
IBM i

ILE Concepts
7.1

SC41-5606-09

IBM

IBM i

ILE Concepts
7.1

SC41-5606-09

IBM

Note
Before using this information and the product it supports, be sure to read the information in
Appendix D, “Notices,” on page 187.

This edition applies to IBM i 7.1 (product number 5770-SS1) and to all subsequent releases and modifications until
otherwise indicated in new editions. This version does not run on all reduced instruction set computer (RISC)
models nor does it run on CISC models.

© Copyright IBM Corporation 1997, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About ILE Concepts (SC41-5606). xi
Who should read this book . xi
Prerequisite and related information . xi
How to send your comments . xi

What's new for IBM i 7.1 . xiii

Chapter 1. Integrated Language Environment Introduction 1
What Is ILE? . 1
What Are the Benefits of ILE? . 1

Binding . 1
Modularity . 1
Reusable Components . 2
Common Runtime Services . 2
Coexistence with Existing Applications . 2
Source Debugger . 2
Better Control over Resources. 2

Shared Open Data Path—Scenario . 3
Commitment Control—Scenario . 3

Better Control over Language Interactions . 4
Mixed Languages—Scenario . 4

Better Code Optimization . 5
What Is the History of ILE? . 5

Original Program Model Description . 6
Principal Characteristics of OPM. 6

Extended Program Model Description . 7
Integrated Language Environment Description . 7

Principal Characteristics of Procedure-Based Languages 7

Chapter 2. ILE Basic Concepts . 9
Structure of an ILE Program . 9
Procedure . 9
Module Object . 10
ILE Program . 11
Service Program . 13
Binding Directory . 15

Binding Directory Processing . 16
Binder Functions . 16
Calling a Program or a Procedure . 18

Dynamic Program Calls . 18
Static Procedure Calls . 18
Procedure Pointer Calls . 19

Activation . 20
Error Handling Overview . 21
Optimizing Translator . 22
Debugger . 22

Chapter 3. ILE Advanced Concepts . 23
Program Activation. 23

Program Activation Creation . 24
Activation Group . 24

Activation Group Creation . 26
Default Activation Groups . 27
Non-Default Activation Group Deletion . 28

© Copyright IBM Corp. 1997, 2010 iii

||

Service Program Activation . 30
Control Boundaries . 32

Control Boundaries for Activation Groups . 32
Control Boundaries between OPM and ILE Call Stack Entries 33
Control Boundary Use . 34

Error Handling . 34
Job Message Queues . 35
Exception Messages and How They Are Sent . 35
How Exception Messages Are Handled . 36
Exception Recovery. 37
Default Actions for Unhandled Exceptions . 37
Types of Exception Handlers . 38
ILE Conditions . 40

Data Management Scoping Rules . 41
Call-Level Scoping . 41
Activation-Group-Level Scoping . 42
Job-Level Scoping . 43

Chapter 4. Teraspace and Single-Level Storage 45
Teraspace Characteristics . 45
Using Teraspace for Storage . 45
Choosing a Program Storage Model . 46

Specifying the Teraspace Storage Model . 46
Selecting a Compatible Activation Group . 47
How the Storage Models Interact . 47

Rules for Binding Modules . 47
Rules for Binding to Service Programs . 48
Rules for Activating Programs and Service Programs 48
Rules for Program and Procedure Calls . 48

Converting Your Program or Service Program to Inherit a Storage Model. 48
Updating Your Programs: Teraspace Considerations . 49

Taking Advantage of 8-byte Pointers in Your C and C++ Code 49
Pointer Support in C and C++ Compilers . 49
Pointer Conversions . 50

Using the Teraspace Storage Model . 50
Using Teraspace: Best Practices . 51

System Controls over Teraspace Programs When They are Created 51
System Controls over Teraspace Programs When They are Activated 51

IBM i Interfaces and Teraspace . 51
Potential Problems that Can Arise When You Use Teraspace 52

Teraspace Usage Tips . 52

Chapter 5. Program Creation Concepts . 55
Create Program and Create Service Program Commands . 55

Use Adopted Authority (QUSEADPAUT) . 56
Using optimization parameters . 56

Stored data in modules and programs . 56
Symbol Resolution . 57

Resolved and Unresolved Imports . 57
Binding by Copy . 58
Binding by Reference . 58
Binding Large Numbers of Modules . 58
Duplicate Symbols . 59
Importance of the Order of Exports . 59

Program Creation Example 1 . 60
Program Creation Example 2 . 62

Program Access . 64
Program Entry Procedure Module Parameter on the CRTPGM Command 64
Export Parameter on the CRTSRVPGM Command . 65

Export Parameter Used with Source File and Source Member Parameters. 66

iv ILE Concepts IBM i 7.1

||

||

Maximum width of a file for the SRCFILE parameter 66
Import and Export Concepts. 66
Binder Language . 67

Signature . 68
Start Program Export and End Program Export Commands 69

Program Level Parameter on the STRPGMEXP Command 69
Signature Parameter on the STRPGMEXP Command 69
Level Check Parameter on the STRPGMEXP Command 70

Export Symbol Command . 70
Wildcard Export Symbol Examples . 70

Binder Language Examples . 71
Binder Language Example 1 . 71
Binder Language Example 2 . 72
Binder Language Example 3 . 74
Binder Language Example 4 . 75

Changing Programs . 78
Program Updates . 79

Parameters on the UPDPGM and UPDSRVPGM Commands 80
Module Replaced by a Module with Fewer Imports . 81
Module Replaced by a Module with More Imports . 81
Module Replaced by a Module with Fewer Exports . 82
Module Replaced by a Module with More Exports . 82

Tips for Creating Modules, Programs, and Service Programs 82

Chapter 6. Activation Group Management. 85
Multiple Applications Running in the Same Job . 85
Reclaim Resources Command . 86

Reclaim Resources Command for OPM Programs . 88
Reclaim Resources Command for ILE Programs . 88
Reclaim Activation Group Command . 88

Service Programs and Activation Groups . 88

Chapter 7. Calls to Procedures and Programs 91
Call Stack . 91

Call Stack Example . 91
Calls to Programs and Calls to Procedures . 92

Static Procedure Calls . 93
Procedure Pointer Calls . 93
Passing Arguments to ILE Procedures . 93

Function Results . 94
Omitted Arguments . 95

Dynamic Program Calls . 95
Passing Arguments on a Dynamic Program Call . 96

Interlanguage Data Compatibility . 96
Syntax for Passing Arguments in Mixed-Language Applications 96
Operational Descriptors . 96

Requirements of Operational Descriptors . 97
Absence of a Required Descriptor . 97
Presence of an Unnecessary Descriptor . 97
Bindable APIs for Operational Descriptor Access . 97

Support for OPM and ILE APIs. 97

Chapter 8. Storage Management . 99
Single-Level Storage Heap . 99

Heap Characteristics . 99
Default Heap . 99
User-Created Heaps . 100
Single-Heap Support . 100
Heap Allocation Strategy . 101
Single-Level Storage Heap Interfaces . 101

Contents v

Heap Support . 102
Thread Local Storage . 102

Chapter 9. Exception and Condition Management 105
Handle Cursors and Resume Cursors . 105
Exception Handler Actions . 106

How to Resume Processing. 106
How to Percolate a Message . 107
How to Promote a Message . 107

Default Actions for Unhandled Exceptions . 108
Nested Exceptions . 109
Condition Handling . 109

How Conditions Are Represented . 109
Layout of a Condition Token . 110

Condition Token Testing . 111
Relationship of ILE Conditions to Operating System Messages 111
IBM i Messages and the Bindable API Feedback Code . 111

Chapter 10. Debugging Considerations . 113
Debug Mode . 113

Debug Environment . 113
Addition of Programs to Debug Mode . 113

How Observability and Optimization Affect Debugging . 114
Optimization Levels . 114
Debug Data Creation and Removal . 114
Module Views . 114
Debugging across Jobs . 115
OPM and ILE Debugger Support . 115
Watch Support . 115

Unmonitored Exceptions . 115
Globalization Restriction for Debugging . 115

Chapter 11. Data Management Scoping . 117
Common Data Management Resources . 117
Commitment Control Scoping . 118

Commitment Definitions and Activation Groups. 118
Ending Commitment Control . 119
Commitment Control during Activation Group End . 120

Chapter 12. ILE Bindable Application Programming Interfaces 121
ILE Bindable APIs Available . 121
Dynamic Screen Manager Bindable APIs . 123

Chapter 13. Advanced Optimization Techniques 125
Program Profiling . 125

Types of Profiling . 125
How to Profile a Program . 126

Enabling the program to collect profiling data . 126
Collect Profiling Data. 127
Applying the Collected Profiling Data . 127

Managing Programs Enabled to Collect Profiling Data. 128
Managing Programs with Profiling Data Applied to Them 129
How to Tell if a Program or Module is Profiled or Enabled for Collection 130

Interprocedural analysis (IPA) . 130
How to optimize your programs with IPA. 132
IPA control file syntax . 132
IPA usage notes . 134
IPA restrictions and limitations . 134
Partitions created by IPA . 135

Advanced Argument Optimization . 136

vi ILE Concepts IBM i 7.1

How to Use Advanced Argument Optimization . 136
Considerations and Restrictions When Using Advanced Argument Optimization 136

Licensed Internal Code Options . 138
Currently Defined Options . 138
Application . 141
Restrictions . 141
Syntax. 141
Release Compatibility . 142
Displaying Module and ILE Program Licensed Internal Code Options 142

Adaptive Code Generation . 143
ACG Concepts . 143
Normal Operation . 144
Restore Options . 144
QFRCCVNRST System Value . 144
FRCOBJCVN Parameter . 145
Create Options . 145
The CodeGenTarget LICOPT . 146
QIBM_BN_CREATE_WITH_COMMON_CODEGEN Environment Variable 147
Displaying ACG Information . 147

Object compatibility . 147
Release-to-Release Considerations . 148
Optimizing Compatible Programs . 148
ACG and Logical Partitions . 149

Chapter 14. Shared Storage Synchronization 151
Shared Storage . 151
Shared Storage Pitfalls . 151
Shared Storage Access Ordering . 152

Example Problem 1: One Writer, Many Readers . 152
Example 1 Solution . 153

Storage Synchronizing Actions . 153
Example Problem 2: Two Contending Writers or Readers 154

Example 2 Solution . 154
Alternate Solution: Using Check Lock Value / Clear Lock Value 155

Appendix A. Output Listing from CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM
Command . 157
Binder Listing . 157

Basic Listing. 157
Extended Listing . 159
Full Listing . 161
IPA Listing Components. 163

Object File Map . 163
Compiler Options Map . 163
Inline Report . 163
Global Symbols Map . 164
Partition Map . 164
Source File Map . 164
Messages . 164
Message Summary . 164

Listing for Example Service Program . 165
Binder Information Listing for Example Service Program 165
Cross-Reference Listing for Example Service Program 165
Binding Statistics for Example Service Program . 166

Binder Language Errors . 166
Signature Padded . 167

Suggested Changes . 167
Signature Truncated . 167

Suggested Changes . 167
Current Export Block Limits Interface . 167

Contents vii

Suggested Changes . 168
Duplicate Export Block . 168

Suggested Changes . 169
Duplicate Symbol on Previous Export . 169

Suggested Changes . 170
Level Checking Cannot Be Disabled More than Once, Ignored 170

Suggested Changes . 170
Multiple Current Export Blocks Not Allowed, Previous Assumed 170

Suggested Changes . 171
Current Export Block Is Empty . 171

Suggested Changes . 171
Export Block Not Completed, End-of-File Found before ENDPGMEXP 172

Suggested Changes . 172
Export Block Not Started, STRPGMEXP Required . 172

Suggested Changes . 173
Export Blocks Cannot Be Nested, ENDPGMEXP Missing 173

Suggested Changes . 173
Exports Must Exist inside Export Blocks . 173

Suggested Changes . 174
Identical Signatures for Dissimilar Export Blocks, Must Change Exports 174

Suggested Changes . 174
Multiple Wildcard Matches . 174

Suggested Changes . 175
No Current Export Block . 175

Suggested Changes . 175
No Wildcard Matches . 175

Suggested Changes . 176
Previous Export Block Is Empty . 176

Suggested Changes . 176
Signature Contains Variant Characters . 177

Suggested Changes . 177
SIGNATURE(*GEN) Required with LVLCHK(*NO). 177

Suggested Changes . 177
Signature Syntax Not Valid . 178

Suggested Changes . 178
Symbol Name Required . 178

Suggested Changes . 178
Symbol Not Allowed as Service Program Export . 179

Suggested Changes . 179
Symbol Not Defined . 179

Suggested Changes . 180
Syntax Not Valid . 180

Suggested Changes . 180

Appendix B. Exceptions in Optimized Programs 181

Appendix C. CL Commands Used with ILE Objects 183
CL Commands Used with Modules . 183
CL Commands Used with Program Objects . 183
CL Commands Used with Service Programs . 183
CL Commands Used with Binding Directories . 184
CL Commands Used with Structured Query Language . 184
CL Commands Used with CICS . 184
CL Commands Used with Source Debugger . 184
CL Commands Used to Edit the Binder Language Source File 185

Appendix D. Notices . 187
Programming Interface Information . 188
Trademarks . 189

viii ILE Concepts IBM i 7.1

Bibliography. 191

Index . 193

Contents ix

x ILE Concepts IBM i 7.1

About ILE Concepts (SC41-5606)

This book describes concepts and terminology pertaining to the Integrated Language Environment (ILE)
architecture of the IBM® i licensed program. Topics covered include module creation, binding, message
handling, the running and debugging of programs, and exception handling.

The concepts described in this book pertain to all ILE languages. Each ILE language may implement the
ILE architecture somewhat differently. To determine exactly how each language enables the concepts
described here, refer to the programmer's guide for that specific ILE language.

This book also describes IBM i functions that directly pertain to all ILE languages.

This book does not describe migration from an existing IBM i language to an ILE language. That
information is contained in each ILE high-level language (HLL) programmer's guide.

Who should read this book
You should read this book if:
v You are a software vendor developing applications or software tools.
v You are experienced in developing mixed-language applications on the IBM i operating system.
v You are not familiar with IBM i but have application programming experience on other systems.
v Your programs share common procedures, and when you update or enhance those procedures, you

have to re-create the programs that use them.

In addition to this book, make sure that you check the programmer's guides for the specific languages in
which you write programs.

Prerequisite and related information
Use the IBM i Information Center as your starting point for IBM i technical information.

You can access the information center from the following web site:
http://www.ibm.com/systems/i/infocenter/

The IBM i Information Center contains new and updated system information, such as software
installation, Linux, WebSphere®, Java™, high availability, database, logical partitions, CL commands, and
system application programming interfaces (APIs). In addition, it provides advisors and finders to assist
in planning, troubleshooting, and configuring your system hardware and software.

With every new hardware order, you receive the System i Access for Windows DVD, SK3T-4098. This DVD
provides for the installation of the IBM System i® Access for Windows licensed program. System i Access
Family offers client and server capabilities for connecting PCs to IBM i models.

For other related information, see the “Bibliography” on page 191.

How to send your comments
Your feedback is important in helping to provide the most accurate and high-quality information. If you
have any comments about this book or any other IBM i documentation, fill out the readers' comment
form at the back of this book.

© Copyright IBM Corp. 1997, 2010 xi

v If you prefer to send comments by mail, use the readers' comment form with the address that is
printed on the back. If you are mailing a readers' comment form from a country or region other than
the United States, you can give the form to the local IBM branch office or IBM representative for
postage-paid mailing.

v If you prefer to send comments by FAX, use either of the following numbers:
– United States, Canada, and Puerto Rico: 1-800-937-3430
– Other countries or regions: 1-507-253-5192

v If you prefer to send comments electronically, use one of these e-mail addresses:
– Comments on books:

RCHCLERK@us.ibm.com
– Comments on the IBM i Information Center:

RCHINFOC@us.ibm.com

Be sure to include the following:
v The name of the book or IBM i Information Center topic.
v The publication number of a book.
v The page number or topic of a book to which your comment applies.

xii ILE Concepts IBM i 7.1

What's new for IBM i 7.1

Here are the major changes to this information for this edition.
v A new teraspace default activation group has been added.
v ILE RPG and ILE COBOL now support a teraspace storage model option.

© Copyright IBM Corp. 1997, 2010 xiii

|

|

xiv ILE Concepts IBM i 7.1

Chapter 1. Integrated Language Environment Introduction

This chapter defines the Integrated Language Environment (ILE) model, describes the benefits of ILE, and
explains how ILE evolved from previous program models.

What Is ILE?
ILE is a set of tools and associated system support designed to enhance program development on the
IBM i operating system.

The capabilities of this model can be used only by programs produced by the ILE family of compilers.
That family includes ILE RPG, ILE COBOL, ILE C, ILE C++, and ILE CL.

What Are the Benefits of ILE?
ILE offers numerous benefits over previous program models. Those benefits include binding, modularity,
reusable components, common runtime services, coexistence, and a source debugger. They also include
better control over resources, better control over language interactions, better code optimization, a better
environment for C, and a foundation for the future.

Binding
The benefit of binding is that it helps reduce the overhead associated with call operations. Binding the
modules together speeds up the call. The previous call mechanism is still available, but there is also a
faster alternative. To differentiate between the two types of calls, the previous method is referred to as a
dynamic or external program call, and the ILE method is referred to as a static or bound procedure call.

The binding capability, together with the resulting improvement in call performance, makes it far more
practical to develop applications in a highly modular fashion. An ILE compiler does not produce a
program that can be run. Rather, it produces a module object (*MODULE) that can be combined (bound)
with other modules to form a single runnable unit; that is, a program object (*PGM).

Just as you can call an RPG program from a COBOL program, ILE allows you to bind modules written in
different languages. Therefore, it is possible to create a single runnable program that consists of modules
written separately in RPG, COBOL, C, C++, and CL.

Modularity
The benefits from using a modular approach to application programming include the following:
v Faster compile time

The smaller the piece of code we compile, the faster the compiler can process it. This benefit is
particularly important during maintenance, because often only a line or two needs to be changed.
When we change two lines, we may have to recompile 2000 lines. That is hardly an efficient use of
resources.
If we modularize the code and take advantage of the binding capabilities of ILE, we may need to
recompile only 100 or 200 lines. Even with the binding step included, this process is considerably
faster.

v Simplified maintenance
When updating a very large program, it is very difficult to understand exactly what is going on. This
is particularly true if the original programmer wrote in a different style from your own. A smaller

© Copyright IBM Corp. 1997, 2010 1

piece of code tends to represent a single function, and it is far easier to grasp its inner workings.
Therefore, the logical flow becomes more obvious, and when you make changes, you are far less likely
to introduce unwanted side effects.

v Simplified testing
Smaller compilation units encourage you to test functions in isolation. This isolation helps to ensure
that test coverage is complete; that is, that all possible inputs and logic paths are tested.

v Better use of programming resources
Modularity lends itself to greater division of labor. When you write large programs, it is difficult (if not
impossible) to subdivide the work. Coding all parts of a program may stretch the talents of a junior
programmer or waste the skills of a senior programmer.

v Easier migration of code from other operating systems

Reusable Components
With ILE, you can select packages of routines that can be blended into your own programs. Routines
written in any ILE language can be used by all ILE compiler users. The fact that programmers can write
in the language of their choice ensures that you have the widest possible selection of routines.

The same mechanisms that IBM and other vendors use to deliver these packages to you are available for
you to use in your own applications. Your installation can develop its own set of standard routines, and
do so in any language it chooses.

Not only can you use off-the-shelf routines in your own applications. You can also develop routines in
the ILE language of your choice and market them to users of any ILE language.

Common Runtime Services
A selection of off-the-shelf components (bindable APIs) is supplied as part of ILE, ready to be
incorporated into your applications. These APIs provide services such as:

Date and time manipulation
Message handling
Math routines
Greater control over screen handling
Dynamic storage allocation

Over time, additional routines will be added to this set and others will be available from third-party
vendors.

IBM has online information that provides further details of the APIs supplied with ILE. Refer to the APIs
topic that is found in the Programming category of the IBM i Information Center.

Coexistence with Existing Applications
ILE programs can coexist with existing OPM programs. ILE programs can call OPM programs and other
ILE programs. Similarly, OPM programs can call ILE programs and other OPM programs. Therefore, with
careful planning, it is possible to make a gradual transition to ILE.

Source Debugger
The source debugger allows you to debug ILE programs and service programs. For information about the
source debugger, see Chapter 10, “Debugging Considerations,” on page 113.

Better Control over Resources
Before the introduction of ILE, resources (for example, open files) used by a program could be scoped to
(that is, owned by) only:

2 ILE Concepts IBM i 7.1

The program that allocated the resources
The job

In many cases, this restriction forces the application designer to make tradeoffs.

ILE offers a third alternative. A portion of the job can own the resource. This alternative is achieved
through the use of an ILE construct, the activation group. Under ILE, a resource can be scoped to any of
the following:

A program
An activation group
The job

Shared Open Data Path—Scenario
Shared open data paths (ODPs) are an example of resources you can better control with ILE’s new level
of scoping.

To improve the performance of an application, a programmer decides to use a shared ODP for the
customer master file. That file is used by both the Order Entry and the Billing applications.

Because a shared ODP is scoped to the job, it is quite possible for one of the applications to inadvertently
cause problems for the other. In fact, avoiding such problems requires careful coordination among the
developers of the applications. If the applications were purchased from different suppliers, avoiding
problems may not even be possible.

What kind of problems can arise? Consider the following scenario:
1. The customer master file is keyed on account number and contains records for account numbers A1,

A2, B1, C1, C2, D1, D2, and so on.
2. An operator is reviewing the master file records, updating each as required, before requesting the next

record. The record currently displayed is for account B1.
3. The telephone rings. Customer D1 wants to place an order.
4. The operator presses the Go to Order Entry function key, processes the order for customer D1, and

returns to the master file display.
5. The program still correctly displays the record for B1, but when the operator requests the next record,

which record is displayed?
If you said D2, you are correct. When the Order Entry application read record D1, the current file
position changed because the shared ODP was scoped to the job. Therefore, the request for the next
record means the next record after D1.

Under ILE, this problem could be prevented by running the master file maintenance in an activation
group dedicated to Billing. Likewise, the Order Entry application would run in its own activation group.
Each application would still gain the benefits of a shared ODP, but each would have its own shared ODP,
owned by the relevant activation group. This level of scoping prevents the kind of interference described
in this example.

Scoping resources to an activation group allows programmers the freedom to develop an application that
runs independently from any other applications running in the job. It also reduces the coordination effort
required and enhances the ability to write drop-in extensions to existing application packages.

Commitment Control—Scenario
The ability to scope a shared open data path (ODP) to the application is useful in the area of commitment
control.

Chapter 1. Integrated Language Environment Introduction 3

Assume that you want to use a file under commitment control but that you also need it to use a shared
ODP. Without ILE, if one program opens the file under commitment control, all programs in the job have
to do so. This is true even if the commitment capability is needed for only one or two programs.

One potential problem with this situation is that, if any program in the job issues a commit operation, all
updates are committed. The updates are committed even if logically they are not part of the application
in question.

These problems can be avoided by running each part of the application that requires commitment control
in a separate activation group.

Better Control over Language Interactions
Without ILE, the way a program runs on the operating system depends on a combination of the
following factors:

The language standard (for example, the ANSI standards for COBOL and C)
The developer of the compiler

This combination can cause problems when you mix languages.

Mixed Languages—Scenario
Without activation groups, which are introduced by ILE, interactions among OPM languages are difficult
to predict. ILE activation groups can solve that difficulty.

For example, consider the problems caused by mixing COBOL with other languages. The COBOL
language standard includes a concept known as a run unit. A run unit groups programs together so that
under certain circumstances they behave as a single entity. This can be a very useful feature.

Assume that three ILE COBOL programs (PRGA, PRGB, and PRGC) form a small application in which
PRGA calls PRGB, which in turn calls PRGC (see Figure 1). Under the rules of ILE COBOL, these three
programs are in the same run unit. As a result, if any of them ends, all three programs should be ended
and control should return to the caller of PRGA.

Suppose that we now introduce an RPG program (RPG1) into the application and that RPG1 is also
called by the COBOL program PRGB (see Figure 2 on page 5). An RPG program expects that its variables,
files, and other resources remain intact until the program returns with the last-record (LR) indicator on.

Figure 1. Three ILE COBOL Programs in a Run Unit

4 ILE Concepts IBM i 7.1

However, the fact that program RPG1 is written in RPG does not guarantee that all RPG semantics apply
when RPG1 is run as part of the COBOL run unit. If the run unit ends, RPG1 disappears regardless of its
LR indicator setting. In many cases, this situation may be exactly what you want. However, if RPG1 is a
utility program, perhaps controlling the issue of invoice numbers, this situation is unacceptable.

We can prevent this situation by running the RPG program in a separate activation group from the
COBOL run unit (see Figure 3). An ILE COBOL run unit itself is an activation group.

For information about the differences between an OPM run unit and an ILE run unit, see the ILE COBOL

Programmer's Guide .

Better Code Optimization
The translator can do many more types of optimization for ILE programs than it can for OPM programs.

An ILE-enabled compiler does not directly produce a module. First, it produces an intermediate form of
the module, and then it calls the ILE translator to translate the intermediate code into instructions that
can be run. By using an intermediate code that is used as input to the common ILE translator, an
optimization added to the translator for one ILE language might benefit all ILE languages.

What Is the History of ILE?
ILE is a stage in the evolution of IBM i program models. Each stage evolved to meet the changing needs
of application programmers.

The programming environment provided when the AS/400 system was first introduced is called the
original program model (OPM). In OS/400® Version 1 Release 2, the Extended Program Model (EPM) was
introduced.

Figure 2. Three ILE COBOL Programs and One ILE RPG Program in a Run Unit

Figure 3. ILE RPG Program in a Separate Activation Group

Chapter 1. Integrated Language Environment Introduction 5

Original Program Model Description
Application developers enter source code into a source file and compile that source. If the compilation is
a success, a program object is created. The set of functions, processes, and rules that are used to directly
create and run a program object is known as the original program model (OPM).

As an OPM compiler generates the program object, it generates additional code. The additional code
initializes program variables and provides any necessary code for special processing that is needed by the
particular language. The special processing could include processing any input parameters expected by
this program. When a program is to start running, the additional compiler-generated code becomes the
starting point (entry point) for the program.

A program is typically activated when the operating system encounters a call request. At run time, the
call to another program is a dynamic program call. The resources needed for a dynamic program call can
be significant. Application developers often design an application to consist of a few large programs that
minimize the number of dynamic program calls.

Figure 4 illustrates the relationship between OPM and the operating system. As you can see, RPG,
COBOL, CL, BASIC, and PL/I all operate in this model. As of release 6.1, the BASIC compiler is no
longer available.

The broken line forming the OPM boundary indicates that OPM is an integral part of IBM i. This
integration means that many functions normally provided by the compiler writer are built into the
operating system. The resulting standardization of calling conventions allows programs written in one
language to freely call those written in another. For example, an application written in RPG typically
includes a number of CL programs to issue file overrides or to send messages.

Principal Characteristics of OPM
The following list identifies the principal characteristics of OPM:
v Dynamic binding

When program A wants to call program B, it just does so. This dynamic program call is a simple and
powerful capability. At run time, the operating system locates program B and ensures that the user has
the right to use it.

Figure 4. Relationship of OPM to IBM i

6 ILE Concepts IBM i 7.1

|
|
|

|
|
|

An OPM program has only a single entry point, whereas, each procedure in an ILE program can be an
entry point.

v Limited data sharing
In OPM, an internal procedure has to share variables with the entire program, whereas, in ILE, each
procedure can have its own locally-scoped variables.

Extended Program Model Description
OPM continues to serve a useful purpose. However, OPM does not provide direct support for procedures
as defined in languages like C. A procedure is a set of self-contained high-level language (HLL) statements
that performs a particular task and then returns to the caller. Individual languages vary in the way that a
procedure is defined. In C, a procedure is called a function.

To allow languages that define procedure calls between compilation units or languages that define
procedures with local variables to run on the operating system, OPM was enhanced. These enhancements
are called the Extended Program Model (EPM). Before ILE, EPM served as an interim solution for
procedure-based languages like Pascal and C.

The IBM i operating system no longer provides any EPM compilers.

Integrated Language Environment Description
As Figure 5 shows, ILE is tightly integrated into IBM i, just as OPM is. It provides the same type of
support for procedure-based languages that EPM does, but it does so far more thoroughly and
consistently. Its design provides for the more traditional languages, such as RPG and COBOL, and for
future language developments.

Principal Characteristics of Procedure-Based Languages
Procedure-based languages have the following characteristics:
v Locally scoped variables

Locally scoped variables are known only within the procedure that defines them. The equivalent of
locally scoped variables is the ability to define two variables with the same name that refer to two
separate pieces of data. For example, the variable COUNT might have a length of 4 digits in
subroutine CALCYR and a length of 6 digits in subroutine CALCDAY.

Figure 5. Relationship of OPM, EPM, and ILE to IBM i

Chapter 1. Integrated Language Environment Introduction 7

Locally scoped variables provide considerable benefit when you write subroutines that are intended to
be copied into several different programs. Without locally scoped variables, the programmers must use
a scheme such as naming variables based on the name of the subroutine.

v Automatic variables
Automatic variables are created whenever a procedure is entered. Automatic variables are destroyed
when the procedure is exited.

v External variables
External data is one way of sharing data between programs. If program A declares a data item as
external, program A is said to export that data item to other programs that want to share that data.
Program D can then import the item without programs B and C being involved at all. For more
information about imports and exports, see “Module Object” on page 10.

v Multiple entry points
OPM COBOL and RPG programs have only a single entry point. In a COBOL program, it is the start of
the PROCEDURE DIVISION. In an RPG program, it is the first-page (1P) output. This is the model that
OPM supports.
Procedure-based languages, on the other hand, may have multiple entry points. For example, a C
program may consist entirely of subroutines to be used by other programs. These procedures can be
exported, along with relevant data if required, for other programs to import.
In ILE, programs of this type are known as service programs. They can include modules from any of
the ILE languages. Service programs are similar in concept to dynamic link libraries (DLLs) in
Microsoft Windows. Service programs are discussed in greater detail in “Service Program” on page 13.

v Frequent calls
Programs written in procedure-based languages can be very call intensive.

8 ILE Concepts IBM i 7.1

Chapter 2. ILE Basic Concepts

Table 1 compares and contrasts the original program model (OPM) and the Integrated Language
Environment (ILE) model. This chapter briefly explains the similarities and differences listed in the table.

Table 1. Similarities and Differences between OPM and ILE

OPM ILE

Program Program

Service program
Compilation results in a runnable program Compilation results in a nonrunnable module object
Compile, run Compile, bind, run
Run units simulated for each language Activation groups
Dynamic program call Dynamic program call

Static procedure call
Single-language focus Mixed-language focus
Language-specific error handling Common error handling

Language-specific error handling
OPM debuggers Source-level debugger

Structure of an ILE Program
An ILE program contains one or more modules. A module, in turn, contains one or more procedures (see
Figure 6).

Procedure
A procedure is a set of self-contained high-level language statements that performs a particular task and
then returns to the caller. For example, an ILE C function is an ILE procedure.

Figure 6. Structure of an ILE Program

© Copyright IBM Corp. 1997, 2010 9

Module Object
A module object is a nonrunnable object that is the output of an ILE compiler. A module object is
represented to the system by the symbol *MODULE. A module object is the basic building block for
creating runnable ILE objects. This is a significant difference between ILE and OPM. The output of an
OPM compiler is a runnable program.

A module object can consist of one or more procedures and data item specifications. It is possible to
directly access the procedures or data items in one module from another ILE object. See the ILE HLL
programmer’s guides for details on coding the procedures and data items that can be directly accessed by
other ILE objects.

ILE RPG, ILE COBOL, ILE C, and ILE C++ all have the following common concepts:
v Exports

An export is the name of a procedure or data item, coded in a module object, that is available for use
by other ILE objects. The export is identified by its name and its associated type, either procedure or
data.
An export can also be called a definition.

v Imports
An import is the use of or reference to the name of a procedure or data item not defined in the current
module object. The import is identified by its name and its associated type, either procedure or data.
An import can also be called a reference.

A module object is the basic building block of an ILE runnable object. Therefore, when a module object is
created, the following may also be generated:
v Debug data

Debug data is the data necessary for debugging a running ILE object. This data is optional.
v Program entry procedure (PEP)

A program entry procedure is the compiler-generated code that is the entry point for an ILE program
on a dynamic program call. It is similar to the code provided for the entry point in an OPM program.

v User entry procedure (UEP)
A user entry procedure, written by a programmer, is the target of the dynamic program call. It is the
procedure that gets control from the PEP. The main() function of a C program becomes the UEP of that
program in ILE.

Figure 7 on page 11 shows a conceptual view of a module object. In this example, module object M1
exports two procedures (Draw_Line and Draw_Arc) and a data item (rtn_code). Module object M1
imports a procedure called Draw_Plot. This particular module object has a PEP, a corresponding UEP (the
procedure Draw_Arc), and debug data.

10 ILE Concepts IBM i 7.1

Characteristics of a *MODULE object:
v A *MODULE object is the output from an ILE compiler.
v It is the basic building block for ILE runnable objects.
v It is not a runnable object.
v It may have a PEP defined.
v If a PEP is defined, a UEP is also defined.
v It can export procedure and data item names.
v It can import procedure and data item names.
v It can have debug data defined.

ILE Program
An ILE program shares the following characteristics with an OPM program:
v The program gets control through a dynamic program call.
v There is only one entry point to the program.
v The program is identified to the system by the symbol *PGM.

An ILE program has the following characteristics that an OPM program does not have:
v An ILE program is created from one or more copied module objects.
v One or more of the copied modules can contain a PEP.
v You have control over which module’s PEP is used as the PEP for the ILE program object.

When the Create Program (CRTPGM) command is specified, the ENTMOD parameter allows you to
select which module containing a PEP is the program’s entry point.

Module M1

Procedure Draw_Arc;

End Draw_Arc;

Procedure Draw_Line;
Dcl rtn_code EXTRN;

CallPrc Draw_Plot;

End Draw_Line;

RV3W104-0

Program Entry Procedure (PEP)

User Entry Procedure (UEP):
Draw_Arc

Debug Data for Module M1

Export: Draw_Line
Draw_Arc
rtn_code

Import: Draw_Plot

(Procedure)
(Procedure)
(Data)

(Procedure)

Figure 7. Conceptual View of a Module

Chapter 2. ILE Basic Concepts 11

A PEP that is associated with a module that is not selected as the entry point for the program is
ignored. All other procedures and data items of the module are used as specified. Only the PEP is
ignored.

When a dynamic program call is made to an ILE program, the module’s PEP that was selected at
program-creation time is given control. The PEP calls the associated UEP.

When an ILE program object is created, only those procedures associated with the copied modules
containing debug data can be debugged by the ILE debugger. The debug data does not affect the
performance of a running ILE program.

Figure 8 shows a conceptual view of an ILE program object. When the program PGMEXAMP is called,
the PEP of the program, which was defined in the copied module object M3, is given control. The copied
module M2 also has a PEP defined, but it is ignored and never used by the program.

In this program example, only two modules, M1 and M3, have the necessary data for the ILE debugger.
Procedures from modules M2 and M4 cannot be debugged with the ILE debugger.

The imported procedures print and SIN are resolved to exported procedures from service programs
PRINTS and MATHFUNC, respectively.

Characteristics of an ILE *PGM object:
v One or more modules from any ILE language are copied to make the *PGM object.

*PGM (PGMEXAMP)

Procedure P3;

End P3;

Procedure P1;

DCL D EXTRN;

CallPrc print;

End P1;

Procedure P4;

DCL X REAL;

D=SIN(X);

End P4;

Procedure P2;

End P2;

RV2W980-5

Program Entry Procedure (Use PEP in module M3)
User Entry Procedure: (Use P3 in module M3)

Internally resolved imports: P1, P2, P4, D

Used PEP: Defined in module M3
UEP: Procedure P3 in module M3

Externally resolved imports:
print in *LIBL/PRINTS
SIN in MATHLIB/MATHFUNC

Debug Data

Debug Data

PEP
UEP: P3

PEP
UEP: P2

CallPrc P2;

CallPrc P1;

CallPrc P4;

Module M3

Module M1

Module M4

Module M2

Figure 8. Conceptual View of an ILE Program

12 ILE Concepts IBM i 7.1

v The person who creates the program has control over which module’s PEP becomes the only PEP for
the program.

v On a dynamic program call, the module’s PEP that was selected as the PEP for the program gets
control to run.

v The UEP associated with the selected PEP is the user’s entry point for the program.
v Procedures and data item names cannot be exported from the program.
v Procedures or data item names can be imported from modules and service programs but not from

program objects. For information on service programs, see “Service Program.”
v Modules can have debug data.
v A program is a runnable object.

Service Program
A service program is a collection of runnable procedures and available data items easily and directly
accessible by other ILE programs or service programs. In many respects, a service program is similar to a
subroutine library or procedure library.

Service programs provide common services that other ILE objects might need; hence the name service
program. An example of a set of service programs provided by the operating system are the runtime
procedures for a language. These runtime procedures often include such items as mathematical
procedures and common input and output procedures.

The public interface of a service program consists of the names of the exported procedures and data
items accessible by other ILE objects. Only those items that are exported from the module objects making
up a service program are eligible to be exported from a service program.

The programmer can specify which procedures or data items can be known to other ILE objects.
Therefore, a service program can have hidden or private procedures and data that are not available to
any other ILE object.

It is possible to update a service program without having to re-create the other ILE programs or service
programs that use the updated service program. The programmer making the changes to the service
program controls whether the change is compatible with the existing support.

The way that ILE provides for you to control compatible changes is by using the binder language. The
binder language allows you to define the list of procedure names and data item names that can be
exported. A signature is generated from the names of procedures and data items and from the order in
which they are specified in the binder language. To make compatible changes to a service program, new
procedure or data item names should be added to the end of the export list. For more information on
signatures, the binder language, and protecting your customers’ investment in your service programs, see
“Binder Language” on page 67.

Figure 9 on page 14 shows a conceptual view of a service program. Notice that the modules that make up
that service program are the same set of modules that make up ILE program object PGMEXAMP in
Figure 8 on page 12. The previous signature, Sigyy, for service program SPGMEXAMP contains the names
of procedures P3 and P4. After an upward-compatible change is made to the service program, the current
signature, Sigxx, contains not only the names of procedures P3 and P4; it also contains the name of data
item D. Other ILE programs or service programs that use procedures P3 or P4 do not have to be
re-created.

Although the modules in a service program may have PEPs, these PEPs are ignored. The service program
itself does not have a PEP. Therefore, unlike a program object, a service program cannot be the target of a
dynamic program call.

Chapter 2. ILE Basic Concepts 13

|
|
|

Characteristics of an ILE *SRVPGM object:
v One or more modules from any ILE language are copied to make the *SRVPGM object.
v No PEP is associated with the service program. Because there is no PEP, a dynamic program call to a

service program is not valid. A module’s PEP is ignored.
v Other ILE programs or service programs can use the exports of this service program identified by the

public interface.
v Signatures are generated from the procedure and data item names that are exported from the service

program.
v Service programs can be replaced without affecting the ILE programs or service programs that use

them, as long as previous signatures are still supported.

P3

P4

D

Public
Interface

*SRVPGM
(SPGMEXAMP)

Procedure P3;

End P3;

Procedure P1;
DCL D EXTRN;

End P1;

Procedure P4;
DCL X REAL;

End P4;

Procedure P2;

End P2;

RV2W981-8

Internally resolved imports: P1, P2, P4, D

Current Signature = Sigxx

Previous Signature = Sigyy

Externally resolved imports:

Debug Data

Debug Data

PEP
UEP: A3

PEP
UEP: A2

CallPrc P2;

CallPrc print;

D=SIN(X);

CallPrc P1;

CallPrc P4;

Module M3

Module M1

Module M4

Module M2

print in *LIBL/PRINTS
SIN in MATHLIB/MATHFUNC

Figure 9. Conceptual View of an ILE Service Program

14 ILE Concepts IBM i 7.1

v Modules can have debug data.
v A service program is a collection of data items and runnable procedures.
v Weak data can be exported only to an activation group. It cannot be made part of the public interface

that is exported from the service program. For information about weak data, see Export in “Import and
Export Concepts” on page 66.

Binding Directory
A binding directory lists the names of modules and service programs that you may need when creating
an ILE program or service program. Modules or service programs listed in a binding directory are used
only if they provide an export that can satisfy any currently unresolved import requests. A binding
directory is a system object that is identified to the system by the symbol *BNDDIR.

Binding directories are optional. The reasons for using binding directories are convenience and program
size.
v They offer a convenient method of listing the modules or service programs that you may need when

creating your own ILE program or service program. For example, one binding directory may list all the
modules and service programs that provide math functions. If you want to use some of those
functions, you specify only the one binding directory, not each module or service program you use.

Note: The more modules or service programs a binding directory lists, the longer it may take to bind
the programs. Therefore, you should include only the necessary modules or service programs in
your binding directory.

v Binding directories can reduce program size because you do not specify modules or service programs
that do not get used.

Very few restrictions are placed on the entries in a binding directory. The name of a module or service
program can be added to a binding directory even if that object does not yet exist.

For a list of CL commands used with binding directories, see Appendix C, “CL Commands Used with
ILE Objects,” on page 183.

Figure 10 shows a conceptual view of a binding directory.

Characteristics of a *BNDDIR object:
v Convenient method of grouping the names of service programs and modules that may be needed to

create an ILE program or service program.
v Because binding directory entries are just names, the objects listed do not have to exist yet on the

system.
v The only valid library names are *LIBL or a specific library.

Binding Directory (ABD)

Object Name Object Type Object Library

RV2W982-0

QALLOC
QMATH
QFREE
QHFREE

*SRVPGM
*SRVPGM
*MODULE
*SRVPGM

*LIBL
QSYS
*LIBL
ABC...

...
...

Figure 10. Conceptual View of a Binding Directory

Chapter 2. ILE Basic Concepts 15

|

|
|
|
|

|
|
|
|

|
|
|

v The objects in the list are optional. The named objects are used only if any unresolved imports exist
and if the named object provides an export to satisfy the unresolved import request.

Binding Directory Processing
During binding, processing happens in this order:
1. All of the modules specified on the MODULE parameter are examined. The binder determines the list

of symbols imported and exported by the object. After being examined, modules are bound, in the
order listed, into the program being created.

2. All of the service programs on the BNDSRVPGM parameter are examined in the order listed. The
service programs are bound only if needed to resolve an import.

3. All of the binding directories on the BNDDIR parameter are processed in the order listed. All the
objects listed in these binding directories are examined in the order listed, but they are bound only if
needed to resolve imports. Duplicate entries in binding directories are silently ignored.

4. Each module has a list of reference system objects. This list is simply a list of binding directories. The
reference system objects from bound modules are processed in order such that all the reference system
objects from the first module are processed first, then the objects from the second module, and so on.
The objects listed in these binding directories are examined in the order listed, only as needed, and
bound only if needed. This processing continues only as long as unresolved imports exist, even if
OPTION(*UNRSLVREF) is used. In other words, processing objects stops when all imports are
resolved.

While objects are examined, message CPD5D03, “Definition supplied multiple times for symbol”, may be
signalled even if the object is not ultimately bound into the program being created.

Note that modules usually have imports that are not apparent from the module's source code. These are
added by the compiler to implement various language features that require runtime support from service
programs. Use DSPMOD DETAIL(*IMPORT) to see these imports.

To see the list of imported and exported symbols for a module or service program, look at the Binder
Information Listing section of a CRTPGM or CRTSRVPGM DETAIL(*EXTENDED) listing. It lists the
objects that are examined during the binding.

Module or service program objects that are bound into the program or service program being created are
indicated in the Binder Information Listing section of a CRTPGM or CRTSRVPGM DETAIL(*EXTENDED)
listing. Once an object is created, you can also use the DSPPGM or DSPSRVPGM command
DETAIL(*MODULE) to see the bound *MODULE objects, and DETAIL(*SRVPGM) to see the list of bound
*SRVPGM objects.

You can use DSPMOD DETAIL(*REFSYSOBJ) to see the list of reference system objects, which are binding
directories. These binding directories typically list the names of service program APIs supplied by the
operating system or language runtime support. In this way, a module can be bound to its language
runtime support and system APIs without the programmer having to specify anything special on the
command.

Binder Functions
The function of the binder is similar to, but somewhat different from, the function provided by a linkage
editor. The binder processes import requests for procedure names and data item names from specified
modules. The binder then tries to find matching exports in the specified modules, service programs, and
binding directories.

In creating an ILE program or service program, the binder performs the following types of binding:
v Bind by copy

To create the ILE program or service program, the following are copied:

16 ILE Concepts IBM i 7.1

|
|
|
|
|

The modules specified on the module parameter
Any modules selected from the binding directory that provide an export for an unresolved import

Physical addresses of the needed procedures and data items used within the copied modules are
established when the ILE program or service program is created.
For example, in Figure 9 on page 14, procedure P3 in module M3 calls procedure P2 in module M2.
The physical address of procedure P2 in module M2 is made known to procedure M3 so that address
can be directly accessed.

v Bind by reference
Symbolic links to the service programs that provide exports for unresolved import requests are saved
in the created program or service program. The symbolic links refer to the service programs providing
the exports. The links are converted to physical addresses when the program object to which the
service program is bound is activated.
Figure 9 on page 14 shows an example of a symbolic link to SIN in service program
*MATHLIB/MATHFUNC. The symbolic link to SIN is converted to a physical address when the
program object to which service program SPGMEXAMP is bound is activated.

At run time, with physical links established to the procedures and data items being used, there is little
performance difference between the following:
v Accessing a local procedure or data item
v Accessing a procedure or data item in a different module or service program bound to the same

program

Figure 11 and Figure 12 on page 18 show conceptual views of how the ILE program PGMEXAMP and
service program SPGMEXAMP were created. The binder uses modules M1, M2, M3, and M4 and service
programs PRINTS and MATHFUNC to create ILE program PGMEXAMP and service program
SPGMEXAMP.

Module M1 Module M2 Module M3 Module M4 PRINTS MATHFUNC

Service Programs

CRTPGM PGM(PGMEXAMP) MODULE (M1, M2, M3, M4) ENTMOD(*LIBL/M3) +
BNDSRVPGM(*LIBL/PRINTS MATHLIB/MATHFUNC)

Binder

Program
PGMEXAMP

RV2W983-3

Figure 11. Creation of an ILE Program. The broken line indicates that the service programs are bound by reference
instead of being bound by copy.

Chapter 2. ILE Basic Concepts 17

For additional information on creating an ILE program or service program, see Chapter 5, “Program
Creation Concepts,” on page 55.

Calling a Program or a Procedure
In ILE you can call either a program or a procedure. ILE requires that the caller identify whether the
target of the call statement is a program or a procedure. ILE languages communicate this requirement by
having separate call statements for programs and for procedures. Therefore, when you write your ILE
program, you must know whether you are calling a program or a procedure.

Each ILE language has unique syntax that allows you to distinguish between a dynamic program call and
a static procedure call. The standard call statement in each ILE language defaults to either a dynamic
program call or a static procedure call. For RPG and COBOL the default is a dynamic program call, and
for C the default is a static procedure call. Thus, the standard language call performs the same type of
function in either OPM or ILE. This convention makes migrating from an OPM language to an ILE
language relatively easy.

To determine how long your procedure names can be, see your ILE HLL programmer’s guide.

Dynamic Program Calls
A dynamic program call transfers control to either an ILE program object or an OPM program object, but
not to an ILE service program. Dynamic program calls include the following:
v An OPM program can call another OPM program or an ILE program
v An ILE program can call an OPM program or another ILE program
v A service program can call an OPM program or an ILE program

Static Procedure Calls
A static procedure call transfers control to an ILE procedure. Static procedure calls can be coded only in
ILE languages. A static procedure call can be used to call any of the following:

Module M1 Module M2 Module M3 Module M4 PRINTS MATHFUNC

Service Programs

CRTSRVPGM SRVPGM(SPGMEXAMP) MODULE (M1, M2, M3, M4) EXPORT(*SRCFILE) +
SRCFILE(*LIBL/QSRVSRC) SRCMBR(*SRVPGM) BNDSRVPGM(*LIBL/PRINTS MATHLIB/MATHFUNC)

Binder

Service Program
SPGMEXAMP

RV3W030-1

Figure 12. Creation of a Service Program. The broken line indicates that the service programs are bound by reference
instead of being bound by copy.

18 ILE Concepts IBM i 7.1

v A procedure within the same module
v A procedure in a separate module within the same ILE program or service program
v A procedure in a separate ILE service program

Figure 13 shows examples of static procedure calls. The figure shows that:
v A procedure in an ILE program can call an exported procedure in the same program or in a service

program. Procedure P1 in program A calls procedure P2 in another copied module. Procedure P3 in
program C calls procedure P4 in service program D.

v A procedure in a service program can call an exported procedure in the same service program or in
another service program. Procedure P6 in service program B calls procedure P7 in another copied
module. Procedure P5 in service program E calls procedure P4 in service program F.

Procedure Pointer Calls
See Chapter 7, “Calls to Procedures and Programs,” on page 91 for information on procedure pointer
calls.

RV2W993-2

Program A

Program C

Static Procedure Call

Static
Procedure
Call

Static
Procedure
Call

Static Procedure Call

Service Program E

Service Program B

Service Program D

Service Program F

Module

Module

Module

Module

Module

Module

Module Module

Proc: P1

CallPrc P2

End P1

Proc: P3

CallPrc P4

End P3

Proc: P5

CallPrc P4

End P5

Proc: P6

CallPrc P7

End P6

Proc: P4

End P4

Proc: P4

End P4

Proc: P2

End P2

Proc: P7

End P7

Figure 13. Static Procedure Calls

Chapter 2. ILE Basic Concepts 19

|

|
|

Activation
After successfully creating an ILE program, you will want to run your code. The process of getting a
program or service program ready to run is called activation. You do not have to issue a command to
activate a program. Activation is done by the system when a program is called.

Activation performs the following functions:
v Allocates and initializes the static data needed by the program or service program
v Resolves imports to run-time addresses of the corresponding service program exports.

A program or service program can be activated in more than one activation group, even within the same
job. Each activation is local to a particular activation group, and each activation has its own static storage.
When a program or service program is used concurrently by many jobs, only one copy of that object's
instructions resides in storage, but the static variables are separate for each activation.

By default, service programs are immediately activated during the call to a program that directly or
indirectly requires their services. You can request deferred activation for a service program when you are
binding an ILE program or a service program that is created for V6R1, or later. If you request deferred
activation for a service program, the activation of a service program can be deferred until one of its
imported procedures is called. To minimize activation costs both at program startup and throughout
program execution, it is suggested that you specify deferred activation for the service programs that
satisfy procedure imports and that are used only on infrequently traveled code paths.

Notes:

1. If you request deferred activation for a service program that satisfies a data import, partial immediate
activation is required to initialize the static data.

2. If you request deferred activation for a service program that satisfies a procedure import for a
procedure pointer call, partial immediate activation is required to provide the binding for the
procedure pointer call.

To specify the activation mode for a service program as either immediate or deferred, use *IMMED or
*DEFER on the BNDSRVPGM parameter of the following CL commands:
v Create Program (CRTPGM)
v Create Service Program (CRTSRVPGM)
v Update Program (UPDPGM)
v Update Service Program (UPDSRVPGM)

The Add Binding Directory (ADDBNDDIRE) command provides a similar input field for a service
program entry, and the Work with Binding Directory Entries (WRKBNDDIRE) command provides output
of the activation mode of service program entries in a binding directory.

If either of the following is true:
v Activation cannot find the needed service program
v The service program no longer supports the procedures or data items represented by the signature

an error occurs and you cannot run your application.

For more details on program activation, refer to “Program Activation Creation” on page 24.

When activation allocates the storage necessary for the static variables used by a program, the space is
allocated from an activation group. At the time the program or service program is created, you can
specify the activation group that should be used at run time.

For more information on activation groups, refer to “Activation Group” on page 24.

20 ILE Concepts IBM i 7.1

|

|

|

|
|
|
|

Error Handling Overview
Figure 14 shows the complete error-handling structure for both OPM and ILE programs. This figure is
used throughout this manual to describe advanced error-handling capabilities. This topic gives a brief
overview of the standard language error-handling capabilities. For additional information on error
handling, refer to “Error Handling” on page 34.

The figure shows a fundamental layer called exception-message architecture. An exception message may
be generated by the system whenever an OPM program or an ILE program encounters an error.
Exception messages are also used to communicate status information that may not be considered a
program error. For example, a condition that a database record is not found is communicated by sending
a status exception message.

Each high-level language defines language-specific error-handling capabilities. Although these capabilities
vary by language, in general it is possible for each HLL user to declare the intent to handle specific error
situations. The declaration of this intent includes identification of an error-handling routine. When an
exception occurs, the system locates the error-handling routine and passes control to user-written
instructions. You can take various actions, including ending the program or recovering from the error and
continuing.

Figure 14 shows that ILE uses the same exception-message architecture that is used by OPM programs.
Exception messages generated by the system initiate language-specific error handling within an ILE
program just as they do within an OPM program. The lowest layer in the figure includes the capability
for you to send and receive exception messages. This can be done with message handler APIs or
commands. Exception messages can be sent and received between ILE and OPM programs.

Language-specific error handling works similarly for ILE programs as for OPM programs, but there are
basic differences:
v When the system sends an exception message to an ILE program, the procedure and module name are

used to qualify the exception message. If you send an exception message, these same qualifications can
be specified. When an exception message appears in the job log for an ILE program, the system
normally supplies the program name, module name, and procedure name.

v Extensive optimization for ILE programs can result in multiple HLL statement numbers associated with
the same generated instructions. As the result of optimization, exception messages that appear in the
job log may contain multiple HLL statement numbers.

Figure 14. Error Handling for OPM and ILE

Chapter 2. ILE Basic Concepts 21

Additional error-handling capabilities are described in “Error Handling” on page 34.

Optimizing Translator
Optimization means maximizing the runtime performance of the object. All ILE languages have access to
the optimization techniques provided by the ILE optimizing translator. Generally, the higher the
optimization level, the longer it takes to create the object. At run time, highly optimized programs or
service programs should run faster than corresponding programs or service programs created with a
lower level of optimization.

Although optimization can be specified for a module, program object, and service program, the
optimization techniques apply to individual modules. The levels of optimization are:

10 or *NONE
20 or *BASIC
30 or *FULL
40 (more optimization than level 30)

For performance reasons, it is probably desirable to use a high level of optimization when a program is
put in production. For initial testing, it might be necessary to use a lower optimization level because of
debugging limitations. However, it is strongly suggested that you use the optimization level at which a
program is released for final testing because some bugs, such as uninitialized data, might only be
exposed at higher optimization levels.

Because optimization at level 30 (*FULL) or level 40 can significantly affect your program instructions,
you may need to be aware of certain debugging limitations and different addressing exception detection.
Refer to Chapter 10, “Debugging Considerations,” on page 113 for debug considerations. Refer to
Appendix B, “Exceptions in Optimized Programs,” on page 181 for addressing error considerations.

Debugger
ILE provides a debugger that allows source-level debugging. The debugger can work with a listing file
and allow you to set breakpoints, display variables, and step into or over an instruction. You can do these
without ever having to enter a command from the command line. A command line is also available while
working with the debugger.

The source-level debugger uses system-provided APIs to allow you to debug your program or service
program. These APIs are available to everyone and allow you to write your own debugger.

The debuggers for OPM programs continue to exist on the operating system but can be used to debug
only OPM programs. However, the ILE debugger can debug OPM programs that are compiled with
either OPTION(*SRCDBG) or OPTION(*LSTDBG).

Debugging an optimized program can be difficult. When you use the ILE debugger to view or change a
variable that is used by a running program or procedure, the debugger retrieves or updates the data in
the storage location for that variable. At level 20 (*BASIC), 30 (*FULL), or 40 optimization, the current
value of a data variable might not be in storage, so the debugger cannot access it. Thus, the value
displayed for a variable might not be the current value. For this reason, you should use optimization
level 10 (*NONE) to create modules during development. Then, for best performance, you should use
optimization level 30 (*FULL) or 40 when you create modules for final testing before a program is put
into production.

For more information on the ILE debugger, see Chapter 10, “Debugging Considerations,” on page 113.

22 ILE Concepts IBM i 7.1

Chapter 3. ILE Advanced Concepts

This chapter describes advanced concepts for the ILE model. Before reading this chapter, you should be
familiar with the concepts described in Chapter 2, “ILE Basic Concepts,” on page 9.

Program Activation
Activation is the process used to prepare a program to run. Both ILE programs and service programs
must be activated by the system before they can be run.

Program activation includes two major steps:
1. Allocate and initialize static storage for the program.
2. Complete the binding of programs to service programs.

This topic concentrates on step 1. Step 2 is explained in “Service Program Activation” on page 30.

Figure 15 shows a program object that is stored in permanent disk storage. As with all IBM i objects,
program objects can be shared by multiple concurrent users running in different jobs and only one copy
of the program's instructions exists. However, when a program is activated, storage for program variables
must be allocated and initialized.

As shown in Figure 15, each program activation has its own copy of these variables.

Program A

Program
Instructions One copy of

program instructions

Job Job

Activation Group Activation Group

Program A Program A

Variable X = 10 Variable X = 20

One copy of static variables
for each program activation RV2W986-3

Figure 15. One Copy of Static Variables for Each Program Activation

© Copyright IBM Corp. 1997, 2010 23

|
|

Program Activation Creation
ILE manages the process of program activation by keeping track of program activations within an
activation group. Refer to “Activation Group” for a definition of an activation group. Only one activation
for a particular program object is in an activation group. Programs of the same name residing in different
libraries are considered different program objects when this rule is applied.

When you use a dynamic program call statement in your HLL program, ILE uses the activation group
that was specified when the program was created. This attribute is specified by using the activation
group (ACTGRP) parameter on either the Create Program (CRTPGM) command or the Create Service
Program (CRTSRVPGM) command. If a program activation already exists within the activation group
indicated with this parameter, it is used. If the program has never been activated within this activation
group, it is activated first and then run. If there is a named activation group, the name can be changed
with the ACTGRP parameter on the UPDPGM and UPDSRVPGM commands

Once a program is activated, it remains activated until the activation group is deleted. As a result of this
rule, it is possible to have active programs that are not on the call stack. Figure 16 shows an example of
three active programs within an activation group, but only two of the three programs have procedures on
the call stack. In this example, program A calls program B, causing program B to be activated. Program B
then returns to program A. Program A then calls program C. The resulting call stack contains procedures
for programs A and C but not for program B. For a discussion of the call stack, see “Call Stack” on page
91.

Activation Group
All ILE programs and service programs are activated within a substructure of a job called an activation
group. This substructure contains the resources necessary to run the programs. These resources fall into
the following general categories:

Static program variables
Dynamic storage
Temporary data management resources
Certain types of exception handlers and ending procedures

Figure 16. Program May Be Active But Not on the Call Stack

24 ILE Concepts IBM i 7.1

|
|
|
|
|
|
|

Activation groups use either single-level storage or teraspace for supplying storage for static program
variables. For more information, see Chapter 4, “Teraspace and Single-Level Storage,” on page 45. When
single-level storage is used, the static program variables and dynamic storage are assigned separate
address spaces for each activation group, which provides some degree of program isolation and
protection from accidental access. When teraspace is used, the static program variables and dynamic
storage may be assigned separate address ranges within teraspace, which provides a lesser degree of
program isolation and protection from accidental access.

The temporary data management resources include the following:
Open files (open data path or ODP)
Commitment definitions
Local SQL cursors
Remote SQL cursors
Hierarchical file system (HFS)
User interface manager
Query management instances
Open communications links
Common Programming Interface (CPI) communications

The separation of these resources among activation groups supports a fundamental concept. That is, the
concept that all programs activated within one activation group are developed as one cooperative
application.

Software vendors may select different activation groups to isolate their programs from other vendor
applications running in the same job. This vendor isolation is shown in Figure 17 on page 26. In this
figure, a complete customer solution is provided by integrating software packages from four different
vendors. Activation groups increase the ease of integration by isolating the resources associated with each
vendor package.

Chapter 3. ILE Advanced Concepts 25

There is a significant consequence of assigning the above resources to an activation group. The
consequence is that when an activation group is deleted, all of the above resources are returned to the
system. The temporary data management resources left open at the time the activation group is deleted
are closed by the system. The storage for static and dynamic storage that has not been deallocated is
returned to the system.

Activation Group Creation
You can control the runtime creation of a non-default activation group by specifying an activation group
attribute when you create your program or service program. The attribute is specified by using the
ACTGRP parameter on the CRTPGM command or CRTSRVPGM command. There is no Create Activation
Group command.

All ILE programs have one of the following activation group attributes:
v A user-named activation group

Specified with the ACTGRP(name) parameter. This attribute allows you to manage a collection of ILE
programs and service programs as one application. The activation group is created when it is first
needed. It is then used by all programs and service programs that specify the same activation group
name.

v A system-named activation group
Specified with the ACTGRP(*NEW) parameter on the CRTPGM command. This attribute allows you to
create a new activation group whenever the program is called. ILE selects a name for this activation
group. The name assigned by ILE is unique within your job. The name assigned to a system-named
activation group does not match any name you choose for a user-named activation group. Service
programs do not support this attribute.

Job

Activation Group

Activation Group

Activation Group

Activation Group

RPG Order Entry
Application from
Vendor 1

RPG Accounts Payable
Application from
Vendor 2

COBOL Inventory Control
Application from
Vendor 3

C Decision Support
Application from
Vendor 4

RV2W988-1

Figure 17. Activation Groups Isolate Each Vendor's Application

26 ILE Concepts IBM i 7.1

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

v An attribute to use the activation group of the calling program
Specified with the ACTGRP(*CALLER) parameter. This attribute allows you to create an ILE program
or service program that will be activated within the activation group of the calling program. With this
attribute, a new activation group is never created when the program or service program is activated.

v An attribute to choose the activation group appropriate to the programming language and storage
model.
Specified with the ACTGRP(*ENTMOD) parameter on the CRTPGM command. When
ACTGRP(*ENTMOD) is specified, the program entry procedure module specified by the ENTMOD
parameter is examined. One of the following occurs:
– If the module attribute is RPGLE, CBLLE, or CLLE, and

- if STGMDL(*SNGLVL) is specified, then QILE is used as the activation group.
- if STGMDL(*TERASPACE) is specified, then QILETS is used as the activation group.

– If the module attribute is not RPGLE, CBLLE, or CLLE, then *NEW is used as the activation group.

ACTGRP(*ENTMOD) is the default value for this parameter of the CRTPGM command.

All activation groups within a job have a name. Once an activation group exists within a job, it is used to
activate programs and service programs that specify that name. As a result of this design, duplicate
activation group names cannot exist within one job.

The ACTGRP parameter on the UPDPGM and UPDSRVPGM commands can be used to change the
activation group into which the program or service program is activated.

Default Activation Groups
When a job is started, the system creates two activation groups to be used by all OPM programs. One of
these activation groups is used for application programs. The other is used for operating system
programs. These OPM default activation groups use single-level storage for static program variables. You
cannot delete the OPM default activation groups. They are deleted by the system when your job ends.

ILE programs and service programs can be activated in the OPM default activation groups if the
following conditions are satisfied:
v The ILE programs or service programs were created with the activation group *CALLER option or with

the DFTACTGRP(*YES) option.

Note: The DFTACTGRP(*YES) option is only available on the CRTBNDCL (ILE CL) and CRTBNDRPG
(ILE RPG) commands.

v The call to the ILE programs or service programs originates in the OPM default activation groups.
v The ILE program or service program does not use the teraspace storage model.

The operating system will also create a teraspace default activation group when it determines one is
needed. The teraspace default activation group uses teraspace storage for static program variables. You
cannot delete the teraspace default activation group. It will be deleted by the system when your job ends.
ILE programs and service programs can be activated in the teraspace default activation group if the
following conditions are satisfied:
v The ILE program or service program was created with the activation group *CALLER option.
v The state of the ILE program or service program is *USER.

One of the following conditions must also be satisfied for the ILE program or service program to be
activated into the teraspace default activation group:
v The call to the ILE program or service program originates in the teraspace default activation group and

the ILE program or service program was created with either the storage model *INHERIT or the
storage model *TERASPACE option.

Chapter 3. ILE Advanced Concepts 27

|
|
|

|

|

|

|
|

|
|
|
|

|
|

|
|

|
|

|

|
|
|
|
|

|

|

|
|

|
|
|

v The ILE program or service program was created with the storage model *INHERIT option, there are
no application entries on the call stack associated with a different activation group, and the activation
occurs in preparation for one of these invocations:
– SQL stored procedure
– SQL function
– SQL trigger

Note: Starting with IBM i 7.1, SQL procedures, functions and triggers are created with storage model
*INHERIT. On previous releases, SQL procedures, functions, and triggers were created with
storage model *SNGLVL.

v The ILE program or service program was created with the storage model *TERASPACE option and
there are no call stack entries associated with a teraspace storage model activation group. See
“Selecting a Compatible Activation Group” on page 47 for additional information.

The static and heap storage used by ILE programs activated in one of the default activation groups are
not returned to the system until the job ends. Similarly, temporary data management resources associated
with any default activation group are normally scoped to a job. For example, normally, open files are not
closed by the system until the job ends; see “Reclaim Resources Command for ILE Programs” on page 88
for more information.

Non-Default Activation Group Deletion
Activation groups require resources to be created within a job. Processing time may be saved if an
activation group can be reused by an application. ILE provides several options to allow you to return
from an invocation without ending or deleting the associated activation group. Whether the activation
group is deleted depends on the type of activation group and the method in which the application
ended.

An application may return to a call stack entry (see “Call Stack” on page 91) associated with another
activation group in the following ways:
v HLL end verbs

For example, STOP RUN in COBOL or exit() in C.
v Call to API CEETREC
v Unhandled exceptions

Unhandled exceptions can be moved by the system to a call stack entry in another activation group.
v Language-specific HLL return statements

For example, a return statement in C, an EXIT PROGRAM statement in COBOL, or a RETURN
statement in RPG.

v Skip operations
For example, sending an exception message or branching to a call stack entry that is not associated
with your activation group.

You can delete an activation group from your application by using HLL end verbs or by calling API
CEETREC. An unhandled exception can also cause your activation group to be deleted. These operations
will always delete your activation group, provided the nearest control boundary is the oldest call stack
entry associated with the activation group (sometimes called a hard control boundary). If the nearest control
boundary is not the oldest call stack entry (sometimes called a soft control boundary), control passes to the
call stack entry prior to the control boundary. However, the activation group is not deleted.

A control boundary is a call stack entry that represents a boundary to your application. ILE defines
control boundaries whenever you call between activation groups. Refer to “Control Boundaries” on page
32 for a definition of a control boundary.

28 ILE Concepts IBM i 7.1

|
|
|

|

|

|

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|

|
|

|
|
|
|
|
|

A user-named activation group may be left in the job for later use. For this type of activation group, any
normal return or skip operation past a hard control boundary does not delete the activation group. In
contrast, use of those same operations within a system-named activation group causes the activation
group to be deleted. System-named activation groups are deleted because you cannot reuse them by
specifying the system-generated name. For language-dependent rules about a normal return from the
oldest call stack entry associated with an activation group, refer to the ILE HLL programmer’s guides.

Figure 18 shows examples of how to leave an activation group. In the figure, procedure P1 is the oldest
call stack entry. For the system-named activation group (created with the ACTGRP(*NEW) option), a
normal return from P1 deletes the associated activation group. For the user-named activation group
(created with the ACTGRP(name) option), a normal return from P1 does not delete the associated
activation group.

If a user-named activation group is left in the job, you can delete it by using the Reclaim Activation
Group (RCLACTGRP) command. This command allows you to delete named activation groups after your
application has returned. Only activation groups that are not in use can be deleted with this command.

Figure 19 on page 30 shows a job with one activation group that is not in use and one activation group
that is currently in use. An activation group is considered in use if there are call stack entries associated
with programs activated within that activation group. Using the RCLACTGRP command in program A or
program B deletes the activation group for program C and program D.

Figure 18. Leaving User-Named and System-Named Activation Groups

Chapter 3. ILE Advanced Concepts 29

|
|
|
|
|
|

|
|
|
|
|

When an activation group is deleted by ILE, certain end-operation processing occurs. This processing
includes calling user-registered exit procedures, data management cleanup, and language cleanup (such
as closing files). Refer to “Data Management Scoping Rules” on page 41 for details on the data
management processing that occurs when an activation group is deleted.

Service Program Activation
The system follows unique steps to activate a service program. The common steps used for programs and
service programs are described in “Program Activation” on page 23. The following activation activities
are unique for service programs that are bound for immediate activation:
v Service program activation starts indirectly as part of a dynamic program call to an ILE program.
v Service program activation includes completion of interprogram binding connections by mapping the

symbolic links into physical links.
v Service program activation includes signature check processing.

These activation activities are performed for service programs that are bound for deferred activation
when one of their imported procedures runs.

A program activated for the first time within an activation group is checked for binding to any service
programs. If service programs are bound for immediate activation to the program that is activated, they
are also activated as part of the same dynamic call processing. If service programs are bound for deferred
activation to the program that is activated, those that satisfy procedure imports might not be activated
until one of its imported procedures is called. Those that satisfy data imports are, at least, partially
activated to initialize the static data. This process is repeated until all necessary service programs are
activated.

Figure 20 on page 31 shows ILE program A bound to service programs B, C, and D. Service programs B
and C are also bound to service program E. The activation group attribute for each program and service

Job

Activation Group in Use

Active Programs

Active Programs
Activation Group Not in Use

Procedures
called in
Program A

Procedures
called in
Program B

Call Stack

RV2W990-4

Program C
Activation

Program D
Activation

Program B

Program A

Figure 19. Activation Groups In Use Have Entries on the Call Stack

30 ILE Concepts IBM i 7.1

|
|

program is shown.

Consider the case that all of these service programs are bound for immediate activation. When ILE
program A is activated, the following actions take place:
v The service programs are located by using an explicit library name or by using the current library list.

This option is controlled by you at the time the programs and service programs are created.
v Just like programs, a service program activation occurs only once within an activation group. In

Figure 20, service program E is activated only one time, even though it is used by service programs B
and C.

v A second activation group (Y) is created for service program D.
v Signature checking occurs among all of the programs and service programs.

Conceptually this process may be viewed as the completion of the binding process started when the
programs and service programs were created. The CRTPGM command and CRTSRVPGM command
saved the name and library of each referenced service program. An index into a table of exported
procedures and data items was also saved in the client program or service program at program creation
time. The process of service program activation completes the binding step by changing these symbolic
references into addresses that can be used at run time.

Once a service program is activated static procedure calls and static data item references to a module
within a different service program are processed. The amount of processing is the same as would be
required if the modules had been bound by copy into the same program. However, modules bound by
copy require less activation time processing than service programs.

The activation of programs and service programs requires execute authority to the ILE program and all
bound service program objects. In Figure 20, the current authority of the caller of program A is used to
check authority to program A and all of the bound service programs. The authority of program A is also
used to check authority to all of the bound service programs. Note that the authority of service program
B, C, or D is not used to check authority to service program E.

Reconsider Figure 20 for the case that program A binds to service programs B and D for deferred
activation, and C for immediate activation. D satisfies a data import for A. B satisfies procedure imports

ILE

ILE ILE ILE

ILE

Program A
ACTGRP(X)

Service Program B
ACTGRP(X)

Service Program C
ACTGRP(X)

Service Program D
ACTGRP(Y)

Service Program E
ACTGRP(*CALLER)

RV2W991-1

Figure 20. Service Program Activation

Chapter 3. ILE Advanced Concepts 31

|

|
|
|
|
|

for A for static procedure calls only, but not for any procedure pointer calls. Then, B binds to service
program E for deferred activation while C binds to E for immediate activation. When program A is
activated, the following actions take place:
v Service program C, D, and E are located by using an explicit library name or by using the current

library list. You can specify this option when you create the programs and service programs. D is
located because it satisfies a data import and must be activated at least to the point that its static data
is initialized.

v E is activated on behalf of C. When B runs and calls a procedure in E, E is not activated again because
a service program activation only occurs once with an activation group.

v A second activation group (Y) is created for service program D.
v Signature checking occurs among all of the programs and the service programs that are bound for

immediate activation or that require partial or full, immediate activation when A is activated. In this
example, signature checking is done for C, D, and E.

Locating service program B and performing a signature check for B does not take place until one of its
imported procedures is called.

The current authority of the caller of program A is used to check authority to program A and service
programs C, D, and E. The current authority of the caller of service program B is used to check authority
to B. The authority check of B might produce different results than for the case when B is bound for
immediate activation.

Control Boundaries
ILE takes the following action when an unhandled function check occurs, an HLL end verb is used, or
API CEETREC is called. ILE transfers control to the caller of the call stack entry that represents a
boundary for your application. This call stack entry is known as a control boundary.

There are two definitions for a control boundary. “Control Boundaries for Activation Groups” and
“Control Boundaries between OPM and ILE Call Stack Entries” on page 33 illustrate the following
definitions.

A control boundary can be either of the following:
v Any ILE call stack entry for which the immediately preceding call stack entry is associated with a

different activation group.
v Any ILE call stack entry for which the immediately preceding call stack entry is for an OPM program.

Control Boundaries for Activation Groups
This example shows how control boundaries are defined between activation groups.

Figure 21 on page 33 shows two activation groups and the control boundaries established by the various
calls. Invocations of procedures P2, P3, and P6 are potential control boundaries. For example, when you
are running procedure P7, procedure P6 is the control boundary. When you are running procedures P4 or
P5, procedure P3 becomes the control boundary.

32 ILE Concepts IBM i 7.1

|
|
|

|
|

|

|

|
|
|
|

Note: Control boundaries are defined between all activation groups, including the default activation
groups. For example, if a call stack entry associated with the teraspace default activation group
immediately precedes a call stack entry associated with an OPM default activation group there will
be a control boundary between the two call stack entries.

Control Boundaries between OPM and ILE Call Stack Entries
This example shows how control boundaries are defined between ILE call stack entries and OPM call
stack entries.

Figure 22 on page 34 shows three ILE procedures (P1, P2, and P3) running in an OPM default activation
group. This example could have been created by using the CRTPGM command or CRTSRVPGM
command with the ACTGRP(*CALLER) parameter value. Invocations of procedures P1 and P3 are
potential control boundaries because the preceding call stack entries are associated with OPM programs
A and B.

Activation Group A1

Call Stack

RV2W992-3

Procedure P7

Procedure P5

Procedure P1

Procedure P4

Activation Group A2

ILE

ILE

ILE

ILE

ILE

ILEILE

Procedure P6

Procedure P3Procedure P2

Figure 21. Control Boundaries. The shaded procedures are control boundaries.

Chapter 3. ILE Advanced Concepts 33

|
|
|
|

|
|

|
|
|
|
|

Control Boundary Use
When you use an ILE HLL end verb or call API CEETREC, ILE uses the most recent control boundary on
the call stack to determine where to transfer control. The call stack entry just prior to the control
boundary receives control after ILE completes all end processing.

The control boundary is used when an unhandled function check occurs within an ILE procedure. The
control boundary defines the point on the call stack at which the unhandled function check is promoted
to the generic ILE failure condition. For additional information, refer to “Error Handling.”

When the nearest control boundary is the oldest call stack entry associated with a non-default activation
group, any HLL end verb, call to the CEETREC API, or unhandled function check causes the activation
group to be deleted. When the nearest control boundary is not the oldest call stack entry associated with
a non-default activation group, control returns to the call stack entry just prior to the control boundary.
The activation group is not deleted because earlier call stack entries exist for the same activation group.

Figure 21 on page 33 shows procedure P2 and procedure P3 as the oldest call stack entries associated
with their activation groups. Using an HLL end verb or calling API CEETREC in procedure P2, P3, P4, or
P5 (but not P6 or P7) would cause activation group A2 to be deleted.

Error Handling
This topic explains advanced error handling capabilities for OPM and ILE programs. To understand how
these capabilities fit into the exception message architecture, refer to Figure 23 on page 35. Specific
reference information and additional concepts are found in Chapter 9, “Exception and Condition
Management,” on page 105. Figure 23 on page 35 shows an overview of error handling. This topic starts

Default Activation Group

*DFTACTGRP
RV2W1040-1

Program A

Program B

Procedure P2

Procedure P3

Procedure P1

ILE

OPM

OPM

ILE

ILE

Figure 22. Control Boundaries between ILE call stack entries and OPM call stack entries. The shaded procedures are
control boundaries.

34 ILE Concepts IBM i 7.1

|
|
|

|
|
|
|
|

|
|
|

with the bottom layer of this figure and continues to the top layer. The top layer represents the functions
you may use to handle errors in an OPM or ILE program.

Job Message Queues
A message queue exists for every call stack entry within each job. This message queue facilitates the
sending and receiving of informational messages and exception messages between the programs and
procedures running on the call stack. The message queue is referred to as the call message queue.

The call message queue is identified by the name of the OPM program or ILE procedure that is on the
call stack. The procedure name or program name can be used to specify the target call stack entry for the
message that you send. Because ILE procedure names are not unique, the ILE module name and ILE
program or service program name can optionally be specified. When the same program or procedure has
multiple call stack entries, the nearest call message queue is used.

In addition to the call message queues, each job contains one external message queue. All programs and
procedures running within the job can send and receive messages between an interactive job and the
workstation user by using this queue.

For information about sending and receiving exception messages by using APIs, see the Message
Handling APIs in the API topic collection of the Programming category in the IBM i Information Center.

Exception Messages and How They Are Sent
This topic describes the different exception message types and the ways in which an exception message
may be sent.

Error handling for ILE and OPM is based on exception message types. Unless otherwise qualified, the
term exception message indicates any of these message types:

Escape (*ESCAPE)
Indicates an error causing a program to end abnormally, without completing its work. You will
not receive control after sending an escape exception message.

Figure 23. ILE and OPM Error Handling

Chapter 3. ILE Advanced Concepts 35

Status (*STATUS)
Describes the status of work being done by a program. You may receive control after sending this
message type. Whether you receive control depends on the way the receiving program handles
the status message.

Notify (*NOTIFY)
Describes a condition requiring corrective action or a reply from the calling program. You may
receive control after sending this message type. Whether you receive control depends on the way
the receiving program handles the notify message.

Function Check
Describes an ending condition that has not been expected by the program. An ILE function check,
CEE9901, is a special message type that is sent only by the system. An OPM function check is an
escape message type with a message ID of CPF9999.

For information about these message types and other message types, see the API topic collection of the
Programming category of the IBM i Information Center.

An exception message is sent in the following ways:
v Generated by the system

The operating system (including your HLL) generates an exception message to indicate a programming
error or status information.

v Message handler API
The Send Program Message (QMHSNDPM) API can be used to send an exception message to a specific
call message queue.

v ILE API
The Signal a Condition (CEESGL) bindable API can be used to raise an ILE condition. This condition
results in an escape exception message or status exception message.

v Language-specific verbs
For ILE C and ILE C++, the raise() function generates a C signal. Neither ILE RPG nor ILE COBOL has
a similar function.

How Exception Messages Are Handled
When you or the system send an exception message, exception processing begins. This processing
continues until the exception is handled, which is when the exception message is modified to indicate
that it has been handled.

The system modifies the exception message to indicate that it has been handled when it calls an
exception handler for an OPM call message queue. Your ILE HLL modifies the exception message before
your exception handler is called for an ILE call message queue. As a result, HLL-specific error handling
considers the exception message handled when your handler is called. If you do not use HLL-specific
error handling, your ILE HLL can either handle the exception message or allow exception processing to
continue. Refer to your ILE HLL reference manual to determine your HLL default actions for unhandled
exception messages.

With additional capabilities defined for ILE, you can bypass language-specific error handling. These
capabilities include direct monitor handlers and ILE condition handlers. When you use these capabilities,
you are responsible for changing the exception message to indicate that the exception is handled. If you
do not change the exception message, the system continues exception processing by attempting to locate
another exception handler. The topic “Types of Exception Handlers” on page 38 contains details about
direct monitor handlers and ILE condition handlers. For information that explains how to change an
exception message, see the Change Exception Message (QMHCHGEM) API in the API topic collection of
the Programming category of the IBM i Information Center.

36 ILE Concepts IBM i 7.1

Exception Recovery
You may want to continue processing after an exception has been sent. Recovering from an error can be a
useful application tool that allows you to deliver applications that tolerate errors. For ILE and OPM
programs, the system has defined the concept of a resume point. The resume point is initially set to an
instruction immediately following the occurrence of the exception. After handling an exception, you may
continue processing at a resume point. For more information on how to use and modify a resume point,
refer to Chapter 9, “Exception and Condition Management,” on page 105.

Default Actions for Unhandled Exceptions
If you do not handle an exception message in your HLL, the system takes a default action for the
unhandled exception.

Figure 23 on page 35 shows the default actions for unhandled exceptions based on whether the exception
was sent to an OPM or ILE program. Different default actions for OPM and ILE create a fundamental
difference in error handling capabilities.

For OPM, an unhandled exception generates a special escape message known as a function check
message. This message is given the special message ID of CPF9999. It is sent to the call message queue of
the call stack entry that incurred the original exception message. If the function check message is not
handled, the system removes that call stack entry. The system then sends the function check message to
the previous call stack entry. This process continues until the function check message is handled. If the
function check message is never handled, the job ends.

For ILE, an unhandled exception message is percolated to the previous call stack entry message queue.
Percolation occurs when the exception message is moved to the previous call message queue. This
creates the effect of sending the same exception message to the previous call message queue. When this
happens, exception processing continues at the previous call stack entry.

Percolation of an unhandled exception continues until either a control boundary is reached or the
exception message is handled. The processing steps taken when an unhandled exception percolates to a
control boundary depend on the type of exception:
1. If it is a status exception, the exception is handled and the sender of the status is allowed to continue.
2. If it is a notify exception, the default reply is sent, the exception is handled, and the sender of the

notify is allowed to continue.
3. If it is an escape exception, a special function check message is sent to the resume point. This function

check may be handled, or it may percolate to a control boundary (see below).
4. If it is a function check, ILE considers the application to have ended with an unexpected error. All call

stack entries up to and including the control boundary are cancelled. If the control boundary is the
oldest invocation associated with a non-default activation group, the activation group is ended. A
generic failure exception message is defined by ILE for all languages. The message identifier for this
message is CEE9901, and is sent by ILE to the call stack entry immediately preceding the control
boundary.

Figure 24 on page 38 shows an unhandled escape exception within ILE. In this example, the invocation of
procedure P1 is a control boundary and is also the oldest invocation entry for the associated activation
group. Procedure P4 incurs an escape exception. The escape exception percolates to the P1 control
boundary and as a result the special function check message is sent to procedure P3's resume point. The
function check is not handled and percolates to the P1 control boundary. The application is considered to
have ended and the activation group is destroyed. Finally, the CEE9901 escape exception is sent to the
call stack entry immediately preceding the control boundary (program A).

The default action for unhandled exception messages defined in ILE allows you to recover from error
conditions that occur within a mixed-language application. For unexpected errors, ILE enforces a
consistent failure message for all languages. This improves the ability to integrate applications from

Chapter 3. ILE Advanced Concepts 37

|
|
|

|

|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

different sources.

Types of Exception Handlers
This topic provides an overview of the exception handler types provided for both OPM and ILE
programs. As shown in Figure 23 on page 35, this is the top layer of the exception message architecture.
ILE provides additional exception-handling capabilities when compared to OPM.

For OPM programs, HLL-specific error handling provides one or more handling routines for each call
stack entry. The appropriate routine is called by the system when an exception is sent to an OPM
program.

HLL-specific error handling in ILE provides the same capabilities. ILE, however, has additional types of
exception handlers. These types of handlers give you direct control of the exception message architecture
and allow you to bypass HLL-specific error handling. The additional types of handlers for ILE are:

Direct monitor handler
ILE condition handler

To determine if these types of handlers are supported by your HLL, refer to your ILE HLL programmer's
guide.

Direct monitor handlers allow you to directly declare an exception monitor around limited HLL source
statements. For ILE C, this capability is enabled through a #pragma directive. ILE COBOL does not
directly declare an exception monitor around limited HLL source statements in the same sense that ILE C
does. An ILE COBOL program cannot directly code the enablement and disablement of handlers around
arbitrary source code. However, a statement such as
ADD a TO b ON SIZE ERROR imperative

Activation Group

Call Stack

Procedure P4

Program A

OPM

ILE

ILE

ILE

ILE

Procedure P2

Percolate
Unhandled
Exception

Percolate
Function
Check

Procedure P3

Procedure P1

Resume Point

Send
Terminating
Exception
CEE9901

RV2W1043-1

Figure 24. Unhandled Exception Default Action

38 ILE Concepts IBM i 7.1

is internally mapped to use the direct monitor mechanism despite being an HLL-specific handler. Thus,
in terms of the priority of which handler gets control first, such a statement-scoped conditional
imperative gets control before the ILE condition handler (registered through CEEHDLR). Control then
proceeds to the USE declaratives in COBOL.

ILE condition handlers allow you to register an exception handler at run time. ILE condition handlers
are registered for a particular call stack entry. To register an ILE condition handler, use the Register a
User-Written Condition Handler (CEEHDLR) bindable API. This API allows you to identify a procedure
at run time that should be given control when an exception occurs. The CEEHDLR API requires the
ability to declare and set a procedure pointer within your language. CEEHDLR is implemented as a
built-in function. Therefore, its address cannot be specified and it cannot be called through a procedure
pointer. ILE condition handlers may be unregistered by calling the Unregister a User-Written Condition
Handler (CEEHDLU) bindable API.

OPM and ILE support HLL-specific handlers. HLL-specific handlers are the language features defined
for handling errors. For example, the ILE C signal function can be used to handle exception messages.
HLL-specific error handling in RPG includes the ability to handle exceptions for a single statement (E
extender), a group of statements (MONITOR), or an entire procedure (*PSSR and INFSR subroutines).
HLL-specific error handling in COBOL includes USE declarative for I/O error handling and imperatives
in statement-scoped condition phrases such as ON SIZE ERROR and AT INVALID KEY.

Exception handler priority becomes important if you use both HLL-specific error handling and additional
ILE exception handler types.

Figure 25 on page 40 shows a call stack entry for procedure P2. In this example, all three types of
handlers have been defined for a single call stack entry. Though this may not be a typical example, it is
possible to have all three types defined. Because all three types are defined, an exception handler priority
is defined. The figure shows this priority. When an exception message is sent, the exception handlers are
called in the following order:
1. Direct monitor handlers

First the invocation is chosen, then the relative order of handlers in that invocation. Within an
invocation, all direct monitor handlers; RPG (E), MONITOR, INFSR, and error indicators; and COBOL
statement-scoped conditional imperatives get control before the ILE condition handlers. Similarly, the
ILE condition handlers get control before other HLL-specific handlers.
If direct monitor handlers have been declared around the statements that incurred the exception, these
handlers are called before HLL-specific handlers. For example, if procedure P2 in Figure 25 on page 40
has a HLL-specific handler and procedure P1 has a direct monitor handler, P2’s handler is considered
before P1’s direct monitor handler.
Direct monitors can be lexically nested. The handler specified in the most deeply nested direct
monitor is chosen first within the multiply nested monitors that specify the same priority number.

2. ILE condition handler
If an ILE condition handler has been registered for the call stack entry, this handler is called second.
Multiple ILE condition handlers can be registered. In the example, procedure P5 and procedure P6 are
ILE condition handlers. When multiple ILE condition handlers are registered for the same call stack
entry, the system calls these handlers in last-in-first-out (LIFO) order. In general, HLL-specific
handlers have the lowest priority, after direct monitor handlers and condition handlers. Exceptions are
the HLL-specific handlers mentioned in the discussion of direct monitor handlers.

3. HLL-specific handler
HLL-specific handlers are called last.

The system ends exception processing when an exception message is modified to show that it has been
handled. If you are using direct monitor handlers or ILE condition handlers, modifying the exception
message is your responsibility. Several control actions are available. For example, you can specify handle
as a control action. As long as the exception message remains unhandled, the system continues to search

Chapter 3. ILE Advanced Concepts 39

for an exception handler using the priorities previously defined. If the exception is not handled within
the current call stack entry, percolation to the previous call stack entry occurs. If you do not use
HLL-specific error handling, your ILE HLL can choose to allow exception handling to continue at the
previous call stack entry.

ILE Conditions
To allow greater cross-system consistency, ILE has defined a feature that you can use to work with error
conditions. An ILE condition is a system-independent representation of an error condition within an HLL.
Each ILE condition has a corresponding exception message. An ILE condition is represented by a
condition token. A condition token is a 12-byte data structure that is consistent across multiple
participating systems. This data structure contains information through which you can associate the
condition with the underlying exception message.

To write programs that are consistent across systems, you need to use ILE condition handlers and ILE
condition tokens. For more information on ILE conditions refer to Chapter 9, “Exception and Condition
Management,” on page 105.

Call Stack

RV2W1041-3

Procedure P1

ILE

ILE

ILE

ILE

ILE

ILE

ILE

Procedure P3

Standard Language
Default

Direct Monitor
Handler

Procedure P4

ILE Condition
Handler

Procedure P5

Last in
First out

ILE Condition
Handler

Procedure P6

HLL - Specific
Handler

Procedure P7

Procedure P2

Exception Occurs

Exception Handler
Priority

.

.

.

Figure 25. Exception Handler Priority

40 ILE Concepts IBM i 7.1

|
|
|
|
|
|

Data Management Scoping Rules
Data management scoping rules control the use of data management resources. These resources are
temporary objects that allow a program to work with data management. For example, when a program
opens a file, an object called an open data path (ODP) is created to connect the program to the file. When
a program creates an override to change how a file should be processed, the system creates an override
object.

Data management scoping rules determine when a resource can be shared by multiple programs or
procedures running on the call stack. For example, open files created with the SHARE(*YES) parameter
value or commitment definition objects can be used by many programs at the same time. The ability to
share a data management resource depends on the level of scoping for the data management resource.

Data management scoping rules also determine the existence of the resource. The system automatically
deletes unused resources within the job, depending on the scoping rules. As a result of this automatic
cleanup operation, the job uses less storage and job performance improves.

ILE formalizes the data management scoping rules for both OPM and ILE programs into the following
scoping levels:

Call
Activation group
Job

Depending on the data management resource you are using, one or more of the scoping levels may be
explicitly specified. If you do not select a scoping level, the system selects one of the levels as a default.

Refer to Chapter 11, “Data Management Scoping,” on page 117 for information on how each data
management resource supports the scoping levels.

Call-Level Scoping
Call-level scoping occurs when the data management resource is connected to the call stack entry that
created the resource. Figure 26 on page 42 shows an example. Call-level scoping is usually the default
scoping level for programs that run in the default activation group. In this figure, OPM program A, OPM
program B, or ILE procedure P2 may choose to return without closing their respective files F1, F2, or F3.
Data management associates the ODP for each file with the call-level number that opened the file. The
RCLRSC command may be used to close the files based on a particular call-level number passed to that
command.

Chapter 3. ILE Advanced Concepts 41

Overrides that are scoped to a particular call level are deleted when the corresponding call stack entry
returns. Overrides may be shared by any call stack entry that is below the call level that created the
override.

Activation-Group-Level Scoping
Activation-group-level scoping occurs when the data management resource is connected to the activation
group associated with the ILE program or procedure invocation that created the resource. When the
activation group is deleted, data management closes all resources associated with the activation group
that have been left open. Figure 27 shows an example of activation-group-level scoping.
Activation-group-level scoping is the default scoping level for most types of data management resources
used by ILE procedures not running in a default activation group. For example, the figure shows ODPs
for files F1, F2, and F3 and override R1 scoped to the activation group.

The ability to share a data management resource scoped to an activation group is limited to programs
running in that activation group. This provides application isolation and protection. For example, assume

Figure 26. Call-Level Scoping. ODPs and overrides may be scoped to the call level.

RV3W102-0

PEP P1

UEP P2

Procedure P3

ILE

ILE

ILE

ODP F1

ODP F2

ODP F3

Data Management Resources

...

Override R1

ILE Activation Group

Figure 27. Activation Group Level Scoping. ODPs and overrides may be scoped to an activation group.

42 ILE Concepts IBM i 7.1

|
|
|
|
|
|
|

that file F1 in the figure was opened with the SHARE(*YES) parameter value. File F1 could be used by
any ILE procedure running in the same activation group. Another open operation for file F1 in a different
activation group results in the creation of a second ODP for that file.

Job-Level Scoping
Job-level scoping occurs when the data management resource is connected to the job. Job-level scoping is
available to both OPM and ILE programs. Job-level scoping allows for sharing data management
resources between programs running in different activation groups. As described in the previous topic,
scoping resources to an activation group limits the sharing of that resource to programs running in that
activation group. Job-level scoping allows the sharing of data management resources between all ILE and
OPM programs running in the job.

Figure 28 shows an example of job-level scoping. Program A may have opened file F1, specifying
job-level scoping. The ODP for this file is connected to the job. The file is not closed by the system unless
the job ends. If the ODP has been created with the SHARE(YES) parameter value, any OPM program or
ILE procedure could potentially share the file.

Overrides scoped to the job level influence all open file operations in the job. In this example, override R1
could have been created by procedure P2. A job-level override remains active until it is either explicitly
deleted or the job ends. The job-level override is the highest priority override when merging occurs. This
is because call-level overrides are merged together when multiple overrides exist on the call stack.

Data management scoping levels may be explicitly specified by the use of scoping parameters on
override commands, commitment control commands, and through various APIs. The complete list of data
management resources that use the scoping rules are in Chapter 11, “Data Management Scoping,” on
page 117.

ILE Activation Group

Default Activation Group

RV2W1039-2

Program A

Program B

PEP P1

UEP P2

OPM

OPM

ILE

ILE

ODP F1

Override R1

Commitment
Definition *JOB

Data Management
Resources

...

Job

Figure 28. Job Level Scoping. ODPs, overrides, and commitment definitions may be scoped to the job level.

Chapter 3. ILE Advanced Concepts 43

44 ILE Concepts IBM i 7.1

Chapter 4. Teraspace and Single-Level Storage

When you create ILE programs, you can select one of the following storage models in some compilers:
v Single-level storage
v Teraspace
v Inherit

The inherit storage model indicates that programs will adopt the storage model, either teraspace or
single-level storage, of the activation group into which they are activated. ILE programs use single-level
storage by default.

This chapter focuses on the teraspace options.

Teraspace Characteristics
Teraspace is a large temporary space that is local to a job. A teraspace provides a contiguous address
space but may consist of many individually allocated areas, with unallocated areas in between. Teraspace
exists no longer than the time between job start and job end.

A teraspace is not a space object. This means that it is not a system object, and that you cannot refer to it
by using a system pointer. However, teraspace is addressable with space pointers within the same job.

The following table shows how teraspace compares to single-level storage.

Table 2. Comparing teraspace to single-level storage

Attributes Teraspace Single-level storage

Locality Process local: normally accessible
only to the owning job.

Global: accessible to any job that has
a pointer to it.

Size Approximately 100 TB total Many 16 MB units.

Supports memory mapping? Yes No

Addressed by 8-byte pointers? Yes No

Supports sharing between jobs? Must be done using shared memory
APIs (for example, shmat or mmap).

Can be done by passing pointers to
other jobs or using shared memory
APIs.

Using Teraspace for Storage
A program's storage model determines the type of storage used for automatic, static and constant storage.

By default, compilers also use heap storage interfaces that match the storage model. However, some
compilers allow the type of heap storage to be chosen independently of a program's storage model.

The ILE C and C++ compilers provide the TERASPACE (*YES *TSIFC) create command option to allow
the use of teraspace versions of heap storage interfaces from single-level store programs without source
code changes. For example, malloc() is mapped to _C_TS_malloc().

The ILE RPG compiler allows the type of heap storage to be explicitly set, independent of the storage
model, using the ALLOC keyword on the Control Specification.

© Copyright IBM Corp. 1997, 2010 45

|

|
|

|
|
|

|
|

See the ILE C/C++ Programmer's Guide

or ILE RPG Programmer's Guide

for details on these
compiler options.

Choosing a Program Storage Model
You can optionally create your modules and ILE programs so that they use the teraspace storage model.
Teraspace storage model programs use teraspace for automatic, static, and constant storage. When you
choose the teraspace storage model, you can use larger areas for some of these types of storage. See
“Using the Teraspace Storage Model” on page 50 for more information about the teraspace storage model.

For modules, programs, and service programs, you have the option of specifying one of the following
storage models for some compilers:
v Single-level storage (*SNGLVL)
v Teraspace (*TERASPACE)
v Inherit (*INHERIT)

This topic discusses the teraspace storage model.

Specifying the Teraspace Storage Model
To choose the teraspace storage model for your RPG, COBOL, C or C++ program, specify the following
options when you compile your code:
1. For C and C++, specify *YES on the TERASPACE parameter when you create your modules.
2. Specify *TERASPACE or *INHERIT on the Storage model (STGMDL) parameter of the create module

command for your ILE programming language.
3. Specify *TERASPACE on the STGMDL parameter of the Create Program (CRTPGM) or Create Service

Program (CRTSRVPGM) command. This choice must be compatible with the storage model of the
modules that you bind with the program. See “Rules for Binding Modules” on page 47 for details.
You can also specify *TERASPACE on the STGMDL parameter of the Create Bound C Program
(CRTBNDC), Create Bound C++ Program (CRTBNDCPP), Create Bound RPG Program
(CRTBNDRPG), and Create Bound COBOL Program (CRTBNDCBL) commands, which create in one
step a bound program that contains only one module.
On the CRTPGM and CRTSRVPGM commands, you can also specify *INHERIT on the STGMDL
parameter. This causes the program or service program to be created in such a way that it can use
either single-level storage or teraspace, depending on the type of storage in use in the activation
group into which the program or service program is activated.
The use of the *INHERIT attribute provides the greatest flexibility, but then you must also specify
*CALLER on the ACTGRP parameter. In this case, remember that your program or service program
can get activated with either single-level storage or teraspace, and you must take care that your code
can effectively handle both situations. For example, the total size of all static variables must be no
larger than the smaller limits imposed for single-level storage.

Table 3. Allowed storage model for particular types of programs.

Program storage model

Program type

OPM *PGM ILE *PGM ILE *SRVPGM

*TERASPACE No Yes Yes

*INHERIT No Yes, but only with
ACTGRP(*CALLER)

Yes, but only with
ACTGRP(*CALLER)

*SNGLVL Yes Yes Yes

46 ILE Concepts IBM i 7.1

|
|

|
|
|
|

|
|

|
|

|

|
|
|
|

http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/topic/rzaha/sc092712.pdf

Selecting a Compatible Activation Group
An activation group reflects the storage model of the root program that caused the activation group to be
created. The storage model determines the type of automatic, static, and constant storage that is provided
to the program.

Single-level storage model programs receive single-level automatic, static, and constant storage. By
default, these programs will also use single-level storage for heap storage.

Teraspace storage model programs receive teraspace automatic, static, and constant storage. By default,
these programs will also use teraspace for heap storage.

Programs that use the teraspace storage model cannot be activated into an activation group whose root
program uses the single-level storage model (this includes the OPM default activation groups). Programs
that use the single-level storage model cannot be activated into an activation group whose root program
uses the teraspace storage model.

The following table summarizes the relationship between storage models and the activation group type.

Table 4. Relationship of storage models to activation groups

Program storage
model

Activation group attribute

*CALLER *DFTACTGRP *NEW Named

*TERASPACE Yes Not allowed. Yes Yes

*INHERIT Yes Not allowed. Not allowed. Not allowed.

*SNGLVL Yes Yes Yes Yes

When you choose the activation group in which your program or service program runs, consider the
following guidelines:
v If your service program specifies STGMDL(*INHERIT), you must specify ACTGRP(*CALLER).
v If your program specifies STGMDL(*TERASPACE):

– Specify ACTGRP(*NEW) or a named activation group.
– Specify ACTGRP(*CALLER) only if you can assure that every program that calls your program uses

the teraspace storage model.

How the Storage Models Interact
Consistency is required among the modules and programs that use a storage model. Here are rules to
insure that programs interact properly.
v “Rules for Binding Modules”
v “Rules for Binding to Service Programs” on page 48
v “Rules for Activating Programs and Service Programs” on page 48
v “Rules for Program and Procedure Calls” on page 48

Rules for Binding Modules
The following table shows the rules for binding modules:

Binding rules: Binding module M into a
program with a specified storage model.

The storage model of the program that is being created.

Teraspace Inherit Single-level storage

M

Teraspace Teraspace Error Error

Inherit Teraspace Inherit Single-level storage

Single-level storage Error Error Single-level storage

Chapter 4. Teraspace and Single-Level Storage 47

|
|
|
|

||

|
|
|

||||

|||||

|||||

|||||
|

Rules for Binding to Service Programs
The following table shows the rules for binding programs to target service programs.

Service program binding rules: Can the
calling program or service program bind to
a target service program?

Target service program storage model

Teraspace Inherit Single-level storage

Storage model of the
calling program or
service program

Teraspace Yes Yes Yes1

Inherit1 Yes2 Yes Yes2

Single-level storage Yes1 Yes Yes

Notes:

1. The target service program must run in a distinct activation group. For example, the target service
program cannot have the ACTGRP(*CALLER) attribute. It is not possible to mix storage models
within a single activation group.

2. If the calling program or service program uses the inherit storage model and the target service
program uses single-level storage or the teraspace storage model, then you must ensure that the
activation group that the target service program is activated into has the same storage model as the
target service program. Here is an example: service program A is created with the inherit storage
model. Service program B is created with teraspace storage model and has the *CALLER activation
group attribute. Service program A is bound to service program B. In this case, service program A
should always activate into an activation group with the teraspace storage model.

Rules for Activating Programs and Service Programs
A service program that specifies the inherit storage model can activate into an activation group that runs
programs that use single-level storage or teraspace storage models. Otherwise, the storage model of the
service program must match the storage model of other programs that run in the activation group.

Rules for Program and Procedure Calls
Programs and service programs that use different storage models can interoperate. They can be bound
together and share data as long as they conform to the rules and restrictions described in this chapter.

Converting Your Program or Service Program to Inherit a Storage
Model
By converting your programs or service programs to inherit a storage model (specifying *INHERIT on the
STGMDL parameter), you enable them for use in either teraspace or single-level storage environments.
Make sure that your code anticipates and effectively manages pointers to and from teraspace and
single-level storage. See “Using Teraspace: Best Practices” on page 51 for more information.

There are two ways to enable your existing programs or service programs for the teraspace storage
model: you can re-create them, or in some circumstances, you can change the storage model of existing
programs. When creating a program, first create all of your modules with the *INHERIT storage model.
Then create your ILE program or service program with the *INHERIT storage model.

Alternatively, you can change the storage model of an existing program or service program from
single-level storage (*SNGLVL) to *INHERIT, using the CHGPGM or CHGSRVPGM command, if the
following are true:
1. The object is an ILE program or service program.
2. The object uses single-level storage model.
3. The object uses the activation group of its caller.
4. The object is a program whose target release is V6R1M0 or later.
5. The object is a service program whose target release is V5R1M0 or later.
6. All bound modules of the object have a target release of V5R1M0 or later.

48 ILE Concepts IBM i 7.1

|
|
|
|

|
|
|
|

|
|
|

|

|

|

|

|

|

Updating Your Programs: Teraspace Considerations
You can add and replace modules within a program as long as they use the same storage model.
However, you cannot use the update commands to change the storage model of the bound module or the
program.

Taking Advantage of 8-byte Pointers in Your C and C++ Code
An 8-byte pointer can point only to teraspace. An 8-byte procedure pointer refers to an active procedure
through teraspace. The only types of 8-byte pointers are space and procedure pointers.

In contrast, there are many types of 16-byte pointers. The following table shows how 8-byte and 16-byte
pointers compare.

Table 5. Pointer comparison

Property 8-byte pointer 16-byte pointer

Length (memory required) 8 bytes 16 bytes

Tagged No Yes

Alignment Byte alignment is permitted (that is, a
packed structure). "Natural"
alignment (8-byte) is preferred for
performance.

Always 16-byte.

Atomicity Atomic load and store operations
when 8-byte aligned. Does not apply
to aggregate copy operations.

Atomic load and store operations.
Atomic copy when part of an
aggregate.

Addressable range Teraspace storage Teraspace storage + single-level
storage

Pointer content A 64-bit value which represents an
offset into teraspace. It does not
contain an effective address.

16-byte pointer type bits and a 64-bit
effective address.

Locality of reference Process local storage reference. (An
8-byte pointer can only reference the
teraspace of the job in which the
storage reference occurs.)

Process local or single-level storage
reference. (A 16-byte pointer can
reference storage that is logically
owned by another job.)

Operations permitted Pointer-specific operations allowed
for space pointers and procedure
pointers, and using a non-pointer
view, all arithmetic and logical
operations appropriate to binary data
can be used without invalidating the
pointer.

Only pointer-specific operations.

Fastest storage references No Yes

Fastest loads, stores, and space
pointer arithmetic

Yes, including avoiding EAO
overhead.

No

Size of binary value preserved when
cast to pointer

8 bytes 4 bytes

Can be accepted as a parameter by a
procedure that is an exception
handler or cancel handler.

No Yes

Pointer Support in C and C++ Compilers
To take full advantage of 8-byte pointers when you compile your code with the IBM C or C++ compiler,
specify STGMDL(*TERASPACE) and DTAMDL(*LLP64).

Chapter 4. Teraspace and Single-Level Storage 49

The C and C++ compilers also provide the following pointer support:
v Syntax for explicitly declaring 8- or 16-byte pointers:

– Declare a 8-byte pointer as char * __ptr64
– Declare a 16-byte pointer as char * __ptr128

v A compiler option and pragma for specifying the data model, which is unique to the C and C++
programming environment. The data model affects the default size of pointers in the absence of one of
the explicit qualifiers. You have two choices for the data model:
– P128, also known as 4-4-161

– LLP64, also known as 4-4-82

Pointer Conversions
The IBM C and C++ compilers convert __ptr128 to __ptr64 and vice versa as needed, based on function
and variable declarations. However, interfaces with pointer-to-pointer parameters require special
handling.

The compilers automatically insert pointer conversions to match pointer lengths. For example,
conversions are inserted when the pointer arguments to a function do not match the length of the pointer
parameters in the prototype for the function. Or, if pointers of different lengths are compared, the
compiler will implicitly convert the 8-byte pointer to a 16-byte pointer for the comparison. The compilers
also allow explicit conversions to be specified, as casts. Keep these points in mind if adding pointer casts:
v A conversion from a 16-byte pointer to an 8-byte pointer works only if the 16-byte pointer contains a

teraspace address or a null pointer value. Otherwise, an MCH0609 exception is signalled.
v 16-byte pointers cannot have types converted from one to another, but a 16-byte OPEN pointer can

contain any pointer type. In contrast, no 8-byte OPEN pointer exists, but 8-byte pointers can be
logically converted between a space pointer and a procedure pointer. Even so, an 8-byte pointer
conversion is just a view of the pointer type, so it doesn't allow a space pointer to actually be used as a
procedure pointer unless the space pointer was set to point to a procedure.

When adding explicit casts between pointers and binary values, remember that 8-byte and 16-byte
pointers behave differently. An 8-byte pointer can retain a full 8-byte binary value, while a 16-byte
pointer can only retain a 4-byte binary value. While holding a binary value, the only operation defined
for a pointer is a conversion back to a binary field. All other operations are undefined, including use as a
pointer, conversion to a different pointer length and pointer comparison. So, for example, if the same
integer value were assigned to an 8-byte pointer and to a 16-byte pointer, then the 8-byte pointer were
converted to a 16-byte pointer and a 16-byte pointer comparison were done, the comparison result would
be undefined and likely would not produce an equal result.

Mixed-length pointer comparisons are defined only when a 16-byte pointer holds a teraspace address and
an 8-byte pointer does, too (that is, the 8-byte pointer does not contain a binary value). Then it is valid to
convert the 8-byte pointer to a 16-byte pointer and compare the two 16-byte pointers. In all other cases,
comparison results are undefined. So, for example, if a 16-byte pointer were converted to an 8-byte
pointer and then compared with an 8-byte pointer, the result is undefined.

Using the Teraspace Storage Model
In an ideal teraspace environment, all of your modules, programs, and service programs would use the
teraspace storage model. On a practical level, however, you will need to manage an environment that
combines modules, programs, and service programs that use both storage models.

1. Where 4-4-16 = sizeof(int) – sizeof(long) – sizeof(pointer)

2. Where 4-4-8 = sizeof(int) – sizeof(long) – sizeof(pointer)

50 ILE Concepts IBM i 7.1

This section describes the practices you can implement to move toward an ideal teraspace environment.
This section also discusses how you can minimize the potential problems of an environment that mixes
programs that use single-level storage and teraspace.

Using Teraspace: Best Practices
v Use only teraspace storage model modules

Create your modules such that they use the teraspace or inherit storage model. Single-level storage
modules are not suitable for a teraspace environment because you cannot bind them into your
program. If you absolutely have to use them (for instance, if you do not have access to the source code
for the module), see scenario 9 in “Teraspace Usage Tips” on page 52.

v Bind only to service programs that use the teraspace or inherit storage model

Your teraspace storage model program can bind to almost any kind of service program. However, it
normally binds only to inherit or teraspace storage model service programs. If you control the service
programs, you must create all of your service programs such that they can inherit the storage model of
the program that binds them. In general, IBM service programs are created in this manner. You might
need to do the same, especially if you plan to provide your service programs to third-party
programmers. See scenario 10 in “Teraspace Usage Tips” on page 52 if you absolutely have to bind to a
single-level storage service program.

If you have followed the guidelines described in this topic, you can use teraspace in your programs.
However, the use of teraspace requires that you pay careful attention to your coding practices, because
single-level storage is used by default. The following topics describe the things you cannot do with
teraspace, and some things you should not do. In some cases, the system prevents you from performing
certain actions, but at other times you must manage potential teraspace and single-level storage
interactions on your own.
v “System Controls over Teraspace Programs When They are Created”
v “System Controls over Teraspace Programs When They are Activated”

Note: Service programs that use the inherit storage model must also follow these practices because they
may be activated to use teraspace.

System Controls over Teraspace Programs When They are Created
In most cases, the system prevents you from doing any of the following actions:
v Combining single-level storage and teraspace storage model modules into the same program or service

program.
v Creating a teraspace storage model program or service program that also specifies a default activation

group (ACTGRP(*DFTACTGRP)).
v Binding a single-level storage program to a teraspace storage model service program that also specifies

an activation group of *CALLER.

System Controls over Teraspace Programs When They are Activated
In some cases at activation time, the system will determine that you have created your programs and
service programs in such a way that both single-level storage and teraspace storage model programs or
service programs would attempt to activate into the same activation group. The system will then send the
activation access violation exception and fail the activation.

IBM i Interfaces and Teraspace
Interfaces that have pointer parameters typically expect tagged 16 byte (__ptr128) pointers:
v You can call interfaces with only a single level of pointer (for example, void f(char*p);) directly using

8-byte (__ptr64) pointers since the compiler will convert the pointer as required. Be sure to use the
system header files.

v Interfaces with multiple levels of pointers (for example, void g(char**p);) ordinarily require that you
explicitly declare a 16 byte pointer for the second level. However, versions that accept 8-byte pointers

Chapter 4. Teraspace and Single-Level Storage 51

are provided for most system interfaces of this type, to allow them to be called directly from code that
uses only 8-byte pointers. These interfaces are enabled through the standard header files when you
select the datamodel(LLP64) option.

Bindable APIs for using teraspace:

IBM provides bindable APIs for allocating and discarding teraspace.3

v _C_TS_malloc() allocates storage within a teraspace.
v _C_TS_malloc64() allows a teraspace storage allocation to be specified using an 8-byte size value.
v _C_TS_free() frees one previous allocation of teraspace.
v _C_TS_realloc() changes the size of a previous teraspace allocation.
v _C_TS_calloc() allocates storage within a teraspace and sets it to 0.

malloc(), free(), calloc(), and realloc() allocate or deallocate single-level storage or teraspace storage
according to the storage model of their calling program, unless it was compiled with the
TERASPACE(*YES *TSIFC) compiler option.

POSIX shared memory and memory mapped file interfaces can use teraspace. For more information
about Interprocess Communication APIs and the shmget() interface, see the UNIX-type APIs topic in the
IBM i Information Center (under the Programming category and API topic).

Potential Problems that Can Arise When You Use Teraspace
When you use teraspace in your programs, you should be aware of the potential problems that can arise.
v If you create programs using the TGTRLS(V5R4M0) parameter, be careful not to develop a dependency on

passing teraspace addresses to other programs unless all these other programs can handle teraspace addresses. All
programs that run on IBM i 6.1 or later can use teraspace addresses.

v Some MI instructions cannot process a teraspace address. An attempt to use a teraspace address in these
instructions causes an MCH0607 exception.
– MATBPGM
– MATPG
– SCANX (only some options are limited)

v Effective Address Overflow (EAO) can impair performance. This situation can occur in certain code
generated for a processor prior to POWER6®. See “Adaptive Code Generation” on page 143.
Specifically, an EAO can occur during an address computation on a 16-byte pointer, when the result is
a teraspace address value that is less than the 16 MB boundary lower than the start address. A
hardware interrupt is generated that is handled by the system software. Many such interrupts can
affect performance. Avoid frequent teraspace address calculations that compute a smaller value in a
different 16 MB area. Or, create your program with the MinimizeTeraspaceFalseEAOs LICOPT, as
described in “Licensed Internal Code Options” on page 138.

Teraspace Usage Tips
You might encounter the following scenarios as you work with the teraspace storage model.
Recommended solutions are provided.
v Scenario 1: You need more than 16 MB of dynamic storage in a single allocation

Use _C_TS_malloc or create your programs so that teraspace will be used for heap storage, as described
in “Using Teraspace for Storage” on page 45.

v Scenario 2: You need more than 16 MB of shared memory

3. The teraspace compiler option TERASPACE(*YES *TSIFC) is available from ILE C and C++ compilers to automatically map
malloc(), free(), calloc() and realloc() to their teraspace versions when STGMDL(*SNGLVL) is specified.

52 ILE Concepts IBM i 7.1

|

|
|
|

|
|
|
|
|
|
|
|

|
|

Use shared memory (shmget) with the teraspace option.
v Scenario 3: You need to access large byte-stream files efficiently

Use memory mapped files (mmap).
You can access memory-mapped files from any program, but for best performance, use the teraspace
storage model and, if your language supports it, the 8-byte pointer data model.

v Scenario 4: You need greater than 16 MB of contiguous automatic or static storage

Use teraspace storage model.
v Scenario 5: Your application makes heavy use of space pointers

Use the teraspace storage model and a language that supports the 8-byte pointer data model, to reduce
memory footprint and speed up pointer operations.

v Scenario 6: You need to port code from another system and want to avoid issues that are unique to 16-byte
pointer usage

Use the teraspace storage model and a language that supports the 8-byte pointer data model.
v Scenario 7: You need to use single-level storage in your teraspace program

Sometimes your only choice is to use single-level storage in your teraspace storage model programs.
For example, you might need it to store user data for interprocess communication. You can get
single-level storage from any of the following sources:
– Storage in a user space, obtained from the QUSCRTUS API or the CRTS MI instruction
– Single-level storage heap interfaces in your programming language
– Single-level storage reference that was passed to your program
– Single-level storage heap space obtained from the ALCHS MI instruction

v Scenario 8: Take advantage of 8-byte pointers in your code

Create your module and program with STGMDL(*TERASPACE). Use DTAMDL(*LLP64) or explicit
declarations (__ptr64) to get 8-byte pointers to refer to teraspace (as opposed to 16-byte pointers
pointing into teraspace). Then you will get the advantages listed in “Taking Advantage of 8-byte
Pointers in Your C and C++ Code” on page 49.

v Scenario 9: Incorporating a single-level storage model module

You cannot bind a single-level storage module with a teraspace storage model module. If you need to
do this, first try to get a version of the module that uses (or inherits) the teraspace storage model, then
simply use it as described in “Using Teraspace: Best Practices” on page 51. Otherwise, you have two
options:
– Package the module into a separate service program. The service program will use the single-level

storage model, so use the approach given in scenario 10, below, to call it.
– Package the module into a separate program. This program will use the single-level storage model.

Use the approach outlined in scenario 11, below, to call it.
v Scenario 10: Binding to a single-level storage model service program

You can bind your teraspace program to a service program that uses single-level storage if the two
service programs activate into separate activation groups. You cannot do this if the single-level storage
service program specifies the ACTGRP(*CALLER) option.

v Scenario 11: Calling functions that have pointer-to-pointer parameters

Calls to some functions that have pointer-to-pointer parameters require special handling from modules
compiled with the DTMDL(*LLP64 option). Implicit conversions between 8- and 16-byte pointers apply
to pointer parameters. They do not apply to the data object pointed to by the pointer parameter, even
if that pointer target is also a pointer. For example, the use of a char** interface declared in a header
file that asserts the commonly used P128 data model will require some code in modules that are
created with data model LLP64. Be sure to pass the address of a 16-byte pointer for this case. Here are
some examples:
– In this example, you have created a teraspace storage model program using 8–byte pointers with the

STGMDL (*TERASPACE)DTAMDL(*LLP64) options on a create command, such as CRTCMOD. You now want

Chapter 4. Teraspace and Single-Level Storage 53

|
|

|

|
|

|

|

to pass a pointer to a pointer to a character in an array from your teraspace storage model program
to a P128 char** interface. To do so, you must explicitly declare a 16–byte pointer:
#pragma datamodel(P128)
void func(char **);
#pragma datamodel(pop)

char myArray[32];
char *_ptr128 myPtr;

myPtr = myArray; /* assign address of array to 16-byte pointer */
func(&myPtr); /* pass 16-byte pointer address to the function */

– One commonly used application programming interface (API) with pointer-to-pointer parameters is
iconv. It expects only 16–byte pointers. Here is part of the header file for iconv:
...
#pragma datamodel(P128)
...
size_t inconv(iconv_t cd,

char **inbuf,
size_t *inbytesleft,
char **outbuf,
size_t *outbytesleft);

...
#pragma datamodel(pop)
...

The following code calls iconv from a program compiled with the DTAMDL(*LLP64) option:
...
iconv_t myCd;
size_t myResult;
char *_ptr128 myInBuf, myOutBuf;
size_t myInLeft, myOutLeft;
...
myResult = inconv(myCd, &myInBuf, &myInLeft, &myOutBuf, &myOutLeft);
...

You should also be aware that the header file of the Retrieve Pointer to User Space (QUSPTRUS)
interface specifies a void* parameter where a pointer to a pointer is actually expected. Be sure to
pass the address of a 16–byte pointer for the second operand.

v Scenario 12: Redeclaring functions

Avoid redeclaring functions that are already declared in header files supplied by IBM. Usually, the
local declarations do not have the correct pointer lengths specified. One such commonly used interface
is errno, which is implemented as a function call in IBM i.

v Scenario 13: Using data model *LLP64 with programs and functions that return a pointer

If you are using data model *LLP64, look carefully at programs and functions that return a pointer. If
the pointer points to single-level storage, its value cannot be correctly assigned to an 8–byte pointer, so
clients of these interfaces must maintain the returned value in a 16–byte pointer. One such API is
QUSPTRUS. User spaces reside in single-level storage.

54 ILE Concepts IBM i 7.1

Chapter 5. Program Creation Concepts

The process for creating ILE programs or service programs gives you greater flexibility and control in
designing and maintaining applications. The process includes two steps:
1. Compiling source code into modules.
2. Binding modules into an ILE program or service program. Binding occurs when the Create Program

(CRTPGM) or Create Service Program (CRTSRVPGM) command is run.

This chapter explains concepts associated with the binder and with the process of creating ILE programs
or service programs. Before reading this chapter, you should be familiar with the binding concepts
described in Chapter 2, “ILE Basic Concepts,” on page 9.

Create Program and Create Service Program Commands
The Create Program (CRTPGM) and Create Service Program (CRTSRVPGM) commands look similar and
share many of the same parameters. Comparing the parameters used in the two commands helps to
clarify how each command can be used.

Table 6 shows the commands and their parameters with the default values supplied.

Table 6. Parameters for CRTPGM and CRTSRVPGM Commands

Parameter Group CRTPGM Command CRTSRVPGM Command

Identification PGM(*CURLIB/WORK) MODULE(*PGM) SRVPGM(*CURLIB/UTILITY)
MODULE(*SRVPGM)

Program access ENTMOD(*FIRST) EXPORT(*SRCFILE) SRCFILE(*LIBL/
QSRVSRC) SRCMBR(*SRVPGM)

Binding BNDSRVPGM(*NONE) BNDDIR(*NONE) BNDSRVPGM(*NONE) BNDDIR(*NONE)
Run time ACTGRP(*ENTMOD) ACTGRP(*CALLER)
Optimization IPA(*NO) IPACTLFILE(*NONE)

ARGOPT(*NO)
IPA(*NO) IPACTLFILE(*NONE)
ARGOPT(*NO)

Miscellaneous OPTION(*GEN *NODUPPROC
*NODUPVAR *WARN *RSLVREF)
DETAIL(*NONE) ALWUPD(*YES)
ALWLIBUPD(*NO) ALWRINZ(*NO)
REPLACE(*YES) AUT(*LIBCRTAUT)
TEXT(*ENTMODTXT)
TGTRLS(*CURRENT) USRPRF(*USER)
STGMDL(*SNGLVL)

OPTION(*GEN *NODUPPROC
*NODUPVAR *WARN *RSLVREF)
DETAIL(*NONE) ALWUPD(*YES)
ALWLIBUPD(*NO) ALWRINZ(*NO)
REPLACE(*YES) AUT(*LIBCRTAUT)
TEXT(*ENTMODTXT)
TGTRLS(*CURRENT) USRPRF(*USER)
STGMDL(*SNGLVL)

The identification parameters for both commands name the object to be created and the modules copied.
The only difference in the two parameters is in the default module name to use when creating the object.
For CRTPGM, use the same name for the module as is specified on the program (*PGM) parameter. For
CRTSRVPGM, use the same name for the module as is specified on the service program (*SRVPGM)
parameter. Otherwise, these parameters look and act the same.

The most significant similarity in the two commands is how the binder resolves symbols between the
imports and exports. In both cases, the binder processes the input from the module (MODULE), bound
service program (BNDSRVPGM), and binding directory (BNDDIR) parameters.

The most significant difference in the commands is with the program-access parameters (see “Program
Access” on page 64). For the CRTPGM command, all that needs to be identified to the binder is which
module has the program entry procedure. Once the program is created and a dynamic program call is

© Copyright IBM Corp. 1997, 2010 55

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

made to this program, processing starts with the module containing the program entry procedure. The
CRTSRVPGM command needs more program-access information because it can supply an interface of
several access points for other programs or service programs.

Use Adopted Authority (QUSEADPAUT)
The QUSEADPAUT system value defines which users can create programs with the use adopted
authority (USEADPAUT(*YES)) attribute. All users authorized by the QUSEADPAUT system value can
create or change programs and service programs to use adopted authority if they have the necessary
authorities. See Security reference to find out what authorities are required.

The system value can contain the name of an authorization list. The user's authority is checked against
this list. If the user has at least *USE authority to the named authorization list, the user can create,
change, or update programs or service programs with the USEADPAUT(*YES) attribute. The authority to
the authorization list cannot come from adopted authority.

If an authorization list is named in the system value and the authorization list is missing, the function
being attempted will not complete. A message is sent indicating this. However, if the program is created
with the QPRCRTPG API, and the *NOADPAUT value is specified in the option template, the program
will create successfully even if the authorization list does not exist. If more than one function is requested
on the command or API, and the authorization list is missing, the function is not performed.

Table 7. Possible Values for QUSEADPAUT

Values Description

authorizationlist name A diagnostic message is signaled to indicate that the program is created with
USEADPAUT(*NO) if all of the following are true:

v An authorization list is specified for the QUSEADPAUT system value.

v The user does not have authority to the authorization list mentioned above.

v There are no other errors when the program or service program is created.

If the user has authority to the authorization list, the program or service program is
created with USEADPAUT(*YES).

*NONE All users authorized by the QUSEADPAUT system value can create or change
programs and service programs to use adopted authority if the users have the
necessary authorities.

Using optimization parameters
Specify optimization parameters to further optimize your ILE bound programs or service programs. For
more information about optimization parameters to use when you create or modify programs, see
Chapter 13, “Advanced Optimization Techniques,” on page 125.

Stored data in modules and programs
When a module is created, it contains useful data in addition to the compiled code. Depending on the
compiler that was used, modules might contain the following types of data:
v Creation Data (*CRTDTA)

This is required to re-create or convert the module (for example, to change its optimization level).
Newly created modules always contain creation data.

v Debug Data (*DBGDTA)
This is required to debug the program that the module is bound into. See Chapter 10, “Debugging
Considerations,” on page 113 and “Interprocedural analysis (IPA)” on page 130 for more information
about debugging.

v Intermediate Language Data (*ILDTA)

56 ILE Concepts IBM i 7.1

This is required for the advanced optimization technique of interprocedural analysis (IPA). See
Chapter 13, “Advanced Optimization Techniques,” on page 125 for more information.

Use the Display Module (DSPMOD) command to find out what kinds of data are stored in a module.
The process of binding copies module data into the program or service program that is created.
Intermediate Language Data (*ILDTA) is not copied into programs or service programs.

Use the Display Program (DSPPGM) or Display Service Program (DSPSRVPGM) commands with the
DETAIL(*MODULE) parameter to see the details. Programs can contain the following kinds of data in
addition to the module data:
v Creation Data (*CRTDTA)

This is required for re-creating the program or service program. Newly created programs always
contain this creation data.

v Block Order Profiling Data (*BLKORD)
This is generated for application profiling. See Chapter 13, “Advanced Optimization Techniques,” on
page 125 for more information.

v Procedure Order Profiling Data (*PRCORD)
This is generated for application profiling. See Chapter 13, “Advanced Optimization Techniques,” on
page 125 for more information.

Creation Data (*CRTDTA) can exist for the program itself and for each bound module. When the data is
created and stored with the module or program, it is observable. The operating system can use the data
for operations, such as running the Change Module (CHGMOD) and Change Program (CHGPGM)
commands, debugging your program, and using IPA.

You can remove observability with the Remove observable information (RMVOBS) parameter on the
Change Module (CHGMOD), Change Program (CHGPGM), and Change Service Program
(CHGSRVPGM) commands. If you remove observability, MI programs can no longer access the data.

Note: You cannot undo removing observability.

For most kinds of data, removing observability removes that data from the object. If you no longer need
the corresponding function and want to make your object smaller, you can remove the data. However,
Creation Data (*CRTDTA) is not removed from the object; it is transformed into an unobservable form.
The operating system cannot use the data, but the machine can use unobservable creation data to convert
the object.

Symbol Resolution
Symbol resolution is the process the binder goes through to match the following:
v The import requests from the set of modules to be bound by copy
v The set of exports provided by the specified modules and service programs

The set of exports to be used during symbol resolution can be thought of as an ordered (sequentially
numbered) list. The order of the exports is determined by the following:
v The order in which the objects are specified on the MODULE, BNDSRVPGM, and BNDDIR parameters

of the CRTPGM or CRTSRVPGM command
v The exports from the language runtime routines of the specified modules

Resolved and Unresolved Imports
An import and export each consist of a procedure or data type and a name. An unresolved import is one
whose type and name do not yet match the type and name of an export. A resolved import is one whose
type and name exactly match the type and name of an export.

Chapter 5. Program Creation Concepts 57

Only the imports from the modules that are bound by copy go into the unresolved import list. During
symbol resolution, the next unresolved import is used to search the ordered list of exports for a match. If
an unresolved import exists after checking the set of ordered exports, the program object or service
program is normally not created. However, if *UNRSLVREF is specified on the option parameter, a
program object or service program with unresolved imports can be created. If such a program object or
service program tries to use an unresolved import at run time, the following occurs:
v If the program object or service program was created or updated for a Version 2 Release 3 system,

error message MCH3203 is issued. That message says, “Function error in machine instruction.”
v If the program object or service program was created or updated for a Version 3 Release 1 or later

system, error message MCH4439 is issued. That message says, “Attempt to use an import that was not
resolved.”

Binding by Copy
The modules specified on the MODULE parameter are always bound by copy. Modules named in a
binding directory specified by the BNDDIR parameter are bound by copy if they are needed. A module
named in a binding directory is needed in either of the following cases:
v The module provides an export for an unresolved import
v The module provides an export named in the current export block of the binder language source file

being used to create a service program

If an export found in the binder language comes from a module object, that module is always bound by
copy, regardless of whether it was explicitly provided on the command line or comes from a binding
directory. For example,
Module M1: imports P2
Module M2: exports P2
Module M3: exports P3
Binder language S1: STRPGMEXP PGMLVL(*CURRENT)

EXPORT P3
ENDPGMEXP

Binding directory BNDDIR1: M2
M3

CRTSRVPGM SRVPGM(MYLIB/SRV1) MODULE(MYLIB/M1) SRCFILE(MYLIB/S1)
SRCMBR(S1) BNDDIR(MYLIB/BNDDIR1)

Service program SRV1 will have three modules: M1, M2, and M3. M3 is copied because P3 is in the
current export block.

Binding by Reference
Service programs specified on the BNDSRVPGM parameter are bound by reference. If a service program
named in a binding directory provides an export for an unresolved import, that service program is bound
by reference. A service program bound in this way does not add new imports.

Note: To better control what gets bound to your program, specify the generic service program name or
specific libraries. The value *LIBL should only be specified in a user-controlled environment when
you know exactly what is getting bound to your program. Do not specify BNDSRVPGM(*LIBL/
*ALL) with OPTION(*DUPPROC *DUPVAR). Specifying *LIBL with *ALL may give you
unpredictable results at program run time.

Binding Large Numbers of Modules
For the module (MODULE) parameter on the CRTPGM and CRTSRVPGM commands, there is a limit on
the number of modules you can specify. If the number of modules you want to bind exceeds the limit,
you can use one of the following methods:
1. Use binding directories to bind a large number of modules that provide exports that are needed by

other modules.

58 ILE Concepts IBM i 7.1

2. Use a module naming convention that allows generic module names to be specified on the MODULE
parameter on the CRTPGM and CRTSRVPGM commands. For example, CRTPGM PGM(mylib/payroll)
MODULE(mylib/pay*). All modules with names starting with pay are unconditionally included in the
program mylib/payroll. Therefore, pick your naming convention carefully so that the generic names
specified on the CRTPGM or CRTSRVPGM commands do not bind unwanted modules.

3. Group the modules into separate libraries so that the value *ALL can be used with specific library
names on the MODULE parameter. For example, CRTPGM PGM(mylib/payroll) MODULE(payroll/*ALL).
Every module in the library payroll is unconditionally included in the program mylib/payroll.

4. Use a combination of generic names and specific libraries that are described in method 2 and 3.
5. For service programs, use the binding source language. An export specified in the binding source

language causes a module to be bound if it satisfies the export. The RTVBNDSRC command can help
you create your binding source language. Although the MODULE parameter on the RTVBNDSRC
command limits the number of modules that can be explicitly specified on the MODULE parameter,
you can use generic module names and the value *ALL with specific library names. You can use the
RTVBNDSRC command multiple times with output directed to the same source file. However, you
may need to edit the binding source language in this case.

Duplicate Symbols
The symbols for variable names and procedure names can be exported from modules as either weak
exports or strong exports.

Weak exports are supported by various programming languages as described in section “Import and
Export Concepts” on page 66. When a module defines and references a weak symbol, the symbol is both
weakly exported and imported. Several modules can define the same symbol as a weak export. During
symbol resolution, the export from one module is chosen to satisfy all the matching imports so all
modules refer to the same item.

Strong exports are generally defined by a single module. If more than one module defines the symbol as
a strong export, an error message is issued and program creation will fail. On the program creation
commands (CRTPGM, CRTSRVPGM, UPDPGM, UPDSRVPGM), you can use OPTION(*DUPPROC
*DUPVAR *WARN) to allow the command to continue despite the duplicate symbol export warning
messages. These error messages are important: when a module refers to a symbol that it exports, the
reference is made as a local reference, not as an import reference. If two modules define the same symbol
as a strong export, and each module refers to the symbol, they are referring to separate items. Carefully
examine these messages to ensure your application will function correctly. You may need to change the
strong exports to weak exports or change the code so that only a single module exports the symbol and
all other modules import it.

Importance of the Order of Exports
With only a slight change to the command, you can create a different, but potentially equally valid,
program. The order in which objects are specified on the MODULE, BNDSRVPGM, and BNDDIR
parameters is usually important only if both of the following are true:
v Multiple modules or service programs are exporting duplicate symbol names
v Another module needs to import the symbol name

Most applications do not have duplicate symbols, and programmers seldom need to worry about the
order in which the objects are specified. For those applications that have duplicate symbols exported that
are also imported, consider the order in which objects are listed on CRTPGM or CRTSRVPGM
commands.

The following examples show how symbol resolution works. The modules, service programs, and
binding directories in Figure 29 on page 60 are used for the CRTPGM requests in Figure 30 on page 61
and Figure 31 on page 63. Assume that all the identified exports and imports are procedures.

Chapter 5. Program Creation Concepts 59

|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

The examples also show the role of binding directories in the program-creation process. Assume that
library MYLIB is in the library list for the CRTPGM and CRTSRVPGM commands. The following
command creates binding directory L in library MYLIB:
CRTBNDDIR BNDDIR(MYLIB/L)

The following command adds the names of modules M1 and M2 and of service programs S and T to
binding directory L:
ADDBNDDIRE BNDDIR(MYLIB/L) OBJ((M1 *MODULE) (M2 *MODULE) (S) (T))

Program Creation Example 1
Assume that the following command is used to create program A in Figure 30 on page 61:

RV2W1054-3

Service Program S Service Program T

Service Program
QLEPRINTS

Binding Directory L

*MODULE
*MODULE
*SRVPGM
*SRVPGM

M1
M2
S
T

*LIBL
*LIBL
*LIBL
*LIBL

Export List

P1

P20

P30
...

Export List

P30

P40

P21

...

Export List

Prints

...

Module M2Module M1

Import List

P20

P21

Prints
...

Import List

Export List

P30

P20

...

...

Figure 29. Modules, Service Programs, and Binding Directory

60 ILE Concepts IBM i 7.1

CRTPGM PGM(TEST/A)
MODULE(*LIBL/M1)
BNDSRVPGM(*LIBL/S)
BNDDIR(*LIBL/L)
OPTION(*DUPPROC)

To create program A, the binder processes objects specified on the CRTPGM command parameters in the
order specified:
1. The value specified on the first parameter (PGM) is A, which is the name of the program to be

created.
2. The value specified on the second parameter (module) is M1. The binder starts there. Module M1

contains three imports that need to be resolved: P20, P21, and Prints.

RV2W1049-4

Service Program S Service Program T

Service Program
QLEPRINTS

Binding Directory L

*MODULE
*MODULE
*SRVPGM
*SRVPGM

M1
M2
S
T

*LIBL
*LIBL
*LIBL
*LIBL

Export List

P1

P20

P30
...

Export List

P30

P40

P21

...

Export List

Prints

...

Module M2Module M1

Import List

P20

P21

Prints
...

Import List

Export List

P30

P20

...

...

Program A

Figure 30. Symbol Resolution and Program Creation: Example 1

Chapter 5. Program Creation Concepts 61

3. The value specified on the third parameter (BNDSRVPGM) is S. The binder scans the export list of
service program S for any procedures that resolve any unresolved import requests. Because the export
list contains procedure P20, that import request is resolved.

4. The value specified on the fourth parameter (BNDDIR) is L. The binder next scans binding directory
L.
a. The first object specified in the binding directory is module M1. Module M1 is currently known

because it was specified on the module parameter, but it does not provide any exports.
b. The second object specified in the binding directory is module M2. Module M2 provides exports,

but none of them match any currently unresolved import requests (P21 and Prints).
c. The third object specified in the binding directory is service program S. Service program S was

already processed in step 3 and does not provide any additional exports.
d. The fourth object specified in the binding directory is service program T. The binder scans the

export list of service program T. Procedure P21 is found, which resolves that import request.
5. The final import that needs to be resolved (Prints) is not specified on any parameter. Nevertheless, the

binder finds the Prints procedure in the export list of service program QLEPRINTS, which is a
common runtime routine provided by the compiler in this example. When compiling a module, the
compiler specifies as the default the binding directory containing its own runtime service programs
and the ILE runtime service programs. That is how the binder knows that it should look for any
remaining unresolved references in the runtime service programs provided by the compiler. If, after
the binder looks in the runtime service programs, there are references that cannot be resolved, the
bind normally fails. However, if you specify OPTION(*UNRSLVREF) on the create command, the
program is created.

Program Creation Example 2
Figure 31 on page 63 shows the result of a similar CRTPGM request, except that the service program on
the BNDSRVPGM parameter has been removed:
CRTPGM PGM(TEST/A)

MODULE(*LIBL/M1)
BNDDIR(*LIBL/L)
OPTION(*DUPPROC)

62 ILE Concepts IBM i 7.1

The change in ordering of the objects to be processed changes the ordering of the exports. It also results
in the creation of a program that is different from the program created in example 1. Because service
program S is not specified on the BNDSRVPGM parameter of the CRTPGM command, the binding
directory is processed. Module M2 exports procedure P20 and is specified in the binding directory ahead
of service program S. Therefore, module M2 gets copied to the resulting program object in this example.
When you compare Figure 30 on page 61 with Figure 31 you see the following:
v Program A in example 1 contains only module M1 and uses procedures from service programs S, T,

and QLEPRINTS.
v In program A of example 2, two modules called M1 and M2 use service programs T and QLEPRINTS.

The program in example 2 is created as follows:
1. The first parameter (PGM) specifies the name of the program to be created.

Figure 31. Symbol Resolution and Program Creation: Example 2

Chapter 5. Program Creation Concepts 63

2. The value specified on the second parameter (MODULE) is M1, so the binder again starts there.
Module M1 contains the same three imports that need to be resolved: P20, P21, and Prints.

3. This time, the third parameter specified is not BNDSRVPGM. It is BNDDIR. Therefore, the binder first
scans the binding directory specified (L).
a. The first entry specified in the binding directory is module M1. Module M1 from this library was

already processed by the module parameter.
b. The second entry specified in the binding directory is for module M2. The binder scans the export

list of module M2. Because that export list contains P20, that import request is resolved. Module
M2 is bound by copy and its imports must be added to the list of unresolved import requests for
processing. The unresolved import requests are now P21, Prints, and P30.

c. Processing continues to the next object that is specified in the binding directory, the 'S' service
program. Here, the service program S provides the P30 export for currently unresolved import
requests of P21 and Prints. Processing continues to the next object that is listed in the binding
directory, service program T.

d. Service program T provides export P21 for the unresolved import.
4. As in example 1, import request Prints is not specified. However, the procedure is found in the

runtime routines provided by the language in which module M1 was written.

Symbol resolution is also affected by the strength of the exports. For information about strong and weak
exports, see Export in “Import and Export Concepts” on page 66.

Program Access
When you create an ILE program object or service program object, you need to specify how other
programs can access that program. On the CRTPGM command, you do so with the entry module
(ENTMOD) parameter. On the CRTSRVPGM command, you do so with the export (EXPORT) parameter
(see Table 6 on page 55).

Program Entry Procedure Module Parameter on the CRTPGM
Command
The program entry procedure module (ENTMOD) parameter tells the binder the name of the module in
which the following are located:

Program entry procedure (PEP)
User entry procedure (UEP)

This information identifies which module contains the PEP that gets control when making a dynamic call
to the program that is created.

The default value for the ENTMOD parameter is *FIRST. This value specifies that the binder uses as the
entry module the first module it finds in the list of modules specified on the module parameter that
contains a PEP.

If the following conditions exist:
*FIRST is specified on the ENTMOD parameter
A second module with a PEP is encountered

the binder copies this second module into the program object and continues the binding process. The
binder ignores the additional PEP.

If *ONLY is specified on the ENTMOD parameter, only one module in the program can contain a PEP. If
*ONLY is specified and a second module with a PEP is encountered, the program is not created.

For explicit control, you can specify the name of the module that contains the PEP. Any other PEPs are
ignored. If the module explicitly specified does not contain a PEP, the CRTPGM request fails.

64 ILE Concepts IBM i 7.1

To see whether a module has a program entry procedure, you use the display module (DSPMOD)
command. The information appears in the Program entry procedure name field of the Display Module
Information display. If *NONE is specified in the field, this module does not have a PEP. If a name is
specified in the field, this module has a PEP.

Export Parameter on the CRTSRVPGM Command
The export (EXPORT), source file (SRCFILE), and source member (SRCMBR) parameters identify the
public interface to the service program being created. The parameters specify the exports (procedures and
data) that a service program makes available for use by other ILE programs or service programs.

The default value for the export parameter is *SRCFILE. That value directs the binder to the SRCFILE
parameter for a reference to information about exports of the service program. This additional
information is a source file with binder language source in it (see “Binder Language” on page 67). The
binder locates the binder language source and, from the specified names to be exported, generates one or
more signatures. The binder language also allows you to specify a signature of your choice instead of
having the binder generate one.

The Retrieve Binder Source (RTVBNDSRC) command can be used to create a source file that contains
binder language source. The source can be based on either an existing service program or a set of
modules. If based on a service program, the source is appropriate for recreating or updating that service
program. If based on a set of modules, the source contains all symbols eligible to be exported from the
modules. In either case, you can edit this file to include only the symbols you want to export, then you
can specify this file using the SRCFILE parameter of the CRTSRVPGM or UPDSRVPGM commands.

The other possible value for the export parameter is *ALL. When EXPORT(*ALL) is specified, all of the
symbols exported from the copied modules are exported from the service program. The signature that
gets generated is determined by the following:
v The number of exported symbols
v Alphabetical order of exported symbols

If EXPORT(*ALL) is specified, no binder language is needed to define the exports from a service
program. By specifying this value, you do not need to generate the binder language source. However, a
service program with EXPORT(*ALL) specified can be difficult to update or correct if the exports are used
by other programs. If the service program is changed, the order or number of exports might change.
Therefore, the signature of that service program might change. If the signature changes, all programs or
service programs that use the changed service program have to be re-created.

EXPORT(*ALL) indicates that all symbols exported from the modules used in the service program are
exported from the service program. ILE C can define exports as global or static. Only external variables
declared in ILE C as global are available with EXPORT(*ALL). In ILE RPG, the following are available
with EXPORT(*ALL):
v The RPG main procedure name
v The names of any exported subprocedures
v Variables defined with the keyword EXPORT

In ILE COBOL, the following language elements are module exports:
v The name in the PROGRAM-ID paragraph in the lexically outermost COBOL program (not to be

confused with *PGM object) of a compilation unit. This maps to a strong procedure export.
v The COBOL compiler-generated name derived from the name in the PROGRAM-ID paragraph in the

preceding bullet if that program does not have the INITIAL attribute. This maps to a strong procedure
export. For information about strong and weak exports, see Export in “Import and Export Concepts”
on page 66.

v Any data item or file item declared as EXTERNAL. This maps to a weak export.

Chapter 5. Program Creation Concepts 65

Export Parameter Used with Source File and Source Member Parameters
The default value on the export parameter is *SRCFILE. If *SRCFILE is specified on the export parameter,
the binder must also use the SRCFILE and SRCMBR parameters to locate the binder language source.

The following example command binds a service program named UTILITY by using the defaults to locate
the binder language source:
CRTSRVPGM SRVPGM(*CURLIB/UTILITY)

MODULE(*SRVPGM)
EXPORT(*SRCFILE)
SRCFILE(*LIBL/QSRVSRC)
SRCMBR(*SRVPGM)

For this command to create the service program, a member named UTILITY must be in the source file
QSRVSRC. This member must then contain the binder language source that the binder translates into a
signature and set of export identifiers. The default is to get the binder language source from a member
with the same name as the name of the service program, UTILITY. If a file, member, or binder language
source with the values supplied on these parameters is not located, the service program is not created.

Maximum width of a file for the SRCFILE parameter
In V3R7 or later releases, the maximum width of a file for the Source File (SRCFILE) parameter on the
CRTSRVPGM or UPDSRVPGM command is 240 characters. If the file is larger than the maximum width,
message CPF5D07 appears. For V3R2, the maximum width is 80 characters. For V3R6, V3R1 and V2R3,
there is no limit on the maximum width.

Import and Export Concepts
ILE languages support the following types of exports and imports:
v Weak data exports
v Weak data imports
v Strong data exports
v Strong data imports
v Strong procedure exports
v Weak procedure exports
v Procedure imports

An ILE module object can export procedures or data items to other modules. And an ILE module object
can import (reference) procedures or data items from other modules. When using a module object on
CRTSRVPGM command to create a service program, its exports optionally export from the service
program. (See “Export Parameter on the CRTSRVPGM Command” on page 65.) The strength (strong or
weak) of an export depends on the programming language. The strength determines when enough is
known about an export to set its characteristics, such as the size of a data item. A strong export's
characteristics are set at bind time. The strength of the exports affects symbol resolution.
v The binder uses the characteristics of the strong export, if one or more weak exports have the same

name.
v If a weak export does not have the same name as a strong export, you cannot set its characteristics

until activation time. At activation time, if multiple weak exports with the same name exist, the
program uses the largest one. This is true, unless an already activated weak export with the same
name has already set its characteristics.

v At bind time, if a binding directory is used, and weak exports are found to match weak imports, they
will be bound. However, the binding directory is searched only as long as there are unresolved imports
to be resolved. Once all imports are resolved, the search through the binding directory entries stops.
Duplicate weak exports are not flagged as duplicate variables or procedures. The order of items in the
binding directory is very important.

66 ILE Concepts IBM i 7.1

You can export weak exports outside a program object or service program for resolution at activation
time. This is opposed to strong exports that you export only outside a service program and only at bind
time.

You cannot, however, export strong exports outside a program object. You can export strong procedure
exports outside a service program to satisfy either of the following at bind time:
v Imports in a program that binds the service program by reference.
v Imports in other service programs that are bound by reference to that program.

Service programs define their public interface through binding source language.

You can make weak procedure exports part of the public interface for a service program through the
binding source language. However, exporting a weak procedure export from the service program through
the binding source language no longer marks it as weak. It is handled as a strong procedure export.

You can only export weak data to an activation group. You cannot make it part of the public interface
that is exported from the service program through the use of binder source language. Specifying weak
data in the binder source language causes the bind to fail.

Table 8 summarizes the types of imports and exports that are supported by some of the ILE languages:

Table 8. Imports and Exports Supported by ILE Languages

ILE
Languages

Weak Data
Exports

Weak Data
Imports

Strong Data
Exports

Strong Data
Imports

Strong
Procedure
Exports

Weak
Procedure
Exports

Procedure
Imports

RPG IV No No Yes Yes Yes No Yes

COBOL2 Yes 3 Yes 3 No No Yes1 No Yes

CL No No No No Yes 1 No Yes

C No No Yes Yes Yes No Yes

C++ No No Yes Yes Yes Yes Yes

Note:

1. COBOL and CL allow only one procedure to be exported from the module.

2. COBOL uses the weak data model. Data items that are declared as external become both weak exports and weak
imports for that module.

3. COBOL requires the NOMONOPRC option. Without this option, the lowercase letters are automatically
converted to uppercase.

For information on which declarations become imports and exports for a particular language, see one of
the following books:

v ILE RPG Programmer's Guide

v ILE COBOL Programmer's Guide

v ILE C/C++ Programmer's Guide

Binder Language
The binder language is a small set of nonrunnable commands that defines the exports for a service
program. The binder language enables the source entry utility (SEU) syntax checker to prompt and
validate the input when a BND source type is specified.

Chapter 5. Program Creation Concepts 67

http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/topic/rzaha/sc092712.pdf

Note: You cannot use the SEU syntax checking type BND for a binder source file that contains
wildcarding. You also cannot use it for a binder source file that contains names longer than 254
characters.

The binder language consists of a list of the following commands:
1. Start Program Export (STRPGMEXP) command, which identifies the beginning of a list of exports

from a service program
2. Export Symbol (EXPORT) commands, each of which identifies a symbol name available to be

exported from a service program
3. End Program Export (ENDPGMEXP) command, which identifies the end of a list of exports from a

service program

Figure 32 is a sample of the binder language in a source file:

Using the Retrieve Binder Source (RTVBNDSRC) command, you can generate the binder language source
based on exports from one or more modules or service programs.

Signature
The symbols identified between a STRPGMEXP PGMLVL(*CURRENT) and ENDPGMEXP pair define the
public interface to a service program. That public interface is represented by a signature. A signature is a
value that identifies the interface supported by a service program.

Note: Do not confuse the signatures discussed in this topic with digital object signatures. Digital signatures
on IBM i objects ensure the integrity of software and data. They also act as a deterrent to data
tampering or the unauthorized modification to an object. The signature also provides positive
identification of the data's origin. For more information about digital object signatures, see the
Security category of information in the IBM i Information Center.

If you choose to specify an explicit signature, your binder language source only needs to have one export
block; new exports can be added to the end of the list of exports. If you choose not to specify an explicit
signature, the binder generates a signature from the list of procedure and data item names to be exported
and from the order in which they are specified. You must add a new export block to your binder source
every time you add new exports to your service program.

STRPGMEXP PGMLVL(*CURRENT) LVLCHK(*YES)
.
.

EXPORT SYMBOL(p1)
EXPORT SYMBOL(’p2’)
EXPORT SYMBOL(’P3’)

.

.
ENDPGMEXP

.

.

.

STRPGMEXP PGMLVL(*PRV)
.
.

EXPORT SYMBOL(p1)
EXPORT SYMBOL(’p2’)

.

.
ENDPGMEXP

Figure 32. Example of Binder Language in a Source File

68 ILE Concepts IBM i 7.1

Note: To avoid making incompatible changes to a service program, existing procedure and data item
names must not be removed or rearranged in the binder language source. Additional export blocks
must contain the same symbols in the same order as existing export blocks. Additional symbols
must be added only to the end of the list. This rule applies whether you specify an explicit
signature, or whether you allow the binder to generate a new signature.

There is no way to remove a service program export in a way compatible with existing programs
and service programs because that export might be needed by programs or service programs
bound to that service program.

If an incompatible change is made to a service program, existing programs that remain bound to it
might no longer work correctly. An incompatible change to a service program can be made only if
it can be guaranteed that all programs and service programs bound to it are re-created with the
CRTPGM or CRTSRVPGM command after the incompatible change is made.

A signature does not validate the interface to a particular procedure within a service program. An
incompatible change to the interface of a particular procedure requires that all modules that call
the procedure be recompiled, and all programs and service programs that contain those modules
be re-created with CRTPGM or CRTSRVPGM.

Start Program Export and End Program Export Commands
The Start Program Export (STRPGMEXP) command identifies the beginning of a list of exports from a
service program. The End Program Export (ENDPGMEXP) command identifies the end of a list of
exports from a service program.

Multiple STRPGMEXP and ENDPGMEXP pairs specified within a source file cause multiple signatures to
be created. The order in which the STRPGMEXP and ENDPGMEXP pairs occur is not significant.

Program Level Parameter on the STRPGMEXP Command
Only one STRPGMEXP command can specify PGMLVL(*CURRENT), but it does not have to be the first
STRPGMEXP command. All other STRPGMEXP commands within a source file must specify
PGMLVL(*PRV). The current signature represents whichever STRPGMEXP command has
PGMLVL(*CURRENT) specified.

Signature Parameter on the STRPGMEXP Command
The signature (SIGNATURE) parameter allows you to explicitly specify a signature for a service program.
The explicit signature can be a hexadecimal string or a character string. You may want to consider
explicitly specifying a signature for either of the following reasons:
v The binder could generate a compatible signature that you do not want. A signature is based on the

names of the specified exports and on their order. Therefore, if two export blocks have the same
exports in the same order, they have the same signature. As the service program provider, you may
know that the two interfaces are not compatible (because, for example, their parameter lists are
different). In this case, you can explicitly specify a new signature instead of having the binder generate
the compatible signature. If you do so, you create an incompatibility in your service program, forcing
some or all clients to recompile.

v The binder could generate an incompatible signature that you do not want. If two export blocks have
different exports or a different order, they have different signatures. If, as the service program provider,
you know that the two interfaces are really compatible (because, for example, a function name has
changed but it is still the same function), you can explicitly specify the same signature as previously
generated by the binder instead of having the binder generate an incompatible signature. If you specify
the same signature, you maintain a compatibility in your service program, allowing your clients to use
your service program without rebinding.

The default value for the signature parameter, *GEN, causes the binder to generate a signature from
exported symbols.

Chapter 5. Program Creation Concepts 69

You can determine the signature values for a service program by using the Display Service Program
(DSPSRVPGM) command and specifying DETAIL(*SIGNATURE).

Level Check Parameter on the STRPGMEXP Command
The level check (LVLCHK) parameter on the STRPGMEXP command specifies whether the binder will
automatically check the public interface to a service program. Specifying LVLCHK(*YES), or using the
default value LVLCHK(*YES), causes the binder to examine the signature at run time. The system verifies
that the value matches the value known to the service program's clients. If the values match, clients of
the service program can use the public interface without rebinding to the service program.

Use the LVLCHK(*NO) value with caution. If you cannot control the public interface, runtime or
activation errors might occur. See “Binder Language Errors” on page 166 for an explanation of the
common errors that might occur from using the binder language.

Export Symbol Command
The Export Symbol (EXPORT) command identifies a symbol name available to be exported from a service
program.

If the exported symbols contain lowercase letters, the symbol name should be enclosed within
apostrophes as in Figure 32 on page 68. If apostrophes are not used, the symbol name is converted to all
uppercase letters. In the example, the binder searches for an export named P1, not p1.

Symbol names can also be exported through the use of wildcard characters (<<< or >>>). If a symbol
name exists and matches the wildcard specified, the symbol name is exported. If any of the following
conditions exists, an error is signaled and the service program is not created:
v No symbol name matches the wildcard specified
v More than one symbol name matches the wildcard specified
v A symbol name matches the wildcard specified but is not available for export

Substrings in the wildcard specification must be enclosed within quotation marks.

Signatures are determined by the characters in wildcard specifications. Changing the wildcard
specification changes the signature even if the changed wildcard specification matches the same export.
For example, the two wildcard specifications “r”>>> and “ra”>>> both export the symbol “rate” but they
create two different signatures. Therefore, it is strongly recommended that you use a wildcard
specification that is as similar to the export symbol as possible.

Note: You cannot use the SEU syntax checking type BND for a binder source file that contains
wildcarding.

Wildcard Export Symbol Examples
For the following examples, assume that the symbol list of possible exports consists of:

interest_rate
international
prime_rate

The following examples show which export is chosen or why an error occurs:

EXPORT SYMBOL (“interest”>>>)
Exports the symbol “interest_rate” because it is the only symbol that begins with “interest”.

EXPORT SYMBOL (“i”>>>“rate”>>>)
Exports the symbol “interest_rate” because it is the only symbol that begins with “i” and
subsequently contains “rate”.

70 ILE Concepts IBM i 7.1

EXPORT SYMBOL (<<<“i”>>>“rate”)
Results in a “Multiple matches for wildcard specification” error. Both “prime_rate” and
“interest_rate” contain an “i” and subsequently end in “rate”.

EXPORT SYMBOL (“inter”>>>“prime”)
Results in a “No matches for wildcard specification” error. No symbol begins with “inter” and
subsequently ends in “prime”.

EXPORT SYMBOL (<<<)
Results in a “Multiple matches for wildcard specification” error. This symbol matches all three
symbols and therefore is not valid. An export statement can result in only one exported symbol.

Binder Language Examples
As an example of using the binder language, assume that you are developing a simple financial
application with the following procedures:
v Rate procedure

Calculates an Interest_Rate, given the values of Loan_Amount, Term_of_Payment, and
Payment_Amount.

v Amount procedure
Calculates the Loan_Amount, given the values of Interest_Rate, Term_of_Payment, and
Payment_Amount.

v Payment procedure
Calculates the Payment_Amount, given the values of Interest_Rate, Term_of_Payment, and
Loan_Amount.

v Term procedure
Calculates the Term_of_Payment, given the values of Interest_Rate, Loan_Amount, and
Payment_Amount.

Some of the output listings for this application are shown in Appendix A, “Output Listing from
CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM Command,” on page 157.

In the binder language examples, each module contains more than one procedure. The examples apply
even to modules that contain only one procedure.

Binder Language Example 1
The binder language for the Rate, Amount, Payment, and Term procedures looks like the following:
FILE: MYLIB/QSRVSRC MEMBER: FINANCIAL

STRPGMEXP PGMLVL(*CURRENT)
EXPORT SYMBOL(’Term’)
EXPORT SYMBOL(’Rate’)
EXPORT SYMBOL(’Amount’)
EXPORT SYMBOL(’Payment’)

ENDPGMEXP

Some initial design decisions have been made, and three modules (MONEY, RATES, and CALCS) provide
the necessary procedures.

To create the service program pictured in Figure 33 on page 72, the binder language is specified on the
following CRTSRVPGM command:
CRTSRVPGM SRVPGM(MYLIB/FINANCIAL)

MODULE(MYLIB/MONEY MYLIB/RATES MYLIB/CALCS)
EXPORT(*SRCFILE)
SRCFILE(MYLIB/QSRVSRC)
SRCMBR(*SRVPGM)

Chapter 5. Program Creation Concepts 71

Note that source file QSRVSRC in library MYLIB, specified in the SRCFILE parameter, is the file that
contains the binder language source.

Also note that no binding directory is needed because all the modules needed to create the service
program are specified on the MODULE parameter.

Binder Language Example 2
As progress is made in developing the application, a program called BANKER is written. BANKER needs
to use the procedure called Payment in the service program called FINANCIAL. The resulting application
with the BANKER program is shown in Figure 34 on page 73.

Service Program
MYLIB/FINANCIAL

Module MONEY

Current Signature = Sig 123

Module RATES

Module CALCS

Procedure Amount

Procedure Payment

Procedure Term

Procedure Rate

Procedure CALC1

Procedure CALC2

Term

Rate

Amount

Payment

Public
Interface

RV2W1051-3

Figure 33. Creating a Service Program by Using the Binder Language

72 ILE Concepts IBM i 7.1

When the BANKER program was created, the MYLIB/FINANCIAL service program was provided on the
BNDSRVPGM parameter. The symbol Payment was found to be exported from the fourth slot of the
public interface of the FINANCIAL service program. The current signature of MYLIB/FINANCIAL along
with the slot associated with the Payment interface is saved with the BANKER program.

During the process of getting BANKER ready to run, activation verifies the following:
v Service program FINANCIAL in library MYLIB can be found.
v The service program still supports the signature (SIG 123) saved in BANKER.

This signature checking verifies that the public interface used by BANKER when it was created is still
valid at run time.

As shown in Figure 34, at the time BANKER gets called, MYLIB/FINANCIAL still supports the public
interface used by BANKER. If activation cannot find either a matching signature in MYLIB/FINANCIAL
or the service program MYLIB/FINANCIAL, the following occurs:

BANKER fails to get activated.
An error message is issued.

Service Program
MYLIB/FINANCIAL

Program BANKER

Module MONEY

Current Signature = Sig 123

Module RATES

Module M1

Module CALCS

Procedure Amount

Procedure Payment

Procedure Term

Procedure Rate

Procedure CALC1

Procedure CALC2

Term

Rate

Amount

PaymentCallPrc Payment

MYLIB/FINANCIAL

Payment = 4th slot

Signature = Sig 123

Public
Interface

RV2W1053-4

Figure 34. Using the Service Program FINANCIAL

Chapter 5. Program Creation Concepts 73

Binder Language Example 3
As the application continues to grow, two new procedures are needed to complete our financial package.
The two new procedures, OpenAccount and CloseAccount, open and close the accounts, respectively. The
following steps need to be performed to update MYLIB/FINANCIAL such that the program BANKER
does not need to be re-created:
1. Write the procedures OpenAccount and CloseAccount.
2. Update the binder language to specify the new procedures.

The updated binder language supports the new procedures. It also allows the existing ILE programs or
service programs that use the FINANCIAL service program to remain unchanged. The binder language
looks like this:
FILE: MYLIB/QSRVSRC MEMBER: FINANCIAL

STRPGMEXP PGMLVL(*CURRENT)
EXPORT SYMBOL(’Term’)
EXPORT SYMBOL(’Rate’)
EXPORT SYMBOL(’Amount’)
EXPORT SYMBOL(’Payment’)
EXPORT SYMBOL(’OpenAccount’)
EXPORT SYMBOL(’CloseAccount’)

ENDPGMEXP

STRPGMEXP PGMLVL(*PRV)
EXPORT SYMBOL(’Term’)
EXPORT SYMBOL(’Rate’)
EXPORT SYMBOL(’Amount’)
EXPORT SYMBOL(’Payment’)

ENDPGMEXP

When an update operation to a service program is needed to do both of the following:
v Support new procedures or data items
v Allow the existing programs and service programs that use the changed service program to remain

unchanged

one of two alternatives must be chosen. The first alternative is to perform the following steps:
1. Duplicate the STRPGMEXP, ENDPGMEXP block that contains PGMLVL(*CURRENT).
2. Change the duplicated PGMLVL(*CURRENT) value to PGMLVL(*PRV).
3. In the STRPGMEXP command that contains PGMLVL(*CURRENT), add to the end of the list the new

procedures or data items to be exported.
4. Save the changes to the source file.
5. Create or re-create the new or changed modules.
6. Create the service program from the new or changed modules by using the updated binder language.

The second alternative is to take advantage of the signature parameter on the STRPGMEXP command
and to add new symbols at the end of the export block:
STRPGMEXP PGMVAL(*CURRENT) SIGNATURE(’123’)

EXPORT SYMBOL(’Term’)
.
.
.

EXPORT SYMBOL(’OpenAccount’)
EXPORT SYMBOL(’CloseAccount’)

ENDPGMEXP

To create the enhanced service program shown in Figure 35 on page 75, the updated binder language
shown in “Binder Language Example 3” is used on the following CRTSRVPGM command:

74 ILE Concepts IBM i 7.1

CRTSRVPGM SRVPGM(MYLIB/FINANCIAL)
MODULE(MYLIB/MONEY MYLIB/RATES MYLIB/CALCS MYLIB/ACCOUNTS))
EXPORT(*SRCFILE)
SRCFILE(MYLIB/QSRVSRC)
SRCMBR(*SRVPGM)

The BANKER program does not have to change because the previous signature is still supported. (See the
previous signature in the service program MYLIB/FINANCIAL and the signature saved in BANKER.) If
BANKER were re-created by the CRTPGM command, the signature that is saved with BANKER would be
the current signature of service program FINANCIAL. The only reason to re-create the program BANKER
is if the program used one of the new procedures provided by the service program FINANCIAL. The
binder language allows you to enhance the service program without changing the programs or service
programs that use the changed service program.

Binder Language Example 4
After shipping the updated FINANCIAL service program, you receive a request to create an interest rate
based on the following:

The current parameters of the Rate procedure
The credit history of the applicant

Service Program
MYLIB/FINANCIAL

Program BANKER

Module Money

Module M1

Previous Signature = Sig 123

Current Signature = Sig 456

Module RATES Module
ACCOUNTS

Module CALCS
Procedure

Amount
Procedure

Payment

Procedure
Rate

Procedure
Term

Procedure

Procedure
OpenAccount

CloseAccount

Procedure
CALC2

Procedure
CALC1

Term

Rate

Amount

Payment

OpenAccount

CloseAccount

CallPrc Payment

MYLIB/FINANCIAL

Payment = 4th slot

Signature = Sig 123

Public
Interface

RV2W1052-4

Figure 35. Updating a Service Program by Using the Binder Language

Chapter 5. Program Creation Concepts 75

A fifth parameter, called Credit_History, must be added on the call to the Rate procedure. Credit_History
updates the Interest_Rate parameter that gets returned from the Rate procedure. Another requirement is
that existing ILE programs or service programs that use the FINANCIAL service program must not have
to be changed. If the language does not support passing a variable number of parameters, it seems
difficult to do both of the following:
v Update the service program
v Avoid re-creating all the other objects that use the FINANCIAL service program

Fortunately, however, there is a way to do this. The following binder language supports the updated Rate
procedure. It still allows existing ILE programs or service programs that use the FINANCIAL service
program to remain unchanged.
FILE: MYLIB/QSRVSRC MEMBER: FINANCIAL

STRPGMEXP PGMLVL(*CURRENT)
EXPORT SYMBOL(’Term’)
EXPORT SYMBOL(’Old_Rate’) /* Original Rate procedure with four parameters */
EXPORT SYMBOL(’Amount’)
EXPORT SYMBOL(’Payment’)
EXPORT SYMBOL(’OpenAccount’)
EXPORT SYMBOL(’CloseAccount’)
EXPORT SYMBOL(’Rate’) /* New Rate procedure that supports +

a fifth parameter, Credit_History */
ENDPGMEXP

STRPGMEXP PGMLVL(*PRV)
EXPORT SYMBOL(’Term’)
EXPORT SYMBOL(’Rate’)
EXPORT SYMBOL(’Amount’)
EXPORT SYMBOL(’Payment’)
EXPORT SYMBOL(’OpenAccount’)
EXPORT SYMBOL(’CloseAccount’)

ENDPGMEXP

STRPGMEXP PGMLVL(*PRV)
EXPORT SYMBOL(’Term’)
EXPORT SYMBOL(’Rate’)
EXPORT SYMBOL(’Amount’)
EXPORT SYMBOL(’Payment’)

The original symbol Rate was renamed Old_Rate but remains in the same relative position of symbols to
be exported. This is important to remember.

A comment is associated with the Old_Rate symbol. A comment is everything between /* and */. The
binder ignores comments in the binder language source when creating a service program.

The new procedure Rate, which supports the additional parameter of Credit_History, must also be
exported. This updated procedure is added to the end of the list of exports.

The following two ways can deal with the original Rate procedure:
v Rename the original Rate procedure that supports four parameters as Old_Rate. Duplicate the

Old_Rate procedure (calling it Rate). Update the code to support the fifth parameter of Credit_History.
v Update the original Rate procedure to support the fifth parameter of Credit_History. Create a new

procedure called Old_Rate. Old_Rate supports the original four parameters of Rate. It also calls the
new updated Rate procedure with a dummy fifth parameter.
This is the preferred method because maintenance is simpler and the size of the object is smaller.

Using the updated binder language and a new RATES module that supports the procedures Rate, Term,
and Old_Rate, you create the following FINANCIAL service program:

76 ILE Concepts IBM i 7.1

The ILE programs and service programs that use the original Rate procedure of the FINANCIAL service
program go to slot 2. This directs the call to the Old_Rate procedure, which is advantageous because
Old_Rate handles the original four parameters. If any of the ILE programs or service programs that used
the original Rate procedure need to be re-created, do one of the following:
v To continue to use the original four-parameter Rate procedure, call the Old_Rate procedure instead of

the Rate procedure.
v To use the new Rate procedure, add the fifth parameter, Credit_History, to each call to the Rate

procedure.

When an update to a service program must meet the following requirements:
v Support a procedure that changed the number of parameters it can process
v Allow existing programs and service programs that use the changed service program to remain

unchanged

the following steps need to be performed:
1. Duplicate the STRPGMEXP, ENDPGMEXP block that contains PGMLVL(*CURRENT).
2. Change the duplicated PGMLVL(*CURRENT) value to PGMLVL(*PRV).

Service Program MYLIB/FINANCIAL

Module MONEY

Current Signature = Sig 789
Previous Signatures = Sig 456, Sig 123

Module RATES Module
ACCOUNTS

Module CALCS
Procedure

Procedure
Amount

Payment

Procedure

Procedure

Procedure

Term

Old_Rate

Rate

Procedure

Procedure
OpenAccount

CloseAccount

CALC1

CALC2

Procedure

Procedure

Term

Old_Rate

Amount

Payment

OpenAccount

CloseAccount

Rate

Public
Interface

RV2W1055-2

Figure 36. Updating a Service Program by Using the Binder Language

Chapter 5. Program Creation Concepts 77

3. In the STRPGMEXP command that contains PGMLVL(*CURRENT), rename the original procedure
name, but leave it in the same relative position.
In this example, Rate was changed to Old_Rate but left in the same relative position in the list of
symbols to be exported.

4. In the STRPGMEXP command that has PGMLVL(*CURRENT), place the original procedure name at
the end of the list that supports a different number of parameters.
In this example, Rate is added to the end of the list of exported symbols, but this Rate procedure
supports the additional parameter Credit_History.

5. Save the changes to the binder language source file.
6. In the file containing the source code, enhance the original procedure to support the new parameter.

In the example, this means changing the existing Rate procedure to support the fifth parameter of
Credit_History.

7. A new procedure is created that handles the original parameters as input and calls the new
procedure with a dummy extra parameter.
In the example, this means adding the Old_Rate procedure that handles the original parameters and
calling the new Rate procedure with a dummy fifth parameter.

8. Save the binder language source code changes.
9. Create the module objects with the new and changed procedures.

10. Create the service program from the new and changed modules using the updated binder language.

Changing Programs
The Change Program (CHGPGM) and Change Service Program (CHGSRVPGM) commands change the
attributes of a program and service program without requiring recompiling. Some of the changeable
attributes follow:
v The optimization attribute.
v The user profile attribute.
v Use adopted authority attribute.
v The profiling data attribute.
v The program text.
v Licensed Internal Code options.
v Storage model (only from *SNGLVL to *INHERIT).

The user can also force recreation of a program even if the specified attributes are the same as the current
attributes. Do this by specifying the force program recreation (FRCCRT) parameter with a value of *YES.

The force program recreation (FRCCRT) parameter can also be specified with the values of *NO and
*NOCRT. These values determine whether the requested program attributes are actually changed when
the change requires that the program be re-created. Modifying the following program attributes may
cause the program to be re-created:
v The Optimize program prompt (OPTIMIZE parameter)
v The Use adopted authority prompt (USEADPAUT parameter)
v The Profiling data prompt (PRFDTA parameter)
v The User profile prompt (USRPRF parameter)
v Licensed Internal Code options prompt (LICOPT parameter)
v Storage model prompt (STGMDL parameter)

A value of *NO for the force program recreation (FRCCRT) parameter means that the recreation is not
forced, but if one of the program attributes requiring recreation has changed, the program is recreated.
This option allows the system to determine whether a change is required.

78 ILE Concepts IBM i 7.1

|
|
|

|

|

|

|

|

|

|

|

Recreating a program with CHGPGM or CHGSRVPGM while one or more jobs is using the program
causes an “Object Destroyed” exception to occur, and these jobs may fail. By changing the command
default for the force program recreation (FRCCRT) parameter to *NOCRT, you can prevent this from
inadvertently happening.

You can use the number of threads (NBRTHD) parameter to take advantage of available processing unit
cycles, especially on a multiprocessor system.

Program Updates
After an ILE program object or service program is created, you may have to correct an error in it or add
an enhancement to it. However, after you service the object, it may be so large that shipping the entire
object to your customers is difficult or expensive.

You can reduce the shipment size by using the Update Program (UPDPGM) or Update Service Program
(UPDSRVPGM) command. These commands replace only the specified modules, and only the changed or
added modules have to be shipped to your customers.

If you use the PTF process, an exit program containing one or more calls to the UPDPGM or
UPDSRVPGM commands can be used to do the update functions. Binding the same module to multiple
program objects or service programs requires running the UPDPGM or UPDSRVPGM command against
each *PGM and *SRVPGM object.

For example, refer to Figure 37 on page 80.

Chapter 5. Program Creation Concepts 79

If a program or service program is updated while it remains activated in another job, the job will
continue to use the old version of the program or service program. New activations will use the updated
version of the program or service program.

The allow update (ALWUPD) and allow *SRVPGM library update (ALWLIBUPD) parameters on the
CRTPGM or CRTSRVPGM command determine whether a program object or service program can be
updated. By specifying ALWUPD(*NO), the modules in a program object or service program cannot be
replaced by the UPDPGM or UPDSRVPGM command. By specifying ALWUPD(*YES) and
ALWLIBUPD(*YES), you can update your program to use a service program from a library that was not
previously specified. By specifying ALWUPD(*YES) and ALWLIBUPD(*NO), you can update the
modules, but not the bound service program library. You can not specify ALWUPD(*NO) and
ALWLIBUPD(*YES) at the same time.

Parameters on the UPDPGM and UPDSRVPGM Commands
Each module specified on the module parameter replaces a module with the same name that is bound
into a program object or service program. If more than one module bound into a program object or
service program has the same name, the replacement library (RPLLIB) parameter is used. This parameter

Service Program MYLIB/FINANCIAL

Module MONEY

Current Signature = Sig 789
Previous Signatures = Sig 456, Sig 123

Module RATES Module
ACCOUNTS

Module CALCS
Procedure

Procedure
Amount

Payment

Procedure

Procedure

Procedure

Term

Old_Rate

Rate

Procedure

Procedure
OpenAccount

CloseAccount

CALC1

CALC2

Procedure

Procedure

Term

Old_Rate

Amount

Payment

OpenAccount

CloseAccount

Rate

Public
Interface

RV3W105-0

Module MONEY
Procedure

Procedure
Amount

Payment

Figure 37. Replacing a Module in a Service Program

80 ILE Concepts IBM i 7.1

specifies which method is used to select the module to be replaced. If no module with the same name is
already bound into a program object or service program, the program object or service program is not
updated.

The bound service program (BNDSRVPGM) parameter specifies additional service programs beyond
those that the program object or service program is already bound to. If a replacing module contains
more imports or fewer exports than the module it replaces, these service programs may be needed to
resolve those imports.

With the service program library (SRVPGMLIB) parameter, you can specify the library that stores the
bound service programs. Each time you run the UPDPGM or UPDSRVPGM commands, the bound
service programs from the specified library are used. The UPDPGM or UPDSRVPGM command allows
you to change library if ALWLIBUPD(*YES) is used.

The binding directory (BNDDIR) parameter specifies binding directories that contain modules or service
programs that also may be required to resolve extra imports.

The activation group (ACTGRP) parameter specifies the activation group name to be used when a
program or service program is activated. This parameter also allows you to change the activation group
name of a named activation group.

Module Replaced by a Module with Fewer Imports
If a module is replaced by another module with fewer imports, the new program object or service
program is always created. However, the updated program object or service program contains an isolated
module if the following conditions exist:
v Because of the now missing imports, one of the modules bound into a program object or service

program no longer resolves any imports
v That module originally came from a binding directory used on the CRTPGM or CRTSRVPGM

command

Programs with isolated modules may grow significantly over time. To remove modules that no longer
resolve any imports and that originally came from a binding directory, you can specify OPTION(*TRIM)
when updating the objects. However, if you use this option, the exports that the modules contain are not
available for future program updates.

Module Replaced by a Module with More Imports
If a module is replaced by a module with more imports, the program object or service program can be
updated if those extra imports are resolved, given the following:
v The existing set of modules bound into the object.
v Service programs bound to the object.
v Binding directories specified on the command. If a module in one of these binding directories contains

a required export, the module is added to the program or service program. If a service program in one
of these binding directories contains a required export, the service program is bound by reference to
the program or service program.

v Implicit binding directories. An implicit binding directory is a binding directory that contains exports
that may be needed to create a program that contains the module. Every ILE compiler builds a list of
implicit binding directories into each module it creates.

If those extra imports cannot be resolved, the update operation fails unless OPTION(*UNRSLVREF) is
specified on the update command.

Chapter 5. Program Creation Concepts 81

Module Replaced by a Module with Fewer Exports
If a module is replaced by another module with fewer exports, the update occurs if the following
conditions exist:
v The missing exports are not needed for binding.
v The missing exports are not exported out of the service program in the case of UPDSRVPGM.

If a service program is updated with EXPORT(*ALL) specified, a new export list is created. The new
export list will be different from the original export list.

The update does not occur if the following conditions exist:
v Some imports cannot be resolved because of the missing exports.
v Those missing exports cannot be found from the extra service programs and binding directories

specified on the command.
v The binder language indicates to export a symbol, but the export is missing.

Module Replaced by a Module with More Exports
If a module is replaced by another module with more exports, the update operation occurs if all the extra
exports are uniquely named. The service program export is different if EXPORT(*ALL) is specified.

However, if one or more of the extra exports are not uniquely named, the duplicate names may cause a
problem:
v If OPTION(*NODUPPROC) or OPTION(*NODUPVAR) is specified on the update command, the

program object or service program is not updated.
v If OPTION(*DUPPROC) or OPTION(*DUPVAR) is specified, the update occurs, but the extra export

may be used rather than the original export of the same name.

Tips for Creating Modules, Programs, and Service Programs
To create and maintain modules, ILE programs, and service programs conveniently, consider the
following:
v Follow a naming convention for the modules that will get copied to create a program or service

program.
A naming strategy with a common prefix makes it easier to specify modules generically on the module
parameter.

v For ease of maintenance, include each module in only one program or service program. If more than
one program needs to use a module, put the module in a service program. That way, if you have to
redesign a module, you only have to redesign it in one place.

v To ensure your signature, use the binder language whenever you create a service program.
The binder language allows the service program to be easily updated without having to re-create the
using programs and service programs.
The Retrieve Binder Source (RTVBNDSRC) command can be used to help generate the binder language
source based on exports from one or more modules or service programs.
If either of the following conditions exists:
– A service program will never change
– Users of the service program do not mind changing their programs when a signature changes

you do not need to use the binder language. Because this situation is not likely for most applications,
consider using the binder language for all service programs.

v If you get a CPF5D04 message when using a program creation command such as CRTPGM,
CRTSRVPGM, or UPDPGM, but your program or service program is still created, there are two
possible explanations:

82 ILE Concepts IBM i 7.1

1. Your program is created with OPTION(*UNRSLVREF) and contains unresolved references.
2. You are binding to a *SRVPGM listed in *BNDDIR QSYS/QUSAPIBD that is shipped with *PUBLIC

*EXCLUDE authority, and you do not have authority. To see who is authorized to an object, use the
DSPOBJAUT command. System *BNDDIR QUSAPIBD contains the names of *SRVPGMs that
provide system APIs. Some of these APIs are security-sensitive, so the *SRVPGMs they are in are
shipped with *PUBLIC *EXCLUDE authority. These *SRVPGMs are grouped at the end of
QUSAPIBD. When you are using a *PUBLIC *EXCLUDE service program in this list, the binder
usually has to examine other *PUBLIC *EXCLUDE *SRVPGMs ahead of yours, and it takes the
CPF5D04.

To avoid getting the CPF5D04 message, use one of the following methods:
– Explicitly specify any *SRVPGMs your program or service program is bound to. To see the list of

*SRVPGMS your program or service is bound to, use DSPPGM or DSPSRVPGM DETAIL(*SRVPGM).
These *SRVPGMs can be specified on the CRTPGM or CRTSRVPGM BNDSRVPGM parameter. They
can also be placed into a binding directory given on the CRTBNDRPG, CRTRPGMOD,
CRTBNDCBL, CRTPGM, or CRTSRVPGM BNDDIR parameter, or from an RPG H-spec. Taking this
action ensures that all references are resolved before the *PUBLIC *EXCLUDE *SRVPGMs in
*BNDDIR QUSAPIBD need to be examined.

– Grant *PUBLIC or individual authority to the *SRVPGMs listed in the CPF5D04 messages. This has
the drawback of authorizing users to potentially security-sensitive interfaces unnecessarily.

– If OPTION(*UNRSLVREF) is used and your program contains unresolved references, make sure all
references are resolved.

v If other people will use a program object or service program that you create, specify
OPTION(*RSLVREF) when you create it. When you are developing an application, you may want to
create a program object or service program with unresolved imports. However, when in production, all
the imports should be resolved.
If OPTION(*WARN) is specified, unresolved references are listed in the job log that contains the
CRTPGM or CRTSRVPGM request. If you specify a listing on the DETAIL parameter, they are also
included on the program listing. You should keep the job log or listing.

v When designing new applications, determine if common procedures that should go into one or more
service programs can be identified.
It is probably easiest to identify and design common procedures for new applications. If you are
converting an existing application to use ILE, it may be more difficult to determine common
procedures for a service program. Nevertheless, try to identify common procedures needed by the
application and try to create service programs containing the common procedures.

v When converting an existing application to ILE, consider creating a few large programs.
With a few, usually minor changes, you can easily convert an existing application to take advantage of
the ILE capabilities. After you create the modules, combining them into a few large programs may be
the easiest and least expensive way to convert to ILE.

v Try to limit the number of service programs your application uses.
This may require a service program to be created from more than one module. The advantages are a
faster activation time and a faster binding process.
There are no simple answers for the number of service programs an application should use. If a
program uses hundreds of service programs, it is probably using too many. On the other hand, one
service program may not be practical either.

Chapter 5. Program Creation Concepts 83

|
|
|

84 ILE Concepts IBM i 7.1

Chapter 6. Activation Group Management

This chapter contains examples of how to structure an application using activation groups. Topics
include:
v Supporting multiple applications
v Using the Reclaim Resources (RCLRSC) command with OPM and ILE programs
v Deleting activation groups with the Reclaim Activation Group (RCLACTGRP) command
v Service programs and activation groups

Multiple Applications Running in the Same Job
User-named activation groups allow you to leave an activation group in a job for later use. A normal
return operation or a skip operation (such as longjmp() in ILE C) past the control boundary does not
delete your activation group.

This allows you to leave your application in its last-used state. Static variables and open files remain
unchanged between calls into your application. This can save processing time and may be necessary to
accomplish the function you are trying to provide.

You should be prepared, however, to accept requests from multiple independent clients running in the
same job. The system does not limit the number of ILE programs that can be bound to your ILE service
program. As a result, you may need to support multiple clients.

Figure 38 shows a technique that you may use to share common service functions while keeping the
performance advantages of a user-named activation group.

Figure 38. Multiple Applications Running in the Same Job

© Copyright IBM Corp. 1997, 2010 85

Each call to a procedure in service program X requires a user handle. The field ID represents a user
handle in this example. Each user is responsible for providing this handle. You do an initialization
routine to return a unique handle for each user.

When a call is made to your service program, the user handle is used to locate the storage variables that
relate to this user. While saving activation-group creation time, you can support multiple clients at the
same time.

Reclaim Resources Command
The Reclaim Resources (RCLRSC) command depends on a system concept known as a level number. A
level number is a unique value assigned by the system to certain resources you use within a job. Three
level numbers are defined as follows:
Call level number

Each call stack entry is given a unique level number
Program-activation level number

Each OPM and ILE program activation is given a unique level number
Activation-group level number

Each activation group is given a unique level number

As your job runs, the system continues to assign unique level numbers for each new occurrence of the
resources just described. The level numbers are assigned in increasing value. Resources with higher level
numbers are created after resources with lower level numbers.

Figure 39 on page 87 shows an example of using the RCLRSC command on OPM and ILE programs.
Call-level scoping has been used for the open files shown in this example. When call-level scoping is
used, each data management resource is given the same level numbers as the call stack entry that created
that resource.

86 ILE Concepts IBM i 7.1

In this example, the calling sequence is programs A, B, C, and D. Programs D and C return to program B.
Program B is about to use the RCLRSC command with an option of LVL(*). The RCLRSC command uses
the level (LVL) parameter to clean up resources. All resources with a call-level number greater than the
call-level number of the current call stack entry are cleaned up. In this example, call-level number 104 is
used as the starting point. All resources greater than call-level number 104 are deleted. Note that
resources in call level 200 and 201 are unaffected by RCLRSC because they are in an ILE activation group.
RCLRSC works only in the default activation groups.

In addition, the storage from programs C and D and the open data path (ODP) for file F3 is closed. File
F1 is shared with the ODP opened in program A. The shared ODP is closed, but file F1 remains open.

Figure 39. Reclaim Resources

Chapter 6. Activation Group Management 87

|
|
|
|
|
|
|

Reclaim Resources Command for OPM Programs
The Reclaim Resources (RCLRSC) command may be used to close open files and free static storage for
OPM programs that have returned without ending. Some OPM languages, such as RPG, allow you to
return without ending the program. If you later want to close the program's files and free its storage, you
may use the RCLRSC command.

Reclaim Resources Command for ILE Programs
For ILE programs that are created by the CRTBNDRPG and CRTBNDCL commands with
DFTACTGRP(*YES) specified, the RCLRSC command frees static storage just as it does for OPM
programs. For ILE programs that are not created by the CRTBNDRPG or CRTBNDCL commands with
DFTACTGRP(*YES) specified, the RCLRSC command reinitializes any activations that have been created
in a default activation group but does not free static storage. ILE programs that use large amounts of
static storage should be activated in an ILE activation group. Deleting the activation group returns this
storage to the system. The RCLRSC command closes files opened by service programs or ILE programs
running in a default activation group. The RCLRSC command does not reinitialize static storage of
service programs and does not affect non-default activation groups.

To use the RCLRSC command directly from ILE, you can use either the QCAPCMD API or an ILE CL
procedure. Using the QCAPCMD API, you can directly call system commands without the use of a CL
program. In Figure 39 on page 87, directly calling system commands is important because you might
want to use the call-level number of a particular ILE procedure. Certain languages, such as ILE C, also
provide a system function that allows direct running of IBM i commands.

Reclaim Activation Group Command
The Reclaim Activation Group (RCLACTGRP) command can be used to delete a non-default activation
group that is not in use. This command allows options to either delete all eligible activation groups or to
delete an activation group by name.

Service Programs and Activation Groups
When you create an ILE service program, decide whether to specify an option of *CALLER or a name for
the ACTGRP parameter. This option determines whether your service program will be activated into the
caller's activation group or into a separately named activation group. Either choice has advantages and
disadvantages. This topic discusses what each option provides.

For the ACTGRP(*CALLER) option, the service program functions as follows:
v Static procedure calls are fast

Static procedure calls into the service program are optimized when running in the same activation
group.

v Shared external data
Service programs may export data to be used by other programs and service programs in the same
activation group.

v Shared data management resources
Open files and other data management resources may be shared between the service program and
other programs in the activation group. The service program may issue a commit operation or a
rollback operation that affects the other programs in the activation group.

v No control boundary
Unhandled exceptions within the service program percolate to the client programs. HLL end verbs
used within the service program can delete the activation group of the client programs.

For the ACTGRP(name) option, the service program functions as follows:
v Separate address space for variables, if using single-level storage model.

88 ILE Concepts IBM i 7.1

|
|
|
|
|
|
|
|
|

|

The client program cannot manipulate pointers to address your working storage. This may be
important if your service program is running with adopted authority.

v Separate data management resources
You have your own open files and commitment definitions. The accidental sharing of open files is
prevented.

v State information controlled
You control when the application storage is deleted. By using HLL end verbs or normal language
return statements, you can decide when to delete the application. You must, however, manage the state
information for multiple clients.

Chapter 6. Activation Group Management 89

|
|

90 ILE Concepts IBM i 7.1

Chapter 7. Calls to Procedures and Programs

The ILE call stack and argument-passing methods facilitate interlanguage communication, making it
easier for you to write mixed-language applications. This chapter discusses different examples of dynamic
program calls and static procedure calls, which were introduced in “Calling a Program or a Procedure”
on page 18. A third type of call, the procedure pointer call, is introduced.

In addition, this chapter discusses how to support OPM application programming interfaces (APIs) using
new ILE functions or OPM-to-ILE conversions.

Call Stack
The call stack is a last-in-first-out (LIFO) list of call stack entries, one entry for each called procedure or
program. Each call stack entry has information about the automatic variables for the procedure or
program and about other resources scoped to the call stack entry, such as condition handlers and cancel
handlers.

There is one call stack per thread. A call adds a new entry on the call stack for the called procedure or
program and passes control to the called object. A return removes the stack entry and passes control back
to the calling procedure or program. See Threads on IBM i for more information.

Call Stack Example
Figure 40 on page 92 contains a segment of a call stack with two programs: an OPM program (Program
A) and an ILE program (Program B). Program B contains three procedures: its program entry procedure,
its user entry procedure, and another procedure (P1). The concepts of program entry procedure (PEP) and
user entry procedure (UEP) are defined in “Module Object” on page 10. The call flow includes the
following steps:
1. A dynamic program call to Program A.
2. Program A calls Program B, passing control to its PEP. This call to Program B is a dynamic program

call.
3. The PEP calls the UEP. This is a static procedure call.
4. The UEP calls procedure P1. This is a static procedure call.

© Copyright IBM Corp. 1997, 2010 91

|
|
|

Figure 40 illustrates the call stack for this example. The most recently called entry on the stack is depicted
at the bottom of the stack. It is the entry for the program or procedure that is currently processing. The
current program or procedure may do either of the following:
v Call another procedure or program, which adds another entry to the bottom of the stack.
v Return control to its caller after it is done processing, which causes its call stack entry to be removed

from the stack.

Assume that, after procedure P1 is done, no more processing is needed from Program B. Procedure P1
returns control to the UEP, and the entry for P1 is removed from the stack. Then the UEP returns control
to the PEP, and the UEP entry is removed from the stack. Finally, the PEP returns control to Program A,
and the PEP entry is removed from the stack. Only Program A's entry is left on this segment of the call
stack. Program A continues processing from the point where it made the dynamic program call to
Program B.

Calls to Programs and Calls to Procedures
Three types of calls can be made during ILE run time: dynamic program calls, static procedure calls, and
procedure pointer calls.

When an ILE program is activated, all of its procedures except its PEP become available for static
procedure calls and procedure pointer calls. Program activation occurs when the program is called by a
dynamic program call and the activation does not already exist. When a program is activated, the service
programs that are bound to this program, for which deferred activation does not apply, are also activated.
The procedures in an ILE service program can be accessed only by static procedure calls or by procedure
pointer calls (not by dynamic program calls).

Program A

Module M1

Module M2

Program B

Call Stack

OPM

ILE

RV2W1034-1

OPM

ILE

ILE

Dynamic
Program
Call

Static
Procedure
Call

Static
Procedure
Call

Program Entry
Procedure

Program Entry
Procedure

Procedure P1 Procedure P1

User Entry
Procedure

User Entry
Procedure

Figure 40. Dynamic Program Calls and Static Procedure Calls on the Call Stack

92 ILE Concepts IBM i 7.1

|
|
|

|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

Static Procedure Calls
A call to an ILE procedure adds a new call stack entry to the bottom of the stack and passes control to a
specified procedure. Examples include any of the following:
1. A call to a procedure in the same module
2. A call to a procedure in a different module in the same ILE program or service program
3. A call to a procedure that has been exported from an ILE service program in the same activation

group
4. A call to a procedure that has been exported from an ILE service program in a different activation

group

In examples 1, 2, and 3, the static procedure call does not cross an activation group boundary. This call
path is much shorter than the path for a dynamic program call to an ILE or OPM program. In example 4,
the call crosses an activation group boundary, and additional processing is done to switch activation
group resources. The call path length is longer than the path length of a static procedure call within an
activation group, but still shorter than for a dynamic program call.

For a static procedure call, the called procedure has been bound to the calling procedure. The call always
accesses the same procedure. In contrast, the target of a procedure pointer call can vary with each call.

Procedure Pointer Calls
Procedure pointer calls provide a way to call a procedure dynamically. For example, by manipulating
arrays, or tables, of procedure names or addresses, you can dynamically route a procedure call to
different procedures.

Procedure pointer calls add entries to the call stack in exactly the same manner as static procedure calls.
Any procedure that can be called using a static procedure call can also be called through a procedure
pointer. If the called procedure is in the same activation group, the cost of a procedure pointer call is
almost identical to the cost of a static procedure call.

Passing Arguments to ILE Procedures
In an ILE procedure call, an argument is an expression that represents a value that the calling procedure
passes to the procedure specified in the call. ILE languages use three methods for passing arguments:

by value, directly
The value of the data object is placed directly into the argument list.

by value, indirectly
The value of the data object is copied to a temporary location. The address of the copy (a pointer)
is placed into the argument list.

by reference
A pointer to the data object is placed into the argument list. Changes made by the called
procedure to the argument are reflected in the calling procedure.

Figure 41 on page 94 illustrates these argument passing styles. Not all ILE languages support passing by
value, directly. The available passing styles are described in the ILE HLL programmer's guides.

Chapter 7. Calls to Procedures and Programs 93

|
|
|
|
|

|
|

HLL semantics usually determine when data is passed by value and when it is passed by reference. For
example, ILE C passes and accepts arguments by value, directly, while for ILE COBOL and ILE RPG,
arguments are usually passed by reference. You must ensure that the calling program or procedure passes
arguments in the manner expected by the called procedure. The ILE HLL programmer's guides contain
more information on passing arguments to different languages.

A maximum of 400 arguments are allowed on a static procedure call. Each ILE language may further
restrict the maximum number of arguments. The ILE languages support the following argument-passing
styles:
v ILE C passes and accepts arguments by value directly, widening integers and floating-point values by

default. Arguments can be passed unwidened or by value indirectly if you specify the appropriate
values on the #pragma argument directive for the called function.

v ILE C++ passes and accepts arguments by value directly. C++ does not widen parameters and
floating-point values by default. Arguments can be widened or passed by value indirectly if you
specify the appropriate values on the extern linkage specifier for the declaration of the called function.

v ILE COBOL passes and accepts arguments by value, by reference, or by value indirectly. Parameters
that are passed by value are not widened.

v ILE RPG passes and accepts arguments by value, or by reference. RPG does not widen integers and
floating point values by default, but this is available for parameters passed by value, by coding
EXTPROC(*CWIDEN).

v ILE CL passes and accepts arguments by reference and by value. Parameters that are passed by value
are not widened.

Function Results
To support HLLs that allow the definition of functions (procedures that return a result argument), the
model assumes that a special function result argument may be present, as shown in Figure 42 on page 95.
As described in the ILE HLL programmer's guides, ILE languages that support function results use a
common mechanism for returning function results.

a copy of argument

pointer

pointer

a copy of argument

the actual argument

By value, directly

By value, indirectly

By reference

RV2W1027-1

Figure 41. Methods for Passing Arguments to ILE Procedures

94 ILE Concepts IBM i 7.1

Omitted Arguments
All ILE languages can simulate omitted arguments, which allows the use of the feedback code
mechanism for ILE condition handlers and other runtime procedures. For example, if an ILE C procedure
or an ILE bindable API is expecting an argument passed by reference, you can sometimes omit the
argument by passing a null pointer in its place. For information about how to specify an omitted
argument in a specific ILE language, refer to the programmer’s guide for that language. The API topic of
the Programming category of the IBM i Information Center specifies which arguments can be omitted for
each API.

For ILE languages that do not provide an intrinsic way for a called procedure to test if an argument has
been omitted, the Test for Omitted Argument (CEETSTA) bindable API is available.

Dynamic Program Calls
A dynamic program call is a call made to a program object. For example, when you use the CL command
CALL, you are making a dynamic program call.

OPM programs are called by using dynamic program calls. OPM programs are additionally limited to
making only dynamic program calls.

ILE programs are also called by dynamic program calls. The procedures within an activated ILE program
can be accessed by using static procedure calls or procedure pointer calls.

In contrast to static procedure calls, which are bound at compile time, symbols for dynamic program calls
are resolved to addresses when the call is performed. As a result, a dynamic program call uses more
system resources than a static procedure call. Examples of a dynamic program call include:
v A call to an ILE program or an OPM program
v A call to a non-bindable API

A dynamic program call to an ILE program passes control to the PEP of the identified program, which
then passes control to the UEP of the program. After the called program is done processing, control is
passed back to the instruction following the call program instruction.

Calling
Procedure

Called Procedure

Return

Call

Called procedure
may return a
function result

Calling procedure
passes arguments

RV2W1028-1

Figure 42. Program Call Argument Terminology

Chapter 7. Calls to Procedures and Programs 95

Passing Arguments on a Dynamic Program Call
Calls to ILE or OPM programs (in contrast to calls to ILE procedures) pass arguments by reference,
meaning that the called program receives the address of each argument.

When using a dynamic program call, you need to know the method of argument passing that is expected
by the called program and how to simulate it if necessary. A maximum of 255 arguments are allowed on
a dynamic program call. Each ILE language may further restrict the maximum number of arguments.
Some ILE languages support the built-in function CALLPGMV, which allows a maximum of 16383
arguments. Information on how to use the different passing methods is contained in the ILE HLL
programmer's guides.

Interlanguage Data Compatibility
ILE calls allow arguments to be passed between procedures that are written in different HLLs. To
facilitate data sharing between the HLLs, some ILE languages have added data types. For example, ILE
COBOL added USAGE PROCEDURE-POINTER as a new data type.

To pass arguments between HLLs, you need to know the format each HLL expects of arguments it is
receiving. The calling procedure is required to make sure the arguments are the size and type expected
by the called procedure. For example, an ILE C function may expect a 4-byte integer, even if a short
integer (2 bytes) is declared in the parameter list. Information on how to match data type requirements
for passing arguments is contained in the ILE HLL programmer's guides.

Syntax for Passing Arguments in Mixed-Language Applications
Some ILE languages provide syntax for passing arguments to procedures in other ILE languages. For
example, ILE C provides a #pragma argument to pass value arguments to other ILE procedures by value
indirectly; RPG has special values for the EXTPROC prototype keyword.

Operational Descriptors
Operational descriptors may be useful to you if you are writing a procedure or API that can receive
arguments from procedures written in different HLLs. Operational descriptors provide descriptive
information to the called procedure in cases where the called procedure cannot precisely anticipate the
form of the argument (for example, different types of strings). The additional information allows the
procedure to properly interpret the arguments.

The argument supplies the value; the operational descriptor supplies information about the argument's
size and type. For example, this information may include the length of a character string and the type of
string.

With operational descriptors, services such as bindable APIs are not required to have a variety of
different bindings for each HLL, and HLLs do not have to imitate incompatible data types. A few ILE
bindable APIs use operational descriptors to accommodate the lack of common string data types between
HLLs. The presence of the operational descriptor is transparent to the API user.

Operational descriptors support HLL semantics while being invisible to procedures that do not use or
expect them. Each ILE language can use data types that are appropriate to the language. Each ILE
language compiler provides at least one method for generating operational descriptors. For more
information on HLL semantics for operational descriptors, refer to the ILE HLL reference manual.

Operational descriptors are distinct from other data descriptors with which you may be familiar. For
instance, they are unrelated to the descriptors associated with distributed data or files.

96 ILE Concepts IBM i 7.1

|
|

Requirements of Operational Descriptors
You need to use operational descriptors when they are expected by a called procedure written in a
different ILE language and when they are expected by an ILE bindable API. Generally, bindable APIs
require descriptors for most string arguments. Information about bindable APIs in the API topic of the
Programming category of the IBM i Information Center specifies whether a given bindable API requires
operational descriptors.

Absence of a Required Descriptor
The omission of a required descriptor is an error. If a procedure requires a descriptor for a specific
parameter, this requirement forms part of the interface for that procedure. If a required descriptor is not
provided, the called procedure will fail at run time.

Presence of an Unnecessary Descriptor
The presence of a descriptor that is not required does not interfere with the called procedure's access to
arguments. If an operational descriptor is not needed or expected, the called procedure simply ignores it.

Note: However, generating unneeded descriptors can diminish performance, because descriptor use
effectively increases the length of the call path.

Bindable APIs for Operational Descriptor Access
Descriptors are normally accessed directly by a called procedure according to the semantics of the HLL in
which the procedure is written. Once a procedure is programmed to expect operational descriptors, no
further handling is usually required by the programmer. However, sometimes a called procedure needs to
determine whether the descriptors that it requires are present before accessing them. For this purpose the
following bindable APIs are provided:
v Retrieve Operational Descriptor Information (CEEDOD) bindable API
v Get String Information (CEEGSI) bindable API

Support for OPM and ILE APIs
When you develop new functions in ILE or convert an existing application to ILE, you may want to
continue to support call-level APIs from OPM. This topic explains one technique that may be used to
accomplish this dual support while maintaining your application in ILE.

ILE service programs provide a way for you to develop and deliver bindable APIs that may be accessed
from all ILE languages. To provide the same functions to OPM programs, you need to consider the fact
that a procedure in an ILE service program cannot be called directly from an OPM program.

The technique to use is to develop ILE program stubs for each bindable API that you plan to support.
You may want to name the bindable APIs the same as the ILE program stubs, or you may choose
different names. Each ILE program stub contains a static procedure call to the actual bindable API.

An example of this technique is shown in Figure 43 on page 98.

Chapter 7. Calls to Procedures and Programs 97

|
|
|

|
|

|
|
|

Programs B through D are the ILE program stubs. Service program X contains the actual implementation
of each bindable API. Each program stub and the service program are given the same activation group
name. In this example, the activation group name VENDOR1 is chosen.

Activation group VENDOR1 is created by the system when necessary. The dynamic program call from
OPM program A creates the activation group on the first call from an OPM program. The static procedure
call from ILE program H creates the activation group when ILE program H is activated. Once the
activation group exists, it may be used from either program A or program H.

Write the implementation of your API in an ILE procedure (procedure P1 in this example). This
procedure can be called either directly through a procedure call or indirectly through a dynamic program
call to the program stub. You must be careful when you take actions that are dependent on the call stack
structure, such as sending exception messages. A normal return from either the program stub or the
implementing procedure leaves the activation group in the job for later use. You can implement your API
procedure with the knowledge that a control boundary is established for either the program stub or the
implementing procedure on each call. HLL ending verbs delete the activation group whether the call
originated from an OPM program or an ILE program.

Figure 43. Supporting OPM and ILE APIs

98 ILE Concepts IBM i 7.1

|
|
|
|
|
|
|
|

Chapter 8. Storage Management

The operating system provides storage support for the ILE high-level languages. This storage support
removes the need for unique storage managers for the runtime environment of each language. It avoids
incompatibilities between different storage managers and mechanisms in high-level languages.

The operating system provides the automatic, static, and dynamic storage used by programs and
procedures at run time. Automatic and static storage are managed by the operating system. That is, the
need for automatic and static storage is known at compilation time from program variable declarations.
Dynamic storage is managed by the program or procedure. The need for dynamic storage is known only
at run time.

When program activation occurs, static storage for program variables is allocated and initialized.

When a program or procedure begins to run, automatic storage is allocated. The automatic storage stack
is extended for variables as the program or procedure is added to the call stack.

As a program or procedure runs, dynamic storage is allocated under program control. This storage is
extended as additional storage is required. You have the ability to control dynamic storage. The
remainder of this chapter concentrates on dynamic storage and the ways in which it can be controlled.

Single-Level Storage Heap
A heap is an area of storage that is used for allocations of dynamic storage. The amount of dynamic
storage that is required by an application depends on the data being processed by the program and
procedures that use a heap. The operating system allows the use of multiple single-level storage heaps
that are dynamically created and discarded. The ALCHSS instruction always uses single-level storage.
Some languages also support the use of teraspace for dynamic storage.

Heap Characteristics
Each heap has the following characteristics:
v The system assigns a unique heap identifier to each heap within the activation group.

The heap identifier for the default heap is always zero.
A storage management-bindable API, called by a program or procedure, uses the heap identifier to
identify the heap on which it is to act. The bindable API must run within the activation group that
owns the heap.

v The activation group that creates a heap also owns it.
Because activation groups own heaps, the lifetime of a heap is no longer than that of the owning
activation group. The heap identifier is meaningful and unique only within the activation group that
owns it.

v The size of a heap is dynamically extended to satisfy allocation requests.
The maximum size of the heap is 4 gigabytes minus 512K bytes. This is the maximum heap size if the
total number of allocations (at any one time) does not exceed 128 000.

v The maximum size of any single allocation from a heap is limited to 16 megabytes minus 64K bytes.

Default Heap
The first request for dynamic storage from the default heap within an activation group that is using
single-level storage results in the creation of a default heap from which the storage allocation takes place.
If there is insufficient storage in the heap to satisfy any subsequent requests for dynamic storage, the
system extends the heap and allocates additional storage.

© Copyright IBM Corp. 1997, 2010 99

Allocated dynamic storage remains allocated until explicitly freed or until the system discards the heap.
The default heap is discarded only when the owning activation group ends.

Programs in the same activation group automatically share dynamic storage provided the default heap
allocated the storage. However, you can isolate the dynamic storage that is used by some programs and
procedures within an activation group. You do this by creating one or more heaps.

User-Created Heaps
You can explicitly create and discard one or more heaps by using ILE bindable APIs. This gives you the
capability of managing the heaps and the dynamic storage that is allocated from those heaps.

For example, the system may or may not share dynamic storage that is allocated in user-created heaps for
programs within an activation group. The sharing of dynamic storage depends on the heap identifier that
is referred to by the programs. You can use more than one heap to avoid automatic sharing of dynamic
storage. In this way you can isolate logical groups of data. Following are some additional reasons for
using one or more user-created heaps:
v You can group certain storage objects together to meet a one-time requirement. Once you meet that

requirement, you can free the dynamic storage that was allocated by a single call to the Discard Heap
(CEEDSHP) bindable API. This operation frees the dynamic storage and discards the heap. In this way,
dynamic storage is available to meet other requests.

v You can free multiple dynamic storage that is allocated at once by using the Mark Heap (CEEMKHP)
and Release Heap (CEERLHP) bindable APIs. The CEEMKHP bindable API allows you to mark a heap.
When you are ready to free the group of allocations that were made since the heap was marked, use
the CEERLHP bindable API. Using the mark and release functions leaves the heap intact, but frees the
dynamic storage that is allocated from it. In this way, you can avoid the system overhead that is
associated with heap creation by re-using existing heaps to meet dynamic storage requirements.

v Your storage requirements may not match the storage attributes that define the default heap. For
example, the initial size of the default heap is 4K bytes. However, you require a number of dynamic
storage allocations that together exceed 4K bytes. You can create a heap with a larger initial size than
4K bytes. This reduces the system overhead which would otherwise occur both when implicitly
extending the heap and subsequently accessing the heap extensions. Similarly, you can have heap
extensions larger than 4K bytes. For information about defining heap sizes, see “Heap Allocation
Strategy” on page 101 and the discussion of heap attributes.

You might have other reasons for using multiple heaps rather than the default heap. The storage
management-bindable APIs give you the capability to manage the heaps that you create and the dynamic
storage that is allocated in those heaps. For information about the storage management APIs, see the API
topic collection in the Programming category of the IBM i Information Center.

Single-Heap Support
Languages that do not have intrinsic multiple-heap storage support use the default single-level storage
heap. You cannot use the Discard Heap (CEEDSHP), the Mark Heap (CEEMKHP), or the Release Heap
(CEERLHP) bindable APIs with the default heap. You can free dynamic storage that is allocated by the
default heap by using explicit free operations, or by ending the activation group that owns it.

These restrictions on the use of the default heap help prevent inadvertent release of allocated dynamic
storage in mixed-language applications. Remember to consider release heap and discard heap operations
as insecure for large applications that re-use existing code with potentially different storage support.
Remember not to use release heap operations that are valid for the default heap. This causes multiple
parts of an application that uses the mark function correctly when used separately to possibly fail when
used together.

100 ILE Concepts IBM i 7.1

Heap Allocation Strategy
The attributes associated with the default heap are defined by the system through a default allocation
strategy. This allocation strategy defines attributes such as a heap creation size of 4K bytes and an
extension size of 4K bytes. You cannot change this default allocation strategy.

However, you can control heaps that you explicitly create through the Create a Heap (CEECRHP)
bindable API. You also can define an allocation strategy for explicitly created heaps through the Define
Heap Allocation Strategy (CEE4DAS) bindable API. Then, when you explicitly create a heap, the heap
attributes are provided by the allocation strategy that you defined. In this way you can define separate
allocation strategies for one or more explicitly created heaps.

You can use the CEECRHP bindable API without defining an allocation strategy. In this case, the heap is
defined by the attributes of the _CEE4ALC allocation strategy type. The _CEE4ALC allocation strategy
type specifies a heap creation size of 4K bytes and an extension size of 4K bytes. The _CEE4ALC
allocation strategy type contains the following attributes:
Max_Sngl_Alloc = 16MB - 64K /* maximum size of a single allocation */
Min_Bdy = 16 /* minimum boundary alignment of any allocation */
Crt_Size = 4K /* initial creation size of the heap */
Ext_Size = 4K /* the extension size of the heap */
Alloc_Strat = 0 /* a choice for allocation strategy */
No_Mark = 1 /* a group deallocation choice */
Blk_Xfer = 0 /* a choice for block transfer of a heap */
PAG = 0 /* a choice for heap creation in a PAG */
Alloc_Init = 0 /* a choice for allocation initialization */
Init_Value = 0x00 /* initialization value */

The attributes that are shown here illustrate the structure of the _CEE4ALC allocation strategy type. For
information about all of the _CEE4ALC allocation strategy attributes, see the API topic collection in the
Programming category of the IBM i Information Center.

Single-Level Storage Heap Interfaces
Bindable APIs are provided for all heap operations. Applications can be written using either the bindable
APIs, language-intrinsic functions, or both.

The bindable APIs fall into the following categories:
v Basic heap operations. These operations can be used on the default heap and on user-created heaps.

The Free Storage (CEEFRST) bindable API frees one previous allocation of heap storage.
The Get Heap Storage (CEEGTST) bindable API allocates storage within a heap.
The Reallocate Storage (CEECZST) bindable API changes the size of previously allocated storage.

v Extended heap operations. These operations can be used only on user-created heaps.
The Create Heap (CEECRHP) bindable API creates a new heap.
The Discard Heap (CEEDSHP) bindable API discards an existing heap.
The Mark Heap (CEEMKHP) bindable API returns a token that can be used to identify heap storage
to be freed by the CEERLHP bindable API.
The Release Heap (CEERLHP) bindable API frees all storage allocated in the heap since the mark
was specified.

v Heap allocation strategies
The Define Heap Allocation Strategy (CEE4DAS) bindable API defines an allocation strategy that
determines the attributes for a heap created with the CEECRHP bindable API.

For information about the storage management APIs, see the API topic collection in the Programming
category of the IBM i Information Center.

Chapter 8. Storage Management 101

Heap Support
By default, the dynamic storage provided by malloc, calloc, realloc and new is the same type of storage
as the storage model of the root program in the activation group. However, when the single-level storage
model is in use, then teraspace storage is provided by these interfaces if the TERASPACE(*YES *TSIFC)
compiler option was specified. Similarly, a single-level storage model program can explicitly use bindable
APIs to work with teraspace, such as _C_TS_malloc, _C_TS_free, _C_TS_realloc and _C_TS_calloc.

For details about how you can use teraspace storage, see Chapter 4, “Teraspace and Single-Level Storage,”
on page 45.

If you choose to use both the CEExxxx storage management bindable APIs and the ILE C malloc(),
calloc(), realloc(), and free() functions, the following rules apply:
v Dynamic storage allocated through the C functions malloc(), calloc(), and realloc(), cannot be freed or

reallocated with the CEEFRST and the CEECZST bindable APIs.
v Dynamic storage allocated by the CEEGTST bindable API can be freed with the free() function.
v Dynamic storage initially allocated with the CEEGTST bindable API can be reallocated with the

realloc() function.

Other languages, such as COBOL, have no heap storage model. These languages can access the ILE
dynamic storage model through the bindable APIs for dynamic storage.

RPG has operation codes ALLOC, REALLOC and DEALLOC, and builtin functions %ALLOC and
%REALLOC for accessing heap storage. An RPG module can use either single-level heap storage or
teraspace heap storage. For modules with teraspace storage model, the default type of heap storage is
teraspace. For modules with inherit or single-level storage model, the default type of heap storage is
single-level. However, you can explicitly set the type of heap storage using the ALLOC keyword on the
Control specification. The RPG support uses the CEEGTST, CEECZST, and CEEFRST bindable APIs for
single-level heap storage operations and it uses the _C_TS_malloc(), _C_TS_realloc(), and _C_TS_free()
functions for teraspace heap storage operations.

Thread Local Storage
The ILE C, ILE C++, and ILE RPG compilers all support thread local storage (TLS). The TLS variables for
each program or service program are organized into a TLS frame. The TLS frame contains an initialized
copy of each TLS variable that is associated with the program or service program. One copy of the TLS
frame is created for each thread that runs the program or service program. For information about the
support available in a particular compiler, refer to documentation of the specific high-level language
(HLL).

A TLS variable is similar to a static variable, except that a unique copy of the TLS variable exists for each
thread. See the following table for the differences between TLS variables and static variables.

Table 9. Differences between TLS variables and static variables

Static Variable TLS Variable

When is storage for the variable
allocated?

When the program or service
program is activated.

When the thread first touches the
TLS frame that contains the variable.

When is the variable initialized? When the program or service
program is activated.2

When the thread first touches the
TLS frame that contains the variable.

When is storage for the variable
freed?

When the program or service
program is deactivated.

When the thread is destroyed.

Does each thread have its own copy
of the variable?

No, a single copy is shared by all
threads.

Yes.

102 ILE Concepts IBM i 7.1

|
|
|
|
|
|
|
|

Table 9. Differences between TLS variables and static variables (continued)

Static Variable TLS Variable

Is the variable stored in single-level
storage or teraspace storage?

Depends on the activation group of
the program or service program. 1

TLS variables are always stored in
teraspace storage. 1

1 See Chapter 4, “Teraspace and Single-Level Storage,” on page 45 for more information.

2 This represents the time when the variable is initialized directly by the system. The variable might be initialized
indirectly by your HLL at a later time.

When a reference is made to a TLS variable within a thread, the reference accesses the copy of the
variable associated with that thread. It will not access or update a copy of the variable associated with
any other thread.

Because each TLS variable is associated with one thread, synchronization (as described in Chapter 14,
“Shared Storage Synchronization,” on page 151) is usually not a concern. Synchronization might become
necessary, however, if the address of a TLS variable is passed to another thread.

Chapter 8. Storage Management 103

104 ILE Concepts IBM i 7.1

Chapter 9. Exception and Condition Management

This chapter provides additional details on exception handling and condition handling. Before you read
this chapter, read the advanced concepts described in “Error Handling” on page 34.

The exception message architecture of the operating system is used to implement both exception handling
and condition handling. There are cases in which exception handling and condition handling interact. For
example, an ILE condition handler registered with the Register a User-Written Condition Handler
(CEEHDLR) bindable API is used to handle an exception message sent with the Send Program Message
(QMHSNDPM) API. These interactions are explained in this chapter. The term exception handler is used in
this chapter to mean either an operating system exception handler or an ILE condition handler.

Handle Cursors and Resume Cursors
To process exceptions, the system uses two pointers called the handle cursor and resume cursor. These
pointers keep track of the progress of exception handling. You need to understand the use of the handle
cursor and resume cursor under certain advanced error-handling scenarios. These concepts are used to
explain additional error-handling features in later topics.

The handle cursor is a pointer that keeps track of the current exception handler. As the system searches
for an available exception handler, it moves the handle cursor to the next handler in the exception
handler list defined by each call stack entry. This list can contain:
v Direct monitor handlers
v ILE condition handlers
v HLL-specific handlers

The handle cursor moves down the exception handler list to lower priority handlers until the exception is
handled. If the exception is not handled by any of the exception handlers that have been defined for a
call stack entry, the handle cursor moves to the first (highest priority) handler for the previous call stack
entry.

The resume cursor is a pointer that keeps track of the current location at which your exception handler
can resume processing after handling the exception. Normally the system sets the resume cursor to the
next instruction following the occurrence of an exception. For call stack entries above the procedure that
incurred the exception, the resume point is directly after the procedure or program call that currently
suspended the procedure or program. To move the resume cursor to an earlier resume point, use the
Move Resume Cursor (CEEMRCR) bindable API.

Figure 44 on page 106 shows an example of the handle cursor and resume cursor.

© Copyright IBM Corp. 1997, 2010 105

The handle cursor is currently at the second exception handler defined in the exception handler priority
list for procedure P2. The handler procedure P10 is currently called by the system. If procedure P10
handles the exception and returns, control goes to the current resume cursor location defined in
procedure P3. This example assumes that procedure P3 percolated the exception to procedure P2.

The exception handler procedure P10 can modify the resume cursor with the Move Resume Cursor
(CEEMRCR) bindable API. Two options are provided with this API. An exception handler can modify the
resume cursor to either of the following:
v The call stack entry containing the handle cursor
v The call stack entry prior to the handle cursor

In Figure 44, you could modify the resume cursor to either procedure P2 or P1. After the resume cursor is
modified and the exception is marked as handled, a normal return from your exception handler returns
control to the new resume point.

Exception Handler Actions
When your exception handler is called by the system, you can take several actions to handle the
exception. For example, ILE C extensions support control actions, branch point handlers, and monitoring
by message ID. The possible actions described here pertain to any of the following types of handlers:
v Direct monitor handler
v ILE condition handler
v HLL-specific handler

How to Resume Processing
If you determine that processing can continue, you can resume at the current resume cursor location.
Before you can resume processing, the exception message must be changed to indicate that it has been

Call Stack

Procedure P1

CALLPRC P2

Procedure P2

CALLPRC P3

Exception
Handler

List

Handle
Cursor

Resume
Cursor

Procedure P3

Exception Occurred

Exception Handler

Procedure P10

ILE

ILE

ILE

RV2W1044-0

Resume Point

Resume Point

Resume Point.
.
.

Figure 44. Handle Cursor and Resume Cursor Example

106 ILE Concepts IBM i 7.1

handled. Certain types of handlers require you to explicitly change the exception message to indicate that
the message has been handled. For other handler types, the system can change the exception message
before your handler is called.

For a direct monitor handler, you may specify an action to be taken for the exception message. That
action may be to call the handler, to handle the exception before calling the handler, or to handle the
exception and resume the program. If the action is just to call the handler, you can still handle the
exception by using the Change Exception Message (QMHCHGEM) API or the bindable API CEE4HC
(Handle Condition). You can change the resume point within a direct monitor handler by using the Move
Resume Cursor (CEEMRCR) bindable API. After making these changes, you continue processing by
returning from your exception handler.

For an ILE condition handler, you continue the processing by setting a return code value and returning to
the system. For information about actual return code values for the Register a User-Written Condition
Handler (CEEHDLR) bindable API, see the API topic collection in the Programming category of the IBM i
Information Center.

For an HLL-specific handler, the exception message is changed to indicate that it has been handled before
your handler is called. To determine whether you can modify the resume cursor from an HLL-specific
handler, refer to your ILE HLL programmer's guide.

How to Percolate a Message
If you determine that an exception message is not recognized by your handler, you can percolate the
exception message to the next available handler. For percolation to occur, the exception message must not
be considered as a handled message. Other exception handlers in the same or previous call stack entries
are given a chance to handle the exception message. The technique for percolating an exception message
varies depending on the type of exception handler.

For a direct monitor handler, do not change the exception message to indicate that it has been handled. A
normal return from your exception handler causes the system to percolate the message. The message is
percolated to the next exception handler in the exception handler list for your call stack entry. If your
handler is at the end of the exception handler list, the message is percolated to the first exception handler
in the previous call stack entry.

For an ILE condition handler, you communicate a percolate action by setting a return code value and
returning to the system. For information about the actual return code values for the Register a
User-Written Condition Handler (CEEHDLR) bindable API, see the API topic collection in the
Programming category of the IBM i Information Center.

For an HLL-specific handler, it may not be possible to percolate an exception message. Whether you can
percolate a message depends on whether your HLL marks the message as handled before your handler is
called. If you do not declare an HLL-specific handler, your HLL can percolate the unhandled exception
message. Please refer to your ILE HLL reference manual to determine the exception messages your
HLL-specific handler can handle.

How to Promote a Message
Under certain limited situations, you can choose to modify the exception message to a different message.
This action marks the original exception message as handled and restarts exception processing with a
new exception message. This action is allowed only from direct monitor handlers and ILE condition
handlers.

For direct monitor handlers, use the Promote Message (QMHPRMM) API to promote a message. The
system can promote only status and escape message types. With this API, you have some control over the
handle cursor placement that is used to continue exception processing. Refer to the API topic in the
Programming category of the IBM i Information Center.

Chapter 9. Exception and Condition Management 107

For an ILE condition handler, you communicate the promote action by setting a return code value and
returning to the system. For information about the actual return code values for the Register a
User-Written Condition Handler (CEEHDLR) bindable API, see the API topic collection in the
Programming category of the IBM i Information Center.

Default Actions for Unhandled Exceptions
If an exception message is percolated to the control boundary, the system takes a default action. If the
exception is a notify message, the system sends the default reply, handles the exception, and allows the
sender of the notify message to continue processing. If the exception is a status message, the system
handles the exception and allows the sender of the status message to continue processing. If the
exception is an escape message, the system handles the escape message and sends a function check
message back to where the resume cursor is currently positioned. If the unhandled exception is a function
check, all entries on the stack up to the control boundary are cancelled and the CEE9901 escape message
is sent to the next prior stack entry.

Table 10 contains default responses that the system takes when an exception is unhandled at a control
boundary.

Table 10. Default Responses to Unhandled Exceptions

Message Type Severity of Condition

Condition Raised by the
Signal a Condition
(CEESGL) Bindable API

Exception Originated from
Any Other Source

Status 0 (Informative message) Return the unhandled
condition.

Resume without logging the
message.

Status 1 (Warning) Return the unhandled
condition.

Resume without logging the
message.

Notify 0 (Informative message) Not applicable. Log the notify message and
send the default reply.

Notify 1 (Warning) Not applicable. Log the notify message and
send the default reply.

Escape 2 (Error) Return the unhandled
condition.

Log the escape message and
send a function check
message to the call stack
entry of the current resume
point.

Escape 3 (Severe error) Return the unhandled
condition.

Log the escape message and
send a function check
message to the call stack
entry of the current resume
point.

Escape 4 (Critical ILE error) Log the escape message and
send a function check
message to the call stack
entry of the current resume
point.

Log the escape message and
send a function check
message to the call stack
entry of the current resume
point.

Function check 4 (Critical ILE error) Not applicable End the application, and
send the CEE9901 message
to the caller of the control
boundary.

Note: When the application is ended by an unhandled function check, the activation group is deleted if
the control boundary is the oldest call stack entry in the activation group.

108 ILE Concepts IBM i 7.1

Nested Exceptions
A nested exception is an exception that occurs while another exception is being handled. When this
happens, processing of the first exception is temporarily suspended. The system saves all of the
associated information such as the locations of the handle cursor and resume cursor. Exception handling
begins again with the most recently generated exception. New locations for the handle cursor and resume
cursor are set by the system. Once the new exception has been properly handled, handling activities for
the original exception normally resume.

When a nested exception occurs, both of the following are still on the call stack:
v The call stack entry associated with the original exception
v The call stack entry associated with the original exception handler

To reduce the possibility of exception handling loops, the system stops the percolation of a nested
exception at the original exception handler call stack entry. Then the system promotes the nested
exception to a function check message and percolates the function check message to the same call stack
entry. If you do not handle the nested exception or the function check message, the system ends the
application by calling the Abnormal End (CEE4ABN) bindable API. In this case, message CEE9901 is sent
to the caller of the control boundary.

If you move the resume cursor while processing the nested exception, you can implicitly modify the
original exception. To cause this to occur, do the following:
1. Move the resume cursor to a call stack entry earlier than the call stack entry that incurred the original

exception
2. Resume processing by returning from your handler

Condition Handling
ILE conditions are operating system exception messages represented in a manner that is independent of
the system. An ILE condition token is used to represent an ILE condition. Condition handling refers to the
ILE functions that you can use to handle errors separately from language-specific error handling. Other
systems have implemented these functions. You can use condition handling to increase the portability of
your applications between systems that have implemented condition handling.

ILE condition handling includes the following functions:
v Ability to dynamically register an ILE condition handler
v Ability to signal an ILE condition
v Condition token architecture
v Optional condition token feedback codes for bindable ILE APIs

These functions are described in the topics that follow.

How Conditions Are Represented
The ILE condition token is a 12-byte compound data type that contains structured fields to convey
aspects of a condition. Such aspects can be its severity, its associated message number, and information
that is specific to the given instance of the condition. The condition token is used to communicate this
information about a condition to the system, to message services, to bindable APIs, and to procedures.
The information returned in the optional fc parameter of all ILE bindable APIs, for example, is
communicated using a condition token.

If an exception is detected by the operating system or by the hardware, a corresponding condition token
is automatically built by the system. You can also create a condition token using the Construct a

Chapter 9. Exception and Condition Management 109

Condition Token (CEENCOD) bindable API. Then you can signal a condition to the system by returning
the token through the Signal a Condition (CEESGL) bindable API.

Layout of a Condition Token
Figure 45 displays a map of the condition token. The starting bit position is shown for each field.

Every condition token contains the components indicated in Figure 45:

Condition_ID
A 4-byte identifier that, with the Facility_ID, describes the condition that the token communicates.
ILE bindable APIs and most applications produce case 1 conditions.

Case A 2-bit field that defines the format of the Condition_ID portion of the token. ILE conditions are
always case 1.

Severity
A 3-bit binary integer that indicates the severity of the condition. The Severity and MsgSev fields
contain the same information. See Table 10 on page 108 for a list of ILE condition severities. See
Table 12 on page 111 and Table 13 on page 111 for the corresponding operating system message
severities.

Control
A 3-bit field containing flags that describe or control various aspects of condition handling. The
third bit specifies whether the Facility_ID has been assigned by IBM.

Facility_ID
A 3-character alphanumeric string that identifies the facility that generated the condition. The
Facility_ID indicates whether the message was generated by the system or an HLL run time.
Table 11 on page 111 lists the facility IDs used in ILE.

I_S_Info
A 4-byte field that identifies the instance specific information associated with a given instance of
the condition. This field contains the reference key to the instance of the message associated with
the condition token. If the message reference key is zero, there is no associated message.

MsgSev
A 2-byte binary integer that indicates the severity of the condition. MsgSev and Severity contain
the same information. See Table 10 on page 108 for a list of ILE condition severities. See Table 12
on page 111 and Table 13 on page 111 for the corresponding operating system message severities.

Msg_No
A 2-byte binary number that identifies the message associated with the condition. The
combination of Facility_ID and Msg_No uniquely identifies a condition.

0

0

32 34 37 40 64

16

Condition_ID

MsgSev Msg_No

Facility_ID I_S_Info

The ILE condition ID
always has case 1 format:

Control
Severity

Case

RV2W1032-2

Figure 45. ILE Condition Token Layout

110 ILE Concepts IBM i 7.1

Table 11 contains the facility IDs used in ILE condition tokens and in the prefix of messages.

Table 11. Facility IDs Used in Messages and ILE Condition Tokens
Facility ID Facility
CEE ILE common library
CPF IBM i message
MCH IBM i machine exception message

Condition Token Testing
You can test a condition token that is returned from a bindable API for the following:

Success
To test for success, determine if the first 4 bytes are zero. If the first 4 bytes are zero, the
remainder of the condition token is zero, indicating a successful call was made to the bindable
API.

Equivalent Tokens
To determine whether two condition tokens are equivalent (that is, the same type of condition
token, but not the same instance of the condition token), compare the first 8 bytes of each
condition token with one another. These bytes are the same for all instances of a given condition.

Equal Tokens
To determine whether two condition tokens are equal, (that is, they represent the same instance
of a condition), compare all 12 bytes of each condition token with one another. The last 4 bytes
can change from instance to instance of a condition.

Relationship of ILE Conditions to Operating System Messages
A message is associated with every condition that is raised in ILE. The condition token contains a unique
ID that ILE uses to write a message associated with the condition to the message file.

The format of every runtime message is FFFxxxx:

FFF The facility ID, a 3-character ID that is used by all messages generated under ILE and ILE
languages. Refer to Table 11 for a list of IDs and corresponding facilities.

xxxx The error message number. This is a hexadecimal number that identifies the error message
associated with the condition.

Table 12 and Table 13 show how ILE condition severity maps to message severity.

Table 12. Mapping *ESCAPE Message Severities to ILE Condition Severities

From IBM i Message Severity To ILE Condition Severity To IBM i Message Severity

0-29 2 20
30-39 3 30
40-99 4 40

Table 13. Mapping *STATUS and *NOTIFY Message Severities to ILE Condition Severities

From IBM i Message Severity To ILE Condition Severity To IBM i Message Severity

0 0 0
1-99 1 10

IBM i Messages and the Bindable API Feedback Code
As input to a bindable API, you have the option of coding a feedback code, and using the feedback code
as a return (or feedback) code check in a procedure. The feedback code is a condition token value that is

Chapter 9. Exception and Condition Management 111

provided for flexibility in checking returns from calls to other procedures. You can then use the feedback
code as input to a condition token. If the feedback code is omitted on the call to a bindable API and a
condition occurs, an exception message is sent to the caller of the bindable API.

If you code the feedback code parameter in your application to receive feedback information from a
bindable API, the following sequence of events occurs when a condition is raised:
1. An informational message is sent to the caller of the API, communicating the message associated with

the condition.
2. The bindable API in which the condition occurred builds a condition token for the condition. The

bindable API places information into the instance specific information area. The instance specific
information of the condition token is the message reference key of the informational message. This is
used by the system to react to the condition.

3. If a detected condition is critical (severity is 4), the system sends an exception message to the caller of
the bindable API.

4. If a detected condition is not critical (severity less than 4), the condition token is returned to the
routine that called the bindable API.

5. When the condition token is returned to your application, you have the following options:
v Ignore it and continue processing.
v Signal the condition using the Signal a Condition (CEESGL) bindable API.
v Get, format, and dispatch the message for display using the Get, Format, and Dispatch a Message

(CEEMSG) bindable API.
v Store the message in a storage area using the Get a Message (CEEMGET) bindable API.
v Use the Dispatch a Message (CEEMOUT) bindable API to dispatch a user-defined message to a

destination that you specify.
v When the caller of the API regains control, the informational message is removed and does not

appear in the job log.

If you omit the feedback code parameter when you are calling a bindable API, the bindable API sends an
exception message to the caller of the bindable API.

112 ILE Concepts IBM i 7.1

Chapter 10. Debugging Considerations

The source debugger is used to debug OPM, ILE and service programs. CL commands can still be used
to debug original program model (OPM) programs.

This chapter presents several considerations about the source debugger. Information on how to use the
source debugger can be found in the online information and in the programmer's guide for the ILE
high-level language (HLL) you are using. Information on the commands to use for a specific task (for
example, creating a module) can be found in your ILE HLL programmer's guide.

Debug Mode
To use the source debugger, your session must be in debug mode. Debug mode is a special environment
in which program debug functions can be used in addition to normal system functions.

Your session is put into debug mode when you run the Start Debug (STRDBG) command.

Debug Environment
A program can be debugged in either of the two environments:
v The OPM debug environment. All OPM programs are debugged in this environment unless the OPM

programs are explicitly added to the ILE debug environment.
v The ILE debug environment. All ILE programs are debugged in this environment. In addition, an OPM

program is debugged in this environment if all of the following criteria are met:
– It is a CL, COBOL or RPG program.
– It is compiled with OPM source debug data.
– The OPMSRC (OPM source level debug) parameter of the STRDBG command is set to *YES.

The ILE debug environment provides source level debug support. The debug capability comes directly
from statement, source, or list views of the code.

Once an OPM program is in the ILE debug environment, the system will provide seamless debugging of
both the ILE and OPM programs through the same user interface. For information on how to use the
source debugger for OPM programs in the ILE debug environment, see online help or the programmer's
guide for the equivalent ILE high-level language (HLL) you are using for the OPM language: CL,
COBOL, or RPG.

Addition of Programs to Debug Mode
A program must be added to debug mode before it can be debugged. OPM programs, ILE programs, and
ILE service programs can be in debug mode at the same time. As many as 20 OPM programs can be in
debug mode at one time in the OPM debug environment. The number of ILE programs, service programs
and OPM programs in the ILE debug environment that can be in debug mode at one time is not limited.
However, the maximum amount of debug data that is supported at one time is 16MB per module.

You must have *CHANGE authority to a program or service program to add it to debug mode. A
program or service program can be added to debug mode when it is stopped on the call stack.

ILE programs and service programs are accessed by the source debugger one module at a time. When
you are debugging an ILE program or service program, you may need to debug a module in another
program or service program. That second program or service program must be added to debug mode
before the module in the second program can be debugged.

© Copyright IBM Corp. 1997, 2010 113

When debug mode ends, all programs are removed from debug mode.

How Observability and Optimization Affect Debugging
The optimization level and the debug data observability of bound modules affect your ability to debug a
program.

Optimization Levels
With higher levels of optimization, you cannot change variables and might not be able to view the actual
value of a variable during debugging. When you are debugging, set the optimization level to 10
(*NONE). This provides the lowest level of performance for the procedures in the module but allows you
to accurately display and change variables. After you have completed your debugging, set the
optimization level to 30 (*FULL) or 40. This provides the highest level of performance for the procedures
in the module.

Debug Data Creation and Removal
Debug data is stored with each module and is generated when a module is created. To debug a
procedure in a module that has been created without debug data, you must re-create the module with
debug data, and then rebind the module to the ILE program or service program. You do not have to
recompile all the other modules in the program or service program that already have debug data.

To remove debug data from a module, re-create the module without debug data or use the Change
Module (CHGMOD) command.

Module Views
The levels of debug data available may vary for each module in an ILE program or service program. The
modules are compiled separately and could be produced with different compilers and options. These
debug data levels determine which views are produced by the compiler and which views are displayed
by the source debugger. Possible values are:

*NONE
No debug views are produced.

*STMT
No source is displayed by the debugger, but breakpoints can be added using procedure names
and statement numbers found on the compiler listing. The amount of debug data stored with this
view is the minimum amount of data necessary for debugging.

*SOURCE
The source debugger displays source if the source files used to compile the module are still
present on the system.

*LIST The list view is produced and stored with the module. This allows the source debugger to
display source even if the source files used to create the module are not present on the system.
This view can be useful as a backup copy if the program will be changed. However, the amount
of debug data may be quite large, especially if other files are expanded into the listing. The
compiler options used when the modules were created determine whether the includes are
expanded. Files that can be expanded include DDS files and include files (such as ILE C includes,
ILE RPG /COPY files, and ILE COBOL COPY files).

*ALL All debug views are produced. As for the list view, the amount of debug data may be very large.

ILE RPG also has a debug option *COPY that produces both a source view and a copy view. The copy
view is a debug view that has all the /COPY source members included.

114 ILE Concepts IBM i 7.1

Debugging across Jobs
You may want to use a separate job to debug programs running in your job or a batch job. This is very
useful when you want to observe the function of a program without the interference of debugger panels.
For example, the panels or windows that an application displays may overlay or be overlaid by the
debugger panels during stepping or at breakpoints. You can avoid this problem by starting a service job
and starting the debugger in a different job from the one that is being debugged. For information on this,
see the appendix on testing in the CL Programming book.

OPM and ILE Debugger Support
The OPM and ILE debugger support enables source-level debugging of the OPM programs through the
ILE Debugger APIs. For information about ILE Debugger APIs, see the API topic in the Programming
category of the IBM i Information Center. The OPM and ILE debugger support provides seamless
debugging of both the ILE and OPM programs through the same user interface. To use this support, you
must compile an OPM program with the RPG, COBOL, or CL compiler. You must set the OPTION
parameter to *SRCDBG or *LSTDBG for the compilation.

Watch Support
The Watch support provides the ability to stop program execution when the content of a specified storage
location is changed. The storage location is specified by the name of a program variable. The program
variable is resolved to a storage location and the content at this location is monitored for changes. If the
content at the storage location is changed, execution stops. The interrupted program source is displayed
at the point of interruption, and the source line that is highlighted will be run after the statement that
changed the storage location.

Unmonitored Exceptions
When an unmonitored exception occurs, the program that is running issues a function check and sends a
message to the job log. If you are in debug mode and the modules of the program were created with
debug data, the source debugger shows the Display Module Source display. The program is added to
debug mode if necessary. The appropriate module is shown on the display with the affected line
highlighted. You can then debug the program.

Globalization Restriction for Debugging
If either of the following conditions exist:
v The coded character set identifier (CCSID) of the debug job is 290, 930, or 5026 (Japan Katakana)
v The code page of the device description used for debugging is 290, 930, or 5026 (Japan Katakana)

debug commands, functions, and hexadecimal literals should be entered in uppercase. For example:
BREAK 16 WHEN var=X’A1B2’
EVAL var:X

The above restriction for Japan Katakana code pages does not apply when using identifier names in
debug commands (for example, EVAL). However, when debugging ILE RPG, ILE COBOL, or ILE CL
modules, identifier names in debug commands are converted to uppercase by the source debugger and
therefore may be redisplayed differently.

Chapter 10. Debugging Considerations 115

116 ILE Concepts IBM i 7.1

Chapter 11. Data Management Scoping

This chapter contains information on the data management resources that may be used by an ILE
program or service program. Before reading this chapter, you should understand the data management
scoping concepts described in “Data Management Scoping Rules” on page 41.

Details for each resource type are left to each ILE HLL programmer’s guide.

Common Data Management Resources
This topic identifies all the data management resources that follow data management scoping rules.
Following each resource is a brief description of how to specify the scoping. Additional details for each
resource can be found in the publications referred to.

Open file operations
Open file operations result in the creation of a temporary resource that is called an open data
path (ODP). You can start the open function by using HLL open verbs, the Open Query File
(OPNQRYF) command, or the Open Data Base File (OPNDBF) command. The ODP is scoped to
the activation group of the program that opened the file. For OPM or ILE programs that run in a
default activation group, the ODP is scoped to the call-level number. To change the scoping of
HLL open verbs, you can use an override. You can specify scoping by using the open scope
(OPNSCOPE) parameter on all override commands, the OPNDBF command, and the OPNQRYF
command.

Overrides
Overrides are scoped to the call level, the activation-group level, or the job level. To specify
override scoping, use the override scope (OVRSCOPE) parameter on any override command. If
you do not specify explicit scoping, the scope of the override depends on where the system issues
the override. If the system issues the override from a default activation group, it is scoped to the
call level. If the system issues the override from any other activation group, it is scoped to the
activation group level.

Commitment definitions
Commitment definitions support scoping to the activation group level and scoping to the job
level. The scoping level is specified with the control scope (CTLSCOPE) parameter on the Start
Commitment Control (STRCMTCTL) command. For more information about commitment
definitions, see the Backup and Recovery topic in the IBM i Information Center.

Local SQL cursors
SQL cursors can be declared and used within user built applications or within Database
constructed ILE C programs or ILE C service programs built on behalf of CREATE PROCEDURE,
CREATE FUNCTION, or CREATE TRIGGER LANGUAGE SQL statements.

For all types of SQL applications, there are SQL cursor scope controls. The cursor scope controls
include an option to scope cursors to the activation group, as well as several other scope choices.

For complete details, refer to IBM i DB2® for i SQL Reference.

Remote SQL connections
Remote connections used with SQL cursors are scoped to an activation group implicitly as part of
normal SQL processing. This allows multiple conversations to exist among either one source job
and multiple target jobs or multiple systems.

User interface manager
The Open Print Application (QUIOPNPA) and Open Display Application APIs support an
application scope parameter. These APIs can be used to scope the user interface manager (UIM)

© Copyright IBM Corp. 1997, 2010 117

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|

|

application to either an activation group or the job. For more information about the user interface
manager, see the API topic under the Programming category of the IBM i Information Center.

Open data links (open file management)
The Enable Link (QOLELINK) API enables a data link. If you use this API from within a
non-default activation group, the data link is scoped to that activation group. If you use this API
from within a default activation group, the data link is scoped to the call level. For more
information about open data links, see the API topic under the Programming category of the IBM
i Information Center.

Common Programming Interface (CPI) Communications conversations
The activation group that starts a conversation owns that conversation. The activation group that
enables a link through the Enable Link (QOLELINK) API owns the link. For information about
Common Programming Interface (CPI) Communications conversations, see the API topic
collection under the Programming category of the IBM i Information Center.

Hierarchical file system
The Open Stream File (OHFOPNSF) API manages hierarchical file system (HFS) files. You can use
the open information (OPENINFO) parameter on this API to control scoping to either the
activation group or the job level. For more information about the hierarchical file system, see the
API topic under the Programming category of the IBM i Information Center.

Commitment Control Scoping
ILE introduces two changes for commitment control:
v Multiple, independent commitment definitions per job. Transactions can be committed and rolled back

independently of each other. Before ILE, only a single commitment definition was allowed per job.
v If changes are pending when an activation group ends normally, the system implicitly commits the

changes. Before ILE, the system did not commit the changes.

Commitment control allows you to define and process changes to resources, such as database files or
tables, as a single transaction. A transaction is a group of individual changes to objects on the system that
should appear to the user as a single atomic change. Commitment control ensures that one of the
following occurs on the system:
v The entire group of individual changes occurs (a commit operation)
v None of the individual changes occur (a rollback operation)

Various resources can be changed under commitment control using both OPM programs and ILE
programs.

The Start Commitment Control (STRCMTCTL) command makes it possible for programs that run within
a job to make changes under commitment control. When commitment control is started by using the
STRCMTCTL command, the system creates a commitment definition. Each commitment definition is
known only to the job that issued the STRCMTCTL command. The commitment definition contains
information pertaining to the resources being changed under commitment control within that job. The
commitment control information in the commitment definition is maintained by the system as the
commitment resources change. The commitment definition is ended by using the End Commitment
Control (ENDCMTCTL) command. For more information about commitment control, see the Backup and
Recovery topic.

Commitment Definitions and Activation Groups
Multiple commitment definitions can be started and used by programs running within a job. Each
commitment definition for a job identifies a separate transaction that has resources associated with it.
These resources can be committed or rolled back independently of all other commitment definitions
started for the job.

118 ILE Concepts IBM i 7.1

|
|
|
|
|

Note: Only ILE programs can start commitment control for activation groups other than a default
activation group. Therefore, a job can use multiple commitment definitions only if the job is
running one or more ILE programs.

Original program model (OPM) programs run in the single-level storage default activation group.
By default, OPM programs use the *DFTACTGRP commitment definition. For OPM programs, you
can use the *JOB commitment definition by specifying CMTSCOPE(*JOB) on the STRCMTCTL
command.

When you use the Start Commitment Control (STRCMTCTL) command, you specify the scope for a
commitment definition on the commitment scope (CMTSCOPE) parameter. The scope for a commitment
definition indicates which programs that run within the job use that commitment definition. The default
scope for a commitment definition is to the activation group of the program issuing the STRCMTCTL
command. Only programs that run within that activation group will use that commitment definition,
except that the default activation groups share one commitment definition. Commitment definitions that
are scoped to an activation group are referred to as commitment definitions at the activation-group level.
The commitment definition started at the activation-group level for a default activation group is known
as the default activation-group (*DFTACTGRP) commitment definition. Commitment definitions for many
activation-group levels can be started and used by programs that run within various activation groups
for a job.

A commitment definition can also be scoped to the job. A commitment definition with this scope value is
referred to as the job-level or *JOB commitment definition. Any program running in an activation group
that does not have a commitment definition started at the activation-group level uses the job-level
commitment definition. This occurs if the job-level commitment definition has already been started by
another program for the job. Only a single job-level commitment definition can be started for a job.

For a given activation group, only a single commitment definition can be used by the programs that run
within that activation group. Programs that run within an activation group can use the commitment
definition at either the job level or the activation-group level. However, they cannot use both commitment
definitions at the same time.

When a program performs a commitment control operation, the program does not directly indicate which
commitment definition to use for the request. Instead, the system determines which commitment
definition to use based on which activation group the requesting program is running in. This is possible
because, at any point in time, the programs that run within an activation group can use only a single
commitment definition.

Ending Commitment Control
Commitment control may be ended for either the job-level or activation-group-level commitment
definition by using the End Commitment Control (ENDCMTCTL) command. The ENDCMTCTL
command indicates to the system that the commitment definition for the activation group of the program
making the request is to be ended. The ENDCMTCTL command ends one commitment definition for the
job. All other commitment definitions for the job remain unchanged.

If the commitment definition at the activation-group level is ended, programs running within that
activation group can no longer make changes under commitment control. If the job-level commitment
definition is started or already exists, any new file open operations specifying commitment control use
the job-level commitment definition.

If the job-level commitment definition is ended, any program running within the job that was using the
job-level commitment definition can no longer make changes under commitment control. If commitment
control is started again with the STRCMTCTL command, changes can be made.

Chapter 11. Data Management Scoping 119

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

Commitment Control during Activation Group End
When the following conditions exist at the same time:
v An activation group ends
v The job is not ending

the system automatically ends a commitment definition at an activation-group level. If both of the
following conditions exist:
v Uncommitted changes exist for a commitment definition at an activation-group level
v The activation group is ending normally

the system performs an implicit commit operation for the commitment definition before it ends the
commitment definition. Otherwise, if either of the following conditions exist:
v The activation group is ending abnormally
v The system encountered errors when closing any files opened under commitment control scoped to the

activation group

an implicit rollback operation is performed for the commitment definition at the activation-group level
before being ended. Because the activation group ends abnormally, the system updates the notify object
with the last successful commit operation. Commit and rollback are based on pending changes. If there
are no pending changes, there is no rollback, but the notify object is still updated. If the activation group
ends abnormally with pending changes, the system implicitly rolls back the changes. If the activation
group ends normally with pending changes, the system implicitly commits the changes.

An implicit commit operation or rollback operation is never performed during activation group end
processing for the *JOB or *DFTACTGRP commitment definitions. This is because the *JOB and
*DFTACTGRP commitment definitions are never ended because of an activation group ending. Instead,
these commitment definitions are either explicitly ended by an ENDCMTCTL command or ended by the
system when the job ends.

The system automatically closes any files scoped to the activation group when the activation group ends.
This includes any database files scoped to the activation group opened under commitment control. The
close operation for any such file occurs before any implicit commit operation that is performed for the
commitment definition at the activation-group level. Therefore, any records that reside in an I/O buffer
are first forced to the database before any implicit commit operation is performed.

As part of the implicit commit operation or rollback operation, the system calls the API commit and
rollback exit program for each API commitment resource. Each API commitment resource must be
associated with the commitment definition at the activation-group level. After the API commit and
rollback exit program is called, the system automatically removes the API commitment resource.

The notify object is updated if the following conditions exist:
v An implicit rollback operation is performed for a commitment definition that is being ended because

an activation group is being ended
v A notify object is defined for the commitment definition

120 ILE Concepts IBM i 7.1

|

Chapter 12. ILE Bindable Application Programming Interfaces

ILE bindable application programming interfaces (bindable APIs) are an important part of ILE. In some
cases they provide additional function beyond that provided by a specific high-level language. For
example, not all HLLs offer intrinsic means to manipulate dynamic storage. In those cases, you can
supplement an HLL function by using particular bindable APIs. If your HLL provides the same function
as a particular bindable API, use the HLL-specific one.

Bindable APIs are HLL independent. This can be useful for mixed-language applications. For example, if
you use only condition management bindable APIs with a mixed-language application, you will have
uniform condition handling semantics for that application. This makes condition management more
consistent than when using multiple HLL-specific condition handlers.

The bindable APIs provide a wide range of function including:
Activation group and control flow management
Condition management
Date and time manipulation
Dynamic screen management
Math functions
Message handling
Program or procedure call management and operational descriptor access
Source debugger
Storage management

For reference information about the ILE bindable APIs, see the API topic under the Programming
category of the IBM i Information Center.

ILE Bindable APIs Available
Most bindable APIs are available to any HLL that ILE supports. ILE provides the following bindable
APIs:

Activation Group and Control Flow Bindable APIs
Abnormal End (CEE4ABN)
Find a Control Boundary (CEE4FCB)
Register Activation Group Exit Procedure (CEE4RAGE)
Register Call Stack Entry Termination User Exit Procedure (CEERTX)
Signal the Termination-Imminent Condition (CEETREC)
Unregister Call Stack Entry Termination User Exit Procedure (CEEUTX)

Condition Management Bindable APIs
Construct a Condition Token (CEENCOD)
Decompose a Condition Token (CEEDCOD)
Handle a Condition (CEE4HC)
Move the Resume Cursor to a Return Point (CEEMRCR)
Register a User-Written Condition Handler (CEEHDLR)
Retrieve ILE Version and Platform ID (CEEGPID)
Return the Relative Invocation Number (CEE4RIN)
Signal a Condition (CEESGL)
Unregister a User Condition Handler (CEEHDLU)

Date and Time Bindable APIs
Calculate Day-of-Week from Lilian Date (CEEDYWK)
Convert Date to Lilian Format (CEEDAYS)

© Copyright IBM Corp. 1997, 2010 121

Convert Integers to Seconds (CEEISEC)
Convert Lilian Date to Character Format (CEEDATE)
Convert Seconds to Character Timestamp (CEEDATM)
Convert Seconds to Integers (CEESECI)
Convert Timestamp to Number of Seconds (CEESECS)
Get Current Greenwich Mean Time (CEEGMT)
Get Current Local Time (CEELOCT)
Get Offset from Universal Time Coordinated to Local Time (CEEUTCO)
Get Universal Time Coordinated (CEEUTC)
Query Century (CEEQCEN)
Return Default Date and Time Strings for Country or Region (CEEFMDT)
Return Default Date String for Country or Region (CEEFMDA)
Return Default Time String for Country or Region (CEEFMTM)
Set Century (CEESCEN)

Math Bindable APIs
The x in the name of each math bindable API refers to one of the following data types:

I 32-bit binary integer

S 32-bit single floating-point number

D 64-bit double floating-point number

T 32-bit single floating-complex number (both real and imaginary parts are 32 bits long)

E 64-bit double floating-complex number (both real and imaginary parts are 64 bits long)
Absolute Function (CEESxABS)
Arccosine (CEESxACS)
Arcsine (CEESxASN)
Arctangent (CEESxATN)
Arctangent2 (CEESxAT2)
Conjugate of Complex (CEESxCJG)
Cosine (CEESxCOS)
Cotangent (CEESxCTN)
Error Function and Its Complement (CEESxERx)
Exponential Base e (CEESxEXP)
Exponentiation (CEESxXPx)
Factorial (CEE4SIFAC)
Floating Complex Divide (CEESxDVD)
Floating Complex Multiply (CEESxMLT)
Gamma Function (CEESxGMA)
Hyperbolic Arctangent (CEESxATH)
Hyperbolic Cosine (CEESxCSH)
Hyperbolic Sine (CEESxSNH)
Hyperbolic Tangent (CEESxTNH)
Imaginary Part of Complex (CEESxIMG)
Log Gamma Function (CEESxLGM)
Logarithm Base 10 (CEESxLG1)
Logarithm Base 2 (CEESxLG2)
Logarithm Base e (CEESxLOG)
Modular Arithmetic (CEESxMOD)
Nearest Integer (CEESxNIN)
Nearest Whole Number (CEESxNWN)
Positive Difference (CEESxDIM)
Sine (CEESxSIN)
Square Root (CEESxSQT)
Tangent (CEESxTAN)
Transfer of Sign (CEESxSGN)

122 ILE Concepts IBM i 7.1

Truncation (CEESxINT)

Additional math bindable API:
Basic Random Number Generation (CEERAN0)

Message Handling Bindable APIs
Dispatch a Message (CEEMOUT)
Get a Message (CEEMGET)
Get, Format, and Dispatch a Message (CEEMSG)

Program or Procedure Call Bindable APIs
Get String Information (CEEGSI)
Retrieve Operational Descriptor Information (CEEDOD)
Test for Omitted Argument (CEETSTA)

Source Debugger Bindable APIs
Allow a Program to Issue Debug Statements (QteSubmitDebugCommand)
Enable a Session to Use the Source Debugger (QteStartSourceDebug)
Map Positions from One View to Another (QteMapViewPosition)
Register a View of a Module (QteRegisterDebugView)
Remove a View of a Module (QteRemoveDebugView)
Retrieve the Attributes of the Source Debug Session (QteRetrieveDebugAttribute)
Retrieve the List of Modules and Views for a Program (QteRetrieveModuleViews)
Retrieve the Position Where the Program Stopped (QteRetrieveStoppedPosition)
Retrieve Source Text from the Specified View (QteRetrieveViewText)
Set the Attributes of the Source Debug Session (QteSetDebugAttribute)
Take a Job Out of Debug Mode (QteEndSourceDebug)

Storage Management Bindable APIs
Create Heap (CEECRHP)
Define Heap Allocation Strategy (CEE4DAS)
Discard Heap (CEEDSHP)
Free Storage (CEEFRST)
Get Heap Storage (CEEGTST)
Mark Heap (CEEMKHP)
Reallocate Storage (CEECZST)
Release Heap (CEERLHP)

Dynamic Screen Manager Bindable APIs
The dynamic screen manager (DSM) bindable APIs are a set of screen I/O interfaces that provide a
dynamic way to create and manage display screens for the ILE high-level languages.

The DSM APIs fall into the following functional groups:
v Low-level services

The low-level services APIs provide a direct interface to the 5250 data stream commands. The APIs are
used to query and manipulate the state of the display screen; to create, query, and manipulate input
and command buffers that interact with the display screen; and to define fields and write data to the
display screen.

v Window services

The window services APIs are used to create, delete, move, and resize windows; and to manage
multiple windows concurrently during a session.

v Session services

The session services APIs provide a general paging interface that can be used to create, query, and
manipulate sessions; and to perform input and output operations to sessions.

Chapter 12. ILE Bindable Application Programming Interfaces 123

For information about the DSM bindable APIs, see the API topic collection under the Programming
category of the IBM i Information Center.

124 ILE Concepts IBM i 7.1

Chapter 13. Advanced Optimization Techniques

This chapter describes the following techniques you can use to optimize your ILE programs and service
programs:
v “Adaptive Code Generation” on page 143
v “Advanced Argument Optimization” on page 136
v “Interprocedural analysis (IPA)” on page 130
v “Licensed Internal Code Options” on page 138
v “Program Profiling”

Program Profiling
Program profiling is an advanced optimization technique to reorder procedures, or code within
procedures, in ILE programs and service programs based on statistical data gathered while running the
program. This reordering can improve instruction cache utilization and reduce paging required by the
program, thereby improving performance. The semantic behavior of the program is not affected by
program profiling.

The performance improvement realized by program profiling depends on the type of application.
Generally speaking, you can expect more improvement from programs that spend the majority of time in
the application code itself, rather than spending time in the runtime or doing input/output processing.
The performance of program code produced when applying profile data depends upon the optimizing
translator correctly identifying the most important portions of the program during typical use. Therefore,
it is important to gather profile data while performing the tasks that will be performed by end users, and
using input data that is similar to that expected in the environment in which the program will be run.

Program profiling is available only for ILE programs and service programs that meet the following
conditions:
v The programs were created specifically for V4R2M0 or later releases.
v If the programs were created for a release prior to V5R2M0, the program's target release must be the

same as the current system's release.
v The programs were compiled using an optimization level of *FULL (30) or above. On V5R2M0 and

later systems, bound modules with less than optimization level 30 are allowed, but do not participate
in application profiling.

Note: Because of the optimization requirements, you should fully debug your programs before using
program profiling.

Types of Profiling
You can profile your programs in the following two ways:
v Block order
v Procedure order and block order

Block order profiling records the number of times each side of a conditional branch is taken. When block
order profiling data is applied to a program, a variety of profile-based optimizations are performed
within procedures by the optimizing translator. For one of these optimizations, code is ordered so that the
most frequently executed code paths in a procedure are contiguous within the program object. This
reordering improves performance by utilizing processor components such as the instruction cache and
instruction prefetch unit more effectively.

© Copyright IBM Corp. 1997, 2010 125

Procedure order profiling records the number of times each procedure calls another procedure within the
program. Procedures within the program are reordered so that the most frequently called procedures are
packaged together. This reordering improves performance by reducing memory paging.

Even though you can choose to apply only block order profiling to your program, it is recommended that
you apply both types for the largest performance gains.

How to Profile a Program
Profiling a program is a five step process:
1. Enable the program to collect profiling data.
2. Start the program profiling collection on the system with the Start Program Profiling (STRPGMPRF)

command.
3. Collect profiling data by running the program through its high-use code paths. Because program

profiling uses statistical data gathered while running the program to perform these optimizations, it is
critical that this data be collected over typical uses of your application.

4. End the program profiling collection on the system with the End Program Profiling (ENDPGMPRF)
command.

5. Apply the collected profiling data to the program by requesting that code be reordered for optimal
performance based on the collected profiling data.

Enabling the program to collect profiling data
A program is enabled to collect profiling data if at least one of the modules bound into the program is
enabled to collect profiling data. Enabling a program to collect profiling data can be done either by
changing one or more *MODULE objects to collect profiling data and then creating or updating the
program with these modules, or by changing the program after it is created to collect profiling data. Both
techniques result in a program with bound modules enabled to collect profiling data.

Depending on the ILE language you are using, there may be an option on the compiler command to
create the module as enabled to collect profiling data. The change module (CHGMOD) command can
also be used by specifying *COL on the profiling data (PRFDTA) parameter to change any ILE module to
collect profiling data, as long as the ILE language supports an optimization level of at least *FULL (30).

To enable a program to collect profiling data after creation through either the Change Program
(CHGPGM) or Change Service Program (CHGSRVPGM) commands, do the following for an observable
program:
v Specify *COL on the profiling data (PRFDTA) parameter. This specification affects all modules bound

in the program that:
– Were created for a release of V4R2M0 or later. If you are using a system earlier than V5R2M0, the

program must be on a system at the same release level for which the program was created in order
to enable profiling data collection. The same restriction applies for bound modules.

– Have an optimization level of 30 or above. In V5R2M0 and later releases, any bound modules with
less than optimization level 30 will be allowed, but will not participate in application profiling.

Note: A program enabled to collect application profiling data on a system with release prior to V5R2M0
can have that data applied on a V5R2M0 or later system, but the results may not be optimal. If
you intend to apply profiling data or use the resulting program on a V5R2M0 or later system, you
should enable or re-enable profiling data collection for the program on a V5R2M0 or later system.

Enabling a module or program to collect profiling data requires that the object be re-created. Therefore,
the time required to enable a module or program to collect profiling data is comparable to the time it
takes to force recreate the object (FRCCRT parameter). Additionally, the size of the object will be larger
due to the extra machine instructions generated by the optimizing translator.

126 ILE Concepts IBM i 7.1

Once you enable a program or module to collect profiling data, creation data observability cannot be
removed until one of the following occurs:
v The collected profiling data is applied to the program.
v The program or module is changed so that it cannot collect profiling data.

Use the Display Module (DSPMOD), Display Program (DSPPGM) or Display Service Program
(DSPSRVPGM) commands, specifying DETAIL(*BASIC), to determine if a module or program is enabled
to collect profiling data. For programs or service programs use option 5 (display description) from the
DETAIL(*MODULE) to determine which of the bound module(s) are enabled to collect profiling data. See
topic “How to Tell if a Program or Module is Profiled or Enabled for Collection” on page 130 for more
details.

Note: If a program already has profiling data collected (the statistical data gathered while the program is
running), this data is cleared when a program is re-enabled to collect profiling data. See
“Managing Programs Enabled to Collect Profiling Data” on page 128 for details.

Collect Profiling Data
Program profiling must be started on the machine that a program enabled to collect profiling data is to
be run on in order for that program to update profiling data counts. This enables large, long-running
applications to be started and allowed to reach a steady state before gathering profiling data. This gives
you control over when data collection occurs.

Use the Start Program Profiling (STRPGMPRF) command to start program profiling on a machine. To end
program profiling on a machine, use the End Program Profiling (ENDPGMPRF) command. Both
commands are shipped with the public authority of *EXCLUDE. Program profiling is ended implicitly
when a machine is IPLed.

Once program profiling is started, any program or service program that is run that is also enabled to
collect profiling data will update its profiling data counts. This will happen regardless of whether or not
the program was activated before the STRPGMPRF command was issued.

If the program you are collecting profiling data on can be called by multiple jobs on the machine, the
profiling data counts will be updated by all of these jobs. If this is not desirable, a duplicate copy of the
program should be made in a separate library and that copy should be used instead.

Notes:

1. When program profiling is started on a machine, profiling data counts are incremented while a
program that is enabled to collect profiling data is running. Therefore it is possible that "stale"
profiling data counts are being added to if this program was previously run without subsequently
clearing these counts. You can force the profiling data counts to be cleared in several ways. See
“Managing Programs Enabled to Collect Profiling Data” on page 128 for details.

2. Profiling data counts are not written to DASD each time they are incremented because doing so
would cause too great a degradation to the program's run time. Profiling data counts are only written
to DASD when the program is naturally paged out. To ensure profiling data counts are written to
DASD, use the Clear Pool (CLRPOOL) command to clear the storage pool in which the program is
running.

Applying the Collected Profiling Data
Applying collected profiling data does the following:
1. Instructs the machine to use the collected profiling data to reorder procedures (procedure order

profiling data) in the program for optimal performance.
2. Instructs the machine to use the collected profiling data (basic block profiling data) to reorder the

code within procedures in the program for optimal performance.
3. Removes the machine instructions from the program that were previously added when the program

was enabled to collect profiling data. The program can then no longer collect profile data.

Chapter 13. Advanced Optimization Techniques 127

4. Stores the collected profiling data in the program as observable data:
v *BLKORD (basic block profiling observability)
v *PRCORD (procedure order profiling observability)

Once the collected data has been applied to the program, it cannot be applied again. To apply profiling
data again requires you to go through the steps outlined in “How to Profile a Program” on page 126.
Any previously applied profiling data is discarded when a program is enabled to collect profiling
data.

If you want to apply the data you already collected again, you may want to make a copy of the program
before applying profiling data. This may be desirable if you are experimenting with the benefits derived
from each type of profiling (either block order or block and procedure ordered).

To apply profiling data, use the Change Program (CHGPGM) or Change Service Program (CHGSRVPGM)
command. For the profiling data (PRFDTA) parameter specify:
v Block order profiling data (*APYBLKORD)
v Both block order and procedure profiling data (*APYALL) or (*APYPRCORD)

IBM recommends using *APYALL.

Applying profiling data to the program creates and saves two additional forms of observability with the
program. You can remove these additional observabilities by using the Change Program (CHGPGM) and
Change Service Program (CHGSRVPGM) commands.
v *BLKORD observability is implicitly added when block order profiling data is applied to the program.

This allows the machine to preserve the applied block order profiling data for the program in cases
where the program is recreated.

v Applying procedure order profiling data to the program implicitly adds *PRCORD and *BLKORD
observability. This allows the machine to preserve the applied procedure order profiling data for the
program in cases where the program is either recreated or updated.

For example, you apply block order profiling data to your program and then subsequently remove
*BLKORD observability. The program is still block order profiled. However, any change that causes your
program to be recreated will also cause it to no longer be block order profiled.

Managing Programs Enabled to Collect Profiling Data
Changing a program that is enabled to collect profiling data by using the Change Program (CHGPGM) or
Change Service Program (CHGSRVPGM) commands will implicitly cause profiling data counts to be
zeroed if the change requires the program be recreated. For example, if you change a program that is
enabled to collect profiling data from optimization level *FULL to optimization level 40, any collected
profiling data will be implicitly cleared. This is also true if a program that is enabled to collect profiling
data is restored, and FRCOBJCVN(*YES *ALL) is specified on the Restore Object (RSTOBJ) command.

Likewise, updating a program that is enabled to collect profiling data by using the Update Program
(UPDPGM) or Update Service Program (UPDSRVPGM) commands will implicitly cause profiling data
counts to be cleared if the resulting program is still enabled to collect profiling data. For example,
program P1 contains modules M1 and M2. Module M1 bound in P1 is enabled to collect profiling data
but module M2 is not. So long as one of the modules is enabled, updating program P1 with module M1
or M2 will result in a program that is still enabled to collect profiling data. All profiling data counts will
be cleared. However, if module M1 is changed to no longer be enabled to collect profiling data by
specifying *NOCOL on the profiling data (PRFDTA) parameter of the Change Module (CHGMOD)
command, updating program P1 with M1 will result in program P1 no longer being enabled to collect
profiling data.

128 ILE Concepts IBM i 7.1

You can explicitly clear profiling counts from the program by specifying the *CLR option on the profiling
data (PRFDTA) parameter of the Change Program (CHGPGM) or Change Service Program
(CHGSRVPGM) commands. Note the program must not be activated to use the *CLR option.

If you no longer want the program to collect profiling data, you can take one of the following actions:
v Specify *NOCOL on the profiling data (PRFDTA) parameter of the Change Program (CHGPGM)

command.
v Specify *NOCOL on the profiling data (PRFDTA) parameter of the Change Service Program

(CHGSRVPGM) command.

Either action changes the program back to the state before it collected profiling data. You can also change
the PRFDTA value of the modules to *NOCOL with the CHGMOD command or by recompiling the
modules and rebinding the modules into the program.

Managing Programs with Profiling Data Applied to Them
If a program that has profiling data applied is changed by using the Change Program (CHGPGM) or
Change Service Program (CHGSRVPGM) commands, you will lose applied profiling data if both of these
conditions are true:
v The change requires the program to be recreated.

Note: The optimization level of a program that has profiling data applied cannot be changed to be less
than optimization level 30. This is because the profiling data is optimization level dependent.

v The required profiling observability has been removed.

Also all applied profiling data will be lost if the change request is to enable the program to collect
profiling data, regardless of whether profiling observability has been removed or not. Such a request will
result in a program that is enabled to collect profiling data.

Here are some examples:
v Program A has procedure order and block order profiling data applied. *BLKORD observability has

been removed from the program but *PRCORD observability has not. A CHGPGM command is run to
change the performance collection attribute of program A, which also requires the program to be
recreated. This change request will cause program A to no longer be block order profiled. However, the
procedure order profiling data will still be applied.

v Program A has procedure order and block order profiling data applied. *BLKORD and *PRCORD
observability have been removed from the program. A CHGPGM command is run to change the user
profile attribute of program A, which also requires the program to be recreated. This change request
will cause program A to no longer be block order or procedure order profiled. Program A will go back
to the state before the profiling data was applied.

v Program A has block order profiling data applied. *BLKORD observability has been removed from the
program. A CHGPGM command is run to change the text of the program, which does not require the
program to be recreated. After this change, program A will still be block order profiled.

v Program A has procedure order and block order profiling data applied. This does not remove
*PRCORD and *BLKORD observability from the program. Run a CHGPGM command to enable the
program to collect profiling data (this recreates the program). This causes program A to no longer be
block order or procedure order profiled. This leaves the program in a state as if profiling data was
never applied. This enables the program to collect profiling data with all profiling data counts cleared.

A program that has had profiling data applied to it (*APYALL, *APYBLKORD, or *APYPRCORD) cannot
be immediately changed to an unprofiled program by specifying PRFDTA(*NOCOL) on the CHGPGM or
CHGSRVPGM commands. This feature is intended as a safety net to avoid accidental loss of profiling
data. If this is truly what is intended, the program must first be changed to PRFDTA(*COL), effectively
removing the existing profiling data, and then changed to PRFDTA(*NOCOL).

Chapter 13. Advanced Optimization Techniques 129

How to Tell if a Program or Module is Profiled or Enabled for
Collection
Use the Display Program (DSPPGM) or Display Service Program (DSPSRVPGM) commands, specifying
DETAIL(*BASIC), to determine the program profiling data attribute of a program. The value of "Profiling
data" will be one of the following values:
v *NOCOL - The program is not enabled to collect profiling data.
v *COL - One or more modules in the program are enabled to collect profiling data. This value does not

indicate if profiling data was actually collected.
v *APYALL - Block order and procedure order profiling data are applied to this program. The collection

of profiling data is no longer enabled.
v *APYBLKORD - Block order profiling data is applied to the procedures of one or more bound modules

in this program. This applies to only the bound modules that were previously enabled to collect
profiling data. The collection of profiling data is no longer enabled.

v *APYPRCORD- Procedure order program profiling data is applied to this program. The collection of
profiling data is no longer enabled.

To have only procedure order profiling applied to a program:
v First profile it by specifying *APYALL or *APYPRCORD (which is the same as *APYALL).
v Then remove the *BLKORD observability and recreate the program.

To display the program profiling data attribute of a module bound within the program, use DSPPGM or
DSPSRVPGM DETAIL(*MODULE). Specify option 5 on the modules bound into the program to see the
value of this parameter at the module level. The value of "Profiling data" will be one of the following
values:
v *NOCOL - This bound module is not enabled to collect profiling data.
v *COL - This bound module is enabled to collect profiling data. This value does not indicate if profiling

data was actually collected.
v *APYBLKORD - Block order profiling data is applied to one or more procedures of this bound module.

The collection of profiling data is no longer enabled.

In addition DETAIL(*MODULE) displays the following fields to give an indication of the number of
procedures affected by the program profiling data attribute.
v Number of procedures - Total number of procedures in the module.
v Number of procedures block reordered - The number of procedures in this module that are basic block

reordered.
v Number of procedures block order measured - Number of procedures in this bound module that had

block order profiling data collected when block order profiling data was applied. When the benchmark
was run, it could be the case that no data was collected for a specific procedure because the procedure
was not executed in the benchmark. Thus this count reflects the actual number of procedures that were
executed with the benchmark.

Use DSPMOD command to determine the profiling attribute of a module. The value of "Profiling data"
will be one of the following. It will never show *APYBLKORD because basic block data can be applied
only to modules bound into a program, never to stand-alone modules.
v *NOCOL - module is not enabled to collect profile data.
v *COL - module is enabled to collect profile data.

Interprocedural analysis (IPA)
This topic provides an overview of the Interprocedural Analysis (IPA) processing that is available through
the IPA option on the CRTPGM and CRTSRVPGM commands.

130 ILE Concepts IBM i 7.1

At compile time, the optimizing translator performs both intraprocedural and interprocedural analysis.
Intraprocedural analysis is a mechanism for performing optimization for each function within a
compilation unit, using only the information available for that function and compilation unit.
Interprocedural analysis is a mechanism for performing optimization across function boundaries. The
optimizing translator performs interprocedural analysis, but only within a compilation unit.
Interprocedural analysis that is performed by the IPA compiler option improves on the limited
interprocedural analysis described above. When you run interprocedural analysis through the IPA option,
IPA performs optimizations across the entire program. It also performs optimizations not otherwise
available at compile time with the optimizing translator. The optimizing translator or the IPA option
performs the following types of optimizations:
v Inlining across compilation units. Inlining replaces certain function calls with the actual code of the

function. Inlining not only eliminates the overhead of the call, but also exposes the entire function to
the caller and thus enables the compiler to better optimize your code.

v Program partitioning. Program partitioning improves performance by reordering functions to exploit
locality of reference. Partitioning places functions that call each other frequently in closer proximity in
memory. For more information on program partitioning, see “Partitions created by IPA” on page 135.

v Coalescing of global variables. The compiler puts global variables into one or more structures and accesses
the variables by calculating the offsets from the beginning of the structures. This lowers the cost of
variable access and exploits data locality.

v Code straightening. Code straightening streamlines the flow of your program.
v Unreachable code elimination. Unreachable code elimination removes unreachable code within a function.
v Call graph pruning of unreachable functions. The call graph pruning of unreachable functions removes

code that is 100% inlined or never referred to.
v Intraprocedural constant propagation and set propagation. IPA propagates floating point and integer

constants to their uses and computes constant expressions at compile time. Also, variable uses that are
known to be one of several constants can result in the folding of conditionals and switches.

v Intraprocedural pointer alias analysis. IPA tracks pointer definitions to their uses, resulting in more refined
information about memory locations that a pointer dereference may use or define. This enables other
parts of the compiler to better optimize code around such dereferences. IPA tracks data and function
pointer definitions. When a pointer can only refer to a single memory location or function, IPA rewrites
it to be an explicit reference to the memory location or function.

v Intraprocedural copy propagation. IPA propagates expressions, and defines some variables to the uses of
the variable. This creates additional opportunities for the folding of constant expressions. It also
eliminates redundant variable copies.

v Intraprocedural unreachable code and store elimination. IPA removes definitions of variables that it cannot
reach, along with the computation that feeds the definition.

v Conversion of reference (address) arguments to value arguments. IPA converts reference (address) arguments
to value arguments when the formal parameter is not written in the called procedure.

v Conversion of static variables to automatic (stack) variables. IPA converts static variables to automatic (stack)
variables when their use is limited to a single procedure call.

The run time for code that is optimized using IPA is normally faster than for code optimized only at
compile time. Not all applications are suited for IPA optimization, however, and the performance gains
that are realized from using IPA will vary. For certain applications, the performance of the application
may not improve when using interprocedural analysis. In fact, in some rare cases, the performance of the
application can actually degrade when you use interprocedural analysis. If this occurs, we suggest that
you not use interprocedural analysis. The performance improvement realized by interprocedural analysis
depends on the type of application. Applications that will most likely show performance gains are those
that have the following characteristics:
v Contain a large number of functions
v Contain a large number of compilation units
v Contain a large number of functions that are not in the same compilation units as their callers

Chapter 13. Advanced Optimization Techniques 131

v Do not perform a large number of input and output operations

Interprocedural optimization is available only for ILE programs and service programs that meet the
following conditions:
v You created the modules bound into the program or service program specifically for V4R4M0 or later

releases.
v You compiled the modules bound into the program or service program with an optimization level of

20 (*BASIC) or higher.
v The modules bound into the program or service program have IL data that is associated with them.

Use the create module option MODCRTOPT(*KEEPILDTA) to keep intermediate language (IL) data
with the module.

Note: Because of the optimization requirements, you should fully debug your programs before you use
interprocedural analysis.

How to optimize your programs with IPA
To use IPA to optimize your program or service program objects, perform the following steps:
1. Make sure that you compile all of the modules necessary for the program or service program with

MODCRTOPT(*KEEPILDTA) and with an optimization level of 20 or greater (preferably 40). You can
use the DSPMOD command with the DETAIL(*BASIC) parameter to verify that a single module is
compiled with the correct options. The Intermediate language data field will have a value of *YES if
IL data is present. The Optimization level field indicates the optimization level of the module.

2. Specify IPA(*YES) on the CRTPGM or CRTSRVPGM command. When the IPA portion of the bind
runs, the system displays status messages to indicate IPA progress.

You can further define how IPA optimizes your program by using the following parameter:
v Specify IPACTLFILE(IPA-control-file) to provide additional IPA suboption information. See “IPA control

file syntax” for a listing of the options you can specify in the control file.

When you specify IPA(*YES) on the CRTPGM command, you cannot also allow updates to the program
(that is, you cannot specify ALWUPD(*YES)). This is also true for the ALWLIBUPD parameter on the
CRTSRVPGM command. If specified along with IPA(*YES), the parameter must be ALWLIBUPD(*NO).

IPA control file syntax
The IPA control file is a stream file that contains additional IPA processing directives. The control file can
be a member of a file, and uses the QSYS.LIB naming convention (for example, /qsys.lib/mylib.lib/
xx.file/yy.mbr). The IPACTLFILE parameter identifies the path name of this file.

IPA issues an error message if the control file directives have syntax that is not valid.

You can specify the following directives in the control file:

exits=name[,name]
Specifies a list of functions, each of which always ends the program. You can optimize calls to
these functions (for example, by eliminating save and restore sequences), because the calls never
return to the program. These functions must not call any other parts of the program that have IL
data associated with them.

inline=attribute
Specifies how you want the compiler to identify functions that you want it to process inline. You
can specify the following attributes for this directive:

auto Specifies that the inliner should determine if a function can be inlined on the basis of the
inline-limit and inline-threshold values. The noinline directive overrides automatic
inlining. This is the default.

132 ILE Concepts IBM i 7.1

noauto
Specifies that IPA should consider for inlining only the functions that you have specified
by name with the inline directive.

name[,name]
Specifies a list of functions that you want to inline. The functions may or may not be
inlined.

name[,name] from name[,name]
Specifies a list of functions that are desirable candidates for inlining, if a particular
function or list of functions calls the functions. The functions may or may not be inlined.

inline-limit=num
Specifies the maximum relative size (in abstract code units) to which a function can grow before
inlining stops. Abstract code units are proportional in size to the executable code in the function.
Larger values for this number allow the compiler to inline larger subprograms, more subprogram
calls, or both. This directive is applicable only when inline=auto is on. The default value is 8192.

inline-threshold=size
Specifies the maximum size (in abstract code units) of a function that can be a candidate for
automatic inlining. This directive is applicable only when inline=auto is on. The default size is
1024.

isolated=name[,name]
Specifies a list of "isolated" functions. Isolated functions are those that do not directly (or
indirectly through another function within its call chain) refer to or change global variables that
are accessible to visible functions. IPA assumes that functions that are bound from service
programs are isolated.

lowfreq=name[,name]
Specifies names of functions that are expected to be called infrequently. These are typically error
handling functions or trace functions. IPA can make other parts of the program faster by doing
less optimization for calls to these functions.

missing=attribute
Specifies the interprocedural behavior of missing functions. Missing functions are those that do
not have IL data associated with them, and that are not explicitly named in an unknown, safe,
isolated, or pure directive. These directives specify how much optimization IPA can safely
perform on calls to library routines that do not have IL data associated with them.

IPA has no visibility to the code within these functions. You must ensure that all user references
are resolved with user libraries or runtime libraries.

The default setting for this directive is unknown. Unknown instructs IPA to make pessimistic
assumptions about the data that may be used and changed through a call to such a missing
function, and about the functions that may be called indirectly through it. You can specify the
following attributes for this directive:

unknown
Specifies that the missing functions are "unknown". See the description for the unknown
directive below. This is the default attribute.

safe Specifies that the missing functions are "safe". See the description for the safe directive,
below.

isolated
Specifies that the missing functions are "isolated". See the description for the isolated
directive, above.

pure Specifies that the missing functions are "pure". See the description for the pure directive,
below.

Chapter 13. Advanced Optimization Techniques 133

noinline=name[,name]
Specifies a list of functions that the compiler will not inline.

noinline=name[,name] from name[,name]
Specifies a list of functions that the compiler will not inline, if the functions are called from a
particular function or list of functions.

partition=small| medium|large|unsigned-integer
Specifies the size of each program partition that IPA creates. The size of the partition is directly
proportional to the time required to link and the quality of the generated code. When the
partition size is large, the time required to link is longer but the quality of the generated code is
generally better.

The default for this directive is medium.

For a finer degree of control, you can use an unsigned-integer value to specify the partition size.
The integer is in abstract code units, and its meaning may change between releases. You should
only use this integer for very short term tuning efforts, or for those situations where the number
of partitions must remain constant.

pure=name[,name]
Specifies a list of pure functions. These are functions that are safe and isolated. A pure function
has no observable internal state. This means that the returned value for a given call of a function
is independent of any previous or future calls of the function.

safe=name[,name]
Specifies a list of safe functions. These are functions that do not directly or indirectly call any
function that has IL data associated with it. A safe function may refer to and change global
variables.

unknown=name[,name]
Specifies a list of unknown functions. These are functions that are not safe, isolated, or pure.

IPA usage notes
v Use of IPA can increase bind time. Depending on the size of the application and the speed of your

processor, the bind time can increase significantly.
v IPA can generate significantly larger bound program and service program objects than traditional

binding.
v While IPA's interprocedural optimizations can significantly improve performance of a program, they

can also cause functioning programs that contain errors to fail.
v Because IPA will compile functions inline, take care when using APIs that accept a relative stack frame

offset (for example, QMHRCVPM).
v To compile functions inline, IPA uses its own inliner rather than the backend inliner. Any parameters

given for the backend liner, such as using the INLINE option on the compile command, are ignored.
Parameters for the IPA inliner are given in the IPA control file.

IPA restrictions and limitations
v You cannot use either the UPDPGM or UPDSRVPGM on a bound program or service program that IPA

has optimized.
v You cannot debug any programs or service programs that IPA has optimized with the normal source

debug facilities. This is because IPA does not maintain debug information within the IL data and in fact
throws away any debug information when it generates the output partitions. As such, the source
debugger does not handle IPA programs or service programs.

v There is a limit of 10,000 output partitions. If you reach this limit, the bind will fail, and the system
will send a message. If you reach this limit, you should run the CRTPGM or CRTSRVPGM command
again, and specify a larger partition size. See the partition directive in “IPA control file syntax” on page
132.

134 ILE Concepts IBM i 7.1

v There are certain IPA limitations that may apply to your program if that program contains SQL data. If
the compiler that you use allows an option to keep the IL data, then these limitations do not apply. If
the compiler you use does not allow an option to keep the IL data, you must perform the steps listed
below to use IPA on a program containing SQL data. For example, consider a C program with
embedded SQL statements. You would normally compile this source with the CRTSQLCI command;
however, that command does not have a MODCRTOPT(*KEEPILDTA) option.
Perform the following steps to create a *MODULE that contains both embedded SQL data and IL data.
1. Compile an SQL C source file with the CRTSQLCI command. Specify the OPTION(*NOGEN) and

the TOSRCFILE(QTEMP/QSQLTEMP) compiler options. This step precompiles the SQL statements
and places the SQL precompiler data into the associated space of the original source file. It also
places the C source into a member with the same name in temporary source physical file
QTEMP/QSQLTEMP.

2. Compile the C source file in QTEMP/QSQLTEMP with the MODCRTOPT(*KEEPILDTA) option on the
compiler command. This action creates an SQL C *MODULE object, and propagates the
preprocessor data from the associated space of the original source file into the module object. This
*MODULE object also contains the IL data. At this point, you can specify the *MODULE object on
the CRTPGM or CRTSRVPGM command with the IPA(*YES) parameter.

v IPA cannot optimize modules that you compile at optimization level 10 (*NONE). IPA requires
information within the IL data that is available only at higher optimization levels.

v IPA cannot optimize modules that do not contain IL data. Because of this, IPA can optimize only those
modules that you create with compilers that offer the MODCRTOPT(*KEEPILDTA) option. Currently,
this includes the C and C++ compilers.

v For a program, the module containing the program entry point, which is typically the main function,
must have the correct attributes as noted above, or IPA will fail. For a service program, at least one of
the modules containing exported functions must have the correct attributes as noted above, or IPA will
fail. It is desirable that the other modules within the program or service program also have the correct
attributes, but it is not required. Any modules without the correct attributes will be accepted by IPA,
but they will not be optimized.

v IPA might not be able to correctly optimize modules compiled with the RTBND(*LLP64) option on
either the Create C++ Module (CRTCPPMOD) or Create Bound C++ Program (CRTBNDCPP)
command. If virtual functions are not used in the module, then IPA can optimize the module. If virtual
functions are used, then the MODCRTOPT(*NOKEEPILDTA) option should be specified.

v IPA might not be able to correctly optimize modules that contain decimal floating-point data or
variables.

v IPA cannot correctly optimize modules that contain thread local storage variables.

Partitions created by IPA
The final program or service program created by IPA consists of partitions. IPA creates a *MODULE for
each partition. Partitions have two purposes:
v They improve the locality of reference in a program by concentrating related code in the same region

of storage.
v They reduce the memory requirements during object code generation for that partition.

There are three types of partitions:
v An initialization partition. This contains initialization code and data.
v The primary partition. This contains information for the primary entry point for the program.
v Secondary or other partitions.

IPA determines the number of each type of partition in the following ways:
v The 'partition' directive within the control file specified by the IPACTLFILE parameter. This directive

indicates how large to make each partition.

Chapter 13. Advanced Optimization Techniques 135

v The connectivity within the program call graph. Connectivity refers to the volume of calls between
functions in a program.

v Conflict resolution between compiler options specified for different compilation units. IPA attempts to
resolve conflicts by applying a common option across all compilation units. If it cannot, it forces the
compilation units for which the effects of the original option are to be maintained into separate
partitions.
One example of this is the Licensed Internal Code Options (LICOPTs). If two compilation units have
conflicting LICOPTs, IPA cannot merge functions from those compilation units into the same output
partition. Refer to “Partition Map” on page 164 for an example of the Partition Map listing section. IPA
creates the partitions in a temporary library, and binds the associated *MODULEs together to create the
final program or service program. IPA creates the partition *MODULE names using a random prefix
(for example, QD0068xxxx where xxxx ranges from 0000 to 9999).
Because of this, some of the fields within DSPPGM or DSPSRVPGM may not be as expected. The
'Program entry procedure module' shows the *MODULE partition name and not the original
*MODULE name. The 'Library' field for that module shows the temporary library name rather than the
original library name. In addition, the names of the modules bound into the program or service
program will be the generated partition names. For any program or service program that has been
optimized by IPA, the 'Program attribute' field displayed by DSPPGM or DSPSRVPGM will be IPA, as
will the attribute field of all bound modules for that program or service program.

Note: When IPA is doing partitioning, IPA may prefix the function or data name with @nnn@ or
XXXX@nnn@, where XXXX is the partition name, and where nnn is the source file number. This ensures
that static function names and static data names remain unique.

Advanced Argument Optimization
Advanced argument optimization is a cross-module optimization that is used to improve the performance
of programs that contain frequently run procedure calls, including C++ applications that make mostly
nonvirtual method calls. Improved runtime performance is achieved by enabling the translator and
binder to use the most efficient mechanisms to pass parameters and return results between procedures
that are called within a program or service program.

How to Use Advanced Argument Optimization
The Argument optimization (ARGOPT) parameter, with *YES and *NO as possible values, is available on
the CRTPGM and CRTSRVPGM commands to support advanced argument optimization. Specifying
ARGOPT(*YES) causes the program or service program to be created with advanced argument
optimization. The default is *NO.

Considerations and Restrictions When Using Advanced Argument
Optimization
When ARGOPT(*YES) is specified during program creation, advanced argument optimization is applied.
In general, this will improve the performance of most procedure calls within the program. However, you
need to consider the following items before deciding to use advanced argument optimization:
v Interaction with pragma-based argument optimization:

Argument optimization enabled with ARGOPT(*YES) and argument optimization enabled by the
#pragma argopt directive, which is supported by the C and C++ compilers, are both redundant and
complementary.
If you already have #pragma argopt in your code, leave it in there, and also use ARGOPT(*YES). You
can remove the redundant #pragma argopt's later, or keep them in there.
If you do not have #pragma argopt in your code, using ARGOPT(*YES) will generally help. If you call
procedures through a function pointer, you might want to think about using #pragma argopt for those
cases, as advanced argument optimization does not optimize calls through a function pointer. Virtual
function calls in C++ are examples of function pointer calls.

136 ILE Concepts IBM i 7.1

|
|
|
|

For more information about the #pragma argopt directive, see ILE C/C++ Compiler Reference

.
However, unlike the pragma-based argument optimization, which requires manual insertion of
#pragma directives into the source code, advanced argument optimization requires no source code
changes and is applied automatically. In addition, advanced argument optimization can be applied to
programs created in any language, while the pragma-based solution is only for C and C++.
While the #pragma argopt directive can be applied to function pointers, advanced argument
optimization does not automatically optimize virtual function calls and calls through a function
pointer. Therefore, for optimizing indirect calls, the argopt pragma is useful when used in this
complementary way with advanced argument optimization.

v 16-byte pointers:
16-byte space pointer parameters benefit the most from argument optimization. Space pointers point to
data object types, such as characters, numbers, classes and data structures. Examples of space pointers
in C and C++ include char* and int*. However, parameters declared with other types of 16-byte
pointers that are unique to IBM i, such as pointers that point to system objects, are not optimized by
argument optimization. Open pointer parameters such as void* pointers in C and C++, which are
based on incomplete types, are also not optimized.

v DTAMDL(*LLP64):
C and C++ applications that consist of modules created with DTAMDL(*LLP64) benefit less from
argument optimization than those created with the default DTAMDL(*P128). In the former case,
pointers to data are 8 bytes long, and these are always passed between procedures using the most
efficient mechanisms. In the latter case, pointers to data are 16 bytes long, which are prime candidates
for argument optimization.

v Target release:
Programs created with ARGOPT(*YES) must also be created with target release V6R1M0, or later.
To take full advantage of advanced argument optimization, modules bound into programs created with
ARGOPT(*YES) should be created with target release V6R1M0 or later, as calls into or calls originated
from functions defined in modules created before V6R1M0 are ignored by advanced argument
optimization.

v Longer program creation time:
When ARGOPT(*YES) is specified during program creation, additional analysis is performed across all
of the modules in the program. For programs that consist of hundreds or thousands of modules,
creation time can be significantly longer.
Similarly, when you use the Update Program (UPDPGM) or Update Service Program (UPDSRVPGM)
commands to update a program that is created with ARGOPT(*YES), the amount of time to complete
the update can be longer because of the extra analysis that might be required to ensure that all
cross-module calls are updated. If there are no changes to procedure interfaces, this extra time is
typically short.

v Interaction with special calling conventions:
Advanced argument optimization is not applicable to dynamic program calls. In addition, C and C++
functions that are defined with the _System keyword are not candidates for advanced argument
optimization.

v Interaction with program profiling:
You can use advanced argument optimization and program profiling at the same time.

v Interaction with interprocedural analysis (IPA):
The cross-module analysis and optimizations performed by IPA are redundant with advanced
argument optimization. Therefore, when you use IPA, it is not necessary to use advanced argument
optimization.

Chapter 13. Advanced Optimization Techniques 137

|

Licensed Internal Code Options
Licensed Internal Code options (LICOPTs) are compiler options that are passed to the Licensed Internal Code
in order to affect how code is generated or packaged. These options affect the code that is generated for a
module. You can use some of the options to fine-tune the optimization of your code. Some of the options
aid in debugging. This section discusses Licensed Internal Code options.

Currently Defined Options
The Licensed Internal Code options that are currently defined are:

[No]CallTracingAtHighOpt
Use this option to request that call and return traps be inserted into the procedure prologue and
epilogue, respectively, of procedures that require a stack, even at optimization level 40. The advantage
of inserting call and return traps is the ability to use job trace, while the disadvantage is potentially
worse runtime performance. In releases before 6.1, this option is off by default, meaning that no call
and return traps are inserted into any procedures at optimization level 40. Beginning in 6.1, this
option is ignored and call and return traps are unconditionally inserted in procedures which require a
stack, even at optimization level 40.

[No]Compact
Use this option to reduce code size where possible, at the expense of execution speed. This is done by
inhibiting optimizations that replicate or expand code inline. This option is off by default.

CodeGenTarget=
The CodeGenTarget option specifies the creation target model for a program or module object. The
creation target model indicates the hardware features that the code generated for that object can use.
See the following table for the possible values of this LICOPT.

Value Meaning

CodeGenTarget=Current The optimizing translator can use all features available on the current
machine.

CodeGenTarget=Common The optimizing translator can use any feature that is available on every
system supported by the target release.

CodeGenTarget=Legacy The optimizing translator cannot use any features that are not available
before release 6.1.

CodeGenTarget=Power6 The optimizing translator can use all features available in the POWER6 level
of the PowerPC® AS architecture.

CodeGenTarget=Power7 The optimizing translator can use all features available in the POWER7®

level of the PowerPC AS architecture.

For more information about this option, refer to “The CodeGenTarget LICOPT” on page 146.

[No]CreateSuperblocks
This option controls formation of superblocks, which are large extended basic blocks with no control
flow entry except in the superblock header. It also controls certain optimizations performed on
superblocks, such as trace unrolling and trace peeling. Superblock formation and optimizations can
cause large amount of code duplication; this LICOPT can be used to disable these optimizations. This
LICOPT is only effective when profile data is applied. This option is on by default.

[No]DetectConvertTo8BytePointerError
This option is ignored on systems running 6.1 or later. Every conversion from a 16-byte pointer to an
8-byte pointer signals an MCH0609 exception if the 16-byte pointer does not contain a teraspace
address and does not contain a null pointer value.

[No]EnableInlining
This option controls procedure inlining by the optimizing translator. Procedure inlining means a call
to a procedure is replaced by an inline copy of the procedure code. This option is on by default.

138 ILE Concepts IBM i 7.1

||
|

[No]FoldFloat
Specifies that the system may evaluate constant floating-point expressions at compile time. This
LICOPT overrides the 'Fold float constants' module creation option. When this LICOPT isn't specified,
the module creation option is honored.

LoopUnrolling=<option>
Use the LoopUnrolling option to control the amount of loop unrolling performed by the optimizing
translator. Valid values are 0 to disable loop unrolling, 1 to unroll small loops with an emphasis on
reducing code duplication, and 2 to aggressively unroll loops. Using option 2 may substantially
increase the size of generated code. The default value is 1.

[No]Maf
Permit the generation of floating-point multiply-add instructions. These instructions combine a
multiply and an add operation without an intermediate rounding operation. Execution performance
is improved, but computational results may be affected. This LICOPT overrides the 'Use multiply
add' module creation option. When this LICOPT isn't specified, the module creation option is
honored.

[No]MinimizeTeraspaceFalseEAOs
Effective address overflow (EAO) checking is done as part of address arithmetic operations for
16-byte pointers. The same generated code must handle both teraspace and single-level storage (SLS)
addresses, so valid teraspace uses can incur false EAOs if the code was generated for a processor
before POWER6. See “Adaptive Code Generation” on page 143 for more information. These EAO
conditions do not indicate a problem, but handling them adds significant processing overhead. The
MinimizeTeraspaceFalseEAOs LICOPT causes differences in the hardware instruction sequences
generated for the program. Different address arithmetic instruction sequences are generated that are
slightly slower in the usual case but eliminate most EAO occurrences. An example of when this
LICOPT should be used is when most address arithmetic performed in a module computes teraspace
address results to a lower-valued 16 MB area. This option is off by default.

[No]OrderedPtrComp
Use this option to compare pointers as unsigned integer values, and to always produce an ordered
result (equal, less than, or greater than). When you use this option, pointers that refer to different
spaces will not compare unordered. This option is off by default.

[No]PredictBranchesInAbsenceOfProfiling
When profile data is not provided, use this option to perform static branch prediction to guide code
optimizations. If profile data is provided, the profile data will be used to predict branch probabilities
instead, regardless of this option. This option is off by default.

[No]PtrDisjoint
This option enables an aggressive typed-based alias refinement that allows the optimizing translator
to eliminate a larger set of redundant loads, which may improve runtime performance. An
application can safely use this option if the contents of a pointer are not accessed through a
non-pointer type. The following expression in C demonstrates an unsafe way to access the value of a
pointer:
void* spp;
... = ((long long*) &spp) [1]; // Access low order 8 bytes of 16-byte pointer

Default: NoPtrDisjoint

[No]ReassocForIndexedLdSt
This option instructs the optimizing translator to reassociate addressing expressions that feed load or
store instructions so that they meet the requirements for conversion into indexed load or store
instructions. In most cases, this means searching for load or store instructions with a nonzero
displacement that might be transformable into indexed loads or store instructions had the
displacement been zero. In this case, reassociation generates an explicit addition of the displacement
into the address expression, and the displacement in the load or store instructions is zero.

The default of this Licensed Internal Code is ReassocForIndexedLdSt.

Chapter 13. Advanced Optimization Techniques 139

|
|
|
|
|
|
|
|
|
|

[No]TailCallOptimizations
This option instructs the optimizing translator, when it compiles at optimization level 40, to perform
tail call optimizations that attempt to reduce the number of stack frames that are maintained on the
runtime call stack. The advantage to this is that, in some cases, fewer stack frames might be required,
which can improve locality of reference and, in rare circumstances, reduce the possibility of runtime
stack overflow. The disadvantage is that, if a program fails, fewer clues are left in the call stack that
can be used for debugging. It is recommended that this LICOPT remain enabled.

A tail call is a call in the procedure that is done immediately before returning. In these cases, the
optimizing translator attempts to perform tail call optimizations that eliminate the need for the caller
to allocate a stack frame and leave the stack unaltered. Normally, a stack frame is created by the
caller to allow the callee to save and restore the return address. With these optimizations, the tail call
is changed to a simple branch operation that does not calculate a new return address. The original
return address is left intact and therefore points back to the return location of the caller. The
optimizations eliminate the intermediate stack frame between the caller and callee, and the callee
returns to the caller's caller.

For example, if Function A calls Function B and Function B does a tail call to Function C, with tail
call optimizations enabled, Function B does not allocate a stack frame and instead branches to
Function C. When Function C is complete, it returns directly back to Function A following the call to
Function B. Without tail call optimizations, Function C returns to Function B, which immediately
returns back to Function A.

For frequently called procedures, tail call optimizations can improve performance by eliminating the
operations needed to create and destroy an unnecessary stack frame. If you specify the LICOPT value
NoTailCallOptimizations, these optimizations are not attempted.

The default of this LICOPT is TailCallOptimizations.

TargetProcessorModel=<option>
The TargetProcessorModel option instructs the translator to perform optimizations for the specified
processor model. Programs created with this option run on all supported hardware models, but
generally run faster on the specified processor model. Valid values are 0 for Star processors, 2 for
POWER4 processors, 3 for POWER5 processors, 4 for POWER6 processors, and 5 for POWER7
processors. The default value depends on the target release associated with the program object. For
IBM i V5R2 and IBM i V5R3, the default value is 2. For IBM i V5R4, the default value is 3. For IBM i
6.1, the default value is 4. For IBM i 7.1, the default value is 5.

The TargetProcessorModel LICOPT is one of several factors determining which processor model
should be targeted when creating a module, changing a module or bound module, or re-creating a
module or bound module. The following rules apply to both modules and bound modules.
v When a module is created or changed, and the TargetProcessorModel LICOPT is specified, the

generated code for the module is tuned for best performance on the specified processor model,
regardless of whether the CodeGenTarget LICOPT is also specified.

v When a module is created or changed, and the TargetProcessorModel LICOPT is not specified, but
the CodeGenTarget LICOPT is specified to be POWER6 or POWER7, the generated code for the
module is tuned for best performance on the specified processor model.

v When a module is created or changed, and the TargetProcessorModel LICOPT is not specified, but
the CodeGenTarget LICOPT is specified to be Current, the generated code for the module is tuned
for best performance on the processor in use by the partition on which the module resides.

v When a module is created or changed, and the TargetProcessorModel LICOPT is not specified, but
the CodeGenTarget LICOPT is specified to be Common, then the module is tuned for best
performance on a default processor model for the release. The default processor model is POWER7
for release 7.1, POWER6 for release 6.1, and POWER5 for earlier supported releases.

v When a module is created or changed, and the TargetProcessorModel LICOPT is not specified, but
the CodeGenTarget LICOPT is specified to be Legacy, then the module is tuned for best
performance on the POWER5 processor model.

140 ILE Concepts IBM i 7.1

|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

v When a module is re-created, the module is tuned for best performance on the processor in use by
the partition on which the module resides, regardless of the values of any TargetProcessorModel
and CodeGenTarget LICOPTs specified when the module was created or last changed.

Note that for most of these options there is a positive and a negative variation, the negative beginning
with the prefix 'no'. The negative variant means that the option is not to be applied. There will always be
two variants like this for Boolean options, in order to allow a user to explicitly turn off an option as well
as turn it on. The capability to do so is necessary to turn off an option for which the default option is on.
The default for any option may change from release to release.

Application
You can specify Licensed Internal Code options (LICOPTs) when you create modules, and you can
modify the options of an existing object with the Change Module (CHGMOD), Change Program
(CHGPGM), and Change Service Program (CHGSRVPGM) commands. With these commands, you can
replace the entire LICOPT string or add LICOPTs to an existing string. Adding LICOPTs to an existing
string is useful when the objects being changed have different LICOPTs and you do not want to lose the
existing LICOPTs.

An example of applying Licensed Internal Code options to a module is:
> CHGMOD MODULE(TEST) LICOPT(’maf’)

When used on CHGPGM or CHGSRVPGM, the system applies the specified Licensed Internal Code
options to all modules that are contained in the ILE program object. An example of applying Licensed
Internal Code options to an ILE program object is:

> CHGPGM PGM(TEST) LICOPT(’nomaf’)

An example of applying Licensed Internal Code options to a service program is:
> CHGSRVPGM SRVPGM(TEST) LICOPT(’maf’)

To add a LICOPT to an existing object, use the *ADD keyword on the LICOPT parameter. This example
preserves the object's existing LICOPTs and adds a new one: LICOPT (’maf’, *ADD).

Restrictions
Several restrictions exist on the types of programs and modules to which you can apply Licensed Internal
Code options.
v You cannot apply Licensed Internal Code options to OPM programs.
v The module or ILE program or service program object must have been originally created for release

V4R5M0 or later.
v You cannot apply Licensed Internal Code options to pre-V4R5 bound modules within a V4R5 or later

program or service program. This does not affect other bound modules within the program which can
have LICOPTs applied.

Syntax
On the CHGMOD, CHGPGM, and CHGSRVPGM commands, the case of the LICOPT parameter value is
not significant. For example, the following two command invocations would have the same effect:
> CHGMOD MODULE(TEST) LICOPT(’nomaf’)
> CHGMOD MODULE(TEST) LICOPT(’NoMaf’)

When specifying several Licensed Internal Code options together, you must separate the options by
commas. Also, the system ignores all spaces that precede or that follow any option. Here are some
examples:

Chapter 13. Advanced Optimization Techniques 141

|
|
|

> CHGMOD MODULE(TEST) LICOPT(’Maf,NoFoldFloat’)
> CHGMOD MODULE(TEST) LICOPT(’Maf, NoFoldFloat’)
> CHGMOD MODULE(TEST) LICOPT(’ Maf , NoFoldFloat ’)

For Boolean options, the system does not allow specifying of the two opposite variants at the same time.
For example, the system will not allow the following command:
> CHGMOD MODULE(TEST) LICOPT(’Maf,NoMaf’) <- NOT ALLOWED!

However, you can specify the same option more than once. For example, this is valid:
> CHGMOD MODULE(TEST) LICOPT(’Maf, NoFoldFloat, Maf’)

Release Compatibility
The system will not allow users to move a module, program, or service program that has had Licensed
Internal Code options applied to any release before V4R5M0. In fact, the system prevents the user from
specifying an earlier target release when attempting to save the object to media or to a save file.

IBM i sometimes defines new Licensed Internal Code options in new releases (or within a given release
through a PTF). You can use the new options on systems that have the first release that supports them, or
any later release. You can move any module, program, or service program that has new options applied,
to a release that does not support the options. The system ignores and no longer applies unsupported
Licensed Internal Code options for converted objects if the LICOPT parameter of a command does not
specify the options. Unsupported LICOPT values are ignored if re-creation occurs when you use
LICOPT(*SAME) on the CHGMOD, CHGPGM, or CHGSRVPGM commands. They are also ignored when
re-creation occurs when the system automatically converts the object. In contrast, any attempt to specify
unsupported options in the LICOPT parameter of the CHGMOD, CHGPGM, or CHGSRVPGM
commands will fail.

Displaying Module and ILE Program Licensed Internal Code Options
The DSPMOD, DSPPGM, and DSPSRVPGM commands display the Licensed Internal Code options that
were applied. DSPMOD displays them in the Module Information section. For example:

Licensed Internal Code options : maf

DSPPGM and DSPSRVPGM display the Licensed Internal Code options that are applied to each
individual module within the program in the Module Attributes section for each module.

By specifying the same Licensed Internal Code option more than once, all occurrences of that option
except for the last one appear preceded by a '+' symbol. For example, assume that the command used to
apply Licensed Internal Code options to a module object is as stated below:
> CHGMOD MODULE(TEST) LICOPT(’maf, maf, Maf’)

Then DSPMOD will show this:
Licensed Internal Code options : +maf,+maf,Maf

The '+' means that the user specified redundant occurrences of the same option.

If any Licensed Internal Code options appear preceded by a '*' symbol, they no longer apply to a Module
or ILE Program. This is because the system that performed the last recreation of the object did not
support them. For more information, please see the “Release Compatibility” section. For example, assume
that the new option was originally applied on a release N+1 system by using the following command:

> CHGMOD MODULE(TEST) LICOPT(’NewOption’)

The Module is taken back to a release N system that does not support that option, and then the Module
object is recreated there using:

> CHGMOD MODULE(TEST) FRCCRT(*YES) LICOPT(*SAME)

142 ILE Concepts IBM i 7.1

The Licensed Internal Code options shown on DSPMOD will look like this:
Licensed Internal Code options : *NewOption

The '*' means that the option no longer applies to the Module.

Adaptive Code Generation
Generally, you do not need to understand the details of the underlying hardware architecture so that the
architecture can change smoothly over time. Architecture changes range from adding a single processor
instruction to changing the entire processor instruction set. To ensure that your programs continue to run
correctly when the operating system moves between platforms that have different levels of underlying
hardware, an abstract machine interface (MI) that represents programs in a hardware-independent format
is used.

The optimizing translator is responsible for generating hardware instructions from the MI representation.
Because the optimizing translator is a component of the operating system, there is a single version of the
optimizing translator for each release . However, a given release might be supported on a number of
different system models, each of which might have slightly different processor hardware from the others.

In releases before 6.1, the optimizing translator for a given release was designed to generate only
instructions that would run on all system models supported by that release. The advantage of this policy
is that a program compiled for a particular release can run unchanged on any system running the same
release . This makes it easy to build and distribute software for each release. However, important new
processor features, which often provide significant performance advantages, cannot be used until they are
present on all systems supported by the current release. A gap of a number of years might occur between
the availability of a processor feature and its use in your programs.

As of 6.1, you can take advantage of all processor features on your systems, regardless of whether those
features are present on other system models supported by the same release. Furthermore, programs can
be moved from one system model to another and continue to run correctly, even if the new machine does
not have all the processor features available on the original one. The technology used to achieve this is
called adaptive code generation. Adaptive code generation (ACG) can work without user intervention for
most scenarios. However, if you build and distribute software to run on a variety of system models, you
might want to exercise some control over which processor features are used by adaptive code generation.

ACG Concepts
To understand how adaptive code generation (ACG) works, it is helpful to understand the following
concepts.

A hardware feature is a feature that has been added to the family of processors supported by IBM i. For
instance, one new feature available in some processors supported by 6.1, is a new hardware decimal
floating-point unit. A processor with this unit is considered by ACG to have the decimal floating-point
feature, while a processor without it does not have the decimal floating-point feature. The aggregation of
all added features present in a processor is called that processor's feature set.

A target model is an abstraction of all processors that have the same feature set. An example of a target
model would be all processors that conform to the POWER6 level of the PowerPC AS architecture.

A module or program object also has a feature set that identifies the features required by the object so
that the object runs correctly without change. An object is compatible with a target model if all features in
the object's feature set are also present in the target model's feature set.

Code generation refers to the process of creating hardware instructions for your module and program
objects. Code generation is performed by the optimizing translator.

Chapter 13. Advanced Optimization Techniques 143

A module or program object can be moved from one system to another. The system on which an object
resides is called the current machine.

Normal Operation
When you compile a module object using a command such as Create C Module (CRTCMOD), the
optimizing translator automatically detects which processor features are available on your system. The
hardware instructions generated for your module object take advantage of any optional processor
features that might be useful. The optimizing translator stores the feature set used in the module object as
part of the object.

When you create a program object using a command such as Create Program (CRTPGM) or Create
Service Program (CRTSRVPGM), the binder determines the feature set for the program object and stores
it as part of the program object. A feature is included in the program’s feature set if it is present in any of
the feature sets of the program’s modules.

The first time the program object is activated on your system, the system checks to be sure that the
program object is compatible with the target model associated with your system; that is, it ensures that
your program does not use any features that are not available on your system. Because you compiled the
program object on this system, the program object always passes this compatibility check, and the
program runs correctly.

Suppose you want to migrate this program object to another system that uses the same release, but has a
different target model. The first time the program is activated on the system to which it is moved, the
system performs the compatibility check against this system's target model. If the program is compatible
with the system, the program runs correctly. However, if the program requires any processor feature that
is not supported by the system to which it was moved, then the system automatically calls the
optimizing translator to convert the program to be compatible. The translator detects which features are
available on the new system, and takes advantage of all those that are applicable, just as it did when the
original module objects were created. The converted program is then activated as requested.

Restore Options
To change the behavior of adaptive code generation when module and program objects are restored onto
your system, set the Force Conversion on Restore (QFRCCVNRST) system value and Force Object
Conversion (FRCOBJCVN) command parameter. The FRCOBJCVN parameter is present on the Restore
(RST), Restore Object (RSTOBJ), and Restore Library (RSTLIB) commands.

QFRCCVNRST System Value
The Force Conversion on Restore (QFRCCVNRST) system value has the following possible values.

Value Meaning

0 Do not convert anything.

1 Objects with validation errors are converted. (This is the default.)

2 Objects that require conversion on the current version of the operating system, or on the current
machine, and objects with validation errors are converted.

3 Objects that are suspected of having been tampered with, objects that contain validation errors,
and objects that require conversion on the current version of the operating system or on the
current machine are converted.

4 Objects that contain sufficient creation data to be converted and do not have valid digital
signatures are converted.

5 Objects that contain sufficient creation data are converted.

6 All objects that do not have valid digital signatures are converted.

7 All objects are converted.

144 ILE Concepts IBM i 7.1

By setting QFRCCVNRST to 2 or 3, you can ensure that any incompatible program and module objects
are converted immediately during Restore command (RST, RSTOBJ, RSTLIB) processing, rather than on
the first activation. This might be preferable in some cases, because the time to convert a program can be
long, particularly for large programs and programs that are compiled at high optimization levels. If you
commonly restore programs onto a system with which they might be incompatible, consider changing
this system value.

FRCOBJCVN Parameter
The Force Object Conversion (FRCOBJCVN) parameter on the Restore (RST), Restore Object (RSTOBJ),
and Restore Library (RSTLIB) commands can be used to exercise control over adaptive code generation.
The following table shows the possible values for these commands. The RSTOBJ command is used as an
example.

Value Meaning

RSTOBJ FRCOBJCVN(*SYSVAL) The objects are converted based on the value of the Force Conversion
on Restore (QFRCCVNRST) system value. (This is the default.)

RSTOBJ FRCOBJCVN(*NO) The objects are not converted during the restore operation.

RSTOBJ FRCOBJCVN(*YES *RQD) The objects are converted during the restore operation only if they
require conversion to be used by the current operating system or
require conversion to be compatible with the current machine.

RSTOBJ FRCOBJCVN(*YES *ALL) All objects are converted regardless of their current format and machine
compatibility, including compatible objects in the current format.

The option RSTOBJ FRCOBJCVN(*YES *RQD) causes any incompatible module and program objects that
are restored to be immediately converted, rather than subsequently retranslated during the first
activation. You should consider using this option if you do not want to change the QFRCCVNRST system
value, but want to ensure that any incompatible objects that are restored by this command are converted
immediately.

Create Options
When you create module and program objects, the default behavior of using all features available on the
current machine is usually desirable. However, if you are building software for distribution onto a variety
of systems, you might want to be more conservative in specifying which features should be used in your
programs. For example, if you sell a software package that runs on 6.1, you might not want your
programs and service programs to be converted on your customers' machines. This could happen if the
system you build on contains more features than those of some of your customers. Conversion on
customer machines might be undesirable because of the following reasons:
v Customers might prefer not to incur the time spent converting the objects (during the restoration or

during the first activation)
v Converted programs contain different hardware instructions than your original programs do. Although

the program functionality remains the same, this might affect your customer support processes.

To avoid conversion, you can specify that your programs be built only with features common to all
systems supported by the target release. You can achieve this in one of the following ways:
v Specifying the CodeGenTarget Licensed Internal Code option (LICOPT) when creating your module

and program objects.
v Specifying the CodeGenTarget LICOPT on a Change Program (CHGPGM) or Change Service Program

(CHGSRVPGM) command.
v Setting an environment variable to control which features are used.

Chapter 13. Advanced Optimization Techniques 145

The CodeGenTarget LICOPT
You can specify the Licensed Internal Code options (LICOPT) parameter on many of the module and
program creation commands, such as Create C Module (CRTCMOD) and Create Bound C Program
(CRTBNDC). The LICOPT parameter directs the optimizing translator to use or avoid certain options
when it creates the hardware instructions for objects. You can use the LICOPT CodeGenTarget option to
provide control over features that are selected by adaptive code generation. Refer to “CodeGenTarget” on
page 138 for all the possible values of this option.

By selecting the CodeGenTarget=Common option when creating your module and program objects, you
can ensure that your software product is not converted when it is restored onto customer machines, or
when it is first used by your customers. However, you might be giving up some potential performance
improvements on machines with more hardware features.

The CodeGenTarget=Power6 option might be useful if you have an older machine that you use for
software builds, but you want to deploy your software to machines using POWER6 processors. This
option causes the optimizing translator to use POWER6 features, even though they might not be available
on the current machine. The programs can then be deployed to your POWER6 systems without any
conversion during the restore processing or the first activation. However, the programs cannot be
activated on the build machine without being converted. You need to ensure that programs are not
activated on the build machine; otherwise, the POWER6 features are removed from the programs.

After creating a program object, you might realize that you should have specified which features are
allowed to be used in the object. Instead of re-creating the program, you can use the Change Program
(CHGPGM) or Change Service Program (CHGSRVPGM) command and specify the CodeGenTarget
LICOPT parameter on that command. The program is converted, and the optimizing translator uses only
those features that you specified.

Currently, new features are only available for the POWER6 and POWER7 level of the PowerPC AS
architecture. On IBM i 6.1, the features of POWER6 are selected with CodeGenTarget=Power6, and are
not selected with CodeGenTarget=Legacy or CodeGenTarget=Common. The effect of
CodeGenTarget=Current depends on whether you are running on POWER6 hardware or not. On IBM i
7.1, the features of POWER6 are selected with CodeGenTarget=Power6, and are not selected with
CodeGenTarget=Legacy or CodeGenTarget=Common. The features of POWER7 are selected with
CodeGenTarget=Power7, and are not selected with CodeGenTarget=Power6, CodeGenTarget=Legacy, or
CodeGenTarget=Common. The effect of CodeGenTarget=Current depends on whether you are running on
POWER7, POWER6, or earlier hardware. Note that the features of POWER7 include all features of
POWER6.

Features associated with POWER6 hardware include:
v A hardware decimal floating-point unit
v Efficient hardware support for ILE pointer handling

Features associated with POWER7 hardware include:
v A number of new instructions that may speed up certain computations, such as conversions between

integer and floating-point values.

For a module object, use the Display Module (DSPMOD) command with DETAIL(*BASIC) to see the
LICOPT options that are applied to that module. For a program or service program object, LICOPT
options are associated with each module in the program. Use the Display Program (DSPPGM) or Display
Service Program (DSPSRVPGM) command with DETAIL(*MODULE), and then specify option 5 for the
modules you want to view. The value of Licensed Internal Code options on one of these display screens
might contain CodeGenTarget=model for some models. This indicates that the LICOPT is used to
override the default behavior when the module was created, either by directly specifying the LICOPT, or
by setting the QIBM_BN_CREATE_WITH_COMMON_CODEGEN environment variable. If such a
LICOPT is not present, then the default behavior was not overridden.

146 ILE Concepts IBM i 7.1

|
|
|
|
|
|
|
|
|
|

|

|
|

For more information about how to display Licensed Internal Code options, refer to “Displaying Module
and ILE Program Licensed Internal Code Options” on page 142.

QIBM_BN_CREATE_WITH_COMMON_CODEGEN Environment Variable
For large builds, it might not be convenient to specify the CodeGenTarget LICOPT for all module and
program creation commands. In addition, the command you use to create objects might not support the
LICOPT parameter. In these situations, you can use the
QIBM_BN_CREATE_WITH_COMMON_CODEGEN environment variable to set the adaptive code
generation behavior for your builds.

To work with environment variables, use the Work with Environment Variable (WRKENVVAR)
command.

The possible values for the QIBM_BN_CREATE_WITH_COMMON_CODEGEN environment variable are
in the following table.

Value Meaning

0 When you create new modules, use LICOPT CodeGenTarget as specified. If CodeGenTarget is not
specified, use CodeGenTarget=Current. (This is the default.)

1 When you create new modules, use LICOPT CodeGenTarget as specified. If CodeGenTarget is not
specified, use CodeGenTarget=Common.

2 When you create new modules, always use CodeGenTarget=Common, overriding any LICOPT
CodeGenTarget that might have been supplied.

v Value 0 denotes the default behavior.
v Value 1 is useful when you want to use the common subset of features on most parts, but would like

to override this for individual parts.
v Value 2 is useful when you need to ensure that all parts are built with the common subset of features.

Note: This environment variable applies only when you create new modules. It does not apply on
change commands, such as Change Program (CHGPGM). Nor does it apply during object
conversion.

Displaying ACG Information
You can use the Display Module (DSPMOD), Display Program (DSPPGM), and Display Service Program
(DSPSRVPGM) commands to determine whether your module and program objects are compatible with
the current machine, and whether the CodeGenTarget LICOPT is used to override default ACG behavior.

Object compatibility
Use the Display Program (DSPPGM), Display Service Program (DSPSRVPGM), or Display Module
(DSPMOD) command with DETAIL(*BASIC) to determine whether your module or program object is
able to run correctly without first being converted. The value of the Conversion required field is either
*YES or *NO. If the value of Conversion required is *YES for a program object, the program is converted
the first time it is activated. Alternately, you can use CHGPGM FRCCRT(*YES) or Start Object Conversion
(STROBJCVN) to force conversion to occur at a more convenient time. See “Optimizing Compatible
Programs” on page 148 for more information about when these two commands can be used.

If the value of the Conversion required field is *YES for a module object, and the module object is not in
an older format (see *FORMAT in the following table), binding this module object into a program or
service program results in a program object that also requires conversion. This outcome is useful when
you are building programs for deployment to a system that has more features than the build system. If
the value of the Conversion required field is *NO, then your program or module object is ready for
immediate use.

Chapter 13. Advanced Optimization Techniques 147

|
|
|
|
|

The reason that a module or program object requires conversion can be determined by viewing the
Conversion details field. This field has one of the following values.

Value Meaning

*FORMAT The object is not compatible with the current machine. The object is in an older format. (For
example, objects created for releases earlier than 6.1 are in a different format from objects created
for 6.1.) Binding a module object in an older format causes the bound module to be converted.

*FEATURE The object is not compatible with the current machine. The object format is compatible with the
current machine, but the object uses at least one feature that is not supported by the current
machine.

*COMPAT The object is compatible with the current machine. The object format is compatible with the
current machine, and all features that the object uses are implemented by the current machine.
However, the object uses at least one feature that is not supported by the common level of
hardware supported by version, release, and modification level that the object was created for.

*COMMON The object is compatible with the current machine. The object format is compatible, and all
features that the object uses are implemented by the common level of hardware supported by the
version, release, and modification level that the object was created for.

Release-to-Release Considerations
The behavior of adaptive code generation is determined by the target version, release, and modification
level you choose when you create a module or program object. ACG is only supported on systems
running 6.1, or later. If the CodeGenTarget LICOPT is specified for an object with an earlier target release,
the LICOPT is tolerated, but has no effect on the code generated for the object.

The target version, release, and modification level also governs the meaning of
LICOPT('CodeGenTarget=Common'). When this LICOPT is selected, it means that the optimizing
translator should use the set of features available on all machines supported by the target release, which
might differ from the release on which the program or module object was created. Therefore, you can use
a build machine running a more recent version of the operating system to create common code that runs
on every machine running an earlier version of the operation system, provided that this earlier version is
no earlier than 6.1.

Note: You cannot use the optimizing translator that is on an earlier version to take advantage of all
features common to machines running on a more recent version.

Optimizing Compatible Programs
When compatible objects are restored onto a machine, they are not normally converted, unless you have
specified the FRCOBJCVN(*YES *ALL) parameter on the Restore command. This means that the objects
might not take full advantage of the machine's capabilities. Some features might not have been used by
the optimizing translator. You might want to update your module and program objects to take full
advantage of your machine.

You need to know whether your module and program objects have full creation data available. Use the
Display Module (DSPMOD), Display Program (DSPPGM), or Display Service Program (DSPSRVPGM)
command with DETAIL(*BASIC) to see this.
v If all creation data is available and observable, the All creation data field is *YES. You can use the

Change Module (CHGMOD), Change Program (CHGPGM), and Change Service Program
(CHGSRVPGM) commands with FRCCRT(*YES) to force re-creation of the objects.

v If all creation data is available but not all of it is observable, the All creation data field is *UNOBS. You
can force a conversion of these objects during a restore operation by specifying the FRCOBJCNV(*YES
*ALL) parameter on the Restore command.

148 ILE Concepts IBM i 7.1

v If not all creation data is available, the All creation data field is *NO. You can do nothing to change the
objects. If your programs lack creation data in this way, they must be recreated from source to run on
6.1 and later releases.

ACG and Logical Partitions
If you have a system with several logical partitions, you can configure a partition to imitate a system
with a different processor than the one you have physically installed. For the purposes of adaptive code
generation, such a partition is treated as if it is running on the imitated processor. Any features in a
program that are not available on the imitated processor force the program to require conversion to run
on that processor, even if those features are available on the underlying physical processor.

Chapter 13. Advanced Optimization Techniques 149

|
|
|

150 ILE Concepts IBM i 7.1

Chapter 14. Shared Storage Synchronization

Shared storage provides an efficient means for communication between two or more concurrently
running threads. This chapter discusses a number of issues that are related to shared storage. The
primary focus is on data synchronization problems that can arise when accessing shared storage, and
how to overcome them.

Although not unique to ILE, the programming problems associated with shared storage are more likely to
occur in ILE languages than in original MI languages. This is due to the broader support for
multiprogramming Application Programming Interfaces in ILE.

Shared Storage
The term shared storage, as it pertains to this discussion, refers to any space data that is accessed from two
or more threads. This definition includes any storage directly accessible down to its individual bytes, and
can include the following classes of storage:
v MI space objects
v Primary associated spaces of other MI objects
v POSIX shared memory segments
v Implicit process spaces: Automatic storage, static storage, and activation-based heap storage
v Teraspace

The system considers these spaces, regardless of the longevity of their existence, as shared storage when
accessed by multiple threads capable of concurrent processing.

Shared Storage Pitfalls
When creating applications that take advantage of shared storage, you need to avoid two types of
problems that can result in unpredictable data values: race conditions and storage access ordering problems.
v A race condition exists when different program results are possible due solely to the relative timing of

two or more cooperating threads.
You can avoid race conditions by synchronizing the processing of the competing threads so that they
interact in a predictable, well-behaved manner. Although the focus of this document is on storage
synchronization, the techniques for synchronizing thread execution and synchronizing storage overlap
to a great extent. Because of this, the example problems discussed later in this chapter briefly touch on
race conditions.

v Storage access ordering problems are also known as storage synchronization or memory consistency
problems. These problems result when two or more cooperating threads rely on a specific ordering of
updates to shared storage, and their respective accesses to the storage accesses are not synchronized.
For example, one thread might store values to two shared variables, and another thread has an implicit
dependency on observing those updates in a certain order.
You can avoid shared storage access ordering problems by ensuring that the system performs storage
synchronization actions for the threads that read from and write to shared storage. Some of these
actions are described in the following topics.

© Copyright IBM Corp. 1997, 2010 151

Shared Storage Access Ordering
When threads share storage, no guarantee exists that shared storage accesses (reads and writes)
performed by one thread will be observed in that particular order by other threads. You can prevent this
by having some form of explicit storage synchronization performed by the threads that are reading or
writing to the shared storage.

Storage synchronization is required when two or more threads attempt concurrent access to shared
storage, and the semantics of the threads' logic requires some ordering on the shared storage accesses.
When the order in which shared storage updates are observed is not important, no storage
synchronization is necessary. A given thread will always observe its own storage updates (to shared or
non-shared storage) in order. All threads accessing overlapping shared storage locations will observe those
accesses in the same order.

Consider the following simple example, which illustrates how both race conditions and storage access
ordering problems can lead to unpredictable results.

volatile int X = 0;
volatile int Y = 0;

Thread A Thread B
-------------- -------------

Y = 1; print(X);
X = 1; print(Y);

The table below summarizes the possible results that are printed by B.

X Y Type of Problem Explanation

0 0 Race Condition Thread B read the variables before the modifications of
Thread A.

0 1 Race Condition Thread B observed the update to Y but printed X before
observing Thread A's update.

1 1 Race Condition Thread B read both variables after the updates of
Thread A.

1 0 Storage Access Ordering Thread B observed the update to X but had yet to see
Thread A's update to Y. With no explicit data
synchronizing actions, this type of out-of-sequence
storage access can occur.

Example Problem 1: One Writer, Many Readers
Usually, the potential for out-of-order shared storage accesses does not affect the correctness of
multi-threaded program logic. However, in some cases, the order in which threads see the storage
updates of other threads is vital to the correctness of the program.

Consider a typical scenario that requires some form of explicit data synchronization. This is when the
state of one shared storage location is used (by convention in a program's logic) to control access to a
second (non-overlapping) shared storage location. For example, assume that one thread initializes some
shared data (DATA). Furthermore, assume that the thread then sets a shared flag (FLAG) to indicate to all
other threads that the shared data is initialized.

Initializing Thread All Other Threads
------------------- ---------------------------

DATA = 10 loop until FLAG has value 1
FLAG = 1 use DATA

In this case, the sharing threads must enforce an order on the shared storage accesses. Otherwise, other
threads might view the initializing thread's shared storage updates out of order. This could allow some or
all of the other threads to read an uninitialized value from DATA.

152 ILE Concepts IBM i 7.1

Example 1 Solution
A preferred method for solving the problem in the example above is to avoid the dependency between
the data and flag values. You can do this by using a more robust thread synchronization scheme.
Although you can employ many of the thread synchronization techniques, one that lends itself well to
this problem is a semaphore.

In order for the following logic to be appropriate, you must assume the following:
v The program created the semaphore before starting the cooperating threads.
v The program initialized the semaphore to a count of 1.

Initializing Thread All Other Threads
------------------- ---------------------------

DATA = 10 Wait for semaphore count to reach 0
Decrement semaphore use DATA

Storage Synchronizing Actions
When an ordering of shared storage accesses is required, all threads that require enforcement of an
ordering must take explicit action to synchronize the shared storage accesses. These actions are called
storage synchronizing actions.

A synchronizing action taken by a thread ensures that shared storage accesses that appear prior to the
synchronizing action in the thread's logical flow complete before those accesses that appear in the logical
flow of the code after the synchronizing action. This is from the viewpoint of other threads at their
synchronizing actions. In other words, if a thread performs two writes to two shared locations and a
synchronizing action separates those writes, the system accomplishes the following: The first write is
guaranteed to be available to other threads at or before their next synchronizing actions, and no later
than the point at which the second write becomes available.

When two reads from two shared locations are separated by a storage synchronizing action, the second
read reads a value no less current than the first read. This is only true when other threads enforce an
ordering when writing to the shared storage.

The following thread synchronization actions are also storage synchronization actions:

Mechanism Synchronizing Action First Available in VRM

Object Locks Lock, Unlock All

Space Location Locks Lock, Unlock All

Mutex Lock, Unlock V3R1M0

Semaphores Post, Wait V3R2M0

Pthread Conditions Wait, Signal, Broadcast V4R2M0

Data Queues Enqueue, Dequeue All

Message Queues Enqueue, Dequeue V3R2M0

Compare-and-Swap Successful store to target V3R1M0

Check Lock Value (CHKLKVAL) Successful store to target V5R3M0

Clear Lock Value (CLRLKVAL) Always V5R3M0

Additionally, the following MI instruction constitutes a storage synchronization action, but is not usable
for synchronizing threads:

Mechanism Synchronizing Action First Available in VRM

SYNCSTG MI Instruction Always V4R5M0

Chapter 14. Shared Storage Synchronization 153

Remember: To completely enforce shared storage access ordering between two or more threads, all
threads that are dependent on the access ordering must use the appropriate synchronizing actions. This is
true for both readers and writers of the shared data. This agreement between readers and writers ensures
that the order of accesses will remain unchanged by any optimizations that are employed by the
underlying machine.

Example Problem 2: Two Contending Writers or Readers
Another common problem requiring additional synchronization is one in which two or more threads
attempt to enforce an informal locking protocol, as in the example below. In this example, two threads
manipulate data in shared storage. Both threads repeatedly attempt to read and write two shared data
items, using a shared flag in an attempt to serialize accesses.

Thread A Thread B
-------------------------------------- --------------------------------------
/* Do some work on the shared data */ /* Do some work on the shared data */

for (int i=0; i<10; ++i) { for (int i=0; i<10; ++i) {
/* Wait until the locked flag is clear */ /* Wait until the locked flag is clear */
while (locked == 1) { while (locked == 1) {
sleep(1); sleep(1);

} }

locked = 1; /* Set the lock */ locked = 1; /* Set the lock */

/* Update the shared data */ /* Update the shared data */
data1 += 5; data1 += 4;
data2 += 10; data2 += 6;

locked = 0; /* Clear the lock */ locked = 0; /* Clear the lock */
} }

This example illustrates both of our shared memory pitfalls.

Race Conditions
The locking protocol used here has not circumvented the data race conditions. Both jobs could
simultaneously see that the locked flag is clear, and thus both fall into the logic which updates
the data. At that point, there is no guarantee of which data values will be read, incremented, and
written — allowing many possible outcomes.

Storage Access Ordering Concerns
Ignore, for a moment, the race condition mentioned above. Notice that the logic used by both
jobs to update the lock and the shared data contains assumptions about the implicit ordering of
the field updates. Specifically, there is an assumption on the part of each thread that the other
thread will observe that the locked flag has been set to 1 prior to observing changes to the data.
Additionally, it is assumed that each thread will observe the changing of the data prior to
observing the locked flag value of zero. As noted earlier in this discussion, these assumptions are
not valid.

Example 2 Solution
To avoid the race condition, and to enforce storage ordering, you should serialize accesses to the shared
data by one of the synchronization mechanisms that is enumerated above. This example, where multiple
threads are competing for a shared resource, lends itself well to some form of lock. A solution employing
a space location lock will be discussed, followed by an alternative solution using the Check Lock Value
and Clear Lock Value.

THREAD A THREAD B
-------------------------------------- ------------------------------------
for (i=0; i<10; ++i) { for (i=0; i<10; ++i) {
/* Get an exclusive lock on the shared /* Get an exclusive lock on the shared

data. We go into a wait state until data. We go into a wait state until
the lock is granted. */ the lock is granted. */

locksl(LOCK_LOC, _LENR_LOCK); locksl(LOCK_LOC, _LENR_LOCK);

/* Update the shared data */ /* Update the shared data */
data1 += 5; data1 += 4;
data2 += 10; data2 += 6;

154 ILE Concepts IBM i 7.1

/* Unlock the shared data */ /* Unlock the shared data */
unlocksl(LOCK_LOC, _LENR_LOCK); unlocksl(LOCK_LOC, _LENR_LOCK);

} }

Restricting access to the shared data with a lock guarantees that only one thread will be able to access the
data at a time. This solves the race condition. This solution also solves the storage access ordering
concerns, since there is no longer an ordering dependency between two shared storage locations.

Alternate Solution: Using Check Lock Value / Clear Lock Value
Space location locks, like those used in the first solution, are full of features that are not required in this
simple example. For instance, space location locks support a time-out value which would allow
processing to resume if unable to acquire the lock within some period of time. Space locations locks also
support several combinations of shared locks. These are important features, but come at the price of some
performance overhead.

An alternative is to use Check Lock Value and Clear Lock Value. Together, these two MI instructions provide
a way to implement a very simple and fast locking protocol, particularly if there is not much contention
on the lock.

In this solution, the system uses CHKLKVAL to attempt to acquire the lock. If that attempt fails (because
the system found the lock already in use), the thread will wait for a while and then try again, repeating
until the lock is acquired. After updating the shared data, the system will use CLRLKVAL to release the
lock. In this example, assume that, in addition to the shared data items, the threads also share the address
of an 8-byte location. This code refers to that location as variable LOCK. Furthermore, assume that the
lock was initialized to zero, either through static initialization or some prior synchronized initialization.

THREAD A THREAD B
-------------------------------- ---------------------------------
/* Do some work on the shared data */ /* Do some work on the shared data */
for (i=0; i<10; ++i) { for (i=0; i<10; ++i) {

/* Attempt to acquire the lock using /* Attempt to acquire the lock using
CHKLKVAL. By convention, use value CHKLKVAL. By convention, use value
1 to indicate locked, 0 to indicate 1 to indicate locked, 0 to indicate
unlocked. */ unlocked. */

while (_CHKLKVAL(&LOCK, 0, 1) == 1) { while (_CHKLKVAL(&LOCK, 0, 1) == 1) {
sleep(1); /* wait a bit and try again */ sleep(1); /* wait a bit and try again */

} }

/* Update the shared data */ /* Update the shared data */
data1 += 5; data1 += 4;
data2 += 10; data2 += 6;

/* Unlock the shared data. Use of /* Unlock the shared data. Use of
CLRLKVAL ensures other jobs/threads CLRLKVAL ensures other jobs/threads
see update to shared data prior to see update to shared data prior to
release of the lock. */ release of the lock. */

_CLRLKVAL(&LOCK, 0); _CLRLKVAL(&LOCK, 0);
} }

Here, the threads use Check Lock Value to perform a race-free test and update of the lock variable, and
Clear Lock Value to reset the lock variable to the unlocked state. This solves the race condition
experienced in the original problem fragments. It also addresses the storage access ordering problem. As
noted earlier, used in this fashion, Check Lock Value and Clear Lock Value are synchronizing actions.
Using Check Lock Value to set the lock prior to reading the shared data ensures that the threads read the
most recently updated data. Using Clear Lock Value to clear the lock after updating the shared data
ensures that the updates are available for subsequent reads by any thread after its next synchronizing
action.

Chapter 14. Shared Storage Synchronization 155

156 ILE Concepts IBM i 7.1

Appendix A. Output Listing from CRTPGM, CRTSRVPGM,
UPDPGM, or UPDSRVPGM Command

This appendix shows examples of binder listings and explains errors that could occur as a result of using
the binder language.

Binder Listing
The binder listings for the Create Program (CRTPGM), Create Service Program (CRTSRVPGM), Update
Program (UPDPGM), and Update Service Program (UPDSRVPGM) commands are almost identical. This
topic presents a binder listing from the CRTSRVPGM command used to create the FINANCIAL service
program in “Binder Language Examples” on page 71.

Three types of listings can be specified on the detail (DETAIL) parameter of the CRTPGM, CRTSRVPGM,
UPDPGM, or UPDSRVPGM commands:

*BASIC
*EXTENDED
*FULL

Basic Listing
If you specify DETAIL(*BASIC) on the CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM command,
the listing consists of the following:
v The values specified on the CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM command
v A brief summary table
v Data showing the length of time some pieces of the binding process took to complete

Figure 46, Figure 47, and Figure 48 on page 159 show this information.

© Copyright IBM Corp. 1997, 2010 157

Create Service Program Page 1

Service program : FINANCIAL
Library . : MYLIB

Export . : *SRCFILE
Export source file : QSRVSRC

Library . : MYLIB
Export source member : *SRVPGM
Activation group : *CALLER
Allow update : *YES
Allow bound *SRVPGM library name update : *NO
Creation options : *GEN *NODUPPROC *NODUPVAR *DUPWARN
Listing detail : *FULL
User profile : *USER
Replace existing service program : *YES
Target release : *CURRENT
Allow reinitialization : *NO
Storage model : *SNGLVL
Argument optimization : *NO
Interprocedural analysis : *NO
IPA control file : *NONE

Authority . : *LIBCRTAUT
Text . :

Module Library Module Library

MONEY MYLIB CALCS MYLIB
RATES MYLIB ACCTS MYLIB

Service
Program Library Activation
*NONE

Binding
Directory Library Activation

*NONE

Figure 46. Values Specified on CRTSRVPGM Command

Create Service Program Page 3

Brief Summary Table

Program entry procedures : 0

Multiple strong definitions : 0

Unresolved references : 0

* * * * * E N D O F B R I E F S U M M A R Y T A B L E * * * * *

Figure 47. Brief Summary Table

158 ILE Concepts IBM i 7.1

Extended Listing
If you specify DETAIL(*EXTENDED) on the CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM
command, the listing includes all the information provided by DETAIL(*BASIC) plus an extended
summary table. The extended summary table shows the number of imports (references) that were
resolved and the number of exports (definitions) processed. For the CRTSRVPGM or UPDSRVPGM
command, the listing also shows the binder language used, the signatures generated, and which imports
(references) matched which exports (definitions). Figure 49, Figure 50 on page 160, and Figure 51 on page
161 show examples of the additional data.

Create Service Program Page 23

Binding Statistics

Symbol collection CPU time : .018
Symbol resolution CPU time : .006
Binding directory resolution CPU time : .403
Binder language compilation CPU time : .040
Listing creation CPU time : 1.622
Program/service program creation CPU time : .178

Total CPU time . : 2.761
Total elapsed time . : 11.522

* * * * * E N D O F B I N D I N G S T A T I S T I C S * * * * *

*CPC5D0B - Service program FINANCIAL created in library MYLIB.

* * * * * E N D O F C R E A T E S E R V I C E P R O G R A M L I S T I N G * * * * *

Figure 48. Binding Statistics

Create Service Program Page 2

Extended Summary Table

Valid definitions : 418
Strong : 418
Weak : 0

Resolved references : 21
To strong definitions : 21
To weak definitions : 0

* * * * * E N D O F E X T E N D E D S U M M A R Y T A B L E * * * * *

Figure 49. Extended Summary Listing

Appendix A. Output Listing from CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM Command 159

Create Service Program Page 4

Binder Information Listing
Module : MONEY

Library : MYLIB
Bound : *YES

Number Symbol Ref Identifier Type Scope Export Key

00000001 Def main Proc Module Strong
00000002 Def Amount Proc SrvPgm Strong
00000003 Def Payment Proc SrvPgm Strong
00000004 Ref 0000017F Q LE AG_prod_rc Data
00000005 Ref 0000017E Q LE AG_user_rc Data
00000006 Ref 000000AC _C_main Proc
00000007 Ref 00000180 Q LE leDefaultEh Proc
00000008 Ref 00000181 Q LE mhConversionEh Proc
00000009 Ref 00000125 _C_exception_router Proc

Module : RATES
Library : MYLIB
Bound : *YES

Number Symbol Ref Identifier Type Scope Export Key

0000000A Def Term Proc SrvPgm Strong
0000000B Def Rate Proc SrvPgm Strong
0000000C Ref 0000017F Q LE AG_prod_rc Data
0000000D Ref 0000017E Q LE AG_user_rc Data
0000000E Ref 00000180 Q LE leDefaultEh Proc
0000000F Ref 00000181 Q LE mhConversionEh Proc
00000010 Ref 00000125 _C_exception_router Proc

Module : CALCS
Library : MYLIB
Bound : *YES

Number Symbol Ref Identifier Type Scope Export Key

00000011 Def Calc1 Proc Module Strong
00000012 Def Calc2 Proc Module Strong
00000013 Ref 0000017F Q LE AG_prod_rc Data
00000014 Ref 0000017E Q LE AG_user_rc Data
00000015 Ref 00000180 Q LE leDefaultEh Proc
00000016 Ref 00000181 Q LE mhConversionEh Proc
00000017 Ref 00000125 _C_exception_router Proc

Module : ACCTS
Library : MYLIB
Bound : *YES

Number Symbol Ref Identifier Type Scope Export Key

00000018 Def OpenAccount Proc SrvPgm Strong
00000019 Def CloseAccount Proc SrvPgm Strong
0000001A Ref 0000017F Q LE AG_prod_rc Data
0000001B Ref 0000017E Q LE AG_user_rc Data
0000001C Ref 00000180 Q LE leDefaultEh Proc
0000001D Ref 00000181 Q LE mhConversionEh Proc
0000001E Ref 00000125 _C_exception_router Proc

Figure 50. Binder Information Listing (Part 1 of 2)

160 ILE Concepts IBM i 7.1

Full Listing
If you specify DETAIL(*FULL) on the CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM command,
the listing includes all the detail provided for DETAIL(*EXTENDED) plus a cross-reference listing.
Figure 52 on page 162 shows a partial example of the additional data provided.

Service program : QC2SYS
Library : *LIBL
Bound : *NO

Number Symbol Ref Identifier Type Scope Export Key

0000001F Def system Proc Strong

Service program : QLEAWI
Library : *LIBL
Bound : *YES

Number Symbol Ref Identifier Type Scope Export Key

0000017E Def Q LE AG_user_rc Data Strong
0000017F Def Q LE AG_prod_rc Data Strong
00000180 Def Q LE leDefaultEh Proc Strong
00000181 Def Q LE mhConversionEh Proc Strong

Figure 50. Binder Information Listing (Part 2 of 2)

Create Service Program Page 14

Binder Language Listing

STRPGMEXP PGMLVL(*CURRENT)
EXPORT SYMBOL(’Term’)
EXPORT SYMBOL(’Rate’)
EXPORT SYMBOL(’Amount’)
EXPORT SYMBOL(’Payment’)
EXPORT SYMBOL(’OpenAccount’)
EXPORT SYMBOL(’CloseAccount’)

ENDPGMEXP
******** Export signature: 00000000ADCEFEE088738A98DBA6E723.
STRPGMEXP PGMLVL(*PRV)

EXPORT SYMBOL(’Term’)
EXPORT SYMBOL(’Rate’)
EXPORT SYMBOL(’Amount’)
EXPORT SYMBOL(’Payment’)

ENDPGMEXP
******** Export signature: 000000000000000000ADC89D09E0C6E7.

* * * * * E N D O F B I N D E R L A N G U A G E L I S T I N G * * * * *

Figure 51. Binder Language Listing

Appendix A. Output Listing from CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM Command 161

Create Service Program Page 15

Cross-Reference Listing

--------Refs--------
Identifier Defs Ref Ref Type Library Object
.
.
.

xlatewt 000000DD *SRVPGM *LIBL QC2UTIL1
yn 00000140 *SRVPGM *LIBL QC2UTIL2
y0 0000013E *SRVPGM *LIBL QC2UTIL2
y1 0000013F *SRVPGM *LIBL QC2UTIL2
Amount 00000002 *MODULE MYLIB MONEY
Calc1 00000011 *MODULE MYLIB CALCS
Calc2 00000012 *MODULE MYLIB CALCS
CloseAccount 00000019 *MODULE MYLIB ACCTS
CEECRHP 000001A0 *SRVPGM *LIBL QLEAWI
CEECZST 0000019F *SRVPGM *LIBL QLEAWI
CEEDATE 000001A9 *SRVPGM *LIBL QLEAWI
CEEDATM 000001B1 *SRVPGM *LIBL QLEAWI
CEEDAYS 000001A8 *SRVPGM *LIBL QLEAWI
CEEDCOD 00000187 *SRVPGM *LIBL QLEAWI
CEEDSHP 000001A1 *SRVPGM *LIBL QLEAWI
CEEDYWK 000001B3 *SRVPGM *LIBL QLEAWI
CEEFMDA 000001AD *SRVPGM *LIBL QLEAWI
CEEFMDT 000001AF *SRVPGM *LIBL QLEAWI
CEEFMTM 000001AE *SRVPGM *LIBL QLEAWI
CEEFRST 0000019E *SRVPGM *LIBL QLEAWI
CEEGMT 000001B6 *SRVPGM *LIBL QLEAWI
CEEGPID 00000195 *SRVPGM *LIBL QLEAWI
CEEGTST 0000019D *SRVPGM *LIBL QLEAWI
CEEISEC 000001B0 *SRVPGM *LIBL QLEAWI
CEELOCT 000001B4 *SRVPGM *LIBL QLEAWI
CEEMGET 00000183 *SRVPGM *LIBL QLEAWI
CEEMKHP 000001A2 *SRVPGM *LIBL QLEAWI
CEEMOUT 00000184 *SRVPGM *LIBL QLEAWI
CEEMRCR 00000182 *SRVPGM *LIBL QLEAWI
CEEMSG 00000185 *SRVPGM *LIBL QLEAWI
CEENCOD 00000186 *SRVPGM *LIBL QLEAWI
CEEQCEN 000001AC *SRVPGM *LIBL QLEAWI
CEERLHP 000001A3 *SRVPGM *LIBL QLEAWI
CEESCEN 000001AB *SRVPGM *LIBL QLEAWI
CEESECI 000001B2 *SRVPGM *LIBL QLEAWI
CEESECS 000001AA *SRVPGM *LIBL QLEAWI
CEESGL 00000190 *SRVPGM *LIBL QLEAWI
CEETREC 00000191 *SRVPGM *LIBL QLEAWI
CEEUTC 000001B5 *SRVPGM *LIBL QLEAWI
CEEUTCO 000001B7 *SRVPGM *LIBL QLEAWI
CEE4ABN 00000192 *SRVPGM *LIBL QLEAWI
CEE4CpyDvfb 0000019A *SRVPGM *LIBL QLEAWI
CEE4CpyIofb 00000199 *SRVPGM *LIBL QLEAWI
CEE4CpyOfb 00000198 *SRVPGM *LIBL QLEAWI
CEE4DAS 000001A4 *SRVPGM *LIBL QLEAWI
CEE4FCB 0000018A *SRVPGM *LIBL QLEAWI
CEE4HC 00000197 *SRVPGM *LIBL QLEAWI
CEE4RAGE 0000018B *SRVPGM *LIBL QLEAWI
CEE4RIN 00000196 *SRVPGM *LIBL QLEAWI
OpenAccount 00000018 *MODULE MYLIB ACCTS
Payment 00000003 *MODULE MYLIB MONEY
Q LE leBdyCh 00000188 *SRVPGM *LIBL QLEAWI
Q LE leBdyEpilog 00000189 *SRVPGM *LIBL QLEAWI
Q LE leDefaultEh 00000180 00000007 0000000E *SRVPGM *LIBL QLEAWI

00000015 0000001C
Q LE mhConversionEh 00000181 00000008 0000000F *SRVPGM *LIBL QLEAWI

00000016 0000001D
Q LE AG_prod_rc 0000017F 00000004 0000000C *SRVPGM *LIBL QLEAWI

00000013 0000001A
Q LE AG_user_rc 0000017E 00000005 0000000D *SRVPGM *LIBL QLEAWI

00000014 0000001B
Q LE HdlrRouterEh 0000018F *SRVPGM *LIBL QLEAWI
Q LE RtxRouterCh 0000018E *SRVPGM *LIBL QLEAWI
Rate 0000000B *MODULE MYLIB RATES
Term 0000000A *MODULE MYLIB RATES

Figure 52. Cross-Reference Listing

162 ILE Concepts IBM i 7.1

IPA Listing Components
The following sections describe the IPA components of the listing:
v Object File Map
v Compiler Options Map
v Inline Report
v Global Symbols Map
v Partition Map
v Source File Map
v Messages
v Message Summary

The CRTPGM or CRTSRVPGM command generates all of these sections, except the inline report, if you
specify IPA(*YES) and DETAIL(*BASIC or *EXTENDED). The CRTPGM or CRTSRVPGM command
generates the inline report only if you specify IPA(*YES) and DETAIL(*FULL).

Object File Map
The Object File Map listing section displays the names of the object files that were used as input to IPA.
Other listing sections, such as the Source File Map, use the FILE ID numbers that appear in this listing
section.

Compiler Options Map
The Compiler Options Map listing section identifies the compiler options that were specified within the
IL data for each compilation unit that is processed. For each compilation unit, it displays the options that
are relevant to IPA processing. You can specify these options through a compiler option, a #pragma
directive, or as default values.

Inline Report
The Inline Report listing section describes the actions that are performed by the IPA inliner. In this report,
the term 'subprogram' is equivalent to a C/C++ function or a C++ method. The summary contains such
information as:
v Name of each defined subprogram. IPA sorts subprogram names in alphabetical order.
v Reason for action on a subprogram:

– You specified #pragma noinline for the subprogram.
– You specified #pragma inline for the subprogram.
– IPA performed automatic inlining on the subprogram.
– There was no reason to inline the subprogram.
– There was a partition conflict.
– IPA could not inline the subprogram because IL data did not exist.

v Action on a subprogram:
– IPA inlined subprogram at least once.
– IPA did not inline subprogram because of initial size constraints.
– IPA did not inline subprogram because of expansion beyond size constraint.
– The subprogram was a candidate for inlining, but IPA did not inline it.
– Subprogram was a candidate for inlining, but was not referred to.
– The subprogram is directly recursive, or some calls have mismatched parameters.

v Status of original subprogram after inlining:
– IPA discarded the subprogram because it is no longer referred to and is defined as static internal.

Appendix A. Output Listing from CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM Command 163

– IPA did not discard the subprogram, for various reasons:
- Subprogram is external. (It can be called from outside the compilation unit.)
- Subprogram call to this subprogram remains.
- Subprogram has its address taken.

v Initial relative size of subprogram (in Abstract Code Units).
v Final relative size of subprogram (in Abstract Code Units) after inlining.
v The number of calls within the subprogram and the number of these calls that IPA inlined into the

subprogram.
v The number of times the subprogram is called by others in the compile unit and the number of times

IPA inlined the subprogram.
v The mode that is selected and the value of threshold and limit specified. Static functions whose names

may not be unique within the application as a whole will have names prefixed with @nnn@ or
XXXX@nnn@, where XXXX is the partition name, and where nnn is the source file number.

The detailed call structure contains specific information of each subprogram such as:
v Subprograms that it calls.
v Subprograms that call it.
v Subprograms in which it is inlined.

The information can allow better analysis of the program if you want to use the inliner in selective mode.
The counts in this report do not include calls from non-IPA to IPA programs.

Global Symbols Map
The Global Symbols Map listing section shows how global symbols are mapped into members of global
data structures by the global variable coalescing optimization process. It includes symbol information and
file name information (file name information may be approximate). In addition, line number information
may be available.

Partition Map
The Partition Map listing section describes each of the object code partitions created by IPA. It provides
the following information:
v The reason for generating each partition.
v The options used to generate the object code.
v The function and global data included in the partition.
v The source files that were used to create the partition.

Source File Map
The Source File Map listing section identifies the source files that are included in the object files.

Messages
If IPA detects an error, or the possibility of an error, it issues one or more diagnostic messages, and
generates the Messages listing section. This listing section contains a summary of the messages that are
issued during IPA processing. The messages are sorted by severity. The Messages listing section displays
the listing page number where each message was originally shown. It also displays the message text, and
optionally, information relating to a file name, line (if known), and column (if known).

Message Summary
The Message Summary listing section displays the total number of messages and the number of messages
for each severity level.

164 ILE Concepts IBM i 7.1

Listing for Example Service Program
Figure 48 on page 159, Figure 50 on page 160, and Figure 52 on page 162 show some of the listing data
generated when DETAIL(*FULL) was specified to create the FINANCIAL service program in Figure 35 on
page 75. The figures show the binding statistics, the binder information listing, and the cross-reference
listing.

Binder Information Listing for Example Service Program
The binder information listing (Figure 50 on page 160) includes the following data and column headings:
v The library and name of the module or service program that was processed.

If the Bound field shows a value of *YES for a module object, the module is marked to be bound by
copy. If the Bound field shows a value of *YES for a service program, the service program is bound by
reference. If the Bound field shows a value of *NO for either a module object or service program, that
object is not included in the bind. The reason is that the object did not provide an export that satisfied
an unresolved import.

v Number
For each module or service program that was processed, a unique identifier (ID) is associated with
each export (definition) or import (reference).

v Symbol
This column identifies the symbol name as an export (Def) or an import (Ref).

v Ref
A number specified in this column (Ref) is the unique ID of the export (Def) that satisfies the import
request. For example, in Figure 50 on page 160 the unique ID for the import 00000005 matches the
unique ID for the export 0000017E.

v Identifier
This is the name of the symbol that is exported or imported. The symbol name imported for the
unique ID 00000005 is Q LE AG_user_rc. The symbol name exported for the unique ID 0000017E is also
Q LE AG_user_rc.

v Type
If the symbol name is a procedure, it is identified as Proc. If the symbol name is a data item, it is
identified as Data.

v Scope
For modules, this column identifies whether an exported symbol name is accessed at the module level
or at the public interface to a service program. If a program is being created, the exported symbol
names can be accessed only at the module level. If a service program is being created, the exported
symbol names can be accessed at the module level or the service program (SrvPgm) level. If an
exported symbol is a part of the public interface, the value in the Scope column must be SrvPgm.

v Export
This column identifies the strength of a data item that is exported from a module or service program.

v Key
This column contains additional information about any weak exports. Typically this column is blank.

Cross-Reference Listing for Example Service Program
The cross-reference listing in Figure 52 on page 162 is another way of looking at the data presented in the
binder information. The cross-reference listing includes the following column headings:
v Identifier

The name of the export that was processed during symbol resolution.
v Defs

The unique ID associated with each export.
v Refs

Appendix A. Output Listing from CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM Command 165

A number in this column indicates the unique ID of the import (Ref) that was resolved to this export
(Def).

v Type
Identifies whether the export came from a *MODULE or a *SRVPGM object.

v Library
The library name as it was specified on the command or in the binding directory.

v Object
The name of the object that provided the export (Def).

Binding Statistics for Example Service Program
Figure 48 on page 159 shows a set of statistics for creating the service program FINANCIAL. The
statistics identify where the binder spent time when it was processing the create request. You have only
indirect control over the data presented in this section. Some amount of processing overhead cannot be
measured. Therefore, the value listed in the Total CPU time field is larger than the sum of the times listed
in the preceding fields.

Binder Language Errors
While the system is processing the binder language during the creation of a service program, an error
might occur. If DETAIL(*EXTENDED) or DETAIL(*FULL) is specified on the Create Service Program
(CRTSRVPGM) command, you can see the errors in the spooled file.

The following information messages could occur:
v Signature padded
v Signature truncated

The following warning errors could occur:
v Current export block limits interface
v Duplicate export block
v Duplicate symbol on previous export
v Level checking cannot be disabled more than once, ignored
v Multiple current export blocks not allowed, previous assumed

The following serious errors could occur:
v Current export block is empty
v Export block not completed, end-of-file found before ENDPGMEXP
v Export block not started, STRPGMEXP required
v Export blocks cannot be nested, ENDPGMEXP missing
v Exports must exist inside export blocks
v Identical signatures for dissimilar export blocks, must change exports
v Multiple wildcard matches
v No current export block
v No wildcard match
v Previous export block is empty
v Signature contains variant characters
v SIGNATURE(*GEN) required with LVLCHK(*NO)
v Signature syntax not valid
v Symbol name required
v Symbol not allowed as service program export

166 ILE Concepts IBM i 7.1

v Symbol not defined
v Syntax not valid

Signature Padded
Figure 53 shows a binder language listing that contains this message.

This is an information message.

Suggested Changes
No changes are required.

If you wish to avoid the message, make sure that the signature being provided is exactly 16 bytes long.

Signature Truncated
Figure 54 shows a binder language listing that contains this message.

This is an information message.

Suggested Changes
No changes are required.

If you wish to avoid the message, make sure that the signature being provided is exactly 16 bytes long.

Current Export Block Limits Interface
Figure 55 on page 168 shows a binder language listing that contains this error.

Binder Language Listing

STRPGMEXP SIGNATURE(’Short signature’)
******** Signature padded

EXPORT SYMBOL(’Proc_2’)
ENDPGMEXP

******** Export signature: E2889699A340A289879581A3A4998540.

* * * * * E N D O F B I N D E R L A N G U A G E L I S T I N G * * * * *

Figure 53. The Signature Provided Was Shorter than 16 Bytes, So It Is Padded

Binder Language Listing

STRPGMEXP SIGNATURE(’This signature is very long’)
******** Signature truncated

EXPORT SYMBOL(’Proc_2’)
ENDPGMEXP

******** Export signature: E38889A240A289879581A3A499854089.

* * * * * E N D O F B I N D E R L A N G U A G E L I S T I N G * * * * *

Figure 54. Only the First 16 Bytes of Data Provided Are Used for the Signature

Appendix A. Output Listing from CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM Command 167

This is a warning error.

A PGMLVL(*PRV) export block has specified more symbols than the PGMLVL(*CURRENT) export block.

If no other errors occurred, the service program is created.

If both of the following are true:
v PGMLVL(*PRV) had supported a procedure named C
v Under the new service program, procedure C is no longer supported

any ILE program or service program that called procedure C in this service program gets an error at
runtime.

Suggested Changes
1. Make sure that the PGMLVL(*CURRENT) export block has more symbols to be exported than a

PGMLVL(*PRV) export block.
2. Run the CRTSRVPGM command again.

In this example, the EXPORT SYMBOL(C) was incorrectly added to the STRPGMEXP PGMLVL(*PRV)
block instead of to the PGMLVL(*CURRENT) block.

Duplicate Export Block
Figure 56 on page 169 shows a binder language listing that contains this error.

Binder Language Listing

STRPGMEXP PGMLVL(*CURRENT)
EXPORT SYMBOL(A)
EXPORT SYMBOL(B)

ENDPGMEXP
******** Export signature: 00000000000000000000000000000CD2.
STRPGMEXP PGMLVL(*PRV)

EXPORT SYMBOL(A)
EXPORT SYMBOL(B)
EXPORT SYMBOL(C)

ENDPGMEXP
******** Export signature: 0000000000000000000000000000CDE3.
******** Current export block limits interface.

* * * * * E N D O F B I N D E R L A N G U A G E L I S T I N G * * * * *

Figure 55. A PGMLVL(*PRV) Exported More Symbols than the PGMLVL(*CURRENT)

168 ILE Concepts IBM i 7.1

This is a warning error.

More than one STRPGMEXP and ENDPGMEXP block exported all the same symbols in the exact same
order.

If no other errors occurred, the service program is created. The duplicated signature is included only once
in the created service program.

Suggested Changes
1. Make one of the following changes:
v Make sure that the PGMLVL(*CURRENT) export block is correct. Update it as appropriate.
v Remove the duplicate export block.

2. Run the CRTSRVPGM command again.

In this example, the STRPGMEXP command with PGMLVL(*CURRENT) specified needs to have the
following source line added after EXPORT SYMBOL(B):
EXPORT SYMBOL(C)

Duplicate Symbol on Previous Export
Figure 57 shows a binder language listing that contains a duplicate symbol error.

This is a warning error.

Binder Language Listing

STRPGMEXP PGMLVL(*CURRENT)
EXPORT SYMBOL(A)
EXPORT SYMBOL(B)

ENDPGMEXP
******** Export signature: 00000000000000000000000000000CD2.
STRPGMEXP PGMLVL(*PRV)

EXPORT SYMBOL(A)
EXPORT SYMBOL(B)

ENDPGMEXP
******** Export signature: 00000000000000000000000000000CD2.
******** Duplicate export block.

* * * * * E N D O F B I N D E R L A N G U A G E L I S T I N G * * * * *

Figure 56. Duplicate STRPGMEXP/ENDPGMEXP Blocks

Binder Language Listing

STRPGMEXP PGMLVL(*CURRENT)
EXPORT SYMBOL(A)
EXPORT SYMBOL(B)
EXPORT SYMBOL(A)

******** Duplicate symbol on previous export
EXPORT SYMBOL(C)

ENDPGMEXP
******** Export signature: 000000000000000000000000000CDED3.

* * * * * E N D O F B I N D E R L A N G U A G E L I S T I N G * * * * *

Figure 57. Duplicate Exported Symbols

Appendix A. Output Listing from CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM Command 169

A symbol to be exported from the service program was specified more than once in a STRPGMEXP and
ENDPGMEXP block.

If no other errors occurred, the service program is created. Only the first duplicate symbol is exported
from the service program. All duplicate symbols affect the signature that is generated.

Suggested Changes
1. Remove one of the duplicate source lines from the binder language source file.
2. Run the CRTSRVPGM command again.

In this example, remove the second EXPORT SYMBOL(A).

Level Checking Cannot Be Disabled More than Once, Ignored
Figure 58 shows a binder language listing that contains this error.

This is a warning error.

More than one STRPGMEXP blocks specified LVLCHK(*NO).

If no other errors occurred, the service program is created. The second and subsequent LVLCHK(*NO)
are assumed to be LVLCHK(*YES).

Suggested Changes
1. Make sure that only one STRPGMEXP block has LVLCHK(*NO) specified.
2. Run the CRTSRVPGM command again.

In this example, the PGMLVL(*PRV) export block is the only export block that has LVLCHK(*NO)
specified. The LVLCHK(*NO) value is removed from the PGMLVL(*CURRENT) export block.

Multiple Current Export Blocks Not Allowed, Previous Assumed
Figure 59 on page 171 shows a binder language listing that contains this error.

Binder Language Listing

STRPGMEXP PGMLVL(*CURRENT) LVLCHK(*NO)
EXPORT SYMBOL(A)
EXPORT SYMBOL(B)

ENDPGMEXP
******** Export signature: 00000000000000000000000000000000.
STRPGMEXP PGMLVL(*PRV) LVLCHK(*NO)
******** Level checking cannot be disabled more than once, ignored

EXPORT SYMBOL(A)
ENDPGMEXP
******** Export signature: 000000000000000000000000000000C1.

* * * * * E N D O F B I N D E R L A N G U A G E L I S T I N G * * * * *

Figure 58. Multiple STRPGMEXP Commands Have LVLCHK(*NO) Specified

170 ILE Concepts IBM i 7.1

This is a warning error.

A value of PGMLVL(*CURRENT) was specified or was allowed to default to PGMLVL(*CURRENT) on
more than one STRPGMEXP command. The second and subsequent export blocks with a value of
PGMLVL(*CURRENT) are assumed to be PGMLVL(*PRV).

If no other errors occurred, the service program is created.

Suggested Changes
1. Change the appropriate source text to STRPGMEXP PGMLVL(*PRV).
2. Run the CRTSRVPGM command again.

In this example, the second STRPGMEXP is the one to change.

Current Export Block Is Empty
Figure 60 shows a binder language listing that contains this error.

This is a serious error.

No symbols are identified to be exported from the *CURRENT export block.

The service program is not created.

Suggested Changes
1. Make one of the following changes:
v Add the symbol names to be exported.

Binder Language Listing

STRPGMEXP PGMLVL(*CURRENT)
EXPORT SYMBOL(A)
EXPORT SYMBOL(B)
EXPORT SYMBOL(C)

ENDPGMEXP
******** Export signature: 0000000000000000000000000000CDE3.
STRPGMEXP

EXPORT SYMBOL(A)
******** Multiple ’current’ export blocks not allowed, ’previous’ assumed.

EXPORT SYMBOL(B)
ENDPGMEXP
******** Export signature: 00000000000000000000000000000CD2.

* * * * * E N D O F B I N D E R L A N G U A G E L I S T I N G * * * * *

Figure 59. More than One PGMLVL(*CURRENT) Value Specified

Binder Language Listing

STRPGMEXP PGMLVL(*CURRENT)
ENDPGMEXP
******** Export signature: 00000000000000000000000000000000.
***ERROR Current export block is empty.

* * * * * E N D O F B I N D E R L A N G U A G E L I S T I N G * * * * *

Figure 60. No Symbols to Be Exported from the STRPGMEXP PGMLVL(*CURRENT) Block

Appendix A. Output Listing from CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM Command 171

v Remove the empty STRPGMEXP-ENDPGMEXP block, and make another STRPGMEXP-
ENDPGMEXP block as PGMLVL(*CURRENT).

2. Run the CRTSRVPGM command.

In this example, the following source line is added to the binder language source file between the
STRPGMEXP and ENDPGMEXP commands:

EXPORT SYMBOL(A)

Export Block Not Completed, End-of-File Found before ENDPGMEXP
Figure 61 shows a binder language listing that contains this error.

This is a serious error.

No ENDPGMEXP was found before the end of the file was reached.

The service program is not created.

Suggested Changes
1. Make one of the following changes:
v Add the ENDPGMEXP command in the appropriate place.
v Remove any STRPGMEXP command that does not have a matching ENDPGMEXP command, and

remove any symbol names to be exported.
2. Run the CRTSRVPGM command.

In this example, the following lines are added after the STRPGMEXP command:
EXPORT SYMBOL(A)

ENDPGMEXP

Export Block Not Started, STRPGMEXP Required
Figure 62 shows a binder language listing that contains this error.

This is a serious error.

No STRPGMEXP command was found prior to finding an ENDPGMEXP command.

Binder Language Listing

STRPGMEXP PGMLVL(*CURRENT)
***ERROR Syntax not valid.
***ERROR Export block not completed, end-of-file found before ENDPGMEXP.

* * * * * E N D O F B I N D E R L A N G U A G E L I S T I N G * * * * *

Figure 61. No ENDPGMEXP Command Found, but the End of the Source File Was Found

Binder Language Listing

ENDPGMEXP
***ERROR Export block not started, STRPGMEXP required.
***ERROR No ’current’ export block

* * * * * E N D O F B I N D E R L A N G U A G E L I S T I N G * * * * *

Figure 62. STRPGMEXP Command Is Missing

172 ILE Concepts IBM i 7.1

The service program is not created.

Suggested Changes
1. Make one of the following changes:
v Add the STRPGMEXP command.
v Remove any exported symbols and the ENDPGMEXP command.

2. Run the CRTSRVPGM command.

In this example, the following two source lines are added to the binder language source file before the
ENDPGMEXP command.
STRPGMEXP

EXPORT SYMBOL(A)

Export Blocks Cannot Be Nested, ENDPGMEXP Missing
Figure 63 shows a binder language listing that contains this error.

This is a serious error.

No ENDPGMEXP command was found prior to finding another STRPGMEXP command.

The service program is not created.

Suggested Changes
1. Make one of the following changes:
v Add the ENDPGMEXP command prior to the next STRPGMEXP command.
v Remove the STRPGMEXP command and any symbol names to be exported.

2. Run the CRTSRVPGM command.

In this example, an ENDPGMEXP command is added to the binder source file prior to the second
STRPGMEXP command.

Exports Must Exist inside Export Blocks
Figure 64 on page 174 shows a binder language listing that contains this error.

Binder Language Listing

STRPGMEXP PGMLVL(*CURRENT)
EXPORT SYMBOL(A)
EXPORT SYMBOL(B)

STRPGMEXP PGMLVL(*PRV)
***ERROR Export blocks cannot be nested, ENDPGMEXP missing.

EXPORT SYMBOL(A)
ENDPGMEXP
******** Export signature: 000000000000000000000000000000C1.

* * * * * E N D O F B I N D E R L A N G U A G E L I S T I N G * * * * *

Figure 63. ENDPGMEXP Command Is Missing

Appendix A. Output Listing from CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM Command 173

This is a serious error.

A symbol to be exported is not defined within a STRPGMEXP-ENDPGMEXP block.

The service program is not created.

Suggested Changes
1. Make one of the following changes:
v Move the symbol to be exported. Put it within a STRPGMEXP-ENDPGMEXP block.
v Remove the symbol.

2. Run the CRTSRVPGM command.

In this example, the source line in error is removed from the binder language source file.

Identical Signatures for Dissimilar Export Blocks, Must Change
Exports
This is a serious error.

Identical signatures have been generated from STRPGMEXP-ENDPGMEXP blocks that exported different
symbols. This error condition is highly unlikely to occur. For any set of nontrivial symbols to be exported,
this error should occur only once every 3.4E28 tries.

The service program is not created.

Suggested Changes
1. Make one of the following changes:
v Add an additional symbol to be exported from the PGMLVL(*CURRENT) block.

The preferred method is to specify a symbol that is already exported. This would cause a warning
error of duplicate symbols but would help ensure that a signature is unique. An alternative method
is to add another symbol to be exported that has not been exported.

v Change the name of a symbol to be exported from a module, and make the corresponding change
to the binder language source file.

v Specify a signature by using the SIGNATURE parameter on the Start Program Export
(STRPGMEXP) command.

2. Run the CRTSRVPGM command.

Multiple Wildcard Matches
Figure 65 on page 175 shows a binder language listing that contains this error.

Binder Language Listing

STRPGMEXP PGMLVL(*CURRENT)
EXPORT SYMBOL(A)
EXPORT SYMBOL(B)

ENDPGMEXP
******** Export signature: 00000000000000000000000000000CD2.

EXPORT SYMBOL(A)
***ERROR Exports must exist inside export blocks.

* * * * * E N D O F B I N D E R L A N G U A G E L I S T I N G * * * * *

Figure 64. Symbol Name to Be Exported Is outside the STRPGMEXP-ENDPGMEXP Block

174 ILE Concepts IBM i 7.1

This is a serious error.

A wildcard specified for export matched more than one symbol available for export.

The service program is not created.

Suggested Changes
1. Specify a wildcard with more detail so that the desired matching export is the only matching export.
2. Run the CRTSRVPGM command.

No Current Export Block
Figure 66 shows a binder language listing that contains this error.

This is a serious error.

No STRPGMEXP PGMLVL(*CURRENT) is found in the binder language source file.

The service program is not created.

Suggested Changes
1. Make one of the following changes:
v Change a PGMLVL(*PRV) to PGMLVL(*CURRENT).
v Add a STRPGMEXP-ENDPGMEXP block that is the correct *CURRENT export block.

2. Run the CRTSRVPGM command.

In this example, the PGMLVL(*PRV) is changed to PGMLVL(*CURRENT).

No Wildcard Matches
Figure 67 on page 176 shows a binder language listing that contains this error.

Binder Language Listing

STRPGMEXP PGMLVL(*CURRENT)
EXPORT ("A"<<<)
***ERROR Multiple matches of wildcard specification
EXPORT ("B"<<<)
ENDPGMEXP
******** Export signature: 0000000000000000000000000000FFC2.

* * * * * E N D O F B I N D E R L A N G U A G E L I S T I N G

Figure 65. Multiple Matches of Wildcard Specification

Binder Language Listing

STRPGMEXP PGMLVL(*PRV)
EXPORT SYMBOL(A)

ENDPGMEXP
******** Export signature: 000000000000000000000000000000C1.
***ERROR No ’current’ export block

* * * * * E N D O F B I N D E R L A N G U A G E L I S T I N G * * * * *

Figure 66. No PGMLVL(*CURRENT) Export Block

Appendix A. Output Listing from CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM Command 175

This is a serious error.

A wildcard specified for export did not match any symbols available for export.

The service program is not created.

Suggested Changes
1. Specify a wildcard that matches the symbol desired for export.
2. Run the CRTSRVPGM command.

Previous Export Block Is Empty
Figure 68 shows a binder language listing that contains this error.

This is a serious error.

A STRPGMEXP PGMLVL(*PRV) was found, and no symbols were specified.

The service program is not created.

Suggested Changes
1. Make one of the following changes:
v Add symbols to the STRPGMEXP-ENDPGMEXP block that is empty.
v Remove the STRPGMEXP-ENDPGMEXP block that is empty.

2. Run the CRTSRVPGM command.

In this example, the empty STRPGMEXP-ENDPGMEXP block is removed from the binder language
source file.

Binder Language Listing

STRPGMEXP PGMLVL(*CURRENT)
EXPORT ("Z"<<<)
***ERROR No matches of wildcard specification
EXPORT ("B"<<<)
ENDPGMEXP
******** Export signature: 0000000000000000000000000000FFC2.

* * * * * E N D O F B I N D E R L A N G U A G E L I S T I N G

Figure 67. No Matches of Wildcard Specification

Binder Language Listing

STRPGMEXP PGMLVL(*CURRENT)
EXPORT SYMBOL(A)
EXPORT SYMBOL(B)

ENDPGMEXP
******** Export signature: 00000000000000000000000000000CD2.
STRPGMEXP PGMLVL(*PRV)
ENDPGMEXP
******** Export signature: 00000000000000000000000000000000.
***ERROR Previous export block is empty.

* * * * * E N D O F B I N D E R L A N G U A G E L I S T I N G * * * * *

Figure 68. No PGMLVL(*CURRENT) Export Block

176 ILE Concepts IBM i 7.1

Signature Contains Variant Characters
Figure 69 shows a binder language listing that contains this error.

This is a serious error.

The signature contains characters that are not in all coded character set identifiers (CCSIDs).

The service program is not created.

Suggested Changes
1. Remove the variant characters.
2. Run the CRTSRVPGM command.

In this specific case, it is the \! that needs to be removed.

SIGNATURE(*GEN) Required with LVLCHK(*NO)
Figure 70 shows a binder language listing that contains this error.

This is a serious error.

If LVLCHK(*NO) is specified, SIGNATURE(*GEN) is required.

The service program is not created.

Suggested Changes
1. Make one of the following changes:
v Specify SIGNATURE(*GEN)
v Specify LVLCHK(*YES)

2. Run the CRTSRVPGM command.

Binder Language Listing

STRPGMEXP SIGNATURE(’\!cdefghijklmnop’)
***ERROR Signature contains variant characters

EXPORT SYMBOL(’Proc_2’)
ENDPGMEXP

******** Export signature: E05A8384858687888991929394959697.

* * * * * E N D O F B I N D E R L A N G U A G E L I S T I N G * * * * *

Figure 69. Signature Contains Variant Characters

Binder Language Listing

STRPGMEXP SIGNATURE(’ABCDEFGHIJKLMNOP’) LVLCHK(*NO)
EXPORT SYMBOL(’Proc_2’)

***ERROR SIGNATURE(*GEN) required with LVLCHK(*NO)
ENDPGMEXP

******** Export signature: C1C2C3C4C5C6C7C8C9D1D2D3D4D5D6D7.

* * * * * E N D O F B I N D E R L A N G U A G E L I S T I N G * * * * *

Figure 70. If LVLCHK(*NO) Is Specified, an Explicit Signature Is Not Valid

Appendix A. Output Listing from CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM Command 177

Signature Syntax Not Valid
Figure 71 shows a binder language listing that contains this error.

This is a serious error.

The signature contains characters that are not valid.

The service program is not created.

Suggested Changes
1. Remove the characters that are not valid from the signature value.
2. Run the CRTSRVPGM command.

In this case, remove the " characters from the signature field.

Symbol Name Required
Figure 72 shows a binder language listing that contains this error.

This is a serious error.

No symbol name was found to export from the service program.

The service program is not created.

Suggested Changes
1. Make one of the following changes:
v Remove the line in error from the binder language source file.
v Add a symbol name to be exported from the service program.

2. Run the CRTSRVPGM command.

In this example, the source line EXPORT SYMBOL("") is removed from the binder language source file.

Binder Language Listing

STRPGMEXP SIGNATURE(’"abcdefghijkl "’)
***ERROR Signature syntax not valid
***ERROR Signature syntax not valid
***ERROR Syntax not valid.
***ERROR Syntax not valid.

EXPORT SYMBOL(’Proc_2’)
ENDPGMEXP

* * * * * E N D O F B I N D E R L A N G U A G E L I S T I N G * * * * *

Figure 71. What Is Specified for the Signature Value Is Not Valid

Binder Language Listing

STRPGMEXP PGMLVL(*CURRENT)
EXPORT SYMBOL(A)
EXPORT SYMBOL(’)

***ERROR Symbol name required.
ENDPGMEXP
******** Export signature: 000000000000000000000000000000C1.

* * * * * E N D O F B I N D E R L A N G U A G E L I S T I N G * * * * *

Figure 72. No Symbol to Be Exported

178 ILE Concepts IBM i 7.1

Symbol Not Allowed as Service Program Export
Figure 73 shows a binder language listing that contains this error.

This is a serious error.

The symbol to be exported from the service program was not exported from one of the modules to be
bound by copy. Typically the symbol specified to be exported from the service program is actually a
symbol that needs to be imported by the service program.

The service program is not created.

Suggested Changes
1. Make one of the following changes:
v Remove the symbol in error from the binder language source file.
v On the MODULE parameter of the CRTSRVPGM command, specify the module that has the

desired symbol to be exported.
v Add the symbol to one of the modules that will be bound by copy, and re-create the module object.

2. Run the CRTSRVPGM command.

In this example, the source line of EXPORT SYMBOL(A) is removed from the binder language source file.

Symbol Not Defined
Figure 74 shows a binder language listing that contains this error.

This is a serious error.

The symbol to be exported from the service program could not be found in the modules that are to be
bound by copy.

The service program is not created.

Binder Language Listing

STRPGMEXP PGMLVL(*CURRENT)
EXPORT SYMBOL(A)

***ERROR Symbol not allowed as service program export.
EXPORT SYMBOL(D)

ENDPGMEXP
******** Export signature: 00000000000000000000000000000CD4.

* * * * * E N D O F B I N D E R L A N G U A G E L I S T I N G * * * * *

Figure 73. Symbol Name Not Valid to Export from Service Program

Binder Language Listing

STRPGMEXP PGMLVL(*CURRENT)
EXPORT SYMBOL(A)
EXPORT SYMBOL(Q)

***ERROR Symbol not defined.
ENDPGMEXP
******** Export signature: 00000000000000000000000000000CE8.

* * * * * E N D O F B I N D E R L A N G U A G E L I S T I N G * * * * *

Figure 74. Symbol Not Found in the Modules That Are to Be Bound by Copy

Appendix A. Output Listing from CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM Command 179

Suggested Changes
1. Make one of the following changes:
v Remove the symbol that is not defined from the binder language source file.
v On the MODULE parameter of the CRTSRVPGM command, specify the module that has the

desired symbol to be exported.
v Add the symbol to one of the modules that will be bound by copy, and re-create the module object.

2. Run the CRTSRVPGM command.

In this example, the source line of EXPORT SYMBOL(Q) is removed from the binder language source file.

Syntax Not Valid
This is a serious error.

The statements in the source member are not valid binder language statements.

The service program is not created.

Suggested Changes
1. Correct the source member so it contains valid binder language statements.
2. Run the CRTSRVPGM command.

180 ILE Concepts IBM i 7.1

Appendix B. Exceptions in Optimized Programs

In rare circumstances, an MCH3601 exception message may occur in programs compiled with
optimization level 30 (*FULL) or 40. This appendix explains one example in which this message occurs.
The same program does not receive an MCH3601 exception message when compiled with optimization
level 10 (*NONE) or 20 (*BASIC). Whether the message in this example occurs depends on how your ILE
HLL compiler allocates storage for arrays. This example might never occur for your language.

When you ask for optimization level 30 (*FULL) or 40, ILE attempts to improve performance by
calculating array index references outside of loops. When you refer to an array in a loop, you are often
accessing every element in order. Performance can be improved by saving the last array element address
from the previous loop iteration. To accomplish this performance improvement, ILE calculates the first
array element address outside the loop and saves the value for use inside the loop.

Take the following example:
DCL ARR[1000] INTEGER;
DCL I INTEGER;

I = init_expression; /* Assume that init_expression evaluates
to -1 which is then assigned to I */

/* More statements */

WHILE (I < limit_expression)

I = I + 1;

/* Some statements in the while loop */

ARR[I] = some_expression;

/* Other statements in the while loop */

END;

If a reference to ARR[init_expression] would have produced an incorrect array index, this example can
cause an MCH3601 exception. This is because ILE attempted to calculate the first array element address
before entering the WHILE loop.

If you receive MCH3601 exceptions at optimization level 30 (*FULL) or 40, look for the following
situation:
1. You have a loop that increments a variable before it uses the variable as an array element index.
2. The initial value of the index variable on entrance to the loop is negative.
3. A reference to the array using the initial value of the variable is not valid.

When these conditions exist, it may be possible to do the following so that optimization level 30 (*FULL)
or 40 can still be used:
1. Move the part of the program that increments the variable to the bottom of the loop.
2. Change the references to the variables as needed.

The previous example would be changed as follows:
I = init_expression + 1;

WHILE (I < limit_expression + 1)

© Copyright IBM Corp. 1997, 2010 181

ARR[I] = some_expression;

I = I + 1;

END;

If this change is not possible, reduce the optimization level from 30 (*FULL) or 40 to 20 (*BASIC) or 10
(*NONE).

182 ILE Concepts IBM i 7.1

Appendix C. CL Commands Used with ILE Objects

The following tables indicate which CL commands can be used with each ILE object.

CL Commands Used with Modules
Table 14. CL Commands Used with Modules

Command Descriptive Name

CHGMOD Change Module

CRTCBLMOD Create COBOL Module

CRTCLMOD Create CL Module

CRTCMOD Create C Module

CRTCPPMOD Create C++ Module

CRTRPGMOD Create RPG Module

DLTMOD Delete Module

DSPMOD Display Module

RTVBNDSRC Retrieve Binder Source

WRKMOD Work with Module

CL Commands Used with Program Objects
Table 15. CL Commands Used with Program Objects

Command Descriptive Name

CHGPGM Change Program

CRTBNDC Create Bound C Program

CRTBNDCBL Create Bound COBOL Program

CRTBNDCL Create Bound CL Program

CRTBNDCPP Create Bound C++ Program

CRTBNDRPG Create Bound RPG Program

CRTPGM Create Program

DLTPGM Delete Program

DSPPGM Display Program

DSPPGMREF Display Program References

UPDPGM Update Program

WRKPGM Work with Program

CL Commands Used with Service Programs
Table 16. CL Commands Used with Service Programs

Command Descriptive Name

CHGSRVPGM Change Service Program

© Copyright IBM Corp. 1997, 2010 183

Table 16. CL Commands Used with Service Programs (continued)

CRTSRVPGM Create Service Program

DLTSRVPGM Delete Service Program

DSPSRVPGM Display Service Program

RTVBNDSRC Retrieve Binder Source

UPDSRVPGM Update Service Program

WRKSRVPGM Work with Service Program

CL Commands Used with Binding Directories
Table 17. CL Commands Used with Binding Directories

Command Descriptive Name

ADDBNDDIRE Add Binding Directory Entry

CRTBNDDIR Create Binding Directory

DLTBNDDIR Delete Binding Directory

DSPBNDDIR Display Binding Directory

RMVBNDDIRE Remove Binding Directory Entry

WRKBNDDIR Work with Binding Directory

WRKBNDDIRE Work with Binding Directory Entry

CL Commands Used with Structured Query Language
Table 18. CL Commands Used with Structured Query Language

Command Descriptive Name

CRTSQLCI Create Structured Query Language ILE C Object

CRTSQLCBLI Create Structured Query Language ILE COBOL Object

CRTSQLCPPI Create SQL ILE C++ Object

CRTSQLRPGI Create Structured Query Language ILE RPG Object

CL Commands Used with CICS
Table 19. CL Commands Used with CICS

Command Descriptive Name

CRTCICSC Create CICS® ILE C Object

CRTCICSCBL Create CICS COBOL Program

CL Commands Used with Source Debugger
Table 20. CL Commands Used with Source Debugger

Command Descriptive Name

DSPMODSRC Display Module Source

ENDDBG End Debug

184 ILE Concepts IBM i 7.1

||

Table 20. CL Commands Used with Source Debugger (continued)

STRDBG Start Debug

CL Commands Used to Edit the Binder Language Source File
Table 21. CL Commands Used to Edit the Binder Language Source

Command Descriptive Name

EDTF Edit File

STRPDM Start Programming Development Manager

STRSEU Start Source Entry Utility

Note: The following nonrunnable commands can be entered into the binder language source file:

ENDPGMEXP End Program Export

EXPORT Export

Appendix C. CL Commands Used with ILE Objects 185

186 ILE Concepts IBM i 7.1

Appendix D. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
3-2-12, Roppongi, Minato-ku, Tokyo 106-8711

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 1997, 2010 187

Software Interoperability Coordinator, Department YBWA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,
IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©
Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming Interface Information
This ILE Concepts publication documents intended Programming Interfaces that allow the customer to
write programs to obtain the services of IBM i.

188 ILE Concepts IBM i 7.1

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

Appendix D. Notices 189

http://www.ibm.com/legal/copytrade.shtml

190 ILE Concepts IBM i 7.1

Bibliography

For additional information about topics related to
the ILE environment on the IBM i operating
system, refer to the following publications:
v The Backup and recovery category provides

information about planning a backup and
recovery strategy, the different types of media
available to save and restore system data, as
well as a description of how to record changes
made to database files using journaling and
how that information can be used for system
recovery. This manual describes how to plan
for and set up user auxiliary storage pools
(ASPs), mirrored protection, and checksums
along with other availability recovery topics. It
also describes how to install the system again
from backup.

v The CL programming book provides a
wide-ranging discussion of programming
topics, including a general discussion of objects
and libraries, CL programming, controlling
flow and communicating between programs,
working with objects in CL programs, and
creating CL programs. Other topics include
predefined and immediate messages and
message handling, defining and creating
user-defined commands and menus, application
testing, including debug mode, breakpoints,
traces, and display functions.

v Communications Management

provides
information about work management in a
communications environment, communications
status, tracing and diagnosing communications
problems, error handling and recovery,
performance, and specific line speed and
subsystem storage information.

v ICF Programming

provides information
needed to write application programs that use
communications and the intersystem
communications function. This guide also
contains information about data description
specifications (DDS) keywords, system-supplied
formats, return codes, file transfer support, and
program examples.

v ILE C/C++ Programmer's Guide

describes
how to create, compile, debug, and run ILE C
and ILE C++ programs. The guide provides
information about ILE and IBM i programming
features; file systems, devices, and features; I/O

operations; localization; program performance;
and C++ runtime type information (RTTI).

v Rational® Development Studio for i: ILE C/C++

Language Reference

describes language
conformance to the Programming languages - C
standards and the Programming languages - C++
standards.

v Rational Development Studio for i: ILE C/C++

Compiler Reference

contains reference
information for the ILE C/C++ compiler,
including preprocessor statements, macros,
pragmas, command line use for IBM i and
Qshell environments, and I/O considerations.

v ILE C/C++ Runtime Library Functions
provides reference information about ILE
C/C++ , runtime library functions, include
files, and runtime considerations.

v Rational Development Studio for i: ILE COBOL

Programmer's Guide

describes how to
write, compile, bind, run, debug, and maintain
ILE COBOL programs on the IBM i operating
system. It provides programming information
about how to call other ILE COBOL and
non-ILE COBOL programs, share data with
other programs, use pointers, and handle
exceptions. It also describes how to perform
input/output operations on externally attached
devices, database files, display files, and ICF
files.

v Rational Development Studio for i: ILE COBOL

Language Reference

describes the ILE
COBOL programming language. It provides
information on the structure of the ILE COBOL
programming language and on the structure of
an ILE COBOL source program. It also
describes all Identification Division paragraphs,
Environment Division clauses, Data Division
paragraphs, Procedure Division statements, and
Compiler-Directing statements.

v Rational Development Studio for i: ILE RPG

Programmer's Guide

is a guide for using
the RPG IV programming language, which is
an implementation of ILE RPG in the
Integrated Language Environment (ILE) on the
IBM i operating system. It includes information

© Copyright IBM Corp. 1997, 2010 191

http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/topic/books_web/sc415406.pdf
http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/topic/dm/sc415442.pdf
http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/topic/rzaha/sc092712.pdf

about creating and running programs, with
considerations for procedure calls and
interlanguage programming. The guide also
covers debugging and exception handling and
explains how to use IBM i files and devices in
RPG programs. Appendixes include
information on migration to RPG IV and
sample compiler listings. It is intended for
people with a basic understanding of data
processing concepts and of the RPG language.

v Rational Development Studio for i: ILE RPG

Language Reference

provides information
needed to write programs for the IBM i
operating system using the RPG IV
programming language. This manual describes,
position by position and keyword by keyword,
the valid entries for all RPG specifications, and
provides a detailed description of all the
operation codes and built-in functions. This
manual also contains information on the RPG
logic cycle, arrays and tables, editing functions,
and indicators.

v Intrasystem Communications Programming

provides information about interactive
communications between two application
programs on the same system. This guide
describes the communications operations that
can be coded into a program that uses
intrasystem communications support to
communicate with another program. It also
provides information about developing
intrasystem communications application
programs that use the intersystem
communications function.

v Security reference

tells how system
security support can be used to protect the
system and the data from being used by people
who do not have the proper authorization,
protect the data from intentional or
unintentional damage or destruction, keep
security information up-to-date, and set up
security on the system.

v The Work management topic, under the
Systems management category of the IBM i
Information Center, provides information about
how to create and change a work management
environment. Other topics include a description
of tuning the system, collecting performance
data including information about record
formats and contents of the data being
collected, working with system values to
control or change the overall operation of the
system, and a description of how to gather data

to determine who is using the system and what
resources are being used.

192 ILE Concepts IBM i 7.1

http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/topic/books_web/sc415447.pdf

Index

Special characters
_C_TS_calloc() 52
_C_TS_free() 52
_C_TS_malloc() 52
_C_TS_malloc64() 52
_C_TS_realloc() 52
_CEE4ALC allocation strategy type 101

A
Abnormal End (CEE4ABN) bindable

API 109
access ordering

shared storage 152
ACTGRP 80
ACTGRP (activation group)

parameter 26
*CALLER value 88
activation group creation 26
program activation 24, 27

actions
storage synchronizing 153

activation
description 20
dynamic program call 95
program 23
program activation 30
service program 30, 92

activation group
ACTGRP (activation group) parameter

*CALLER value 88
activation group creation 24
program activation 24, 27

benefits of resource scoping 3
bindable APIs (application

programming interfaces) 121
call stack example 24
commitment control

example 3
scoping 118

control boundary
activation group deletion 28
example 32

creation 26
data management scoping 42, 119
default 27
deletion 28
management 85
mixing COBOL with other

languages 4
multiple applications running in same

job 85
original program model (OPM) 27
reclaim resources 86, 88
resource isolation 25
resources 24
reuse 28
scoping 42, 119
service program 88

activation group (continued)
shared open data path (ODP)

example 3
system-named 26, 28
user-named

deletion 28
description 26, 85

activation group selection for teraspace
storage model 47

adaptive code generation (ACG) 143
advanced concepts 23
ALWLIBUPD parameter

on CRTPGM command 80
on CRTSRVPGM command 80

ALWUPD parameter
on CRTPGM command 80
on CRTSRVPGM command 80

API (application programming interface)
Abnormal End (CEE4ABN) 109
activation group 121
CEE4ABN (Abnormal End) 109
CEEDOD (Retrieve Operational

Descriptor Information) 97
CEEGSI (Get String Information) 97
CEEHDLR (Register User-Written

Condition Handler) 39, 105
CEEHDLU (Unregister User-Written

Condition Handler) 39
CEEMGET (Get Message) 112
CEEMOUT (Dispatch Message) 112
CEEMRCR (Move Resume

Cursor) 107
CEEMSG (Get, Format and Dispatch

Message) 112
CEENCOD (Construct Condition

Token) 109
CEESGL (Signal Condition)

condition token 109, 112
description 36

CEETSTA (Test for Omitted
Argument) 95

Change Exception Message
(QMHCHGEM) 107

condition management 121, 123
Construct Condition Token

(CEENCOD) 109
control flow 121
date 121
debugger 123
Dispatch Message (CEEMOUT) 112
dynamic screen manager (DSM) 123
error handling 123
exception management 121, 123
Get Message (CEEMGET) 112
Get String Information (CEEGSI) 97
Get, Format and Dispatch Message

(CEEMSG) 112
HLL independence 121
list of 121, 123
math 122
message handling 123

API (application programming interface)
(continued)

Move Resume Cursor
(CEEMRCR) 107

naming conventions 121
original program model (OPM) and

ILE 97
procedure call 123
program call 123
Promote Message (QMHPRMM) 107
QCAPCMD 88
QMHCHGEM (Change Exception

Message) 107
QMHPRMM (Promote Message) 107
QMHSNDPM (Send Program

Message) 36, 105
Register User-Written Condition

Handler (CEEHDLR) 39, 105
Retrieve Operational Descriptor

Information (CEEDOD) 97
Send Program Message

(QMHSNDPM) 36, 105
services 2
Signal Condition (CEESGL)

condition token 109, 112
description 36

source debugger 123
storage management 123
supplementing HLL-specific runtime

library 121
Test for Omitted Argument

(CEETSTA) 95
time 121
Unregister User-Written Condition

Handler (CEEHDLU) 39
application

multiple
running in same job 85

application programming interface (API)
Abnormal End (CEE4ABN) 109
activation group 121
CEE4ABN (Abnormal End) 109
CEEDOD (Retrieve Operational

Descriptor Information) 97
CEEGSI (Get String Information) 97
CEEHDLR (Register User-Written

Condition Handler) 39, 105
CEEHDLU (Unregister User-Written

Condition Handler) 39
CEEMGET (Get Message) 112
CEEMOUT (Dispatch Message) 112
CEEMRCR (Move Resume

Cursor) 107
CEEMSG (Get, Format and Dispatch

Message) 112
CEENCOD (Construct Condition

Token) 109
CEESGL (Signal Condition)

condition token 109, 112
description 36

© Copyright IBM Corp. 1997, 2010 193

application programming interface (API)
(continued)

CEETSTA (Test for Omitted
Argument) 95

Change Exception Message
(QMHCHGEM) 107

condition management 121, 123
Construct Condition Token

(CEENCOD) 109
control flow 121
date 121
debugger 123
Dispatch Message (CEEMOUT) 112
dynamic screen manager (DSM) 123
error handling 123
exception management 121, 123
Get Message (CEEMGET) 112
Get String Information (CEEGSI) 97
Get, Format and Dispatch Message

(CEEMSG) 112
HLL independence 121
list of 121, 123
math 122
message handling 123
Move Resume Cursor

(CEEMRCR) 107
naming conventions 121
original program model (OPM) and

ILE 97
procedure call 123
program call 123
Promote Message (QMHPRMM) 107
QCAPCMD 88
QMHCHGEM (Change Exception

Message) 107
QMHPRMM (Promote Message) 107
QMHSNDPM (Send Program

Message) 36, 105
Register User-Written Condition

Handler (CEEHDLR) 39, 105
Retrieve Operational Descriptor

Information (CEEDOD) 97
Send Program Message

(QMHSNDPM) 36, 105
services 2
Signal Condition (CEESGL)

condition token 109, 112
description 36

source debugger 123
storage management 123
supplementing HLL-specific runtime

library 121
Test for Omitted Argument

(CEETSTA) 95
time 121
Unregister User-Written Condition

Handler (CEEHDLU) 39
argument

passing
in mixed-language

applications 96
argument passing

between languages 96
by reference 93
by value directly 93
by value indirectly 93
omitted arguments 95

argument passing (continued)
to procedures 93
to programs 96

automatic storage 99

B
basic listing 157
benefit of ILE

binding 1
code optimization 5
coexistence with existing

applications 2
common runtime services 2
language interaction control 4
modularity 1
resource control 2
reusable components 2
source debugger 2

Bibliography 191
bind

by copy 16, 58
by reference 17, 58

bindable API
services 2

bindable API (application programming
interface)

Abnormal End (CEE4ABN) 109
activation group 121
CEE4ABN (Abnormal End) 109
CEEDOD (Retrieve Operational

Descriptor Information) 97
CEEGSI (Get String Information) 97
CEEHDLR (Register User-Written

Condition Handler) 39, 105
CEEHDLU (Unregister User-Written

Condition Handler) 39
CEEMGET (Get Message) 112
CEEMOUT (Dispatch Message) 112
CEEMRCR (Move Resume

Cursor) 107
CEEMSG (Get, Format and Dispatch

Message) 112
CEENCOD (Construct Condition

Token) 109
CEESGL (Signal Condition)

condition token 109, 112
description 36

CEETSTA (Test for Omitted
Argument) 95

condition management 121, 123
Construct Condition Token

(CEENCOD) 109
control flow 121
date 121
debugger 123
Dispatch Message (CEEMOUT) 112
dynamic screen manager (DSM) 123
error handling 123
exception management 121, 123
Get Message (CEEMGET) 112
Get String Information (CEEGSI) 97
Get, Format and Dispatch Message

(CEEMSG) 112
HLL independence 121
list of 121, 123
math 122

bindable API (application programming
interface) (continued)

message handling 123
Move Resume Cursor

(CEEMRCR) 107
naming conventions 121
original program model (OPM) and

ILE 97
procedure call 123
program call 123
Register User-Written Condition

Handler (CEEHDLR) 39, 105
Retrieve Operational Descriptor

Information (CEEDOD) 97
Signal Condition (CEESGL)

condition token 109, 112
description 36

source debugger 123
storage management 123
supplementing HLL-specific runtime

library 121
Test for Omitted Argument

(CEETSTA) 95
time 121
Unregister User-Written Condition

Handler (CEEHDLU) 39
binder 16
binder information listing

service program example 165
binder language

definition 67
ENDPGMEXP (End Program Export)

command 68, 69
error 166
examples 71, 78
EXPORT (Export Symbol) 68, 70
STRPGMEXP (Start Program

Export) 68
LVLCHK parameter 70
PGMLVL parameter 69
SIGNATURE parameter 69

STRPGMEXP (Start Program Export)
command 69

binder listing
basic 157
extended 159
full 161
service program example 165

binding
benefit of ILE 1
large number of modules 58
original program model (OPM) 6

binding directory
CL (control language) commands 184
definition 15

binding statistics
service program example 166

BNDDIR parameter on UPDPGM
command 80

BNDDIR parameter on UPDSRVPGM
command 80

BNDSRVPGM parameter on UPDPGM
command 80

BNDSRVPGM parameter on
UPDSRVPGM command 80

by reference, passing arguments 93
by value directly, passing arguments 93

194 ILE Concepts IBM i 7.1

by value indirectly, passing
arguments 93

C
C signal 36
call

procedure 18, 91
procedure pointer 91
program 18, 91

call message queue 35
call stack

activation group example 24
definition 91
example

dynamic program calls 91
static procedure calls 91

call-level scoping 41
callable service 121
Case component of condition token 110
CEE4ABN (Abnormal End) bindable

API 109
CEE4DAS (Define Heap Allocation

Strategy) bindable API 101
CEE9901 (generic failure) exception

message 37
CEE9901 function check 36
CEECRHP (Create Heap) bindable

API 101
CEECRHP bindable API 101
CEECZST (Reallocate Storage) bindable

API 101
CEEDOD (Retrieve Operational

Descriptor Information) bindable
API 97

CEEDSHP (Discard Heap) bindable
API 100, 101

CEEFRST (Free Storage) bindable
API 101

CEEGSI (Get String Information) bindable
API 97

CEEGTST (Get Heap Storage) bindable
API 101

CEEHDLR (Register User-Written
Condition Handler) bindable API 39,
105

CEEHDLU (Unregister User-Written
Condition Handler) bindable API 39

CEEMGET (Get Message) bindable
API 112

CEEMKHP (Mark Heap) bindable
API 100, 101

CEEMOUT (Dispatch Message) bindable
API 112

CEEMRCR (Move Resume Cursor)
bindable API 107

CEEMSG (Get, Format and Dispatch
Message) bindable API 112

CEENCOD (Construct Condition Token)
bindable API 109

CEERLHP (Release Heap) bindable
API 100, 101

CEESGL (Signal Condition) bindable API
condition token 109, 112
description 36

CEETREC API 28, 32, 34

CEETSTA (Test for Omitted Argument)
bindable API 95

Change Exception Message
(QMHCHGEM) API 107

Change Module (CHGMOD)
command 114

characteristics of teraspace 45
Check lock value 155
CHGMOD (Change Module)

command 114
CICS

CL (control language) commands 184
CL (control language) command

CHGMOD (Change Module) 114
RCLACTGRP (Reclaim Activation

Group) 88
RCLRSC (Reclaim Resources)

for ILE programs 88
for OPM programs 88

Clear lock value 155
code optimization

errors 181
levels 114
performance

compared to original program
model (OPM) 5

levels 22
module observability 114

coexistence with existing applications 2
command, CL

CALL (dynamic program call) 95
CRTPGM (Create Program) 55
CRTSRVPGM (Create Service

Program) 55
ENDCMTCTL (End Commitment

Control) 118
OPNDBF (Open Data Base File) 117
OPNQRYF (Open Query File) 117
RCLACTGRP (Reclaim Activation

Group) 29
RCLRSC (Reclaim Resources) 86
STRCMTCTL (Start Commitment

Control) 117, 118
STRDBG (Start Debug) 113
Update Program (UPDPGM) 79
Update Service Program

(UPDSRVPGM) 79
command, CL (control language)

CHGMOD (Change Module) 114
RCLACTGRP (Reclaim Activation

Group) 88
RCLRSC (Reclaim Resources)

for ILE programs 88
for OPM programs 88

commitment control
activation group 118
commit operation 118
commitment definition 118
ending 119
example 3
rollback operation 118
scope 118, 119
transaction 118

commitment definition 117, 118
Common Programming Interface (CPI)

Communication, data management 118

Common Programming Interface (CPI)
Communication, data management
(continued)

component
reusable

benefit of ILE 2
condition

definition 40
management 105

bindable APIs (application
programming interfaces) 121,
123

relationship to message 111
Condition ID component of condition

token 110
condition token 110

Case component 110
Condition ID component 110
Control component 110
definition 40, 109
Facility ID component 110
feedback code on call to bindable

API 111
Message Number component 110
Message Severity component 110
Msg_No component 110
MsgSev component 110
relationship to message 111
Severity component 110
testing 111

Construct Condition Token (CEENCOD)
bindable API 109

control boundary
activation group

example 32
default activation group example 33
definition 32
function check at 108
unhandled exception at 108
use 34

Control component of condition
token 110

control file syntax for IPA 132
control flow

bindable APIs (application
programming interfaces) 121

CPF9999 (function check) exception
message 37

CPF9999 function check 36
Create Heap (CEECRHP) bindable

API 101
Create Program (CRTPGM) command

ACTGRP (activation group) parameter
activation group creation 26
program activation 24, 27

ALWLIBUPD (Allow Library
Update) 80

ALWUPD (Allow Update)
parameter 79, 80

BNDDIR parameter 58
compared to CRTSRVPGM (Create

Service Program) command 55
DETAIL parameter

*BASIC value 157
*EXTENDED value 159
*FULL value 161

Index 195

Create Program (CRTPGM) command
(continued)

ENTMOD (entry module)
parameter 64

MODULE parameter 58
output listing 157
program creation 11
service program activation 31

Create Service Program (CRTSRVPGM)
command

ACTGRP (activation group) parameter
*CALLER value 88
program activation 24, 27

ALWLIBUPD (Allow Library Update)
parameter 80

ALWUPD (Allow Update)
parameter 80

BNDDIR parameter 58
compared to CRTPGM (Create

Program) command 55
DETAIL parameter

*BASIC value 157
*EXTENDED value 159
*FULL value 161

EXPORT parameter 65, 66
MODULE parameter 58
output listing 157
service program activation 31
SRCFILE (source file) parameter 66
SRCMBR (source member)

parameter 66
creation of

debug data 114
module 82
program 55, 82
program activation 24
service program 82

cross-reference listing
service program example 165

CRTPGM
BNDSRVPGM parameter 58

CRTPGM (Create Program) command
compared to CRTSRVPGM (Create

Service Program) command 55
DETAIL parameter

*BASIC value 157
*EXTENDED value 159
*FULL value 161

ENTMOD (entry module)
parameter 64

output listing 157
program creation 11

CRTSRVPGM
BNDSRVPGM parameter 58

CRTSRVPGM (Create Service Program)
command

ACTGRP (activation group) parameter
*CALLER value 88

compared to CRTPGM (Create
Program) command 55

DETAIL parameter
*BASIC value 157
*EXTENDED value 159
*FULL value 161

EXPORT parameter 65, 66
output listing 157
SRCFILE (source file) parameter 66

CRTSRVPGM (Create Service Program)
command (continued)

SRCMBR (source member)
parameter 66

cursor
handle 105
resume 105

D
data compatibility 96
data links 118
data management scoping

activation group level 42
activation-group level 119
call level 41, 86
commitment definition 117
Common Programming Interface

(CPI) Communication 118
hierarchical file system 118
job-level 43, 119
local SQL (Structured Query

Language) cursor 117
open data link 118
open file management 118
open file operation 117
override 117
remote SQL (Structured Query

Language) connection 117
resource 117
rules 41
SQL (Structured Query Language)

cursors 117
user interface manager (UIM) 117

data sharing
original program model (OPM) 7

date
bindable APIs (application

programming interfaces) 121
debug data

creation 114
definition 10
removal 114

debug environment
ILE 113
OPM 113

debug mode
addition of programs 113
definition 113

debug support
ILE 115
OPM 115

debugger
bindable APIs (application

programming interfaces) 123
CL (control language) commands 184
considerations 113
description 22

debugging
across jobs 115
bindable APIs (application

programming interfaces) 123
CCSID 290 115
CCSID 65535 and device CHRID

290 115
CL (control language) commands 184
error handling 115

debugging (continued)
globalization

restriction 115
ILE program 12
module view 114
observability 114
optimization 114
unmonitored exception 115

default activation group
control boundary example 33
original program model (OPM) and

ILE programs 27
teraspace 27

default exception handling
compared to original program model

(OPM) 37
default heap 99
Define Heap Allocation Strategy

(CEE4DAS) bindable API 101
deletion

activation group 28
direct monitor

exception handler type 38, 105
Discard Heap (CEEDSHP) bindable

API 100, 101
Dispatch Message (CEEMOUT) bindable

API 112
DSM (dynamic screen manager)

bindable APIs (application
programming interfaces) 123

duplicate symbol 59
dynamic binding

original program model (OPM) 6
dynamic program call

activation 95
CALL CL (control language)

command 95
call stack 91
definition 18
examples 18
original program model (OPM) 6, 95
program activation 24
service program activation 30

dynamic screen manager (DSM)
bindable APIs (application

programming interfaces) 123
dynamic storage 99

E
Enabling program

collecting profiling data 126
enabling programs for teraspace 45
End Commitment Control

(ENDCMTCTL) command 118
End Program Export (ENDPGMEXP)

command 69
End Program Export (ENDPGMEXP),

binder language 68
ENDCMTCTL (End Commitment

Control) command 118
ENDPGMEXP (End Program Export),

binder language 68
ENTMOD (entry module) parameter 64
entry point

compared to ILE program entry
procedure (PEP) 10

196 ILE Concepts IBM i 7.1

entry point (continued)
Extended Program Model (EPM) 7
original program model (OPM) 6

EPM (Extended Program Model) 7
error

binder language 166
during optimization 181

error handling
architecture 21, 34
bindable APIs (application

programming interfaces) 121, 123
debug mode 115
default action 37, 108
language specific 36
nested exception 109
priority example 39
recovery 37
resume point 37

error message
MCH3203 58
MCH4439 58

escape (*ESCAPE) exception message
type 35

exception handler
priority example 39
types 38

exception handling
architecture 21, 34
bindable APIs (application

programming interfaces) 121, 123
debug mode 115
default action 37, 108
language specific 36
nested exception 109
priority example 39
recovery 37
resume point 37

exception management 105
exception message 36, 111

C signal 36
CEE9901 (generic failure) 37
CPF9999 (function check) 37
debug mode 115
function check (CPF9999) 37
generic failure (CEE9901) 37
handling 36
ILE C raise() function 36
percolation 37
relationship of ILE conditions to 111
sending 35
types 35
unmonitored 115

exception message architecture
error handling 34

export
definition 10
order 59
strong 66, 165
weak 66, 165

EXPORT (Export Symbol) 70
EXPORT (Export Symbol), binder

language 68
EXPORT parameter

service program signature 65
used with SRCFILE (source file) and

SRCMBR (source member)
parameters 66

export symbol
wildcard character 70

Export Symbol (EXPORT), binder
language 68

exports
strong 64, 66
weak 64, 66

extended listing 159
Extended Program Model (EPM) 7
external message queue 35

F
Facility ID component of condition

token 110
feedback code option

call to bindable API 111
file system, data management 118
Free Storage (CEEFRST) bindable

API 101
full listing 161
function check

(CPF9999) exception message 37
control boundary 108
exception message type 36

G
generic failure (CEE9901) exception

message 37
Get Heap Storage (CEEGTST) bindable

API 101
Get Message (CEEMGET) bindable

API 112
Get String Information (CEEGSI) bindable

API 97
Get, Format and Dispatch Message

(CEEMSG) bindable API 112
globalization restriction for

debugging 115

H
handle cursor

definition 105
heap

allocation strategy 101
characteristics 99
default 99
definition 99
user-created 100

heap allocation strategy 101
Heap support 102
history of ILE 5
HLL specific

error handling 36
exception handler 39, 105
exception handling 36

I
ILE

basic concepts 9

ILE (continued)
compared to

Extended Program Model
(EPM) 7

original program model (OPM) 7,
9

definition 1
history 5
introduction 1
program structure 9

ILE condition handler
exception handler type 38, 105

import
definition 10
procedure 12
resolved and unresolved 57
strong 66
weak 66

interlanguage data compatibility 96
interprocedural analysis 130

IPA control file syntax 132
partitions created by 135
restrictions and limitations 134
usage notes 134

J
job

multiple applications running in
same 85

job message queue 35
job-level scoping 43

L
language

procedure-based
characteristics 7

language interaction
consistent error handling 37
control 4
data compatibility 96

language specific
error handling 36
exception handler 39, 105
exception handling 36

level check parameter on STRPGMEXP
command 70

level number 86
Licensed Internal Code options

(LICOPTs) 138
currently defined options 138
displaying 142
release compatibility 142
restrictions 141
specifying 141
syntax 141

LICOPTs (Licensed Internal Code
options) 138

listing, binder
basic 157
extended 159
full 161
service program example 165

Index 197

M
Mark Heap (CEEMKHP) bindable

API 100, 101
math

bindable APIs (application
programming interfaces) 122

maximum width
file for SRCFILE (source file)

parameter 66
MCH3203 error message 58
MCH4439 error message 58
message

bindable API feedback code 111
exception types 35
queue 35
relationship of ILE conditions to 111

message handling
bindable APIs (application

programming interfaces) 123
Message Number (Msg_No) component

of condition token 110
message queue

job 35
Message Severity (MsgSev) component of

condition token 110
modularity

benefit of ILE 1
module object

CL (control language) commands 183
creation tips 82
description 10

MODULE parameter on UPDPGM
command 80

MODULE parameter on UPDSRVPGM
command 80

module replaced by module
fewer exports 82
fewer imports 81
more exports 82
more imports 81

module replacement 79
module view

debugging 114
Move Resume Cursor (CEEMRCR)

bindable API 107
multiple applications running in same

job 85

N
nested exception 109
notify (*NOTIFY) exception message

type 36

O
observability 114
ODP (open data path)

scoping 41
omitted argument 95
Open Data Base File (OPNDBF)

command 117
open data path (ODP)

scoping 41
open file operations 117

Open Query File (OPNQRYF)
command 117

operational descriptor 96, 97
OPM (original program model)

activation group 27
binding 6
characteristics 6
compared to ILE 9, 11
data sharing 7
default exception handling 37
description 6
dynamic binding 6
dynamic program call 95
entry point 6
exception handler types 38
program entry point 6

OPNDBF (Open Data Base File)
command 117

OPNQRYF (Open Query File)
command 117

optimization
benefit of ILE 5
code

levels 22
module observability 114

errors 181
interprocedural analysis 130
levels 114

optimization technique
profiling program 125

optimizing translator 5, 22
optimizing your programs with IPA 132
ordering concerns

storage access 154
original program model (OPM)

activation group 27
binding 6
characteristics 6
compared to ILE 9, 11
data sharing 7
default exception handling 37
description 6
dynamic binding 6
dynamic program call 6, 95
entry point 6
exception handler types 38
program entry point 6

output listing
Create Program (CRTPGM)

command 157
Create Service Program

(CRTSRVPGM) command 157
Update Program (UPDPGM)

command 157
Update Service Program

(UPDSRVPGM) command 157
override, data management 117

P
parameters on UPDPGM and

UPDSRVPGM commands 80
partitions created by IPA 135
passing arguments

between languages 96
by reference 93
by value directly 93

passing arguments (continued)
by value indirectly 93
in mixed-language applications 96
omitted arguments 95
to procedures 93
to programs 96

PEP (program entry procedure)
call stack example 91
definition 10
specifying with CRTPGM (Create

Program) command 64
percolation

exception message 37
performance

optimization
benefit of ILE 5
errors 181
levels 22, 114
module observability 114

pitfalls
shared storage 151

pointer
comparing 8- and 16-byte 49
conversions in teraspace-enabled

programs 50
lengths 49
support in APIs 51
support in C and C++ compilers 49

priority
exception handler example 39

procedure
definition 7, 9
passing arguments to 93

procedure call
bindable APIs (application

programming interfaces) 123
compared to program call 18, 91
static

call stack 91
definition 18
examples 19

procedure pointer call 91, 93
procedure-based language

characteristics 7
profiling program 126
profiling types 125
program

access 64
activation 23
CL (control language) commands 183
comparison of ILE and original

program model (OPM) 11
creation

examples 60, 62
process 55
tips 82

passing arguments to 96
program activation

activation 24
creation 24
dynamic program call 24

program call
bindable APIs (application

programming interfaces) 123
call stack 91
compared to procedure call 91
definition 18

198 ILE Concepts IBM i 7.1

program call (continued)
examples 18

program entry point
compared to ILE program entry

procedure (PEP) 10
Extended Program Model (EPM) 7
original program model (OPM) 6

program entry procedure (PEP)
call stack example 91
definition 10
specifying with CRTPGM (Create

Program) command 64
program isolation in activation

groups 25
program level parameter on STRPGMEXP

command 69
program structure 9
program update 79

module replaced by module
fewer exports 82
fewer imports 81
more exports 82
more imports 81

Promote Message (QMHPRMM)
API 107

Q
QCAPCMD API 88
QMHCHGEM (Change Exception

Message) API 107
QMHPRMM (Promote Message)

API 107
QMHSNDPM (Send Program Message)

API 36, 105
QUSEADPAUT (use adopted authority)

system value
description 56
risk of changing 56

R
race conditions 154
RCLACTGRP (Reclaim Activation Group)

command 29, 88
RCLRSC (Reclaim Resources)

command 86
for ILE programs 88
for OPM programs 88

Reallocate Storage (CEECZST) bindable
API 101

Reclaim Activation Group (RCLACTGRP)
command 29, 88

Reclaim Resources (RCLRSC)
command 86

for ILE programs 88
for OPM programs 88

recovery
exception handling 37

register exception handler 39
Register User-Written Condition Handler

(CEEHDLR) bindable API 39, 105
Release Heap (CEERLHP) bindable

API 100, 101
removal of debug data 114
resolved import 57

resolving symbol
description 57
examples 60, 62

resource control 2
resource isolation in activation

groups 25
resource, data management 117
restriction

debugging
globalization 115

resume cursor
definition 105
exception recovery 37

resume point
exception handling 37

Retrieve Binder Source (RTVBNDSRC)
command 65

Retrieve Operational Descriptor
Information (CEEDOD) bindable
API 97

reuse
activation group 28
components 2

rollback operation
commitment control 118

RPLLIB parameter on UPDPGM
command 80

RPLLIB parameter on UPDSRVPGM
command 80

runtime services 2

S
scope

commitment control 119
scoping, data management

activation group level 42
activation-group level 119
call level 41, 86
commitment definition 117
Common Programming Interface

(CPI) Communication 118
hierarchical file system 118
job level 43
job-level 119
local SQL (Structured Query

Language) cursor 117
open data link 118
open file management 118
open file operation 117
override 117
remote SQL (Structured Query

Language) connection 117
resource 117
rules 41
SQL (Structured Query Language)

cursors 117
user interface manager (UIM) 117

Send Program Message (QMHSNDPM)
API 36, 105

sending
exception message 35

service program
activation 30, 92
binder listing example 165
CL (control language) commands 183
creation tips 82

service program (continued)
definition 13
description 8
signature 65, 68
static procedure call 92

Severity component of condition
token 110

shared open data path (ODP) example 3
shared storage 151

pitfalls 151
shared storage access ordering 152
shared storage synchronization 151
Signal Condition (CEESGL) bindable API

condition token 109, 112
description 36

signature 68
EXPORT parameter 65

signature parameter on STRPGMEXP
command 69

single-heap support 100
single-level storage model 46
source debugger 2

bindable APIs (application
programming interfaces) 123

CL (control language) commands 184
considerations 113
description 22

specifying Licensed Internal Code
options 141

SQL (Structured Query Language)
CL (control language) commands 184
connections, data management 117

SRCFILE (source file) parameter 66
file

maximum width 66
SRCMBR (source member) parameter 66
SRVPGMLIB on UPDSRVPGM

command 80
stack, call 91
Start Commitment Control

(STRCMTCTL) command 117, 118
Start Debug (STRDBG) command 113
Start Program Export (STRPGMEXP)

command 69
Start Program Export (STRPGMEXP),

binder language 68
static procedure call

call stack 91
definition 18
examples 19, 93
service program 92
service program activation 31

static storage 99
static variable 23, 85
status (*STATUS) exception message

type 36
storage

shared 151
storage access

ordering concerns 154
storage access ordering concerns 154
storage management 99

automatic storage 99
bindable APIs (application

programming interfaces) 123
dynamic storage 99
heap 99

Index 199

storage management (continued)
static storage 86, 99

storage model
single-level storage 46
teraspace 46

storage synchronization, shared 151
storage synchronizing

actions 153
storage synchronizing actions 153
STRCMTCTL (Start Commitment Control)

command 117, 118
STRDBG (Start Debug) command 113
strong export 66, 165
strong exports 64
STRPGMEXP (Start Program Export),

binder language 68
structure of ILE program 9
Structured Query Language (SQL)

CL (control language) commands 184
connections, data management 117

support for original program model
(OPM) and ILE APIs 97

symbol name
wildcard character 70

symbol resolution
definition 57
duplicate 59
examples 60, 62

syntax rules for Licensed Internal Code
options 141

system value
QUSEADPAUT (use adopted

authority)
description 56
risk of changing 56

use adopted authority
(QUSEADPAUT)

description 56
risk of changing 56

system-named activation group 26, 28

T
teraspace 45

allowed storage model for program
types 46

characteristics 45
choosing storage model 46
converting programs or service

programs to use 48
enabling in your programs 45
interaction of single-level storage and

teraspace storage models 47
pointer conversions 50
pointer support in interfaces 51
selecting compatible activation

group 47
specifying as storage model 46
usage notes 50
using 8-byte pointers 49

teraspace storage model 46
Test for Omitted Argument (CEETSTA)

bindable API 95
testing condition token 111
thread local storage (TLS) 102

time
bindable APIs (application

programming interfaces) 121
tip

module, program and service program
creation 82

transaction
commitment control 118

translator
code optimization 5, 22

U
UEP (user entry procedure)

call stack example 91
definition 10

unhandled exception
default action 37

unmonitored exception 115
Unregister User-Written Condition

Handler (CEEHDLU) bindable API 39
unresolved import 57
Update Program (UPDPGM)

command 79
Update Service Program (UPDSRVPGM)

command 79
UPDPGM command

BNDDIR parameter 80
BNDSRVPGM parameter 80
MODULE parameter 80
RPLLIB parameter 80

UPDSRVPGM command
BNDDIR parameter 80
BNDSRVPGM parameter 80
MODULE parameter 80
RPLLIB parameter 80

use adopted authority (QUSEADPAUT)
system value

description 56
risk of changing 56

user entry procedure (UEP)
call stack example 91
definition 10

user interface manager (UIM), data
management 117

user-named activation group
deletion 28
description 26, 85

V
variable

static 23, 85

W
watch support 115
weak export 165
weak exports 64, 66
wildcard character for export symbol 70

200 ILE Concepts IBM i 7.1

Readers’ Comments — We'd Like to Hear from You

IBM i
ILE Concepts
7.1

Publication No. SC41-5606-09

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send a fax to the following number: United States and Canada: 1-800-937-3430

Other countries or regions: 1-507-253-5192
v Send your comments via email to: RCHCLERK@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
SC41-5606-09

SC41-5606-09

IBM®
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM CORPORATION
Attn Bldg 004-2 ID Clerk
3605 HWY 52 N
ROCHESTER MN 55901-7829

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBM®

Printed in USA

SC41-5606-09

	Contents
	About ILE Concepts (SC41-5606)
	Who should read this book
	Prerequisite and related information
	How to send your comments

	What's new for IBM i 7.1
	Chapter 1. Integrated Language Environment Introduction
	What Is ILE?
	What Are the Benefits of ILE?
	Binding
	Modularity
	Reusable Components
	Common Runtime Services
	Coexistence with Existing Applications
	Source Debugger
	Better Control over Resources
	Shared Open Data Path—Scenario
	Commitment Control—Scenario

	Better Control over Language Interactions
	Mixed Languages—Scenario

	Better Code Optimization

	What Is the History of ILE?
	Original Program Model Description
	Principal Characteristics of OPM

	Extended Program Model Description
	Integrated Language Environment Description
	Principal Characteristics of Procedure-Based Languages

	Chapter 2. ILE Basic Concepts
	Structure of an ILE Program
	Procedure
	Module Object
	ILE Program
	Service Program
	Binding Directory
	Binding Directory Processing

	Binder Functions
	Calling a Program or a Procedure
	Dynamic Program Calls
	Static Procedure Calls
	Procedure Pointer Calls

	Activation
	Error Handling Overview
	Optimizing Translator
	Debugger

	Chapter 3. ILE Advanced Concepts
	Program Activation
	Program Activation Creation

	Activation Group
	Activation Group Creation
	Default Activation Groups
	Non-Default Activation Group Deletion

	Service Program Activation
	Control Boundaries
	Control Boundaries for Activation Groups
	Control Boundaries between OPM and ILE Call Stack Entries
	Control Boundary Use

	Error Handling
	Job Message Queues
	Exception Messages and How They Are Sent
	How Exception Messages Are Handled
	Exception Recovery
	Default Actions for Unhandled Exceptions
	Types of Exception Handlers
	ILE Conditions

	Data Management Scoping Rules
	Call-Level Scoping
	Activation-Group-Level Scoping
	Job-Level Scoping

	Chapter 4. Teraspace and Single-Level Storage
	Teraspace Characteristics
	Using Teraspace for Storage
	Choosing a Program Storage Model
	Specifying the Teraspace Storage Model
	Selecting a Compatible Activation Group
	How the Storage Models Interact
	Rules for Binding Modules
	Rules for Binding to Service Programs
	Rules for Activating Programs and Service Programs
	Rules for Program and Procedure Calls

	Converting Your Program or Service Program to Inherit a Storage Model
	Updating Your Programs: Teraspace Considerations

	Taking Advantage of 8-byte Pointers in Your C and C++ Code
	Pointer Support in C and C++ Compilers
	Pointer Conversions

	Using the Teraspace Storage Model
	Using Teraspace: Best Practices
	System Controls over Teraspace Programs When They are Created
	System Controls over Teraspace Programs When They are Activated

	IBM i Interfaces and Teraspace
	Potential Problems that Can Arise When You Use Teraspace

	Teraspace Usage Tips

	Chapter 5. Program Creation Concepts
	Create Program and Create Service Program Commands
	Use Adopted Authority (QUSEADPAUT)
	Using optimization parameters

	Stored data in modules and programs
	Symbol Resolution
	Resolved and Unresolved Imports
	Binding by Copy
	Binding by Reference
	Binding Large Numbers of Modules
	Duplicate Symbols
	Importance of the Order of Exports
	Program Creation Example 1
	Program Creation Example 2

	Program Access
	Program Entry Procedure Module Parameter on the CRTPGM Command
	Export Parameter on the CRTSRVPGM Command
	Export Parameter Used with Source File and Source Member Parameters
	Maximum width of a file for the SRCFILE parameter

	Import and Export Concepts
	Binder Language
	Signature
	Start Program Export and End Program Export Commands
	Program Level Parameter on the STRPGMEXP Command
	Signature Parameter on the STRPGMEXP Command
	Level Check Parameter on the STRPGMEXP Command

	Export Symbol Command
	Wildcard Export Symbol Examples

	Binder Language Examples
	Binder Language Example 1
	Binder Language Example 2
	Binder Language Example 3
	Binder Language Example 4

	Changing Programs

	Program Updates
	Parameters on the UPDPGM and UPDSRVPGM Commands
	Module Replaced by a Module with Fewer Imports
	Module Replaced by a Module with More Imports
	Module Replaced by a Module with Fewer Exports
	Module Replaced by a Module with More Exports

	Tips for Creating Modules, Programs, and Service Programs

	Chapter 6. Activation Group Management
	Multiple Applications Running in the Same Job
	Reclaim Resources Command
	Reclaim Resources Command for OPM Programs
	Reclaim Resources Command for ILE Programs
	Reclaim Activation Group Command

	Service Programs and Activation Groups

	Chapter 7. Calls to Procedures and Programs
	Call Stack
	Call Stack Example

	Calls to Programs and Calls to Procedures
	Static Procedure Calls
	Procedure Pointer Calls
	Passing Arguments to ILE Procedures
	Function Results
	Omitted Arguments

	Dynamic Program Calls
	Passing Arguments on a Dynamic Program Call

	Interlanguage Data Compatibility
	Syntax for Passing Arguments in Mixed-Language Applications
	Operational Descriptors
	Requirements of Operational Descriptors
	Absence of a Required Descriptor
	Presence of an Unnecessary Descriptor
	Bindable APIs for Operational Descriptor Access

	Support for OPM and ILE APIs

	Chapter 8. Storage Management
	Single-Level Storage Heap
	Heap Characteristics
	Default Heap
	User-Created Heaps
	Single-Heap Support
	Heap Allocation Strategy
	Single-Level Storage Heap Interfaces

	Heap Support
	Thread Local Storage

	Chapter 9. Exception and Condition Management
	Handle Cursors and Resume Cursors
	Exception Handler Actions
	How to Resume Processing
	How to Percolate a Message
	How to Promote a Message

	Default Actions for Unhandled Exceptions
	Nested Exceptions
	Condition Handling
	How Conditions Are Represented
	Layout of a Condition Token

	Condition Token Testing
	Relationship of ILE Conditions to Operating System Messages
	IBM i Messages and the Bindable API Feedback Code

	Chapter 10. Debugging Considerations
	Debug Mode
	Debug Environment
	Addition of Programs to Debug Mode

	How Observability and Optimization Affect Debugging
	Optimization Levels
	Debug Data Creation and Removal
	Module Views
	Debugging across Jobs
	OPM and ILE Debugger Support
	Watch Support

	Unmonitored Exceptions
	Globalization Restriction for Debugging

	Chapter 11. Data Management Scoping
	Common Data Management Resources
	Commitment Control Scoping
	Commitment Definitions and Activation Groups
	Ending Commitment Control
	Commitment Control during Activation Group End

	Chapter 12. ILE Bindable Application Programming Interfaces
	ILE Bindable APIs Available
	Dynamic Screen Manager Bindable APIs

	Chapter 13. Advanced Optimization Techniques
	Program Profiling
	Types of Profiling
	How to Profile a Program
	Enabling the program to collect profiling data
	Collect Profiling Data
	Applying the Collected Profiling Data

	Managing Programs Enabled to Collect Profiling Data
	Managing Programs with Profiling Data Applied to Them
	How to Tell if a Program or Module is Profiled or Enabled for Collection

	Interprocedural analysis (IPA)
	How to optimize your programs with IPA
	IPA control file syntax
	IPA usage notes
	IPA restrictions and limitations
	Partitions created by IPA

	Advanced Argument Optimization
	How to Use Advanced Argument Optimization
	Considerations and Restrictions When Using Advanced Argument Optimization

	Licensed Internal Code Options
	Currently Defined Options
	Application
	Restrictions
	Syntax
	Release Compatibility
	Displaying Module and ILE Program Licensed Internal Code Options

	Adaptive Code Generation
	ACG Concepts
	Normal Operation
	Restore Options
	QFRCCVNRST System Value
	FRCOBJCVN Parameter
	Create Options
	The CodeGenTarget LICOPT
	QIBM_BN_CREATE_WITH_COMMON_CODEGEN Environment Variable
	Displaying ACG Information
	Object compatibility

	Release-to-Release Considerations
	Optimizing Compatible Programs
	ACG and Logical Partitions

	Chapter 14. Shared Storage Synchronization
	Shared Storage
	Shared Storage Pitfalls
	Shared Storage Access Ordering
	Example Problem 1: One Writer, Many Readers
	Example 1 Solution

	Storage Synchronizing Actions
	Example Problem 2: Two Contending Writers or Readers
	Example 2 Solution
	Alternate Solution: Using Check Lock Value / Clear Lock Value

	Appendix A. Output Listing from CRTPGM, CRTSRVPGM, UPDPGM, or UPDSRVPGM Command
	Binder Listing
	Basic Listing
	Extended Listing
	Full Listing
	IPA Listing Components
	Object File Map
	Compiler Options Map
	Inline Report
	Global Symbols Map
	Partition Map
	Source File Map
	Messages
	Message Summary

	Listing for Example Service Program
	Binder Information Listing for Example Service Program
	Cross-Reference Listing for Example Service Program
	Binding Statistics for Example Service Program

	Binder Language Errors
	Signature Padded
	Suggested Changes

	Signature Truncated
	Suggested Changes

	Current Export Block Limits Interface
	Suggested Changes

	Duplicate Export Block
	Suggested Changes

	Duplicate Symbol on Previous Export
	Suggested Changes

	Level Checking Cannot Be Disabled More than Once, Ignored
	Suggested Changes

	Multiple Current Export Blocks Not Allowed, Previous Assumed
	Suggested Changes

	Current Export Block Is Empty
	Suggested Changes

	Export Block Not Completed, End-of-File Found before ENDPGMEXP
	Suggested Changes

	Export Block Not Started, STRPGMEXP Required
	Suggested Changes

	Export Blocks Cannot Be Nested, ENDPGMEXP Missing
	Suggested Changes

	Exports Must Exist inside Export Blocks
	Suggested Changes

	Identical Signatures for Dissimilar Export Blocks, Must Change Exports
	Suggested Changes

	Multiple Wildcard Matches
	Suggested Changes

	No Current Export Block
	Suggested Changes

	No Wildcard Matches
	Suggested Changes

	Previous Export Block Is Empty
	Suggested Changes

	Signature Contains Variant Characters
	Suggested Changes

	SIGNATURE(*GEN) Required with LVLCHK(*NO)
	Suggested Changes

	Signature Syntax Not Valid
	Suggested Changes

	Symbol Name Required
	Suggested Changes

	Symbol Not Allowed as Service Program Export
	Suggested Changes

	Symbol Not Defined
	Suggested Changes

	Syntax Not Valid
	Suggested Changes

	Appendix B. Exceptions in Optimized Programs
	Appendix C. CL Commands Used with ILE Objects
	CL Commands Used with Modules
	CL Commands Used with Program Objects
	CL Commands Used with Service Programs
	CL Commands Used with Binding Directories
	CL Commands Used with Structured Query Language
	CL Commands Used with CICS
	CL Commands Used with Source Debugger
	CL Commands Used to Edit the Binder Language Source File

	Appendix D. Notices
	Programming Interface Information
	Trademarks

	Bibliography
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Readers’ Comments — We'd Like to Hear from You

