRESPONDING phrase described on page 268.

MOVE Statement Rules

IBM Extension

If either the sending or receiving item is a DBCS data-item, then both must be
DBCS items. The DBCS sending item can also be a DBCS literal or the figurative
constant SPACE. No data conversion is done; the data is either truncated or
padded with DBCS spaces on the right.

End of IBM Extension

An index data item cannot be specified in a MOVE statement.

IBM Extension

A pointer data item (USAGE POINTER) or a procedure-pointer data item (USAGE
PROCEDURE-POINTER) cannot be specified in a MOVE statement. To move an
address into a pointer or procedure-pointer data item, use the SET statement.

End of IBM Extension

MOVE Statement

392 ILE COBOL Reference

The evaluation of the length of the sending or receiving item may be affected by
the DEPENDING ON phrase of the OCCURS clause (see “OCCURS Clause” on
page 175).

Any length evaluation, subscripting, reference modification, or function associated
with the sending item (identifier-1 or literal-1) is evaluated only once, immediately
before the data is moved to the first of the receiving items. Any length evaluation,
subscripting, or reference modification associated with a receiving item
(identifier-2) is evaluated immediately before the data is moved into it.

For example, the result of the statement:
MOVE A(B) TO B, C(B).

is equivalent to:
MOVE A(B) TO TEMP.
MOVE TEMP TO B.
MOVE TEMP TO C(B).

where TEMP is an intermediate result item. The subscript B has changed in value
between the time that the first move took place and the time that the final move to
C(B) is executed.

After execution of a MOVE statement, the sending item contains the same data as
before execution (unless a receiving item overlaps the sending item in storage, in
which case the contents are not predictable).

Elementary Moves
An elementary move is one in which the receiving item is an elementary item, and
the sending item is an elementary item or a literal. Any necessary conversion of
data from one form of internal representation to another takes place during the
move, along with any specified editing in, or de-editing implied by, the receiving
item.

De-editing is the logical removal of all editing characters from a numeric-edited
data item in order to determine that item's unedited numeric value.

IBM Extension

De-editing also occurs for items of class date-time. In this case, all separators, and
any conversion specifiers that are not numeric, are removed from the date-time
item, resulting in a numeric value.

End of IBM Extension

Each elementary item belongs to one of the following categories:
v Alphabetic—includes alphabetic data items and the figurative constant SPACE.
v Alphanumeric—includes alphanumeric data items, nonnumeric literals, and all

figurative constants except SPACE. (The figurative constant ZERO is
alphanumeric only when it is moved to an alphanumeric or alphanumeric-edited
item.)

v Alphanumeric-edited—includes alphanumeric-edited data items.
v Numeric—includes numeric data items, numeric literals, and the figurative

constant ZERO. (The figurative constant ZERO is numeric only when it is
moved to a numeric or numeric-edited item.)

MOVE Statement

Chapter 14. Part 6. Procedure Division 393

v Numeric-edited—includes numeric-edited data items.

IBM Extension

v Floating-point—includes internal floating-point items (defined as USAGE
COMP-1 or USAGE COMP-2), external floating-point items (defined as USAGE
DISPLAY), and floating-point literals.

v Boolean—includes Boolean data items and Boolean literals.
v DBCS—includes DBCS data-items and DBCS literals.
v National—includes national data-items and national hexadecimal literals.
v Date-Time—includes date, time, and timestamp data items of class date-time.

Date-time data items are defined as USAGE DISPLAY or PACKED-DECIMAL.

End of IBM Extension

The following rules outline the execution of valid elementary moves. When the
receiving item is:

Alphabetic
v Alignment and any necessary space filling occur as described under “Alignment

Rules” on page 136.
v If the size of the sending item is greater than the size of the receiving item,

excess characters on the right are truncated after the receiving item is filled.

IBM Extension

v If the sending item is national, it will be converted before it is passed to the
receiving field. The conversion is performed based on the data translation rule
described in “National” on page 397.

End of IBM Extension

Alphanumeric or Alphanumeric-Edited
v Alignment and any necessary space filling take place, as described under

“Alignment Rules” on page 136.
v If the size of the sending item is greater than the size of the receiving item,

excess characters on the right are truncated after the receiving item is filled.
v If the sending item has an operational sign, the absolute value is used. If the

operational sign occupies a separate character, that character is not moved, and
the size of the sending item is considered to be one less character than the actual
size.

IBM Extension

v If the sending item is Boolean, the data is moved as if the sending item were
described as an alphanumeric item of length 1.

v If the sending item is national, it will be converted before it is passed to the
receiving field. The conversion is performed based on the data translation rule
described in “National” on page 397.

v If the sending item is date-time, the date-time item is treated like an
alphanumeric item, and moved to the receiver following the rules for an
alphanumeric to alphanumeric move. If the sending date-time item has a
USAGE of PACKED-DECIMAL, it is first converted to a USAGE of DISPLAY.

v If the receiving item is alphanumeric or numeric-edited, and the sending item is
a scaled integer (that is, has a P as the rightmost character in its PICTURE
character-string), the scaling positions are treated as trailing zeros when the
MOVE statement is executed.

MOVE Statement

394 ILE COBOL Reference

v If the receiving item is numeric and the sending item is alphanumeric literal or
ALL literal, then all characters of the literal must be numeric characters.

End of IBM Extension

Numeric or Numeric-Edited
v If the receiver is numeric, alignment by decimal point and any necessary zero

filling take place, as described under “Alignment Rules” on page 136.
v If the receiving item is signed, the sign of the sending item is placed in the

receiving item, with any necessary sign conversion. If the sending item is
unsigned, a positive operational sign is generated for the receiving item.

v If the receiving item is unsigned, the absolute value of the sending item is
moved, and no operational sign is generated for the receiving item.

v When the sending item is alphanumeric, the data is moved as if the sending
item were described as an unsigned integer.

IBM Extension

v When the sending item is floating-point, the data is first converted to either a
binary or internal decimal representation and is then moved.

End of IBM Extension

v De-editing allows the moving of a numeric-edited data item into a numeric or
numeric-edited receiver. The compiler accomplishes this by first establishing the
unedited value of the numeric-edited item (this value can be signed), then
moving the unedited numeric value to the receiving numeric or numeric-edited
data item.

IBM Extension

v When the sending item is date-time, the date-time item is first de-editied. The
unedited value of the date-time item is then moved to the receiving numeric or
numeric-edited data item.

v If the receiver is numeric-edited, it may be specified with or without a LOCALE
phrase. If the LOCALE phrase of the PICTURE clause has not been specified in
its data description entry, the data moved to the edited data item is aligned by
decimal point with zero fill or truncation at either end as required within the
receiving character positions of the data item, except where editing requirements
cause replacement of the leading zeroes. If the LOCALE phrase has been
specified, alignment and zero-fill truncation take place as described in “LOCALE
Phrase” on page 187.

v If the receiving item is alphanumeric or numeric-edited, and the sending item is
a scaled integer (that is, has a P as the rightmost character in its PICTURE
character-string), the scaling positions are treated as trailing zeros when the
MOVE statement is executed.

v If the receiving item is numeric and the sending item is alphanumeric literal or
ALL literal, then all characters of the literal must be numeric characters.

End of IBM Extension

Floating-Point

IBM Extension
v The sending item is converted first to an internal floating-point item, and then

moved.
v When data is moved to or from an external floating-point item, the data is

converted to or from its equivalent internal floating-point value.

MOVE Statement

Chapter 14. Part 6. Procedure Division 395

v It is possible that when an external floating-point literal is moved to an external
floating-point data item, the external floating-point data item can receive an
inaccurate value. This is because the floating-point data type is an
approximation. When an external floating-point literal is moved, it is first
converted to a true floating-point value (IEEE), which can also affect its accuracy.
For example, consider the following MOVE:
77 external-float-1 PIC +9(3).9(13)E+9(3).

MOVE +123455779012.3453E+297 to external-float-1.
DISPLAY "EXTERNAL-FLOAT-1=" external-float-1.

The displayed result of the MOVE is:
EXTERNAL-FLOAT-1=+123.4557790123452E+306

End of IBM Extension

Date-Time

IBM Extension
v If the sending item is date-time, then the format of the sending date-time item is

first converted to the receiver's format, and then moved. If the sending item is a
timestamp, and the receiving item is a date or time item, then only the date or
time portion of the timestamp item is moved to the receiving item. If the
sending item is a date or time item and the receiving item is a timestamp, only
the date or time portion of the timestamp is replaced.

v If the sending item is numeric, each of the receiving items numeric conversion
specifiers are replaced with the digits from the sending item, beginning at the
rightmost conversion specifier, and at the rightmost digit of that conversion
specifier. All alphanumeric conversion specifiers take on default values.

v If the sending item is numeric-edited, the numeric-edited item is de-edited. The
resulting numeric value is then moved to the date-time item.

v If the sending item is alphanumeric or alphanumeric-edited, the receiving
date-time item is treated as an alphanumeric item, and the move takes place
according to the rules for an alphanumeric to alphanumeric move.

End of IBM Extension

Boolean

IBM Extension
v For a Boolean receiving item, only the first byte of the sending item is moved.
v If the sending item is alphanumeric, the first character of the sending item is

moved. The characters "0" and "1" are equivalent to the Boolean values B"0" and
B"1", respectively.

v If the sending item is ZERO, it is treated as the Boolean literal B"0".

End of IBM Extension

DBCS or DBCS-Edited

IBM Extension
v If the sending item is national, it will be converted before it is passed to the

receiving field. The conversion is performed based on the data translation rule
described in “National” on page 397.

v Otherwise, no conversion takes place

MOVE Statement

396 ILE COBOL Reference

v If the sending and receiving items are not of the same size, the data item is
truncated or padded with DBCS spaces (on the right) as appropriate.

End of IBM Extension

National

IBM Extension

A national data item may receive data from an alphabetic, alphanumeric, DBCS, or
national data item, and also from a nonnumeric, DBCS, or national hexadecimal
literal, or the figurative constant SPACE/SPACES.

Data moved to such an item is aligned at the leftmost character position and,
where necessary, truncated or padded to the right with the padding character
specified in the Padding Character command option or NTLPADCHAR option of
the PROCESS statement. For information about the PROCESS statement, see IBM
Rational Development Studio for i: ILE COBOL Programmer's Guide.

If the data that is being transferred is not national data, it will be converted from
its representation in the sending field according to the data translation rule before
it is placed in the receiving field.

The CCSID specified on the National CCSID compiler option or the NTLCCSID
PROCESS option is used to define the national data CCSID.

The following rules determine the CCSID associated with other data items:
v A nonnumeric literal uses the CCSID specified for the program source file.
v A DBCS literal uses the DBCS CCSID corresponding to the CCSID specified for

the program source file.
v A single-byte data item, such as alphabetic or alphanumeric, uses the CCSID

specified by the second item in the CCSID options of the PROCESS statement.
v A DBCS data item uses the CCSID specified by the third item in the CCSID

options of the PROCESS statement.

End of IBM Extension

Valid Elementary Moves
Table 31 on page 398 shows valid and invalid elementary moves for each category.
In the table:
v YES = Move is valid.
v NO = Move is invalid

MOVE Statement

Chapter 14. Part 6. Procedure Division 397

#
#

Table 31. Valid Elementary Moves

Sending Item
Category

Receiving Item Category

A
lp

h
ab

et
ic

A
lp

h
an

u
m

er
ic

,
A

lp
h

an
u

m
er

ic
-e

d
it

ed

N
u

m
er

ic
,

N
u

m
er

ic
-e

d
it

ed

B
O

O
L

E
A

N
 (

6)

D
B

C
S

 (
8)

E
xt

er
n

al
Fl

oa
ti

n
g-

P
oi

n
t

(6
)

In
te

rn
al

Fl
oa

ti
n

g-
P

oi
n

t
(6

)

D
at

e
(6

)

T
im

e
(6

)

T
im

es
ta

m
p

 (
6)

N
at

io
n

al
 (

6)

Alphabetic and SPACE YES YES NO NO NO NO NO NO NO NO YES

Alphanumeric (1) YES YES YES YES
(5)

NO YES
(9)

YES
(9)

YES YES YES YES

Alphanumeric-edited YES YES NO NO NO NO NO YES YES YES NO

Numeric Integer (2) NO YES YES NO NO YES YES YES YES YES NO

Numeric Noninteger (3) NO NO YES NO NO YES YES NO NO NO NO

Numeric-edited NO YES YES NO NO YES YES YES YES YES NO

LOW/HIGH-VALUE, QUOTES NO YES NO NO NO NO NO NO NO NO NO

ZERO NO YES YES YES NO YES YES NO NO NO NO

BOOLEAN (4) (6) NO YES NO YES NO NO NO NO NO NO NO

DBCS (6) (7) (8)
DBCS-edited

NO NO NO NO YES NO NO NO NO NO YES

Floating-Point (10) NO NO YES NO NO YES YES NO NO NO NO

Date (6) NO YES YES NO NO NO NO YES NO YES NO

Time (6) NO YES YES NO NO NO NO NO YES YES NO

Timestamp (6) NO YES YES NO NO NO NO YES YES YES NO

National (6) YES YES NO NO YES NO NO NO NO NO YES

Notes to Table 31:

(1) Includes nonnumeric literals

(2) Includes integer numeric literals

(3) Includes noninteger numeric literals

(4) Includes Boolean literals

(5) First character of sending item is moved, regardless of its value

(6) Boolean, DBCS, DBCS-edited, national, internal and external floating-point,
and date-time items are an IBM Extension.

(7) Includes DBCS literals and SPACE.

(8) Includes DBCS data-items.

(9) Figurative constants and nonnumeric literals must consist only of numeric
characters and will be treated as numeric integer fields. The ALL literal

MOVE Statement

398 ILE COBOL Reference

may not be used as a sending item.

IBM Extension

(10) Includes floating-point literals, external floating-point data items (USAGE
DISPLAY), and internal floating-point data items (USAGE COMP-1 or
USAGE COMP-2).

End of IBM Extension

Group Moves
A group move is one in which one or both of the sending and receiving items are
group items. A group move is treated exactly as though it were an alphanumeric
elementary move, except that there is no conversion of data from one form of
internal representation to another. In a group move, the receiving item is filled
without consideration for the individual elementary items contained within either
the sending item or the receiving item. All group moves are valid.

IBM Extension

In the following discussion, on the MOVE statement and pointers, pointers refers to
both the pointer data item (USAGE POINTER) and the procedure-pointer data
item (USAGE PROCEDURE-POINTER).

A pointer can be part of a group that is referred to in a MOVE statement.

A pointer move occurs when all of the following conditions are met:
v The sending or receiving item of a MOVE statement contains a pointer
v Both items are at least 16 bytes long and properly aligned
v Both are alphanumeric or group items

If the items being moved are 01-level items, or part of a 01-level structure, they
must be at the same offset relative to a 16-byte boundary. All 01-level items in
Working-storage are aligned on 16-byte boundaries.

For more information about pointer alignment, see “Pointer Alignment” on page
228.

A pointer can be part of a group that is referred to in a MOVE CORRESPONDING
statement; however, movement of the pointer will not take place.

End of IBM Extension

WHEN-COMPILED Special Register

IBM Extension

This special register contains the date at the start of compilation. It consists of an
alphanumeric data item with the implicit definition:
01 WHEN-COMPILED GLOBAL PICTURE X(16) USAGE DISPLAY

and format:
MM/DD/YYhh.mm.ss (MONTH/DAY/YEARhour.minute.second)

MOVE Statement

Chapter 14. Part 6. Procedure Division 399

For example, if compilation began at 2:04 PM on 15 December 1994,
WHEN-COMPILED would contain the value 12/15/9414.04.00.

The DATSEP or TIMSEP parameter of job-related commands (such as CHGJOB)
specifies the date-separation or time-separation character used in the
WHEN-COMPILED special register. The DATFMT parameter specifies the date
format used in the WHEN-COMPILED special register.

It is valid only as the sending item in a MOVE statement.

The special register data can be reference-modified only when it is used as a
sender data item.

In nested programs, this special register is implicitly defined in the outermost
program.

Note: The compilation date and time is also accessible using the date and time
intrinsic function WHEN-COMPILED (see “WHEN-COMPILED” on page
596). That function supports 4-digit year values, and provides additional
information.

End of IBM Extension

MOVE Statement

400 ILE COBOL Reference

MULTIPLY Statement
The MULTIPLY statement multiplies numeric items and stores the result.

MULTIPLY Statement - Format 1

►► MULTIPLY identifier-1
literal-1

BY ▼ identifier-2
ROUNDED

►

►
SIZE ERROR imperative-statement-1

ON

►

►
NOT SIZE ERROR imperative-statement-2

ON
END-MULTIPLY

►◄

In Format 1, the value of identifier-1 or literal-1 is saved. This value is multiplied
by and stored in each identifier-2, in the left-to-right order in which identifier-2 is
specified.

MULTIPLY Statement - Format 2 - GIVING

►► MULTIPLY identifier-1
literal-1

BY identifier-2
literal-2

►

► ▼GIVING identifier-3
ROUNDED

►

►
SIZE ERROR imperative-statement-1

ON

►

►
NOT SIZE ERROR imperative-statement-2

ON
END-MULTIPLY

►◄

In Format 2, the value of identifier-1 or literal-1 is multiplied by the value of
identifier-2 or literal-2. The product is then stored in each data item referenced by
identifier-3.

For all Formats:

MULTIPLY Statement

Chapter 14. Part 6. Procedure Division 401

identifier-1, identifier-2
Must be an elementary numeric item.

literal
Must be a numeric literal.

identifier-3
Must be an elementary numeric or numeric-edited item.

The composite of operands is determined by superimposing all of the receiving
data items. For more information on the composite of operands, see the “Size of
Operands” on page 271.

IBM Extension

Floating-point data items and literals can be used anywhere a numeric data item or
literal can be specified.

End of IBM Extension

Note: Intermediate results generated during the execution of a MULTIPLY
statement are system-specific and can affect program portability.

ROUNDED Phrase
For Formats 1 and 2, see “ROUNDED Phrase” on page 269.

SIZE ERROR Phrases
For Formats 1 and 2, see “SIZE ERROR Phrases” on page 270.

END-MULTIPLY Phrase
This explicit scope terminator serves to delimit the scope of the MULTIPLY
statement. END-MULTIPLY converts a conditional MULTIPLY statement into an
imperative statement. This allows it to be nested in another conditional statement.

For more information, see “Delimited Scope Statements” on page 266.

MULTIPLY Statement

402 ILE COBOL Reference

OPEN Statement
The OPEN statement initiates the processing of files and checks or writes labels.

The OPEN statement varies depending on the type of file.

OPEN Statement - Format 1 - Sequential

OPEN Statement — Format 1 — Sequential

►► OPEN ▼ ▼

▼

▼

▼

INPUT file-name-1
REVERSED

NO REWIND
WITH

OUTPUT file-name-2
NO REWIND

WITH

I-O file-name-3

EXTEND file-name-4

►◄

OPEN Statement - Format 2 - Indexed and Relative

OPEN Statement - Format 2 - Indexed and Relative

►► OPEN ▼ ▼

▼

▼

INPUT file-name-1

OUTPUT file-name-2

I-O file-name-3

►◄

For relative files only, the OPEN statement is not allowed for logical file members:
v That are based on more than one physical file
v That contain select or omit logic

OPEN Statement - Format 3 - TRANSACTION

IBM Extension

OPEN Statement - Format 3 - TRANSACTION

OPEN Statement

Chapter 14. Part 6. Procedure Division 403

►► OPEN I-O ▼ file-name-3 ►◄

The OPEN statement can cause a program device to be implicitly acquired for a
TRANSACTION file. For a further discussion about the acquiring of program
devices, see the “ACQUIRE Statement” on page 305.

End of IBM Extension

INPUT
Permits opening the file for input operations.

Not allowed for FORMATFILE or printer files.

OUTPUT
Permits opening the file for output operations. This phrase will cause
sequential and relative DISK files to be dynamically created if they do not exist
and CRTF option is specified. When a file is opened OUTPUT it contains no
records.

Existing records are removed (cleared) only for physical files. For logical files,
the file is treated as though EXTEND had been specified.

I-O
Permits opening the file for both input and output operations. The I-O phrase
can be specified only for files assigned to direct access devices, such as DISK,
DATABASE, and workstation files.

EXTEND
Permits opening the file for output operations.

The EXTEND phrase must not be specified for a multiple file reel.

The EXTEND phrase is not allowed for:
v FORMATFILE files
v Printer files
v DISKETTE files

file-name-1, file-name-2, file-name-3, file-name-4
Designates a file upon which the OPEN statement is to operate. If more than
one file is specified, the files need not have the same organization or access.
Each file-name must be defined in an FD entry in the Data Division, and must
not name a sort or merge file. The FD entry must be equivalent to the
information supplied when the file was defined.

REVERSED
Valid only for sequential single reel tape files.

NO REWIND
Valid only for sequential single reel tape files.

OPEN Statement Considerations
The successful execution of an OPEN statement determines the availability of the
file and results in that file being in an open mode. The file is unavailable if the
OPEN operation fails. A file is available if it is physically present and is recognized
by the input-output control system. “OPEN Statement Programming Notes” on
page 410 shows the results of opening available and unavailable files.

OPEN Statement

404 ILE COBOL Reference

Dynamic File Creation
In some cases, a file that would not otherwise be available will be created by the
OPEN statement. This feature is referred to as Dynamic File Creation.

IBM Extension

In ILE COBOL, dynamic file creation will only occur for files that are assigned to
DISK. In addition, either OPTION(*CRTF) must be specified in the CRTCBLMOD
or CRTBNDCBL command, or the CRTF option must be included in a PROCESS
statement. If OPTION(*NOCRTF) or PROCESS NOCRTF is specified, or if the
option is not defined, then no file that is defined in the program can be created
dynamically.

If dynamic file creation has been specified, the following types of file will be
created if they are not present when the OPEN statement is executed:
v Sequential and Relative files opened for OUTPUT.
v Optional Sequential and Relative files opened for I-O.
v Optional Sequential files opened EXTEND.

Optional files are those defined using a SELECT OPTIONAL clause. A
compile-time error message will be issued for an OPEN I-O or OPEN EXTEND
statement for an optional file, unless dynamic file creation is in effect for the file.

The default attributes of a dynamically created file are based on those of the file
QAXXDBF held in library QSYS. The command CHGPF may be used to change
these attributes, for example, to increase the maximum number of records, or to
reduce the record wait time.

If a library-name has been provided by means of a file override, the file will be
created in that library. If no file override is in effect, the file will be created in the
current library, or if no current library is defined, in library QTEMP.

The maximum record length for a file that can be created dynamically is 32 766
characters.

End of IBM Extension

Special Considerations for Device Type DATABASE

IBM Extension

The file may be placed under commitment control. See "Commitment Control" in
the IBM Rational Development Studio for i: ILE COBOL Programmer's Guide for more
information.

If the file contains null-capable fields, and ALWNULL was not specified on the
ASSIGN clause for the file, a file status of 0P is set, and only the records that do
not contain null fields may be processed. Otherwise, if ALWNULL was specified
for a null-capable file, null fields can be processed, and file status 0P is not set.

End of IBM Extension

OPEN Statement

Chapter 14. Part 6. Procedure Division 405

INPUT Phrase (Sequential Files)
The file is opened for input operations. The file position indicator is set to the first
record in the file. If no records exist in the file, the file position indicator is set so
that processing of the first sequential READ statement results in an AT END
condition.

If SELECT OPTIONAL is specified in the file-control entry, OPEN statement
processing causes the program to check for the presence or absence of this file at
run time. If the file is absent, the first READ statement for this file causes the AT
END condition to occur.

Under the OPTION(*NOBLK) option, the compiler generates code to block output
records and unblock input records if the following conditions are satisfied:
v The file access is sequential.
v The organization of the file is sequential and the file is open only for input or

output.
v The file is assigned to DISK, DATABASE, DISKETTE, or TAPEFILE.

The BLOCK CONTAINS clause does not control the blocking factor for any files
except tape files. The BLOCK CONTAINS clause controls the blocking factor for all
files.

Special Considerations for Device Types DATABASE, TAPEFILE,
and DISKETTE
If SELECT OPTIONAL is specified in the file-control entry and OPTION(*CRTF) is
specified in the CRTCBLMOD or CRTBNDCBL command, this combination is not
valid.

Special Considerations for Device Types DISK and DATABASE

IBM Extension

The first record to be made available to the program can be specified at run time
by using the POSITION parameter on the OVRDBF CL command. For more
information on this command, see the CL and APIs section of the Programming
category in the System i5/OS Information Center at this Web site
-http://www.ibm.com/systems/i/infocenter/.

End of IBM Extension

OUTPUT Phrase (Sequential Files)
The file is opened to allow only output operations. When the file is successfully
opened, it contains no records.

Under OPTION(*NOBLK), the compiler generates code to block output records
and unblock input records if the following conditions are satisfied:
v The file access is sequential.
v The organization of the file is sequential and the file is open only for input or

output.
v The file is assigned to DISK, DATABASE, DISKETTE, or TAPEFILE.

The BLOCK CONTAINS clause does not control the blocking factor for any files
except tape files.

OPEN Statement

406 ILE COBOL Reference

http://www.ibm.com/systems/i/infocenter/

Device type FORMATFILE and PRINTER can only be opened for output.

Special Considerations for Device Type DISK
If dynamic file creation has been specified, then the OPEN statement will create
the file if it is not already available.

Special Considerations for Device Types DISK, DATABASE, and
FORMATFILE

IBM Extension

Only a physical file is cleared when opened for OUTPUT. When the file is
successfully opened, it contains no records. If an attempt is made to open a logical
file for OUTPUT, the file is opened but no records are deleted. The file is treated as
though the EXTEND phrase had been specified. To clear a logical file, all the
members on which the logical file is based should be cleared.

End of IBM Extension

I-O Phrase (Sequential Files)
Only device types DISK and DATABASE can be opened for I-O.

The file is opened for both input and output operations. The file position indicator
is set to the first record in the file. If no records exist in the file, the file position
indicator is set so that processing of the first sequential READ statement results in
an AT END condition.

IBM Extension

The first record to be made available to the program can be specified at run time
by using the POSITION parameter on the OVRDBF CL command. For more
information on this command, see the CL and APIs section of the Programming
category in the System i5/OS Information Center at this Web site
-http://www.ibm.com/systems/i/infocenter/.

End of IBM Extension

Special Considerations for Device Type DISK
If dynamic file creation has been specified and the file is an optional file (SELECT
OPTIONAL in the file-control entry), then the OPEN statement will create the file
if it is not already available.

NO REWIND Phrase (Sequential Files)
This phrase applies only to device type TAPEFILE.

The OPEN statement does not reposition the file. The tape must be positioned at
the beginning of the desired file before processing of the OPEN statement.

If the concept of reels has no meaning for the storage medium (for example, a
direct access device), the REVERSED and NO REWIND phrases do not apply.
When the phrases are used in this situation, a file status of 07 is set.

IBM Extension

The system keeps track of the current position on the tape and automatically

OPEN Statement

Chapter 14. Part 6. Procedure Division 407

http://www.ibm.com/systems/i/infocenter/

positions the tape to the proper place. When processing a multifile tape volume, all
CLOSE statements should specify the NO REWIND phrase. When the next file on
the volume is opened, the system determines which direction the tape should be
moved to most efficiently get to the desired file.

End of IBM Extension

REVERSED Phrase (Sequential Files)
This phrase applies only to device type TAPEFILE.

OPEN statement processing positions the file at its end. Subsequent READ
statements make the data records available in reverse order, starting with the last
record. REVERSED can only be specified for input files.

If the concept of reels has no meaning for the storage medium (for example, a
direct access device), the REVERSED and NO REWIND phrases do not apply.
When the phrases are used in this situation, a file status of 07 is set.

EXTEND Phrase (Sequential Files)
Device types TAPEFILE, DISK, and DATABASE may be opened as EXTEND.

The EXTEND phrase permits opening the file for output operations. OPEN
EXTEND statement processing prepares the file for the addition of records. These
additional records immediately follow the last record in the file. Subsequent
WRITE statements add records as if the file had been opened for OUTPUT. The
EXTEND phrase can be specified when a file is being created.

Special Considerations for Device Type DISK
If dynamic file creation has been specified and the file is an optional file (SELECT
OPTIONAL in the file-control entry), then the OPEN statement will create the file
if it is not already available.

INPUT Phrase (Indexed and Relative Files)
The file is opened for input operations. The file position indicator is set to the first
record in the file. If no records exist in the file, the file position indicator is set so
that processing of the first sequential READ statement results in an AT END
condition.

Special Considerations for Sequential Access Mode

IBM Extension

The first record to be made available to the program can be specified at run time
by using the POSITION parameter on the OVRDBF CL command. For more
information on this command, see the CL and APIs section of the Programming
category in the System i5/OS Information Center at this Web site
-http://www.ibm.com/systems/i/infocenter/.

End of IBM Extension

Under OPTION(*NOBLK), the compiler generates code to block output records
and unblock input records if the following conditions are satisfied:
v The file access is sequential.

OPEN Statement

408 ILE COBOL Reference

http://www.ibm.com/systems/i/infocenter/

v The organization of the file is indexed and the file is open only for input or
output; or the organization of the file is relative, and the file is open only for
input.

v The file is assigned to DISK or DATABASE
v No START statements are specified for the file.

The BLOCK CONTAINS clause does not control the blocking factor.

START statements are allowed if you specify both OPTION(*BLK) and the BLOCK
CONTAINS clause. The BLOCK CONTAINS clause controls the blocking factor for
all files.

Special Considerations for Dynamic Access Mode

IBM Extension

The first record to be made available to the program can be specified at run time
by using the POSITION parameter on the OVRDBF CL command. See the IBM
Rational Development Studio for i: ILE COBOL Programmer's Guide for more
information on this command.

End of IBM Extension

Also, under OPTION(*BLK), the BLOCK CONTAINS clause causes the compiler to
generate code that blocks output records and unblocks input records if the
following conditions are satisfied:
v The file access is dynamic.
v The organization of the file is indexed and the file is open only for input or

output; or the organization of the file is relative, and the file is open only for
input.

v The file is assigned to DISK or DATABASE.

If the BLOCK CONTAINS clause specifies a record size of zero, the system default
blocking factor applies.

OUTPUT Phrase (Indexed and Relative Files)

IBM Extension

Only a physical file is cleared when opened for OUTPUT. When the file is
successfully opened, it contains no records. If an attempt is made to open a logical
file for OUTPUT, the file is opened but no records are deleted. To clear a logical
file, all the members on which the logical file is based should be cleared.

End of IBM Extension

Special Considerations for Relative Files—Device Type DISK
If dynamic file creation has been specified, then the OPEN statement will create
the file if it is not already available.

Special Considerations for Indexed Files—Sequential Access
Under OPTION(*NOBLK), the compiler generates code to block output records
and unblock input records if the following conditions are satisfied:
v The file access is sequential.

OPEN Statement

Chapter 14. Part 6. Procedure Division 409

v The organization of the file is indexed and the file is open only for input or
output.

v The file is assigned to DISK or DATABASE
v No START statements are specified for the file.

The BLOCK CONTAINS clause does not control the blocking factor.

If you specify both OPTION(*BLK) and the BLOCK CONTAINS clause, the
blocking factor applies.

Special Considerations for Indexed Files—Dynamic Access
Under OPTION(*BLK), the BLOCK CONTAINS clause causes the compiler to
generate code that blocks output records and unblocks input records if the
following conditions are satisfied:
v The file access is dynamic.
v The organization of the file is indexed and the file is open only for input or

output.
v The file is assigned to DISK or DATABASE.

If the BLOCK CONTAINS clause specifies a record size of zero, the system default
blocking factor applies.

I-O Phrase (Indexed and Relative Files)
The file is opened for both input and output operations. The file position indicator
is set to the first record in the file. If no records exist in the file, the file position
indicator is set so that processing of the first sequential READ statement results in
an AT END condition.

Special Considerations for Relative Files—Device Type DISK
If dynamic file creation has been specified and the file is an optional file (SELECT
OPTIONAL in the file-control entry), then the OPEN statement will create the file
if it is not already available.

Special Considerations for Sequential or Dynamic Access Modes

IBM Extension

The first record to be made available to the program can be specified at run time
by using the POSITION parameter on the OVRDBF CL command. See the IBM
Rational Development Studio for i: ILE COBOL Programmer's Guide for more
information on this command.

End of IBM Extension

OPEN Statement Programming Notes
The successful execution of an OPEN statement determines the availability of the
files and results in that file being in open mode. Table 32 summarizes the results of
opening available and unavailable files.

Table 32. Availability of a File

File is Available File is Unavailable

INPUT Normal open Open is unsuccessful

OPEN Statement

410 ILE COBOL Reference

Table 32. Availability of a File (continued)

File is Available File is Unavailable

INPUT (optional file) Normal open Normal open; the first read
causes the at end condition

I-O Normal open Open is unsuccessful

I-O (optional file) Normal open Open may cause the file to be
created(1)

OUTPUT Normal open; the file
contains no records

Open may cause the file to be
created(1)

EXTEND Normal open Open is unsuccessful

EXTEND (optional file) Normal open Open may cause the file to be
created(1)

Note: (1) If dynamic file creation has been specified, and if the file has the appropriate
organization, the file will be created. See “Dynamic File Creation” on page 405.

1. The successful execution of the OPEN statement makes the associated record
area available to the program; it does not obtain or release the first data
record.

2. An OPEN statement must be successfully executed prior to the execution of
any of the permissible input-output statements, except a SORT or MERGE
statement with the USING or GIVING phrase.

3. The READ statement is executed on a file which is open for INPUT or I-O.
4. The WRITE statement is executed on a file which is open for OUTPUT or

EXTEND (sequential files only). The WRITE statement is also executed on an
indexed or relative file which is open for I-O in random or dynamic access
mode, and on a TRANSACTION file open for I-O.

5. The REWRITE statement is executed on a file which is open for I-O.
6. The START statement is executed on an indexed or relative file which is open

for INPUT or I-O.
7. The DELETE statement is executed on an indexed or relative file which is

open for I-O.
8. A file may be opened for INPUT, OUTPUT, I-O, or EXTEND (sequential files

only) in the same program. After the first OPEN statement execution for a
given file, each subsequent OPEN statement execution must be preceded by a
successful CLOSE file statement execution without the REEL or UNIT phrase
(for sequential files only), or the LOCK phrase.

9. If the FILE STATUS clause is specified in the FILE-CONTROL entry, the
associated status key is updated when the OPEN statement is executed. For
more information about the status key, refer to “Common Processing
Facilities” on page 274.

10. If an OPEN statement is issued for a file already in the open status, the
EXCEPTION/ERROR procedure (if specified) for this file is executed and file
status 41 is returned.

OPEN Statement

Chapter 14. Part 6. Procedure Division 411

PERFORM Statement
The PERFORM statement transfers control explicitly to one or more procedures
and implicitly returns control to the next executable statement after execution of
the specified procedure(s) or imperative statements is completed.

The PERFORM statement can be:

An out-of-line PERFORM statement
Procedure-name-1 is specified.

An in-line PERFORM statement
Procedure-name-1 is omitted.

An in-line PERFORM must be delimited by the END-PERFORM phrase.

The in-line and out-of-line formats cannot be combined. For example, if
procedure-name-1 is specified, the imperative-statement and the END-PERFORM
phrase must not be specified.

There are four PERFORM statement formats:
v Format 1 - Basic PERFORM
v Format 2 - PERFORM with TIMES Phrase
v Format 3 - PERFORM with UNTIL Phrase
v Format 4 - PERFORM with VARYING Phrase

Basic PERFORM Statement
The procedure(s) referenced in the basic PERFORM statement are executed once,
and control then passes to the next executable statement following the PERFORM
statement.

PERFORM Statement - Format 1

►► PERFORM procedure-name-1
THROUGH procedure-name-2
THRU

imperative-statement END-PERFORM

►◄

procedure-name
Must be a section or paragraph in the Procedure Division.

When both procedure-name-1 and procedure-name-2 are specified, if either is a
procedure-name in a declarative procedure, both must be procedure-names in
the same declarative procedure.

If the PERFORM statement is in a declarative section, procedure-name-1 and
procedure-name-2 must also be in a declarative section.

If procedure-name-1 is specified, imperative-statement and the END-PERFORM
phrase must not be specified.

If procedure-name-1 is omitted, imperative-statement and the END-PERFORM
phrase must be specified.

imperative-statement
The statement(s) to be executed for an in-line PERFORM.

PERFORM Statement

412 ILE COBOL Reference

END-PERFORM
Delimits the scope of the in-line PERFORM statement. Execution of an in-line
PERFORM is completed after the last statement contained within it has been
executed.

In-line PERFORM Statement
An in-line PERFORM statement functions according to the same general rules as
an otherwise identical out-of-line PERFORM statement, except that statements
contained within the in-line PERFORM are executed in place of the statements
contained within the range of procedure-name-1 (through procedure-name-2, if
specified). Unless specifically qualified by the word in-line or out-of-line, all the
rules that apply to the out-of-line PERFORM statement also apply to the in-line
PERFORM.

Out-of-line PERFORM Statement
Whenever an out-of-line PERFORM statement is executed, control is transferred to
the first statement of the procedure named procedure-name-1. Control is always
returned to the statement following the PERFORM statement. The point from
which this control is returned is determined as follows:
v If procedure-name-1 is a paragraph name and procedure-name-2 is not specified,

the return is made after the execution of the last statement of the
procedure-name-1 paragraph.

v If procedure-name-1 is a section name and procedure-name-2 is not specified,
the return is made after the execution of the last statement of the last paragraph
in the procedure-name-1 section.

v If procedure-name-2 is specified and it is a paragraph name, the return is made
after the execution of the last statement of the procedure-name-2 paragraph.

v If procedure-name-2 is specified and it is a section name, the return is made
after the execution of the last statement of the last paragraph in the
procedure-name-2 section.

The only necessary relationship between procedure-name-1 and procedure-name-2
is that a consecutive sequence of operations is executed, beginning at the
procedure named by procedure-name-1 and ending with the execution of the
procedure named by procedure-name-2.

Nested PERFORM Statements
PERFORM statements may be specified within the performed procedure. If there
are two or more logical paths to the return point, then procedure-name-2 may
name a paragraph that consists only of an EXIT statement; all the paths to the
return point must then lead to this paragraph.

When both procedure-name-1 and procedure-name-2 are specified, GO TO and
PERFORM statements can appear within the sequence of statements contained in
these paragraphs or sections. A GO TO statement should not refer to a
procedure-name outside the range of procedure-name-1 through procedure-name-2.
If this is done, results are unpredictable and are not diagnosed.

When only procedure-name-1 is specified, PERFORM and GO TO statements can
appear within the procedure. A GO TO statement should not refer to a
procedure-name outside the range of procedure-name-1. If this is done, results are
unpredictable and are not diagnosed.

When the performed procedures include another PERFORM statement, the
sequence of procedures associated with the embedded PERFORM statement must

PERFORM Statement

Chapter 14. Part 6. Procedure Division 413

be totally included in or totally excluded from the performed procedures of the
first PERFORM statement. That is, an active PERFORM statement whose execution
point begins within the range of performed procedures of another active
PERFORM statement must not allow control to pass through the exit point of the
other active PERFORM statement. In addition, two or more such active PERFORM
statements must not have a common exit.

IBM Extension

Two or more active PERFORM statements can have a common exit point.

End of IBM Extension

When control passes to the sequence of procedures by means other than a
PERFORM statement, control passes through the exit point to the next executable
statement, as if no PERFORM statement referred to these procedures.

PERFORM with TIMES Phrase
The procedure(s) referred to in the TIMES phrase PERFORM statement are
executed the number of times specified by the value in identifier-1 or integer-1.
Control then passes to the next executable statement following the PERFORM
statement.

PERFORM Statement - Format 2

►► PERFORM ►

► procedure-name-1 phrase 1
THROUGH procedure-name-2
THRU

phrase 1 imperative-statement END-PERFORM

►◄

phrase-1:

identifier-1
integer-1

TIMES

identifier-1
Must be an integer item.

If identifier-1 is zero or a negative number at the time the PERFORM statement
is initiated, control passes to the statement following the PERFORM statement.

After the PERFORM statement has been initiated, any change to identifier-1
has no effect in varying the number of times the procedures are initiated.

PERFORM with UNTIL Phrase
In the UNTIL phrase format, the procedure(s) referred to are performed until the
condition specified by the UNTIL phrase is true. Control is then passed to the next
executable statement following the PERFORM statement.

PERFORM Statement - Format 3

►► PERFORM ►

PERFORM Statement

414 ILE COBOL Reference

► procedure-name-1 phrase 2
THROUGH procedure-name-2
THRU

phrase 2 imperative-statement END-PERFORM

►◄

phrase 2:

TEST BEFORE
WITH AFTER

UNTIL condition-1

condition-1
May be any condition described under “Conditional Expressions” on page 247.
If the condition is true at the time the PERFORM statement is initiated, the
specified procedure(s) are not executed.

Any subscripting, reference modifier, or function associated with the operands
specified in condition-1 is evaluated each time the condition is tested.

If the TEST BEFORE phrase is specified or assumed, the condition is tested before
any statements are executed (corresponds to DO WHILE).

If the TEST AFTER phrase is specified, the statements to be performed are
executed at least once before the condition is tested (corresponds to DO UNTIL).

In either case, if the condition is true, control is transferred to the next executable
statement following the end of the PERFORM statement. If neither the TEST
BEFORE nor the TEST AFTER phrase is specified, the TEST BEFORE phrase is
assumed.

PERFORM with VARYING Phrase
The VARYING phrase increases or decreases the value of one or more identifiers or
index-names, according to certain rules. (See “Varying Phrase Rules” on page 423.)

The Format 4 VARYING phrase PERFORM statement can serially search an entire
7-dimensional table.

PERFORM Statement - Format 4

►► PERFORM ►

► procedure-name-1 phrase 3
THROUGH procedure-name-2
THRU

phrase 3 imperative-statement-1 END-PERFORM

►◄

phrase 3:

TEST BEFORE
WITH AFTER

VARYING identifier-2
index-name-1

FROM ►

PERFORM Statement

Chapter 14. Part 6. Procedure Division 415

► identifier-3
index-name-2
literal-1

BY identifier-4
literal-2

UNTIL condition-1 ►

►

▼ phrase 4

phrase 4:

AFTER identifier-5
index-name-3

FROM identifier-6
index-name-4
literal-3

BY identifier-7
literal-4

►

► UNTIL condition-2

condition-1, condition-2
May be any condition described under “Conditional Expressions” on page 247.
If the condition is true at the time the PERFORM statement is initiated, the
specified procedure(s) are not executed.

After the condition(s) specified in the UNTIL phrase are satisfied, control is
passed to the next executable statement following the PERFORM statement.

If any of the operands specified in condition-1 or condition-2 is subscripted,
reference modified, or is a function-identifier, the subscript, reference-modifier,
or function is evaluated each time the condition is tested.

IBM Extension

Floating-point data items and literals can be used anywhere a numeric data item or
literal can be specified.

End of IBM Extension

When TEST BEFORE is indicated, all specified conditions are tested before the first
execution, and the statements to be performed are executed, if at all, only when all
specified tests fail. When TEST AFTER is indicated, the statements to be performed
are executed at least once, before any condition is tested. Any subscripting
associated with the operands specified in condition-1 is evaluated each time the
condition is tested.

If neither the TEST BEFORE nor the TEST AFTER phrase is specified, the TEST
BEFORE phrase is assumed.

Varying Identifiers
The way in which operands are increased or decreased depends on the number of
variables specified. In the following discussion, every reference to identifier-n
refers equally to index-name-n (except when identifier-n is the object of the BY
phrase).

If identifier-2 or identifier-5 is subscripted, the subscripts are evaluated each time
the content of the data item referenced by the identifier is set or augmented. If
identifier-3, identifier-4, identifier-6, or identifier-7 is subscripted, the subscripts are
evaluated each time the content of the data item referenced by the identifier is
used in a setting or an augmenting operation.

PERFORM Statement

416 ILE COBOL Reference

Varying One Identifier
This section provides an example that describes how to use the PERFORM
statement to vary one identifier.

Example:
PERFORM procedure-name-1 THROUGH procedure-name-2

VARYING identifier-2 FROM identifier-3
BY identifier-4 UNTIL condition-1

1. Identifier-2 is set equal to its starting value, identifier-3 (or literal-1).
2. Condition-1 is evaluated as follows:

a. If it is false, steps 3 through 5 are executed.
b. If it is true, control passes directly to the statement following the PERFORM

statement.
3. Procedure-1 and everything up to and including procedure-2 (if specified) is

executed once.
4. Identifier-2 is augmented by identifier-4 (or literal-2), and condition-1 is

evaluated again.
5. Steps 2 through 4 are repeated until condition-1 is true.

At the end of PERFORM statement execution identifier-2 has a value that exceeds
the last-used setting by the increment/decrement value (unless condition-1 was
true at the beginning of PERFORM statement execution, in which case, identifier-2
contains the current value of identifier-3).

Figure 17 illustrates the logic of the PERFORM statement when an identifier is
varied with TEST BEFORE. Figure 18 on page 418 illustrates the logic of the
PERFORM statement when an identifier is varied with TEST AFTER.

False

Entrance

Condition-1
True

Exit

Execute specified set
of statements

Augment identifier-2 with
current BY value

Set identifier-2 equal to
current FROM value

Figure 17. Varying One Identifier—with TEST BEFORE

PERFORM Statement

Chapter 14. Part 6. Procedure Division 417

Varying Two Identifiers
This section provides an example that describes how to use the PERFORM
statement to vary two identifiers.

Example:
PERFORM procedure-name-1 THROUGH procedure-name-2

VARYING identifier-2 FROM identifier-3
BY identifier-4 UNTIL condition-1

AFTER identifier-5 FROM identifier-6
BY identifier-7 UNTIL condition-2

1. identifier-2 and identifier-5 are set to their initial values, identifier-3 and
identifier-6, respectively.

2. condition-1 is evaluated as follows:
a. If it is false, steps 3 through 7 are executed.
b. If it is true, control passes directly to the statement following the PERFORM

statement.
3. condition-2 is evaluated as follows:

a. If it is false, steps 4 through 6 are executed.
b. If it is true, identifier-2 is augmented by identifier-4, identifier-5 is set to the

current value of identifier-6, and step 2 is repeated.
4. procedure-name-1 and everything up to and including procedure-name-2 (if

specified) are executed once.
5. identifier-5 is augmented by identifier-7.
6. Steps 3 through 5 are repeated until condition-2 is true.

Entrance

Set identifier-2 to
current FROM value

False

Condition-1
True

Exit

Execute specified set
of statements

Augment identifier-2
with current BY value

Figure 18. Varying One Identifier—with TEST AFTER

PERFORM Statement

418 ILE COBOL Reference

7. Steps 2 on page 418 through 6 on page 418 are repeated until condition-1 is
true.

At the end of PERFORM statement execution:
v identifier-5 contains the current value of identifier-6.
v identifier-2 has a value that exceeds the last-used setting by the

increment/decrement value (unless condition-1 was true at the beginning of
PERFORM statement execution, in which case, identifier-2 contains the current
value of identifier-3).

Figure 19 illustrates the logic of the PERFORM statement when two identifiers are
varied with TEST BEFORE. Figure 20 on page 420 illustrates the logic of the
PERFORM statement when two identifiers are varied with TEST AFTER.

The previous figure assumes that identifier-5 and identifier-2 are not related. If one
is dependent on the other (through subscripting, for example), the results may be
predictable but generally undesirable.

Entrance

Set identifier-2 to
current FROM value

Execute specified set
of statements

Augment identifier-5
with current BY value

True
Exit

Set identifier-5 to
its current FROM value

Condition-1

False

Condition-2

False

Augment identifier-2
with current BY value

Set identifier-5 to
its current FROM value

True

Figure 19. Varying Two Identifiers—with TEST BEFORE

PERFORM Statement

Chapter 14. Part 6. Procedure Division 419

Varying Three Identifiers
This section provides an example that describes how to use the PERFORM
statement to vary three identifiers.

Example:
PERFORM procedure-name-1 THROUGH procedure-name-2

VARYING identifier-2 FROM identifier-3
BY identifier-4 UNTIL condition-1

AFTER identifier-5 FROM identifier-6
BY identifier-7 UNTIL condition-2

AFTER identifier-8 FROM identifier-9
BY identifier-10 UNTIL condition-3

Entrance

Set identifier-2 to
current FROM value

Set identifier-5 to
current FROM value

Augment identifier-2
with current BY value

Condition-2

False

True

Augment identifier-5
with current BY value

Execute specified set
of statements

Condition-1

False

True
Exit

Figure 20. Varying Two Identifiers—with TEST AFTER

PERFORM Statement

420 ILE COBOL Reference

The actions are the same as those for two identifiers, except that identifier-8 goes
through the complete cycle each time identifier-5 is augmented by identifier-7,
which, in turn, goes through a complete cycle each time identifier-2 is varied.

At the end of PERFORM statement execution:
v identifier-5 and identifier-8 contain the current values of identifier-6 and

identifier-9, respectively.
v identifier-2 has a value exceeding its last-used setting by one

increment/decrement value (unless condition-1 was true at the beginning of
PERFORM statement execution, in which case, identifier-2 contains the current
value of identifier-3).

Figure 21 on page 422 illustrates the logic of the PERFORM statement when three
identifiers are varied.

PERFORM Statement

Chapter 14. Part 6. Procedure Division 421

The previous figure assumes that identifier-5 and identifier-2 are not related. If one
is dependent on the other (through subscripting, for example), the results may be
predictable but generally undesirable.

The previous figure also assumes that identifier-8 and identifier-5 are not related. If
one is dependent on the other (through subscripting, for example), the results may
be predictable but generally undesirable.

Varying More Than Three Identifiers
In the VARYING phrase, you may extend the previous examples by adding up to
four more AFTER phrases, for a total of six AFTER phrases.

Entrance

Identifier -2
Identifier -5
Identifier -8
Set to intitial
FROM Values

False

Test
Condition-1

True
Test

Condition-2

Test
Condition-3

Execute
Procedure-1
THRU
Procedure-2

Augment
identifier-8
with its
Current
BY Value

Set identifier-8
to its Current
FROM Value

Augment
identifier-2
with its
Current
BY Value

Set identifier-5
to its Current
FROM Value

Augment
identifier-5
with its
Current
BY Value

C2

D2

True

False

D2 C2

Exit

True

Figure 21. Format 4 PERFORM Statement Logic—Varying Three Identifiers

PERFORM Statement

422 ILE COBOL Reference

Varying Phrase Rules
No matter how many variables are specified, the following rules apply:
1. In the VARYING/AFTER phrases, when an index-name is specified:

a. The index-name is initialized and incremented or decremented according to
the rules under “INDEXED BY Phrase” on page 181. (See also “SET
Statement” on page 463.)

b. In the associated FROM phrase, an identifier must be described as an
integer and have a positive value; a literal must be a positive integer.

c. In the associated BY phrase, an identifier must be described as an integer; a
literal must be a nonzero integer.

2. In the FROM phrase, when an index-name is specified:
a. In the associated VARYING/AFTER phrase, an identifier must be described

as an integer. It is initialized, as described in the SET statement.
b. In the associated BY phrase, an identifier must be described as an integer

and have a nonzero value; a literal must be a nonzero integer.
3. In the BY phrase, identifiers and literals must have nonzero values.
4. Changing the values of identifiers and/or index-names in the VARYING,

FROM, and BY phrases during execution changes the number of times the
procedures are executed.

5. The way in which operands are incremented or decremented depends on the
number of variables specified.

PERFORM Statement

Chapter 14. Part 6. Procedure Division 423

READ Statement
The READ statement makes a record available to the program:
v For sequential access, the READ statement makes the next record from a file

available to the object program.
v For random access, the READ statement makes a specified record from a

direct-access file available to the object program.

When the READ statement is executed, the associated file must be open in INPUT
or I-O mode. Execution of the READ statement depends on the file organization.
File organization can be:
v Sequential
v Relative
v Indexed

If the FILE STATUS clause is specified in the file-control entry, the associated status
key is updated when the READ statement is processed.

Following the unsuccessful processing of any READ statement, the contents of the
associated record area and the position of the file position indicator are undefined.

Special Considerations for Device Types DISK and DATABASE

IBM Extension

Null-capable fields are supported when the READ statement is performed on a file
which is found on a DISK or DATABASE device. However, null values are only
supported for DATABASE files that have ALWNULL specified on their ASSIGN
clause. If ALWNULL is not specified, the READ operation will fail and file status
90 will be returned, if a field contains a null value. You should also specify
NULL-MAP/NULL-KEY-MAP on your READ statement, so you can see which
fields contain the null value.

End of IBM Extension

Sequential Access Mode
Format 1 must be used for all files in sequential access mode.

Execution of a Format 1 READ statement retrieves the next record from the file.
The next record accessed is determined by the file organization.

Dynamic Access Mode
For files with indexed or relative organization, dynamic access mode may be
specified in the FILE-CONTROL entry. In dynamic access mode, either sequential
or random record retrieval can be used, depending on the format used.

Format 2 with the NEXT phrase must be specified for sequential retrieval. All other
rules for sequential access apply.

Format 3 must be specified for random retrieval. All other rules for random access
apply.

READ Statement

424 ILE COBOL Reference

Random Access Mode
Format 3 must be specified for indexed and relative files in random access mode,
and also for files in the dynamic access mode when record retrieval is random.

Execution of the READ statement depends on the file organization, as explained in
following sections.

READ Statement - Format 1 - Sequential Retrieval/Sequential
Access

READ - Format 1 - Sequential Retrieval/Access

►► READ file-name
NEXT RECORD INTO identifier-1

►

►
(1)

NO LOCK
WITH

(1)
FORMAT identifier-2

IS literal-1

►

►
(1)

NULL-KEY-MAP identifier-5
IS

►

►
(1)

NULL-MAP identifier-6
IS

►

►
END imperative-statement-1

AT

►

►
NOT END imperative-statement-2

AT
END-READ

►◄

Notes:

1 IBM Extension.

READ Statement - Format 2 - Sequential Retrieval/Dynamic
Access

READ - Format 2 - Sequential Ret./Dynamic Access

►► READ file-name NEXT
(1)

FIRST
(1)

LAST
(1)

PRIOR

RECORD INTO identifier-1
►

READ Statement

Chapter 14. Part 6. Procedure Division 425

►
(1)

NO LOCK
WITH

(1)
FORMAT identifier-2

IS literal-1

►

►
(1)

NULL-KEY-MAP identifier-5
IS

►

►
(1)

NULL-MAP identifier-6
IS

►

►
END imperative-statement-1

AT

►

►
NOT END imperative-statement-2

AT
END-READ

►◄

Notes:

1 IBM Extension

READ Statement - Format 3 - Random Retrieval

READ Statement - Format 3 - Random Retrieval

►► READ file-name
RECORD INTO identifier-1

►

►
(1)

NO LOCK
WITH

KEY data-name-1
IS

►

►
(1)

FORMAT identifier-2
IS literal-1

►

►
(1)

NULL-KEY-MAP identifier-5
IS

►

►
(1)

NULL-MAP identifier-6
IS

►

►
INVALID imperative-statement-1

KEY

►

READ Statement

426 ILE COBOL Reference

►
NOT INVALID imperative-statement-2

KEY
END-READ

►◄

Notes:

1 IBM Extension

file-name
File-name must be defined in a Data Division FD entry, and must not name a
sort or merge file.

RECORD
The next record in the sequence of records.

KEY IS data-name-1
This phrase is specified only for indexed files. Data-name-1 can be qualified; it
cannot be subscripted. Data-name-1 must identify a record key associated with
file-name.

IBM Extension

Data-name-1 can be defined as a DBCS data-item. When the RECORD KEY
clause specifies a DBCS data-item, a KEY specified on the READ statement
must be a DBCS data-item.

End of IBM Extension

INTO Phrase
The INTO identifier phrase makes a READ statement equivalent to:
v READ file-name RECORD
v MOVE record-name TO identifier

After successful processing of the READ statement, the current record becomes
available both in the record-name and identifier.

When the INTO identifier phrase is specified, the current record is moved from
the input area to the identifier area according to the rules for the MOVE
statement without the CORRESPONDING phrase. Any subscripting, indexing,
or reference modification associated with the identifier is evaluated after the
record has been read and immediately before it is transferred to the identifier.
(See also “INTO/FROM Identifier Phrase” on page 275.)

The INTO phrase may be specified in a READ statement if:
v Only one record description is subordinate to the file description entry, or,
v All record-names associated with file-name, and the data item referenced by

identifier-1, describe a group item or an elementary alphanumeric item.

When using the INTO identifier phrase with variable length records, the
amount of data moved to the receiver is equal to the length of the variable
length record being read.

identifier-1
Identifier-1 is the receiving field. The current record is moved from the record
area to that specified by identifier-1 according to the rules of the MOVE
statement without the CORRESPONDING phrase. The following usage notes
apply:
v The size of the current record depends on the rules specified in the RECORD

clause

READ Statement

Chapter 14. Part 6. Procedure Division 427

v If the file description entry contains a RECORD IS VARYING clause, the
move is a group move

v The implied MOVE statement occurs only if the execution of the READ
statement is successful

v Subscripting or reference modification associated with identifier-1 applies
after reading the record and immediately before it is moved to the data item

v The record is available in both the record area and the data item referenced
by identifier-1

v The INTO phrase is allowed in a READ statement only if
– Only one record description is subordinate to the file description entry, or
– All record names associated with file-name-1, and the item referenced by

identifier-1, describe a group item or an elementary alphanumeric item.
v The record areas associated with file-name-1 and identifier-1 must not be the

same storage area

IBM Extension

v Identifier-1 can be a floating-point data item.
v Identifier-1 can be a DBCS data-item.
v Identifier-1 can be a date-time data-item.

End of IBM Extension

IBM Extension

NO LOCK Phrase
The NO LOCK phrase prevents the READ operation from obtaining record
locks on files that you open in I-O (update) mode. In addition, a READ
operation bearing the NO LOCK phrase will be successful even if the record
that is to be made available has been locked by another job. A READ statement
bearing this phrase releases records that have been locked by a previous READ
operation.

If the DUPLICATES phrase is specified for the file, a record that is read by a
statement with the NO LOCK phrase cannot be processed by a DELETE or
REWRITE statement.

If you use the NO LOCK phrase for a file that is not open in I-O mode, you
will receive an error message at compilation time.

For information about file and record locking, see the IBM Rational Development
Studio for i: ILE COBOL Programmer's Guide.

FORMAT Phrase
The FORMAT phrase applies only when the READ statement is performed
against an indexed file for which the ASSIGN specified DATABASE as the file
device type.

The value specified in the FORMAT phrase contains the name of the record
format to use for this I-O operation. The system uses this to specify or select
which record format to operate on.

Identifier-2, if specified, must be an alphanumeric data item of 10 characters or
less.

Literal-1, if specified, must be an uppercase character-string of 10 characters or
less.

READ Statement

428 ILE COBOL Reference

If the FORMAT phrase is not specified, the first format defined is used when
accessing indexed files in random access mode.

A value of all blanks is treated as though the FORMAT phrase were not
specified. If the value is not valid for the file, a FILE STATUS of 9K is returned
and a USE procedure is invoked, if applicable for the file.

When the file is read in sequential access mode, the next record in the keyed
sequence access path that has the requested format is made available. If
omitted, the next record in the keyed sequence access path is made available.

When the file is read in random access mode, the key as defined for the
specified format is used to get a record of that format. If a record of that
format is not found, an INVALID KEY condition is raised. This occurs even
when there are records that have the defined key, but that have a different
record format.

If the format is omitted, the common key for the file is used to get the first
record of any format that has that common key value. The common key for a
file consists of the key fields common to all formats of a file for records
residing on the database. The common key for a file is the leftmost key fields
that are common across all record formats in the file. The common key is built
from the data in the record description area using the first record format
defined in the program for the file.

When the file is read in dynamic access mode, the next record made available
is determined as follows:

Record FORMAT Phrase

Specified Omitted

NEXT The next record in the keyed sequence access
path having the specified format is made
available.

The next record in the keyed sequence access
path is made available regardless of its
format.

PRIOR The record in the keyed sequence access path
preceding the record identified by the file
position indicator having the specified
format is made available.

The record in the keyed sequence access path
preceding the record identified by the file
position indicator is made available
regardless of its format.

FIRST The first record in the keyed sequence access
path having the specified format is made
available.

The first record in the keyed sequence access
path is made available regardless of its
format.

LAST The last record in the keyed sequence access
path having the specified format is made
available.

The last record in the keyed sequence access
path is made available regardless of its
format.

None of the above The key as defined for the specified format is
used to get a record of that format. If a
record of that format is not found, an
INVALID KEY condition is raised. This
occurs even when there are records that have
the defined key, but that have a different
record format.

The common key for the file is used to get
the first record of any format that has that
common key value. The common key for a
file consists of the key fields common to all
formats of a file for records residing on the
database. The common key for a file consists
of the leftmost key fields that are common
across all record formats in the file. The
common key is built from the data in the
record description area using the first record
format defined in the program for the file.

NULL-KEY-MAP IS Phrase
The NULL-KEY-MAP IS phrase indicates the value of the identifier, which

READ Statement

Chapter 14. Part 6. Procedure Division 429

corresponds to the null-byte map value supplied by data management for the
key of the record to be processed. The identifier can be subscripted or reference
modified.

The phrase can only be specified for an indexed file for which the ASSIGN
clause specified DATABASE as the device type, and the ALWNULL attribute.

If the file has alternate keys, identifier-5 is associated with the null key map of
the current key of reference.

For more information about using null-capable fields, refer to the IBM Rational
Development Studio for i: ILE COBOL Programmer's Guide.

NULL-MAP IS Phrase
The NULL-MAP IS phrase indicates the value of the identifier, which
corresponds to the null-byte map value supplied by data management for the
record to be processed. The identifier can be subscripted or reference modified.

This phrase can be specified for any file for which the ASSIGN clause specified
DATABASE as the device type, and the ALWNULL attribute.

For more information about using null-capable fields, refer to the IBM Rational
Development Studio for i: ILE COBOL Programmer's Guide.

End of IBM Extension

AT END Phrase
The AT END phrase applies only when a file is read in sequential access mode
or dynamic access mode.

If a next record does not exist in the file when a sequential read is processed,
an AT END condition occurs (the high order digit of the file status is 1), and
READ statement processing is unsuccessful. The following actions take place:
1. If the FILE STATUS clause is specified, the status key is updated to indicate

an AT END condition.
2. If the AT END phrase is specified, control is transferred to the AT END

imperative statement. Any EXCEPTION/ERROR procedure for this file is
not run.

3. If the AT END phrase is not specified, any EXCEPTION/ERROR procedure
for this file is run. Return from that procedure is to the next executable
statement following the end of the READ statement.

When the AT END condition occurs, execution of the READ statement is
unsuccessful. The contents of the associated record area are undefined and the
file position indicator is set to indicate that no valid next record has been
established.

If an AT END condition does not occur during the execution of a READ
statement, the AT END phrase is ignored, if specified, and the following
actions occur:
1. The file position indicator is set and the I-O status associated with

file-name-1 is updated.
2. If an exception condition which is not an AT END condition exists, control

is transferred according to rules of the USE statement following the
execution of any USE AFTER EXCEPTION procedure applicable to
file-name-1.

3. If no exception condition exists, the record is made available in the record
area and any implicit move resulting from the presence of an INTO phrase

READ Statement

430 ILE COBOL Reference

is executed. Control is transferred to the end of the READ statement or to
imperative-statement-2, if specified. In the latter case, execution continues
according to the rules for each statement specified in imperative-statement-
2. If a procedure branching or conditional statement which causes explicit
transfer of control is executed, control is transferred in accordance with the
rules for that statement; otherwise, upon completion of the execution of
imperative-statement-2, control is transferred to the end of the READ
statement.

Following the unsuccessful execution of a READ statement, the contents of the
associated record area are undefined and the file position indicator is set to
indicate that no valid next record has been established.

The AT END phrase must be specified if no explicit or implicit
EXCEPTION/ERROR procedure is specified for the file.

Note: A sequential read is any READ statement for a file with sequential
access, or a READ NEXT, READ PRIOR, READ FIRST, or READ LAST
statement for a file with dynamic access.

A READ FIRST or READ LAST statement will result in an AT END condition
if the file is empty, or if the FORMAT phrase has been used and no records in
the file have the specified format.

When a file is being read in sequential access mode and the AT END condition
is recognized, a successful CLOSE statement followed by a successful OPEN
statement must be processed for this file before a further READ statement is
attempted.

When a file is being read in dynamic access mode and the AT END condition
is recognized, one of the following must be processed for the file before a
further READ NEXT or READ PRIOR statement is attempted:
v A successful CLOSE statement followed by a successful OPEN statement.
v A successful START statement.
v A successful random access READ statement.
v A successful READ FIRST or READ LAST statement.

If a READ statement for a file with sequential access, or a READ NEXT or
READ PRIOR statement for a file with dynamic access, is attempted after the
AT END condition has occurred, and the file position indicator has not been
reset by one of the specified methods, then a file status of 46 will be returned.
Neither the AT END phrase nor the NOT AT END phrase will be executed.

NOT AT END Phrase
After each successful completion of a READ statement with the NOT AT END
phrase (the high order digit of the file status is 0), control transfers to the
imperative statement associated with the phrase.

INVALID KEY Phrase
The INVALID KEY phrase applies only when a relative or indexed file is read
in random access mode or dynamic access mode.

The INVALID KEY phrase must be specified for files for which there is not an
appropriate EXCEPTION/ERROR procedure.

For information about INVALID KEY phrase processing, see “INVALID KEY
Condition” on page 274.

NOT INVALID KEY Phrase
The NOT INVALID KEY phrase applies only when a relative or indexed file is
read in random access mode or dynamic access mode.

READ Statement

Chapter 14. Part 6. Procedure Division 431

After the successful completion of a READ statement with the NOT INVALID
KEY phrase, control transfers to the imperative statement associated with the
phrase.

NEXT Phrase
The NEXT phrase applies only for dynamic access mode.

When a relative file is read dynamically and the NEXT phrase is specified, a
sequential read is done. When omitted, a random read is done.

When an indexed file is read dynamically and the NEXT phrase is specified, a
sequential read is done. If NEXT, FIRST, LAST and PRIOR are all omitted, a
random access read is done.

If a READ NEXT operation is performed on a block of records, a READ PRIOR
operation cannot occur until the block is empty. If a READ PRIOR operation is
performed first, a READ NEXT operation cannot occur until the block is
empty. If this is attempted, a file status of 9U will result. To recover from file
status 9U, close the file, then open it again.

IBM Extension

FIRST Phrase
The FIRST phrase applies only when indexed files are accessed dynamically. If
NEXT, FIRST, LAST and PRIOR are all omitted, a random access read is done.

LAST Phrase
The LAST phrase applies only when indexed files are accessed dynamically. If
NEXT, FIRST, LAST and PRIOR are all omitted, a random access read is done.

PRIOR Phrase
The PRIOR phrase applies only when indexed files are accessed dynamically.
When specified, a sequential read is done. If NEXT, FIRST, LAST and PRIOR
are all omitted, a random access read is done.

If a READ PRIOR operation is performed on a block of records, a READ NEXT
operation cannot occur until the block is empty. If a READ NEXT operation is
performed first, a READ PRIOR operation cannot occur until the block is
empty. If this is attempted, a file status of 9U will result. To recover from file
status 9U, close the file, then open it again.

End of IBM Extension

END-READ Phrase
This explicit scope terminator serves to delimit the scope of the READ
statement. END-READ permits a conditional READ statement to be nested in
another conditional statement. END-READ may also be used with an
imperative READ statement.

For more information, see “Delimited Scope Statements” on page 266.

Sequential Files
Sequential files can be read from the following device types:
v TAPEFILE
v DISKETTE
v DISK
v DATABASE

Sequential files can only be read in sequential access mode.

READ Statement

432 ILE COBOL Reference

The record that is made available by the READ statement is determined as follows:
v If the file position indicator was set by the processing of an OPEN statement, the

record pointed to is made available.
v If the file position indicator was set by the processing of a previous READ

statement, the pointer is updated to point to the next existing record in the file.
That record is then made available.

If SELECT OPTIONAL is specified in the file-control entry for this file and the file
is not available when this program runs, processing of the first READ statement
causes an AT END condition. Since the file is not available, the standard system
end-of-file processing is not done when the file is closed.
v Special Considerations for Device Types TAPEFILE and DISKETTE

Special Considerations for Device Types TAPEFILE and
DISKETTE
If end of volume is recognized during processing of a READ statement and logical
end of file has not been reached, the following actions are taken in the order listed:
1. The standard ending volume label procedure is processed.
2. A volume switch occurs.
3. The standard beginning volume label procedure is run.
4. The first data record of the next volume is made available.

The program receives no indication that the above actions occurred during the
read operation.

Relative Files
Relative files can be read from the following device types:
v DISK
v DATABASE

Relative files can be read in sequential, random, or dynamic access modes.

When a relative file is read in sequential access mode, the record that is made
available by the READ statement is determined as follows:
v If the file position indicator was set by the processing of a START or OPEN

statement, the record pointed to is made available if it is still accessible through
the path indicated by the file position indicator. If the record is no longer
accessible (due, for example, to deletion of the record), the current record pointer
is updated to indicate the next existing record in the file. That record is then
made available.

v If the file position indicator was set by the processing of a previous READ
statement, the file position indicator is updated to point to the next existing
record in the file. That record is then made available.

If the RELATIVE KEY phrase is specified for this file, READ statement processing
updates the RELATIVE KEY data item to indicate the relative record number of the
record being made available.

When a relative file is read in random access mode, the record with the relative
record number contained in the RELATIVE KEY data item is made available. If the
file does not contain such a record, the INVALID KEY condition exists, and READ
statement processing is unsuccessful.

READ Statement

Chapter 14. Part 6. Procedure Division 433

Indexed Files
Indexed files can be read from the following device types:
v DISK
v DATABASE

Indexed files can be read in sequential, random, or dynamic access modes.

When an indexed file is read in sequential access mode, the record made available
by the READ statement is determined as follows:
v If the file position indicator was set by the processing of a START or OPEN

statement, the record pointed to is made available if it is still accessible through
the path indicated by the current record pointer. If the record is no longer
accessible (due, for example, to deletion of the record), the file position indicator
is updated to indicate the next existing record in the file. That record is then
made available.

v If the file position indicator was set by the processing of a previous READ
statement, the file position indicator is updated to point to the next existing
record in the file. That record is then made available.

IBM Extension

For a file that allows duplicate keys (the DUPLICATES phrase is specified in the
file-control entry), the records with duplicate key values are made available in
the order specified when the file was created. The system options are first-in
first-out (FIFO), last-in first-out (LIFO), and no specific sequence (if neither LIFO
not FIFO is specified).

End of IBM Extension

When an indexed file is read in random access mode, the record in the file with a
key value equal to that of the current key of reference is then made available. If the
file does not contain such a record, the INVALID KEY condition exists, and READ
statement processing is unsuccessful. If the FORMAT phrase is not specified on the
I-O statement when indexed files are read in random access mode, the first format
defined in the file is used. Note that if externally described keys are being used
and no format is specified, the first format included in the program is the one used
to build the key. This format may not necessarily be the first format in the file.

If the KEY phrase is not specified, the prime RECORD KEY becomes the key of
reference for this request. When dynamic access is specified, the prime RECORD
KEY is also used as the key of reference for subsequent executions of sequential
READ statements, until a different key of reference is established.

When the KEY phrase is specified, data-name-1 becomes the key of reference for
this request. When dynamic access is specified, this key of reference is used for
subsequent executions of sequential READ statements, until a different key of
reference is established.

IBM Extension

For a file that allows duplicate keys (the DUPLICATES phrase is specified in the
file-control entry), the first record with the specified key value is made available.
The first record is determined by the order specified when the file was created. The
system options are first-in first-out (FIFO), last-in first-out (LIFO), and no specific
sequence (if neither LIFO not FIFO is specified).

READ Statement

434 ILE COBOL Reference

To enable file status 02 for DUPLICATE KEY checking, you need:
v The WITH DUPLICATES phrase in the SELECT clause
v OPEN I-O or OPEN INPUT
v The *DUPKEYCHK option of the OPTION parameter, or the DUPKEYCHK

option of the PROCESS statement.

End of IBM Extension

Multiple Record Processing
If more than one record description entry is associated with file-name-1, these
records automatically share the same storage area; that is, they are implicitly
redefined. After a READ statement is executed, only those data items within the
range of the current record are replaced; data items stored beyond that range are
undefined. Figure 22 illustrates this concept. If the range of the current record
exceeds the record description entries for file-name, the record is truncated on the
right to the maximum size. In either of these cases, the READ statement is
successful and an I-O status is set indicating a record length conflict has occurred.

Multivolume Files
If end-of-volume is recognized during execution of a READ statement, and logical
end-of-file has not been reached, the following actions are taken:
v The system-defined ending volume label procedure
v A volume switch
v The system-defined beginning volume label procedure
v The first data record of the next volume is made available.

The FD entry is:

FD INPUT-FILE LABEL RECORDS OMITTED.

01 RECORD-1 PICTURE X(30).

01 RECORD-2 PICTURE X(20).

Contents of input area when READ statement is executed:

ABCDEFGHIJKLMNOPQRSTUVWXYZ1234

Contents of record being read in (RECORD-2):

01234567890123456789

Contents of input area after READ is executed:

01234567890123456789??????????

(these characters in input area undefined)

Figure 22. READ Statement with Multiple Record Description

READ Statement

Chapter 14. Part 6. Procedure Division 435

Transaction Files

IBM Extension

The READ statement makes a record from a device available, using a named
format. If the format is a subfile, the READ statement makes a specified record
available from that subfile.

READ Statement - Format 4 - Transaction (Nonsubfile)

READ Statement - Format 4 - Transaction (Nonsubfile)

►► READ file-name
RECORD INTO identifier-1

►

►
FORMAT identifier-2

IS literal-1
TERMINAL identifier-3

IS literal-2

►

►
INDICATOR identifier-4
INDICATORS IS
INDIC ARE

NO DATA imperative-statement-1
►

►
END imperative-statement-2

AT

►

►
NOT END imperative-statement-3

AT
END-READ

►◄

Format 4 is used only to read a format that is not a subfile record. The
RELATIVE KEY data item, if specified in the FILE-CONTROL entry, is not used.
The Format 4 READ statement is not valid for a subfile record; however, a Format
4 READ statement for the subfile control record format must be used to put those
subfile records that were updated on a display into the subfile.

If the data is available, it is returned in the record area. The names of the record
format and the program device are returned in the I-O-FEEDBACK area and in the
CONTROL-AREA.

The READ statement is valid only when there are acquired devices for the file. If a
READ is executed and there are no acquired devices, the file status is set to 92
(logic error).

The manner in which the Format 4 READ statement functions depends on
whether:
v The READ is for a single device file or a multiple device file
v A specific program device has been requested through the TERMINAL phrase
v A specific record format has been requested through the FORMAT phrase
v The NO DATA phrase has been specified

READ Statement

436 ILE COBOL Reference

In the following discussions, references to “data available or returned” include the
situation where only the response indicators are set. This is so even when a
separate indicator area is used and the indicators are not returned in the record
area for the file.

The following chart shows the possible combinations of phrases, and the function
performed for a single device file or a multiple device file. For example, if
TERMINAL is N, FORMAT is N, and NO DATA is N, then the single device is D
and multiple device is A.

Phrase Y=Yes N=No

Checked at Compilation TERMINAL³
FORMAT³
NO DATA

N N N N Y Y Y Y
N N Y Y N N Y Y
N Y N Y N Y N Y

Determined at
Execution

Single Device
Multiple Device

D C D B D C D B
A A D B D C D B

Codes A through D are explained below.

Code A–Read From Invited Program Device (Multiple Device Files only)

This type of READ receives data from the first invited program device that has
data available. An invited program device is a workstation or communications
device (such as APPC, SNUF, BSCEL, Asynchronous Communications) that has
been invited to send input. Inviting is done by writing to the program device with
a format that has the DDS keyword INVITE specified. Once an invited program
device is actually read from, it is no longer invited. That program device will not
be used for input by another READ statement unless re-invited, or unless a READ
is directed to it specifying the TERMINAL phrase or FORMAT phrase.

The record format returned from the program device is determined by the system.
For information on how this is determined for work stations, refer to the File
Systems and Management section of the Database and File Systems category in the
System i5/OS Information Center at this Web site - http://www.ibm.com/
systems/i/infocenter/. For communications devices, see the ICF Programming
manual for more information on format selection processing for an ICF file.

This READ can complete without returning any data in the following cases:
1. There are no invited devices and the timer function is not in effect. (This is the

AT END condition.)
2. A controlled cancellation of the job occurs. This results in a file status value of

0A and a major-minor return code value of 0309.
3. The NO DATA phrase is omitted and the specified wait time expires. This

results in a file status value of 00 and a major-minor return code value of 0310.
The specified wait time is the value entered on the WAITRCD parameter for
the file or the time interval specified on the timer function.

4. The NO DATA phrase is specified and there is no data immediately available
when the READ is executed.

If data is available, it is returned in the record area. The record format is returned
in the I-O-FEEDBACK area and in the CONTROL-AREA. For more information

3. If the phrase is specified and the data item or literal is blank, the phrase is treated at execution time as if it were not specified.

READ Statement

Chapter 14. Part 6. Procedure Division 437

http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/

about “reading from invited program devices,” see the Application Display
Programming manual for display stations, and the ICF Programming manual for
communications devices.

Code B–Read From One Program Device (Invalid combination)

A compilation time message is issued and the NO DATA phrase is ignored. See the
table entry for the same combination of phrases with the NO DATA phrase
omitted.

Code C–Read From One Program Device (with NO DATA phrase)

This function of the READ statement never causes program execution to stop and
wait until data is available. Either the data is immediately available or the NO
DATA imperative statement is executed.

This READ function can be used to periodically check if data is available from a
particular program device (either the default program device or one specified by
the TERMINAL phrase). This checking for data is done in the following manner:
1. The program device is determined as follows:

a. If the TERMINAL phrase was omitted or contains blanks, the default
program device is used. The default program device is the one used by the
last attempted READ, WRITE, REWRITE, ACQUIRE, or DROP statement. If
none of the above I-O operations were previously executed, the default
program device is the first program device acquired.

b. If the TERMINAL phrase was specified, the indicated program device is
used.

2. A check is done to determine if data is available and if the program device is
invited.

3. If data is available, that data is returned in the record area and the program
device is no longer invited. If no data is immediately available, the NO DATA
imperative statement is executed and the program device remains invited.

4. If the program device is not invited, the AT END condition exists and the file
status is set to 10.

Code D–Read From One Program Device (without NO DATA Phrase)

This READ always waits for data to be made available. Even if the job receives a
controlled cancellation, or a WAITRCD time is specified for the file, the program
will never regain control from the READ statement. This READ operation is
performed in the following manner:
1. The program device is determined as follows:

a. If the TERMINAL phrase is omitted or contains a blank value, the default
program device is used. The default program device is the program device
used by the last attempted READ, WRITE, REWRITE, ACQUIRE, DROP or
ACCEPT (Attribute Data) statement. If none of these operations has been
done, the program device implicitly acquired when the file was opened is
used. If there are no acquired devices, the AT END condition exists.

b. If the TERMINAL phrase is specified, the indicated program device is used.
2. The record format is determined as follows:

a. If the FORMAT phrase is omitted or contains blanks, the record format
returned is determined by the system. For information on how the record
format is determined for workstation devices, refer to the ICF Programming

READ Statement

438 ILE COBOL Reference

book. For information about how the record format is determined for
communications devices, see the section on the FMTSLT parameter for the
ADDICFDEVE and OVRICFDEVE commands in the ICF Programming book.

b. If the FORMAT phrase is specified, the indicated record format is returned.
If the data available does not match the requested record format, a file
status of 9K is set.

3. Program execution stops until data becomes available. The data is returned in
the record area after the READ statement is executed. If the program device
was previously invited, it will no longer be invited after this READ statement.

INTO Phrase
The INTO phrase cannot be specified unless:
v All records associated with the file and the data item specified in the INTO

phrase are group items or elementary alphanumeric items.

OR
v Only one record description is subordinate to the file description entry.

KEY IS Phrase
The KEY IS phrase may be specified only for indexed files. Data-name must
identify a record key associated with file-name-1. Data-name-1 may be
qualified; it may not be subscripted.

Note: The KEY IS phrase is syntax checked only and has no effect on the
operation of the READ statement.

FORMAT Phrase
Literal-1 or identifier-2 specifies the name of the record format to be read.
Literal-1, if specified, must be nonnumeric, uppercase, and 10 characters or less
in length. Identifier-2, if specified, must refer to an alphanumeric data item, 10
characters or less in length. If identifier-2 contains blanks, the READ statement
is executed as if the FORMAT phrase were omitted.

NO DATA Phrase
When the NO DATA phrase is specified, the READ statement will determine
whether data is immediately available. If data is available, the data is returned
in the record area. If no data is immediately available, imperative-statement-1
is executed. The NO DATA phrase prevents the READ statement from waiting
for data to become available.

TERMINAL Phrase
Literal-2 or identifier-3 specifies the program device name. Literal-2, if
specified, must be nonnumeric and 10 characters or less in length. Identifier-3,
if specified, must refer to an alphanumeric data item, 10 characters or less in
length. The program device must have been acquired before the READ
statement is executed. If identifier-3 contains blanks, the READ statement is
executed as if the TERMINAL phrase was omitted. For a single device file, the
TERMINAL phrase can be omitted. The program device is assumed to be that
single device.

If the TERMINAL phrase is omitted for a READ of a Transaction file that has
acquired multiple program devices, the default program device is used.

INDICATOR Phrase, INDICATORS Phrase, INDIC Phrase
Specifies which indicators are to be read when a data record is read. Indicators
can be used to pass information about the data record and how it was entered
into the program.

READ Statement

Chapter 14. Part 6. Procedure Division 439

Identifier-4 must be either an elementary Boolean data item specified without
the OCCURS clause or a group item that has elementary Boolean data items
subordinate to it.

For detailed information on the INDICATORS phrase, refer to Using Indicators
with Transaction Files in the IBM Rational Development Studio for i: ILE COBOL
Programmer's Guide.

AT END Phrase
The AT END phrase serves to explicitly delimit the scope of the statement.
Imperative-statement-2 is executed when the AT END condition is detected.
The AT END condition occurs when there are no invited program devices and
the timer function is not in effect.

The AT END phrase should be specified when no applicable USE procedure is
specified for the file-name. If the AT END phrase and a USE procedure are
both specified for a file, and the AT END condition arises, control transfers to
the AT END imperative statement and the USE procedure is not run.

NOT AT END Phrase
This phrase allows you to specify procedures that will be performed when the
AT END condition does not exist for the statement that is used.

END-READ Phrase
This explicit scope terminator serves to delimit the scope of the READ
statement. END-READ permits a conditional READ statement to be nested in
another conditional statement. END-READ may also be used with an
imperative READ statement.

For more information, see “Delimited Scope Statements” on page 266.

READ Statement - Format 5 - Transaction (Subfile)

READ - Format 5a - Transaction (Subfile Sequential)

►► READ SUBFILE file-name MODIFIED
NEXT RECORD

►

►
INTO identifier-1 FORMAT identifier-2

IS literal-1

►

►
TERMINAL identifier-3

IS literal-2

►

►
INDICATOR identifier-4
INDICATORS IS
INDIC ARE

►

►
END imperative-statement-3

AT

►

►
NOT END imperative-statement-4

AT
END-READ

►◄

READ Statement

440 ILE COBOL Reference

Format 5a is used to read a format that is a subfile record, in sequential access
mode. The NEXT MODIFIED phrase must be specified to access subfile records
sequentially. The AT END phrase can only be specified with the NEXT MODIFIED
phrase.

READ - Format 5b - Transaction (Subfile Random)

►► READ SUBFILE file-name
RECORD INTO identifier-1

►

►
FORMAT identifier-2

IS literal-1
TERMINAL identifier-3

IS literal-2

►

►
INDICATOR identifier-4
INDICATORS IS
INDIC ARE

►

►
INVALID imperative-statement-1

KEY

►

►
NOT INVALID imperative-statement-2

KEY
END-READ

►◄

Format 5b is used to read a format that is a subfile record, in random access mode.
The INVALID KEY phrase can only be used for random access of subfile records.
The NEXT MODIFIED phrase must not be used to randomly access subfile records.

Format 5a or 5b cannot be used for communications devices. If the subfile format
of the READ statement is used for a communications device, the READ fails and a
file status of 90 is set.

NEXT MODIFIED Phrase
When NEXT MODIFIED is not specified, the data record made available is the
record in the subfile with a relative record number that corresponds to the
value of the RELATIVE KEY data item.

When the NEXT MODIFIED phrase is not specified, and if the RELATIVE KEY
data item contains a value other than the relative record number of a record in
the subfile, the INVALID KEY condition exists and the execution of the READ
statement is unsuccessful.

When the NEXT MODIFIED phrase is specified, the record made available is
the first record in the subfile that has been modified (has the Modified Data
Tag on).

The search for the next modified record begins:
v At the beginning of the subfile if:

– An I-O operation has been performed for the subfile control record.
– The I-O operation cleared, initialized, or displayed the subfile.

v For all other cases, with the record following the record that was read by a
previous read operation.

The value of the RELATIVE KEY data item is updated to reflect the relative
record number of the record made available to the program.

READ Statement

Chapter 14. Part 6. Procedure Division 441

If NEXT MODIFIED is specified and there is no user-modified record in the
subfile with a relative record number greater than the relative record number
contained in the RELATIVE KEY data item, the AT END condition exists, the
file status is set to 12, and the value of the RELATIVE KEY data item is not
updated. Imperative-statement-2, or any applicable USE AFTER
ERROR/EXCEPTION procedure, is then executed.

FORMAT Phrase
When a format-name is not specified, the format used is the last record format
written to the display device that contains input fields, input/output fields, or
hidden fields. If no such format exists for the display file, the format used is
the record format of the last WRITE operation to the display device.

If the FORMAT phrase is specified, literal-1 or the contents of identifier-2 must
specify a format which is active for the appropriate program device. The
READ statement reads a data record of the specified format.

The FORMAT phrase must always be specified for multiple format files to
ensure correct results.

TERMINAL Phrase
See Format 4 above for general considerations concerning the TERMINAL
phrase.

For a Format 5a or 5b READ, if the TERMINAL phrase is omitted for a file
that has multiple devices acquired for it, a record is read from the subfile
associated with the default program device.

INDICATOR Phrase, INDICATORS Phrase, INDIC Phrase
Specifies which indicators are to be read when a data record is read. Indicators
can be used to pass information about the data record and how it was entered
into the program.

For detailed information on the INDICATORS phrase, refer to Using Indicators
with Transaction Files in the IBM Rational Development Studio for i: ILE COBOL
Programmer's Guide .

Identifier-4 must be either an elementary Boolean data item specified without
the OCCURS clause or a group item that has elementary Boolean data items
subordinate to it.

INVALID KEY Phrase
If the RELATIVE KEY data item at the time of the execution of the READ
statement contains a value that does not correspond to a relative record
number for the subfile, the INVALID KEY condition exists and the execution of
the READ statement is unsuccessful.

The INVALID KEY phrase must be specified if the NEXT MODIFIED phrase is
not specified and there is no applicable USE procedure specified for the
file-name.

For information about what happens when the invalid key condition occurs,
see “INVALID KEY Condition” on page 274.

NOT INVALID KEY Phrase
This phrase specifies the procedures that will be performed when an invalid
key condition does not exist for the statement that is used.

AT END Phrase
If NEXT MODIFIED is specified and there is no user-modified record in the
subfile, the AT END condition exists, and the execution of the READ statement
is unsuccessful.

READ Statement

442 ILE COBOL Reference

The AT END phrase should be specified when the NEXT MODIFIED phrase is
used, and no applicable USE procedure is specified for the file-name. If the AT
END phrase and a USE procedure are both specified for a file, and the AT
END condition arises, control transfers to the AT END imperative statement
and the USE procedure is not executed.

NOT AT END Phrase
This phrase allows you to specify procedures that will be performed when the
AT END condition does not exist for the statement that is used.

END-READ Phrase
This explicit scope terminator serves to delimit the scope of the READ
statement. END-READ permits a conditional READ statement to be nested in
another conditional statement. END-READ may also be used with an
imperative READ statement.

For more information, see “Delimited Scope Statements” on page 266.

End of IBM Extension

READ Statement

Chapter 14. Part 6. Procedure Division 443

RELEASE Statement
The RELEASE statement transfers records from an input/output area to the initial
phase of a sorting operation.

The RELEASE statement can only be used within the range of an input procedure
associated with a SORT statement.

RELEASE Statement - Format

►► RELEASE record-name-1
FROM identifier-1

►◄

Within an INPUT PROCEDURE, at least one RELEASE statement must be
specified.

When the RELEASE statement is executed, the current contents of record-name-1
are placed in the sort file; that is, made available to the initial phase of the sorting
operation.

record-name-1
Must specify the name of a record in a sort-merge file description entry (SD).
Record-name-1 may be qualified.

IBM Extension

Can be a floating-point or date-time data item.

End of IBM Extension

FROM identifier-1
Makes the RELEASE statement equivalent to the statements:
MOVE identifier-1 to record-name-1
RELEASE record-name-1

Moving takes place according to the rules for the MOVE statement without the
CORRESPONDING phrase.

Identifier-1 can be the name of an alphanumeric or DBCS function identifier.

IBM Extension

Identifier-1 must be a DBCS data item if record-name-1 is a DBCS data item.

Identifier-1 can be a floating-point or date-time data item.

End of IBM Extension

Record-name-1 and identifier-1 must not refer to the same storage area.

If the RELEASE statement is executed without specifying the SD entry for
file-name-1 in a SAME RECORD AREA clause, the information in record-name-1 is
no longer available.

If the SD entry is specified in a SAME RECORD AREA clause, record-name-1 is
still available as a record of the other files named in that clause.

RELEASE Statement

444 ILE COBOL Reference

When FROM identifier-1 is specified, the information is still available in
identifier-1.

When control passes from the INPUT PROCEDURE, the sort file consists of all
those records placed in it by execution of RELEASE statements.

RELEASE Statement

Chapter 14. Part 6. Procedure Division 445

RETURN Statement
The RETURN statement transfers records from the final phase of a sort or merge
operation to an OUTPUT PROCEDURE.

The RETURN statement can be used only within the range of an output procedure
associated with a SORT or MERGE statement.

RETURN Statement - Format

►► RETURN file-name-1
RECORD INTO identifier-1

►

► END imperative-statement-1
AT

►

►
NOT END imperative-statement-2

AT
END-RETURN

►◄

Within an OUTPUT PROCEDURE, at least one RETURN statement must be
specified.

When the RETURN statement is executed, the next record from file-name-1 is
made available for processing by the OUTPUT PROCEDURE.

The record areas associated with file-name-1 and identifier-1 must not be the same
storage area.

The record is available in both the record area and the data-item referenced by
identifier-1.

file-name-1
Must be described in a Data Division SD entry.

If more than one record description is associated with file-name-1, these
records automatically share the same storage; that is, the area is implicitly
redefined. After RETURN statement execution, only the contents of the current
record are available; if any data items lie beyond the length of the current
record, their contents are undefined.

INTO identifier-1
The RETURN INTO statement is equivalent to the statements:
RETURN file-name-1
MOVE record-name TO identifier-1

IBM Extension

Identifier-1 can be a DBCS, floating-point, or date-time data item.

End of IBM Extension

Moving takes place according to the rules for the MOVE statement without the
CORRESPONDING phrase.

The size of the current record is determined by rules specified for the RECORD
clause. If the file description entry contains a RECORD IS VARYING clause,

RETURN Statement

446 ILE COBOL Reference

the implied MOVE is a group move. However, the implied MOVE does not
occur when the RETURN statement is unsuccessful.

Any subscripting, indexing, or reference modification associated with
identifier-1 is evaluated after the record has been returned and immediately
before it is moved to identifier-1.

The INTO phrase may be specified in a RETURN statement if one or both of
the following are true:
v If only one record description is subordinate to the sort-merge file

description entry, and/or
v If all record-names associated with file-name-1 and the data item referenced

by identifier-1 describe a group item or an elementary alphanumeric item.

AT END Phrases
The imperative-statement specified on the AT END phrase executes after all
records have been returned from file-name-1. No more RETURN statements may
be executed as part of the current output procedure.

If an at end condition does not occur during the execution of a RETURN
statement, then after the record is made available and after executing any implicit
move resulting from the presence of an INTO phrase, control is transferred to the
imperative statement specified by the NOT AT END phrase, otherwise control is
passed to the end of the RETURN statement.

END-RETURN Phrase
This explicit scope terminator serves to delimit the scope of the RETURN
statement. END-RETURN permits a conditional RETURN statement to be nested in
another conditional statement. END-RETURN may also be used with an
imperative RETURN statement.

For more information, see “Delimited Scope Statements” on page 266.

RETURN Statement

Chapter 14. Part 6. Procedure Division 447

REWRITE Statement
The REWRITE statement logically replaces an existing record in a direct-access file.

When the REWRITE statement is executed, the associated direct-access file must be
open in I-O mode.

IBM Extension

The action of this statement can be inhibited at program run time by the inhibit
write (INHWRT) parameter of the Override with database file (OVRDBF) CL
command. When this parameter is specified, nonzero file status codes are not set
for data dependent errors. Duplicate key and data conversion errors are examples
of data dependent errors.

For more information on this command, see the CL and APIs section of the
Programming category in the System i5/OS Information Center at this Web site
-http://www.ibm.com/systems/i/infocenter/.

End of IBM Extension

REWRITE Statement - Format 1

REWRITE Statement - Format 1

►► REWRITE record-name-1
FROM identifier-1

►

►
(1)

FORMAT identifier-2
IS literal-1

►

►
(1)

NULL-KEY-MAP identifier-5
IS

►

►
(1)

NULL-MAP identifier-6
IS

►

►
INVALID imperative-statement-1

KEY

►

►
NOT INVALID imperative-statement-2

KEY
END-REWRITE

►◄

Notes:

1 IBM Extension

REWRITE Statement

448 ILE COBOL Reference

http://www.ibm.com/systems/i/infocenter/

record-name-1
The name of a record in the File Section, having the same number of character
positions as the record being replaced. The name of the record cannot be
reference modified.

identifier-1
This is the sending item.

FROM phrase
This phrase has the following effect:
MOVE identifier-1 TO record-name-1.
REWRITE record-name-1.

After successful processing of the REWRITE statement, the current record is no
longer available in record-name-1, but is still available in identifier-1. Both
record-name-1 and identifier-1 cannot refer to the same storage area.

IBM Extension

FORMAT phrase
This phrase applies when the REWRITE statement is performed against an
indexed file for which the ASSIGN specified DATABASE as the file device
type. It is optional when processing a file that has one record format.

The value specified in the FORMAT phrase contains the name of the record
format to use for this I-O operation. The system uses this to specify or select
which record format to operate on.

Identifier-2, if specified, must be an alphanumeric data item of 10 characters or
less.

Literal-1, if specified, must be an uppercase character-string of 10 characters or
less.

If the FORMAT phrase is not specified, the first format defined is used when
accessing indexed files in Random Access Mode.

A value of all blanks is treated as though the FORMAT phrase were not
specified. If the value is not valid for the file, a FILE STATUS of 9K is returned
and a USE procedure is invoked, if applicable for the file.

NULL-KEY-MAP IS phrase
Refer to the description supplied for this phrase on page “NULL-KEY-MAP IS
Phrase” on page 429.

NULL-MAP IS phrase
Refer to the description supplied for this phrase on page “NULL-MAP IS
Phrase” on page 430.

End of IBM Extension

INVALID KEY phrase
This phrase is valid in indexed organization files, and relative organization
files with random or dynamic access. It is processed when the record specified
by the key field in the record area is not found.

When an INVALID KEY condition exists, the updating operation does not take
place. The data in record-name is unaffected. This phrase transfers control to
the corresponding imperative-statement, as appropriate.

REWRITE Statement

Chapter 14. Part 6. Procedure Division 449

The INVALID KEY phrase must be specified if no applicable
EXCEPTION/ERROR procedure is specified for record-name-1.

An INVALID KEY condition exists when:
v The access mode is sequential, and the value contained in the prime

RECORD KEY of the record to be replaced does not equal the value of the
prime RECORD KEY data item of the last-retrieved record from the file, or

v The value contained in the prime RECORD KEY does not equal that of any
record in the file.

v The value of an ALTERNATE RECORD KEY data item for which
DUPLICATES is not specified is equal to that of a record already in the file.

The INVALID KEY phrase must be specified for files in which an applicable
USE procedure is not specified.

See “Invalid Key Condition” under “Common Processing Facilities” on page
274 for more information.

For sequentially accessed indexed files on device type DISK, this phrase is
processed when the value contained in the RECORD KEY of the record to be
replaced does not equal the RECORD KEY data item of the last retrieved
record from the file.

NOT INVALID KEY phrase
This phrase is valid for indexed organization files, and relative organization
files with random or dynamic access. After the successful completion of a
REWRITE statement with the NOT INVALID KEY phrase, control transfers to
the imperative statement associated with the phrase.

REWRITE Statement Considerations
After a successful execution of a REWRITE statement, the record is no longer
available in record-name-1 unless the associated file is named in a SAME RECORD
AREA clause (in which case, the record is also available as a record of the other
files named in the SAME RECORD AREA clause).

The file position indicator is not affected by execution of the REWRITE statement.

If the FILE STATUS clause is specified in the FILE-CONTROL entry, the associated
status key is updated when the REWRITE statement is executed.

Sequential Files
The last input/output statement that was executed for the file must have been a
successful READ statement. The record to be replaced is the record that was
retrieved by that statement.

The INVALID KEY and NOT INVALID KEY phrases must not be specified. An
EXCEPTION/ERROR procedure may be specified.

For files with sequential organization, the number of characters in record-name-1
must equal the number of character positions in the record being replaced.

Indexed Files
If the access mode is sequential, the last input/output statement that was executed
for the file must have been a successful READ statement. The record to be replaced
is the record that was retrieved by that statement. The value of the RECORD KEY
data-item must not have been changed since the record was read. If the value has
been changed, then an INVALID KEY condition exists.

REWRITE Statement

450 ILE COBOL Reference

If the access mode is random or dynamic, the record to be replaced is specified by
the value in the RECORD KEY data-item. If the file does not contain such a record,
then an INVALID KEY condition exists.

An INVALID KEY phrase should be specified if no EXCEPTION/ERROR
procedure has been defined for the file.

For files with indexed organization, the number of characters in record-name-1 can
be different from the number of character positions in the record being replaced.

IBM Extension

When EXTERNALLY-DESCRIBED-KEY is specified for the file, the key data held in
the record area that corresponds to the format specified by the FORMAT phrase (or
to the first format, if the FORMAT phrase is not used) is used to determine the
current value of the RECORD KEY data-item.

When the WITH DUPLICATES phrase is specified for the file, then for all access
modes (sequential, random, and dynamic) the last input/output statement that
was executed for the file must have been a successful READ statement. The record
to be replaced is the record that was retrieved by that statement. The value of the
RECORD KEY data-item must not have been changed since the record was read. If
the value has been changed, then an INVALID KEY condition exists.

Note: The READ statement is required to ensure that the correct record is replaced
when duplicate keys can be present in the file. The only way to rewrite one
specific record from a sequence of records with duplicate keys is to read
each of the records sequentially, and rewrite the required record when it has
been identified.

End of IBM Extension

Relative Files
If the access mode is sequential, the last input/output statement that was executed
for the file must have been a successful READ statement. The record to be replaced
is the record that was retrieved by that statement. The INVALID KEY and NOT
INVALID KEY phrases must not be specified. An EXCEPTION/ERROR procedure
may be specified.

If the access mode is random or dynamic, the record to be replaced is specified by
the value in the RELATIVE KEY data-item. If the file does not contain such a
record, then an INVALID KEY condition exists. An INVALID KEY phrase should
be specified if no EXCEPTION/ERROR procedure has been defined for the file.

For files with relative organization, the number of characters in record-name-1 can
be different from the number of character positions in the record being replaced.

Record Locking

IBM Extension

A successful READ statement must precede any REWRITE statement for the
following file types:
v Files with sequential organization
v Files using squential access mode
v Files with indexed organization and with duplicate keys.

REWRITE Statement

Chapter 14. Part 6. Procedure Division 451

Such a READ statement must not include the NO LOCK phrase. If an attempt is
made to replace a record that has been selected by a READ statement, and that
record was not locked when it was read, the REWRITE statement will be
unsuccessful.

End of IBM Extension

Transaction (Subfile) Format

IBM Extension

The REWRITE statement is used to replace a subfile record that already exists in
the subfile.

REWRITE Statement - Format 2 - Transaction (Subfile)

►► REWRITE SUBFILE record-name-1
FROM identifier-1

►

►
FORMAT identifier-2

IS literal-1
TERMINAL identifier-3

IS literal-2

►

►
INDICATOR identifier-4
INDICATORS IS
INDIC ARE

►

►
INVALID imperative-statement-1

KEY

►

►
NOT INVALID imperative-statement-2

KEY
END-REWRITE

►◄

The number of character positions in the record referenced by record-name-1 must
be equal to the number of character positions in the record being replaced. A
successful read operation on the record must be done prior to the rewrite
operation. The record replaced in the subfile is that record accessed by the
previous read operation.

FORMAT Phrase
Multiple data records, each with a different format, can be concurrently active
for a Transaction file. If the FORMAT phrase is specified, it must specify a
valid format name that is defined to the system, and the I-O operation must be
performed on a data record of the same format. If the format is an invalid
name or if it does not exist, the FILE STATUS data item, if specified, is set to a
value of 9K and the contents of the record area are undefined.

Notes:

1. The record format specified in the FORMAT phrase must be the record
format accessed on the previous read operation.

2. Literal-1 or the contents of identifier-2 must be the name of the subfile
format accessed on the previous READ.

REWRITE Statement

452 ILE COBOL Reference

TERMINAL Phrase
The TERMINAL phrase indicates which program device’s subfile is to have a
record rewritten. If the TERMINAL phrase is specified, literal-2 or identifier-3
must refer to a workstation that has been acquired by the Transaction file. If
literal-2 or identifier-3 contains blanks, the TERMINAL phrase has no effect.
The program device specified by the TERMINAL phrase must have been
acquired, either explicitly or implicitly, and must have a subfile associated with
the device.

Literal-2 or identifier-3 must be a valid program device name. Literal-2, if
specified, must be nonnumeric and 10 characters or less. Identifier-3, if
specified, must refer to an alphanumeric data item, 10 characters or less in
length.

If the TERMINAL phrase is omitted from a Transaction file that has acquired
multiple program devices, the subfile used is the subfile associated with the
last program device from which a READ of the Transaction file was attempted.

The REWRITE statement cannot be used for communications devices. If the
REWRITE statement is used for a communications device, the operation fails
and a file status of 90 is set.

INDICATOR Phrase, INDICATORS Phrase, INDIC Phrase
Specifies which indicators are to be used when a data record is rewritten.
Indicators can be used to pass information about the data record and how it
was entered into the program.

For detailed information on the INDICATORS phrase, refer to Using Indicators
with Transaction Files in the IBM Rational Development Studio for i: ILE COBOL
Programmer's Guide .

Identifier-4 must be either an elementary Boolean data item specified without
the OCCURS clause or a group item that has elementary Boolean data items
subordinate to it.

INVALID KEY Phrase
If, at the time of the rewrite operation, the RELATIVE KEY data item contains
a value that does not correspond to the relative record number of the record
from the previous read operation, the INVALID KEY condition exists.

The INVALID KEY phrase should be specified for files for which an
appropriate USE procedure is not specified. Undesirable results may occur if
the INVALID KEY phrase is not specified, and no USE procedure is specified.

NOT INVALID KEY Phrase
After the successful completion of a REWRITE statement with the NOT
INVALID KEY phrase, control transfers to the imperative statement associated
with the phrase.

END-REWRITE Phrase
This explicit scope terminator serves to delimit the scope of the REWRITE
statement. END-REWRITE permits a conditional REWRITE statement to be
nested in another conditional statement. END-REWRITE may also be used
with an imperative REWRITE statement. For more information, see “Delimited
Scope Statements” on page 266.

End of IBM Extension

REWRITE Statement

Chapter 14. Part 6. Procedure Division 453

ROLLBACK Statement

IBM Extension

The ROLLBACK statement provides a way to cancel one or more changes to
database records when the changes should not remain permanent.

ROLLBACK Statement - Format

►► ROLLBACK ►◄

When the ROLLBACK statement is executed, any changes made to files under
commitment control since the last commitment boundary are removed from the
database. Note that when a file is cleared while being opened for OUTPUT,
execution of a ROLLBACK statement does not restore cleared records to the file.

A commitment boundary is the previous occurrence of a ROLLBACK or COMMIT
statement. If no COMMIT or ROLLBACK has been issued, the commitment
boundary is the first OPEN of a file under commitment control. Removal of
changes takes place for all files under commitment control and not just for files
under commitment control in the COBOL program that issues the ROLLBACK.

Once the ROLLBACK is successfully executed, all record locks held for files under
commitment control are released and the records become available to other jobs.
Commitment control can be scoped at the job level or the activation group level.
(Commitment control is scoped at the activation group level by default.)

The ROLLBACK has no effect on files not under commitment control. If a
ROLLBACK is executed and there are no files under commitment control, the
ROLLBACK is ignored.

A file under commitment control can be opened or closed without affecting the
status of changes made since the last commitment boundary. A COMMIT must still
be issued to make the changes permanent. A ROLLBACK, when executed, leaves
files in the same open or closed state as before execution.

The ROLLBACK statement does not:
v Modify the I-O-FEEDBACK area for any file
v Set a file status value for any file.

For the ROLLBACK statement, the following considerations apply:
v The ROLLBACK statement sets the file position indicator to its position at the

previous commitment boundary. This is important to remember if you are doing
sequential processing.

v If no COMMIT statement has been issued since the file was opened, the
ROLLBACK statement sets the file position indicator to its position at the OPEN.

v The file position indicator is undefined after a ROLLBACK if the file is closed
with uncommitted changes.

If commitment control is scoped at the job level, an implicit ROLLBACK of
uncommitted records is automatically done for all files under commitment control
at the end of every job. Any uncommitted changes to the database are cancelled.

ROLLBACK Statement

454 ILE COBOL Reference

If commitment control is scoped at the activation group level, an implicit commit
occurs when the activation group ends normally. If the activation group ends
abnormally, an implicit ROLLBACK occurs.

For more information on commitment control, see the IBM Rational Development
Studio for i: ILE COBOL Programmer's Guide.

End of IBM Extension

SEARCH Statement
The SEARCH statement searches a table for an element that satisfies the specified
condition, and adjusts the associated index to indicate that element.
v SEARCH Statement Considerations
v SEARCH Example

SEARCH Statement - Format 1 - Serial Search

SEARCH Statement - Format 1 - Serial Search

►► SEARCH identifier-1
VARYING identifier-2

index-name-1

►

►
END imperative-statement-1

AT

►

► ▼

▼

WHEN condition-1 imperative-statement-2
NEXT SENTENCE

WHEN condition-1 imperative-statement-2
END-SEARCH

►◄

v Execution of a Serial Search

SEARCH Statement - Format 2 - Binary Search

SEARCH Statement - Format 2 - Binary Search

►► SEARCH ALL identifier-1
END imperative-statement-1

AT

►

ROLLBACK Statement

Chapter 14. Part 6. Procedure Division 455

► WHEN equal phrase 1
condition-name-1

▼

AND equal phrase 2
condition-name-2

►

► imperative-statement-2

NEXT SENTENCE
END-SEARCH

►◄

equal phrase 1:

data-name-1
IS

EQUAL
TO

=

identifier-3
literal-1
arithmetic-expression-1

equal phrase 2:

data-name-2
IS

EQUAL
TO

=

identifier-4
literal-2
arithmetic-expression-2

v Execution of a Binary Search

identifier-1
Can be a data item subordinate to a data item that contains an OCCURS
clause; that is, it can be a part of a multi-dimensional table. In this case, the
data description entry must specify an INDEXED BY phrase for each
dimension of the table.

IBM Extension

Identifier-1 can specify a table containing floating-point data items, a table
containing DBCS items, or a table containing date-time items.

End of IBM Extension

Identifier-1 must refer to all occurrences within the table element; that is, it
must not be subscripted or reference modified.

The Data Division description of identifier-1 must contain an OCCURS clause
with the INDEXED BY phrase.

SEARCH statement execution modifies only the value in the index-name
associated with identifier-1 and, if present, of index-name-1 or identifier-2 (see
“VARYING Phrase” on page 457). Therefore, to search an entire two- to
seven-dimensional table, it is necessary to execute a SEARCH statement for
each dimension. Before each execution, SET statements must be executed to
reinitialize the associated index-names.

AT END/WHEN Phrases
After imperative-statement-1 or imperative-statement-2 is executed, control passes
to the end of the SEARCH statement, unless imperative-statement-1 or
imperative-statement-2 ends with a GO TO statement.

SEARCH Statement

456 ILE COBOL Reference

Condition-1
Condition-1, may be any condition described under “Conditional Expressions” on
page 247.

IBM Extension

Condition-1 can include DBCS relations or DBCS condition-name conditions.

End of IBM Extension

NEXT SENTENCE Phrase
This phrase causes the transfer of control to an implicit CONTINUE statement
immediately preceding the next separator period. If the NEXT SENTENCE phrase
is specified, the END-SEARCH phrase must not be specified.

END-SEARCH Phrase
This explicit scope terminator serves to delimit the scope of the SEARCH
statement. END-SEARCH permits a conditional SEARCH statement to be nested in
another conditional statement. If the END-SEARCH phrase is specified, the NEXT
SENTENCE phrase must not be specified.

For more information, see “Delimited Scope Statements” on page 266.

Serial Search
The Format 1 SEARCH statement executes a serial search beginning at the current
index setting. When the search begins, if the value of the index-name associated
with identifier-1 is not greater than the highest possible occurrence number, the
following actions take place:
v The condition(s) in the WHEN phrase are evaluated in the order in which they

are written.
v If none of the conditions is satisfied, the index-name for identifier-1 is increased

to correspond to the next table element, and step 1 is repeated.
v If upon evaluation, one of the WHEN conditions is satisfied, the search is

terminated immediately, and the imperative-statement associated with that
condition is executed. The index-name points to the table element that satisfied
the condition. If NEXT SENTENCE is specified, control passes to the statement
following the closest period.

v If the end of the table is reached (that is, the incremented index-name value is
greater than the highest possible occurrence number) without the WHEN
condition being satisfied, the search is terminated, as described in the next
paragraph.

If, when the search begins, the value of the index-name associated with identifier-1
is greater than the highest possible occurrence number, the search immediately
ends, and, if specified, the AT END imperative-statement is executed. If the AT
END phrase is omitted, control passes to the next statement after the SEARCH
statement.

VARYING Phrase
index-name-1

One of the following actions applies:

SEARCH Statement

Chapter 14. Part 6. Procedure Division 457

v If index-name-1 is an index for identifier-1, this index is used for the search.
Otherwise, the first (or only) index-name is used.

v If index-name-1 is an index for another table element, then the first (or only)
index-name for identifier-1 is used for the search; the occurrence number
represented by index-name-1 is increased by the same amount as the search
index-name and at the same time.

When the VARYING index-name-1 phrase is omitted, the first (or only)
index-name for identifier-1 is used for the search.

identifier-2
Must be either an index data item or an elementary integer item. During the
search, one of the following actions applies:
v If identifier-2 is an index data item, then, whenever the search index is

increased, the specified index data item is simultaneously increased by the
same amount.

v If identifier-2 is an integer data item, then, whenever the search index is
increased, the specified data item is simultaneously increased by 1.

Figure 23 illustrates a Format 1 SEARCH operation containing two WHEN phrases.

SEARCH Statement

458 ILE COBOL Reference

Binary Search
The Format 2 SEARCH ALL statement executes a binary search. The search index
need not be initialized by SET statements, because its setting is varied during the
search operation so that its value is at no time less than the value of the first table

Entrance

False

Index setting:
highest permissible
occurence number

Condition-1

Condition-2

increment index-name
for identifier-1
(index-name-1 if
applicable)

True

True

False

imperative
statement-1

imperative
statement-1

imperative
statement-1

increment index-name-1
(for a different table)
or identifier-2

*

*

**

*AT END>

<

These operations are included only when called for in the statement.

Control transfers to the next sentence, unless the imperative statement
ends with a GO TO statement.

*
**

*

* These operations are included only when called for in the statement.

** Control transfers to the next sentence, unless the imperative statement ends with a
GO TO statement.

Figure 23. Format 1 SEARCH with Two WHEN Phrases

SEARCH Statement

Chapter 14. Part 6. Procedure Division 459

element, nor ever greater than the value of the last table element. The index used
is always that associated with the first index-name specified in the OCCURS
clause.

identifier-1
Can be a data item subordinate to a data item that contains an OCCURS
clause; that is, it can be a part of a two- to seven-dimensional table. In this
case, the data description entry must specify an INDEXED BY phrase for each
dimension of the table.

Before the search takes place, the values of all indexes should be set for higher
dimensions of the table to define a specific table of identifier-1 elements.

Identifier-1 must refer to all occurrences within the table element; that is, it
must not be subscripted or indexed.

Identifier-1 cannot be a pointer data item or a procedure-pointer data item.

IBM Extension

Identifier-1 cannot be a floating-point data item.

Identifier-1 can be a DBCS data item if the ASCENDING/DESCENDING KEY
is defined as a DBCS data item.

Identifier-1can be a date-time data item if the ASCENDING/DESCENDING
KEY is defined as a date-time data item.

End of IBM Extension

The Data Division description of identifier-1 must contain an OCCURS clause
with the INDEXED BY option. For Format-2, the Data Division description
must also contain the KEY IS phrase in its OCCURS clause.

WHEN Phrase
If the WHEN phrase cannot be satisfied for any setting of the index within this
range, the search is unsuccessful.

If the WHEN option can be satisfied, control passes to imperative-statement-2, and
the index contains the value indicating the occurrence that allowed the WHEN
condition(s) to be satisfied.

condition-name-1, condition-name-2
Each condition-name specified must have only a single value, and each must
be associated with an ASCENDING/DESCENDING KEY identifier for this
table element.

data-name-1, data-name-2
Must specify an ASCENDING/DESCENDING KEY data item in the
identifier-1 table element and must be indexed by the first identifier-1
index-name, along with other indexes or literals, as required. Each data-name
may be qualified.

IBM Extension

Data-name-1 or data-name-2 cannot be a floating-point data item. Data-name-1
or data-name-2 can be a date-time data item.

End of IBM Extension

SEARCH Statement

460 ILE COBOL Reference

identifier-3, identifier-4
Must not be an ASCENDING/DESCENDING KEY data item for identifier-1 or
an item that is indexed by the first index-name for identifier-1.

Must not be a pointer or procedure-pointer data item.

IBM Extension

Can be floating-point or date-time data items.

End of IBM Extension

arithmetic-expression-1, arithmetic-expression-2
May be any of the expressions defined under “Arithmetic Expressions” on
page 245, with the following restriction: Any identifier in the
arithmetic-expression must not be an ASCENDING/DESCENDING KEY data
item for identifier-1 or an item that is indexed by the first index-name for
identifier-1.

When an ASCENDING/DESCENDING KEY data item is specified, explicitly
or implicitly, in the WHEN phrase, all preceding ASCENDING/DESCENDING
KEY data-names for identifier-1 must also be specified.

The results of a SEARCH ALL operation are predictable only when:
v The data in the table is ordered according to the ASCENDING/DESCENDING

KEY phrase
v The contents of the ASCENDING/DESCENDING keys specified in the WHEN

clause provide a unique table reference.

Search Statement Considerations
Index data items cannot be used as subscripts, because of the restrictions on direct
reference to them.

The use of a direct indexing reference together with a relative indexing reference
for the same index-name allows reference to two different occurrences of a table
element for comparison purposes.

When the object of the VARYING option is an index-name for another table
element, one Format 1 SEARCH statement steps through two table elements at
once.

To ensure correct execution of a SEARCH statement for a variable-length table,
make sure the object of the OCCURS DEPENDING ON clause (data-name-1)
contains a value that specifies the current length of the table.

The scope of a SEARCH statement may be terminated by any of the following:
v An END-SEARCH phrase at the same level of nesting
v A separator period
v An ELSE or END-IF phrase associated with a previous IF statement.

SEARCH Example
The following example searches an inventory table for items that match those from
input data. The key is ITEM-NUMBER.
.. 1 2 3 4 5 6 7

DATA DIVISION.

SEARCH Statement

Chapter 14. Part 6. Procedure Division 461

FILE SECTION.
FD SALES-DATA

BLOCK CONTAINS 1 RECORDS
RECORD CONTAINS 80 CHARACTERS
LABEL RECORDS STANDARD
DATA RECORD IS SALES-REPORTS.

01 SALES-REPORTS PIC X(80).
FD PRINTED-REPORT

BLOCK CONTAINS 1 RECORDS
RECORD CONTAINS 132 CHARACTERS
LABEL RECORDS OMITTED
DATA RECORD IS PRINTER-OUTPUT.

01 PRINTER-OUTPUT PIC X(132).
FD INVENTORY-DATA

BLOCK CONTAINS 1 RECORDS
RECORD CONTAINS 40 CHARACTERS
LABEL RECORDS STANDARD
DATA RECORD IS INVENTORY-RECORD.

01 INVENTORY-RECORD.
03 I-NUMBER PIC 9(4).
03 INV-ID PIC X(26).
03 I-COST PIC 9(8)V99.

WORKING-STORAGE SECTION.
01 EOF-SW PIC X VALUE "N".
01 EOF-SW2 PIC X VALUE "N".
01 SUB1 PIC 99.
01 RECORDS-NOT-FOUND PIC 9(5) VALUE ZEROS.
01 TOTAL-COSTS PIC 9(10) VALUE ZEROS.
01 HOLD-INPUT-DATA.

03 INVENTORY-NUMBER PIC 9999.
03 PURCHASE-COST PIC 9(4)V99.
03 PURCHASE-DATE PIC 9(6).
03 FILLER PIC X(64).

01 PRINTER-SPECS.
03 PRINT-LINE.

05 OUTPUT-ITEM-NUMBER PIC ZZZ9.
05 FILLER PIC X(48) VALUE SPACES.
05 TOTAL-COSTS-0 PIC $(8).99.

01 PRODUCT-TABLE.
05 INVENTORY-NUMBERS OCCURS 50 TIMES

ASCENDING KEY ITEM-NUMBER
INDEXED BY INDEX-1.

07 ITEM-NUMBER PIC 9(4).
07 ITEM-DESCRIPTION PIC X(26).
07 ITEM-COST PIC 9(8)V99.

.. 1 2 3 4 5 67

PROCEDURE DIVISION.
100-START-IT.

OPEN INPUT SALES-DATA INVENTORY-DATA OUTPUT PRINTED-REPORT.
MOVE HIGH-VALUES TO PRODUCT-TABLE.
PERFORM READ-INVENTORY-DATA.

LOAD-TABLE-ROUTINE.
PERFORM LOAD-IT VARYING SUB1 FROM 1 BY 1 UNTIL SUB1 > 50

OR EOF-SW2 = "Y".
PERFORM 110-READ-IT.

200-MAIN-ROUTINE.
PERFORM PROCESS-DATA UNTIL EOF-SW = "Y".
MOVE TOTAL-COSTS TO TOTAL-COSTS-0.
PERFORM WRITE-REPORT THRU WRITE-REPORT-EXIT.
DISPLAY "RECORDS NOT FOUND - " RECORDS-NOT-FOUND

UPON MYTUBE.
STOP RUN.
PROCESS-DATA.

SEARCH ALL INVENTORY-NUMBERS
AT END PERFORM KEY-NOT-FOUND THRU NOT-FOUND-EXIT
WHEN ITEM-NUMBER (INDEX-1) = INVENTORY-NUMBER

SEARCH Statement

462 ILE COBOL Reference

MOVE ITEM-NUMBER (INDEX-1) TO OUTPUT-ITEM-NUMBER
MOVE ITEM-COST (INDEX-1) TO TOTAL-COSTS-0
ADD ITEM-COST (INDEX-1) TO TOTAL-COSTS
PERFORM WRITE-REPORT THRU WRITE-REPORT-EXIT.

PERFORM 110-READ-IT.
KEY-NOT-FOUND.

ADD 1 TO RECORDS-NOT-FOUND.
NOT-FOUND-EXIT.

EXIT.
LOAD-IT.

MOVE INVENTORY-RECORD TO INVENTORY-NUMBERS (SUB1).
PERFORM READ-INVENTORY-DATA.

WRITE-REPORT.
WRITE PRINTER-OUTPUT FROM PRINTER-SPECS.

WRITE-REPORT-EXIT.
EXIT.

READ-INVENTORY-DATA.
READ INVENTORY-DATA
AT END MOVE "Y" TO EOF-SW2.

110-READ-IT.
READ SALES-DATA INTO HOLD-INPUT-DATA
AT END MOVE "Y" TO EOF-SW.

SET Statement
The SET statement can be used to:
v Initialize the values of index-names or identifiers used to reference table

elements
v Increment or decrement an index-name
v Set the status of an external switch to ON or OFF
v Move data to make conditional variable conditions true

IBM Extension

v Set pointer and procedure-pointer data items and the ADDRESS OF special
register

v Set and query the locale categories of the current locale.

End of IBM Extension

When the sending and receiving fields in a SET statement share part of their
storage (that is, the operands overlap), the result of the execution of such a SET
statement is undefined.

Format 1 - Initializing Index-names, Identifiers
When Format 1 of the SET statement is executed, the current value of the receiving
field is replaced by the value of the sending field (with conversion).

SET Statement - Format 1

►► SET ▼ index-name-1
identifier-1

TO index-name-2
identifier-2
integer-1

►◄

index-name-1, identifier-1
Receiving fields.

SEARCH Statement

Chapter 14. Part 6. Procedure Division 463

Must be either index data items or elementary numeric integer items.

IBM Extension

Identifier-1 cannot be a floating-point data item.

End of IBM Extension

index-name-2
Sending field.

The value before the SET statement is executed must correspond to the
occurrence number of its associated table.

identifier-2
Sending field.

Must be either an index data item or an elementary numeric integer item.

IBM Extension

Identifier-2 cannot be a floating-point data item.

End of IBM Extension

integer-1
Sending field.

Must be a positive integer.

Execution of the Format 1 SET statement depends upon the type of receiving field,
as follows:
v Index-name receiving fields (index-name-1, and so on) are usually converted to a

displacement value representing the occurrence number indicated by the
sending field. To be valid, the resulting index-name value must correspond to an
occurrence number in its associated table element. For the one exception, when
the sending field is an index data item, the value in the index data item is
placed in the index-name without change.

v Index data item receiving fields (identifier-1, and so on) are set equal to the
contents of the sending field (which must be either an index-name or an index
data item); no conversion takes place. A numeric integer or literal sending field
must not be specified.

v Integer data item receiving fields (identifier-1, and so on) are set to the
occurrence number associated with the sending field, which must be an
index-name. An integer data item, an index data item, or a literal sending field
must not be specified.

Table 33 shows valid combinations of sending and receiving fields in a Format 1
SET statement.

Table 33. Sending and Receiving Fields for Format 1 SET Statement

Sending Field
Receiving Field

Index-name Index Data Item Integer Data Item

Index-name Valid Valid Valid

Index Data Item Valid* Valid* —

Integer Data Item Valid — —

SET Statement

464 ILE COBOL Reference

Table 33. Sending and Receiving Fields for Format 1 SET Statement (continued)

Sending Field
Receiving Field

Index-name Index Data Item Integer Data Item

Integer Literal Valid — —

*No conversion takes place

Receiving fields are acted upon in the left-to-right order in which they are
specified. Any subscripting or indexing associated with an identifier's receiving
field is evaluated immediately before the field is acted upon.

The value used for the sending field is the value at the beginning of SET statement
execution.

The value for an index-name after execution of a SEARCH or PERFORM statement
may be undefined; therefore, a Format 1 SET statement should reinitialize such
index-names before other table-handling operations are attempted.

IBM Extension

If index-name-2 refers to a table that has a subordinate item that contains an
OCCURS DEPENDING ON clause, identifier-1 may receive undefined values. For
more information, see Appendix H, “Complex OCCURS DEPENDING ON,” on
page 687.

End of IBM Extension

Format 2 - Adjusting Index Values
When Format 2 of the SET statement is executed, the value of the receiving field is
increased (UP BY) or decreased (DOWN BY) by a value that corresponds to the
value in the sending field.

SET Statement - Format 2

►► SET ▼ index-name-3 UP BY
DOWN BY

identifier-3
integer-2

►◄

index-name-3
This index-name value both before and after the SET statement execution must
correspond to the occurrence numbers in an associated table.

identifier-3
This sending field must be an elementary integer data-item.

IBM Extension

Identifier-3 cannot be a floating-point data item.

End of IBM Extension

integer-2
This sending field must be an integer.

SET Statement

Chapter 14. Part 6. Procedure Division 465

When Format 2 of the SET statement is executed, the contents of the receiving field
are increased (UP BY) or decreased (DOWN BY) by a value that corresponds to the
number of occurrences represented by the value of identifier-3 or integer-2.

IBM Extension

If index-name-3 refers to a table that has a subordinate item that contains an
OCCURS DEPENDING ON clause, and if the ODO object is changed before
executing a Format 2 SET Statement, index-name-3 cannot contain a value that
corresponds to an occurrence number of its associated table. For more information,
see Appendix H, “Complex OCCURS DEPENDING ON,” on page 687.

End of IBM Extension

Receiving fields are acted upon in the left-to-right order in which they are
specified. The value of the incrementing or decrementing field at the beginning of
SET statement execution is used for all receiving fields.

Format 3 - Setting External Switches
When Format 3 of the SET statement is executed, the status of each external switch
associated with the specified mnemonic-name is turned ON or OFF.

SET Statement - Format 3

►► SET ▼ ▼ mnemonic-name-1 TO ON
OFF

►◄

mnemonic-name
Must be associated with an external switch, the status of which can be altered.

For Format 3 each mnemonic-name must be associated with an external switch,
the status of which can be altered. The only external switches allowed are the
UPSI switches, UPSI-0 through UPSI-7.

The status of each external switch associated with the specified
mnemonic-name is modified such that the truth value resultant from
evaluation of a condition-name associated with that switch will reflect an on
status if the ON phrase is specified, or an off status if the OFF phrase is
specified.

Format 4 - Condition-names
When Format 4 of the SET statement is executed, the value associated with a
condition-name is placed in its conditional variable.

SET Statement - Format 4

►► SET ▼ condition-name-1 TO TRUE ►◄

condition-name-1
Must be associated with a conditional variable.

SET Statement

466 ILE COBOL Reference

If more than one literal is specified in the VALUE clause of condition-name-1, its
associated conditional variable is set to the first literal.

If multiple condition-names are specified, the results are the same as if a separate
SET statement had been written for each condition-name in the same order in
which the condition-names are specified.

Format 5 - Pointer Data Item

IBM Extension

When Format 5 of the SET statement is executed, the current value of the receiving
field is replaced by the address value contained in the sending field.

SET Statement - Format 5

►► SET ▼ identifier-4
ADDRESS OF identifier-5

TO identifier-6
ADDRESS OF identifier-7
NULL
NULLS

►◄

identifier-4
Receiving fields.

Must be described as USAGE IS POINTER.

ADDRESS OF identifier-5
Receiving fields.

This is the ADDRESS OF special register.

Must be a level-01 or level-77 item defined in the Linkage Section. It is set to
the value of the operand specified in the TO phrase. It cannot be subscripted
or reference modified.

identifier-6
Sending field.

Must be described as USAGE IS POINTER.

Must not contain an address within the program's own Working-Storage,
Local-Storage or File sections.

ADDRESS OF identifier-7
Sending field.

Must be an item in the data division section of any level except 66 or 88.

ADDRESS OF identifier-7 contains the address of the identifier, rather than its
contents. Identifier-7 can be subscripted, reference modified, or both.

NULL, NULLS
Sending field.

Sets the receiving field to contain the value of an invalid address.

End of IBM Extension

SET Statement

Chapter 14. Part 6. Procedure Division 467

Format 6 - Procedure-Pointer Data Item

IBM Extension

When Format 6 of the SET statement is executed, the current value of the receiving
field is replaced by the address value contained in the sending field.

SET Statement - Format 6

►► SET ▼ procedure-pointer-data-item-1 ►

► TO procedure-pointer-data-item-2
ENTRY identifier-1 Library Phrase

literal-1
Linkage Phrase

NULL
NULLS

►◄

Linkage Phrase:

LINKAGE environment-name-1
TYPE IS PROGRAM

PROCEDURE
PROGRAM
PROCEDURE

Library Phrase:

LIBRARY identifier-2
IN literal-2

Procedure-pointer-data-item-1, procedure-pointer-data-item-2
Procedure-pointer-data-item-1 is the receiving field.

They must be described as USAGE IS PROCEDURE-POINTER.

identifier-1
Must be defined as an alphanumeric item such that the value can be a
program name. (For more information, see “PROGRAM-ID Paragraph” on
page 62.) The procedure-pointer data item is set to the outermost COBOL
program (an ILE procedure) of the same compilation unit, or to the program
object (*PGM), named in identifier-1. The contents of the identifiers are affected
by the *MONOPRC option of the CRTCBLMOD or CRTBNDCBL command.

literal-1
Must be nonnumeric and must conform to the rules for formation of
program-names. The literals are affected by the *MONOPRC option of the
CRTCBLMOD or CRTBNDCBL command. The procedure-pointer data item can
be set to the outermost COBOL program (an ILE procedure) of the same
compilation unit, the outermost COBOL program (an ILE procedure) in
another compilation unit, an ILE procedure (written in another ILE language),
or a program object (*PGM). The procedure-pointer data item cannot be set to

SET Statement

468 ILE COBOL Reference

a nested COBOL program even if the nested COBOL program of the specified
name is visible from the point of SET. The LINKAGE TYPE phrase of the
ENTRY clause, along with the LINKAGE TYPE clause of the SPECIAL-NAMES
paragraph and the LINKLIT parameter of the CRTCBLMOD or CRTBNDCBL
command determine the type of object that the procedure-pointer data item is
set to.

LINKAGE TYPE Phrase
The LINKAGE TYPE phrase is used to specify the type of program that the
procedure-pointer data item is set to. It could be set to the address of a separately
compiled program object (*PGM) or a procedure within a program.

environment-name-1
The type of program that procedure-pointer-data-item-1 will be set to.
Environment-name-1 can be defined as:
v PGM (a program object, or *PGM)
v PRC (a procedure)

PROGRAM
Procedure-pointer-data-item-1 is set to a program object (*PGM).

PROCEDURE
Procedure-pointer-data-item-1 is set to a procedure.

NULL(S)
Sets the receiving field to contain the value of an invalid address.

IN LIBRARY Phrase
The IN LIBRARY phrase is valid only for setting a procedure pointer data item to
an IBM i program object. That is, a linkage of program must be specified, whether
implicitly or explicitly, on the SET statement.

identifier-2
Must be an alphanumeric data item. The contents of identifier-2 must represent
a valid IBM i library name. IBM i library names are at most 10 characters long;
the first 10 characters of identifier-2 are used to form the library name.

literal-2
Must be nonnumeric and can be a maximum of 10 characters.

Identifier-2 and literal-2 are not affected by the *MONOPRC compiler option, and
can contain an IBM i extended name.

End of IBM Extension

Format 7 - Adjusting Pointers

IBM Extension

When Format 7 of the SET statement is executed, the address contained in
pointer-data-item is increased (UP BY) or decreased (DOWN BY) by a value that
corresponds to the value in the sending field.

SET Statement

Chapter 14. Part 6. Procedure Division 469

SET Statement - Format 7

►► SET ▼ pointer-data-item UP BY
DOWN BY

identifier-8
integer-3
LENGTH OF identifier-9

►◄

pointer-data-item
The receiving field must be an elementary data item with USAGE IS
POINTER.

identifier-8
This sending field must be an elementary integer data-item.

Identifier-8 cannot be a floating-point data item.

integer-3
This sending field must be an integer.

identifier-9
For more information on the rules for identifier-9, see “LENGTH OF Special
Register” on page 321.

End of IBM Extension

Format 8 - Locale

IBM Extension

Format 8 of the SET statement allows you to set and query the locale categories of
the current locale. A locale is a system object containing language and cultural
information. For example, a locale contains the appropriate format for a date or
time in a particular region of the world. The information in a locale is divided into
locale categories. For example, locale category LC_TIME contains information
about date and time formats. For each run unit there is a DEFAULT locale, a
current locale, and from zero to many specific locales. The current locale is altered
by setting some or all of its locale categories to the DEFAULT or a specific locale.
The name of the specific locale to which a locale category (of the current locale)
was set can be placed into an identifier. The contents of a locale category can be
changed by setting the locale category from:
v The system default
v A locale defined in an alphanumeric elementary data item
v The mnemonic-name specified in the SPECIAL-NAMES paragraph.

Each locale category specified remains in effect for the duration of the run unit or
until another SET statement specifying the category is processed.

Set Statement - Format 8

SET Statement

470 ILE COBOL Reference

►► SET LOCALE ▼ LC_ALL
LC_COLLATE
LC_CTYPE
LC_MESSAGES
LC_MONETARY
LC_NUMERIC
LC_TIME
LC_TOD

►

►
INTO identifier-10

LIBRARY identifier-11
IN

►

►
FROM DEFAULT

identifier-12
LIBRARY identifier-13

IN
mnemonic-name-2

►◄

LC_ALL
Locale categories LC_COLLATE, LC_CTYPE, LC_MESSAGES,
LC_MONETARY, LC_NUMERIC, LC_TIME, and LC_TOD, as well as any other
categories included in the locale.

LC_COLLATE
The locale category that defines collation sequence.

LC_CTYPE
The locale category that defines character classification and character type.

LC_MESSAGES
The locale category that defines formatting of informative and diagnostic
messages, and interactive responses.

LC_MONETARY
The locale category that defines monetary formatting.

LC_NUMERIC
The locale category that defines numeric formatting.

LC_TIME
Thelocale category that defines date and time formatting.

LC_TOD
The locale category that defines definitions of time zone differences, time zone
names, and Daylight Saving Time start and end points.

identifier-10
The value of identifier-10 references a locale-category. Identifier-10 must be an
elementary alphanumeric data item. If the INTO phrase is specified, the
identification of the current locale for the specified category is stored in the
data item referenced by identifier-10. The INTO phrase is processed before the
FROM phrase, using the rules of the MOVE statement for an
alphanumeric-to-alphanumeric move.

SET Statement

Chapter 14. Part 6. Procedure Division 471

DEFAULT
Sets the locale category to the current default. The default locale exists at the
time a run unit is activated, and remains the default for the duration of the run
unit. The default locale also becomes the current locale at the time a run unit is
activated, and remains the current locale until it is switched using Format 8 of
the SET statement.

identifier-12
The value of identifier-10 references a locale-category. Identifier-12 must
reference an elementary alphanumeric data item. If the locale specified in
identifier-12 is not available, an operating system escape message is issued. If
the FROM phrase is specified, the current locale for the specified category is
set to the content of the data item referenced by identifier-12. The identification
of the current locale is stored using the rules of the MOVE statement for an
alphanumeric-to-alphanumeric move.

mnemonic-name-2
If the locale specified in mnemonic-name-2 is not available, an operating
system escape message is issued. If the FROM phrase is specified, the current
locale for the specified category is set to the locale category identified by
mnemonic-name-2.

IN LIBRARY Phrase
The IN LIBRARY phrase is used to specify the IBM i library where the locale object
exists. For the INTO clause, identifier-11 is updated with the library name for the
specified locale category. For the FROM clause, identifier-12 is used to locate the
locale object that the locale category will be set to.

identifier-11, identifier-13
Must be an elementary alphanumeric data item. The contents of identifier-11 or
identifier-13 must represent a valid IBM i library name. IBM i library names
are at most 10 characters long; the first 10 characters of identifier-2 are used to
form the library name.

If identifier-13 is not specified, a library of *LIBL is assumed. Otherwise,
identifier-13 must contain the library where the locale object name, specified in
identifier-12, exists. If identifier-11 is specified, it will contain the library name
of the locale object to which the current locale category was last set. If the
locale name in identifier-10 is DEFAULT, identifier-11 will be set to spaces.

Identifier-11 and identifier-13 are not affected by the *MONOPRC compiler option,
and can contain an IBM i extended name.

End of IBM Extension

SORT Statement
The SORT statement accepts records from one or more files, sorts them according
to the specified key(s), and makes the sorted records available either through an
OUTPUT PROCEDURE or in an output file. A SORT statement may appear
anywhere in the Procedure Division except in a Declarative Section. The maximum
number of USING or GIVING files is 32.

SORT Statement - Format

SET Statement

472 ILE COBOL Reference

►► SORT file-name-1 ▼ ▼ASCENDING data-name-1
ON DESCENDING KEY

►

►
DUPLICATES

WITH IN ORDER

►

►
SEQUENCE alphabet-name

COLLATING IS

►

► ▼USING file-name-2
input procedure phrase

▼GIVING file-name-3
output procedure phrase

►◄

input procedure phrase:

INPUT PROCEDURE procedure-name-1
IS

►

►
THROUGH procedure-name-2
THRU

output procedure phrase:

OUTPUT PROCEDURE procedure-name-3
IS

►

►
THROUGH procedure-name-4
THRU

file-name-1
The name given in the SD entry that describes the records being sorted.

Null-capable fields are supported, but null values are only supported for
DATABASE files that have ALWNULL specified on their ASSIGN clause. If
ALWNULL is not specified, the SORT operation will fail, and file status of 90 will
be returned if a field contains a null value.

ASCENDING/DESCENDING KEY Phrase
This phrase specifies that records are to be processed in ascending or descending
sequence (depending on the phrase specified), based on the specified sort keys.

SORT Statement

Chapter 14. Part 6. Procedure Division 473

data-name-1
Specifies a KEY data item on which the sort will be based. Each such
data-name must identify a data item in a record associated with file-name-1.
The following rules apply:
v A specific KEY data item must be physically located in the same position

and have the same data format in each input file. However, it need not have
the same data-name.

v If file-name-1 has more than one record description, then the KEY data items
need be described in only one of the record descriptions.

v If file-name-1 contains variable length records, all of the KEY data-items
must be contained within the first n character positions of the record, where
n equals the maximum record size specified for file-name-1.

v KEY data items must not contain an OCCURS clause or be subordinate to an
item that contains an OCCURS clause.

v The total length of the KEY data item must not exceed 2 000 bytes.
v KEY data items can be qualified, but they cannot be subscripted or indexed.
v KEY data items cannot be variably-located.
v Variable length fields can not be used in a SORT key as a variable length

field. Variable length fields are converted into group items by ILE COBOL.
Since variable length fields are converted into group items, they are
compared as alphanumeric data items when used in a SORT key.

SORT lists the KEY data items from left to right in order of decreasing
significance, no matter how they are divided into KEY phrases. The leftmost
data-name is the major key, the next data-name is the next most significant key,
and so forth.

The direction of the sorting operation depends on the specification of the
ASCENDING or DESCENDING keywords as follows:
v When ASCENDING is specified, the sequence is from the lowest key value to

the highest key value.
v When DESCENDING is specified, the sequence is from the highest key value to

the lowest.
v If the KEY data item is alphabetic, alphanumeric, alphanumeric-edited, or

numeric-edited, the sequence of key values depends on the collating sequence
used (see “COLLATING SEQUENCE Phrase” on page 475).

v If the KEY data item is DBCS, DBCS-edited, or national, the sequence of key
values is based on a binary collating sequence of the hexadecimal values of the
DBCS or national characters. The COLLATING SEQUENCE phrase is ignored.

IBM Extension

v KEY data items can be floating-point or date-time items.
v KEY data items can be reference modified, but they cannot be subscripted or

indexed.
v If the KEY is an external floating-point item, the compiler treats the data item as

character data, rather than numeric data. The sequence in which the records are
sorted depends on the collating sequence used.

v If the KEY data item is internal floating-point, the sequence of key values is in
numeric order.

v If the KEY is a date-time item, only some formats will be sorted as date or time
items. ILE COBOL supports many more date-time formats than IBM i DDS. In

SORT Statement

474 ILE COBOL Reference

general, ILE COBOL date-time formats that match an IBM i DDS format are
sorted as a date or time item; all other formats are treated as alphanumeric
items, and are sorted based on their hexadecimal value.

End of IBM Extension

v The key comparisons are performed according to the rules for comparison of
operands in a relation condition (see “Relation Condition” under “Conditional
Expressions” on page 247).

DUPLICATES Phrase
If the DUPLICATES phrase is specified, and the contents of all the key elements
associated with one record are equal to the corresponding key elements in one or
more other records, the order of these records is as follows:
v The order of the associated input files as specified in the SORT statement.

Within a given file the order is that in which the records are accessed from that
file.

v The order in which these records are released by an input procedure, when an
input procedure is specified.

If the DUPLICATES phrase is not specified, the order of these records is undefined.

COLLATING SEQUENCE Phrase
This phrase specifies the collating sequence to be used in nonnumeric comparisons
for the KEY data items in this sorting operation.

alphabet-name
Must be specified in the alphabet-name clause of the SPECIAL-NAMES
paragraph. Any one of the alphabet-name clause options may be specified. See
“SPECIAL-NAMES Paragraph” on page 72 for a list of alphabet-name clause
options and their meanings.

When the COLLATING SEQUENCE phrase is omitted, the PROGRAM
COLLATING SEQUENCE clause (if specified) in the OBJECT-COMPUTER
paragraph specifies the collating sequence to be used.

When both the COLLATING SEQUENCE phrase and the PROGRAM COLLATING
SEQUENCE clause are omitted, the EBCDIC collating sequence is used.

USING Phrase
file-name-2, ...

The input files.

When the USING phrase is specified, all the records in file-name-2, ... (that is, the
input files) are transferred automatically to file-name-1. At the time the SORT
statement is executed, these files must not be open; the compiler opens, reads,
makes records available, and closes these files automatically. If
EXCEPTION/ERROR procedures are specified for these files, the compiler makes
the necessary linkage to these procedures. The input files must be sequential,
relative or indexed files.

All input files must specify sequential or dynamic access mode, and must be
described in FD entries in the Data Division.

SORT Statement

Chapter 14. Part 6. Procedure Division 475

INPUT PROCEDURE Phrase
This phrase specifies the name of a procedure that is to select or modify input
records before the sorting operation begins.

procedure-name-1
Specifies the first (or only) section or paragraph in the input procedure.

procedure-name-2
Specifies the last section or paragraph in the input procedure.

The input procedure may consist of any procedure needed to select, modify, or
copy the records that are made available one at a time by the RELEASE statement
to the file referenced by file-name-1. The range includes all statements that are
executed as the result of a transfer of control by CALL, EXIT, GO TO, and
PERFORM statements in the range of the input procedure, as well as all statements
in declarative procedures that are executed as a result of the execution of
statements in the range of the input procedure. The range of the input procedure
must not cause the execution of any MERGE, RETURN, or SORT statement.

If an input procedure is specified, control is passed to the input procedure before
file-name-1 is sequenced by the SORT statement. The compiler inserts a return
mechanism at the end of the last statement in the input procedure. When control
passes the last statement in the input procedure, the records that have been
released to file-name-1 are sorted.

GIVING Phrase
file-name-3, ...

The output files.

When the GIVING phrase is specified, all the sorted records in file-name-1 are
automatically transferred to the output files (file-name-3, ...). At the time the SORT
statement is executed, this file must not be open.

If the output files contain variable length records, the size of the records contained
in file-name-1 must not be less than the smallest record nor greater than the largest
described for the output files. If the output files contain fixed length records, the
size of the records contained in file-name-1 must not be greater than the largest
record described for the output files.

For each of the files referenced by file-name-3, the execution of the SORT statement
causes the following actions to be taken:
v The processing of the file is initiated. The initiation is performed as if an OPEN

statement with the OUTPUT phrase has been executed.
v The sorted logical records are returned and written onto the file. Each record is

written as if a WRITE statement without any optional phrases had been
executed. The records overwrite the previous contents, if any, of the file.

IBM Extension

If file-name-3 is a logical database file, the records are added to the end of the
file.

End of IBM Extension

If the file referenced by file-name-3 is an INDEXED file then the associated key
data-name for that file must have an ASCENDING KEY phrase in the SORT

SORT Statement

476 ILE COBOL Reference

statement. This same data-name must occupy the identical character positions in
its record as the data item associated with the prime record key for the file.
For a relative file, the relative key data item for the first record returned contains
the value '1'; for the second record returned, the value '2', and so on. After
execution of the SORT statement, the content of the relative key data item
indicates the last record returned to the file.

v The processing of the file is terminated. The termination is performed as if a
CLOSE statement without optional phrases had been executed.

Note: When duplicate keys are found when writing to an indexed file, the SORT
will terminate and the sorted data in all GIVING files will be incomplete.

These implicit functions are performed such that any associated USE AFTER
EXCEPTION/ERROR procedures are executed; however, the execution of such a
USE procedure must not cause the execution of any statement manipulating the
file referenced by, or accessing the record area associated with, file-name-3.

On the first attempt to write beyond the externally defined boundaries of the file,
any USE AFTER STANDARD EXCEPTION/ERROR procedure specified for the file
is executed. If control is returned from that USE procedure or if no such USE
procedure is specified, the processing of the file is terminated.

All output files must specify sequential or dynamic access mode, and must be
described in FD entries in the Data Division.

The output file must be an indexed, relative or sequential file.

The output file should also be created without a keyed sequence access path.
When the output file has such a path, the SORT statement cannot override the
collating sequence defined in the data description specifications (DDS).

OUTPUT PROCEDURE Phrase
This phrase specifies the name of a procedure that is to select or modify output
records from the sorting operation.

procedure-name-3
Specifies the first (or only) section or paragraph in the output procedure.

procedure-name-4
Identifies the last section or paragraph in the output procedure.

The output procedure may consist of any procedure needed to select, modify, or
copy the records that are made available one at a time by the RETURN statement
in sorted order from file-name-1. The range of the output procedure includes all
statements that are executed as the result of a transfer of control by CALL, EXIT,
GO TO, and PERFORM statements within the output procedure. The range also
includes all statements in declarative procedures that are executed as a result of the
execution of statements in the range of the output procedure. The range of the
output procedure must not include any MERGE, RELEASE, or SORT statement.

If an output procedure is specified, control passes to it after file-name-1 has been
sequenced by the SORT statement. The compiler inserts a return mechanism after
the last statement in the output procedure, and when control passes that statement,
the return mechanism terminates the sort and passes control to the next executable
statement after the SORT statement. Before entering the output procedure, the sort

SORT Statement

Chapter 14. Part 6. Procedure Division 477

procedure reaches a point at which it can select the next record in sorted order
when requested. The RETURN statements in the output procedure are the requests
for the next record.

Note: The INPUT and OUTPUT PROCEDURE phrases are similar to those for a
basic PERFORM statement. For example, if you name a procedure in an
OUTPUT PROCEDURE phrase, that procedure is executed during the
sorting operation just as if it were named in a PERFORM statement.

As with the PERFORM statement, execution of the procedure ends after the last
statement executes. The last statement in an input or output procedure can be the
EXIT statement (see “EXIT Statement” on page 366).

IBM Extension

The SORT-RETURN special register contains a return code indicating the success
(or lack of) of a SORT operation. See “SORT-RETURN Special Register” on page
391 for more information.

End of IBM Extension

SORT Statement

478 ILE COBOL Reference

START Statement
The START statement provides a means of positioning within an indexed or
relative file for subsequent sequential record retrieval. This positioning is achieved
by comparing the key values of records in the file with the value you place in the
RECORD KEY portion of a file’s record area (for an indexed file), or in the
RELATIVE KEY data item (for a relative file) prior to execution of the START
statement.

Note: When the START statement is executed, the associated indexed or relative
file must be open in INPUT or I-O mode.

START Statement - Format

►► START file-name-1
(1)

NO LOCK
WITH

►

►
KEY EQUAL data

IS TO
=
GREATER

THAN
>
NOT LESS

THAN
NOT <
GREATER OR EQUAL

THAN TO
>=

►

►
(1) (2)

FORMAT identifier-1
IS literal-1

►

►
(1)

NULL-KEY-MAP identifier-2
IS

►

►
INVALID imperative-statement-1

KEY

►

►
NOT INVALID imperative-statement-2

KEY
END-START

►◄

START Statement

Chapter 14. Part 6. Procedure Division 479

data:

▼

(1)
EXTERNALLY-DESCRIBED-KEY

data-name-1

Notes:

1 IBM Extension

2 Applies only to indexed files on DATABASE devices

NO LOCK Phrase

IBM Extension

The NO LOCK phrase prevents the START operation from obtaining record locks
on files that are opened in I-O (update) mode. In addition, a START statement
bearing the NO LOCK phrase will be successful even if the record that satisfies the
key value comparison has been locked by another job. A START statement bearing
this phrase releases records that have been locked by a previous START operation.

If this phrase is used for a file that is not open in I-O mode, an error message is
issued.

For information about file and record locking, see the IBM Rational Development
Studio for i: ILE COBOL Programmer's Guide.

End of IBM Extension

file-name-1
Must be a file with sequential or dynamic access. File-name-1 must be defined
in an FD entry in the Data Division, and must not name a sort file.

KEY Phrase
When the KEY phrase is specified, the file position indicator is positioned at the
logical record in the file whose key field satisfies the comparison.

When the KEY phrase is not specified, KEY IS EQUAL (to the prime record key) is
implied.

data-name-1
Can be qualified or reference modified, but it cannot be subscripted.

IBM Extension

Data-name-1 can be an internal or external floating-point, DBCS, or date-time
data item.

Multiple data-names can be specified. All data-names, following the initial
data-name, are syntax checked only.

End of IBM Extension

When the START statement is executed, a comparison is made between the current
value in the key data-name and the corresponding key field in the file's index.

START Statement

480 ILE COBOL Reference

If the FILE STATUS clause is specified in the FILE-CONTROL entry, the associated
status key is updated when the START statement is executed. (See “Status Key” on
page 274.)

FORMAT Phrase

IBM Extension

The value specified in the FORMAT phrase contains the name of the record format
to use for this I-O operation. The system uses this to specify or select which record
format to operate on.

Identifier-1, if specified, must be an alphanumeric data item of 10 characters or
less.

Literal-1, if specified, must be an uppercase character-string of 10 characters or less.

A value of all blanks is treated as though the FORMAT phrase were not specified.
If the value is not valid for the file, a FILE STATUS of 9K is returned and a USE
procedure is invoked, if applicable for the file.

If specified, the file position indicator is set to the first record of the specified
record format that satisfies the comparison. If omitted, the current record pointer is
set to the first record of any format that satisfies the comparison.

See Table 34 on page 484 for a description of how the FORMAT phrase interacts
with the EXTERNALLY-DESCRIBED-KEY and KEY IS phrases.

End of IBM Extension

NULL-KEY-MAP IS Phrase

IBM Extension

Specifies the null key map of the record for the START operation according to the
value specified for identifier-2. Identifier-2 must be a boolean or alphanumeric
item.

Identifier-2 can be subscripted or reference modified.

If the file has alternate keys, identifier-2 is associated with the null key map of the
current key of reference.

This phrase can only be specified for a file with the ALWNULL attribute and a
device type of DATABASE specified in the ASSIGN clause. If one of the key fields
is null-capable and the NULL-KEY-MAP phrase is not used, a null-key-map with
all boolean zeroes is used.

Example of NULL-KEY-MAP IS Phrase
In this example, the following values represent the key in a file, which contains 3
fields of 2 bytes each. The key is defined by the following code in the File Section:
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FILE-1 ASSIGN to DATABASE-FILE1-ALWNULL
ACCESS is DYNAMIC RECORD KEY IS FULL-PRODUCT-CODE IN FILE-1
ORGANIZATION IS INDEXED.

START Statement

Chapter 14. Part 6. Procedure Division 481

FD FILE-1.
01 FULL-PRODUCT-CODE.

05 TYPE-CODE PIC X(2).
05 COLOR-CODE PIC X(2).
05 LOCATION-CODE PIC X(2).

WORKING-STORAGE SECTION.
01 FILE1-N.

05 FULL-PRODUCT-CODE-NKM.
06 FILLER PIC X VALUE ZERO.
06 COLOR-CODE-NF PIC 1 VALUE B"0".
06 LOCATION-CODE-NF PIC 1 VALUE B"0".

Fields 2 and 3 are null-capable, where '-' indicates null, and xx indicates any value.
The following are representations of the records in the file:
NN----
NN--xx
NNxx--

Consider the following START statement:
START FILE-1

NULL-KEY-MAP IS FULL-PRODUCT-CODE-NKM
INVALID KEY DISPLAY "No data in system for product code " TYPE-CODE
GO TO ERROR-ROUTINE
END-START.

If the null-key-map in the START statement has a value of 010, the pointer is set to
point to the record with the key NN--xx. If the null-key-map in the START
statement has a value of 011, the pointer is set to point to the record with the key
NN----.

For more information about using null-capable fields, refer to the IBM Rational
Development Studio for i: ILE COBOL Programmer's Guide.

End of IBM Extension

INVALID KEY Phrase
If the comparison is not satisfied by any record in the file, an invalid key condition
exists; the value of the file position indicator is undefined, and (if specified) the
INVALID KEY imperative statement runs. (See “INVALID KEY Condition” on page
274.)

The INVALID KEY phrase must be specified if no EXCEPTION/ERROR procedure
is explicitly or implicitly specified for this file.

NOT INVALID KEY Phrase
After successful completion of a START statement with the NOT INVALID KEY
phrase, control transfers to the imperative statement associated with the phrase.

END-START Phrase
This explicit scope terminator serves to delimit the scope of the START statement.
END-START permits a conditional START statement to be nested in another
conditional statement. END-START may also be used with an imperative START
statement.

For more information, see “Delimited Scope Statements” on page 266.

START Statement

482 ILE COBOL Reference

Indexed Files
When the KEY phrase is specified, the key data item used for the comparison is
data-name.

When the KEY phrase is not specified, the file position indicator is set to the record
with a key equal to the value contained in the RECORD KEY data item.

When START statement execution is successful, the RECORD KEY or ALTERNATE
RECORD KEY with which data-name-1 is associated becomes the key of reference
for subsequent READ statements.

When the KEY phrase is specified, the search argument used for the comparison is
data-name-1, which can be:
v The prime RECORD KEY itself
v Any ALTERNATE RECORD KEY
v An alphanumeric data item within a record description for the file with a

leftmost character position that corresponds to the leftmost character position of
the key field in the record area. This data item must be less than or equal to the
length of the record key for the file.
This data item can be qualified or reference modified. If the key itself is not
used, the leftmost character position plus the reference modification starting
position must correspond to the leftmost character position of the key field.

Note: If the RECORD KEY is defined as COMP, COMP-3, COMP-4, or COMP-5,
the key data item must be the RECORD KEY itself. A partial key field in the
record area cannot be used.

The file position indicator is positioned to the first record in the file with a record
key for a format that satisfies the comparison. If the operands in the comparison
are of unequal length, the comparison proceeds as if the longer field were
truncated on the right to the length of the shorter field. All other numeric and
nonnumeric comparison rules apply, except that the PROGRAM COLLATING
SEQUENCE, if specified, has no effect.

IBM Extension

For a file that specified RECORD KEY IS EXTERNALLY-DESCRIBED-KEY, the
following additional considerations apply:
v The reserved word EXTERNALLY-DESCRIBED-KEY can be specified. This

indicates that the complete key in the record area should be used in the
comparison.

v A series of data names can be specified. This allows a partial key field in the
record area to be used (generic START). These data names must follow the
following rules:
– All except the last of the data names specified must be a record key for a

single format that was copied in for the file. The record format in which they
are contained does not have to be the one that can be specified by the
FORMAT phrase.

– The order of these data names (key fields) must match the order of the keys
as defined in DDS; that is, they must be specified from most significant field
to least significant.

– The total number of data names cannot exceed the number of key fields
defined for that record format.

START Statement

Chapter 14. Part 6. Procedure Division 483

|
|
|

– If the last data name specified in the series is not a key field in the record
area, it must have its left byte occupy the same space as the key field that is
defined at that relative position. If the key field in the record area at this
position is a COMP, COMP-3, COMP-4, or COMP-5 field, only the key field
itself can be used as the data name.

– Only the last key can be reference modified, and the reference modification
starting position must equal 1.

v Table 34 shows the action between the KEY IS phrase and the FORMAT phrase:

Table 34. Relationship between KEY IS and FORMAT Phrases

FORMAT Phrase
specified

KEY Phrase

Data-Name Series Omitted
EXTERNALLY-

DESCRIBED-KEY

Yes A, B C, D C, B

No A, E F, G F, E

A The search argument is built using the specified data items.

B The file position indicator is set to the first record in the file of the format
specified with a record key that satisfies the comparison specified in the
key phrase.

C The search argument is built using the key fields in the record area for the
format specified in the FORMAT phrase.

D The file position indicator is set to the first record in the file of the
specified format with a record key equal to the search argument.

E The file position indicator is set to the first record in the file with a
common key for the file that satisfies the comparison specified in the KEY
phrase. If there is no common key, the file position indicator is set to the
first record in the file.

F The search argument is built using the key fields in the record area for the
first record format for the file as defined in the program.

G The file position indicator is set to the first record in the file with a
common key for the file that is equal to the search argument. If there is no
common key, the file position indicator is set to the first record in the file.

End of IBM Extension

When the KEY phrase is not specified, the key data item used for the EQUAL TO
comparison is the prime RECORD KEY.

data-name-1
Can be any of the following:
v The prime RECORD KEY.
v An alphanumeric data item within a record description for a file whose

leftmost character position corresponds to the leftmost character position of
that record key; it may be qualified. The data item must be less than or
equal to the length of the record key for the file.

The file position indicator points to the first record in the file whose key field
satisfies the comparison. If the operands in the comparison are of unequal lengths,
the comparison proceeds as if the longer field were truncated on the right to the

START Statement

484 ILE COBOL Reference

|
|
|
|
|

length of the shorter field. All other numeric and nonnumeric comparison rules
apply, except that the PROGRAM COLLATING SEQUENCE clause, if specified,
has no effect.

When START statement execution is successful, the RECORD KEY with which
data-name-1 is associated becomes the key of reference for subsequent READ
statements.

When START statement execution is unsuccessful, the key of reference is
undefined.

IBM Extension

For indexed files of device type DATABASE, the meaning of the comparison can be
affected by the type of key fields in the record area defined for the file. Key fields
on this system can be defined as multiple fields, each of which can be in ascending
or descending sequence. The system establishes a sequence (keyed sequence access
path) for the records based on the values contained in the record key for the
format and the sequencing specified in DDS. When a START statement is
processed, the request is interpreted as follows:

COBOL Comparison System Result
GREATER THAN AFTER
NOT LESS THAN EQUAL TO or AFTER

For example, when a statement is processed using the comparison of GREATER
THAN, a search is made of these sequenced records for the first record after the
search argument specified by the START statement. If the file was sequenced using
descending keys, the file position indicator would point to a record with a key less
than the one specified and not greater than that specified in the START statement.

End of IBM Extension

Relative Files
When the KEY phrase is not specified, the file position indicator is set to the record
in the file with a key (relative record number) equal to the RELATIVE KEY data
item.

When the KEY phrase is specified, data-name-1 must specify the RELATIVE KEY.
The file position indicator is positioned to the first logical record currently existing
in the file with a key (relative record number) that satisfies the comparison with
the RELATIVE KEY data item.

When the KEY phrase is not specified, KEY IS EQUAL (to the prime record key) is
implied.

Data-name-1 may be qualified; it may not be subscripted.

When the START statement is executed, a comparison is made between the current
value in the relative key and the relative record numbers of existing records in the
file.

If the FILE STATUS clause is specified in the FILE-CONTROL entry, the associated
status key is updated when the START statement is executed. (See “Status Key”
under “Common Processing Facilities” on page 274.)

START Statement

Chapter 14. Part 6. Procedure Division 485

Whether or not the KEY phrase is specified, the key data item used in the
comparison is the RELATIVE KEY data item. When START statement execution is
successful, the file position indicator points to the logical record in the file whose
key satisfies the comparison, and this key becomes the reference for subsequent
READ statements.

When START statement execution is unsuccessful, the key of reference and the file
position indicator are undefined.

START Statement

486 ILE COBOL Reference

STOP Statement
The STOP statement halts execution of the object program either permanently or
temporarily.

STOP Statement - Format

►► STOP RUN
literal

►◄

literal
May be numeric, nonnumeric or Boolean, and may be any figurative constant
except ALL literal. If the literal is numeric, it must be an unsigned integer.

IBM Extension

Cannot be a floating-point literal.

End of IBM Extension

When STOP literal is specified, the literal is communicated to the system operator
for batch jobs and to the work station for interactive jobs. Program execution is
suspended. Execution is resumed only after operator intervention.

The operator response determines the action to be taken.

Operator Response Action

G (default) Continue at next instruction.

C Terminate the execution of all programs up to and including the
program at the nearest control boundary. If the nearest control
boundary is a hard control boundary then escape message
CEE9901 is issued to the caller of the COBOL run unit. For batch
jobs, the job is canceled if the ENDSEV parameter (see CRTJOBD
CL command) for the job contains a value that is less than or equal
to the severity of the message.

D Dump COBOL identifiers and then perform the same action as C.

F Dump COBOL identifiers and file information and then perform
the same action as C.

The output of the STOP literal contains the program-name. The literal is contained
in the second level text, and is displayed when the Help key is used.

The STOP literal statement is useful for special situations (a special tape or disk
must be mounted, a specific daily code must be entered, and so forth) when
operator intervention is needed during program execution. However, the ACCEPT
and DISPLAY statements are preferred when operator intervention is needed.

When STOP RUN is specified, execution of all programs up to and including the
program at the nearest control boundary is ended, and control is returned to the
program prior to the control boundary. If the nearest control boundary is a hard
control boundary, then STOP RUN causes the activation group (run unit) to end,
which in turn causes all files scoped to the activation group to be closed. If a STOP
RUN statement appears in a sequence of imperative statements, it must be the last
or only statement in the sequence.

STOP Statement

Chapter 14. Part 6. Procedure Division 487

In each case above, the calling program could be the system. If it is, execution of
the run unit ceases, and control transfers to the operating system.

Also, if the main program is called by a program written in a language that does
not follow COBOL linkage conventions, return will be to this calling program.

For details on the behavior of the STOP RUN statement under various conditions,
see "Returning from an ILE COBOL Program" in IBM Rational Development Studio
for i: ILE COBOL Programmer's Guide.

RETURN-CODE Special Register

IBM Extension

The RETURN-CODE special register can be used to pass return code information
(that is, a numeric value) from a program to its caller (either a calling program or
the system).

You can set the RETURN-CODE special register before executing an EXIT
PROGRAM, GOBACK, or STOP RUN statement.

RETURN-CODE has the implicit definition:
01 RETURN-CODE GLOBAL PICTURE S9999 USAGE BINARY VALUE 0

This special register may be used anywhere in a program where a data-item with a
data definition of PICTURE S9999 USAGE BINARY is allowed. When used in
nested programs, the RETURN-CODE special register is implicitly defined as
GLOBAL in the outermost program. When a COBOL subprogram terminates, the
contents of the RETURN-CODE special register of the subprogram are transferred
into the RETURN-CODE special register of the calling program. When the main
COBOL program terminates, and control returns to the operating system, the
special register content is returned to the operating system as a user return code.

Note that the main COBOL program must be the first program in an activation
group, so normally this COBOL program should not be compiled with option
ACTGRP(*CALLER), if you want the contents of the RETURN-CODE special
register to be returned as a user return code for the job. The user return code can
be retrieved by the calling program by calling API QUSRJOBI with format
JOBI0600.

For the first call to a program, the RETURN-CODE special register is initialized to
zero, which is the normal return code for successful completion. The field will be
re-set to zero on subsequent calls to a program that has been cancelled or which
possesses the INITIAL attribute. Otherwise, the RETURN-CODE special register
will not be re-set, it will be unchanged from the value it contained after the
previous call.

You can specify the RETURN-CODE special register in a function wherever an
integer argument is allowed.

For more information on passing return code information, see the IBM Rational
Development Studio for i: ILE COBOL Programmer's Guide.

End of IBM Extension

STOP Statement

488 ILE COBOL Reference

#
#
#
#
#
#

STRING Statement
The STRING statement strings together the partial or complete contents of two or
more data items or literals into one single data item.

One STRING statement can be written instead of a series of MOVE statements.

STRING Statement - Format

►► STRING ▼ ▼ identifier-1 DELIMITED identifier-2
literal-1 BY literal-2

SIZE

►

► INTO identifier-3
POINTER identifier-4

WITH

►

►
OVERFLOW imperative-statement-1

ON

►

►
NOT OVERFLOW imperative-statement-2

ON
END-STRING

►◄

Note: All identifiers (except identifier-4, the POINTER item) must have USAGE
DISPLAY, explicitly or implicitly.

identifier-1
Represents the sending field(s). When the sending field or any of the delimiters
is an elementary numeric item, it must be described as an integer, and its
PICTURE character-string must not contain the symbol P.

literal-1
Represents the sending field(s). All literals must be nonnumeric literals; each
may be any figurative constant without the ALL literal. When a figurative
constant is specified, it is considered a 1-character nonnumeric literal.

IBM Extension

identifier-1 through identifier-3
Can not be external floating-point items.

STRING Statement

Chapter 14. Part 6. Procedure Division 489

End of IBM Extension

IBM Extension

If one of identifier-1, identifier-2, or identifier-3 is a DBCS data item, then all of
them must be DBCS data items and all literals must be DBCS literals.

If one of literal-1 or literal-2 is a DBCS literal, then they must both be DBCS
literals and identifier-1 through identifier-3 must be DBCS data items.

SPACE is the only figurative constant allowed for DBCS items.

End of IBM Extension

DELIMITED BY Phrase
The DELIMITED BY phrase sets the limits of the string.

identifier-2, literal-2
Are delimiters; that is, character(s) that delimit the data to be transferred.

If identifier-1 or identifier-2 occupies the same storage area as identifier-3 or
identifier-4, undefined results will occur, even if the identifiers are defined by
the same data description entry.

When a figurative constant is specified, it is considered a 1-character
nonnumeric literal.

SIZE
Transfers the complete sending area.

INTO Phrase
identifier-3

Represents the receiving field.

It must not represent an edited data item and must not be described with the
JUSTIFIED clause. It must not be reference modified.

If identifier-3 and identifier-4 occupy the same storage area, undefined results
will occur, even if the identifiers are defined by the same data description
entry.

IBM Extension

It must not represent an external floating-point data item.

End of IBM Extension

POINTER Phrase
identifier-4

Represents the pointer field, which points to a character position in the
receiving field.

It must be an elementary integer data item large enough to contain a value
equal to the length of the receiving area plus 1. The pointer field must not
contain the symbol P in its PICTURE character-string.

STRING Statement

490 ILE COBOL Reference

IBM Extension

When identifier-3 is a DBCS data item, identifier-4 indicates the relative DBCS
character position in the receiving field.

End of IBM Extension

ON OVERFLOW Phrases
Control is transferred to imperative-statement-1 when the pointer value (explicit or
implicit):
v Is zero or less than 1
v Exceeds a value equal to the length of the receiving field

When any of the above conditions occur, an overflow condition exists, and no
more data is transferred. The STRING operation is terminated and, if the ON
OVERFLOW phrase is specified, control is transferred to imperative-statement-1.
Otherwise, control is transferred to the end of the STRING statement. The NOT
ON OVERFLOW statement, if specified, is ignored.

If control is transferred to imperative-statement-1, execution continues according to
the rules for each statement specified in imperative-statement-1. If a procedure
branching or conditional statement that causes explicit transfer of control is
executed, control is transferred according to the rules for that statement; otherwise,
upon completion of the execution of imperative-statement-1, control is transferred
to the end of the STRING statement.

If an overflow condition does not occur during the execution of a STRING
statement, then control is transferred to the end of the STRING statement. If an
overflow condition does not occur and the NOT ON OVERFLOW phrase is
specified, control is transferred to imperative-statement-2. The ON OVERFLOW
phrase, if specified, is ignored.

If control is transferred to imperative-statement-2, execution continues according to
the rules for each statement specified in imperative statement-2. If a procedure
branching or conditional statement that causes explicit transfer of control is
executed, control is transferred according to the rules for that statement. Otherwise,
upon completion of the execution of imperative-statement-2, control is transferred
to the end of the STRING statement.

The ON OVERFLOW statement is not executed unless there was an attempt to
move in one or more characters beyond the end of identifier-3, or the initial value
of POINTER is less than 1.

END-STRING Phrase
This explicit scope terminator serves to delimit the scope of the STRING statement.
END-STRING permits a conditional STRING statement to be nested in another
conditional statement. END-STRING may also be used with an imperative STRING
statement.

For more information, see “Delimited Scope Statements” on page 266.

STRING Statement

Chapter 14. Part 6. Procedure Division 491

Data Flow
When the STRING statement is executed, data is transferred from the sending
fields to the receiving field. The order in which sending fields are processed is the
order in which they are specified. The following rules apply:
v Characters from the sending fields are transferred to the receiving field,

according to the rules for alphanumeric to alphanumeric elementary moves,
except that no space filling is provided (see “MOVE Statement” on page 392).

v When DELIMITED BY identifier/literal is specified, the contents of each sending
item are transferred, character-by-character, beginning with the leftmost
character and continuing until either:
– A delimiter for this sending field is reached (the delimiter itself is not

transferred), or
– The rightmost character of this sending field has been transferred.

v When DELIMITED BY SIZE identifier is specified, each entire sending field is
transferred to the receiving field.

v When the receiving field is filled, or when all the sending fields have been
processed, the operation is ended.

v When the POINTER phrase is specified, an explicit pointer field is available to
the COBOL user to control placement of data in the receiving field. The user
must set the explicit pointer's initial value, which must not be less than 1 and
not more than the character count of the receiving field. (Note that the pointer
field must be defined as a field large enough to contain a value equal to the
length of the receiving field plus 1; this precludes arithmetic overflow when the
system updates the pointer at the end of the transfer.)

v When the POINTER phrase is not specified, no pointer is available to the user.
However, a conceptual implicit pointer with an initial value of 1 is used by the
system.

v Conceptually, when the STRING statement is executed, the initial pointer value
(explicit or implicit) is the first character position within the receiving field into
which data is to be transferred. Beginning at that position, data is then
positioned, character-by-character, from left to right. After each character is
positioned, the explicit or implicit pointer is increased by 1. The value in the
pointer field is changed only in this manner. At the end of processing, the
pointer value always indicates a value equal to one character beyond the last
character transferred into the receiving field.

Subscripting, reference modification, variable-length calculations, or function
evaluations are performed only once, at the beginning of the processing of the
STRING statement. So if identifier-3 or identifier-4 is used as a subscript, reference
modifier, or function argument in the STRING statement, or affects the length or
location of any identifiers of the STRING statement, these values are determined at
the beginning of the STRING statement, and are not affected by any results of the
STRING statement.

If identifier-1 or identifier-2 occupy the same storage area as identifier-3 or
identifier-4, or if identifier-3 and identifier-4 occupy the same storage area, the
result of the execution of the STRING statement is undefined.

After STRING statement execution is completed, only that part of the receiving
field into which data was transferred is changed. The rest of the receiving field
contains the data that was present before this execution of the STRING statement.

STRING Statement

492 ILE COBOL Reference

When the following STRING statement is executed, the results obtained will be
like those illustrated in Figure 24.
STRING ID-1 ID-2 DELIMITED BY ID-3

ID-4 ID-5 DELIMITED BY SIZE
INTO ID-7 WITH POINTER ID-8

END-STRING

STRING Statement Example
The following example illustrates some of the considerations that apply to the
STRING statement.

In the Data Division, the programmer has defined the following fields:
01 RPT-LINE PICTURE X(120).
01 LINE-POS PICTURE 99.
01 LINE-NO PICTURE 9(5) VALUE 1.
01 DEC-POINT PICTURE X VALUE ".".

In the File Section, he or she has defined the following input record:
01 RCD-01.

05 CUST-INFO.
10 CUST-NAME PICTURE X(15).
10 CUST-ADDR PICTURE X(34).

05 BILL-INFO.
10 INV-NO PICTURE X(6).
10 INV-AMT PICTURE $$,$$$.99.
10 AMT-PAID PICTURE $$,$$$.99.
10 DATE-PAID PICTURE X(8).
10 BAL-DUE PICTURE $$,$$$.99.
10 DATE-DUE PICTURE X(8).

The FD entry is:

FD INPUT-FILE LABEL RECORDS OMITTED.

01 RECORD-1 PICTURE X(30).

01 RECORD-2 PICTURE X(20).

Contents of input area when READ statement is executed:

ABCDEFGHIJKLMNOPQRSTUVWXYZ1234

Contents of record being read in (RECORD-2):

01234567890123456789

Contents of input area after READ is executed:

01234567890123456789??????????

(these characters in input area undefined)

Figure 24. Results of STRING Statement Execution

STRING Statement

Chapter 14. Part 6. Procedure Division 493

The programmer wants to construct an output line consisting of portions of the
information from RCD-01. The line is to consist of a line number, customer name
and address, invoice number, date due, and balance due, truncated to the dollar
figure shown.

The record as read in contains the following information:

J.B.�SMITH�����
444�SPRING�ST.,�CHICAGO,�ILL.�����
A14275
$4,736.85
$2,400.00
09/22/76
$2,336.85
09/09/94

In the Procedure Division, the programmer initializes RPT-LINE to SPACES and
sets LINE-POS (which is to be used as the pointer field) to 4. Then he issues this
STRING statement:

STRING LINE-NO SPACE
CUST-INFO SPACE
INV-NO SPACE
DATE-DUE SPACE

DELIMITED BY SIZE,
BAL-DUE

DELIMITED BY DEC-POINT
INTO RPT-LINE
WITH POINTER LINE-POS.

When the statement is executed, the following actions take place:
1. The field LINE-NO is moved into positions 4 through 8 of RPT-LINE.
2. A space is moved into position 9.
3. The group item CUST-INFO is moved into positions 10 through 58.
4. A space is moved into position 59.
5. INV-NO is moved into positions 60 through 65.
6. A space is moved into position 66.
7. DATE-DUE is moved into positions 67 through 74.
8. A space is moved into position 75.
9. The portion of BAL-DUE that precedes the decimal point is moved into

positions 76 through 81.

After the STRING statement has been executed:
v RPT-LINE appears as shown in Figure 25.
v LINE-POS contains the value 82.

Note: One STRING statement can be written instead of a series of MOVE
statements.

STRING Statement

494 ILE COBOL Reference

Column

4 10 25 60 67 76

00001 J.B. SMITH 444 SPRING ST., CHICAGO, ILL. A14725 09/09/94 $2,336

Figure 25. STRING Statement Example Output Data

STRING Statement

Chapter 14. Part 6. Procedure Division 495

SUBTRACT Statement
The SUBTRACT statement subtracts one numeric item, or the sum of two or more
numeric items, from one or more numeric items, and stores the results.

SUBTRACT Statement - Format 1

►► SUBTRACT ▼ identifier-1
literal-1

FROM ▼ identifier-2
ROUNDED

►

►
SIZE ERROR imperative-statement-1

ON

►

►
NOT SIZE ERROR imperative-statement-2

ON
END-SUBTRACT

►◄

In Format 1, identifiers or literals preceding the keyword FROM are added
together, and this initial sum is subtracted from and stored in identifier-2. The
initial sum is then subtracted from and stored in each successive occurrence of
identifier-2, in the left-to-right order in which identifier-2 is specified.

SUBTRACT Statement - Format 2 - GIVING

►► SUBTRACT ▼ identifier-1
literal-1

FROM identifier-2
literal-2

►

► ▼GIVING identifier-3
ROUNDED

►

►
SIZE ERROR imperative-statement-1

ON

►

►
NOT SIZE ERROR imperative-statement-2

ON
END-SUBTRACT

►◄

In Format 2, all identifiers or literals preceding the keyword FROM are added
together and this sum is subtracted from identifier-2 or literal-2. The result of the
subtraction is stored in the data item referenced by identifier-3. Identifier-2 or
literal-2 remains unchanged.

SUBTRACT Statement

496 ILE COBOL Reference

SUBTRACT Statement - Format 3 - CORRESPONDING

►► SUBTRACT CORRESPONDING
CORR

identifier-1 FROM identifier-2
ROUNDED

►

►
SIZE ERROR imperative-statement-1

ON

►

►
NOT SIZE ERROR imperative-statement-2

ON
END-SUBTRACT

►◄

In Format 3, elementary data items within identifier-1 are subtracted from, and the
results are stored in, the corresponding elementary data items within identifier-2.

For all Formats:

identifier-1, identifier-2, identifier-3
In Formats 1 and 2, identifier-1 and identifier-2 must be elementary numeric
items.

In Format 2, each identifier-3 following the word GIVING must be a numeric
or numeric-edited elementary item.

In Format 3, identifier-1 must be a group item.

literal-1, literal-2
Must be a numeric literal.

The composite of operands is determined by using all of the operands in a given
statement excluding the data items that follow the word GIVING. For more
information on the composite of operands, see the “Size of Operands” on page 271.

IBM Extension

Floating-point data items and literals can be used anywhere numeric data items
and literals can be specified.

End of IBM Extension

ROUNDED Phrase
For information on the ROUNDED phrase, and for operand considerations, see
“ROUNDED Phrase” on page 269.

SIZE ERROR Phrases
For information on the SIZE ERROR phrases, and for operand considerations, see
“SIZE ERROR Phrases” on page 270.

CORRESPONDING Phrase (Format 3)
The CORRESPONDING phrase (CORR) allows operations to be performed on
elementary numeric data-items of the same name if the group items to which they
belong are specified.

SUBTRACT Statement

Chapter 14. Part 6. Procedure Division 497

END-SUBTRACT Phrase
This explicit scope terminator delimits the scope of the SUBTRACT statement.
END-SUBTRACT converts a conditional SUBTRACT statement into an imperative
statement so that it can be nested in another conditional statement.

For more information, see “Delimited Scope Statements” on page 266.

SUBTRACT Statement

498 ILE COBOL Reference

UNSTRING Statement
The UNSTRING statement causes contiguous data in a sending field to be
separated and placed into multiple receiving fields.

One UNSTRING statement can be written instead of a series of MOVE statements.

UNSTRING Statement - Format

►► UNSTRING identifier-1 ►

►
DELIMITED identifier-2 OR Phrase

BY ALL literal-1

INTO ►

► ▼ identifier-4 DELIMITER Phrase COUNT Phrase ►

►
POINTER identifier-7

WITH
TALLYING identifier-8

IN

►

►
OVERFLOW imperative-statement-1

ON

►

►
NOT OVERFLOW imperative-statement-2

ON
END-UNSTRING

►◄

OR Phrase:

▼ OR identifier-3
ALL literal-2

DELIMITER Phrase:

DELIMITER identifier-5
IN

UNSTRING Statement

Chapter 14. Part 6. Procedure Division 499

COUNT Phrase:

COUNT identifier-6
IN

identifier-1
Represents the sending field.

It must be an alphanumeric data item; it cannot be reference modified. Data is
transferred from this field to the receiving fields.

IBM Extension

Identifier-1 can be a DBCS data-item.

End of IBM Extension

DELIMITED BY Phrase
This phrase specifies delimiters within the data that control the data transfer.

The delimiters are identifier-2, identifier-3, or their corresponding literals. Each
identifier or literal specified represents one delimiter. Each must be an
alphanumeric data item.

Unless the DELIMITED BY phrase is specified, the DELIMITER IN and COUNT IN
phrases must not be specified.

identifier-2, identifier-3
Each represents one delimiter. Each must be an alphanumeric data item.

IBM Extension

If either one is a DBCS items, then both must be DBCS items.

End of IBM Extension

literal-1, literal-2
Each must be a nonnumeric literal; each may be any figurative constant except
the ALL literal. When a figurative constant is specified, it is considered to be a
1-character nonnumeric literal.

IBM Extension

If either literal is a DBCS literal, then both must be DBCS literals. The
figurative constant SPACE can be used as a DBCS literal.

End of IBM Extension

ALL
One or more contiguous occurrences of any delimiters are treated as if they
were only one occurrence, and this one occurrence is moved to the delimiter
receiving field (if specified). The delimiting characters in the sending field are
treated as an elementary alphanumeric item and are moved into the current
delimiter receiving field, according to the rules of the MOVE statement.

UNSTRING Statement

500 ILE COBOL Reference

IBM Extension

If ALL is used with a DBCS identifier or literal, the delimiting characters in the
sending field are treated as DBCS items. They are moved according to the rules
of the MOVE statement.

End of IBM Extension

When DELIMITED BY ALL is not specified, and two or more contiguous
occurrences of any delimiter are encountered, the current data receiving field is
filled with spaces or zeros, according to the description of the data receiving
field.

If a delimiter contains two or more characters, it is recognized as a delimiter only
if the delimiting characters are contiguous, and in the sequence specified in the
sending field.

When two or more delimiters are specified, an OR condition exists, and each
nonoverlapping occurrence of any one of the delimiters is recognized in the
sending field in the sequence specified. For example, if DELIMITED BY "AB" or
"BC" is specified, then an occurrence of either AB or BC in the sending field is
considered a delimiter; an occurrence of ABC is considered an occurrence of AB.
The data-count fields, the pointer field, and the field-count field must each be an
integer item without the symbol P in the PICTURE character-string.

INTO Phrase
identifier-4

Represents the data receiving fields.

Each must have USAGE DISPLAY. These fields can be defined as:
v Alphabetic
v Alphanumeric
v Numeric (without the symbol P in the PICTURE string).

IBM Extension

Identifier-4 cannot be defined as a floating-point item.

Identifier-4 can be a DBCS data-item.

End of IBM Extension

DELIMITER IN
Identifier-5 represents the delimiter receiving fields. Identifier-5 must be
alphanumeric.

IBM Extension

Identifier-5 can be a DBCS data-item.

End of IBM Extension

The DELIMITER IN phrase can be specified only if the DELIMITED BY phrase
is specified. The identifiers must not be defined as alphanumeric edited or
numeric edited items.

COUNT IN
Identifier-6, an integer data-item defined without the symbol P in the

UNSTRING Statement

Chapter 14. Part 6. Procedure Division 501

PICTURE string, is the data-count field for each data transfer. Each field holds
the count of examined characters in the sending field, terminated by the
delimiters or the end of the sending field, for the move to this receiving field;
the delimiters are not included in this count.

IBM Extension

When identifier-1 (the sending field) is a DBCS data item, identifier-6 indicates
the number of characters (not the number of bytes) examined in the sending
field.

End of IBM Extension

The COUNT IN phrase must not be specified unless the DELIMITED BY
phrase is specified.

POINTER Phrase
identifier-7

Identifier-7, an integer data-item defined without the symbol P in the PICTURE
string, contains a value that indicates a relative position in the sending field.
When this phrase is specified, the user must initialize this field before
execution of the UNSTRING statement is begun.

TALLYING IN Phrase
identifier-8

Identifier-8 is the field-count field, initialized by the user through an integer
data-item defined without the symbol P in the PICTURE string, and increased
by the number of data receiving fields acted upon in this execution of the
UNSTRING statement.

ON OVERFLOW Phrases
Imperative-statement-1 is executed when:
v The pointer value (explicit or implicit) is less than 1
v The pointer value (explicit or implicit) exceeds a value equal to the length of the

sending field
v All data receiving fields have been acted upon, and the sending field still

contains unexamined characters.

When any of the above conditions occurs:
1. An overflow condition exists, and no more data is transferred
2. The UNSTRING operation is terminated
3. The NOT ON OVERFLOW phrase, if specified, is ignored
4. Control is transferred to the end of the UNSTRING statement or, if the ON

OVERFLOW phrase is specified, to imperative-statement-1.

If control is transferred to imperative-statement-1, execution continues according to
the rules for each statement specified in imperative-statement-1. If a procedure
branching or conditional statement that causes explicit transfer of control is
executed, control is transferred according to the rules for that statement; otherwise,
upon completion of the execution of imperative-statement-1, control is transferred
to the end of the UNSTRING statement.

If conditions that would cause an overflow condition are not encountered, the ON
OVERFLOW phrase, if specified, is ignored. If the NOT ON OVERFLOW phrase is

UNSTRING Statement

502 ILE COBOL Reference

specified, control is transferred to imperative-statement-2; otherwise, control is
transferred to the end of the UNSTRING statement.

If control is transferred to imperative-statement-2, execution continues according to
the rules for each statement specified in imperative-statement-2. If a procedure
branching or conditional statement that causes explicit transfer of control is
executed, control is transferred according to the rules for that statement. Otherwise,
upon completion of the execution of imperative-statement-2, control is transferred
to the end of the UNSTRING statement.

END-UNSTRING Phrase
This explicit scope terminator serves to delimit the scope of the UNSTRING
statement. END-UNSTRING permits a conditional UNSTRING statement to be
nested in another conditional statement. END-UNSTRING may also be used with
an imperative UNSTRING statement.

For more information, see “Delimited Scope Statements” on page 266.

Data Flow
When the UNSTRING statement is initiated, data is transferred from the sending
field to the current data receiving field, according to the following rules (the
current data receiving field is identifier-4):
1. If the POINTER phrase is not specified, the sending field character-string is

examined, beginning with the leftmost character. If the POINTER phrase is
specified, the field is examined, beginning at the relative character position
specified by the value in the pointer field.

2. If the DELIMITED BY phrase is specified, the examination proceeds from left
to right, character-by-character, until a delimiter is encountered. If the end of
the sending field is reached before a delimiter is found, the examination ends
with the last character in the sending field. If there are more receiving fields,
the next one is selected, otherwise, an overflow condition occurs.

3. If the DELIMITED BY phrase is not specified, the number of characters
examined is equal to the size of the current data receiving field, which
depends on its data category:
a. If the receiving field is alphanumeric or alphabetic, the number of

characters examined is equal to the number of characters in the current
receiving field.

b. If the receiving field is numeric, the number of characters examined is
equal to the number of characters in the integer portion of the current
receiving field.

c. If the receiving field is described with the SIGN IS SEPARATE clause, the
number of characters examined is one less than the size of the current
receiving field.

d. If the receiving field is described as a variable-length data item, the
number of characters examined is determined by the size of the current
receiving field at the beginning of the UNSTRING operation.

4. The examined characters (excluding any delimiter characters) are treated as an
alphanumeric elementary item, and are moved into the current data receiving
field, according to the rules for the MOVE statement (see “MOVE Statement”
on page 392).

5. If the DELIMITER IN phrase is specified, the delimiting characters in the
sending field are treated as an elementary alphanumeric item and are moved
to the current delimiter receiving field, according to the rules for the MOVE

UNSTRING Statement

Chapter 14. Part 6. Procedure Division 503

statement. If the delimiting condition is the end of the sending field, the
current delimiter receiving field is filled with spaces.

6. If the COUNT IN phrase is specified, a value equal to the number of
examined characters (excluding any delimiters) is moved into the data count
field, according to the rules for an elementary move.

7. If the DELIMITED BY phrase is specified, the sending field is further
examined, beginning with the first character to the right of the delimiter.

8. If the DELIMITED BY phrase is not specified, the sending field is further
examined, beginning with the first character to the right of the last character
examined.

9. For each succeeding data receiving field, the preceding procedure is repeated
either until all the characters in the sending field have been transferred, or
until there are no more unfilled data receiving fields.

10. When the POINTER phrase is specified, the value of the pointer field behaves
as if it were increased by 1 for each examined character in the sending field.
When this execution of the UNSTRING statement is completed, the pointer
field contains a value equal to its initial value, plus the number of characters
examined in the sending field.

11. When the TALLYING phrase is specified, then, when this execution of the
UNSTRING statement is completed, the field-count field contains a value
equal to the initial value, plus the number of data receiving areas acted upon.

Note: All subscripting, reference modification, variable-length calculations, or
function evaluations are performed only once, at the beginning of the
execution of the UNSTRING statement.

If any of the UNSTRING statement identifiers are subscripted or indexed, the
subscripts and indexes are evaluated as follows:
v Any subscripting or indexing associated with the sending field, the pointer field,

or the field-count field is evaluated only once, immediately before any data is
transferred to any of the receivers.

v Any subscripting or indexing associated with the delimiters, the data and
delimiter receiving fields, or the data-count fields, is evaluated immediately
before the transfer of data into the affected data item.

Figure 26 on page 505 illustrates the rules of execution for the UNSTRING
statement.

UNSTRING Statement

504 ILE COBOL Reference

▌1▐ 3 characters are placed in ID-R1.

▌2▐ Because ALL * is specified, all consecutive asterisks are processed, but only
one asterisk is placed in ID-D1.

▌3▐ 5 characters are placed in ID-R2.

▌4▐ A ? is placed in ID-D2. The current receiving field is now ID-R3.

▌5▐ A ? is placed in ID-D3; ID-R3 is filled with spaces; no characters are
transferred, so 0 is placed in ID-C3.

▌6▐ No delimiter is encountered before 5 characters fill ID-R4; 8 is placed in
ID-C4, representing the number of characters examined since the last
delimiter.

▌7▐ ID-P is updated to 21, the total length of the sending field + 1; ID-T is
updated to 5, the number of fields acted upon + 1. Since there are no
unexamined characters in the ID-SEND, the OVERFLOW EXIT is not
taken.

UNSTRING Statement Example
The following example illustrates some of the considerations that apply to the
UNSTRING statement.

Figure 26. Results of UNSTRING Statement Execution

UNSTRING Statement

Chapter 14. Part 6. Procedure Division 505

In the Data Division, the user has defined the following input record to be acted
upon by the UNSTRING statement:
01 INV-RCD.

05 CONTROL-CHARS PIC XX.
05 ITEM-INDENT PIC X(20).
05 FILLER PIC X.
05 INV-CODE PIC X(10).
05 FILLER PIC X.
05 NO-UNITS PIC 9(6).
05 FILLER PIC X.
05 PRICE-PER-M PIC 99999.
05 FILLER PIC X.
05 RTL-AMT PIC 9(6).99.

The next two records are defined as receiving fields for the UNSTRING statement.
DISPLAY-REC is to be used for printed output. WORK-REC is to be used for
further internal processing.
01 DISPLAY-REC

05 INV-NO PIC X(6).
05 FILLER PIC X VALUE SPACE
05 ITEM-NAME PIC X(20).
05 FILLER PIC X VALUE SPACE
05 DISPLAY-DOLS PIC 9(6).

01 WORK-REC
05 M-UNITS PIC 9(6).
05 FIELD-A PIC 9(6).
05 WK-PRICE

REDEFINES
FIELD-A PIC 9999V99.

05 INV-CLASS PIC X(3).

The user has also defined the following fields for use as control fields in the
UNSTRING statement.
01 DBY-1 PIC X, VALUE IS ".".
01 CTR-1 PIC 99, VALUE IS ZERO.
01 CTR-2 PIC 99, VALUE IS ZERO.
01 CTR-3 PIC 99, VALUE IS ZERO.
01 CTR-4 PIC 99, VALUE IS ZERO.
01 DLTR-1 PIC X.
01 DLTR-2 PIC X.
01 CHAR-CT PIC 99, VALUE IS 3.
01 FLDS-FILLED PIC 99, VALUE IS ZERO.

In the Procedure Division, the user writes the following UNSTRING statement to
move subfields of INV-RCD to the subfields of DISPLAY-REC and WORK-REC:
UNSTRING INV-RCD
DELIMITED BY ALL SPACES
OR "/"
OR DBY-1

INTO ITEM-NAME COUNT IN CTR-1,
INV-NO DELIMITER IN DLTR-1
COUNT IN CTR-2,

INV-CLASS,
M-UNITS COUNT IN CTR-3,
DISPLAY-DOLS DELIMITER IN DLTR-2
COUNT IN CTR-4

WITH POINTER CHAR-CT
TALLYING IN FLDS-FILLED
ON OVERFLOW
GO TO UNSTRING-COMPLETE.

UNSTRING Statement

506 ILE COBOL Reference

Before the UNSTRING statement is issued, the user places the value 3 in the
CHAR-CT (the pointer item), so as not to work with the two control characters at
the beginning of INV-RCD. In DBY-1, a period is placed for use as a delimiter, and
in FLDS-FILLED (the tallying item) the value 0 is placed. The following data is
then read into INV-RCD as shown in Figure 27.

When the UNSTRING statement is executed, the following actions take place:
1. Positions 3 through 18 (FOUR-PENNY-NAILS) of INV-RCD are placed in

ITEM-NAME, left-justified within the area, and the unused character positions
are padded with spaces. The value 16 is placed in CTR-1.

2. Because ALL SPACES is specified as a delimiter, the five contiguous SPACE
characters are considered to be one occurrence of the delimiter.

3. Positions 24 through 29 (707890) are placed in INV-NO. The delimiter character
/ is placed in DLTR-1, and the value 6 is placed in CTR-2.

4. Positions 31 through 33 are placed in INV-CLASS. The delimiter is a SPACE,
but because no field has been defined as a receiving area for delimiters, the
SPACE is merely bypassed.

5. Positions 35 through 40 (475120) are examined and are placed in M-UNITS. The
delimiter is a SPACE, but because no receiving field has been defined as a
receiving area for delimiters, the SPACE is bypassed. The value 6 is placed in
CTR-3.

6. Positions 42 through 46 (00122) are placed in FIELD-A and right-justified within
the area. The high-order digit position is filled with a 0 (zero). The delimiter is
a SPACE, but because no field has been defined as a receiving area for
delimiters, the SPACE is bypassed.

7. Positions 48 through 53 (000379) are placed in DISPLAY-DOLS. The period
delimiter character is placed in DLTR-2, and the value 6 is placed in CTR-4.

8. Because all receiving fields have been acted upon and two characters of data in
INV-RCD have not been examined, the ON OVERFLOW exit is taken, and
execution of the UNSTRING statement is completed.

At the end of execution of the UNSTRING statement, DISPLAY-REC contains the
following data:

707890 FOUR-PENNY-NAILS 000379

WORK-REC contains the following data:
475120000122BBA

CHAR-CT (the pointer field) contains the value 55, and FLD-FILLED (the tallying
field) contains the value 6.

Note: One UNSTRING statement can be written instead of a series of MOVE
statements.

Column

1 10 20 30 40 50 60

707890/BBA 475120ZYFOUR–PENNY–NAILS 000379.5000122

Figure 27. UNSTRING Statement Example–Input Data

UNSTRING Statement

Chapter 14. Part 6. Procedure Division 507

WRITE Statement
The WRITE statement releases a record for an output or input/output file.

When the WRITE statement is executed, the associated indexed or relative file
must be open in OUTPUT, I-O, or EXTEND mode. The associated sequential file
must be open in OUTPUT or EXTEND (device types TAPEFILE, DISK, or
DATABASE) mode.

IBM Extension

The action of this statement can be inhibited at program run time by the INHWRT
parameter of the OVRDBF CL command. When this parameter is specified,
non-zero file status codes are not set for data dependent errors. Duplicate key and
data conversion errors are examples of data dependent errors.

For more information on this command, see the CL and APIs section of the
Programming category in the System i5/OS Information Center at this Web site
-http://www.ibm.com/systems/i/infocenter/.

End of IBM Extension

Sequential Files
The ADVANCING and END-OF-PAGE phrases control the vertical positioning of
each line on a printed page. If the printed page is held on an intermediate device
(a disk, for example), the format may appear different than the expected output
when it is edited or browsed.

Note: The ADVANCING PAGE and END-OF-PAGE phrases must not both be
specified in a single WRITE statement.

When an attempt is made to write beyond the externally defined boundaries of the
file, the processing of the WRITE statement is unsuccessful and an
EXCEPTION/ERROR condition exists. The contents of record-name are unaffected.
Processing then follows the rules for error handling as described under “USE
Statement Programming Notes” on page 633.

For sequential files on device type TAPEFILE or DISKETTE, when end-of-volume
is recognized for a multivolume OUTPUT file, the WRITE statement processes the
following operations in order:
1. The standard ending volume label procedure is run.
2. A volume switch occurs.
3. The standard beginning volume label procedure is run.

No indication that an end-of-volume has occurred is returned to the program.

WRITE Statement - Format 1 - Sequential Files

►► WRITE record-name-1
FROM identifier-1

►

WRITE Statement

508 ILE COBOL Reference

http://www.ibm.com/systems/i/infocenter/

►
BEFORE identifier-2
AFTER ADVANCING integer-1 LINE

LINES
mnemonic-name-1
PAGE

►

►
(1)

NULL-MAP identifier-9
IS

►

►
END-OF-PAGE imperative-statement-1

AT EOP

►

►
NOT END-OF-PAGE imperative-statement-2

AT EOP
END-WRITE

►◄

Notes:

1 IBM Extension.

record-name-1
Must be defined in a Data Division FD entry. Record-name-1 may be qualified.
It must not be associated with a sort or merge file.

You must ensure that the size of an OCCURS DEPENDING ON (ODO) array
has been set to a valid numeric value before doing a WRITE of a record
containing the ODO array.

IBM Extension

Record-name-1 can be a floating-point data item.

Record-name-1 can define a DBCS data item. Identifier-1 must be a DBCS
data-item if record-name-1 is a DBCS data item.

End of IBM Extension

FROM
When FROM is specified, the result is the same as:
MOVE identifier-1 TO record-name-1
WRITE record-name-1

The move is performed according to the rules of the MOVE statement, without
the CORRESPONDING phrase.

After the WRITE statement is executed, the information is still available in
identifier-1, even though it may not be in record-name-1. (See “INTO/FROM
Identifier Phrase” on page 275.)

identifier-1
Must be an alphanumeric or numeric edited data item. Data is transferred from
this field to the receiving fields.

WRITE Statement

Chapter 14. Part 6. Procedure Division 509

|
|
|

Identifier-1 can be the name of an alphanumeric or DBCS function identifier.

IBM Extension

Identifier-1 can be a floating-point or date-time data item.

End of IBM Extension

identifier-2
Must be an integer data item.

The maximum record size for the file is established at the time the file is created,
and cannot subsequently be changed.

Record-name-1 and identifier-1 must not refer to the same storage area.

After the WRITE statement is executed, the record is no longer available in
record-name-1, unless:
v The associated file is named in a SAME RECORD AREA clause (in which case,

the record is also available as a record of the other files named in the SAME
RECORD AREA clause), or

v The WRITE statement is unsuccessful because of a boundary violation.

In either of these two cases, the record is still available in record-name-1.

The file position indicator is not affected by execution of the WRITE statement.

The number of character positions required to store the record in a file may or may
not be the same as the number of character positions defined by the logical
description of that record in the COBOL program. (See “PICTURE Clause Editing”
on page 197 and “USAGE Clause” on page 217.)

If the FILE STATUS clause is specified in the File-Control entry, the associated
status key is updated when the WRITE statement is executed, whether or not
execution is successful.

The WRITE statement cannot be executed for a sequential file opened in I-O mode.

ADVANCING Phrase
The ADVANCING phrase controls positioning of the output record on the page. It
only applies to device type PRINTER. The following rules apply:
1. When BEFORE ADVANCING is specified, the line is printed before the page is

advanced.
2. When AFTER ADVANCING is specified, the page is advanced before the line is

printed.
3. When identifier-2 is specified, the page is advanced the number of lines equal

to the current value in identifier-2. Identifier-2 must be an integer data item.
4. When integer-1 is specified, the page is advanced the number of lines equal to

the value of integer-1.
5. Integer-1 or the value in identifier-2 may be zero.
6. When mnemonic-name is specified, a system-specific action takes place.

Mnemonic-name must be equated with environment-name-1 in the
SPECIAL-NAMES paragraph (valid environment-names are listed in Table 2 on
page 73). For more information on acceptable values for mnemonic-name, see
“SPECIAL-NAMES Paragraph” on page 72.

WRITE Statement

510 ILE COBOL Reference

7. When PAGE is specified, the record is printed on the logical page BEFORE or
AFTER (depending on the phrase used) the device is positioned to the next
logical page. If PAGE has no meaning for the device used, then BEFORE or
AFTER (depending on the phrase specified) ADVANCING 1 LINE is provided.
If the FD entry contains a LINAGE clause, the repositioning is to the first
printable line of the next page, as specified in that clause. If the LINAGE clause
is omitted, the repositioning is to line 1 of the next succeeding page.
LINAGE-COUNTER Rules: If the LINAGE clause is specified for this file, the
associated LINAGE-COUNTER special register is modified during the
execution of the WRITE statement, according to the following rules:
a. If ADVANCING PAGE is specified, LINAGE-COUNTER is reset to 1.
b. If ADVANCING identifier-2 or integer-1 is specified, LINAGE-COUNTER is

increased by the value in identifier-2 or integer-1.
c. If the ADVANCING phrase is omitted, LINAGE-COUNTER is increased by

1.
d. When the device is repositioned to the first available line of a new page,

LINAGE-COUNTER is reset to 1.

When this phrase is omitted, automatic line advancing is provided, as if the user
had written AFTER ADVANCING 1 LINE.

NULL-MAP IS Phrase

IBM Extension

Refer to the description supplied for this phrase on page “NULL-MAP IS Phrase”
on page 430.

End of IBM Extension

END-OF-PAGE Phrase
When this phrase is specified (and the FD entry for this file contains a LINAGE
clause), and the logical end of the printed page is reached during execution of the
WRITE statement, the imperative-statement is executed.

If an END-OF-PAGE condition does not exist after the processing of a WRITE
statement with the NOT AT END-OF-PAGE phrase, control transfers to the
imperative statement associated with that phrase.

Special Considerations for Printer Files: The keywords END-OF-PAGE and EOP
are equivalent. When the END-OF-PAGE phrase is specified, the FD entry for this
file must contain a LINAGE clause. When END-OF-PAGE is specified, and an
END-OF-PAGE condition exists after the processing of the WRITE statement, the
END-OF-PAGE imperative-statement is processed. The logical end of the printed
page is specified in the LINAGE clause associated with record-name.

An END-OF-PAGE condition for a printer file is reached when the processing of a
WRITE statement for that file causes printing or spacing within the footing area of
a page body. This occurs when the processing of such a WRITE statement causes
the value in the LINAGE-COUNTER to equal or exceed the value specified in the
WITH FOOTING phrase of the LINAGE clause. The WRITE statement is
processed, and then the END-OF-PAGE imperative statement is processed, if
coded.

An automatic page overflow condition is reached whenever the processing of any
WRITE statement with or without the END-OF-PAGE phrase cannot be completely

WRITE Statement

Chapter 14. Part 6. Procedure Division 511

processed within the current page body. This occurs when a processed WRITE
statement would cause the value in the LINAGE-COUNTER to exceed the number
of lines for the page body specified in the LINAGE clause. In this case, the line is
printed before or after (depending on the option specified) the device is
repositioned to the first printable line on the next logical page, as specified in the
LINAGE clause.

If the END-OF-PAGE phrase is specified, the END-OF-PAGE imperative-statement
is then processed. The END-OF-PAGE condition and automatic page overflow
condition occur simultaneously in the following cases:
v When the WITH FOOTING phrase of the LINAGE clause is not specified. This

results in no distinction between the END-OF-PAGE condition and the page
overflow condition. No footing information can be printed at the bottom of a
logical page when the FOOTING phrase is not specified.

v When the WITH FOOTING phrase is specified, but the processing of a WRITE
statement would cause the LINAGE-COUNTER to exceed both the footing value
and the page body value specified in the LINAGE clause.

The keywords END-OF-PAGE and EOP are equivalent.

Note: The phrases ADVANCING PAGE and END-OF-PAGE must not both be
specified in a single WRITE statement.

Special Considerations for FORMATFILEs: The keywords END-OF-PAGE and
EOP are equivalent. When the END-OF-PAGE phrase is specified, and an EOP
condition exists after the processing of the WRITE statement for the FORMATFILE
file, the END-OF-PAGE imperative statement is processed. An EOP condition for a
FORMATFILE file occurs when the logical end of page is reached during the
processing of a WRITE statement for that file. The logical end of the printed page
is specified in the overflow line number parameter of the CRTPRTF command or
the OVRPRTF command.

END-WRITE Phrase
This explicit scope terminator serves to delimit the scope of the WRITE statement.
END-WRITE permits a conditional WRITE statement to be nested in another
conditional statement. END-WRITE may also be used with an imperative WRITE
statement.

For more information, see “Delimited Scope Statements” on page 266.

Multivolume Files
When end-of-volume is recognized for a multivolume OUTPUT file (tape or
sequential direct-access file), the WRITE statement performs the following
operations:
v The standard ending volume label procedure
v A volume switch
v The standard beginning volume label procedure.

Indexed and Relative Files

WRITE - Format 2 - Indexed and Relative Files

►► WRITE record-name-1
FROM identifier-1

►

WRITE Statement

512 ILE COBOL Reference

►
(1)

FORMAT identifier-2
IS literal-1

►

►
(1)

NULL-KEY-MAP identifier-8
IS

►

►
(1)

NULL-MAP identifier-9
IS

►

►
INVALID imperative-statement-1

KEY

►

►
NOT INVALID imperative-statement-2

KEY
END-WRITE

►◄

Notes:

1 IBM Extension

record-name-1
Must be defined in a Data Division FD entry. Record-name-1 may be qualified.
It must not be associated with a sort or merge file.

You must ensure that the size of an OCCURS DEPENDING ON (ODO) array
has been set to a valid numeric value before doing a WRITE of a record
containing the ODO array.

In the case of relative files, only, the number of character positions in
record-name-1 must equal the number of character positions in the record
being replaced. It must not be associated with a sort or merge file.

FROM
When FROM is specified, the result is the same as:
MOVE identifier-1 TO record-name-1
WRITE record-name-1

After the WRITE statement is executed, the information is still available in
identifier-1, even though it may not be in record-name-1. (See “INTO/FROM
Identifier Phrase” on page 275.)

identifier-1
Must be an alphanumeric or numeric-edited data item. Data is transferred from
this field to the receiving fields.

Record-name-1 and identifier-1 cannot both refer to the same storage area.

Identifier-1 can be the name of an alphanumeric or DBCS function identifier.

Considerations When Writing Indexed Files
Before the WRITE statement is executed, you must set the prime record key (the
RECORD KEY data item, as defined in the File-Control entry) to the desired value.
When the WRITE statement is processed, the system releases the record.

WRITE Statement

Chapter 14. Part 6. Procedure Division 513

|
|
|

IBM Extension

If the DUPLICATES phrase is specified, record key values for a format need not be
unique (see “RECORD KEY Clause” on page 110). In this case, the system stores
the records so that later sequential access to the records allows retrieval in the
order specified in DDS.

End of IBM Extension

If records are written to an indexed file of fixed size when it has SEQUENTIAL
access, is open for OUTPUT, and blocking is in effect (BLOCK CONTAINS clause
is specified), the blocking factor will change to 1 at the point at which a block of
records would cause the end-of-file to be reached.

If the ALTERNATE RECORD KEY clause is also specified in the File-Control entry,
each alternate record key must be unique, unless the DUPLICATES phrase is
specified. If the DUPLICATES phrase is specified, alternate record key values need
not be unique.

The number of remaining records in the file at this moment is less than the
number of records in a block.

When ACCESS IS SEQUENTIAL is specified in the File-Control entry, records must
be released in ascending order of RECORD KEY values.

When ACCESS is RANDOM or ACCESS IS DYNAMIC is specified in the
File-Control entry, records may be released in any programmer-specified order. If
the FORMAT phrase is not specified on the I-O statement when indexed files are
accessed in random access mode, the first format defined is used. When writing to
a multiformat logical file, the format must be specified on the WRITE statement.

Considerations When Writing Relative Files
For OUTPUT files, the WRITE statement causes the following actions:
v If ACCESS IS SEQUENTIAL is specified:

The first record released has relative record number 1, the second record
released has relative record number 2, the third number 3, and so on.
If the RELATIVE KEY is specified in the File-Control entry, the relative record
number of the record just released is placed in the RELATIVE KEY during
execution of the WRITE statement.

v If ACCESS IS RANDOM or ACCESS IS DYNAMIC is specified, the RELATIVE
KEY must contain the desired relative record number for this record before the
WRITE statement is issued. When the WRITE statement is executed, this record
is placed at the specified relative record number position in the file.

For files opened in I-O mode, either ACCESS IS RANDOM or ACCESS IS
DYNAMIC must be specified; the WRITE statement inserts new records into the
file. The RELATIVE KEY must contain the desired relative record number for this
record before the WRITE statement is issued. When the WRITE statement is
executed, this record is placed at the specified relative record number position in
the file.

For a physical file that does not allow the DELETE operation on records (for
example, using the CRTPF with the ALWDLT(*NO) parameter), the update
operation on records must be allowed (that is, CRTPF with the ALWUPD(*YES)
parameter).

WRITE Statement

514 ILE COBOL Reference

FORMAT Phrase

IBM Extension

Required if there is more than one record format for the file.

The value specified in the FORMAT phrase contains the name of the record format
to use for this I-O operation. The system uses this to specify or select which record
format to operate on.

Identifier-2, if specified, must be a an alphanumeric data item of 10 characters or
less.

Literal-1, if specified, must be an uppercase character-string of 10 characters or less.

If the FORMAT phrase is not specified on the I-O statement when indexed files are
accessed in random access mode, the first format defined is used.

End of IBM Extension

NULL-KEY-MAP IS Phrase

IBM Extension

Refer to the description supplied for this phrase on page “NULL-KEY-MAP IS
Phrase” on page 429.

End of IBM Extension

NULL-MAP IS Phrase

IBM Extension

Refer to the description supplied for this phrase on page “NULL-MAP IS Phrase”
on page 430.

End of IBM Extension

INVALID KEY Phrase
The INVALID KEY phrase must be specified if an explicit or implicit
EXCEPTION/ERROR procedure is not specified for this file.

When an attempt is made to write beyond the externally defined boundaries of the
file, WRITE statement execution is unsuccessful and an EXCEPTION/ERROR
condition exists.

For Relative files in Random or Dynamic access mode, an INVALID KEY condition
exists when RELATIVE KEY specifies a record that already contains data.

For Indexed files in Random or Dynamic access mode, an INVALID KEY condition
exists when the value of the key field in the record area equals that of an already
existing record and DUPLICATES are not allowed.

For Indexed files in Sequential access mode, an INVALID KEY condition exists
when the values of the primary record keys of successive records are not in
ascending order.

WRITE Statement

Chapter 14. Part 6. Procedure Division 515

IBM Extension

For a file that allows duplicate keys, the INVALID KEY condition exists only if the
value of the record key is less than that for the previous record.

End of IBM Extension

When the invalid key condition is recognized, WRITE statement execution is
unsuccessful, and the contents of the record are unaffected. Program execution
proceeds according to the rules described under “INVALID KEY Condition” on
page 274.

NOT INVALID KEY Phrase
If the NOT INVALID KEY phrase is specified and a valid key condition exists at
the end of the execution of the WRITE statement, control is passed to the
imperative statement associated with this phrase.

END-WRITE Phrase
This explicit scope terminator serves to delimit the scope of the WRITE statement.
END-WRITE permits a conditional WRITE statement to be nested in another
conditional statement. END-WRITE may also be used with an imperative WRITE
statement.

For more information, see “Delimited Scope Statements” on page 266.

FORMATFILE

IBM Extension

WRITE Statement - Format 3 - FORMATFILE

►► WRITE record-name-1
FROM identifier-1

►

►
FORMAT identifier-2

IS literal-1
INDICATOR identifier-3
INDICATORS IS
INDIC ARE

►

►
END-OF-PAGE imperative-statement-1

AT EOP

►

►
NOT END-OF-PAGE imperative-statement-2

AT EOP
END-WRITE

►◄

FORMAT Phrase: Required if there is more than one record format for the file.

The value specified in the FORMAT phrase contains the name of the record format
to use for this I-O operation. The system uses this to specify or select which record
format to operate on.

Identifier-2, if specified, must be an alphanumeric data item of 10 characters or
less.

Literal-1, if specified, must be an uppercase character-string of 10 characters or less.

WRITE Statement

516 ILE COBOL Reference

A value of all blanks is treated as though the FORMAT phrase were not specified.
If the value is not valid for the file, a FILE STATUS of 9K is returned and a USE
procedure is invoked, if applicable for the file.

INDICATORS Phrase: Specifies which indicators are to be written when a data
record is read. Indicators can be used to pass information about the data record
and how it was entered into the program.

For detailed information on the INDICATORS phrase, refer to the IBM Rational
Development Studio for i: ILE COBOL Programmer's Guide.

Identifier-3 must be either an elementary Boolean data item specified without the
OCCURS clause or a group item that has elementary Boolean data items
subordinate to it.

End of IBM Extension

TRANSACTION (Nonsubfile)

IBM Extension

WRITE - Format 4 - TRANSACTION (Nonsubfile)

►► WRITE record-name-1
FROM identifier-1

►

► FORMAT identifier-2
IS literal-1 TERMINAL identifier-3

IS literal-2

►

►
STARTING identifier-4

AT LINE literal-3
Rolling Phrase

►

►
INDICATOR identifier-8
INDICATORS IS
INDIC ARE

END-WRITE
►◄

Rolling Phrase:

BEFORE
AFTER

ROLLING
LINES
LINE

identifier-5
literal-4 THROUGH

THRU

►

► identifier-6
literal-5

UP
DOWN

identifier-7
literal-6 LINES

LINE

FORMAT Phrase: Literal-1 or identifier-2 specifies the name of the record format
to be written. Literal-1, if specified, must be nonnumeric, uppercase, and 10
characters or less in length. Identifier-2, if specified, must refer to an alphanumeric
data item, 10 characters or less in length. If identifier-2 contains blanks, the WRITE
statement is executed as if the FORMAT phrase were omitted.

WRITE Statement

Chapter 14. Part 6. Procedure Division 517

TERMINAL Phrase: The TERMINAL phrase specifies the program devices to
which the output record is to be sent.

The contents of literal-2 or identifier-3 must be the name of a program device
previously acquired, either implicitly or explicitly, by the file. Literal-2, if specified,
must be nonnumeric and 10 characters or less in length. Identifier-3, if specified,
must refer to an alphanumeric data item, 10 characters or less in length. A value of
blanks is treated as if the TERMINAL phrase was omitted.

If only a single program device was acquired by the TRANSACTION file, the
TERMINAL phrase can be omitted. That program device is always used for the
WRITE.

If the TERMINAL phrase is omitted for a WRITE operation to a TRANSACTION
file that has acquired multiple program devices, the default program device is
used.

STARTING Phrase: The STARTING phrase specifies the starting line number for
the record formats that use the variable starting line keyword. This phrase is only
valid for display devices.

The actual line number on which a field begins can be determined from the
following equation:

Actual-line = Start-line + DDS Start-line − 1

Where:
v Actual-line is the actual line number
v Start-line is the starting line number specified in the program
v DDS Start-line is the line number specified in positions 39 through 41 of the

Data Description Specifications form.

The write is successful if:
v The result of the above equation is positive and less than or equal to the number

of lines on the workstation screen.
v The value specified for the STARTING phrase is 0. In this case, a value of 1 is

assumed.

The write is unsuccessful and the program terminates if:
v The result of the above equation is greater than the number of lines on the

workstation screen.
v The value specified for the STARTING phrase is negative.

If the value specified for the STARTING phrase is within the screen area, any fields
outside of the screen area are ignored.

Literal-3 of the STARTING phrase must be a numeric literal. Identifier-4 must be
an elementary numeric item.

To use the STARTING phrase, the DDS record level keyword SLNO(*VAR) must be
specified for the format being written. If the record format does not specify this
keyword, the STARTING phrase is ignored at execution time.

The DDS keyword CLRL also affects the STARTING phrase. CLRL controls how
much of the screen is cleared when the WRITE statement is executed.

WRITE Statement

518 ILE COBOL Reference

For further information on SLNO(*VAR) and CLRL, see the DB2 Universal Database
for AS/400 section of the Database and File Systems category in the System i5/OS
Information Center at this Web site - http://www.ibm.com/systems/i/
infocenter/.

ROLLING Phrase: The ROLLING phrase allows you to move lines displayed on
the workstation screen. All or some of the lines on the screen can be rolled up or
down. The lines vacated by the rolled lines are cleared, and can have another
screen format written into them. This phrase is only valid for display devices.

ROLLING is specified in the WRITE statement that is writing a new format to the
workstation screen. You must specify whether the write is before or after the roll,
the range of lines you want to roll, how many lines you want to roll these lines,
and whether the roll operation is up or down.

After lines are rolled, the fields on these lines retain their DDS display attributes,
for example, underlining, but lose their DDS usage attributes, for example,
input-capability. Fields on lines that are written and then rolled (BEFORE
ROLLING phrase) also lose their usage attributes.

If any part of a format is rolled, the entire format loses its usage attributes. If more
than one format exists, only the rolled formats lose their usage attributes.

When you specify the ROLLING phrase, the following general rules apply.
v The DDS record level keyword ALWROL must be specified for every record

format written in a WRITE statement containing the ROLLING phrase.
v Other DDS keywords mutually exclusive with the ALWROL keyword must not

be used.
v Either of the DDS keywords, CLRL or OVERLAY, must be specified for a record

format that is to be written and rolled to prevent the display screen from being
cleared when that record format is written.

v All the identifiers and literals must represent positive integer values.
v The roll starting line number (identifier-5 or literal-4) must not exceed the

ending line number (identifier-6 or literal-5).
v The contents of lines that are rolled outside of the window specified by the

starting and ending line numbers disappear.

For more information, see the DB2 Universal Database for AS/400 section of the
Database and File Systems category in the System i5/OS Information Center at this
Web site - http://www.ibm.com/systems/i/infocenter/.

INDICATORS Phrase: Specifies which indicators are to be used when a data
record is written. Indicators can be used to pass information about the data record
and how it was entered into the program.

For detailed information on the INDICATORS phrase, refer to Using Indicators
with Transaction Files in the IBM Rational Development Studio for i: ILE COBOL
Programmer's Guide.

Identifier-8 must be either an elementary Boolean data item specified without the
OCCURS clause or a group item that has elementary Boolean data items
subordinate to it.

Figure 28 shows an example of rolling. An initial screen format, FMT1 is written on
the work station screen. The program processes this screen format and is now

WRITE Statement

Chapter 14. Part 6. Procedure Division 519

http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/

ready to write the next screen format, FMT2, to the workstation screen. Part of
FMT1 is rolled down 2 lines before FMT2 is written to the workstation screen.

Execution of the following WRITE statement causes part of FMT1 to be rolled
down 2 lines, and FMT2 to be written to the workstation screen:

WRITE SCREENREC FORMAT "FMT2"
AFTER ROLLING LINES 14 THROUGH 20
DOWN 2 LINES

When this WRITE statement is executed, the following steps occur:
1. The contents of lines 14 through 20 are rolled down 2 lines.

a. The contents of lines 14 through 18 now appear on lines 16 through 20.
b. The contents of lines 14 and 15 are vacated and cleared.
c. The contents of lines 19 and 20 are rolled outside the window and

disappear.
2. After the rolling operation takes place, FMT2 is written to the workstation

screen.
a. Part of FMT2 is written to the area vacated by the roll operation.
b. Part of FMT2 is written over the data left from FMT1.

3. When the contents of the workstation screen are returned to the program by a
READ statement, only the input capable fields of FMT2 are returned.

WRITE Statement

520 ILE COBOL Reference

End of IBM Extension

TRANSACTION (Subfile)

IBM Extension

WRITE Statement - Format 5 - TRANSACTION (Subfile)

►► WRITE SUBFILE record-name-1
FROM identifier-1

►

DISPLAY BEFORE PROCESSING THE WRITE STATEMENT

UPDATE CUSTOMER ORDER RECORD

TO END THIS JOB, PRESS F7

ENTER YOUR OPERATOR NUMBER:

ENTER CUSTOMER NUMBER:

PRESS F3 TO DISPLAY OPTION MENU

Line 3

Line 8

Line 13

Line 14

Line 15

Line 17

Line 20

DISPLAY AFTER PROCESSING THE WRITE STATEMENT

TO END THIS JOB, PRESS F7

ITEM NUMBER ORDERED:

QUANTITY ORDERED:

ENTER CUSTOMER NUMBER: XXXXX

Line 3

Line 8

Line 12

Line 14

Line 17

Line 19PRESS F3 TO DISPLAY OPTION MENU

These three lines of

FMT2 have been

written over the

previous lines.

These seven lines

of FMT2 will be

rolled down 2 lines.

UPDATE CUSTOMER ORDER RECORD

Figure 28. Example of ROLLING Operation

WRITE Statement

Chapter 14. Part 6. Procedure Division 521

► FORMAT identifier-2
IS literal-1 TERMINAL identifier-3

IS literal-2

►

►
INDICATOR identifier-4
INDICATORS IS
INDIC ARE

►

►
INVALID imperative-statement-1

KEY

►

►
NOT INVALID imperative-statement-2

KEY
END-WRITE

►◄

Format 5 can only be used for display devices. If the subfile form of the WRITE
statement is used for any other type of device, the WRITE operation fails and a file
status of 90 is set.

If the format is a subfile record and SUBFILE is specified, the RELATIVE KEY
clause must be specified on the SELECT clause for the file being written. The
record written to the subfile is the record in the subfile identified by the format
name that has a relative record number equal to the value of the RELATIVE KEY
data item.

INDICATORS Phrase: Specifies which indicators are to be used when a data
record is written. Indicators can be used to pass information about the data record
and how it was entered into the program.

For detailed information on the INDICATORS phrase, refer to Using Indicators
with Transaction Files in the IBM Rational Development Studio for i: ILE COBOL
Programmer's Guide.

Identifier-4 must be either an elementary Boolean data item specified without the
OCCURS clause or a group item that has elementary Boolean data items
subordinate to it.

TERMINAL Phrase: See Format 4 for general considerations concerning the
TERMINAL phrase.

The TERMINAL phrase specifies which program device’s subfile is to have a
record written to it. If the TERMINAL phrase is specified, literal-2 or identifier-3
must refer to a workstation associated with the TRANSACTION file. If literal-2 or
identifier-3 contains a value of blanks, the TERMINAL phrase is treated as if it was
not specified. The workstation specified by the TERMINAL phrase must have been
acquired, either explicitly or implicitly.

If the TERMINAL phrase is omitted, the subfile used is the subfile associated with
the default program device.

INVALID KEY Phrase: The INVALID KEY condition exists if a record is already
in the subfile with that record number, or if the relative record number specified is
greater than the maximum allowable subfile record number. The INVALID KEY

WRITE Statement

522 ILE COBOL Reference

phrase should be specified in the WRITE SUBFILE statement for all files for which
an appropriate USE procedure is not specified.

NOT INVALID KEY Phrase: This phrase allows you to specify procedures that
will be performed when an invalid key condition does not exist for the statement
that is used.

END-WRITE Phrase: This explicit scope terminator serves to delimit the scope of
the WRITE statement. END-WRITE permits a conditional WRITE statement to be
nested in another conditional statement. END-WRITE may also be used with an
imperative WRITE statement.

For more information, see “Delimited Scope Statements” on page 266.

End of IBM Extension

WRITE Statement

Chapter 14. Part 6. Procedure Division 523

XML GENERATE Statement

IBM Extension

The XML GENERATE statement converts data to XML format.

Format 1

►► XML GENERATE identifier-1 FROM identifier-2 ►

►
COUNT identifier-3

IN

►

►
EXCEPTION imperative-statement-1

ON

►

►
NOT EXCEPTION imperative-statement-2

ON
END-XML

►◄

Format 2

►► XML GENERATE FILE-STREAM
APPEND
OVERWRITE

identifier-4 FROM ►

► identifier-2
COUNT identifier-3

IN

►

►
EXCEPTION imperative-statement-1

ON

►

►
NOT EXCEPTION imperative-statement-2

ON
END-XML

►◄

identifier-1
The receiving area for a generated XML document. identifier-1 must
reference one of the following:
v An elementary data item of category alphanumeric
v An alphanumeric group item
v An elementary data item of category national

When identifier-1 references an alphanumeric group item, identifier-1 is
treated as though it were an elementary data item of category
alphanumeric.

identifier-1 must not be described with the JUSTIFIED clause, and cannot be
a function identifier. identifier-1 can be subscripted or reference modified.

XML GENERATE Statement

524 ILE COBOL Reference

identifier-1 must not overlap identifier-2 or identifier-3.

If identifier-1 references a data item of category alphanumeric, the
generated XML document is encoded with the CCSID specified by the
PROCESS statement CCSID option d - XML GENERATE single-byte data
CCSID in effect when the source code was compiled. If the CCSID in effect
is 65535, the job default CCSID at run time will be used.

If identifier-1 references a data item of category national, the generated
XML document is encoded in UCS-2. A byte order mark is not generated.

identifier-1 must reference a data item of category national if the generated
XML includes data from identifier-2 for:
v Any data item of class national or class DBCS
v Any data item with a DBCS name (that is, a data item whose name

contains DBCS characters)

identifier-1 must be large enough to contain the generated XML document.
Typically, it should be from five to eight times the size of identifier-2,
depending on the length of the data-name or data-names within identifier-2.
If identifier-1 is not large enough, an error condition exists at the end of the
XML GENERATE statement.

identifier-2
The group or elementary data item to be converted to XML format.

identifier-2 cannot be a function identifier or be reference modified, but it
can be subscripted.

identifier-2 must not overlap with identifier-1 or identifier-3.

identifier-2 must not specify the RENAMES clause.

The following data items specified by identifier-2 are ignored by the XML
GENERATE statement:
v Any unnamed elementary data items or elementary FILLER data items
v Any slack bytes inserted for SYNCHRONIZED items
v Any data item subordinate to identifier-2 that is described with the

REDEFINES clause or that is subordinate to such a redefining item
v Any data item subordinate to identifier-2 that is described with the

RENAMES clause
v Any group data item all of whose subordinate data items are ignored

All data items specified by identifier-2 that are not ignored according to the
rules above must satisfy the following conditions:
v Each elementary data item must either have class alphabetic,

alphanumeric, numeric, or national, or be an index data item. (That is,
no elementary data item can be described with the USAGE POINTER or
USAGE PROCEDURE-POINTER phrase.)

v There must be at least one such elementary data item.
v Each non-FILLER data-name must be unique within any immediately

superordinate group data item.
v Any DBCS data-names, when converted to Unicode, must be legal as

names in the XML specification, version 1.0.

For example, given the following data declaration:
01 STRUCT.

02 STAT PIC X(4).
02 IN-AREA PIC X(100).

XML GENERATE Statement

Chapter 14. Part 6. Procedure Division 525

02 OK-AREA REDEFINES IN-AREA.
03 FLAGS PIC X.
03 PIC X(3).
03 COUNTER USAGE COMP PIC S9(9).
03 ASFNPTR REDEFINES COUNTER USAGE PROCEDURE-POINTER.
03 UNREFERENCED PIC X(92).

02 NG-AREA1 REDEFINES IN-AREA.
03 FLAGS PIC X.
03 PIC X(3).
03 PTR USAGE POINTER.
03 ASNUM REDEFINES PTR USAGE COMP PIC S9(9).
03 PIC X(92).

02 NG-AREA2 REDEFINES IN-AREA.
03 FN-CODE PIC X.
03 UNREFERENCED PIC X(3).
03 QTYONHAND USAGE BINARY PIC 9(5).
03 DESC USAGE NATIONAL PIC N(40).
03 UNREFERENCED PIC X(12).

The following data items can be specified as identifier-2:
v STRUCT, of which subordinate data items STAT and IN-AREA would be

converted to XML format. (OK-AREA, NG-AREA1, and NG-AREA2 are ignored
because they specify the REDEFINES clause.)

v OK-AREA, of which subordinate data items FLAGS, COUNTER, and
UNREFERENCED would be converted. (The item whose data description
entry specifies 03 PIC X(3) is ignored because it is an elementary
FILLER data item. ASFNPTR is ignored because it specifies the
REDEFINES clause.)

v Any of the elementary data items that are subordinate to STRUCT except:
– ASFNPTR or PTR (disallowed usage)
– UNREFERENCED OF NG-AREA2 (nonunique names for data items that are

otherwise eligible)
– Any FILLER data items

The following data items cannot be specified as identifier-2:
v NG-AREA1, because subordinate data item PTR specifies USAGE POINTER

but does not specify the REDEFINES clause. (PTR would be ignored if it
specified the REDEFINES clause.)

v NG-AREA2, because subordinate elementary data items have the
nonunique name UNREFERENCED.

COUNT IN
If the COUNT IN phrase is specified, identifier-3 contains (after execution
of the XML GENERATE statement) the count of generated XML character
positions. If identifier-1 (the receiver) has category national, the count is in
national character positions (UCS-2 character encoding units). Otherwise,
the count is in bytes.

identifier-3
The data count field. Must be an integer data item defined without
the symbol P in its picture string.

identifier-3 must not overlap identifier-1 or identifier-2.

FILE-STREAM phrase
When the FILE-STREAM phrase is specified, the converted XML data will
be saved to an IFS file that is specified by identifier-4. The XML file is
encoded using the CCSID:

XML GENERATE Statement

526 ILE COBOL Reference

v Unicode UCS-2, if the generated XML includes (as described under
"identifier-1") data from identifier-2 for:
– Any national data item or DBCS data item
– Any data item with an DBCS name

v Otherwise, the CCSID specified in the PROCESS statement CCSID
option d (XML GENERATE single-byte data output CCSID, default is
JOBRUN). The CCSID used must be one of the single-byte character set
CCSIDs listed in “Coded character sets for XML documents” on page
535.

When no APPEND or OVERWRITE phrase is used, a new file will be
created with the XML file encoding CCSID and the converted XML data
will be saved into it. If a file with the same name exists when running a
program, XML generation stops and the special register XML-CODE
contains an exception code representing this error.

If APPEND phrase is used, the converted XML data will be appended to
the existing file when the file has the XML file encoding CCSID; otherwise
XML generation stops and the special register XML-CODE contains an
exception code representing this error.

If OVERWRITE phrase is used, the existing file will be replaced by a new
file with the XML file encoding CCSID; the converted XML data will be
saved into the new file.

Any other file operation errors except those mentioned above will trigger a
runtime inquiry message including file operation error message. If "G" is
answered to continue the operation, an exception code will be set in special
register XML-CODE.

identifier-4
Is the IFS file name field, and must be an alphabetic or
alphanumeric data item. It contains the path name of the IFS file
which will hold the converted XML contents.

ON EXCEPTION
An exception condition exists when an error occurs during generation of
the XML document, for example if identifier-1 is not large enough to
contain the generated XML document. In this case, XML generation stops
and the content of the receiver, identifier-1, is undefined. If the COUNT IN
phrase is specified, identifier-3 contains the number of character positions
that were generated, which can range from 0 to the length of identifier-1.

If the ON EXCEPTION phrase is specified, control is transferred to
imperative-statement-1. If the ON EXCEPTION phrase is not specified, the
NOT ON EXCEPTION phrase, if any, is ignored, and control is transferred
to the end of the XML GENERATE statement. Special register XML-CODE
contains an exception code, as detailed in the IBM Rational Development
Studio for i: ILE COBOL Programmer's Guide.

NOT ON EXCEPTION
If an exception condition does not occur during generation of the XML
document, control is passed to imperative-statement-2, if specified, otherwise
to the end of the XML GENERATE statement. The ON EXCEPTION
phrase, if specified, is ignored. Special register XML-CODE contains zero
after execution of the XML GENERATE statement.

XML GENERATE Statement

Chapter 14. Part 6. Procedure Division 527

END-XML phrase
This explicit scope terminator delimits the scope of XML GENERATE or
XML PARSE statements. END-XML permits a conditional XML GENERATE
or XML PARSE statement (that is, an XML GENERATE or XML PARSE
statement that specifies the ON EXCEPTION or NOT ON EXCEPTION
phrase) to be nested in another conditional statement.

The scope of a conditional XML GENERATE or XML PARSE statement can
be terminated by:
v An END-XML phrase at the same level of nesting
v A separator period

END-XML can also be used with an XML GENERATE or XML PARSE
statement that does not specify either the ON EXCEPTION or the NOT ON
EXCEPTION phrase.

Nested XML GENERATE or XML PARSE statements
When a given XML GENERATE or XML PARSE statement appears as
imperative-statement-1 or imperative-statement-2, or as part of imperative-statement-1 or
imperative-statement-2 of another XML GENERATE or XML PARSE statement, that
given XML GENERATE or XML PARSE statement is a nested XML GENERATE or
XML PARSE statement.

Nested XML GENERATE or XML PARSE statements are considered to be matched
XML GENERATE and END-XML, or XML PARSE and END-XML combinations
proceeding from left to right. Thus, any END-XML phrase that is encountered is
matched with the nearest preceding XML GENERATE or XML PARSE statement
that has not been implicitly or explicitly terminated.

Operation of XML GENERATE
The content of each eligible elementary data item within identifier-2 is converted to
character format as described under “Format conversion of elementary data” on
page 529 and “Trimming of generated XML data” on page 530. Only the first
definition of each storage area is processed. Redefinitions of data items are not
included. Data items that are effectively defined by the RENAMES clause are also
not included.

The converted content is then inserted as element character content in XML
markup. The XML element names are derived from the data-names within
identifier-2 as described under “XML element name formation” on page 530. The
names of group items that contain the selected elementary items are retained as
parent elements. No extra white space (new lines, indentation, and so forth) is
inserted to make the generated XML more readable. An XML declaration is not
generated.

If the receiving area specified by identifier-1 is not large enough to contain the
resulting XML document, an error condition exists. See the description of the ON
EXCEPTION phrase above for details.

If identifier-1 is longer than the generated XML document, only that part of
identifier-1 in which XML is generated is changed. The rest of identifier-1 contains
the data that was present before this execution of the XML GENERATE statement.
To avoid referring to that data, either initialize identifier-1 to spaces before the XML
GENERATE statement or specify the COUNT IN phrase.

XML GENERATE Statement

528 ILE COBOL Reference

If the COUNT IN phrase is specified, identifier-3 contains (after execution of the
XML GENERATE statement) the total number of character positions (UCS-2
encoding units or bytes) that were generated. You can use identifier-3 as a reference
modification length field to refer to the part of identifier-2 that contains the
generated XML document.

After execution of the XML GENERATE statement, special register XML-CODE
contains either zero, which indicates successful completion, or a nonzero exception
code. (See also the ILE COBOL Programming Guide for details.)

The XML PARSE statement also uses special register XML-CODE. Therefore if you
code an XML GENERATE statement in the processing procedure of an XML
PARSE statement, save the value of XML-CODE before that XML GENERATE
statement executes and restore the saved value after the XML GENERATE
statement terminates.

Format conversion of elementary data
Elementary data items are converted to character format depending on the type of
the data item:
v Data items of category alphabetic, alphanumeric, alphanumeric-edited, DBCS,

external floating-point, national, and numeric-edited are not converted.
v Fixed-point numeric data items other than COMP-5 data items or binary data

items compiled with the NOSTDTRUNC compiler option are converted as if
they were moved to a numeric-edited item that has:
– As many integer positions as the numeric item has, but with at least one

integer position
– An explicit decimal point, if the numeric item has at least one decimal

position
– The same number of decimal positions as the numeric item has
– A leading '-' picture symbol if the data item is signed (has an S in its

PICTURE clause)
v COMP-5 data items and binary data items compiled with the NOSTDTRUNC

compiler option are converted in the same way as the other fixed-point numeric
items, except for the number of integer positions. The number of integer
positions is computed depending on the number of '9' symbols in the picture
character string as follows:
– 5 minus the number of decimal places, if the data item has 1 to 4 '9' picture

symbols
– 10 minus the number of decimal places, if the data item has 5 to 9 '9' picture

symbols
– 20 minus the number of decimal places, if the data item has 10 to 18 '9'

picture symbols
v Internal floating-point data items are converted as if they were moved to a data

item as follows:
– For COMP-1: an external floating-point data item with PICTURE -9.9(8)E+99
– For COMP-2: an external floating-point data item with PICTURE -9.9(17)E+99

(illegal because of the number of digit positions)
v Index data items are converted as if they were declared USAGE BINARY

PICTURE S9(9).

After any conversion to character format, leading and trailing spaces and leading
zeroes are eliminated, as described under “Trimming of generated XML data” on
page 530.

XML GENERATE Statement

Chapter 14. Part 6. Procedure Division 529

|
|
|

|
|

|
|

|

|
|

|
|
|
|
|

|
|

|
|

|
|

If a data item after any conversion contains any characters that are illegal in XML
content, as specified in the relevant XML specification, the original data value (that
is, the value in the data item before any conversion or trimming) is represented in
hexadecimal, and an element tag name with the prefix 'hex.' is substituted for the
regular tag name. For example, if data item Customer-Name is found at run time
to contain LOW-VALUES, the XML element tag name 'hex.Customer-Name' is used
instead of the normal 'Customer-Name', and the content is represented as a string
of pairs of zero digits.

Any remaining instances of the five characters & (ampersand), ' (apostrophe), >
(greater-than sign), < (less-than sign), and “ (quotation mark) are converted into
the equivalent XML references '&', ''', '>', '<', and '"',
respectively.

Then, if identifier-1 is a data item of category national, any nonnational values are
converted to national format.

Trimming of generated XML data
Trimming is performed on data values after their conversion to character format.
(Conversion is described under “Format conversion of elementary data” on page
529.)

For values converted from signed numeric values, the leading space is removed if
the value is positive.

For values converted from numeric items, leading zeroes (after any initial minus
sign) up to but not including the digit immediately before the actual or implied
decimal point are eliminated. Trailing zeroes after a decimal point are retained. For
example:
v -012.340 becomes -12.340.
v 0000.45 becomes 0.45.
v 0013 becomes 13.
v 0000 becomes 0.

Character values from data items of class alphabetic, alphanumeric, DBCS, and
national have either trailing or leading spaces removed, depending on whether the
corresponding data items have left (default) or right justification, respectively. That
is, trailing spaces are removed from values whose corresponding data items do not
specify the JUSTIFIED clause. Leading spaces are removed from values whose data
items do specify the JUSTIFIED clause. If a character value consists solely of
spaces, one space remains as the value after trimming is finished.

XML element name formation
In the XML documents that are generated from identifier-2, the XML element tag
names are derived from the name of the data item specified by identifier-2 and
from any eligible data-names that are subordinate to identifier-2 as follows:
v The exact mixed-case spelling of data-names from the data description entry is

retained. The spellings from any references to that data item (for example, in an
OCCURS DEPENDING ON clause) are not used.

v Data-names that start with a digit are prefixed by an underscore. For example,
the data-name '3D' becomes XML tag name '_3D'.

v Data-names that start with the characters 'xml', in any combination of uppercase
and lowercase, are prefixed by an underscore. For example, the data-name 'Xml'
becomes XML tag name '_Xml'.

XML GENERATE Statement

530 ILE COBOL Reference

v Names of data items that are found at run time to contain characters that are
illegal in XML version 1.0 content are prefixed by 'hex.', and the content itself is
expressed in hexadecimal.

DBCS data-names, when translated to Unicode, must be legal as names in the XML
specification, version 1.0.

For a discussion of the exception codes that special register XML-CODE can
contain after execution of the XML GENERATE statement, see the ILE COBOL
Programming Guide.

End of IBM Extension

XML GENERATE Statement

Chapter 14. Part 6. Procedure Division 531

XML PARSE Statement

IBM Extension

The XML PARSE statement is the ILE COBOL language interface to the high-speed
XML parser that is part of the COBOL run time. The XML PARSE statement parses
an XML document into its individual pieces and passes each piece, one at a time,
to a user-written processing procedure.

XML Parse Statement – Format 1

►► XML PARSE identifier-1 PROCESSING PROCEDURE
IS

procedure-name-1 ►

►
THROUGH procedure-name-2
THRU

►

►
EXCEPTION imperative-statement-1

ON

►

►
NOT EXCEPTION imperative-statement-2

ON
END-XML

►◄

XML Parse Statement – Format 2

►► XML PARSE FILE-STREAM identifier-2 PROCESSING PROCEDURE
IS

►

► procedure-name-1
THROUGH procedure-name-2
THRU

►

►
EXCEPTION imperative-statement-1

ON

►

►
NOT EXCEPTION imperative-statement-2

ON
END-XML

►◄

identifier-1
Must be an alphanumeric or national data item that contains the XML
document character stream. Identifier-1 cannot be a function-identifier.

If identifier-1 is alphanumeric, its contents must be encoded using one of
the single-byte character sets listed under “Coded character sets for XML
documents” on page 535. EBCDIC XML documents that do not contain an
encoding declaration are parsed with the coded character set of the source
member.

If identifier-1 is national, its contents must be encoded using the UCS-2
CCSID specified on the National CCSID compiler option or the NTLCCSID
PROCESS option.

XML PARSE Statement

532 ILE COBOL Reference

#
#
#

identifier-2
Identifier-2 must be an alphanumeric data item containing the absolute or
relative path name of the stream file that contains the XML document. An
absolute name starts with "/", for example "/u/user1/myxml". A relative
path name does not start with "/", so this will be concatenated with the
current directory. XML documents, including ASCII XML documents,
located in the specified stream file that do not contain an encoding
declaration are parsed with the coded character set of the stream file.

PROCESSING PROCEDURE phrase
Specifies the name of a procedure to handle the various events that the
XML parser generates.

procedure-name-1
Specifies the first or only section or paragraph in the processing procedure.

procedure-name-2
Specifies the last section or paragraph in the processing procedure.

The processing procedure consists of the statements at which XML events
are handled. The range of the processing procedure also includes all
statements executed by CALL, EXIT, GO TO, GOBACK, and PERFORM
statements in the range of the processing procedure.

The processing procedure must not directly execute an XML PARSE
statement. However, if the processing procedure passes control to an
outermost program by using a CALL statement, the target program can
execute the same or a different XML PARSE statement. A program
executing on multiple threads can execute the same XML statement or
different XML statements simultaneously.

The compiler inserts a return mechanism after the last statement in the
processing procedure. The processing procedure can terminate the run unit
with a STOP RUN statement. It must not attempt to return to the parser
with a GOBACK or EXIT PROGRAM statement.

For more details about the processing procedure, see “Control flow” on
page 534 and “Processing procedures” on page 535.

ON EXCEPTION
The ON EXCEPTION phrase specifies imperative statements that are
executed when the XML PARSE statement raises an exception condition.

An exception condition occurs when the XML parser detects an error in
processing the XML document. The parser first signals an exception XML
event by passing control to the processing procedure with special register
XML-EVENT set to contain 'EXCEPTION'. The parser provides a numeric
error code in special register XML-CODE, as detailed in the ILE COBOL
Programmer's Guide.

An exception condition also occurs if the processing procedure deliberately
terminates parsing by setting XML-CODE to -1 before returning to the
parser from any normal XML event. In this case, the parser does not signal
an EXCEPTION XML event.

If the ON EXCEPTION phrase is specified, the parser then transfers control
to imperative-statement-1. If the ON EXCEPTION phrase is not specified,
the NOT ON EXCEPTION phrase, if any, is ignored, and control is
transferred to the end of the XML PARSE statement.

If the XML processing procedure handles the exception XML event and
sets XML-CODE to zero before returning control to the parser, the

XML PARSE Statement

Chapter 14. Part 6. Procedure Division 533

exception condition no longer exists. If no other unhandled exceptions
occur prior to the termination of the parser, control is transferred to
imperative-statement-2 of the NOT ON EXCEPTION phrase, if specified.

NOT ON EXCEPTION
The NOT ON EXCEPTION phrase specifies imperative statements that are
executed when no exception condition exists at the termination of XML
PARSE processing.

If an exception condition does not exist at termination of XML PARSE
processing, control is transferred to imperative-statement-2 of the NOT ON
EXCEPTION phrase, if specified. If the NOT ON EXCEPTION phrase is
not specified, control is transferred to the end of the XML PARSE
statement. The ON EXCEPTION phrase, if specified, is ignored.

Special register XML-CODE contains zero after execution of the XML
PARSE statement.

END-XML phrase
This explicit scope terminator serves to delimit the scope of the XML
PARSE statement. END-XML permits a conditional XML PARSE statement
to be nested in another conditional statement. END-XML can also be used
with an XML PARSE statement that does not specify either the ON
EXCEPTION or the NOT ON EXCEPTION phrase.

Control flow
When the XML parser receives control from an XML PARSE statement, the parser
analyzes the XML document and transfers control to procedure-name-1 at the
following points in the process:
v The start of the parsing process
v When a document fragment is found
v When the parser detects an error in parsing the XML document
v The end of processing the XML document

Control returns to the XML parser when the end of the processing procedure is
reached.

The exchange of control between the parser and the processing procedure
continues until either:
v The entire XML document has been parsed, ending with the

END-OF-DOCUMENT event.
v The parser detects an exception and the processing procedure does not reset

special register XML-CODE to zero prior to returning to the parser.
v The processing procedure terminates parsing deliberately by setting XML-CODE

to -1 prior to returning to the parser.

Then, the parser terminates and returns control to the XML PARSE statement with
the XML-CODE special register containing the most recent value set by the parser
or the processing procedure.

For each XML event passed to the processing procedure, the XML-CODE,
XML-EVENT, and XML-TEXT or XML-NTEXT special registers contain information
about the particular event. The content of the XML-CODE special register is
defined during and after execution of an XML PARSE statement. The contents of
all other XML special registers is undefined outside the range of the processing
procedure.

XML PARSE Statement

534 ILE COBOL Reference

For normal events, special register XML-CODE contains zero when the processing
procedure receives control. For EXCEPTION events, XML-CODE contains one of
the XML exception codes specified in the ILE COBOL Programmer's Guide. Special
register XML-EVENT is set to the event name, such as 'START-OF-DOCUMENT'.
Either XML-TEXT or XML-NTEXT contains the piece of the document
corresponding with the event, as described in XML-EVENT.

For more information about the XML special registers, see Special registers.

For all kinds of XML events, if XML-CODE is not zero when the processing
procedure returns control to the parser, the parser terminates without a further
EXCEPTION event. Setting XML-CODE to -1 before returning to the parser from
the processing procedure for an event other than EXCEPTION forces the parser to
terminate with a user-initiated exception condition. For some EXCEPTION events,
the processing procedure can set XML-CODE to zero to force the parser to
continue, although subsequent results are unpredictable. When XML-CODE is zero,
parsing continues until the entire XML document has been parsed or an unhandled
exception condition occurs.

During parsing, the program that specified the XML PARSE statement must not be
called recursively.

For more information about the EXCEPTION event and exception processing, see
the ILE COBOL Programmer's Guide.

Processing procedures
Keep in mind the following when coding your processing procedures:
v An XML processing procedure must not contain any EXIT PROGRAM or

GOBACK statements.
v You can use ALTER, GO TO, and PERFORM statements in the processing

procedure to transfer control to procedure-names outside the processing
procedure. However, control must return to the processing procedure after a GO
TO or PERFORM statement.

v A processing procedure can contain a CALL statement. The target program can
contain an XML PARSE statement.

The ILE COBOL Programmer's Guide provides details on using the XML PARSE
statement and processing procedures.

Coded character sets for XML documents
XML PARSE supports XML documents in national data items, in alphanumeric
data items, and in IFS files with UCS-2 and single byte CCSIDs. Documents in
national data items must be encoded using the Unicode UCS-2 CCSID specified on
the National CCSID compiler option or the NTLCCSID PROCESS option.
Documents in alphanumeric data items must be encoded using one of the
explicitly supported single-byte EBCDIC CCSIDs shown in Supported EBCDIC
CCSIDs for XML documents (Table 35) or one of the ASCII CCSIDs shown in
Supported ASCII CCSIDs for XML documents (Table 36 on page 536).

Table 35. Supported EBCDIC CCSIDs for XML documents

CCSID Description

1140, 37 USA, Canada, etc. Euro Country Extended CCSID (ECECP), Country
Extended CCSID

XML PARSE Statement

Chapter 14. Part 6. Procedure Division 535

#
#
#

Table 35. Supported EBCDIC CCSIDs for XML documents (continued)

CCSID Description

1141, 273 Austria, Germany ECECP, CECP

1142, 277 Denmark, Norway ECECP, CECP

1143, 278 Finland, Sweden ECECP, CECP

1144, 280 Italy ECECP, CECP

1145, 284 Spain, Latin America (Spanish) ECECP, CECP

1146, 285 UK ECECP, CECP

1147, 297 France ECECP, CECP

1148, 500 International ECECP, CECP

1149, 871 Iceland ECECP, CECP

Table 36. Supported ASCII CCSIDs for XML documents

CCSID Description

813 ISO 8859-7 Greek / Latin

819 ISO 8859-1 Latin 1 / Open Systems

920 ISO 8859-9 Latin 5 (ECMA-128, Turkey TS-5881)

When you parse ASCII XML documents, the document fragments passed to the
processing procedure in special register XML-TEXT are encoded in ASCII. Because
ILE COBOL operations such as move and comparison rely on EBCDIC encoding or
on national characters for proper operation, you must convert the document
fragments before using them. To do this when the XML document is in a COBOL
program, first convert from the ASCII CCSID of the XML document to national
characters using the MOVE statement. Then, if necessary, convert the result from
national characters to EBCDIC using the MOVE statement.

XML documents in a COBOL program encoded in other CCSIDs can be parsed by
converting them to national characters using the MOVE statement. The individual
pieces of document text passed to the processing procedure in special register
XML-NTEXT can then be converted back to the original CCSID as necessary, using
the MOVE statement.

When the XML document is in an IFS file, use the copy object (CPY) command to
do the CCSID conversion. To make it easier to work with document fragments
returned from the parser, it is recommended that you do the following before you
use the document in an XML PARSE:
1. Characters preceding the '<' tag at the start of each xml record should be

removed.
2. The end of each line in the IFS file must have only a CR (carriage return) and

not a LF (line feed).
3. Convert XML documents to the UCS-2 CCSID specified on the National CCSID

compiler option or the NTLCCSID PROCESS option, or convert XML
documents to the CCSID of the job.

4. Manually change the encoding declaration in the XML document to specify the
document's actual CCSID.

See the ILE COBOL Programmer's Guide for details on specifying the document
encoding and how the parser determines encoding.

XML PARSE Statement

536 ILE COBOL Reference

#
#
#

Special Registers
v XML-CODE
v XML-EVENT
v XML-NTEXT
v XML-TEXT

XML-CODE Special Register
The XML-CODE special register is used for the following purposes:
v To communicate status between the XML parser and the processing procedure

that was identified in the XML PARSE statement
v To indicate either that an XML GENERATE statement executed successfully or

that an exception occurred during XML generation

The XML parser sets XML-CODE prior to transferring control to the processing
procedure for each event and at parser termination. You can reset XML-CODE
prior to returning control from the processing procedure to the XML parser.

The XML-CODE special register has the implicit definition:

01 XML-CODE PICTURE S9(9) USAGE BINARY VALUE 0.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

When the XML parser encounters an XML event, it sets XML-CODE and then
passes control to the processing procedure. For all events except an EXCEPTION
event, XML-CODE contains zero when the processing procedure receives control.

For an EXCEPTION event, the parser sets XML-CODE to an exception code
indicating the nature of the exception. Exception codes are detailed in the ILE
COBOL Programmer's Guide.

You can set XML-CODE before returning to the parser, as follows:
v To −1, after a normal event, to indicate that the parser is to terminate without

causing an EXCEPTION event.
v To zero, after an EXCEPTION event for which continuation is allowed, to

indicate that the parser is to continue processing. The parser will attempt to
continue processing the XML document, but results are undefined.

If you set XML-CODE to any other value before returning to the parser, results are
undefined.

When the parser returns control to the XML PARSE statement, XML-CODE
contains the most recent value set either by the parser or by the processing
procedure.

At termination of an XML GENERATE statement, XML-CODE contains either zero,
indicating successful completion of XML generation, or a nonzero error code,
indicating that an exception occurred during XML generation. XML GENERATE
exception codes are detailed in the ILE COBOL Programmer's Guide.

XML-EVENT Special Register
The XML-EVENT special register is used to communicate event information from
the XML parser to the processing procedure that was identified in the XML PARSE

XML PARSE Statement

Chapter 14. Part 6. Procedure Division 537

statement. Prior to passing control to the processing procedure, the XML parser
sets the XML-EVENT special register to the name of the XML event, as described
in Table 37.

The XML-CODE special register has the implicit definition:

01 XML-EVENT USAGE DISPLAY PICTURE X(30) VALUE SPACE.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

XML-EVENT cannot be used as a receiving data item.

Table 37. Contents of XML-EVENT and XML-TEXT or XML-NTEXT special registers

XML event (content of XML-EVENT) Content of XML-TEXT or XML-NTEXT

ATTRIBUTE-CHARACTER The single character corresponding with the
predefined entity reference in the attribute
value.

ATTRIBUTE-CHARACTERS The value within quotes or apostrophes.
This can be a substring of the attribute value
if the value includes an entity reference.

ATTRIBUTE-NAME The attribute name, the string to the left of
=.

ATTRIBUTE-NATIONAL-CHARACTER Regardless of the type of the XML document
specified by identifier-1 in the XML PARSE
statement, XML-TEXT is empty and
XML-NTEXT contains the single national
character corresponding with the (numeric)
character reference.

COMMENT The text of the comment between the
opening character sequence "<!—" and the
closing character sequence "—>".

CONTENT-CHARACTER The single character corresponding with the
predefined entity reference in the element
content.

CONTENT-CHARACTERS The element content between start and end
tags. This can be a sub-string of the element
content if the content contains an entity
reference or another element.

CONTENT-NATIONAL-CHARACTER Regardless of the type of the XML document
specified by identifier-1 in the XML PARSE
statement, XML-TEXT is empty and
XML-NTEXT contains the single national
character corresponding with the (numeric)
character reference.

DOCUMENT-TYPE-DECLARATION The entire document type declaration
including the opening and closing character
sequences, "<!DOCTYPE" and ">".

ENCODING-DECLARATION The value, between quotes or apostrophes,
of the encoding declaration in the XML
declaration.

END-OF-CDATA-SECTION Always contains the string "]]>".

END-OF-DOCUMENT Null, zero-length.

XML PARSE Statement

538 ILE COBOL Reference

Table 37. Contents of XML-EVENT and XML-TEXT or XML-NTEXT special
registers (continued)

END-OF-ELEMENT The name of the end element tag or empty
element tag.

EXCEPTION The part of the document successfully
scanned, up to and including the point at
which the exception was detected. 1

PROCESSING-INSTRUCTION-DATA The rest of the processing instruction, not
including the closing sequence, "?>", but
including trailing, and not leading, white
space characters.

PROCESSING-INSTRUCTION-TARGET The processing instruction target name,
which occurs immediately after the
processing instruction opening sequence,
"<?".

STANDALONE-DECLARATION The value, between quotes or apostrophes,
of the standalone declaration in the XML
declaration.

START-OF-CDATA-SECTION Always contains the string "<![CDATA[".

START-OF-DOCUMENT The entire document.

START-OF-ELEMENT The name of the start element tag or empty
element tag, also known as the element type.

UNKNOWN-REFERENCE-IN-CONTENT The entity reference name, not including the
"&" and ";" delimiters.

UNKNOWN-REFERENCE-IN-ATTRIBUTE The entity reference name, not including the
"&" and ";" delimiters.

VERSION-INFORMATION The value, between quotes or apostrophes,
of the version declaration in the XML
declaration. This is currently always "1.0".

Notes:

1. Exceptions for encoding conflicts are signaled before parsing begins. For these
exceptions, XML-TEXT is either zero-length or contains just the encoding
declaration value from the document. See the ILE COBOL Programmer's Guide
for information on XML exception codes.

XML-NTEXT Special Register
The XML-NTEXT special register is defined during XML parsing to contain
document fragments that are USAGE NATIONAL.

XML-NTEXT is an elementary national data item of the length of the contained
XML document fragment. The length of XML-NTEXT can vary from zero through
8,000,000 national character positions. The maximum byte length is 16,000,000.

Note: There is no equivalent COBOL data description entry.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

The parser sets XML-NTEXT to the document fragment associated with an event
before transferring control to the processing procedure, in these cases:
v When the operand of the XML PARSE statement is a national data item

XML PARSE Statement

Chapter 14. Part 6. Procedure Division 539

v For the ATTRIBUTE-NATIONAL-CHARACTER event, and
v For the CONTENT-NATIONAL-CHARACTER event.

When XML-NTEXT is set, the XML-TEXT special register has a length of zero. At
any given time, only one of the two special registers XML-NTEXT and XML-TEXT
has a non-zero length.

Use the LENGTH function to determine the number of national characters that
XML-NTEXT contains. The LENGTH OF special register for XML-NTEXT has the
number of bytes, rather than the number of national characters, contained in
XML-NTEXT.

XML-NTEXT cannot be used as a receiving item.

XML-TEXT Special Register
The XML-TEXT special register is defined during XML parsing to contain
document fragments that are of class alphanumeric.

XML-TEXT is an elementary alphanumeric data item of the length of the contained
XML document fragment. The length of XML-TEXT can vary from zero through
16,000,000 bytes.

Note: There is no equivalent COBOL data description entry.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

The parser sets XML-TEXT to the document fragment associated with an event
before transferring control to the processing procedure when the operand of the
XML PARSE statement is an alphanumeric data item, except for the
ATTRIBUTE-NATIONAL-CHARACTER event and the CONTENT-NATIONAL-
CHARACTER event.

When XML-TEXT is set, the XML-NTEXT special register has a length of zero. At
any given time, only one of the two special registers XML-NTEXT and XML-TEXT
has a non-zero length.

Use the LENGTH function or the LENGTH OF special register for XML-TEXT to
determine the number of bytes that XML-TEXT contains.

XML-TEXT cannot be used as a receiving item.

End of IBM Extension

XML PARSE Statement

540 ILE COBOL Reference

Chapter 15. Intrinsic Functions

Data processing problems often require the use of values that are not directly
accessible in the data storage associated with the object program, but instead must
be derived through performing operations on other data. An intrinsic function is a
function that performs a mathematical, character, or logical operation, and thereby
allows you to make reference to a data item whose value is derived automatically
during the execution of the object program.

The functions can be grouped into six categories, based on the type of service
performed: mathematical, statistical, date/time, financial, character-handling, and
general.

You can reference a function by specifying its name, along with any required
arguments, in a Procedure Division statement.

Functions are elementary data items, and return alphanumeric, DBCS, numeric,
integer, boolean, or date-time values. Functions cannot serve as receiving operands.

Function Definition and Evaluation
The class and characteristics of a function, and the number and types of arguments
it requires, are determined by its function definition. These characteristics include:
v For some functions, the class and characteristics are determined by the

arguments to the function
v For alphanumeric functions, the size of the returned value

IBM Extension

v For DBCS functions, the size of the returned value
v For date-time functions, the length of the returned value

End of IBM Extension

v For numeric and integer functions, the sign of the returned value, and whether
the function is integer

v The actual value returned by the function.

The evaluation of any intrinsic function is not affected by the context in which it
appears; in other words, function evaluation is not affected by operations or
operands outside the function. However, evaluation of a function can be affected
by the attributes of its arguments.

Specifying a Function
The general format of a function-identifier is:

Format

►► FUNCTION function-name-1

▼(argument-1)

►

© Copyright IBM Corp. 1993, 2010 541

►
reference-modifier

►◄

function-name-1
Function-name-1 must be one of the Intrinsic Function names.

argument-1
Argument-1 must be an identifier, literal (other than a figurative constant), or
arithmetic expression.

reference-modifier
Can be specified only for functions of the category alphanumeric or DBCS.

The following examples show an intrinsic function invocation for an alphanumeric
source statement and a numeric source statement.

The alphanumeric source statement:
MOVE FUNCTION UPPER-CASE("hello") TO DATA-NAME.

replaces each lowercase letter in the argument with the corresponding uppercase
letter, resulting in the movement of HELLO into DATA-NAME.

The numeric source statement,
COMPUTE NUM-ITEM = FUNCTION MEAN(A B C)

Adds the values of A, B, and C then divides by 3, and places the result in
NUM-ITEM.

Within a Procedure Division statement, each function-identifier is evaluated at the
same time as any reference modification or subscripting associated with an
identifier in that same position would be evaluated.

Types of Functions
There are seven types of functions:
v Alphanumeric
v Numeric

IBM Extension

v DBCS
v National
v Date-Time
v Boolean

End of IBM Extension

v Integer

Alphanumeric functions are of the class and category alphanumeric. The value
returned has an implicit usage of DISPLAY and is in standard data format
characters. The number of character positions in the value returned is determined
by the function definition.

Numeric functions are of the class and category numeric. The returned value is
always considered to have an operational sign and is a numeric intermediate
result. For more information, see the IBM Rational Development Studio for i: ILE

Intrinsic Functions

542 ILE COBOL Reference

COBOL Programmer's Guide.

IBM Extension

DBCS functions are of the class and category DBCS. The value returned has an
implicit usage of DISPLAY-1. The number of character positions in the value
returned is determined by the function definition.

National functions are of the class and category NATIONAL. The value returned
has an implicit usage of NATIONAL. The number of character positions in the
value returned is determined by the function definition.

Date-Time functions are of the class date-time and category date, time, or
timestamp. The value returned has an implicit usage of DISPLAY. The number of
character positions in the value returned is determined by the function definition.

Boolean functions are of class and category boolean. The value returned has an
implicit usage of DISPLAY, and is either a boolean true (B"1") or a boolean false
(B"0").

End of IBM Extension

Integer functions are of the class and category numeric. The returned value is
always considered to have an operational sign and is an integer intermediate
result. The number of digit positions in the value returned is determined by the
function definition. For more information, see the IBM Rational Development Studio
for i: ILE COBOL Programmer's Guide.

Rules for Usage
Alphanumeric Functions

An alphanumeric function can be specified wherever an identifier is permitted
in the general formats, and where the rules associated with the general formats
do not specifically prohibit reference to functions. However it cannot be
specified:
v As a receiving operand of any statement
v Where the rules associated with the general formats require the data item

being referenced to have particular characteristics (such as class and
category, usage, size, and permissible values) and the evaluation of the
function according to its definition and the particular arguments specified
does not have these characteristics.

A reference modification for an alphanumeric function is allowed. If reference
modification is specified for a function, the evaluation of the reference
modification takes place immediately after the evaluation of the function.

An alphanumeric function can be referenced as an argument for a function
which allows an alphanumeric argument.

Numeric Functions
A numeric function can be used only where an arithmetic expression can be
specified.

A numeric function can be referenced as an argument for a function that
allows a numeric argument.

Intrinsic Functions

Chapter 15. Part 6. Procedure Division 543

A numeric function cannot be used where an integer operand is required, even
if the particular reference will yield an integer value. The INTEGER or
INTEGER-PART functions can be used to force the type of a numeric argument
to be an integer.

IBM Extension

DBCS Functions
A DBCS function can be specified wherever a DBCS identifier is permitted in
the general formats, and wherever the rules associated with the general
formats do not specifically prohibit reference to functions. However, it cannot
be specified:
v As a receiving operand of any statement.
v Where the rules associated with the general formats require the data item

being referenced to have particular characteristics (such as class and
category, usage, size, and permissible values), and the evaluation of the
function according to its definition and the particular arguments specified
does not have these characteristics.

A reference modification for a DBCS function is allowed. If reference
modification is specified for a function, the evaluation of the reference
modification takes place immediately after the evaluation of the function.

A DBCS function can be referenced as an argument for a function that allows a
DBCS argument.

National Functions
A national function can be specified wherever a national identifier is permitted
in the general formats, and wherever the rules associated with the general
formats do not specifically prohibit reference to functions. However, it cannot
be specified:
v As a receiving operand of any statement.
v Where the rules associated with the general formats require the data item

being referenced to have particular characteristics (such as class and
category, usage, size, and permissible values), and the evaluation of the
function according to its definition and the particular arguments specified
does not have these characteristics.

A national function can be referenced as an argument for a function that allows
a national argument.

Date-Time Functions
A date-time function can be specified wherever a date-time identifier is
permitted in the general formats, and wherever the rules associated with the
general formats do not specifically prohibit reference to functions. However, it
cannot be specified:
v As a receiving operand of any statement.
v Where the rules associated with the general formats require the data item

being referenced to have particular characteristics (such as class and
category, usage, size, and permissible values), and the evaluation of the
function according to its definition and the particular arguments specified
would not have these characteristics.

A date-time function is allowed as part of a relation condition. If a date-time
function is specified in a relation condition, the evaluation of the relation
condition takes place immediately after the evaluation of the function.

Intrinsic Functions

544 ILE COBOL Reference

A date-time function can be referenced as an argument for a function that
allows a date-time argument.

Boolean Functions
A boolean function can be specified wherever a boolean identifier is permitted
in the general formats, and wherever the rules associated with the general
formats do not specifically prohibit reference to functions. However, it cannot
be specified:
v As a receiving operand of any statement.
v Where the rules associated with the general formats require the data item

being referenced to have particular characteristics (such as class and
category, usage, size, and permissible values), and the evaluation of the
function according to its definition and the particular arguments specified
would not have these characteristics.

A boolean function is allowed as part of a relation condition. If a boolean
function is specified in a relation condition, the evaluation of the relation
condition takes place immediately after the evaluation of the function.

A boolean function can be referenced as an argument for a function that allows
a boolean argument.

End of IBM Extension

Integer Functions
An integer function can be used only where an arithmetic expression can be
specified.

An integer function can be referenced as an argument for a function that
allows an integer argument.

Special Usage Notes:
Identifiers in the USING phrase of the CALL statement must not be a
function-identifier.

The COPY statement allows function-identifiers of all types in the
REPLACING phrase.

Arguments
The values returned by some functions are determined by the arguments specified
in the function-identifier when the functions are evaluated. Some functions require
no arguments; others require a fixed number of arguments; and still others allow a
variable number of arguments.

An argument must be one of the following:
v An identifier
v An arithmetic expression
v A function-identifier
v A literal other than a figurative constant
v A special-register
v A mnemonic-name
v A keyword.

The argument to a function can be any function or expression containing a
function, including another evaluation of the same function, whose result meets
the category requirement for the argument.

Intrinsic Functions

Chapter 15. Part 6. Procedure Division 545

See “Function Definitions” on page 550 for function specific argument
specifications.

The types of arguments are:

Alphabetic
An elementary data item of the class alphabetic or a nonnumeric literal
containing only alphabetic characters. The content of the argument is used
to determine the value of the function. The length of the argument can be
used to determine the value of the function.

Alphanumeric
A data item of the class alphabetic or alphanumeric or a nonnumeric
literal. The content of the argument will be used to determine the value of
the function. The length of the argument can be used to determine the
value of the function.

IBM Extension

Boolean
A data item of class boolean, or a boolean literal.

DBCS A data item of the class DBCS or a DBCS literal. The content of the
argument is used to determine the value of the function. The length of the
argument can be used to determine the value of the function.

National
A data item of the class NATIONAL or a national hexadecimal literal. The
content of the argument is used to determine the value of the function. The
length of the argument can be used to determine the value of the function.

Date-Time
An data item of the class date-time. The content of the argument is used to
determine the value of the function. The length of the argument can be
used to determine the value of the function.

End of IBM Extension

Index An index data item. The size associated with the argument may be used in
determining the value of the argument.

Integer
An arithmetic expression that always results in an integer value. The value
of this expression, including its sign, is used to determine the value of the
function.

Numeric
An arithmetic expression, whose value, including its sign, is used to
determine the value of the function.

IBM Extension

Keyword
A keyword should be specified in accordance with the function definition.

Mnemonic-Name
A mnemonic-name defined in the SPECIAL-NAMES paragraph shall be
specified. The feature associated with the mnemonic-name may be used in
determining the value of the function.

Intrinsic Functions

546 ILE COBOL Reference

Pointer
A pointer identifier. The size associated with the argument may be used in
determining the value of the function.

Type Declaration
A type-name shall be specified. The size associated with the type
declaration may be used in determining the value of the function.

Special-Register
A special-register should be specified in accordance with the function
definition. The information associated with the special-register may be
used in determining the value of the function.

End of IBM Extension

Some functions place constraints on their arguments, such as the range of values
acceptable. If the values assigned as arguments for a function do not comply with
specified constraints, the returned value is undefined.

If a nested function is used as an argument, the evaluation of its arguments will
not be affected by the arguments in the outer function.

Only those arguments at the same function level interact with each other. This
interaction occurs in two areas:
v The computation of an arithmetic expression that appears as a function

argument will be affected by other arguments for that function.
v The evaluation of the function takes into consideration the attributes of all of its

arguments.

IBM Extension

Floating-point literals are allowed wherever a numeric argument is allowed, and in
arithmetic expressions that are used in functions that allow a numeric argument.
They are not allowed where an integer argument is required.

External floating-point items are allowed wherever a numeric argument is allowed,
and in arithmetic expressions that are used in functions that allow a numeric
argument.

External floating-point items are not allowed where an integer argument is
required, or where an argument of alphanumeric class is allowed in a function
identification, such as in the LOWER-CASE, REVERSE, UPPER-CASE, NUMVAL,
and NUMVAL-C functions.

End of IBM Extension

Order of Precedence for the Evaluation of Function
Arguments

When a function is evaluated, its arguments are evaluated individually in the order
specified in the list of arguments, from left to right. The argument being evaluated
can be a function-identifier, or it can be an expression containing
function-identifiers.

Intrinsic Functions

Chapter 15. Part 6. Procedure Division 547

If an arithmetic expression is specified as an argument, and if the first operator in
the expression is a unary plus or a unary minus, it must be immediately preceded
by a left parenthesis. For example, function MEAN(x−y z) would be the mean of two
arguments: x−y and z.

To get the mean of the unary minus of y, the parentheses would be added as
follows:
MEAN((x) (−y) z)

Note: As in the preceding example, when you are taking the mean of unary minus
and the unary minus is not the first of multiple arguments, you also need to
enclose the preceding arguments in brackets. This ensures that the unary
minus, (−y) in this example, will not be interpreted as a subscript.

ALL Subscripting
When a function allows an argument to be repeated a variable number of times,
you can refer to a table by specifying the data-name and any qualifiers that
identify the table. This can be followed immediately by subscripting where one or
more of the subscripts is the word ALL.

Note: The evaluation of an ALL subscript must result in at least one argument or
the value returned by the function will be undefined; however, the situation
can be diagnosed at run time by specifying the *RANGE compiler option.

Specifying ALL as a subscript is equivalent to specifying all table elements possible
using every valid subscript in that subscript position.

For a table argument specified as "Table-name(ALL)", the order of the implicit
specification of each table element as an argument is from left to right, where the
first (or leftmost) argument is "Table-name(1)" and ALL has been replaced by 1.
The next argument is "Table-name(2)", where the subscript has been incremented
by 1. This process continues, with the subscript being incremented by 1 to produce
an implicit argument, until the ALL subscript has been incremented through its
range of values.

For example,
FUNCTION MEAN(Table(ALL))

is equivalent to
FUNCTION MEAN(Table(1) Table(2) Table(3)... Table(n))

where n is the number of elements in Table.

If there are multiple ALL subscripts, "Table-name(ALL, ALL, ALL)", the first
implicit argument is "Table-name(1, 1, 1)", where each ALL has been replaced by 1.
The next argument is "Table-name(1, 1, 2)", where the rightmost subscript has been
incremented by 1. The subscript represented by the rightmost ALL is incremented
through its range of values to produce an implicit argument for each value.

Once a subscript specified as ALL has been incremented through its range of
values, the next subscript to the left that is specified as ALL is incremented by 1.
Each subscript specified as ALL to the right of the newly incremented subscript is
set to 1 to produce an implicit argument. Once again, the subscript represented by
the rightmost ALL is incremented through its range of values to produce an

Intrinsic Functions

548 ILE COBOL Reference

implicit argument for each value. This process is repeated until each subscript
specified as ALL has been incremented through its range of values.

For example,
FUNCTION MEAN(Table(ALL, ALL))

is equivalent to
FUNCTION MEAN(Table(1, 1) Table(1, 2) Table(1, 3)... Table(1, n)

Table(2, 1) Table(2, 2) Table(2, 3)... Table(2, n)
Table(3, 1) Table(3, 2) Table(3, 3)... Table(3, n)

.

.

.
Table(m, 1) Table(m, 2) Table(m, 3)... Table(m, n))

where n is the number of elements in the column dimension of Table, and m is the
number of elements in the row dimension of Table.

ALL subscripts can be combined with literal, data-name, or index-name subscripts
to reference multidimensional tables.

For example,
FUNCTION MEAN(Table(ALL, 2))

is equivalent to
FUNCTION MEAN(Table(1, 2)

Table(2, 2)
Table(3, 2)

.

.

.
Table(m, 2))

where m is the number of elements in the row dimension of Table.

If an ALL subscript is specified for an argument and the argument is reference
modified, then the reference-modifier is applied to each of the implicitly specified
elements of the table.

If an ALL subscript is specified for an operand that is reference-modified, the
reference-modifier is applied to each of the implicitly specified elements of the
table.

If the ALL subscript is associated with an OCCURS DEPENDING ON clause, the
range of values is determined by the object of the OCCURS DEPENDING ON
clause.

For example, given a payroll record definition such as:
01 PAYROLL.

02 PAYROLL-WEEK PIC 99.
02 PAYROLL-HOURS PIC 999 OCCURS 1 TO 52

DEPENDING ON PAYROLL-WEEK.

The following COMPUTE statement could be used to identify the mean hours
worked in any week:

Intrinsic Functions

Chapter 15. Part 6. Procedure Division 549

The following COMPUTE statements could be used to identify total year-to-date
hours, the maximum hours worked in any week, and the specific week
corresponding to the maximum hours:

COMPUTE YTD-HOURS = FUNCTION SUM (PAYROLL-HOURS(ALL))
COMPUTE MAX-HOURS = FUNCTION MAX (PAYROLL-HOURS(ALL))
COMPUTE MAX-WEEK = FUNCTION ORD-MAX (PAYROLL-DAYS(ALL))

In this function invocation the subscript ALL is used to reference all elements of
the PAYROLL-HOURS array (depending on the execution time value of the
PAYROLL-WEEK field).

Function Definitions
Table 38 provides an overview of the argument type, function type and value
returned for each of the intrinsic functions. Argument types and function types are
abbreviated as follows:
v A = alphabetic

IBM Extension

v B = boolean
v D = DBCS
v DA = date-time

End of IBM Extension

v I = integer
v IX = Index

IBM Extension

v K = keyword
v M = mnemonic-name

End of IBM Extension

v N = numeric

IBM Extension

v NL = national
v P = pointer
v S = special-register
v T = type-name

End of IBM Extension

v X = alphanumeric
v U = national (for Universal Character Set and Unicode)

Note: The number associated with these abbreviations, identifies which function
argument is being referred to.

Table 38. Table of Functions

FUNCTION-NAME ARGUMENT TYPES FUNCTION
TYPES

VALUE RETURNED

ACOS N1 N Arccosine of N1

ADD-DURATION¹ DA1,K2, I3 DA A date-time item with the duration
added.

Intrinsic Functions

550 ILE COBOL Reference

Table 38. Table of Functions (continued)

FUNCTION-NAME ARGUMENT TYPES FUNCTION
TYPES

VALUE RETURNED

ANNUITY N1, I2 N Approximates an annuity paid at an
interest rate of N1 for I2 periods.

ASIN N1 N Arcsine of N1

ATAN N1 N Arctangent of N1

CHAR I1 X Character in position I1 of program
collating sequence

CONVERT-DATE-TIME¹ DA1 or X1 or I1, K2,
X3 or K3 or S3, M4 or
S4

DA Converted date-time item

COS N1 N Cosine of N1

CURRENT-DATE None X Current date and time and difference
from Greenwich Mean Time

DATE-OF-INTEGER I1 I Standard date equivalent
(YYYYMMDD) of integer date

DATE-TO-YYYYMMDD¹ I1 or I1, I2 I Converts year in standard date from 2
digits to 4 digits

DAY-OF-INTEGER I1 I Julian date equivalent (YYYYDDD) of
integer date

DAY-TO-YYYYDDD¹ I1 or I1, I2 I Converts year in Julian date from 2
digits to 4 digits

DISPLAY-OF NL1 X Each character in NL1 converted to a
corresponding character representation
using a code page identified by I2, if
specified, or a default code page
selected at compile time if I2 is
unspecified

NL1, I2

NL1, X2 or D2

EXTRACT-DATE-TIME¹ DA1, X2 or K2 I or X Part of an extracted date, time, or
timestamp item

FACTORIAL I1 I Factorial of I1

FIND-DURATION¹ DA1, DA2, K3 I The integer duration between 2
date-time items

INTEGER N1 I The greatest integer not greater than
N1

INTEGER-OF-DATE I1 I Integer date equivalent of standard
date (YYYYMMDD)

INTEGER-OF-DAY I1 I Integer date equivalent of Julian date
(YYYYDDD)

INTEGER-PART N1 I Integer part of argument

LENGTH A1, N1, X1, D1, B1,
T1, DA1, P1, IX1, NL

I Length of argument

LOCALE-DATE¹ X1 or D1, M2 X Date string formatted according to
locale specified

LOCALE-TIME¹ X1 or D1, M2 X Time string formatted according to
locale specified

LOG N1 N Natural logarithm of N1

LOG10 N1 N Logarithm to base 10 of N1

Intrinsic Functions

Chapter 15. Part 6. Procedure Division 551

Table 38. Table of Functions (continued)

FUNCTION-NAME ARGUMENT TYPES FUNCTION
TYPES

VALUE RETURNED

LOWER-CASE A1 or X1 X All letters in the argument are set to
lowercaseD1 D

NL NL

MAX A1... X Value of maximum argument; note that
the type of function depends on the
arguments

I1... I

N1... N

X1... X

U1... U

MEAN N1... N Arithmetic mean of arguments

MEDIAN N1... N Median of arguments

MIDRANGE N1... N Mean of maximum and minimum
arguments

MIN A1...or X Value of minimum argument; note that
the type of function depends on the
arguments

I1...or I

N1...or N

X1...or X

U1... U

MOD I1, I2 I I1 modulo I2

NATIONAL-OF A1 or X1 or D1 NL The characters in argument-1
converted to national characters, using
the code page identified by I2, if
specified, or a default code page
selected at compile time if I2 is
unspecified

A1 or X1 or D1, I2

A1 or X1 or D1, NL2

NUMVAL X1 N Numeric value of simple numeric
string

NUMVAL-C X1 or X1,X2 N Numeric value of numeric string with
optional commas and currency sign

ORD A1 or X1 I Ordinal position of the argument in
collating sequence

ORD-MAX A1..., N1..., I Ordinal position of maximum
argumentX1..., or U1...

ORD-MIN A1..., N1..., I Ordinal position of minimum
argumentX1..., or U1...

PRESENT-VALUE N1, N2... N Present value of a series of future
period-end amounts, N2, at a discount
rate of N1

RANDOM I1 or none N Random number

RANGE I1... I Value of maximum argument minus
value of minimum argument; note that
the type of function depends on the
arguments

N1... N

REM N1, N2 (N2 is
nonzero)

N Remainder of N1 divided by N2

Intrinsic Functions

552 ILE COBOL Reference

Table 38. Table of Functions (continued)

FUNCTION-NAME ARGUMENT TYPES FUNCTION
TYPES

VALUE RETURNED

REVERSE A1 or X1 X Reverse order of the characters of the
argumentD1 D

NL NL

SIN N1 N Sine of N1

SQRT N1 N Square root of N1

STANDARD DEVIATION N1... N Standard deviation of arguments

SUM I1... I Sum of arguments; note that the type
of function depends on the argumentsN1... N

SUBTRACT-DURATION¹ DA1, K2, I3 DA A date-time item with the duration
subtracted

TAN N1 N Tangent of N1

TEST-DATE-TIME¹ DA1 or X1 or I1, K2,
X3 or K3 or S3, M4 or
S4

B True (B"1") if valid date-time item,
otherwise false

TRIM1 A1 or X1 X String with left and right blanks or
specified characters trimmedA1, A2 or X1, X2

D1 or D1, D2 D

NL1 or NL1, NL2 NL

TRIML1 A1 or X1 X String with left blanks or specified
characters trimmedA1, A2 or X1, X2

D1 or D1, D2 D

NL1 or NL1, NL2 NL

TRIMR1 A1 or X1 X String with right blanks or specified
characters trimmedA1, A2 or X1, X2

D1 or D1, D2 D

NL1 or NL1, NL2 NL

UPPER-CASE A1 or X1 X All letters in the argument are set to
uppercaseD1 D

NL NL

UTF8STRING¹ A1, X1, D1 or NL1 A Variable length UTF-8 string

VARIANCE N1... N Variance of arguments

WHEN-COMPILED None X Date and time when program was
compiled

YEAR-TO-YYYY¹ I1 or I1, I2 I Converts year from 2 digits to 4 digits

Note: ¹ IBM Extension

Table 39. Table of Functions

FUNCTION-NAME
ARGUMENT
TYPES

FUNCTION
TYPES VALUE RETURNED

ACOS N1 N Arccosine of N1

ASIN N1 N Arcsine of N1

Intrinsic Functions

Chapter 15. Part 6. Procedure Division 553

Table 39. Table of Functions (continued)

FUNCTION-NAME
ARGUMENT
TYPES

FUNCTION
TYPES VALUE RETURNED

ATAN N1 N Arctangent of N1

CHAR I1 X Character in position I1 of
program collating
sequence

COS N1 N Cosine of N1

CURRENT-DATE None X Current date and time
and difference from
Greenwich Mean Time

DATE-OF-INTEGER I1 I Standard date equivalent
(YYYYMMDD) of integer
date

DATE-TO-YYYYMMDD I1 or I1, I2 I Converts year in standard
date from 2 digits to 4
digits

DAY-OF-INTEGER I1 I Julian date equivalent
(YYYYDDD) of integer
date

DAY-TO-YYYYDDD I1 or I1, I2 I Converts year in Julian
date from 2 digits to 4
digits

FACTORIAL I1 I Factorial of I1

INTEGER N1 I The greatest integer not
greater than N1

INTEGER-OF-DATE I1 I Integer date equivalent of
standard date
(YYYYMMDD)

INTEGER-OF-DAY I1 I Integer date equivalent of
Julian date (YYYYDDD)

INTEGER-PART N1 I Integer part of N1

LENGTH A1, N1, or X1 I Length of argument

D1

LOG N1 N Natural logarithm of N1

LOG10 N1 N Logarithm to base 10 of
N1

LOWER-CASE A1 or X1 X All letters in the
argument are set to
lowercase

D1 D

MEAN N1... N Arithmetic mean of
arguments

MOD I1,I2 I I1 modulo I2

NUMVAL X1 N Numeric value of simple
numeric string

NUMVAL-C X1 or X1,X2 N Numeric value of
numeric string with

optional commas and
currency sign

Intrinsic Functions

554 ILE COBOL Reference

Table 39. Table of Functions (continued)

FUNCTION-NAME
ARGUMENT
TYPES

FUNCTION
TYPES VALUE RETURNED

ORD A1 or X1 I Ordinal position of the
argument in collating

sequence

RANDOM I1, none N Random number

REM N1,N2 N Remainder of N1/N2

REVERSE A1 or X1 X Reverse order of the
characters of the
argument

D1 D

SIN N1 N Sine of N1

SQRT N1 N Square root of N1

TAN N1 N Tangent of N1

UPPER-CASE A1 or X1 X All letters in the
argument are set to
uppercase

D1 D

WHEN-COMPILED None X Date and time when
program was compiled

YEAR-TO-YYYY I1 or I1, I2 I Converts year from 2
digits to 4 digits

The following sections contain the function definitions for each of the Intrinsic
Functions summarized in Table 38 on page 550.

ACOS
The ACOS function returns a numeric value in radians that approximates the
arccosine of the argument specified.

The function type is numeric.

Format

►► FUNCTION ACOS (argument-1) ►◄

argument-1
Must be class numeric. The value of argument-1 must be greater than or equal
to -1 and less than or equal to +1.

The returned value is the approximation of the arccosine of the argument, and is
greater than or equal to zero and less than or equal to Pi.

ADD-DURATION

IBM Extension

The ADD-DURATION function adds a duration to a date, time, or timestamp item,
and returns the modified item.

The function type is date-time.

Intrinsic Functions

Chapter 15. Part 6. Procedure Division 555

The length of the returned value depends on the length of the date, time, or
timestamp item specified in argument-1.

If a duration is added to a date item, the date returned must fall within a certain
range:
v For 4-digit dates, the range must be 0001/01/01 through 9999/12/31
v For 2-digit dates, the range must be 0001/01/01 through 9999/12/31, but the

year is truncated to 2 digits
v For a 3-digit year (a 1-digit century and a 2-digit year), the range must be

1900/01/01 through 2899/12/31 (the default). This range can be changed by
specifying the DATTIM PROCESS statement option.

If a duration is added to a 2-digit date item, the range is the same as for a 4-digit
year, but the year in the value returned is truncated to 2 digits.

Format

►► ▼FUNCTION ADD-DURATION (argument-1 argument-2 argument-3) ►◄

argument-1
Must be date, time, or timestamp data item.

Argument-1 is a data item containing a value to which a duration is added.
The duration is specified in argument-2 and argument-3.

argument-2
Argument-2 is a keyword that represents a duration. The valid duration
keywords are:
v YEARS
v MONTHS
v DAYS
v HOURS
v MINUTES
v SECONDS
v MICROSECONDS

The duration keyword must be consistent with argument-1. For example, the
duration keywords most obey the following rules:
1. YEARS, MONTHS, and DAYS can only be added to a date or timestamp

item.
2. HOURS, MINUTES, SECONDS, and MICROSECONDS can only be added

to a time or timestamp item.

argument-3
Must be an integer arithmetic expression. Argument-3 is the number of units of
the duration, as specified in argument-2, that are to be added to argument-1.

Argument-3 can be a negative integer, but the function only takes its absolute
value. If argument-3 is longer than 9 digits, it is truncated.

Argument-2 and argument-3 can be repeated. There should be no duplicate
argument-2 in one intrinsic function.

If a duration is added to a date, and the result is invalid, the date is adjusted.
For example, if a duration of 1 month is added to the date March 31, 1997, the
result would be the invalid date April 31, 1997. This date would be adjusted
to the valid date April 30, 1997.

ADD-DURATION

556 ILE COBOL Reference

Examples
The following examples show how the ADD-DURATION intrinsic function can be
used:
MOVE FUNCTION ADD-DURATION (date-3 MONTHS 1)

TO date-2.
MOVE FUNCTION ADD-DURATION (date-3 MONTHS int-1 * 2)

TO date-1.
MOVE FUNCTION ADD-DURATION (date-1 YEARS 1 MONTHS 5 DAYS 23)

TO date-2.

End of IBM Extension

ANNUITY
The ANNUITY function returns a numeric value that approximates the ratio of an
annuity paid at the end of each period, for a given number of periods, at a given
interest rate, to an initial value of one. The number of periods is specified by
argument-2; the rate of interest is specified by argument-1. For example, if
argument-1 is zero and argument-2 is four, the value returned is the approximation
of the ratio 1 / 4.

The function type is numeric.

Format

►► FUNCTION ANNUITY (argument-1 argument-2) ►◄

argument-1
Must be class numeric. The value of argument-1 must be greater than or equal
to zero.

argument-2
Must be a positive integer.

When the value of argument-1 is zero, the value returned by the function is the
approximation of:
1 / ARGUMENT-2

When the value of argument-1 is not zero, the value of the function is the
approximation of:
ARGUMENT-1 / (1 - (1 + ARGUMENT-1) ** (- ARGUMENT-2))

ASIN
The ASIN function returns a numeric value in radians that approximates the
arcsine of the argument specified.

The function type is numeric.

Format

►► FUNCTION ASIN (argument-1) ►◄

ADD-DURATION

Chapter 15. Part 6. Procedure Division 557

argument-1
Must be class numeric. The value of argument-1 must be greater than or equal
to -1 and less than or equal to +1.

The returned value is the approximation of the arcsine of argument-1, and is
greater than or equal to -Pi/2 and less than or equal to +Pi/2.

ATAN
The ATAN function returns a numeric value in radians that approximates the
arctangent of the argument specified.

The function type is numeric.

Format

►► FUNCTION ATAN (argument-1) ►◄

argument-1
Must be class numeric.

The returned value is the approximation of the arctangent of argument-1, and is
greater than -Pi/2 and less than +Pi/2.

CHAR
The CHAR function returns a one-character alphanumeric value that is a character
in the program collating sequence having the ordinal position equal to the value of
the argument specified.

The function type is alphanumeric.

Format

►► FUNCTION CHAR (argument-1) ►◄

argument-1
Must be an integer. The value must be greater than zero and less than or equal
to the number of positions in the collating sequence.

If more than one character has the same position in the program collating
sequence, the character returned as the function value is that of the first literal
specified for that character position in the ALPHABET clause.

If the current program collating sequence was not specified by an ALPHABET
clause, the EBCDIC collating sequence is used.

ASIN

558 ILE COBOL Reference

CONVERT-DATE-TIME

IBM Extension

The CONVERT-DATE-TIME function takes an item of class alphanumeric, numeric,
or date-time and returns a date-time item.

The function type is date-time.

The length of the returned value depends on the length allowed for the format of
the date, time, or timestamp item specified in argument-2 through argument-4.

Format

►► FUNCTION CONVERT-DATE-TIME ►

► (argument-1 argument-2)
argument-3

argument-4

►◄

argument-1
Can be:
v A date, time, or timestamp item
v An item of class alphanumeric
v A non-numeric literal
v An item of class numeric integer.

argument-2
Specifies the category of the return value and must be one of the following
keywords:
v DATE
v TIME
v TIMESTAMP.

If argument-1 is a date, time, or timestamp item, CONVERT-DATE-TIME can
only convert:
v A date to a date, or a timestamp
v A time to a time, or a timestamp
v A timestamp to a date, a time, or a timestamp.

If argument-2 is TIMESTAMP, neither argument-3 nor argument-4 can be
specified.

If argument-1 is a date-time item, a date-time move is done.

If argument-1 is a numeric integer, the returned date-time item will be
right-justified and truncated, if it is longer than what is allowed by the
date-time format specified in argument-3.

If argument-1 is anything else, the returned date-time item will be left-justified
and truncated, if it is longer than what is allowed by the date-time format
specified in argument-3.

argument-3
Specifies the format of a date or time item. It must be:
v A nonnumeric literal at least 2 characters long
v The keyword LOCALE
v The FORMAT OF special register.

CONVERT-DATE-TIME

Chapter 15. Part 6. Procedure Division 559

For a list of valid literals and the rules that this argument must follow, refer to
the SPECIAL-NAMES FORMAT clause described in “FORMAT Clause” on
page 85.

Argument-3 should represent a category that is referred to by argument-2.

If argument-3 is the keyword LOCALE, then the format of the date or time is
based on a LOCALE. If argument-4 is not specified, the current locale is used,
otherwise the locale associated with the mnemonic-name or the LOCALE OF
special register is used.

If argument-3 is not specified, the format of the returned value is dependent
on the SPECIAL-NAMES FORMAT clause. If no format has been defined in the
SPECIAL-NAMES paragraph, *ISO format is used.

argument-4
Must be a mnemonic-name associated with a LOCALE, or the LOCALE OF
special register.

Argument-4 must follow these rules:
v If argument-4 is specified and argument-3 is a locale-based format literal, for

example contains %p, then the locale-based format literal would use the
locale specified in argument-4 to determine the actual value of the
conversion specifiers.

v If argument-3 is a locale-based format literal (for example, contains %p) and
argument-4 is not specified, the locale-based format literal would use the
current locale to determine the actual value of the conversion specifiers.

v If argument-3 is a locale-based format literal (for example, contains %p), and
the LOCALE OF special register is used to refer to a non-locale item, the
locale-based format literal would use the default locale to determine the
actual value of the conversion specifiers.

Examples
The following examples show how the CONVERT-DATE-TIME intrinsic function
can be used:
MOVE FUNCTION CONVERT-DATE-TIME (’95/05/30’ DATE)

TO date-1.
MOVE FUNCTION CONVERT-DATE-TIME

(’95/05/30’ DATE ’%y/%m/%d’)
TO date-1.

MOVE FUNCTION CONVERT-DATE-TIME
(’95/05/30’ DATE ’%y/%m/%d’ my-locale)
TO date-1.

MOVE FUNCTION CONVERT-DATE-TIME
(’95/05/30’ DATE LOCALE my-locale)
TO date-1.

End of IBM Extension

COS
The COS function returns a numeric value that approximates the cosine of the
angle or arc specified by the argument in radians.

The function type is numeric.

CONVERT-DATE-TIME

560 ILE COBOL Reference

Format

►► FUNCTION COS (argument-1) ►◄

argument-1
Must be class numeric.

The returned value is the approximation of the cosine of the argument, and is
greater than or equal to -1 and less than or equal to +1.

CURRENT-DATE
The CURRENT-DATE function returns a 21-character alphanumeric value that
represents the calendar date, time of day, and time differential from Greenwich
Mean Time provided by the system on which the function is evaluated.

The function type is alphanumeric.

Format

►► FUNCTION CURRENT-DATE ►◄

Reading from left to right, the 21 character positions in the value returned can be
interpreted as follows:

Character Positions
Contents

1-4 Four numeric digits of the year in the Gregorian calendar.

5-6 Two numeric digits of the month of the year, in the range 01 through 12.

7-8 Two numeric digits of the day of the month, in the range 01 through 31.

9-10 Two numeric digits of the hours past midnight, in the range 00 through 23.

11-12 Two numeric digits of the minutes past the hour, in the range 00 through
59.

13-14 Two numeric digits of the seconds past the minute, in the range 00 through
59.

15-16 Two numeric digits of the hundredths of a second past the second, in the
range 00 through 99.

17 Either the character '-' or the character '+'. The character '-' is returned if
the local time indicated in the previous character positions is behind
Greenwich Mean Time. The character '+' is returned if the local time
indicated is the same as or ahead of Greenwich Mean Time.

18-19 If character position 17 is '-', two numeric digits are returned in the range
00 through 12 indicating the number of hours that the reported time is
behind Greenwich Mean Time. If character position 17 is '+', two numeric
digits are returned in the range 00 through 13 indicating the number of
hours that the reported time is ahead of Greenwich Mean Time.

20-21 Two numeric digits are returned in the range 00 through 59 indicating the
number of additional minutes that the reported time is ahead of or behind
Greenwich Mean Time, depending on whether character position 17 is '+'
or '-', respectively.

COS

Chapter 15. Part 6. Procedure Division 561

For more information, see the IBM Rational Development Studio for i: ILE COBOL
Programmer's Guide.

DATE-OF-INTEGER
The DATE-OF-INTEGER function converts a date in the Gregorian calendar from
integer date form to standard date form (YYYYMMDD).

The function type is integer.

The function result is an eight-digit integer.

Format

►► FUNCTION DATE-OF-INTEGER (argument-1) ►◄

argument-1
A positive integer that represents a number of days succeeding December 31,
1600, in the Gregorian calendar. The valid range is 1 to 3,067,671, which
corresponds to dates ranging from January 1, 1601 through December 31, 9999.

The returned value represents the International Standards Organization (ISO)
standard date equivalent to the integer specified as argument-1.

The returned value is an integer of the form YYYYMMDD where YYYY represents
a year in the Gregorian calendar; MM represents the month of that year; and DD
represents the day of that month.

DAY-OF-INTEGER
The DAY-OF-INTEGER function converts a date in the Gregorian calendar from
integer date form to Julian date form (YYYYDDD).

The function type is integer.

The function result is a seven-digit integer.

Format

►► FUNCTION DAY-OF-INTEGER (argument-1) ►◄

argument-1
A positive integer that represents a number of days succeeding December 31,
1600, in the Gregorian calendar. The valid range is 1 to 3,067,671, which
corresponds to dates ranging from January 1, 1601 through December 31, 9999.

The returned value represents the Julian equivalent of the integer specified as
argument-1. The returned value is an integer of the form YYYYDDD where YYYY
represents a year in the Gregorian calendar and DDD represents the day of that
year.

CURRENT-DATE

562 ILE COBOL Reference

DATE-TO-YYYYMMDD

IBM Extension

The DATE-TO-YYYYMMDD function converts argument-1 from the form YYnnnn
to the form YYYYnnnn. Argument-2, when added to the year at the time of
execution, defines the ending year of a 100-year interval, or sliding window, into
which the year of argument-1 falls.

The type of the function is integer.

Format

►► FUNCTION DATE-TO-YYYYMMDD (argument-1)
argument-2

►◄

argument-1
Must be a positive integer less than 1000000.

argument-2
Must be an integer. If argument-2 is omitted, the function will be evaluated
with a value of 50 for argument-2. At the time of execution, the sum of the
year with argument-2 will be less than 10000, and greater than 1699.

The equivalent arithmetic expression is:
(FUNCTION YEAR-TO-YYYY (YY, argument-2) * 10000 + nnnn)

where
YY = (argument-1/10000) truncated to an integer value
nnnn = argument-1 modulus 10000

This function supports a sliding window algorithm. See “YEAR-TO-YYYY” on
page 597 for a discussion of how to specify a fixed window.

Examples
In the year 2002, the returned value for:
FUNCTION DATE-TO-YYYYMMDD(851003, 10)

is 19851003.

In the year 1994, the returned value for:
FUNCTION DATE-TO-YYYYMMDD(981002,(-10))

is 18981002.

End of IBM Extension

DATE-TO-YYYYMMDD

Chapter 15. Part 6. Procedure Division 563

DAY-TO-YYYYDDD

IBM Extension

The DAY-TO-YYYYDDD function converts argument-1 from the form YYnnn to the
form YYYYnnn. Argument-2, when added to the year at the time of execution,
defines the ending year of a 100-year interval, or sliding window, into which the
year of argument-1 falls.

The type of the function is integer.

Format

►► FUNCTION DAY-TO-YYYYDDD (argument-1)
argument-2

►◄

argument-1
Must be a positive integer less than 100000.

argument-2
Must be an integer. If argument-2 is omitted, the function will be evaluated
with a value of 50 for argument-2. At the time of execution, the sum of the
year with argument-2 will be less than 10000, and greater than 1699.

The equivalent arithmetic expression is:
(FUNCTION YEAR-TO-YYYY (YY, argument-2) * 1000 + nnn)

where
YY = (argument-1/1000) truncated to an integer value
nnn = argument-1 modulus 1000

This function supports a sliding window algorithm. See “YEAR-TO-YYYY” on
page 597 for a discussion of how to specify a fixed window.

Examples
In the year 1996, the returned value for:
FUNCTION DAY-TO-YYYYDDD(85003, 10)

is 1985003.

In the year 2013, the returned value for:
FUNCTION DAY-TO-YYYYDDD(95005,(-10))

is 1995005.

End of IBM Extension

DISPLAY-OF
The DISPLAY-OF function returns an alphanumeric character string consisting of
the content of argument-1 converted to a specific code page representation. The
type of the function is alphanumeric.

DAY-TO-YYYYDDD

564 ILE COBOL Reference

Format 1: Specify target CCSID

►► FUNCTION DISPLAY-OF (argument-1)
argument-2

►◄

argument-1
Must be of class national. Argument-1 identifies the source string for the
conversion.

IBM Extension

argument-2
Must be an integer. Argument-2 identifies the target code page for the
conversion. Argument-2 must be a valid CCSID number identifying an
EBCDIC, ASCII, UTF-8, or EUC code page. The EBCDIC or ASCII CCSID can
identify a code page that is SBCS, DBCS, or mixed SBCS/DBCS.

End of IBM Extension

If argument-2 is omitted, the target code page is the one in effect for the CCSID
compiler option when the source code was compiled. If the target code page in
effect is 65535, then default CCSID 37 will be used.

The returned value is an alphanumeric character string consisting of the characters
of argument-1 converted to the target code page representation. When a source
character cannot be converted to a character in the target code page, the source
character is replaced with the system-defined substitution character X'3F' for a
single-byte EBCDIC target code page and X'FEFE' for a DBCS code page. No
exception condition is raised.

The length of the returned value depends on the content of argument-1 and the
characteristics of the target code page.

Exceptions: If the conversion fails, a severe run-time error occurs. Verify that the
conversion from the national data (coded using the UCS-2 CCSID specified in the
National CCSID compiler option or in the NTLCCSID PROCESS option) to the
target CCSID is supported on the operating system.

Usage notes

1. If the target code page is a mixed SBCS/DBCS EBCDIC code page, the
returned value can include DBCS substrings delimited by shift-out and shift-in
control characters.

2. The DISPLAY-OF function, with an integer argument-2 specified, can be used to
generate character data represented in a code page that differs from that
specified in the CCSID compiler option. Special care needs to be taken because
subsequent COBOL operations on that data can involve implicit conversions
that assume the data is represented in the EBCDIC code page specified in the
CCSID compiler option.

Format 2: Specify user substitution character

►► FUNCTION DISPLAY-OF (argument-1 argument-3) ►◄

DISPLAY-OF

Chapter 15. Part 6. Procedure Division 565

#
#
#
#

argument-1
Must be of class national. Argument-1 identifies the source string for the
conversion.

argument-3
Must be a literal or data item of class alphabetic, alphanumeric or DBCS, with
one character position in length. Argument-3 specifies an alphanumeric or
DBCS substitution character used in conversion of national characters for
which there is no corresponding alphanumeric or DBCS character. User
substitution character is only supported for EBCDIC and ASCII code pages. If
it is used for another code page such as EUC, a compiler error message (of
severity 30) will be issued and argument-3 will be ignored.

User substitution character has the same CCSID as the target code page CCSID
in effect. If the target code page CCSID in effect is double byte, only double
byte substitution character (DBCS) can be specified as argument-3. If the target
code page CCSID in effect is single byte or mixed byte, only single byte
substitution character (alphabetic or alphanumeric) can be specified as
argument-3, double byte substitution character for mixed byte CCSID can not
be replaced by user substitution character. If inconsistency between the target
CCSID type and argument-3 class is detected at compile time, a compiler error
message (of severity 30) will be issued; if inconsistency is detected at runtime,
a severe run-time message will be issued. If user answers the message with 'G'
to continue the program, argument-3 will be ignored.

The target code page is the one in effect for the CCSID compiler option when the
source code was compiled. If the CCSID compiler option in effect is 65535, then
default CCSID 37 will be used.

The returned value is an alphanumeric character string consisting of the characters
of argument-1 converted to the target code page representation. When a source
character cannot be converted to a character in the target code page, the source
character is replaced with the user substitution character argument-3. No exception
condition is raised.

The length of the returned value depends on the content of argument-1 and the
characteristics of the target code page.

Exceptions: If the conversion fails, a severe run-time error occurs. Verify that the
conversion from the source ccsid (UCS-2) to the target CCSID is supported on the
operating system.

You can nest the DISPLAY-OF and NATIONAL-OF intrinsic functions to easily convert
from any CCSID to any other CCSID.

For example, the following code converts an EBCDIC string to an ASCII string:
77 EBCDIC-CCSID PIC 9(4) BINARY VALUE 1140.
77 ASCII-CCSID PIC 9(4) BINARY VALUE 819.
77 Input-EBCDIC PIC X(80).
77 ASCII-Output PIC X(80).
. . .

* Convert EBCDIC to ASCII
Move Function
Display-of

(Function National-of
(Input-EBCDIC EBCDIC-CCSID)
ASCII-CCSID

)
to ASCII-output

DISPLAY-OF

566 ILE COBOL Reference

EXTRACT-DATE-TIME

IBM Extension

The EXTRACT-DATE-TIME function returns part of a date, time, or timestamp
item.

The function type is integer or alphanumeric. If argument-2 is a keyword (such as
MONTHS or DAYS), or consists of only numeric specifiers, an integer is returned.
Otherwise, an alphanumeric data item is returned.

The length of the result depends on the values extracted from the date-time item.

Format

►► FUNCTION EXTRACT-DATE-TIME (argument-1 argument-2) ►◄

argument-1
Must be a date, time, or timestamp item.

argument-2
Specifies the values to be returned by the EXTRACT-DATE-TIME function.

Argument-2 is a keyword that represents a duration or a non-numeric literal
that contains one or more separators and conversion specifications.

If the non-numeric literal contains only numeric conversion specifiers, the
value returned by the EXTRACT-DATE-TIME function is an integer. A
non-numeric literal containing separators or alphanumeric conversion
specifiers will result in an alphanumeric return value.

If argument-2 is a keyword, an integer is returned.

The valid durations and their equivalent conversion specifications are:
v YEARS ('@Y')
v MONTHS ('%m')
v DAYS ('%d')
v HOURS ('%H')
v MINUTES ('%M')
v SECONDS ('%S')
v MICROSECONDS ('@Sm').

For a list of other valid conversion specifications see Table 5 on page 86 in the
description of the FORMAT clause of the SPECIAL-NAMES paragraph.

The duration keyword or conversion specifier used must be consistent with
argument-1. For example, the duration keywords must obey the following
rules:
1. YEARS, MONTHS, and DAYS can only be extracted from a date or

timestamp item.
2. HOURS, MINUTES, SECONDS, and MICROSECONDS can only be

extracted from a time or timestamp item.
3. If argument-1 is a locale-based data item, and argument-2 contains

locale-based conversion specifiers (such as %p), the locale-based conversion
specifier (%p, in this case) uses the locale of argument-1.
If argument-1 is not a locale-based data item, then the locale-based
conversion specifier (%p, in this case) is treated as a non-locale-based

EXTRACT-DATE-TIME

Chapter 15. Part 6. Procedure Division 567

conversion specifier and the % is replaced with an @. Using our example,
this means that %p would become @p, where @p is the non-locale-based
equivalent of %p.

Examples
The following examples show how the EXTRACT-DATE-TIME intrinsic function
can be used:

COMPUTE integer-1 = FUNCTION EXTRACT-DATE-TIME (date-3 MONTHS).
COMPUTE integer-1 = FUNCTION EXTRACT-DATE-TIME (date-3 ’%m’).
MOVE FUNCTION EXTRACT-DATE-TIME (date-2 ’%m/%d’) to alphanum-1.

End of IBM Extension

FACTORIAL
The FACTORIAL function returns an integer that is the factorial of the argument
specified.

The function type is integer.

Format

►► FUNCTION FACTORIAL (argument-1) ►◄

argument-1
argument-1 If the *NOEXTEND compiler option is in effect, then argument-1
must be an integer greater than or equal to zero and less than or equal to 28. If
the *EXTEND31 compiler option is in effect, then argument-1 must be an
integer greater than or equal to zero and less than or equal to 29. If the value
of argument-1 is zero, the value 1 is returned; otherwise, its factorial is
returned. If the *EXTEND63 compiler option is in effect, then argument-1 must
be an integer greater than or equal to zero and less than or equal to 49.

FIND-DURATION

IBM Extension

The FIND-DURATION function is used to calculate a duration between:
v Two dates
v A date and a timestamp
v Two times
v A time and a timestamp
v Two timestamps.

The FIND-DURATION function returns an integer in the form of complete units of
the specified duration. Any rounding is done downwards. The calculation of
durations includes microseconds.

The function type is integer.

The function result is a nine-digit integer. If the function result is larger than 9
digits (999,999,999), a machine check occurs.

EXTRACT-DATE-TIME

568 ILE COBOL Reference

Format

►► FUNCTION FIND-DURATION (argument-1 argument-2 argument-3) ►◄

argument-1, argument-2
Must be a date, time, or timestamp item.

Argument-1 is subtracted from argument-2. The value returned is the number
of complete units of argument-3. If argument-1 is later than argument-2, the
result is negative. If argument-1 is earlier than argument-2, the result is
positive.

argument-3
Is a keyword that represents a duration. The valid duration keywords are:
v YEARS
v MONTHS
v DAYS
v HOURS
v MINUTES
v SECONDS
v MICROSECONDS

In order to determine the valid duration keywords, the following rules apply:
1. If argument-1 or argument-2 is a date item, the duration specified must be

consistent with a date.
2. If argument-1 or argument-2 is a time item, the duration specified must be

consistent with a time.
3. If the returned value is not an integer, it is truncated. For example, the duration

between March 17, 1997 and May 2, 1997 is 1.5 months. Since
FIND-DURATION only returns an integer the .5 would be truncated, and the
actual value returned would be 1.

Examples
The following examples show how the FIND-DURATION intrinsic function can be
used:

COMPUTE integer-1 = FUNCTION FIND-DURATION (date-3 date-4 MONTHS).
COMPUTE integer-1 = FUNCTION FIND-DURATION (timestamp-1 date-5 MONTHS).

End of IBM Extension

INTEGER
The INTEGER function returns the greatest integer value that is less than or equal
to the argument.

The function type is integer.

Format

►► FUNCTION INTEGER (argument-1) ►◄

argument-1
Must be class numeric.

FIND-DURATION

Chapter 15. Part 6. Procedure Division 569

The returned value is the greatest integer less than or equal to the value of
argument-1. For example,
FUNCTION INTEGER (2.5)

will return a value of 2; and
FUNCTION INTEGER (-2.5)

will return a value of -3.

INTEGER-OF-DATE
The INTEGER-OF-DATE function converts a date in the Gregorian calendar from
standard date form (YYYYMMDD) to integer date form.

The function type is integer.

The function result is a seven-digit integer with a range from 1 to 3,067,671.

Format

►► FUNCTION INTEGER-OF-DATE (argument-1) ►◄

argument-1
Must be an integer of the form YYYYMMDD, whose value is obtained from
the calculation (YYYY * 10,000) + (MM * 100) + DD.
v YYYY represents the year in the Gregorian calendar. It must be an integer

greater than 1600, but not greater than 9999.
v MM represents a month and must be a positive integer less than 13.
v DD represents a day and must be a positive integer less than 32, provided

that it is valid for the specified month and year combination.

The returned value is an integer that is the number of days the date represented by
argument-1 succeeds December 31, 1600 in the Gregorian calendar.

INTEGER-OF-DAY
The INTEGER-OF-DAY function converts a date in the Gregorian calendar from
Julian date form (YYYYDDD) to integer date form.

The function type is integer.

The function result is a seven-digit integer.

Format

►► FUNCTION INTEGER-OF-DAY (argument-1) ►◄

argument-1
Must be an integer of the form YYYYDDD whose value is obtained from the
calculation (YYYY * 1000) + DDD.
v YYYY represents the year in the Gregorian calendar. It must be an integer

greater than 1600, but not greater than 9999.
v DDD represents the day of the year. It must be a positive integer less than

367, provided that it is valid for the year specified.

INTEGER

570 ILE COBOL Reference

The returned value is an integer that is the number of days the date represented by
argument-1 succeeds December 31, 1600 in the Gregorian calendar.

INTEGER-PART
The INTEGER-PART function returns an integer that is the integer portion of the
argument specified.

The function type is integer.

Format

►► FUNCTION INTEGER-PART (argument-1) ►◄

argument-1
Must be class numeric.

If the value of argument-1 is zero, the returned value is zero. If the value of
argument-1 is positive, the returned value is the greatest integer less than or equal
to the value of argument-1. If the value of argument-1 is negative, the returned
value is the least integer greater than or equal to the value of argument-1.

For example,
FUNCTION INTEGER-PART (+1.5)

will return a value of +1; and
FUNCTION INTEGER-PART (-1.5)

will return a value of -1.

LENGTH
The LENGTH function returns an integer equal to the length of the argument in
bytes. The function type is integer.

The function result is a nine-digit integer.

Format

►► FUNCTION LENGTH (argument-1) ►◄

argument-1
Can be a nonnumeric, boolean, or DBCS literal; a data item of any class or
category.

If argument-1, or any data item subordinate to argument-1, is described with
the DEPENDING phrase of the OCCURS clause, the contents of the data item
referenced by the data-name specified in the DEPENDING phrase are used at
the time the LENGTH function is evaluated.

Argument-1 can be a type-name, or an item that is subordinate to a type-name.

A data item described with USAGE IS POINTER or USAGE IS
PROCEDURE-POINTER can be used as argument-1 to the LENGTH function. The
result will always be 16.

INTEGER-OF-DAY

Chapter 15. Part 6. Procedure Division 571

The ADDRESS OF special register, or the LENGTH OF special register, can be used
as argument-1 to the LENGTH function. The result will always be 16 or 4
respectively, independent of the ADDRESS OF or LENGTH OF object.

If argument-1 is a nonnumeric literal, an elementary data item, or a group data
item that does not contain a variable occurrence data item, the value returned is an
integer equal to the length of argument-1 in character positions.

If argument-1 is a null-terminated nonnumeric literal, the returned value is equal
to the number of alphanumeric character positions in the literal excluding the null
character at the end of the literal. The length of a null-terminated nonnumeric
literal containing a mix of single-byte and double-byte characters is counted as
though each byte were a single-byte character.

IBM Extension

If argument-1 is a DBCS or national data item or literal, the returned value is the
length of the argument in DBCS or national character positions. For example,
FUNCTION LENGTH (G"D1D2") will return the value 2, not 4.

End of IBM Extension

The returned value includes implicit FILLER characters, if any.

LOCALE-DATE

IBM Extension

The LOCALE-DATE function returns a character string containing a date in a
culturally-appropriate format specified by a locale.

The function type is alphanumeric.

►► FUNCTION LOCALE-DATE (argument-1)
mnemonic-name-1

►◄

argument-1
Argument-1 must be alphanumeric or DBCS, and 8 character positions in
length.

Argument-1 must be a date in the same format as the year, month, and day
returned in character positions 1 through 8 by the CURRENT-DATE function.
For more information about the CURRENT-DATE function, refer to
“CURRENT-DATE” on page 561.

mnemonic-name-1
Mnemonic-name-1 must be associated with a locale in the SPECIAL-NAMES
paragraph.

Returned Values
The following values are returned by the LOCALE-DATE intrinsic function:
1. If mnemonic-name-1 is specified, the locale used for formatting the date is the

one associated with mnemonic-name-1; otherwise, the current locale is used. If
the locale associated with mnemonic-name-1 is not available, an operating
system escape message is issued.

LENGTH

572 ILE COBOL Reference

2. The returned value is a character string containing the date specified by
argument-1, and is returned in the date format specified in the locale.

3. The length of the returned value depends on the format specified in the locale.

End of IBM Extension

LOCALE-TIME

IBM Extension

The LOCALE-TIME function returns a character string containing a time in a
culturally-appropriate format specified by a locale.

The function type is alphanumeric.

►► FUNCTION LOCALE-TIME (argument-1)
mnemonic-name-1

►◄

argument-1
Argument-1 must be alphanumeric or DBCS and must be 13 character
positions in length.

The content of argument-1 must be in the same format as the hours, minutes,
and seconds returned in character positions 9 through 21 by the
CURRENT-DATE function. For more information about the CURRENT-DATE
function, refer to “CURRENT-DATE” on page 561.

mnemonic-name-1
Mnemonic-name-1 must be associated with a locale in the SPECIAL-NAMES
paragraph.

Returned Values
The following values are returned by the LOCALE-TIME intrinsic function:
1. If mnemonic-1 is specified, the locale used for formatting the time is the one

associated with mnemonic-name-1; otherwise, the current locale is used. If the
locale associated with mnemonic-name-1 is not available, an operating system
escape message is issued.

2. The returned value is a character-string containing the hours, minutes, and
seconds of the time specified by argument-1 in the culturally-appropriate
format indicated in the locale. The value will be adjusted for any difference
between the offset from Universal Coordinated time (Greenwich Mean time)
held in the last five character positions of argument-1, and that specified for the
LC-TOD category of the locale.

3. The length of the returned value depends on the format indicated in the locale.

End of IBM Extension

LOG
The LOG function returns a numeric value that approximates the logarithm to the
base e (natural log) of the argument specified.

The function type is numeric.

LOCALE-DATE

Chapter 15. Part 6. Procedure Division 573

Format

►► FUNCTION LOG (argument-1) ►◄

argument-1
Must be class numeric. The value of argument-1 must be greater than zero.

The returned value is the approximation of the logarithm to the base e of
argument-1.

LOG10
The LOG10 function returns a numeric value that approximates the logarithm to
the base 10 of the argument specified.

The function type is numeric.

Format

►► FUNCTION LOG10 (argument-1) ►◄

argument-1
Must be class numeric. The value of argument-1 must be greater than zero.

The returned value is the approximation of the logarithm to the base 10 of
argument-1.

LOWER-CASE
The LOWER-CASE function returns a character string that is the same length as
the argument specified with each uppercase letter replaced by the corresponding
lowercase letter.

The function type depends on the argument types, as follows:

Argument Type Function Type
Alphabetic Alphanumeric
Alphanumeric Alphanumeric
DBCS¹ DBCS¹
Note: ¹ IBM Extension

Format

►► FUNCTION LOWER-CASE (argument-1) ►◄

argument-1
Must be class alphabetic, or alphanumeric and must be at least one character in
length.

IBM Extension

Argument-1 can be DBCS or national.

End of IBM Extension

LOG

574 ILE COBOL Reference

The same character string as argument-1 is returned, except that each uppercase
letter is replaced by the corresponding lowercase letter. A program collating
sequence or code page does not affect the returned value.

IBM Extension

If argument-1 is DBCS, the DBCS value is not affected. If argument-1 is a mixed
literal, only the single byte portions of the literal are affected.

End of IBM Extension

The returned character string has the same length as argument-1.

MAX
The MAX function returns the content of the argument that contains the maximum
value.

The function type depends on the argument types, as follows:

Argument Type Function Type

Alphabetic Alphanumeric

Alphanumeric Alphanumeric

National National

Index Index

All arguments integer Integer

Numeric (some arguments can be integer) Numeric

Format

►► FUNCTION MAX (▼ argument-1) ►◄

argument-1
Can be class numeric, alphanumeric, alphabetic, or DBCS, and cannot be class
boolean.

If more than one argument-1 is specified, the combination of alphabetic and
alphanumeric arguments is allowed. Other combinations of argument types are not
allowed. For example DBCS arguments can not be mixed with alphanumeric
arguments.

The returned value is the content of argument-1 having the greatest value. The
comparisons used to determine the greatest value are made according to the rules
for simple conditions. For more information, see “Conditional Expressions” on
page 247.

If more than one argument has the same greatest value, the leftmost argument
having that value is returned.

If the type of the function is alphanumeric or DBCS, the size of the returned value
is the same as the size of the selected argument.

LOWER-CASE

Chapter 15. Part 6. Procedure Division 575

MEAN
The MEAN function returns a numeric value that approximates the arithmetic
average of its arguments.

The function type is numeric.

Format

►► ▼FUNCTION MEAN (argument-1) ►◄

argument-1
Must be class numeric.

The returned value is the arithmetic mean of the argument-1 series. The returned
value is defined as the sum of the argument-1 series divided by the number of
occurrences referenced by argument-1.

The equivalent arithmetic expression shall be as follows:
1. For one occurrence of argument-1,

(argument-1)
2. For two occurrences of argument-1,

((argument-11 + argument-12) / 2)
3. For n occurrences of argument-1,

((argument-11 + argument-12 + ... + argument-1n) / n)

MEDIAN
The MEDIAN function returns the content of the argument whose value is the
middle value in the list formed by arranging the arguments in sorted order.

The function type is numeric.

Format

►► FUNCTION MEDIAN (▼ argument-1) ►◄

argument-1
Must be class numeric.

The returned value is the content of argument-1 having the middle value in the list
formed by arranging all argument-1 values in sorted order.

If the number of occurrences referenced by argument-1 is odd, the returned value
is such that at least half of the occurrences referenced by argument-1 are greater
than or equal to the returned value and at least half are less than or equal. If the
number of occurrences referenced by argument-1 is even, the returned value is the
arithmetic mean of the values referenced by the two middle occurrences.

MEAN

576 ILE COBOL Reference

The comparisons used to arrange the argument values in sorted order are made
according to the rules for simple conditions. For more information, see
“Conditional Expressions” on page 247.

MIDRANGE
The MIDRANGE function returns a numeric value that approximates the
arithmetic average of the values of the minimum argument and the maximum
argument.

The function type is numeric.

Format

►► FUNCTION MIDRANGE (▼ argument-1) ►◄

argument-1
Must be class numeric.

The returned value is the arithmetic mean of the value of the greatest argument-1
and the value of the least argument-1. The comparisons used to determine the
greatest and least values are made according to the rules for simple conditions. For
more information, see “Conditional Expressions” on page 247.

MIN
The MIN function returns the content of the argument that contains the minimum
value.

The function type depends on the argument types, as follows:

Argument Type Function Type

Alphabetic Alphanumeric

Alphanumeric Alphanumeric

National National

Index Index

All arguments integer Integer

Numeric (some arguments can be integer) Numeric

Format

►► FUNCTION MIN (▼ argument-1) ►◄

argument-1
Can be class numeric, alphanumeric, alphabetic, or DBCS, and cannot be class
boolean.

MEDIAN

Chapter 15. Part 6. Procedure Division 577

If more than one argument-1 is specified, the combination of alphabetic and
alphanumeric arguments is allowed. Other combinations of argument types are not
allowed. For example DBCS arguments can not be mixed with alphanumeric
arguments.

The returned value is the content of argument-1 having the least value. The
comparisons used to determine the least value are made according to the rules for
simple conditions. For more information, see “Conditional Expressions” on page
247.

If more than one argument-1 has the same least value, the leftmost argument-1
having that value is returned.

If the type of the function is alphanumeric or DBCS, the size of the returned value
is the same as the size of the selected argument-1.

MOD
The MOD function returns an integer value that is argument-1 modulo
argument-2.

The function type is integer.

The function result is an integer with as many digits as the shorter of argument-1
and argument-2.

Format

►► FUNCTION MOD (argument-1 argument-2) ►◄

argument-1
Must be an integer.

argument-2
Must be an integer. Must not be zero.

The returned value is argument-1 modulo argument-2. The returned value is
defined as:

argument-1 - (argument-2 * FUNCTION INTEGER (argument-1 / argument-2))

The following illustrates the expected results for some values of argument-1 and
argument-2.

Argument-1 Argument-2 Return

11 5 1

-11 5 4

11 -5 -4

-11 -5 -1

MIN

578 ILE COBOL Reference

NATIONAL-OF
The NATIONAL-OF function returns a national character string consisting of the
UCS-2 representation of the characters in argument-1. The type of the function is
national.

Format 1: Specify source CCSID

►► FUNCTION NATIONAL-OF (argument-1)
argument-2

►◄

argument-1
Must be of class alphabetic, alphanumeric, or DBCS. Argument-1 identifies the
source string for the conversion.

IBM Extension

argument-2

Must be an integer. Argument-2 identifies the source code page for the
conversion. Argument-2 must be a valid CCSID number identifying an
EBCDIC, ASCII, UTF-8, or EUC code page. The EBCDIC or ASCII CCSID can
identify a code page that is SBCS, DBCS, or mixed SBCS/DBCS.

If argument-2 is omitted, the source code page is the one in effect for the
CCSID compiler option when the source code was compiled. If the source code
page is 65535, then default CCSID 37 will be used.

End of IBM Extension

The returned value is a national character string consisting of the characters of
argument-1 converted to national character representation (UCS-2 CCSID specified
in the National CCSID compiler option or in the NTLCCSID PROCESS option). See
"Conversions and Precision" in the IBM Rational Development Studio for i: ILE
COBOL Programmer's Guide for more information.

When a source character cannot be converted to a national character, the source
character is converted to the system-defined substitution character X'FFFD'. No
exception condition is raised.

The length of the returned value depends on the content of argument-1 and the
characteristics of the source code page.

Exceptions: If the conversion fails, a severe run-time error occurs. Verify that the
conversion from the source CCSID to the target CCSID (CCSID specified in the
National CCSID compiler option or in the NTLCCSID PROCESS option) is
supported on the operating system.

Format 2: Specify user substitution character

►► FUNCTION NATIONAL-OF (argument-1 argument-3) ►◄

argument-1
Must be of class alphabetic, alphanumeric, or DBCS. Argument-1 identifies the
source string for the conversion.

NATIONAL-OF

Chapter 15. Part 6. Procedure Division 579

#
#
#

#
#
#
#

argument-3
Must be a national literal or national data item with one character position in
length.

Argument-3 specifies a national substitution character used in conversion of
alphanumeric characters for which there is no corresponding national
character.

The source code page is the one in effect for the CCSID compiler option when
the source code was compiled. If the CCSID compiler option is 65535, then
default CCSID 37 will be used.

The returned value is a national character string consisting of the characters of
argument-1 converted to national character representation (CCSID specified in
the National CCSID compiler option or in the NTLCCSID PROCESS option).
When a source character cannot be converted to a national character, the
source character is converted to the user substitution character argument-3. No
exception condition is raised.

The length of the returned value depends on the content of argument-1 and
the characteristics of the source code page.

Exceptions: If the conversion fails, a severe run-time error occurs. Verify that
the conversion from the source ccsid to the target CCSID (UCS-2) is supported
on the operating system.

NUMVAL
The NUMVAL function returns the numeric value represented by the alphanumeric
character string specified in an argument. The function strips away any leading or
trailing blanks in the string, producing a numeric value that can be used in an
arithmetic expression.

The function type is numeric.

Format

►► FUNCTION NUMVAL (argument-1) ►◄

argument-1
Must be a nonnumeric literal or an alphanumeric data item whose content has
the following formats:

►►
space +

-
space

digit
.

digit
. digit

space
►◄

►►
space

digit
.

digit
. digit

space +
-
CR
DB

space
►◄

space
A string of one or more spaces.

NATIONAL-OF

580 ILE COBOL Reference

#
#
#
#
#
#

digit
A string of one or more digits. The total number of digits must not exceed 18.

If the DECIMAL-POINT IS COMMA clause is specified in the SPECIAL-NAMES
paragraph, a comma must be used in argument-1 rather than a decimal point.

The returned value is a floating-point approximation of the numeric value
represented by argument-1. See "Conversions and Precision" in the IBM Rational
Development Studio for i: ILE COBOL Programmer's Guide for more information.

NUMVAL-C
The NUMVAL-C function returns the numeric value represented by the
alphanumeric character string specified as argument-1. Any optional currency sign
specified by argument-2 and any optional commas preceding the decimal point are
stripped away, producing a numeric value that can be used in an arithmetic
expression.

The NUMVAL-C function may not be specified under the following conditions:
v More than one CURRENCY SIGN clause is specified within the program
v The WITH PICTURE SYMBOL phrase is specified in a CURRENCY SIGN clause
v A lowercase letter is specified as the currency symbol

The function type is numeric.

Format

►► FUNCTION NUMVAL-C (argument-1)
argument-2

►◄

argument-1
Must be a nonnumeric literal or an alphanumeric data item whose content has
the following formats:

►►
space +

-
space cs space

►

►

▼

digit
.

digit
, digit

. digit

space
►◄

►►
space cs space

►

►

▼

digit
.

digit
, digit

. digit

space +
-
CR
DB

space
►◄

NUMVAL

Chapter 15. Part 6. Procedure Division 581

#
#
#

space
A string of one or more spaces.

cs The string of one or more characters specified by argument-2. At most, one
copy of the characters specified by cs can occur in argument-1.

digit
A string of one or more digits. The total number of digits must not exceed 18.

If the DECIMAL-POINT IS COMMA clause is specified in the SPECIAL-NAMES
paragraph, the functions of the comma and decimal point in argument-1 are
reversed.

argument-2
If specified, must be a nonnumeric literal or alphanumeric data item, subject to
the following rules:
v It must not contain any of the digits 0 through 9, any leading or trailing

spaces, or any of the + - . , special characters.
v It can be of any length valid for an elementary or group data item, including

zero.
v Matching of argument-2 is case-sensitive. For example, if you specify

argument-2 as 'Dm', it will not match 'DM', 'dm' or 'dM'.

If argument-2 is not specified, the character used for cs is the currency symbol
specified for the program.

The returned value is a floating-point approximation of the numeric value
represented by argument-1. See "Conversions and Precision" in the IBM Rational
Development Studio for i: ILE COBOL Programmer's Guide for more information.

ORD
The ORD function returns an integer value that is the ordinal position of its
argument in the collating sequence for the program. The lowest ordinal position is
1.

The function type is integer.

Format

►► FUNCTION ORD (argument-1) ►◄

argument-1
Must be one character in length and must be class alphabetic or alphanumeric.

The returned value is the ordinal position of argument-1 in the collating sequence
for the program; it ranges from 1 to 256 depending on the collating sequence.

ORD-MAX
The ORD-MAX function returns a value that is the ordinal number position, in the
argument list, of the argument that contains the maximum value.

The function type is integer.

NUMVAL-C

582 ILE COBOL Reference

#
#
#

Format

►► FUNCTION ORD-MAX (▼ argument-1) ►◄

argument-1
Must be class numeric, alphanumeric, or alphabetic (Class boolean is not
allowed).

If more than one argument-1 is specified, all arguments must be of the same class
with the exception that the combination of alphabetic and alphanumeric arguments
is allowed.

The returned value is the ordinal number that corresponds to the position of
argument-1 having the greatest value in the argument-1 series.

The comparisons used to determine the greatest valued argument-1 are made
according to the rules for simple conditions. For more information, see
“Conditional Expressions” on page 247.

If more than one argument-1 has the same greatest value, the number returned
corresponds to the position of the leftmost argument-1 having that value.

ORD-MIN
The ORD-MIN function returns a value that is the ordinal number of the argument
that contains the minimum value.

The function type is integer.

Format

►► FUNCTION ORD-MIN (▼ argument-1) ►◄

argument-1
Must be class numeric, alphanumeric, or alphabetic (Class boolean is not
allowed).

If more than one argument-1 is specified, all arguments must be of the same class
with the exception that the combination of alphabetic and alphanumeric arguments
is allowed.

The returned value is the ordinal number that corresponds to the position of the
argument-1 having the least value in the argument-1 series.

The comparisons used to determine the least valued argument-1 are made
according to the rules for simple conditions. For more information, see
“Conditional Expressions” on page 247.

If more than one argument-1 has the same least value, the number returned
corresponds to the position of the leftmost argument-1 having that value.

ORD-MAX

Chapter 15. Part 6. Procedure Division 583

PRESENT-VALUE
The PRESENT-VALUE function returns a value that approximates the present
value of a series of future period-end amounts specified by argument-2 at a
discount rate specified by argument-1.

The function type is numeric.

Format

►► FUNCTION PRESENT-VALUE (argument-1 ▼ argument-2) ►◄

argument-1
Must be class numeric. Must be greater than -1.

argument-2
Must be class numeric.

The equivalent arithmetic expression for the returned value is:
1. For one occurrence of argument-2,

(argument-2 / (1 + argument-1))
2. For two occurrences of argument-2,

(argument-21 / (1 + argument-1) + argument-22 / (1 + argument-1)**2)
3. For n occurrences of argument-2,

FUNCTION SUM (argument-21 / (1 + argument-1) ... argument-2n / (1 +
argument-1)**n)

There is one term for each occurrence of argument-2. The exponent, n, is
incremented from one by one for each term in the series.

RANDOM
The RANDOM function returns a numeric value that is a pseudo-random number
from a rectangular distribution.

The function type is numeric.

Format

►► FUNCTION RANDOM
(argument-1)

►◄

argument-1
If argument-1 is specified, it must be zero or a positive integer, up to and
including (10**18)-1 which is the maximum value that can be specified in a
PIC9(18) fixed item; however, only those in the range from zero up to and
including 2,147,483,645 will yield a distinct sequence of pseudorandom
numbers.

PRESENT-VALUE

584 ILE COBOL Reference

If a subsequent reference specifies argument-1, a new sequence of pseudo-random
numbers is started.

If the first reference to this function in the run unit does not specify argument-1,
the seed value used will be zero.

In each case, subsequent references without specifying argument-1 return the next
number in the current sequence.

The returned value is exclusively between zero and one.

For a given seed value, the sequence of pseudorandom numbers will always be the
same.

RANGE
The RANGE function returns a value that is equal to the value of the maximum
argument minus the value of the minimum argument.

The function type depends on the argument types, as follows:

Argument Type Function Type

All arguments integer Integer

Numeric (some arguments can be integer) Numeric

Format

►► FUNCTION RANGE (▼ argument-1) ►◄

argument-1
Must be class numeric.

The returned value is equal to argument-1 with the greatest value minus the
argument-1 with the least value. The comparisons used to determine the greatest
and least values are made according to the rules for simple conditions. For more
information, see “Conditional Expressions” on page 247.

The equivalent arithmetic expression for the RANGE function is:
(FUNCTION MAX (argument-1) - FUNCTION MIN (argument-1))

REM
The REM function returns a numeric value that is the remainder of argument-1
divided by argument-2.

The function type is numeric.

Format

►► FUNCTION REM (argument-1 argument-2) ►◄

RANDOM

Chapter 15. Part 6. Procedure Division 585

argument-1
Must be class numeric

argument-2
Must be class numeric. Must not be zero.

The returned value is the remainder of argument-1 divided by argument-2. It is
defined as the expression:
argument-1 - (argument-2 * FUNCTION INTEGER-PART (argument-1/argument-2))

REVERSE
The REVERSE function returns a character string that is exactly the same length as
the argument, whose characters are exactly the same as those specified in the
argument, except that they are in reverse order.

The function type depends on the argument types, as follows:

Argument Type Function Type
Alphabetic Alphanumeric
Alphanumeric Alphanumeric
DBCS¹ DBCS¹
Note: ¹ IBM Extension

Format

►► FUNCTION REVERSE (argument-1) ►◄

argument-1
Must be class alphabetic or alphanumeric, and must be at least one character in
length.

IBM Extension

Argument-1 can be DBCS or national.

End of IBM Extension

If argument-1 is a character string of length n, the returned value is a character
string of length n such that, for 1 <= j <= n, the character in position j of the
returned value is the character from position n-j+1 of argument-1.

SIN
The SIN function returns a numeric value that approximates the sine of the angle
or arc specified by the argument in radians.

The function type is numeric.

Format

►► FUNCTION SIN (argument-1) ►◄

argument-1
Must be class numeric.

REM

586 ILE COBOL Reference

The returned value is the approximation of the sine of argument-1 and is greater
than or equal to -1 and less than or equal to +1.

SQRT
The SQRT function returns a numeric value that approximates the square root of
the argument specified.

The function type is numeric.

Format

►► FUNCTION SQRT (argument-1) ►◄

argument-1
Must be class numeric. The value of argument-1 must be zero or positive.

The returned value is the absolute value of the approximation of the square root of
argument-1.

STANDARD-DEVIATION
The STANDARD-DEVIATION function returns a numeric value that approximates
the standard deviation of its arguments.

The function type is numeric.

Format

►► FUNCTION STANDARD-DEVIATION (▼ argument-1) ►◄

argument-1
Must be class numeric.

The returned value is the approximation of the standard deviation of the
argument-1 series. The returned value is calculated as follows:
1. The difference between each argument-1 and the arithmetic mean of the

argument-1 series is calculated and squared.
2. The values obtained are then added together. This quantity is divided by the

number of values in the argument-1 series.
3. The square root of the quotient obtained is then calculated. The returned value

is the absolute value of this square root.

If the argument-1 series consists of only one value, or if the argument-1 series
consists of all variable occurrence data items and the total number of occurrences
for all of them is one, the returned value is zero.

The equivalent arithmetic expression for FUNCTION STANDARD-DEVIATION is:
FUNCTION SQRT (FUNCTION VARIANCE (argument-1))

SIN

Chapter 15. Part 6. Procedure Division 587

SUBTRACT-DURATION

IBM Extension

The SUBTRACT-DURATION function subtracts a duration from a date, time, or
timestamp item, and returns the modified item.

The function type is date-time.

The length of the return value depends on the length of the date, time, or
timestamp item specified in argument-1.

If a duration is subtracted from a date item, the date returned must fall within a
certain range:
v For 4-digit dates, the range must be 0001/01/01 through 9999/12/31
v For 2-digit dates, the range must be 0001/01/01 through 9999/12/31, but the

year is truncated to 2 digits
v For a 3-digit year (a 1-digit century and a 2-digit year), the range must be

1900/01/01 through 2899/12/31 (the default). This range can be changed by
specifying the DATTIM PROCESS statement option.

If a duration is subtracted from a 2-digit date item, the range is the same as for a
4-digit year, but the year in the value returned is truncated to 2 digits.

Format

►► FUNCTION SUBTRACT-DURATION ▼(argument-1 argument-2 argument-3) ►◄

argument-1
Must be a date, time, or timestamp item.

Argument-1 is the value from which a duration is subtracted. The duration is
specified in argument-2 and argument-3.

argument-2
Argument-2 is a keyword that represents a duration. The valid durations are:
v YEARS
v MONTHS
v DAYS
v HOURS
v MINUTES
v SECONDS
v MICROSECONDS

The duration keyword or conversion specifier used must be consistent with
argument-1. For example, the duration keywords must obey the following
rules:
1. YEARS, MONTHS, and DAYS can only be subtracted from a date or

timestamp item.
2. HOURS, MINUTES, SECONDS, and MICROSECONDS can only be

subtracted from a time or timestamp item.

SUBTRACT-DURATION

588 ILE COBOL Reference

argument-3
Must be an integer arithmetic expression. Argument-3 is the number of units of
the duration, as specified in argument-2, that are to be subtracted from
argument-1.

Argument-2 and argument-3 can be repeated. There should be no duplicate
argument-2 in one intrinsic function.

Argument-3 can be a negative integer, but the function only takes its absolute
value. If argument-3 is longer than 9 digits, it is truncated.

If a duration is subtracted from a date, and the result is invalid, the date is
adjusted. For example, if a duration of 1 month is subtracted from the date May
31, 1997, the result would be the invalid date April 31, 1997. This date
would be adjusted to the valid date April 30, 1997.

Examples
The following examples show how the SUBTRACT-DURATION intrinsic function
can be used:

MOVE FUNCTION SUBTRACT-DURATION (date-1 MONTHS 1)
TO date-2.

MOVE FUNCTION SUBTRACT-DURATION (date-2 MONTHS 1 + 2 * 3)
TO date-1.

MOVE FUNCTION SUBTRACT-DURATION (date-3 MONTHS 5 DAYS 1000)
TO date-1.

End of IBM Extension

SUM
The SUM function returns a value that is the sum of the arguments.

The function type depends on the argument types, as follows:

Argument Type Function Type

All arguments integer Integer

Numeric (some arguments can be integer) Numeric

Format

►► FUNCTION SUM (▼ argument-1) ►◄

argument-1
Must be class numeric.

The returned value is the sum of the arguments. If the argument-1 series are all
integers, the value returned is an integer. If the argument-1 series are not all
integers, a numeric value is returned.

The equivalent arithmetic expression is:
1. For one occurrence of argument-1,

(argument-1)

SUBTRACT-DURATION

Chapter 15. Part 6. Procedure Division 589

2. For two occurrences of argument-1,

(argument-11 + argument-12)
3. For n occurrences of argument-1,

(argument-11 + argument-12 + ... + argument-1n)

TAN
The TAN function returns a numeric value that approximates the tangent of the
angle or arc that is specified by the argument in radians.

The function type is numeric.

Format

►► FUNCTION TAN (argument-1) ►◄

argument-1
Must be class numeric.

The returned value is the approximation of the tangent of argument-1.

TEST-DATE-TIME

IBM Extension

The TEST-DATE-TIME function takes a date, time, or timestamp item;
alphanumeric item; numeric packed or zoned item; and determines if it is a valid
date, time or timestamp. It returns true (B'1') if it is a valid item or false (B'0') if it
is not a valid item.

The function type is boolean.

The length of the returned value is 1 byte.

Format

►► FUNCTION TEST-DATE-TIME ►

► (argument-1)
argument-2

argument-3
argument-4

►◄

argument-1
Can be:
v A date, time, or timestamp item
v An item of class alphanumeric
v A non-numeric literal
v An item of class numeric integer.

If argument-1 is a date, time, or timestamp item, then argument-2 through
argument-4 are optional. If argument-1 is not a date, time, or timestamp item,
argument-2 must be specified (argument-3 and argument-4 are optional).

SUM

590 ILE COBOL Reference

Argument-1 is tested to see if it is a valid item, based on its type or on
argument-2 through argument-4.

argument-2
Must be one of the following keywords:
v DATE
v TIME
v TIMESTAMP.

If argument-2 is TIMESTAMP, neither argument-3 nor argument-4 can be
specified.

argument-3
Specifies the format of a date or time item. It must be:
v A nonnumeric literal at least 2 characters long
v The keyword LOCALE
v The FORMAT OF special register.

For a list of valid literals see the SPECIAL-NAMES FORMAT clause.

If argument-3 is the keyword LOCALE, then the format of the date or time is
based on a LOCALE. If argument-4 is not specified, the current locale is used,
otherwise the locale associated with the mnemonic-name or the LOCALE OF
special register is used.

If argument-3 is not specified, the format used for the test is the one defined in
the SPECIAL-NAMES FORMAT clause.

argument-4
Must be a mnemonic-name associated with a LOCALE, or the LOCALE OF
special register.

Argument-4 must follow these rules:
v If argument-4 is specified and argument-3 is a locale-based format literal, for

example contains %p, then the locale-based format literal would use the
locale specified in argument-4 to determine the actual value of the
conversion specifiers.

v If argument-3 is a locale-based format literal (for example, contains %p) and
argument-4 is not specified, the locale-based format literal would use the
current locale to determine the actual value of the conversion specifiers.

v If argument-3 is a locale-based format literal (for example, contains %p), and
the LOCALE OF special register is used to refer to a non-locale item, the
locale-based format literal would use the default locale to determine the
actual value of the conversion specifiers.

Examples
The following examples show how the TEST-DATE-TIME intrinsic function can be
used:

IF FUNCTION TEST-DATE-TIME (date-3 DATE) = B’1’
MOVE FUNCTION TEST-DATE-TIME (date-3 DATE ’%y/%m’) TO boolean-1.

IF FUNCTION TEST-DATE-TIME (time-1 TIME) = B’0’
MOVE FUNCTION TEST-DATE-TIME (time-2 TIME ’%H:%M’) TO boolean-2.

End of IBM Extension

TEST-DATE-TIME

Chapter 15. Part 6. Procedure Division 591

TRIM

IBM Extension

The TRIM function returns the given string with any leading and trailing blanks
removed, or the given string with any leading and trailing specified characters
removed.

The type of the function is alphanumeric, DBCS or national depending on the class
of its argument.

Format:

►► FUNCTION TRIM (argument-1)
argument-2

►◄

argument-1
Must be a nonnumeric literal, or data item of class alphabetic, alphanumeric,
DBCS or national. Argument-1 identifies the source string for the trim.

argument-2
If specified, it must be a nonnumeric literal, or data item of the same class as
argument-1. It specifies the characters to trim off. If not specified, the trim
character defaults to blank.

If argument-2 is not specified, the returned value is an alphanumeric, DBCS or
national character string consisting of the characters of argument-1 with any
leading and trailing blanks removed. The blank character is a one byte space
character (' ' or X'40') when argument-1 is of class alphanumeric, or one
double-byte space (X'4040') when argument-1 is of class DBCS, or one national
space (X'0020' or X'3000') when argument-1 is of class national.

If argument-2 is specified, all characters in argument-2 will be trimmed off from
both ends of the string. The returned value is an alphanumeric, DBCS or national
character string consisting of the characters of argument-1 with any leading and
trailing characters specified in argument-2 removed.

The length of the returned string depends on the content and the class of
argument-1. It is the length of the returned string in number of character positions.
If argument-1 is a DBCS or national data item, then the length is in DBCS or
national character positions.

Returned Values
The order of the characters in the argument-2 parameter does not affect the
outcome of the operation. The characters are a list of single characters. For
example, FUNCTION TRIML(fld, "abc") will return the substring of fld that begins
with any character that is not 'a', 'b', or 'c'. If fld contains "caxyz", FUNCTION
TRIM(fld, "abc") will return "xyz". Characters can appear twice in the second
parameter with no error. For example, FUNCTION TRIM(fld, "aba") is valid. This
means the same as FUNCTION TRIM(fld, "ab").

If the second parameter of FUNCTION TRIM, TRIML or TRIMR is specified,
blanks are not trimmed unless a blank appears as part of argument-2. TRIM,
TRIML and TRIMR functions are not sensitive to mixed SBCS/DBCS strings, both
argument-1 and argument-2 will be treated as SBCS if their class is alphanumeric.

TRIM

592 ILE COBOL Reference

Examples:
FUNCTION TRIM("xxxABxCxxx", "x") // returns ’ABxC’
FUNCTION TRIMR(">>>>ABC<<<<<", "<>") // returns ’>>>>ABC’
MOVE "xyz" TO tc.
FUNCTION TRIML("xxyyzzyyzzABCxyzyxzxy", tc) // returns ’ABCxyzyxzxy’

End of IBM Extension

TRIML

IBM Extension

The TRIML function returns the given string with any leading blanks removed, or
the given string with any leading specified characters removed.

The type of the function is alphanumeric, DBCS or national depending on the class
of its argument.

Format:

►► FUNCTION TRIML (argument-1)
argument-2

►◄

argument-1
Must be a nonnumeric literal, or data item of class alphabetic, alphanumeric,
DBCS or national. Argument-1 identifies the source string for the trim.

argument-2
If specified, it must be a nonnumeric literal, or data item of the same class as
argument-1. It specifies the characters to trim off. If not specified, the trim
character defaults to blank.

If argument-2 is not specified, the returned value is an alphanumeric, DBCS or
national character string consisting of the characters of argument-1 with any
leading blanks removed. The blank character is a one byte space character (' ' or
X'40') when argument-1 is of class alphanumeric, or one double-byte space
(X'4040') when argument-1 is of class DBCS, or one national space (X'0020' or
X'3000') when argument-1 is of class national.

If argument-2 is specified, the returned value is an alphanumeric, DBCS or national
character string consisting of the characters of argument-1 with any leading
characters specified in argument-2 removed.

The length of the returned string depends on the content and the class of
argument-1. It is the length of the returned string in number of character positions.
If argument-1 is a DBCS or national data item, then the length is in DBCS or
national character positions.

For more information on returned values and examples, see “TRIM” on page 592.

End of IBM Extension

TRIM

Chapter 15. Part 6. Procedure Division 593

TRIMR

IBM Extension

The TRIMR function returns the given string with any trailing blanks removed, or
the given string with any trailing specified characters removed.

The type of the function is alphanumeric, DBCS or national depending on the class
of its argument.

Format:

►► FUNCTION TRIMR (argument-1)
argument-2

►◄

argument-1
Must be a nonnumeric literal, or data item of class alphabetic, alphanumeric,
DBCS or national. Argument-1 identifies the source string for the trim.

argument-2
If specified, it must be a nonnumeric literal, or data item of the same class as
argument-1. It specifies the characters to trim off. If not specified, the trim
character defaults to blank.

If argument-2 is not specified, the returned value is an alphanumeric, DBCS or
national character string consisting of the characters of argument-1 with any
trailing blanks removed. The blank character is a one byte space character (' ' or
X'40') when argument-1 is of class alphanumeric, or one double-byte space
(X'4040') when argument-1 is of class DBCS, or one national space (X'0020' or
X'3000') when argument-1 is of class national.

If argument-2 is specified, the returned value is an alphanumeric, DBCS or national
character string consisting of the characters of argument-1 with any trailing
characters specified in argument-2 removed.

The length of the returned string depends on the content and the class of
argument-1. It is the length of the returned string in number of character positions.
If argument-1 is a DBCS or national data item, then the length is in DBCS or
national character positions.

For more information on returned values and examples, see “TRIM” on page 592.

End of IBM Extension

UPPER-CASE
The UPPER-CASE function returns a character string that is the same length as the
argument specified, with each lowercase letter replaced by the corresponding
uppercase letter.

The function type depends on the argument types, as follows:

Argument Type Function Type
Alphabetic Alphanumeric
Alphanumeric Alphanumeric

TRIMR

594 ILE COBOL Reference

Argument Type Function Type
DBCS¹ DBCS¹
Note: ¹ IBM Extension

Format

►► FUNCTION UPPER-CASE (argument-1) ►◄

argument-1
Must be class alphabetic or alphanumeric, and must be at least one character in
length.

IBM Extension

Argument-1 can be DBCS or national.

End of IBM Extension

The same character string as argument-1 is returned, except that each lowercase
letter is replaced by the corresponding uppercase letter. A program collating
sequence or code page does not affect the returned value.

IBM Extension

If argument-1 is DBCS, the DBCS value is not affected. If argument-1 is a mixed
literal, only the single byte portions of the literal are affected.

End of IBM Extension

The character string returned has the same length as argument-1.

UTF8STRING

IBM Extension

The UTF8STRING function converts the argument specified into the corresponding
UTF-8 string. The string returned has variable length. Users are advised to allow
sufficient length for the receiving argument returned by this function. The
maximum length returns is twice the length of the original argument.

The function type is alphanumeric.

Format

►► FUNCTION UTF8STRING (argument-1) ►◄

argument-1
Must be alphabetic, alphanumeric, DBCS or national, and must be at least one
character in length.

End of IBM Extension

UPPER-CASE

Chapter 15. Part 6. Procedure Division 595

VARIANCE
The VARIANCE function returns a numeric value that approximates the variance
of its arguments.

The function type is numeric.

Format

►► FUNCTION VARIANCE (▼ argument-1) ►◄

argument-1
Must be class numeric.

The returned value is the approximation of the variance of the argument-1 series.

The returned value is defined as the square of the standard deviation of the
argument-1 series. This value is calculated as follows:
1. The difference between each argument-1 value and the arithmetic mean of the

argument-1 series is calculated and squared.
2. The values obtained are then added together. This quantity is divided by the

number of values in the argument series.

If the argument-1 series consists of only one value, or if the argument-1 series
consists of all variable occurrence data items and the total number of occurrences
for all of them is one, the returned value is zero.

The equivalent arithmetic expression for FUNCTION VARIANCE is:
1. For one occurrence of argument-1,

(0)
2. For two occurrences of argument-1,

(((argument-11 - FUNCTION MEAN (argument-1)) ** 2 + (argument-12 -
FUNCTION MEAN (argument-1)) ** 2) / 2)
3. For n occurrences of argument-1,

(FUNCTION SUM (((argument-11 - FUNCTION MEAN (argument-1)) ** 2) ...
((argument-1n - FUNCTION MEAN (argument-1)) ** 2)) / n)

WHEN-COMPILED
The WHEN-COMPILED function returns the date and time the program was
compiled as provided by the system on which the program was compiled.

The function type is alphanumeric.

Format

►► FUNCTION WHEN-COMPILED ►◄

VARIANCE

596 ILE COBOL Reference

Reading from left to right, the 21 character positions in the value returned can be
interpreted as follows:

Character
Positions

Contents

1-4 Four numeric digits of the year in the Gregorian calendar.

5-6 Two numeric digits of the month of the year, in the range 01 through
12.

7-8 Two numeric digits of the day of the month, in the range 01 through
31.

9-10 Two numeric digits of the hours past midnight, in the range 00 through
23.

11-12 Two numeric digits of the minutes past the hour, in the range 00
through 59.

13-14 Two numeric digits of the seconds past the minute, in the range 00
through 59.

15-16 Two numeric digits of the hundredths of a second past the second, in
the range 00 through 99.

17 Either the character '-' or the character '+'. The character '-' is returned if
the local time indicated in the previous character positions is behind
Greenwich Mean Time. The character '+' is returned if the local time
indicated is the same as or ahead of Greenwich Mean Time.

18-19 If character position 17 is '-', two numeric digits are returned in the
range 00 through 12 indicating the number of hours that the reported
time is behind Greenwich Mean Time. If character position 17 is '+', two
numeric digits are returned in the range 00 through 13 indicating the
number of hours that the reported time is ahead of Greenwich Mean
Time.

20-21 Two numeric digits are returned in the range 00 through 59 indicating
the number of additional minutes that the reported time is ahead of or
behind Greenwich Mean Time, depending on whether character
position 17 is '+' or '-', respectively.

The returned value is the date and time of compilation of the source program that
contains this function. For ILE COBOL, the date and time is calculated at the
beginning of the compile and is placed in the header line of each listing page, on
the DATE-COMPILED paragraph, and in the WHEN-COMPILED special-register.
If the program is a contained program, the returned value is the compilation date
and time associated with the separately compiled program in which it is contained.

YEAR-TO-YYYY

IBM Extension

The YEAR-TO-YYYY function converts argument-1, the two low-order digits of a
year, to a four-digit year. Argument-2, when added to the year at the time of
execution, defines the ending year of a 100-year interval, or sliding window, into
which the year of argument-1 falls.

The type of the function is integer.

WHEN-COMPILED

Chapter 15. Part 6. Procedure Division 597

Format

►► FUNCTION YEAR-TO-YYYY (argument-1)
argument-2

►◄

argument-1
Must be a nonnegative integer that is less that 100.

argument-2
Must be an integer. If argument-2 is omitted, the function will be evaluated
with a value of 50 for argument-2. At the time of execution, the sum of the
year and argument-2 will be less than 10000, and greater than 1699.

In order for the compiler to calculate the FUNCTION YEAR-TO-YYYY, the ending
year of the sliding window (or "maximum-year") needs to be calculated first. The
"maximum-year" is calculated as follows:
(FUNCTION NUMVAL(FUNCTION CURRENT-DATE(1:4)) + argument-2)

Given that the "maximum-year" above the FUNCTION YEAR-TO-YYYY is
equivalent to one of the two arithmetic expressions depending on the following
condition:
maximum-year modulus 100 >= argument-1

When this condition is true, the equivalent arithmetic expression is:
(argument-1 + 100 * (truncated integer value of (maximum-year/100)))

Otherwise, the equivalent arithmetic expression is:
(argument-1 + 100 * (truncated integer value of (maximum-year/100) - 1))

The YEAR-TO-YYYY function implements a sliding window algorithm. To use it
for a fixed window, argument-2 can be specified as follows, where
fixed-maximum-year is the maximum year in the fixed 100-year intervals.

If the fixed window is 1973 through 2072, then in 2009 argument-2 will have the
value of 63, and in 2019, the value of 53.
(fixed-maximum-year - FUNCTION NUMVAL (FUNCTION CURRENT-DATE (1:4)))

Examples
In the year 1995, the returned value for:
FUNCTION YEAR-TO-YYYY(4, 23)

is 2004.

In the year 2008, the returned value for:
FUNCTION YEAR-TO-YYYY(98,(-15))

is 1898.

End of IBM Extension

YEAR-TO-YYYY

598 ILE COBOL Reference

Part 7. Compiler-Directing Statements

© Copyright IBM Corp. 1993, 2010 599

600 ILE COBOL Reference

Chapter 16. Compiler-Directing Statements

*CONTROL (*CBL) Statement

IBM Extension

With the *CONTROL (or *CBL) statement, you can selectively display or suppress
the listing of source code throughout the source program.

*CONTROL (*CBL) Statement - Format

►► *CONTROL
*CBL

▼ SOURCE
NOSOURCE

(1)
LIST

(1)
NOLIST

(1)
MAP

(1)
NOMAP

.
►◄

Notes:

1 Syntax-checked only.

For a complete discussion of compiler output, see the IBM Rational Development
Studio for i: ILE COBOL Programmer's Guide.

The *CONTROL and *CBL statements are synonymous.

The characters *CONTROL or *CBL can start in any column beginning with
column 8, followed by at least one space or comma and one or more option
keywords. Separate the option keywords with one or more spaces or commas. This
statement must be the only statement on the line, and continuation is not allowed.
The statement can end with a period.

The options you request are handled in the following manner:
1. If SOURCE or NOSOURCE appears more than once in a *CONTROL statement,

the last occurrence of either option is used.
2. If a *CONTROL NOSOURCE statement is encountered and SOURCE has been

requested as a compiler option, printing of the source listing is suppressed
from this point on. An informational message is issued stating that printing of
the source has been suppressed.
Afterwards, you can specify *CONTROL SOURCE to resume the printing of the
source listing.
For more information about compiler options, see the IBM Rational Development
Studio for i: ILE COBOL Programmer's Guide.

3. If *NOSOURCE is requested as a compiler option, output is always inhibited.

© Copyright IBM Corp. 1993, 2010 601

4. The *CONTROL statement is in effect only for the source program in which it
is written. It does not remain in effect across batch compilation of a sequence of
source programs.

*CONTROL (*CBL) and the COPY Statement
A COPY statement bearing the SUPPRESS phrase overrides any *CONTROL or
*CBL options contained in the copied member, but the compiler remembers
*CONTROL and *CBL statements that appear in a suppressed COPY member.
Once the COPY member has been processed, the last NOSOURCE or SOURCE
option in it runs.

If a COPY statement does not bear the SUPPRESS phrase, *CONTROL and *CBL
statements within the copied member run immediately.

End of IBM Extension

COPY Statement
The COPY statement is a library statement that places prewritten text in a COBOL
program.

Prewritten source program entries can be included in a source program at
compilation time. Thus, an installation can use standard file descriptions, record
descriptions, or procedures without recoding them. These entries and procedures
can then be saved in user-created libraries; they can then be included in the source
program by means of the COPY statement.

Compilation of the source program containing COPY statements is logically
equivalent to processing all COPY statements before processing the resulting
source program.

The effect of processing a COPY statement is that the library text associated with
text-name is copied into the source program, logically replacing the entire COPY
statement, beginning with the word COPY and ending with the period, inclusive.
When the REPLACING phrase is not specified, the library text is copied
unchanged.

COPY Statement - Format 1 - Basic

COPY Statement - Format 1

►► COPY text-name
OF file-name
IN (1)

library-name-

►

►
(2)

SUPPRESS
REPLACING phrase

. ►◄

Notes:

1 Required hyphen between library-name-file-name to qualify.

2 IBM Extension

*CONTROL (*CBL) Statement

602 ILE COBOL Reference

text-name
The text-name is the name of the member to be copied. The text-name must
begin with an alphabetic character. The first 10 characters of the text-name are
used as the member name; these first 10 characters must, therefore, be unique
within one file.

Text-name can be qualified by the library-name and file-name in which it
resides. If no file-name is specified, QCBLLESRC is assumed as the file-name.
If the copy member is not found in default file QCBLLESRC then file
QLBLSRC is searched next for the copy member. If the file-name is not
qualified by a library-name, file-name is assumed to reside in a library in the
library list. A hyphen is required between library-name and file-name, with no
intervening spaces. For example, to qualify file MYFILE in library MYLIB code
as MYLIB-MYFILE.

The library-name, file-name, and text-name must follow the rules for formation
of a program-name.

library-name
The first 10 characters of the library-name are used as the identifying name;
these first 10 characters must therefore be unique within the system. To qualify
file-name, a hyphen is required between library-name and file-name with no
intervening spaces.

Each COPY statement must be preceded by a space and ended with a separator
period.

A COPY statement may appear in the source program anywhere a character string
or a separator may appear; however, a COPY statement must not be specified
within a COPY statement. The resulting copied text must not contain a COPY
statement.

IBM Extension

COPY statements can be nested. However, nested COPY statements cannot contain
the REPLACING phrase, and a COPY statement with the REPLACING phrase
cannot contain nested COPY statements.

A COPY statement may not cause recursion. That is, a COPY member may be
named only once in a set of nested COPY statements until the end-of-file for that
COPY member is reached.

End of IBM Extension

Debugging lines are permitted within library text and pseudo-text. Text words
within a debugging line participate in the matching rules as if the D did not
appear in the indicator area. A debugging line is specified within pseudo-text if the
debugging line begins in the source program after the opening
pseudo-text-delimiter but before the matching closing pseudo-text-delimiter.

When a COPY statement is specified on a debugging line, the copied text is treated
as though it appeared on a debugging line, except that comment lines in the text
appear as comment lines in the resulting source program.

If the word COPY appears in a comment-entry, or in the place where a
comment-entry may appear, it is considered part of the comment-entry.

COPY Statement

Chapter 16. Part 7. Compiler-Directing Statements 603

After all COPY and REPLACE statements have been processed, a debugging line
will be considered to have all the characteristics of a comment line, if the WITH
DEBUGGING MODE clause is not specified in the SOURCE-COMPUTER
paragraph.

Comment lines or blank lines may occur in library text. Comment lines or blank
lines appearing in library text are copied into the resultant source program
unchanged with the following exception: a comment line or blank line in library
text is not copied if that comment line or blank line appears within the sequence of
text words that match pseudo-text-1 (refer to “Replacement and Comparison
Rules” on page 606).

The syntactic correctness of the entire COBOL source program cannot be
determined until all COPY statements have been completely processed, because the
syntactic correctness of the library text cannot be independently determined.

Library text copied from the library is placed into the same area of the resultant
program as it is in the library. Library text must conform to the rules for Standard
COBOL format.

SUPPRESS Phrase

IBM Extension

The SUPPRESS phrase causes a COPY statement to suppress the listing of copied
statements. For its duration, this type of COPY statement overrides any
*CONTROL or *CBL statement.

If the copied member contains *CONTROL or *CBL statements, the last one runs
once the COPY member has been processed.

For a nested COPY statement, SUPPRESS is in effect only until the next COPY is
encountered. Suppression resumes after the nested COPY is completed.

End of IBM Extension

REPLACING Phrase
In the discussion that follows, each operand may consist of one of the following:
v Pseudo-text
v An identifier
v A literal
v A COBOL word (except COPY)
v Function-identifier

When the REPLACING phrase is specified, the library text is copied, and each
properly matched occurrence of operand-1 within the library text is replaced by the
associated operand-2.

COPY Statement

604 ILE COBOL Reference

REPLACING Phrase - Format

►► REPLACING ▼ ==pseudo-text-1== BY ==pseudo-text-2==
identifier-1 identifier-2
literal-1 literal-2
word-1 word-2

►◄

pseudo-text-1, pseudo-text-2
Pseudo-text is a sequence of text words, comment lines, or separator spaces
bounded by, but not including, the pseudo-text delimiter (==).

Pseudo-text-1 must contain at least one text word other than a separator
comma or separator semicolon. Beginning and ending spaces are not included
in the text comparison process, and multiple embedded spaces are considered
to be a single space.

Pseudo-text-2 does not need to contain a text word; it may consist solely of
space characters and/or comment lines.For example, if library-member TEXTA
consists of the following entries:
01 AA-DATA.

10 AA-ID PIC X(9).
10 AA-TYPE PIC X(1).

...the programmer can use the COPY statement to replace pseudo-text as
follows:

COPY TEXTA REPLACING ==01 AA-DATA== BY ==05 EE-DATA==.
==AA-ID== BY ==EE-ID==.
==AA-TYPE== BY ==EE-TYPE==.

...and the resulting text is treated as if it had been written as follows:
05 EE-DATA.

10 EE-ID PIC X(9).
10 EE-TYPE PIC X(1).

Pseudo-text-1 must contain, as a minimum, a text word. Since text words, by
definition, are bounded by separators, pseudo-text cannot be used to select
part of a word for replacement (for example, a prefix in a data name): a
complete text word must be used in order to find a match. It is possible,
however, to simulate the partial replacement of a text word held in the library
text, by dividing it into two or more text words using separators that are used
only for matching purposes, and not copied into the source program. For an
example of this method, refer to “Coding Examples” on page 607.

IBM Extension

Pseudo-text-1 or pseudo-text-2 can contain DBCS or national character-strings.
Such pseudo-text cannot be continued across lines.

End of IBM Extension

identifier-1, identifier-2
Can be defined in any Data Division section.

Can be a function-identifier.

literal-1, literal-2
Can be numeric or nonnumeric.

COPY Statement

Chapter 16. Part 7. Compiler-Directing Statements 605

IBM Extension

Can be a floating-point literal, DBCS literal, or national hexadecimal literal.

End of IBM Extension

word-1, word-2
May be any single COBOL word (except COPY).

For purposes of matching, each identifier-1, literal-1, or word-1 is treated,
respectively, as pseudo-text containing only identifier-1, literal-1, or word-1.

Replacement and Comparison Rules
1. Arithmetic and logical operators that do not occur as part of an identifier are

considered text words and may be replaced only through the pseudo-text
option.

2. When a figurative constant is operand-1, it will match only if it appears
exactly as it is specified. For example, if ALL “AB” is specified in the library
text, then “ABAB” is not considered a match; only ALL “AB” is considered a
match.

3. Operand-2 is copied in the place of operand-1 unless pseudo-text-2
positioning rules cause the replacement to be inserted in a different area.

4. Any separator comma, semicolon, and/or space preceding the leftmost word
in the library text is copied into the source program. Beginning with the
leftmost library text word and the first operand-1 specified in the
REPLACING option, the entire REPLACING operand that precedes the
keyword BY is compared to an equivalent number of contiguous library text
words.

5. Operand-1 matches the library text if, and only if, the ordered sequence of text
words in operand-1 is equal, character for character, to the ordered sequence
of library words. For matching purposes, each occurrence of a comma or
semicolon separator and each sequence of one or more space separators is
considered to be a single space.

6. If no match occurs, the comparison is repeated with each successive
operand-1, if specified, until either a match is found or there are no further
REPLACING operands.

7. Whenever a match occurs between operand-1 and the library text, the
associated operand-2 is copied into the source program.

8. When all operands have been compared and no match is found, the leftmost
library text word is copied into the source program.

9. The next successive uncopied library text word is then considered to be the
leftmost text word, and the comparison process is repeated, beginning with
the first operand-1. The process continues until the rightmost library text word
has been compared.

10. Comment lines or blank lines occurring in the library text and in
pseudo-text-1 are ignored for purposes of matching; and the sequence of text
words in the library text and in pseudo-text-1 is determined by the rules for
reference format. Comment lines or blank lines appearing in pseudo-text-2 are
copied into the resultant program unchanged whenever pseudo-text-2 is
placed into the source program as a result of text replacement. Comment lines
or blank lines appearing in library text are copied into the resultant source
program unchanged with the following exception: a comment line or blank
line in library text is not copied if that comment line or blank line appears
within the sequence of text words that match pseudo-text-1.

COPY Statement

606 ILE COBOL Reference

11. Text words, after replacement, are placed in the source program according to
Standard COBOL format rules. For more information about the reference
format areas, refer to Chapter 3, “Reference Format,” on page 23.
Each text word copied unaltered from the library will start in the same area of
the line in the resultant program as it was within the library. As an exception
to this rule, however, if a text word that is being copied unaltered starts in
Area A within the library, and follows another text word in Area A which is
being replaced by text of a greater length, the unaltered text word will begin
in Area B if it will no longer fit in Area A.
Each text word in pseudo-text-2 that is to be placed in the resultant program
begins in the same area of the resultant program as it appeared in
pseudo-text-2. Each identifier-2, literal-2, and word-2 that is to be placed in the
resultant program begins in the same area of the resultant program as the
library text that is being replaced.

IBM Extension

12. COPY REPLACING does not affect the EJECT, SKIP1/2/3, or TITLE
compiler-directing statements.

End of IBM Extension

Coding Examples
Sequences of code (such as file and data descriptions, error and exception routines,
etc.) that are common to a number of programs can be saved in a library, and then
used in conjunction with the COPY statement. If naming conventions are
established for such common code, then the REPLACING phrase need not be
specified. If the names will change from one program to another, then the
REPLACING phrase can be used to supply meaningful names for this program.

Example 1: In this example, the library text PAYLIB consists of the following Data
Division entries:
01 A.

02 B PIC S99.
02 C PIC S9(5)V99.
02 D PIC S9999 OCCURS 1 TO 52 TIMES

DEPENDING ON B OF A.

The programmer can use the COPY statement in the Data Division of a program as
follows:

COPY PAYLIB.

The library text will be copied unchanged into the COBOL program, immediately
after the COPY statement.

Example 2: To change some (or all) of the data names within the library text used
in Example 1, the programmer can use the REPLACING phrase:

COPY PAYLIB REPLACING A BY PAYROLL
B BY PAY-CODE
C BY GROSS-PAY
D BY HOURS.

When the library text is copied, the resulting text appears as if it had been written
as follows:

COPY Statement

Chapter 16. Part 7. Compiler-Directing Statements 607

01 PAYROLL.
02 PAY-CODE PIC S99.
02 GROSS-PAY PIC S9(5)V99.
02 HOURS PIC S9999 OCCURS 1 TO 52 TIMES

DEPENDING ON PAY-CODE OF PAYROLL.

The changes shown are made only for this program. The text, as it appears in the
library, remains unchanged.

Example 3: This example illustrates how part of a data-name can be replaced if
certain conventions are followed when creating the library text. In this case, the
library text CONTACT contains the following code:
01 (PRFX)-RECORD.
03 (PRFX)-NAME PIC X(24).
03 (PRFX)-PHONE PIC X(10).
03 (PRFX)-EXTN PIC X(4).

The programmer can copy this library text, replacing the text word PRFX and its
bounding parentheses by a prefix for the data-names. For example, the following
COPY statement can be written in the Data Division of a program:

COPY CONTACT REPLACING ==(PRFX)== BY ==CUST==.

When the library text is copied, the resulting text appears as if it had been written
as follows:
01 CUST-RECORD.
03 CUST-NAME PIC X(24).
03 CUST-PHONE PIC X(10).
03 CUST-EXTN PIC X(4).

Note: Because many of the separators have special significance when processing a
COPY statement, the values that can be used for delimiting part of a text
word in this way are limited to the parenthesis and colon symbols. In
addition, it will be necessary to ignore certain errors flagged by the SEU
Syntax Checker when entering the library text.

COPY Statement - Format 2 - DDS Translate

IBM Extension

COPY Statement - Format 2 - DDS Translate

►► COPY DD-format-name
DD-ALL-FORMATS
DDR-format-name
DDR-ALL-FORMATS
DDS-format-name
DDS-ALL-FORMATS
DDSR-format-name
DDSR-ALL-FORMATS

-I
-O
-I-O

-INDICATOR
-INDICATORS
-INDIC

OF
IN

►

COPY Statement

608 ILE COBOL Reference

► file-name
(1) WITH

library-name-

►

► ▼

I-FIELDS
O-FIELDS
I-O-FIELDS
INDICATOR
INDICATORS
INDIC

NULL-MAP
NULL-MAP-ALPHANUM
NULL-KEY-MAP
PREFIX BY literal
ALIAS

SUBSTITUTE Phrase
VLR

SUPPRESS REPLACING phrase
►

► . ►◄

SUBSTITUTE Phrase:

SUBSTITUTE
ALL

EXCEPT literal-2

Notes:

1 Required hyphen between library-name-file-name to qualify.

Format 2 Considerations
The Format 2 COPY statement (DD, DDR, DDS, or DDSR option) can be used to
create COBOL Data Division statements to describe a file that exists on the system.
These descriptions are based on the version of the file in existence at compilation
time. They do not make use of the DDS source statements for the file.

If a REPLACE statement is in effect, the COPY statement must be the first item on
a line of code. This line must also include the text word that specifies the required
options, up to at least the initial hyphen.

DDS supports DBCS with formats J (for fields which can contain only DBCS data),
E (for fields which can contain either DBCS or alphanumeric data), or O (for fields
can contain both DBCS and alphanumeric data). DDS also supports graphic data
types with format G. The *PICGGRAPHIC option is used to create COBOL DBCS
data items corresponding to format G DDS items. The *PICNGRAPHIC option is
used to create COBOL NATIONAL data items with the UCS-2 CCSID specified in
the National CCSID compiler option or in the NTLCCSID PROCESS option. All
other circumstances produce alphanumeric data items capable of holding the
correct number of bytes of data.

COPY Statement

Chapter 16. Part 7. Compiler-Directing Statements 609

#
#
#

The Format 2 COPY statement can be used only in the Data Division, and it is the
user’s responsibility to precede the statement with a group level item that has a
level-number less than 05.

The DD and ALIAS Options: The DD option or the ALIAS option is used to
reference alias (alternate) names. The specification of an alias name in DDS allows
a data name of up to 30 characters to be included in the COBOL program.

When the DD option or the ALIAS option is used, any alias names present replace
the corresponding DDS field names. All underscores in the alias names are
translated into hyphens before any replacing occurs.

The DDR Option: The DDR option or the SUBSTITUTE option does everything
that the DD option does. It also replaces the invalid COBOL characters @, #, $, and
_ in a field name (or alias name, if applicable) with the corresponding valid
COBOL characters A, N, D, and -. As well, it removes underscores from the end of
a field name.

The DDS Option: The DDS option copies in the internal DDS field names for the
specified DDS format.

The DDSR Option: The DDSR option does everything that the DDS option does.
It also copies the internal DDS field names in the specified DDS format, replacing
the invalid COBOL characters @, #, $, and _ with the valid COBOL characters A,
N, D, and - accordingly. This option also removes any underscores from the ends
of the field names.

The Format-Name and ALL-FORMATS options: The format-name is the name of
the DDS record format definition that is to be translated into an ILE COBOL data
description entry. The format-name must follow the rules for the formation of an
ILE COBOL data-name.

The ALL-FORMATS option will translate all the formats defined for a file,
including names that do not conform to the data-names rules. A REPLACING
phrase must be used to change any such format-name into a valid data-name.
However, a REPLACING phrase cannot be used to change a format-name within
an FD entry for an indexed file defined with EXTERNALLY-DESCRIBED-KEY. If
the key cannot be defined using a data-name in the RECORD KEY clause, then it
will be necessary to change the format-name in the DDS specifications for the file.

Note: In this context, the compiler accepts ALL-FORMAT as the equivalent of
ALL-FORMATS.

The VLR Option: The VLR option should be used with variable record files. The
option specifies copying from variable-length fields. This overrides the
CVTOPT(*VARCHAR) option on the CRTCBLMOD and CRTBNDCBL commands.

The PREFIX Options: The PREFIX options allows you to specify a prefix (literal)
to be inserted in front of every field name. You can use it to help identify (that is,
document) the contents or usage of the field. The literal can be contained within a
pair of apostrophes or a pair of quotation marks. The maximum length of the
literal allowed is 15 characters.

I-O
If neither -I or I-FIELDS, nor -O or O-FIELDS is specified, then -I-O or I-O-FIELDS
is assumed. If -I and O-FIELDS, or -O and I-FIELDS is specified, then -I-O or
I-O-FIELDS is assumed.

COPY Statement

610 ILE COBOL Reference

If a format-name is specified without the indicator attribute, and both -I and -O
formats are to be generated, each record format is generated as a redefinition of a
05 elementary item defined as the size of the largest record format that will be
generated.

If ALL-FORMATS is specified without the indicator attribute, each record format is
generated as a redefinition of a 05 elementary item defined as either:
v The size of the largest record format in the file, if the COPY statement appears

in the FILE SECTION.
v The size of the largest record format that will be generated, if the COPY

statement appears outside of the FILE SECTION.

When the indicator attribute is specified, no redefinition takes place. Instead, each
of the formats generates a separate data structure. For details, refer to
“INDICATOR Attribute of the Format 2 COPY Statement” on page 617.

If the file is a database file, a single I-O format is generated.

For all other file types the description generated varies as follows:
v If -I is specified, the generated data description entries contain either:

– The input and input/output fields for a nonsubfile format
– The input, output, and input/output fields for a subfile format.

v If -O is specified, the generated data description entries contain the output and
input/output fields.

The use of the Indicator attribute is discussed under “INDICATOR Attribute of the
Format 2 COPY Statement” on page 617.

File-name is the name of an i5/OS system file. The generated DDS entries
represent the record format(s) defined in the file. The file must be created before
the program is compiled.

Library-name is optional. If it is not specified, the current job library list is used as
the default value.

SUBSTITUTE Phrase

SUBSTITUTE Phrase - Format

►► SUBSTITUTE
ALL

EXCEPT literal-2

►◄

The SUBSTITUTE phrase allows you to bring DDS into your program, while
preserving certain characters, such as the underscore character. The underscore is
not a standard ILE COBOL character, but it is required for specifying locale
categories. To preserve the underscore character, for example, in copied DDS, the
SUBSTITUTE phrase would be used as follows:

...SUBSTITUTE ALL EXCEPT ’_’.

literal-2
Should be a 1-byte non-numeric literal. The character specified in literal-2 is
not substituted.

COPY Statement

Chapter 16. Part 7. Compiler-Directing Statements 611

REPLACING Phrase
The REPLACING phrase is described in “REPLACING Phrase” on page 604.

Using Null-Capable Fields in DDS Files
When a field is defined as ALWNULL in DDS, the COPY DDS statement identifies
the field as null-capable with a comment. For example, the following two figures
show the DDS file containing the null-capable field, and the resulting comment
that is created for that field when it is copied into the ILE COBOL program's
FILE-SECTION.

To generate the null-map and null-key-map for the DDS null-capable record
formats that are being copied in, the WITH NULL-MAP and WITH
NULL-KEY-MAP phrases need to be specified on a new COPY DDS statement in
the WORKING-STORAGE or LOCAL-STORAGE sections. Only one copy of the
NULL-MAP is generated per format in the DDS. For example, if the format
contains both I (input only) and B (input and output) fields, the size of the
null-map generated is for all fields specified in the format. In other words, it
would include all I and B fields.

For each of the null-capable fields defined in the DDS for a specific format, a data
item definition is generated. The data item generated, depends on whether you
specify NULL-MAP or NULL-MAP-ALPHANUM on the COPY DDS statement in
the WORKING-STORAGE or LOCAL-STORAGE sections.

If you specify NULL-MAP, a null-map is created with PIC 1 values that are
initialized to binary zero (0). The following statement is generated in the source for
a null-capable field:

06 <field-name>-NF PIC 1 VALUE B"0".

If the field is not null-capable, a FILLER item is generated.

If you specify NULL-MAP-ALPHANUM, a null-map is created with PIC X values
that are initialized to the character zero (0). The following statement is generated in
the source for a null-capable field:

06 <field-name>-NF PIC X VALUE ZERO.

....+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....
A* With the following physical file (TESTPF)

R TESTING
FLD1 5S 0
FLD2 8 ALWNULL
FLD3 6

Figure 29. DDS Showing Null-Capable Fields

* A COPY DDS-TESTING OF TESTPF.
* I-O FORMAT:TESTING FROM FILE TESTPF OF LIBRARY QTEMP
*

05 TESTING.
06 FLD1 PIC 9(5).
06 FLD2 PIC X(8).

(null-capable field)
06 FLD3 PIC X(6).

Figure 30. Result After Null-Capable DDS File Copied into ILE COBOL Program

COPY Statement

612 ILE COBOL Reference

If the field is not null-capable, the following statement is generated in the source:
06 <field-name>-AN PIC X VALUE ZERO.

The size of a null-map generated using NULL-MAP-ALPHANUM is the same as
the size of a null-map generated using NULL-MAP.

Considerations for Using Null-Capable Fields
It is possible that a null-map field can contain a value other than 1 or 0. For
example, it is possible that SQL placed a value of 2 in a null-map field to indicate
that the field contains a result of a divide by zero.

To be able to see a value other than 0 or 1 in a null-map, you must specify
NULL-MAP-ALPHANUM on your COPY DDS statement.

NULL-MAP-ALPHANUM extends the range of values that can be received into or
sent from the null map to include values other than 0 or 1. Only a value of 1 in a
null map field indicates that the field is null. For more information on values other
than 0 or 1 that can be sent or received in the null map, refer to the DB2 Universal
Database for AS/400 section of the Database and File Systems category in the System
i5/OS Information Center at this Web site - http://www.ibm.com/systems/i/
infocenter/.

Using COPY DDS with Date Data Types
Table 40 and Table 41 on page 614 list the DATFMT parameters allowed for zoned,
packed, and character DDS fields, and their equivalent ILE COBOL format that is
generated from COPY DDS when the CVTOPT(*CVTTODATE) conversion
parameter is specified.

Table 40 lists the IBM i DDS date data types and their equivalent ILE COBOL
format. Table 40 is for character and zoned fields; USAGE DISPLAY is assumed.

Table 40. DDS Date Data Types and Their Equivalent ILE COBOL Format
i5/OS Format COBOL-Generated Format Description Format Valid Separators Length

*MDY %m/%d/%y Month/Day/Year mm/dd/yy /-.,& 8

*DMY %d/%m/%y Day/Month/Year dd/mm/yy /-.,& 8

*YMD %y/%m/%d Year/Month/Day yy/mm/dd /-.,& 8

*JUL %y/%j Julian yy/ddd /-.,& 6

*ISO @Y-%m-%d International Standards Organization yyyy-mm-dd - 10

*USA %m/%d/@Y IBM USA Standard mm/dd/yyyy / 10

....+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....
A* Physical file for DDS

R REC
FLD1 1A
FLD2 1A ALWNULL
FLD3 1A

Figure 31. DDS File With Some Fields Not Null-Capable

*DDS Generated
05 REC-NM

06 FILLER PIC X VALUE ZERO.
06 FLD2–NF PIC 1 VALUE B"0".
06 FILLER PIC X VALUE ZERO.

Figure 32. ILE COBOL Code Generated From COPY DDS with NULL-MAP

COPY Statement

Chapter 16. Part 7. Compiler-Directing Statements 613

http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/

Table 40. DDS Date Data Types and Their Equivalent ILE COBOL Format (continued)
i5/OS Format COBOL-Generated Format Description Format Valid Separators Length

*EUR %d.%m.@Y IBM European Standard dd.mm.yyyy . 10

*JIS @Y-%m-%d Japanese Industrial Standard Christian
Era

yyyy-mm-dd - 10

Table 11 on page 169 liststhe i5/OS DDS time data types and their equivalent ILE
COBOL format. Table 41 is for packed fields; USAGE PACKED-DECIMAL is
generated.

Table 41. DDS Time Data Types and Their Equivalent ILE COBOL Format

i5/OS
Format

COBOL-Generated
Format

Description Format Valid Separators Length

*HMS %H:%M:%S Hours:Minutes:Seconds hh:mm:ss :.,& 8

*ISO %H.%M.%S International Standards
Organization

hh.mm.ss . 8

*USA %I:%M @p IBM USA Standard. AM and PM
can be any mix of upper and
lower case.

hh:mm AM or
hh:mm PM

: 8

*EUR %H.%M.%S IBM European Standard hh.mm.ss . 8

*JIS %H:%M:%S Japanese Industrial Standard
Christian Era

hh:mm:ss : 8

General Notes
v Database files never have indicators.
v When the RECORD KEY clause specifies EXTERNALLY-DESCRIBED-KEY, a

format can be copied only once under an FD. For example, if all of the formats
of a file are copied under an FD, no other Format 2 COPY statement can be
specified for the same file under that FD.

v If a separate storage area is needed in WORKING-STORAGE or
LOCAL-STORAGE for each format, an individual COPY statement must be
specified for each format.
For example, if we assume that the file CUSTMASTER contains two formats:
CUSTADR and CUSTDETL ; then the following COPY statements could be
specified.

SELECT FILE-X
ASSIGN TO DATABASE-CUSTMASTER.
.
.
.

FD FILE-X
LABEL RECORDS ARE STANDARD.

01 FILE-X-RECS.
COPY DDS-ALL-FORMATS OF

QGPL-CUSTMASTER. (See Note 1.)
.
.
.

WORKING-STORAGE SECTION.
01 ADR-REC.

COPY DDS-CUSTADR OF
CUSTMASTER. (See Note 2.)

01 DETAIL-REC.
COPY DDS-CUSTDETL OF

CUSTMASTER. (See Note 2.)

COPY Statement

614 ILE COBOL Reference

Notes:
1. This COPY statement generates only one storage area for all formats.
2. These COPY statements generate separate storage areas.

Data Structures Generated
This section describes the data structures generated by the COPY statement:
v FORMAT (Record) Level Structures
v Data Field Structures
v Indicator Structures

Format (Record) Level Structures: At the beginning of each format, a table of
comments is generated in the source program listing. These comments provide
details of the files used during compilation of the program. If there are record keys
for the file, comments are also generated to show how the keys are defined in
DDS. The record key entries that may appear in the table and the table heading are
listed below.

Heading Possible Entry

NUMBER
NAME
RETRIEVAL
ALTSEQ

key field number
key field name
ASCENDING, DESCENDING
NO, YES

If redefinition is required to allow for the generation of multiple formats, a group
level name is generated as follows:

05 file-name-RECORD
PIC X(size of largest record).

for each format a group level name is assigned as follows:
v INPUT

05 format-name-I
v OUTPUT

05 format-name-O
v I-O Format

05 format-name

Data Field Structures: Field names, PICTURE definitions, and numeric usage
clauses are derived directly from the internal DDS format field names (or alias
names in the case of the DD option) and data type representations. Field names
and PICTURE definitions are constructed as follows: 06 field-name PIC (See
Note 1 in following table.)

Note: See Table 42 for the appropriate COBOL definition.

Table 42. Data Field Structures
DDS COBOL DATA DIVISION

n=total field length (DDS pos. 30-34)
m=number of decimals (DDS pos. 36 & 37)

Data Type
(pos. 35)

Formats If DDS pos. 36 & 37 are blank If DDS pos. 36 & 37 are not blank

PHYSICAL, LOGICAL, PRINTER, AND COMMUNICATIONS FILES

COPY Statement

Chapter 16. Part 7. Compiler-Directing Statements 615

Table 42. Data Field Structures (continued)
� (Blank)
P
S
B
F

A
H
L
T
Z
E
J
O
G

Default
Packed decimal⁵
Zoned decimal/signed numeric⁴
Binary
Floating-Point¹

Single Precision
Double Precision

Character⁴
Hexadecimal data
Date²
Time²
Timestamp²
DBCS-Either data
DBCS-Only data
DBCS-Open data
DBCS-Graphic data
UCS2-Graphic data

PIC X(n)³
PIC S9(n) COMP-3
PIC S9
PIC S9(n) COMP-4
PIC 9(5) COMP-4 or COMP-1
PIC 9(10) COMP-4 or COMP-2
PIC X(n)³
PIC X(n)
PIC X(n) or FORMAT DATE
PIC X(n) or FORMAT TIME
PIC X(n) or FORMAT TIMESTAMP
PIC X(n)
PIC X(n)
PIC X(n)
PIC X(2n) or PIC G(n)³
—
PIC N(2n)

PIC S9(n-m)V9(m)
PIC S9(n-m)V9(m) COMP-3
PIC S9(n-m)V9(m)
PIC S9(n-m)V9(m) COMP-4
PIC 9(5) COMP-4 or COMP-1
PIC 9(10) COMP-4 or COMP-2

DISPLAY FILES

�(Blank)
X
N
Y
I
W
A
D
F

M
L
T
Z
S
E
J
O
G

Default
Alphabetic Only
Numeric Shift
Numeric Only
Inhibit Keyboard Entry
Katakana
Alphanumeric Shift
Digits Only
Floating-point¹

single precision
double precision

Numeric-only Character
Date²
Time²
Timestamp²
Signed-Numeric Shift
DBCS-either
DBCS-only
DBCS-open
DBCS-graphic
UCS2-graphic

PIC X(n)
PIC X(n)
PIC X(n)
—
PIC X(n)
PIC X(n)
PIC X(n)
PIC X(n)
PIC 9(5) COMP-4 or COMP-1
PIC 9(10) COMP-4 or COMP-2
PIC X(n)
PIC X(n) or FORMAT DATE
PIC X(n)or FORMAT TIME
PIC X(n) or FORMAT TIMESTAMP
—
PIC X(n)
PIC X(n)
PIC X(n)
PIC X(2n) or PIC G(n)
—
PIC N(2n)

PIC S9(n-m)V9(m)
—
PIC S9(n-m)V9(m)
PIC S9(n-m)V9(m)
PIC S9(n-m)V9(m)
—
—
PIC S9(n)
PIC 9(5) COMP-4 or COMP-1
PIC 9(10) COMP-4 or COMP-2
—
—
—
—
PIC S9(n-m)V9(m)
—
—
—
—

Notes:

1. If the *NOFLOAT value of the CVTOPT parameter is in effect, then floating-point fields are brought in as FILLER items with USAGE of BINARY.
If *FLOAT is specified, the fields are brought in using their given DDS names with a USAGE of COMP-1 (single-precision floating-point) or
USAGE of COMP-2 (double-precision floating-point). See “Floating-Point Fields” on page 619.

2. FILLER items are declared as alphanumeric by default. You can also have COBOL treat date, time, and timestamp fields as date-time data types
by specifying *DATE, *TIME, or *TIMESTAMP on the CVTOPT parameter of the CRTBNDCBL or CRTCBLMOD command. See “Date, Time, and
Timestamp Fields” on page 619.

3. In DDS, if the field has an attribute of VARLEN, the result is two additional bytes at the beginning of the field.

4. If you have a DDS character or zoned data type with the DATFMT keyword, ILE COBOL treats it as a date field, if the *CVTTODATE value of
the CVTOPT parameter in the CRTBNDCBL or CRTCBLMOD command is specified.

5. If you have a DDS packed data type with the DATFMT keyword, ILE COBOL treats it as a date field, if the *CVTTODATE value of the CVTOPT
parameter in the CRTBNDCBL or CRTCBLMOD command is specified.

6. In DDS, if a field with data type G has an attribute CCSID(n), where n is the CCSID specified in the National CCSID compiler option or in the
NTLCCSID PROCESS option, it is a UCS-2 graphic data type. To bring in the UCS-2 graphic data type as a COBOL NATIONAL data type,
specify *PICNGRAPHIC on the CVTOPT parameter of the CRTBNDCBL or CRTCBLMOD command. For more information, see IBM Rational
Development Studio for i: ILE COBOL Programmer's Guide.

Indicator Structures: If indicators are requested, and exist in the format, an
additional group name (06 level) is generated at the beginning of the structure,
followed by entries (07 level) for the relevant individual indicators.
06 format-name-(I or O)-INDIC.

07 INxx PIC 1 INDIC xx.

where xx is the indicator number.

For example:

COPY Statement

616 ILE COBOL Reference

#
#

06 SAMPLE1-I-INDIC.
07 IN01 PIC 1 INDIC 01.
07 IN04 PIC 1 INDIC 04.
07 IN05 PIC 1 INDIC 05.
07 IN07 PIC 1 INDIC 07.

06 FLD1 PIC
06 FLD2 PIC

INDICATOR Attribute of the Format 2 COPY Statement: The INDICATOR
attribute specifies whether or not data description entries are generated for
indicators.

If the INDICATOR attribute is specified, data description entries are generated for
indicators, but not for data fields.

An 05 group level entry is generated as follows:
v If the COPY is for a single structure

COPY DDS-format-name-INDIC

will generate
05 format-name-I. (or -0 as appropriate).

v If the COPY is for multiple structures
COPY DDS-ALL-FORMATS-INDIC

will generate
05 file-name-RECORD.

The data description entries that are generated are determined by which one of the
usage attributes (I, O, or I-O) is specified or assumed in the COPY statement.
v If ...I-INDICATOR... is specified, data description entries for input (response)

indicators are generated for indicators used in the input record area.
v If ...O-INDICATOR... is specified, data description entries for output (option)

indicators are generated for indicators used in the output record area.
v If ...I-O-INDICATOR... is specified or assumed, separate data description entries

for both input and output (response and option) indicators are generated for
indicators used in the input and output record areas.

The individual indicator descriptions are generated as described under “Indicator
Structures” on page 616.

If the INDICATOR attribute is not specified, whether data description entries are
generated for indicators depends on whether the file had the keyword INDARA
specified in the DDS at the time it was created.
v If INDARA was not specified, data description entries are generated for both

data fields and indicators.
v If INDARA was specified, data description entries are generated for data fields

only, not for indicators.

Generation of I-O Formats: When all field descriptions are identical, and you
have requested INPUT or OUTPUT fields implicitly or explicitly, only one set of
field descriptions is generated. This type of description is annotated with a
comment line reading, “I-O FORMAT: format-name”. Neither -I nor -O is
appended to the record format name.

COPY Statement

Chapter 16. Part 7. Compiler-Directing Statements 617

Note: This always happens for database files because all field descriptions within a
database file are identical.(See Figure 33.)

Redefinition of Formats: The user should pay particular attention to the
REDEFINES clause that may be generated for the ALL-FORMATS or -I-O phrases.
Since all formats are redefined on the same area (generally a buffer area), several
field names can describe the same area of storage, and unpredictable results can
occur if the entire format area is not reinitialized prior to each output operation.

Data items that are subordinate to the data item specified in a MOVE
CORRESPONDING statement do not correspond and are not moved when they
contain a REDEFINES clause or are subordinate to a redefining item.

To avoid reinitialization, multiple Format 2 COPY statements (DDS or DD) using -I
and -O suffixes can be used to create separate areas of storage in the
Working-Storage or Local-Storage sections for each format or format type (input or
output). READ INTO and WRITE FROM statements can be used with these record
formats. For example:

5722WDS V5R4M0 060210 LN IBM ILE COBOL TESTLIB/STRTEXTD I-SERIES1 06/02/15 11:27:50 Page 2
S o u r c e

STMT PL SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE
1 000100 IDENTIFICATION DIVISION.
2 000200 PROGRAM-ID. STRTEXTD.

000300
3 000400 ENVIRONMENT DIVISION.
4 000500 CONFIGURATION SECTION.
5 000600 SOURCE-COMPUTER. IBM-ISERIES. 02/02/21
6 000700 OBJECT-COMPUTER. IBM-ISERIES. 02/02/21
7 000800 INPUT-OUTPUT SECTION. 02/02/21
8 000900 FILE-CONTROL.
9 001000 SELECT FILE-1 ASSIGN TO DATABASE-NAMES
11 001100 ACCESS IS DYNAMIC RECORD KEY IS EXTERNALLY-DESCRIBED-KEY
13 001200 ORGANIZATION IS INDEXED.

001300
14 001400 DATA DIVISION.
15 001500 FILE SECTION.
16 001600 FD FILE-1.
17 001700 01 RECORD-DESCRIPTION. 02/02/21

001800 COPY DDS-RDE OF NAMES. 02/02/21
+000001* I-O FORMAT:RDE FROM FILE NAMES OF LIBRARY TESTLIB RDE
+000002* RECORD DESCRIPTION RDE
+000003*THE KEY DEFINITIONS FOR RECORD FORMAT RDE RDE
+000004* NUMBER NAME RETRIEVAL ALTSEQ RDE
+000005* 0001 LNAME ASCENDING NO RDE
+000006* 0002 FNAME ASCENDING NO RDE
+000007* 0003 MINAME ASCENDING NO RDE
+000008* 0004 MNAME ASCENDING NO RDE

18 +000009 05 RDE. RDE
19 +000010 06 FNAME PIC X(20). RDE

+000011* FIRST NAME RDE
20 +000012 06 MINAME PIC X(1). RDE

+000013* MIDDLE INITIAL NAME RDE
21 +000014 06 MNAME PIC X(19). RDE

+000015* REST OF MIDDLE NAME RDE
22 +000016 06 LNAME PIC X(20). RDE

+000017* LAST NAME RDE
23 +000018 06 PHONE PIC S9(10) COMP-3. RDE

+000019* PHONE NUMBER RDE
24 +000020 06 DATA-DDS PIC X(40). RDE

+000021* REST OF DATA RDE
25 001900 66 MIDDLE-NAME RENAMES MINAME THRU MNAME.

002000
26 002100 PROCEDURE DIVISION.

002200 MAIN-PROGRAM SECTION.
002300 MAINLINE.

27 002400 OPEN INPUT FILE-1.
002500* .
002600* .
002700* .

Figure 33. Generation of I-O Formats

COPY Statement

618 ILE COBOL Reference

FD ORDER-ENTRY-SCREEN . . .
01 ORDER-ENTRY-RECORD . . .

.

.

.
WORKING-STORAGE SECTION.
01 ORDSFL-I-FORMAT.

COPY DDS-ORDSFL-I OF DOESCR.
01 ORDSFL-O-FORMAT.

COPY DDS-ORDSFL-O OF DOESCR.
.
.
.

PROCEDURE DIVISION.
.
.
.

READ SUBFILE ORDER-ENTRY-SCREEN NEXT MODIFIED RECORD
INTO ORDSFL-I-FORMAT FORMAT IS "ORDSFL"
AT END SET NO-MODIFIED-SUBFILE-RCD TO TRUE.
.
.
.

MOVE CORR ORDSFL-I TO ORDSFL-O.
REWRITE SUBFILE ORDER-ENTRY-RECORD FROM ORDSFL-O-FORMAT

FORMAT IS "ORDSFL" . . .
.
.
.

Note: The COPY statement can be used in the File, Working-Storage and
Local-Storage Sections, but the results are not exactly the same. For more
information, see “Key Generation Examples” on page 623.

Additional Notes on Field and Format Names: If the generated field name is a
COBOL reserved word, the suffix -DDS is added to the field name. If the generated
field name originates from a physical file (in other words, the field is an argument
of the CONCAT or RENAME keyword), the suffix is also added. For more
information, see the IBM Rational Development Studio for i: ILE COBOL Programmer's
Guide.

The REPLACING phrase cannot be used to change the name of a key field or a
format name when EXTERNALLY-DESCRIBED-KEY is used.

Floating-Point Fields: A file can contain internal floating-point fields. If the
*NOFLOAT value of the CVTOPT parameter (the default) is in effect, then the
floating-point fields are brought in as FILLER items with a USAGE of BINARY. If
*FLOAT is specified, the fields are brought in using their given DDS names with a
USAGE of COMP-1 (single precision floating-point) or COMP-2 (double precision
floating-point).

Floating-point key fields are allowed. If the KEY is an internal floating-point
number, the sequence of key values will be in numeric order. If the KEY is an
external floating-point number, the key is alphanumeric, and the sequence of the
records depends on the collating sequence used.

Date, Time, and Timestamp Fields: This section describes the following classes of
date, time, and timestamp fields:
v Class Date-Time
v Class Alphanumeric

COPY Statement

Chapter 16. Part 7. Compiler-Directing Statements 619

It also provides an example of how use DDS to define date, time, and timestamp
fields of class date-time.

Class Date-Time: Date-time fields include date, time, and timestamp data items of
class date-time, and are allowed for zoned, packed, and character DDS fields that
specify the DATFMT keyword. Date data types are not the same as date, time, and
timestamp fields that are brought into your program as fixed-length character
fields. In ILE COBOL, date data types are converted to USAGE DISPLAY or
USAGE PACKED-DECIMAL data items, and date, time, and timestamp fields are
converted to alphanumeric data items (as described in “Class Alphanumeric”).

Date data types are converted to their equivalent ILE COBOL format from COPY
DDS when the *CVTTODATE conversion parameter option (CVTOPT) is specified.

For more information about the DATFMT parameters allowed and the equivalent
ILE COBOL format that is generated for them from COPY DDS when the
CVTOPT(*CVTTODATE) conversion parameter is specified, refer to the IBM
Rational Development Studio for i: ILE COBOL Programmer's Guide.

Class Alphanumeric: Alphanumeric date, time, and timestamp fields are brought
into your program only if you specify the CVTOPT(*DATETIME) option on the
CRTCBLMOD or CRTBNDCBL command, or the DATETIME option of the
PROCESS statement. If *DATETIME is not specified, date, time, and timestamp
fields are ignored and are declared as FILLER fields in your ILE COBOL program.

Date, time, and timestamp fields are brought in as fixed-length character fields.
Your program can perform any valid character operations on them.

The date, time, and timestamp data types each have their own format.

If a field containing date, time, or timestamp information is updated by your
program, and the updated information is to be passed back to your database, the
format of the field must be exactly the same as it was when the field was retrieved
from the database. If you do not use the same format, an error will occur.

Also, if you try to WRITE a record before moving an appropriate value to a date,
time, or timestamp field, the WRITE operation will fail with a file status of 90.

For information on valid formats for each data type, see the DB2 Universal Database
for AS/400 section of the Database and File Systems category in the System i5/OS
Information Center at this Web site - http://www.ibm.com/systems/i/infocenter/
..

Example of Date, Time, and Timestamp DDS: The following example shows you how
to define date, time, and timestamp fields in DDS.

COPY Statement

620 ILE COBOL Reference

http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/

Variable-Length Fields: You can bring a variable-length field into your program if
you specify the CVTOPT(*VARCHAR) option on the CRTCBLMOD or
CRTBNDCBL command, or the VARCHAR option of the PROCESS statement. A
variable-length field that you extract from an externally-described file becomes a
fixed-length group item in your program.

See the IBM Rational Development Studio for i: ILE COBOL Programmer's Guide for
more detailed information about these fields.

When you perform a WRITE operation before explicitly moving a record to the
record area, you will often write blanks, which have a hexadecimal value of 40
(X'40'). For variable-length fields, this means that X'4040' will be used as the
current length of the field.

X'4040' translates to a decimal value of 16 448, which would probably exceed the
maximum defined length of the variable-length field. This causes the WRITE
operation or subsequent CLOSE operation to fail with a file status of 90.

....+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....
A LOGICAL FILE LF1 FOR DATE, TIME, AND TIMESTAMP EXAMPLES

00010A
00020A R RECORD1
00030A DATFLD1 L DATFMT(*JUL)
00040A ALIAS(A_DATE_JUL)
00050A DATFLD2 L DATFMT(*EUR)
00060A ALIAS(A_DATE_EUR)
00070A DATFLD3 L DATFMT(*DMY) DATSEP(’-’)
00080A ALIAS(A_DATE_DMY)
00090A DATFLD4 L DATSEP(’ ’)
00100A TIMFLD1 T TIMFMT(*ISO)
00110A ALIAS(A_DATE_ISO)
00120A TIMFLD2 T TIMFMT(*USA)
00130A ALIAS(A_DATE_USA)
00140A TIMFLD3 T TIMSEP(’ ’)
00150A TIMFLD4 T TIMSEP(’.’)
00160A TSFLD1 Z DFT(’1998-02-27-08.15.22.000000’)

A

If the current date is June 21, 1990, the current system date format value is MDY, and the
system date separator value is '/', DATFLD3 contains 21-06-90. DATFLD4 contains 06 21
90.

If the current date is June 21, 1990, the current system date format value is MDY, and the
current system separator is /, DATFLD1 contains 90/172 (the 172nd day of the year
1990). DATFLD2 contains 21.06.1990.

If the current time is 2 o'clock p.m., the system time format is hhmmss, and the system
time separator is ':', TIMFLD1 contains 14.00.00. TIMFLD2 contains 2:00 PM.

If the current time is 2 o'clock p.m., the system time format is hhmmss, and the system
time separator is ':', TIMFLD3 contains 14 00 00. TIMFLD4 contains 14.00.00.

If you are defining a timestamp field, you must specify the default value in the following
format:

DFT(’YYYY-MM-DD-HH.MM.SS.UUUUUU’)

If the DFT keyword is not specified, the default value is the current time.

Figure 34. DDS File With Date, Time, and Timestamp Fields Defined

COPY Statement

Chapter 16. Part 7. Compiler-Directing Statements 621

Considerations Regarding Use of REPLACING in Format 2 COPY Statement:
The REPLACING phrase can be used to replace any of the generated COBOL
source, including the level numbers. (See “REPLACING Phrase” on page 604 for
additional information.) You should, however, note the following exception:
v When RECORD KEY IS EXTERNALLY-DESCRIBED-KEY is specified, the

REPLACING phrase cannot change a format-name or the name of a field that is
a key.

Figure 35 describes the Format 2 COPY statement without the REPLACING option:

The following figure describes the Format 2 COPY Statement with the
REPLACING option:

5722WDS V5R4M0 060210 LN IBM ILE COBOL TESTLIB/STRTEXTD I-SERIES1 06/02/15 11:27:50 Page 2
STMT PL SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

11 000100 FD CUST-MASTER.
12 000200 01 CUSTOMER-RECORD.

000300*
000400* COPY DDS W I T H O U T REPLACING OPTION
000500*

13 000600 COPY DDS-CUSMST OF TESTLIB-CUSMSTP.
+000001* I-O FORMAT:CUSMST FROM FILE CUSMSTP OF LIBRARY TESTLIB CUSMST
+000002* ORDER HEADER RECORD CUSMST

14 +000003 05 CUSMST. CUSMST
15 +000004 06 CUST PIC X(5). CUSMST

+000005* CUSTOMER NUMBER CUSMST
16 +000006 06 NAME PIC X(25). CUSMST

+000007* CUSTOMER NAME CUSMST
17 +000008 06 ADDR PIC X(20). CUSMST

+000009* CUSTOMER ADDRESS CUSMST
18 +000010 06 CITY PIC X(20). CUSMST

+000011* CUSTOMER CITY CUSMST
19 +000012 06 STATE PIC X(2). CUSMST

+000013* STATE CUSMST
20 +000014 06 ZIP PIC S9(5) COMP-3. CUSMST

+000015* ZIP CODE CUSMST

Figure 35. Format 2 COPY Statement Without the REPLACING Option

COPY Statement

622 ILE COBOL Reference

Key Generation Examples

The physical file described by Figure 37 forms a basis for the examples that follow.
Each example refers to a logical file (derived from the physical file) that specifies
EXTERNALLY-DESCRIBED-KEY in its SELECT clause.

5722WDS V5R4M0 060210 LN IBM ILE COBOL TESTLIB/STRTEXTD I-SERIES1 06/02/15 11:27:50 Page 2
STMT PL SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

30 001000 FD CUST-MASTER.
31 001100 01 CUSTOMER-RECORD.

001200*
001300* COPY DDS W I T H REPLACING OPTION
001400*

32 001500 COPY DDS-CUSMST OF TESTLIB-CUSMSTP
33 001600 REPLACING NAME BY ADDR-LINE-1
34 001700 ADDR BY ADDR-LINE-2
35 001800 CITY BY ADDR-LINE-3.

+000001* I-O FORMAT:CUSMST FROM FILE CUSMSTP OF LIBRARY TESTLIB CUSMST
+000002* ORDER HEADER RECORD CUSMST

36 +000003 05 CUSMST. CUSMST
37 +000004 06 CUST PIC X(5). CUSMST

+000005* CUSTOMER NUMBER CUSMST
38 +000006 06 ADDR-LINE-1 PIC X(25). CUSMST

+000007* CUSTOMER NAME CUSMST
39 +000008 06 ADDR-LINE-2 PIC X(20). CUSMST

+000009* CUSTOMER ADDRESS CUSMST
40 +000010 06 ADDR-LINE-3 PIC X(20). CUSMST

+000011* CUSTOMER CITY CUSMST
41 +000012 06 STATE PIC X(2). CUSMST

+000013* STATE CUSMST
42 +000014 06 ZIP PIC S9(5) COMP-3. CUSMST

+000015* ZIP CODE CUSMST

Figure 36. Format 2 COPY Statement With the REPLACING Option

....+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
A PHYSICAL FILE PF1 FOR KEY GENERATION EXAMPLES
A
A R PFRECORD
A
A MTH 2
A DAY 2
A YEAR 4
A ITEM 5
A
A
A K MTH
A K DAY

Figure 37. Data Description Specifications for a Physical File

COPY Statement

Chapter 16. Part 7. Compiler-Directing Statements 623

Example Using CONCAT Keyword

For the logical file described by Figure 38, COPY DDS generates keys and key
names derived from the physical file.

The COPY statement adds the suffix -DDS to the field names MTH and DATE
because MTH is a key that originates from the physical file, and DATE is an ILE
COBOL reserved word. The COPY statement adds the suffix -DDS twice to the
field name DAY because DAY is both a key that originates from the physical file
and an ILE COBOL reserved word.

Note that if you move your COPY statement from the File Section to the
Working-Storage Section or to the Linkage Section, the fields subordinate to
DATE-DDS are no longer available:

....+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
A LOGICAL FILE LF1 FOR CONCAT KEYWORD EXAMPLES
A
A R RECORD1 PFILE(PF1)
A
A DATE CONCAT(MTH DAY YEAR)
A
A K MTH
A K DAY

Figure 38. Data Description Specifications Using the CONCAT Keyword

FD LF1 LABEL RECORDS ARE STANDARD.
01 LOG-RECORD.

COPY DDS-ALL-FORMATS OF LF1.
05 LF1-RECORD PIC X(8).

* I-O FORMAT:RECORD-1 FROM FILE LF1 OF LIBRARY COPYDDS
*
*THE KEY DEFINITIONS FOR RECORD FORMAT RECORD1
* NUMBER NAME RETRIEVAL TYPE ALTSEQ
* 0001 MTH-DDS ASCENDING AN NO
* KEY NAME ORIGINATES FROM PHYSICAL FILE
* 0002 DAY-DDS-DDS ASCENDING AN NO
* KEY NAME ORIGINATES FROM PHYSICAL FILE

05 RECORD1 REDEFINES LF1-RECORD.
06 DATE-DDS PIC X(8).
06 FILLER REDEFINES DATE-DDS.

07 MTH-DDS PIC X(2).
07 DAY-DDS-DDS PIC X(2).
07 FILLER PIC X(4).

Figure 39. Example Using the CONCAT Keyword

WORKING-STORAGE SECTION.
01 WRK-RECORD.

COPY DDS-ALL-FORMATS OF LF1.
05 LF1-RECORD PIC X(8).

* I-O FORMAT:RECORD-1 FROM FILE LF1 OF LIBRARY COPYDDS
*

05 RECORD1 REDEFINES LF1-RECORD.
06 DATE-DDS PIC X(8).

Figure 40. Example Using the CONCAT Keyword—Working-Storage Section

COPY Statement

624 ILE COBOL Reference

Example Using RENAME Keyword

For the logical file described by Figure 37 on page 623, COPY DDS generates a key
and key name derived from the physical file:

The COPY statement adds the suffix -DDS to the field name MTH because MTH is
a key that originates from the physical file.

Example Using SST Keyword

For the logical file described by Figure 37 on page 623, COPY DDS generates the
following specifications:

....+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
A LOGICAL FILE LF2 FOR RENAME KEYWORD EXAMPLES
A
A R RECORD2 PFILE(PF1)
A
A MONTH RENAME(MTH)
A
A K MTH

Figure 41. Data Description Specifications Using the RENAMES Keyword

*
FD LF2 LABEL RECORDS ARE STANDARD.
01 LOG-RECORD.

COPY DDS-ALL-FORMATS OF LF2.
05 LF2-RECORD PIC X(2).

* I-O FORMAT:RECORD2 FROM FILE LF2 OF LIBRARY COPYDDS
*
*THE KEY DEFINITIONS FOR RECORD FORMAT RECORD2
* NUMBER NAME RETRIEVAL TYPE ALTSEQ
* 0001 MTH-DDS ASCENDING AN NO
* KEY NAME ORIGINATES FROM PHYSICAL FILE

05 RECORD2 REDEFINES LF2-RECORD.
06 MONTH PIC X(2).
06 MTH-DDS REDEFINES MONTH PIC X(2).

Figure 42. Using the RENAME Keyword

....+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
A LOGICAL FILE LF3 FOR SST KEYWORD EXAMPLES
A
A R RECORD3 PFILE(PF1)
A
A YY I SST(YEAR 2 2)
A
A K YY

Figure 43. Data Description Specifications Using the SST Keyword

COPY Statement

Chapter 16. Part 7. Compiler-Directing Statements 625

The COPY statement does not add a suffix to the field name YY because YY is
neither a key that originates from the physical file nor an ILE COBOL reserved
word.

End of IBM Extension

COPY Statement - Format 3 - Basic IFS

IBM Extension

Copy Statement - Format 3 - Basic IFS

►► COPY text-name
literal-1 OF library-name

IN literal-2
(1)

SUPPRESS

►

►
REPLACING phrase

. ►◄

Notes:

1 IBM Extension

literal-1 and literal-2
literal-1 is the name of the stream file to copy. If library-name is omitted, the
literal is used directly: as a file name, a relative path name, or an absolute path
name (if the first character is '/'). For example:
COPY "MyInc"
COPY "x/MyInc"
COPY "/u/user1/MyInc"

literal-2 is treated as the actual path, relative or absolute, from which the copy
file text-name or literal-1 is located.

text-name
When text-name is a user-defined Cobol word and an environment variable of
that name is defined, the value of the environment variable is used as the
name of the file containing the copy text. If an environment variable of that
name is not defined, the copy text is searched for according to the following
names, in the order specified as follows:
1. text-name.cpy
2. text-name.CPY
3. text-name.cblle
4. text-name.CBLLE

*
FD LF3 LABEL RECORDS ARE STANDARD.
01 LOG-RECORD.

COPY DDS-ALL-FORMATS OF LF3.
05 LF3-RECORD PIC X(2).

* I-O FORMAT:RECORD3 FROM FILE LF3 OF LIBRARY COPYDDS
*
*THE KEY DEFINITIONS FOR RECORD FORMAT RECORD3
* NUMBER NAME RETRIEVAL TYPE ALTSEQ
* 0001 YY ASCENDING AN NO

05 RECORD3 REDEFINES LF3-RECORD.
06 YY PIC X(2).

Figure 44. Using the SST Keyword

COPY Statement

626 ILE COBOL Reference

5. text-name.cblleinc
6. text-name.CBLLEINC
7. text-name.cbl
8. text-name.CBL
9. text-name.cob
10. text-name.COB
11. text-name.MBR
12. text-name

library-name
When library-name is a user-defined Cobol word, it is treated as an
environment variable. The value of the environment variable is used as the
path from which the copy file, text-name or literal-1 is located. If the
environment variable is not set, an error occurs. If both library-name and
text-name are specified, the compiler forms the path name for the copy text by
concatenating library-name and text-name with a path separator (/) inserted
between the two values. For example, suppose you have the following setting
for COPY MYCOPY OF MYLIB:
MYCOPY=mystuff/today.cpy
MYLIB=/u/user1

These settings result in:
/u/user1/mystuff/today.cpy

When library-name is an environment variable that identifies the path from
which copy text is to be copied, use the ADDENVVAR command such as the
following example to define library-name:
ADDENVVAR ENVVAR(COPYLIB) VALUE(/u/mystuff/copybooks)

The name of the environment variable must be uppercase. To specify more
than one copy library, set the environment variable to multiple path names
delimited by : (colon). When library-name is omitted and text-name is not an
absolute path name, the copy text is searched for in this order:
1. In the current directory
2. In the paths specified on the INCDIR parameter
3. In the paths specified in the SYSLIB environment variable

End of IBM Extension

EJECT Statement

IBM Extension

The EJECT statement specifies that the next source statement is to be printed at the
top of the next page.

EJECT Statement - Format

►► EJECT
.

►◄

The EJECT statement must be the only statement on the line. It may be written in
either Area A or Area B, and may be terminated with a separator period.

COPY Statement

Chapter 16. Part 7. Compiler-Directing Statements 627

The EJECT statement has no effect on the compilation of the source program itself.

End of IBM Extension

REPLACE Statement
The REPLACE statement is used to replace source program text.

The REPLACE statement can occur anywhere in the source program where a
character-string can occur. It must be preceded by a separator period except when
it is the first statement in a separately compiled program. It must be terminated by
a separator period.

The REPLACE statement resembles the REPLACING phrase of the COPY
statement, except that it acts on the entire source program, not just the text in
COPY libraries.

REPLACE Statement - Format 1

►► REPLACE ▼ ==pseudo-text-1== BY ==pseudo-text-2== . ►◄

Each matched occurrence of pseudo-text-1 is replaced by its corresponding
pseudo-text-2. This process continues until any of the following are met:
v The next occurrence of the REPLACE statement
v End of the program
v REPLACE OFF (see Format 2 below)

REPLACE Statement - Format 2

►► REPLACE OFF . ►◄

Format 2 ends current text replacement specified by Format 1.

pseudo-text-1, pseudo-text-2
Pseudo-text is a sequence of text words, comment lines, or separator spaces
bounded by, but not including, the pseudo-text delimiter (==).

Pseudo-text-1 must contain at least one text word other than a separator
comma or separator semicolon. Beginning and ending spaces are not included
in the text comparison process, and multiple embedded spaces are considered
to be a single space.

Pseudo-text-2 does not need to contain a text word; it may consist solely of
space characters and/or comment lines.

Since pseudo-text-1 requires a text word, which must be bounded by
separators, pseudo-text cannot be used to replace part of a data name (for
example, a prefix); the entire data name must be used.

IBM Extension

Pseudo-text-1 or pseudo-text-2 can contain DBCS or national character-strings.
Such pseudo-text cannot be continued across lines.

EJECT Statement

628 ILE COBOL Reference

When a REPLACE statement is in effect, there are certain restrictions on the
layout of a Format 2 - DDS Translate COPY statement. (See “COPY Statement -
Format 2 - DDS Translate” on page 608.)

End of IBM Extension

REPLACE statements are processed after all COPY statements have been
processed. The text that results from the processing of a REPLACE statement must
not include a REPLACE statement.

Replacing Algorithm
For example, assuming three matched pairs of pseudo-text in a REPLACE
statement:
1. The comparison starts with the leftmost source program text word following

the REPLACE statement, and with the first pseudo-text-1.
2. Pseudo-text-1 is compared to an equivalent number of contiguous source

program text words according to the following rules:
v The comparison is character for character
v Uppercase and lowercase characters are equivalent (except within literals)
v Each occurrence of a separator comma, semicolon, and sequence of one or

more spaces is treated as a single space
v Comment lines and blank lines are ignored for purposes of matching.

IBM Extension

v Lines containing EJECT, SKIP 1/2/3, or TITLE statements are ignored for
purposes of matching (they are treated as comment lines)

End of IBM Extension

v Debugging lines are processed for matches, but the D in the indicator area is
ignored

3. If no match occurs, the comparison is repeated with each successive occurrence
of pseudo-text-1 (in our example, there are three occurrences), until a match is
found (go to Step 5)

4. If no match is found after all, the next source program text word is treated as
the leftmost program text word, and the cycle begins again at Step 1

5. When a match is found, the corresponding pseudo-text-2 replaces the matched
text in the source program

6. The source program text word immediately following the rightmost text word
that participated in the match becomes the leftmost source program text word.
The cycle starts again (Step 1) with the first occurrence of pseudo-text-1.

Programming Notes
After all COPY and REPLACE statements are processed, and if the WITH
DEBUGGING MODE clause is not specified in the SOURCE-COMPUTER
paragraph, a debugging line is considered to have all the characteristics of a
comment line

When additional lines are introduced in the source program as a result of
processing the REPLACE statement, the indicator area of the new lines contains
the same character as the line of the text being replaced (unless the line contains a
hyphen, in which case the new lines contain a space)

REPLACE Statement

Chapter 16. Part 7. Compiler-Directing Statements 629

If a literal within pseudo-text-2 does not fit in the line containing pseudo-text-1,
and the literal is not being placed in a debugging line, additional continuation
lines are introduced that contain the remainder of the literal. If pseudo-text-1 is on
a debugging line, the program is in error.

SKIP1/2/3 Statements

IBM Extension

The SKIP1/2/3 statements specify blank lines that the compiler should add when
printing the source listing. SKIP statements have no effect on the compilation of
the source program itself.

SKIP1/2/3 Statements - Format

►► SKIP1
SKIP2
SKIP3

.
►◄

SKIP1
Specifies a single blank line (double spacing).

SKIP2
Specifies two blank lines (triple spacing).

SKIP3
Specifies three blank lines (quadruple spacing).

SKIP1, SKIP2, or SKIP3 causes one occurrence of double, triple, or quadruple
spacing.

SKIP1, SKIP2, or SKIP3 may be written anywhere in either Area A or Area B, and
may be terminated with a separator period. It must be the only statement on the
line.

End of IBM Extension

TITLE Statement

IBM Extension

The TITLE statement specifies a title to be printed at the top of each page of the
source listing produced during compilation. The title line is printed below the line
containing the identification of the compiler and the current release level. The title
is left-justified on the title line.

TITLE Statement - Format

►► TITLE literal
.

►◄

literal
Must be nonnumeric and may be followed by a separator period. Must not be
a figurative constant. May be a DBCS literal or national hexadecimal literal.

REPLACE Statement

630 ILE COBOL Reference

The TITLE statement:
v Forces a new page immediately
v Is not printed on the source listing
v Has no other effect on compilation
v Has no effect on program execution.

A title line is produced for each page in the listing produced by the LIST option.
This title line uses the last TITLE statement found in the source statements or the
default.

The word TITLE may begin in either Area A or Area B.

The TITLE statement may not be continued on another line.

The TITLE statement may appear anywhere in any of the divisions.

No other statement may appear on the same line as the TITLE statement.

End of IBM Extension

USE Statement
The USE statement specifies procedures for input/output exception or error
handling that are to be executed in addition to the system-defined procedures.
Although the USE statement is a compiler-directing statement, it can appear only
in the Procedure Division, and it can begin only in Area B. (See “Precedence Rules
for Nested Programs” on page 633 for information on using the GLOBAL phrase.)

USE Statement - Format 1 - EXCEPTION/ERROR
The words EXCEPTION and ERROR are synonymous and may be used
interchangeably.

USE Statement - Format

►► USE AFTER
GLOBAL STANDARD

EXCEPTION
ERROR

PROCEDURE
ON

►

► ▼ file-name-1
INPUT
OUTPUT
I-O
EXTEND

►◄

file-name-1
Valid for all files. When this option is specified, the procedure is executed only
for the file(s) named. No file-name can refer to a sort or merge file. For any
given file, only one EXCEPTION/ERROR procedure may be specified; thus,
file-name specification must not cause simultaneous requests for execution of
more than one EXCEPTION/ERROR procedure. A USE AFTER
EXCEPTION/ERROR declarative statement specifying the name of a file takes
precedence over a declarative statement specifying the open mode of the file.

TITLE Statement

Chapter 16. Part 7. Compiler-Directing Statements 631

IBM Extension

The file-name phrase is also valid for TRANSACTION files.

End of IBM Extension

INPUT
Valid for all files. When this option is specified, the procedure is executed for
all files opened in INPUT mode that get an error.

OUTPUT
Valid for all files. When this option is specified, the procedure is executed for
all files opened in OUTPUT mode that get an error.

I-O
Valid for all direct-access files. When this option is specified, the procedure is
executed for all files opened in I-O mode that get an error.

IBM Extension

The I-O phrase is also valid for TRANSACTION files.

End of IBM Extension

EXTEND
When this option is specified, the procedure is executed for all files opened in
EXTEND mode that get an error.

The EXCEPTION/ERROR procedure is executed:
v Either after completing the system-defined input/output error routine, or
v Upon recognition of an INVALID KEY or AT END condition when an INVALID

KEY or AT END phrase has not been specified in the input/output statement, or
v Upon recognition of an IBM-defined condition that causes status key 1 to be set

to 9. (See “Status Key” on page 274.)

The EXCEPTION/ERROR procedures are activated when an input/output error
occurs during execution of a ACQUIRE, DROP, READ, WRITE, REWRITE, START,
OPEN, CLOSE, or DELETE statement. To determine what conditions are errors, see
“Common Processing Facilities” on page 274.

After execution of the EXCEPTION/ERROR Declarative procedure, control is
returned to the statement immediately following the input/output statement which
caused the error.

Within a declarative procedure, there must be no reference to any nondeclarative
procedures. In the nondeclarative portion of the program, there must be no
reference to procedure-names that appear in an EXCEPTION/ERROR declarative
procedure, except that PERFORM statements may refer to an EXCEPTION/ERROR
procedure or to procedures associated with it.

Within an EXCEPTION/ERROR declarative procedure, no statement should be
included that would cause execution of a USE procedure that had been previously
invoked and had not yet returned control to the invoking routine.

USE Statement

632 ILE COBOL Reference

USE Statement Programming Notes
EXCEPTION/ERROR Declarative procedures can be used to check the status key
values whenever an input/output error occurs. Additional information about the
file causing the error can be obtained by using data from the mnemonic-names
OPEN-FEEDBACK and I-O-FEEDBACK.

Care should be used in specifying EXCEPTION/ERROR Declarative procedures for
any file. Prior to successful completion of an initial OPEN for any file, the current
Declarative has not yet been established by the object program. Therefore, if any
other I-O statement is executed for a file that has never been opened, no
Declarative can receive control. However, if this file has been previously opened,
the last previously established Declarative procedure receives control.

For example, an OPEN OUTPUT statement establishes a Declarative procedure for
this file, and the file is then closed without error. During later processing, if a logic
error occurs, control will go to the Declarative procedure established when the file
was opened OUTPUT.

Error Handling: If there is an applicable file status clause (but not an applicable
USE procedure) when an I-O error occurs, the file status is updated, and control
returns to the program. In the absence of a file status clause, USE procedure
(implicit or explicit), AT END phrase, or INVALID KEY phrase to handle the error,
a run-time message is issued, giving you the option to end or return to the
program.

Precedence Rules for Nested Programs
Special precedence rules are followed when programs are contained within other
programs. In applying these rules, only the first qualifying declarative will be
selected for execution. The declarative that is selected must satisfy the rules for
execution of that declarative. The order of precedence for selecting a declarative is:
1. A file-specific declarative (one of the form USE AFTER ERROR ON file-name-1,

with or without the GLOBAL phrase) within the program that contains the
statement that caused the qualifying condition

2. A mode-specific declarative (one of the form USE AFTER ERROR ON INPUT,
with or without the GLOBAL phrase) within the program that contains the
statement that caused the qualifying condition

3. A file-specific declarative that specifies the GLOBAL phrase, and is within the
program directly containing the program that was last examined for a
qualifying condition

4. A mode-specific declarative that specifies the GLOBAL phrase, and is within
the program directly containing the program that was last examined for a
qualifying condition.

5. Rules 3 and 4 apply recursively back through the parents in the nest of
programs.

Note: Each declarative procedure runs as a separate invocation from that of other
declarative procedures and the nondeclarative part of the same ILE COBOL
program.

USE FOR DEBUGGING
The USE FOR DEBUGGING declarative identifies the items in the source program
that are to be monitored by the associated debugging procedure. It establishes a
procedure to run when certain errors occur, or when certain items or files change.

USE Statement

Chapter 16. Part 7. Compiler-Directing Statements 633

The USE FOR DEBUGGING declarative is syntax checked and treated as
documentation.

USE FOR DEBUGGING Declarative - Format

►►
(1)

USE DEBUGGING
FOR ON

►

► ▼ identifier-1
ALL

REFERENCES OF
file-name-1
procedure-name-1
ALL PROCEDURES

►◄

Notes:

1 Syntax-checked only.

Identifier-1 cannot be reference modified.

This statement is compiled only when you are in debugging mode.

The compiler treats all statements that follow this one as comments until the next
valid USE AFTER EXCEPTION/ERROR statement or END DECLARATIVES
delimiter is reached.

USE Statement

634 ILE COBOL Reference

Part 8. Appendixes

© Copyright IBM Corp. 1993, 2010 635

636 ILE COBOL Reference

Appendix A. ILE COBOL Compiler Limits

The following table lists the compiler limits supported by the ILE COBOL
compiler:

Table 43. ILE COBOL Compiler Limits

Language Element ILE COBOL Limit

General

Number of:
Files open at one time
Nesting levels in nested COPY
REPLACING operands in one COPY

virtually no limit (1)
virtually no limit (1)
virtually no limit (1)

Total length of literals virtually no limit (1)

Total storage available for VALUE clauses virtually no limit (1)

Number of characters to identify:
Library-name
Program-name

program object
ILE procedure

Text-name

10

10
250
10

Environment Division

Number of:
SELECT file-names
Alternate record keys in one file
Contiguous DDS fields that can be

used to form an alternate record key

virtually no limit (1)
253

156

Maximum number of buffers (areas) specified in the
RESERVE clause virtually no limit (1)

Length of:
RECORD KEY in one file
ALTERNATE RECORD KEY in one file

2 000 bytes
2 000 bytes

Data Division

Length of:
Working-Storage Section
group item
Linkage Section group item
Local-Storage Section
Elementary item

16 711 568 bytes
16 711 568 bytes
16 711 568 bytes
16 711 568 bytes

Maximum block size 32 767 bytes

Maximum record length 32 767 bytes

Number of:
FD file-names
OCCURS levels
Levels in data hierarchy
SD file-names

virtually no limit (1)
7
49
virtually no limit (1)

Number of:
Numeric-edited (data items)

character positions
Picture character strings
Picture replications

127
90
16 711 568

© Copyright IBM Corp. 1993, 2010 637

Table 43. ILE COBOL Compiler Limits (continued)

Language Element ILE COBOL Limit

OCCURS
Table size (fixed length)
Table size (variable length)
Table element size
Number of ASC/DESC KEY clauses

in one table
Total length of ASC/DESC keys

in one table
Index names (per table)
INDEXED BY clauses (per table)
Pointers in one table

16 711 568 bytes
16 711 568 bytes
16 711 568 bytes

virtually no limit (1)

virtually no limit (1)
virtually no limit (1)
1
virtually no limit (1)

Procedure Division

Number of:
GO TO procedure-name DEPENDING ON
nested IF statements
IF nesting levels
nested EVALUATE statements
CALL parameters

to program object
to ILE procedure

FUNCTION nesting levels limit
for intrinsic functions
SORT-MERGE input files
SORT-MERGE output files
SORT-MERGE keys
SEARCH ALL ... WHEN

relation conditions
UNSTRING delimiters
INSPECT TALLYING identifiers
INSPECT REPLACING identifiers

virtually no limit (1)
virtually no limit (1)
virtually no limit (1)
virtually no limit (1)

255
400

123
32
32
2 000

virtually no limit (1)
virtually no limit (1)
virtually no limit (1)
virtually no limit (1)

Length of:
SORT-MERGE keys 2 000 bytes

Notes:

1. The limit is a very large number, depending on your hardware configuration. Most
applications should not encounter it.

ILE COBOL Compiler Limits

638 ILE COBOL Reference

Appendix B. Intermediate Results and Arithmetic Precision

The compiler handles arithmetic statements as a succession of operations,
performed according to operator precedence, and sets up an intermediate field to
contain the results of these operations.

Intermediate results are possible in the following cases:
v In an ADD or SUBTRACT statement containing more than one operand

immediately following the verb.
v In a COMPUTE statement specifying a series of arithmetic operations or

multiple result fields.
v In arithmetic expressions contained in conditional statements and reference

modification specifications.
v In the GIVING option with multiple result fields for the ADD, SUBTRACT,

MULTIPLY, or DIVIDE statements.
v In a statement with an intrinsic function used as an operand.

For a discussion on when the compiler uses fixed-point or floating-point
arithmetic, refer to the “Working with Data Items” chapter in the IBM Rational
Development Studio for i: ILE COBOL Programmer's Guide.

Calculating Precision of Intermediate Results
The compiler uses algorithms to determine the number of integer and decimal
places reserved for intermediate results.

In the following discussion of how the compiler determines the number of integer
and decimal places reserved for intermediate results, these abbreviations are used:

i The number of integer places carried for an intermediate result.

d The number of decimal places carried for an intermediate result.

ROUNDED
If the ROUNDED option is used, one more integer or decimal place might
be added for accuracy, if necessary. Only the final results are rounded; the
intermediate results are not rounded. 62 digits is the maximum number of
digits that can be accurately rounded.

dmax In a particular statement, the largest of:
v The number of decimal places needed for the final result field(s).
v The maximum number of decimal places defined for any operand.
v The outer-dmax for any function operand.

inner-dmax
The inner-dmax for a function is the largest of:
v The number of decimal places defined for any of its elementary

arguments.
v The dmax for any of its arithmetic expression arguments.
v The outer-dmax for any of its embedded functions.

outer-dmax
The number that determines how a function result contributes to

© Copyright IBM Corp. 1993, 2010 639

#

operations outside of its own evaluation (for example if the function is an
operand in an arithmetic expression or an argument to another function).

op1 The first operand in a generated arithmetic statement. For division, op1 is
the divisor.

op2 The second operand in a generated arithmetic statement. For division, op2
is the dividend.

i1,i2 The number of integer places in op1 and op2, respectively.

d1,d2 The number of decimal places defined for op1 and op2, respectively.

ir Intermediate result field obtained from the processing of a generated
arithmetic statement or operation. Intermediate results are represented by
ir1, ir2, and so on. Successive intermediate results may share the same
memory location.

Below we use a COMPUTE statement to demonstrate the use of intermediate
results in an arithmetic expression. In this case, the following statement:

COMPUTE Y = A + B * C − D / E + F ** G

is replaced by

F ** G yielding ir1

MULTIPLY B BY C yielding ir2

DIVIDE E INTO D yielding ir3

ADD A TO ir2 yielding ir4

SUBTRACT ir3 FROM ir4 yielding ir5

ADD ir5 TO ir1 yielding Y

Compiler Calculation of Intermediate Results
The number of integer places in an ir is calculated as follows:

The compiler first determines the maximum value that the ir can contain by
assigning a numerical value to each of the operands used to generate the ir, and
determining the value that would result from the operation.
v If an operand in this statement is a data-name, the value used for the data-name

is equal to the numerical value of the PICTURE for the data-name (that is,
PICTURE 9V99 has the value 9.99).

v If an operand is a literal, the literal is treated as though it had a PICTURE, and
the numerical value of the PICTURE is used (that is, the literal +127.3 has an
implied PICTURE S999V9).

v If an operand is an intermediate result, the PICTURE determined for the
intermediate result in a previous operation is used. The numerical value of that
PICTURE is used.

v If the operation is division:
– If op2 is a data-name, the value used for op2 is the minimum nonzero value

of the digit in the PICTURE for the data-name (that is, PICTURE 9V99 has the
value 0.01).

– If op2 is an intermediate result, the intermediate result is treated as though it
had a PICTURE, and the minimum nonzero value of the digits in this
PICTURE is used.

640 ILE COBOL Reference

Once the maximum value of the ir has been determined by the above procedures, i
is set equal to the number of integers in the maximum value.

The number of decimal places contained in an ir is calculated as:

Table 44. Determining the Precision of an Intermediate Result

Operation Integer Places Decimal Places

+ or - (i1 or i2) + 1, whichever is greater d1 or d2, whichever is greater

* i1 + i2 d1 + d2

/ i2 + d1 (d2 - d1) or dmax, whichever is
greater

** When i2 equals 0,
max(min(i1,18),1)
if op2 is nonintegral1

max(min(i1 * i1,18),1)
if op2 is an integral literal1.

When i2 does not equal 0,
max(min(i1 * (9 * i2),18),1)
if op2 is nonintegral1

max(min(i1 * i1 * (9 * i2),18),1)
if op2 is an integral literal1.

dmax if op2 is nonintegral or a
data-name;
d1 * op2 if op2 is an integral
literal

Notes:

1. These results are subject to subsequent processing.

You must define the operands of any arithmetic statements with enough decimal
places to give the desired accuracy in the final result.

Table 45 indicates the action of the compiler when handling intermediate results for
fixed-point numbers.

Table 45. Determining When the Compiler Might Truncate Intermediate Results

Value of i + d2 Value of d Value of i + dmax Action Taken

< MAXLENGTH1

= MAXLENGTH
Any Value Any Value i integer and d decimal places are carried for ir.

> MAXLENGTH3 < dmax
= dmax

Any Value MAXLENGTH - d integer and d decimal places are
carried for ir.

> dmax < MAXLENGTH
= MAXLENGTH

i integer and MAXLENGTH - i decimal places are
carried for ir.

> MAXLENGTH MAXLENGTH - dmax integer and dmax decimal places
are carried for ir.

Compiler Calculation of Intermediate Results

Appendix B. Intermediate Results and Arithmetic Precision 641

#

Table 45. Determining When the Compiler Might Truncate Intermediate Results (continued)

Value of i + d2 Value of d Value of i + dmax Action Taken

Notes:

1. MAXLENGTH has one of the following values:

v 18 decimal digits

IBM Extension

v 30 decimal digits, when the (default) compiler option *NOEXTEND or the PROCESS statement option
NOEXTEND is specified.

v 31 decimal digits, when the arithmetic mode compiler option *EXTEND31 or PROCESS statement option
EXTEND31 is specified.

v 63 decimal digits, when the arithmetic mode compiler option *EXTEND63 or PROCESS statement option
EXTEND63 is specified.

End of IBM Extension

2. If the value of i + d is an even number less than MAXLENGTH, the compiler converts it to an odd number by
adding 1.

3. If the value of i + d exceeds 63, system message MCH1202 can result, even if the statement includes the SIZE
ERROR phrase.

If you think an intermediate result field might exceed MAXLENGTH digits, you
can use floating-point operands (COMP-1 and COMP-2) to avoid truncation.

Integer Functions
These functions always return an integer, and the outer-dmax will always be zero.
For those functions whose arguments must be integer, the inner-dmax will also
always be zero.

Table 46 summarizes the precision of the function results:

Table 46. Precision of Integer Intrinsic Functions

Function Inner Dmax Outer Dmax Function Result

DATE-OF-INTEGER 0 0 8-digit integer

DATE-TO-YYYYMMDD 0 0 9-digit integer

DAY-OF-INTEGER 0 0 7-digit integer

DAY-TO-YYYYDDD 0 0 9-digit integer

FIND-DURATION N/A 0 9-digit integer

INTEGER-OF-DATE 0 0 7-digit integer

INTEGER-OF-DAY 0 0 7-digit integer

LENGTH N/A 0 9- digit integer

ORD N/A 0 3-digit integer

ORD-MAX N/A 0 9-digit integer

ORD-MIN N/A 0 9-digit integer

YEAR-TO-YYYY 0 0 9-digit integer

Table 47 on page 643 summarizes the precision of the function results:

Compiler Calculation of Intermediate Results

642 ILE COBOL Reference

Table 47. Precision of Integer Intrinsic Functions

Function Inner Dmax Outer Dmax Function Result

DATE-OF-INTEGER 0 0 8-digit integer

DAY-OF-INTEGER 0 0 7-digit integer

FACTORIAL 0 0 fixed-point, 30-digit integer

INTEGER-OF-DATE 0 0 7-digit integer

INTEGER-OF-DAY 0 0 7-digit integer

LENGTH N/A 0 9- digit integer

MOD 0 0 integer with as many digits as
min(i1 i2)

ORD N/A 0 3-digit integer

INTEGER 0 With a fixed-point argument, result
will be fixed-point integer with one
more integer digit than the
argument. With a floating-point
argument, result will be
fixed-point, 30-digit integer.

INTEGER-PART 0 With a fixed-point argument, result
will be fixed-point integer with the
same number of integer digits as
the argument. With a floating-point
argument, result will be
fixed-point, 30-digit integer.

Table 48 summarizes the precision of the function results:

Table 48. Precision of Integer Intrinsic Functions

Function Inner Dmax Outer Dmax Function Result

DATE-OF-INTEGER 0 0 8-digit integer

DAY-OF-INTEGER 0 0 7-digit integer

FACTORIAL 0 0 fixed-point, 30-digit integer

INTEGER-OF-DATE 0 0 7-digit integer

INTEGER-OF-DAY 0 0 7-digit integer

LENGTH N/A 0 9- digit integer

MOD 0 0 integer with as many digits as
min(i1 i2)

ORD N/A 0 3-digit integer

ORD-MAX 0 9-digit integer

ORD-MIN 0 9-digit integer

INTEGER 0 With a fixed-point argument,
result will be fixed-point integer
with one more integer digit than
the argument. With a
floating-point argument, result
will be fixed-point, 30-digit
integer.

Compiler Calculation of Intermediate Results

Appendix B. Intermediate Results and Arithmetic Precision 643

Table 48. Precision of Integer Intrinsic Functions (continued)

Function Inner Dmax Outer Dmax Function Result

INTEGER-PART 0 With a fixed-point argument,
result will be fixed-point integer
with the same number of integer
digits as the argument. With a
floating-point argument, result
will be fixed-point, 30-digit
integer.

Mixed Functions
When the compiler handles a mixed function as fixed-point arithmetic, the result
will be either integer or fixed-point with decimals (when any argument is
floating-point, the function becomes a floating-point function and will follow
floating-point rules). For MAX, MIN, RANGE, REM,and SUM, the outer-dmax is
always equal to the inner-dmax. To determine the precision of the result returned
for these functions, apply the rules for fixed-point arithmetic to each step in the
algorithm used to calculate the function result.

MAX
1. Assign the first argument to your function result.
2. For each remaining argument:

a. Compare the algebraic value of your function result with the argument.
b. Assign the greater of the two to your function result.

MIN
1. Assign the first argument to your function result.
2. For each remaining argument:

a. Compare the algebraic value of your function result with the argument.
b. Assign the lesser of the two to your function result.

RANGE
1. Use the steps for MAX to select your maximum argument.
2. Use the steps for MIN to select your minimum argument.
3. Subtract the minimum argument from the maximum.
4. Assign the difference to your function result.

REM
1. Divide argument-1 by argument-2.
2. Remove all noninteger digits from the result of step 1.
3. Multiply the result of step 2 by argument-2.
4. Subtract the result of step 3 from argument-1.
5. Assign the difference to your function result.

SUM
1. Assign the value 0 to your function result.
2. For each argument:

a. Add the argument to your function result.
b. Assign the sum to your function result.

Compiler Calculation of Intermediate Results

644 ILE COBOL Reference

Floating-Point Data and Intermediate Results

IBM Extension

Floating-point instructions are used to compute an arithmetic expression if any of
the following conditions are true:
v A receiver or operand in the expression is COMP-1, COMP-2, external

floating-point data, or a floating-point literal.
v An intrinsic numeric function is a floating-point function.
v The expression is an argument of a floating-point function.

If any operation in an arithmetic expression is computed in floating-point, the
entire expression is computed as if all operands were converted to floating-point
and the operations are evaluated using floating-point instructions.

If an expression is computed in floating-point, double-precision floating-point is
used if any receiver or operand in the expression is not COMP-1, or if a
multiplication or exponentiation operation appears in the expression. Whenever
double-precision floating-point is used for one operation in an arithmetic
expression, all operations in the expression are computed as if double-precision
floating-point instructions were used.

Floating-point exponentiations are always evaluated using double-precision
floating-point arithmetic.

The value of a negative number raised to a fractional power is undefined. For
example, (-2) ** 3 is equal to -8, but (-2) ** (3.000001) is not defined. When an
exponentiation is evaluated in floating-point and there is a possibility that the
value of the exponentiation will be undefined (as in the example above), then the
value of the exponent is evaluated at run time to determine if it is actually an
integer.

The floating-point numeric functions will always return a double-precision
floating-point value. For a list of the floating-point and fixed-point functions, see
“Types of Numeric Functions” in the IBM Rational Development Studio for i: ILE
COBOL Programmer's Guide.

Arithmetic expressions can appear in contexts other than arithmetic statements. For
example, an arithmetic expression can be used with the IF statement. In such
statements, the rules for intermediate results, floating-point, and double-precision
floating-point apply, with the following changes:
v Abbreviated IF statements are handled as though the statements were not

abbreviated.
v An explicit relation condition exists when a required relational operator is used

to define the comparison between two operands (here referred to as
comparands). In an explicit relation condition where one or both of the
comparands is an arithmetic expression, the rules for intermediate results are
determined by taking into consideration the attributes of both comparands. That
is to say, dmax is defined to be the maximum number of decimal places defined
for any operand of either comparand, except divisors and exponents. The rules
for floating-point and double-precision floating-point apply if any operand in
either comparand is COMP-1, COMP-2, external floating-point data, or a
floating-point literal.
For example, in the statement:

Compiler Calculation of Intermediate Results

Appendix B. Intermediate Results and Arithmetic Precision 645

IF operand-1 = expression-1 THEN . . .

where operand-1 is a data-name defined to be COMP-2, and expression-1
contains only fixed-point operands, the rules for floating-point arithmetic apply
to expression-1 because it is being compared to a floating-point operand.

v When the comparison between an arithmetic expression and either a data item
or another arithmetic expression is defined without using a relational operator,
then no explicit relation condition is said to exist. In these cases, the comparison
can be rewritten as one or more IF statements with an explicit operator. Each IF
statement then follows the rules outlined above for an explicit relation condition.
For example, in the statement:

EVALUATE expression-1
WHEN expression-2 THRU expression-3
WHEN expression-4
.
.
.

END-EVALUATE

the equivalent IF statements are:
IF expression-1 >= expression-2 AND

expression-1 <= expression-3
IF expression-1 = expression-4

then for each IF statement, the comparands must be looked at
to determine if all the arithmetic in that IF statement will
be fixed-point or floating-point.

End of IBM Extension

Compiler Calculation of Intermediate Results

646 ILE COBOL Reference

Appendix C. EBCDIC and ASCII Collating Sequences

The ascending collating sequences for both the EBCDIC (Extended Binary Coded
Decimal Interchange Code) and ASCII (American National Standard Code for
Information Interchange) character sets are shown in this appendix. In addition to
the symbol and meaning for each character, the ordinal number (beginning with 1),
decimal representation, and hexadecimal representation are given.

EBCDIC Collating Sequence

Ordinal
Number

Symbol Meaning Decimal
Represen-
tation

Hex
Represen-
tation

65 � Space 64 40

. . .

75 ¢ Cent sign 74 4A

76 . Period, decimal point 75 4B

77 < Less than sign 76 4C

78 (Left parenthesis 77 4D

79 + Plus sign 78 4E

80 | Vertical bar, logical OR 79 4F

81 & Ampersand 80 50

. . .

91 ! Exclamation point 90 5A

92 $ Dollar sign 91 5B

93 * Asterisk 92 5C

94) Right parenthesis 93 5D

95 ; Semicolon 94 5E

96 ¬ Logical NOT 95 5F

97 - Minus, hyphen 96 60

98 / Slash 97 61

. . .

108 , Comma 107 6B

109 % Percent sign 108 6C

110 _ Underscore 109 6D

111 > Greater than sign 110 6E

112 ? Question mark 111 6F

. . .

123 : Colon 122 7A

124 # Number sign, pound sign 123 7B

125 @ At sign, circa sign 124 7C

126 ' Apostrophe, prime sign 125 7D

© Copyright IBM Corp. 1993, 2010 647

Ordinal
Number

Symbol Meaning Decimal
Represen-
tation

Hex
Represen-
tation

127 = Equal sign 126 7E

128 " Quotation marks 127 7F

. . .

130 a 129 81

131 b 130 82

132 c 131 83

133 d 132 84

134 e 133 85

135 f 134 86

136 g 135 87

137 h 136 88

138 i 137 89

. . .

146 j 145 91

147 k 146 92

148 l 147 93

149 m 148 94

150 n 149 95

151 o 150 96

152 p 151 97

153 q 152 98

154 r 153 99

. . .

163 s 162 A2

164 t 163 A3

165 u 164 A4

166 v 165 A5

167 w 166 A6

168 x 167 A7

169 y 168 A8

170 z 169 A9

. . .

194 A 193 C1

195 B 194 C2

196 C 195 C3

197 D 196 C4

198 E 197 C5

199 F 198 C6

200 G 199 C7

EBCDIC and ASCII Collating Sequences

648 ILE COBOL Reference

Ordinal
Number

Symbol Meaning Decimal
Represen-
tation

Hex
Represen-
tation

201 H 200 C8

202 I 201 C9

. . .

210 J 209 D1

211 K 210 D2

212 L 211 D3

213 M 212 D4

214 N 213 D5

215 O 214 D6

216 P 215 D7

217 Q 216 D8

218 R 217 D9

. . .

227 S 226 E2

228 T 227 E3

229 U 228 E4

230 V 229 E5

231 W 230 E6

232 X 231 E7

233 Y 232 E8

234 Z 233 E9

. . .

241 0 240 F0

242 1 241 F1

243 2 242 F2

244 3 243 F3

245 4 244 F4

246 5 245 F5

247 6 246 F6

248 7 247 F7

249 8 248 F8

250 9 249 F9

ASCII Collating Sequence

Ordinal
Number

Symbol Meaning Decimal
Represen-
tation

Hex
Represen-
tation

1 Null 0 0

. . .

EBCDIC and ASCII Collating Sequences

Appendix C. EBCDIC and ASCII Collating Sequences 649

Ordinal
Number

Symbol Meaning Decimal
Represen-
tation

Hex
Represen-
tation

33 � Space 32 20

34 ! Exclamation point 33 21

35 " Quotation mark 34 22

36 # Number sign 35 23

37 $ Dollar sign 36 24

38 % Percent sign 37 25

39 & Ampersand 38 26

40 ' Apostrophe, prime sign 39 27

41 (Left parenthesis 40 28

42) Right parenthesis 41 29

43 * Asterisk 42 2A

44 + Plus sign 43 2B

45 , Comma 44 2C

46 - Hyphen, minus 45 2D

47 . Period, decimal point 46 2E

48 / Slash 47 2F

49 0 48 30

50 1 49 31

51 2 50 32

52 3 51 33

53 4 52 34

54 5 53 35

55 6 54 36

56 7 55 37

57 8 56 38

58 9 57 39

59 : Colon 58 3A

60 ; Semicolon 59 3B

61 < Less than sign 60 3C

62 = Equal sign 61 3D

63 > Greater than sign 62 3E

64 ? Question mark 63 3F

65 @ At sign, circa sign 64 40

66 A 65 41

67 B 66 42

68 C 67 43

69 D 68 44

70 E 69 45

71 F 70 46

EBCDIC and ASCII Collating Sequences

650 ILE COBOL Reference

Ordinal
Number

Symbol Meaning Decimal
Represen-
tation

Hex
Represen-
tation

72 G 71 47

73 H 72 48

74 I 73 49

75 J 74 4A

76 K 75 4B

77 L 76 4C

78 M 77 4D

79 N 78 4E

80 O 79 4F

81 P 80 50

82 Q 81 51

83 R 82 52

84 S 83 53

85 T 84 54

86 U 85 55

87 V 86 56

88 W 87 57

89 X 88 58

90 Y 89 59

91 Z 90 5A

92 [Left bracket 91 5B

93 \ Reverse slash 92 5C

94] Right bracket 93 5D

95 ^ Circumflex accent, caret 94 5E

96 _ Underscore 95 5F

97 Grave accent, right prime 96 60

98 a 97 61

99 b 98 62

100 c 99 63

101 d 100 64

102 e 101 65

103 f 102 66

104 g 103 67

105 h 104 68

106 i 105 69

107 j 106 6A

108 k 107 6B

109 l 108 6C

110 m 109 6D

EBCDIC and ASCII Collating Sequences

Appendix C. EBCDIC and ASCII Collating Sequences 651

Ordinal
Number

Symbol Meaning Decimal
Represen-
tation

Hex
Represen-
tation

111 n 110 6E

112 o 111 6F

113 p 112 70

114 q 113 71

115 r 114 72

116 s 115 73

117 t 116 74

118 u 117 75

119 v 118 76

120 w 119 77

121 x 120 78

122 y 121 79

123 z 122 7A

124 { Left brace 123 7B

125 ª Split vertical bar 124 7C

126 } Right brace 125 7D

127 Tilde 126 7E

EBCDIC and ASCII Collating Sequences

652 ILE COBOL Reference

Appendix D. ILE COBOL Function-Name and
Context-Sensitive Word List

The following sections list all of the context-sensitive words and function-names in
ILE COBOL.

Visual Key
The following key identifies the function-names and context-sensitive words in the
ILE COBOL language:

Blank An ILE COBOL function-name or context-sensitive word from Standard
COBOL.

(1) An ILE COBOL function-name or context-sensitive word that is an IBM
extension to Standard COBOL.

(2) A COBOL function-name from the 1985 (revised 1989) ANSI Standard that
is not used by the ILE COBOL compiler.

Function-Names

Function-Name Function-Name Function-Name
ACOS ADD-DURATION (1) ANNUITY (2)
ASIN ATAN CHAR
CONVERT-DATE-TIME (1) COS CURRENT-DATE
DATE-OF-INTEGER DATE-TO-YYYYMMDD (1) DAY-OF-INTEGER
DAY-TO-YYYYDDD (1) DISPLAY-OF EXTRACT-DATE-TIME (1)
FACTOR-1 FIND-DURATION (1) INTEGER (2)
INTEGER-OF-DATE INTEGER-OF-DAY INTEGER-PART (2)
LENGTH LOCALE-DATE (1) LOCALE-TIME (1)
LOG LOG10 LOWER-CASE
MAX MEAN MEDIAN
MIDRANGE MIN MOD (2)
NATIONAL-OF NUMVAL NUMVAL-C
ORD ORD-MAX ORD-MIN
PRESENT-VALUE RANDOM (2) RANGE
REM (2) REVERSE SIN
SQRT STANDARD-DEVIATION SUBTRACT-DURATION (1)
SUM TAN TEST-DATE-TIME
TRIM (1) TRIML (1) TRIMR (1)
UPPER-CASE UTF8STRING (1) VARIANCE
WHEN-COMPILED YEAR-TO-YYYY (1)

Context-Sensitive Words

IBM Extension

Context-Sensitive Word Context

APPEND XML GENERATE FILE-STREAM APPEND data-1 FROM data-2

© Copyright IBM Corp. 1993, 2010 653

Context-Sensitive Word Context

DAYS MOVE FUNCTION ADD-DURATION(date-1 DAYS 90)

(Also can be used in SUBTRACT-DURATION,
FIND-DURATION, and EXTRACT-DATE-TIME.)

DEFAULT SET LOCALE LC_ALL FROM DEFAULT

HOURS MOVE FUNCTION ADD-DURATION(time-1 HOURS 90)

(Also can be used in SUBTRACT-DURATION,
FIND-DURATION, and EXTRACT-DATE-TIME.)

LC_ALL SET LOCALE LC_ALL FROM DEFAULT

LC_COLLATE SET LOCALE LC_COLLATE FROM DEFAULT

LC_CURRENCY SET LOCALE LC_CURRENCY FROM DEFAULT

LC_MESSAGES SET LOCALE LC_MESSAGES FROM DEFAULT

LC_MONETARY SET LOCALE LC_MONETARY FROM DEFAULT

LC_NUMERIC SET LOCALE LC_NUMERIC FROM DEFAULT

LC_TIME SET LOCALE LC_TIME FROM DEFAULT

LC_TYPE SET LOCALE LC_TYPE FROM DEFAULT

MICROSECONDS MOVE FUNCTION ADD-DURATION(time-1 MICROSECONDS 30)

(Also can be used in SUBTRACT-DURATION,
FIND-DURATION, and EXTRACT-DATE-TIME.)

MINUTES MOVE FUNCTION ADD-DURATION(time-1 MINUTES 35)

(Also can be used in SUBTRACT-DURATION,
FIND-DURATION, and EXTRACT-DATE-TIME.)

MONTHS MOVE FUNCTION ADD-DURATION(date-1 MONTHS 12)

(Also can be used in SUBTRACT-DURATION,
FIND-DURATION, and EXTRACT-DATE-TIME.)

OVERWRITE XML GENERATE FILE-STREAM OVERWRITE data-1 FROM data-2

SECONDS MOVE FUNCTION ADD-DURATION(time-1 SECONDS 30)

(Also can be used in SUBTRACT-DURATION,
FIND-DURATION, and EXTRACT-DATE-TIME.)

SYMBOL CURRENCY IS "EUR" PICTURE SYMBOL "$"

TIMESTAMP 05 date-1 FORMAT TIMESTAMP

(Also found in SPECIAL-NAMES paragraph, intrinsic
functions TEST-DATE-TIME and CONVERT-DATE-TIME.)

YEARS MOVE FUNCTION ADD-DURATION(date-1 YEARS 2)

(Also can be used in SUBTRACT-DURATION,
FIND-DURATION, and EXTRACT-DATE-TIME.)

YYYYDDD ACCEPT id-1 FROM DATE YYYYDDD

YYYYMMDD ACCEPT id-1 FROM DATE YYYYMMDD

F-Name and Context-Sensitive Word List

654 ILE COBOL Reference

End of IBM Extension

F-Name and Context-Sensitive Word List

Appendix D. F-Name and Context-Sensitive Word List 655

F-Name and Context-Sensitive Word List

656 ILE COBOL Reference

Appendix E. ILE COBOL Reserved Word List

The following sections list all of the reserved words in ILE COBOL.

Visual Key
The following key identifies the reserved words in the ILE COBOL language:

Blank An ILE COBOL reserved word from Standard COBOL.

(1) An ILE COBOL reserved word that is an IBM extension to the Standard
COBOL.

(2) A COBOL reserved word from Standard COBOL that is not used by the
ILE COBOL compiler. These words should not be used if compatibility is
important to an installation. If used, a diagnostic message will be issued.

(3) A COBOL reserved word that is not in Standard COBOL and is not
supported by the ILE COBOL compiler. If used, a diagnostic message will
be issued.

Reserved Words

Reserved Word Reserved Word
ACCEPT ACCESS
ACQUIRE (1) ADD
ADDRESS (1) ADVANCING
AFTER ALIAS (1)
ALL ALPHABET
ALPHABETIC ALPHABETIC-LOWER
ALPHABETIC-UPPER ALPHANUMERIC
ALPHANUMERIC-EDITED ALSO
ALTER ALTERNATE
AND ANY (2)
ARE AREA
AREAS ARITHMETIC (3)
ASCENDING ASSIGN
AT ATTRIBUTE (1)
AUTHOR AUTO (1)
AUTO-SKIP (1) AUTOMATIC (3)
BACKGROUND-COLOR (1) BACKGROUND-COLOUR (1)
B-AND (3) BEEP (1)
BEFORE BELL (1)
B-EXOR (3) BINARY
BIT (3) BITS (3)
BLANK B-LESS (3)
BLINK (1) BLOCK
B-NOT (3) BOOLEAN (3)
B-OR (3) BOTTOM
BY CALL
CANCEL CD (2)
CF (2) CH (2)
CHARACTER CHARACTERS
CLASS CLOCK-UNITS

© Copyright IBM Corp. 1993, 2010 657

Reserved Word Reserved Word
CLOSE COBOL (2)
CODE CODE-SET
COL (1) COLLATING
COLUMN COMMA
COMMIT (1) COMMITMENT (1)
COMMON COMMUNICATION (2)
COMP COMP-0 (3)
COMP-1 (1) COMP-2 (1)
COMP-3 (1) COMP-4 (1)
COMP-5 (1) COMP-6 (3)
COMP-7 (3) COMP-8 (3)
COMP-9 (3) COMPUTATIONAL
COMPUTATIONAL-0 (3) COMPUTATIONAL-1 (1)
COMPUTATIONAL-2 (1) COMPUTATIONAL-3 (1)
COMPUTATIONAL-4 (1) COMPUTATIONAL-5 (1)
COMPUTATIONAL-6 (3) COMPUTATIONAL-7 (3)
COMPUTATIONAL-8 (3) COMPUTATIONAL-9 (3)
COMPUTE CONFIGURATION
CONNECT (3) CONSOLE (1)
CONTAINED (3) CONTAINS
CONTENT CONTINUE
CONTROL CONTROL-AREA (1)
CONTROLS CONVERTING
COPY CORR
CORRESPONDING COUNT
CRT (1) CRT-UNDER (1)
CURRENCY CURRENT (3)
CURSOR (1) DATA
DATE DATE-COMPILED
DATE-WRITTEN DAY
DAY-OF-WEEK DB (3)
DB-ACCESS-CONTROL-KEY (3) DB-DATA-NAME (3)
DB-EXCEPTION (3) DB-FORMAT-NAME (1)
DB-RECORD-NAME (3) DB-SET-NAME (3)
DB-STATUS (3) DBCS (1)
DBCS-EDITED (1) DE (2)
DEBUG-CONTENTS DEBUG-ITEM
DEBUG-LINE DEBUG-NAME
DEBUG-SUB-1 DEBUG-SUB-2
DEBUG-SUB-3 DEBUGGING
DECIMAL-POINT DECLARATIVES
DEFAULT (3) DELETE
DELIMITED DELIMITER
DEPENDING DESCENDING
DESCRIBED (1) DESTINATION (2)
DETAIL (2) DISABLE (2)
DISCONNECT (3) DISPLAY
DISPLAY-1 (1) DISPLAY-2 (3)
DISPLAY-3 (3) DISPLAY-4 (3)
DISPLAY-5 (3) DISPLAY-6 (3)
DISPLAY-7 (3) DISPLAY-8 (3)
DISPLAY-9 (3) DIVIDE
DIVISION DOWN
DROP (1) DUPLICATE (3)

ILE COBOL Reserved Word List

658 ILE COBOL Reference

|

|

Reserved Word Reserved Word
DUPLICATES DYNAMIC
EBCDIC (1) EGI (2)
EJECT (1) ELSE
EMI (2) EMPTY (3)
EMPTY-CHECK (1) ENABLE (2)
END END-ACCEPT (1)
END-ADD END-CALL
END-COMPUTE END-DELETE
END-DISPLAY (1) END-DIVIDE
END-EVALUATE END-IF
END-INVOKE (1) END-MULTIPLY
END-OF-PAGE END-PERFORM
END-READ END-RECEIVE (2)
END-RETURN END-REWRITE
END-SEARCH END-START
END-STRING END-SUBTRACT
END-UNSTRING END-WRITE
END-XML (1) ENTER
ENTRY (1) ENVIRONMENT
EOP EQUAL
EQUALS (3) ERASE (3)
ERROR ESI (2)
EVALUATE EVERY
EXCEEDS (3) EXCEPTION
EXCLUSIVE (3) EXIT
EXTEND EXTERNAL
EXTERNALLY-DESCRIBED-KEY (1) FALSE
FD FETCH (3)
FILE FILE-CONTROL
FILE-STREAM (1) FILES (3)
FILLER FINAL (2)
FIND (3) FINISH (3)
FIRST FOOTING
FOR FOREGROUND-COLOR (1)
FOREGROUND-COLOUR (1) FORMAT (1)
FREE (3) FROM
FULL (1) FUNCTION
GENERATE GET (3)
GIVING GLOBAL
GO GOBACK (1)
GREATER GROUP (2)
HEADING (2) HIGHLIGHT (1)
HIGH-VALUE HIGH-VALUES
I-O I-O-CONTROL
ID (1) IDENTIFICATION
IF IN
INDEX INDEXED
INDEX-1 (3) INDEX-2 (3)
INDEX-3 (3) INDEX-4 (3)
INDEX-5 (3) INDEX-6 (3)
INDEX-7 (3) INDEX-8 (3)
INDEX-9 (3) INDIC (1)
INDICATE INDICATOR (1)
INDICATORS (1) INITIAL

ILE COBOL Reserved Word List

Appendix E. ILE COBOL Reserved Word List 659

Reserved Word Reserved Word
INITIALIZE INITIATE
INPUT INPUT-OUTPUT
INSPECT INSTALLATION
INTO INVALID
INVOKE (1) IS
JUST JUSTIFIED
KANJI (1) KEEP (3)
KEY LABEL
LAST LD (3)
LEADING LEFT
LEFT-JUSTIFY (1) LENGTH
LENGTH-CHECK (1) LESS
LIBRARY (1) LIKE (1)
LIMIT (2) LIMITS (2)
LINAGE LINAGE-COUNTER
LINE LINE-COUNTER (2)
LINES LINKAGE
LOCALE (1) LOCALLY (3)
LOCAL-STORAGE (1) LOCK
LOW-VALUE LOW-VALUES
MEMBER (3) MEMORY
MERGE METACLASS (1)
MODE MODIFIED (1)
MODIFY (3) MODULES
MOVE MULTIPLE
MULTIPLY MESSAGE (2)
NATIONAL NATIVE
NEGATIVE NEXT
NO NO-ECHO (1)
NONE (3) NOT
NULL-KEY-MAP (1) NULL-MAP (1)
NULL (1) NULLS (1)
NUMBER NUMERIC
NUMERIC-EDITED OBJECT (1)
OBJECT-COMPUTER OCCURS
OF OFF
OMITTED ON
ONLY (3) OPEN
OPTIONAL OR
ORDER ORGANIZATION
OTHER OUTPUT
OVERFLOW OWNER (3)
PACKED-DECIMAL PADDING
PAGE PAGE-COUNTER (2)
PARSE (1) PERFORM
PF (2) PH (2)
PICTURE PLUS (2)
PIC POINTER
POSITION POSITIVE
PREFIX (1) PRESENT (3)
PRINTING PRIOR (1)
PROCEDURE PROCEDURE-POINTER (1)
PROCEDURES PROCEED
PROCESS (1) PROCESSING (1)

ILE COBOL Reserved Word List

660 ILE COBOL Reference

Reserved Word Reserved Word
PROGRAM-ID PROMPT (1)
PROGRAM PROTECTED (3)
PURGE (2) QUEUE (2)
QUOTE QUOTES
RANDOM RD (2)
READ READY (3)
REALM (3) RECEIVE (2)
RECURSIVE (1) RECONNECT (3)
RECORD RECORD-NAME (3)
RECORDS REDEFINES
REEL REFERENCE
REFERENCE-MONITOR (3) REFERENCES
RELATION (3) RELATIVE
RELEASE REMAINDER
REMOVAL RENAMES
REPEATED (3) REPLACE
REPLACING REPORT (2)
REPORTING (2) REPORTS (2)
REPOSITORY (1) REQUIRED (1)
RERUN RESERVE
RESET RETAINING (3)
RETRIEVAL (3) RETURN
RETURNING (1) RETURN-CODE (1)
REVERSED REVERSE-VIDEO (1)
REWIND REWRITE
RF (2) RH (2)
RIGHT RIGHT-JUSTIFY (1)
ROLLBACK (1) ROLLING (1)
ROUNDED RUN
SAME SCREEN (1)
SD SEARCH
SECTION SECURE (1)
SECURITY SEGMENT (2)
SEGMENT-LIMIT SELECT
SEND (2) SENTENCE
SEPARATE SEQUENCE
SEQUENTIAL SET
SHARED (3) SIGN
SIZE SKIP1 (1)
SKIP2 (1) SKIP3 (1)
SORT SORT-MERGE
SORT-RETURN (1) SOURCE (2)
SOURCE-COMPUTER SPACE
SPACE-FILL (1) SPACES
SPECIAL-NAMES STANDARD
STANDARD-1 STANDARD-2
START STARTING (1)
STATUS STOP
STORE (3) STRING
SUB-QUEUE-1 (2) SUB-QUEUE-2 (2)
SUB-QUEUE-3 (2) SUB-SCHEMA (3)
SUBFILE (1) SUBSTITUTE (1)
SUBTRACT SUM (2)
SUPPRESS SYMBOLIC

ILE COBOL Reserved Word List

Appendix E. ILE COBOL Reserved Word List 661

Reserved Word Reserved Word
SYNC SYNCHRONIZED
SYSIN (1) SYSOUT (1)
TABLE (2) TALLYING
TAPE TENANT (3)
TERMINAL TERMINATE (2)
TEST TEXT (2)
THAN THEN
THROUGH THRU
TIME TIMES
TITLE (1) TO
TOP TRAILING
TRAILING-SIGN (1) TRANSACTION (1)
TRUE TYPE
TYPEDEF (1) UNDERLINE (1)
UNEQUAL (3) UNIT
UNSTRING UNTIL
UP UPDATE (1)
UPON USAGE
USAGE-MODE (3) USE
USING VALID (3)
VALIDATE (3) VALUE
VALUES VARYING
VLR (1) WAIT (3)
WHEN WHEN-COMPILED (1)
WITH WITHIN (3)
WORDS WORKING-STORAGE
WRITE XML (1)
XML-CODE (1) XML-EVENT (1)
XML-NTEXT (1) XML-TEXT (1)
ZERO
ZEROES ZERO-FILL (1)
ZEROS <
<= +
* **
- /
> >=
=

ILE COBOL Reserved Word List

662 ILE COBOL Reference

Appendix F. File Structure Support Summary and Status Key
Values

File Structure Support Tables
Table 49 lists the required and optional entries for various types of file structures
supported. Any file with a device type of disk can be assigned to a database or
non-database auxiliary storage file. The codes used are as follows:

. Not applicable

B Optional for a work station that supports subfiles

C Optional entry, treated as comments only

D Optional for file assigned to DATABASE-, not allowed if not assigned to a
database file

I Optional for a file opened for input or input-output

J Optional for a file opened for input-output

O Optional

R Required

S Required for a work station that supports subfiles

X Required; syntax checked, but treated as documentation

Table 50 on page 667 and Table 51 on page 668 contain status key values and their
meanings.

Table 49. File Structure Support

Device Type P
ri

n
te

r

Ta
p

e

D
is

k
S

eq

D
is

k
R

el
S

eq

D
is

k
R

el
R

an
d

om

D
is

k
R

el
D

yn
am

ic

D
is

k
ID

X
S

eq

D
is

k
ID

X
R

an
d

om

D
is

k
ID

X
D

yn
am

ic

W
or

k
st

at
io

n

D
is

k
et

te

Fo
rm

at
Fi

le
Environment Division

RERUN...RECORDS C C C C C C C C C C C C

SAME O O O O O O O O O O O O

AREA C C C C C C C C C C C C

RECORD AREA O O O O O O O O O O O O

SORT AREA . C C

SORT MERGE AREA . C C

MULTIPLE FILE TAPE . C

COMMITMENT CONTROL . . D D D D D D D . . .

SELECT R R R R R R R R R R R R

ASSIGN R R R R R R R R R R R R

OPTIONAL . . I I I I

© Copyright IBM Corp. 1993, 2010 663

Table 49. File Structure Support (continued)

Device Type P
ri

n
te

r

Ta
p

e

D
is

k
S

eq

D
is

k
R

el
S

eq

D
is

k
R

el
R

an
d

om

D
is

k
R

el
D

yn
am

ic

D
is

k
ID

X
S

eq

D
is

k
ID

X
R

an
d

om

D
is

k
ID

X
D

yn
am

ic

W
or

k
st

at
io

n

D
is

k
et

te

Fo
rm

at
Fi

le

ORGANIZATION O O O R R R R R R R O O

SEQUENTIAL O O O O O

RELATIVE . . . R R R

INDEXED R R R . . .

TRANSACTION R . .

ACCESS O O O O R R O R R O O O

SEQUENTIAL O O O O . . O . . O O O

RANDOM R . . R

DYNAMIC R . . R S . .

RESERVE C C C C C C C C C . C C

RELATIVE KEY . . . O R R . . . S . .

RECORD KEY R R R . . .

DUPLICATES D D D . . .

FILE STATUS O O O O O O O O O O O O

CONTROL-AREA O . .

Data Division

LABEL RECORDS X R X X X X X X X X X X

STANDARD . O R R R R R R R O R R

OMITTED R O O . .

VALUE OF C C C C C C C C C C C C

BLOCK CONTAINS O O O O O O O O O O O O

RECORD CONTAINS O O O O O O O O O O O O

DATA RECORDS O O O O O O O O O O O O

CODE-SET . O O .

LINAGE O

Procedure Division

OPEN R R R R R R R R R R R R

INPUT . O O O O O O O O . O .

OUTPUT R O O O O O O O O . O O

I-O . . O O O O O O O R . .

NO REWIND . I

REVERSED . I

EXTEND . O O O

CLOSE R R R R R R R R R R R R

REEL/UNIT . O

File Structure Support Summary

664 ILE COBOL Reference

Table 49. File Structure Support (continued)

Device Type P
ri

n
te

r

Ta
p

e

D
is

k
S

eq

D
is

k
R

el
S

eq

D
is

k
R

el
R

an
d

om

D
is

k
R

el
D

yn
am

ic

D
is

k
ID

X
S

eq

D
is

k
ID

X
R

an
d

om

D
is

k
ID

X
D

yn
am

ic

W
or

k
st

at
io

n

D
is

k
et

te

Fo
rm

at
Fi

le

REMOVAL . O

NO REWIND . O

NO REWIND . O

WITH LOCK O O O O O O O O O O O O

READ . I I I I I I I I I I .

NEXT I . . I . . .

FIRST D . . .

LAST D . . .

PRIOR D . . .

INTO . I I I I I I I I I I .

WITH NO LOCK . . J J J J J J J . . .

KEY IS I I . . .

AT END . I I I . I I . I I I .

NOT AT END . I I I . I I . I I I .

INVALID KEY I I . I I B . .

NOT INVALID KEY I I . I I B . .

FORMAT . . D . . . D D D J . R

NULL-KEY-MAP D D D . . .

NULL-MAP . . D D D D D D D . . .

NEXT MODIFIED B . .

SUBFILE B . .

INDICATORS J . .

TERMINAL O . .

NO DATA O . .

WRITE O O O O O O O O O O O O

FROM O O O O O O O O O O O O

INVALID KEY . . . O O O O O O B . .

NOT INVALID KEY . . . O O O O O O B . .

ADVANCING O

AT END-OF-PAGE O

NOT AT END-OF-PAGE O

FORMAT . . D . . . D D D R . R

NULL-KEY-MAP D D D . . .

NULL-MAP . . D D D D D D D . . .

STARTING O . .

File Structure Support Summary

Appendix F. File Structure Support Summary and Status Key Values 665

Table 49. File Structure Support (continued)

Device Type P
ri

n
te

r

Ta
p

e

D
is

k
S

eq

D
is

k
R

el
S

eq

D
is

k
R

el
R

an
d

om

D
is

k
R

el
D

yn
am

ic

D
is

k
ID

X
S

eq

D
is

k
ID

X
R

an
d

om

D
is

k
ID

X
D

yn
am

ic

W
or

k
st

at
io

n

D
is

k
et

te

Fo
rm

at
Fi

le

ROLLING O . .

INDICATORS O . .

SUBFILE B . .

TERMINAL O . .

START . . . O . O O . O . . .

KEY . . . O . O O . O . . .

INVALID KEY . . . O . O O . O . . .

NOT INVALID KEY . . . O . O O . O . . .

FORMAT D D D . . .

NULL-KEY-MAP D D D . . .

REWRITE . . O O O O O O O B . .

FROM . . O O O O O O O B . .

INVALID KEY O O . O O B . .

NOT INVALID KEY O O . O O B . .

FORMAT D D B . .

NULL-KEY-MAP D D D . . .

NULL-MAP . . D D D D D D D . . .

INDICATORS B . .

SUBFILE S . .

TERMINAL O . .

DELETE . . . O O O O O O . . .

NULL-KEY-MAP D D D . . .

INVALID KEY O O . O O . . .

NOT INVALID KEY O O . O O . . .

FORMAT D D . . .

USE O O O O O O O O O O O O

EXCEPTION/ERROR O O O O O O O O O O O O

FOR DEBUGGING O O O O O O O O O O O O

COMMIT . . D D D D D D D . . .

ROLLBACK . . D D D D D D D . . .

ACQUIRE O . .

DROP O . .

Return codes are set by the system after transaction I-O, which involves ICF files
or DISPLAY files.

File Structure Support Summary

666 ILE COBOL Reference

For more information about return codes, see the IBM Rational Development Studio
for i: ILE COBOL Programmer's Guide.

Table 50. File Status Keys and Corresponding Return Codes

File Status
Key

Major
Return
Code

Minor Return Code Explanation

00 00
03
08

09

xx
xx except 09)
00

00

Normal completion (operation was successful).
No data received.
Acquire operation attempted to acquire an already
active session or device.
File has been dynamically created for OPEN OUTPUT.
(See the OPTION(*CRTF) parameter description
on the CRTCBLMOD command in the
ILE COBOL Programmer's Guide

for further information about dynamic file creation.)

0A 02
03

xx
09

Job being cancelled (controlled).

10 11 00 Read-from-invited-program-device rejected; no invites
outstanding.

30 80 xx Permanent system error. The session has been ended.

92 81 xx Permanent device or session error.

9C 82 xx Open or acquire failed; session was not started.

9G 34 xx Output exception to device or session.

9I 04 xx Output exception to device or session.

9K 83 E0 Format not found.

9N 83 xx (except E0) Session error. Session is still active.

File Structure Support Summary

Appendix F. File Structure Support Summary and Status Key Values 667

File Status Key Values and Meanings
For information about error handling, refer to the “Error and Exception Handling”
section in the IBM Rational Development Studio for i: ILE COBOL Programmer's Guide.

Table 51. File Status Key Values

High
Order
Digit

Meaning Low
Order
Digit

Meaning

0 Successful
Completion

0 Nofurther information

2 The READ statement was successfully executed, but a
duplicate key was detected. That is, the key value for
the current key of reference was equal to the value of
the key in the next record. For information about
enabling file status 02 see the accompanying notes
under the READ statement.

4 An attempt was made to read a record that is larger
than the largest, or smaller than the smallest record
allowed by the RECORD IS VARYING clause of the
associated file-name.

5 An OPEN statement is successfully executed, but the
referenced optional file is not present at the time the
OPEN statement is executed. If the open mode is I-O or
EXTEND, the file has been created. CPF4101, CPF4102,
CPF4103, CPF4207, CPF9812.

7 For a CLOSE statement with the NO REWIND,
REEL/UNIT, or FOR REMOVAL phrase or for an OPEN
statement with the NO REWIND phrase, the referenced
file was on a non-reel/unit medium.

A Job ended in a controlled manner by CL command
ENDJOB, PWRDWNSYS, ENDSYS, or ENDSBS
CPF4741. Escape message sent during an accept input
operation, READ from invited program device (multiple
device listings only).

M Last record written to a subfile. CPF5003

P The file has been opened successfully, but it contains
null-capable fields and the ASSIGN clause does not
specify ALWNULL and device-type DATABASE.

Q A CLOSE statement for a sequentially-processed relative
file was successfully executed. The file was created with
the *INZDLT and *NOMAX options, so its boundary
has been set to the number of records written.

File Status Key Values

668 ILE COBOL Reference

Table 51. File Status Key Values (continued)

High
Order
Digit

Meaning Low
Order
Digit

Meaning

1 At end
conditions

0 A sequential READ statement was attempted and no
next logical record existed in the file because the end of
the file had been reached (no invites outstanding)
CPF4740, CPF5001, CPF5025.

2
IBM Extension

No modified subfile record found. CPF5037

End of IBM Extension

4 A sequential READ statement was attempted for a
relative file and the number of significant digits in the
relative record number was larger than the size of the
relative key data item described for the file.

2 Invalid key 1 A sequence error exists for a sequentially accessed
indexed file. The prime record key value has been
changed by the program between the successful
execution of a READ statement and the execution of the
next REWRITE statement for that file, or the ascending
requirements for successive record key values were
violated.

Alternatively, the program has changed the record key
value between a successful READ and subsequent
REWRITE or DELETE operation on a randomly or
dynamically-accessed file with duplicate keys.

2 An attempt was made to write a record that would
create a duplicate key in a relative file; or an attempt
was made to write or rewrite a record that would create
a duplicate prime record key in an indexed file.
CPF4759, CPF5008, CPF5026, CPF5034, CPF5084,
CPF5085.

3 An attempt was made to randomly access a record that
does not exist in the file. CPF5001, CPF5006, CPF5013,
CPF5020, CPF5025.

4 An attempt was made to write beyond the externally
defined boundaries of a relative or indexed file. Or, a
sequential WRITE statement was attempted for a
relative file and the number of significant digits in the
relative record number was larger than the size of the
relative record key data item described for the file.
CPF5006, CPF5018, CPF5021, CPF5043, CPF5272.

File Status Key Values

Appendix F. File Structure Support Summary and Status Key Values 669

Table 51. File Status Key Values (continued)

High
Order
Digit

Meaning Low
Order
Digit

Meaning

3 Permanent
error
condition

0 No further information CPF4192, CPF5101, CPF5102,
CPF5129, CPF5030, CPF5143.

4 A permanent error exists because of a boundary
violation; an attempt was made to write beyond the
externally-defined boundaries of a sequential file.
CPF5116, CPF5018, CPF5272 if organization is
sequential.

5 An OPEN statement with the INPUT, I-O, or EXTEND
phrase was attempted on a non-optional file that was
not present. CPF4101, CPF4102, CPF4103, CPF4207,
CPF9812.

7 An OPEN statement was attempted on a file that would
not support the open mode specified in the OPEN
statement. Possible violations are:

v The EXTEND or OUTPUT phrase was specified but
the file would not support write operations.

v The I-O phrase was specified but the file would not
support the input and output operations permitted.

v The INPUT phrase was specified but the file would
not support read operations.

CPF4194.

8 An OPEN statement was attempted on a file previously
closed with lock.

9 The OPEN statement was unsuccessful because a
conflict was detected between the fixed file attributes
and the attributes specified for that file in the program.
The possible causes are:

v The minimum record length specified by the program
is less than the minimum record length required for
the file. Level check error. CPF4131.

v The file specifies the ALTERNATE RECORD KEY
clause and one of the following errors was detected:

1. The field(s) in the database file that is to be used
as an alternate record key is invalid.

2. The database file is a Distributed Data
Management (DDM) file.

3. The database file allows it open data path to be
shared.

4. The DUPLICATES clause specified for each key in
the program does not match the duplicates
attribute of the database file. This includes the
primary key.

File Status Key Values

670 ILE COBOL Reference

Table 51. File Status Key Values (continued)

High
Order
Digit

Meaning Low
Order
Digit

Meaning

4 Logic error
condition

1 An OPEN statement was attempted for a file in the
open mode.

2 A CLOSE statement was attempted for a file that was
already closed.

3 For a sequential file in the sequential access mode, the
last input-output statement executed for the associated
file prior to the execution of a REWRITE statement was
not a successfully executed READ statement. For
relative and indexed files in the sequential access mode,
the last input-output statement executed for the file
prior to the execution of a DELETE or REWRITE
statement was not a successfully executed READ
statement.

4 A boundary violation exists because an attempt was
made to rewrite a record to a file and the record was
not the same size as the record being replaced. An
attempt was made to write or rewrite a record that is
larger than the largest, or smaller than the smallest
record allowed by the RECORD IS VARYING clause of
the associated file-name.

6 A sequential READ, READ NEXT or READ PRIOR
statement was attempted on a file open in the input or
I-O mode and no valid next record had been established
because the preceding START statement was
unsuccessful, or the preceding READ statement was
unsuccessful or caused an at end condition. CPF5001,
CPF5025, CPF5183.

7 The execution of a READ or START statement was
attempted on a file not open in the input or I-O mode.

8 The execution of a WRITE statement was attempted on
a sequential file not open in the output, or extend mode.
The execution of a WRITE statement was attempted on
an indexed or relative file not open in the I-O, output,
or extend mode.

9 The execution of a DELETE or REWRITE statement was
attempted on a file not open in the I-O mode.

File Status Key Values

Appendix F. File Structure Support Summary and Status Key Values 671

Table 51. File Status Key Values (continued)

High
Order
Digit

Meaning Low
Order
Digit

Meaning

9 Other errors 0 Other errors:
v File not found
v Member not found
v The file specifies the ALTERNATE RECORD KEY

clause and one of the following errors was detected:

1. A conflict was detected between an alternate
record key open identifier and an existing one.

2. A permanent index cannot be found and the
CRTARKIDX option was not specified.

3. The maximum number (156) of contiguous DDS
fields used to form an alternate record key was
exceeded.

v Unexpected I-O exceptions

CPF4101, CPF4102, CPF4103 if a USE is applicable for
the file (on OPEN OUTPUT, non-optional file). The
following exceptions are monitored generically:
v CPF4101 through CPF4399
v CPF4501 through CPF4699
v CPF4701 through CPF4899
v CPF5001 through CPF5099
v CPF5101 through CPF5399
v CPF5501 through CPF5699

These exceptions are caught, and FILE STATUS is set to
90.

1 Undefined or unauthorized access type CPF2207,
CPF4104, CPF4236, CPF4238, CPF5057, CPF5109,
CPF5134, CPF5279.

2 Logic error:
v File locked
v File already open
v I-O to closed file
v READ after end of file
v CLOSE on unopened file

CPF4106, CPF4132, CPF4740, CPF5067, CPF5070,
CPF5119, CPF5145, CPF5146, CPF5149, CPF5176,
CPF5209.

4 No file position indicator REWRITE/DELETE when not
sequential access, and last operation was not a
successful READ.

File Status Key Values

672 ILE COBOL Reference

Table 51. File Status Key Values (continued)

High
Order
Digit

Meaning Low
Order
Digit

Meaning

9 Other errors 5 Invalid or incomplete file information (1) Duplicate keys
specified in COBOL program. The file has been
successfully opened, but indexed database file created
with unique key; or (2) Duplicate keys not specified in
COBOL program, and indexed database file created
allowing duplicate keys.

9 Undefined (display or ICF).

C Acquire failed; session was not started.

D Record is locked CPF5027, CPF5032.

G Output exception to device or session.

H ACQUIRE operation failed. Resource owned by another
program, or unavailable. (9H is the result when an
ACQUIRE operation causes any of the operating system
exceptions monitored for 90, or 9N to occur.)

I WRITE operation failed CPF4702, CPF4737, CPF5052,
CPF5076.

K Invalid format-name; format not found. CPF5022,
CPF5023, CPF5053, CPF5054, CPF5121, CPF5152,
CPF5153, CPF5186, CPF5187.

File Status Key Values

Appendix F. File Structure Support Summary and Status Key Values 673

Table 51. File Status Key Values (continued)

High
Order
Digit

Meaning Low
Order
Digit

Meaning

9 Other errors N Temporary (potentially recoverable) hardware I-O error.
(Error during communication session.) CPF4145,
CPF4146, CPF4193, CPF4229, CPF4291, CPF4299,
CPF4354, CPF4526, CPF4542, CPF4577, CPF4592,
CPF4602, CPF4603, CPF4611, CPF4612, CPF4616,
CPF4617, CPF4622, CPF4623, CPF4624, CPF4625,
CPF4628, CPF4629, CPF4630, CPF4631, CPF4632,
CPF4705, CPF5013, CPF5107, CPF5128, CPF5166,
CPF5198, CPF5280, CPF5282, CPF5287, CPF5293,
CPF5352, CPF5353, CPF5517, CPF5524, CPF5529,
CPF5530, CPF5532, CPF5533.

P OPEN failed because file cannot be placed under
commitment control CPF4293, CPF4326, CPF4327,
CPF4328, CPF4329.

Q An OPEN statement for a randomly- or
dynamically-accessed relative file failed because its size
was *NOMAX. Change the file size (for example, using
CHGPF) to the size you expect, and submit the program
again.

R Referential integrity error. CPF502D, CPF502E,
CPF503A.

S REWRITE or DELETE failed because last READ
operation specified NO LOCK.

T Trigger program exception. CPF502B

U Cannot complete READ PRIOR because records are left
in block from READ NEXT, or vice versa. CPF5184.

Close the file, then open it again.

W Check constraint exception. CPF502F.

X OPEN failed because the file type is not supported in a
multithreaded job. Change the file type to DATABASE,
PRINTER (spool file only), or a DDM file of type *IP
and submit the program again. CPF4380.

Y OPEN failed because the auxiliary storage pool (ASP)
device where the file is located is not available.
CPF980B.

File Status Key Values

674 ILE COBOL Reference

Attribute Data Formats
The layouts and values of the attribute data are system dependent. The following
formats are for the ILE COBOL language.

For a complete list of device types and layouts, refer to the DB2 Universal Database
for AS/400 section of the Database and File Systems category in the System i5/OS
Information Center at this Web site - http://www.ibm.com/systems/i/infocenter/.
01 DISPLAY-ICF-ATTRIBUTES.

02 PROGRAM-DEVICE-NAME PIC X(10).
02 DEVICE-DESCRIPTION-NAME PIC X(10).
02 USER-ID PIC X(10).
02 DEVICE-CLASS PIC X.

* D - DISPLAY
* I - ICF
* U - UNKNOWN

02 DEVICE-TYPE PIC X(6).
* ’ ’ - UNKNOWN
* ’3179 ’ - 3179 DISPLAY
* ’317902’ - 3179 MOD 2 DISPLAY
* ’3180 ’ - 3180 DISPLAY
* ’3196A ’ - 3196 MOD A1/A2 DISPLAY
* ’3196B ’ - 3196 MOD B1/B2 DISPLAY
* ’3197C1’ - 3197 MOD C1 DISPLAY
* ’3197C2’ - 3197 MOD C2 DISPLAY
* ’3197D1’ - 3197 MOD D1 DISPLAY
* ’3197D2’ - 3197 MOD D2 DISPLAY
* ’3197W1’ - 3197 MOD W1 DISPLAY
* ’3197W2’ - 3197 MOD W2 DISPLAY
* ’3270 ’ - 3270 DISPLAY
* ’3476EA’ - 3476 MOD EA DISPLAY
* ’3476EC’ - 3476 MOD EC DISPLAY
* ’3477FG’ - 3477 MOD FG DISPLAY
* ’3477FA’ - 3477 MOD FA DISPLAY
* ’3477FC’ - 3477 MOD FC DISPLAY
* ’3477FD’ - 3477 MOD FD DISPLAY
* ’3477FW’ - 3477 MOD FW DISPLAY
* ’3477FE’ - 3477 MOD FE DISPLAY
* ’525111’ - 5251 DISPLAY
* ’5291 ’ - 5291 DISPLAY
* ’5292 ’ - 5292 DISPLAY
* ’529202’ - 5292 MOD 2 DISPLAY
* ’5555B1’ - 5555 MOD B01 DISPLAY
* ’5555C1’ - 5555 MOD C01 DISPLAY
* ’5555E1’ - 5555 MOD E01 DISPLAY
* ’5555F1’ - 5555 MOD F01 DISPLAY
* ’5555G1’ - 5555 MOD G01 DISPLAY
* ’5555G2’ - 5555 MOD G02 DISPLAY
* ’3486BA’ - 3486 MOD BA DISPLAY
* ’3487HA’ - 3487 MOD HA DISPLAY

* ’3487HG’ - 3487 MOD HG DISPLAY
* ’3487HW’ - 3487 MOD HW DISPLAY
* ’3487HC’ - 3487 MOD HC DISPLAY
* ’DHCF77’ - 3277 DHCF DISPLAY
* ’DHCF78’ - 3278 DHCF DISPLAY
* ’DHCF79’ - 3279 DHCF DISPLAY
* ’APPC ’ - ADVANCED-PROGRAM-TO-PROGRAM COMMUNICATIONS DEVICE
* ’ASYNC ’ - ASYNCHRONOUS COMMUNICATION DEVICE
* ’BSC ’ - BISYNCHRONOUS COMMUNICATION
* ’BSCEL ’ - BSCEL COMMUNICATION DEVICE
* ’FINANC’ - ICF FINANCE COMMUNICATION DEVICE
* ’INTRA ’ - INTRA SYSTEMS COMMUNICATION
* ’LU1 ’ - LU1 COMMUNICATION DEVICE
* ’RETAIL’ - RETAIL COMMUNICATION DEVICE
* ’SNUF ’ - SNA UPLINE FACILITY COMMUNICATION DEVICE

Attribute Data Formats

Appendix F. File Structure Support Summary and Status Key Values 675

* ’NVT ’ - NETWORK VIRTUAL TERMINAL (NVT)
02 REQUESTOR-DEVICE PIC X.

* N - NOT A REQUESTOR DEVICE
* Y - A REQUESTOR DEVICE

02 ACQUIRE-STATUS PIC X.
* N - DEVICE NOT ACQUIRED
* Y - DEVICE ACQUIRED

02 INVITE-STATUS PIC X.
* N - DEVICE NOT INVITED
* Y - DEVICE INVITED

02 DATA-AVAILABLE-STATUS PIC X.
* N - NO DATA IS AVAILABLE
* Y - INVITED DATA AVAILABLE

02 DISPLAY-DIMENSIONS.
03 NUMBER-OF-ROWS PIC S9(4) COMP-4.
03 NUMBER-OF-COLUMNS PIC S9(4) COMP-4.

02 DISPLAY-ALLOW-BLINK PIC X.
* N - NOT BLINK CAPABLE
* Y - BLINK CAPABLE

02 ONLINE-OFFLINE-STATUS PIC X.
* O - DISPLAY IS ONLINE
* F - DISPLAY IS OFFLINE

02 DISPLAY-LOCATION PIC X.
* L - LOCAL DISPLAY
* R - REMOTE DISPLAY

02 DISPLAY-TYPE PIC X.
* A - ALPHANUMERIC OR KATAKANA
* I - IDEOGRAPHIC
* G - GRAPHIC DBCS

02 KEYBOARD-TYPE PIC X.
* A - ALPHANUMERIC OR KATAKANA KEYBOARD
* I - IDEOGRAPHIC KEYBOARD

02 CONVERSATION-STATUS PIC X.
* N - CONVERSATION NOT INITIATED
* Y - CONVERSATION INITIATED
* (VALID FOR ALL COMMUNICATION TYPES).

02 SYNCHRONIZATION-LEVEL PIC X.
* 0 - SYNCHRONIZATION LEVEL 0 (SYNLVL(*NONE))
* 1 - SYNCHRONIZATION LEVEL 1 (SYNLVL(*CONFIRM))
* (APPC APPLICATIONS ONLY)
* 2 - SYNCHRONIZATION LEVEL 2 (SYNLVL(*COMMIT))

02 CONVERSATION-USED PIC X.
* M - MAPPED CONVERSATION
* B - BASIC CONVERSATION
* (APPC APPLICATIONS ONLY)

02 REMOTE-LOCATION-NAME PIC X(8).
* (ALL COMMUNICATION TYPES)

02 LOCAL-LU-NAME PIC X(8).
* (APPC APPLICATIONS ONLY)

02 LOCAL-NETWORK-ID PIC X(8).
* (APPC APPLICATIONS ONLY)

02 REMOTE-LU-NAME PIC X(8)
* (APPC APPLICATIONS ONLY)

02 REMOTE-NETWORK-ID PIC X(8).
* (APPC APPLICATIONS ONLY)

02 MODE PIC X(8).
* (APPC APPLICATIONS ONLY)

02 WORKSTATION-CONTROLLER PIC X.
* N - NOT ATTACHED
* 1 - ATTACHED TO CONTROLLER 1
* 2 - ATTACHED TO CONTROLLER 2
* 3 - ATTACHED TO CONTROLLER 3

02 DISPLAY-IS-COLOR PIC X.
* Y - YES
* N - NO

02 DISPLAY-ALLOWS-GRID-LINES PIC X.
* N - NO

Attribute Data Formats

676 ILE COBOL Reference

* 1 - YES
02 LU6-CONVERSATION-STATE PIC X.

* ’00’X - RESET
* ’01’X - SEND
* ’02’X - DEFER RECEIVED
* ’03’X - DEFER DEALLOCATE
* ’04’X - RECEIVE
* ’05’X - CONFIRM
* ’06’X - CONFIRM SEND
* ’07’X - CONFIRM DEALLOCATE
* ’08’X - COMMIT
* ’09’X - COMMIT SEND
* ’0A’X - COMMIT DEALLOCATE
* ’0B’X - DEALLOCATE
* ’0C’X - ROLLBACK REQUIRED

02 LU6-CONVERSATION-CORRELATE PIC X(8).
02 FILLER PIC X(31).

* RESERVED
02 CALLING-PARTY-ID.

03 REMOTE-NUMBER-LENGTH PIC S9(4) COMP-4.
03 REMOTE-NUMBERING-TYPE PIC X(2).

* 00 - UNKNOWN
* 01 - INTERNATIONAL
* 02 - NATIONAL
* 03 - NETWORK-SPECIFIC
* 04 - SUBSCRIBER
* 06 - ABBREVIATED
* 07 - RESERVED

03 REMOTE-NUMBERING-PLAN PIC X(2).
* 00 - UNKNOWN
* 01 - ISDN/TELEPHONY
* 03 - DATA
* 04 - TELEX
* 08 - NATIONAL STANDARD
* 09 - PRIVATE
* 15 - RESERVED

03 REMOTE-NUMBER PIC X(40).
03 FILLER PIC X(4).

* RESERVED
03 REMOTE-SUBADDR-LENGTH PIC S9(4) COMP-4.
03 REMOTE-SUBADDR-TYPE PIC X(2).

* 00 - NSAP
* 02 - USER SPECIFIED

03 REMOTE-SUBADDRESS PIC X(40).
03 FILLER PIC X.

* RESERVED
03 CALL-TYPE PIC X.

* 0 - CALL IN
* 1 - CALL OUT
* 2 - NON-ISDN

03 REMOTE-NETADDR-LENGTH PIC S9(4) COMP-4.
03 REMOTE-NETADDRESS PIC X(32).
03 FILLER PIC X(4).

* RESERVED
03 REMOTE-ADDREXT-LENGTH PIC S9(4) COMP-4.
03 REMOTE-ADDREXT-TYPE PIC X.

* 0 - ISO 8348/AD2
* 2 - NOT ISO 8348/AD2

03 REMOTE-ADDRESS-EXTENSION PIC X(40).
03 FILLER PIC X(4).

* RESERVED
03 X25-CALL-TYPE PIC X.

* 0 - INCOMING SVC
* 1 - OUTGOING SVC
* 2 - NOT X25 SVC

02 TRANSACTION-PROGRAM-NAME PIC X(64).
02 LU6-PROTECTED-LUWID.

Attribute Data Formats

Appendix F. File Structure Support Summary and Status Key Values 677

03 LENGTH-OF-PROT-LUWID-FIELDS PIC S9(4) COMP-4.
03 FILLER REDEFINES LENGTH-OF-PROT-LUWID-FIELDS.

05 LENGTH-OF-PROT-LUWID-FIELD PIC X.
05 LENGTH-OF-PROT-LU-NAME PIC X.

03 NETWORK-QUAL-PROT-LU-NAME PIC X(17).
03 PROTECTED-INST-SEQ-NUMBERS.

05 PROT-INSTANCE-NUMBER PIC X(6).
05 PROT-SEQUENCE-NUMBER PIC S9(4) COMP-4.

02 LU6-UNPROTECTED-LUWID.
03 LENGTH-OF-UNPROT-LUWID-FIELDS PIC S9(4) COMP-4.
03 FILLER REDEFINES LENGTH-OF-UNPROT-LUWID-FIELDS.

05 LENGTH-OF-UNPROT-LUWID-FIELD PIC X.
05 LENGTH-OF-UNPROT-LU-NAME PIC X.

03 NETWORK-QUAL-UNPROT-LU-NAME PIC X(17).
03 UNPROTECTED-INST-SEQ-NUMBERS.

05 UNPROT-INSTANCE-NUMBER PIC X(6).
05 UNPROT-SEQUENCE-NUMBER PIC S9(4) COMP-4.

Attribute Data Formats

678 ILE COBOL Reference

Appendix G. PROCESS Statement

The PROCESS statement is an optional part of the COBOL source program. It lets
you specify options that you would normally spencify at compilation time.

Options specified in the PROCESS statement override the corresponding options
specified in the CRTCBLMOD or CRTBNDCBL CL command.

The format of the PROCESS statement is as follows:

PROCESS Statement - Format

►► PROCESS ▼ option-1
.

►◄

Corresponding Create Command Options
The following tables indicate the allowable PROCESS statement options and the
equivalent CRTCBLMOD and CRTBNDCBL command parameters and options.
The defaults are underlined.

Descriptions of the PROCESS statement options correspond to the parameter and
option descriptions for the CRTCBLMOD and CRTBNDCBL parameters. See the
IBM Rational Development Studio for i: ILE COBOL Programmer's Guide for more
information.

PROCESS Statement Options CRTCBLMOD/CRTBNDCBL

OUTPUT Parameter Options

OUTPUT
NOOUTPUT

*PRINT
*NONE

PROCESS Statement Option CRTCBLMOD/CRTBNDCBL

GENLVL Parameter Option

GENLVL(nn) nn

PROCESS Statement Options CRTCBLMOD/CRTBNDCBL

OPTION Parameter Options

SOURCE
SRC
NOSOURCE
NOSRC

*SOURCE
*SRC
*NOSOURCE
*NOSRC

NOXREF
XREF

*NOXREF
*XREF

GEN
NOGEN

*GEN
*NOGEN

© Copyright IBM Corp. 1993, 2010 679

PROCESS Statement Options CRTCBLMOD/CRTBNDCBL

OPTION Parameter Options

NOSEQUENCE
SEQUENCE

*NOSEQUENCE
*SEQUENCE

NOVBSUM
VBSUM

*NOVBSUM
*VBSUM

NONUMBER
NUMBER
LINENUMBER

*NONUMBER
*NUMBER
*LINENUMBER

NOMAP
MAP

*NOMAP
*MAP

NOOPTIONS
OPTIONS

*NOOPTIONS
*OPTIONS

QUOTE
APOST

*QUOTE
*APOST

NOSECLVL
SECLVL

*NOSECLVL
*SECLVL

PRTCORR
NOPRTCORR

*PRTCORR
*NOPRTCORR

MONOPRC
NOMONOPRC

*MONOPRC
*NOMONOPRC

RANGE
NORANGE

*RANGE
*NORANGE

NOUNREF
UNREF

*NOUNREF
*UNREF

NOSYNC
SYNC

*NOSYNC
*SYNC

NOCRTF
CRTF

*NOCRTF
*CRTF

NODUPKEYCHK
DUPKEYCHK

*NODUPKEYCHK
*DUPKEYCHK

NOINZDLT
INZDLT

*NOINZDLT
*INZDLT

NOBLK
BLK

*NOBLK
*BLK

STDINZ
NOSTDINZ
STDINZHEX00

*STDINZ
*NOSTDINZ
*STDINZHEX00

NODDSFILLER
DDSFILLER

*NODDSFILLER
*DDSFILLER

Not applicable *NOIMBEDERR
*IMBEDERR

STDTRUNC
NOSTDTRUNC

*STDTRUNC
*NOSTDTRUNC

CHGPOSSGN
NOCHGPOSSGN

*CHGPOSSGN
*NOCHGPOSSGN

Not applicable *NOEVENTF
*EVENTF

680 ILE COBOL Reference

PROCESS Statement Options CRTCBLMOD/CRTBNDCBL

OPTION Parameter Options

MONOPIC
NOMONOPIC

*MONOPIC
*NOMONOPIC

NOCRTARKIDX
CRTARKIDX

*NOCRTARKIDX
*CRTARKIDX

PROCESS Statement Options CRTCBLMOD/CRTBNDCBL

CVTOPT Parameter Options

NOVARCHAR
VARCHAR

*NOVARCHAR
*VARCHAR

NODATETIME
DATETIME

*NODATETIME
*DATETIME

NOCVTPICXGRAPHIC
CVTPICXGRAPHIC
CVTPICGGRAPHIC
NOCVTPICGGRAPHIC

*NOPICXGRAPHIC
*PICXGRAPHIC
*PICGGRAPHIC
*NOPICGGRAPHIC

NOCVTPICNGRAPHIC
CVTPICNGRAPHIC

*NOPICNGRAPHIC
*PICNGRAPHIC

NOFLOAT
FLOAT

*NOFLOAT
*FLOAT

NODATE
DATE

*NODATE
*DATE

NOTIME
TIME

*NOTIME
*TIME

NOTIMESTAMP
TIMESTAMP

*NOTIMESTAMP
*TIMESTAMP

NOCVTTODATE
CVTTODATE

*NOCVTTODATE
*CVTTODATE

PROCESS Statement Options CRTCBLMOD/CRTBNDCBL

OPTIMIZE Parameter Options

NOOPTIMIZE
BASICOPT
FULLOPT
NEVEROPTIMIZE

*NONE
*BASIC
*FULL
*NEVER

PROCESS Statement Options CRTCBLMOD/CRTBNDCBL

FLAGSTD Parameter Options

NOFIPS
MINIMUM
INTERMEDIATE
HIGH

*NOFIPS
*MINIMUM
*INTERMEDIATE
*HIGH

NOOBSOLETE
OBSOLETE

*NOOBSOLETE
*OBSOLETE

Appendix G. PROCESS Statement 681

|
|
|
|

|
|
|
|

PROCESS Statement Options
EXTDSPOPT(a b c)

CRTCBLMOD/CRTBNDCBL

EXTDSPOPT Parameter Options

DFRWRT
NODFRWRT

*DFRWRT
*NODFRWRT

UNDSPCHR
NOUNDSPCHR

*UNDSPCHR
*NOUNDSPCHR

ACCUPDALL
ACCUPDNE

*ACCUPDALL
*ACCUPDNE

PROCESS Statement Option CRTCBLMOD/CRTBNDCBL

FLAG Parameter Option

FLAG(nn) nn

PROCESS Statement Options CRTCBLMOD/CRTBNDCBL

LINKLIT Parameter Options

LINKPGM
LINKPRC

*PGM
*PRC

PROCESS Statement Options SRTSEQ(a) CRTCBLMOD/CRTBNDCBL

SRTSEQ Parameter Options

HEX
JOB
JOBRUN
LANGIDUNQ
LANGIDSHR
"LIBL/sort-seq-table-name"
"CURLIB/sort-seq-table-name"
"library-name/sort-seq-table-name"
"sort-seq-table-name"

*HEX
*JOB
*JOBRUN
*LANGIDUNQ
*LANGIDSHR
*LIBL/sort-seq-table-name
*CURLIB/sort-seq-table-name
library-name/sort-seq-table-name
sort-seq-table-name

PROCESS Statement Options LANGID(a) CRTCBLMOD/CRTBNDCBL

LANGID Parameter Options

JOBRUN
JOB
"language-identifier-name"

*JOBRUN
*JOB
language-identifier-name

PROCESS Statement Options
ENBPFRCOL(a)

CRTCBLMOD/CRTBNDCBL

ENBPFRCOL Parameter Options

PEP
ENTRYEXIT
FULL

*PEP
*ENTRYEXIT
*FULL

PROCESS Statement Options PRFDTA(a) CRTCBLMOD/CRTBNDCBL

PRFDTA Parameter Options

NOCOL
COL

*NOCOL
*COL

682 ILE COBOL Reference

PROCESS Statement Options CCSID(a b c
d)

CRTCBLMOD/CRTBNDCBL

CCSID Parameter Options

a = Locale single-byte data CCSID

JOBRUN
JOB
HEX
coded-character-set-identifier

*JOBRUN
*JOB
*HEX
coded-character-set-identifier

b = Non-locale single-byte data CCSID

CCSID
(uses CCSID specified for “a” above)
JOBRUN
JOB
HEX
coded-character-set-identifier

Not applicable

c = Non-locale double-byte data CCSID

CCSID
(uses CCSID specified for “a” above)
JOBRUN
JOB
HEX
coded-character-set-identifier

Not applicable

d = XML GENERATE single-byte or unicode
data output CCSID

JOBRUN
CCSID
(uses CCSID specified for “a” above)
JOB
HEX
coded-character-set-identifier

Not applicable

PROCESS Statement Option NTLCCSID(a) CRTCBLMOD/CRTBNDCBL

NTLCCSID Parameter Options

13488
coded-character-set-identifier

13488
coded-character-set-identifier

PROCESS Statement Options DATTIM(a b) CRTCBLMOD/CRTBNDCBL

4-digit base century (default 1900)
2-digit base year (default 40)

Not applicable

PROCESS Statement Options THREAD(a) CRTCBLMOD/CRTBNDCBL

NOTHREAD
SERIALIZE

Not applicable

PROCESS Statement Options
ARITHMETIC(a)

CRTCBLMOD/CRTBNDCBL

ARITHMETIC Parameter Options

NOEXTEND
EXTEND31
EXTEND63

*NOEXTEND
*EXTEND31
*EXTEND63

Appendix G. PROCESS Statement 683

|

###

#

#
#
#
#
#

PROCESS Statement Option CRTCBLMOD/CRTBNDCBL

NOGRAPHIC
GRAPHIC

Not applicable

PROCESS Statement Option CRTCBLMOD/CRTBNDCBL

NONATIONAL
NATIONAL

Not applicable

PROCESS Statement Option CRTCBLMOD/CRTBNDCBL

NOLSPTRALIGN
LSPTRALIGN

Not applicable

PROCESS Statement Option CRTCBLMOD/CRTBNDCBL

NOCOMPASBIN
COMPASBIN

Not applicable

PROCESS Statement Option CRTCBLMOD/CRTBNDCBL

DBGVIEW Parameter Options

NOCOMPRESSDBG
COMPRESSDBG

*NOCOMPRESSDBG
*COMPRESSDBG

PROCESS Statement Option OPTVALUE(a) CRTCBLMOD/CRTBNDCBL

NOOPT
OPT

Not applicable

PROCESS Statement Option CRTCBLMOD/CRTBNDCBL

NOADJFILLER
ADJFILLER

Not applicable

PROCESS Statement Option
NTLPADCHAR(a b c)

CRTCBLMOD/CRTBNDCBL

NTLPADCHAR Parameter Options

a = padding character for moving single-byte to national

NX"0020"
a national hexadecimal literal
representing one national character

NX"0020"
a national character

b = padding character for moving double-byte to national

NX"3000"
a national hexadecimal literal
representing one national character

NX"3000"
a national character

c = padding character for moving national to national

NX"3000"
a national hexadecimal literal
representing one national character

NX"3000"
a national character

684 ILE COBOL Reference

PROCESS Statement Option LICOPT(a) CRTCBLMOD/CRTBNDCBL

LICOPT Parameter Option

licensed-internal-code-option-string licensed-internal-code-option-string

PROCESS Statement Option PGMINFO(a
b)

CRTCBLMOD/CRTBNDCBL

PGMINFO Parameter Options

a = program interface information to be generated

NOPGMINFO
PCML

*NO
*PCML

b = location for the generated program information

MODULE *STMF
*MODULE
*ALL

PROCESS Statement Options STGMDL(a) CRTCBLMOD

STGMDL Parameter Options

INHERIT
SNGLVL
TERASPACE

*INHERIT
*SNGLVL
*TERASPACE

PROCESS Statement Options STGMDL(a) CRTBNDCBL

STGMDL Parameter Options

SNGLVL
INHERIT
TERASPACE

*SNGLVL
*INHERIT
*TERASPACE

PROCESS Statement Options ACTGRP(a) CRTBNDCBL

ACTGRP Parameter Options

STGMDL
NEW
CALLER
'activation-group-name'

*STGMDL
*NEW
*CALLER
activation-group-name

Appendix G. PROCESS Statement 685

##
#
#

#

#

#
#
#
#

#

##
#
#
#

|||

|

|
|
|

|
|
|
|

|||

|

|
|
|

|
|
|
|

|||

|

|
|
|
|

|
|
|
|
|

686 ILE COBOL Reference

Appendix H. Complex OCCURS DEPENDING ON

Complex OCCURS DEPENDING ON (ODO) is supported as an extension to the
COBOL 85 Standard.

The basic forms of complex ODO permitted by the compiler are as follows:
v Variably located item or group: A data item described by an OCCURS clause

with the DEPENDING ON option is followed by a nonsubordinate data item or
group.

v Variably located table: A data item described by an OCCURS clause with the
DEPENDING ON option is followed by a nonsubordinate data item described
by an OCCURS clause.

v Table with variable-length elements: A data item described by an OCCURS
clause contains a subordinate data item described by an OCCURS clause with
the DEPENDING ON option.

v Index name for a table with variable-length elements.
v Element of a table with variable-length elements.

Complex ODO can help you save disk space, but it can be tricky to use and can
make maintaining your code more difficult.

The following example illustrates the possible types of occurrence of complex
ODO:
01 FIELD-A.

02 COUNTER-1 PIC S99.
02 COUNTER-2 PIC S99.
02 TABLE-1.

03 RECORD-1 OCCURS 1 TO 5 TIMES
DEPENDING ON COUNTER-1 PIC X(3).

02 EMPLOYEE-NUMBER PIC X(5). ▌1▐
02 TABLE-2 OCCURS 5 TIMES ▌2 3▐

INDEXED BY INDX. ▌4▐
03 TABLE-ITEM PIC 99. ▌5▐
03 RECORD-2 OCCURS 1 TO 3 TIMES

DEPENDING ON COUNTER-2.
04 DATA-NUM PIC S99.

In the example, COUNTER-1 is called an ODO object because it is the object of the
DEPENDING ON clause of RECORD-1. RECORD-1 is called an ODO subject.
Similarly, COUNTER-2 is the ODO object of the corresponding ODO subject,
RECORD-2.

The types of complex ODO occurrences shown in the example above are as
follows:
▌1▐ A variably located item: EMPLOYEE-NUMBER is a data item following,

but not subordinate to, a variable-length table in the same level-01 record.
▌2▐ A variably located table: TABLE-2 is a table following, but not subordinate

to, a variable-length table in the same level-01 record.
▌3▐ A table with variable-length elements: TABLE-2 is a table containing a

subordinate data item, RECORD-2, whose number of occurrences varies
depending on the content of its ODO object.

▌4▐ An index name, INDX, for a table with variable-length elements.
▌5▐ An element, TABLE-ITEM, of a table with variable-length elements.

© Copyright IBM Corp. 1993, 2010 687

The length of the variable portion of each record is the product of its ODO object
and the length of its ODO subject. For example, whenever a reference is made to
one of the complex ODO items shown above, the actual length, if used, is
computed as follows:
v The length of TABLE-1 is calculated by multiplying the contents of COUNTER-1

(the number of occurrences of RECORD-1) by 3 (the length of RECORD-1).
v The length of TABLE-2 is calculated by multiplying the contents of COUNTER-2

(the number of occurrences of RECORD-2) by 2 (the length of RECORD-2), and
adding the length of TABLE-ITEM.

v The length of FIELD-A is calculated by adding the lengths of COUNTER-1,
COUNTER-2, TABLE-1, EMPLOYEE-NUMBER, and TABLE-2 times 5.

You must set every ODO object in a group before you reference any complex ODO
item in the group. For example, before you refer to EMPLOYEE-NUMBER in the
code above, you must set COUNTER-1 and COUNTER-2 even though
EMPLOYEE-NUMBER does not directly depend on either ODO object for its value.

Effects of a Change in ODO Value
If a data item described by an OCCURS clause with the DEPENDING ON option
is followed in the same group by one or more nonsubordinate data items (a form
of complex ODO), any change in value of the ODO object affects subsequent
references to complex ODO items in the record:
v The size of any group containing the relevant ODO clause reflects the new value

of the ODO object.
v A MOVE to a group containing the ODO subject is made based on the new

value of the ODO object.
v The location of any nonsubordinate items following the item described with the

ODO clause is affected by the new value of the ODO object. (To preserve the
contents of the nonsubordinate items, move them to a work area before the
value of the ODO object changes; then move them back.)

The value of an ODO object can change when you move data to the ODO object or
to the group in which it is contained. The value can also change if the ODO object
is contained in a record that is the target of a READ statement.

Preventing Errors when Changing the ODO Object Value
Be careful if you reference a complex-ODO index name (an index name for a table
with variable-length elements) after having changed the value of the ODO object
for a subordinate data item in the table. When you change the value of an ODO
object, the byte offset in an associated complex-ODO index is no longer valid
because the table length has changed. Unless you take precautions, you will obtain
unexpected results if you then code a reference to the index name such as in the
following:
v A reference to an element of the table
v A SET statement of the form SET integer-data-item TO index-name (format-1)
v A SET statement of the form SET index-name UP|DOWN BY integer (format-2)

To avoid this type of error, do the following:
1. Save the index item in an integer data item. (Doing so causes an implicit

conversion: the integer item receives the table element occurrence number
corresponding to the offset in the index.)

Complex OCCURS DEPENDING ON

688 ILE COBOL Reference

2. Change the value of the ODO object.
3. Immediately restore the index item from the integer data item. (Doing so causes

an implicit conversion: the index item receives the offset corresponding to the
table element occurrence number in the integer item. The offset is computed
according to the table length then in effect.)

The following code shows how to save and restore the index name shown in
Appendix H, “Complex OCCURS DEPENDING ON,” on page 687 when the ODO
object COUNTER-2 changes.
77 INTEGER-DATA-ITEM-1 PIC 99.
...

SET INDX TO 5.
* INDX is valid at this point.

SET INTEGER-DATA-ITEM-1 TO INDX.
* INTEGER-DATA-ITEM-1 now has the
* occurrence number corresponding to INDX.

MOVE NEW-VALUE TO COUNTER-2.
* INDX is not valid at this point.

SET INDX TO INTEGER-DATA-ITEM-1.
* INDX is now valid, containing the offset
* corresponding to INTEGER-DATA-ITEM-1, and
* can be used with the expected results.

Preventing Overlay When Adding Elements to a Variable Table
Be careful if you increase the number of elements in a variable-occurrence table
that is followed by one or more nonsubordinate data items in the same group.
When you increment the value of the ODO object and add an element to a table,
you can inadvertently overlay the variably located data items that follow the table.

To avoid this type of error, do the following:
1. Save the variably located data items that follow the table in another data area.
2. Increment the value of the ODO object.
3. Move data into the new table element (if needed).
4. Restore the variably located data items from the data area where you saved

them.

In the following example, suppose you want to add an element to the table
VARY-FIELD-1, whose number of elements depends on the ODO object
CONTROL-1. VARY-FIELD-1 is followed by the nonsubordinate variably located
data item GROUP-ITEM-1, whose elements could potentially be overlaid.
WORKING-STORAGE SECTION.
01 VARIABLE-REC.

05 FIELD-1 PIC X(10).
05 CONTROL-1 PIC S99.
05 CONTROL-2 PIC S99.
05 VARY-FIELD-1 OCCURS 1 TO 10 TIMES

DEPENDING ON CONTROL-1 PIC X(5).
05 GROUP-ITEM-1.

10 VARY-FIELD-2
OCCURS 1 TO 10 TIMES
DEPENDING ON CONTROL-2 PIC X(9).

01 STORE-VARY-FIELD-2.
05 GROUP-ITEM-2.

10 VARY-FLD-2
OCCURS 1 TO 10 TIMES
DEPENDING ON CONTROL-2 PIC X(9).

Complex OCCURS DEPENDING ON

Appendix H. Complex OCCURS DEPENDING ON 689

Each element of VARY-FIELD-1 has 5 bytes, and each element of VARY-FIELD-2
has 9 bytes. If CONTROL-1 and CONTROL-2 both contain the value 3, you can
picture storage for VARY-FIELD-1 and VARY-FIELD-2 as follows:

To add a fourth element to VARY-FIELD-1, code as follows to prevent overlaying
the first 5 bytes of VARY-FIELD-2. (GROUP-ITEM-2 serves as temporary storage
for the variably located GROUP-ITEM-1.)
MOVE GROUP-ITEM-1 TO GROUP-ITEM-2.
ADD 1 TO CONTROL-1.
MOVE five-byte-field TO

VARY-FIELD-1 (CONTROL-1).
MOVE GROUP-ITEM-2 TO GROUP-ITEM-1.

You can picture the updated storage for VARY-FIELD-1 and VARY-FIELD-2 as
follows:

Note that the fourth element of VARY-FIELD-1 did not overlay the first element of
VARY-FIELD-2.

VARY-FIELD-

1(1)

VARY-FIELD-

1(2)

VARY-FIELD-

1(3)

VARY-FIELD-

1(1)

VARY-FIELD-

1(2)

VARY-FIELD-

1(3)

VARY-FIELD-

1(4)

Complex OCCURS DEPENDING ON

690 ILE COBOL Reference

Appendix I. ACCEPT/DISPLAY and COBOL/2 Considerations

The ILE COBOL extended ACCEPT and DISPLAY statements are similar to the
IBM COBOL/2™ ACCEPT and DISPLAY statements (Format 2) with the following
exceptions:
v Some WITH phrases are only syntax checked (as shown in the extended

ACCEPT and DISPLAY syntax diagrams).
v ON ESCAPE is not used as an alternative to ON EXCEPTION.
v If phrases are duplicated in a displayed or an accepted data item, the ILE

COBOL compiler issues a severe error message. The COBOL/2 compiler permits
some duplication of phrases, such as UPON and BELL.

v AUTO-SKIP may be specified with a group item on a ILE COBOL extended
ACCEPT statement but the COBOL/2 compiler generates a severe error
message.

v BELL may be specified with a group item on a ILE COBOL extended ACCEPT
statement but the COBOL/2 compiler generates a severe error message.

v The ILE COBOL compiler accepts and applies the following to the appropriate
fields if they are specified with a group item. The COBOL/2 compiler generates
a severe error message.
– REQUIRED
– SECURE
– LEFT-JUSTIFY
– RIGHT-JUSTIFY
– SPACE-FILL
– TRAILING-SIGN
– UPDATE
– ZERO-FILL

v The COBOL/2 compiler justifies the signed numeric data (displayed and
accepted) to the left, and the ILE COBOL compiler justifies these data items to
the right.

v The COBOL/2 compiler handles special effects with figurative constants when
found in the DISPLAY statement (for example, DISPLAY SPACE will do the
same as DISPLAY WITH BLANK SCREEN), while the ILE COBOL compiler
does not apply any special effects to the figurative constants when found as data
items to be displayed in the extended DISPLAY statement.

v The COBOL/2 compiler uses all of the screen positions for displayable data
items, while the ILE COBOL compiler always needs one byte preceding each
displayable data item for the attribute byte. For this reason, line 1 and column 1
cannot be used on the ILE COBOL extended ACCEPT or DISPLAY statement.
(Error message LNC1263 is issued at compilation time, and LNR7054 at run
time.)

v When one ACCEPT or DISPLAY statement contains the UNDERLINE,
HIGHLIGHT and REVERSE-VIDEO phrases in one WITH phrase, the
HIGHLIGHT phrase is ignored. A warning message (LNC0265) is generated at
compile time if this combination is coded. In an extended DISPLAY statement,
the UPON CRT-UNDER phrase is equivalent to the UNDERLINE phrase. To
protect a field from being displayed on the screen, use the SECURE option.

v Unless you specify the EXTDSPOPT(*NODFRWRT) parameter in the
CRTCBLMOD or CRTBNDCBL command, the ILE COBOL compiler buffers all
extended DISPLAY statements until the next ACCEPT statement is encountered.

© Copyright IBM Corp. 1993, 2010 691

v Under the *NOUNDSPCHR compiler option, values below hexadecimal 20 cause
undesirable results in extended ACCEPT and extended DISPLAY operations. To
overcome this hardware limitation, use the (default) *UNDSPCHR option.

v The ILE COBOL compiler does not provide run-time configuration options.
v The length of the data-name in the CRT STATUS clause on the COBOL/2

compiler is 3 bytes, and the length on the ILE COBOL compiler is 6 bytes.

ACCEPT/DISPLAY and COBOL/2

692 ILE COBOL Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
3-2-12, Roppongi, Minato-ku, Tokyo 106-8711

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1993, 2010 693

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Canada Ltd. Laboratory
Information Development
8200 Warden Avenue
Markham, Ontario, Canada L6G 1C7

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, IBM License Agreement for
Machine Code, or any equivalent agreement between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Programming Interface Information
This publication is intended to help you write Integrated Language Environment®

ILE COBOL programs. It contains information necessary for you to use the ILE
COBOL compiler.

This manual does not document programming interfaces for use in writing
programs that request or receive the services of the ILE COBOL compiler.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and
trademark information at www.ibm.com/legal/copytrade.shtml.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Notices

694 ILE COBOL Reference

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Acknowledgments
IBM acknowledges the use of the following research product in the ILE COBOL
compiler:

S/SL ©Copyright 1981 by the University of Toronto

Notices

Notices 695

Notices

696 ILE COBOL Reference

Bibliography

For additional information about topics related to
ILE COBOL programming on the iSeries system,
refer to the following IBM iSeries publications:
v Communications Management, SC41-5406-02,

provides information about using the
Application Development ToolSet programming
development manager (PDM) to work with lists
of libraries, objects, members, and user-defined
options to easily do such operations as copy,
delete, and rename. Contains activities and
reference material to help the user learn PDM.
The most commonly used operations and
function keys are explained in detail using
examples.

v ADTS for AS/400: Source Entry Utility,
SC09-2605-00, provides information about using
the Application Development ToolSet source
entry utility (SEU) to create and edit source
members. The manual explains how to start
and end an SEU session and how to use the
many features of this full-screen text editor. The
manual contains examples to help both new
and experienced users accomplish various
editing tasks, from the simplest line commands
to using pre-defined prompts for high-level
languages and data formats.

v Application Display Programming, SC41-5715-02,
provides information about:
– Using DDS to create and maintain displays

for applications;
– Creating and working with display files on

the system;
– Creating online help information;
– Using UIM to define panels and dialogs for

an application;
– Using panel groups, records, or documents

v Recovering your system, SC41-5304-10, provides
information about setting up and managing the
following:
– Journaling, access path protection, and

commitment control
– User auxiliary storage pools (ASPs)
– Disk protection (device parity, mirrored, and

checksum)
Provides performance information about
backup media and save/restore operations.
Also includes advanced backup and recovery
topics, such as using save-while-active support,

saving and restoring to a different release, and
programming tips and techniques.

v CICS for iSeries Application Programming Guide,
SC41-5454-02, provides information on
application programming for CICS® for iSeries.
It includes guidance and reference information
on the CICS application programming interface
and system programming interface commands,
and gives general information about
developing new applications and migrating
existing applications from other CICS
platforms.

v CL Programming, SC41-5721-06, provides a
wide-ranging discussion of iSeries
programming topics including a general
discussion on objects and libraries, CL
programming, controlling flow and
communicating between programs, working
with objects in CL programs, and creating CL
programs. Other topics include predefined and
impromptu messages and message handling,
defining and creating user-defined commands
and menus, application testing, including
debug mode, breakpoints, traces, and display
functions.

v Communications Management, SC41-5406-02,
provides information about work management
in a communications environment,
communications status, tracing and diagnosing
communications problems, error handling and
recovery, performance, and specific line speed
and subsystem storage information.

v Experience RPG IV Tutorial, GK2T-9882-00, is an
interactive self-study program explaining the
differences between RPG III and RPG IV and
how to work within the new ILE environment.
An accompanying workbook provides
additional exercises and doubles as a reference
upon completion of the tutorial. ILE RPG code
examples are shipped with the tutorial and run
directly on the system.

v GDDM Programming Guide, SC41-0536-00,
provides information about using IBM i
graphical data display manager (GDDM) to
write graphics application programs. Includes
many example programs and information to
help users understand how the product fits into
data processing systems.

v GDDM Reference, SC41-3718-00, provides
information about using IBM i graphical data

© Copyright IBM Corp. 1993, 2010 697

display manager (GDDM) to write graphics
application programs. This manual provides
detailed descriptions of all graphics routines
available in GDDM. Also provides information
about high-level language interfaces to GDDM.

v ICF Programming, SC41-5442-00, provides
information needed to write application
programs that use iSeries communications and
the IBM i intersystem communications function
(IBM i-ICF). Also contains information on data
description specifications (DDS) keywords,
system-supplied formats, return codes, file
transfer support, and program examples.

v IDDU Use, SC41-5704-00, describes how to use
the iSeries interactive data definition utility
(IDDU) to describe data dictionaries, files, and
records to the system. Includes:
– An introduction to computer file and data

definition concepts
– An introduction to the use of IDDU to

describe the data used in queries and
documents

– Representative tasks related to creating,
maintaining, and using data dictionaries,
files, record formats, and fields

– Advanced information about using IDDU to
work with files created on other systems and
information about error recovery and
problem prevention.

v IBM Rational Development Studio for i: ILE C/C++
Programmer's Guide, SC09-2712-07, provides
information on how to develop applications
using the ILE C language. It includes
information about creating, running and
debugging programs. It also includes
programming considerations for interlanguage
program and procedure calls, locales, handling
exceptions, database, externally described and
device files. Some performance tips are also
described. An appendix includes information
on migrating source code from EPM C/400 or
System C/400 to ILE C.

v IBM Rational Development Studio for i: ILE C/C++
Language Reference, SC09-7852-02, describes the
syntax, semantics, and IBM implementation of
the C and C++ programming languages.

v IBM Rational Development Studio for i: ILE
COBOL Programmer's Guide, SC09-2540-07,
provides information about how to write,
compile, bind, run, debug, and maintain ILE
COBOL programs on the iSeries system. It
provides programming information on how to
call other ILE COBOL and non-ILE COBOL
programs, share data with other programs, use
pointers, and handle exceptions. It also

describes how to perform input/output
operations on externally attached devices,
database files, display files, and ICF files.

v ILE Concepts, SC41-5606-09, explains concepts
and terminology pertaining to the Integrated
Language Environment (ILE) architecture of the
iSeries licensed program. Topics covered
include creating modules, binding, running
programs, debugging programs, and handling
exceptions.

v IBM Rational Development Studio for i: ILE RPG
Programmer's Guide, SC09-2507-08, provides
information about the ILE RPG programming
language, which is an implementation of the
RPG IV language in the Integrated Language
Environment (ILE) on the iSeries system. It
includes information on creating and running
programs, with considerations for procedure
calls and interlanguage programming. The
guide also covers debugging and exception
handling and explains how to use iSeries files
and devices in RPG programs. Appendixes
include information on migration to RPG IV
and sample compiler listings. It is intended for
people with a basic understanding of data
processing concepts and of the RPG language.

v IBM Rational Development Studio for i: ILE RPG
Reference, SC09-2508-08, provides information
about the ILE RPG programming language.
This manual describes, position by position and
keyword by keyword, the valid entries for all
RPG IV specifications, and provides a detailed
description of all the operation codes and
built-in functions. This manual also contains
information on the RPG logic cycle, arrays and
tables, editing functions, and indicators.

v Local Device Configuration, SC41-5121-00,
provides information about configuring local
devices on the iSeries system. This includes
information on how to configure the following:
– Local work station controllers (including

twinaxial controllers)
– Tape controllers
– Locally attached devices (including twinaxial

devices)
v Printer Device Programming, SC41-5713-06,

provides information to help you understand
and control printing. Provides specific
information on printing elements and concepts
of the iSeries system, printer file and print
spooling support for printing operations, and
printer connectivity. Includes considerations for
using personal computers, other printing
functions such as Business Graphics Utility

698 ILE COBOL Reference

(BGU), advanced function printing (AFP™), and
examples of working with the iSeries system
printing elements such as how to move spooled
output files from one output queue to a
different output queue. Also includes an
appendix of control language (CL) commands
used to manage printing workload. Fonts
available for use with the iSeries system are
also provided. Font substitution tables provide
a cross-reference of substituted fonts if attached
printers do not support application-specified
fonts.

v ADTS for AS/400: Screen Design Aid,
SC09-2604-00, provides information about using
the Application Development ToolSet screen
design aid (SDA) to design, create, and
maintain displays, menus, and online help
information. The manual contains examples
and information to help learn how to use SDA
on the iSeries system and in the System/38
environment of the iSeries system.

v Security reference, SC41-5302-11, tells how
system security support can be used to protect
the system and the data from being used by
people who do not have the proper
authorization, protect the data from intentional
or unintentional damage or destruction, keep
security information up-to-date, and set up
security on the system.

v Installing, upgrading, or deleting IBM i and related
software, SC41-5120-11, provides step-by-step
procedures for initial installation, installing
licensed programs, program temporary fixes
(PTFs), and secondary languages from IBM.
This manual is also for users who already have
an iSeries system with an installed release and
want to install a new release.

For information about Systems Application
Architecture (SAA) Common Programming
Interface (CPI) COBOL, refer to the following
publication:
v Systems Application Architecture Common

Programming Interface COBOL Reference,
SC26-4354.

Bibliography 699

700 ILE COBOL Reference

Index

Special characters
, (comma)

insertion character 200
symbol in PICTURE clause 189, 192

/ (slash)
comment line 26
insertion character 200
symbol in PICTURE clause 189, 192

. (period)
actual decimal point 200
insertion character 200
period 200
symbol in PICTURE clause 189, 190,

193
(/) comment line 26
$ (currency)

insertion character 200, 201
symbol in PICTURE clause 189, 192

* (asterisk)
symbol in PICTURE clause 187

*CBL (*CONTROL) statement 601
*CONTROL (*CBL) statement 601
*INZDLT, effects of 108
*PRTCORR option 269
− (minus)

SIGN clause 211
symbol in PICTURE clause 192
use in PICTURE character-string 192

+ (plus)
insertion character 200, 201, 202
SIGN clause 211
symbol in PICTURE clause 192

Numerics
0

insertion character 200
symbol in PICTURE clause 189, 192

66, RENAMES data description
entry 207

77, item description entry 135
88, condition-name data description

entry 160
9, symbol in PICTURE clause 189, 190,

192

A
A

symbol in PICTURE clause 188, 192
ACCEPT statement

attribute data 287
data area 302
data transfer 280
feedback 284
floating-point and 280, 285, 286, 287,

293
Local Data Area 285
mnemonic-name in 73, 280

ACCEPT statement (continued)
program initialization

parameters 286
Session I/O 302
system information transfer 282
workstation I/O 288
YYYYDDD phrase 282
YYYYMMDD phrase 282

ACCEPT statement, extended 288
COBOL/2 considerations 691
common with extended

DISPLAY 300
data categories handled by 293
phrases 296, 299

syntax checked only 299
ACCEPT/DISPLAY, COBOL/2

considerations 691
access mode

data organizations and 109, 110
description 105
dynamic

DELETE statement 337
description 109
READ statement 424

random
description 109
READ statement 425

sequential
description 109
READ statement 424

ACCESS MODE clause
description 105
DYNAMIC 97
RANDOM 97
SEQUENTIAL 95

ACOS function 555
ACQUIRE statement

description and format 305
actual decimal point

definition 17
in PICTURE clause 188

ADD statement
common phrases 268
CORRESPONDING phrase 309
description and format 307
floating-point and 308

ADD-DURATION function 555
additional notes on field names 619
additional notes on format names 619
ADDRESS OF

description 130
ADDRESS OF special register 12

and pointer items 227
description 131
implicit specification 227
intrinsic functions and 131

addresses of items 130
ADVANCING phrase, in WRITE

statement 510
AFTER phrase

INSPECT statement 379

AFTER phrase (continued)
PERFORM statement 414
with REPLACING 383
with TALLYING 382
WRITE statement 510

alias name 610
aligning data 269

JUSTIFIED clause 172
SYNCHRONIZED clause 211

alignment of pointers 228
ALL

figurative constant 10
phrase of INSPECT statement 382
SEARCH statement 459
UNSTRING statement 500

ALL literal
INSPECT statement 379
STOP statement 487
STRING statement 489
UNSTRING statement 500

ALL Subscripting 34, 38, 547
ALPHABET clause

CODE-SET clause 76
COLLATING SEQUENCE phrase 76
description 75
format 72
NATIVE phrase 76
NLSSORT phrase 76
PROGRAM COLLATING SEQUENCE

clause 76
alphabet-name

description 76
MERGE statement 388
PROGRAM COLLATING SEQUENCE

clause 71
SORT statement 475

alphabetic
ALL Subscripting 547
character

ACCEPT statement 280
class and category 135
edited item

alignment rules 136
item

alignment rules 136
elementary move rules 394
INSPECT statement 379
PICTURE clause 193

ALPHABETIC class test 248
ALPHABETIC-LOWER class test 248
ALPHABETIC-UPPER class test 248
alphanumeric

class and category
alignment rules 136
description 135

edited item
elementary move rules 394
INSPECT statement 379
PICTURE clause 195

item
alignment rules 136

© Copyright IBM Corp. 1993, 2010 701

alphanumeric (continued)
item (continued)

elementary move rules 394
INSPECT statement 379
PICTURE clause 195

alphanumeric arguments 545
ALSO phrase

ALPHABET clause 77
EVALUATE statement 363

ALTER statement 310
description and format 310
GO TO statement and 370

altered GO TO statement 370
ALTERNATE RECORD KEY clause 113
AND CONTINUE RUN UNIT

phrase 366
AND logical operator 259
ANNUITY function 557
Area A (cols. 8-11) 24
Area B (cols. 12-72) 25
arguments 545

figurative constants 9
arithmetic expression

COMPUTE statement 334
description 245
EVALUATE statement 363
relation condition 250

arithmetic operator
description 245
list of 9
permissible symbol pairs 246

arithmetic operators xxvii
arithmetic statements

ADD 307
common phrases 268
COMPUTE 334
DIVIDE 355
list of 271
multiple results 273
MULTIPLY 401
operands 271
programming notes 273
SUBTRACT 496

ASCENDING KEY phrase
collating sequence 180
description 387
floating-point and 180
MERGE statement 387
OCCURS clause 179
SORT statement 473

ASCENDING phrase
floating-point and 387, 388

ASCII
collating sequence 649
converting to EBCDIC 566
specifying in SPECIAL-NAMES

paragraph 76
ASIN function 557
ASSIGN clause

description 100
SELECT clause and 99

assigning index values 463
assignment-name

ASSIGN clause 100
RERUN clause 120

asterisk (*)
comment line 26

asterisk (*) (continued)
insertion character 202
symbol in PICTURE clause 187, 192

at end condition
RETURN statement 447

AT END phrase
RETURN statement 447
SEARCH statement 456

AT END-OF-PAGE phrase 511
ATAN function 558
attribute data 675
AUTHOR paragraph

description 64
format 61

auxiliary storage file 663
availability of a file 411
availability of records 276

B
B

insertion character 200
symbol in PICTURE clause 188, 192

BEFORE phrase
INSPECT statement 379
PERFORM statement 414
with REPLACING 383
with TALLYING 382
WRITE statement 510

bibliography 697
BINARY 220
binary arithmetic operators 245
binary data item, DISPLAY

statement 341
BINARY phrase in USAGE clause 219
binary search 459
bit configuration of hexadecimal

digits 224
blank line 26
BLANK WHEN ZERO clause

description 165
floating-point and 165
USAGE IS INDEX clause 165, 226

BLOCK CONTAINS clause
description 147

Boolean Data
definition 161
format 161

Boolean Literal 11, 12
description 135
Separators 19
ZERO, ZEROS, ZEROES 11

boundary violations 108
BY CONTENT phrase

floating-point and 319
BY REFERENCE phrase

floating-point and 241, 318
BY VALUE phrase

floating-point and 320

C
CALL identifier 324
CALL procedure-pointer 324
CALL statement

BY CONTENT 319

CALL statement (continued)
BY REFERENCE 318
BY VALUE 320
CANCEL statement and 327
considerations 324
description and format 312
EXIT PROGRAM statement 366
GIVING/RETURNING 322
IN LIBRARY phrase 316, 328
Linkage Section 240
NOT ON EXCEPTION phrase 323
ON EXCEPTION 323
ON OVERFLOW 324
ON OVERFLOW phrase 312
Procedure Division header 239, 240
program termination statements 312
subprogram linkage 312
transfer of control 52

called program
description 312

calling program
description 312

CANCEL statement 327
categories of data, concepts 135
category of data

alphabetic items 193
alphanumeric items 195
alphanumeric-edited items 195
numeric items 193
numeric-edited items 194
relationship to class of data 135

CHAR function 558
character code set

CODE-SET clause 155
specifying in SPECIAL-NAMES

paragraph 76
character set, COBOL definition 3
character-string

COBOL word 6
in DBCS 4
in SBCS 4
literal 12
PICTURE 18
representation in PICTURE

clause 192
size determination 138

characters allowed
COBOL program 3

CHARACTERS phrase
BLOCK CONTAINS clause 147
INSPECT statement 382, 383
MEMORY SIZE clause 71
RECORD clause 148
USAGE clause and 147

characters, replaced in alias name 610
characters, replaced in field name 610
CLASS clause

description 79
floating-point 79
format 72

class condition
ALPHABETIC class test 248
ALPHABETIC-LOWER class test 248
ALPHABETIC-UPPER class test 248
class-name class test 248
description 247
intrinsic functions and 247

702 ILE COBOL Reference

class condition (continued)
NUMERIC class test 248

class-name class test 248
classes of data 135
classes of data, concepts 135
clause

definition 21
sequence 22

clearing of files 407, 409
CLOSE statement 330
COBOL

language structure 3
program structure 55
reference format 23

COBOL characters 3
COBOL source program

END PROGRAM header 25, 56
general structure 55

COBOL word 6
context-sensitive 8
function-name 8
reserved word 8
system-name 8
user-defined word 6

COBOL/2 considerations,
ACCEPT/DISPLAY 691

CODE-SET clause
ALPHABET clause 78
description 155
NATIVE phrase and 156
SIGN IS SEPARATE clause and 155
USAGE clause and 155

collating sequence
ASCENDING/DESCENDING KEY

phrase and 180
ASCII 649
default 71
EBCDIC 647
specified in OBJECT-COMPUTER

paragraph 71
specified in SPECIAL-NAMES

paragraph 76
COLLATING SEQUENCE phrase

ALPHABET clause 76
MERGE statement 388
SORT statement 475

colon
separator, rules for using 20

column 7
asterisk (*) specifies comment 26
indicator area 25
slash (/) specifies comment 26

combined condition
description 260
evaluation rules 261
logical operators and evaluation

results 261
order of evaluation 262
permissible element sequences 260

comma (,)
Configuration Section 69
DECIMAL-POINT IS COMMA

clause 84, 189, 190
insertion character 200
punctuation rules 20
separator, rules for using 19
symbol in PICTURE clause 189, 192

comment 65
characters valid in 18
entry

definition 18
Identification Division 19

line
definition 18
description 26
in library text 604

comment character-string, definition 3
COMMIT statement

format 333
COMMITMENT CONTROL clause

description 124
COMMON clause 64
common considerations

extended ACCEPT and DISPLAY 300
common processing facilities 274
COMP-3 items

and performance 221
comparison

date-time 253
floating-point 253
floating-point and 258
in EVALUATE statement 365
nonnumeric operands 255
numeric and nonnumeric

operands 256
numeric operands 255
of index data items 257
of index-names 257
rules for COPY statement 606
rules for INSPECT statement 380

compiler limits for ILE COBOL 637
compiler output, suppressing 601, 604
compiler-directing statements

COPY 602
description 601
EJECT 627
ENTER 360
SKIP1/2/3 630
TITLE 630
USE 631

complex conditions
abbreviated combined relation 262
combined condition 260
description 259
negated simple 260

complex OCCURS DEPENDING ON
(OCO) clause 181, 687

composite of operands 271
compound condition

See combined condition
COMPUTATIONAL (COMP) 221
COMPUTATIONAL-1 220, 224, 230
COMPUTATIONAL-1 (COMP-1) 221
COMPUTATIONAL-2 220, 224, 230
COMPUTATIONAL-2 (COMP-2) 221
COMPUTATIONAL-3 (COMP-3) 221
COMPUTATIONAL-4 (COMP-4) 222
COMPUTATIONAL-5 (COMP-5) 222
COMPUTE statement

common phrases 269
description and format 334
floating-point and 334

computer-name
OBJECT-COMPUTER paragraph 70

computer-name (continued)
SOURCE-COMPUTER paragraph 69
system-name 69, 70

condition
abbreviated combined relation 262
class 247
combined 260
complex 259
condition-name 249
EVALUATE statement 363
IF statement 371
intrinsic function evaluation of 261
negated simple 260
PERFORM UNTIL statement 415
relation 250
SEARCH statement 457
sign 258
simple 247
switch-status 259

condition-name
and conditional variable 160
condition

description and format 249
date-time and 233
rules for values 233
SEARCH statement 460
SET statement 466
SPECIAL-NAMES paragraph 75
switch status condition 75

conditional expression
description 247

conditional GO TO statement 369
conditional statements

description 265
IF statement 371
list of 265
PERFORM statement 414

conditional variable
and condition-name entries 160
description 160

Configuration Section
description 67
OBJECT-COMPUTER paragraph 70
SPECIAL-NAMES paragraph 72

CONSOLE IS CRT clause 80
CONSTANT clause

CONSTANT Clause 163
context-sensitive words 653

description 8
in the ILE COBOL language 653

continuation
area 23
lines 25, 26

CONTINUE statement 336
control transfer

explicit 51
implicit 51

CONTROL-AREA clause 117
conversion of data, DISPLAY

statement 341
conversion specifiers 169, 613, 614
CONVERT-DATE-TIME function 559
converting data items

between CCSIDs 566
CONVERTING phrase 384
COPY DDS

See dttmi1

Index 703

COPY DDS, use with indicators 617
COPY libraries, references to 32
COPY statement

and externally described data 614
and EXTERNALLY-DESCRIBED-

KEY 614
and floating-point 619
comparison rules 606
COPY statement 626
COPY statement and 605
data field structures 615
date, time, timestamp fields 619
DDS and use of 609
DDS results 617
description and format 602
example 605, 607
floating-point and 619
generated record formats 611
generation of I-O formats 617
redefinition of formats 618
replacement rules 606
REPLACING phrase 604
SUBSTITUTE phrase 611
SUPPRESS phrase 604
variable-length fields 621

CORRESPONDING (CORR) phrase
ADD statement 309
description 309
MOVE statement 392
SUBTRACT statement 497
with ON SIZE ERROR phrase 270

CORRESPONDING phrase, effects
of 269

COS function 560
COUNT IN phrase

XML GENERATE statement 526
COUNT IN phrase, UNSTRING

statement 501
CR (credit)

insertion character 200
symbol in PICTURE clause 189, 190,

193
CRT STATUS clause

description 80
currency sign 189
CURRENCY SIGN clause

description 82
floating-point and 83

currency string
multiple character 83
single character 83

currency symbol ($)
in PICTURE clause 189
insertion character 200, 201
specifying 83

CURRENT-DATE function 561
CURSOR clause 84

D
data

alignment 136
categories 193
classes 135
format of standard 138
hierarchies used in qualification 31,

132

data (continued)
levels 132
reference, methods of 29
relationships among data 132
signed 138
truncation of 138, 172

data category
alphabetic items 193
alphanumeric items 195
alphanumeric-edited items 195
numeric items 193
numeric-edited items 194

data conversion, DISPLAY
statement 341

data description entry
BLANK WHEN ZERO clause 165
data-name 164
description 157
EXTERNAL clause 166
floating-point usage 157, 173, 180
format

general format 157
level-66 format (previously defined

items) 160
level-88 format

(condition-names) 160
FORMAT clause 167, 168
GLOBAL clause 170
indentation and 135
JUSTIFIED clause 171
level-number description 164
LOCALE phrase 168
OCCURS clause 175
OCCURS DEPENDING ON (ODO)

clause 181
PICTURE clause 185
REDEFINES clause 203
RENAMES clause 207
SIGN clause 209
SYNCHRONIZED clause 211
two level-01 entries and external

clause 30
TYPE clause 215
TYPEDEF clause 217
VALUE clause 229

Data Division
COPY DDS statement 609
data description entry 157
data relationships 132
EXTERNAL clause 145
file description (FD) entry 145
format 127
GLOBAL clause 147
levels of data 132
organization 127
punctuation in 19
sort description (SD) entry 145
structure

File Section 127, 128
Linkage Section 127, 130
Local-Storage Section 129
Working-Storage Section 127, 129

types of data 131
data field structures 615
data flow

UNSTRING statement 503

data item
data description entry 157
description entry definition 129
floating-point 137, 138
record description entry 157

data manipulation statements
INITIALIZE 373
INSPECT 376
list of 273
MOVE 392
RELEASE 444
RETURN 446
SET 463
STRING 489
UNSTRING 499
WRITE 508

data organization
access modes and 109
definition 107
indexed 109
relative 108
sequential 107

DATA RECORDS clause
description 152

data truncation
See truncation of data

data types
TYPE clause 215
TYPEDEF clause 217

data-name
data description entry 164
duplication restriction 32
qualification format 32

DATE 85, 166, 283
date fields, COPY DDS 619
DATE-COMPILED paragraph

description 65
format 61

DATE-OF-INTEGER function 562
date-time data types

ACCEPT statement 281
ADD-DURATION function 555
ADDRESS OF special register 131
alignment rules 137
ASCENDING/DESCENDING KEY

phrase and 180
BY REFERENCE phrase 241
BY VALUE phrase 241
CALL statement

BY CONTENT phrase 319
BY REFERENCE phrase 318
BY VALUE phrase 320
GIVING/RETURNING

phrase 322
category, defining 135
class condition and 247
comparisons, description 257
condition names and 233
conversion specifiers 86, 169, 613
CONVERT-DATE-TIME 559
COPY DDS 613
data field structures 615
DATFMT DDS keyword 169
DATFMT keyword 613, 619
DISPLAY statement 341, 346, 347,

352
EVALUATE statement 364

704 ILE COBOL Reference

date-time data types (continued)
EXTRACT-DATE-TIME 567
FIND-DURATION 568
FORMAT clause 85, 167
FORMAT OF special register 170
GIVING/RETURNING phrase 242
indicator structures 616
LC_TIME locale category 471
LENGTH OF special register 322
LIKE clause and 173
LOCALE phrase 87, 168
LOCALE-DATE 572
LOCALE-TIME 573
MOVE statement

elementary moves 397
receiver 396
usage 394

nonnumeric comparisons 253
numeric comparisons 253
OCCURS clause and 176
PACKED-DECIMAL 220
PICTURE clause and 186
PICTURE clause usage 168
READ statement 428
REDEFINES clause and 204
RELEASE statement 444
RENAMES clause and 207
SEARCH statement 456, 460
SET statement 467
SIZE phrase 87, 168
size, defining 138
SORT statement 474
START statement 480
SUBTRACT-DURATION 588
SYNCHRONIZED clause and 212
TEST-DATE-TIME 590
TIMFMT DDS keyword 169
TIMFMT keyword 614
UPON phrase 353
usage 168
VALUE clause and 231, 233
WHEN-COMPILED special

register 399
WRITE statement 510

DATE-TO-YYYYMMDD function 563
DATE-WRITTEN paragraph

description 64
format 61

DATFMT DDS keyword 169
DATFMT keyword 613, 619
DAY 283
DAY-OF-INTEGER function 562
DAY-OF-WEEK 284
DAY-TO-YYYYDDD function 564
DB (debit)

insertion character 200
symbol in PICTURE clause 189, 190,

193
DB-FORMAT-NAME special register 12,

277
DBCS (Double-Byte Character Set)

See Double-Byte Character Set (DBCS)
DD name 609
DDR name 609
DDS name 609
DDSR name 609
de-editing 395

de-editing (continued)
definition 393

DEBUG-ITEM special register 11
debugging line

definition 26, 70
WITH DEBUGGING MODE

clause 70
DEBUGGING MODE clause 70
decimal point (.) 269
DECIMAL-POINT IS COMMA clause

description 84
format 72

declarative procedures
description and format 242
EXCEPTION/ERROR 631
PERFORM statement 412
USE statement 242

DECLARATIVES keyword 242
begin in Area A 24

Declaratives Section 242
DELETE statement

access considerations 337
device considerations 337
format and description 337
inhibition of 337
organization considerations 337
with duplicate keys 339

deleted records, initializing files
with 108

DELIMITED BY phrase
STRING 490
UNSTRING statement 500

delimited scope statement 266
delimiter

INSPECT statement 383
UNSTRING statement 500

DELIMITER IN phrase, UNSTRING
statement 501

DEPENDING phrase
GO TO statement 369
OCCURS clause 181

DESCENDING KEY phrase
collating sequence 180
description 387
floating-point and 180
MERGE statement 387
OCCURS clause 179
SORT statement 473

DESCENDING phrase
floating-point and 387, 388

descriptors and procedure parameters
See operational descriptors

disk device type 663
DISPLAY phrase in USAGE clause 223
DISPLAY statement

batch and interactive 344
common with extended ACCEPT 300
Data Area 352
data transfer 341
field size 343
floating-point and 341, 342, 346, 348,

349, 350
IN LIBRARY phrase 353
local data area 345
location of output 345
positioning of items 347
session I/O 351

DISPLAY statement (continued)
suspension of program 344
table items 351
workstation I/O 346

DISPLAY statement, extended 346
COBOL/2 considerations 691
data categories handled by 293
phrases 348

DISPLAY-OF function 564
DIVIDE statement

common phrases 269
description and format 355
floating-point and 357
REMAINDER phrase 357

division header
format, Environment Division 67
format, Identification Division 61
specification of 24

DO-UNTIL structure, PERFORM
statement 414

DO-WHILE structure, PERFORM
statement 414

Double-Byte Character Set (DBCS)
alignment rules 137
character-strings 4
data items 196
DISPLAY-1 phrase 226
literals 12
mixed literals 16
separators 19
SPACE/SPACES 9
using in comments 65

DOWN BY phrase, SET statement 465,
469

DROP statement
description 359

DUPLICATES phrase
KEY phrase 480
SORT statement 475
START statement 480

dynamic access mode
data organization and 109
DELETE statement 337
description 109
READ statement 424

E
EBCDIC

CODE-SET clause 156
CODE-SET clause and 155
collating sequence 647
converting to ASCII 566
specifying in SPECIAL-NAMES

paragraph 76
editing

fixed insertion 200
floating insertion 201
replacement 202
signs 138
simple insertion 198
special insertion 200
suppression 202

efficiency
and COMP-3 (packed decimal)

items 221
and S in PICTURE clause 188

Index 705

eject page 26
EJECT statement 627
elementary item

alignment rules 136
basic subdivisions of a record 132
classes and categories 135
MOVE statement 393
nonnumeric operand comparison 256
size determination in program 138
size determination in storage 138

elementary move rules 393
ELSE NEXT SENTENCE phrase 371
END DECLARATIVES keyword 242
END PROGRAM header

description 25, 56
END-IF phrase 371
end-of-file processing 330
END-OF-PAGE phrase 511
END-PERFORM phrase 412
END-XML phrase

XML GENERATE statement 528
XML PARSE statement 534

ENTER statement 360
entry

definition 21
Environment Division

Configuration Section
OBJECT-COMPUTER

paragraph 70
SOURCE-COMPUTER

paragraph 69
SPECIAL-NAMES paragraph 72

Input-Output Section
FILE-CONTROL paragraph 95
I-O-CONTROL paragraph 118

punctuation in 19
environment-name

SPECIAL-NAMES paragraph 73, 74
EOP phrase 511
equal sign (=) 250
EQUAL TO relational operator 250
error conditions

See EXCEPTION/ERROR declarative
ERROR declarative statement 631
error handling 668
EVALUATE statement

comparing operands 365
determining truth value 364
floating-point and 363
format and description 361

evaluation rules
combined conditions 261
EVALUATE statement 365
nested IF statement 372

EXCEPTION declarative statement 631
EXCEPTION/ERROR declarative

CLOSE statement 330
DELETE statement 338
description and format 631

execution flow
ALTER statement changes 310
PERFORM statement changes 412

EXIT PROGRAM statement
AND CONTINUE RUN UNIT

phrase 366
format and description 366

EXIT statement
format and description 366
PERFORM statement 413

explicit
data attribute 47
reference 47
scope terminators 266

exponentiation
exponential expression 245
size error condition 270

exponentiation results 245
expression, arithmetic 245
EXTEND phrase 408

USE statement 632
EXTERNAL clause 145, 166

data description entry 166
external decimal item

DISPLAY statement 341
INSPECT statement 379

EXTRACT-DATE-TIME function 567

F
FACTORIAL function 568
FALSE phrase 363
FD (File Description) entry

BLOCK CONTAINS clause 147
DATA RECORDS clause 152
definition 128
description 139, 145
format 139, 145
LABEL RECORDS clause 151
level indicator 132
physical record 131
RECORD clause 148

field names, additional notes 619
figurative constant

DISPLAY statement 342
functions and 10
INSPECT statement 379
list of 9
numeric literals and 10
STOP statement 487
STRING statement 489

file
auxiliary storage 663
data type 131
definition 131
labels 151

File Description (FD) entry
See FD (File Description) entry

file organization
indexed 109
LINAGE clause 153
relative 108
sequential 107

file position indicator 406, 408
and COPY statement 614, 617
description 276

file positioning 406, 407, 408, 409, 410
File Section

file-description entry 128
format 127
record-description entry 128

FILE STATUS clause
DELETE statement and 337
description 116

FILE STATUS clause (continued)
status key 274

file status key values 668
file structure support summary 663
FILE-CONTROL paragraph

ACCESS MODE clause 105
ALTERNATE RECORD KEY

clause 113
ASSIGN clause 100
description 95
FILE STATUS clause 116
order of entries 95
RECORD KEY clause 110
RELATIVE KEY clause 115
RESERVE clause 102
SELECT clause 99

file-name
description 8
specifying on SELECT clause 99

FILE-STREAM phrase
XML GENERATE statement 526
XML PARSE statement 532

FILLER phrase
CORRESPONDING phrase 164
data description entry 164
FILLER phrase 165

final arithmetic results
See result field

FIND-DURATION function 568
FIRST phrase of INSPECT

REPLACING 383
fixed insertion editing 200
fixed length

item, maximum length 157
records 147
table, OCCURS clause format 179

fixed page spacing, LINAGE clause 153
floating insertion editing 201
floating-point

ACCEPT statement and 280, 285,
286, 287, 293

ADD statement and 308
ASCENDING KEY phrase and 180
ASCENDING phrase and 387, 388
BLANK WHEN ZERO clause

and 165
BY CONTENT phrase and 319
BY REFERENCE phrase 241, 253
BY REFERENCE phrase and 318
BY VALUE phrase and 320
CLASS clause 79
comparisons 258
COMPUTE statement and 334
COPY statement and 619
CURRENCY SIGN clause 83
data items 137, 138
DESCENDING phrase and 387, 388
DISPLAY statement and 341, 342,

346, 348, 349, 350
DIVIDE statement and 357
editing rules 197
EVALUATE statement and 363
fields 619
floating-point and 605
GIVING phrase and 269
INITIALIZE statement and 373
INSPECT statement and 379

706 ILE COBOL Reference

floating-point (continued)
INTO phrase and 428, 490
key fields 619
LIKE clause and 173
MERGE statement and 387
MOVE statement and 394
MULTIPLY statement and 402
nonnumeric comparisons 253
numeric comparisons 253
OCCURS clause and 176
PERFORM statement and 416
PICTURE clause and 186, 197
READ statement and 428
RECORD KEY clause and 112
RELEASE statement and 444
RENAMES clause and 207
REPLACING phrase and 374
RETURN statement and 446
REWRITE statement and 449
rules for 18
SEARCH statement and 456, 460
SET statement and 463, 464, 465, 467
SIGN clause and 210
sign condition and 258
SORT statement and 474
START statement and 480
STOP statement and 487
STRING statement and 489, 490
SUBTRACT statement and 497
SYNCHRONIZED clause and 212
UNSTRING statement and 501
USAGE clause and 220, 224
VALUE clause and 230, 233
VALUE OF clause and 152
WRITE statement and 509, 513

FOOTING phrase of LINAGE
clause 153

format (record) level structures 615
FORMAT clause

data description entry context 167,
168

LOCALE phrase 87
SIZE phrase 87, 168
SPECIAL-NAMES context 85

format literals for locales 169
format names, additional notes 619
FORMAT OF special register 170
FROM phrase 280

ACCEPT statement 281
SUBTRACT statement 496
with identifier 275
WRITE statement 509

function
arguments 545
DBCS and 39
description 541
rules for usage 543
syntax 39
types of functions 542

function-identifer
name resolution 47
syntax 39

function-names 653
in the ILE COBOL language 653

G
G

symbol in PICTURE clause 192
GDDM, calling 325
generation of I-O formats 617
GIVING phrase

ADD statement 307
arithmetic 269
DIVIDE statement 358
floating-point and 269
MERGE statement 389
MULTIPLY statement 401
SORT statement 476
SUBTRACT statement 497

GLOBAL clause 147, 170
data description entry 170

GO TO statement
altered 370
conditional 369
format and description 369
PERFORM statement 413
SEARCH statement 456
unconditional 369

GOBACK statement
format and description 368
GOBACK statement 368

Graphical Data Display Manager
(GDDM), calling 325

graphics support 325
GREATER THAN OR EQUAL TO

relational operator 250
GREATER THAN symbol (>)

relation condition 250
group item

class and categories 135
description 133
levels of data 133
MOVE statement 399
nonnumeric operand comparison 256

group level names 615
group move rules 399

H
halting execution 487
hexadecimal digit bit configurations 224
hexadecimal national literal 14
hexadecimal nonnumeric literal 15
HIGH-VALUE/HIGH-VALUES figurative

constant 9
SPECIAL-NAMES paragraph 77

hyphen (-), in the indicator area (column
7), 25

hyphens
produced when copying alias

names 610

I
I-O-CONTROL paragraph 118

description 94
I-O-FEEDBACK 74, 285
IBM extensions, format description xxix
Identification Division

description and format 61

Identification Division (continued)
optional paragraphs

AUTHOR paragraph 64
DATE-COMPILED paragraph 65
DATE-WRITTEN paragraph 64
INSTALLATION paragraph 64
SECURITY paragraph 65

PROGRAM-ID paragraph 62
identifier

and arithmetic expressions 245
description 244

identifier CALL 324
IF statement

format and description 371
nested IF 372

ILE COBOL context-sensitive words 653
ILE COBOL function-names 653
ILE COBOL reserved words 657
imperative statement

list of 264
implicit

data attribute 47
redefinition of storage area 145, 204
references 29
scope terminators 267

IN LIBRARY phrase
CALL statement 316, 328
DISPLAY statement 353
SET statement 469, 472

in-line PERFORM statement 412
indentation 25, 135
index

data item
comparisons 257
MOVE statement rules 392

MOVE statement evaluation 393
index name

assigning values 463
comparisons 257
data item definition 226
OCCURS clause 181
PERFORM statement 423
SEARCH statement 456
SET statement 463

INDEX phrase in USAGE clause 226
INDEXED BY phrase, OCCURS

clause 181
indexed files

DELETE statement 337
OPEN statement 403
START statement 483
WRITE statement 512

indexed organization
access modes allowed 110
description 109

indexing
OCCURS clause 175
restrictions 36, 185

indicator area 23
INDICATOR clause 164
indicator structures 615, 616
INITIAL clause 64
initial state of program 64
INITIALIZE statement 373

floating-point and 373
Input Output Section

FILE-CONTROL paragraph 95

Index 707

Input Output Section (continued)
I-O-CONTROL paragraph 118

INPUT phrase
USE statement 631

INPUT PROCEDURE phrase
RELEASE statement 444
SORT statement 476

input-output device
See assignment-name

Input-Output Section
description 93
format 93

input-output statements
ACCEPT 280
CLOSE 330
DELETE 337
DISPLAY 341
EXCEPTION/ERROR

procedures 632
format and description 403
general description 274
OPEN 403
READ 424
REWRITE 448
START 479
WRITE 508

insertion editing
fixed (numeric-edited items) 200
floating (numeric-edited items) 201
simple 198
special

external floating-point items 200
numeric-edited items 200

INSPECT statement
AFTER phrase 383
BEFORE phrase 383
coding example 381
comparison rules 380
CONVERTING phrase 384
floating-point and 379
format and description 376
REPLACING phrase 383

INSTALLATION paragraph
description 64
format 61

integer 17
integer arguments 545
INTEGER function 569
integer places in an ir, calculation of 640
INTEGER-OF-DATE function 570
INTEGER-OF-DAY function 570
INTEGER-PART function 571
INTO identifier phrase of READ

statement 427
INTO phrase

DIVIDE statement 355
floating point and 501
floating-point and 428, 490
RETURN statement 446
STRING statement 490
UNSTRING statement 501
with identifier 275

intrinsic functions
access modes allowed 110
ACOS 555
ADD-DURATION 555
ADDRESS OF special register 131

intrinsic functions (continued)
alphanumeric function 542
ANNUITY 557
ASIN 557
ATAN 558
boolean function 542
CHAR 558
class conditions and 247
condition evaluation and 261
context-sensitive words 653
CONVERT-DATE-TIME 559
COS 560
CURRENT-DATE 561
DATE-OF-INTEGER 562
date-time function 542
DATE-TO-YYYYMMDD 563
DAY-OF-INTEGER 562
DAY-TO-YYYYDDD 564
DBCS and 13
DBCS function 542
EXTRACT-DATE-TIME 567
FACTORIAL 568
figurative constants and 10
FIND-DURATION 568
floating-point literals 547
INTEGER 569
integer function 542
INTEGER-OF-DATE 570
INTEGER-OF-DAY 570
INTEGER-PART 571
LENGTH 571
LENGTH OF special register and 321
LOCALE-DATE 572
LOCALE-TIME 573
LOG 573
LOG10 574
LOWER-CASE 574
MAX 575
MEAN 576
MEDIAN 576
MIDRANGE 577
MIN 577
MOD 578
name resolution 47
national function 542
numeric function 542
NUMVAL 580
NUMVAL-C 581
ORD 582
ORD-MAX 582
ORD-MIN 583
organization 109
PRESENT-VALUE 584
RANDOM 584
RANGE 585
reference modification and 37
REM 585
RETURN-CODE special register

and 488
REVERSE 586
SIN 586
special registers and 11
SQRT 587
STANDARD-DEVIATION 587
STRING statement and 492
subscripting and 34
SUBTRACT-DURATION 588

intrinsic functions (continued)
SUM 589
summary of 550
syntax, general 39
TAN 590
TEST-DATE-TIME 590
UPPER-CASE 594
UTF8STRING 595
VARIANCE 596
WHEN-COMPILED 596
YEAR-TO-YYYY 597

invalid key condition
common processing facility 274

INVALID KEY phrase
DELETE statement 337
DELETE statement and

DELETE statement 337
REWRITE statement 450
START statement 482
WRITE statement 515

IO CONTROL paragraph
COMMITMENT CONTROL

clause 124
description 118
order of entries 118
RERUN clause 120
SAME AREA clause 121
SAME RECORD AREA clause 121
SAME SORT AREA clause 122
SAME SORT-MERGE AREA

clause 123

J
JUSTIFIED clause

condition-name 172
description and format 171
standard alignment rules 172
STRING statement 490
truncation of data 172
USAGE IS INDEX clause and 172
VALUE clause and 172, 230

K
key field

in the record area 338
KEY phrase

OCCURS clause 179
SEARCH statement 460
SORT statement 473
START statement 480, 485

keyword
description 9

L
LABEL RECORDS clause

description 151
language

considerations 3
name

as function-name 8
as system-name 8

LEADING phrase
INSPECT statement 382

708 ILE COBOL Reference

LEADING phrase (continued)
SIGN clause 210

left truncation
See truncation of data

LENGTH function 571
LENGTH OF special register 321

date-time 322
intrinsic functions and 321

LESS THAN OR EQUAL TO relational
operator 250

LESS THAN symbol (<)
relation condition 250

level
01 item 133
02-49 item 133
66 item 134
77 item 134
88 item 134
indicator, definition of 132

level number
beginning in Area A or Area B 133
data levels in a record description

entry 133
definition 132
description 164
FILLER phrase 164
must begin in Area A 24
nonstructured records

66 item 134
77 item 134
88 item 134

rules for using in data description
entry 164

structured records
01 item 133
02-49 item 133

library-name 603
and library name 603
COPY statement 603, 627
format 32
rules 7

LIKE clause
and Boolean data 163
description 172
floating-point and 173
format 173
rules and restrictions 174

limits, ILE COBOL compiler 637
LINAGE clause

description 153
diagram of phrases 154
LINAGE-COUNTER and 155

LINAGE COUNTER special register
description 155
EXTERNAL clause and 155
GLOBAL clause and 155
WRITE statement 511

line advancing 510
LINE/LINES, WRITE statement 510
LINES AT BOTTOM phrase 154
LINES AT TOP phrase 154
Linkage Section

called subprogram 240
data-item description entry 130
description 130
format 127
record-description entry 130

Linkage Section (continued)
VALUE clause 229

LINKAGE TYPE clause 88
literal

and arithmetic expressions 245
ASSIGN clause 100
Boolean 12
character-string 12
CLASS clause 79
CODE-SET clause ALPHABET

clause 78
CURRENCY SIGN clause 83
floating-point rules for 18
hexadecimal nonnumeric 15
mixed 16
nonnumeric 14
nonnumeric operand comparison 256
numeric 17
specifying in SPECIAL-NAMES

paragraph 76
STOP statement 487
VALUE clause 231

literals
null-terminated 16

Local-Storage Section
data-item description entry 129
description 129
record-description entry 129

LOCALE OF special register 169
LOCALE phrase

data description entry context 168
LOCALE OF special register and 169
PICTURE clause and 186
SPECIAL-NAMES context 89

LOCALE phrase, FORMAT clause 87
LOCALE-DATE function 572
LOCALE-TIME function 573
locales

format literals for 169
FORMAT OF special register 170

locales, setting with SET statement 470
locking records

and DELETE statement 338, 339
and REWRITE statement 451

LOG function 573
LOG10 function 574
logical file 93
logical operator

complex condition 259
in evaluation of combined

conditions 261
list of 259

logical operators xxvii
logical record

definition 131
file data 131
program data 132
record description entry and 132
RECORDS phrase 148

LOW-VALUE/LOW-VALUES figurative
constant 9

SPECIAL-NAMES paragraph 78
LOWER-CASE function 574

M
manuals, other 697
MAX function 575
MCH1202, and intermediate results 642
MEAN function 576
MEDIAN function 576
MEMORY SIZE clause 71
MERGE statement

ASCENDING/DESCENDING KEY
phrase 387

COLLATING SEQUENCE
phrase 388

floating-point and 387
format and description 386
GIVING phrase 389
OUTPUT PROCEDURE phrase 390
then null 387
USING phrase 389

MIDRANGE function 577
MIN function 577
minus sign (-)

COBOL character 3
editing sign control symbol 189, 190
fixed insertion symbol 200
floating insertion symbol 201, 202
insertion character 200, 201
SIGN clause 211
symbol in PICTURE clause 189, 190

mixed literal 16
mnemonic-name

ACCEPT statement 280
as qualifier of UPSI

condition-names 74
DISPLAY statement 343, 353
SET statement 466
SPECIAL-NAMES paragraph 74
WRITE statement 510

MOD function 578
MOVE statement

Boolean receiver 396
CORRESPONDING phrase 392
Date-time receiver 396
DBCS receiver 396
de-editing 395
elementary moves 393
floating-point and 394
floating-point receiver 395
format and description 392
group moves 399
national receiver 397
validity 398

multiple record processing, READ
statement 435

multiple results, arithmetic
statements 273

MULTIPLY statement
common phrases 269
floating-point and 402
format and description 401

multivolume files
READ statement 435
WRITE statement 512

Index 709

N
national

data items 196
literals 14
NATIONAL phrase 227

national characters
alignment rules 137
character-strings 4
data items 196
literals 12
mixed literals 16
separators 19
SPACE/SPACES 9

NATIONAL-OF function 579
native character set 76
native collating sequence 76
NATIVE phrase 76

CODE-SET clause 156
negated simple condition

description 260
NEGATIVE 258
negative sign

See minus sign (-)
nested IF statement 372
nested IF structure, EVALUATE

statement 361
NEXT SENTENCE phrase

IF statement 371
SEARCH statement 457

NLSSORT phrase 76
NO LOCK phrase

and DELETE statement 338, 339
and REWRITE statement 451
READ statement 428
START statement 480

NO REWIND phrase, OPEN
statement 404

nonnumeric
null-terminated 16

nonnumeric literal
characters valid in 14
hexadecimal 15
mixed SBCS and DBCS characters 16

nonnumeric operands, comparing 255
NOT AT END phrase

RETURN statement 447
NOT INVALID KEY phrase

REWRITE statement 450
START statement 482
WRITE statement 515

NOT ON EXCEPTION phrase
CALL statement 323
XML GENERATE statement 527
XML PARSE statement 534

NOT ON OVERFLOW phrase
STRING statement 491
UNSTRING statement 502

NOT ON SIZE ERROR phrase
ADD statement 308
DIVIDE statement 358
general description 270
MULTIPLY statement 402
SUBTRACT statement 497

NULL
figurative constant 10

null block branch, CONTINUE
statement 336

null value 234
null values

COPY DDS statement 612
DELETE statement 340
MERGE statement 387
READ statement 424, 429
REWRITE statement 449
SORT statement 473
START statement 481
WRITE (Format 1) statement 511
WRITE (Format 2) statement 515

null-capable fields
COPY DDS statement 612
DELETE statement 340
MERGE statement 387
OPEN statement 405
READ statement 424, 429
REWRITE statement 449
SORT statement 473
START statement 481
WRITE (Format 1) statement 511
WRITE (Format 2) statement 515

null-terminated nonnumeric literal 16
numerals, in COBOL character set 3
numerals, numeric literal 17
numeric

class and category 135
edited item 194

alignment rules 136
editing signs 138
elementary move rules 395
INSPECT statement 379

item 193
and performance 188
signed 193
unsigned 193

literal 17
numeric arguments 545
numeric operands, comparing 255
NUMVAL function 580
NUMVAL-C function 581

O
OBJECT-COMPUTER paragraph

description and format 70
MEMORY SIZE clause 71
PROGRAM COLLATING SEQUENCE

clause 71
objects in EVALUATE statement 363
obsolete elements xxix
OCCURS clause

ASCENDING/DESCENDING KEY
phrase 179

description 175
floating-point and 176
format

fixed-length tables 179
variable-length tables 181

INDEXED BY phrase 181
OCCURS DEPENDING ON (ODO)

clause
complex 181, 687
description 182
format 181
object of 182
REDEFINES clause and 183

OCCURS DEPENDING ON (ODO)
clause (continued)

restrictions 184
SEARCH statement and 183
subject of 183
subscripting 185

ODO
See OCCURS DEPENDING ON

(ODO) clause
OFF phrase, SET statement 466
ON EXCEPTION phrase

CALL statement 323
XML GENERATE statement 527
XML PARSE statement 533

ON OVERFLOW phrase
CALL statement 324
STRING statement 491
UNSTRING statement 502

ON phrase, SET statement 466
ON SIZE ERROR phrase

ADD statement 308
arithmetic statements 270
COMPUTE statement 335
DIVIDE statement 358
MULTIPLY statement 402
SUBTRACT statement 497
with exponential expression 270

OPEN statement
availability of a file 411
EXTEND phrase 408
file positioning 407
indexed files 403
LINAGE-COUNTER and 155
null-capable fields 405
phrases 403
programming notes 410
relative files 403
sequential files 408
system dependencies 411
tape file 407
validity 404

OPEN-FEEDBACK 74, 285
operands

comparison of nonnumeric 255
comparison of numeric 255
composite of 271
evaluation of 38
overlapping 271

operation of XML GENERATE
statement 528

operational descriptors 89, 317
operational sign

algebraic, description of 138
SIGN clause and 138
USAGE clause and 138

optional files
AT END condition 406

OPTIONAL phrase 99
optional word 9
ORD function 582
ORD-MAX function 582
ORD-MIN function 583
order of entries

clauses in FILE-CONTROL
paragraph 95

FILE-CONTROL entry 95
I-O-CONTROL paragraph 118

710 ILE COBOL Reference

order of entries (continued)
Identification Division 61

order of evaluation in combined
conditions 262

order of execution
See execution flow

out-of-line PERFORM statement 413
OUTPUT phrase

USE statement 632
OUTPUT PROCEDURE phrase

MERGE statement 390
RETURN statement 446
SORT statement 477

OVERFLOW phrase
STRING statement 491
UNSTRING statement 502

overlapping operands
invalid 271

P
P

symbol in PICTURE clause 188, 192
packed decimal items

and performance 221
PACKED-DECIMAL phrase in USAGE

clause 220
PADDING CHARACTER clause 104
page eject 26
page size, LINAGE clause specifies 153
paragraph

description 21, 243
header, specification of 24
name

description 243
specification of 24

termination, EXIT statement 366
parentheses

combined conditions, use 261
in arithmetic expressions 246
separators, rules for using 20

PERFORM statement
coding example 417
conditional 414
END-PERFORM phrase 412
EVALUATE statement 361
execution sequences 507
EXIT statement 366
floating-point and 416
format and description 412
GO TO statement 413
in-line 413
out-of-line 413
TIMES phrase 414
VARYING phrase 415, 418

more than three identifiers 422
one identifier 417
three identifiers 420
two identifiers 418

performance
and buffering of DISPLAY

statements 301
and COMP-3 (packed decimal)

items 221
and S in PICTURE clause 188

period (.)
actual decimal point 200

period (.) (continued)
DECIMAL-POINT IS COMMA

clause 189, 190
insertion character 200
separator, rules for using 19
symbol in PICTURE clause 189, 190,

193
PGR, calling 325
phrase, definition 22
physical file 93
physical record

BLOCK CONTAINS clause 147
definition 131
file data 131
file description entry and 131
RECORDS phrase 148

physical sequential file
See sequential files

PICTURE clause
and class condition 248
character-string 18
computational items and 220
CURRENCY SIGN clause 83
data categories in 193
DECIMAL-POINT IS COMMA

clause 84, 186
description 185
editing 197
editing rules, floating-point 197
floating-point and 186, 197
format 185
sequence of symbols 191, 192
symbols used in 187
USAGE clause and 187

PIP data area 286
plus (+)

editing sign control symbol 189, 190
fixed insertion symbol 200
floating insertion symbol 201, 202
insertion character 202
SIGN clause 211
symbol in PICTURE clause 192
use in PICTURE character-string 192

pointer alignment
definition 228

pointer data item
defined with USAGE clause 227
definition 227
SET statement 467

POINTER phrase
STRING statement 490
UNSTRING statement 502

pointers
in conditional expressions 252

POSITIVE 258
PRESENT-VALUE function 584
Presentation Graphics Routines (PGR),

calling 325
procedure

description 243
Procedure Division

coding example 239
declarative procedures 242
description 237
format 237
organization of 237
punctuation in 20

Procedure Division (continued)
statements 280
structure of 237

Procedure Division header 239
procedure-name

GO TO statement 369
MERGE statement 390
PERFORM statement 412
SORT statement 476

procedure-pointer CALL 324
procedure-pointer data item

SET statement 468
PROCESS statement 679
PROCESSING PROCEDURE phrase, in

XML PARSE 533
PROGRAM COLLATING SEQUENCE

clause
ALPHABET clause 76
COLLATING SEQUENCE phrase 71
SPECIAL-NAMES paragraph and 71

Program Initialization Parameters (PIP)
data area 286

program name 62
PROGRAM STATUS clause 90
program switches

See UPSI-0 through UPSI-7, program
switches

program termination 325
PROGRAM-ID paragraph

description 62
format 61

programming notes
ACCEPT statement 280
altered GO TO statement 310
arithmetic statements 273
data manipulation statements 489,

499
DELETE statement 337
EXCEPTION/ERROR

procedures 633
OPEN statement 410
PERFORM statement 414
STRING statement 489
UNSTRING statement 499

programming structures
DO-WHILE and DO-UNTIL 414
STOP statement 487

pseudo-text
COPY statement 605
delimiter 20
reference format 25, 26
REPLACE statement 628

publications 697
punctuation xxvii
punctuation character

defined as separator 19
rules for use 20
within numeric literals 15

Q
qualification 31
qualifier 31
quotation mark (") character

as a separator 20
nonnumeric literal and 25

Index 711

QUOTE/QUOTES figurative
constant 10

R
random access mode

data organization and 109
DELETE statement 337
description 109
READ statement 424, 425

RANDOM function 584
range errors and reference

modification 39
RANGE function 585
READ statement

duplicate keys 434
dynamic access mode 424
end of volume 433
floating-point and 428
format and description 424
FORMAT phrase 439
INTO identifier phrase 275
INVALID KEY phrase 274
invited program devices 437
multiple record processing 435
multivolume files 435
NEXT RECORD phrase 427
NO LOCK phrase 428
null-capable fields 340, 424, 429, 449,

481, 511, 515, 612
record format 429
RECORD phrase 427
sequential access mode 424, 425
transaction files

nonsubfile 436
subfile 440
subfile control record format 436

receiving field
COMPUTE statement 334
multiple results rules 273
SET statement 463
STRING statement 490
UNSTRING statement 501

receiving item
MOVE statement 392

record
area description 148
elementary items 132
fixed length 147
key in indexed file

DELETE statement uses 337
logical, definition of 131
physical, definition of 131

record blocking 406, 408, 409
RECORD clause

description 148
format 148

record description entry
definition 128
levels of data 133
logical record 132

RECORD KEY clause
description 110
floating-point and 112
variable-length items 113

record locking
and DELETE statement 338, 339

record locking (continued)
and REWRITE statement 451

RECORD phrase, READ statement 427
RECORDS phrase

BLOCK CONTAINS clause 148
RERUN clause 120

RECURSIVE clause 63
RECURSIVE Clause

description 63
REDEFINES clause

description 203
examples of 206
format 203
general considerations 205
OCCURS clause restriction 204
redefined items and 204
SYNCHRONIZED clause and 213
undefined results 206
VALUE clause and 205

redefinition of formats 618
redefinition, group level name 615
redefinition, implicit 145
reference format 23
reference modification 37

date-time data items 38
description 37
evaluation of operands 38
functions and 37
operands, evaluation of 38
range errors 39
restrictions 39

reference-modifier
ALL Subscripting 547

relation character
INSPECT statement 383

relation condition
abbreviated combined 262
COPY statement 604
description 250
INITIALIZE statement 373
OCCURS clause and 179

relational operator
in abbreviated combined relation

condition 263
list of 9
meaning of each 251
relation condition use 250

relative files
access modes allowed 109
OPEN statement 403
organization 108
RELATIVE KEY clause 110, 115
REWRITE statement 450, 451
START statement 485
WRITE statement 512

RELATIVE KEY clause
description 115

relative organization
access modes allowed 109
description 108

RELEASE statement 444
floating-point and 444

REM function 585
REMAINDER phrase of DIVIDE

statement 357
RENAMES clause

CORRESPONDING phrase 268

RENAMES clause (continued)
date-time and 207
description and format 207
floating-point and 207
INITIALIZE statement 373
level 66 item 135, 207
PICTURE clause 186

REPLACE Statement
description 628
format 628

replacement editing 202
replacement rules for COPY

statement 606
replacement rules for library-text 603
REPLACING phrase

COPY statement 604
floating-point and 374
INITIALIZE statement 374
INSPECT statement 377

REPLACING, in Format 2 COPY 622
RERUN clause

description 120
RECORDS phrase 120

RESERVE clause
description 102

reserved word
description 8
in the ILE COBOL language 657

reserved words 657
intrinsic functions and 657

result field
GIVING phrase 269
NOT ON SIZE ERROR phrase 270
ON SIZE ERROR phrase 270
ROUNDED phrase 269

return codes 666
RETURN statement

AT END phrase 447
description and format 446
floating-point and 446

RETURN-CODE special register 488
intrinsic functions and 488

reusing records 450
REVERSE function 586
REVERSED phrase, OPEN

statement 408
REWRITE statement

description and format 448
floating-point and 449
FORMAT phrase 449
FROM identifier phrase 275
inhibition of 448
INVALID KEY condition 450
INVALID KEY phrase 450
transaction (subfile) 452

right parenthesis ())
See parentheses

ROLLBACK statement
description 454
format 454

ROUNDED phrase
ADD statement 308
COMPUTE statement 335
description 269
DIVIDE statement 357
MULTIPLY statement 402
size error checking and 270

712 ILE COBOL Reference

ROUNDED phrase (continued)
SUBTRACT statement 497

Rules for Usage 543
run unit

termination
CANCEL statement 329

S
S

symbol in PICTURE clause 188, 193
and performance 188

SAME RECORD AREA clause
description 121

SAME SORT AREA clause
description 122

SAME SORT-MERGE AREA clause
description 123

SBCS, Character String 4
scope terminator

explicit 266
implicit 267

SD
See Sort File Description (SD) entry

SEARCH statement
ASCENDING/DESCENDING KEY

phrase 179
AT END phrase 456
binary search 459
coding example 461
description and format 455
floating-point and 456, 460
serial search 457
SET statement 456
USAGE IS INDEX clause 226
VARYING phrase 457
WHEN phrase 456

section
description 21, 243
header

description 243
specification of 24

name
as a qualifier, rules 32
description 243
in EXCEPTION/ERROR

declarative 631
SECURITY paragraph

description 65
format 61

SEGMENT-LIMIT clause 71
segment-number 71
SELECT clause

ASSIGN clause and 99
description 99
specifying a file name 99

SELECT OPTIONAL clause
description 99
specification for sequential I-O

files 99
selection objects in EVALUATE

statement 363
selection subjects in EVALUATE

statement 363
semicolon separator, rules for using 19
sending field

SET statement 463

sending field (continued)
STRING statement 489
UNSTRING statement 500

sending item
MOVE statement 392

sentence
COBOL, definition 22
description 244

SEPARATE CHARACTER phrase of
SIGN clause 210

separate sign, class condition 248
separator

description 19
list of 19
VALUE clause 234

sequence number area (cols. 1-6) 23
sequential access mode

data organization and 109
DELETE statement 337
description 109
REWRITE statement 450

sequential files
access mode allowed 109
CLOSE statement 330
file description entry 139
OPEN statement 403
organization 107
REWRITE statement 450
SELECT OPTIONAL clause 99
WRITE statement 508

sequential organization
access mode allowed 109
description 107
LINAGE clause 153
SELECT OPTIONAL clause 99

serial search 457
PERFORM statement 415

SET statement
Adjusting Pointers 469
description and format 463
DOWN BY phrase 465, 469
floating-point and 463, 464, 465, 467
IN LIBRARY phrase 469, 472
index data item values assigned 226
locales, setting 470
OFF phrase 466
ON phrase 466
pointer data item 467
procedure-pointer data item 468
SEARCH statement 465
TO phrase 463
TO TRUE phrase 466
UP BY phrase 465, 469
USAGE IS INDEX clause 226

sharing data 171
sharing files 45
SI attribute 102
SIGN clause

description and format 209
floating-point and 210
operational sign 209
PICTURE clause and 209

sign condition 258
sign condition, floating-point and 258
sign in PICTURE clause 188

and performance 188

SIGN IS SEPARATE clause
CODE-SET clause and 155
description 210

signed
data categories 138
numeric item, definition 193
numeric item, INSPECT

statement 379
operational signs 138

simple condition
combined 260
description and types 247
negated 260

simple insertion editing 198
SIN function 586
SIZE ERROR phrase

See ON SIZE ERROR phrase
size-error condition 270

See ON SIZE ERROR phrase
skip to next page 26
SKIP1/2/3 statement 630
slash (/)

comment line 26
insertion character 200
symbol in PICTURE clause 189, 192

Sort File Description (SD) entry
data division 145
DATA RECORDS clause 152
description 139, 145
EXTERNAL clause 145
GLOBAL clause 147
level indicator 132
RECORD clause 148

SORT statement
ASCENDING KEY phrase 473
COLLATING SEQUENCE

phrase 475
DESCENDING KEY phrase 473
description and format 472
DUPLICATES phrase 475
floating-point and 474
GIVING phrase 476
INPUT PROCEDURE phrase 476
null-capable fields 473
OUTPUT PROCEDURE phrase 477
USING phrase 475

SORT-RETURN special register 391
Sort/Merge feature

MERGE Statement 386
OUTPUT PROCEDURE phrase 390
RELEASE statement 444
RETURN statement 446
SAME SORT AREA clause 122
SAME SORT-MERGE AREA

clause 123
SORT statement 472
SORT-RETURN special register 391

Sort/Merge file statement phrases
ASCENDING/DESCENDING KEY

phrase 387
COLLATING SEQUENCE

phrase 388
GIVING phrase 389
OUTPUT PROCEDURE phrase 390
USING phrase 389

source program
library, COPY statement 602

Index 713

source program (continued)
library, programming notes 607
standard COBOL reference format 23

SOURCE-COMPUTER paragraph
description and format 69
SOURCE-COMPUTER paragraph 69
WITH DEBUGGING MODE

clause 70
space separator 19
SPACE/SPACES figurative constant 9
special insertion editing 200
special register

ADDRESS OF 12
arithmetic operator 9
DB-FORMAT-NAME 12, 277
DEBUG-ITEM 11
description of use 11
FORMAT OF 170
functions and 11
LENGTH OF 321
LINAGE-COUNTER 155
LOCALE OF 169
relational operator 9
RETURN-CODE 488
SORT-RETURN 391
WHEN-COMPILED 399

SPECIAL-NAMES paragraph
ACCEPT statement 281
ALPHABET clause 75
CLASS clause 79
CONSOLE IS CRT clause 80
CRT STATUS clause 80
CURRENCY SIGN clause 82
CURSOR clause 84
DECIMAL-POINT IS COMMA

clause 84
description 72
DISPLAY statement 342, 353
example 75
format 72
FORMAT clause 85
LINKAGE TYPE clause 88
LOCALE clause 89
mnemonic names 74
phrases 76
WRITE statement 510

SQRT function 587
standard alignment rules 136

date-time data items 137
JUSTIFIED clause 172

standard COBOL format 23
standard data format 138
STANDARD-1 phrase 76

ASCII-encoded file specification 155
CODE-SET clause 155, 156

STANDARD-2 phrase 76
STANDARD-DEVIATION function 587
START statement

description and format 479
floating-point and 480
FORMAT phrase 481
indexed file 483
INVALID KEY phrase 274, 482
KEY phrase 485
NO LOCK phrase 480
relative file 485
status key considerations 481, 485

STARTING Phrase
description 518

statement
categories of 263
conditional 265
data manipulation 273
delimited scope 266
description 22, 244
imperative 264
input-output 274
operations 267
procedure branching 277

status key
file processing

common processing facility 274
EXCEPTION/ERROR procedures

check 632
values 668

STOP RUN statement 487
STOP statement 487

floating-point and 487
storage

auxiliary 663
MEMORY SIZE clause 71
REDEFINES clause 203

storage layout of table, example 177
STRING statement

description and format 489
execution of 491
floating-point and 489, 490
intrinsic functions and 492

structure of the COBOL language 3
structured programming

DO-WHILE and DO-UNTIL 414
structures

data field 615
format (record) level 615
indicator 615, 616

subjects in EVALUATE statement 363
subprogram

termination
CANCEL statement 329
EXIT PROGRAM statement 366
GOBACK statement 368

subprogram linkage
CALL statement 312
CANCEL statement 327

subscript 185
subscripting

ALL 34
definition and format 185
INDEXED BY phrase of OCCURS

clause 181
MOVE statement evaluation 393
OCCURS clause specification 175
restrictions 36, 185

SUBSTITUTE phrase
COPY statement 611

substitution field of INSPECT
REPLACING 383

substring
See reference modification

SUBTRACT statement
common phrases 268
description and format 496
floating-point and 497

SUBTRACT-DURATION function 588

SUM function 589
SUPPRESS phrase 604
suppressing output 601, 604
suppression editing 202
suspension of program

and DISPLAY statement 344
switch-status condition 259
symbol

PICTURE clause 187
sequence in PICTURE clause 191
sequence in PICTURE clause with

LOCALE phrase 192
SYNCHRONIZED clause

date-time and 212
description and format 211
elementary item 213
floating-point and 212
REDEFINES clause and 213
VALUE clause and 230

system considerations, subprogram
linkage

CALL statement 312
CANCEL statement 327

system information transfer
ACCEPT statement 282
floating-point and 282
YYYYDDD phrase 282
YYYYMMDD phrase 282

system-independent binary items 222
system-name

computer-name 69, 70
description 8
OBJECT-COMPUTER paragraph 70
SOURCE-COMPUTER paragraph 69

SYSTEM-SHUTDOWN as
function-name 74

T
table handling considerations 176
table layout, example 177
table references

restrictions 185
subscripting 185

table, definition 176
TALLYING phrase

INSPECT statement 382
UNSTRING statement 502

TAN function 590
TERMINAL phrase

description 518
with WRITE SUBFILE,

description 522
with WRITE SUBFILE, format 522

termination of execution 325
EXIT PROGRAM statement 366
GOBACK statement 368
STOP RUN statement 487
STRING statement 489

terminators, scope 266
TEST-DATE-TIME function 590
text words 3, 603
text-name 603, 626
THROUGH (THRU) phrase

ALPHABET clause 77
CLASS clause 79
EVALUATE statement 363

714 ILE COBOL Reference

THROUGH (THRU) phrase (continued)
MERGE Statement 386
PERFORM statement 412
RENAMES clause 207
SORT statement 472
VALUE clause 232

TIME 85, 166, 284
time fields 619
TIMES phrase of PERFORM

statement 414
TIMESTAMP 166
timestamp fields, COPY DDS 619
TIMFMT DDS keyword 169
TIMFMT keyword 614
TITLE statement 630
TO phrase, SET statement 463
TO TRUE phrase, SET statement 466
transfer of control

explicit 51
GO TO statement 369
IF statement 372
implicit 51
PERFORM statement 412
UNSTRING statement 499
XML PARSE statement 532

transfer of data
ACCEPT statement 280
MOVE statement 392

TRIM function 592
TRIML function 593
trimming of generated XML data 530
TRIMR function 594
truncation of data

arithmetic item 138
elementary moves 394
JUSTIFIED clause 172
ROUNDED phrase 269

truth value
complex conditions 259
EVALUATE statement 364
IF statement 371
of complex condition 259
sign condition 259
with conditional statement 265

twos complement form 224
TYPE clause

DATA RECORDS clause and 152
description 215
EXTERNAL clause and 146
FORMAT clause and 167
GLOBAL clause and 147, 171
group items and 133
JUSTIFIED clause and 172
LIKE clause and 175
OCCURS clause and 207
PICTURE clause and 186
record description entry and 145
REDEFINES clause and 204, 205
SIGN clause and 210
USAGE clause and 219
VALUE clause and 231

TYPEDEF clause
description 217
level-01 entries and 133

types of data
file data 131
program data 132

U
unary operator 245
unconditional GO TO statement 369
underscores, removed from end of field

name 610
underscores, translated to hyphens 610
uniqueness of reference 29
unsigned numeric item, definition 193
UNSTRING statement

description and format 499
execution 503
floating-point and 501
receiving field 501
sending field 500

UP BY phrase, SET statement 465, 469
UPON phrase, DISPLAY 343, 353
UPPER-CASE function 594
UPSI-0 through UPSI-7 as

function-names 74
UPSI-0 through UPSI-7, program switches

and SET statement 466
and switch-status condition 259
condition-name 75
processing special conditions 75
SPECIAL-NAMES paragraph 74
SPECIAL-NAMES paragraph coding

example 75
values 74

USAGE clause
BINARY phrase 219
CODE-SET clause and 155
COMPUTATIONAL phrase 221
COMPUTATIONAL-1 phrase 157,

173
COMPUTATIONAL-2 phrase 157,

173
COMPUTATIONAL-3 phrase 221
COMPUTATIONAL-4 phrase 222
COMPUTATIONAL-5 phrase 222
DISPLAY phrase 223
DISPLAY-1 phrase 226
elementary item size 138
floating-point and 220, 224
INDEX phrase 226
NATIONAL phrase 227
operational signs and 138
PACKED-DECIMAL phrase 220
PICTURE clause and 187
POINTER phrase 227
PROCEDURE-POINTER phrase 228
VALUE clause and 230

USAGE DISPLAY
class condition identifier 247
STRING statement and 489

USAGE IS clause
COMPUTATIONAL-1 phrase 180
COMPUTATIONAL-2 phrase 180

USAGE IS POINTER 227
USE statement

and standard error handling 633
description 631

User Programmable Status Indicator
Switch

See UPSI-0 through UPSI-7, program
switches

user-defined word
types of 7

USING phrase 240
in Procedure Division header 239
MERGE statement 389
SORT statement 475
subprogram linkage 240

using REPLACING in Format 2
COPY 622

UTF8STRING function 595

V
V

symbol in PICTURE clause 188, 193
VALUE clause

condition-name 232
description 229
floating-point and 230, 233
format 229
level 88 item 135
Linkage Section and 130
null value 234
rules for condition-name values 233
rules for literal values 231

VALUE OF clause
floating-point and 152

variable-length fields 621
record keys 113

variable-length tables 181
VARIANCE function 596
VARYING phrase

PERFORM statement 415
SEARCH statement 457

W
WHEN phrase

EVALUATE statement 363
SEARCH statement 456

WHEN-COMPILED function 596
WHEN-COMPILED special register 399
WITH DEBUGGING MODE clause 70
WITH DUPLICATES phrase, SORT

statement 475
WITH FOOTING phrase 153
WITH NO LOCK phrase

and DELETE statement 338
READ statement 428
START statement 480

WITH POINTER phrase
STRING statement 490
UNSTRING statement 502

Working-Storage Section
data-item description entry 129
description 129
format 127
record-description entry 129

WRITE statement
AFTER ADVANCING 510
BEFORE ADVANCING 510
description and format 508
END-OF-PAGE phrase 511
END-OF-PAGE/EOP 511
floating-point and 509, 513
FORMAT phrase 516, 517
FORMATFILE 516
FROM identifier phrase 275

Index 715

WRITE statement (continued)
indexed files 512
INDICATORS phrase 519, 522
inhibition of 508
INVALID KEY phrase 515
mnemonic-name in 73
relative files 512
ROLLING phrase 519
sequential files 508
STARTING phrase 518
transaction

nonsubfile 517
subfile 521

X
X

symbol in PICTURE clause 188, 192
XML GENERATE statement

element name formation 530
exception event 527
format conversion 529
operation 528
trimming 530

XML PARSE statement 532
CCSIDs supported 535
control flow 534
exception event 533
processing procedure 535

XML-CODE special register
use in XML GENERATE 527
use in XML PARSE 533

XML-EVENT special register 534
XML-NTEXT special register 535
XML-TEXT special register 535

Y
YEAR-TO-YYYY function 597
YYYYDDD 284
YYYYDDD phrase 282
YYYYMMDD 283
YYYYMMDD phrase 282

Z
Z

insertion character 202
symbol in PICTURE clause 189, 192

zero
filling, elementary moves 393
suppression and replacement

editing 202
ZERO in sign condition 258
ZERO/ZEROS/ZEROES figurative

constant 9

716 ILE COBOL Reference

IBM®

Product Number: 5770-WDS

Printed in U.S.A.

SC09-2539-07

	Contents
	About this Reference
	Who Should Use this Reference
	Prerequisite and Related Information
	How to Send Your Comments
	What's New
	What's New this Release?
	Changes to this Guide Since V6R1
	What's New in V6R1?
	What's New in V5R4?
	What's New in V5R3?
	What's New in V5R2?
	What's New in V5R1?
	What's New in V4R4?
	What's New in V4R2?
	What's New in V3R7?
	What's New in V3R6/V3R2?
	What's New in V3R1?
	ILE COBOL Syntax Notation
	How to Read the Syntax Diagrams
	IBM Extensions
	Documentary Syntax
	Obsolete Language Elements

	DBCS Notation
	Industry Standards
	An Acknowledgment
	Concepts
	Supporting Information

	Part 1. COBOL Language Structure
	Chapter 1. Characters
	Character-Strings
	COBOL Words with DBCS Character
	COBOL Words
	User-Defined Words
	System-Names
	Function-Names
	Context-Sensitive Words
	Reserved Words

	Literals
	Boolean Literals
	DBCS Literals
	National Hexadecimal Literals
	Nonnumeric Literals
	Null-terminated nonnumeric literals
	Numeric Literals

	PICTURE Character-Strings
	Comment-Entry Text

	Separators
	Rules for Separators

	Chapter 2. Sections and Paragraphs
	Entries
	Clauses
	Sentences
	Statements
	Phrases

	Chapter 3. Reference Format
	Sequence Number Area (Columns 1 through 6)
	Indicator Area (Column 7)
	Area A (Columns 8 through 11)
	Division Header
	Section Header
	Paragraph Header or Paragraph Name
	Level Indicator (FD and SD) or Level-Number (01 and 77)
	DECLARATIVES and END DECLARATIVES
	END PROGRAM Header

	Area B (Columns 12 through 72)
	Entries, Sentences, Statements, Clauses
	Continuation Lines

	Area A or Area B
	Comment Lines
	Debugging Lines
	Blank Lines
	Pseudo-Text
	Compiler-Directing Statements

	Comment Area (Columns 73 through 80)

	Chapter 4. Data Reference and Name Scoping
	Methods of Data Reference
	Identifier
	LINAGE-COUNTER
	condition-name

	Qualification
	References to Data Division Names
	References to Procedure Division Names
	References to COPY Libraries
	Qualification Rules

	Subscripting
	Subscripting Using Integers or Data-Names
	Subscripting Using Index-Names (Indexing)
	Relative Subscripting

	Reference Modification
	Evaluation of Operands
	Reference Modification Example
	Range Errors
	Restrictions on Reference Modification

	Function-Identifier
	References to Alphanumeric Items
	References to Integers
	References to DBCS Items
	References to National Items
	References to Date-Time Items
	References to Boolean Items

	User-Defined Data Types
	TYPEDEF Clause
	TYPE Clause

	Scope of Names
	Types of Names
	Nested Programs
	Global and Local Names
	External and Internal Objects
	Data Attribute Specification
	Resolution of Names
	Conventions for Program-Names
	Rules Regulating the Scope of Program Names

	Chapter 5. Transfer of Control
	Next Executable Statement

	Part 2. COBOL Program Structure
	Chapter 6. General Structure
	END PROGRAM Header

	Part 3. Identification Division
	Chapter 7. Identification Division
	PROGRAM-ID Paragraph
	program-name
	literal
	RECURSIVE Clause
	COMMON Clause
	INITIAL Clause

	Optional Paragraphs
	comment-entry

	Part 4. Environment Division
	Chapter 8. Configuration Section
	Coding Example
	SOURCE-COMPUTER Paragraph
	computer-name
	WITH DEBUGGING MODE Clause

	OBJECT-COMPUTER Paragraph
	SPECIAL-NAMES Paragraph
	Coding Example

	ALPHABET Clause
	Coding Examples

	CLASS Clause
	CONSOLE Clause
	CRT STATUS Clause
	CRT STATUS Clause Considerations
	CRT Status Key 1
	CRT Status Key 2
	CRT Status Key 3

	CURRENCY SIGN Clause
	CURSOR Clause
	CURSOR Clause Considerations

	DECIMAL-POINT IS COMMA Clause
	FORMAT Clause
	SIZE Phrase
	LOCALE Phrase

	LINKAGE TYPE Clause
	LINKAGE TYPE Clause Considerations

	LOCALE Clause
	PROGRAM STATUS Clause

	Chapter 9. Input-Output Section
	File Categories
	Database Files
	Distributed Files

	Device Files
	DDM Files
	Save Files

	Paragraphs
	FILE-CONTROL Paragraph
	FILE-CONTROL Paragraph - Format 1 - Sequential Files
	FILE-CONTROL Paragraph - Format 2 - Relative Files
	FILE-CONTROL Paragraph - Format 3 - Indexed Files
	FILE-CONTROL Paragraph - Format 4 - Sort or Merge Files
	FILE-CONTROL Paragraph - Format 5 - Transaction Files

	SELECT Clause
	ASSIGN Clause
	Device
	File Name
	Attribute

	RESERVE Clause
	ORGANIZATION Clause
	ORGANIZATION IS SEQUENTIAL (Format 1)
	ORGANIZATION IS RELATIVE (Format 2)
	ORGANIZATION IS INDEXED (Format 3)
	ORGANIZATION IS TRANSACTION (Format 4)

	PADDING CHARACTER Clause
	RECORD DELIMITER Clause
	ACCESS MODE Clause
	ACCESS MODE Clause - Format 1 - Sequential Files
	ACCESS MODE Clause - Format 2 - Relative Files
	ACCESS MODE Clause - Format 3 - Indexed Files
	ACCESS MODE Clause - Format 4 - Transaction Files
	Data Organization and Access Modes
	Data Organization
	Sequential Organization
	Relative Organization
	Extending the file boundary
	Indexed Organization
	TRANSACTION Organization

	Access Modes
	Sequential-Access Mode
	Random-Access Mode
	Dynamic-Access Mode

	Relationship Between Data Organizations and Access Modes
	Sequential Files
	Relative Files
	Indexed Files
	Transaction Files

	RECORD KEY Clause
	DUPLICATES Phrase
	EXTERNALLY-DESCRIBED-KEY

	ALTERNATE RECORD KEY
	Usage Considerations

	RELATIVE KEY Clause
	FILE STATUS Clause
	CONTROL-AREA Clause
	I-O-CONTROL Paragraph
	I-O-CONTROL Paragraph - Format 1 - Sequential Files
	I-O-CONTROL Paragraph - Format 2 - Relative and Indexed Files
	I-O-CONTROL Paragraph - Format 3 - Sort or Merge Files

	RERUN Clause
	SAME AREA Clause
	SAME RECORD AREA Clause
	SAME SORT AREA Clause
	SAME SORT-MERGE AREA Clause
	MULTIPLE FILE TAPE Clause
	COMMITMENT CONTROL Clause

	Part 5. Data Division
	Chapter 10. Data Division Overview
	Data Division Structure
	File Section
	Working-Storage Section
	Local-Storage Section
	Linkage Section
	ADDRESS OF
	ADDRESS OF Special Register

	Types of Data
	File Data
	Program Data

	Data Relationships
	Levels of Data
	Levels of Data in a Record Description Entry
	Coding Example
	Conceptual Example
	Special Level-Numbers
	Indentation

	Classes and Categories of Data
	Classes and Categories of Data

	Alignment Rules
	Numeric
	Numeric-edited
	Internal Floating-point
	External Floating-point
	Alphanumeric, Alphanumeric-edited, Alphabetic
	Date, Time, and Timestamp

	Standard Data Format
	Character-String and Item Size
	Signed Data

	Chapter 11. Data Division—File and Sort Description Entries
	File Description Entry - Format 1 - Sequential File
	File Description Entry - Format 2 - Diskette File
	File Description Entry - Format 3 - Tapefile
	File Description Entry - Format 4 - Printer File
	Sort Description Entry - Format 5 - Sort or Merge Files
	File Description Entry - Format 6 - Transaction Files
	File Section
	EXTERNAL Clause
	Considerations for External Files

	GLOBAL Clause
	BLOCK CONTAINS Clause
	RECORD Clause
	RECORD clause - Format 1
	RECORD clause - Format 2
	RECORD clause - Format 3
	For Tape Files
	For All Other Files
	General Considerations for all Formats

	LABEL RECORDS Clause
	VALUE OF Clause
	DATA RECORDS Clause
	LINAGE Clause
	Illustration of LINAGE clause phrases
	LINAGE-COUNTER Special Register

	CODE-SET Clause

	Chapter 12. Data Division—Data Description Entry
	Format 1
	Format 2
	Format 3
	Format 4
	Format 5
	CONSTANT Clause
	LIKE Clause
	OCCURS Clause
	INDICATOR Clause
	VALUE Clause

	Level-Numbers
	BLANK WHEN ZERO Clause
	EXTERNAL Clause
	FORMAT Clause
	SIZE Phrase
	USAGE For a Class Date-Time Item
	FORMAT Clause and PICTURE CLAUSE Similarities
	LOCALE Phrase
	LOCALE OF Special Register
	DDS Data Types and FORMAT Literal Equivalent
	FORMAT OF Special Register

	GLOBAL Clause
	Sharing Data

	JUSTIFIED Clause
	LIKE Clause
	Comments Generated Based on Inherited USAGE Characteristics
	Rules and Restrictions
	Coding Examples

	OCCURS Clause
	Table Handling Concepts
	Limitations
	Defining Tables
	Referencing Table Elements
	Fixed-Length Tables
	ASCENDING/DESCENDING KEY Phrase
	ASCENDING/DESCENDING KEY Phrase Rules
	ASCENDING/DESCENDING KEY Phrase Coding Example
	INDEXED BY Phrase
	Variable-Length Tables
	Subscripting
	Restrictions on Subscripting

	PICTURE Clause
	LOCALE Phrase
	Symbols Used in the PICTURE Clause
	Character-String Representation
	Data Categories and PICTURE Rules
	Alphabetic Items
	Numeric Items
	Numeric-Edited Items
	Alphanumeric Items
	Alphanumeric-edited Items
	Boolean Items
	DBCS Items
	DBCS-Edited Items
	National Items
	External Floating-Point Items

	PICTURE Clause Editing
	Simple Insertion Editing
	Special Insertion Editing
	Fixed Insertion Editing
	Floating Insertion Editing
	Zero Suppression and Replacement Editing

	REDEFINES Clause
	Redefinition Process
	REDEFINES Clause Considerations
	Coding Examples
	Undefined Results

	RENAMES Clause
	Illustrations of Valid and Invalid RENAMES Clause Specifications

	SIGN Clause
	SEPARATE CHARACTER

	SYNCHRONIZED Clause
	Benefits of Synchronized Data
	Synchronization and Offsets

	Specifying the SYNCHRONIZED Clause with the OCCURS Clause
	Specifying the SYNCHRONIZED Clause with the REDEFINES Clause
	FILLER Items
	Example of Implicit FILLER

	TYPE Clause
	TYPEDEF Clause
	USAGE Clause
	Computational Items
	BINARY Phrase
	PACKED-DECIMAL Phrase
	COMPUTATIONAL or COMP Phrase
	COMPUTATIONAL-1 or COMP-1 Phrase
	COMPUTATIONAL-2 or COMP-2 Phrase
	COMPUTATIONAL-3 or COMP-3 Phrase (Internal Decimal)
	COMPUTATIONAL-4 or COMP-4 Phrase (Binary)
	COMPUTATIONAL-5 or COMP-5 Phrase (Binary)
	DISPLAY Phrase
	External Decimal (Numeric)
	External Floating Point (Numeric)

	DISPLAY-1 Phrase
	INDEX Phrase
	NATIONAL Phrase
	POINTER Phrase
	Pointer Alignment

	PROCEDURE-POINTER Phrase
	Usage Rules

	VALUE Clause
	VALUE Clause - Format 1 - Literal Value
	Rules for Literal Values

	VALUE Clause - Format 2 - Condition-Name Value
	Rules for Condition-Name Values

	VALUE Clause - Format 3 - NULL Value

	Part 6. Procedure Division
	Chapter 13. Procedure Division
	Format 1 - with Sections and Paragraphs
	Format 2 - with Paragraphs Only
	The Procedure Division Header
	The USING Phrase
	BY REFERENCE
	BY VALUE
	GIVING/RETURNING Phrase
	data-name-2
	ADDRESS OF special register

	Declaratives
	Procedures
	Section
	Paragraph
	Sentence
	Statement
	Identifier

	Sample Procedure Division Statements

	Arithmetic Expressions
	Exponential Expressions
	Arithmetic Operators

	Conditional Expressions
	Simple Conditions
	Class Condition
	Condition-Name Condition
	Relation Condition

	Comparison of Numeric and Nonnumeric Operands
	Comparing Numeric Operands
	Comparing Nonnumeric Operands
	Comparing Numeric and Nonnumeric Operands
	Comparing Boolean Operands
	Comparing DBCS Operands
	Comparing National Operands
	Comparing National and Non-National Operands
	Comparing Date-Time Operands
	Comparing Index-Names and Index Data Items

	Sign Condition
	Switch-Status Condition
	Complex Conditions
	Negated Simple Conditions
	Combined Conditions
	Abbreviated Combined Relation Conditions

	Statement Categories
	Imperative Statements
	Conditional Statements
	Delimited Scope Statements
	Compiler-Directing Statements

	Statement Operations
	Common Phrases and Concepts
	Arithmetic Statements
	Data Manipulation Statements
	Input-Output Statements

	Chapter 14. Procedure Division Statements
	ACCEPT Statement
	Format 1 - Data Transfer
	Source of Input Data
	Coding Example

	Format 2 - System Information Transfer
	DATE, DAY, DAY-OF-WEEK, and TIME

	Format 3 - Feedback
	Format 4 - Local Data Area
	Format 5 - Program Initialization Parameters
	Format 6 - Attribute Data
	Attribute Data Formats

	Workstation I/O
	Considerations for Floating-Point Data Items
	Data Categories
	AT Phrase
	FROM CRT Phrase
	MODE IS BLOCK Phrase
	ON EXCEPTION Phrases
	END-ACCEPT Phrase
	WITH Phrase
	AUTO (AUTO-SKIP) Phrase
	BELL (BEEP) Phrase
	BLINK Phrase
	FULL (LENGTH-CHECK) Phrase
	HIGHLIGHT Phrase
	REQUIRED (EMPTY-CHECK) Phrase
	REVERSE-VIDEO Phrase
	SECURE (NO-ECHO) Phrase
	UNDERLINE Phrase
	RIGHT-JUSTIFY Phrase
	SIZE Phrase
	SPACE-FILL Phrase
	TRAILING-SIGN Phrase
	UPDATE Phrase
	ZERO-FILL Phrase
	Phrases Syntax Checked Only
	Format 7 Considerations
	Extended ACCEPT and Extended DISPLAY Considerations

	Format 8 - Session I/O
	Format 9 - Data Area
	identifier-1
	FROM Phrase
	FOR Phrase
	LIBRARY Phrase
	AT Phrase
	WITH LOCK Phrase
	(NOT) ON EXCEPTION Phrase
	END-ACCEPT Phrase

	ACQUIRE Statement
	ADD Statement
	ROUNDED Phrase
	SIZE ERROR Phrases
	CORRESPONDING Phrase (Format 3)
	END-ADD Phrase

	ALTER Statement
	Coding Example

	CALL Statement
	LINKAGE TYPE Phrase
	IN LIBRARY Phrase
	USING Phrase
	BY REFERENCE Phrase
	BY CONTENT Phrase
	BY VALUE Phrase
	LENGTH OF Special Register
	GIVING/RETURNING phrase
	ON EXCEPTION Phrase
	NOT ON EXCEPTION Phrase
	ON OVERFLOW Phrase
	END-CALL Phrase
	CALL Statement Considerations
	Call identifier
	CALL procedure-pointer
	Length of Parameters

	Program Termination Statements
	IBM i Graphics Support

	CANCEL Statement
	IN LIBRARY Phrase
	LINKAGE TYPE Phrase

	CLOSE Statement
	CLOSE Statement - Format 1
	CLOSE Statement - Format 2 - Tape Files
	CLOSE Statement Considerations
	WITH LOCK Phrase

	Special Considerations for Device Type TAPEFILE Only
	Sequential Single Volume
	Sequential Multivolume

	NO REWIND Phrase
	REEL or UNIT Phrase
	FOR REMOVAL Phrase

	COMMIT Statement
	COMPUTE Statement
	ROUNDED Phrase
	SIZE ERROR Phrases
	END-COMPUTE Phrase

	CONTINUE Statement
	DELETE Statement
	DELETE Statement Considerations
	Sequential Access Mode
	Random or Dynamic Access Mode
	Duplicates Phrase

	FORMAT Phrase
	NULL-KEY-MAP IS Phrase
	INVALID KEY Phrase
	NOT INVALID KEY Phrase
	END-DELETE Phrase

	DISPLAY Statement
	Format 1 - Data Transfer
	DISPLAY Statement Behavior
	Format 2 – Local Data Area
	Format 3 – Extended DISPLAY Statement
	AT Phrase
	Line and Column Combinations
	UPON CRT/CRT-UNDER Phrase
	MODE IS BLOCK Phrase
	WITH Phrase
	BELL (BEEP) Phrase
	The BLANK Phrase
	BLINK Phrase
	HIGHLIGHT Phrase
	REVERSE-VIDEO Phrase
	SIZE Phrase
	SIZE Phrase Example
	UNDERLINE Phrase
	Format 3 Considerations

	Format 4 – Session I/O
	Format 5 – Data Area
	UPON
	FOR Phrase
	IN LIBRARY Phrase
	AT Phrase
	WITH LOCK Phrase
	(NOT) ON EXCEPTION
	END-DISPLAY Phrase

	DIVIDE Statement
	ROUNDED Phrase
	REMAINDER Phrase
	SIZE ERROR Phrases
	END-DIVIDE Phrase

	DROP Statement
	ENTER Statement
	EVALUATE Statement
	Coding Examples
	Interpreting Selection Subjects and Selection Objects
	END-EVALUATE Phrase
	Determining Values
	Comparing Selection Subjects and Objects
	Executing the EVALUATE Statement

	EXIT Statement
	EXIT PROGRAM Statement
	AND CONTINUE RUN UNIT Phrase

	GOBACK Statement
	GO TO Statement
	Unconditional GO TO
	Conditional GO TO
	Altered GO TO

	IF Statement
	END-IF Phrase
	Transferring Control
	Nested IF Statements

	INITIALIZE Statement
	REPLACING Phrase
	INITIALIZE Statement Rules

	INSPECT Statement
	INSPECT Statement - Format 1
	INSPECT Statement - Format 2
	INSPECT Statement - Format 3
	INSPECT Statement - Format 4
	INSPECT Statement Considerations
	Comparison Rules
	INSPECT Example
	TALLYING Phrase (Formats 1 and 3)
	REPLACING Phrase (Formats 2 and 3)
	BEFORE and AFTER Phrases (All Formats)
	CONVERTING Phrase (Format 4)
	INSPECT Statement Examples

	MERGE Statement
	ASCENDING/DESCENDING KEY Phrase
	COLLATING SEQUENCE Phrase
	USING Phrase
	GIVING Phrase
	OUTPUT PROCEDURE Phrase
	SORT-RETURN Special Register

	MOVE Statement
	MOVE Statement - Format 1
	MOVE Statement - Format 2
	MOVE Statement Rules
	Elementary Moves
	Alphabetic
	Alphanumeric or Alphanumeric-Edited
	Numeric or Numeric-Edited
	Floating-Point
	Date-Time
	Boolean
	DBCS or DBCS-Edited
	National
	Valid Elementary Moves

	Group Moves
	WHEN-COMPILED Special Register

	MULTIPLY Statement
	ROUNDED Phrase
	SIZE ERROR Phrases
	END-MULTIPLY Phrase

	OPEN Statement
	OPEN Statement - Format 1 - Sequential
	OPEN Statement - Format 2 - Indexed and Relative
	OPEN Statement - Format 3 - TRANSACTION
	OPEN Statement Considerations
	Dynamic File Creation
	Special Considerations for Device Type DATABASE

	INPUT Phrase (Sequential Files)
	Special Considerations for Device Types DATABASE, TAPEFILE, and DISKETTE
	Special Considerations for Device Types DISK and DATABASE

	OUTPUT Phrase (Sequential Files)
	Special Considerations for Device Type DISK
	Special Considerations for Device Types DISK, DATABASE, and FORMATFILE

	I-O Phrase (Sequential Files)
	Special Considerations for Device Type DISK

	NO REWIND Phrase (Sequential Files)
	REVERSED Phrase (Sequential Files)
	EXTEND Phrase (Sequential Files)
	Special Considerations for Device Type DISK

	INPUT Phrase (Indexed and Relative Files)
	Special Considerations for Sequential Access Mode
	Special Considerations for Dynamic Access Mode

	OUTPUT Phrase (Indexed and Relative Files)
	Special Considerations for Relative Files—Device Type DISK
	Special Considerations for Indexed Files—Sequential Access
	Special Considerations for Indexed Files—Dynamic Access

	I-O Phrase (Indexed and Relative Files)
	Special Considerations for Relative Files—Device Type DISK
	Special Considerations for Sequential or Dynamic Access Modes

	OPEN Statement Programming Notes

	PERFORM Statement
	Basic PERFORM Statement
	In-line PERFORM Statement
	Out-of-line PERFORM Statement
	Nested PERFORM Statements

	PERFORM with TIMES Phrase
	PERFORM with UNTIL Phrase
	PERFORM with VARYING Phrase
	Varying Identifiers
	Varying One Identifier
	Varying Two Identifiers
	Varying Three Identifiers
	Varying More Than Three Identifiers
	Varying Phrase Rules

	READ Statement
	Special Considerations for Device Types DISK and DATABASE
	Sequential Access Mode
	Dynamic Access Mode
	Random Access Mode
	READ Statement - Format 1 - Sequential Retrieval/Sequential Access
	READ Statement - Format 2 - Sequential Retrieval/Dynamic Access
	READ Statement - Format 3 - Random Retrieval
	Sequential Files
	Special Considerations for Device Types TAPEFILE and DISKETTE

	Relative Files
	Indexed Files
	Multiple Record Processing
	Multivolume Files
	Transaction Files
	READ Statement - Format 4 - Transaction (Nonsubfile)
	READ Statement - Format 5 - Transaction (Subfile)

	RELEASE Statement
	RETURN Statement
	AT END Phrases
	END-RETURN Phrase

	REWRITE Statement
	REWRITE Statement - Format 1
	REWRITE Statement Considerations
	Sequential Files
	Indexed Files
	Relative Files
	Record Locking

	Transaction (Subfile) Format

	ROLLBACK Statement
	SEARCH Statement
	SEARCH Statement - Format 1 - Serial Search
	SEARCH Statement - Format 2 - Binary Search
	AT END/WHEN Phrases
	Condition-1
	NEXT SENTENCE Phrase
	END-SEARCH Phrase
	Serial Search
	VARYING Phrase
	Binary Search
	WHEN Phrase
	Search Statement Considerations
	SEARCH Example

	SET Statement
	Format 1 - Initializing Index-names, Identifiers
	Format 2 - Adjusting Index Values
	Format 3 - Setting External Switches
	Format 4 - Condition-names
	Format 5 - Pointer Data Item
	Format 6 - Procedure-Pointer Data Item
	LINKAGE TYPE Phrase
	IN LIBRARY Phrase

	Format 7 - Adjusting Pointers
	Format 8 - Locale
	IN LIBRARY Phrase

	SORT Statement
	ASCENDING/DESCENDING KEY Phrase
	DUPLICATES Phrase
	COLLATING SEQUENCE Phrase
	USING Phrase
	INPUT PROCEDURE Phrase
	GIVING Phrase
	OUTPUT PROCEDURE Phrase

	START Statement
	NO LOCK Phrase
	KEY Phrase
	FORMAT Phrase
	NULL-KEY-MAP IS Phrase
	Example of NULL-KEY-MAP IS Phrase

	INVALID KEY Phrase
	NOT INVALID KEY Phrase
	END-START Phrase
	Indexed Files
	Relative Files

	STOP Statement
	RETURN-CODE Special Register

	STRING Statement
	DELIMITED BY Phrase
	INTO Phrase
	POINTER Phrase
	ON OVERFLOW Phrases
	END-STRING Phrase
	Data Flow
	STRING Statement Example

	SUBTRACT Statement
	ROUNDED Phrase
	SIZE ERROR Phrases
	CORRESPONDING Phrase (Format 3)
	END-SUBTRACT Phrase

	UNSTRING Statement
	DELIMITED BY Phrase
	INTO Phrase
	POINTER Phrase
	TALLYING IN Phrase
	ON OVERFLOW Phrases
	END-UNSTRING Phrase
	Data Flow
	UNSTRING Statement Example

	WRITE Statement
	Sequential Files
	ADVANCING Phrase
	NULL-MAP IS Phrase
	END-OF-PAGE Phrase
	END-WRITE Phrase
	Multivolume Files

	Indexed and Relative Files
	Considerations When Writing Indexed Files
	Considerations When Writing Relative Files
	FORMAT Phrase
	NULL-KEY-MAP IS Phrase
	NULL-MAP IS Phrase
	INVALID KEY Phrase
	NOT INVALID KEY Phrase
	END-WRITE Phrase
	FORMATFILE
	TRANSACTION (Nonsubfile)
	TRANSACTION (Subfile)

	XML GENERATE Statement
	Nested XML GENERATE or XML PARSE statements
	Operation of XML GENERATE
	Format conversion of elementary data
	Trimming of generated XML data

	XML element name formation

	XML PARSE Statement
	Control flow
	Processing procedures
	Coded character sets for XML documents
	Special Registers
	XML-CODE Special Register
	XML-EVENT Special Register
	XML-NTEXT Special Register
	XML-TEXT Special Register

	Chapter 15. Intrinsic Functions
	Function Definition and Evaluation
	Specifying a Function
	Types of Functions
	Rules for Usage
	Arguments
	Order of Precedence for the Evaluation of Function Arguments

	ALL Subscripting
	Function Definitions
	ACOS
	ADD-DURATION
	Examples

	ANNUITY
	ASIN
	ATAN
	CHAR
	CONVERT-DATE-TIME
	Examples

	COS
	CURRENT-DATE
	DATE-OF-INTEGER
	DAY-OF-INTEGER
	DATE-TO-YYYYMMDD
	Examples

	DAY-TO-YYYYDDD
	Examples

	DISPLAY-OF
	EXTRACT-DATE-TIME
	Examples

	FACTORIAL
	FIND-DURATION
	Examples

	INTEGER
	INTEGER-OF-DATE
	INTEGER-OF-DAY
	INTEGER-PART
	LENGTH
	LOCALE-DATE
	Returned Values

	LOCALE-TIME
	Returned Values

	LOG
	LOG10
	LOWER-CASE
	MAX
	MEAN
	MEDIAN
	MIDRANGE
	MIN
	MOD
	NATIONAL-OF
	NUMVAL
	NUMVAL-C
	ORD
	ORD-MAX
	ORD-MIN
	PRESENT-VALUE
	RANDOM
	RANGE
	REM
	REVERSE
	SIN
	SQRT
	STANDARD-DEVIATION
	SUBTRACT-DURATION
	Examples

	SUM
	TAN
	TEST-DATE-TIME
	Examples

	TRIM
	Returned Values
	Examples:

	TRIML
	TRIMR
	UPPER-CASE
	UTF8STRING
	VARIANCE
	WHEN-COMPILED
	YEAR-TO-YYYY
	Examples

	Part 7. Compiler-Directing Statements
	Chapter 16. Compiler-Directing Statements
	*CONTROL (*CBL) Statement
	*CONTROL (*CBL) and the COPY Statement

	COPY Statement
	COPY Statement - Format 1 - Basic
	SUPPRESS Phrase
	REPLACING Phrase
	Replacement and Comparison Rules
	Coding Examples
	COPY Statement - Format 2 - DDS Translate
	Format 2 Considerations
	I-O
	SUBSTITUTE Phrase
	REPLACING Phrase
	Using Null-Capable Fields in DDS Files
	Considerations for Using Null-Capable Fields
	Using COPY DDS with Date Data Types
	General Notes
	Data Structures Generated
	Key Generation Examples
	Example Using CONCAT Keyword
	Example Using RENAME Keyword
	Example Using SST Keyword

	COPY Statement - Format 3 - Basic IFS

	EJECT Statement
	REPLACE Statement
	Replacing Algorithm
	Programming Notes

	SKIP1/2/3 Statements
	TITLE Statement
	USE Statement
	USE Statement - Format 1 - EXCEPTION/ERROR
	USE Statement Programming Notes
	Precedence Rules for Nested Programs
	USE FOR DEBUGGING

	Part 8. Appendixes
	Appendix A. ILE COBOL Compiler Limits
	Appendix B. Intermediate Results and Arithmetic Precision
	Calculating Precision of Intermediate Results
	Compiler Calculation of Intermediate Results
	Integer Functions
	Mixed Functions
	MAX
	MIN
	RANGE
	REM
	SUM

	Floating-Point Data and Intermediate Results

	Appendix C. EBCDIC and ASCII Collating Sequences
	EBCDIC Collating Sequence
	ASCII Collating Sequence

	Appendix D. ILE COBOL Function-Name and Context-Sensitive Word List
	Visual Key
	Function-Names
	Context-Sensitive Words

	Appendix E. ILE COBOL Reserved Word List
	Visual Key
	Reserved Words

	Appendix F. File Structure Support Summary and Status Key Values
	File Structure Support Tables
	File Status Key Values and Meanings
	Attribute Data Formats

	Appendix G. PROCESS Statement
	Corresponding Create Command Options

	Appendix H. Complex OCCURS DEPENDING ON
	Effects of a Change in ODO Value
	Preventing Errors when Changing the ODO Object Value
	Preventing Overlay When Adding Elements to a Variable Table

	Appendix I. ACCEPT/DISPLAY and COBOL/2 Considerations
	Notices
	Programming Interface Information
	Trademarks
	Acknowledgments

	Bibliography
	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

