Management Guide

TigerSwitch™ 10/100/1000
26-Port Gigabit Managed Switch
50-Port Gigabit Managed Switch

SMC8126L2
SMC8150L2
Contents

Chapter 1: Introduction 1-1
 Key Features 1-1
 Description of Software Features 1-2
 System Defaults 1-6

Chapter 2: Initial Configuration 2-1
 Connecting to the Switch 2-1
 Configuration Options 2-1
 Required Connections 2-2
 Remote Connections 2-3
 Basic Configuration 2-3
 Console Connection 2-3
 Setting Passwords 2-4
 Setting an IP Address 2-4
 Manual Configuration 2-4
 Dynamic Configuration 2-5
 Enabling SNMP Management Access 2-6
 Community Strings (for SNMP version 1 and 2c clients) 2-6
 Trap Receivers 2-7
 Configuring Access for SNMP Version 3 Clients 2-8
 Saving Configuration Settings 2-8
 Managing System Files 2-9

Chapter 3: Configuring the Switch 3-1
 Using the Web Interface 3-1
 Navigating the Web Browser Interface 3-2
 Home Page 3-2
 Configuration Options 3-3
 Panel Display 3-3
 Main Menu 3-4
 Basic Configuration 3-10
 Displaying System Information 3-10
 Displaying Switch Hardware/Software Versions 3-11
 Displaying Bridge Extension Capabilities 3-13
 Setting the Switch’s IP Address 3-14
 Manual Configuration 3-15
 Using DHCP/BOOTP 3-16
 Enabling Jumbo Frames 3-17
 Managing Firmware 3-17
 Downloading System Software from a Server 3-18
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saving or Restoring Configuration Settings</td>
<td>3-19</td>
</tr>
<tr>
<td>Downloading Configuration Settings from a Server</td>
<td>3-20</td>
</tr>
<tr>
<td>Console Port Settings</td>
<td>3-21</td>
</tr>
<tr>
<td>Telnet Settings</td>
<td>3-23</td>
</tr>
<tr>
<td>Configuring Event Logging</td>
<td>3-25</td>
</tr>
<tr>
<td>Displaying Log Messages</td>
<td>3-25</td>
</tr>
<tr>
<td>System Log Configuration</td>
<td>3-26</td>
</tr>
<tr>
<td>Remote Log Configuration</td>
<td>3-27</td>
</tr>
<tr>
<td>Simple Mail Transfer Protocol</td>
<td>3-28</td>
</tr>
<tr>
<td>Renumbering the System</td>
<td>3-30</td>
</tr>
<tr>
<td>Resetting the System</td>
<td>3-30</td>
</tr>
<tr>
<td>Setting the System Clock</td>
<td>3-31</td>
</tr>
<tr>
<td>Configuring SNTP</td>
<td>3-31</td>
</tr>
<tr>
<td>Setting the Time Zone</td>
<td>3-32</td>
</tr>
<tr>
<td>Simple Network Management Protocol</td>
<td>3-33</td>
</tr>
<tr>
<td>Setting Community Access Strings</td>
<td>3-33</td>
</tr>
<tr>
<td>Specifying Trap Managers and Trap Types</td>
<td>3-34</td>
</tr>
<tr>
<td>Enabling SNMP Agent Status</td>
<td>3-35</td>
</tr>
<tr>
<td>Configuring SNMPv3 Management Access</td>
<td>3-36</td>
</tr>
<tr>
<td>Setting the Local Engine ID</td>
<td>3-36</td>
</tr>
<tr>
<td>Specifying a Remote Engine ID</td>
<td>3-37</td>
</tr>
<tr>
<td>Configuring SNMPv3 Users</td>
<td>3-37</td>
</tr>
<tr>
<td>Configuring Remote SNMPv3 Users</td>
<td>3-40</td>
</tr>
<tr>
<td>Configuring SNMPv3 Groups</td>
<td>3-41</td>
</tr>
<tr>
<td>Setting SNMPv3 Views</td>
<td>3-45</td>
</tr>
<tr>
<td>User Authentication</td>
<td>3-46</td>
</tr>
<tr>
<td>Configuring User Accounts</td>
<td>3-46</td>
</tr>
<tr>
<td>Configuring Local/Remote Logon Authentication</td>
<td>3-48</td>
</tr>
<tr>
<td>Configuring HTTPS</td>
<td>3-52</td>
</tr>
<tr>
<td>Replacing the Default Secure-site Certificate</td>
<td>3-53</td>
</tr>
<tr>
<td>Configuring the Secure Shell</td>
<td>3-54</td>
</tr>
<tr>
<td>Configuring the SSH Server</td>
<td>3-56</td>
</tr>
<tr>
<td>Generating the Host Key Pair</td>
<td>3-57</td>
</tr>
<tr>
<td>Configuring Port Security</td>
<td>3-59</td>
</tr>
<tr>
<td>Configuring 802.1X Port Authentication</td>
<td>3-60</td>
</tr>
<tr>
<td>Displaying 802.1X Global Settings</td>
<td>3-61</td>
</tr>
<tr>
<td>Configuring 802.1X Global Settings</td>
<td>3-62</td>
</tr>
<tr>
<td>Configuring Port Settings for 802.1X</td>
<td>3-63</td>
</tr>
<tr>
<td>Displaying 802.1X Statistics</td>
<td>3-66</td>
</tr>
<tr>
<td>Access Control Lists</td>
<td>3-67</td>
</tr>
<tr>
<td>Configuring Access Control Lists</td>
<td>3-67</td>
</tr>
<tr>
<td>Setting the ACL Name and Type</td>
<td>3-68</td>
</tr>
<tr>
<td>Configuring a Standard IP ACL</td>
<td>3-69</td>
</tr>
<tr>
<td>Configuring an Extended IP ACL</td>
<td>3-69</td>
</tr>
<tr>
<td>Configuring a MAC ACL</td>
<td>3-72</td>
</tr>
<tr>
<td>Contents</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Binding a Port to an Access Control List</td>
<td>3-73</td>
</tr>
<tr>
<td>Filtering IP Addresses for Management Access</td>
<td>3-74</td>
</tr>
<tr>
<td>Port Configuration</td>
<td>3-76</td>
</tr>
<tr>
<td>Displaying Connection Status</td>
<td>3-76</td>
</tr>
<tr>
<td>Configuring Interface Connections</td>
<td>3-78</td>
</tr>
<tr>
<td>Creating Trunk Groups</td>
<td>3-80</td>
</tr>
<tr>
<td>Statically Configuring a Trunk</td>
<td>3-81</td>
</tr>
<tr>
<td>Enabling LACP on Selected Ports</td>
<td>3-82</td>
</tr>
<tr>
<td>Configuring LACP Parameters</td>
<td>3-84</td>
</tr>
<tr>
<td>Displaying LACP Port Counters</td>
<td>3-86</td>
</tr>
<tr>
<td>Displaying LACP Settings and Status for the Local Side</td>
<td>3-88</td>
</tr>
<tr>
<td>Displaying LACP Settings and Status for the Remote Side</td>
<td>3-90</td>
</tr>
<tr>
<td>Setting Broadcast Storm Thresholds</td>
<td>3-91</td>
</tr>
<tr>
<td>Configuring Port Mirroring</td>
<td>3-93</td>
</tr>
<tr>
<td>Configuring Rate Limits</td>
<td>3-94</td>
</tr>
<tr>
<td>Rate Limit Configuration</td>
<td>3-94</td>
</tr>
<tr>
<td>Showing Port Statistics</td>
<td>3-95</td>
</tr>
<tr>
<td>Address Table Settings</td>
<td>3-99</td>
</tr>
<tr>
<td>Setting Static Addresses</td>
<td>3-99</td>
</tr>
<tr>
<td>Displaying the Address Table</td>
<td>3-100</td>
</tr>
<tr>
<td>Changing the Aging Time</td>
<td>3-102</td>
</tr>
<tr>
<td>Spanning Tree Algorithm Configuration</td>
<td>3-102</td>
</tr>
<tr>
<td>Displaying Global Settings</td>
<td>3-105</td>
</tr>
<tr>
<td>Configuring Global Settings</td>
<td>3-107</td>
</tr>
<tr>
<td>Displaying Interface Settings</td>
<td>3-111</td>
</tr>
<tr>
<td>Configuring Interface Settings</td>
<td>3-114</td>
</tr>
<tr>
<td>Configuring Multiple Spanning Trees</td>
<td>3-116</td>
</tr>
<tr>
<td>Displaying Interface Settings for MSTP</td>
<td>3-118</td>
</tr>
<tr>
<td>Configuring Interface Settings for MSTP</td>
<td>3-120</td>
</tr>
<tr>
<td>VLAN Configuration</td>
<td>3-122</td>
</tr>
<tr>
<td>IEEE 802.1Q VLANs</td>
<td>3-122</td>
</tr>
<tr>
<td>Enabling or Disabling GVRP (Global Setting)</td>
<td>3-125</td>
</tr>
<tr>
<td>Displaying Basic VLAN Information</td>
<td>3-126</td>
</tr>
<tr>
<td>Displaying Current VLANs</td>
<td>3-126</td>
</tr>
<tr>
<td>Creating VLANs</td>
<td>3-128</td>
</tr>
<tr>
<td>Adding Static Members to VLANs (VLAN Index)</td>
<td>3-129</td>
</tr>
<tr>
<td>Adding Static Members to VLANs (Port Index)</td>
<td>3-131</td>
</tr>
<tr>
<td>Configuring VLAN Behavior for Interfaces</td>
<td>3-132</td>
</tr>
<tr>
<td>Configuring IEEE 802.1Q Tunneling</td>
<td>3-133</td>
</tr>
<tr>
<td>Enabling QinQ Tunneling on the Switch</td>
<td>3-137</td>
</tr>
<tr>
<td>Adding an Interface to a QinQ Tunnel</td>
<td>3-138</td>
</tr>
<tr>
<td>Configuring Private VLANs</td>
<td>3-141</td>
</tr>
<tr>
<td>Enabling Private VLANs</td>
<td>3-141</td>
</tr>
<tr>
<td>Configuring Uplink and Downlink Ports</td>
<td>3-142</td>
</tr>
<tr>
<td>Protocol VLANs</td>
<td>3-142</td>
</tr>
</tbody>
</table>
Chapter 4: Command Line Interface

Using the Command Line Interface
- Accessing the CLI
- Console Connection
- Telnet Connection

Entering Commands
- Keywords and Arguments
- Minimum Abbreviation
- Command Completion
- Getting Help on Commands
- Showing Commands
- Partial Keyword Lookup
- Negating the Effect of Commands
- Using Command History
- Understanding Command Modes
- Exec Commands
- Configuration Commands
- Command Line Processing

Command Groups
- Line Commands
 - line
 - login
 - password
 - timeout login response
 - exec-timeout
 - password-thresh
 - silent-time
 - databits
 - parity
 - speed
 - stopbits
disconnect 4-18
show line 4-18
General Commands 4-19
 enable 4-19
 disable 4-20
 configure 4-21
 show history 4-21
 reload 4-22
 end 4-22
 exit 4-23
 quit 4-23
System Management Commands 4-24
 Device Designation Commands 4-24
 prompt 4-24
 hostname 4-25
 User Access Commands 4-25
 username 4-25
 enable password 4-26
 IP Filter Commands 4-27
 management 4-27
 show management 4-28
Web Server Commands 4-29
 ip http port 4-29
 ip http server 4-30
 ip http secure-server 4-30
 ip http secure-port 4-31
Telnet Server Commands 4-32
 ip telnet port 4-32
 ip telnet server 4-33
Secure Shell Commands 4-33
 ip ssh server 4-35
 ip ssh timeout 4-36
 ip ssh authentication-retries 4-37
 ip ssh server-key size 4-37
 delete public-key 4-38
 ip ssh crypto host-key generate 4-38
 ip ssh crypto zeroize 4-39
 ip ssh save host-key 4-39
 show ip ssh 4-40
 show ssh 4-40
 show public-key 4-41
Event Logging Commands 4-43
 logging on 4-43
 logging history 4-44
 logging host 4-45
logging facility 4-45
logging trap 4-46
clear logging 4-46
show logging 4-47
show log 4-48
SMTP Alert Commands 4-49
logging sendmail host 4-49
logging sendmail level 4-50
logging sendmail source-email 4-51
logging sendmail destination-email 4-51
logging sendmail 4-52
show logging sendmail 4-52
Time Commands 4-53
snntp client 4-53
snntp server 4-54
snntp poll 4-55
show snntp 4-55
clock timezone 4-56
calendar set 4-56
show calendar 4-57
System Status Commands 4-57
show startup-config 4-57
show running-config 4-59
show system 4-61
show users 4-61
show version 4-62
Frame Size Commands 4-63
jumbo frame 4-63
Flash/File Commands 4-64
copy 4-64
delete 4-67
dir 4-68
whichboot 4-69
boot system 4-69
Authentication Commands 4-70
Authentication Sequence 4-70
authentication login 4-71
authentication enable 4-72
RADIUS Client 4-73
radius-server host 4-74
radius-server port 4-74
radius-server key 4-75
radius-server retransmit 4-75
radius-server timeout 4-76
show radius-server 4-76
TACACS+ Client 4-77
 tacacs-server host 4-77
 tacacs-server port 4-77
 tacacs-server key 4-78
 show tacacs-server 4-78
Port Security Commands 4-79
 port security 4-79
802.1X Port Authentication 4-81
 dot1x system-auth-control 4-81
 dot1x default 4-82
 dot1x max-req 4-82
 dot1x port-control 4-82
 dot1x operation-mode 4-83
 dot1x re-authenticate 4-84
 dot1x re-authentication 4-84
 dot1x timeout quiet-period 4-84
 dot1x timeout re-authperiod 4-85
 dot1x timeout tx-period 4-85
 show dot1x 4-86
Access Control List Commands 4-89
 IP ACLs 4-90
 access-list ip 4-90
 permit, deny (Standard ACL) 4-91
 permit, deny (Extended ACL) 4-91
 show ip access-list 4-93
 ip access-group 4-93
 show ip access-group 4-94
 MAC ACLs 4-95
 access-list mac 4-95
 permit, deny (MAC ACL) 4-96
 show mac access-list 4-97
 mac access-group 4-98
 show mac access-group 4-98
ACL Information 4-99
 show access-list 4-99
 show access-group 4-99
SNMP Commands 4-100
 snmp-server 4-101
 show snmp 4-101
 snmp-server community 4-102
 snmp-server contact 4-103
 snmp-server location 4-103
 snmp-server host 4-104
 snmp-server enable traps 4-106
 snmp-server engine-id 4-107
show snmp engine-id 4-108
snmp-server view 4-109
show snmp view 4-110
snmp-server group 4-110
show snmp group 4-112
snmp-server user 4-113
show snmp user 4-115

Interface Commands 4-116
 interface 4-116
 description 4-117
 speed-duplex 4-117
 negotiation 4-118
 capabilities 4-119
 flowcontrol 4-120
 shutdown 4-121
 switchport broadcast packet-rate 4-122
 clear counters 4-122
 show interfaces status 4-123
 show interfaces counters 4-124
 show interfaces switchport 4-125

Mirror Port Commands 4-127
 port monitor 4-127
 show port monitor 4-128

Rate Limit Commands 4-129
 rate-limit 4-129

Link Aggregation Commands 4-130
 channel-group 4-131
 lacp 4-132
 lacp system-priority 4-133
 lacp admin-key (Ethernet Interface) 4-134
 lacp admin-key (Port Channel) 4-135
 lacp port-priority 4-136
 show lacp 4-136

Address Table Commands 4-140
 mac-address-table static 4-140
 clear mac-address-table dynamic 4-141
 show mac-address-table 4-141
 mac-address-table aging-time 4-142
 show mac-address-table aging-time 4-143

Spanning Tree Commands 4-144
 spanning-tree 4-145
 spanning-tree mode 4-145
 spanning-tree forward-time 4-146
 spanning-tree hello-time 4-147
 spanning-tree max-age 4-148
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>spanning-tree priority</td>
<td>4-148</td>
</tr>
<tr>
<td>spanning-tree pathcost method</td>
<td>4-149</td>
</tr>
<tr>
<td>spanning-tree transmission-limit</td>
<td>4-150</td>
</tr>
<tr>
<td>spanning-tree mst-configuration</td>
<td>4-150</td>
</tr>
<tr>
<td>mst vlan</td>
<td>4-151</td>
</tr>
<tr>
<td>mst priority</td>
<td>4-151</td>
</tr>
<tr>
<td>name</td>
<td>4-152</td>
</tr>
<tr>
<td>revision</td>
<td>4-153</td>
</tr>
<tr>
<td>max-hops</td>
<td>4-153</td>
</tr>
<tr>
<td>spanning-tree spanning-disabled</td>
<td>4-154</td>
</tr>
<tr>
<td>spanning-tree cost</td>
<td>4-154</td>
</tr>
<tr>
<td>spanning-tree port-priority</td>
<td>4-155</td>
</tr>
<tr>
<td>spanning-tree edge-port</td>
<td>4-156</td>
</tr>
<tr>
<td>spanning-tree portfast</td>
<td>4-156</td>
</tr>
<tr>
<td>spanning-tree link-type</td>
<td>4-157</td>
</tr>
<tr>
<td>spanning-tree mst cost</td>
<td>4-158</td>
</tr>
<tr>
<td>spanning-tree mst port-priority</td>
<td>4-159</td>
</tr>
<tr>
<td>spanning-tree protocol-migration</td>
<td>4-160</td>
</tr>
<tr>
<td>show spanning-tree</td>
<td>4-160</td>
</tr>
<tr>
<td>show spanning-tree mst configuration</td>
<td>4-162</td>
</tr>
<tr>
<td>VLAN Commands</td>
<td>4-163</td>
</tr>
<tr>
<td>GVRP and Bridge Extension Commands</td>
<td>4-163</td>
</tr>
<tr>
<td>bridge-ext gvrp</td>
<td>4-164</td>
</tr>
<tr>
<td>show bridge-ext</td>
<td>4-164</td>
</tr>
<tr>
<td>switchport gvrp</td>
<td>4-165</td>
</tr>
<tr>
<td>show gvrp configuration</td>
<td>4-165</td>
</tr>
<tr>
<td>garp timer</td>
<td>4-166</td>
</tr>
<tr>
<td>show garp timer</td>
<td>4-166</td>
</tr>
<tr>
<td>Editing VLAN Groups</td>
<td>4-167</td>
</tr>
<tr>
<td>vlan database</td>
<td>4-167</td>
</tr>
<tr>
<td>vlan</td>
<td>4-168</td>
</tr>
<tr>
<td>Configuring VLAN Interfaces</td>
<td>4-169</td>
</tr>
<tr>
<td>interface vlan</td>
<td>4-169</td>
</tr>
<tr>
<td>switchport mode</td>
<td>4-170</td>
</tr>
<tr>
<td>switchport acceptable-frame-types</td>
<td>4-171</td>
</tr>
<tr>
<td>switchport ingress-filtering</td>
<td>4-171</td>
</tr>
<tr>
<td>switchport native vlan</td>
<td>4-172</td>
</tr>
<tr>
<td>switchport allowed vlan</td>
<td>4-173</td>
</tr>
<tr>
<td>switchport forbidden vlan</td>
<td>4-174</td>
</tr>
<tr>
<td>Displaying VLAN Information</td>
<td>4-175</td>
</tr>
<tr>
<td>show vlan</td>
<td>4-175</td>
</tr>
<tr>
<td>Configuring IEEE 802.1Q Tunneling</td>
<td>4-176</td>
</tr>
<tr>
<td>dot1q-tunnel system-tunnel-control</td>
<td>4-176</td>
</tr>
<tr>
<td>switchport dot1q-tunnel mode</td>
<td>4-177</td>
</tr>
<tr>
<td>switchport dot1q-tunnel tpid</td>
<td>4-178</td>
</tr>
</tbody>
</table>
Contents

Related Commands 4-178
 show dot1q-tunnel 4-178
Configuring Private VLANs 4-179
 pvlan 4-179
 show pvlan 4-180
Configuring Protocol-based VLANs 4-181
 protocol-vlan protocol-group (Configuring Groups) 4-181
 protocol-vlan protocol-group (Configuring Interfaces) 4-182
 show protocol-vlan protocol-group 4-183
 show interfaces protocol-vlan protocol-group 4-183
Priority Commands 4-184
 Priority Commands (Layer 2) 4-184
 queue mode 4-185
 switchport priority default 4-185
 queue bandwidth 4-186
 queue cos-map 4-187
 show queue mode 4-188
 show queue bandwidth 4-188
 show queue cos-map 4-189
 Priority Commands (Layer 3 and 4) 4-189
 map ip dscp (Global Configuration) 4-189
 map ip dscp (Interface Configuration) 4-190
 show map ip dscp 4-191
Quality of Service Commands 4-192
 class-map 4-194
 match 4-194
 policy-map 4-195
 class 4-196
 set 4-197
 police 4-198
 service-policy 4-199
 show class-map 4-199
 show policy-map 4-200
 show policy-map interface 4-200
Example 4-201
Multicast Filtering Commands 4-201
 IGMP Snooping Commands 4-201
 ip igmp snooping 4-202
 ip igmp snooping vlan static 4-202
 ip igmp snooping version 4-203
 ip igmp snooping leave-proxy 4-203
 ip igmp snooping immediate-leave 4-204
 show ip igmp snooping 4-204
 show mac-address-table multicast 4-205
 IGMP Query Commands (Layer 2) 4-206
Contents

ip igmp snooping querier 4-206
ip igmp snooping query-count 4-206
ip igmp snooping query-interval 4-207
ip igmp snooping query-max-response-time 4-208
ip igmp snooping router-port-expire-time 4-208
Static Multicast Routing Commands 4-209
ip igmp snooping vlan mrouter 4-209
show ip igmp snooping mrouter 4-210
IGMP Filtering and Throttling Commands 4-211
ip igmp filter (Global Configuration) 4-211
ip igmp profile 4-212
permit, deny 4-212
range 4-213
ip igmp filter (Interface Configuration) 4-213
ip igmp max-groups 4-214
ip igmp max-groups action 4-215
show ip igmp filter 4-215
show ip igmp profile 4-216
show ip igmp throttle interface 4-216
Multicast VLAN Registration Commands 4-217
mvr (Global Configuration) 4-218
mvr (Interface Configuration) 4-219
show mvr 4-221
IP Interface Commands 4-223
ip address 4-223
ip default-gateway 4-224
ip dhcp restart 4-225
show ip interface 4-225
show ip redirects 4-226
ping 4-226
IP Source Guard Commands 4-227
ip source-guard 4-227
ip source-guard binding 4-229
show ip source-guard 4-230
show ip source-guard binding 4-230
DHCP Snooping Commands 4-231
ip dhcp snooping 4-231
ip dhcp snooping vlan 4-233
ip dhcp snooping trust 4-234
ip dhcp snooping verify mac-address 4-235
ip dhcp snooping information option 4-235
ip dhcp snooping information policy 4-236
show ip dhcp snooping 4-237
show ip dhcp snooping binding 4-237
Switch Cluster Commands 4-237
Contents

cluster 4-238
cluster commander 4-239
cluster ip-pool 4-239
cluster member 4-240
rcommand 4-240
show cluster 4-241
show cluster members 4-241
show cluster candidates 4-242

Appendix A: Software Specifications A-1
Software Features A-1
Management Features A-2
Standards A-2
Management Information Bases A-3

Appendix B: Troubleshooting B-1
Problems Accessing the Management Interface B-1
Using System Logs B-2

Glossary

Index
Tables

Table 1-1 Key Features 1-1
Table 1-2 System Defaults 1-6
Table 3-1 Configuration Options 3-3
Table 3-2 Main Menu 3-4
Table 3-3 Logging Levels 3-26
Table 3-4 Supported Notification Messages 3-41
Table 3-5 HTTPS System Support 3-52
Table 3-6 802.1X Statistics 3-66
Table 3-7 LACP Port Counters 3-86
Table 3-8 LACP Internal Configuration Information 3-88
Table 3-9 LACP Neighbor Configuration Information 3-90
Table 3-10 Port Statistics 3-95
Table 3-11 Mapping CoS Values to Egress Queues 3-145
Table 3-12 CoS Priority Levels 3-146
Table 3-13 Mapping IP Precedence 3-150
Table 3-14 Mapping DSCP Priority Values 3-152
Table 4-1 Command Modes 4-6
Table 4-2 Configuration Modes 4-7
Table 4-3 Command Line Processing 4-8
Table 4-4 Command Groups 4-9
Table 4-5 Line Commands 4-10
Table 4-6 General Commands 4-19
Table 4-7 System Management Commands 4-24
Table 4-8 Device Designation Commands 4-24
Table 4-9 User Access Commands 4-25
Table 4-10 Default Login Settings 4-26
Table 4-11 IP Filter Commands 4-27
Table 4-12 Web Server Commands 4-29
Table 4-13 HTTPS System Support 4-31
Table 4-14 Telnet Server Commands 4-32
Table 4-15 SSH Commands 4-33
Table 4-16 show ssh - display description 4-40
Table 4-17 Event Logging Commands 4-43
Table 4-18 Logging Levels 4-44
Table 4-19 show logging flash/ram - display description 4-47
Table 4-20 show logging trap - display description 4-48
Table 4-21 SMTP Alert Commands 4-49
Table 4-22 Time Commands 4-53
Table 4-23 System Status Commands 4-57
Table 4-24 Frame Size Commands 4-63
Table 4-25 Flash/File Commands 4-64
Table 4-26 File Directory Information 4-68
Table 4-27 Authentication Commands 4-70
Table 4-28 Authentication Sequence 4-70
Table 4-29 RADIUS Client Commands 4-73
Table 4-30 TACACS Commands 4-77
Table 4-31 Port Security Commands 4-79
Table 4-32 802.1X Port Authentication 4-81
Table 4-33 Access Control Lists 4-89
Table 4-34 IP ACLs 4-90
Table 4-35 MAC ACL Commands 4-95
Table 4-36 ACL Information 4-99
Table 4-37 SNMP Commands 4-100
Table 4-38 show snmp engine-id - display description 4-108
Table 4-39 show snmp view - display description 4-110
Table 4-40 show snmp group - display description 4-113
Table 4-41 show snmp user - display description 4-115
Table 4-42 Interface Commands 4-116
Table 4-43 Interfaces Switchport Statistics 4-126
Table 4-44 Mirror Port Commands 4-127
Table 4-45 Rate Limit Commands 4-129
Table 4-46 Link Aggregation Commands 4-130
Table 4-47 show lacp counters - display description 4-137
Table 4-48 show lacp internal - display description 4-138
Table 4-49 show lacp neighbors - display description 4-139
Table 4-50 show lacp sysid - display description 4-139
Table 4-51 Address Table Commands 4-140
Table 4-52 Spanning Tree Commands 4-144
Table 4-53 VLANs 4-163
Table 4-54 GVRP and Bridge Extension Commands 4-163
Table 4-55 Editing VLAN Groups 4-167
Table 4-56 Configuring VLAN Interfaces 4-169
Table 4-57 Show VLAN Commands 4-175
Table 4-58 Command 4-176
Table 4-58 Function 4-176
Table 4-58 Mode 4-176
Table 4-58 Page 4-176
Table 4-59 Private VLAN Commands 4-179
Table 4-60 Protocol-based VLAN Commands 4-181
Table 4-61 Priority Commands 4-184
Table 4-62 Priority Commands (Layer 2) 4-184
Table 4-63 Default CoS Values to Egress Queues 4-187
Table 4-64 Priority Commands (Layer 3 and 4) 4-189
Table 4-65 IP DSCP to CoS Vales 4-190
Table 4-66 Quality of Service Commands 4-193
Table 4-67 Multicast Filtering Commands 4-201
Table 4-68 IGMP Snooping Commands 4-201
<table>
<thead>
<tr>
<th>Table 4-69</th>
<th>IGMP Query Commands (Layer 2)</th>
<th>4-206</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4-70</td>
<td>Static Multicast Routing Commands</td>
<td>4-209</td>
</tr>
<tr>
<td>Table 4-71</td>
<td>IGMP Filtering and Throttling Commands</td>
<td>4-211</td>
</tr>
<tr>
<td>Table 4-72</td>
<td>Multicast VLAN Registration Commands</td>
<td>4-217</td>
</tr>
<tr>
<td>Table 4-73</td>
<td>show mvr - display description</td>
<td>4-221</td>
</tr>
<tr>
<td>Table 4-74</td>
<td>show mvr interface - display description</td>
<td>4-222</td>
</tr>
<tr>
<td>Table 4-75</td>
<td>show mvr members - display description</td>
<td>4-222</td>
</tr>
<tr>
<td>Table 4-76</td>
<td>IP Interface Commands</td>
<td>4-223</td>
</tr>
<tr>
<td>Table 4-77</td>
<td>IP Source Guard Commands</td>
<td>4-227</td>
</tr>
<tr>
<td>Table 4-78</td>
<td>DHCP Snooping Commands</td>
<td>4-231</td>
</tr>
<tr>
<td>Table 4-79</td>
<td>Switch Cluster Commands</td>
<td>4-237</td>
</tr>
<tr>
<td>Table B-1</td>
<td>Troubleshooting Chart</td>
<td>B-1</td>
</tr>
<tr>
<td>Figure</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3-1</td>
<td>Home Page</td>
<td>2-3</td>
</tr>
<tr>
<td>3-2</td>
<td>Panel Display</td>
<td>3-3</td>
</tr>
<tr>
<td>3-3</td>
<td>System Information</td>
<td>3-10</td>
</tr>
<tr>
<td>3-4</td>
<td>Switch Information</td>
<td>3-12</td>
</tr>
<tr>
<td>3-5</td>
<td>Bridge Extension Configuration</td>
<td>3-13</td>
</tr>
<tr>
<td>3-6</td>
<td>Manual IP Configuration</td>
<td>3-15</td>
</tr>
<tr>
<td>3-7</td>
<td>DHCP IP Configuration</td>
<td>3-16</td>
</tr>
<tr>
<td>3-8</td>
<td>Bridge Extension Configuration</td>
<td>3-17</td>
</tr>
<tr>
<td>3-9</td>
<td>Copy Firmware</td>
<td>3-18</td>
</tr>
<tr>
<td>3-10</td>
<td>Setting the Startup Code</td>
<td>3-18</td>
</tr>
<tr>
<td>3-11</td>
<td>Deleting Files</td>
<td>3-19</td>
</tr>
<tr>
<td>3-12</td>
<td>Downloading Configuration Settings for Startup</td>
<td>3-20</td>
</tr>
<tr>
<td>3-13</td>
<td>Setting the Startup Configuration Settings</td>
<td>3-21</td>
</tr>
<tr>
<td>3-14</td>
<td>Console Port Settings</td>
<td>3-22</td>
</tr>
<tr>
<td>3-15</td>
<td>Enabling Telnet</td>
<td>3-24</td>
</tr>
<tr>
<td>3-16</td>
<td>Displaying Logs</td>
<td>3-25</td>
</tr>
<tr>
<td>3-17</td>
<td>System Logs</td>
<td>3-27</td>
</tr>
<tr>
<td>3-18</td>
<td>Remote Logs</td>
<td>3-28</td>
</tr>
<tr>
<td>3-19</td>
<td>Enabling and Configuring SMTP</td>
<td>3-29</td>
</tr>
<tr>
<td>3-20</td>
<td>Renumbering the System</td>
<td>3-30</td>
</tr>
<tr>
<td>3-21</td>
<td>Resetting the System</td>
<td>3-30</td>
</tr>
<tr>
<td>3-22</td>
<td>SNTP Configuration</td>
<td>3-31</td>
</tr>
<tr>
<td>3-23</td>
<td>Setting the System Clock</td>
<td>3-32</td>
</tr>
<tr>
<td>3-24</td>
<td>Configuring SNMP Community Strings</td>
<td>3-34</td>
</tr>
<tr>
<td>3-25</td>
<td>Configuring IP Trap Managers</td>
<td>3-35</td>
</tr>
<tr>
<td>3-26</td>
<td>Enabling SNMP Agent Status</td>
<td>3-35</td>
</tr>
<tr>
<td>3-27</td>
<td>Setting an Engine ID</td>
<td>3-36</td>
</tr>
<tr>
<td>3-28</td>
<td>Setting a Remote Engine ID</td>
<td>3-37</td>
</tr>
<tr>
<td>3-29</td>
<td>Configuring SNMPv3 Users</td>
<td>3-39</td>
</tr>
<tr>
<td>3-30</td>
<td>Configuring Remote SNMPv3 Users</td>
<td>3-40</td>
</tr>
<tr>
<td>3-31</td>
<td>Configuring SNMPv3 Groups</td>
<td>3-44</td>
</tr>
<tr>
<td>3-32</td>
<td>Configuring SNMPv3 Views</td>
<td>3-45</td>
</tr>
<tr>
<td>3-33</td>
<td>Access Levels</td>
<td>3-47</td>
</tr>
<tr>
<td>3-34</td>
<td>Authentication Settings</td>
<td>3-50</td>
</tr>
<tr>
<td>3-35</td>
<td>HTTPS Settings</td>
<td>3-52</td>
</tr>
<tr>
<td>3-36</td>
<td>SSH Server Settings</td>
<td>3-56</td>
</tr>
<tr>
<td>3-37</td>
<td>SSH Host-Key Settings</td>
<td>3-58</td>
</tr>
<tr>
<td>3-38</td>
<td>Configuring Port Security</td>
<td>3-60</td>
</tr>
<tr>
<td>3-39</td>
<td>802.1X Global Information</td>
<td>3-62</td>
</tr>
<tr>
<td>3-40</td>
<td>802.1X Global Configuration</td>
<td>3-62</td>
</tr>
<tr>
<td>3-41</td>
<td>802.1X Port Configuration</td>
<td>3-64</td>
</tr>
<tr>
<td>3-42</td>
<td>Displaying 802.1X Port Statistics</td>
<td>3-66</td>
</tr>
</tbody>
</table>
Figure 3-43 Selecting ACL Type 3-68
Figure 3-44 Configuring Standard IP ACLs 3-69
Figure 3-45 Configuring Extended IP ACLs 3-71
Figure 3-46 Configuring MAC ACLs 3-73
Figure 3-47 Configuring ACL Port Binding 3-74
Figure 3-48 Creating an IP Filter List 3-75
Figure 3-49 Displaying Port/Trunk Information 3-77
Figure 3-50 Port/Trunk Configuration 3-79
Figure 3-51 Configuring Static Trunks 3-81
Figure 3-52 LACP Trunk Configuration 3-83
Figure 3-53 LACP Port Configuration 3-85
Figure 3-54 LACP - Port Counters Information 3-87
Figure 3-55 LACP - Port Internal Information 3-89
Figure 3-56 LACP - Port Neighbors Information 3-90
Figure 3-57 Port Broadcast Control 3-92
Figure 3-58 Mirror Port Configuration 3-93
Figure 3-59 Input Rate Limit Port Configuration 3-94
Figure 3-60 Port Statistics 3-98
Figure 3-61 Configuring a Static Address Table 3-100
Figure 3-62 Configuring a Dynamic Address Table 3-101
Figure 3-63 Setting the Address Aging Time 3-102
Figure 3-64 Displaying Spanning Tree Information 3-106
Figure 3-65 Configuring Spanning Tree 3-110
Figure 3-66 Displaying Spanning Tree Port Information 3-113
Figure 3-67 Configuring Spanning Tree per Port 3-115
Figure 3-68 Configuring Multiple Spanning Trees 3-117
Figure 3-69 Displaying MSTP Interface Settings 3-119
Figure 3-70 Displaying MSTP Interface Settings 3-122
Figure 3-71 Globally Enabling GVRP 3-125
Figure 3-72 Displaying Basic VLAN Information 3-126
Figure 3-73 Displaying Current VLANs 3-127
Figure 3-74 Configuring a VLAN Static List 3-129
Figure 3-75 Configuring a VLAN Static Table 3-131
Figure 3-76 VLAN Static Membership by Port 3-131
Figure 3-77 Configuring VLANs per Port 3-133
Figure 3-78 802.1Q Tunnel Status 3-137
Figure 3-79 Tunnel Port Configuration 3-139
Figure 3-80 Private VLAN Status 3-141
Figure 3-81 Private VLAN Link Status 3-142
Figure 3-82 Protocol VLAN Configuration 3-143
Figure 3-83 Protocol VLAN Port Configuration 3-143
Figure 3-84 Port Priority Configuration 3-145
Figure 3-85 Traffic Classes 3-146
Figure 3-86 Enable Traffic Classes 3-147
Figure 3-87 Queue Mode 3-148
Chapter 1: Introduction

This switch provides a broad range of features for Layer 2 switching. It includes a management agent that allows you to configure the features listed in this manual. The default configuration can be used for most of the features provided by this switch. However, there are many options that you should configure to maximize the switch’s performance for your particular network environment.

Key Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Backup and Restore</td>
<td>Backup to TFTP server</td>
</tr>
<tr>
<td>Authentication</td>
<td>Console, Telnet, web – User name / password, RADIUS, TACACS+</td>
</tr>
<tr>
<td></td>
<td>Web – HTTPS</td>
</tr>
<tr>
<td></td>
<td>Telnet – SSH</td>
</tr>
<tr>
<td></td>
<td>SNMP v1/2c - Community strings</td>
</tr>
<tr>
<td></td>
<td>SNMP version 3 – MD5 or SHA password</td>
</tr>
<tr>
<td></td>
<td>Port – IEEE 802.1X, MAC address filtering</td>
</tr>
<tr>
<td>Access Control Lists</td>
<td>Supports up to 128 ACLs, 96 MAC rules and 96 rules per system</td>
</tr>
<tr>
<td>DHCP Client</td>
<td>Supported</td>
</tr>
<tr>
<td>DHCP Snooping</td>
<td>Supported with Option 82 relay information</td>
</tr>
<tr>
<td>Port Configuration</td>
<td>Speed, duplex mode and flow control</td>
</tr>
<tr>
<td>Rate Limiting</td>
<td>Input rate and output limiting per port</td>
</tr>
<tr>
<td>Port Mirroring</td>
<td>One or more port mirrored to a single analysis port</td>
</tr>
<tr>
<td>Port Trunking</td>
<td>Supports up to 32 trunks using either static or dynamic trunking (LACP)</td>
</tr>
<tr>
<td>Broadcast Storm Control</td>
<td>Supported</td>
</tr>
<tr>
<td>Static Address</td>
<td>Up to 8K MAC addresses in the forwarding table</td>
</tr>
<tr>
<td>IEEE 802.1D Bridge</td>
<td>Supports dynamic data switching and addresses learning</td>
</tr>
<tr>
<td>Store-and-Forward Switching</td>
<td>Supported to ensure wire-speed switching while eliminating bad frames</td>
</tr>
<tr>
<td>Spanning Tree Algorithm</td>
<td>Supports standard STP, and Rapid Spanning Tree Protocol (RSTP) and Multiple Spanning Trees(MSTP)</td>
</tr>
<tr>
<td>Virtual LANs</td>
<td>Up to 256 using IEEE 802.1Q, port-based, protocol-based or private VLANs</td>
</tr>
<tr>
<td>Traffic Prioritization</td>
<td>Default port priority, traffic class map, queue scheduling, or Differentiated Services Code Point (DSCP), and TCP/UDP Port</td>
</tr>
<tr>
<td>QoP</td>
<td>Supports Differentiated Services (Diffserv)</td>
</tr>
<tr>
<td>Multicast Filtering</td>
<td>Supports IGMP snooping and query, as well as Multicast VLAN Registration</td>
</tr>
</tbody>
</table>
Description of Software Features

The switch provides a wide range of advanced performance enhancing features. Flow control eliminates the loss of packets due to bottlenecks caused by port saturation. Broadcast storm suppression prevents broadcast traffic storms from engulfing the network. Port-based, private VLANs and protocol-based VLANs, plus support for automatic GVRP VLAN registration provide traffic security and efficient use of network bandwidth. CoS priority queueing ensures the minimum delay for moving real-time multimedia data across the network. While multicast filtering provides support for real-time network applications. Some of the management features are briefly described below.

Configuration Backup and Restore – You can save the current configuration settings to a file on a TFTP server, and later download this file to restore the switch configuration settings.

Authentication – This switch authenticates management access via the console port, Telnet or web browser. User names and passwords can be configured locally or can be verified via a remote authentication server (i.e., RADIUS or TACACS+). Port-based authentication is also supported via the IEEE 802.1X protocol. This protocol uses the Extensible Authentication Protocol over LANs (EAPOL) to request user credentials from the 802.1X client, and then verifies the client’s right to access the network via an authentication server.

Other authentication options include HTTPS for secure management access via the web, SSH for secure management access over a Telnet-equivalent connection, IP address filtering for SNMP/web/Telnet management access, and MAC address filtering for port access.

Access Control Lists – ACLs provide packet filtering for IP frames (based on address, protocol, or TCP/UDP port number) or any frames (based on MAC address or Ethernet type). ACLs can be used to improve performance by blocking unnecessary network traffic or to implement security controls by restricting access to specific network resources or protocols.

Port Configuration – You can manually configure the speed, duplex mode, and flow control used on specific ports, or use auto-negotiation to detect the connection settings used by the attached device. Use the full-duplex mode on ports whenever possible to double the throughput of switch connections. Flow control should also be enabled to control network traffic during periods of congestion and prevent the loss of packets when port buffer thresholds are exceeded. The switch supports flow control based on the IEEE 802.3x standard.

Table 1-1 Key Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch Clustering</td>
<td>Supports up to 16 Member switches in a cluster</td>
</tr>
</tbody>
</table>
Rate Limiting – This feature controls the maximum rate for traffic transmitted or received on an interface. Rate limiting is configured on interfaces at the edge of a network to limit traffic into the network. Traffic that falls within the rate limit is transmitted while packets that exceed the acceptable amount of traffic are dropped.

Port Mirroring – The switch can unobtrusively mirror traffic from any port to a monitor port. You can then attach a protocol analyzer or RMON probe to this port to perform traffic analysis and verify connection integrity.

Port Trunking – Ports can be combined into an aggregate connection. Trunks can be manually set up or dynamically configured using IEEE 802.3ad Link Aggregation Control Protocol (LACP). The additional ports dramatically increase the throughput across any connection, and provide redundancy by taking over the load if a port in the trunk should fail. The switch supports up to 32 trunks.

Broadcast Storm Control – Broadcast suppression prevents broadcast traffic from overwhelming the network. When enabled on a port, the level of broadcast traffic passing through the port is restricted. If broadcast traffic rises above a pre-defined threshold, it will be throttled until the level falls back beneath the threshold.

Static Addresses – A static address can be assigned to a specific interface on this switch. Static addresses are bound to the assigned interface and will not be moved. When a static address is seen on another interface, the address will be ignored and will not be written to the address table. Static addresses can be used to provide network security by restricting access for a known host to a specific port.

IEEE 802.1D Bridge – The switch supports IEEE 802.1D transparent bridging. The address table facilitates data switching by learning addresses, and then filtering or forwarding traffic based on this information. The address table supports up to 8K addresses.

Store-and-Forward Switching – The switch copies each frame into its memory before forwarding them to another port. This ensures that all frames are a standard Ethernet size and have been verified for accuracy with the cyclic redundancy check (CRC). This prevents bad frames from entering the network and wasting bandwidth.

To avoid dropping frames on congested ports, the SMC8126L2 and SMC8150L2 provide 4 Mbits respectively for frame buffering. This buffer can queue packets awaiting transmission on congested networks.

Spanning Tree Algorithm – The switch supports these spanning tree protocols:

- **Spanning Tree Protocol (STP, IEEE 802.1D)** – This protocol provides loop detection and recovery by allowing two or more redundant connections to be created between a pair of LAN segments. When there are multiple physical paths between segments, this protocol will choose a single path and disable all others to ensure that only one route exists between any two stations on the network. This prevents the creation of network loops. However, if the chosen path should fail for any reason, an alternate path will be activated to maintain the connection.

- **Rapid Spanning Tree Protocol (RSTP, IEEE 802.1w)** – This protocol reduces the convergence time for network topology changes to 3 to 5 seconds, compared to 30
seconds or more for the older IEEE 802.1D STP standard. It is intended as a complete replacement for STP, but can still interoperate with switches running the older standard by automatically reconfiguring ports to STP-compliant mode if they detect STP protocol messages from attached devices.

Multiple Spanning Tree Protocol (MSTP, IEEE 802.1s) – This protocol is a direct extension of RSTP. It can provide an independent spanning tree for different VLANs. It simplifies network management, provides for even faster convergence than RSTP by limiting the size of each region, and prevents VLAN members from being segmented from the rest of the group (as sometimes occurs with IEEE 802.1D STP).

Virtual LANs – The switch supports up to 256 VLANs. A Virtual LAN is a collection of network nodes that share the same collision domain regardless of their physical location or connection point in the network. The switch supports tagged VLANs based on the IEEE 802.1Q standard. Members of VLAN groups can be dynamically learned via GVRP, or ports can be manually assigned to a specific set of VLANs. This allows the switch to restrict traffic to the VLAN groups to which a user has been assigned. By segmenting your network into VLANs, you can:

- Eliminate broadcast storms which severely degrade performance in a flat network.
- Simplify network management for node changes/moves by remotely configuring VLAN membership for any port, rather than having to manually change the network connection.
- Provide data security by restricting all traffic to the originating VLAN.
- Use private VLANs to restrict traffic to pass only between data ports and the uplink ports, thereby isolating adjacent ports within the same VLAN, and allowing you to limit the total number of VLANs that need to be configured.
- Use protocol VLANs to restrict traffic to specified interfaces based on protocol type.

Traffic Prioritization – This switch prioritizes each packet based on the required level of service, using four priority queues with strict or Weighted Round Robin Queuing. It uses IEEE 802.1p and 802.1Q tags to prioritize incoming traffic based on input from the end-station application. These functions can be used to provide independent priorities for delay-sensitive data and best-effort data.

This switch also supports several common methods of prioritizing layer 3/4 traffic to meet application requirements. Traffic can be prioritized based on the DSCP field in the IP frame. When these services are enabled, the priorities are mapped to a Class of Service value by the switch, and the traffic then sent to the corresponding output queue.

Quality of Service – Differentiated Services (DiffServ) provides policy-based management mechanisms used for prioritizing network resources to meet the requirements of specific traffic types on a per-hop basis. Each packet is classified upon entry into the network based on access lists, IP Precedence or DSCP values, or VLAN lists. Using access lists allows you select traffic based on Layer 2, Layer 3, or Layer 4 information contained in each packet. Based on network policies, different kinds of traffic can be marked for different kinds of forwarding.
Multicast Filtering – Specific multicast traffic can be assigned to its own VLAN to ensure that it does not interfere with normal network traffic and to guarantee real-time delivery by setting the required priority level for the designated VLAN. The switch uses IGMP Snooping and Query to manage multicast group registration. It also supports Multicast VLAN Registration (MVR) which allows common multicast traffic, such as television channels, to be transmitted across a single network-wide multicast VLAN shared by hosts residing in other standard or private VLAN groups, while preserving security and data isolation for normal traffic.
System Defaults

The switch’s system defaults are provided in the configuration file “Factory_Default_Config.cfg.” To reset the switch defaults, this file should be set as the startup configuration file (page 3-19).

The following table lists some of the basic system defaults.

<table>
<thead>
<tr>
<th>Function</th>
<th>Parameter</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Console Port Connection</td>
<td>Baud Rate</td>
<td>9600</td>
</tr>
<tr>
<td></td>
<td>Data bits</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Stop bits</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Parity</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>Local Console Timeout</td>
<td>0 (disabled)</td>
</tr>
<tr>
<td>Authentication</td>
<td>Privileged Exec Level</td>
<td>Username “admin”, Password “admin”</td>
</tr>
<tr>
<td></td>
<td>Normal Exec Level</td>
<td>Username “guest”, Password “guest”</td>
</tr>
<tr>
<td></td>
<td>Enable Privileged Exec from Normal Exec Level</td>
<td>Password “super”</td>
</tr>
<tr>
<td></td>
<td>RADIUS Authentication</td>
<td>Disabled</td>
</tr>
<tr>
<td></td>
<td>TACACS Authentication</td>
<td>Disabled</td>
</tr>
<tr>
<td></td>
<td>802.1X Port Authentication</td>
<td>Disabled</td>
</tr>
<tr>
<td></td>
<td>HTTPS</td>
<td>Enabled</td>
</tr>
<tr>
<td></td>
<td>SSH</td>
<td>Disabled</td>
</tr>
<tr>
<td></td>
<td>Port Security</td>
<td>Disabled</td>
</tr>
<tr>
<td></td>
<td>IP Filtering</td>
<td>Disabled</td>
</tr>
<tr>
<td>Web Management</td>
<td>HTTP Server</td>
<td>Enabled</td>
</tr>
<tr>
<td></td>
<td>HTTP Port Number</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>HTTP Secure Server</td>
<td>Enabled</td>
</tr>
<tr>
<td></td>
<td>HTTP Secure Port Number</td>
<td>443</td>
</tr>
<tr>
<td>SNMP</td>
<td>SNMP Agent</td>
<td>Enabled</td>
</tr>
<tr>
<td></td>
<td>Community Strings</td>
<td>“public” (read only), “private” (read/write)</td>
</tr>
<tr>
<td></td>
<td>Traps</td>
<td>Authentication traps: enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Link-up-down events: enabled</td>
</tr>
<tr>
<td></td>
<td>SNMP V3</td>
<td>View: default view</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group: public (read only) private (read/write)</td>
</tr>
<tr>
<td>Function</td>
<td>Parameter</td>
<td>Default</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Port Configuration</td>
<td>Admin Status</td>
<td>Enabled</td>
</tr>
<tr>
<td></td>
<td>Auto-negotiation</td>
<td>Enabled</td>
</tr>
<tr>
<td></td>
<td>Flow Control</td>
<td>Disabled</td>
</tr>
<tr>
<td>Rate Limiting</td>
<td>Input and output limits</td>
<td>Disabled</td>
</tr>
<tr>
<td>Port Trunking</td>
<td>Static Trunks</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>LACP (all ports)</td>
<td>Disabled</td>
</tr>
<tr>
<td>Broadcast Storm</td>
<td>Status</td>
<td>Enabled (all ports)</td>
</tr>
<tr>
<td>Protection</td>
<td>Broadcast Limit Rate</td>
<td>500 packets per second</td>
</tr>
<tr>
<td>Spanning Tree Algorithm</td>
<td>Status</td>
<td>Enabled, RSTP</td>
</tr>
<tr>
<td></td>
<td>Broadcast Limit Rate</td>
<td>500 packets per second</td>
</tr>
<tr>
<td></td>
<td>Fast Forwarding (Edge Port)</td>
<td>Disabled</td>
</tr>
<tr>
<td>Address Table</td>
<td>Aging Time</td>
<td>300 seconds</td>
</tr>
<tr>
<td>Virtual LANs</td>
<td>Default VLAN</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>PVID</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Acceptable Frame Type</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>Ingress Filtering</td>
<td>Enabled</td>
</tr>
<tr>
<td></td>
<td>Switchport Mode (Egress Mode)</td>
<td>Hybrid: tagged/untagged frames</td>
</tr>
<tr>
<td></td>
<td>GVRP (global)</td>
<td>Disabled</td>
</tr>
<tr>
<td></td>
<td>GVRP (port interface)</td>
<td>Disabled</td>
</tr>
<tr>
<td>Traffic Prioritization</td>
<td>Ingress Port Priority</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Weighted Round Robin</td>
<td>Queue: 0 1 2 3 Weight: 1 2 4 8</td>
</tr>
<tr>
<td></td>
<td>IP DSCP Priority</td>
<td>Disabled</td>
</tr>
<tr>
<td>IP Settings</td>
<td>IP Address</td>
<td>DHCP assigned, otherwise 192.168.1.1</td>
</tr>
<tr>
<td></td>
<td>Subnet Mask</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td></td>
<td>Default Gateway</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td></td>
<td>DHCP</td>
<td>Client: Enabled</td>
</tr>
<tr>
<td></td>
<td>BOOTP</td>
<td>Disabled</td>
</tr>
<tr>
<td>Multicast Filtering</td>
<td>IGMP Snooping</td>
<td>Snooping: Enabled Querier: Enabled</td>
</tr>
<tr>
<td></td>
<td>Multicast VLAN Registration</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
Table 1-2 System Defaults (Continued)

<table>
<thead>
<tr>
<th>Function</th>
<th>Parameter</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Log</td>
<td>Status</td>
<td>Enabled</td>
</tr>
<tr>
<td></td>
<td>Messages Logged</td>
<td>Levels 0-7 (all)</td>
</tr>
<tr>
<td></td>
<td>Messages Logged to Flash</td>
<td>Levels 0-3</td>
</tr>
<tr>
<td>SMTP Email Alerts</td>
<td>Event Handler</td>
<td>Enabled (but no server defined)</td>
</tr>
<tr>
<td>SNTP</td>
<td>Clock Synchronization</td>
<td>Disabled</td>
</tr>
<tr>
<td>DHCP Snooping</td>
<td>Status</td>
<td>Disabled</td>
</tr>
<tr>
<td>IP Source Guard</td>
<td>Status</td>
<td>Disabled (all ports)</td>
</tr>
<tr>
<td>Switch Clustering</td>
<td>Status</td>
<td>Enabled</td>
</tr>
<tr>
<td></td>
<td>Commander</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
Chapter 2: Initial Configuration

Connecting to the Switch

Configuration Options
The switch includes a built-in network management agent. The agent offers a variety of management options, including SNMP, RMON (Groups 1, 2, 3, 9) and a web-based interface. A PC may also be connected directly to the switch for configuration and monitoring via a command line interface (CLI).

Note: The IP address for this switch is obtained via DHCP by default. To change this address, see “Setting an IP Address” on page 2-4.

The switch’s HTTP web agent allows you to configure switch parameters, monitor port connections, and display statistics using a standard web browser such as Netscape version 6.2 and higher or Microsoft IE version 5.0 and higher. The switch’s web management interface can be accessed from any computer attached to the network.

The CLI program can be accessed by a direct connection to the RS-232 serial console port on the switch, or remotely by a Telnet connection over the network.

The switch’s management agent also supports SNMP (Simple Network Management Protocol). This SNMP agent permits the switch to be managed from any system in the network using network management software such as HP OpenView.

The switch’s web interface, CLI configuration program, and SNMP agent allow you to perform the following management functions:

- Set user names and passwords
- Set an IP interface for a management VLAN
- Configure SNMP parameters
- Enable/disable any port
- Set the speed/duplex mode for any port
- Configure the bandwidth of any port by limiting input rates
- Control port access through IEEE 802.1X security or static address filtering
- Filter packets using Access Control Lists (ACLs)
- Configure up to 256 IEEE 802.1Q VLANs
- Enable GVRP automatic VLAN registration
- Configure IGMP multicast filtering
- Upload and download system firmware via TFTP
- Upload and download switch configuration files via TFTP
- Configure Spanning Tree parameters
- Configure Class of Service (CoS) priority queuing
Initial Configuration

- Configure up to 32 static or LACP trunks
- Enable port mirroring
- Set broadcast storm control on any port
- Display system information and statistics

Required Connections
The switch provides an RS-232 serial port that enables a connection to a PC or terminal for monitoring and configuring the switch. A null-modem console cable is provided with the switch.

Attach a VT100-compatible terminal, or a PC running a terminal emulation program to the switch. You can use the console cable provided with this package, or use a null-modem cable that complies with the wiring assignments shown in the Installation Guide.

To connect a terminal to the console port, complete the following steps:

1. Connect the console cable to the serial port on a terminal, or a PC running terminal emulation software, and tighten the captive retaining screws on the RS-232 connector.
2. Connect the other end of the cable to the RS-232 serial port on the switch.
3. Make sure the terminal emulation software is set as follows:
 - Select the appropriate serial port (COM port 1 or COM port 2).
 - Set the baud rate to 9600 bps.
 - Set the data format to 8 data bits, 1 stop bit, and no parity.
 - Set flow control to none.
 - Set the emulation mode to VT100.
 - When using HyperTerminal, select Terminal keys, not Windows keys.

Notes:
1. Refer to “Line Commands” on page 4-10 for a complete description of console configuration options.
2. Once you have set up the terminal correctly, the console login screen will be displayed.

For a description of how to use the CLI, see “Using the Command Line Interface” on page 4-1. For a list of all the CLI commands and detailed information on using the CLI, refer to “Command Groups” on page 4-9.
Remote Connections
Prior to accessing the switch’s onboard agent via a network connection, you must first configure it with a valid IP address, subnet mask, and default gateway using a console connection, DHCP or BOOTP protocol.

The IP address for this switch is obtained via DHCP by default. To manually configure this address or enable dynamic address assignment via DHCP or BOOTP, see “Setting an IP Address” on page 2-4.

Note: This switch supports four concurrent Telnet/SSH sessions.

After configuring the switch’s IP parameters, you can access the onboard configuration program from anywhere within the attached network. The onboard configuration program can be accessed using Telnet from any computer attached to the network. The switch can also be managed by any computer using a web browser (Internet Explorer 5.0 or above, or Netscape 6.2 or above), or from a network computer using SNMP network management software.

Note: The onboard program only provides access to basic configuration functions. To access the full range of SNMP management functions, you must use SNMP-based network management software.

Basic Configuration

Console Connection
The CLI program provides two different command levels — normal access level (Normal Exec) and privileged access level (Privileged Exec). The commands available at the Normal Exec level are a limited subset of those available at the Privileged Exec level and allow you to only display information and use basic utilities. To fully configure the switch parameters, you must access the CLI at the Privileged Exec level.

Access to both CLI levels are controlled by user names and passwords. The switch has a default user name and password for each level. To log into the CLI at the Privileged Exec level using the default user name and password, perform these steps:

1. To initiate your console connection, press <Enter>. The “User Access Verification” procedure starts.
2. At the Username prompt, enter “admin.”
3. At the Password prompt, also enter “admin.” (The password characters are not displayed on the console screen.)
4. The session is opened and the CLI displays the “Console#” prompt indicating you have access at the Privileged Exec level.
Setting Passwords

Note: If this is your first time to log into the CLI program, you should define new passwords for both default user names using the “username” command, record them and put them in a safe place.

Passwords can consist of up to 8 alphanumeric characters and are case sensitive. To prevent unauthorized access to the switch, set the passwords as follows:

1. Open the console interface with the default user name and password “admin” to access the Privileged Exec level.
2. Type “configure” and press <Enter>.
3. Type “username guest password 0 [password],” for the Normal Exec level, where **password** is your new password. Press <Enter>.
4. Type “username admin password 0 [password],” for the Privileged Exec level, where **password** is your new password. Press <Enter>.

Note: ‘0’ specifies the password in plain text, ‘7’ specifies the password in encrypted form.

```
Username: admin
Password:

CLI session with the TigerSwitch 10/100/1000 is opened.
To end the CLI session, enter [Exit].
```

```
Console#configure
Console(config)#username guest password 0 [password]
Console(config)#username admin password 0 [password]
Console(config)#
```

Setting an IP Address

You must establish IP address information for the stack to obtain management access through the network. This can be done in either of the following ways:

Manual — You have to input the information, including IP address and subnet mask. If your management station is not in the same IP subnet as the stack’s master unit, you will also need to specify the default gateway router.

Dynamic — The switch sends IP configuration requests to BOOTP or DHCP address allocation servers on the network.

Manual Configuration

You can manually assign an IP address to the switch. You may also need to specify a default gateway that resides between this device and management stations that exist on another network segment. Valid IP addresses consist of four decimal numbers, 0 to 255, separated by periods. Anything outside this format will not be accepted by the CLI program.

Note: The IP address for this switch is obtained via DHCP by default.
Before you can assign an IP address to the switch, you must obtain the following information from your network administrator:

- IP address for the switch
- Default gateway for the network
- Network mask for this network

To assign an IP address to the switch, complete the following steps:

1. From the Privileged Exec level global configuration mode prompt, type “interface vlan 1” to access the interface-configuration mode. Press <Enter>.

2. Type “ip address \textit{ip-address} \textit{netmask},” where “ip-address” is the switch IP address and “netmask” is the network mask for the network. Press <Enter>.

3. Type “exit” to return to the global configuration mode prompt. Press <Enter>.

4. To set the IP address of the default gateway for the network to which the switch belongs, type “ip default-gateway \textit{gateway},” where “gateway” is the IP address of the default gateway. Press <Enter>.

```
Console(config)#interface vlan 1
Console(config-if)#ip address 192.168.1.5 255.255.255.0
Console(config-if)#exit
Console(config)#ip default-gateway 192.168.1.254
Console(config)#
```

Dynamic Configuration

If you select the “bootp” or “dhcp” option, IP will be enabled but will not function until a BOOTP or DHCP reply has been received. You therefore need to use the “ip dhcp restart” command to start broadcasting service requests. Requests will be sent periodically in an effort to obtain IP configuration information. (BOOTP and DHCP values can include the IP address, subnet mask, and default gateway.)

If the “bootp” or “dhcp” option is saved to the startup-config file (step 6), then the switch will start broadcasting service requests as soon as it is powered on.

To automatically configure the switch by communicating with BOOTP or DHCP address allocation servers on the network, complete the following steps:

1. From the Global Configuration mode prompt, type “interface vlan 1” to access the interface-configuration mode. Press <Enter>.

2. At the interface-configuration mode prompt, use one of the following commands:

 - To obtain IP settings via DHCP, type “ip address dhcp” and press <Enter>.
 - To obtain IP settings via BOOTP, type “ip address bootp” and press <Enter>.

3. Type “end” to return to the Privileged Exec mode. Press <Enter>.

4. Type “ip dhcp restart” to begin broadcasting service requests. Press <Enter>.
5. Wait a few minutes, and then check the IP configuration settings by typing the “show ip interface” command. Press <Enter>.

6. Then save your configuration changes by typing “copy running-config startup-config.” Enter the startup file name and press <Enter>.

```console
Console(config)#interface vlan 1
Console(config-if)#ip address dhcp
Console(config-if)#end
Console#ip dhcp restart
Console#show ip interface
   IP address and netmask: 192.168.1.54 255.255.255.0 on VLAN 1,
   and address mode: User specified.
Console#copy running-config startup-config
Startup configuration file name []: startup
\Write to FLASH Programming.
\Write to FLASH finish.
Success.
```

Enabling SNMP Management Access

The switch can be configured to accept management commands from Simple Network Management Protocol (SNMP) applications such as HP OpenView. You can configure the switch to (1) respond to SNMP requests or (2) generate SNMP traps.

When SNMP management stations send requests to the switch (either to return information or to set a parameter), the switch provides the requested data or sets the specified parameter. The switch can also be configured to send information to SNMP managers (without being requested by the managers) through trap messages, which inform the manager that certain events have occurred.

The switch includes an SNMP agent that supports SNMP version 1, 2c, and 3 clients. To provide management access for version 1 or 2c clients, you must specify a community string. The switch provides a default MIB View (i.e., an SNMPv3 construct) for the default “public” community string that provides read access to the entire MIB tree, and a default view for the “private” community string that provides read/write access to the entire MIB tree. However, you may assign new views to version 1 or 2c community strings that suit your specific security requirements (see page 3-45).

Community Strings (for SNMP version 1 and 2c clients)

Community strings are used to control management access to SNMP version 1 and 2c stations, as well as to authorize SNMP stations to receive trap messages from the switch. You therefore need to assign community strings to specified users, and set the access level.
The default strings are:

- **public** - with read-only access. Authorized management stations are only able to retrieve MIB objects.
- **private** - with read-write access. Authorized management stations are able to both retrieve and modify MIB objects.

To prevent unauthorized access to the switch from SNMP version 1 or 2c clients, it is recommended that you change the default community strings.

To configure a community string, complete the following steps:

1. From the Privileged Exec level global configuration mode prompt, type “snmp-server community **string mode,**” where “**string**” is the community access string and “**mode**” is **rw** (read/write) or **ro** (read only). Press <Enter>. (Note that the default mode is read only.)

2. To remove an existing string, simply type “no snmp-server community **string,**” where “**string**” is the community access string to remove. Press <Enter>.

```
Console(config)#snmp-server community admin rw
4-102
Console(config)#snmp-server community private
Console(config)#
```

Note: If you do not intend to support access to SNMP version 1 and 2c clients, we recommend that you delete both of the default community strings. If there are no community strings, then SNMP management access from SNMP v1 and v2c clients is disabled.

Trap Receivers

You can also specify SNMP stations that are to receive traps from the switch. To configure a trap receiver, use the “snmp-server host” command. From the Privileged Exec level global configuration mode prompt, type:

```
“snmp-server host **host-address community-string**
[version {1 | 2c | 3 {auth | noauth | priv}}]”
```

where “**host-address**” is the IP address for the trap receiver, “**community-string**” specifies access rights for a version 1/2c host, or is the user name of a version 3 host, “version” indicates the SNMP client version, and “auth | noauth | priv” means that authentication, no authentication, or authentication and privacy is used for v3 clients. Then press <Enter>. For a more detailed description of these parameters, see “snmp-server host” on page 4-104. The following example creates a trap host for each type of SNMP client.

```
Console(config)#snmp-server host 10.1.19.23 batman
4-104
Console(config)#snmp-server host 10.1.19.98 robin version 2c
Console(config)#snmp-server host 10.1.19.34 barbie version 3 auth
Console(config)#
```
Configuring Access for SNMP Version 3 Clients

To configure management access for SNMPv3 clients, you need to first create a view that defines the portions of MIB that the client can read or write, assign the view to a group, and then assign the user to a group. The following example creates one view called “mib-2” that includes the entire MIB-2 tree branch, and then another view that includes the IEEE 802.1d bridge MIB. It assigns these respective read and read/write views to a group call “r&d” and specifies group authentication via MD5 or SHA. In the last step, it assigns a v3 user to this group, indicating that MD5 will be used for authentication, provides the password “greenpeace” for authentication, and the password “einstien” for encryption.

```
Console(config)#snmp-server view mib-2 1.3.6.1.2.1 included
Console(config)#snmp-server view 802.1d 1.3.6.1.2.1.17 included
Console(config)#snmp-server group r&d v3 auth mib-2 802.1d4-110
Console(config)#snmp-server user steve group r&d v3 auth md5 greenpeace priv des56 einstien4-113
Console(config)#
```

For a more detailed explanation on how to configure the switch for access from SNMP v3 clients, refer to “Simple Network Management Protocol” on page 3-33, or refer to the specific CLI commands for SNMP starting on page 4-100.

Saving Configuration Settings

Configuration commands only modify the running configuration file and are not saved when the switch is rebooted. To save all your configuration changes in nonvolatile storage, you must copy the running configuration file to the start-up configuration file using the “copy” command.

To save the current configuration settings, enter the following command:

1. From the Privileged Exec mode prompt, type “copy running-config startup-config” and press <Enter>.
2. Enter the name of the start-up file. Press <Enter>.

```
Console#copy running-config startup-config
Startup configuration file name []: startup
\Write to FLASH Programming.

\Write to FLASH finish.
Success.
Console#
```
Managing System Files

The switch’s flash memory supports three types of system files that can be managed by the CLI program, web interface, or SNMP. The switch’s file system allows files to be uploaded and downloaded, copied, deleted, and set as a start-up file.

The three types of files are:

- **Configuration** — This file stores system configuration information and is created when configuration settings are saved. Saved configuration files can be selected as a system start-up file or can be uploaded via TFTP to a server for backup. A file named “Factory_Default_Config.cfg” contains all the system default settings and cannot be deleted from the system. See “Saving or Restoring Configuration Settings” on page 3-19 for more information.

- **Operation Code** — System software that is executed after boot-up, also known as run-time code. This code runs the switch operations and provides the CLI and web management interfaces. See “Managing Firmware” on page 3-17 for more information.

- **Diagnostic Code** — Software that is run during system boot-up, also known as POST (Power On Self-Test).

Due to the size limit of the flash memory, the switch supports only two operation code files. However, you can have as many diagnostic code files and configuration files as available flash memory space allows.

In the system flash memory, one file of each type must be set as the start-up file. During a system boot, the diagnostic and operation code files set as the start-up file are run, and then the start-up configuration file is loaded.

Note that configuration files should be downloaded using a file name that reflects the contents or usage of the file settings. If you download directly to the running-config, the system will reboot, and the settings will have to be copied from the running-config to a permanent file.
Initial Configuration
Chapter 3: Configuring the Switch

Using the Web Interface

This switch provides an embedded HTTP web agent. Using a web browser you can configure the switch and view statistics to monitor network activity. The web agent can be accessed by any computer on the network using a standard web browser (Internet Explorer 5.0 or above, or Netscape 6.2 or above).

Note: You can also use the Command Line Interface (CLI) to manage the switch over a serial connection to the console port or via Telnet. For more information on using the CLI, refer to Chapter 4: “Command Line Interface.”

Prior to accessing the switch from a web browser, be sure you have first performed the following tasks:

1. Configure the switch with a valid IP address, subnet mask, and default gateway using an out-of-band serial connection, BOOTP or DHCP protocol. (See “Setting an IP Address” on page 2-4.)

2. Set user names and passwords using an out-of-band serial connection. Access to the web agent is controlled by the same user names and passwords as the onboard configuration program. (See “Setting Passwords” on page 2-4.)

3. After you enter a user name and password, you will have access to the system configuration program.

Notes: 1. You are allowed three attempts to enter the correct password; on the third failed attempt the current connection is terminated.

2. If you log into the web interface as guest (Normal Exec level), you can view the configuration settings or change the guest password. If you log in as “admin” (Privileged Exec level), you can change the settings on any page.

3. If the path between your management station and this switch does not pass through any device that uses the Spanning Tree Algorithm, then you can set the switch port attached to your management station to fast forwarding (i.e., enable Admin Edge Port) to improve the switch’s response time to management commands issued through the web interface. See “Configuring Interface Settings” on page 3-114.
Navigating the Web Browser Interface

To access the web-browser interface you must first enter a user name and password. The administrator has Read/Write access to all configuration parameters and statistics. The default user name and password for the administrator is “admin.”

Home Page

When your web browser connects with the switch’s web agent, the home page is displayed as shown below. The home page displays the Main Menu on the left side of the screen and System Information on the right side. The Main Menu links are used to navigate to other menus, and display configuration parameters and statistics.

Note: The examples in this chapter are based on the SMC8126L2. Other than the number of fixed ports, there are no other differences between the SMC8126L2 and SMC8150L2. The panel graphics for both switch types are shown on the following page.
Configuration Options

Configurable parameters have a dialog box or a drop-down list. Once a configuration change has been made on a page, be sure to click on the Apply button to confirm the new setting. The following table summarizes the web page configuration buttons.

<table>
<thead>
<tr>
<th>Button</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revert</td>
<td>Cancels specified values and restores current values prior to pressing Apply.</td>
</tr>
<tr>
<td>Apply</td>
<td>Sets specified values to the system.</td>
</tr>
<tr>
<td>Help</td>
<td>Links directly to webhelp.</td>
</tr>
</tbody>
</table>

Notes:
1. To ensure proper screen refresh, be sure that Internet Explorer 5.x is configured as follows: Under the menu “Tools / Internet Options / General / Temporary Internet Files / Settings,” the setting for item “Check for newer versions of stored pages” should be “Every visit to the page.”
2. When using Internet Explorer 5.0, you may have to manually refresh the screen after making configuration changes by pressing the browser’s refresh button.

Panel Display

The web agent displays an image of the switch’s ports. The Mode can be set to display different information for the ports, including Active (i.e., up or down), Duplex (i.e., half or full duplex, or Flow Control (i.e., with or without flow control). Clicking on the image of a port opens the Port Configuration page as described on page 3-78.
Main Menu

Using the onboard web agent, you can define system parameters, manage and control the switch, and all its ports, or monitor network conditions. The following table briefly describes the selections available from this program.

<table>
<thead>
<tr>
<th>Menu</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Information</td>
<td>Provides basic system description, including contact information</td>
<td>3-10</td>
</tr>
<tr>
<td>Switch Information</td>
<td>Shows the number of ports, hardware/firmware version numbers, and power status</td>
<td>3-11</td>
</tr>
<tr>
<td>Bridge Extension Configuration</td>
<td>Shows the bridge extension parameters</td>
<td>3-13</td>
</tr>
<tr>
<td>IP Configuration</td>
<td>Sets the IP address for management access</td>
<td>3-14</td>
</tr>
<tr>
<td>Jumbo Frames</td>
<td>Enables jumbo frame packets.</td>
<td>3-17</td>
</tr>
<tr>
<td>File Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copy Operation</td>
<td>Allows the transfer and copying files</td>
<td>3-17</td>
</tr>
<tr>
<td>Delete</td>
<td>Allows deletion of files from the flash memory</td>
<td>3-18</td>
</tr>
<tr>
<td>Set Start-Up</td>
<td>Sets the startup file</td>
<td>3-18</td>
</tr>
<tr>
<td>Line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Console</td>
<td>Sets console port connection parameters</td>
<td>3-21</td>
</tr>
<tr>
<td>Telnet</td>
<td>Sets Telnet connection parameters</td>
<td>3-23</td>
</tr>
<tr>
<td>Log</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logs</td>
<td>Stores and displays error messages</td>
<td>3-25</td>
</tr>
<tr>
<td>System Logs</td>
<td>Sends error messages to a logging process</td>
<td>3-26</td>
</tr>
<tr>
<td>Remote Logs</td>
<td>Configures the logging of messages to a remote logging process</td>
<td>3-27</td>
</tr>
<tr>
<td>SMTP</td>
<td>Sends an SMTP client message to a participating server.</td>
<td>3-28</td>
</tr>
<tr>
<td>Renumbering</td>
<td>Renumbers the units in the stack</td>
<td>3-30</td>
</tr>
<tr>
<td>Reset</td>
<td>Restarts the switch</td>
<td>3-30</td>
</tr>
<tr>
<td>SNTP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Configuration</td>
<td>Configures SNTP client settings, including broadcast mode or a specified list of servers</td>
<td>3-31</td>
</tr>
<tr>
<td>Clock Time Zone</td>
<td>Sets the local time zone for the system clock</td>
<td>3-32</td>
</tr>
<tr>
<td>SNMP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Configuration</td>
<td>Configures community strings and related trap functions</td>
<td>3-33</td>
</tr>
<tr>
<td>Agent Status</td>
<td>Enables or disables SNMP Agent Status</td>
<td>3-35</td>
</tr>
<tr>
<td>SNMPv3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menu</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Engine ID</td>
<td>Sets the SNMP v3 engine ID on this switch</td>
<td>3-36</td>
</tr>
<tr>
<td>Remote Engine ID</td>
<td>Sets the SNMP v3 engine ID for a remote device</td>
<td>3-37</td>
</tr>
<tr>
<td>Users</td>
<td>Configures SNMP v3 users on this switch</td>
<td>3-37</td>
</tr>
<tr>
<td>Remote Users</td>
<td>Configures SNMP v3 users from a remote device</td>
<td>3-40</td>
</tr>
<tr>
<td>Groups</td>
<td>Configures SNMP v3 groups</td>
<td>3-41</td>
</tr>
<tr>
<td>Views</td>
<td>Configures SNMP v3 views</td>
<td>3-45</td>
</tr>
<tr>
<td>Security</td>
<td></td>
<td>3-46</td>
</tr>
<tr>
<td>User Accounts</td>
<td>Assigns a new password for the current user</td>
<td>3-46</td>
</tr>
<tr>
<td>Authentication Settings</td>
<td>Configures authentication sequence, RADIUS and TACACS</td>
<td>3-48</td>
</tr>
<tr>
<td>HTTPS Settings</td>
<td>Configures secure HTTP settings</td>
<td>3-52</td>
</tr>
<tr>
<td>SSH</td>
<td></td>
<td>3-54</td>
</tr>
<tr>
<td>Settings</td>
<td>Configures Secure Shell server settings</td>
<td>3-59</td>
</tr>
<tr>
<td>Host-Key Settings</td>
<td>Generates the host key pair (public and private)</td>
<td>3-57</td>
</tr>
<tr>
<td>Port Security</td>
<td>Configures per port security, including status, response for security breach, and maximum allowed MAC addresses</td>
<td>3-59</td>
</tr>
<tr>
<td>802.1X</td>
<td>Port authentication</td>
<td>3-60</td>
</tr>
<tr>
<td>Information</td>
<td>Displays global configuration settings</td>
<td>3-62</td>
</tr>
<tr>
<td>Configuration</td>
<td>Configures the global configuration setting</td>
<td>3-62</td>
</tr>
<tr>
<td>Port Configuration</td>
<td>Sets parameters for individual ports</td>
<td>3-63</td>
</tr>
<tr>
<td>Statistics</td>
<td>Displays protocol statistics for the selected port</td>
<td>3-66</td>
</tr>
<tr>
<td>ACL</td>
<td></td>
<td>3-67</td>
</tr>
<tr>
<td>Configuration</td>
<td>Configures packet filtering based on IP or MAC addresses</td>
<td>3-67</td>
</tr>
<tr>
<td>Port Binding</td>
<td>Binds a port to the specified ACL</td>
<td>3-73</td>
</tr>
<tr>
<td>IP Filter</td>
<td>Sets IP addresses of clients allowed management access via the web, SNMP, and Telnet</td>
<td>3-74</td>
</tr>
<tr>
<td>Port</td>
<td></td>
<td>3-76</td>
</tr>
<tr>
<td>Port Information</td>
<td>Displays port connection status</td>
<td>3-76</td>
</tr>
<tr>
<td>Trunk Information</td>
<td>Displays trunk connection status</td>
<td>3-76</td>
</tr>
<tr>
<td>Port Configuration</td>
<td>Configures port connection settings</td>
<td>3-78</td>
</tr>
<tr>
<td>Trunk Configuration</td>
<td>Configures trunk connection settings</td>
<td>3-78</td>
</tr>
<tr>
<td>Trunk Membership</td>
<td>Specifies ports to group into static trunks</td>
<td>3-81</td>
</tr>
<tr>
<td>LACP</td>
<td></td>
<td>3-82</td>
</tr>
<tr>
<td>Configuration</td>
<td>Allows ports to dynamically join trunks</td>
<td>3-82</td>
</tr>
</tbody>
</table>
Table 3-2: Main Menu (Continued)

<table>
<thead>
<tr>
<th>Menu</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregation Port</td>
<td>Configures parameters for link aggregation group members</td>
<td>3-84</td>
</tr>
<tr>
<td>Port Counters Information</td>
<td>Displays statistics for LACP protocol messages</td>
<td>3-86</td>
</tr>
<tr>
<td>Port Internal Information</td>
<td>Displays settings and operational state for the local side</td>
<td>3-88</td>
</tr>
<tr>
<td>Port Neighbors Information</td>
<td>Displays settings and operational state for the remote side</td>
<td>3-90</td>
</tr>
<tr>
<td>Port Broadcast Control</td>
<td>Sets the broadcast storm threshold for each port</td>
<td>3-91</td>
</tr>
<tr>
<td>Trunk Broadcast Control</td>
<td>Sets the broadcast storm threshold for each trunk</td>
<td>3-91</td>
</tr>
<tr>
<td>Mirror Port Configuration</td>
<td>Sets the source and target ports for mirroring</td>
<td>3-93</td>
</tr>
<tr>
<td>Rate Limit</td>
<td></td>
<td>3-94</td>
</tr>
<tr>
<td>Input Port Configuration</td>
<td>Sets the input rate limit for each port</td>
<td>3-94</td>
</tr>
<tr>
<td>Input Trunk Configuration</td>
<td>Sets the input rate limit for each trunk</td>
<td>3-94</td>
</tr>
<tr>
<td>Output Port Configuration</td>
<td>Sets the output rate limit for ports</td>
<td>3-94</td>
</tr>
<tr>
<td>Output Trunk Configuration</td>
<td>Sets the output rate limit for trunks</td>
<td>3-94</td>
</tr>
<tr>
<td>Port Statistics</td>
<td>Lists Ethernet and RMON port statistics</td>
<td>3-95</td>
</tr>
<tr>
<td>Address Table</td>
<td></td>
<td>3-99</td>
</tr>
<tr>
<td>Static Addresses</td>
<td>Displays entries for interface, address or VLAN</td>
<td>3-99</td>
</tr>
<tr>
<td>Dynamic Addresses</td>
<td>Displays or edits static entries in the Address Table</td>
<td>3-100</td>
</tr>
<tr>
<td>Address Aging</td>
<td>Sets timeout for dynamically learned entries</td>
<td>3-102</td>
</tr>
<tr>
<td>Spanning Tree</td>
<td></td>
<td>3-102</td>
</tr>
<tr>
<td>STA</td>
<td></td>
<td>3-102</td>
</tr>
<tr>
<td>Information</td>
<td>Displays STA values used for the bridge</td>
<td>3-105</td>
</tr>
<tr>
<td>Configuration</td>
<td>Configures global bridge settings for STA and RSTP</td>
<td>3-107</td>
</tr>
<tr>
<td>Port Information</td>
<td>Displays individual port settings for STA</td>
<td>3-111</td>
</tr>
<tr>
<td>Trunk Information</td>
<td>Displays individual trunk settings for STA</td>
<td>3-111</td>
</tr>
<tr>
<td>Port Configuration</td>
<td>Configures individual port settings for STA</td>
<td>3-114</td>
</tr>
<tr>
<td>Trunk Configuration</td>
<td>Configures individual trunk settings for STA</td>
<td>3-114</td>
</tr>
<tr>
<td>MSTP</td>
<td></td>
<td>3-116</td>
</tr>
<tr>
<td>VLAN Configuration</td>
<td>Configures priority and VLANs for a spanning tree instance</td>
<td>3-116</td>
</tr>
<tr>
<td>Port Information</td>
<td>Displays port settings for a specified MST instance</td>
<td>3-118</td>
</tr>
<tr>
<td>Trunk Information</td>
<td>Displays trunk settings for a specified MST instance</td>
<td>3-118</td>
</tr>
<tr>
<td>Port Configuration</td>
<td>Configures port settings for a specified MST instance</td>
<td>3-120</td>
</tr>
<tr>
<td>Trunk Configuration</td>
<td>Configures trunk settings for a specified MST instance</td>
<td>3-120</td>
</tr>
</tbody>
</table>
Table 3-2 Main Menu (Continued)

<table>
<thead>
<tr>
<th>Menu</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN</td>
<td></td>
<td>3-122</td>
</tr>
<tr>
<td>802.1Q VLAN</td>
<td></td>
<td>3-122</td>
</tr>
<tr>
<td>GVRP Status</td>
<td>Enables GVRP VLAN registration protocol</td>
<td>3-125</td>
</tr>
<tr>
<td>802.1Q Tunnel Configuration</td>
<td>Enables QinQ Tunneling on the switch</td>
<td>3-126</td>
</tr>
<tr>
<td>Basic Information</td>
<td>Displays information on the VLAN type supported by this switch</td>
<td>3-126</td>
</tr>
<tr>
<td>Current Table</td>
<td>Shows the current port members of each VLAN and whether or not the port is tagged or untagged</td>
<td>3-126</td>
</tr>
<tr>
<td>Static List</td>
<td>Used to create or remove VLAN groups</td>
<td>3-128</td>
</tr>
<tr>
<td>Static Table</td>
<td>Modifies the settings for an existing VLAN</td>
<td>3-129</td>
</tr>
<tr>
<td>Static Membership by Port</td>
<td>Configures membership type for interfaces, including tagged, untagged or forbidden</td>
<td>3-131</td>
</tr>
<tr>
<td>Port Configuration</td>
<td>Specifies default PVID and VLAN attributes</td>
<td>3-132</td>
</tr>
<tr>
<td>Trunk Configuration</td>
<td>Specifies default trunk VID and VLAN attributes</td>
<td>3-132</td>
</tr>
<tr>
<td>Tunnel Port Configuration</td>
<td>Adds ports to a QinQ tunnel</td>
<td>3-138</td>
</tr>
<tr>
<td>Tunnel Trunk Configuration</td>
<td>Adds trunks to a QinQ tunnel</td>
<td>3-138</td>
</tr>
<tr>
<td>Private VLAN</td>
<td></td>
<td>3-141</td>
</tr>
<tr>
<td>Status</td>
<td>Enables or disables the private VLAN</td>
<td>3-141</td>
</tr>
<tr>
<td>Link Status</td>
<td>Configures the private VLAN</td>
<td>3-141</td>
</tr>
<tr>
<td>Protocol VLAN</td>
<td></td>
<td>3-142</td>
</tr>
<tr>
<td>Configuration</td>
<td>Configures protocol VLANs</td>
<td>3-142</td>
</tr>
<tr>
<td>Port Configuration</td>
<td>Configures protocol VLAN port type, and associated protocol VLANs</td>
<td>3-143</td>
</tr>
<tr>
<td>Priority</td>
<td></td>
<td>3-144</td>
</tr>
<tr>
<td>Default Port Priority</td>
<td>Sets the default priority for each port</td>
<td>3-144</td>
</tr>
<tr>
<td>Default Trunk Priority</td>
<td>Sets the default priority for each trunk</td>
<td>3-144</td>
</tr>
<tr>
<td>Traffic Classes</td>
<td>Maps IEEE 802.1p priority tags to output queues</td>
<td>3-145</td>
</tr>
<tr>
<td>Traffic Classes Status</td>
<td>Enables/disables traffic class priorities (not implemented)</td>
<td>3-147</td>
</tr>
<tr>
<td>Queue Mode</td>
<td>Sets queue mode to strict priority or Weighted Round-Robin</td>
<td>3-147</td>
</tr>
<tr>
<td>Queue Scheduling</td>
<td>Configures Weighted Round Robin queueing</td>
<td>3-148</td>
</tr>
<tr>
<td>IP Precedence/DSCP Priority Status</td>
<td>Globally selects IP Precedence or DSCP Priority, or disables both.</td>
<td>3-149</td>
</tr>
<tr>
<td>IP Precedence Priority</td>
<td>Sets IP Type of Service priority, mapping the precedence tag to a class-of-service value</td>
<td>3-150</td>
</tr>
</tbody>
</table>
Table 3-2 Main Menu (Continued)

<table>
<thead>
<tr>
<th>Menu</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP DSCP Priority</td>
<td>Sets IP Differentiated Services Code Point priority, mapping a DSCP tag to a class-of-service value</td>
<td>3-152</td>
</tr>
<tr>
<td>IP Port Priority Status</td>
<td>Globally enables or disables IP Port Priority</td>
<td>3-153</td>
</tr>
<tr>
<td>IP Port Priority</td>
<td>Sets TCP/UDP port priority, defining the socket number and associated class-of-service value</td>
<td>3-153</td>
</tr>
<tr>
<td>QoS</td>
<td></td>
<td>3-154</td>
</tr>
<tr>
<td>DiffServ</td>
<td></td>
<td>3-154</td>
</tr>
<tr>
<td>Class Map</td>
<td>Sets Class Maps</td>
<td>3-155</td>
</tr>
<tr>
<td>Policy Map</td>
<td>Sets Policy Maps</td>
<td>3-158</td>
</tr>
<tr>
<td>Service Policy</td>
<td>Defines service policy settings for ports</td>
<td>3-161</td>
</tr>
<tr>
<td>IGMP Snooping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGMP Configuration</td>
<td>Enables multicast filtering; configures parameters for multicast query</td>
<td>3-162</td>
</tr>
<tr>
<td>IGMP Filter Configuration</td>
<td>Enables IGMP filtering and throttling for the switch, creates filter profile numbers</td>
<td>3-163</td>
</tr>
<tr>
<td>IGMP Immediate Leave</td>
<td>Enables the immediate leave function</td>
<td>3-164</td>
</tr>
<tr>
<td>Multicast Router Port Information</td>
<td>Displays the ports that are attached to a neighboring multicast router for each VLAN ID</td>
<td>3-165</td>
</tr>
<tr>
<td>Static Multicast Router Port Configuration</td>
<td>Assigns ports that are attached to a neighboring multicast router</td>
<td>3-166</td>
</tr>
<tr>
<td>IP Multicast Registration Table</td>
<td>Displays all multicast groups active on this switch, including multicast IP addresses and VLAN ID</td>
<td>3-167</td>
</tr>
<tr>
<td>IGMP Member Port Table</td>
<td>Indicates multicast addresses associated with the selected VLAN</td>
<td>3-168</td>
</tr>
<tr>
<td>IGMP Filter Profile Configuration</td>
<td>Configures IGMP filter profile controlled groups and access mode</td>
<td>3-169</td>
</tr>
<tr>
<td>IGMP Filter/Throttling Port Configuration</td>
<td>Assigns IGMP filter profiles to port interfaces and sets throttling settings</td>
<td>3-171</td>
</tr>
<tr>
<td>IGMP Filter/Throttling Trunk Configuration</td>
<td>Assigns IGMP filter profiles to trunk interfaces and sets throttling settings</td>
<td>3-171</td>
</tr>
<tr>
<td>MVR Configuration</td>
<td>Globally enables MVR, sets the MVR VLAN, adds multicast stream addresses</td>
<td>3-174</td>
</tr>
<tr>
<td>Port Information</td>
<td>Displays MVR interface type, MVR operational and activity status, and immediate leave status</td>
<td>3-175</td>
</tr>
<tr>
<td>Trunk Information</td>
<td>Displays MVR interface type, MVR operational and activity status, and immediate leave status</td>
<td>3-176</td>
</tr>
<tr>
<td>Group IP Information</td>
<td>Displays the ports attached to an MVR multicast stream</td>
<td>3-178</td>
</tr>
<tr>
<td>Menu</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Port Configuration</td>
<td>Configures MVR interface type and immediate leave status</td>
<td>3-179</td>
</tr>
<tr>
<td>Trunk Configuration</td>
<td>Configures MVR interface type and immediate leave status</td>
<td>3-179</td>
</tr>
<tr>
<td>Group Member Configuration</td>
<td>Statically assigns MVR multicast streams to an interface</td>
<td>3-180</td>
</tr>
<tr>
<td>DNS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Configuration</td>
<td>Enables DNS; configures domain name and domain list; and specifies IP address of name servers for dynamic lookup</td>
<td>3-181</td>
</tr>
<tr>
<td>Static Host Table</td>
<td>Configures static entries for domain name to address mapping</td>
<td>3-183</td>
</tr>
<tr>
<td>Cache</td>
<td>Displays cache entries discovered by designated name servers</td>
<td>3-185</td>
</tr>
<tr>
<td>DHCP Snooping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Configuration</td>
<td>Enables DHCP Snooping and DHCP Snooping MAC-Address Verification</td>
<td>3-187</td>
</tr>
<tr>
<td>VLAN Configuration</td>
<td>Enables DHCP Snooping for a VLAN</td>
<td>3-188</td>
</tr>
<tr>
<td>Information Option Configuration</td>
<td>Enables DHCP Snooping Information Option</td>
<td>3-188</td>
</tr>
<tr>
<td>Port Configuration</td>
<td>Selects the DHCP Snooping Information Option policy</td>
<td>3-189</td>
</tr>
<tr>
<td>Binding Information</td>
<td>Displays the DHCP Snooping binding information</td>
<td>3-190</td>
</tr>
<tr>
<td>IP Source Guard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port Configuration</td>
<td>Enables IP source guard and selects filter type per port</td>
<td>3-191</td>
</tr>
<tr>
<td>Static Configuration</td>
<td>Adds a static addresses to the source-guard binding table</td>
<td>3-192</td>
</tr>
<tr>
<td>Dynamic Information</td>
<td>Displays the source-guard binding table for a selected interface</td>
<td>3-193</td>
</tr>
<tr>
<td>Cluster</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Configuration</td>
<td>Globally enables clustering for the switch</td>
<td>3-188</td>
</tr>
<tr>
<td>Member Configuration</td>
<td>Adds switch Members to the cluster</td>
<td>3-196</td>
</tr>
<tr>
<td>Member Information</td>
<td>Displays cluster Member switch information</td>
<td>3-197</td>
</tr>
<tr>
<td>Candidate Information</td>
<td>Displays network Candidate switch information</td>
<td>3-198</td>
</tr>
</tbody>
</table>
Basic Configuration

Displaying System Information

You can easily identify the system by displaying the device name, location and contact information.

Field Attributes

- **System Name** – Name assigned to the switch system.
- **Object ID** – MIB II object ID for switch’s network management subsystem.
- **Location** – Specifies the system location.
- **Contact** – Administrator responsible for the system.
- **System Up Time** – Length of time the management agent has been up.

These additional parameters are displayed for the CLI.

- **MAC Address** – The physical layer address for this switch.
- **Web server** – Shows if management access via HTTP is enabled.
- **Web server port** – Shows the TCP port number used by the web interface.
- **Web secure server** – Shows if management access via HTTPS is enabled.
- **Web secure server port** – Shows the TCP port used by the HTTPS interface.
- **Telnet server** – Shows if management access via Telnet is enabled.
- **Telnet port** – Shows the TCP port used by the Telnet interface.
- **Jumbo Frame** – Shows if jumbo frames are enabled.
- **POST result** – Shows results of the power-on self-test.

Web – Click System, System Information. Specify the system name, location, and contact information for the system administrator, then click Apply. (This page also includes a Telnet button that allows access to the Command Line Interface via Telnet.)

![Figure 3-3 System Information](image-url)
Basic Configuration

CLI – Specify the hostname, location and contact information.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Console(config)#hostname R&D 5</td>
<td>Configures the hostname as R&D 5.</td>
</tr>
<tr>
<td>Console(config)#snmp-server location WC 9</td>
<td>Configures the SNMP location as WC 9.</td>
</tr>
<tr>
<td>Console(config)#snmp-server contact Ted</td>
<td>Configures the SNMP contact as Ted.</td>
</tr>
</tbody>
</table>

Displaying Switch Hardware/Software Versions

Use the Switch Information page to display hardware/firmware version numbers for the main board and management software, as well as the power status of the system.

Field Attributes

Main Board

- **Serial Number** – The serial number of the switch.
- **Number of Ports** – Number of built-in RJ-45 ports.
- **Hardware Version** – Hardware version of the main board.
- **Internal Power Status** – Displays the status of the internal power supply.

Management Software

- **EPLD Version** – Version number of the Electronically Programmable Logic Device code.
- **Loader Version** – Version number of loader code.
- **Boot-ROM Version** – Version of Power-On Self-Test (POST) and boot code.
- **Operation Code Version** – Version number of runtime code.
- **Role** – Shows that this switch is operating as Master or Slave.
Web – Click System, Switch Information.

![Switch Information](image)

Figure 3-4 Switch Information

CLI – Use the following command to display version information.

```
Console#show version
Unit 1
  Serial number:
  Hardware version: EPLD Version: 4.04
  Number of ports: 26
  Main power status: Up
  Redundant power status: Not present

Agent (master)
  Unit ID: 1
  Loader version: 0.0.0.5
  Boot ROM version: 0.0.0.8
  Operation code version: 0.0.1.2

Console#
```
Displaying Bridge Extension Capabilities

The Bridge MIB includes extensions for managed devices that support Multicast Filtering, Traffic Classes, and Virtual LANs. You can access these extensions to display default settings for the key variables.

Field Attributes

- **Extended Multicast Filtering Services** – This switch does not support the filtering of individual multicast addresses based on GMRP (GARP Multicast Registration Protocol).

- **Traffic Classes** – This switch provides mapping of user priorities to multiple traffic classes. (Refer to “Class of Service Configuration” on page 3-144.)

- **Static Entry Individual Port** – This switch allows static filtering for unicast and multicast addresses. (Refer to “Setting Static Addresses” on page 3-99.)

- **VLAN Learning** – This switch uses Shared VLAN Learning (SVL), where all VLANs share the same address table.

- **Configurable PVID Tagging** – This switch allows you to override the default Port VLAN ID (PVID used in frame tags) and egress status (VLAN-Tagged or Untagged) on each port. (Refer to “VLAN Configuration” on page 3-122.)

- **Local VLAN Capable** – This switch does not support multiple local bridges outside of the scope of 802.1Q defined VLANs.

- **GMRP** – GARP Multicast Registration Protocol (GMRP) allows network devices to register endstations with multicast groups. This switch does not support GMRP; it uses the Internet Group Management Protocol (IGMP) to provide automatic multicast filtering.

Web – Click System, Bridge Extension Configuration.
3 Configuring the Switch

CLI – Enter the following command.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Console#show bridge-ext</td>
<td></td>
</tr>
<tr>
<td>Max support VLAN numbers:</td>
<td>256</td>
</tr>
<tr>
<td>Max support VLAN ID:</td>
<td>4094</td>
</tr>
<tr>
<td>Extended multicast filtering services:</td>
<td>No</td>
</tr>
<tr>
<td>Static entry individual port:</td>
<td>Yes</td>
</tr>
<tr>
<td>VLAN learning:</td>
<td>IVL</td>
</tr>
<tr>
<td>Configurable PVID tagging:</td>
<td>Yes</td>
</tr>
<tr>
<td>Local VLAN capable:</td>
<td>No</td>
</tr>
<tr>
<td>Traffic classes:</td>
<td>Enabled</td>
</tr>
<tr>
<td>Global GVRP status:</td>
<td>Disabled</td>
</tr>
<tr>
<td>GMRP:</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Setting the Switch’s IP Address

This section describes how to configure an IP interface for management access over the network. The IP address for the stack is obtained via DHCP by default. To manually configure an address, you need to change the switch’s default settings (IP address 192.168.1.1 and netmask 255.255.255.0) to values that are compatible with your network. You may also need to establish a default gateway between the stack and management stations that exist on another network segment.

You can manually configure a specific IP address, or direct the device to obtain an address from a BOOTP or DHCP server. Valid IP addresses consist of four decimal numbers, 0 to 255, separated by periods. Anything outside this format will not be accepted by the CLI program.

Command Attributes

- **Management VLAN** – ID of the configured VLAN (1-4094, no leading zeroes). By default, all ports on the switch are members of VLAN 1. However, the management station can be attached to a port belonging to any VLAN, as long as that VLAN has been assigned an IP address.

- **IP Address Mode** – Specifies whether IP functionality is enabled via manual configuration (Static), Dynamic Host Configuration Protocol (DHCP), or Boot Protocol (BOOTP). If DHCP/BOOTP is enabled, IP will not function until a reply has been received from the server. Requests will be broadcast periodically by the switch for an IP address. (DHCP/BOOTP values can include the IP address, subnet mask, and default gateway.)

- **IP Address** – Address of the VLAN interface that is allowed management access. Valid IP addresses consist of four numbers, 0 to 255, separated by periods. (Default: 0.0.0.0)

- **Subnet Mask** – This mask identifies the host address bits used for routing to specific subnets. (Default: 255.0.0.0)

- **Gateway IP address** – IP address of the gateway router between this device and management stations that exist on other network segments. (Default: 0.0.0.0)

- **MAC Address** – The physical layer address for this switch.

- **Restart DHCP** – Requests a new IP address from the DHCP server.
Manual Configuration

Web – Click System, IP Configuration. Select the VLAN through which the management station is attached, set the IP Address Mode to “Static,” enter the IP address, subnet mask and gateway, then click Apply.

![Manual IP Configuration](image)

CLI – Specify the management interface, IP address and default gateway.

```console
Console(config)#interface vlan 1
Console(config-if)#ip address 192.168.1.1 255.255.255.0
Console(config-if)#exit
Console(config)#ip default-gateway 0.0.0.0
```

Figure 3-6 Manual IP Configuration
Using DHCP/BOOTP

If your network provides DHCP/BOOTP services, you can configure the switch to be dynamically configured by these services.

Web – Click System, IP Configuration. Specify the VLAN to which the management station is attached, set the IP Address Mode to DHCP or BOOTP. Click Apply to save your changes. Then click Restart DHCP to immediately request a new address. Note that the switch will also broadcast a request for IP configuration settings on each power reset.

![DHCP IP Configuration](image)

Figure 3-7 DHCP IP Configuration

Note: If you lose your management connection, use a console connection and enter “show ip interface” to determine the new switch address.

CLI – Specify the management interface, and set the IP address mode to DHCP or BOOTP, and then enter the “ip dhcp restart” command.

```
Console#config
Console(config)#interface vlan 1
Console(config-if)#ip address dhcp
Console(config-if)#end
Console#ip dhcp restart
Console#show ip interface
IP address and netmask: 192.168.1.1 255.255.255.0 on VLAN 1, and address mode: User specified.
Console#
```

Renewing DHCP – DHCP may lease addresses to clients indefinitely or for a specific period of time. If the address expires or the switch is moved to another network segment, you will lose management access to the switch. In this case, you can reboot the switch or submit a client request to restart DHCP service via the CLI.
Web – If the address assigned by DHCP is no longer functioning, you will not be able to renew the IP settings via the web interface. You can only restart DHCP service via the web interface if the current address is still available.

CLI – Enter the following command to restart DHCP service.

```
Console#ip dhcp restart
```

Enabling Jumbo Frames

You can enable jumbo frames to support data packets up to 9000 bytes in size.

Command Attributes

- **Jumbo Packet Status** – Check the box to enable jumbo frames.

Web – Click System, Jumbo Frames.

Managing Firmware

You can upload/download firmware to or from a TFTP server, or copy files to and from switch units in a stack. By saving runtime code to a file on a TFTP server, that file can later be downloaded to the switch to restore operation. You can also set the switch to use new firmware without overwriting the previous version. You must specify the method of file transfer, along with the file type and file names as required.

Command Attributes

- **File Transfer Method** – The firmware copy operation includes these options:
 - file to file – Copies a file within the switch directory, assigning it a new name.
 - file to tftp – Copies a file from the switch to a TFTP server.
 - tftp to file – Copies a file from a TFTP server to the switch.
- **TFTP Server IP Address** – The IP address of a TFTP server.
- **File Type** – Specify opcode (operational code) to copy firmware.
• **File Name** – The file name should not contain slashes (\ or /), the leading letter of the file name should not be a period (.), and the maximum length for file names on the TFTP server is 127 characters or 31 characters for files on the switch. (Valid characters: A-Z, a-z, 0-9, ".", ",", ",")

Note: Up to two copies of the system software (i.e., the runtime firmware) can be stored in the file directory on the switch. The currently designated startup version of this file cannot be deleted.

Downloading System Software from a Server

When downloading runtime code, you can specify the destination file name to replace the current image, or first download the file using a different name from the current runtime code file, and then set the new file as the startup file.

Web – Click System, File Management, Copy Operation. Select “tftp to file” as the file transfer method, enter the IP address of the TFTP server, set the file type to “opcode,” enter the file name of the software to download, select a file on the switch to overwrite or specify a new file name, then click Apply. If you replaced the current firmware used for startup and want to start using the new operation code, reboot the system via the System/Reset menu.

![Figure 3-9 Copy Firmware](image)

If you download to a new destination file, go to the System/File/Set Start-Up menu, mark the operation code file used at startup, and click Apply. To start the new firmware, reboot the system via the System/Reset menu.

![Figure 3-10 Setting the Startup Code](image)
To delete a file select System, File, Delete. Select the file name from the given list by checking the tick box and click Apply. Note that the file currently designated as the startup code cannot be deleted.

![Figure 3-11 Deleting Files](image)

CLI – To download new firmware form a TFTP server, enter the IP address of the TFTP server, select “opcode” as the file type, then enter the source and destination file names. When the file has finished downloading, set the new file to start up the system, and then restart the switch.

To start the new firmware, enter the “reload” command or reboot the system.

```plaintext
Console#copy tftp file
TFTP server ip address: 192.168.1.23
Choose file type:
  1. config:  2. opcode: <1-2>: 2
Source file name: V2.2.7.1.bix
Destination file name: V2271.F
\Write to FLASH Programming.
  -Write to FLASH finish.
Success.
Console#config
Console(config)#boot system opcode:V2271.F
4-69
Console(config)#exit
Console#reload
4-22
```

Saving or Restoring Configuration Settings

You can upload/download configuration settings to/from a TFTP server. The configuration files can be later downloaded to restore the switch’s settings.

Command Attributes

- **File Transfer Method** – The configuration copy operation includes these options:
 - file to file – Copies a file within the switch directory, assigning it a new name.
 - file to running-config – Copies a file in the switch to the running configuration.
 - file to startup-config – Copies a file in the switch to the startup configuration.
 - file to tftp – Copies a file from the switch to a TFTP server.
 - running-config to file – Copies the running configuration to a file.
 - running-config to startup-config – Copies the running config to the startup config.
 - running-config to tftp – Copies the running configuration to a TFTP server.
 - startup-config to file – Copies the startup configuration to a file on the switch.
 - startup-config to running-config – Copies the startup config to the running config.
 - startup-config to tftp – Copies the startup configuration to a TFTP server.
- **tftp to file** – Copies a file from a TFTP server to the switch.
- **tftp to running-config** – Copies a file from a TFTP server to the running config.
- **tftp to startup-config** – Copies a file from a TFTP server to the startup config.

- **TFTP Server IP Address** – The IP address of a TFTP server.
- **File Type** – Specify config (configuration) to copy configuration settings.
- **File Name** – The file name should not contain slashes (\ or /), the leading letter of the file name should not be a period (.), and the maximum length for file names on the TFTP server is 127 characters or 31 characters for files on the switch. (Valid characters: A-Z, a-z, 0-9, “.”, “-”, “_”)

Note: The maximum number of user-defined configuration files is limited only by available flash memory space.

Downloading Configuration Settings from a Server

You can download the configuration file under a new file name and then set it as the startup file, or you can specify the current startup configuration file as the destination file to directly replace it. Note that the file “Factory_Default_Config.cfg” can be copied to the TFTP server, but cannot be used as the destination on the switch.

Web – Click System, File, Copy Operation. Select “tftp to startup-config” or “tftp to file” and enter the IP address of the TFTP server. Specify the name of the file to download and select a file on the switch to overwrite or specify a new file name, then click Apply.

Figure 3-12 Downloading Configuration Settings for Startup

If you download to a new file name using “tftp to startup-config” or “tftp to file,” the file is automatically set as the start-up configuration file. To use the new settings, reboot the system via the System/Reset menu.
Note: You can also select any configuration file as the start-up configuration by using the System/File/Set Start-Up page.

![Figure 3-13 Setting the Startup Configuration Settings](image)

CLI – Enter the IP address of the TFTP server, specify the source file on the server, set the startup file name on the switch, and then restart the switch.

```
Console#copy tftp startup-config
TFTP server ip address: 192.168.1.23
Source configuration file name: config-1
Startup configuration file name [] : startup
\Write to FLASH Programming.
~Write to FLASH finish.
Success.

Console#reload
```

To select another configuration file as the start-up configuration, use the `boot system` command and then restart the switch.

```
Console#config
Console(config)#boot system config: startup-new
Console(config)#exit
Console#reload
```

Console Port Settings

You can access the onboard configuration program by attaching a VT100 compatible device to the switch’s serial console port. Management access through the console port is controlled by various parameters, including a password, timeouts, and basic communication settings. These parameters can be configured via the web or CLI interface.

Command Attributes

- **Login Timeout** – Sets the interval that the system waits for a user to log into the CLI. If a login attempt is not detected within the timeout interval, the connection is terminated for the session. (Range: 0-300 seconds; Default: 0 seconds)
- **Exec Timeout** – Sets the interval that the system waits until user input is detected. If user input is not detected within the timeout interval, the current session is terminated. (Range: 0-65535 seconds; Default: 600 seconds)
- **Password Threshold** – Sets the password intrusion threshold, which limits the number of failed logon attempts. When the logon attempt threshold is reached, the
system interface becomes silent for a specified amount of time (set by the Silent
Time parameter) before allowing the next logon attempt.
(Range: 0-120; Default: 3 attempts)

- **Silent Time** – Sets the amount of time the management console is inaccessible
 after the number of unsuccessful logon attempts has been exceeded.
 (Range: 0-65535; Default: 0)

- **Data Bits** – Sets the number of data bits per character that are interpreted and
 generated by the console port. If parity is being generated, specify 7 data bits per
 character. If no parity is required, specify 8 data bits per character. (Default: 8 bits)

- **Parity** – Defines the generation of a parity bit. Communication protocols provided
 by some terminals can require a specific parity bit setting. Specify Even, Odd, or
 None. (Default: None)

- **Speed** – Sets the terminal line’s baud rate for transmit (to terminal) and receive
 (from terminal). Set the speed to match the baud rate of the device connected to
 the serial port. (Range: 9600, 19200, 38400 baud, or Auto; Default: Auto)

- **Stop Bits** – Sets the number of the stop bits transmitted per byte.
 (Range: 1-2; Default: 1 stop bit)

- **Password** – Specifies a password for the line connection. When a connection is
 started on a line with password protection, the system prompts for the password.
 If you enter the correct password, the system shows a prompt.
 (Default: No password)

- **Login** – Enables password checking at login. You can select authentication by a
 single global password as configured for the Password parameter, or by
 passwords set up for specific user-name accounts. (Default: Local)

Web – Click System, Line, Console. Specify the console port connection parameters
as required, then click Apply.

![Console Port Settings](image)

Figure 3-14 Console Port Settings

1. CLI only.
CLI – Enter Line Configuration mode for the console, then specify the connection parameters as required. To display the current console port settings, use the **show line** command from the Normal Exec level.

```
Console(config)#line console
Console(config-line)#login local
Console(config-line)#password 0 secret
Console(config-line)#timeout login response 0
Console(config-line)#exec-timeout 0
Console(config-line)#password-thresh 3
Console(config-line)#silent-time 60
Console(config-line)#databits 8
Console(config-line)#parity none
Console(config-line)#speed 19200
Console(config-line)#stopbits 1
Console(config-line)#end
Console(config-line)#timeout login response 0
```

```
Console#show line
Console configuration:
   Password threshold:  3 times
   Interactive timeout: Disabled
   Login timeout:       Disabled
   Silent time:         60
   Baudrate:            19200
   Databits:            8
   Parity:              none
   Stopbits:            1

VTY configuration:
   Password threshold:  3 times
   Interactive timeout: 600 sec
   Login timeout:       300 sec
Console#
```

Telnet Settings

You can access the onboard configuration program over the network using Telnet (i.e., a virtual terminal). Management access via Telnet can be enabled/disabled and other various parameters set, including the TCP port number, timeouts, and a password. These parameters can be configured via the web or CLI interface.

Command Attributes

- **Telnet Status** – Enables or disables Telnet access to the switch.
 (Default: Enabled)
- **Telnet Port Number** – Sets the TCP port number for Telnet on the switch.
 (Default: 23)
- **Login Timeout** – Sets the interval that the system waits for a user to log into the CLI. If a login attempt is not detected within the timeout interval, the connection is terminated for the session. (Range: 0-300 seconds; Default: 300 seconds)
- **Exec Timeout** – Sets the interval that the system waits until user input is detected. If user input is not detected within the timeout interval, the current session is terminated. (Range: 0-65535 seconds; Default: 600 seconds)
- **Password Threshold** – Sets the password intrusion threshold, which limits the number of failed logon attempts. When the logon attempt threshold is reached, the
system interface becomes silent for a specified amount of time (set by the Silent Time parameter) before allowing the next logon attempt. (Range: 0-120; Default: 3 attempts)

- **Password** – Specifies a password for the line connection. When a connection is started on a line with password protection, the system prompts for the password. If you enter the correct password, the system shows a prompt. (Default: No password)

- **Login** – Enables password checking at login. You can select authentication by a single global password as configured for the Password parameter, or by passwords set up for specific user-name accounts. (Default: Local)

Web – Click System, Line, Telnet. Specify the connection parameters for Telnet access, then click Apply.

![Figure 3-15 Enabling Telnet](image)
CLI – Enter Line Configuration mode for a virtual terminal, then specify the connection parameters as required. To display the current virtual terminal settings, use the **show line** command from the Normal Exec level.

```
Console(config)#line vty 4-11
Console(config-line)#login local 4-11
Console(config-line)#password 0 secret 4-12
Console(config-line)#timeout login response 300 4-13
Console(config-line)#exec-timeout 600 4-13
Console(config-line)#password-thresh 3 4-14
Console(config-line)#end
Console#show line 4-18

Console configuration:
Password threshold: 3 times
Interactive timeout: Disabled
Login timeout: Disabled
Silent time: Disabled
Baudrate: 9600
Databits: 8
Parity: none
Stopbits: 1

VTY configuration:
Password threshold: 3 times
Interactive timeout: 600 sec
Login timeout: 300 sec
```

Configuring Event Logging

The switch allows you to control the logging of error messages, including the type of events that are recorded in switch memory, logging to a remote System Log (syslog) server, and displays a list of recent event messages.

Displaying Log Messages

The Logs page allows you to scroll through the logged system and event messages. The switch can store up to 2048 log entries in temporary random access memory (RAM; i.e., memory flushed on power reset) and up to 4096 entries in permanent flash memory.

Web – Click System, Log, Logs.
Configuring the Switch

CLI – This example shows the event message stored in RAM.

```
Console# show log ram
[1] 00:00:27 2001-01-01
   "VLAN 1 link-up notification."
   level: 6, module: 5, function: 1, and event no.: 1
[0] 00:00:25 2001-01-01
   "System coldStart notification."
   level: 6, module: 5, function: 1, and event no.: 1
Console#
```

System Log Configuration

The system allows you to enable or disable event logging, and specify which levels are logged to RAM or flash memory.

Severe error messages that are logged to flash memory are permanently stored in the switch to assist in troubleshooting network problems. Up to 4096 log entries can be stored in the flash memory, with the oldest entries being overwritten first when the available log memory (256 kilobytes) has been exceeded.

The System Logs page allows you to configure and limit system messages that are logged to flash or RAM memory. The default is for event levels 0 to 3 to be logged to flash and levels 0 to 6 to be logged to RAM.

Command Attributes

- **System Log Status** – Enables/disables the logging of debug or error messages to the logging process. (Default: Enabled)

- **Flash Level** – Limits log messages saved to the switch’s permanent flash memory for all levels up to the specified level. For example, if level 3 is specified, all messages from level 0 to level 3 will be logged to flash. (Range: 0-7, Default: 3)

<table>
<thead>
<tr>
<th>Level</th>
<th>Severity Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Debug</td>
<td>Debugging messages</td>
</tr>
<tr>
<td>6</td>
<td>Informational</td>
<td>Informational messages only</td>
</tr>
<tr>
<td>5</td>
<td>Notice</td>
<td>Normal but significant condition, such as cold start</td>
</tr>
<tr>
<td>4</td>
<td>Warning</td>
<td>Warning conditions (e.g., return false, unexpected return)</td>
</tr>
<tr>
<td>3</td>
<td>Error</td>
<td>Error conditions (e.g., invalid input, default used)</td>
</tr>
<tr>
<td>2</td>
<td>Critical</td>
<td>Critical conditions (e.g., memory allocation, or free memory error - resource exhausted)</td>
</tr>
<tr>
<td>1</td>
<td>Alert</td>
<td>Immediate action needed</td>
</tr>
<tr>
<td>0</td>
<td>Emergency</td>
<td>System unusable</td>
</tr>
</tbody>
</table>

* There are only Level 2, 5 and 6 error messages for the current firmware release.

- **RAM Level** – Limits log messages saved to the switch’s temporary RAM memory for all levels up to the specified level. For example, if level 7 is specified, all messages from level 0 to level 7 will be logged to RAM. (Range: 0-7, Default: 6)

Note: The Flash Level must be equal to or less than the RAM Level.
Web – Click System, Log, System Logs. Specify System Log Status, set the level of event messages to be logged to RAM and flash memory, then click Apply.

![System Logs](image)

Figure 3-17 System Logs

CLI – Enable system logging and then specify the level of messages to be logged to RAM and flash memory. Use the `show logging` command to display the current settings.

```
Console(config)#logging on  
Console(config)#logging history ram 0  
Console(config)#end  
Console#show logging flash  
Syslog logging: Enabled  
History logging in FLASH: level emergencies  
Console#
```

Remote Log Configuration

The Remote Logs page allows you to configure the logging of messages that are sent to syslog servers or other management stations. You can also limit the error messages sent to only those messages below a specified level.

Command Attributes

- **Remote Log Status** – Enables/disables the logging of debug or error messages to the remote logging process. (Default: Enabled)
- **Logging Facility** – Sets the facility type for remote logging of syslog messages. There are eight facility types specified by values of 16 to 23. The facility type is used by the syslog server to dispatch log messages to an appropriate service. The attribute specifies the facility type tag sent in syslog messages. (See RFC 3164.) This type has no effect on the kind of messages reported by the switch. However, it may be used by the syslog server to process messages, such as sorting or storing messages in the corresponding database. (Range: 16-23, Default: 23)
- **Logging Trap** – Limits log messages that are sent to the remote syslog server for all levels up to the specified level. For example, if level 3 is specified, all messages from level 0 to level 3 will be sent to the remote server. (Range: 0-7, Default: 6)
- **Host IP List** – Displays the list of remote server IP addresses that receive the syslog messages. The maximum number of host IP addresses allowed is five.
• **Host IP Address** – Specifies a new server IP address to add to the Host IP List.

Web – Click System, Log, Remote Logs. To add an IP address to the Host IP List, type the new IP address in the Host IP Address box, and then click Add. To delete an IP address, click the entry in the Host IP List, and then click Remove.

![Remote Logs](image)

Figure 3-18 Remote Logs

CLI – Enter the syslog server host IP address, choose the facility type and set the logging trap.

```console
Console(config)#logging host 192.168.1.15
Console(config)#logging facility 23
Console(config)#logging trap 4
Console(config)#end
Console#show logging trap
Syslog logging: Enabled
REMOTELOG status: Enabled
REMOTELOG facility type: local use 7
REMOTELOG level type: Warning conditions
REMOTELOG server ip address: 192.168.1.15
REMOTELOG server ip address: 0.0.0.0
```

Simple Mail Transfer Protocol

SMTP (Simple Mail Transfer Protocol) is used to send email messages between servers. The messages can be retrieved using POP or IMAP clients.

Command Attributes

• **Admin Status** – Enables/disables the SMTP function. (Default: Enabled)

• **Email Source Address** – This command specifies SMTP servers email addresses that can send alert messages.
• **Severity** – Specifies the degree of urgency that the message carries.
 • Debugging – Sends a debugging notification. (Level 7)
 • Information – Sends informatative notification only. (Level 6)
 • Notice – Sends notification of a normal but significant condition, such as a cold start. (Level 5)
 • Warning – Sends notification of a warning condition such as return false, or unexpected return. (Level 4)
 • Error – Sends notification that an error condition has occurred, such as invalid input, or default used. (Level 3)
 • Critical – Sends notification that a critical condition has occurred, such as memory allocation, or free memory error - resource exhausted. (Level 2)
 • Alert – Sends urgent notification that immediate action must be taken. (Level 1)
 • Emergency – Sends an emergency notification that the system is now unusable. (Level 0)

• **SMTP Server List** – Specifies a list of recipient SMTP servers.

• **SMTP Server** – Specifies a new SMTP server address to add to the SMTP Server List.

• **Email Destination Address List** – Specifies a list of recipient Email Destination Address.

• **Email Destination Address** – This command specifies SMTP servers that may receive alert messages.

Web – Click System, Log, SMTP. To add an IP address to the Server IP List, type the new IP address in the Server IP Address box, and then click Add. To delete an IP address, click the entry in the Server IP List, and then click Remove.

![SMTP Configuration Screenshot](image-url)
Figure 3-19 Enabling and Configuring SMTP
Configuring the Switch

CLI – Enter the host ip address, followed by the mail severity level, source and destination email addresses and enter the sendmail command to complete the action. Use the show logging command to display SMTP information.

Renumbering the System

Web – Click System, Renumber. Click the Renumber button to renumber the switch. When prompted, confirm that you want to renumber the switch.

![Renumbering the System](image)

Figure 3-20 Renumbering the System

CLI – Use the `reload` command to restart the switch. When prompted, confirm that you want to reset the switch.

```plaintext
Console#reload
System will be restarted, continue <y/n>? y
```

When restarting the system, it will always run the Power-On Self-Test.

```plaintext
Console(config)#logging sendmail host 192.168.1.19
Console(config)#logging sendmail level 3
Console(config)#logging sendmail source-email bill@this-company.com
Console(config)#logging sendmail destination-email ted@this-company.com
Console(config)#logging sendmail
Console#
```

Resetting the System

Web – Click System, Reset. Click the Reset button to reboot the switch. When prompted, confirm that you want reset the switch.

![Resetting the System](image)

Figure 3-21 Resetting the System

CLI – Use the `reload` command to restart the switch. When prompted, confirm that you want to reset the switch.

```plaintext
Console#reload
System will be restarted, continue <y/n>? y
```

Note: When restarting the system, it will always run the Power-On Self-Test.
Setting the System Clock

Simple Network Time Protocol (SNTP) allows the switch to set its internal clock based on periodic updates from a time server (SNTP or NTP). Maintaining an accurate time on the switch enables the system log to record meaningful dates and times for event entries. You can also manually set the clock using the CLI. (See “calendar set” on page 4-56) If the clock is not set, the switch will only record the time from the factory default set at the last bootup.

When the SNTP client is enabled, the switch periodically sends a request for a time update to a configured time server. You can configure up to three time server IP addresses. The switch will attempt to poll each server in the configured sequence.

Configuring SNTP

You can configure the switch to send time synchronization requests to time servers.

Command Attributes

- **SNTP Client** – Configures the switch to operate as an SNTP client. This requires at least one time server to be specified in the SNTP Server field. (Default: Disabled)
- **SNTP Poll Interval** – Sets the interval between sending requests for a time update from a time server. (Range: 16-16384 seconds; Default: 16 seconds)
- **SNTP Server** – Sets the IP address for up to three time servers. The switch attempts to update the time from the first server, if this fails it attempts an update from the next server in the sequence.

Web – Select SNTP, Configuration. Modify any of the required parameters, and click Apply.

<table>
<thead>
<tr>
<th>SNTP Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNTP Client</td>
</tr>
<tr>
<td>SNTP Server</td>
</tr>
</tbody>
</table>

Figure 3-22 SNTP Configuration
Configuring the Switch

Setting the Time Zone

SNTP uses Coordinated Universal Time (or UTC, formerly Greenwich Mean Time, or GMT) based on the time at the Earth’s prime meridian, zero degrees longitude. To display a time corresponding to your local time, you must indicate the number of hours and minutes your time zone is east (before) or west (after) of UTC.

Command Attributes

- **Current Time** – Displays the current time.
- **Name** – Assigns a name to the time zone. (Range: 1-29 characters)
- **Hours (0-12)** – The number of hours before/after UTC.
- **Minutes (0-59)** – The number of minutes before/after UTC.
- **Direction** – Configures the time zone to be before (east) or after (west) UTC.

Web – Select SNTP, Clock Time Zone. Set the offset for your time zone relative to the UTC, and click Apply.

![Figure 3-23 Setting the System Clock](image)

CLI - This example shows how to set the time zone for the system clock.

```
Console(config)#clock timezone Atlantic hours 4 minute 0 before-UTC
Console(config)#
```
Simple Network Management Protocol

Simple Network Management Protocol (SNMP) is a communication protocol designed specifically for managing devices on a network. Equipment commonly managed with SNMP includes switches, routers and host computers. SNMP is typically used to configure these devices for proper operation in a network environment, as well as to monitor them to evaluate performance or detect potential problems.

The switch includes an onboard SNMP agent that continuously monitors the status of its hardware, as well as the traffic passing through its ports. A network management station can access this information using software such as HP OpenView. Access rights to the onboard agent are controlled by community strings. To communicate with the switch, the management station must first submit a valid community string for authentication. The options for configuring community strings, trap functions, and restricting access to clients with specified IP addresses are described in the following sections.

Setting Community Access Strings

You may configure up to five community strings authorized for management access. All community strings used for IP Trap Managers should be listed in this table. For security reasons, you should consider removing the default strings.

Command Attributes

- **SNMP Community Capability** – Indicates that the switch supports up to five community strings.
- **Community String** – A community string that acts like a password and permits access to the SNMP protocol.
 Default strings: “public” (read-only), “private” (read/write)
 Range: 1-32 characters, case sensitive
- **Access Mode**
 - **Read-Only** – Specifies read-only access. Authorized management stations are only able to retrieve MIB objects.
 - **Read/Write** – Specifies read-write access. Authorized management stations are able to both retrieve and modify MIB objects.
Web – Click SNMP, Configuration. Add new community strings as required, select the access rights from the Access Mode drop-down list, then click Add.

![SNMP Configuration](image)

Figure 3-24 Configuring SNMP Community Strings

CLI – The following example adds the string “spiderman” with read/write access.

```
Console(config)#snmp-server community spiderman rw
```

Specifying Trap Managers and Trap Types

Traps indicating status changes are issued by the switch to specified trap managers. You must specify trap managers so that key events are reported by this switch to your management station (using network management platforms such as HP OpenView). You can specify up to five management stations that will receive authentication failure messages and other trap messages from the switch.

Command Attributes

- **Trap Manager Capability** – This switch supports up to five trap managers.
- **Current** – Displays a list of the trap managers currently configured.
- **Trap Manager IP Address** – IP address of the host (the targeted recipient).
- **Trap Manager Community String** – Community string sent with the notification operation. (Range: 1-32 characters, case sensitive)
- **Trap UDP Port** – Sets the UDP port number. (Default: 162)
- **Trap Version** – Specifies whether to send notifications as SNMP v1, v2c, or v3 traps. (The default is version 1.)
- **Trap Security Level** – Specifies the security level.
- **Enable Authentication Traps** – Issues a trap message whenever an invalid community string is submitted during the SNMP access authentication process. (Default: Enabled)
- **Enable Link-up and Link-down Traps** – Issues a trap message whenever a port link is established or broken. (Default: Enabled)
Web – Click SNMP, Configuration. Fill in the IP address and community string for each trap manager that will receive trap messages, and then click Add. Select the trap types required using the check boxes for Authentication and Link-up/down traps, and then click Apply.

![Figure 3-25 Configuring IP Trap Managers](image)

CLI – This example adds a trap manager and enables both authentication and link-up, link-down traps.

```
Console(config)#snmp-server host 192.168.1.19 private version 2c
Console(config)#snmp-server enable traps
```

Enabling SNMP Agent Status

Enables SNMPv3 service for all management clients (i.e., versions 1, 2c, 3).

Command Attributes

- **SNMP Agent Status** – Check the box to enable or disable the SNMP Agent.

Web – Click SNMP, Agent Status.

![Figure 3-26 Enabling SNMP Agent Status](image)
Configuring SNMPv3 Management Access

To configure SNMPv3 management access to the switch, follow these steps:

1. If you want to change the default engine ID, it must be changed first before configuring other parameters.
2. Specify read and write access views for the switch MIB tree.
3. Configure SNMP user groups with the required security model (i.e., SNMP v1, v2c or v3) and security level (i.e., authentication and privacy).
4. Assign SNMP users to groups, along with their specific authentication and privacy passwords.

Setting the Local Engine ID

An SNMPv3 engine is an independent SNMP agent that resides on the switch. This engine protects against message replay, delay, and redirection. The engine ID is also used in combination with user passwords to generate the security keys for authenticating and encrypting SNMPv3 packets.

A local engine ID is automatically generated that is unique to the switch. This is referred to as the default engine ID. If the local engine ID is deleted or changed, all SNMP users will be cleared. You will need to reconfigure all existing users.

A new engine ID can be specified by entering 5 to 32 octets of hexadecimal characters; that is, 9 to 64 hexadecimal characters. If an odd number of hexadecimal characters are specified, a trailing zero is added to the value to fill the octet. For example, entering the value “123456789” results in an engine ID of “1234567890.”

Web – Click SNMP, SNMPv3, Engine ID.

CLI – This example sets an SNMPv3 engine ID.

```
Console(config)#snmp-server engine-id local 12345abcdef0
Console(config)#exit
Console#show snmp engine-id
Local SNMP engineID: 12345abcdef0
Local SNMP engineBoots: 1
```

Figure 3-27 Setting an Engine ID
Specifying a Remote Engine ID

To send inform messages to an SNMPv3 user on a remote device, you must first specify the engine identifier for the SNMP agent on the remote device where the user resides. The remote engine ID is used to compute the security digest for authenticating and encrypting packets sent to a user on the remote host.

SNMP passwords are localized using the engine ID of the authoritative agent. For informs, the authoritative SNMP agent is the remote agent. You therefore need to configure the remote agent’s SNMP engine ID before you can send proxy requests or informs to it.

A new engine ID can be specified by entering 5 to 32 octets of hexadecimal characters; that is, 9 to 64 hexadecimal characters. If an odd number of hexadecimal characters are specified, a trailing zero is added to the value to fill the octet. For example, entering the value “123456789” results in an engine ID of “1234567890.”

Web – Click SNMP, SNMPv3, Remote Engine ID.

SNMPv3 Remote Engine ID

<table>
<thead>
<tr>
<th>Remote Engine ID</th>
<th>Remote IP Host</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Add</td>
</tr>
</tbody>
</table>

![Figure 3-28 Setting a Remote Engine ID](image)

CLI – This example specifies a remote SNMPv3 engine ID.

```
Console(config)#snmp-server engineID remote 54321fedcba0 192.168.1.19 4-107
Console(config)#exit
Console#show snmp engine-id
Local SNMP engineID: 83010000030000352810030000
Local SNMP engineBoots: 1
Remote SNMP engineID: 54321fedcba0 IP address 192.168.1.25
Console#
```

Configuring SNMPv3 Users

Each SNMPv3 user is defined by a unique name. Users must be configured with a specific security level and assigned to a group. The SNMPv3 group restricts users to a specific read, write, and notify view.

Command Attributes

- **User Name** – The name of user connecting to the SNMP agent.
 (Range: 1-32 characters)
- **Group Name** – The name of the SNMP group to which the user is assigned.
 (Range: 1-32 characters)
- **Model** – The user security model; SNMP v1, v2c or v3.
• **Level** – The security level used for the user:
 - **noAuthNoPriv** – There is no authentication or encryption used in SNMP communications. (This is the default for SNMPv3.)
 - **AuthNoPriv** – SNMP communications use authentication, but the data is not encrypted (only available for the SNMPv3 security model).
 - **AuthPriv** – SNMP communications use both authentication and encryption (only available for the SNMPv3 security model).

• **Authentication** – The method used for user authentication. (Options: MD5, SHA; Default: MD5)

• **Authentication Password** – A minimum of eight plain text characters is required.

• **Privacy** – The encryption algorithm use for data privacy; only 56-bit DES is currently available.

• **Actions** – Enables the user to be assigned to another SNMPv3 group.
Web – Click SNMP, SNMPv3, Users. Click New to configure a user name. In the New User page, define a name and assign it to a group, then click Add to save the configuration and return to the User Name list. To delete a user, check the box next to the user name, then click Delete. To change the assigned group of a user, click Change Group in the Actions column of the users table and select the new group.

CLI – Use the snmp-server user command to configure a new user name and assign it to a group.

```bash
Console(config)#snmp-server user chris group r&d v3 auth md5 greenpeacepriv des56 einstien 4-113
Console(config)#exit
Console#show snmp user 4-113
EngineId: 83010000030000352810030000
User Name: chris
Authentication Protocol: md5Privacy Protocol: des56
Storage Type: nonvolatile
Row Status: active
Console#
```
Configuring Remote SNMPv3 Users

Each SNMPv3 user is defined by a unique name. Users must be configured with a specific security level and assigned to a group. The SNMPv3 group restricts users to a specific read, write, and notify view.

To send inform messages to an SNMPv3 user on a remote device, you must first specify the engine identifier for the SNMP agent on the remote device where the user resides. The remote engine ID is used to compute the security digest for authenticating and encrypting packets sent to a user on the remote host.

Command Attributes

- **User Name** – The name of user connecting to the SNMP agent. (Range: 1-32 characters)
- **Group Name** – The name of the SNMP group to which the user is assigned. (Range: 1-32 characters)
- **Engine ID** – The engine identifier for the SNMP agent on the remote device where the remote user resides. Note that the remote engine identifier must be specified before you configure a remote user. (See “Specifying a Remote Engine ID” on page 44.)
- **Model** – The user security model; SNMP v1, v2c or v3.
- **Level** – The security level used for the user:
 - noAuthNoPriv – There is no authentication or encryption used in SNMP communications. (This is the default for SNMPv3.)
 - AuthNoPriv – SNMP communications use authentication, but the data is not encrypted (only available for the SNMPv3 security model).
 - AuthPriv – SNMP communications use both authentication and encryption (only available for the SNMPv3 security model).
- **Authentication** – The method used for user authentication. (Options: MD5, SHA; Default: MD5)
- **Privacy** – The encryption algorithm used for data privacy; only 56-bit DES is currently available.

Web – Click SNMP, SNMPv3, Remote Users. Click New to configure a user name. In the New User page, define a name and assign it to a group, then click Add to save the configuration and return to the User Name list. To delete a user, check the box next to the user name, then click Delete.
CLI – Use the snmp-server user command to configure a new user name and assign it to a group.

```
Console(config)#snmp-server user mark group r&d remote 192.168.1.19 v3
auth md5 greenpeace priv des56 einstien
4-113
Console(config)#exit
Console#show snmp user
No user exist.
SNMP remote user
EngineId: 80000000030004e2b316c54321
User Name: mark
Authentication Protocol: none
Privacy Protocol: none
Storage Type: nonvolatile
Row Status: active
```

Configuring SNMPv3 Groups

An SNMPv3 group sets the access policy for its assigned users, restricting them to specific read, write, and notify views. You can use the pre-defined default groups or create new groups to map a set of SNMP users to SNMP views.

Command Attributes

- **Group Name** – The name of the SNMP group to which the user is assigned. (Range: 1-32 characters)
- **Model** – The user security model; SNMP v1, v2c or v3.
- **Level** – The security level used for the group:
 - **noAuthNoPriv** – There is no authentication or encryption used in SNMP communications. (This is the default for SNMPv3.)
 - **AuthNoPriv** – SNMP communications use authentication, but the data is not encrypted (only available for the SNMPv3 security model).
 - **AuthPriv** – SNMP communications use both authentication and encryption (only available for the SNMPv3 security model).
- **Read View** – The configured view for read access. (Range: 1-64 characters)
- **Write View** – The configured view for write access. (Range: 1-64 characters)
- **Notify View** – The configured view for notifications. (Range: 1-64 characters)

<table>
<thead>
<tr>
<th>Object Label</th>
<th>Object ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 1493 Traps</td>
<td>1.3.6.1.2.1.17.0.1</td>
<td>The newRoot trap indicates that the sending agent has become the new root of the Spanning Tree; the trap is sent by a bridge soon after its election as the new root, e.g., upon expiration of the Topology Change Change Timer immediately subsequent to its election.</td>
</tr>
</tbody>
</table>
Table 3-4 Supported Notification Messages (Continued)

<table>
<thead>
<tr>
<th>Object Label</th>
<th>Object ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>topologyChange</td>
<td>1.3.6.1.2.1.17.0.2</td>
<td>A topologyChange trap is sent by a bridge when any of its configured ports transitions from the Learning state to the Forwarding state, or from the Forwarding state to the Discarding state. The trap is not sent if a newRoot trap is sent for the same transition.</td>
</tr>
<tr>
<td>SNMPv2 Traps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>coldStart</td>
<td>1.3.6.1.6.3.1.1.5.1</td>
<td>A coldStart trap signifies that the SNMPv2 entity, acting in an agent role, is reinitializing itself and that its configuration may have been altered.</td>
</tr>
<tr>
<td>warmStart</td>
<td>1.3.6.1.6.3.1.1.5.2</td>
<td>A warmStart trap signifies that the SNMPv2 entity, acting in an agent role, is reinitializing itself such that its configuration is unaltered.</td>
</tr>
<tr>
<td>linkDowna</td>
<td>1.3.6.1.6.3.1.1.5.3</td>
<td>A linkDown trap signifies that the SNMP entity, acting in an agent role, has detected that the ifOperStatus object for one of its communication links is about to enter the down state from some other state (but not from the notPresent state). This other state is indicated by the included value of ifOperStatus.</td>
</tr>
<tr>
<td>linkUp</td>
<td>1.3.6.1.6.3.1.1.5.4</td>
<td>A linkUp trap signifies that the SNMP entity, acting in an agent role, has detected that the ifOperStatus object for one of its communication links left the down state and transitioned into some other state (but not into the notPresent state). This other state is indicated by the included value of ifOperStatus.</td>
</tr>
<tr>
<td>authenticationFailure</td>
<td>1.3.6.1.6.3.1.1.5.5</td>
<td>An authenticationFailure trap signifies that the SNMPv2 entity, acting in an agent role, has received a protocol message that is not properly authenticated. While all implementations of the SNMPv2 must be capable of generating this trap, the snmpEnableAuthenTraps object indicates whether this trap will be generated.</td>
</tr>
<tr>
<td>RMON Events (V2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>risingAlarm</td>
<td>1.3.6.1.2.1.16.0.1</td>
<td>The SNMP trap that is generated when an alarm entry crosses its rising threshold and generates an event that is configured for sending SNMP traps.</td>
</tr>
<tr>
<td>fallingAlarm</td>
<td>1.3.6.1.2.1.16.0.2</td>
<td>The SNMP trap that is generated when an alarm entry crosses its falling threshold and generates an event that is configured for sending SNMP traps.</td>
</tr>
</tbody>
</table>
Table 3-4 Supported Notification Messages (Continued)

<table>
<thead>
<tr>
<th>Object Label</th>
<th>Object ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Traps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>swPowerStatus ChangeTrap</td>
<td>1.3.6.1.4.1.202.20.68.2.1.0.1</td>
<td>This trap is sent when the power state changes.</td>
</tr>
<tr>
<td>swIpFilterRejectTrap</td>
<td>1.3.6.1.4.1.202.20.68.2.1.0.1</td>
<td>This trap is sent when an incorrect IP address is rejected by the IP Filter.</td>
</tr>
<tr>
<td>pethPsePortOnOff Notification</td>
<td>1.3.6.1.4.1.202.20.68.2.1.0.1</td>
<td>This notification indicates if a PSE (Power Sourcing Equipment) Port is delivering power to the PD (Powered Device). This notification is sent on every status change except in search mode.</td>
</tr>
<tr>
<td>pethPsePortPower MaintenanceStatus Notification</td>
<td>1.3.6.1.4.1.202.20.68.2.1.0.1</td>
<td>This notification indicates a Port Change Status and is sent on every status change.</td>
</tr>
<tr>
<td>pethMainPower UsageOnNotification</td>
<td>1.3.6.1.4.1.202.20.68.2.1.0.1</td>
<td>This notification indicates PSE Threshold usage indication is on; the power usage is above the threshold.</td>
</tr>
<tr>
<td>pethMainPower UsageOffNotification</td>
<td>1.3.6.1.4.1.202.20.68.2.1.0.1</td>
<td>This notification indicates that the PSE Threshold usage indication is off; the usage power is below the threshold.</td>
</tr>
</tbody>
</table>

a. These are legacy notifications and therefore must be enabled in conjunction with the corresponding traps on the SNMP Configuration menu.
Web – Click SNMP, SNMPv3, Groups. Click New to configure a new group. In the New Group page, define a name, assign a security model and level, and then select read and write views. Click Add to save the new group and return to the Groups list. To delete a group, check the box next to the group name, then click Delete.

![SNMPv3 Groups](image1.png)

Figure 3-31 Configuring SNMPv3 Groups

CLI – Use the snmp-server group command to configure a new group, specifying the security model and level, and restricting MIB access to defined read and write views.

```
Console(config)#snmp-server group secure-users v3 priv read defaultview write defaultview notify defaultview
Console(config)#exit
Console#show snmp group
...
Group Name: secure-users
Security Model: v3
Read View: defaultview
Write View: defaultview
Notify View: defaultview
Storage Type: nonvolatile
Row Status: active
```

3-44
Setting SNMPv3 Views

SNMPv3 views are used to restrict user access to specified portions of the MIB tree. The predefined view “defaultview” includes access to the entire MIB tree.

Command Attributes

- **View Name** – The name of the SNMP view. (Range: 1-64 characters)
- **View OID Subtrees** – Shows the currently configured object identifiers of branches within the MIB tree that define the SNMP view.
- **Edit OID Subtrees** – Allows you to configure the object identifiers of branches within the MIB tree. Wild cards can be used to mask a specific portion of the OID string.
- **Type** – Indicates if the object identifier of a branch within the MIB tree is included or excluded from the SNMP view.

Web – Click SNMP, SNMPv3, Views. Click New to configure a new view. In the New View page, define a name and specify OID subtrees in the switch MIB to be included or excluded in the view. Click Back to save the new view and return to the SNMPv3 Views list. For a specific view, click on View OID Subtrees to display the current configuration, or click on Edit OID Subtrees to make changes to the view settings. To delete a view, check the box next to the view name, then click Delete.

![Figure 3-32 Configuring SNMPv3 Views](image-url)
CLI – Use the snmp-server view command to configure a new view. This example view includes the MIB-2 interfaces table, and the wildcard mask selects all index entries.

```
Console(config)#snmp-server view ifEntry.a 1.3.6.1.2.1.2.2.1.1.* included
Console(config)#exit
Console#show snmp view
View Name: ifEntry.a
Subtree OID: 1.3.6.1.2.1.2.2.1.1.*
View Type: included
Storage Type: nonvolatile
Row Status: active

View Name: readaccess
Subtree OID: 1.3.6.1.2
View Type: included
Storage Type: nonvolatile
Row Status: active

View Name: defaultview
Subtree OID: 1
View Type: included
Storage Type: nonvolatile
Row Status: active

Console#
```

User Authentication

You can restrict management access to this switch using the following options:

- User Accounts – Manually configure access rights on the switch for specified users.
- Authentication Settings – Use remote authentication to configure access rights.
- HTTPS Settings – Provide a secure web connection.
- SSH Settings – Provide a secure shell (for secure Telnet access).
- Port Security – Configure secure addresses for individual ports.
- 802.1X – Use IEEE 802.1X port authentication to control access to specific ports.
- IP Filter – Filters management access to the web, SNMP or Telnet interface.

Configuring User Accounts

The guest only has read access for most configuration parameters. However, the administrator has write access for all parameters governing the onboard agent. You should therefore assign a new administrator password as soon as possible, and store it in a safe place.

The default guest name is “guest” with the password “guest.” The default administrator name is “admin” with the password “admin.”

Command Attributes

- **Account List** – Displays the current list of user accounts and associated access levels. (Defaults: admin, and guest)
• **New Account** – Displays configuration settings for a new account.
 - **User Name** – The name of the user.
 (Maximum length: 8 characters; maximum number of users: 16)
 - **Access Level** – Specifies the user level.
 (Options: Normal and Privileged)
 - **Password** – Specifies the user password.
 (Range: 0-8 characters plain text, case sensitive)
• **Change Password** – Sets a new password for the specified user name.
• **Add/Remove** – Adds or removes an account from the list.

Web – Click Security, User Accounts. To configure a new user account, specify a user name, select the user’s access level, then enter a password and confirm it. Click Add to save the new user account and add it to the Account List. To change the password for a specific user, enter the user name and new password, confirm the password by entering it again, then click Apply.

![User Accounts](image)

Figure 3-33 Access Levels

CLI – Assign a user name to access-level 15 (i.e., administrator), then specify the password.

```
Console(config)#username bob access-level 15
Console(config)#username bob password 0 smith
```
Configuring Local/Remote Logon Authentication

Use the Authentication Settings menu to restrict management access based on specified user names and passwords. You can manually configure access rights on the switch, or you can use a remote access authentication server based on RADIUS or TACACS+ protocols.

Remote Authentication Dial-in User Service (RADIUS) and Terminal Access Controller Access Control System Plus (TACACS+) are logon authentication protocols that use software running on a central server to control access to RADIUS-aware or TACACS-aware devices on the network. An authentication server contains a database of multiple user name/password pairs with associated privilege levels for each user that requires management access to the switch.

RADIUS uses UDP while TACACS+ uses TCP. UDP only offers best effort delivery, while TCP offers a connection-oriented transport. Also, note that RADIUS encrypts only the password in the access-request packet from the client to the server, while TACACS+ encrypts the entire body of the packet.

Command Usage

• By default, management access is always checked against the authentication database stored on the local switch. If a remote authentication server is used, you must specify the authentication sequence and the corresponding parameters for the remote authentication protocol. Local and remote logon authentication control management access via the console port, web browser, or Telnet.

• RADIUS and TACACS+ logon authentication assign a specific privilege level for each user name/password pair. The user name, password, and privilege level must be configured on the authentication server.

• You can specify up to three authentication methods for any user to indicate the authentication sequence. For example, if you select (1) RADIUS, (2) TACACS and (3) Local, the user name and password on the RADIUS server is verified first. If the RADIUS server is not available, then authentication is attempted using the TACACS+ server, and finally the local user name and password is checked.
Command Attributes

- **Authentication** – Select the authentication, or authentication sequence required:
 - **Local** – User authentication is performed only locally by the switch.
 - **Radius** – User authentication is performed using a RADIUS server only.
 - **TACACS** – User authentication is performed using a TACACS+ server only.
 - **[authentication sequence]** – User authentication is performed by up to three authentication methods in the indicated sequence.

- **RADIUS Settings**
 - **Global** – Provides globally applicable RADIUS settings.
 - **ServerIndex** – Specifies one of five RADIUS servers that may be configured. The switch attempts authentication using the listed sequence of servers. The process ends when a server either approves or denies access to a user.
 - **Server Port Number** – Network (UDP) port of authentication server used for authentication messages. (Range: 1-65535; Default: 1812)
 - **Secret Text String** – Encryption key used to authenticate logon access for client. Do not use blank spaces in the string. (Maximum length: 20 characters)
 - **Number of Server Transmits** – Number of times the switch tries to authenticate logon access via the authentication server. (Range: 1-30; Default: 2)
 - **Timeout for a reply** – The number of seconds the switch waits for a reply from the RADIUS server before it resends the request. (Range: 1-65535; Default: 5)

- **TACACS Settings**
 - **Server IP Address** – Address of the TACACS+ server. (Default: 10.11.12.13)
 - **Server Port Number** – Network (TCP) port of TACACS+ server used for authentication messages. (Range: 1-65535; Default: 49)
 - **Secret Text String** – Encryption key used to authenticate logon access for client. Do not use blank spaces in the string. (Maximum length: 20 characters)

Note: The local switch user database has to be set up by manually entering user names and passwords using the CLI. (See “username” on page 4-25)
Web – Click Security, Authentication Settings. To configure local or remote authentication preferences, specify the authentication sequence (i.e., one to three methods), fill in the parameters for RADIUS or TACACS+ authentication if selected, and click Apply.

![Authentication Settings](image)

Figure 3-34 Authentication Settings
CLI – Specify all the required parameters to enable logon authentication.

```
Console(config)#authentication login radius

Console(config)#radius-server port 181

Console(config)#radius-server key green

Console(config)#radius-server retransmit 5

Console(config)#radius-server timeout 10

Console(config)#radius-server 1 host 192.168.1.25

Console(config)#end

Console#show radius-server

Remote RADIUS server configuration:

Global settings:
Communication key with RADIUS server: *****
Server port number: 181
Retransmit times: 5
Request timeout: 10

Server 1:
Server IP address: 192.168.1.25
Communication key with RADIUS server: *****
Server port number: 1812
Retransmit times: 2
Request timeout: 5

Console#configure

Console(config)#authentication login tacacs

Console(config)#tacacs-server host 10.20.30.40

Console(config)#tacacs-server port 200

Console(config)#tacacs-server key green

Console(config)#show tacacs-server

Server IP address: 10.20.30.40
Communication key with tacacs server: green
Server port number: 200
```

Console(config)#
Configuring HTTPS

You can configure the switch to enable the Secure Hypertext Transfer Protocol (HTTPS) over the Secure Socket Layer (SSL), providing secure access (i.e., an encrypted connection) to the switch’s web interface.

Command Usage

• Both the HTTP and HTTPS service can be enabled independently on the switch. However, you cannot configure both services to use the same UDP port.

• If you enable HTTPS, you must indicate this in the URL that you specify in your browser: https://device[:port_number]

• When you start HTTPS, the connection is established in this way:
 - The client authenticates the server using the server’s digital certificate.
 - The client and server negotiate a set of security protocols to use for the connection.
 - The client and server generate session keys for encrypting and decrypting data.

• The client and server establish a secure encrypted connection. A padlock icon should appear in the status bar for Internet Explorer 5.x or above and Netscape Navigator 6.2 or above.

• The following web browsers and operating systems currently support HTTPS:

<table>
<thead>
<tr>
<th>Web Browser</th>
<th>Operating System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet Explorer 5.0 or later</td>
<td>Windows 98, Windows NT (with service pack 6a), Windows 2000, Windows XP</td>
</tr>
<tr>
<td>Netscape Navigator 6.2 or later</td>
<td>Windows 98, Windows NT (with service pack 6a), Windows 2000, Windows XP, Solaris 2.6</td>
</tr>
</tbody>
</table>

• To specify a secure-site certificate, see “Replacing the Default Secure-site Certificate” on page 3-53.

Command Attributes

• HTTPS Status – Allows you to enable/disable the HTTPS server feature on the switch. (Default: Enabled)

• Change HTTPS Port Number – Specifies the UDP port number used for HTTPS connection to the switch’s web interface. (Default: Port 443)

Web – Click Security, HTTPS Settings. Enable HTTPS and specify the port number, then click Apply.
CLI – This example enables the HTTP secure server and modifies the port number.

```
Console(config)#ip http secure-server
Console(config)#ip http secure-port 443
```

Replacing the Default Secure-site Certificate

When you log onto the web interface using HTTPS (for secure access), a Secure Sockets Layer (SSL) certificate appears for the switch. By default, the certificate that Netscape and Internet Explorer display will be associated with a warning that the site is not recognized as a secure site. This is because the certificate has not been signed by an approved certification authority. If you want this warning to be replaced by a message confirming that the connection to the switch is secure, you must obtain a unique certificate and a private key and password from a recognized certification authority.

Caution: For maximum security, we recommend you obtain a unique Secure Sockets Layer certificate at the earliest opportunity. This is because the default certificate for the switch is not unique to the hardware you have purchased.

When you have obtained these, place them on your TFTP server, and use the following command at the switch’s command-line interface to replace the default (unrecognized) certificate with an authorized one:

```
Console#copy tftp https-certificate
TFTP server ip address: <server ip-address>
Source certificate file name: <certificate file name>
Source private file name: <private key file name>
Private password: <password for private key>
```

Note: The switch must be reset for the new certificate to be activated. To reset the switch, type: Console#reload
3 Configuring the Secure Shell

The Berkley-standard includes remote access tools originally designed for Unix systems. Some of these tools have also been implemented for Microsoft Windows and other environments. These tools, including commands such as rlogin (remote login), rsh (remote shell), and rcp (remote copy), are not secure from hostile attacks.

The Secure Shell (SSH) includes server/client applications intended as a secure replacement for the older Berkley remote access tools. SSH can also provide remote management access to this switch as a secure replacement for Telnet. When the client contacts the switch via the SSH protocol, the switch generates a public-key that the client uses along with a local user name and password for access authentication. SSH also encrypts all data transfers passing between the switch and SSH-enabled management station clients, and ensures that data traveling over the network arrives unaltered.

Note: You need to install an SSH client on the management station to access the switch for management via the SSH protocol.

Note: The switch supports both SSH Version 1.5 and 2.0 clients.

Command Usage

The SSH server on this switch supports both password and public key authentication. If password authentication is specified by the SSH client, then the password can be authenticated either locally or via a RADIUS or TACACS+ remote authentication server, as specified on the Authentication Settings page (3-48). If public key authentication is specified by the client, then you must configure authentication keys on both the client and the switch as described in the following section. Note that regardless of whether you use public key or password authentication, you still have to generate authentication keys on the switch (SSH Host Key Settings) and enable the SSH server (Authentication Settings).

To use the SSH server, complete these steps:

1. Generate a Host Key Pair – On the SSH Host Key Settings page, create a host public/private key pair.

2. Provide Host Public Key to Clients – Many SSH client programs automatically import the host public key during the initial connection setup with the switch. Otherwise, you need to manually create a known hosts file on the management station and place the host public key in it. An entry for a public key in the known hosts file would appear similar to the following example:

10.1.0.54 1024 35 15684995401867669259333946775054617325313674890836547254
15020245593199868544358361651999923329781766065830956 10825913212890233
76546801726272571413428762941301196195566782 5956641048695742788146206
51941746772984865468615717739390164779355942303577413098022737087794545
24083971752646358058176716709574804776117
3. **Import Client’s Public Key to the Switch** – Use the `copy tftp public-key` command (4-64) to copy a file containing the public key for all the SSH client’s granted management access to the switch. (Note that these clients must be configured locally on the switch via the User Accounts page as described on 3-46.) The clients are subsequently authenticated using these keys. The current firmware only accepts public key files based on standard UNIX format as shown in the following example for an RSA Version 1 key:

```
1024 35 1341081685609893921040944920155425347631641921872958921143173880
055536161631051775940838668631109291232226828519254374603100937187721199
69631781366277414168985132049117204830339254324101637997592371449011938
00609025394840848271781943722884025331159521348610229029789827213532671
31629432532818915045306393916643 steve@192.168.1.19
```

4. **Set the Optional Parameters** – On the SSH Settings page, configure the optional parameters, including the authentication timeout, the number of retries, and the server key size.

5. **Enable SSH Service** – On the SSH Settings page, enable the SSH server on the switch.

6. **Challenge-Response Authentication** – When an SSH client attempts to contact the switch, the SSH server uses the host key pair to negotiate a session key and encryption method. Only clients that have a private key corresponding to the public keys stored on the switch can access. The following exchanges take place during this process:

a. The client sends its public key to the switch.
b. The switch compares the client's public key to those stored in memory.
c. If a match is found, the switch uses the public key to encrypt a random sequence of bytes, and sends this string to the client.
d. The client uses its private key to decrypt the bytes, and sends the decrypted bytes back to the switch.
e. The switch compares the decrypted bytes to the original bytes it sent. If the two sets match, this means that the client's private key corresponds to an authorized public key, and the client is authenticated.

Notes:

1. To use SSH with only password authentication, the host public key must still be given to the client, either during initial connection or manually entered into the known host file. However, you do not need to configure the client’s keys.

2. The SSH server supports up to four client sessions. The maximum number of client sessions includes both current Telnet sessions and SSH sessions.
Configuring the SSH Server

The SSH server includes basic settings for authentication.

Field Attributes

- **SSH Server Status** – Allows you to enable/disable the SSH server on the switch. (Default: Disabled)
- **Version** – The Secure Shell version number. Version 2.0 is displayed, but the switch supports management access via either SSH Version 1.5 or 2.0 clients.
- **SSH Authentication Timeout** – Specifies the time interval in seconds that the SSH server waits for a response from a client during an authentication attempt. (Range: 1-120 seconds; Default: 120 seconds)
- **SSH Authentication Retries** – Specifies the number of authentication attempts that a client is allowed before authentication fails and the client has to restart the authentication process. (Range: 1-5 times; Default: 3)
- **SSH Server-Key Size** – Specifies the SSH server key size. (Range: 512-896 bits; Default: 768)
 - The server key is a private key that is never shared outside the switch.
 - The host key is shared with the SSH client, and is fixed at 1024 bits.

Web – Click Security, SSH, Settings. Enable SSH and adjust the authentication parameters as required, then click Apply. Note that you must first generate the host key pair on the SSH Host-Key Settings page before you can enable the SSH server.

Figure 3-36 SSH Server Settings
CLI – This example enables SSH, sets the authentication parameters, and displays the current configuration. It shows that the administrator has made a connection via SSH, and then disables this connection.

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Console(config)#ip ssh server</td>
<td>4-35</td>
</tr>
<tr>
<td>Console(config)#ip ssh timeout 100</td>
<td>4-36</td>
</tr>
<tr>
<td>Console(config)#ip ssh authentication-retries 5</td>
<td>4-37</td>
</tr>
<tr>
<td>Console(config)#ip ssh server-key size 512</td>
<td>4-37</td>
</tr>
<tr>
<td>Console(config)#end</td>
<td></td>
</tr>
<tr>
<td>Console#show ip ssh</td>
<td>4-40</td>
</tr>
</tbody>
</table>

SSH Enabled – version 2.0
Negotiation timeout: 120 secs; Authentication retries: 5
Server key size: 512 bits
Console#show ssh

Connection	Version	State	Username	Encryption
0 | 2.0 | Session-Started | admin | ctos aes128-cbc-hmac-md5
	 | | | stoc aes128-cbc-hmac-md5
Console#disconnect 0

Generating the Host Key Pair

A host public/private key pair is used to provide secure communications between an SSH client and the switch. After generating this key pair, you must provide the host public key to SSH clients and import the client’s public key to the switch as described in the proceeding section (Command Usage).

Field Attributes

• **Public-Key of Host-Key** – The public key for the host.
 - RSA (Version 1): The first field indicates the size of the host key (e.g., 1024), the second field is the encoded public exponent (e.g., 65537), and the last string is the encoded modulus.
 - DSA (Version 2): The first field indicates that the encryption method used by SSH is based on the Digital Signature Standard (DSS). The last string is the encoded modulus.

• **Host-Key Type** – The key type used to generate the host key pair (i.e., public and private keys). (Range: RSA (Version 1), DSA (Version 2), Both: Default: RSA)

The SSH server uses RSA or DSA for key exchange when the client first establishes a connection with the switch, and then negotiates with the client to select either DES (56-bit) or 3DES (168-bit) for data encryption.

• **Save Host-Key from Memory to Flash** – Saves the host key from RAM (i.e., volatile memory to flash memory. Otherwise, the host key pair is stored to RAM by default. Note that you must select this item prior to generating the host-key pair.

• **Generate** – This button is used to generate the host key pair. Note that you must first generate the host key pair before you can enable the SSH server on the SSH Server Settings page.

• **Clear** – This button clears the host key from both volatile memory (RAM) and non-volatile memory (Flash).
Web – Click Security, SSH, Host-Key Settings. Select the host-key type from the drop-down box, select the option to save the host key from memory to flash (if required) prior to generating the key, and then click Generate.

![SSS Host-Key Settings](image)

Figure 3-37 SSH Host-Key Settings

CLI – This example generates a host-key pair using both the RSA and DSA algorithms, stores the keys to flash memory, and then displays the host’s public keys.

```console
Console#ip ssh crypto host-key generate
4-35
Console#ip ssh save host-key
4-35
Console#show public-key host
4-35
Host: RSA:
1024 65537 12725092254492642013133651456131118967905519236007628653006761
8240969049744832010252487896597759216832222558465238779154679807396314033
869257931051057652122435028078658548578927260293786608923684142327591217
6032591968369705343936438445223335182827173896894511729290510813919642025
1909321403328579045764891
DSA:
ssh-dss AAAAB3NzaC1kc3MAAACCBAN6zwIqCqDb3869jYVXlMElsHL0EcE/Re6hlasfEthIwmj
hLY400jqZpcEQugCfYlumOY2uoLka+Py9ieGWQ8f2gobUZK1ICuKg6vj09XTs7XKc05xfzKB1
KviDa+20r1z6UK+6VFQvUDFedl1nxYT Vo+h5v8r0ea2rpo6DkZAAAAPCNZn/x17dwpW8RvY
DQnSww4Qk+6QAAAI/EptkGebBb38wqH4gUOCY6111rmm51Jgfw09qRfUMbC4KCC+uzxAtOo7
drn1ZypMx+Sx5RdMDgGK3+SyywsabcWqHeFY51c31DCNBueeLykZzVS+RS+azTKIK/zzjH8GLG
Nq375R55yRxFvmcGIn/Q7IphPgyJ3o9MK8LDFmJEAAACALB6tESiswE2OFqX7VGoEb2VDSOI
RTMF3yiUXtvGyQAOVSy67Mfc31McqqFRUOYXDiwBp5NXg11Cg57VqmRm28mWc5a//f8TUAg
PNWKV6W0hqmsbQdovZvDR1e+XKNT2j0uTwWfj05Kytvdn4MdoTHgrbl/DMdAfjnte8MZZs=
Console#
```
Configuring Port Security

Port security is a feature that allows you to configure a switch port with one or more device MAC addresses that are authorized to access the network through that port.

When port security is enabled on a port, the switch stops learning new MAC addresses on the specified port when it has reached a configured maximum number. Only incoming traffic with source addresses already stored in the dynamic or static address table will be accepted as authorized to access the network through that port. If a device with an unauthorized MAC address attempts to use the switch port, the intrusion will be detected and the switch can automatically take action by disabling the port and sending a trap message.

To use port security, specify a maximum number of addresses to allow on the port and then let the switch dynamically learn the <source MAC address, VLAN> pair for frames received on the port. Note that you can also manually add secure addresses to the port using the Static Address Table (3-99). When the port has reached the maximum number of MAC addresses the selected port will stop learning. The MAC addresses already in the address table will be retained and will not age out. Any other device that attempts to use the port will be prevented from accessing the switch.

Command Usage

- A secure port has the following restrictions:
 - It cannot use port monitoring.
 - It cannot be a multi-VLAN port.
 - It cannot be used as a member of a static or dynamic trunk.
 - It should not be connected to a network interconnection device.

- The default maximum number of MAC addresses allowed on a secure port is zero. You must configure a maximum address count from 1 - 1024 for the port to allow access.

- If a port is disabled (shut down) due to a security violation, it must be manually re-enabled from the Port/Port Configuration page (3-78).

Command Attributes

- **Port** – Port number.
- **Name** – Descriptive text (4-117).
- **Action** – Indicates the action to be taken when a port security violation is detected:
 - **None**: No action should be taken. (This is the default.)
 - **Trap**: Send an SNMP trap message.
 - **Shutdown**: Disable the port.
 - **Trap and Shutdown**: Send an SNMP trap message and disable the port.
- **Security Status** – Enables or disables port security on the port. (Default: Disabled)
- **Max MAC Count** – The maximum number of MAC addresses that can be learned on a port. (Range: 0 - 1024, where 0 means disabled)
- **Trunk** – Trunk number if port is a member (page 3-81 and 3-82).
Web – Click Security, Port Security. Set the action to take when an invalid address is detected on a port, mark the checkbox in the Status column to enable security for a port, set the maximum number of MAC addresses allowed on a port, and click Apply.

![Configuring Port Security](image)

CLI – This example selects the target port, sets the port security action to send a trap and disable the port and sets the maximum MAC addresses allowed on the port, and then enables port security for the port.

```bash
Console(config)#interface ethernet 1/5
Console(config-if)#port security action trap-and-shutdown
4-79
Console(config-if)#port security max-mac-count 20
4-79
Console(config-if)#port security
4-79
Console(config-if)#
```

Configuring 802.1X Port Authentication

Network switches can provide open and easy access to network resources by simply attaching a client PC. Although this automatic configuration and access is a desirable feature, it also allows unauthorized personnel to easily intrude and possibly gain access to sensitive network data.

The IEEE 802.1X (dot1X) standard defines a port-based access control procedure that prevents unauthorized access to a network by requiring users to first submit credentials for authentication. Access to all switch ports in a network can be centrally controlled from a server, which means that authorized users can use the same credentials for authentication from any point within the network.
This switch uses the Extensible Authentication Protocol over LANs (EAPOL) to exchange authentication protocol messages with the client, and a remote RADIUS authentication server to verify user identity and access rights. When a client (i.e., Supplicant) connects to a switch port, the switch (i.e., Authenticator) responds with an EAPOL identity request. The client provides its identity (such as a user name) in an EAPOL response to the switch, which it forwards to the RADIUS server. The RADIUS server verifies the client identity and sends an access challenge back to the client. The EAP packet from the RADIUS server contains not only the challenge, but the authentication method to be used. The client can reject the authentication method and request another, depending on the configuration of the client software and the RADIUS server. The authentication method must be MD5. The client responds to the appropriate method with its credentials, such as a password or certificate. The RADIUS server verifies the client credentials and responds with an accept or reject packet. If authentication is successful, the switch allows the client to access the network. Otherwise, network access is denied and the port remains blocked.

The operation of 802.1X on the switch requires the following:

- The switch must have an IP address assigned.
- RADIUS authentication must be enabled on the switch and the IP address of the RADIUS server specified.
- 802.1X must be enabled globally for the switch.
- Each switch port that will be used must be set to dot1X “Auto” mode.
- Each client that needs to be authenticated must have dot1X client software installed and properly configured.
- The RADIUS server and 802.1X client support EAP. (The switch only supports EAPOL in order to pass the EAP packets from the server to the client.)
- The RADIUS server and client also have to support the same EAP authentication type – MD5. (Some clients have native support in Windows, otherwise the dot1x client must support it.)

Displaying 802.1X Global Settings

The 802.1X protocol provides client authentication.

Command Attributes

- **802.1X System Authentication Control** – The global setting for 802.1X.
Web – Click Security, 802.1X, Information.

![802.1X Information](image)

Figure 3-39 802.1X Global Information

CLI – This example shows the default global setting for 802.1X.

```console
Console#show dot1x
Global 802.1X Parameters
    system-auth-control: enable

802.1X Port Summary

<table>
<thead>
<tr>
<th>Port Name</th>
<th>Status</th>
<th>Operation Mode</th>
<th>Mode</th>
<th>Authorized</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>disabled</td>
<td>Single-Host</td>
<td>ForceAuthorized</td>
<td>n/a</td>
</tr>
<tr>
<td>1/2</td>
<td>disabled</td>
<td>Single-Host</td>
<td>ForceAuthorized</td>
<td>n/a</td>
</tr>
</tbody>
</table>

802.1X Port Details

802.1X is disabled on port 1/1

802.1X is disabled on port 1/26
Console#
```

Configuring 802.1X Global Settings

The 802.1X protocol provides port authentication. The 802.1X protocol must be enabled globally for the switch system before port settings are active.

Command Attributes

- **802.1X System Authentication Control** – Sets the global setting for 802.1X. (Default: Disabled)

Web – Select Security, 802.1X, Configuration. Enable 802.1X globally for the switch, and click Apply.

![802.1X Configuration](image)

Figure 3-40 802.1X Global Configuration

CLI – This example enables 802.1X globally for the switch.

```console
Console(config)#dot1x system-auth-control
Console(config)#
```
Configuring Port Settings for 802.1X

When 802.1X is enabled, you need to configure the parameters for the authentication process that runs between the client and the switch (i.e., authenticator), as well as the client identity lookup process that runs between the switch and authentication server. These parameters are described in this section.

Command Attributes

- **Port** – Port number.
- **Status** – Indicates if authentication is enabled or disabled on the port. (Default: Disabled)
- **Operation Mode** – Allows single or multiple hosts (clients) to connect to an 802.1X-authorized port. (Options: Single-Host, Multi-Host; Default: Single-Host)
- **Max Count** – The maximum number of hosts that can connect to a port when the Multi-Host operation mode is selected. (Range: 1-1024; Default: 5)
- **Mode** – Sets the authentication mode to one of the following options:
 - **Auto** – Requires a dot1x-aware client to be authorized by the authentication server. Clients that are not dot1x-aware will be denied access.
 - **Force-Authorized** – Forces the port to grant access to all clients, either dot1x-aware or otherwise. (This is the default setting.)
 - **Force-Unauthorized** – Forces the port to deny access to all clients, either dot1x-aware or otherwise.
- **Re-authen** – Sets the client to be re-authenticated after the interval specified by the Re-authentication Period. Re-authentication can be used to detect if a new device is plugged into a switch port. (Default: Disabled)
- **Max-Req** – Sets the maximum number of times the switch port will retransmit an EAP request packet to the client before it times out the authentication session. (Range: 1-10; Default 2)
- **Quiet Period** – Sets the time that a switch port waits after the Max Request Count has been exceeded before attempting to acquire a new client. (Range: 1-65535 seconds; Default: 60 seconds)
- **Re-authen Period** – Sets the time period after which a connected client must be re-authenticated. (Range: 1-65535 seconds; Default: 3600 seconds)
- **Tx Period** – Sets the time period during an authentication session that the switch waits before re-transmitting an EAP packet. (Range: 1-65535; Default: 30 seconds)
- **Authorized** –
 - **Yes** – Connected client is authorized.
 - **No** – Connected client is not authorized.
 - **Blank** – Displays nothing when dot1x is disabled on a port.
- **Supplicant** – Indicates the MAC address of a connected client.
- **Trunk** – Indicates if the port is configured as a trunk port.

Web – Click Security, 802.1X, Port Configuration. Modify the parameters required, and click Apply.
802.1X Port Configuration

<table>
<thead>
<tr>
<th>Port</th>
<th>Status</th>
<th>Operation Mode</th>
<th>Max Count (1-1024)</th>
<th>Mode</th>
<th>Re-authen</th>
<th>Max-Req</th>
<th>Quiet/Period</th>
<th>Re-authen/Period</th>
<th>Tx Period</th>
<th>Authorized</th>
<th>Supplicant</th>
<th>Trunk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Disabled</td>
<td>Single-Host</td>
<td>1</td>
<td>Force-Authorized</td>
<td>Enable</td>
<td>2</td>
<td>60</td>
<td>3600</td>
<td>30</td>
<td>Yes</td>
<td></td>
<td>00-00-00-00-00-00</td>
</tr>
<tr>
<td>2</td>
<td>Disabled</td>
<td>Single-Host</td>
<td>1</td>
<td>Force-Authorized</td>
<td>Enable</td>
<td>2</td>
<td>60</td>
<td>3600</td>
<td>30</td>
<td>Yes</td>
<td></td>
<td>00-00-00-00-00-00</td>
</tr>
<tr>
<td>3</td>
<td>Disabled</td>
<td>Single-Host</td>
<td>1</td>
<td>Force-Authorized</td>
<td>Enable</td>
<td>2</td>
<td>60</td>
<td>3600</td>
<td>30</td>
<td>Yes</td>
<td></td>
<td>00-00-00-00-00-00</td>
</tr>
<tr>
<td>4</td>
<td>Disabled</td>
<td>Single-Host</td>
<td>1</td>
<td>Force-Authorized</td>
<td>Enable</td>
<td>2</td>
<td>60</td>
<td>3600</td>
<td>30</td>
<td>Yes</td>
<td></td>
<td>00-00-00-00-00-00</td>
</tr>
<tr>
<td>5</td>
<td>Disabled</td>
<td>Single-Host</td>
<td>1</td>
<td>Force-Authorized</td>
<td>Enable</td>
<td>2</td>
<td>60</td>
<td>3600</td>
<td>30</td>
<td>Yes</td>
<td></td>
<td>00-00-00-00-00-00</td>
</tr>
</tbody>
</table>

Figure 3-41 802.1X Port Configuration
CLI – This example sets the 802.1X parameters on port 2. For a description of the additional fields displayed in this example, see "show dot1x" on page 4-86.

```console
Console(config)#interface ethernet 1/2
Console(config-if)#dot1x port-control auto
Console(config-if)#dot1x re-authentication
Console(config-if)#dot1x max-req 5
Console(config-if)#dot1x timeout quiet-period 30
Console(config-if)#dot1x timeout re-authperiod 1800
Console(config-if)#dot1x timeout tx-period 40
Console(config-if)#exit
Console(config)#exit
Console#show dot1x

Global 802.1X Parameters
system-auth-control: enable

802.1X Port Summary

<table>
<thead>
<tr>
<th>Port Name</th>
<th>Status</th>
<th>Operation Mode</th>
<th>Mode</th>
<th>Authorized</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>disabled</td>
<td>Single-Host</td>
<td>ForceAuthorized</td>
<td>n/a</td>
</tr>
<tr>
<td>1/2</td>
<td>enabled</td>
<td>Single-Host</td>
<td>auto</td>
<td>yes</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/26</td>
<td>disabled</td>
<td>Single-Host</td>
<td>ForceAuthorized</td>
<td>n/a</td>
</tr>
</tbody>
</table>

802.1X Port Details

802.1X is disabled on port 1/1

802.1X is enabled on port 1/2
reauth-enabled: Enable
reauth-period: 1800
quiet-period: 30
tx-period: 40
supplicant-timeout: 30
server-timeout: 10
reauth-max: 2
max-req: 5
Status Authorized
Operation mode Single-Host
Max count 5
Port-control Auto
Supplicant 00-12-CF-49-5e-dc
Current Identifier 3
Authenticator State Machine
State Authenticated
Reauth Count 0
Backend State Machine
State Idle
Request Count 0
Identifier(Server) 2
Reauthentication State Machine
State Initialize

802.1X is disabled on port 1/26
Console#
Displaying 802.1X Statistics

This switch can display statistics for dot1x protocol exchanges for any port.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rx EAPOL Start</td>
<td>The number of EAPOL Start frames that have been received by this Authenticator.</td>
</tr>
<tr>
<td>Rx EAPOL Logoff</td>
<td>The number of EAPOL Logoff frames that have been received by this Authenticator.</td>
</tr>
<tr>
<td>Rx EAPOL Invalid</td>
<td>The number of EAPOL frames that have been received by this Authenticator in which the frame type is not recognized.</td>
</tr>
<tr>
<td>Rx EAPOL Total</td>
<td>The number of valid EAPOL frames of any type that have been received by this Authenticator.</td>
</tr>
<tr>
<td>Rx EAP Resp/Id</td>
<td>The number of EAP Resp/Id frames that have been received by this Authenticator.</td>
</tr>
<tr>
<td>Rx EAP Resp/Oth</td>
<td>The number of valid EAP Response frames (other than Resp/Id frames) that have been received by this Authenticator.</td>
</tr>
<tr>
<td>Rx EAP LenError</td>
<td>The number of EAPOL frames that have been received by this Authenticator in which the Packet Body Length field is invalid.</td>
</tr>
<tr>
<td>Rx Last EAPOLVer</td>
<td>The protocol version number carried in the most recently received EAPOL frame.</td>
</tr>
<tr>
<td>Rx Last EAPOLSrc</td>
<td>The source MAC address carried in the most recently received EAPOL frame.</td>
</tr>
<tr>
<td>Tx EAPOL Total</td>
<td>The number of EAPOL frames of any type that have been transmitted by this Authenticator.</td>
</tr>
<tr>
<td>Tx EAP Req/Id</td>
<td>The number of EAP Req/Id frames that have been transmitted by this Authenticator.</td>
</tr>
<tr>
<td>Tx EAP Req/Oth</td>
<td>The number of EAP Request frames (other than Rq/Id frames) that have been transmitted by this Authenticator.</td>
</tr>
</tbody>
</table>

**Web** – Select Security, 802.1X, Statistics. Select the required port and then click Query. Click Refresh to update the statistics.
Access Control Lists

Access Control Lists (ACL) provide packet filtering for IP frames (based on address, protocol, Layer 4 protocol port number or TCP control code) or any frames (based on MAC address or Ethernet type). To filter incoming packets, first create an access list, add the required rules, and then bind the list to a specific port.

Configuring Access Control Lists

An ACL is a sequential list of permit or deny conditions that apply to IP addresses, MAC addresses, or other more specific criteria. This switch tests ingress or egress packets against the conditions in an ACL one by one. A packet will be accepted as soon as it matches a permit rule, or dropped as soon as it matches a deny rule. If no rules match for a list of all permit rules, the packet is dropped; and if no rules match for a list of all deny rules, the packet is accepted.

Command Usage

The following restrictions apply to ACLs:

- Each ACL can have up to 32 rules.
- The maximum number of ACLs is also 32.
- The maximum number of rules that can be bound to the ports is 96 for each of the following list types: MAC ACLs, IP ACLs (including Standard and Extended ACLs).
- When an ACL is bound to an interface as an egress filter, all entries in the ACL must be deny rules. Otherwise, the bind operation will fail.
- The switch does not support the explicit “deny any any” rule for the egress IP ACL. If these rules are included in ACL, and you attempt to bind the ACL to an interface for egress checking, the bind operation will fail.

The order in which active ACLs are checked is as follows:

2. User-defined rules in the Ingress IP ACL for ingress ports.

CLI – This example displays the 802.1X statistics for port 4.

```
Console#show dot1x statistics interface ethernet 1/4

Eth 1/4
Rx: EAPOL EAPOL EAPOL EAPOL EAP EAP EAP
Start 0 0 0 1007 672 0 0
Logoff 2
Invalid 0
Total 1007
Resp/Id 672
Resp/Oth 0
LenError 0
Last 2
EAPOLVer 1
EAPOLSrc 00-12-CF-94-34-DE
Tx: EAPOL EAP EAP
Total 2017 1005 0
Req/Id
Req/Oth

Console#
```
3. Explicit default rule (permit any any) in the ingress IP ACL for ingress ports.

4. If no explicit rule is matched, the implicit default is permit all.

**Setting the ACL Name and Type**

Use the ACL Configuration page to designate the name and type of an ACL.

**Command Attributes**

- **Name** – Name of the ACL. (Maximum length: 15 characters)
- **Type** – There are three filtering modes:
  - **Standard** – IP ACL mode that filters packets based on the source IP address.
  - **Extended** – IP ACL mode that filters packets based on source or destination IP address, as well as protocol type and protocol port number.
  - **MAC** – MAC ACL mode that filters packets based on the source or destination MAC address and the Ethernet frame type (RFC 1060).

**Web** – Select Security, ACL, Configuration. Enter an ACL name in the Name field, select the list type (IP Standard, IP Extended, or MAC), and click Add to open the configuration page for the new list.

![Figure 3-43 Selecting ACL Type](image)

**CLI** – This example creates a standard IP ACL named david.

```
Console(config)#access-list ip standard david
4-90
Console(config-std-acl)#
```
Configuring a Standard IP ACL

Command Attributes

- **Action** – An ACL can contain any combination of permit or deny rules.
- **Address Type** – Specifies the source IP address. Use “Any” to include all possible addresses, “Host” to specify a specific host address in the Address field, or “IP” to specify a range of addresses with the Address and SubMask fields. (Options: Any, Host, IP; Default: Any)
- **IP Address** – Source IP address.
- **Subnet Mask** – A subnet mask containing four integers from 0 to 255, each separated by a period. The mask uses 1 bits to indicate “match” and 0 bits to indicate “ignore.” The mask is bitwise ANDed with the specified source IP address, and compared with the address for each IP packet entering the port(s) to which this ACL has been assigned.

**Web** – Specify the action (i.e., Permit or Deny). Select the address type (Any, Host, or IP). If you select “Host,” enter a specific address. If you select “IP,” enter a subnet address and the mask for an address range. Then click Add.

![Standard ACL](image)

**Figure 3-44 Configuring Standard IP ACLs**

**CLI** – This example configures one permit rule for the specific address 10.1.1.21 and another rule for the address range 168.92.16.x – 168.92.31.x using a bitmask.

```
Console(config-std-acl)#permit host 10.1.1.21
Console(config-std-acl)#permit 168.92.16.0 255.255.240.0
```

Configuring an Extended IP ACL

Command Attributes

- **Action** – An ACL can contain any combination of permit or deny rules.
- **Source/Destination Address Type** – Specifies the source or destination IP address. Use “Any” to include all possible addresses, “Host” to specify a specific
host address in the Address field, or “IP” to specify a range of addresses with the Address and SubMask fields. (Options: Any, Host, IP; Default: Any)

- **Source/Destination IP Address** – Source or destination IP address.
- **Source/Destination Subnet Mask** – Subnet mask for source or destination address.

- **Service Type** – Packet priority settings based on the following criteria:
  - **Precedence** – IP precedence level. (Range: 0-7)
  - **TOS** – Type of Service level. (Range: 0-15)
  - **DSCP** – DSCP priority level. (Range: 0-63)

- **Protocol** – Specifies the protocol type to match as TCP, UDP or Others, where others indicates a specific protocol number (0-255). (Options: TCP, UDP, Others; Default: TCP)

- **Source/Destination Port** – Source/destination port number for the specified protocol type. (Range: 0-65535)

- **Source/Destination Port Bitmask** – Decimal number representing the port bits to match. (Range: 0-65535)

- **Control Code** – Decimal number (representing a bit string) that specifies flag bits in byte 14 of the TCP header. (Range: 0-63)

- **Control Code Bit Mask** – Decimal number representing the code bits to match. The control bitmask is a decimal number (for an equivalent binary bit mask) that is applied to the control code. Enter a decimal number, where the equivalent binary bit “1” means to match a bit and “0” means to ignore a bit. The following bits may be specified:
  - 1 (fin) – Finish
  - 2 (syn) – Synchronize
  - 4 (rst) – Reset
  - 8 (psh) – Push
  - 16 (ack) – Acknowledgement
  - 32 (urg) – Urgent pointer

For example, use the code value and mask below to catch packets with the following flags set:
  - SYN flag valid, use control-code 2, control bitmask 2
  - Both SYN and ACK valid, use control-code 18, control bitmask 18
  - SYN valid and ACK invalid, use control-code 2, control bitmask 18

**Web** – Specify the action (i.e., Permit or Deny). Specify the source and/or destination addresses. Select the address type (Any, Host, or IP). If you select “Host,” enter a specific address. If you select “IP,” enter a subnet address and the mask for an address range. Set any other required criteria, such as service type, protocol type, or TCP control code. Then click Add.
CLI – This example adds two rules:
(1) Accept any incoming packets if the source address is in subnet 10.7.1.x. For example, if the rule is matched; i.e., the rule (10.7.1.0 & 255.255.255.0) equals the masked address (10.7.1.2 & 255.255.255.0), the packet passes through.
(2) Allow TCP packets from class C addresses 192.168.1.0 to any destination address when set for destination TCP port 80 (i.e., HTTP).

```
Console(config-ext-acl)#permit 10.7.1.1 255.255.255.0 any
Console(config-ext-acl)#permit tcp 192.168.1.0 255.255.255.0 any destination-port 80
```
Configuring a MAC ACL

Command Attributes

• **Action** – An ACL can contain any combination of permit or deny rules.

• **Source/Destination Address Type** – Use “Any” to include all possible addresses, “Host” to indicate a specific MAC address, or “MAC” to specify an address range with the Address and Bitmask fields. (Options: Any, Host, MAC; Default: Any)

• **Source/Destination MAC Address** – Source or destination MAC address.

• **Source/Destination Bitmask** – Hexadecimal mask for source or destination MAC address.

• **VID** – VLAN ID. (Range: 1-4094)

• **VID Mask** – VLAN bitmask. (Range: 1-4094)

• **Ethernet Type** – This option can only be used to filter Ethernet II formatted packets. (Range: 600-fff hex.)

A detailed listing of Ethernet protocol types can be found in RFC 1060. A few of the more common types include 0800 (IP), 0806 (ARP), 8137 (IPX).

• **Ethernet Type Bitmask** – Protocol bitmask. (Range: 600-fff hex.)

• **Packet Format** – This attribute includes the following packet types:
  - **Any** – Any Ethernet packet type.
  - **Untagged-eth2** – Untagged Ethernet II packets.
  - **Untagged-802.3** – Untagged Ethernet 802.3 packets.
  - **Tagged-802.3** – Tagged Ethernet 802.3 packets.
  - **Tagged-802.3** – Tagged Ethernet 802.3 packets.

Command Usage

Egress MAC ACLs only work for destination-mac-known packets, not for multicast, broadcast, or destination-mac-unknown packets.

**Web** – Specify the action (i.e., Permit or Deny). Specify the source and/or destination addresses. Select the address type (Any, Host, or MAC). If you select “Host,” enter a specific address (e.g., 11-22-33-44-55-66). If you select “MAC,” enter a base address and a hexadecimal bitmask for an address range. Set any other required criteria, such as VID, Ethernet type, or packet format. Then click Add.
Binding a Port to an Access Control List

After configuring the Access Control Lists (ACL), you can bind the ports that need to filter traffic to the appropriate ACLs. You can assign one IP access list to any port.

Command Usage

This switch supports ACLs for ingress filtering only.

Command Attributes

- **Port** – Fixed port or SFP module. (Range: 1-26/50)
- **IP** – Specifies the IP ACL to bind to a port.
- **MAC** – Specifies the MAC ACL to bind to a port.
- **IN** – ACL for ingress packets.

**Web** – Click Security, ACL, Port Binding. Click Edit to open the configuration page for the ACL type. Mark the Enable field for the port you want to bind to an ACL for ingress or egress traffic, select the required ACL from the drop-down list, then click Apply.
Configuring the Switch

Figure 3-47 Configuring ACL Port Binding

CLI – This example assigns an IP access list to port 1, and an IP access list to port 3.

```
Console(config)#interface ethernet 1/1
Console(config-if)#ip access-group david in
Console(config-if)#exit
Console(config)#interface ethernet 1/3
Console(config-if)#ip access-group david in
Console(config-if)#
```

Filtering IP Addresses for Management Access

You create a list of up to 16 IP addresses or IP address groups that are allowed management access to the switch through the web interface, SNMP, or Telnet.

Command Usage

- The management interfaces are open to all IP addresses by default. Once you add an entry to a filter list, access to that interface is restricted to the specified addresses.
- If anyone tries to access a management interface on the switch from an invalid address, the switch will reject the connection, enter an event message in the system log, and send a trap message to the trap manager.
- IP address can be configured for SNMP, web and Telnet access respectively. Each of these groups can include up to five different sets of addresses, either individual addresses or address ranges.
- When entering addresses for the same group (i.e., SNMP, web or Telnet), the switch will not accept overlapping address ranges. When entering addresses for different groups, the switch will accept overlapping address ranges.
• You cannot delete an individual address from a specified range. You must delete the entire range, and reenter the addresses.
• You can delete an address range just by specifying the start address, or by specifying both the start address and end address.

Command Attributes
• **Web IP Filter** – Configures IP address(es) for the web group.
• **SNMP IP Filter** – Configures IP address(es) for the SNMP group.
• **Telnet IP Filter** – Configures IP address(es) for the Telnet group.
• **IP Filter List** – IP address which are allowed management access to this interface.
• **Start IP Address** – A single IP address, or the starting address of a range.
• **End IP Address** – The end address of a range.
• **Add/Remove Filtering Entry** – Adds/removes an IP address from the list.

**Web** – Click Security, IP Filter. Enter the IP addresses or range of addresses that are allowed management access to an interface, and click Add Web IP Filtering Entry to update the filter list.

![Creating an IP Filter List](image)
CLI – This example allows SNMP access for a specific client.

```console
Console(config)#management snmp-client 10.1.2.3
Console(config)#end
Console#show management all-client
Management IP Filter
 HTTP-Client:
 Start IP address End IP address

 SNMP-Client:
 Start IP address End IP address

 1. 10.1.2.3 10.1.2.3
 TELNET-Client:
 Start IP address End IP address

Console#
```

Port Configuration

Displaying Connection Status

You can use the Port Information or Trunk Information pages to display the current connection status, including link state, speed/duplex mode, flow control, and auto-negotiation.

Field Attributes (Web)

- **Name** – Interface label.
- **Type** – Indicates the port type. (100BASE-TX, 1000BASE-T, or SFP)
- **Admin Status** – Shows if the interface is enabled or disabled.
- **Oper Status** – Indicates if the link is Up or Down.
- **Speed Duplex Status** – Shows the current speed and duplex mode. (Auto, or fixed choice)
- **Flow Control Status** – Indicates the type of flow control currently in use. (IEEE 802.3x, Back-Pressure or None)
- **Autonegotiation** – Shows if auto-negotiation is enabled or disabled.
- **Media Type** – Media type used for the combo ports 21-24 (SMC8126L2) or 45-48 (SMC8150L2). (Options: Copper-Forced, SFP-Forced, or SFP-Preferred-Auto; Default: SFP-Preferred-Auto)
- **Trunk Member** – Shows if port is a trunk member.
- **Creation** – Shows if a trunk is manually configured or dynamically set via LACP.

---

3. Port information only.
4. Port information only.
5. Trunk information only.
**Web** – Click Port, Port Information or Trunk Information.

![Port Information](image)

**Figure 3-49 Displaying Port/Trunk Information**

**Field Attributes (CLI)**

**Basic Information:**

- **Port type** – Indicates the port type. (100BASE-TX, 1000BASE-T, or SFP)
- **MAC address** – The physical layer address for this port. (To access this item on the web, see 3-14.)

**Configuration:**

- **Name** – Interface label.
- **Port admin** – Shows if the interface is enabled or disabled (i.e., up or down).
- **Speed-duplex** – Shows the current speed and duplex mode. (Auto, or fixed choice)
- **Capabilities** – Specifies the capabilities to be advertised for a port during auto-negotiation. (To access this item on the web, see 3-78.) The following capabilities are supported.
  - **10half** - Supports 10 Mbps half-duplex operation
  - **10full** - Supports 10 Mbps full-duplex operation
  - **100half** - Supports 100 Mbps half-duplex operation
  - **100full** - Supports 100 Mbps full-duplex operation
  - **1000full** - Supports 1000 Mbps full-duplex operation
  - **Sym** - Transmits and receives pause frames for flow control
  - **FC** - Supports flow control
- **Broadcast storm** – Shows if broadcast storm control is enabled or disabled.
- **Broadcast storm limit** – Shows the broadcast storm threshold. (500-262143 packets per second)
- **Flow control** – Shows if flow control is enabled or disabled.
- **LACP** – Shows if LACP is enabled or disabled.
• **Port Security** – Shows if port security is enabled or disabled.

• **Max MAC count** – Shows the maximum number of MAC address that can be learned by a port. (0 - 1024 addresses)

• **Port security action** – Shows the response to take when a security violation is detected. (shutdown, trap, trap-and-shutdown, or none)

**Current Status:**

• **Link Status** – Indicates if the link is up or down.

• **Port Operation Status** – Provides detailed information on port state. (Displayed only when the link is up.)

• **Operation speed-duplex** – Shows the current speed and duplex mode.

• **Flow control type** – Indicates the type of flow control currently in use. (IEEE 802.3x, Back-Pressure or none)

**CLI** – This example shows the connection status for Port 5.

```
Console#show interfaces status ethernet 1/5
Information of Eth 1/5
Basic information:
 Port type: 100TX
 Mac address: 00-12-CF-12-34-61
Configuration:
 Name:
 Port admin: Up
 Speed-duplex: Auto
 Capabilities: 10half, 10full, 100half, 100full
 Broadcast storm: Enabled
 Broadcast storm limit: 500 packets/second
 Flow control: Disabled
 Lacp: Disabled
 Port security: Disabled
 Max MAC count: 0
 Port security action: None
Current status:
 Link status: Down
 Operation speed-duplex: 100full
 Flow control type: None
Console#
```

**Configuring Interface Connections**

You can use the Port Configuration or Trunk Configuration page to enable/disable an interface, set auto-negotiation and the interface capabilities to advertise, or manually fix the speed, duplex mode, and flow control.

**Command Attributes**

• **Name** – Allows you to label an interface. (Range: 1-64 characters)

• **Admin** – Allows you to manually disable an interface. You can disable an interface due to abnormal behavior (e.g., excessive collisions), and then reenable it after the problem has been resolved. You may also disable an interface for security reasons.
• **Speed/Duplex** – Allows you to manually set the port speed and duplex mode. (i.e., with auto-negotiation disabled)

• **Flow Control** – Allows automatic or manual selection of flow control.

• **Autonegotiation (Port Capabilities)** – Allows auto-negotiation to be enabled/disabled. When auto-negotiation is enabled, you need to specify the capabilities to be advertised. When auto-negotiation is disabled, you can force the settings for speed, mode, and flow control. The following capabilities are supported.
  - **10half** - Supports 10 Mbps half-duplex operation
  - **10full** - Supports 10 Mbps full-duplex operation
  - **100half** - Supports 100 Mbps half-duplex operation
  - **100full** - Supports 100 Mbps full-duplex operation
  - **1000full** (Combo ports only) - Supports 1000 Mbps full-duplex operation

  (Default: Autonegotiation enabled; Advertised capabilities for 100BASE-TX – 10half, 10full, 100half, 100full; 1000BASE-T – 10half, 10full, 100half, 100full, 1000full; 1000BASE-SX/LX/ZX – 1000full)

• **Media Type** – Media type used for the combo ports 21-24 (SMC8126L2) or 45-48 (SMC8150L2).
  (Options: Copper-Forced, SFP-Forced, or SFP-Preferred-Auto; Default: SFP-Preferred-Auto)

• **Trunk** – Indicates if a port is a member of a trunk. To create trunks and select port members, see 3-80.

**Note:** Auto-negotiation must be disabled before you can configure or force the interface to use the Speed/Duplex Mode or Flow Control options.

**Web** – Click Port, Port Configuration or Trunk Configuration. Modify the required interface settings, and click Apply.
CLI – Select the interface, and then enter the required settings.

```
Console(config)#interface ethernet 1/13
Console(config-if)#description RD SW#13
Console(config-if)#shutdown

Console(config-if)#no shutdown
Console(config-if)#no negotiation
Console(config-if)#speed-duplex 100half
Console(config-if)#flowcontrol

Console(config-if)#negotiation
Console(config-if)#capabilities 100half
Console(config-if)#capabilities 100full
Console(config-if)#capabilities flowcontrol
```

Creating Trunk Groups

You can create multiple links between devices that work as one virtual, aggregate link. A port trunk offers a dramatic increase in bandwidth for network segments where bottlenecks exist, as well as providing a fault-tolerant link between two devices. You can create up to 32 trunks at a time.

The switch supports both static trunking and dynamic Link Aggregation Control Protocol (LACP). Static trunks have to be manually configured at both ends of the link, and the switches must comply with the Cisco EtherChannel standard. On the other hand, LACP configured ports can automatically negotiate a trunked link with LACP-configured ports on another device. You can configure any number of ports on the switch as LACP, as long as they are not already configured as part of a static trunk. If ports on another device are also configured as LACP, the switch and the other device will negotiate a trunk link between them. If an LACP trunk consists of more than eight ports, all other ports will be placed in a standby mode. Should one link in the trunk fail, one of the standby ports will automatically be activated to replace it.

Command Usage

Besides balancing the load across each port in the trunk, the other ports provide redundancy by taking over the load if a port in the trunk fails. However, before making any physical connections between devices, use the web interface or CLI to specify the trunk on the devices at both ends. When using a port trunk, take note of the following points:

- Finish configuring port trunks before you connect the corresponding network cables between switches to avoid creating a loop.
- You can create up to 32 trunks on a switch, with up to eight ports per trunk.
- The ports at both ends of a connection must be configured as trunk ports.
- When configuring static trunks on switches of different types, they must be compatible with the Cisco EtherChannel standard.
• The ports at both ends of a trunk must be configured in an identical manner, including communication mode (i.e., speed, duplex mode and flow control), VLAN assignments, and CoS settings.
• All the ports in a trunk have to be treated as a whole when moved from/to, added or deleted from a VLAN.
• STP, VLAN, and IGMP settings can only be made for the entire trunk.

**Statically Configuring a Trunk**

**Command Usage**

• When configuring static trunks, you may not be able to link switches of different types, depending on the manufacturer’s implementation. However, note that the static trunks on this switch are Cisco EtherChannel compatible.
• To avoid creating a loop in the network, be sure you add a static trunk via the configuration interface before connecting the ports, and also disconnect the ports before removing a static trunk via the configuration interface.

**Command Attributes**

• **Member List** (Current) – Shows configured trunks (Trunk ID, Unit, Port).
• **New** – Includes entry fields for creating new trunks.
  - **Trunk** – Trunk identifier. (Range: 1-32)
  - **Port** – Port identifier.

**Web** – Click Port, Trunk Membership. Enter a trunk ID of 1-32 in the Trunk field, select any of the switch ports from the scroll-down port list, and click Add. After you have completed adding ports to the member list, click Apply.

![Trunk Membership](image)

*Figure 3-51 Configuring Static Trunks*
Configuring the Switch

3 CLI – This example creates trunk 2 with ports 1 and 2. Just connect these ports to two static trunk ports on another switch to form a trunk.

```
Console(config)#interface port-channel 2
Console(config-if)#exit
Console(config)#interface ethernet 1/1
Console(config-if)#channel-group 2
Console(config-if)#exit
Console(config)#interface ethernet 1/2
Console(config-if)#channel-group 2
Console(config-if)#end
```

Information of Trunk 2

<table>
<thead>
<tr>
<th>Basic information:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port type:</td>
</tr>
<tr>
<td>Mac address:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Configuration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name:</td>
</tr>
<tr>
<td>Port admin:</td>
</tr>
<tr>
<td>Speed-duplex:</td>
</tr>
<tr>
<td>Capabilities:</td>
</tr>
<tr>
<td>Flow control:</td>
</tr>
<tr>
<td>Port security:</td>
</tr>
<tr>
<td>Max MAC count:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current status:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Created by:</td>
</tr>
<tr>
<td>Link status:</td>
</tr>
<tr>
<td>Port operation status:</td>
</tr>
<tr>
<td>Operation speed-duplex:</td>
</tr>
<tr>
<td>Flow control type:</td>
</tr>
<tr>
<td>Member Ports:</td>
</tr>
</tbody>
</table>

Console#}

Enabling LACP on Selected Ports

Command Usage

- To avoid creating a loop in the network, be sure you enable LACP before connecting the ports, and also disconnect the ports before disabling LACP.
- If the target switch has also enabled LACP on the connected ports, the trunk will be activated automatically.
- A trunk formed with another switch using LACP will automatically be assigned the next available trunk ID.
- If more than eight ports attached to the same target switch have LACP enabled, the additional ports will be placed in standby mode, and will only be enabled if one of the active links fails.
- All ports on both ends of an LACP trunk must be configured for full duplex, and auto-negotiation.
- Trunks dynamically established through LACP will also be shown in the Member List on the Trunk Membership menu (see 3-81).
Command Attributes

- **Member List (Current)** – Shows configured trunks (Port).
- **New** – Includes entry fields for creating new trunks.
  - **Port** – Port identifier. (Range: 1-26/50)

**Web** – Click Port, LACP, Configuration. Select any of the switch ports from the scroll-down port list and click Add. After you have completed adding ports to the member list, click Apply.

![LACP Configuration](image)

**Figure 3-52 LACP Trunk Configuration**
**CLI** – The following example enables LACP for ports 1 to 6. Just connect these ports to LACP-enabled trunk ports on another switch to form a trunk.

```plaintext
Console(config)#interface ethernet 1/1
Console(config-if)#lacp
Console(config-if)#exit
Console(config)#interface ethernet 1/6
Console(config-if)#lacp
Console(config-if)#end
Console#show interfaces status port-channel 1
Information of Trunk 1
Basic information:
 Port type: 100TX
 Mac address: 00-12-CF-12-34-89
Configuration:
 Name:
 Port admin: Up
 Speed-duplex: Auto
 Capabilities: 10half, 10full, 100half, 100full
 Flow control status: Disabled
 Port security: Disabled
 Max MAC count: 0
 Current status:
 Created by: LACP
 Link status: Up
 Port operation status: Up
 Operation speed-duplex: 100full
 Flow control type: None
 Member Ports: Eth1/1, Eth1/2, Eth1/3, Eth1/4, Eth1/5, Eth1/6,
Console#
```

**Configuring LACP Parameters**

**Dynamically Creating a Port Channel** –

Ports assigned to a common port channel must meet the following criteria:

- Ports must have the same LACP System Priority.
- Ports must have the same LACP port Admin Key.
- However, if the “port channel” Admin Key is set (4-135), then the port Admin Key must be set to the same value for a port to be allowed to join a channel group.

**Note** – If the port channel admin key (lacp admin key, 4-135) is not set (through the CLI) when a channel group is formed (i.e., it has a null value of 0), this key is set to the same value as the port admin key used by the interfaces that joined the group (lacp admin key, as described in this section and on 4-134).

**Command Attributes**

**Set Port Actor** – This menu sets the local side of an aggregate link; i.e., the ports on this switch.

- **Port** – Port number. (Range: 1-26/50)
- **System Priority** – LACP system priority is used to determine link aggregation group (LAG) membership, and to identify this device to other switches during LAG negotiations. (Range: 0-65535; Default: 32768)
  - Ports must be configured with the same system priority to join the same LAG.
- System priority is combined with the switch’s MAC address to form the LAG identifier. This identifier is used to indicate a specific LAG during LACP negotiations with other systems.

- **Admin Key** – The LACP administration key must be set to the same value for ports that belong to the same LAG. (Range: 0-65535; Default: 1)

- **Port Priority** – If a link goes down, LACP port priority is used to select a backup link. (Range: 0-65535; Default: 32768)

**Set Port Partner** – This menu sets the remote side of an aggregate link; i.e., the ports on the attached device. The command attributes have the same meaning as those used for the port actor. However, configuring LACP settings for the partner only applies to its administrative state, not its operational state, and will only take effect the next time an aggregate link is established with the partner.

**Web** – Click Port, LACP, Aggregation Port. Set the System Priority, Admin Key, and Port Priority for the Port Actor. You can optionally configure these settings for the Port Partner. (Be aware that these settings only affect the administrative state of the partner, and will not take effect until the next time an aggregate link is formed with this device.) After you have completed setting the port LACP parameters, click Apply.

### Aggregation Port

<table>
<thead>
<tr>
<th>Port</th>
<th>System Priority (0-65535)</th>
<th>Admin Key (0-65535)</th>
<th>Port Priority (0-65535)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>120</td>
<td>32768</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>120</td>
<td>32768</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>120</td>
<td>32768</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>120</td>
<td>32768</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>120</td>
<td>32768</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>120</td>
<td>32768</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>120</td>
<td>32768</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>120</td>
<td>32768</td>
</tr>
</tbody>
</table>

*Figure 3-53  LACP Port Configuration*
CLI – The following example configures LACP parameters for ports 1-4. Ports 1-4 are used as active members of the LAG.

```
Console(config)#interface ethernet 1/1
Console(config-if)#lacp actor system-priority 3
Console(config-if)#lacp actor admin-key 120
Console(config-if)#lacp actor port-priority 128
Console(config-if)#exit

Console(config)#interface ethernet 1/4
Console(config-if)#lacp actor system-priority 3
Console(config-if)#lacp actor admin-key 120
Console(config-if)#lacp actor port-priority 512
Console(config-if)#end

Console#show lacp sysid

<table>
<thead>
<tr>
<th>Port Channel</th>
<th>System Priority</th>
<th>System MAC Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>00-12-CF-31-31-31</td>
</tr>
<tr>
<td>2</td>
<td>32768</td>
<td>00-12-CF-31-31-31</td>
</tr>
<tr>
<td>3</td>
<td>32768</td>
<td>00-12-CF-31-31-31</td>
</tr>
<tr>
<td>4</td>
<td>32768</td>
<td>00-12-CF-31-31-31</td>
</tr>
</tbody>
</table>
```

```
Console#show lacp 1 internal

Port channel : 1

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LACPDUs Internal</td>
<td>30 sec</td>
</tr>
<tr>
<td>LACP System Priority</td>
<td>3</td>
</tr>
<tr>
<td>LACP Port Priority</td>
<td>128</td>
</tr>
<tr>
<td>Admin Key</td>
<td>120</td>
</tr>
<tr>
<td>Oper Key</td>
<td>120</td>
</tr>
<tr>
<td>Admin State</td>
<td>defaulted, aggregation, long timeout, LACP-activity</td>
</tr>
<tr>
<td>Oper State</td>
<td>distributing, collecting, synchronization, aggregation, long timeout, LACP-activity</td>
</tr>
</tbody>
</table>
```

Displaying LACP Port Counters

You can display statistics for LACP protocol messages.

Table 3-7 LACP Port Counters

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LACPDUs Sent</td>
<td>Number of valid LACPDUs transmitted from this channel group.</td>
</tr>
<tr>
<td>LACPDUs Received</td>
<td>Number of valid LACPDUs received on this channel group.</td>
</tr>
<tr>
<td>Marker Sent</td>
<td>Number of valid Marker PDUs transmitted from this channel group.</td>
</tr>
<tr>
<td>Marker Received</td>
<td>Number of valid Marker PDUs received by this channel group.</td>
</tr>
</tbody>
</table>
Web – Click Port, LACP, Port Counters Information. Select a member port to display the corresponding information.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marker Unknown Pkts</td>
<td>Number of frames received that either (1) Carry the Slow Protocols Ethernet Type value, but contain an unknown PDU, or (2) are addressed to the Slow Protocols group MAC Address, but do not carry the Slow Protocols Ethernet Type.</td>
</tr>
<tr>
<td>Marker Illegal Pkts</td>
<td>Number of frames that carry the Slow Protocols Ethernet Type value, but contain a badly formed PDU or an illegal value of Protocol Subtype.</td>
</tr>
</tbody>
</table>

CLI – The following example displays LACP counters.

```
Console#show lacp counters
Port channel : 1

Eth 1/ 1

LACPDU Sent: 91
LACPDU Receive: 43
Marker Sent: 0
Marker Receive: 0
Marker Unknown Pkts: 0
LACPDU Unknown Pkts: 0
LACPDU Illegal Pkts: 0
```

Table 3-7 LACP Port Counters (Continued)
Displaying LACP Settings and Status for the Local Side

You can display configuration settings and the operational state for the local side of an link aggregation.

Table 3-8  LACP Internal Configuration Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oper Key</td>
<td>Current operational value of the key for the aggregation port.</td>
</tr>
<tr>
<td>Admin Key</td>
<td>Current administrative value of the key for the aggregation port.</td>
</tr>
<tr>
<td>LACPDU Interval</td>
<td>Number of seconds before invalidating received LACPDU information.</td>
</tr>
<tr>
<td>LACP System Priority</td>
<td>LACP system priority assigned to this port channel.</td>
</tr>
<tr>
<td>LACP Port Priority</td>
<td>LACP port priority assigned to this interface within the channel group.</td>
</tr>
<tr>
<td>Admin State, Oper State</td>
<td>Administrative or operational values of the actor’s state parameters:</td>
</tr>
<tr>
<td>Expired</td>
<td>The actor’s receive machine is in the expired state;</td>
</tr>
<tr>
<td>Defaulted</td>
<td>The actor’s receive machine is using defaulted operational partner information, administratively configured for the partner.</td>
</tr>
<tr>
<td>Distributing</td>
<td>If false, distribution of outgoing frames on this link is disabled; i.e., distribution is currently disabled and is not expected to be enabled in the absence of administrative changes or changes in received protocol information.</td>
</tr>
<tr>
<td>Collecting</td>
<td>Collection of incoming frames on this link is enabled; i.e., collection is currently enabled and is not expected to be disabled in the absence of administrative changes or changes in received protocol information.</td>
</tr>
<tr>
<td>Synchronization</td>
<td>The System considers this link to be IN_SYNC; i.e., it has been allocated to the correct Link Aggregation Group, the group has been associated with a compatible Aggregator, and the identity of the Link Aggregation Group is consistent with the System ID and operational Key information transmitted.</td>
</tr>
<tr>
<td>Aggregation</td>
<td>The system considers this link to be aggregatable; i.e., a potential candidate for aggregation.</td>
</tr>
<tr>
<td>Long timeout</td>
<td>Periodic transmission of LACPDU uses a slow transmission rate.</td>
</tr>
<tr>
<td>LACP-Activity</td>
<td>Activity control value with regard to this link. (0: Passive; 1: Active)</td>
</tr>
</tbody>
</table>
Web – Click Port, LACP, Port Internal Information. Select a port channel to display the corresponding information.

![LACP Port Internal Information](image)

**Figure 3-55** LACP - Port Internal Information

CLI – The following example displays the LACP configuration settings and operational state for the local side of port channel 1.

```
Console#show lacp 1 internal
Port channel : 1

Oper Key : 120
Admin Key : 0
Eth 1/1

LACPDU Internal: 30 sec
LACP System Priority: 3
LACP Port Priority: 128
Admin Key: 120
Oper Key: 120
Admin State: defaulted, aggregation, long timeout, LACP-activity
Oper State: distributing, collecting, synchronization, aggregation, long timeout, LACP-activity
```
Configuring the Switch

Displaying LACP Settings and Status for the Remote Side

You can display configuration settings and the operational state for the remote side of an link aggregation.

### Table 3-9 LACP Neighbor Configuration Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partner Admin System ID</td>
<td>LAG partner’s system ID assigned by the user.</td>
</tr>
<tr>
<td>Partner Oper System ID</td>
<td>LAG partner’s system ID assigned by the LACP protocol.</td>
</tr>
<tr>
<td>Partner Admin Port Number</td>
<td>Current administrative value of the port number for the protocol Partner.</td>
</tr>
<tr>
<td>Partner Oper Port Number</td>
<td>Operational port number assigned to this aggregation port by the port’s protocol partner.</td>
</tr>
<tr>
<td>Port Admin Priority</td>
<td>Current administrative value of the port priority for the protocol partner.</td>
</tr>
<tr>
<td>Port Oper Priority</td>
<td>Priority value assigned to this aggregation port by the partner.</td>
</tr>
<tr>
<td>Admin Key</td>
<td>Current administrative value of the Key for the protocol partner.</td>
</tr>
<tr>
<td>Oper Key</td>
<td>Current operational value of the Key for the protocol partner.</td>
</tr>
<tr>
<td>Admin State</td>
<td>Administrative values of the partner’s state parameters. (See preceding table.)</td>
</tr>
<tr>
<td>Oper State</td>
<td>Operational values of the partner’s state parameters. (See preceding table.)</td>
</tr>
</tbody>
</table>

**Web** – Click Port, LACP, Port Neighbors Information. Select a port channel to display the corresponding information.

![LACP Port Neighbors Information](image)

**Figure 3-56 LACP - Port Neighbors Information**
CLI – The following example displays the LACP configuration settings and operational state for the remote side of port channel 1.

```
Console#show lacp 1 neighbors
Port channel 1 neighbors

Eth 1/1

Partner Admin System ID: 32768, 00-00-00-00-00-00
Partner Oper System ID: 3, 00-12-CF-CE-2A-20
Partner Admin Port Number: 5
Partner Oper Port Number: 3
Port Admin Priority: 32768
Port Oper Priority: 128
Admin Key: 0
Oper Key: 120
Admin State: defaulted, distributing, collecting, synchronization, long timeout,
Oper State: distributing, collecting, synchronization, aggregation, long timeout, LACP-activity
```

### Setting Broadcast Storm Thresholds

Broadcast storms may occur when a device on your network is malfunctioning, or if application programs are not well designed or properly configured. If there is too much broadcast traffic on your network, performance can be severely degraded or everything can come to complete halt.

You can protect your network from broadcast storms by setting a threshold for broadcast traffic. Any broadcast packets exceeding the specified threshold will then be dropped.

#### Command Usage

- Broadcast Storm Control is enabled by default.
- Broadcast control does not effect IP multicast traffic.

#### Command Attributes

- **Port** - Port number.
- **Type** – Indicates the port type. (100BASE-TX, 1000BASE-T, or SFP)
- **Protect Status** – Shows whether or not broadcast storm control has been enabled. (Default: Enabled)
- **Threshold** – Threshold as percentage of port bandwidth. (Options: 500-262143 packets per second; Default: 500 pps).
- **Trunk** – Shows if a port is a trunk member.
Configuring the Switch

**Web** – Click Port, Port/Trunk Broadcast Control. Set the threshold, mark the Enabled field for the desired interface and click Apply.

![Port Broadcast Control](image)

**CLI** – Specify any interface, and then enter the threshold. The following disables broadcast storm control for port 1, and then sets broadcast suppression at 500 packets per second for port 2.

```
Console(config)#interface ethernet 1/1
4-116
Console(config-if)#no switchport broadcast
4-122
Console(config-if)#exit

Console(config)#interface ethernet 1/2
4-122
Console(config-if)#switchport broadcast packet-rate 500

Console(config-if)#end

Console#show interfaces switchport ethernet 1/2
4-125

Information of Eth 1/2
Broadcast threshold: Enabled, 500 packets/second
LACP status: Disabled
Ingress Rate Limit: Disabled, 100000 Kbits per second
Egress Rate Limit: Disabled, 100000 Kbits per second
VLAN membership mode: Hybrid
Ingress rule: Enabled
Acceptable frame type: All frames
Native VLAN: 1
Priority for untagged traffic: 0
GVRP status: Disabled
Allowed VLAN: 1(u),
Forbidden VLAN:
Private-VLAN mode: NONE
Private-VLAN host-association: NONE
Private-VLAN mapping: NONE
```

Console#
Configuring Port Mirroring

You can mirror traffic from any source port to a target port for real-time analysis. You can then attach a logic analyzer or RMON probe to the target port and study the traffic crossing the source port in a completely unobtrusive manner.

Command Usage

- Monitor port speed should match or exceed source port speed, otherwise traffic may be dropped from the monitor port.
- All mirror sessions must share the same destination port.
- When mirroring port traffic, the target port must be included in the same VLAN as the source port.

Command Attributes

- **Mirror Sessions** – Displays a list of current mirror sessions.
- **Source Port** – The port whose traffic will be monitored. (Range: 1-26/50)
- **Type** – Allows you to select which traffic to mirror to the target port, Rx (receive), or Tx (transmit). (Default: Rx)
- **Target Port** – The port that will mirror the traffic on the source port. (Range: 1-26/50)

Web – Click Port, Mirror Port Configuration. Specify the source port, the traffic type to be mirrored, and the monitor port, then click Add.

**CLI** – Use the interface command to select the monitor port, then use the port monitor command to specify the source port and traffic type.

```
Console(config)#interface ethernet 1/10
Console(config-if)#port monitor ethernet 1/13 tx
```

![Mirror Port Configuration](image-url)
Configuring Rate Limits

This function allows the network manager to control the maximum rate for traffic transmitted or received on an interface. Rate limiting is configured on interfaces at the edge of a network to limit traffic into or out of the switch. Traffic that falls within the rate limit is transmitted, while packets that exceed the acceptable amount of traffic are dropped.

Rate limiting can be applied to individual ports or trunks. When an interface is configured with this feature, the traffic rate will be monitored by the hardware to verify conformity. Non-conforming traffic is dropped, conforming traffic is forwarded without any changes.

Rate Limit Configuration

Use the rate limit configuration pages to apply rate limiting.

Command Usage

• Input and output rate limits can be enabled or disabled for individual interfaces.

Command Attributes

• **Port/Trunk** – Displays the port/trunk number.
• **Input/Output Rate Limit Status** – Enables or disables the rate limit. (Default: Enabled)
• **Input/Output Rate Limit** – Sets the rate limit level.

Web – Click Port, Rate Limit, Input/Output Port/Trunk Configuration. Enable the Rate Limit Status for the required interfaces, set the Rate Limit Level, and click Apply.

<table>
<thead>
<tr>
<th>Port</th>
<th>Input Rate Limit Status</th>
<th>Input Rate Limit (Mbps)</th>
<th>Trunk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>☐ Enabled</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>☐ Enabled</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>☐ Enabled</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>☐ Enabled</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>☐ Enabled</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>☐ Enabled</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>☐ Enabled</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>☐ Enabled</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>☐ Enabled</td>
<td>1000</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3-59 Input Rate Limit Port Configuration
CLI - This example sets the rate limit level for input traffic passing through port 3.

```
Console(config)#interface ethernet 1/3
Console(config-if)#rate-limit input 500
```

Showing Port Statistics

You can display standard statistics on network traffic from the Interfaces Group and Ethernet-like MIBs, as well as a detailed breakdown of traffic based on the RMON MIB. Interfaces and Ethernet-like statistics display errors on the traffic passing through each port. This information can be used to identify potential problems with the switch (such as a faulty port or unusually heavy loading). RMON statistics provide access to a broad range of statistics, including a total count of different frame types and sizes passing through each port. All values displayed have been accumulated since the last system reboot, and are shown as counts per second. Statistics are refreshed every 60 seconds by default.

**Note:** RMON groups 2, 3 and 9 can only be accessed using SNMP management software such as HP OpenView.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Interface Statistics</strong></td>
<td></td>
</tr>
<tr>
<td>Received Octets</td>
<td>The total number of octets received on the interface, including framing characters.</td>
</tr>
<tr>
<td>Received Unicast Packets</td>
<td>The number of subnetwork-unicast packets delivered to a higher-layer protocol.</td>
</tr>
<tr>
<td>Received Multicast Packets</td>
<td>The number of packets, delivered by this sub-layer to a higher (sub-)layer, which were addressed to a multicast address at this sub-layer.</td>
</tr>
<tr>
<td>Received Broadcast Packets</td>
<td>The number of packets, delivered by this sub-layer to a higher (sub-)layer, which were addressed to a broadcast address at this sub-layer.</td>
</tr>
<tr>
<td>Received Discarded Packets</td>
<td>The number of inbound packets which were chosen to be discarded even though no errors had been detected to prevent their being deliverable to a higher-layer protocol. One possible reason for discarding such a packet could be to free up buffer space.</td>
</tr>
<tr>
<td>Received Unknown Packets</td>
<td>The number of packets received via the interface which were discarded because of an unknown or unsupported protocol.</td>
</tr>
<tr>
<td>Received Errors</td>
<td>The number of inbound packets that contained errors preventing them from being deliverable to a higher-layer protocol.</td>
</tr>
<tr>
<td><strong>Transmit Octets</strong></td>
<td>The total number of octets transmitted out of the interface, including framing characters.</td>
</tr>
<tr>
<td><strong>Transmit Unicast Packets</strong></td>
<td>The total number of packets that higher-level protocols requested be transmitted to a subnetwork-unicast address, including those that were discarded or not sent.</td>
</tr>
</tbody>
</table>
### Table 3-10 Port Statistics (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit Multicast Packets</td>
<td>The total number of packets that higher-level protocols requested be transmitted, and which were addressed to a multicast address at this sub-layer, including those that were discarded or not sent.</td>
</tr>
<tr>
<td>Transmit Broadcast Packets</td>
<td>The total number of packets that higher-level protocols requested be transmitted, and which were addressed to a broadcast address at this sub-layer, including those that were discarded or not sent.</td>
</tr>
<tr>
<td>Transmit Discarded Packets</td>
<td>The number of outbound packets which were chosen to be discarded even though no errors had been detected to prevent their being transmitted. One possible reason for discarding such a packet could be to free up buffer space.</td>
</tr>
<tr>
<td>Transmit Errors</td>
<td>The number of outbound packets that could not be transmitted because of errors.</td>
</tr>
<tr>
<td><strong>Etherlike Statistics</strong></td>
<td></td>
</tr>
<tr>
<td>Alignment Errors</td>
<td>The number of alignment errors (missynchronized data packets).</td>
</tr>
<tr>
<td>Late Collisions</td>
<td>The number of times that a collision is detected later than 512 bit-times into the transmission of a packet.</td>
</tr>
<tr>
<td>FCS Errors</td>
<td>A count of frames received on a particular interface that are an integral number of octets in length but do not pass the FCS check. This count does not include frames received with frame-too-long or frame-too-short error.</td>
</tr>
<tr>
<td>Excessive Collisions</td>
<td>A count of frames for which transmission on a particular interface fails due to excessive collisions. This counter does not increment when the interface is operating in full-duplex mode.</td>
</tr>
<tr>
<td>Single Collision Frames</td>
<td>The number of successfully transmitted frames for which transmission is inhibited by exactly one collision.</td>
</tr>
<tr>
<td>Internal MAC Transmit Errors</td>
<td>A count of frames for which transmission on a particular interface fails due to an internal MAC sublayer transmit error.</td>
</tr>
<tr>
<td>Multiple Collision Frames</td>
<td>A count of successfully transmitted frames for which transmission is inhibited by more than one collision.</td>
</tr>
<tr>
<td>Carrier Sense Errors</td>
<td>The number of times that the carrier sense condition was lost or never asserted when attempting to transmit a frame.</td>
</tr>
<tr>
<td>SQE Test Errors</td>
<td>A count of times that the SQE TEST ERROR message is generated by the PLS sublayer for a particular interface.</td>
</tr>
<tr>
<td>Frames Too Long</td>
<td>A count of frames received on a particular interface that exceed the maximum permitted frame size.</td>
</tr>
<tr>
<td>Deferred Transmissions</td>
<td>A count of frames for which the first transmission attempt on a particular interface is delayed because the medium was busy.</td>
</tr>
<tr>
<td>Internal MAC Receive Errors</td>
<td>A count of frames for which reception on a particular interface fails due to an internal MAC sublayer receive error.</td>
</tr>
</tbody>
</table>
### Table 3-10 Port Statistics (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>RMON Statistics</strong></td>
<td></td>
</tr>
<tr>
<td>Drop Events</td>
<td>The total number of events in which packets were dropped due to lack of resources.</td>
</tr>
<tr>
<td>Jabbers</td>
<td>The total number of frames received that were longer than 1518 octets (excluding framing bits, but including FCS octets), and had either an FCS or alignment error.</td>
</tr>
<tr>
<td>Received Bytes</td>
<td>Total number of bytes of data received on the network. This statistic can be used as a reasonable indication of Ethernet utilization.</td>
</tr>
<tr>
<td>Collisions</td>
<td>The best estimate of the total number of collisions on this Ethernet segment.</td>
</tr>
<tr>
<td>Received Frames</td>
<td>The total number of frames (bad, broadcast and multicast) received.</td>
</tr>
<tr>
<td>Broadcast Frames</td>
<td>The total number of good frames received that were directed to the broadcast address. Note that this does not include multicast packets.</td>
</tr>
<tr>
<td>Multicast Frames</td>
<td>The total number of good frames received that were directed to this multicast address.</td>
</tr>
<tr>
<td>CRC/Alignment Errors</td>
<td>The number of CRC/alignment errors (FCS or alignment errors).</td>
</tr>
<tr>
<td>Undersize Frames</td>
<td>The total number of frames received that were less than 64 octets long (excluding framing bits, but including FCS octets) and were otherwise well formed.</td>
</tr>
<tr>
<td>Oversize Frames</td>
<td>The total number of frames received that were longer than 1518 octets (excluding framing bits, but including FCS octets) and were otherwise well formed.</td>
</tr>
<tr>
<td>Fragments</td>
<td>The total number of frames received that were less than 64 octets in length (excluding framing bits, but including FCS octets) and had either an FCS or alignment error.</td>
</tr>
<tr>
<td>64 Bytes Frames</td>
<td>The total number of frames (including bad packets) received and transmitted that were 64 octets in length (excluding framing bits but including FCS octets).</td>
</tr>
<tr>
<td>65-127 Byte Frames</td>
<td>The total number of frames (including bad packets) received and transmitted where the number of octets fall within the specified range (excluding framing bits but including FCS octets).</td>
</tr>
</tbody>
</table>
Web – Click Port, Port Statistics. Select the required interface, and click Query. You can also use the Refresh button at the bottom of the page to update the screen.

**Interface Statistics:**

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Received Octets</td>
<td>1352927</td>
<td></td>
</tr>
<tr>
<td>Received Multicast Packets</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>Received Discarded Packets</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Received Errors</td>
<td>0</td>
<td>10621122</td>
</tr>
<tr>
<td>Transmitted Unicast Packets</td>
<td>11107</td>
<td></td>
</tr>
<tr>
<td>Transmitted Broadcast Packets</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Transmitted Errors</td>
<td>0</td>
<td>85</td>
</tr>
</tbody>
</table>

**Etherlike Statistics:**

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alignment Errors</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FCS Errors</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Single Collision Frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Multiple Collision Frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SQE Test Errors</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Deferred Transmissions</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

**RMON Statistics:**

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drop Events</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Received Bytes</td>
<td>12333448</td>
<td>0</td>
</tr>
<tr>
<td>Received Frames</td>
<td>0</td>
<td>10824</td>
</tr>
<tr>
<td>Broadcast Frames</td>
<td>184</td>
<td>1349</td>
</tr>
<tr>
<td>Multicast Frames</td>
<td>547</td>
<td>140</td>
</tr>
<tr>
<td>CRC/Alignment Errors</td>
<td>0</td>
<td>1189</td>
</tr>
<tr>
<td>Undersize Frames</td>
<td>0</td>
<td>554</td>
</tr>
<tr>
<td>Oversize Frames</td>
<td>0</td>
<td>645</td>
</tr>
<tr>
<td>Fragments</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

*Figure 3-60 Port Statistics*
Address Table Settings

Switches store the addresses for all known devices. This information is used to pass traffic directly between the inbound and outbound ports. All the addresses learned by monitoring traffic are stored in the dynamic address table. You can also manually configure static addresses that are bound to a specific port.

Setting Static Addresses

A static address can be assigned to a specific interface on this switch. Static addresses are bound to the assigned interface and will not be moved. When a static address is seen on another interface, the address will be ignored and will not be written to the address table.

Command Attributes

- **Static Address Counts** – The number of manually configured addresses.
- **Current Static Address Table** – Lists all the static addresses.
- **Interface** – Port or trunk associated with the device assigned a static address.
- **MAC Address** – Physical address of a device mapped to this interface.
- **VLAN** – ID of configured VLAN (1-4094).

---

6. Web only.

---

CLI – This example shows statistics for port 13.

```
Console#show interfaces counters ethernet 1/13
Ethernet 1/13
Iftable stats:
Octets input: 868453, Octets output: 3492122
Unicast input: 7315, Unicast output: 6658
Discard input: 0, Discard output: 0
Error input: 0, Error output: 0
Unknown protos input: 0, QLen output: 0
Extended iftable stats:
Multi-cast input: 0, Multi-cast output: 17027
Broadcast input: 231, Broadcast output: 7
Ether-like stats:
Alignment errors: 0, FCS errors: 0
Single Collision frames: 0, Multiple collision frames: 0
SQE Test errors: 0, Deferred transmissions: 0
Late collisions: 0, Excessive collisions: 0
Internal mac transmit errors: 0, Internal mac receive errors: 0
Frame too longs: 0, Carrier sense errors: 0
Symbol errors: 0
RMON stats:
Drop events: 0, Octets: 4422579, Packets: 31552
Broadcast pkts: 238, Multi-cast pkts: 17033
Undersize pkts: 0, Oversize pkts: 0
Fragments: 0, Jabbers: 0
CRC align errors: 0, Collisions: 0
Packet size <= 64 octets: 25568, Packet size 65 to 127 octets: 1616
Packet size 128 to 255 octets: 1249, Packet size 256 to 511 octets: 1449
Packet size 512 to 1023 octets: 802, Packet size 1024 to 1518 octets: 871
Console#
```
Configuring the Switch

Web – Click Address Table, Static Addresses. Specify the interface, the MAC address and VLAN, then click Add Static Address.

**Figure 3-61 Configuring a Static Address Table**

CLI – This example adds an address to the static address table, but sets it to be deleted when the switch is reset.

```
Console(config)#mac-address-table static 00-12-cf-94-34-de
 interface ethernet 1/1 vlan 1 delete-on-reset
Console(config)#
```

Displaying the Address Table

The Dynamic Address Table contains the MAC addresses learned by monitoring the source address for traffic entering the switch. When the destination address for inbound traffic is found in the database, the packets intended for that address are forwarded directly to the associated port. Otherwise, the traffic is flooded to all ports.

Command Attributes

- **Interface** – Indicates a port or trunk.
- **MAC Address** – Physical address associated with this interface.
- **VLAN** – ID of configured VLAN (1-4094).
- **Address Table Sort Key** – You can sort the information displayed based on MAC address, VLAN or interface (port or trunk).
- **Dynamic Address Counts** – The number of addresses dynamically learned.
- **Current Dynamic Address Table** – Lists all the dynamic addresses.
**Web** – Click Address Table, Dynamic Addresses. Specify the search type (i.e., mark the Interface, MAC Address, or VLAN checkbox), select the method of sorting the displayed addresses, and then click Query.

![Dynamic Addresses](image)

**Figure 3-62 Configuring a Dynamic Address Table**

**CLI** – This example also displays the address table entries for port 1.

```
Console#show mac-address-table interface ethernet 1/1 4-141
Interface Mac Address Vlan Type
---------- ----------------- ---- -----------------
Eth 1/ 1 00-12-CF-48-82-93 1 Delete-on-reset
Eth 1/ 1 00-12-CF-94-34-DE 2 Learned
Console#
```
Changing the Aging Time

You can set the aging time for entries in the dynamic address table.

Command Attributes

- **Aging Status** – Enables/disables the function.
- **Aging Time** – The time after which a learned entry is discarded.
  (Range: 10-630 seconds; Default: 300 seconds)

**Web** – Click Address Table, Address Aging. Specify the new aging time, click Apply.

<table>
<thead>
<tr>
<th>Aging Status</th>
<th>Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aging Time</td>
<td>300 seconds</td>
</tr>
</tbody>
</table>

**Figure 3-63 Setting the Address Aging Time**

**CLI** – This example sets the aging time to 300 seconds.

```
Console(config)#mac-address-table aging-time 300
```

Spanning Tree Algorithm Configuration

The Spanning Tree Algorithm (STA) can be used to detect and disable network loops, and to provide backup links between switches, bridges or routers. This allows the switch to interact with other bridging devices (that is, an STA-compliant switch, bridge or router) in your network to ensure that only one route exists between any two stations on the network, and provide backup links which automatically take over when a primary link goes down.

The spanning tree algorithms supported by this switch include these versions:

- **STP** – Spanning Tree Protocol (IEEE 802.1D)
- **RSTP** – Rapid Spanning Tree Protocol (IEEE 802.1w)
- **MSTP** – Multiple Spanning Tree Protocol (IEEE 802.1s)

**Note:** MSTP is not supported in the current software.

STP uses a distributed algorithm to select a bridging device (STP-compliant switch, bridge or router) that serves as the root of the spanning tree network. It selects a root port on each bridging device (except for the root device) which incurs the lowest path cost when forwarding a packet from that device to the root device. Then it selects a designated bridging device from each LAN which incurs the lowest path cost when forwarding a packet from that LAN to the root device. All ports connected to designated bridging devices are assigned as designated ports. After determining the lowest cost spanning tree, it enables all root ports and designated ports, and
disables all other ports. Network packets are therefore only forwarded between root ports and designated ports, eliminating any possible network loops.

Once a stable network topology has been established, all bridges listen for Hello BPDUs (Bridge Protocol Data Units) transmitted from the Root Bridge. If a bridge does not get a Hello BPDU after a predefined interval (Maximum Age), the bridge assumes that the link to the Root Bridge is down. This bridge will then initiate negotiations with other bridges to reconfigure the network to reestablish a valid network topology.

RSTP is designed as a general replacement for the slower, legacy STP. RSTP is also incorporated into MSTP. RSTP achieves much faster reconfiguration (i.e., around 1 to 3 seconds, compared to 30 seconds or more for STP) by reducing the number of state changes before active ports start learning, predefining an alternate route that can be used when a node or port fails, and retaining the forwarding database for ports insensitive to changes in the tree structure when reconfiguration occurs.

MSTP When using STP or RSTP, it may be difficult to maintain a stable path between all VLAN members. Frequent changes in the tree structure can easily isolate some of the group members. MSTP (which is based on RSTP for fast convergence) is designed to support independent spanning trees based on VLAN groups. Using multiple spanning trees can provide multiple forwarding paths and enable load balancing. One or more VLANs can be grouped into a Multiple Spanning Tree Instance (MSTI). MSTP builds a separate Multiple Spanning Tree (MST) for each instance to maintain connectivity among each of the assigned VLAN groups. MSTP then builds a Internal Spanning Tree (IST) for the Region containing all commonly configured MSTP bridges.
An MST Region consists of a group of interconnected bridges that have the same 
MST Configuration Identifiers (including the Region Name, Revision Level and 
Configuration Digest-V see 3-116). An MST Region may contain multiple MSTP 
Instances. An Internal Spanning Tree (IST) is used to connect all the MSTP switches 
within an MST region. A Common Spanning Tree (CST) interconnects all adjacent 
MST Regions, and acts as a virtual bridge node for communications with STP or 
RSTP nodes in the global network.

MSTP connects all bridges and LAN segments with a single Common and Internal 
Spanning Tree (CIST). The CIST is formed as a result of the running spanning tree 
algorithm between switches that support the STP, RSTP, MSTP protocols.

Once you specify the VLANs to include in a Multiple Spanning Tree Instance (MSTI), 
the protocol will automatically build an MSTI tree to maintain connectivity among 
each of the VLANs. MSTP maintains contact with the global network because each 
instance is treated as an RSTP node in the Common Spanning Tree (CST).
Displaying Global Settings

You can display a summary of the current bridge STA information that applies to the entire switch using the STA Information screen.

Field Attributes

- **Spanning Tree State** – Shows if the switch is enabled to participate in an STA-compliant network.

- **Bridge ID** – A unique identifier for this bridge, consisting of the bridge priority and MAC address (where the address is taken from the switch system).

- **Max Age** – The maximum time (in seconds) a device can wait without receiving a configuration message before attempting to reconfigure. All device ports (except for designated ports) should receive configuration messages at regular intervals. Any port that ages out STA information (provided in the last configuration message) becomes the designated port for the attached LAN. If it is a root port, a new root port is selected from among the device ports attached to the network. (References to “ports” in this section mean “interfaces,” which includes both ports and trunks.)

- **Hello Time** – Interval (in seconds) at which the root device transmits a configuration message.

- **Forward Delay** – The maximum time (in seconds) the root device will wait before changing states (i.e., discarding to learning to forwarding). This delay is required because every device must receive information about topology changes before it starts to forward frames. In addition, each port needs time to listen for conflicting information that would make it return to a discarding state; otherwise, temporary data loops might result.

- **Designated Root** – The priority and MAC address of the device in the Spanning Tree that this switch has accepted as the root device.
  - **Root Port** – The number of the port on this switch that is closest to the root. This switch communicates with the root device through this port. If there is no root port, then this switch has been accepted as the root device of the Spanning Tree network.
  - **Root Path Cost** – The path cost from the root port on this switch to the root device.

- **Configuration Changes** – The number of times the Spanning Tree has been reconfigured.

- **Last Topology Change** – Time since the Spanning Tree was last reconfigured.

These additional parameters are only displayed for the CLI:

- **Spanning tree mode** – Specifies the type of spanning tree used on this switch:
  - **STP**: Spanning Tree Protocol (IEEE 802.1D)
  - **RSTP**: Rapid Spanning Tree (IEEE 802.1w)
  - **MSTP**: Multiple Spanning Tree (IEEE 802.1s)

- **Priority** – Bridge priority is used in selecting the root device, root port, and designated port. The device with the highest priority becomes the STA root device.
However, if all devices have the same priority, the device with the lowest MAC address will then become the root device.

- **Root Hello Time** – Interval (in seconds) at which this device transmits a configuration message.

- **Root Maximum Age** – The maximum time (in seconds) this device can wait without receiving a configuration message before attempting to reconfigure. All device ports (except for designated ports) should receive configuration messages at regular intervals. If the root port ages out STA information (provided in the last configuration message), a new root port is selected from among the device ports attached to the network. (References to “ports” in this section means “interfaces,” which includes both ports and trunks.)

- **Root Forward Delay** – The maximum time (in seconds) this device will wait before changing states (i.e., discarding to learning to forwarding). This delay is required because every device must receive information about topology changes before it starts to forward frames. In addition, each port needs time to listen for conflicting information that would make it return to a discarding state; otherwise, temporary data loops might result.

- **Transmission limit** – The minimum interval between the transmission of consecutive RSTP/MSTP BPDUs.

- **Path Cost Method** – The path cost is used to determine the best path between devices. The path cost method is used to determine the range of values that can be assigned to each interface.

**Web** – Click Spanning Tree, STA, Information.

<table>
<thead>
<tr>
<th>STA Information</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Spanning Tree:</strong></td>
</tr>
<tr>
<td><strong>Spanning Tree State</strong></td>
</tr>
<tr>
<td>Bridge ID</td>
</tr>
<tr>
<td>Max Age</td>
</tr>
<tr>
<td>Hello Time</td>
</tr>
<tr>
<td>Forward Delay</td>
</tr>
</tbody>
</table>

*Figure 3-64 Displaying Spanning Tree Information*
Spanning Tree Algorithm Configuration

CLI – This command displays global STA settings, followed by settings for each port.

```
Console#show spanning-tree
Spanning-tree information

Spanning tree mode: RSTP
Spanning tree enabled/disabled: enabled
Priority: 32768
Bridge Hello Time (sec.): 2
Bridge Max Age (sec.): 20
Bridge Forward Delay (sec.): 15
Root Hello Time (sec.): 2
Root Max Age (sec.): 20
Root Forward Delay (sec.): 15
Designated Root: 32768.0012CF0B0D00
Current root port: 0
Current root cost: 0
Number of topology changes: 1
Last topology changes time (sec.): 2262
Transmission limit: 3
Path Cost Method: long
...
```

Note: The current root port and current root cost display as zero when this device is not connected to the network.

Configuring Global Settings

Global settings apply to the entire switch.

Command Usage

- **Spanning Tree Protocol**
  
  Uses RSTP for the internal state machine, but sends only 802.1D BPDUs. This creates one spanning tree instance for the entire network. If multiple VLANs are implemented on a network, the path between specific VLAN members may be inadvertently disabled to prevent network loops, thus isolating group members. When operating multiple VLANs, we recommend selecting the MSTP option.

- **Rapid Spanning Tree Protocol**
  
  RSTP supports connections to either STP or RSTP nodes by monitoring the incoming protocol messages and dynamically adjusting the type of protocol messages the RSTP node transmits, as described below:

  - STP Mode – If the switch receives an 802.1D BPDU (i.e., STP BPDU) after a port’s migration delay timer expires, the switch assumes it is connected to an 802.1D bridge and starts using only 802.1D BPDUs.
  
  - RSTP Mode – If RSTP is using 802.1D BPDUs on a port and receives an RSTP BPDU after the migration delay expires, RSTP restarts the migration delay timer and begins using RSTP BPDUs on that port.

- **Multiple Spanning Tree Protocol**

7. STP and RSTP BPDUs are transmitted as untagged frames, and will cross any VLAN boundaries.
To allow multiple spanning trees to operate over the network, you must configure a related set of bridges with the same MSTP configuration, allowing them to participate in a specific set of spanning tree instances.

- A spanning tree instance can exist only on bridges that have compatible VLAN instance assignments.
- Be careful when switching between spanning tree modes. Changing modes stops all spanning-tree instances for the previous mode and restarts the system in the new mode, temporarily disrupting user traffic.

**Command Attributes**

**Basic Configuration of Global Settings**

- **Spanning Tree State** – Enables/disables STA on this switch. (Default: Enabled)
- **Spanning Tree Type** – Specifies the type of spanning tree used on this switch:
  - **STP**: Spanning Tree Protocol (IEEE 802.1D); i.e., when this option is selected, the switch will use RSTP set to STP forced compatibility mode).
  - **RSTP**: Rapid Spanning Tree (IEEE 802.1w); RSTP is the default.
  - **MSTP**: Multiple Spanning Tree (IEEE 802.1s);
- **Priority** – Bridge priority is used in selecting the root device, root port, and designated port. The device with the highest priority becomes the STA root device. However, if all devices have the same priority, the device with the lowest MAC address will then become the root device. (Note that lower numeric values indicate higher priority.)
  - Default: 32768
  - Range: 0-61440, in steps of 4096
  - Options: 0, 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, 61440

**Root Device Configuration**

- **Hello Time** – Interval (in seconds) at which the root device transmits a configuration message.
  - Default: 2
  - Minimum: 1
  - Maximum: The lower of 10 or [(Max. Message Age / 2) -1]
- **Maximum Age** – The maximum time (in seconds) a device can wait without receiving a configuration message before attempting to reconfigure. All device ports (except for designated ports) should receive configuration messages at regular intervals. Any port that ages out STA information (provided in the last configuration message) becomes the designated port for the attached LAN. If it is a root port, a new root port is selected from among the device ports attached to the network. (References to “ports” in this section mean “interfaces,” which includes both ports and trunks.)
  - Default: 20
  - Minimum: The higher of 6 or [2 x (Hello Time + 1)].
  - Maximum: The lower of 40 or [2 x (Forward Delay - 1)]
• **Forward Delay** – The maximum time (in seconds) this device will wait before changing states (i.e., discarding to learning to forwarding). This delay is required because every device must receive information about topology changes before it starts to forward frames. In addition, each port needs time to listen for conflicting information that would make it return to a discarding state; otherwise, temporary data loops might result.
  
  - Default: 15
  - Minimum: The higher of 4 or 
    
    \[
    \text{(Max. Message Age / 2)} + 1
    \]
  - Maximum: 30

**Configuration Settings for RSTP**

The following attributes apply to both RSTP and MSTP:

• **Path Cost Method** – The path cost is used to determine the best path between devices. The path cost method is used to determine the range of values that can be assigned to each interface.
  
  - Long: Specifies 32-bit based values that range from 1-200,000,000. (This is the default.)
  - Short: Specifies 16-bit based values that range from 1-65535.

• **Transmission Limit** – The maximum transmission rate for BPDUs is specified by setting the minimum interval between the transmission of consecutive protocol messages. (Range: 1-10; Default: 3)

**Configuration Settings for MSTP**

• **Max Instance Numbers** – The maximum number of MSTP instances to which this switch can be assigned.

• **Region Revision** – The revision for this MSTI. (Range: 0-65535; Default: 0)

• **Region Name** – The name for this MSTI. (Maximum length: 32 characters)

• **Maximum Hop Count** – The maximum number of hops allowed in the MST region before a BPDU is discarded. (Range: 1-40; Default: 20)

**Note:** The MST name and revision number are both required to uniquely identify an MST region.
Web – Click Spanning Tree, STA, Configuration. Modify the required attributes, and click Apply.

![STA Configuration](image)

![When the Switch Becomes Root](image)

![RSTP Configuration](image)

![MSTP Configuration](image)

Figure 3-65 Configuring Spanning Tree

CLI – This example enables Spanning Tree Protocol, sets the mode to RSTP, and then configures the STA and RSTP parameters.

```plaintext
Console(config)#spanning-tree
Console(config)#spanning-tree mode rstp
Console(config)#spanning-tree priority 45056
Console(config)#spanning-tree hello-time 5
Console(config)#spanning-tree max-age 38
Console(config)#spanning-tree forward-time 20
Console(config)#spanning-tree pathcost method long
Console(config)#spanning-tree transmission-limit 4
```

3-110
Displaying Interface Settings

The STA Port Information and STA Trunk Information pages display the current status of ports and trunks in the Spanning Tree.

Field Attributes

- **Spanning Tree** – Shows if STA has been enabled on this interface.
- **STA Status** – Displays current state of this port within the Spanning Tree:
  - **Discarding** - Port receives STA configuration messages, but does not forward packets.
  - **Learning** - Port has transmitted configuration messages for an interval set by the Forward Delay parameter without receiving contradictory information. Port address table is cleared, and the port begins learning addresses.
  - **Forwarding** - Port forwards packets, and continues learning addresses.

The rules defining port status are:

- A port on a network segment with no other STA compliant bridging device is always forwarding.
- If two ports of a switch are connected to the same segment and there is no other STA device attached to this segment, the port with the smaller ID forwards packets and the other is discarding.
- All ports are discarding when the switch is booted, then some of them change state to learning, and then to forwarding.

- **Forward Transitions** – The number of times this port has transitioned from the Learning state to the Forwarding state.
- **Designated Cost** – The cost for a packet to travel from this port to the root in the current Spanning Tree configuration. The slower the media, the higher the cost.
- **Designated Bridge** – The bridge priority and MAC address of the device through which this port must communicate to reach the root of the Spanning Tree.
- **Designated Port** – The port priority and number of the port on the designated bridging device through which this switch must communicate with the root of the Spanning Tree.
- **Oper Link Type** – The operational point-to-point status of the LAN segment attached to this interface. This parameter is determined by manual configuration or by auto-detection, as described for Admin Link Type in STA Port Configuration on 3-114.
- **Oper Edge Port** – This parameter is initialized to the setting for Admin Edge Port in STA Port Configuration on 3-114 (i.e., true or false), but will be set to false if a BPDU is received, indicating that another bridge is attached to this port.
- **Port Role** – Roles are assigned according to whether the port is part of the active topology connecting the bridge to the root bridge (i.e., root port), connecting a LAN through the bridge to the root bridge (i.e., designated port), or is an alternate or backup port that may provide connectivity if other bridges, bridge ports, or LANs fail or are removed. The role is set to disabled (i.e., disabled port) if a port has no role within the spanning tree.
• **Trunk Member** – Indicates if a port is a member of a trunk. (STA Port Information only)

These additional parameters are only displayed for the CLI:

• **Admin status** – Shows if this interface is enabled.

• **Path cost** – This parameter is used by the STA to determine the best path between devices. Therefore, lower values should be assigned to ports attached to faster media, and higher values assigned to ports with slower media. (Path cost takes precedence over port priority.)

• **Priority** – Defines the priority used for this port in the Spanning Tree Algorithm. If the path cost for all ports on a switch is the same, the port with the highest priority (i.e., lowest value) will be configured as an active link in the Spanning Tree. This makes a port with higher priority less likely to be blocked if the Spanning Tree Algorithm is detecting network loops. Where more than one port is assigned the highest priority, the port with the lowest numeric identifier will be enabled.

• **Designated root** – The priority and MAC address of the device in the Spanning Tree that this switch has accepted as the root device.

• **Fast forwarding** – This field provides the same information as Admin Edge port, and is only included for backward compatibility with earlier products.

• **Admin Edge Port** – You can enable this option if an interface is attached to a LAN segment that is at the end of a bridged LAN or to an end node. Since end nodes cannot cause forwarding loops, they can pass directly through to the spanning tree forwarding state. Specifying Edge Ports provides quicker convergence for devices such as workstations or servers, retains the current forwarding database to reduce
the amount of frame flooding required to rebuild address tables during reconfiguration events, does not cause the spanning tree to reconfigure when the interface changes state, and also overcomes other STA-related timeout problems. However, remember that Edge Port should only be enabled for ports connected to an end-node device.

- **Admin Link Type** – The link type attached to this interface.
  - Point-to-Point – A connection to exactly one other bridge.
  - Shared – A connection to two or more bridges.
  - Auto – The switch automatically determines if the interface is attached to a point-to-point link or to shared media.

**Web** – Click Spanning Tree, STA, Port Information or STA Trunk Information.

**CLI** – This example shows the STA attributes for port 5.

```
Console#show spanning-tree ethernet 1/5
Eth 1/ 5 information
--
Admin status: enabled
Role: disable
State: discarding
Path cost: 10000
Priority: 128
Designated cost: 0
Designated port : 128.5
Designated root: 32768.0012CF0B0D00
Designated bridge: 32768.0012CF0B0D00
Fast forwarding: disabled
Forward transitions: 0
Admin edge port: disabled
Oper edge port: disabled
Admin Link type: auto
Oper Link type: point-to-point
Spanning Tree Status: enabled
Console#
```
Configuring Interface Settings

You can configure RSTP and MSTP attributes for specific interfaces, including port priority, path cost, link type, and edge port. You may use a different priority or path cost for ports of the same media type to indicate the preferred path, link type to indicate a point-to-point connection or shared-media connection, and edge port to indicate if the attached device can support fast forwarding. (References to “ports” in this section means “interfaces,” which includes both ports and trunks.)

Command Attributes

The following attributes are read-only and cannot be changed:

- **STA State** – Displays current state of this port within the Spanning Tree. (See Displaying Interface Settings on 3-111 for additional information.)
  - **Discarding** - Port receives STA configuration messages, but does not forward packets.
  - **Learning** - Port has transmitted configuration messages for an interval set by the Forward Delay parameter without receiving contradictory information. Port address table is cleared, and the port begins learning addresses.
  - **Forwarding** - Port forwards packets, and continues learning addresses.

- **Trunk** – Indicates if a port is a member of a trunk. (STA Port Configuration only)

The following interface attributes can be configured:

- **Spanning Tree** – Enables/disables STA on this interface. (Default: Enabled).
- **Priority** – Defines the priority used for this port in the Spanning Tree Protocol. If the path cost for all ports on a switch are the same, the port with the highest priority (i.e., lowest value) will be configured as an active link in the Spanning Tree. This makes a port with higher priority less likely to be blocked if the Spanning Tree Protocol is detecting network loops. Where more than one port is assigned the highest priority, the port with lowest numeric identifier will be enabled.
  - Default: 128
  - Range: 0-240, in steps of 16

- **Path Cost** – This parameter is used by the STP to determine the best path between devices. Therefore, lower values should be assigned to ports attached to faster media, and higher values assigned to ports with slower media. (Path cost takes precedence over port priority.) Note that when the Path Cost Method is set to short, the maximum path cost is 65,535.
  - Range –
    - Ethernet: 200,000-20,000,000
    - Fast Ethernet: 20,000-2,000,000
    - Gigabit Ethernet: 2,000-200,000
  - Default –
    - Ethernet – Half duplex: 2,000,000; full duplex: 1,000,000; trunk: 500,000
    - Fast Ethernet – Half duplex: 200,000; full duplex: 100,000; trunk: 50,000
    - Gigabit Ethernet – Full duplex: 10,000; trunk: 5,000
• **Admin Link Type** – The link type attached to this interface.
  - Point-to-Point – A connection to exactly one other bridge.
  - Shared – A connection to two or more bridges.
  - Auto – The switch automatically determines if the interface is attached to a point-to-point link or to shared media. (This is the default setting.)

• **Admin Edge Port** (Fast Forwarding) – You can enable this option if an interface is attached to a LAN segment that is at the end of a bridged LAN or to an end node. Since end nodes cannot cause forwarding loops, they can pass directly through to the spanning tree forwarding state. Specifying Edge Ports provides quicker convergence for devices such as workstations or servers, retains the current forwarding database to reduce the amount of frame flooding required to rebuild address tables during reconfiguration events, does not cause the spanning tree to initiate reconfiguration when the interface changes state, and also overcomes other STA-related timeout problems. However, remember that Edge Port should only be enabled for ports connected to an end-node device. (Default: Disabled)

• **Migration** – If at any time the switch detects STP BPDUs, including Configuration or Topology Change Notification BPDUs, it will automatically set the selected interface to forced STP-compatible mode. However, you can also use the Protocol Migration button to manually re-check the appropriate BPDU format (RSTP or STP-compatible) to send on the selected interfaces. (Default: Disabled)

**Web** – Click Spanning Tree, STA, Port Configuration or Trunk Configuration. Modify the required attributes, then click Apply.

**STA Port Configuration**

<table>
<thead>
<tr>
<th>Port</th>
<th>Spanning Tree</th>
<th>STA State</th>
<th>Priority (0-240), in steps of 16</th>
<th>Admin Path Cost (1-2000000000, 0:Auto)</th>
<th>Admin Link Type</th>
<th>Admin Edge Port (Fast Forwarding)</th>
<th>Migration</th>
<th>Trunk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enabled</td>
<td>Forwarding</td>
<td>128</td>
<td>0</td>
<td>Auto</td>
<td>□ Enabled</td>
<td>□ Enabled</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Enabled</td>
<td>Discarding</td>
<td>128</td>
<td>0</td>
<td>Auto</td>
<td>□ Enabled</td>
<td>□ Enabled</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Enabled</td>
<td>Discarding</td>
<td>128</td>
<td>0</td>
<td>Auto</td>
<td>□ Enabled</td>
<td>□ Enabled</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Enabled</td>
<td>Discarding</td>
<td>128</td>
<td>0</td>
<td>Auto</td>
<td>□ Enabled</td>
<td>□ Enabled</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Enabled</td>
<td>Discarding</td>
<td>128</td>
<td>0</td>
<td>Auto</td>
<td>□ Enabled</td>
<td>□ Enabled</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Enabled</td>
<td>Discarding</td>
<td>128</td>
<td>0</td>
<td>Auto</td>
<td>□ Enabled</td>
<td>□ Enabled</td>
<td></td>
</tr>
</tbody>
</table>

**Figure 3-67 Configuring Spanning Tree per Port**

**CLI** – This example sets STA attributes for port 7.

```
Console(config)#interface ethernet 1/7
Console(config-if)#spanning-tree port-priority 0
Console(config-if)#spanning-tree cost 50
Console(config-if)#spanning-tree link-type auto
Console(config-if)#no spanning-tree edge-port
Console(config-if)#
```
Configuring Multiple Spanning Trees

MSTP generates a unique spanning tree for each instance. This provides multiple pathways across the network, thereby balancing the traffic load, preventing wide-scale disruption when a bridge node in a single instance fails, and allowing for faster convergence of a new topology for the failed instance.

By default all VLANs are assigned to the Internal Spanning Tree (MST Instance 0) that connects all bridges and LANs within the MST region. This switch supports up to 65 instances. You should try to group VLANs which cover the same general area of your network. However, remember that you must configure all bridges within the same MSTI Region (page 4-152) with the same set of instances, and the same instance (on each bridge) with the same set of VLANs. Also, note that RSTP treats each MSTI region as a single node, connecting all regions to the Common Spanning Tree.

To use multiple spanning trees:

1. Set the spanning tree type to MSTP (STA Configuration, page 3-102).
2. Enter the spanning tree priority for the selected MST instance (MSTP VLAN Configuration).
3. Add the VLANs that will share this MSTI (MSTP VLAN Configuration). Note: All VLANs are automatically added to the IST (Instance 0).

To ensure that the MSTI maintains connectivity across the network, you must configure a related set of bridges with the same MSTI settings.

Command Attributes

- **MST Instance** – Instance identifier of this spanning tree. (Default: 0)
- **Priority** – The priority of a spanning tree instance. (Range: 0-61440 in steps of 4096; Options: 0, 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, 61440; Default: 32768)
- **VLANs in MST Instance** – VLANs assigned this instance.
- **MST ID** – Instance identifier to configure. (Range: 0-57; Default: 0)
- **VLAN ID** – VLAN to assign to this selected MST instance. (Range: 1-4094)
Web – Click Spanning Tree, MSTP, VLAN Configuration. Select an instance identifier from the list, set the instance priority, and click Apply. To add the VLAN members to an MSTI instance, enter the instance identifier, the VLAN identifier, and click Add.

![MSTP VLAN Configuration](image)

Figure 3-68 Configuring Multiple Spanning Trees

CLI – This example sets the priority for MSTI 1, and adds VLANs 1-5 to this MSTI.

```
Console(config)#spanning-tree mst-configuration
Console(config-mst)#mst 1 priority 4096
Console(config-mstp)#mst 1 vlan 1-5
Console(config-mstp)#
```
**Configuring the Switch**

**CLI** – This example sets STA attributes for port 1, followed by settings for each port.

```console
Console#show spanning-tree mst 2
Spanning-tree information

Spanning tree mode :MSTP
Spanning tree enable/disable :enable
Instance :2
Vlans configuration :2
Priority :4096
Bridge Hello Time (sec.) :2
Bridge Max Age (sec.) :20
Bridge Forward Delay (sec.) :15
Root Hello Time (sec.) :2
Root Max Age (sec.) :20
Root Forward Delay (sec.) :15
Max hops :20
Remaining hops :20
Designated Root :4096.2.0000E9313131
Current root port :0
Current root cost :0
Number of topology changes :0
Last topology changes time (sec.):646
Transmission limit :3
Path Cost Method :long

Eth 1/7 information

Admin status : enable
Role : disable
State : discarding
External path cost : 10000
Internal path cost : 10000
Priority : 128
Designated cost : 0
Designated port : 128.7
Designated root : 4096.2.0000E9313131
Designated bridge : 4096.2.0000E9313131
Fast forwarding : enable
Forward transitions : 0
Admin edge port : enable
Oper edge port : enable
Admin Link type : auto
Oper Link type : point-to-point
Spanning Tree Status : enable...
```

**Displaying Interface Settings for MSTP**

The MSTP Port Information and MSTP Trunk Information pages display the current status of ports and trunks in the selected MST instance.

**Command Attributes**

- **MST Instance ID** – Instance identifier to configure. (Default: 0)

**Note:** The other attributes are described under “Displaying Interface Settings” on page 3-111
Web – Click Spanning Tree, MSTP, Port or Trunk Information. Select the required MST instance to display the current spanning tree values.

Figure 3-69 Displaying MSTP Interface Settings
Configuring the Switch

CLI – This displays STA settings for instance 0, followed by settings for each port. The settings for instance 0 are global settings that apply to the IST, the settings for other instances only apply to the local spanning tree.

```
Console#show spanning-tree mst 0 4-231
Spanning tree information
--
Spanning tree mode :MSTP
Spanning tree enable/disable :enable
Instance :0
Vlans configuration :1-4094
Priority :32768
Bridge Hello Time (sec.) :2
Bridge Max Age (sec.) :20
Bridge Forward Delay (sec.) :15
Root Hello Time (sec.) :2
Root Max Age (sec.) :20
Root Forward Delay (sec.) :15
Max hops :20
Remaining hops :20
Designated Root :32768.0.0000ABCD0000
Current root port :1
Current root cost :200000
Number of topology changes :1
Last topology changes time (sec.):645
Transmission limit :3
Path Cost Method :long
--
Eth 1/1 information
--
Admin status : enable
Role : root
State : forwarding
External path cost : 100000
Internal path cost : 100000
Priority : 128
Designated cost : 200000
Designated port : 128.24
Designated root : 32768.0.0000ABCD0000
Designated bridge : 32768.0.0030F1552000
Fast forwarding : disable
Forward transitions : 1
Admin edge port : enable
Oper edge port : disable
Admin Link type : auto
Oper Link type : point-to-point
Spanning Tree Status : enable
...
```

Configuring Interface Settings for MSTP

You can configure the STA interface settings for an MST Instance using the MSTP Port Configuration and MSTP Trunk Configuration pages.

Field Attributes

The following attributes are read-only and cannot be changed:

- **STA State** – Displays current state of this port within the Spanning Tree. (See “Displaying Interface Settings” on page 3-111 for additional information.)
- **Discarding** – Port receives STA configuration messages, but does not forward packets.
- **Learning** – Port has transmitted configuration messages for an interval set by the Forward Delay parameter without receiving contradictory information. Port address table is cleared, and the port begins learning addresses.
- **Forwarding** – Port forwards packets, and continues learning addresses.
- **Trunk** – Indicates if a port is a member of a trunk. (STA Port Configuration only)

The following interface attributes can be configured:

- **MST Instance ID** – Instance identifier to configure. (Default: 0)
- **Priority** – Defines the priority used for this port in the Spanning Tree Protocol. If the path cost for all ports on a switch are the same, the port with the highest priority (i.e., lowest value) will be configured as an active link in the Spanning Tree. This makes a port with higher priority less likely to be blocked if the Spanning Tree Protocol is detecting network loops. Where more than one port is assigned the highest priority, the port with lowest numeric identifier will be enabled. (Default: 128; Range: 0-240, in steps of 16)
- **MST Path Cost** – This parameter is used by the MSTP to determine the best path between devices. Therefore, lower values should be assigned to ports attached to faster media, and higher values assigned to ports with slower media. (Path cost takes precedence over port priority.) Note that when the Path Cost Method is set to short (page 3-63), the maximum path cost is 65,535.
  - Range:
    - Ethernet: 200,000-20,000,000
    - Fast Ethernet: 20,000-2,000,000
    - Gigabit Ethernet: 2,000-200,000
  - Default:
    - Ethernet – Half duplex: 2,000,000; full duplex: 1,000,000; trunk: 500,000
    - Fast Ethernet – Half duplex: 200,000; full duplex: 100,000; trunk: 50,000
    - Gigabit Ethernet – Full duplex: 10,000; trunk: 5,000
Web – Click Spanning Tree, MSTP, Port Configuration or Trunk Configuration. Enter the priority and path cost for an interface, and click Apply.

![Figure 3-70 Displaying MSTP Interface Settings](image)

CLI – This example sets the MSTP attributes for port 4.

```
Console(config)#interface ethernet 1/4
Console(config-if)#spanning-tree mst port-priority 0
Console(config-if)#spanning-tree mst cost 50
Console(config-if)
```

**VLAN Configuration**

**IEEE 802.1Q VLANs**

In large networks, routers are used to isolate broadcast traffic for each subnet into separate domains. This switch provides a similar service at Layer 2 by using VLANs to organize any group of network nodes into separate broadcast domains. VLANs confine broadcast traffic to the originating group, and can eliminate broadcast storms in large networks. This also provides a more secure and cleaner network environment.

An IEEE 802.1Q VLAN is a group of ports that can be located anywhere in the network, but communicate as though they belong to the same physical segment.

VLANs help to simplify network management by allowing you to move devices to a new VLAN without having to change any physical connections. VLANs can be easily organized to reflect departmental groups (such as Marketing or R&D), usage groups (such as e-mail), or multicast groups (used for multimedia applications such as videoconferencing).

VLANs provide greater network efficiency by reducing broadcast traffic, and allow you to make network changes without having to update IP addresses or IP subnets. VLANs inherently provide a high level of network security since traffic must pass through a configured Layer 3 link to reach a different VLAN.
This switch supports the following VLAN features:

• Up to 255 VLANs based on the IEEE 802.1Q standard
• Distributed VLAN learning across multiple switches using explicit or implicit tagging and GVRP protocol
• Port overlapping, allowing a port to participate in multiple VLANs
• End stations can belong to multiple VLANs
• Passing traffic between VLAN-aware and VLAN-unaware devices
• Priority tagging

Assigning Ports to VLANs

Before enabling VLANs for the switch, you must first assign each port to the VLAN group(s) in which it will participate. By default all ports are assigned to VLAN 1 as untagged ports. Add a port as a tagged port if you want it to carry traffic for one or more VLANs, and any intermediate network devices or the host at the other end of the connection supports VLANs. Then assign ports on the other VLAN-aware network devices along the path that will carry this traffic to the same VLAN(s), either manually or dynamically using GVRP. However, if you want a port on this switch to participate in one or more VLANs, but none of the intermediate network devices nor the host at the other end of the connection supports VLANs, then you should add this port to the VLAN as an untagged port.

Note: VLAN-tagged frames can pass through VLAN-aware or VLAN-unaware network interconnection devices, but the VLAN tags should be stripped off before passing it on to any end-node host that does not support VLAN tagging.

VLAN Classification – When the switch receives a frame, it classifies the frame in one of two ways. If the frame is untagged, the switch assigns the frame to an associated VLAN (based on the default VLAN ID of the receiving port). But if the frame is tagged, the switch uses the tagged VLAN ID to identify the port broadcast domain of the frame.

Port Overlapping – Port overlapping can be used to allow access to commonly shared network resources among different VLAN groups, such as file servers or printers. Note that if you implement VLANs which do not overlap, but still need to communicate, you can connect them by enabled routing on this switch.

Untagged VLANs – Untagged (or static) VLANs are typically used to reduce broadcast traffic and to increase security. A group of network users assigned to a
Configure the Switch

VLAN form a broadcast domain that is separate from other VLANs configured on the switch. Packets are forwarded only between ports that are designated for the same VLAN. Untagged VLANs can be used to manually isolate user groups or subnets. However, you should use IEEE 802.3 tagged VLANs with GVRP whenever possible to fully automate VLAN registration.

**Automatic VLAN Registration** – GVRP (GARP VLAN Registration Protocol) defines a system whereby the switch can automatically learn the VLANs to which each end station should be assigned. If an end station (or its network adapter) supports the IEEE 802.1Q VLAN protocol, it can be configured to broadcast a message to your network indicating the VLAN groups it wants to join. When this switch receives these messages, it will automatically place the receiving port in the specified VLANs, and then forward the message to all other ports. When the message arrives at another switch that supports GVRP, it will also place the receiving port in the specified VLANs, and pass the message on to all other ports. VLAN requirements are propagated in this way throughout the network. This allows GVRP-compliant devices to be automatically configured for VLAN groups based solely on endstation requests.

To implement GVRP in a network, first add the host devices to the required VLANs (using the operating system or other application software), so that these VLANs can be propagated onto the network. For both the edge switches attached directly to these hosts, and core switches in the network, enable GVRP on the links between these devices. You should also determine security boundaries in the network and disable GVRP on the boundary ports to prevent advertisements from being propagated, or forbid those ports from joining restricted VLANs.

**Note:** If you have host devices that do not support GVRP, you should configure static or untagged VLANs for the switch ports connected to these devices (as described in “Adding Static Members to VLANs (VLAN Index)” on page 3-129). But you can still enable GVRP on these edge switches, as well as on the core switches in the network.
Forwarding Tagged/Untagged Frames

If you want to create a small port-based VLAN for devices attached directly to a single switch, you can assign ports to the same untagged VLAN. However, to participate in a VLAN group that crosses several switches, you should create a VLAN for that group and enable tagging on all ports.

Ports can be assigned to multiple tagged VLANs, but are only allowed one untagged VLAN. Each port on the switch is capable of passing tagged or untagged frames. When forwarding a frame from this switch along a path that contains any VLAN-aware devices, the switch should include VLAN tags. When forwarding a frame from this switch along a path that does not contain any VLAN-aware devices (including the destination host), the switch must first strip off the VLAN tag before forwarding the frame. When the switch receives a tagged frame, it will pass this frame onto the VLAN(s) indicated by the frame tag. However, when this switch receives an untagged frame from a VLAN-unaware device, it first decides where to forward the frame, and then inserts a VLAN tag reflecting the ingress port’s default VID.

Enabling or Disabling GVRP (Global Setting)

GARP VLAN Registration Protocol (GVRP) defines a way for switches to exchange VLAN information in order to register VLAN members on ports across the network. VLANs are dynamically configured based on join messages issued by host devices and propagated throughout the network. GVRP must be enabled to permit automatic VLAN registration, and to support VLANs which extend beyond the local switch. (Default: Disabled)

Note: GVRP is not supported in the current software.

Web – Click VLAN, 802.1Q VLAN, GVRP Status. Enable or disable GVRP, click Apply

![GVRP Status](image)

Figure 3-71 Globally Enabling GVRP

CLI – This example enables GVRP for the switch.

```
Console(config)#bridge-ext gvrp
Console(config)#
```

4-168
Displaying Basic VLAN Information

The VLAN Basic Information page displays basic information on the VLAN type supported by the switch.

Field Attributes

- **VLAN Version Number**\(^8\) – The VLAN version used by this switch as specified in the IEEE 802.1Q standard.
- **Maximum VLAN ID** – Maximum VLAN ID recognized by this switch.
- **Maximum Number of Supported VLANs** – Maximum number of VLANs that can be configured on this switch.

**Web** – Click VLAN, 802.1Q VLAN, Basic Information.

![VLAN Basic Information Table](image)

Figure 3-72 Displaying Basic VLAN Information

**CLI** – Enter the following command.

```
Console#show bridge-ext
Max support vlan numbers: 256
Max support vlan ID: 4094
Extended multicast filtering services: No
Static entry individual port: Yes
VLAN learning: SVL
Configurable PVID tagging: Yes
Local VLAN capable: No
Traffic classes: Enabled
Global GVRP status: Enabled
GMRP: Disabled
```

Displaying Current VLANs

The VLAN Current Table shows the current port members of each VLAN and whether or not the port supports VLAN tagging. Ports assigned to a large VLAN group that crosses several switches should use VLAN tagging. However, if you just want to create a small port-based VLAN for one or two switches, you can disable tagging.

**Command Attributes (Web)**

- **VLAN ID** – ID of configured VLAN (1-4094).
- **Up Time at Creation** – Time this VLAN was created (i.e., System Up Time).

---

8. Web Only.
• **Status** – Shows how this VLAN was added to the switch.
  - **Dynamic GVRP**: Automatically learned via GVRP.
  - **Permanent**: Added as a static entry.

• **Egress Ports** – Shows all the VLAN port members.

• **Untagged Ports** – Shows the untagged VLAN port members.

**Web** – Click VLAN, 802.1Q VLAN, Current Table. Select any ID from the scroll-down list.

![VLAN Current Table](image)

**Figure 3-73  Displaying Current VLANs**

**Command Attributes** (CLI)

• **VLAN** – ID of configured VLAN (1-4094, no leading zeroes).

• **Type** – Shows how this VLAN was added to the switch.
  - **Dynamic**: Automatically learned via GVRP.
  - **Static**: Added as a static entry.

• **Name** – Name of the VLAN (1 to 32 characters).

• **Status** – Shows if this VLAN is enabled or disabled.
  - **Active**: VLAN is operational.
  - **Suspend**: VLAN is suspended; i.e., does not pass packets.

• **Ports / Channel groups** – Shows the VLAN interface members.
CLI – Current VLAN information can be displayed with the following command.

```
Console#show vlan id 1
Vlan ID: 1
Type: Static
Name: DefaultVlan
Status: Active
Ports/Port channel: Eth1/ 1(S) Eth1/ 2(S) Eth1/ 3(S) Eth1/ 4(S) Eth1/ 5(S)
 Eth1/ 6(S) Eth1/ 7(S) Eth1/ 8(S) Eth1/ 9(S) Eth1/ 10(S)
 Eth1/11(S) Eth1/12(S) Eth1/13(S) Eth1/14(S) Eth1/15(S)
 Eth1/16(S) Eth1/17(S) Eth1/18(S) Eth1/19(S) Eth1/20(S)
 Eth1/21(S) Eth1/22(S) Eth1/23(S) Eth1/24(S) Eth1/25(S)
Console#
```

Creating VLANs

Use the VLAN Static List to create or remove VLAN groups. To propagate information about VLAN groups used on this switch to external network devices, you must specify a VLAN ID for each of these groups.

**Command Attributes**

- **Current** – Lists all the current VLAN groups created for this system. Up to 255 VLAN groups can be defined. VLAN 1 is the default untagged VLAN.
- **New** – Allows you to specify the name and numeric identifier for a new VLAN group. (The VLAN name is only used for management on this system; it is not added to the VLAN tag.)
- **VLAN ID** – ID of configured VLAN (1-4094, no leading zeroes).
- **VLAN Name** – Name of the VLAN (1 to 32 characters).
- **Status** (Web) – Enables or disables the specified VLAN.
  - **Enabled**: VLAN is operational.
  - **Disabled**: VLAN is suspended; i.e., does not pass packets.
- **State** (CLI) – Enables or disables the specified VLAN.
  - **Active**: VLAN is operational.
  - **Suspend**: VLAN is suspended; i.e., does not pass packets.
- **Add** – Adds a new VLAN group to the current list.
- **Remove** – Removes a VLAN group from the current list. If any port is assigned to this group as untagged, it will be reassigned to VLAN group 1 as untagged.
Web – Click VLAN, 802.1Q VLAN, Static List. To create a new VLAN, enter the VLAN ID and VLAN name, mark the Enable checkbox to activate the VLAN, and then click Add.

![VLAN Static List](image)

**CLI** – This example creates a new VLAN.

```
Console(config)#vlan database
Console(config-vlan)#vlan 2 name R&D media ethernet state active
Console(config-vlan)#end
Console#show vlan
```

### Vlan ID: 1
- **Type:** Static
- **Name:** DefaultVlan
- **Status:** Active
- **Ports/Port channel:** Eth1/ 1(S) Eth1/ 2(S) Eth1/ 3(S) Eth1/ 4(S) Eth1/ 5(S) Eth1/ 6(S) Eth1/ 7(S) Eth1/ 8(S) Eth1/ 9(S) Eth1/ 10(S) Eth1/11(S) Eth1/12(S) Eth1/13(S) Eth1/14(S) Eth1/ 15(S) Eth1/16(S) Eth1/17(S) Eth1/18(S) Eth1/19(S) Eth1/ 20(S) Eth1/21(S) Eth1/22(S) Eth1/23(S) Eth1/24(S) Eth1/ 25(S) Eth1/26(S)

### Vlan ID: 2
- **Type:** Static
- **Name:** R&D
- **Status:** Active

---

**Adding Static Members to VLANs** *(VLAN Index)*

Use the VLAN Static Table to configure port members for the selected VLAN index. Assign ports as tagged if they are connected to 802.1Q VLAN compliant devices, or untagged they are not connected to any VLAN-aware devices. Or configure a port as forbidden to prevent the switch from automatically adding it to a VLAN via the GVRP protocol.

**Notes:**
1. You can also use the VLAN Static Membership by Port page to configure VLAN groups based on the port index (page 3-131). However, note that this configuration page can only add ports to a VLAN as tagged members.
2. VLAN 1 is the default untagged VLAN containing all ports on the switch, and can only be modified by first reassigning the default port VLAN ID as described under “Configuring VLAN Behavior for Interfaces” on page 3-132.

Command Attributes

- **VLAN** – ID of configured VLAN (1-4094).
- **Name** – Name of the VLAN (1 to 32 characters).
- **Status** – Enables or disables the specified VLAN.
  - **Enable**: VLAN is operational.
  - **Disable**: VLAN is suspended; i.e., does not pass packets.
- **Port** – Port identifier.
- **Membership Type** – Select VLAN membership for each interface by marking the appropriate radio button for a port or trunk:
  - **Tagged**: Interface is a member of the VLAN. All packets transmitted by the port will be tagged, that is, carry a tag and therefore carry VLAN or CoS information.
  - **Untagged**: Interface is a member of the VLAN. All packets transmitted by the port will be untagged, that is, not carry a tag and therefore not carry VLAN or CoS information. Note that an interface can only have one untagged VLAN, which must be the same as the Port VID. See “Configuring VLAN Behavior for Interfaces” on page 3-132 for configuring PVID.
  - **Forbidden**: Interface is forbidden from automatically joining the VLAN via GVRP. For more information, see “Automatic VLAN Registration” on page 3-124.
  - **None**: Interface is not a member of the VLAN. Packets associated with this VLAN will not be transmitted by the interface.
  - **Trunk Member** – Indicates if a port is a member of a trunk. To add a trunk to the selected VLAN, use the last table on the VLAN Static Table page.

**Web** – Click VLAN, 802.1Q VLAN, Static Table. Select a VLAN ID from the scroll-down list. Modify the VLAN name and status if required. Select the membership type by marking the appropriate radio button in the list of ports or trunks. Click Apply.
Adding Static Members to VLANs (Port Index)

Use the VLAN Static Membership by Port menu to assign VLAN groups to the selected interface as a tagged member.

Command Attributes

- **Interface** – Port or trunk identifier.
- **Member** – VLANs for which the selected interface is a tagged member.
- **Non-Member** – VLANs for which the selected interface is not a tagged member.

**Web** – Open VLAN, 802.1Q VLAN, Static Membership by Port. Select an interface from the scroll-down box (Port or Trunk). Click Query to display membership information for the interface. Select a VLAN ID, and then click Add to add the interface as a tagged member, or click Remove to remove the interface. After configuring VLAN membership for each interface, click Apply.
Configuring VLAN Behavior for Interfaces

You can configure VLAN behavior for specific interfaces, including the default VLAN identifier (PVID), accepted frame types, ingress filtering, GVRP status, and GARP timers.

Command Usage

- **GVRP** – GARP VLAN Registration Protocol defines a way for switches to exchange VLAN information in order to automatically register VLAN members on interfaces across the network.
- **GARP** – Group Address Registration Protocol is used by GVRP to register or deregister client attributes for client services within a bridged LAN. The default values for the GARP timers are independent of the media access method or data rate. These values should not be changed unless you are experiencing difficulties with GVRP registration/deregistration.

Command Attributes

- **PVID** – VLAN ID assigned to untagged frames received on the interface. (Default: 1)
  - If an interface is not a member of VLAN 1 and you assign its PVID to this VLAN, the interface will automatically be added to VLAN 1 as an untagged member. For all other VLANs, the PVID must be defined first, then the status of the VLAN can be configured as a tagged or untagged member.
- **Acceptable Frame Type** – Sets the interface to accept all frame types, including tagged or untagged frames, or only tagged frames. When set to receive all frame types, any received frames that are untagged are assigned to the default VLAN. (Options: All, Tagged; Default: All)
- **Ingress Filtering** – Determines how to process frames tagged for VLANs for which the ingress port is not a member. Ingress Filtering is always enabled. (Default: Enabled)
  - Ingress filtering only affects tagged frames.
  - If a port receives frames tagged for VLANs for which it is not a member, these frames will be discarded.
  - Ingress filtering does not affect VLAN independent BPDU frames, such as GVRP or STP. However, they do affect VLAN dependent BPDU frames, such as GMRP.
- **Mode** – Indicates VLAN membership mode for an interface. (Default: Hybrid)
  - **1Q Trunk** – Specifies a port as an end-point for a VLAN trunk. A trunk is a direct link between two switches, so the port transmits tagged frames that identify the source VLAN. Note that frames belonging to the port’s default VLAN (i.e., associated with the PVID) are also transmitted as tagged frames.
  - **Hybrid** – Specifies a hybrid VLAN interface. The port may transmit tagged or untagged frames.
- **Trunk Member** – Indicates if a port is a member of a trunk. To add a trunk to the selected VLAN, use the last table on the VLAN Static Table page.
Web – Click VLAN, 802.1Q VLAN, Port Configuration or Trunk Configuration. Fill in the required settings for each interface, click Apply.

![Figure 3-77 Configuring VLANs per Port](image)

CLI – This example sets port 3 to accept only tagged frames, assigns PVID 3 as the native VLAN ID, and then sets the switchport mode to hybrid.

```
Console(config)#interface ethernet 1/3
Console(config-if)#switchport acceptable-frame-types tagged
Console(config-if)#switchport ingress-filtering
Console(config-if)#switchport native vlan 3
Console(config-if)#switchport mode hybrid
```

### Configuring IEEE 802.1Q Tunneling

IEEE 802.1Q Tunneling (QinQ) is designed for service providers carrying traffic for multiple customers across their networks. QinQ tunneling is used to maintain customer-specific VLAN and Layer 2 protocol configurations even when different customers use the same internal VLAN IDs. This is accomplished by inserting Service Provider VLAN (SPVLAN) tags into the customer’s frames when they enter the service provider’s network, and then stripping the tags when the frames leave the network.

A service provider’s customers may have specific requirements for their internal VLAN IDs and number of VLANs supported. VLAN ranges required by different customers in the same service-provider network might easily overlap, and traffic passing through the infrastructure might be mixed. Assigning a unique range of VLAN IDs to each customer would restrict customer configurations, require intensive processing of VLAN mapping tables, and could easily exceed the maximum VLAN limit of 4096.

QinQ tunneling uses a single Service Provider VLAN (SPVLAN) for customers who have multiple VLANs. Customer VLAN IDs are preserved and traffic from different customers is segregated within the service provider’s network even when they use the same customer-specific VLAN IDs. QinQ tunneling expands VLAN space by
using a VLAN-in-VLAN hierarchy, preserving the customer’s original tagged packets, and adding SPVLAN tags to each frame (also called double tagging).

A port configured to support QinQ tunneling must be set to tunnel port mode. The Service Provider VLAN (SPVLAN) ID for the specific customer must be assigned to the QinQ tunnel access port on the edge switch where the customer traffic enters the service provider’s network. Each customer requires a separate SPVLAN, but this VLAN supports all of the customer’s internal VLANs. The QinQ tunnel uplink port that passes traffic from the edge switch into the service provider’s metro network must also be added to this SPVLAN. The uplink port can be added to multiple SPVLANs to carry inbound traffic for different customers onto the service provider’s network.

When a double-tagged packet enters another trunk port in an intermediate or core switch in the service provider’s network, the outer tag is stripped for packet processing. When the packet exits another trunk port on the same core switch, the same SPVLAN tag is again added to the packet.

When a packet enters the trunk port on the service provider’s egress switch, the outer tag is again stripped for packet processing. However, the SPVLAN tag is not added when it is sent out the tunnel access port on the edge switch into the customer’s network. The packet is sent as a normal IEEE 802.1Q-tagged frame, preserving the original VLAN numbers used in the customer’s network.

Layer 2 Flow for Packets Coming into a Tunnel Access Port

A QinQ tunnel port may receive either tagged or untagged packets. No matter how many tags the incoming packet has, it is treated as tagged packet.

The ingress process does source and destination lookups. If both lookups are successful, the ingress process writes the packet to memory. Then the egress process transmits the packet. Packets entering a QinQ tunnel port are processed in the following manner:

1. New SPVLAN tags are added to all incoming packets, no matter how many tags they already have. The ingress process constructs and inserts the outer tag.
(SPVLAN) into the packet based on the default VLAN ID and Tag Protocol Identifier (TPID, that is, the ether-type of the tag). This outer tag is used for learning and switching packets. The priority of the inner tag is copied to the outer tag if it is a tagged or priority tagged packet.

2. After successful source and destination lookup, the ingress process sends the packet to the switching process with two tags. If the incoming packet is untagged, the outer tag is an SPVLAN tag, and the inner tag is a dummy tag (8100 0000). If the incoming packet is tagged, the outer tag is an SPVLAN tag, and the inner tag is a CVLAN tag.

3. After packet classification through the switching process, the packet is written to memory with one tag (an outer tag) or with two tags (both an outer tag and inner tag).

4. The switch sends the packet to the proper egress port.

5. If the egress port is an untagged member of the SPVLAN, the outer tag will be stripped. If it is a tagged member, the outgoing packets will have two tags.

Layer 2 Flow for Packets Coming into a Tunnel Uplink Port

An uplink port receives one of the following packets:

- Untagged
- One tag (CVLAN or SPVLAN)
- Double tag (CVLAN + SPVLAN)

The ingress process does source and destination lookups. If both lookups are successful, the ingress process writes the packet to memory. Then the egress process transmits the packet. Packets entering a QinQ uplink port are processed in the following manner:

1. If incoming packets are untagged, the PVID VLAN native tag is added.

2. If the ether-type of an incoming packet (single or double tagged) is not equal to the TPID of the uplink port, the VLAN tag is determined to be a Customer VLAN (CVLAN) tag. The uplink port’s PVID VLAN native tag is added to the packet. This outer tag is used for learning and switching packets within the service provider’s network. The TPID must be configured on a per port basis, and the verification cannot be disabled.

3. If the ether-type of an incoming packet (single or double tagged) is equal to the TPID of the uplink port, no new VLAN tag is added. If the uplink port is not the member of the outer VLAN of the incoming packets, the packet will be dropped when ingress filtering is enabled. If ingress filtering is not enabled, the packet will still be forwarded. If the VLAN is not listed in the VLAN table, the packet will be dropped.

4. After successful source and destination lookup, the packet is double tagged. The switch uses the TPID of 0x8100 to indicate that an incoming packet is double-tagged. If the outer tag of an incoming double-tagged packet is equal to the port TPID and the inner tag is 0x8100, it is treated as a double-tagged packet. If a single-tagged packet has 0x8100 as its TPID, and port TPID is not
0x8100, a new VLAN tag is added and it is also treated as double-tagged packet.

5. If the destination address lookup fails, the packet is sent to all member ports of the outer tag's VLAN.

6. After packet classification, the packet is written to memory for processing as a single-tagged or double-tagged packet.

7. The switch sends the packet to the proper egress port.

8. If the egress port is an untagged member of the SPVLAN, the outer tag will be stripped. If it is a tagged member, the outgoing packet will have two tags.

**Configuration Limitations for QinQ**

- The native VLAN of uplink ports should not be used as the SPVLAN. If the SPVLAN is the uplink port's native VLAN, the uplink port must be an untagged member of the SPVLAN. Then the outer SPVLAN tag will be stripped when the packets are sent out. Another reason is that it causes non-customer packets to be forwarded to the SPVLAN.

- Static trunk port groups are compatible with QinQ tunnel ports as long as the QinQ configuration is consistent within a trunk port group.

- The native VLAN (VLAN 1) is not normally added to transmitted frames. Avoiding using VLAN 1 as an SPVLAN tag for customer traffic to reduce the risk of misconfiguration. Instead, use VLAN 1 as a management VLAN instead of a data VLAN in the service provider network.

- There are some inherent incompatibilities between Layer 2 and Layer 3 switching:
  - Tunnel ports do not support IP Access Control Lists.
  - Layer 3 Quality of Service (QoS) and other QoS features containing Layer 3 information are not supported on tunnel ports.
  - Spanning tree bridge protocol data unit (BPDU) filtering is automatically disabled on a tunnel port.

**General Configuration Guidelines for QinQ**

1. Configure the switch to QinQ mode (see “Enabling QinQ Tunneling on the Switch” on page 3-137).

2. Create a Service Provider VLAN, also referred to as an SPVLAN (see “Creating VLANs” on page 3-128).

3. Configure the QinQ tunnel access port to 802.1Q Tunnel mode (see “Adding an Interface to a QinQ Tunnel” on page 3-138).

4. Set the Tag Protocol Identifier (TPID) value of the tunnel port. This step is required if the attached client is using a nonstandard 2-byte ethertype to identify 802.1Q tagged frames. The default ethertype value is 0x8100. (See “Adding an Interface to a QinQ Tunnel” on page 3-138.)

5. Configure the QinQ tunnel access port to join the SPVLAN as an untagged member (see “Adding Static Members to VLANs (VLAN Index)” on page 3-129).

6. Configure the SPVLAN ID as the native VID on the QinQ tunnel access port (see “Configuring VLAN Behavior for Interfaces” on page 3-132).

7. Configure the QinQ tunnel uplink port to 802.1Q Tunnel Uplink mode (see
8. Configure the QinQ tunnel uplink port to join the SPVLAN as a tagged member (see “Adding Static Members to VLANs (VLAN Index)” on page 3-129).

Enabling QinQ Tunneling on the Switch

The switch can be configured to operate in normal VLAN mode or IEEE 802.1Q (QinQ) tunneling mode which is used for passing Layer 2 traffic across a service provider’s metropolitan area network.

Command Attributes

- **802.1Q Tunnel** – Sets the switch to QinQ mode, and allows the QinQ tunnel port to be configured. The default is for the switch to function in normal mode.
- **802.1Q Ethernet Type** – The Tag Protocol Identifier (TPID) specifies the ethertype of incoming packets on a tunnel port. (Range: hexadecimal 0800-FFFF; Default: 8100)

**Web** – Click VLAN, 802.1Q VLAN, 802.1Q Tunnel Status. Check the Enabled box and click Apply

<table>
<thead>
<tr>
<th>802.1Q Tunnel Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.1Q Tunnel Status</td>
</tr>
<tr>
<td>802.1Q Ethernet Type</td>
</tr>
</tbody>
</table>

Figure 3-78  802.1Q Tunnel Status
Configuring the Switch

3 CLI – This example sets the switch to operate in QinQ mode.

```
Console(config)#dot1q-tunnel system-tunnel-control
Console(config)#exit
Console#show dot1q-tunnel
```

Current double-tagged status of the system is Enabled

The dot1q-tunnel mode of the set interface 1/1 is Access mode, TPID is 0x8100.
The dot1q-tunnel mode of the set interface 1/2 is Uplink mode, TPID is 0x8100.
The dot1q-tunnel mode of the set interface 1/3 is Normal mode, TPID is 0x8100.
The dot1q-tunnel mode of the set interface 1/4 is Normal mode, TPID is 0x8100.
The dot1q-tunnel mode of the set interface 1/5 is Normal mode, TPID is 0x8100.

Adding an Interface to a QinQ Tunnel

Follow the guidelines in the preceding section to set up a QinQ tunnel on the switch. Use the VLAN Port Configuration or VLAN Trunk Configuration screen to set the access port on the edge switch to 802.1Q Tunnel mode. Also set the Tag Protocol Identifier (TPID) value of the tunnel port if the attached client is using a nonstandard 2-byte ethertype to identify 802.1Q-tagged frames.

Command Usage

- Use the 802.1Q Tunnel Status screen to set the switch to QinQ mode before configuring a tunnel port (see “Displaying Basic VLAN Information” on page 3-126).
- Use the TPID field to set a custom 802.1Q ethertype value on the selected interface. This feature allows the switch to interoperate with third-party switches that do not use the standard 0x8100 ethertype to identify 802.1Q-tagged frames. For example, 0x1234 is set as the custom 802.1Q ethertype on a trunk port, incoming frames containing that ethertype are assigned to the VLAN contained in the tag following the ethertype field, as they would be with a standard 802.1Q trunk. Frames arriving on the port containing any other ethertype are looked upon as untagged frames, and assigned to the native VLAN of that port.
- All members of a VLAN should be set to the same ethertype.

Command Attributes

- **Mode** – Set the VLAN membership mode of the port. (Default: Normal)
  - **Normal** – The port operates in its normal VLAN mode.
  - **802.1Q Tunnel** – Configures IEEE 802.1Q tunneling (QinQ) for a client access port to segregate and preserve customer VLAN IDs for traffic crossing the service provider network.
- **802.1Q Tunnel Uplink** – Configures IEEE 802.1Q tunneling (QinQ) for an uplink port to another device within the service provider network.

**Web** – Click VLAN, 802.1Q VLAN, Tunnel Configuration or Tunnel Trunk Configuration. Set the mode for a tunnel access port to 802.1Q Tunnel and a tunnel uplink port to 802.1Q Tunnel Uplink. Set the TPID of the ports if the client is using a non-standard ethertype to identify 802.1Q tagged frames. Click Apply.

![Figure 3-79 Tunnel Port Configuration](image)

**Figure 3-79 Tunnel Port Configuration**
CLI – This example sets port 1 to tunnel access mode, indicates that the TPID used for 802.1Q tagged frames is 9100 hexadecimal, and sets port 2 to tunnel uplink mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Console(config)#interface ethernet 1/1</td>
<td>45-1</td>
</tr>
<tr>
<td>Console(config-if)#switchport dot1q-tunnel mode access</td>
<td>52-14</td>
</tr>
<tr>
<td>Console(config-if)#switchport dot1q-tunnel tpid 9100</td>
<td>52-15</td>
</tr>
<tr>
<td>Console(config-if)#interface ethernet 1/2</td>
<td></td>
</tr>
<tr>
<td>Console(config-if)#switchport dot1q-tunnel mode uplink</td>
<td>52-14</td>
</tr>
<tr>
<td>Console(config-if)#end</td>
<td></td>
</tr>
<tr>
<td>Console#show dot1q-tunnel</td>
<td>52-16</td>
</tr>
</tbody>
</table>

Current double-tagged status of the system is Enabled

The dot1q-tunnel mode of the set interface 1/1 is Access mode, TPID is 0x9100.
The dot1q-tunnel mode of the set interface 1/2 is Uplink mode, TPID is 0x8100.
The dot1q-tunnel mode of the set interface 1/3 is Normal mode, TPID is 0x8100.
The dot1q-tunnel mode of the set interface 1/4 is Normal mode, TPID is 0x8100.
The dot1q-tunnel mode of the set interface 1/5 is Normal mode, TPID is 0x8100.
The dot1q-tunnel mode of the set interface 1/6 is Normal mode, TPID is 0x8100.
The dot1q-tunnel mode of the set interface 1/7 is Normal mode, TPID is 0x8100.
.  
.  
.  
The dot1q-tunnel mode of the set interface 1/24 is Normal mode, TPID is 0x8100.
Console#
Configuring Private VLANs
Private VLANs provide port-based security and isolation between ports within the assigned VLAN. Data traffic on downlink ports can only be forwarded to, and from, uplink ports. (Note that private VLANs and normal VLANs can exist simultaneously within the same switch.)

Enabling Private VLANs
Use the Private VLAN Status page to enable/disable the Private VLAN function.

**Web** – Click VLAN, Private VLAN, Status. Select Enable or Disable from the scroll-down box, and click Apply.

**CLI** – This example enables private VLANs.

```bash
Console(config)#pvlan
```

3-141
Configuring Uplink and Downlink Ports

Use the Private VLAN Link Status page to set ports as downlink or uplink ports. Ports designated as downlink ports can not communicate with any other ports on the switch except for the uplink ports. Uplink ports can communicate with any other ports on the switch and with any designated downlink ports.

**Web** – Click VLAN, Private VLAN, Link Status. Mark the ports that will serve as uplinks and downlinks for the private VLAN, then click Apply.

![Private VLAN Link Status](image)

**CLI** – This configures port 3 as an uplink and port 5 and 6 as downlinks.

```
Console(config)#pvlan up-link ethernet 1/3 down-link ethernet 1/5 53-1
Console(config)#pvlan up-link ethernet 1/3 down-link ethernet 1/6
Console(config)#end
Console#show pvlan 53-2
Private VLAN status: Enabled
Up-link port:
 Ethernet 1/3
Down-link port:
 Ethernet 1/5
 Ethernet 1/6
Console#
```

**Protocol VLANs**

You can configure VLAN behavior to support multiple protocols to allow traffic to pass through different VLANs. When a packet is received at a port, its VLAN membership is determined by the protocol type of the packet.

**Protocol VLAN Group Configuration**

**Command Attributes**

  (Range: 1-2147483647)
- **Frame Type** – Choose either Ethernet, RFC 1042, or LLC Other as the frame type used by this protocol.
• **Protocol Type** – The only option for the LLC Other frame type is IPX Raw. The options for all other frames types include IP, ARP, or RARP.

**Web** – Click VLAN, Protocol VLAN, Configuration.

---

**Figure 3-82 Protocol VLAN Configuration**

**Configuring Protocol VLAN Interfaces**

Use the Protocol VLAN Port Configuration menu to set the protocol VLAN settings per port.

**Command Attributes**

- **Interface** – Port or Trunk identifier.
- **VLAN ID** – VLAN to which matching protocol traffic is forwarded. (Range: 1-4094)

**Web** – Click VLAN, Protocol VLAN, Port Configuration.

---

**Figure 3-83 Protocol VLAN Port Configuration**
Class of Service Configuration

Class of Service (CoS) allows you to specify which data packets have greater precedence when traffic is buffered in the switch due to congestion. This switch supports CoS with four priority queues for each port. Data packets in a port’s high-priority queue will be transmitted before those in the lower-priority queues. You can set the default priority for each interface, and configure the mapping of frame priority tags to the switch’s priority queues.

Layer 2 Queue Settings

Setting the Default Priority for Interfaces

You can specify the default port priority for each interface on the switch. All untagged packets entering the switch are tagged with the specified default port priority, and then sorted into the appropriate priority queue at the output port.

Command Usage

• This switch provides four priority queues for each port. It uses Weighted Round Robin to prevent head-of-queue blockage.

• The default priority applies for an untagged frame received on a port set to accept all frame types (i.e., receives both untagged and tagged frames). This priority does not apply to IEEE 802.1Q VLAN tagged frames. If the incoming frame is an IEEE 802.1Q VLAN tagged frame, the IEEE 802.1p User Priority bits will be used.

• If the output port is an untagged member of the associated VLAN, these frames are stripped of all VLAN tags prior to transmission.

Command Attributes

• **Default Priority**$^9$ – The priority that is assigned to untagged frames received on the specified interface. (Range: 0-7; Default: 0)

• **Number of Egress Traffic Classes** – The number of queue buffers provided for each port.

---

$^9$ CLI displays this information as “Priority for untagged traffic.”
**Web** – Click Priority, Default Port Priority or Default Trunk Priority. Modify the default priority for any interface, then click Apply.

![Default Port Priority](image)

**CLI** – This example assigns a default priority of 5 to port 3.

```
Console(config)#interface ethernet 1/3
Console(config-if)#switchport priority default 5
Console(config-if)#end
Console#show interfaces switchport ethernet 1/3
```

Mapping CoS Values to Egress Queues

This switch processes Class of Service (CoS) priority tagged traffic by using four priority queues for each port, with service schedules based on strict or Weighted Round Robin (WRR). Up to eight separate traffic priorities are defined in IEEE 802.1p. The default priority levels are assigned according to recommendations in the IEEE 802.1p standard as shown in the following table.

<table>
<thead>
<tr>
<th>Queue</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority</td>
<td>1,2</td>
<td>0,3</td>
<td>4,5</td>
<td>6,7</td>
</tr>
</tbody>
</table>
The priority levels recommended in the IEEE 802.1p standard for various network applications are shown in the following table. However, you can map the priority levels to the switch’s output queues in any way that benefits application traffic for your own network.

<table>
<thead>
<tr>
<th>Priority Level</th>
<th>Traffic Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Background</td>
</tr>
<tr>
<td>2</td>
<td>(Spare)</td>
</tr>
<tr>
<td>0 (default)</td>
<td>Best Effort</td>
</tr>
<tr>
<td>3</td>
<td>Excellent Effort</td>
</tr>
<tr>
<td>4</td>
<td>Controlled Load</td>
</tr>
<tr>
<td>5</td>
<td>Video, less than 100 milliseconds latency and jitter</td>
</tr>
<tr>
<td>6</td>
<td>Voice, less than 10 milliseconds latency and jitter</td>
</tr>
<tr>
<td>7</td>
<td>Network Control</td>
</tr>
</tbody>
</table>

**Command Attributes**

- **Priority** – CoS value. (Range: 0-7, where 7 is the highest priority)
- **Traffic Class**\(^{10}\) – Output queue buffer. (Range: 0-3, where 3 is the highest CoS priority queue)

**Web** – Click Priority, Traffic Classes. Select a port or trunk for the current mapping of CoS values to output queues to be displayed. Assign priorities to the traffic classes (i.e., output queues), then click Apply.

10. CLI shows Queue ID.
CLI – The following example shows how to change the CoS assignments.

```
Console(config)#interface ethernet 1/1
Console(config-if)#queue cos-map 0 0
Console(config-if)#queue cos-map 1 1
Console(config-if)#queue cos-map 2 2
Console(config-if)#end
Console#show queue cos-map ethernet 1/1
Information of Eth 1/1
 CoS Value: 0 1 2 3 4 5 6 7
 Priority Queue: 0 1 2 1 2 2 3 3
Console#
```

Enabling CoS

Enable or disable Class of Service (CoS). Command Attributes

- **Traffic Classes** – Click to enable Class of Service. (Default: Enabled)

Web – Click Priority, Traffic Classes Status.

![Traffic Classes Status](image)

**Figure 3-86 Enable Traffic Classes**

Selecting the Queue Mode

You can set the switch to service the queues based on a strict rule that requires all traffic in a higher priority queue to be processed before lower priority queues are serviced, or use Weighted Round-Robin (WRR) queuing that specifies a relative weight of each queue. WRR uses a predefined relative weight for each queue that determines the percentage of service time the switch services each queue before moving on to the next queue. This prevents the head-of-line blocking that can occur with strict priority queuing.

Command Attributes

- **WRR** - Weighted Round-Robin shares bandwidth at the egress ports by using scheduling weights 1, 2, 4, 8, for queues 0 through 3 respectively. (This is the default selection.)
- **Strict** - Services the egress queues in sequential order, transmitting all traffic in the higher priority queues before servicing lower priority queues.
Configuring the Switch

Web – Click Priority, Queue Mode. Select Strict or WRR, then click Apply.

![Queue Mode](image)

**Figure 3-87 Queue Mode**

CLI – The following sets the queue mode to WRR priority service mode.

```
Console(config)#queue mode wrr
Console(config)#exit
Console#show queue mode
Queue mode: wrr
Console#
```

Setting the Service Weight for Traffic Classes

This switch uses the Weighted Round Robin (WRR) algorithm to determine the frequency at which it services each priority queue. As described in “Mapping CoS Values to Egress Queues” on page 3-145, the traffic classes are mapped to one of the eight egress queues provided for each port. You can assign a weight to each of these queues (and thereby to the corresponding traffic priorities). This weight sets the frequency at which each queue will be polled for service, and subsequently affects the response time for software applications assigned a specific priority value.

**Command Attributes**

- **Interface** – Select port or trunk as an interface.
- **WRR Setting Table** – Displays a list of weights for each traffic class (i.e., queue).
- **Weight Value** – Set a new weight for the selected traffic class. (Range: 1-15)

Web – Click Priority, Queue Scheduling. Select the required interface, highlight a traffic class (i.e., output queue), enter a weight, then click Apply.

![Queue Scheduling](image)

**Figure 3-88 Configuring Queue Scheduling**

11. CLI shows Queue ID.
CLI – The following example shows how to display the WRR weights assigned to each of the priority queues.

<table>
<thead>
<tr>
<th>Queue ID</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

Layer 3/4 Priority Settings

Mapping Layer 3/4 Priorities to CoS Values

This switch supports several common methods of prioritizing layer 3/4 traffic to meet application requirements. Traffic priorities can be specified in the IP header of a frame, using the priority bits in the Type of Service (ToS) octet or the number of the TCP port. If priority bits are used, the ToS octet may contain three bits for IP Precedence or six bits for Differentiated Services Code Point (DSCP) service. When these services are enabled, the priorities are mapped to a Class of Service value by the switch, and the traffic then sent to the corresponding output queue.

Because different priority information may be contained in the traffic, this switch maps priority values to the output queues in the following manner:

- The precedence for priority mapping is IP Port Priority, IP Precedence or DSCP Priority, and then Default Port Priority.
- IP Precedence and DSCP Priority cannot both be enabled. Enabling one of these priority types will automatically disable the other.

Selecting IP Precedence/DSCP Priority

The switch allows you to choose between using IP Precedence or DSCP priority. Select one of the methods or disable this feature.

Command Attributes

- **Disabled** – Disables both priority services. (This is the default setting.)
- **IP Precedence** – Maps layer 3/4 priorities using IP Precedence.
Web – Click Priority, IP Precedence/DSCP Priority Status. Select Disabled, IP Precedence or IP DSCP from the scroll-down menu, then click Apply.

Figure 3-89 IP Precedence/DSCP Priority Status

CLI – The following example enables IP Precedence service on the switch.

```
Console(config)#map ip precedence
Console(config)#
```

Mapping IP Precedence

The Type of Service (ToS) octet in the IPv4 header includes three precedence bits defining eight different priority levels ranging from highest priority for network control packets to lowest priority for routine traffic. The default IP Precedence values are mapped one-to-one to Class of Service values (i.e., Precedence value 0 maps to CoS value 0, and so forth). Bits 6 and 7 are used for network control, and the other bits for various application types. ToS bits are defined in the following table.

<table>
<thead>
<tr>
<th>Priority Level</th>
<th>Traffic Type</th>
<th>Priority Level</th>
<th>Traffic Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Network Control</td>
<td>3</td>
<td>Flash</td>
</tr>
<tr>
<td>6</td>
<td>Internetwork Control</td>
<td>2</td>
<td>Immediate</td>
</tr>
<tr>
<td>5</td>
<td>Critical</td>
<td>1</td>
<td>Priority</td>
</tr>
<tr>
<td>4</td>
<td>Flash Override</td>
<td>0</td>
<td>Routine</td>
</tr>
</tbody>
</table>

Command Attributes

- **IP Precedence Priority Table** – Shows the IP Precedence to CoS map.
- **Class of Service Value** – Maps a CoS value to the selected IP Precedence value.
  
  Note that “0” represents low priority and “7” represent high priority.
Web – Click Priority, IP Precedence Priority. Select an entry from the IP Precedence Priority Table, enter a value in the Class of Service Value field, and then click Apply.

![IP Precedence Priority Table](image)

**Figure 3-90 Mapping IP Precedence Priority Values**

CLI – The following example globally enables IP Precedence service on the switch, maps IP Precedence value 1 to CoS value 0 (on port 1), and then displays the IP Precedence settings.

```
Console(config)#map ip precedence
Console(config)#interface ethernet 1/1
Console(config-if)#map ip precedence 1 cos 0
Console(config-if)#end
Console#show map ip precedence ethernet 1/1
Precedence mapping status: enabled

<table>
<thead>
<tr>
<th>Port</th>
<th>Precedence</th>
<th>COS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eth 1/1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eth 1/1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Eth 1/1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Eth 1/1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Eth 1/1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Eth 1/1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Eth 1/1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Eth 1/1</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>
```

Note: Mapping specific values for IP Precedence is implemented as an interface configuration command, but any changes will apply to the all interfaces on the switch.
Mapping DSCP Priority

The DSCP is six bits wide, allowing coding for up to 64 different forwarding behaviors. The DSCP retains backward compatibility with the three precedence bits so that non-DSCP compliant will not conflict with the DSCP mapping. Based on network policies, different kinds of traffic can be marked for different kinds of forwarding. The DSCP default values are defined in the following table. Note that all the DSCP values that are not specified are mapped to CoS value 0.

<table>
<thead>
<tr>
<th>IP DSCP Value</th>
<th>CoS Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>10, 12, 14, 16</td>
<td>2</td>
</tr>
<tr>
<td>18, 20, 22, 24</td>
<td>3</td>
</tr>
<tr>
<td>26, 28, 30, 32, 34, 36</td>
<td>4</td>
</tr>
<tr>
<td>38, 40, 42</td>
<td>5</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
</tr>
<tr>
<td>46, 56</td>
<td>7</td>
</tr>
</tbody>
</table>

Command Attributes
- **DSCP Priority Table** – Shows the DSCP Priority to CoS map.
- **Class of Service Value** – Maps a CoS value to the selected DSCP Priority value. Note that “0” represents low priority and “7” represent high priority.

**Note:** IP DSCP settings apply to all interfaces.

**Web** – Click Priority, IP DSCP Priority. Select an entry from the DSCP table, enter a value in the Class of Service Value field, then click Apply.
Class of Service Configuration

CLI – The following example globally enables DSCP Priority service on the switch, maps DSCP value 0 to CoS value 1 (on port 1), and then displays the DSCP Priority settings.

```
Console(config)#map ip dscp
Console(config)#interface ethernet 1/1
Console(config-if)#map ip dscp 1 cos 0
Console(config-if)#end
Console#show map ip dscp ethernet 1/1
DSCP mapping status: disabled

<table>
<thead>
<tr>
<th>Port</th>
<th>DSCP</th>
<th>COS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eth 1/1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eth 1/1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Eth 1/1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Eth 1/1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Eth 1/1</td>
<td>61</td>
<td>0</td>
</tr>
<tr>
<td>Eth 1/1</td>
<td>62</td>
<td>0</td>
</tr>
<tr>
<td>Eth 1/1</td>
<td>63</td>
<td>0</td>
</tr>
</tbody>
</table>
```

* Mapping specific values for IP DSCP is implemented as an interface configuration command, but any changes will apply to all interfaces on the switch.

Mapping IP Port Priority

You can also map network applications to Class of Service values based on the IP port number (i.e., TCP/UDP port number) in the frame header. Some of the more common TCP service ports include: HTTP: 80, FTP: 21, Telnet: 23 and POP3: 110.

Command Attributes

- **IP Port Priority Status** – Enables or disables the IP port priority.
- **IP Port Priority Table** – Shows the IP port to CoS map.
- **IP Port Number (TCP/UDP)** – Set a new IP port number.
- **Class of Service Value** – Sets a CoS value for a new IP port. Note that “0” represents low priority and “7” represent high priority.

Web – Click Priority, IP Port Priority Status. Set IP Port Priority Status to Enabled.

**IP Port Priority Status**

```
IP Port Priority Global Status [] Enabled

Figure 3-92 IP Port Priority Status
```
Click Priority, IP Port Priority. Enter the port number for a network application in the IP Port Number box and the new CoS value in the Class of Service box, and then click Apply.

**IP Port Priority**

![IP Port Priority](image)

**Figure 3-93  IP Port Priority**

**CLI** – The following example globally enables IP Port Priority service on the switch, maps HTTP traffic on port 5 to CoS value 0, and then displays all the IP Port Priority settings for that port.

```plaintext
Console(config)#map ip port 4-204
Console(config)#interface ethernet 1/5
Console(config-if)#map ip port 80 cos 0 4-205
Console(config-if)#end
Console#show map ip port ethernet 1/5 4-205
TCP port mapping status: disabled

<table>
<thead>
<tr>
<th>Port</th>
<th>Port no.</th>
<th>COS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eth 1/5</td>
<td>80</td>
<td>0</td>
</tr>
</tbody>
</table>
Console#
```

**Note:** Mapping specific values for IP Port Priority is implemented as an interface configuration command, but any changes will apply to the all interfaces on the switch.

**Quality of Service**

The commands described in this section are used to configure Quality of Service (QoS) classification criteria and service policies. Differentiated Services (DiffServ) provides policy-based management mechanisms used for prioritizing network resources to meet the requirements of specific traffic types on a per hop basis. Each packet is classified upon entry into the network based on access lists, IP Precedence, DSCP values, or VLAN lists. Using access lists allows you select traffic based on Layer 2, Layer 3, or Layer 4 information contained in each packet. Based on configured network policies, different kinds of traffic can be marked for different kinds of forwarding.
All switches or routers that access the Internet rely on class information to provide the same forwarding treatment to packets in the same class. Class information can be assigned by end hosts, or switches or routers along the path. Priority can then be assigned based on a general policy, or a detailed examination of the packet. However, note that detailed examination of packets should take place close to the network edge so that core switches and routers are not overloaded.

Switches and routers along the path can use class information to prioritize the resources allocated to different traffic classes. The manner in which an individual device handles traffic in the DiffServ architecture is called per-hop behavior. All devices along a path should be configured in a consistent manner to construct a consistent end-to-end QoS solution.

Notes:
1. You can configure up to 16 rules per Class Map. You can also include multiple classes in a Policy Map.
2. You should create a Class Map before creating a Policy Map. Otherwise, you will not be able to select a Class Map from the Policy Rule Settings screen (see 3-160).
3. Due to a chip limitation, IP source guard and Quality of Service (only for IP related QoS function) cannot be enabled at the same time. Thus, if the user has already enabled the IP source guard function, it needs to be disabled first in order for the QoS function to work and vice versa.

Configuring Quality of Service Parameters
To create a service policy for a specific category or ingress traffic, follow these steps:

1. Use the “Class Map” to designate a class name for a specific category of traffic.
2. Edit the rules for each class to specify a type of traffic based on an access list, a DSCP or IP Precedence value, or a VLAN.
3. Use the “Policy Map” to designate a policy name for a specific manner in which ingress traffic will be handled.
4. Add one or more classes to the Policy Map. Assign policy rules to each class by “setting” the QoS value to be assigned to the matching traffic class. The policy rule can also be configured to monitor the average flow and burst rate, and drop any traffic that exceeds the specified rate, or just reduce the DSCP service level for traffic exceeding the specified rate.
5. Use the “Service Policy” to assign a policy map to a specific interface.

Configuring a Class Map
A class map is used for matching packets to a specified class.

Command Usage
- To configure a Class Map, follow these steps:
  - Open the Class Map page, and click Add Class.
  - When the Class Configuration page opens, fill in the “Class Name” field, and click Add.
  - When the Match Class Settings page opens, specify type of traffic for this class
based on an access list, a DSCP or IP Precedence value, or a VLAN, and click the Add button next to the field for the selected traffic criteria. You can specify up to 16 items to match when assigning ingress traffic to a class map.

- The class map is used with a policy map (page 3-158) to create a service policy (page 3-161) for a specific interface that defines packet classification, service tagging, and bandwidth policing. Note that one or more class maps can be assigned to a policy map.

**Command Attributes**

**Class Map**

- **Modify Name and Description** – Configures the name and a brief description of a class map. (Range: 1-16 characters for the name; 1-64 characters for the description)
- **Edit Rules** – Opens the “Match Class Settings” page for the selected class entry. Modify the criteria used to classify ingress traffic on this page.
- **Add Class** – Opens the “Class Configuration” page. Enter a class name and description on this page, and click Add to open the “Match Class Settings” page. Enter the criteria used to classify ingress traffic on this page.
- **Remove Class** – Removes the selected class.

**Class Configuration**

- **Class Name** – Name of the class map. (Range: 1-16 characters)
- **Type** – Only one match command is permitted per class map, so the match-any field refers to the criteria specified by the lone match command.
- **Description** – A brief description of a class map. (Range: 1-64 characters)
- **Add** – Adds the specified class.
- **Back** – Returns to previous page with making any changes.

**Match Class Settings**

- **Class Name** – List of class maps.
- **ACL List** – Name of an access control list. Any type of ACL can be specified, including standard or extended IP ACLs and MAC ACLs. (Range: 1-16 characters)
- **IP DSCP** – A DSCP value. (Range: 0-63)
- **IP Precedence** – An IP Precedence value. (Range: 0-7)
- **VLAN** – A VLAN. (Range: 1-4094)
- **Add** – Adds specified criteria to the class. Up to 16 items are permitted per class.
- **Remove** – Deletes the selected criteria from the class.
Web – Click QoS, DiffServ, then click Add Class to create a new class, or Edit Rules to change the rules of an existing class.

**Class Map**

<table>
<thead>
<tr>
<th>Class Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>match-any</td>
<td></td>
</tr>
</tbody>
</table>

**Class Configuration**

**Match Class Settings**

- **ACL List**: (none)
- **IP DSCP (0-63)**
- **IP Precedence (0-7)**
- **VLAN (1-4094)**

Figure 3-94 Configuring Class Maps

**CLI** - This example creates a class map call “rd-class,” and sets it to match packets marked for DSCP service value 3.

```
Console(config)#class-map rd_class match-any
Console(config-cmap)#match ip dscp 3
```
Creating QoS Policies
This function creates a policy map that can be attached to multiple interfaces.

Command Usage

- To configure a Policy Map, follow these steps:
  - Create a Class Map as described on page 3-155.
  - Open the Policy Map page, and click Add Policy.
  - When the Policy Configuration page opens, fill in the “Policy Name” field, and click Add.
  - When the Policy Rule Settings page opens, select a class name from the scroll-down list (Class Name field). Configure a policy for traffic that matches criteria defined in this class by setting the quality of service that an IP packet will receive (in the Action field), defining the maximum throughput and burst rate (in the Meter field), and the action that results from a policy violation (in the Exceed field). Then finally click Add to register the new policy.

- A policy map can contain multiple class statements that can be applied to the same interface with the Service Policy Settings (page 3-161). You can configure up to 64 policers (i.e., meters or class maps) for each of the following access list types: MAC ACL, IP ACL (including Standard ACL and Extended ACL). Also, note that the maximum number of classes that can be applied to a policy map is 16. Policing is based on a token bucket, where bucket depth (i.e., the maximum burst before the bucket overflows) is by specified the “Burst” field, and the average rate tokens are removed from the bucket is by specified by the “Rate” option.

- After using the policy map to define packet classification, service tagging, and bandwidth policing, it must be assigned to a specific interface by a service policy (page 3-161) to take effect.

Command Attributes

Policy Map

- **Modify Name and Description** – Configures the name and a brief description of a policy map. (Range: 1-16 characters for the name; 1-64 characters for the description)

- **Edit Classes** – Opens the “Policy Rule Settings” page for the selected class entry. Modify the criteria used to service ingress traffic on this page.

- **Add Policy** – Opens the “Policy Configuration” page. Enter a policy name and description on this page, and click Add to open the “Policy Rule Settings” page. Enter the criteria used to service ingress traffic on this page.

- **Remove Policy** – Deletes a specified policy.

Policy Configuration

- **Policy Name** — Name of policy map. (Range: 1-16 characters)

- **Description** – A brief description of a policy map. (Range: 1-64 characters)

- **Add** – Adds the specified policy.

- **Back** – Returns to previous page with making any changes.
Policy Rule Settings

- Class Settings -
  - **Class Name** – Name of class map.
  - **Action** – Shows the service provided to ingress traffic by setting a CoS, DSCP, or IP Precedence value in a matching packet (as specified in Match Class Settings on 3-155).
  - **Meter** – The maximum throughput and burst rate.
    - **Rate (kbps)** – Rate in kilobits per second.
    - **Burst (byte)** – Burst in bytes.
  - **Exceed Action** – Specifies whether the traffic that exceeds the specified rate will be dropped or the DSCP service level will be reduced.
  - **Remove Class** – Deletes a class.

- Policy Options -
  - **Class Name** – Name of class map.
  - **Action** – Configures the service provided to ingress traffic by setting a CoS, DSCP, or IP Precedence value in a matching packet (as specified in Match Class Settings on 3-155). (Range - CoS: 0-7, DSCP: 0-63, IP Precedence: 0-7, DSCP: 0-63)
  - **Meter** – Check this to define the maximum throughput, burst rate, and the action that results from a policy violation.
    - **Rate (kbps)** – Rate in kilobits per second. (Range: 1-100000 kbps or maximum port speed, whichever is lower)
    - **Burst (byte)** – Burst in bytes. (Range: 64-1522)
  - **Exceed** – Specifies whether the traffic that exceeds the specified rate or burst will be dropped or the DSCP service level will be reduced.
    - **Set** – Decreases DSCP priority for out of conformance traffic. (Range: 0-63).
    - **Drop** – Drops out of conformance traffic.
  - **Add** – Adds the specified criteria to the policy map.
Web – Click QoS, DiffServ, Policy Map to display the list of existing policy maps. To add a new policy map click Add Policy. To configure the policy rule settings click Edit Classes.

CLI – This example creates a policy map called “rd-policy,” sets the average bandwidth the 1 Mbps, the burst rate to 1522 bps, and the response to reduce the DSCP value for violating packets to 0.

```
Console(config)#policy-map rd_policy#3 4-200
Console(config-pmap)#class rd_class#3 4-200
Console(config-pmap-c)#set ip dscp 4 4-201
Console(config-pmap-c)#police 100000 1522 exceed-action 4-200
set ip dscp 0 4-202
Console(config-pmap-c)#
```
Attaching a Policy Map to Ingress Queues
This function binds a policy map to the ingress queue of a particular interface.

Command Usage
- You must first define a class map, then define a policy map, and finally bind the service policy to the required interface.
- You can only bind one policy map to an interface.
- The current firmware does not allow you to bind a policy map to an egress queue.

Command Attributes
- **Ports** – Specifies a port.
- **Ingress** – Applies the rule to ingress traffic.
- **Enabled** – Check this to enable a policy map on the specified port.
- **Policy Map** – Select the appropriate policy map from the scroll-down box.

**Web** – Click QoS, DiffServ, Service Policy Settings. Check Enabled and choose a Policy Map for a port from the scroll-down box, then click Apply.

![Service Policy Settings](image)

**Figure 3-96 Service Policy Settings**

**CLI** - This example applies a service policy to an ingress interface.

```
Console(config)#interface ethernet 1/5
Console(config-if)#service-policy input rd_policy#3
Console(config-if)#
```
Multicast Filtering

Multicasting is used to support real-time applications such as videoconferencing or streaming audio. A multicast server does not have to establish a separate connection with each client. It merely broadcasts its service to the network, and any hosts that want to receive the multicast register with their local multicast switch/router. Although this approach reduces the network overhead required by a multicast server, the broadcast traffic must be carefully pruned at every multicast switch/router it passes through to ensure that traffic is only passed on to the hosts which subscribed to this service.

This switch uses IGMP (Internet Group Management Protocol) to query for any attached hosts that want to receive a specific multicast service. It identifies the ports containing hosts requesting to join the service and sends data out to those ports only. It then propagates the service request up to any neighboring multicast switch/router to ensure that it will continue to receive the multicast service. This procedure is called multicast filtering.

The purpose of IP multicast filtering is to optimize a switched network’s performance, so multicast packets will only be forwarded to those ports containing multicast group hosts or multicast routers/switches, instead of flooding traffic to all ports in the subnet (VLAN).

Layer 2 IGMP (Snooping and Query)

IGMP Snooping and Query – If multicast routing is not supported on other switches in your network, you can use IGMP Snooping and Query (page 3-163) to monitor IGMP service requests passing between multicast clients and servers, and dynamically configure the switch ports which need to forward multicast traffic.

Static IGMP Router Interface – If IGMP snooping cannot locate the IGMP querier, you can manually designate a known IGMP querier (i.e., a multicast router/switch) connected over the network to an interface on your switch (page 3-166). This interface will then join all the current multicast groups supported by the attached router/switch to ensure that multicast traffic is passed to all appropriate interfaces within the switch.

Static IGMP Host Interface – For multicast applications that you need to control more carefully, you can manually assign a multicast service to specific interfaces on the switch (page 3-168).
Configuring IGMP Snooping and Query Parameters

You can configure the switch to forward multicast traffic intelligently. Based on the IGMP query and report messages, the switch forwards traffic only to the ports that request multicast traffic. This prevents the switch from broadcasting the traffic to all ports and possibly disrupting network performance.

Command Usage

- **IGMP Snooping** – This switch can passively snoop on IGMP Query and Report packets transferred between IP multicast routers/switches and IP multicast host groups to identify the IP multicast group members. It simply monitors the IGMP packets passing through it, picks out the group registration information, and configures the multicast filters accordingly.

- **IGMP Querier** – A router, or multicast-enabled switch, can periodically ask their hosts if they want to receive multicast traffic. If there is more than one router/switch on the LAN performing IP multicasting, one of these devices is elected “querier” and assumes the role of querying the LAN for group members. It then propagates the service requests on to any upstream multicast switch/router to ensure that it will continue to receive the multicast service.

Note: Multicast routers use this information, along with a multicast routing protocol such as DVMRP or PIM, to support IP multicasting across the Internet.

Command Attributes

- **IGMP Status** — When enabled, the switch will monitor network traffic to determine which hosts want to receive multicast traffic. This is also referred to as IGMP Snooping. (Default: Enabled)

- **Act as IGMP Querier** — When enabled, the switch can serve as the Querier, which is responsible for asking hosts if they want to receive multicast traffic. (Default: Enabled)

- **IGMP Query Count** — Sets the maximum number of queries issued for which there has been no response before the switch takes action to drop a client from the multicast group. (Range: 2-10; Default: 2)

- **IGMP Query Interval** — Sets the frequency at which the switch sends IGMP host-query messages. (Range: 60-125 seconds; Default: 125)

- **IGMP Report Delay** — Sets the time between receiving an IGMP Report for an IP multicast address on a port before the switch sends an IGMP Query out of that port and removes the entry from its list. (Range: 5-25 seconds; Default: 10)

- **IGMP Query Timeout** — The time the switch waits after the previous querier stops before it considers the router port (i.e., the interface which had been receiving query packets) to have expired. (Range: 300-500 seconds; Default: 300)

- **IGMP Version** — Sets the protocol version for compatibility with other devices on the network. (Range: 1-2; Default: 2)

Notes:

1. All systems on the subnet must support the same version.
2. Some attributes are only enabled for IGMPv2, including IGMP Report Delay and IGMP Query Timeout.
Web – Click IGMP Snooping, IGMP Configuration. Adjust the IGMP settings as required, and then click Apply. (The default settings are shown below.)

### IGMP Configuration

<table>
<thead>
<tr>
<th>IGMP Status</th>
<th>Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Act as IGMP Querier</td>
<td>Disabled</td>
</tr>
<tr>
<td>IGMP Query Count</td>
<td>2</td>
</tr>
<tr>
<td>IGMP Query Interval</td>
<td>125 seconds</td>
</tr>
<tr>
<td>IGMP Report Delay</td>
<td>10 seconds</td>
</tr>
<tr>
<td>IGMP Query Timeout</td>
<td>300 seconds</td>
</tr>
<tr>
<td>IGMP Version</td>
<td>2</td>
</tr>
</tbody>
</table>

![Figure 3-97 IGMP Configuration](image)

CLI – This example modifies the settings for multicast filtering, and then displays the current status.

```
Console(config)#ip igmp snooping
Console(config)#ip igmp snooping querier
Console(config)#ip igmp snooping query-count 10
Console(config)#ip igmp snooping query-interval 100
Console(config)#ip igmp snooping query-max-response-time 20
Console(config)#ip igmp snooping router-port-expire-time 300
Console(config)#ip igmp snooping version 2
Console(config)#exit
Console#show ip igmp snooping
Service status: Enabled
Querier status: Enabled
Leave proxy status: Disabled
Query count: 10
Query interval: 100 sec
Query max response time: 20 sec
Router port expire time: 300 sec
Immediate Leave Processing: Disabled on all VLAN
IGMP snooping version: Version 2
Console#
```

### Enabling IGMP Immediate Leave

The IGMP snooping immediate-leave feature enables a Layer 2 LAN interface to be removed from the multicast forwarding table without first sending an IGMP group-specific query to the interface. Upon receiving a group-specific IGMPv2 leave message, the switch immediately removes the interface from the Layer 2 forwarding table entry for that multicast group, unless a multicast router was learned on the port.

IGMP immediate leave improves bandwidth management for all hosts in a switched network.
Multicast Filtering

Command Attributes

• **VLAN ID** – ID of configured VLAN (1-4094).
• **Immediate Leave** – Enable or disable IGMP immediate leave for the selected VLAN.

**Web** – Click IGMP Snooping, IGMP Immediate Leave.

**IGMP Immediate Leave**

![Figure 3-98 IGMP Immediate Leave](image)

**CLI** – This example enables IGMP immediate leave for VLAN 1 and then displays the current IGMP snooping status.

```console
Console(config)#interface vlan 1
Console(config-if)#ip igmp snooping immediate-leave
Console(config-if)#end
Console#show ip igmp snooping
```

<table>
<thead>
<tr>
<th>Service Status:</th>
<th>Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Querier Status:</td>
<td>Disabled</td>
</tr>
<tr>
<td>Leave proxy status:</td>
<td>Enabled</td>
</tr>
<tr>
<td>Query Count:</td>
<td>2</td>
</tr>
<tr>
<td>Query Interval:</td>
<td>125 sec</td>
</tr>
<tr>
<td>Query Max Response Time:</td>
<td>10 sec</td>
</tr>
<tr>
<td>Router Port Expire Time:</td>
<td>300 sec</td>
</tr>
<tr>
<td>Immediate Leave Processing:</td>
<td>Enabled on VLAN 1,</td>
</tr>
<tr>
<td>IGMP Snooping Version:</td>
<td>Version 2</td>
</tr>
</tbody>
</table>

Console#

**Displaying Interfaces Attached to a Multicast Router**

Multicast routers that are attached to ports on the switch use information obtained from IGMP, along with a multicast routing protocol such as DVMRP or PIM, to support IP multicasting across the Internet. These routers may be dynamically discovered by the switch or statically assigned to an interface on the switch.

You can use the Multicast Router Port Information page to display the ports on this switch attached to a neighboring multicast router/switch for each VLAN ID.

Command Attributes

• **VLAN ID** – ID of configured VLAN (1-4094).
• **Multicast Router List** – Multicast routers dynamically discovered by this switch or those that are statically assigned to an interface on this switch.
Web – Click IGMP Snooping, Multicast Router Port Information. Select the required VLAN ID from the scroll-down list to display the associated multicast routers.

![Multicast Router Port Information](image)

**Figure 3-99 Displaying Multicast Router Port Information**

CLI – This example shows that Port 11 has been statically configured as a port attached to a multicast router.

```
Console#show ip igmp snooping mrouter vlan 1
VLAN M'cast Router Port Type
---- ------------------ -------
1 Eth 1/11 Static
Console#
```

**Specifying Static Interfaces for a Multicast Router**

Depending on your network connections, IGMP snooping may not always be able to locate the IGMP querier. Therefore, if the IGMP querier is a known multicast router/switch connected over the network to an interface (port or trunk) on your switch, you can manually configure the interface (and a specified VLAN) to join all the current multicast groups supported by the attached router. This can ensure that multicast traffic is passed to all the appropriate interfaces within the switch.

**Command Attributes**

- **Interface** – Activates the Port or Trunk scroll down list.
- **VLAN ID** – Selects the VLAN to propagate all multicast traffic coming from the attached multicast router.
- **Port** or **Trunk** – Specifies the interface attached to a multicast router.
Web – Click IGMP Snooping, Static Multicast Router Port Configuration. Specify the interfaces attached to a multicast router, indicate the VLAN which will forward all the corresponding multicast traffic, and then click Add. After you have finished adding interfaces to the list, click Apply.

![Static Multicast Router Port Configuration](image)

**Figure 3-100  Static Multicast Router Port Configuration**

CLI – This example configures port 11 as a multicast router port within VLAN 1.

```
Console(config)#ip igmp snooping vlan 1 mrouter ethernet 1/11 4-209
Console(config)#exit
Console#show ip igmp snooping mrouter vlan 1 4-210
 VLAN M'cast Router Port Type
 ---- ------------------ -------
 1 Eth 1/11 Static
Console#
```

Displaying Port Members of Multicast Services

You can display the port members associated with a specified VLAN and multicast service.

**Command Attributes**

- **VLAN ID** – Selects the VLAN for which to display port members.
- **Multicast IP Address** – The IP address for a specific multicast service.
- **Multicast Group Port List** – Shows the interfaces that have already been assigned to the selected VLAN to propagate a specific multicast service.
Web – Click IGMP Snooping, IP Multicast Registration Table. Select a VLAN ID and the IP address for a multicast service from the scroll-down lists. The switch will display all the interfaces that are propagating this multicast service.

![IP Multicast Registration Table](image)

**Figure 3-101 IP Multicast Registration Table**

CLI – This example displays all the known multicast services supported on VLAN 1, along with the ports propagating the corresponding services. The Type field shows if this entry was learned dynamically or was statically configured.

```
Console#show bridge 1 multicast vlan 1
VLAN M'cast IP addr. Member ports Type
---- --------------- ------------ -------
1 224.1.1.12 Eth1/12 USER
1 224.1.2.3 Eth1/12 IGMP
Console#
```

Assigning Ports to Multicast Services

Multicast filtering can be dynamically configured using IGMP Snooping and IGMP Query messages as described in “3-163. For certain applications that require tighter control, you may need to statically configure a multicast service on the switch. First add all the ports attached to participating hosts to a common VLAN, and then assign the multicast service to that VLAN group.

**Command Usage**

- Static multicast addresses are never aged out.
- When a multicast address is assigned to an interface in a specific VLAN, the corresponding traffic can only be forwarded to ports within that VLAN.

**Command Attributes**

- **Interface** – Activates the Port or Trunk scroll down list.
- **VLAN ID** – Selects the VLAN to propagate all multicast traffic coming from the attached multicast router/switch.
- **Multicast IP** – The IP address for a specific multicast service
- **Port or Trunk** – Specifies the interface attached to a multicast router/switch.
Web – Click IGMP Snooping, IGMP Member Port Table. Specify the interface attached to a multicast service (via an IGMP-enabled switch or multicast router), indicate the VLAN that will propagate the multicast service, specify the multicast IP address, and click Add. After you have completed adding ports to the member list, click Apply.

![IGMP Member Port Table](image)

**Figure 3-102 IGMP Member Port Table**

CLI – This example assigns a multicast address to VLAN 1, and then displays all the known multicast services supported on VLAN 1.

```
Console(config)#ip igmp snooping vlan 1 static 224.1.1.12 ethernet 1/12
Console(config)#exit
Console#show mac-address-table multicast vlan 1
VLAN M'cast IP addr. Member ports Type
--- --------------- ------------ -------
1 224.1.1.12 Eth1/12 USER
1 224.1.2.3 Eth1/12 IGMP
Console#
```

**IGMP Filtering and Throttling**

In certain switch applications, the administrator may want to control the multicast services that are available to end users. For example, an IP/TV service based on a specific subscription plan. The IGMP filtering feature fulfills this requirement by restricting access to specified multicast services on a switch port and IGMP throttling limits the number of simultaneous multicast groups a port can join.

IGMP filtering enables you to assign a profile to a switch port that specifies multicast groups that are permitted or denied on the port. An IGMP filter profile can contain one or more, or a range of multicast addresses, but only one profile can be assigned to a port. When enabled, IGMP join reports received on the port are checked against the filter profile. If a requested multicast group is permitted, the IGMP join report is forwarded as normal. If a requested multicast group is denied, the IGMP join report is dropped.

IGMP throttling sets a maximum number of multicast groups that a port can join at the same time. When the maximum number of groups is reached on a port, the switch can take one of two actions; either “deny” or “replace.” If the action is set to deny, any new IGMP join reports will be dropped. If the action is set to replace, the
switch randomly removes an existing group and replaces it with the new multicast group.

**Note:** IGMP filtering and throttling only applies to dynamically learned multicast groups, it does not apply to statically configured groups.

### Enabling IGMP Filtering and Throttling

To implement IGMP filtering and throttling on the switch, you must first enable the feature globally and create IGMP profile numbers.

#### Command Attributes

- **IGMP Filter** – Enables IGMP filtering and throttling globally for the switch. (Default: Disabled)
- **IGMP Profile** – Creates IGMP profile numbers. (Range: 1-4294967295)

#### Web

- Click IGMP Snooping, IGMP Filter Configuration. Create a profile number by entering the number in text box and clicking Add. Enable the IGMP filter status, then click Apply.

#### CLI

- This example enables IGMP filtering and creates a profile number, then displays the current status and the existing profile numbers.

```
Console(config)#ip igmp filter
Console(config)#ip igmp profile 19
Console(config-igmp-profile)#end
Console#show ip igmp filter
IGMP filter enable
Console#show ip igmp profile
IGMP Profile 19
IGMP Profile 50
Console#
```
Configuring IGMP Filtering and Throttling for Interfaces

Once you have configured IGMP profiles, you can then assign them to interfaces on the switch. Also, you can set the IGMP throttling number to limit the number of multicast groups an interface can join at the same time.

Command Usage

- Only one profile can be assigned to an interface.
- An IGMP profile or throttling setting can be applied to a trunk interface. When ports are configured as trunk members, the trunk uses the settings applied to the first port member in the trunk.
- IGMP throttling sets a maximum number of multicast groups that a port can join at the same time. When the maximum number of groups is reached on a port, the switch can take one of two actions; either “deny” or “replace.” If the action is set to deny, any new IGMP join reports will be dropped. If the action is set to replace, the switch randomly removes an existing group and replaces it with the new multicast group.

Command Attributes

- **Profile** – Selects an existing profile number to assign to an interface.
- **Max Multicast Groups** – Sets the maximum number of multicast groups an interface can join at the same time. (Range: 0-256; Default: 256)
- **Current Multicast Groups** – Displays the current number of multicast groups the interface has joined.
- **Throttling Action Mode** – Sets the action to take when the maximum number of multicast groups for the interface has been exceeded. (Default: Deny)
  - **deny** - The new multicast group join report is dropped.
  - **replace** - The new multicast group replaces an existing group.
- **Throttling Status** – Indicates if the throttling action has been implemented on the interface. (Options: True or False)
- **Trunk** – Indicates if a port is a trunk member.
3 Configuring the Switch

Web – Click IGMP Snooping, IGMP Filter/Throttling Port Configuration or IGMP Filter/Throttling Trunk Configuration. Select a profile to assign to an interface, then set the throttling number and action. Click Apply.

<table>
<thead>
<tr>
<th>Port</th>
<th>Profile</th>
<th>Max Multicast Groups (0-256)</th>
<th>Current Multicast Groups</th>
<th>Throttling Action Mode</th>
<th>Throttling Status</th>
<th>Trunk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(none)</td>
<td>256</td>
<td>0</td>
<td>deny</td>
<td>False</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(none)</td>
<td>256</td>
<td>0</td>
<td>deny</td>
<td>False</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(none)</td>
<td>256</td>
<td>0</td>
<td>deny</td>
<td>False</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(none)</td>
<td>256</td>
<td>0</td>
<td>deny</td>
<td>False</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(none)</td>
<td>256</td>
<td>0</td>
<td>deny</td>
<td>False</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(none)</td>
<td>256</td>
<td>0</td>
<td>deny</td>
<td>False</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(none)</td>
<td>256</td>
<td>0</td>
<td>deny</td>
<td>False</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>(none)</td>
<td>256</td>
<td>0</td>
<td>deny</td>
<td>False</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>(none)</td>
<td>256</td>
<td>0</td>
<td>deny</td>
<td>False</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3-104 IGMP Filter and Throttling Port Configuration

CLI – This example assigns IGMP profile number 19 to port 1, and then sets the throttling number and action. The current IGMP filtering and throttling settings for the interface are then displayed.

```
Console(config)#interface ethernet 1/1
Console(config-if)#ip igmp filter 19
Console(config-if)#ip igmp max-groups 10
Console(config-if)#ip igmp max-groups action replace
Console(config-if)#end
Console#show ip igmp filter interface ethernet 1/1
 Information of Eth 1/1
 IGMP Profile 19
 deny
 range 239.1.1.1 239.1.1.1
 range 239.2.3.1 239.2.3.100
Console#show ip igmp throttle interface ethernet 1/1
 Information of Eth 1/1
 status : FALSE
 action : replace
 max multicast groups : 10
 current multicast groups : 1
Console#
```

Configuring IGMP Filter Profiles

When you have created an IGMP profile number, you can then configure the multicast groups to filter and set the access mode.

Command Usage

- Each profile has only one access mode; either permit or deny.
- When the access mode is set to permit, IGMP join reports are processed when a multicast group falls within the controlled range. When the access mode is set to
deny, IGMP join reports are only processed when a multicast group is not in the controlled range.

**Command Attributes**

- **Profile ID** – Selects an existing profile number to configure. After selecting an ID number, click the Query button to display the current configuration.
- **Access Mode** – Sets the access mode of the profile; either permit or deny. (Default: Deny)
- **New Multicast Address Range List** – Specifies multicast groups to include in the profile. Specify a multicast group range by entering a start and end IP address. Specify a single multicast group by entering the same IP address for the start and end of the range. Click the Add button to add a range to the current list.
- **Current Multicast Address Range List** – Lists multicast groups currently included in the profile. Select an entry and click the Remove button to delete it from the list.

**Web** – Click IGMP Snooping, IGMP Filter Profile Configuration. Select the profile number you want to configure, then click Query to display the current settings. Specify the access mode for the profile and then add multicast groups to the profile list. Click Apply.

---

### IGMP Profile Group Configuration

<table>
<thead>
<tr>
<th>Profile ID:</th>
<th>19</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Mode</td>
<td>permit</td>
<td></td>
</tr>
</tbody>
</table>

**Current Multicast Address Range List**

<table>
<thead>
<tr>
<th>Start IP Address</th>
<th>End IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>239.1.2.3 - 239.1.2.3</td>
<td>239.2.3.1 - 239.2.3.200</td>
</tr>
</tbody>
</table>

**New Multicast Address Range List**:

<table>
<thead>
<tr>
<th>Start Multicast Address</th>
<th>End Multicast Address</th>
</tr>
</thead>
</table>

---

**Figure 3-105 IGMP Profile Configuration**

3-173
CLI – This example configures profile number 19 by setting the access mode to “permit” and then specifying a range of multicast groups that a user can join. The current profile configuration is then displayed.

```
Console(config)#ip igmp profile 19
Console(config-igmp-profile)#permit
Console(config-igmp-profile)#range 239.1.1.1
Console(config-igmp-profile)#range 239.2.3.1 239.2.3.100
Console(config-igmp-profile)#end
Console#show ip igmp profile 19
 IGMP Profile 19
 permit
 range 239.1.1.1 239.1.1.1
 range 239.2.3.1 239.2.3.100
Console#
```

**Multicast VLAN Registration**

Multicast VLAN Registration (MVR) is a protocol that controls access to a single network-wide VLAN most commonly used for transmitting multicast traffic (such as television channels or video-on-demand) across a service provider’s network. Any multicast traffic entering an MVR VLAN is sent to all attached subscribers. This protocol can significantly reduce the processing overhead required to dynamically monitor and establish the distribution tree for a normal multicast VLAN. This makes it possible to support common multicast services over a wide part of the network without having to use any multicast routing protocol.

MVR maintains the user isolation and data security provided by VLAN segregation by passing only multicast traffic into other VLANs to which the subscribers belong. Even though common multicast streams are passed onto different VLAN groups from the MVR VLAN, users in different IEEE 802.1Q or private VLANs cannot exchange any information (except through upper-level routing services).
General Configuration Guidelines for MVR

1. Enable MVR globally on the switch, select the MVR VLAN, and add the multicast groups that will stream traffic to attached hosts (see “Configuring Global MVR Settings” on page 3-175).

2. Set the interfaces that will join the MVR as source ports or receiver ports (see “Configuring MVR Interface Status” on page 3-179).

3. Enable IGMP Snooping to allow a subscriber to dynamically join or leave an MVR group (see 3-163). Note that only IGMP version 2 or 3 hosts can issue multicast join or leave messages.

4. For multicast streams that will run for a long term and be associated with a stable set of hosts, you can statically bind the multicast group to the participating interfaces (see “Assigning Static Multicast Groups to Interfaces” on page 3-180).

Configuring Global MVR Settings

The global settings for Multicast VLAN Registration (MVR) include enabling or disabling MVR for the switch, selecting the VLAN that will serve as the sole channel for common multicast streams supported by the service provider, and assigning the multicast group address for each of these services to the MVR VLAN.

Command Attributes

- **MVR Status** – When MVR is enabled on both the switch, any multicast data associated an MVR group is sent from all designated source ports, and to all receiver ports that have registered to receive data from that multicast group. (Default: Disabled)
- **MVR Running Status** – Indicates whether or not all necessary conditions in the MVR environment are satisfied.
- **MVR VLAN** – Identifier of the VLAN that serves as the channel for streaming multicast services using MVR. (Range: 1-4094; Default: 1)
- **MVR Group IP** – IP address for an MVR multicast group. The IP address range of 224.0.0.0 to 239.255.255.255 is used for multicast streams. MVR group addresses cannot fall within the reserved IP multicast address range of 224.0.0.x. (Range: 224.0.1.0 - 239.255.255.255; Default: no groups are assigned to the MVR VLAN)
- **Count** – The number of contiguous MVR group addresses. (Range: 1-255; Default: 0)
Web – Click MVR, Configuration. Enable MVR globally on the switch, select the MVR VLAN, add the multicast groups that will stream traffic to attached hosts, and then click Apply.

### MVR Configuration

![MVR Configuration](image)

**MVR Configuration**

<table>
<thead>
<tr>
<th>Field</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVR Status</td>
<td>Enabled</td>
</tr>
<tr>
<td>MVR Running Status</td>
<td>False</td>
</tr>
<tr>
<td>MVR VLAN</td>
<td>1</td>
</tr>
</tbody>
</table>

**MVR Group IP List:**

<table>
<thead>
<tr>
<th>Current</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>(none)</td>
<td></td>
</tr>
</tbody>
</table>

![MVR Global Configuration](image)

**Figure 3-106  MVR Global Configuration**

CLI – This example first enables IGMP snooping, enables MVR globally, and then configures a range of MVR group addresses.

```
Console(config)#ip igmp snooping
Console(config)#mvr
Console(config)#mvr group 228.1.23.1 10
```

**Displaying MVR Interface Status**

You can display information about the interfaces attached to the MVR VLAN.

**Field Attributes**

- **Type** – Shows the MVR port type.
- **Oper Status** – Shows the link status.
- **MVR Status** – Shows the MVR status. MVR status for source ports is “ACTIVE” if MVR is globally enabled on the switch. MVR status for receiver ports is “ACTIVE” only if there are subscribers receiving multicast traffic from one of the MVR groups, or a multicast group has been statically assigned to an interface.
- **Immediate Leave** – Shows if immediate leave is enabled or disabled.
- **Trunk Member**12 – Shows if port is a trunk member.

---

12. Port Information only.
Web – Click MVR, Port or Trunk Information.

![Port Information Table]

**Figure 3-107 MVR Port Information**

CLI – This example shows information about interfaces attached to the MVR VLAN.

<table>
<thead>
<tr>
<th>Port</th>
<th>Type</th>
<th>Oper Status</th>
<th>MVR Status</th>
<th>Immediate Leave</th>
<th>Trunk Member</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Non-MVR</td>
<td>Up</td>
<td>Inactive</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Non-MVR</td>
<td>Down</td>
<td>Inactive</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Non-MVR</td>
<td>Down</td>
<td>Inactive</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Non-MVR</td>
<td>Down</td>
<td>Inactive</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Non-MVR</td>
<td>Down</td>
<td>Inactive</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Non-MVR</td>
<td>Down</td>
<td>Inactive</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Non-MVR</td>
<td>Down</td>
<td>Inactive</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Non-MVR</td>
<td>Down</td>
<td>Inactive</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Non-MVR</td>
<td>Down</td>
<td>Inactive</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Non-MVR</td>
<td>Down</td>
<td>Inactive</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Non-MVR</td>
<td>Down</td>
<td>Inactive</td>
<td>Disabled</td>
<td></td>
</tr>
</tbody>
</table>

```
Console#show mvr interface
Port Type Status Immediate Leave
-------- -------- ------------- ---------------
eth1/1 SOURCE ACTIVE/UP Disable
eth1/2 RECEIVER ACTIVE/UP Disable
Console#
```
Displaying Port Members of Multicast Groups

You can display the multicast groups assigned to the MVR VLAN either through IGMP snooping or static configuration.

Field Attributes

- **Group IP** – Multicast groups assigned to the MVR VLAN.
- **Group Port List** – Shows the interfaces with subscribers for multicast services provided through the MVR VLAN.

**Web** – Click MVR, Group IP Information.

**MVR Group IP Table**

![MVR Group IP Table]

**Figure 3-108 MVR Group IP Information**

**CLI** – This example following shows information about the interfaces associated with multicast groups assigned to the MVR VLAN.

```
Console#show mvr interface
MVR Group IP Status Members
---------------- -------- -------
225.0.0.1 ACTIVE eth1/1(d), eth1/2(s)
225.0.0.2 INACTIVE None
225.0.0.3 INACTIVE None
225.0.0.4 INACTIVE None
225.0.0.5 INACTIVE None
225.0.0.6 INACTIVE None
225.0.0.7 INACTIVE None
225.0.0.8 INACTIVE None
225.0.0.9 INACTIVE None
225.0.0.10 INACTIVE None
Console#
```
Configuring MVR Interface Status

Each interface that participates in the MVR VLAN must be configured as an MVR source port or receiver port. If only one subscriber attached to an interface is receiving multicast services, you can enable the immediate leave function.

Command Usage

• One or more interfaces may be configured as MVR source ports.
• MVR receiver ports cannot be members of a trunk. Receiver ports can belong to different VLANs, but should not be configured as a member of the MVR VLAN.
• IGMP snooping can be used to allow a source port or receiver port to dynamically join or leave multicast groups within the MVR VLAN using the standard rules for multicast filtering. Multicast groups can also be statically assigned to a source port or receiver port (see “Assigning Static Multicast Groups to Interfaces” on page 3-180).
• Immediate leave applies only to receiver ports. When enabled, the receiver port is immediately removed from the multicast group identified in the leave message. When immediate leave is disabled, the switch follows the standard rules by sending a group-specific query to the receiver port and waiting for a response to determine if there are any remaining subscribers for that multicast group before removing the port from the group list. Using immediate leave can speed up leave latency, but should only be enabled on a port attached to one multicast subscriber to avoid disrupting services to other group members attached to the same interface. Note that immediate leave does not apply to multicast groups which have been statically assigned to a port.

Command Attributes

• **MVR Type** – The following interface types are supported:
  - Source – An uplink port that can send and receive multicast data for the groups assigned to the MVR VLAN.
  - Receiver – A subscriber port that can receive multicast data sent through the MVR VLAN.
  - Non-MVR – An interface that does not participate in the MVR VLAN. (This is the default type.)
• **Immediate Leave** – Configures the switch to immediately remove an interface from a multicast stream as soon as it receives a leave message for that group.
• **Trunk**\(^\text{13}\) – Shows if port is a trunk member.

---

\(^\text{13}\). Port Information only.
Web – Click MVR, Port or Trunk Configuration.

### MVR Port Configuration

![MVR Port Configuration Table]

**Figure 3-109 MVR Port Configuration**

**CLI** – This example configures an MVR source port and receiver port, and then enables immediate leave on the receiver port.

```
Console(config)#interface ethernet 1/1
Console(config-if)#mvr type source
Console(config-if)#exit

Console(config)#interface ethernet 1/2
Console(config-if)#mvr type receiver
Console(config-if)#mvr immediate
Console(config-if)#
```

### Assigning Static Multicast Groups to Interfaces

For multicast streams that will run for a long term and be associated with a stable set of hosts, you can statically bind the multicast group to the participating interfaces.

**Command Usage**

- Any multicast groups that use the MVR VLAN must be statically assigned to it under the MVR Configuration menu (see “Configuring Global MVR Settings” on page 3-175).
- The IP address range from 224.0.0.0 to 239.255.255.255 is used for multicast streams. MVR group addresses cannot fall within the reserved IP multicast address range of 224.0.0.x.

**Command Attributes**

- **Interface** – Indicates a port or trunk.
- **Member** – Shows the IP addresses for MVR multicast groups which have been statically assigned to the selected interface.
- **Non-Member** – Shows the IP addresses for all MVR multicast groups which have not been statically assigned to the selected interface.
Web – Click MVR, Group Member Configuration. Select a port or trunk from the “Interface” field, and click Query to display the assigned multicast groups. Select a multicast address from the displayed lists, and click the Add or Remove button to modify the Member list.

![MVR Static Group Member](image)

Figure 3-110 MVR Group Member Configuration

CLI – This example statically assigns a multicast group to a receiver port.

```
Console(config)#interface ethernet 1/2
Console(config-if)#mvr group 228.1.23.1
Console(config-if)#
```

### Configuring Domain Name Service

The Domain Naming System (DNS) service on this switch allows host names to be mapped to IP addresses using static table entries or by redirection to other name servers on the network. When a client device designates this switch as a DNS server, the client will attempt to resolve host names into IP addresses by forwarding DNS queries to the switch, and waiting for a response.

You can manually configure entries in the DNS table used for mapping domain names to IP addresses, configure default domain names, or specify one or more name servers to use for domain name to address translation.

### Configuring General DNS Service Parameters

**Command Usage**

- To enable DNS service on this switch, first configure one or more name servers, and then enable domain lookup status.
- To append domain names to incomplete host names received from a DNS client (i.e., not formatted with dotted notation), you can specify a default domain name or a list of domain names to be tried in sequential order.
- If there is no domain list, the default domain name is used. If there is a domain list, the default domain name is not used.
• When an incomplete host name is received by the DNS service on this switch and a domain name list has been specified, the switch will work through the domain list, appending each domain name in the list to the host name, and checking with the specified name servers for a match.

• When more than one name server is specified, the servers are queried in the specified sequence until a response is received, or the end of the list is reached with no response.

• Note that if all name servers are deleted, DNS will automatically be disabled.

Command Attributes

• **Domain Lookup Status** – Enables DNS host name-to-address translation.

• **Default Domain Name**\(^{14}\) – Defines the default domain name appended to incomplete host names. (Range: 1-64 alphanumeric characters)

• **Domain Name List** – Defines a list of domain names that can be appended to incomplete host names. (Range: 1-64 alphanumeric characters. 1-5 names)

• **Name Server List** – Specifies the address of one or more domain name servers to use for name-to-address resolution. (Range: 1-6 IP addresses)

**Web** – Select DNS, General Configuration. Set the default domain name or list of domain names, specify one or more name servers to use to use for address resolution, enable domain lookup status, and click Apply.

---

**General Configuration**

<table>
<thead>
<tr>
<th>Domain Lookup Status:</th>
<th>Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default Domain Name:</td>
<td>Sample.com</td>
</tr>
</tbody>
</table>

**Domain Name List:**

Current:

- sample.com.uk
- sample.com.jp

New:

- Domain Name

Current:

- 192.168.1.55
- 10.1.0.55

New:

- Name Server IP

---

14. Do not include the initial dot that separates the host name from the domain name.
CLI - This example sets a default domain name and a domain list. However, remember that if a domain list is specified, the default domain name is not used.

```console
Console(config)#ip domain-name sample.com
Console(config)#ip domain-list sample.com.uk
Console(config)#ip domain-list sample.com.jp
Console(config)#ip name-server 192.168.1.55 10.1.0.55
Console(config)#ip domain-lookup
Console#show dns
Domain Lookup Status:
 DNS enabled
Default Domain Name:
 .sample.com
Domain Name List:
 .sample.com.uk
 .sample.com.jp
Name Server List:
 192.168.1.55
 10.1.0.55
Console#
```

Configuring Static DNS Host to Address Entries

You can manually configure static entries in the DNS table that are used to map domain names to IP addresses.

Command Usage

- Static entries may be used for local devices connected directly to the attached network, or for commonly used resources located elsewhere on the network.
- Servers or other network devices may support one or more connections via multiple IP addresses. If more than one IP address is associated with a host name in the static table or via information returned from a name server, a DNS client can try each address in succession, until it establishes a connection with the target device.

Field Attributes

- **Host Name** – Name of a host device that is mapped to one or more IP addresses. (Range: 1-64 characters)
- **IP Address** – Internet address(es) associated with a host name. (Range: 1-8 addresses)
- **Alias** – Displays the host names that are mapped to the same address(es) as a previously configured entry.
Web – Select DNS, Static Host Table. Enter a host name and one or more corresponding addresses, then click Apply.

### Static Host Table

<table>
<thead>
<tr>
<th>Host Name</th>
<th>IP Address</th>
<th>Alias</th>
<th>Delete</th>
<th>Edit</th>
</tr>
</thead>
<tbody>
<tr>
<td>rd5</td>
<td>192.168.1.55</td>
<td>rd5</td>
<td>Delete</td>
<td>Edit</td>
</tr>
<tr>
<td></td>
<td>10.1.0.55</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Add Static Host:**

- **Host Name**
- **IP Address 1**
- **IP Address 2**
- **IP Address 3**
- **IP Address 4**
- **IP Address 5**
- **IP Address 6**
- **IP Address 7**
- **IP Address 8**

- **Add**

---

**Figure 3-112 DNS Static Host Table**

**CLI** - This example maps two address to a host name, and then configures an alias host name for the same addresses.

```
Console(config)#ip host rd5 192.168.1.55 10.1.0.55
Console(config)#ip host rd6 10.1.0.55
Console#show hosts
```

- **Hostname**
- **rd5**
- **Inet address**
  - 10.1.0.55 192.168.1.55
- **Alias**
  - 1.rd6

Console#
Displaying the DNS Cache
You can display entries in the DNS cache that have been learned via the designated name servers.

Field Attributes
- **No** – The entry number for each resource record.
- **Flag** – The flag is always “4” indicating a cache entry and therefore unreliable.
- **Type** – This field includes CNAME which specifies the canonical or primary name for the owner, and ALIAS which specifies multiple domain names which are mapped to the same IP address as an existing entry.
- **IP** – The IP address associated with this record.
- **TTL** – The time to live reported by the name server.
- **Domain** – The domain name associated with this record.

**Web** – Select DNS, Cache.

![Figure 3-113 DNS Cache](image-url)
Configuring the Switch

CLI - This example displays all the resource records learned from the designated name servers.

<table>
<thead>
<tr>
<th>NO</th>
<th>FLAG</th>
<th>TYPE</th>
<th>IP</th>
<th>TTL</th>
<th>DOMAIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>CNAME</td>
<td>207.46.134.222</td>
<td>51</td>
<td><a href="http://www.microsoft.akadns.net">www.microsoft.akadns.net</a></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>CNAME</td>
<td>207.46.134.190</td>
<td>51</td>
<td><a href="http://www.microsoft.akadns.net">www.microsoft.akadns.net</a></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>CNAME</td>
<td>207.46.134.155</td>
<td>51</td>
<td><a href="http://www.microsoft.akadns.net">www.microsoft.akadns.net</a></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>CNAME</td>
<td>207.46.249.222</td>
<td>51</td>
<td><a href="http://www.microsoft.akadns.net">www.microsoft.akadns.net</a></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>CNAME</td>
<td>207.46.249.27</td>
<td>51</td>
<td><a href="http://www.microsoft.akadns.net">www.microsoft.akadns.net</a></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>ALIAS</td>
<td>POINTER TO:4</td>
<td>51</td>
<td><a href="http://www.microsoft.com">www.microsoft.com</a></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>CNAME</td>
<td>207.46.68.27</td>
<td>71964</td>
<td>msn.com.tw</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>ALIAS</td>
<td>POINTER TO:6</td>
<td>71964</td>
<td><a href="http://www.msn.com.tw">www.msn.com.tw</a></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>CNAME</td>
<td>65.54.131.192</td>
<td>605</td>
<td>passportimages.com</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>ALIAS</td>
<td>POINTER TO:8</td>
<td>605</td>
<td><a href="http://www.passportimages.com">www.passportimages.com</a></td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>CNAME</td>
<td>165.193.72.190</td>
<td>87</td>
<td>global.msads.net</td>
</tr>
</tbody>
</table>

DHCP Snooping

DHCP snooping allows a switch to protect a network from rogue DHCP servers or other devices which send port-related information to a DHCP server. This information can be useful in tracking an IP address back to a physical port.

Network traffic may be disrupted when malicious DHCP messages are received from an outside source. DHCP snooping is used to filter DHCP messages received on a non-secure interface from outside the network or firewall. When DHCP snooping is enabled globally and enabled on a VLAN interface, DHCP messages received on an untrusted interface from a device not listed in the DHCP snooping table will be dropped.

When enabled, DHCP messages entering an untrusted interface are filtered based upon dynamic entries learned via DHCP snooping.

Filtering rules are implemented as follows:

- If the global DHCP snooping is disabled, all DHCP packets are forwarded.
- If DHCP snooping is enabled globally, and also enabled on the VLAN where the DHCP packet is received, all DHCP packets are forwarded for a trusted port. If the received packet is a DHCP ACK message, a dynamic DHCP snooping entry is also added to the binding table.
- If DHCP snooping is enabled globally, and also enabled on the VLAN where the DHCP packet is received, but the port is not trusted, it is processed as follows:
  - If the DHCP packet is a reply packet from a DHCP server (including OFFER, ACK or NAK messages), the packet is dropped.
  - If the DHCP packet is from a client, such as a DECLINE or RELEASE message, the switch forwards the packet only if the corresponding entry is found in the binding table.
  - If the DHCP packet is from a client, such as a DISCOVER, REQUEST, INFORM, DECLINE or RELEASE message, the packet is forwarded if MAC address verification is disabled. However, if MAC address verification is enabled, then
the packet will only be forwarded if the client’s hardware address stored in the DHCP packet is the same as the source MAC address in the Ethernet header.

- If the DHCP packet is not a recognizable type, it is dropped.
- If a DHCP packet from a client passes the filtering criteria above, it will only be forwarded to trusted ports in the same VLAN.
- If a DHCP packet is from server is received on a trusted port, it will be forwarded to both trusted and untrusted ports in the same VLAN.

If the DHCP snooping is globally disabled, all dynamic bindings are removed from the binding table.

Additional considerations when the switch itself is a DHCP client – The port(s) through which the switch submits a client request to the DHCP server must be configured as trusted. Note that the switch will not add a dynamic entry for itself to the binding table when it receives an ACK message from a DHCP server. Also, when the switch sends out DHCP client packets for itself, no filtering takes place. However, when the switch receives any messages from a DHCP server, any packets received from untrusted ports are dropped.

**DHCP Snooping Configuration**

**Command Attributes**

- **DHCP Snooping Status** – Enables or disables DHCP snooping globally.
- **DHCP Snooping MAC-Address Verification** – Enables or disables MAC address verification. DHCP packets will be dropped if the source MAC address in the Ethernet header of the packet is not same as the client’s hardware address in the DHCP packet.

**Web** – Click DHCP Snooping, Configuration.

![DHCP Snooping Configuration](image)

**CLI** – This example first enables DHCP Snooping, and then enables DHCP Snooping MAC-Address Verification.

```bash
Console(config)#ip dhcp snooping
Console(config)#ip dhcp snooping verify mac-address
Console(config)#
```
DHCP Snooping VLAN Configuration

Enables DHCP snooping on the specified VLAN.

Command Attributes

- **VLAN ID** – ID of a configured VLAN. (Range: 1-4094)
- **DHCP Snooping Status** – Enables or disables DHCP snooping for the selected VLAN. When DHCP snooping is enabled globally on the switch, and enabled on the specified VLAN, DHCP packet filtering will be performed on any untrusted ports within the VLAN.

Web – Click DHCP Snooping, VLAN Configuration.

```
DHCP Snooping VLAN Configuration

VLAN ID: 1

DHCP Snooping Status: [] Enabled
```

Figure 3-115  DHCP Snooping VLAN Configuration

CLI – This example first enables DHCP Snooping for VLAN 1.

```
Console(config)#ip dhcp snooping vlan 1
Console(config)#
```

DHCP Snooping Information Option Configuration

DHCP provides a relay mechanism for sending information about the switch and its DHCP clients to the DHCP server. Known as DHCP Option 82, it allows compatible DHCP servers to use the information when assigning IP addresses, or to set other services or policies for clients.

When the DHCP Snooping Information Option is enabled, clients can be identified by the switch port to which they are connected rather than just their MAC address. DHCP client-server exchange messages are then forwarded directly between the server and client without having to flood them to the entire VLAN.

In some cases, the switch may receive DHCP packets from a client that already includes DHCP Option 82 information. The switch can be configured to set the action policy for these packets. Either the switch can discard the DHCP information, keep the existing information, or replace it with the switch’s relay information.

**Note**: DHCP snooping must be enabled on the switch for the DHCP Option 82 information to be inserted into packets.
DHCP Snooping

Command Attributes

- **DHCP Snooping Information Option Status** – Enables or disables DHCP Option 82 information relay.
- **DHCP Snooping Information Option Policy** – Sets the DHCP snooping information option policy for DHCP client packets that include Option 82 information.
  - **Replace** – Overwrites the DHCP client packet information with the switch’s relay information.
  - **Keep** – Retains the client’s DHCP information.
  - **Drop** – Discards the Option 82 information in a packet and then floods it to the entire VLAN.

**Web** – Click DHCP Snooping, Information Option Configuration.

![DHCP Snooping Information Option Configuration](image)

**CLI** – This example enables DHCP Snooping Information Option, and sets the policy as replace.

```
Console(config)#ip dhcp snooping information option
Console(config)#ip dhcp snooping information policy replace
```

DHCP Snooping Port Configuration

Configures switch ports as trusted or untrusted. An untrusted interface is an interface that is configured to receive messages from outside the network or firewall. A trusted interface is an interface that is configured to receive only messages from within the network.

Command Attributes

- **Trust Status** – Enables or disables port as trusted.
Web – Click DHCP Snooping, Information Option Configuration.

**DHCP Snooping Port Configuration**

<table>
<thead>
<tr>
<th>Port Trust Status</th>
<th>1</th>
<th>Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>Enabled</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Enabled</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Enabled</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Enabled</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Enabled</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Enabled</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Enabled</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

*Figure 3-117 DHCP Snooping Port Configuration*

CLI – This example shows how to enable the DHCP Snooping Trust Status for ports.

```
Console(config)#interface ethernet 1/5
Console(config-if)#ip dhcp snooping trust
Console(config-if)#
```

**DHCP Snooping Binding Information**

Displays the DHCP snooping binding information.

**Command Attributes**

- **No.** – Entry number for DHCP snooping binding information.
- **Unit** – Stack unit.
- **Port** – Port number.
- **VLAN ID** – ID of a configured VLAN (Range: 1-4094)
- **MAC Address** – A valid unicast MAC address.
- **IP Address** – A valid unicast IP address.
- **IP Address Type** – Indicates an IPv4 address type.
- **Lease Time (Seconds)** – The time after which an entry is removed from the table.
IP Source Guard

**IP Source Guard**

IP Source Guard is a security feature that filters IP traffic on network interfaces based on manually configured entries in the IP Source Guard table, or static and dynamic entries in the DHCP Snooping table when enabled (see “DHCP Snooping” on page 3-186). IP source guard can be used to prevent traffic attacks caused when a host tries to use the IP address of a neighbor to access the network. This section describes commands used to configure IP Source Guard.

**Note:** Due to a chip limitation, IP source guard and Quality of Service (only for IP related QoS function) cannot be enabled at the same time. Thus, if the user has already enabled the IP source guard function, it needs to be disabled first in order for the QoS function to work and vice versa.

**IP Source Guard Port Configuration**

IP Source Guard is used to filter traffic on an unsecure port which receives messages from outside the network or firewall, and therefore may be subject to traffic attacks caused by a host trying to use the IP address of a neighbor.

When enabled, traffic is filtered based upon dynamic entries learned via DHCP snooping or static addresses configured in the source guard binding table. An inbound packet’s IP address (sip option) or both its IP address and corresponding MAC address (sip-mac option) are checked against the binding table. If no matching entry is found, the packet is dropped.
Command Attributes

- **Filter Type** – Configures the switch to filter inbound traffic based on source IP address, or source IP address and corresponding MAC address. (Default: None)
  - **None** – Disables IP source guard filtering on the port.
  - **SIP** – Enables traffic filtering based on IP addresses stored in the binding table.
  - **SIP-MAC** – Enables traffic filtering based on IP addresses and corresponding MAC addresses stored in the binding table.

Web – Click IP Source Guard, Port Configuration.

### IP Source Guard Port Configuration

<table>
<thead>
<tr>
<th>Port</th>
<th>Filter Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td>None</td>
</tr>
<tr>
<td>3</td>
<td>None</td>
</tr>
<tr>
<td>4</td>
<td>None</td>
</tr>
<tr>
<td>5</td>
<td>None</td>
</tr>
<tr>
<td>6</td>
<td>None</td>
</tr>
<tr>
<td>7</td>
<td>None</td>
</tr>
<tr>
<td>8</td>
<td>None</td>
</tr>
</tbody>
</table>

Figure 3-119 IP Source Guard Port Configuration

CLI – This example shows how to enable IP source guard on port 5.

```
Console(config)#interface ethernet 1/5
Console(config-if)#ip source-guard sip
Console(config-if)#end
```

```
Interface Filter-type
----------------- ------------
Eth 1/1 DISABLED
Eth 1/2 DISABLED
Eth 1/3 DISABLED
Eth 1/4 DISABLED
Eth 1/5 SIP
Eth 1/6 DISABLED
```

Static IP Source Guard Binding Configuration

Adds a static address to the source-guard binding table. Table entries include a MAC address, IP address, lease time, entry type (Static, Dynamic), VLAN identifier, and port identifier. All static entries are configured with an infinite lease time, which is indicated with a value of zero in the table.
Command Attributes

- **Static Binding Table Counts** – The total number of static entries in the table.
- **Port** – Switch port number. (Range: 1-26/50)
- **VLAN ID** – ID of a configured VLAN (Range: 1-4094)
- **MAC Address** – A valid unicast MAC address.
- **IP Address** – A valid unicast IP address, including classful types A, B or C.

Web – Click IP Source Guard, Static Configuration.

### Static IP Source Guard Binding Configuration

<table>
<thead>
<tr>
<th>Static Binding Table Counts</th>
<th>Current Static Binding Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN 1, 00-12-34-55-78-3A, Unit 1, Port 9, 192.168.1.35, IPv4, Lease Time 0 Seconds</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port</th>
<th>VLAN ID</th>
<th>MAC Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

**Figure 3-120 Static IP Source Guard Binding Configuration**

CLI – This example shows how to configure a static source-guard binding on port 5.

```plaintext
Console(config)#ip source-guard binding 11-22-33-44-55-66 vlan 1
192.168.0.99 interface ethernet 1/5
Console(config)#
```

Dynamic IP Source Guard Binding Information

Displays the source-guard binding table for a selected interface.

Command Attributes

- **Query by** – Select an interface to display the source-guard binding. (Options: Port, VLAN, MAC Address, or IP Address)
- **Dynamic Binding Table Counts** – Displays the number of IP addresses in the source-guard binding table.
- **Current Dynamic Binding Table** – Displays the IP addresses in the source-guard binding table.
Web – Click IP Source Guard, Dynamic Information.

![Dynamic IP Source Guard Binding Information](image)

CLI – This example shows how to configure a static source-guard binding on port 5.

```
Console#show ip source-guard binding
MacAddress IpAddress Lease(sec) Type VLAN Interface
----------------- --------------- ---------- -------------------- --------
11-22-33-44-55-66 192.168.0.99 0 Static 1 Eth 1/5
Console#
```

Switch Clustering

Switch Clustering is a method of grouping switches together to enable centralized management through a single unit. Switches that support clustering can be grouped together regardless of physical location or switch type, as long as they are connected to the same local network.

A switch cluster has a “Commander” unit that is used to manage all other “Member” switches in the cluster. The management station can use both the web interface and Telnet to communicate directly while the Commander throught its IP address, and the Commander manages Member switches using cluster “internal” IP addresses. There can be up to 16 Member switches in one cluster. Cluster switches are limited to within a single IP subnet.
Once a switch has been configured to be a cluster Commander, it automatically discovers other cluster-enabled switches in the network. These “Candidate” switches only become cluster Members when manually selected by the administrator through the management station.

After the Commander and Members have been configured, any switch in the cluster can be managed from the web interface by choosing the Member ID from the Cluster drop-down menu. From the Commander CLI prompt, use the “rcommand” command (see 4-240) to connect to the Member switch.

![Figure 3-122 Cluster Member Choice](image)

**Cluster Configuration**

To create a switch cluster, first be sure that clustering is enabled on the switch (the default is enabled), then set the switch as a Cluster Commander. Set a Cluster IP Pool that does not conflict with the network IP subnet. Cluster IP addresses are assigned to switches when they become Members and are used for communication between Member switches and the Commander.

**Command Attributes**

- **Cluster Status** – Enables or disables clustering on the switch.
- **Cluster Commander** – Enables or disables the switch as a cluster Commander.
- **Role** – Indicates the current role of the switch in the cluster; either Commander, Member, or Candidate.
- **Cluster IP Pool** – An “internal” IP address pool that is used to assign IP addresses to Member switches in the cluster. Internal cluster IP addresses are in the form 10.x.x.member-ID. Only the base IP address of the pool needs to be set since Member IDs can only be between 1 and 16. Note that you cannot change the cluster IP pool when the switch is currently in Commander mode. Commander mode must first be disabled.
- **Number of Members** – The current number of Member switches in the cluster.
- **Number of Candidates** – The current number of Candidate switches discovered in the network that are available to become Members.
Configuring the Switch

Web – Click Cluster, Configuration.

**Cluster Configuration**

<table>
<thead>
<tr>
<th>Cluster Status</th>
<th>Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster Commander</td>
<td>Enabled</td>
</tr>
<tr>
<td>Role</td>
<td>Commander</td>
</tr>
<tr>
<td>Cluster IP Pool</td>
<td>10.254.254.1</td>
</tr>
<tr>
<td>Number of Members</td>
<td>1</td>
</tr>
<tr>
<td>Number of Candidates</td>
<td>2</td>
</tr>
</tbody>
</table>

![Figure 3-123  Cluster Configuration](image)

CLI – This example first enables clustering on the switch, sets the switch as the cluster Commander, and then configures the cluster IP pool.

```console
Console(config)#cluster
Console(config)#cluster commander
Console(config)#cluster ip-pool 10.2.3.4
Console(config)#
```

**Cluster Member Configuration**

Adds Candidate switches to the cluster as Members.

**Command Attributes**

- **Member ID** – Specify a Member ID number for the selected Candidate switch. (Range: 1-16)
- **MAC Address** – Select a discovered switch MAC address from the Candidate Table, or enter a specific MAC address of a known switch.
Web – Click Cluster, Member Configuration.

Figure 3-124  Cluster Member Configuration

CLI – This example creates a new cluster Member by specifying the Candidate switch MAC address and setting a Member ID.

```
Console(config)#cluster member mac-address 00-12-34-56-78-9a id 5
Console(config)#
```

Cluster Member Information

Displays current cluster Member switch information.

Command Attributes

- **Member ID** – The ID number of the Member switch. (Range: 1-16)
- **Role** – Indicates the current status of the switch in the cluster.
- **IP Address** – The internal cluster IP address assigned to the Member switch.
- **MAC Address** – The MAC address of the Member switch.
- **Description** – The system description string of the Member switch.

Web – Click Cluster, Member Information.

<table>
<thead>
<tr>
<th>Member ID</th>
<th>Role</th>
<th>IP Address</th>
<th>MAC Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Active Member</td>
<td>10.254.254.2</td>
<td>00-12-0F-23-48-0C</td>
<td>24/48 L2/L4 IPv4/IPv6 GE Switch</td>
</tr>
</tbody>
</table>

Figure 3-125  Cluster Member Information
### Cluster Candidate Information

Displays information about discovered switches in the network that are already cluster Members or are available to become cluster Members.

**Command Attributes**

- **Role** – Indicates the current status of Candidate switches in the network.
- **MAC Address** – The MAC address of the Candidate switch.
- **Description** – The system description string of the Candidate switch.

**Web** – Click Cluster, Candidate Information.

---

#### Cluster Candidate Information

**Clear cluster candidate table**

<table>
<thead>
<tr>
<th>Role</th>
<th>MAC Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Member</td>
<td>00-12-CF-23-49-C0</td>
<td>24/48 L2/L4 IPv4/IPv6 GE Switch</td>
</tr>
<tr>
<td>Candidate</td>
<td>00-12-CF-0B-47-A0</td>
<td>24/48 L2/L4 IPv4/IPv6 GE Switch</td>
</tr>
</tbody>
</table>

---

#### Figure 3-126  Cluster Candidate Information

**CLI** – This example shows information about cluster Candidate switches.

```
Vty-0#show cluster candidates
Cluster Candidates:
Role Mac Description
ACTIVE MEMBER 00-12-cf-23-49-c0 TigerSwitch 10/100/1000 SPORT MANAGE
CANDIDATE 00-12-cf-0b-47-a0 TigerSwitch 10/100/1000 SPORT MANAGE
Vty-0#
```
Chapter 4: Command Line Interface

This chapter describes how to use the Command Line Interface (CLI).

Using the Command Line Interface

Accessing the CLI
When accessing the management interface for the switch over a direct connection to the server’s console port, or via a Telnet connection, the switch can be managed by entering command keywords and parameters at the prompt. Using the switch's command-line interface (CLI) is very similar to entering commands on a UNIX system.

Console Connection
To access the switch through the console port, perform these steps:

1. At the console prompt, enter the user name and password. (The default user names are “admin” and “guest” with corresponding passwords of “admin” and “guest.”) When the administrator user name and password is entered, the CLI displays the “Console#” prompt and enters privileged access mode (i.e., Privileged Exec). But when the guest user name and password is entered, the CLI displays the “Console>” prompt and enters normal access mode (i.e., Normal Exec).

2. Enter the necessary commands to complete your desired tasks.

3. When finished, exit the session with the “quit” or “exit” command.

After connecting to the system through the console port, the login screen displays:

User Access Verification
Username: admin
Password:

   CLI session with TigerSwitch 10/100/1000 is opened.
   To end the CLI session, enter [Exit].

Console#
Telnet Connection

Telnet operates over the IP transport protocol. In this environment, your management station and any network device you want to manage over the network must have a valid IP address. Valid IP addresses consist of four numbers, 0 to 255, separated by periods. Each address consists of a network portion and host portion. For example, the IP address assigned to this switch, 10.1.0.1, with subnet mask 255.255.255.0, consists of a network portion (10.1.0) and a host portion (1).

Note: The IP address for this switch is obtained via DHCP by default.

To access the switch through a Telnet session, you must first set the IP address for the Master unit, and set the default gateway if you are managing the switch from a different IP subnet. For example,

```
Console(config)#interface vlan 1
Console(config-if)#ip address 10.1.0.254 255.255.255.0
Console(config-if)#exit
Console(config)#ip default-gateway 10.1.0.254
```

If your corporate network is connected to another network outside your office or to the Internet, you need to apply for a registered IP address. However, if you are attached to an isolated network, then you can use any IP address that matches the network segment to which you are attached.

After you configure the switch with an IP address, you can open a Telnet session by performing these steps:

1. From the remote host, enter the Telnet command and the IP address of the device you want to access.

2. At the prompt, enter the user name and system password. The CLI will display the “Vty-n#” prompt for the administrator to show that you are using privileged access mode (i.e., Privileged Exec), or “Vty-n>” for the guest to show that you are using normal access mode (i.e., Normal Exec), where n indicates the number of the current Telnet session.

3. Enter the necessary commands to complete your desired tasks.

4. When finished, exit the session with the “quit” or “exit” command.

After entering the Telnet command, the login screen displays:

```
Username: admin
Password:

 CLI session with TigerSwitch 10/100/1000 is opened.
 To end the CLI session, enter [Exit].

Vty-0#
```

Note: You can open up to four sessions to the device via Telnet.
Entering Commands

This section describes how to enter CLI commands.

Keywords and Arguments

A CLI command is a series of keywords and arguments. Keywords identify a command, and arguments specify configuration parameters. For example, in the command “show interfaces status ethernet 1/5,” show interfaces and status are keywords, ethernet is an argument that specifies the interface type, and 1/5 specifies the unit/port.

You can enter commands as follows:

• To enter a simple command, enter the command keyword.
• To enter multiple commands, enter each command in the required order. For example, to enable Privileged Exec command mode, and display the startup configuration, enter:
  
  ```
 Console>enable
 Console#show startup-config
  ```

• To enter commands that require parameters, enter the required parameters after the command keyword. For example, to set a password for the administrator, enter:
  
  ```
 Console(config)#username admin password 0 smith
  ```

Minimum Abbreviation

The CLI will accept a minimum number of characters that uniquely identify a command. For example, the command “configure” can be entered as con. If an entry is ambiguous, the system will prompt for further input.

Command Completion

If you terminate input with a Tab key, the CLI will print the remaining characters of a partial keyword up to the point of ambiguity. In the “logging history” example, typing log followed by a tab will result in printing the command up to “logging.”

Getting Help on Commands

You can display a brief description of the help system by entering the help command. You can also display command syntax by using the “?” character to list keywords or parameters.
Showing Commands
If you enter a “?” at the command prompt, the system will display the first level of keywords for the current command class (Normal Exec or Privileged Exec) or configuration class (Global, ACL, Interface, Line or VLAN Database). You can also display a list of valid keywords for a specific command. For example, the command “show ?” displays a list of possible show commands:

```
Console#show ?
 access-group Access groups
 access-list Access lists
 bridge-ext Bridge extension information
 calendar Date and time information
 dot1x 802.1x content
 garp GARP properties
 gvrp GVRP interface information
 history History information
 interfaces Interface information
 ip IP information
 lacp LACP statistics
 line TTY line information
 log Login records
 logging Login setting
 mac-address-table Configuration of the address table
 management Management IP filter
 map Maps priority
 port Port characteristics
 public-key Public key information
 queue Priority queue information
 radius-server RADIUS server information
 running-config Information on the running configuration
 snmp Simple Network Management Protocol statistics
 sntp Simple Network Time Protocol configuration
 spanning-tree Spanning-tree configuration
 ssh Secure shell server connections
 startup-config Startup system configuration
 system System information
 tacacs-server TACACS server settings
 users Information about terminal lines
 version System hardware and software versions
 vlan Virtual LAN settings
Console#show
```

The command “show interfaces ?” will display the following information:

```
Console#show interfaces ?
 counters Interface counters information
 status Interface status information
 switchport Interface switchport information
Console#show interfaces
```
Partial Keyword Lookup
If you terminate a partial keyword with a question mark, alternatives that match the initial letters are provided. (Remember not to leave a space between the command and question mark.) For example “s?” shows all the keywords starting with “s.”

<table>
<thead>
<tr>
<th>Console#show s?</th>
</tr>
</thead>
<tbody>
<tr>
<td>snmp</td>
</tr>
<tr>
<td>sntp</td>
</tr>
<tr>
<td>spanning-tree</td>
</tr>
<tr>
<td>ssh</td>
</tr>
<tr>
<td>startup-config</td>
</tr>
<tr>
<td>system</td>
</tr>
</tbody>
</table>

Negating the Effect of Commands
For many configuration commands you can enter the prefix keyword “no” to cancel the effect of a command or reset the configuration to the default value. For example, the logging command will log system messages to a host server. To disable logging, specify the no logging command. This guide describes the negation effect for all applicable commands.

Using Command History
The CLI maintains a history of commands that have been entered. You can scroll back through the history of commands by pressing the up arrow key. Any command displayed in the history list can be executed again, or first modified and then executed.

Using the show history command displays a longer list of recently executed commands.

Understanding Command Modes
The command set is divided into Exec and Configuration classes. Exec commands generally display information on system status or clear statistical counters. Configuration commands, on the other hand, modify interface parameters or enable certain switching functions. These classes are further divided into different modes. Available commands depend on the selected mode. You can always enter a question mark “?” at the prompt to display a list of the commands available for the current mode. The command classes and associated modes are displayed in the following table:
Exec Commands

When you open a new console session on the switch with the user name and password “guest,” the system enters the Normal Exec command mode (or guest mode), displaying the “Console>” command prompt. Only a limited number of the commands are available in this mode. You can access all commands only from the Privileged Exec command mode (or administrator mode). To access Privilege Exec mode, open a new console session with the user name and password “admin.” The system will now display the “Console#” command prompt. You can also enter Privileged Exec mode from within Normal Exec mode, by entering the enable command, followed by the privileged level password “super” (page 4-26).

To enter Privileged Exec mode, enter the following user names and passwords:

Table 4-1 Command Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Class</th>
<th>Configuration</th>
<th>Privileged Exec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exec Normal</td>
<td></td>
<td>Global*</td>
<td>Access Control List</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Class Map</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Interface</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Line</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Multiple Spanning Tree</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Policy Map</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VLAN Database</td>
</tr>
</tbody>
</table>

* You must be in Privileged Exec mode to access the Global configuration mode.
  You must be in Global Configuration mode to access any of the other configuration modes.

Username: admin
Password: [admin login password]

    CLI session with TigerSwitch 10/100/1000 is opened.
    To end the CLI session, enter [Exit].

Console#

Username: guest
Password: [guest login password]

    CLI session with TigerSwitch 10/100/1000 is opened.
    To end the CLI session, enter [Exit].

Console>enable
Password: [privileged level password]

Console#
Configuration Commands

Configuration commands are privileged level commands used to modify switch settings. These commands modify the running configuration only and are not saved when the switch is rebooted. To store the running configuration in non-volatile storage, use the `copy running-config startup-config` command.

The configuration commands are organized into different modes:

- **Global Configuration** - These commands modify the system level configuration, and include commands such as `hostname` and `snmp-server community`.
- **Access Control List Configuration** - These commands are used for packet filtering.
- **Interface Configuration** - These commands modify the port configuration such as `speed-duplex` and `negotiation`.
- **Line Configuration** - These commands modify the console port and Telnet configuration, and include command such as `parity` and `databits`.
- **VLAN Configuration** - Includes the command to create VLAN groups.

To enter the Global Configuration mode, enter the command `configure` in Privileged Exec mode. The system prompt will change to “Console(config)#” which gives you access privilege to all Global Configuration commands.

```console
Console#configure
Console(config)#
```

To enter the other modes, at the configuration prompt type one of the following commands. Use the `exit` or `end` command to return to the Privileged Exec mode.

**Table 4-2 Configuration Modes**

<table>
<thead>
<tr>
<th>Mode</th>
<th>Command</th>
<th>Prompt</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line</td>
<td>line {console</td>
<td>vty}</td>
<td>Console(config-line)#</td>
</tr>
<tr>
<td>Access Control List</td>
<td>access-list ip standard access-list ip extended access-list mac</td>
<td>Console(config-std-acl)</td>
<td>4-89</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class Map</td>
<td>class map</td>
<td>Console(config-cmap)</td>
<td>4-198</td>
</tr>
<tr>
<td>Interface</td>
<td>interface {ethernet port</td>
<td>port-channel id</td>
<td>vlan id}</td>
</tr>
<tr>
<td>MSTP</td>
<td>spanning-tree mst-configuration</td>
<td>Console(config-mstp)#</td>
<td>4-154</td>
</tr>
<tr>
<td>Policy Map</td>
<td>policy map</td>
<td>Console(config-pmap)</td>
<td>4-200</td>
</tr>
<tr>
<td>VLAN</td>
<td>vlan database</td>
<td>Console(config-vlan)</td>
<td>4-167</td>
</tr>
</tbody>
</table>

For example, you can use the following commands to enter interface configuration mode, and then return to Privileged Exec mode.

```console
Console(config)#interface ethernet 1/5
 :
Console(config-if)#exit
Console(config)#
```
Command Line Processing

Commands are not case sensitive. You can abbreviate commands and parameters as long as they contain enough letters to differentiate them from any other currently available commands or parameters. You can use the Tab key to complete partial commands, or enter a partial command followed by the “?” character to display a list of possible matches. You can also use the following editing keystrokes for command-line processing:

<table>
<thead>
<tr>
<th>Keystroke</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl-A</td>
<td>Shifts cursor to start of command line.</td>
</tr>
<tr>
<td>Ctrl-B</td>
<td>Shifts cursor to the left one character.</td>
</tr>
<tr>
<td>Ctrl-C</td>
<td>Terminates the current task and displays the command prompt.</td>
</tr>
<tr>
<td>Ctrl-E</td>
<td>Shifts cursor to end of command line.</td>
</tr>
<tr>
<td>Ctrl-F</td>
<td>Shifts cursor to the right one character.</td>
</tr>
<tr>
<td>Ctrl-K</td>
<td>Deletes all characters from the cursor to the end of the line.</td>
</tr>
<tr>
<td>Ctrl-L</td>
<td>Repeats current command line on a new line.</td>
</tr>
<tr>
<td>Ctrl-N</td>
<td>Enters the next command line in the history buffer.</td>
</tr>
<tr>
<td>Ctrl-P</td>
<td>Enters the last command.</td>
</tr>
<tr>
<td>Ctrl-R</td>
<td>Repeats current command line on a new line.</td>
</tr>
<tr>
<td>Ctrl-U</td>
<td>Deletes from the cursor to the beginning of the line.</td>
</tr>
<tr>
<td>Ctrl-W</td>
<td>Deletes the last word typed.</td>
</tr>
<tr>
<td>Esc-B</td>
<td>Moves the cursor back one word.</td>
</tr>
<tr>
<td>Esc-D</td>
<td>Deletes from the cursor to the end of the word.</td>
</tr>
<tr>
<td>Esc-F</td>
<td>Moves the cursor forward one word.</td>
</tr>
<tr>
<td>Delete key or backspace key</td>
<td>Erases a mistake when entering a command.</td>
</tr>
</tbody>
</table>

Table 4-3 Command Line Processing
Command Groups

The system commands can be broken down into the functional groups shown below.

<table>
<thead>
<tr>
<th>Command Group</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line</td>
<td>Sets communication parameters for the serial port and Telnet, including baud rate and console time-out</td>
<td>4-10</td>
</tr>
<tr>
<td>General</td>
<td>Basic commands for entering privileged access mode, restarting the system, or quitting the CLI</td>
<td>4-19</td>
</tr>
<tr>
<td>System Management</td>
<td>Controls system logs, system passwords, user name, browser management options, and a variety of other system information</td>
<td>4-24</td>
</tr>
<tr>
<td>Flash/File</td>
<td>Manages code image or switch configuration files</td>
<td>4-64</td>
</tr>
<tr>
<td>Authentication</td>
<td>Configures logon access using local or remote authentication; also configures port security and IEEE 802.1X port access control</td>
<td>4-70</td>
</tr>
<tr>
<td>Access Control List</td>
<td>Provides filtering for IP frames (based on address, protocol, or TCP/UDP port number) or non-IP frames (based on MAC address or Ethernet type)</td>
<td>4-89</td>
</tr>
<tr>
<td>SNMP</td>
<td>Activates authentication failure traps; configures community access strings, and trap managers; also configures IP address filtering</td>
<td>4-100</td>
</tr>
<tr>
<td>Interface</td>
<td>Configures the connection parameters for all Ethernet ports, aggregated links, and VLANs</td>
<td>4-116</td>
</tr>
<tr>
<td>Mirror Port</td>
<td>Mirrors data to another port for analysis without affecting the data passing through or the performance of the monitored port</td>
<td>4-127</td>
</tr>
<tr>
<td>Rate Limiting</td>
<td>Controls the maximum rate for traffic transmitted or received on a port</td>
<td>4-129</td>
</tr>
<tr>
<td>Link Aggregation</td>
<td>Statically groups multiple ports into a single logical trunk; configures Link Aggregation Control Protocol for port trunks</td>
<td>4-130</td>
</tr>
<tr>
<td>Address Table</td>
<td>Configures the address table for filtering specified addresses, displays current entries, clears the table, or sets the aging time</td>
<td>4-140</td>
</tr>
<tr>
<td>Spanning Tree</td>
<td>Configures Spanning Tree settings for the switch</td>
<td>4-144</td>
</tr>
<tr>
<td>VLANs</td>
<td>Configures VLAN settings, and defines port membership for VLAN groups; also enables or configures private VLANs and protocol VLANs</td>
<td>4-163</td>
</tr>
<tr>
<td>Class of Service</td>
<td>Sets port priority for untagged frames, selects strict priority or weighted round robin, relative weight for each priority queue, also sets priority for TCP/UDP traffic types, and DSCP</td>
<td>4-184</td>
</tr>
<tr>
<td>Quality of Service</td>
<td>Configures Differentiated Services</td>
<td>4-197</td>
</tr>
<tr>
<td>Multicast Filtering</td>
<td>Configures IGMP multicast filtering, query parameters, specifies ports attached to a multicast router, and enables multicast VLAN registration</td>
<td>4-201</td>
</tr>
<tr>
<td>IP Interface</td>
<td>Configures IP address for the switch</td>
<td>4-223</td>
</tr>
<tr>
<td>DHCP Snooping</td>
<td>Configures DHCP snooping</td>
<td>4-231</td>
</tr>
<tr>
<td>IP Source Guard</td>
<td>Configures IP source guard security</td>
<td>4-227</td>
</tr>
<tr>
<td>IP Cluster</td>
<td>Configures switch clustering</td>
<td>4-237</td>
</tr>
</tbody>
</table>
The access mode shown in the following tables is indicated by these abbreviations:

<table>
<thead>
<tr>
<th>Access Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL</td>
<td>(Access Control List Configuration)</td>
</tr>
<tr>
<td>CM</td>
<td>(Class Map Configuration)</td>
</tr>
<tr>
<td>GC</td>
<td>(Global Configuration)</td>
</tr>
<tr>
<td>IC</td>
<td>(Interface Configuration)</td>
</tr>
<tr>
<td>LC</td>
<td>(Line Configuration)</td>
</tr>
<tr>
<td>MST</td>
<td>(Multiple Spanning Tree)</td>
</tr>
<tr>
<td>NE</td>
<td>(Normal Exec)</td>
</tr>
<tr>
<td>PE</td>
<td>(Privileged Exec)</td>
</tr>
<tr>
<td>PM</td>
<td>(Policy Map Configuration)</td>
</tr>
<tr>
<td>VC</td>
<td>(VLAN Database Configuration)</td>
</tr>
</tbody>
</table>

**Line Commands**

You can access the onboard configuration program by attaching a VT100 compatible device to the server’s serial port. These commands are used to set communication parameters for the serial port or Telnet (i.e., a virtual terminal).

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>line</td>
<td>Identifies a specific line for configuration and starts the line configuration mode</td>
<td>GC</td>
<td>4-11</td>
</tr>
<tr>
<td>login</td>
<td>Enables password checking at login</td>
<td>LC</td>
<td>4-11</td>
</tr>
<tr>
<td>password</td>
<td>Specifies a password on a line</td>
<td>LC</td>
<td>4-12</td>
</tr>
<tr>
<td>timeout login response</td>
<td>Sets the interval that the system waits for a user to log into the CLI</td>
<td>LC</td>
<td>4-13</td>
</tr>
<tr>
<td>exec-timeout</td>
<td>Sets the interval that the command interpreter waits until user input is detected</td>
<td>LC</td>
<td>4-13</td>
</tr>
<tr>
<td>password-thresh</td>
<td>Sets the password intrusion threshold, which limits the number of failed logon attempts</td>
<td>LC</td>
<td>4-14</td>
</tr>
<tr>
<td>silent-time*</td>
<td>Sets the amount of time the management console is inaccessible after the number of unsuccessful logon attempts exceeds the threshold set by the password-thresh command</td>
<td>LC</td>
<td>4-15</td>
</tr>
<tr>
<td>databits*</td>
<td>Sets the number of data bits per character that are interpreted and generated by hardware</td>
<td>LC</td>
<td>4-15</td>
</tr>
<tr>
<td>parity*</td>
<td>Defines the generation of a parity bit</td>
<td>LC</td>
<td>4-16</td>
</tr>
<tr>
<td>speed*</td>
<td>Sets the terminal baud rate</td>
<td>LC</td>
<td>4-17</td>
</tr>
<tr>
<td>stopbits*</td>
<td>Sets the number of the stop bits transmitted per byte</td>
<td>LC</td>
<td>4-17</td>
</tr>
<tr>
<td>disconnect</td>
<td>Terminates a line connection</td>
<td>PE</td>
<td>4-18</td>
</tr>
<tr>
<td>show line</td>
<td>Displays a terminal line's parameters</td>
<td>NE, PE</td>
<td>4-18</td>
</tr>
</tbody>
</table>

* These commands only apply to the serial port.
line
This command identifies a specific line for configuration, and to process subsequent line configuration commands.

Syntax
   line {console | vty}
      • console - Console terminal line.
      • vty - Virtual terminal for remote console access (i.e., Telnet).

Default Setting
There is no default line.

Command Mode
   Global Configuration

Command Usage
Telnet is considered a virtual terminal connection and will be shown as “Vty” in screen displays such as show users. However, the serial communication parameters (e.g., databits) do not affect Telnet connections.

Example
To enter console line mode, enter the following command:

   Console(config)#line console
   Console(config-line)#

Related Commands
   show line (4-18)
   show users (4-61)

login
This command enables password checking at login. Use the no form to disable password checking and allow connections without a password.

Syntax
   login [local]
   no login

   local - Selects local password checking. Authentication is based on the user name specified with the username command.

Default Setting
   login local

Command Mode
   Line Configuration

Command Usage
   • There are three authentication modes provided by the switch itself at login:
- **login** selects authentication by a single global password as specified by the **password** line configuration command. When using this method, the management interface starts in Normal Exec (NE) mode.

- **login local** selects authentication via the user name and password specified by the **username** command (i.e., default setting). When using this method, the management interface starts in Normal Exec (NE) or Privileged Exec (PE) mode, depending on the user’s privilege level (0 or 15 respectively).

- **no login** selects no authentication. When using this method, the management interface starts in Normal Exec (NE) mode.

  - This command controls login authentication via the switch itself. To configure user names and passwords for remote authentication servers, you must use the RADIUS or TACACS software installed on those servers.

**Example**

```plaintext
Console(config-line)#login local
Console(config-line)#
```

**Related Commands**

- **username** (4-25)
- **password** (4-12)

**password**

This command specifies the password for a line. Use the **no** form to remove the password.

**Syntax**

```
password {0 | 7} password
no password
```

- **{0 | 7}** - 0 means plain password, 7 means encrypted password
- **password** - Character string that specifies the line password.

(Maximum length: 8 characters plain text, 32 encrypted, case sensitive)

**Default Setting**

No password is specified.

**Command Mode**

Line Configuration

**Command Usage**

- When a connection is started on a line with password protection, the system prompts for the password. If you enter the correct password, the system shows a prompt. You can use the **password-thresh** command to set the number of times a user can enter an incorrect password before the system terminates the line connection and returns the terminal to the idle state.

- The encrypted password is required for compatibility with legacy password settings (i.e., plain text or encrypted) when reading the configuration file.
during system bootup or when downloading the configuration file from a TFTP server. There is no need for you to manually configure encrypted passwords.

Example

```
Console(config-line)#password 0 secret
Console(config-line)#
```

Related Commands
- login (4-11)
- password-thresh (4-14)

**timeout login response**
This command sets the interval that the system waits for a user to log into the CLI. Use the no form to restore the default.

**Syntax**
```
timeout login response [seconds]
no timeout login response
```

- **seconds** - Integer that specifies the timeout interval.
  (Range: 0 - 300 seconds; 0: disabled)

**Default Setting**
- CLI: Disabled (0 seconds)
- Telnet: 600 seconds

**Command Mode**
Line Configuration

**Command Usage**
- If a login attempt is not detected within the timeout interval, the connection is terminated for the session.
- This command applies to both the local console and Telnet connections.
- The timeout for Telnet cannot be disabled.
- Using the command without specifying a timeout restores the default setting.

Example
To set the timeout to two minutes, enter this command:

```
Console(config-line)#timeout login response 120
Console(config-line)#
```

**Related Commands**
- silent-time (4-15)
- exec-timeout (4-14)

**exec-timeout**
This command sets the interval that the system waits until user input is detected. Use the no form to restore the default.
Syntax
exec-timeout [seconds]
no exec-timeout

seconds - Integer that specifies the number of seconds.
(Range: 0-65535 seconds; 0: no timeout)

Default Setting
CLI: No timeout
Telnet: 10 minutes

Command Mode
Line Configuration

Command Usage
• If user input is detected within the timeout interval, the session is kept open; otherwise the session is terminated.
• This command applies to both the local console and Telnet connections.
• The timeout for Telnet cannot be disabled.
• Using the command without specifying a timeout restores the default setting.

Example
To set the timeout to two minutes, enter this command:

```
Console(config-line)#exec-timeout 120
Console(config-line)#
```

Related Commands
silent-time (4-15)
timeout login response (4-13)

password-thresh
This command sets the password intrusion threshold which limits the number of failed logon attempts. Use the no form to remove the threshold value.

Syntax
password-thresh [threshold]
no password-thresh

threshold - The number of allowed password attempts.
(Range: 1-120; 0: no threshold)

Default Setting
The default value is three attempts.

Command Mode
Line Configuration
Command Usage

- When the logon attempt threshold is reached, the system interface becomes silent for a specified amount of time before allowing the next logon attempt. (Use the silent-time command to set this interval.) When this threshold is reached for Telnet, the Telnet logon interface shuts down.
- This command applies to both the local console and Telnet connections.

Example

To set the password threshold to five attempts, enter this command:

```
Console(config-line)#password-thresh 5
Console(config-line)#
```

Related Commands

- silent-time (4-15)
- timeout login response (4-13)

silent-time

This command sets the amount of time the management console is inaccessible after the number of unsuccessful logon attempts exceeds the threshold set by the password-thresh command. Use the no form to remove the silent time value.

Syntax

```
silent-time [seconds]
no silent-time
```

- seconds - The number of seconds to disable console response.
- (Range: 0-65535; 0: no silent-time)

Default Setting

The default value is no silent-time.

Command Mode

Line Configuration

Example

To set the silent time to 60 seconds, enter this command:

```
Console(config-line)#silent-time 60
Console(config-line)#
```

Related Commands

- password-thresh (4-14)

.databits

This command sets the number of data bits per character that are interpreted and generated by the console port. Use the no form to restore the default value.
Syntax

databits \{7 | 8\}
no databits

- 7 - Seven data bits per character.
- 8 - Eight data bits per character.

Default Setting

8 data bits per character

Command Mode

Line Configuration

Command Usage

The `databits` command can be used to mask the high bit on input from devices that generate 7 data bits with parity. If parity is being generated, specify 7 data bits per character. If no parity is required, specify 8 data bits per character.

Example

To specify 7 data bits, enter this command:

```
Console(config-line)#databits 7
Console(config-line)#
```

Related Commands

parity (4-16)

parity

This command defines the generation of a parity bit. Use the `no` form to restore the default setting.

Syntax

parity \{none | even | odd\}
no parity

- none - No parity
- even - Even parity
- odd - Odd parity

Default Setting

No parity

Command Mode

Line Configuration

Command Usage

Communication protocols provided by devices such as terminals and modems often require a specific parity bit setting.
Example
To specify no parity, enter this command:

```
Console(config-line)#parity none
Console(config-line)#
```

speed
This command sets the terminal line’s baud rate. This command sets both the transmit (to terminal) and receive (from terminal) speeds. Use the no form to restore the default setting.

Syntax
```
speed bps
no speed
```

- bps - Baud rate in bits per second.
  (Options: 9600, 19200, 38400, 57600, 115200 bps)

Default Setting
9600

Command Mode
Line Configuration

Command Usage
Set the speed to match the baud rate of the device connected to the serial port. Some baud rates available on devices connected to the port might not be supported. The system indicates if the speed you selected is not supported.

Example
To specify 57600 bps, enter this command:

```
Console(config-line)#speed 57600
Console(config-line)#
```

stopbits
This command sets the number of the stop bits transmitted per byte. Use the no form to restore the default setting.

Syntax
```
stopbits {1 | 2}
```

- 1 - One stop bit
- 2 - Two stop bits

Default Setting
1 stop bit

Command Mode
Line Configuration
Example
To specify 2 stop bits, enter this command:

```
Console(config-line)#stopbits 2
Console(config-line)#
```

disconnect
This command terminates an SSH, Telnet, or console connection.

Syntax
```
disconnect session-id
```

session-id – The session identifier for an SSH, Telnet or console connection. (Range: 0-4)

Command Mode
Privileged Exec

Command Usage
Specifying session identifier “0” will disconnect the console connection. Specifying any other identifiers for an active session will disconnect an SSH or Telnet connection.

Example

```
Console#disconnect 1
Console#
```

Related Commands
- show ssh (4-40)
- show users (4-61)

show line
This command displays the terminal line’s parameters.

Syntax
```
show line [console | vty]
```

- **console** - Console terminal line.
- **vty** - Virtual terminal for remote console access (i.e., Telnet).

Default Setting
Shows all lines

Command Mode
Normal Exec, Privileged Exec
Example
To show all lines, enter this command:

```
Console#show line
Console configuration:
 Password threshold: 3 times
 Interactive timeout: Disabled
 Login timeout: Disabled
 Silent time: Disabled
 Baudrate: 9600
 Databits: 8
 Parity: none
 Stopbits: 1

VTY configuration:
 Password threshold: 3 times
 Interactive timeout: 600 sec
 Login timeout: 300 sec
console#
```

General Commands

Table 4-6 General Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Activates privileged mode</td>
<td>NE</td>
<td>4-19</td>
</tr>
<tr>
<td>disable</td>
<td>Returns to normal mode from privileged mode</td>
<td>PE</td>
<td>4-20</td>
</tr>
<tr>
<td>configure</td>
<td>Activates global configuration mode</td>
<td>PE</td>
<td>4-21</td>
</tr>
<tr>
<td>show history</td>
<td>Shows the command history buffer</td>
<td>NE, PE</td>
<td>4-21</td>
</tr>
<tr>
<td>reload</td>
<td>Restarts the system</td>
<td>PE</td>
<td>4-22</td>
</tr>
<tr>
<td>end</td>
<td>Returns to Privileged Exec mode</td>
<td>any config. mode</td>
<td>4-22</td>
</tr>
<tr>
<td>exit</td>
<td>Returns to the previous configuration mode, or exits the CLI</td>
<td>any</td>
<td>4-23</td>
</tr>
<tr>
<td>quit</td>
<td>Exits a CLI session</td>
<td>NE, PE</td>
<td>4-23</td>
</tr>
<tr>
<td>help</td>
<td>Shows how to use help</td>
<td>any</td>
<td>NA</td>
</tr>
<tr>
<td>?</td>
<td>Shows options for command completion (context sensitive)</td>
<td>any</td>
<td>NA</td>
</tr>
</tbody>
</table>

**enable**

This command activates Privileged Exec mode. In privileged mode, additional commands are available, and certain commands display additional information. See “Understanding Command Modes” on page 4-5.

**Syntax**

```
enable [level]
```

*level* - Privilege level to log into the device.

The device has two predefined privilege levels: 0: Normal Exec, 15: Privileged Exec. Enter level 15 to access Privileged Exec mode.
Default Setting
Level 15

Command Mode
Normal Exec

Command Usage
- “super” is the default password required to change the command mode from Normal Exec to Privileged Exec. (To set this password, see the `enable password` command on page 4-26.)
- The “#” character is appended to the end of the prompt to indicate that the system is in privileged access mode.

Example

```
Console>enable
Password: [privileged level password]
Console#
```

Related Commands
- disable (4-20)
- enable password (4-26)

disable
This command returns to Normal Exec mode from privileged mode. In normal access mode, you can only display basic information on the switch's configuration or Ethernet statistics. To gain access to all commands, you must use the privileged mode. See “Understanding Command Modes” on page 4-5.

Default Setting
None

Command Mode
Privileged Exec

Command Usage
The “>” character is appended to the end of the prompt to indicate that the system is in normal access mode.

Example

```
Console#disable
Console>
```

Related Commands
- enable (4-19)
**configure**
This command activates Global Configuration mode. You must enter this mode to modify any settings on the switch. You must also enter Global Configuration mode prior to enabling some of the other configuration modes, including Interface Configuration, Line Configuration, and VLAN Database Configuration. See “Understanding Command Modes” on page 4-5.

**Default Setting**
None

**Command Mode**
Privileged Exec

**Example**

```
Console#configure
Console(config)#
```

**Related Commands**
**end (4-22)**

**show history**
This command shows the contents of the command history buffer.

**Default Setting**
None

**Command Mode**
Normal Exec, Privileged Exec

**Command Usage**
The history buffer size is fixed at 10 Execution commands and 10 Configuration commands.

**Example**
In this example, the show history command lists the contents of the command history buffer:

```
Console#show history
Execution command history:
 2 config
 1 show history

Configuration command history:
 4 interface vlan 1
 3 exit
 2 interface vlan 1
 1 end

Console#
```
The `!` command repeats commands from the Execution command history buffer when you are in Normal Exec or Privileged Exec Mode, and commands from the Configuration command history buffer when you are in any of the configuration modes. In this example, the `!2` command repeats the second command in the Execution history buffer (config).

```
Console#!2
Console#config
Console(config)#
```

**reload**
This command restarts the system.

**Note:** When the system is restarted, it will always run the Power-On Self-Test. It will also retain all configuration information stored in non-volatile memory by the `copy running-config startup-config` command.

**Default Setting**
None

**Command Mode**
Privileged Exec

**Command Usage**
This command resets the entire system.

**Example**
This example shows how to reset the switch:

```
Console#reload
System will be restarted, continue <y/n>? y
```

**end**
This command returns to Privileged Exec mode.

**Default Setting**
None

**Command Mode**
Global Configuration, Interface Configuration, Line Configuration, and VLAN Database Configuration.

**Example**
This example shows how to return to the Privileged Exec mode from the Interface Configuration mode:

```
Console(config-if)#end
Console#
```
exit
This command returns to the previous configuration mode or exit the configuration program.

Default Setting
None

Command Mode
Any

Example
This example shows how to return to the Privileged Exec mode from the Global Configuration mode, and then quit the CLI session:

```
Console(config)#exit
Console#exit
Press ENTER to start session
User Access Verification
Username:
```

quit
This command exits the configuration program.

Default Setting
None

Command Mode
Normal Exec, Privileged Exec

Command Usage
The `quit` and `exit` commands can both exit the configuration program.

Example
This example shows how to quit a CLI session:

```
Console#quit
Press ENTER to start session
User Access Verification
Username:
```
System Management Commands

These commands are used to control system logs, passwords, user names, browser configuration options, and display or configure a variety of other system information.

Table 4-7  System Management Commands

<table>
<thead>
<tr>
<th>Command Group</th>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Designation</td>
<td>Configures information that uniquely identifies this switch</td>
<td>4-24</td>
</tr>
<tr>
<td>User Access</td>
<td>Configures the basic user names and passwords for management access</td>
<td>4-25</td>
</tr>
<tr>
<td>IP Filter</td>
<td>Configures IP addresses that are allowed management access</td>
<td>4-27</td>
</tr>
<tr>
<td>Web Server</td>
<td>Enables management access via a web browser</td>
<td>4-29</td>
</tr>
<tr>
<td>Telnet Server</td>
<td>Enables management access via Telnet</td>
<td>4-32</td>
</tr>
<tr>
<td>Secure Shell</td>
<td>Provides secure replacement for Telnet</td>
<td>4-33</td>
</tr>
<tr>
<td>Event Logging</td>
<td>Controls logging of error messages</td>
<td>4-43</td>
</tr>
<tr>
<td>Time (System Clock)</td>
<td>Sets the system clock automatically via NTP/SNTP server or manually</td>
<td>4-53</td>
</tr>
<tr>
<td>System Status</td>
<td>Displays system configuration, active managers, and version information</td>
<td>4-57</td>
</tr>
<tr>
<td>Frame Size</td>
<td>Enables support for jumbo frames</td>
<td>4-63</td>
</tr>
</tbody>
</table>

Device Designation Commands

Table 4-8  Device Designation Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>prompt</td>
<td>Customizes the prompt used in PE and NE mode</td>
<td>GC</td>
<td>4-24</td>
</tr>
<tr>
<td>hostname</td>
<td>Specifies the host name for the switch</td>
<td>GC</td>
<td>4-25</td>
</tr>
<tr>
<td>snmp-server contact</td>
<td>Sets the system contact string</td>
<td>GC</td>
<td>4-103</td>
</tr>
<tr>
<td>snmp-server location</td>
<td>Sets the system location string</td>
<td>GC</td>
<td>4-103</td>
</tr>
</tbody>
</table>

prompt

This command customizes the CLI prompt. Use the no form to restore the default prompt.

Syntax

    prompt string
    no prompt

    string - Any alphanumeric string to use for the CLI prompt. (Maximum length: 255 characters)

Default Setting

Console

Command Mode

Global Configuration
**Example**

```
Console(config)#prompt RD2
RD2(config)#
```

**hostname**

This command specifies or modifies the host name for this device. Use the `no` form to restore the default host name.

**Syntax**

```
hostname name
no hostname
```

- `name` - The name of this host. (Maximum length: 255 characters)

**Default Setting**

None

**Command Mode**

Global Configuration

**Example**

```
Console(config)#hostname RD#1
Console(config)#
```

**User Access Commands**

The basic commands required for management access are listed in this section. This switch also includes other options for password checking via the console or a Telnet connection (page 4-10), user authentication via a remote authentication server (page 4-70), and host access authentication for specific ports (page 4-81).

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>username</td>
<td>Establishes a user name-based authentication system at login</td>
<td>GC</td>
<td>4-25</td>
</tr>
<tr>
<td>enable password</td>
<td>Sets a password to control access to the Privileged Exec level</td>
<td>GC</td>
<td>4-26</td>
</tr>
</tbody>
</table>

**username**

This command adds named users, requires authentication at login, specifies or changes a user's password (or specify that no password is required), or specifies or changes a user's access level. Use the `no` form to remove a user name.

**Syntax**

```
username name {access-level level | nopassword | password {0 | 7} password}
no username name
```
• name - The name of the user.  
  (Maximum length: 8 characters, case sensitive. Maximum users: 16)

• access-level level - Specifies the user level.  
  The device has two predefined privilege levels:  
  0: Normal Exec, 15: Privileged Exec.

• nopassword - No password is required for this user to log in.  

• {0 | 7} - 0 means plain password, 7 means encrypted password.

• password password - The authentication password for the user.  
  (Maximum length: 8 characters plain text, 32 encrypted, case sensitive)

Default Setting
• The default access level is Normal Exec.
• The factory defaults for the user names and passwords are:

<table>
<thead>
<tr>
<th>username</th>
<th>access-level</th>
<th>password</th>
</tr>
</thead>
<tbody>
<tr>
<td>guest</td>
<td>0</td>
<td>guest</td>
</tr>
<tr>
<td>admin</td>
<td>15</td>
<td>admin</td>
</tr>
</tbody>
</table>

Command Mode
Global Configuration

Command Usage
The encrypted password is required for compatibility with legacy password settings (i.e., plain text or encrypted) when reading the configuration file during system bootup or when downloading the configuration file from a TFTP server. There is no need for you to manually configure encrypted passwords.

Example
This example shows how to set the access level and password for a user.

```
Console(config)#username bob access-level 15
Console(config)#username bob password 0 smith
Console(config)#
```

enable password
After initially logging onto the system, you should set the Privileged Exec password. Remember to record it in a safe place. This command controls access to the Privileged Exec level from the Normal Exec level. Use the no form to reset the default password.

Syntax

```
enable password [level level] {0 | 7} password
no enable password [level level]
```

• level level - Level 15 for Privileged Exec. (Levels 0-14 are not used.)  
• {0 | 7} - 0 means plain password, 7 means encrypted password.
- **password** - password for this privilege level.
  (Maximum length: 8 characters plain text, 32 encrypted, case sensitive)

**Default Setting**
- The default is level 15.
- The default password is “super”

**Command Mode**
Global Configuration

**Command Usage**
- You cannot set a null password. You will have to enter a password to change the command mode from Normal Exec to Privileged Exec with the `enable` command (page 4-19).
- The encrypted password is required for compatibility with legacy password settings (i.e., plain text or encrypted) when reading the configuration file during system bootup or when downloading the configuration file from a TFTP server. There is no need for you to manually configure encrypted passwords.

**Example**
```
Console(config)#enable password level 15 0 admin
Console(config)#
```

**Related Commands**
- `enable (4-19)`
- `authentication enable (4-72)`

**IP Filter Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>management</td>
<td>Configures IP addresses that are allowed management access</td>
<td>GC</td>
<td>4-27</td>
</tr>
<tr>
<td>show management</td>
<td>Displays the switch to be monitored or configured from a browser</td>
<td>PE</td>
<td>4-28</td>
</tr>
</tbody>
</table>

**management**
This command specifies the client IP addresses that are allowed management access to the switch through various protocols. Use the `no` form to restore the default setting.

**Syntax**
```
[no] management {all-client | http-client | snmp-client | telnet-client}
 start-address [end-address]
```
- **all-client** - Adds IP address(es) to the SNMP, web and Telnet groups.
- **http-client** - Adds IP address(es) to the web group.
- **snmp-client** - Adds IP address(es) to the SNMP group.
• **telnet-client** - Adds IP address(es) to the Telnet group.
• **start-address** - A single IP address, or the starting address of a range.
• **end-address** - The end address of a range.

**Default Setting**
All addresses

**Command Mode**
Global Configuration

**Command Usage**
• If anyone tries to access a management interface on the switch from an invalid address, the switch will reject the connection, enter an event message in the system log, and send a trap message to the trap manager.
• IP address can be configured for SNMP, web and Telnet access respectively. Each of these groups can include up to five different sets of addresses, either individual addresses or address ranges.
• When entering addresses for the same group (i.e., SNMP, web or Telnet), the switch will not accept overlapping address ranges. When entering addresses for different groups, the switch will accept overlapping address ranges.
• You cannot delete an individual address from a specified range. You must delete the entire range, and reenter the addresses.
• You can delete an address range just by specifying the start address, or by specifying both the start address and end address.

**Example**
This example restricts management access to the indicated addresses.

```
Console(config)#management all-client 192.168.1.19
Console(config)#management all-client 192.168.1.25 192.168.1.30
Console(config)#
```

**show management**
This command displays the client IP addresses that are allowed management access to the switch through various protocols.

**Syntax**
```
show management {all-client | http-client | snmp-client | telnet-client}
```
• **all-client** - Adds IP address(es) to the SNMP, web and Telnet groups.
• **http-client** - Adds IP address(es) to the web group.
• **snmp-client** - Adds IP address(es) to the SNMP group.
• **telnet-client** - Adds IP address(es) to the Telnet group.

**Command Mode**
Privileged Exec
Web Server Commands

**Table 4-12 Web Server Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip http port</td>
<td>Specifies the port to be used by the web browser interface</td>
<td>GC</td>
<td>4-29</td>
</tr>
<tr>
<td>ip http server</td>
<td>Allows the switch to be monitored or configured from a browser</td>
<td>GC</td>
<td>4-30</td>
</tr>
<tr>
<td>ip http secure-server</td>
<td>Enables HTTPS for encrypted communications</td>
<td>GC</td>
<td>4-30</td>
</tr>
<tr>
<td>ip http secure-port</td>
<td>Specifies the UDP port number for HTTPS</td>
<td>GC</td>
<td>4-31</td>
</tr>
</tbody>
</table>

**ip http port**

This command specifies the TCP port number used by the web browser interface. Use the `no` form to use the default port.

**Syntax**

```
ip http port port-number
no ip http port
```

`port-number` - The TCP port to be used by the browser interface. (Range: 1-65535)

**Default Setting**

80

**Command Mode**

Global Configuration
Example

```
Console(config)#ip http port 769
Console(config)#
```

Related Commands

- `ip http server (4-30)`

**ip http server**

This command allows this device to be monitored or configured from a browser. Use the `no` form to disable this function.

**Syntax**

```
[no] ip http server
```

**Default Setting**

Enabled

**Command Mode**

Global Configuration

**Example**

```
Console(config)#ip http server
Console(config)#
```

**Related Commands**

- `ip http port (4-29)`

**ip http secure-server**

This command enables the secure hypertext transfer protocol (HTTPS) over the Secure Socket Layer (SSL), providing secure access (i.e., an encrypted connection) to the switch’s web interface. Use the `no` form to disable this function.

**Syntax**

```
[no] ip http secure-server
```

**Default Setting**

Enabled

**Command Mode**

Global Configuration

**Command Usage**

- Both HTTP and HTTPS service can be enabled independently on the switch. However, you cannot configure the HTTP and HTTPS servers to use the same UDP port.
- If you enable HTTPS, you must indicate this in the URL that you specify in your browser: `https://device[:port_number]`
• When you start HTTPS, the connection is established in this way:
  - The client authenticates the server using the server’s digital certificate.
  - The client and server negotiate a set of security protocols to use for the connection.
  - The client and server generate session keys for encrypting and decrypting data.
• The client and server establish a secure encrypted connection.
  A padlock icon should appear in the status bar for Internet Explorer 5.x and Netscape Navigator 6.2 or later versions.
• The following web browsers and operating systems currently support HTTPS:

<table>
<thead>
<tr>
<th>Web Browser</th>
<th>Operating System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet Explorer 5.0 or later</td>
<td>Windows 98, Windows NT (with service pack 6a), Windows 2000, Windows XP</td>
</tr>
<tr>
<td>Netscape Navigator 6.2 or later</td>
<td>Windows 98, Windows NT (with service pack 6a), Windows 2000, Windows XP, Solaris 2.6</td>
</tr>
</tbody>
</table>

• To specify a secure-site certificate, see “Replacing the Default Secure-site Certificate” on page 3-53. Also refer to the copy command on page 4-64.

Example

```
Console(config)#ip http secure-server
Console(config)#
```

Related Commands

- `ip http secure-port (4-31)`
- `copy tftp https-certificate (4-64)`

**ip http secure-port**

This command specifies the UDP port number used for HTTPS connection to the switch’s web interface. Use the `no` form to restore the default port.

**Syntax**

```
ip http secure-port port_number
no ip http secure-port
```

`port_number` – The UDP port used for HTTPS.

(Range: 1-65535)

**Default Setting**

443

**Command Mode**

Global Configuration

**Command Usage**

- You cannot configure the HTTP and HTTPS servers to use the same port.
• If you change the HTTPS port number, clients attempting to connect to the HTTPS server must specify the port number in the URL, in this format: **https://device:port_number**

**Example**

```
Console(config)#ip http secure-port 1000
Console(config)#
```

**Related Commands**

- ip http secure-server (4-30)

**Telnet Server Commands**

**Table 4-14  Telnet Server Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip telnet port</td>
<td>Specifies the port to be used by the Telnet interface</td>
<td>GC</td>
<td>4-29</td>
</tr>
<tr>
<td>ip telnet server</td>
<td>Allows the switch to be monitored or configured from Telnet</td>
<td>GC</td>
<td>4-30</td>
</tr>
</tbody>
</table>

**ip telnet port**

This command specifies the TCP port number used by the Telnet interface. Use the **no** form to use the default port.

**Syntax**

```
ip telnet port port-number
no ip telnet port
```

*port-number* - The TCP port to be used by the browser interface.

(Range: 1-65535)

**Default Setting**

23

**Command Mode**

Global Configuration

**Example**

```
Console(config)#ip telnet port 123
Console(config)#
```

**Related Commands**

- ip telnet server (4-33)
ip telnet server
This command allows this device to be monitored or configured from Telnet. Use the no form to disable this function.

Syntax

[no] ip telnet server

Default Setting

Enabled

Command Mode

Global Configuration

Example

Console(config)#ip telnet server
Console(config)#

Related Commands

ip telnet port (4-32)

Secure Shell Commands

The Berkley-standard includes remote access tools originally designed for Unix systems. Some of these tools have also been implemented for Microsoft Windows and other environments. These tools, including commands such as rlogin (remote login), rsh (remote shell), and rcp (remote copy), are not secure from hostile attacks.

The Secure Shell (SSH) includes server/client applications intended as a secure replacement for the older Berkley remote access tools. SSH can also provide remote management access to this switch as a secure replacement for Telnet. When a client contacts the switch via the SSH protocol, the switch uses a public-key that the client must match along with a local user name and password for access authentication. SSH also encrypts all data transfers passing between the switch and SSH-enabled management station clients, and ensures that data traveling over the network arrives unaltered.

This section describes the commands used to configure the SSH server. However, note that you also need to install a SSH client on the management station when using this protocol to configure the switch.

Note: The switch supports both SSH Version 1.5 and 2.0.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip ssh server</td>
<td>Enables the SSH server on the switch</td>
<td>GC</td>
<td>4-35</td>
</tr>
<tr>
<td>ip ssh timeout</td>
<td>Specifies the authentication timeout for the SSH server</td>
<td>GC</td>
<td>4-36</td>
</tr>
<tr>
<td>ip ssh authentication-retries</td>
<td>Specifies the number of retries allowed by a client</td>
<td>GC</td>
<td>4-37</td>
</tr>
<tr>
<td>ip ssh server-key size</td>
<td>Sets the SSH server key size</td>
<td>GC</td>
<td>4-37</td>
</tr>
</tbody>
</table>
The SSH server on this switch supports both password and public key authentication. If password authentication is specified by the SSH client, then the password can be authenticated either locally or via a RADIUS or TACACS+ remote authentication server, as specified by the **authentication login** command on page 4-71. If public key authentication is specified by the client, then you must configure authentication keys on both the client and the switch as described in the following section. Note that regardless of whether you use public key or password authentication, you still have to generate authentication keys on the switch and enable the SSH server.

To use the SSH server, complete these steps:

1. **Generate a Host Key Pair** – Use the `ip ssh crypto host-key generate` command to create a host public/private key pair.

2. **Provide Host Public Key to Clients** – Many SSH client programs automatically import the host public key during the initial connection setup with the switch. Otherwise, you need to manually create a known hosts file on the management station and place the host public key in it. An entry for a public key in the known hosts file would appear similar to the following example:

   ```
 10.1.0.54 1024 35 15684995401867669259333946775054617325313674890836547254
 1502024559319986854358361651999923329781776065830956 108295131289033
 7654680172627257143428762941301196195566782 5956641048695742788146206
 51941746772984865468615717739390164779355942303577413098022737087794545
 2408397175264635808176716709574804776117
   ```

3. **Import Client’s Public Key to the Switch** – Use the `copy tftp public-key` command to copy a file containing the public key for all the SSH client’s granted management access to the switch. (Note that these clients must be configured locally on the switch via the User Accounts page as described on page 3-46.) The clients are subsequently authenticated using these keys. The current

---

**Table 4-15 SSH Commands (Continued)**

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>copy tftp public-key</code></td>
<td>Copies the user’s public key from a TFTP server to the switch</td>
<td>PE</td>
<td>4-64</td>
</tr>
<tr>
<td><code>delete public-key</code></td>
<td>Deletes the public key for the specified user</td>
<td>PE</td>
<td>4-38</td>
</tr>
<tr>
<td><code>ip ssh crypto host-key generate</code></td>
<td>Generates the host key</td>
<td>PE</td>
<td>4-38</td>
</tr>
<tr>
<td><code>ip ssh crypto zeroize</code></td>
<td>Clear the host key from RAM</td>
<td>PE</td>
<td>4-39</td>
</tr>
<tr>
<td><code>ip ssh save host-key</code></td>
<td>Saves the host key from RAM to flash memory</td>
<td>PE</td>
<td>4-39</td>
</tr>
<tr>
<td><code>disconnect</code></td>
<td>Terminates a line connection</td>
<td>PE</td>
<td>4-18</td>
</tr>
<tr>
<td><code>show ip ssh</code></td>
<td>Displays the status of the SSH server and the configured values</td>
<td>PE</td>
<td>4-40</td>
</tr>
<tr>
<td></td>
<td>for authentication timeout and retries</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>show ssh</code></td>
<td>Displays the status of current SSH sessions</td>
<td>PE</td>
<td>4-40</td>
</tr>
<tr>
<td><code>show public-key</code></td>
<td>Shows the public key for the specified user or for the host</td>
<td>PE</td>
<td>4-41</td>
</tr>
<tr>
<td><code>show users</code></td>
<td>Shows SSH users, including privilege level and public key type</td>
<td>PE</td>
<td>4-61</td>
</tr>
</tbody>
</table>
firmware only accepts public key files based on standard UNIX format as shown in the following example for an RSA Version 1 key:

```
1024 35 134108168560989321040944920155425347631641921872958921143173880
05553616163105177594083868631109291232226828519254374603100937187721199
69631781366277414168985132049117204830339254324101637997592371449011938
00609025394840848271781943722884025331159521348610229029789827213532671
31629432532818915045306393916643 steve@192.168.1.19
```

4. Set the Optional Parameters – Set other optional parameters, including the authentication timeout, the number of retries, and the server key size.

5. Enable SSH Service – Use the `ip ssh server` command to enable the SSH server on the switch.

6. Configure Challenge-Response Authentication – When an SSH client attempts to contact the switch, the SSH server uses the host key pair to negotiate a session key and encryption method. Only clients that have a private key corresponding to the public keys stored on the switch can gain access. The following exchanges take place during this process:
   a. The client sends its public key to the switch.
   b. The switch compares the client's public key to those stored in memory.
   c. If a match is found, the switch uses the public key to encrypt a random sequence of bytes, and sends this string to the client.
   d. The client uses its private key to decrypt the bytes, and sends the decrypted bytes back to the switch.
   e. The switch compares the decrypted bytes to the original bytes it sent. If the two sets match, this means that the client's private key corresponds to an authorized public key, and the client is authenticated.

**Note:** To use SSH with only password authentication, the host public key must still be given to the client, either during initial connection or manually entered into the known host file. However, you do not need to configure the client’s keys.

**ip ssh server**

This command enables the Secure Shell (SSH) server on this switch. Use the `no` form to disable this service.

**Syntax**

```
[no] ip ssh server
```

**Default Setting**

Disabled

**Command Mode**

Global Configuration

**Command Usage**

- The SSH server supports up to four client sessions. The maximum number of client sessions includes both current Telnet sessions and SSH sessions.
• The SSH server uses DSA or RSA for key exchange when the client first establishes a connection with the switch, and then negotiates with the client to select either DES (56-bit) or 3DES (168-bit) for data encryption.
• You must generate the host key before enabling the SSH server.

Example

```
Console#ip ssh crypto host-key generate dsa
Console(config)#ip ssh server
```

Related Commands

- `ip ssh crypto host-key generate (4-38)`
- `show ssh (4-40)`

**ip ssh timeout**

This command configures the timeout for the SSH server. Use the `no` form to restore the default setting.

**Syntax**

```
ip ssh timeout seconds
no ip ssh timeout
```

- `seconds` – The timeout for client response during SSH negotiation.
  (Range: 1-120)

**Default Setting**

10 seconds

**Command Mode**

Global Configuration

**Command Usage**

The `timeout` specifies the interval the switch will wait for a response from the client during the SSH negotiation phase. Once an SSH session has been established, the timeout for user input is controlled by the `exec-timeout` command for vty sessions.

**Example**

```
Console(config)#ip ssh timeout 60
```

**Related Commands**

- `exec-timeout (4-13)`
- `show ip ssh (4-40)`
ip ssh authentication-retries
This command configures the number of times the SSH server attempts to reauthenticate a user. Use the no form to restore the default setting.

Syntax
   ip ssh authentication-retries count
   no ip ssh authentication-retries

   count – The number of authentication attempts permitted after which the interface is reset. (Range: 1-5)

Default Setting
   3

Command Mode
   Global Configuration

Example
   Console(config)#ip ssh authentication-retries 2
   Console(config)#

Related Commands
   show ip ssh (4-40)

ip ssh server-key size
This command sets the SSH server key size. Use the no form to restore the default setting.

Syntax
   ip ssh server-key size key-size
   no ip ssh server-key size

   key-size – The size of server key. (Range: 512-896 bits)

Default Setting
   768 bits

Command Mode
   Global Configuration

Command Usage
   • The server key is a private key that is never shared outside the switch.
   • The host key is shared with the SSH client, and is fixed at 1024 bits.

Example
   Console(config)#ip ssh server-key size 512
   Console(config)#
delete public-key
This command deletes the specified user’s public key.

Syntax
delete public-key username [dsa | rsa]

• username – Name of an SSH user. (Range: 1-8 characters)
• dsa – DSA public key type.
• rsa – RSA public key type.

Default Setting
Deletes both the DSA and RSA key.

Command Mode
Privileged Exec

Example

```
Console#delete public-key admin dsa
Console#
```

ip ssh crypto host-key generate
This command generates the host key pair (i.e., public and private).

Syntax
ip ssh crypto host-key generate [dsa | rsa]

• dsa – DSA (Version 2) key type.
• rsa – RSA (Version 1) key type.

Default Setting
Generates both the DSA and RSA key pairs.

Command Mode
Privileged Exec

Command Usage
• This command stores the host key pair in memory (i.e., RAM). Use the `ip ssh save host-key` command to save the host key pair to flash memory.
• Some SSH client programs automatically add the public key to the known hosts file as part of the configuration process. Otherwise, you must manually create a known hosts file and place the host public key in it.
• The SSH server uses this host key to negotiate a session key and encryption method with the client trying to connect to it.

Example

```
Console#ip ssh crypto host-key generate dsa
Console#
```
Related Commands

- ip ssh crypto zeroize (4-39)
- ip ssh save host-key (4-39)

**ip ssh crypto zeroize**

This command clears the host key from memory (i.e. RAM).

**Syntax**

```bash
ip ssh crypto zeroize [dsa | rsa]
```

- **dsa** – DSA key type.
- **rsa** – RSA key type.

**Default Setting**

Clears both the DSA and RSA key.

**Command Mode**

Privileged Exec

**Command Usage**

- This command clears the host key from volatile memory (RAM). Use the `no ip ssh save host-key` command to clear the host key from flash memory.
- The SSH server must be disabled before you can execute this command.

**Example**

```
Console#ip ssh crypto zeroize dsa
Console#
```

**Related Commands**

- ip ssh crypto host-key generate (4-38)
- ip ssh save host-key (4-39)
- no ip ssh server (4-35)

**ip ssh save host-key**

This command saves host key from RAM to flash memory.

**Syntax**

```bash
ip ssh save host-key [dsa | rsa]
```

- **dsa** – DSA key type.
- **rsa** – RSA key type.

**Default Setting**

Saves both the DSA and RSA key.

**Command Mode**

Privileged Exec
Example

```
Console#ip ssh save host-key dsa
Console#
```

Related Commands

```
ip ssh crypto host-key generate (4-38)
```

**show ip ssh**

This command displays the connection settings used when authenticating client access to the SSH server.

**Command Mode**

Privileged Exec

**Example**

```
Console#show ip ssh
SSH Enabled - version 1.99
Negotiation timeout: 120 secs; Authentication retries: 3
Server key size: 768 bits
Console#
```

**show ssh**

This command displays the current SSH server connections.

**Command Mode**

Privileged Exec

**Example**

```
Console#show ssh
Connection Version State Username Encryption
 0 2.0 Session-Started admin ctos aes128-cbc-hmac-md5
 stoc aes128-cbc-hmac-md5
Console#
```

**Table 4-16 show ssh - display description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session</td>
<td>The session number. (Range: 0-3)</td>
</tr>
<tr>
<td>Version</td>
<td>The Secure Shell version number.</td>
</tr>
<tr>
<td>State</td>
<td>The authentication negotiation state. (Values: Negotiation-Started, Authentication-Started, Session-Started)</td>
</tr>
<tr>
<td>Username</td>
<td>The user name of the client.</td>
</tr>
</tbody>
</table>
### show public-key

This command shows the public key for the specified user or for the host.

**Syntax**

```
show public-key [user [username]] host
```

- `username` – Name of an SSH user. (Range: 1-8 characters)

**Default Setting**

Shows all public keys.

**Command Mode**

Privileged Exec

**Command Usage**

- If no parameters are entered, all keys are displayed. If the user keyword is entered, but no user name is specified, then the public keys for all users are displayed.
- When an RSA key is displayed, the first field indicates the size of the host key (e.g., 1024), the second field is the encoded public exponent (e.g., 35), and the last string is the encoded modulus. When a DSA key is displayed, the first field indicates that the encryption method used by SSH is based on the Digital Signature Standard (DSS), and the last string is the encoded modulus.

---

### Table 4-16 show ssh - display description (Continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| Encryption  | The encryption method is automatically negotiated between the client and server. Options for SSHv1.5 include: DES, 3DES Options for SSHv2.0 can include different algorithms for the client-to-server (ctos) and server-to-client (stoc): | aes128-cbc-hmac-sha1
aes192-cbc-hmac-sha1
aes256-cbc-hmac-sha1
3des-cbc-hmac-sha1
blowfish-cbc-hmac-sha1
aes128-cbc-hmac-md5
aes192-cbc-hmac-md5
aes256-cbc-hmac-md5
3des-cbc-hmac-md5
blowfish-cbc-hmac-md5 |
Example

```
Console#show public-key host
Host:
RSA: 1024 35
1568499540186766925933394677505461732531367489083654725415020245593199868
5443583616519992323297817660658309586108259132128902337654680172627257141
342876294130119615566782595664104869574278881462065194174677298486546861
5717739390164779355942303577413098022737087794545240839717526463580581767
16709574804776117
DSA:
ssh-dss AAAB3NzaC1kc3MAAACBAPWKZTFbsRlB8ydEXcxM3dyV/yrDbKStIlnzD/Dq0h2Hxc
YV44sXZ2JXhamLk6P8buiyacWbUW/a4Patp1KMSdqsKeh3hKoA3vRRSy1N2XFfAKx15fwFfv
Jlpd0kFgzLGMinvS NYQwiQXbKTBH0Z4mUZpE85PwxDZMaCNBPjBrRAAAAFQChb4vdFQGNIjw
bvw rNLaQ77isiwAAAIEAsy5YWDC99ebYHN Rj5kh47wY4i8cZvH/+p9cnrfwFTMU01VF Dly3IR
2G395N Lby5qdZDxfA9mCOFT/yyEfbobMJZi8oGCsTNOxrZVUmGwRTYfdrKX7YKBw/Kjw6Bm
iFq70+jAhf1Dg45loAc27s6Tldtjv1Wq/ow2eTCD5nekAAACBAJ8rMccXTxHLFAczWS7EjOy
DbsloBfpSuAb4oAsyjKXXVNQLQkT LzcFrU41bS2KV5LAwecsvF/+/DjKGWtPNIQqabKgYCw2
o/dVzX4Gg+yqdT1YmGA7fHGm8ARGeiG4ssFKy4Z6DmYPXFum1Yg0fhlwmarkedHOSKdxT3kk475S7
w0W
Console#
```
Event Logging Commands

Table 4-17 Event Logging Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging on</td>
<td>Controls logging of error messages</td>
<td>GC</td>
<td>4-43</td>
</tr>
<tr>
<td>logging history</td>
<td>Limits syslog messages saved to switch memory based on severity</td>
<td>GC</td>
<td>4-44</td>
</tr>
<tr>
<td>logging host</td>
<td>Adds a syslog server host IP address that will receive logging messages</td>
<td>GC</td>
<td>4-45</td>
</tr>
<tr>
<td>logging facility</td>
<td>Sets the facility type for remote logging of syslog messages</td>
<td>GC</td>
<td>4-45</td>
</tr>
<tr>
<td>logging trap</td>
<td>Limits syslog messages saved to a remote server based on severity</td>
<td>GC</td>
<td>4-46</td>
</tr>
<tr>
<td>clear logging</td>
<td>Clears messages from the logging buffer</td>
<td>PE</td>
<td>4-46</td>
</tr>
<tr>
<td>show logging</td>
<td>Displays the state of logging</td>
<td>PE</td>
<td>4-47</td>
</tr>
<tr>
<td>show log</td>
<td>Displays log messages</td>
<td>PE</td>
<td>4-48</td>
</tr>
</tbody>
</table>

logging on
This command controls logging of error messages, sending debug or error messages to switch memory. The no form disables the logging process.

Syntax
   [no] logging on

Default Setting
   None

Command Mode
   Global Configuration

Command Usage
   The logging process controls error messages saved to switch memory. You can use the logging history command to control the type of error messages that are stored.

Example
   Console(config)#logging on
   Console(config)#

Related Commands
   logging history (4-44)
   clear logging (4-46)
logging history
This command limits syslog messages saved to switch memory based on severity. The no form returns the logging of syslog messages to the default level.

Syntax
logging history {flash | ram} level
no logging history {flash | ram}

• flash - Event history stored in flash memory (i.e., permanent memory).
• ram - Event history stored in temporary RAM (i.e., memory flushed on power reset).
• level - One of the levels listed below. Messages sent include the selected level down to level 0. (Range: 0-7)

Table 4-18 Logging Levels

<table>
<thead>
<tr>
<th>Level</th>
<th>Severity Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>debugging</td>
<td>Debugging messages</td>
</tr>
<tr>
<td>6</td>
<td>informational</td>
<td>Informational messages only</td>
</tr>
<tr>
<td>5</td>
<td>notifications</td>
<td>Normal but significant condition, such as cold start</td>
</tr>
<tr>
<td>4</td>
<td>warnings</td>
<td>Warning conditions (e.g., return false, unexpected return)</td>
</tr>
<tr>
<td>3</td>
<td>errors</td>
<td>Error conditions (e.g., invalid input, default used)</td>
</tr>
<tr>
<td>2</td>
<td>critical</td>
<td>Critical conditions (e.g., memory allocation, or free memory error - resource exhausted)</td>
</tr>
<tr>
<td>1</td>
<td>alerts</td>
<td>Immediate action needed</td>
</tr>
<tr>
<td>0</td>
<td>emergencies</td>
<td>System unusable</td>
</tr>
</tbody>
</table>

* There are only Level 2, 5 and 6 error messages for the current firmware release.

Default Setting
Flash: errors (level 3 - 0)
RAM: warnings (level 6 - 0)

Command Mode
Global Configuration

Command Usage
The message level specified for flash memory must be a higher priority (i.e., numerically lower) than that specified for RAM.

Example
```
Console(config)#logging history ram 0
Console(config)#
```
logging host
This command adds a syslog server host IP address that will receive logging messages. Use the no form to remove a syslog server host.

Syntax
[no] logging host host_ip_address
    host_ip_address - The IP address of a syslog server.

Default Setting
None

Command Mode
Global Configuration

Command Usage
• By using this command more than once you can build up a list of host IP addresses.
• The maximum number of host IP addresses allowed is five.

Example

```
Console(config)#logging host 10.1.0.3
Console(config)#
```

logging facility
This command sets the facility type for remote logging of syslog messages. Use the no form to return the type to the default.

Syntax
[no] logging facility type
    type - A number that indicates the facility used by the syslog server to dispatch log messages to an appropriate service. (Range: 16-23)

Default Setting
23

Command Mode
Global Configuration

Command Usage
The command specifies the facility type tag sent in syslog messages. (See RFC 3164.) This type has no effect on the kind of messages reported by the switch. However, it may be used by the syslog server to sort messages or to store messages in the corresponding database.

Example

```
Console(config)#logging facility 19
Console(config)#
```
logging trap
This command enables the logging of system messages to a remote server, or limits the syslog messages saved to a remote server based on severity. Use this command without a specified level to enable remote logging. Use the no form to disable remote logging.

Syntax
```
logging trap [level]
no logging trap
```

`level` - One of the level arguments listed below. Messages sent include the selected level up through level 0. (Refer to the table on page 4-44.)

Default Setting
- Enabled
- Level 6 - 0

Command Mode
Global Configuration

Command Usage
- Using this command with a specified level enables remote logging and sets the minimum severity level to be saved.
- Using this command without a specified level also enables remote logging, but restores the minimum severity level to the default.

Example
```
Console(config)#logging trap 4
Console(config)#
```

clear logging
This command clears messages from the log buffer.

Syntax
```
clear logging [flash | ram]
```

- flash - Event history stored in flash memory (i.e., permanent memory).
- ram - Event history stored in temporary RAM (i.e., memory flushed on power reset).

Default Setting
Flash and RAM

Command Mode
Privileged Exec

Example
```
Console#clear logging
Console#
```
Related Commands

show logging (4-47)

show logging
This command displays the configuration settings for logging messages to local switch memory, to an SMTP event handler, or to a remote syslog server.

Syntax

show logging {flash | ram | sendmail | trap}

- **flash** - Displays settings for storing event messages in flash memory (i.e., permanent memory).
- **ram** - Displays settings for storing event messages in temporary RAM (i.e., memory flushed on power reset).
- **sendmail** - Displays settings for the SMTP event handler (page 4-52).
- **trap** - Displays settings for the trap function.

Default Setting

None

Command Mode

Privileged Exec

Example

The following example shows that system logging is enabled, the message level for flash memory is "errors" (i.e., default level 3 - 0), the message level for RAM is "informational" (i.e., default level 6 - 0).

```
Console#show logging flash
Syslog logging: Enabled
History logging in FLASH: level errors

Console#show logging ram
Syslog logging: Enabled
History logging in RAM: level informational
```

Table 4-19  show logging flash/ram - display description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syslog logging</td>
<td>Shows if system logging has been enabled via the logging on command.</td>
</tr>
<tr>
<td>History logging in FLASH</td>
<td>The message level(s) reported based on the logging history command.</td>
</tr>
<tr>
<td>History logging in RAM</td>
<td>The message level(s) reported based on the logging history command.</td>
</tr>
</tbody>
</table>
The following example displays settings for the trap function.

```
Console#show logging trap
Syslog logging: Enable
REMOTELOG status: disable
REMOTELOG facility type: local use 7
REMOTELOG level type: Debugging messages
REMOTELOG server IP address: 1.2.3.4
REMOTELOG server IP address: 0.0.0.0
Console#
```

### Table 4-20 show logging trap - display description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syslog logging</td>
<td>Shows if system logging has been enabled via the <code>logging on</code> command.</td>
</tr>
<tr>
<td>REMOTELOG status</td>
<td>Shows if remote logging has been enabled via the <code>logging trap</code> command.</td>
</tr>
<tr>
<td>REMOTELOG facility</td>
<td>The facility type for remote logging of syslog messages as specified in the <code>logging facility</code> command.</td>
</tr>
<tr>
<td>REMOTELOG level type</td>
<td>The severity threshold for syslog messages sent to a remote server as specified in the <code>logging trap</code> command.</td>
</tr>
<tr>
<td>REMOTELOG server IP</td>
<td>The address of syslog servers as specified in the <code>logging host</code> command.</td>
</tr>
</tbody>
</table>

### Related Commands

`show logging sendmail (4-52)`

**show log**

This command displays the system and event messages stored in memory.

### Syntax

```
show log (flash | ram) [login] [tail]
```

- `flash` - Event history stored in flash memory (i.e., permanent memory).
- `ram` - Event history stored in temporary RAM (i.e., memory flushed on power reset).
- `tail` - Shows event history starting from the most recent entry.
- `login` - Shows the login record only.

### Default Setting

None

### Command Mode

Privileged Exec

### Command Usage

This command shows the system and event messages stored in memory, including the time stamp, message level (page 4-44), program module, function, and event number.
Example

The following example shows sample messages stored in RAM.

```
Console#show log ram
[5] 00:01:06 2001-01-01
 "STA root change notification."
 level: 6, module: 6, function: 1, and event no.: 1
[4] 00:01:00 2001-01-01
 "STA root change notification."
 level: 6, module: 6, function: 1, and event no.: 1
[3] 00:00:54 2001-01-01
 "STA root change notification."
 level: 6, module: 6, function: 1, and event no.: 1
[2] 00:00:50 2001-01-01
 "STA topology change notification."
 level: 6, module: 6, function: 1, and event no.: 1
[1] 00:00:48 2001-01-01
 "VLAN 1 link-up notification."
 level: 6, module: 6, function: 1, and event no.: 1
Console#
```

SMTP Alert Commands

These commands configure SMTP event handling, and forwarding of alert messages to the specified SMTP servers and email recipients.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging sendmail host</td>
<td>SMTP servers to receive alert messages</td>
<td>GC</td>
<td>4-49</td>
</tr>
<tr>
<td>logging sendmail level</td>
<td>Severity threshold used to trigger alert messages</td>
<td>GC</td>
<td>4-50</td>
</tr>
<tr>
<td>logging sendmail source-email</td>
<td>Email address used for “From” field of alert messages</td>
<td>GC</td>
<td>4-51</td>
</tr>
<tr>
<td>logging sendmail destination-email</td>
<td>Email recipients of alert messages</td>
<td>GC</td>
<td>4-51</td>
</tr>
<tr>
<td>logging sendmail</td>
<td>Enables SMTP event handling</td>
<td>GC</td>
<td>4-52</td>
</tr>
<tr>
<td>show logging sendmail</td>
<td>Displays SMTP event handler settings</td>
<td>NE, PE</td>
<td>4-52</td>
</tr>
</tbody>
</table>

**logging sendmail host**

This command specifies SMTP servers that will be sent alert messages. Use the **no** form to remove an SMTP server.

**Syntax**

```
[no] logging sendmail host ip_address
```

*ip_address* - IP address of an SMTP server that will be sent alert messages for event handling.

**Default Setting**

None
**Command Mode**
Global Configuration

**Command Usage**
- You can specify up to three SMTP servers for event handing. However, you must enter a separate command to specify each server.
- To send email alerts, the switch first opens a connection, sends all the email alerts waiting in the queue one by one, and finally closes the connection.
- To open a connection, the switch first selects the server that successfully sent mail during the last connection, or the first server configured by this command. If it fails to send mail, the switch selects the next server in the list and tries to send mail again. If it still fails, the system will repeat the process at a periodic interval. (A trap will be triggered if the switch cannot successfully open a connection.)

**Example**

```
Console(config)#logging sendmail host 192.168.1.200
Console(config)#
```

**logging sendmail level**
This command sets the severity threshold used to trigger alert messages.

**Syntax**

```
logging sendmail level level

level - One of the system message levels (page 4-44). Messages sent include the selected level down to level 0. (Range: 0-7; Default: 7)
```

**Default Setting**
Level 7

**Command Mode**
Global Configuration

**Command Usage**
The specified level indicates an event threshold. All events at this level or higher will be sent to the configured email recipients. (For example, using Level 7 will report all events from level 7 to level 0.)

**Example**
This example will send email alerts for system errors from level 4 through 0.

```
Console(config)#logging sendmail level 4
Console(config)#
```
logging sendmail source-email
This command sets the email address used for the “From” field in alert messages. Use the no form to delete the source email address.

Syntax

[no] logging sendmail source-email email-address

   email-address - The source email address used in alert messages.
   (Range: 0-41 characters)

Default Setting
None

Command Mode
Global Configuration

Command Usage
You may use an symbolic email address that identifies the switch, or the address of an administrator responsible for the switch.

Example
This example will set the source email john@acme.com.

```
Console(config)#logging sendmail source-email john@acme.com
Console(config)#
```

logging sendmail destination-email
This command specifies the email recipients of alert messages. Use the no form to remove a recipient.

Syntax

[no] logging sendmail destination-email email-address

   email-address - The source email address used in alert messages.
   (Range: 1-41 characters)

Default Setting
None

Command Mode
Global Configuration

Command Usage
You can specify up to five recipients for alert messages. However, you must enter a separate command to specify each recipient.

Example

```
Console(config)#logging sendmail destination-email ted@this-company.com
Console(config)#
```
logging sendmail
This command enables SMTP event handling. Use the no form to disable this function.

Syntax

[no] logging sendmail

Default Setting

Enabled

Command Mode

Global Configuration

Example

Console(config)#logging sendmail
Console(config)#

show logging sendmail
This command displays the settings for the SMTP event handler.

Command Mode

Normal Exec, Privileged Exec

Example

Console#show logging sendmail
SMTP servers
-------------------------------
  1. 192.168.1.200
SMTP minimum severity level: 4
SMTP destination email addresses
-------------------------------
  1. geoff@acme.com
SMTP source email address: john@acme.com
SMTP status: Enabled
Console#
Time Commands
The system clock can be dynamically set by polling a set of specified time servers (NTP or SNTP). Maintaining an accurate time on the switch enables the system log to record meaningful dates and times for event entries. If the clock is not set, the switch will only record the time from the factory default set at the last bootup.

Table 4-22 Time Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>sntp client</td>
<td>Accepts time from specified time servers</td>
<td>GC</td>
<td>4-53</td>
</tr>
<tr>
<td>sntp server</td>
<td>Specifies one or more time servers</td>
<td>GC</td>
<td>4-54</td>
</tr>
<tr>
<td>sntp poll</td>
<td>Sets the interval at which the client polls for time</td>
<td>GC</td>
<td>4-55</td>
</tr>
<tr>
<td>show sntp</td>
<td>Shows current SNTP configuration settings</td>
<td>NE, PE</td>
<td>4-55</td>
</tr>
<tr>
<td>clock timezone</td>
<td>Sets the time zone for the switch’s internal clock</td>
<td>GC</td>
<td>4-56</td>
</tr>
<tr>
<td>calendar set</td>
<td>Sets the system date and time</td>
<td>PE</td>
<td>4-56</td>
</tr>
<tr>
<td>show calendar</td>
<td>Displays the current date and time setting</td>
<td>NE, PE</td>
<td>4-57</td>
</tr>
</tbody>
</table>

sntp client
This command enables SNTP client requests for time synchronization from NTP or SNTP time servers specified with the sntp servers command. Use the no form to disable SNTP client requests.

Syntax

[no] sntp client

Default Setting
Disabled

Command Mode
Global Configuration

Command Usage
- The time acquired from time servers is used to record accurate dates and times for log events. Without SNTP, the switch only records the time starting from the factory default set at the last bootup (i.e., 00:00:00, Jan. 1, 2001).
- This command enables client time requests to time servers specified via the sntp servers command. It issues time synchronization requests based on the interval set via the sntp poll command.
Example

```
Console(config)#sntp server 10.1.0.19
Console(config)#sntp poll 60
Console(config)#sntp client
Console(config)#end
Console#show sntp
Current time: Dec 23 02:52:44 2002
Poll interval: 60
Current mode: unicast
SNTP status: Enabled
SNTP server: 10.1.0.19 0.0.0.0 0.0.0.0
Current server: 10.1.0.19
Console#
```

Related Commands

- sntp server (4-54)
- sntp poll (4-55)
- show sntp (4-55)

**sntp server**

This command sets the IP address of the servers to which SNTP time requests are issued. Use the this command with no arguments to clear all time servers from the current list.

**Syntax**

```
sntp server [ip1 [ip2 [ip3]]]
```

- `ip` - IP address of a time server (NTP or SNTP).
  (Range: 1-3 addresses)

**Default Setting**

None

**Command Mode**

Global Configuration

**Command Usage**

This command specifies time servers from which the switch will poll for time updates when set to SNTP client mode. The client will poll the time servers in the order specified until a response is received. It issues time synchronization requests based on the interval set via the `sntp poll` command.

Example

```
Console(config)#sntp server 10.1.0.19
```

Related Commands

- sntp client (4-53)
- sntp poll (4-55)
- show sntp (4-55)
**sntp poll**
This command sets the interval between sending time requests when the switch is set to SNTP client mode. Use the **no** form to restore to the default.

**Syntax**

```
sntp poll seconds
no sntp poll
```

*seconds* - Interval between time requests. (Range: 16-16384 seconds)

**Default Setting**

16 seconds

**Command Mode**

Global Configuration

**Example**

```
Console(config)#sntp poll 60
Console(config)#
```

**Related Commands**

- sntp client (4-53)

**show sntp**
This command displays the current time and configuration settings for the SNTP client, and indicates whether or not the local time has been properly updated.

**Command Mode**

Normal Exec, Privileged Exec

**Command Usage**

This command displays the current time, the poll interval used for sending time synchronization requests, and the current SNTP mode (i.e., unicast).

**Example**

```
Console#show sntp
Current time: Dec 23 05:13:28 2002
Poll interval: 16
Current mode: unicast
SNTP status : Enabled
SNTP server 137.92.140.80 0.0.0.0 0.0.0.0
Current server: 137.92.140.80
Console#
```
clock timezone
This command sets the time zone for the switch's internal clock.

Syntax

clock timezone name hour hours minute minutes (before-utc | after-utc)
- name - Name of timezone, usually an acronym. (Range: 1-29 characters)
- hours - Number of hours before/after UTC. (Range: 0-12 hours)
- minutes - Number of minutes before/after UTC. (Range: 0-59 minutes)
- before-utc - Sets the local time zone before (east) of UTC.
- after-utc - Sets the local time zone after (west) of UTC.

Default Setting
None

Command Mode
Global Configuration

Command Usage
This command sets the local time zone relative to the Coordinated Universal Time (UTC, formerly Greenwich Mean Time or GMT), based on the earth's prime meridian, zero degrees longitude. To display a time corresponding to your local time, you must indicate the number of hours and minutes your time zone is east (before) or west (after) of UTC.

Example

Console(config)#clock timezone Japan hours 8 minute 0 after-UTC
Console(config)#

Related Commands
show sntp (4-55)

calendar set
This command sets the system clock. It may be used if there is no time server on your network, or if you have not configured the switch to receive signals from a time server.

Syntax

calendar set hour min sec {day month year | month day year}
- hour - Hour in 24-hour format. (Range: 0-23)
- min - Minute. (Range: 0-59)
- sec - Second. (Range: 0-59)
- day - Day of month. (Range: 1-31)
- month - january | february | march | april | may | june | july | august | september | october | november | december
- year - Year (4-digit). (Range: 2001-2010)
Default Setting
None

Command Mode
Privileged Exec

Example
This example shows how to set the system clock to 15:12:34, April 1st, 2004.

```
Console#calendar set 15 12 34 1 April 2004
Console#
```

**show calendar**
This command displays the system clock.

Default Setting
None

Command Mode
Normal Exec, Privileged Exec

Example

```
Console#show calendar
15:12:43 April 1 2004
Console#
```

---

**System Status Commands**

**Table 4-23** System Status Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>show startup-config</td>
<td>Displays the contents of the configuration file (stored in flash memory) that is used to start up the system</td>
<td>PE</td>
<td>4-57</td>
</tr>
<tr>
<td>show running-config</td>
<td>Displays the configuration data currently in use</td>
<td>PE</td>
<td>4-59</td>
</tr>
<tr>
<td>show system</td>
<td>Displays system information</td>
<td>NE, PE</td>
<td>4-61</td>
</tr>
<tr>
<td>show users</td>
<td>Shows all active console and Telnet sessions, including user name, idle time, and IP address of Telnet clients</td>
<td>NE, PE</td>
<td>4-61</td>
</tr>
<tr>
<td>show version</td>
<td>Displays version information for the system</td>
<td>NE, PE</td>
<td>4-62</td>
</tr>
</tbody>
</table>

**show startup-config**
This command displays the configuration file stored in non-volatile memory that is used to start up the system.

Default Setting
None

Command Mode
Privileged Exec
Command Usage

- Use this command in conjunction with the `show running-config` command to compare the information in running memory to the information stored in non-volatile memory.
- This command displays settings for key command modes. Each mode group is separated by “!” symbols, and includes the configuration mode command, and corresponding commands. This command displays the following information:
  - SNMP community strings
  - Users (names and access levels)
  - VLAN database (VLAN ID, name and state)
  - VLAN configuration settings for each interface
  - IP address configured for the switch
  - Spanning tree settings
  - Any configured settings for the console port and Telnet

Example

```console
Console#show startup-config
building startup-config, please wait.....
!
!
username admin access-level 15
username admin password 0 admin
!
username guest access-level 0
username guest password 0 guest
!
enable password level 15 0 super
!
snmp-server community public ro
snmp-server community private rw
!
logging history ram 6
logging history flash 3
!
vlan database
 vlan 1 name DefaultVlan media ethernet state active
!
interface ethernet 1/1
 switchport allowed vlan add 1 untagged
 switchport native vlan 1
!
interface vlan 1
 ip address dhcp
!
line console
!
line vty
!
end
Console#
```
Related Commands
    show running-config (4-59)

**show running-config**
This command displays the configuration information currently in use.

**Default Setting**
None

**Command Mode**
Privileged Exec

**Command Usage**
- Use this command in conjunction with the **show startup-config** command to compare the information in running memory to the information stored in non-volatile memory.
- This command displays settings for key command modes. Each mode group is separated by “!” symbols, and includes the configuration mode command, and corresponding commands. This command displays the following information:
  - MAC address for each switch in the stack
  - SNTP server settings
  - Local time zone
  - SNMP community strings
  - Users (names, access levels, and encrypted passwords)
  - Event log settings
  - VLAN database (VLAN ID, name and state)
  - VLAN configuration settings for each interface
  - IP address configured for the switch
  - Layer 4 precedence settings
  - Any configured settings for the console port and Telnet
Example

```
Console#show running-config
building startup-config, please wait.....
!
phymap 00-12-cf-ce-2a-20 00-00-00-00-00-00 00-00-00-00-00-00 00-00-00-00-00-00 00-00-00-00-00-00 00-00-00-00-00-00
!
SNTP server 0.0.0.0 0.0.0.0 0.0.0.0
!
clock timezone hours 0 minute 0 after-UTC
!
SNMP-server community private rw
SNMP-server community public ro
!
username admin access-level 15
username admin password 7 21232f297a57a5a743894a0e4a801fc3
username guest access-level 0
username guest password 7 084e0343a0486ff05530df6c705c8bb4
enable password level 15 7 1b3231655cebb7a1f783edd27d254ca
!
!
logging history ram 6
logging history flash 3
!
!
vlan database
 vlan 1 name DefaultVlan media ethernet state active
!
!
interface ethernet 1/1
 switchport allowed vlan add 1 untagged
 switchport native vlan 1
!
interface VLAN 1
 IP address DHCP
!
no map IP DSCP
!
line console
!
line vty
!
end
Console#
```

Related Commands

- `show startup-config (4-57)`
show system
This command displays system information.

Default Setting
None

Command Mode
Normal Exec, Privileged Exec

Command Usage
• For a description of the items shown by this command, refer to “Displaying System Information” on page 3-10.
• The POST results should all display “PASS.” If any POST test indicates “FAIL,” contact your distributor for assistance.

Example

```
Console#show system
System Description: TigerSwitch 10/100/1000 26/50 PORT MANAGED SWITCH
System OID String: 1.3.6.1.4.1.202.20.68
System Information
 System Up Time: 0 days, 0 hours, 1 minutes, and 32.18 seconds
 System Name: [NONE]
 System Location: [NONE]
 System Contact: [NONE]
 MAC Address (Unit1): 00-00-35-28-10-03
 Web Server: Enabled
 Web Server Port: 80
 Web Secure Server: Enabled
 Web Secure Server Port: 443
 Telnet Server: Enable
 Telnet Server Port: 23
 Jumbo Frame: Disabled

 POST Result:
 DUMMY Test 1 PASS
 UART Loopback Test PASS
 DRAM Test PASS
 Timer Test PASS
 Switch Int Loopback Test PASS

 Done All Pass.
Console#```

show users
Shows all active console and Telnet sessions, including user name, idle time, and IP address of Telnet client.

Default Setting
None

Command Mode
Normal Exec, Privileged Exec
Command Usage

The session used to execute this command is indicated by a “*” symbol next to the Line (i.e., session) index number.

Example

```
Console#show users
Username accounts:
 Username Privilege Public-Key
-------- --------- ----------
 admin      15       None
 guest      0        None
 steve      15        RSA

Online users:
 Line Username Idle time (h:m:s) Remote IP addr.
-------- --------- ----------------- ---------------
 0   console    admin           0:14:14
* 1     VTY 0    admin           0:00:00    192.168.1.19
 2     SSH 1    steve           0:00:06    192.168.1.19

Web online users:
 Line       Remote IP addr Username Idle time (h:m:s).
--------- -------------- -------- ------------------
 1      HTTP    192.168.1.19    admin           0:00:00

Console#
```

show version

This command displays hardware and software version information for the system.

Default Setting

None

Command Mode

Normal Exec, Privileged Exec

Command Usage

See “Displaying Switch Hardware/Software Versions” on page 3-11 for detailed information on the items displayed by this command.
Example

```
Console#show version
Unit1
  Serial number: S416000937
  Service tag:
  Hardware version: R01
  Module A type: 1000BaseT
  Module B type: 1000BaseT
  Number of ports: 26
  Main power status: up
  Redundant power status: not present

Agent (master)
  Unit ID: 1
  Loader version: 2.2.1.4
  Boot ROM version: 2.2.1.8
  Operation code version: 2.2.7.1

Console#
```

Frame Size Commands

Table 4-24 Frame Size Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>jumbo frame</td>
<td>Enables support for jumbo frames</td>
<td>GC</td>
<td>4-63</td>
</tr>
</tbody>
</table>

jumbo frame

This command enables support for jumbo frames. Use the no form to disable it.

Syntax

```
[no] jumbo frame
```

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- This switch provides more efficient throughput for large sequential data transfers by supporting jumbo frames up to 9216 bytes. Compared to standard Ethernet frames that run only up to 1.5 KB, using jumbo frames significantly reduces the per-packet overhead required to process protocol encapsulation fields.
- To use jumbo frames, both the source and destination end nodes (such as a computer or server) must support this feature. Also, when the connection is operating at full duplex, all switches in the network between the two end nodes must be able to accept the extended frame size. And for half-duplex connections, all devices in the collision domain would need to support jumbo frames.
- Enabling jumbo frames will limit the maximum threshold for broadcast storm control to 64 packets per second. (See the switchport broadcast command on page 4-122.)
- The current setting for jumbo frames can be displayed with the show system command (page 4-61).

Example

```
Console(config)#jumbo frame
Console(config)#
```

Flash/File Commands

These commands are used to manage the system code or configuration files.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy</td>
<td>Copies a code image or a switch configuration to or from flash memory or a TFTP server</td>
<td>PE</td>
<td>4-64</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes a file or code image</td>
<td>PE</td>
<td>4-67</td>
</tr>
<tr>
<td>dir</td>
<td>Displays a list of files in flash memory</td>
<td>PE</td>
<td>4-68</td>
</tr>
<tr>
<td>whichboot</td>
<td>Displays the files booted</td>
<td>PE</td>
<td>4-69</td>
</tr>
<tr>
<td>boot system</td>
<td>Specifies the file or image used to start up the system</td>
<td>GC</td>
<td>4-69</td>
</tr>
</tbody>
</table>

copy

This command moves (upload/download) a code image or configuration file between the switch’s flash memory and a TFTP server. When you save the system code or configuration settings to a file on a TFTP server, that file can later be downloaded to the switch to restore system operation. The success of the file transfer depends on the accessibility of the TFTP server and the quality of the network connection.

Syntax

```
copy file {file | running-config | startup-config | tftp | unit}
copy running-config {file | startup-config | tftp}
copy startup-config {file | running-config | tftp}
copy tftp {file | running-config | startup-config | https-certificate | public-key}
copy unit file
```

- **file** - Keyword that allows you to copy to/from a file.
- **running-config** - Keyword that allows you to copy to/from the current running configuration.
- **startup-config** - The configuration used for system initialization.
- **tftp** - Keyword that allows you to copy to/from a TFTP server.
- **https-certificate** - Copies an HTTPS certificate from an TFTP server to the switch.
- **public-key** - Keyword that allows you to copy a SSH key from a TFTP server. ("Secure Shell Commands" on page 4-33)
- **unit** - Keyword that allows you to copy to/from a unit.

Default Setting
None

Command Mode
Privileged Exec

Command Usage
- The system prompts for data required to complete the copy command.
- The destination file name should not contain slashes (\ or /), the leading letter of the file name should not be a period (.), and the maximum length for file names on the TFTP server is 127 characters or 31 characters for files on the switch. (Valid characters: A-Z, a-z, 0-9, ",", ",", ",")
- Due to the size limit of the flash memory, the switch supports only two operation code files.
- The maximum number of user-defined configuration files depends on available memory.
- You can use “Factory_Default_Config.cfg” as the source to copy from the factory default configuration file, but you cannot use it as the destination.
- To replace the startup configuration, you must use **startup-config** as the destination.
- Use the **copy file unit** command to copy a local file to another switch in the stack. Use the **copy unit file** command to copy a file from another switch in the stack.
- The Boot ROM and Loader cannot be uploaded or downloaded from the TFTP server. You must follow the instructions in the release notes for new firmware, or contact your distributor for help.
- For information on specifying an https-certificate, see “Replacing the Default Secure-site Certificate” on page 3-53. For information on configuring the switch to use HTTPS for a secure connection, see “ip http secure-server” on page 4-30.
Example

The following example shows how to upload the configuration settings to a file on the TFTP server:

```plaintext
Console#copy file tftp
Choose file type:
  1. config:  2. opcode: <1-2>: 1
Source file name: startup
TFTP server ip address: 10.1.0.99
Destination file name: startup.01
TFTP completed.
Success.

Console#
```

The following example shows how to copy the running configuration to a startup file.

```plaintext
Console#copy running-config file
destination file name: startup
Write to FLASH Programming.
\Write to FLASH finish.
Success.

Console#
```

The following example shows how to download a configuration file:

```plaintext
Console#copy tftp startup-config
TFTP server ip address: 10.1.0.99
Source configuration file name: startup.01
Startup configuration file name [startup]:
Write to FLASH Programming.
\Write to FLASH finish.
Success.

Console#
```

This example shows how to copy a secure-site certificate from an TFTP server. It then reboots the switch to activate the certificate:

```plaintext
Console#copy tftp https-certificate
TFTP server ip address: 10.1.0.19
Source certificate file name: SS-certificate
Source private file name: SS-private
Private password: ********
Success.
Console#reload
System will be restarted, continue <y/n>? y
```
This example shows how to copy a public-key used by SSH from a TFTP server. Note that public key authentication via SSH is only supported for users configured locally on the switch:

```
Console#copy tftp public-key
TFTP server IP address: 192.168.1.19
Choose public key type:
  1. RSA:  2. DSA: <1-2>: 1
Source file name: steve.pub
Username: steve
TFTP Download
Success.
Write to FLASH Programming.
Success.
Console#
```

delete
This command deletes a file or image.

Syntax

delete [unit] filename

 filename - Name of the configuration file or image name.
 *
 unit - Stack unit. (Always unit 1)

Default Setting

None

Command Mode

Privileged Exec

Command Usage

- If the file type is used for system startup, then this file cannot be deleted.
- “Factory_Default_Config.cfg” cannot be deleted.
- A colon (:) is required after the specified unit number.

Example

This example shows how to delete the test2.cfg configuration file from flash memory for unit 1.

```
Console#delete 1:test2.cfg
Console#
```

Related Commands

- dir (4-68)
- delete public-key (4-38)
dir
This command displays a list of files in flash memory.

Syntax
```
dir [unit:] {{boot-rom: | config: | opcode:} [:filename]}
```

The type of file or image to display includes:

- **boot-rom** - Boot ROM (or diagnostic) image file.
- **config** - Switch configuration file.
- **opcode** - Run-time operation code image file.
- **filename** - Name of the configuration file or code image.
- **unit** - Stack unit. (Always unit 1)

Default Setting
None

Command Mode
Privileged Exec

Command Usage
- If you enter the command `dir` without any parameters, the system displays all files.
- A colon (:) is required after the specified unit number.
- File information is shown below:

Table 4-26 File Directory Information

<table>
<thead>
<tr>
<th>Column Heading</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>file name</td>
<td>The name of the file.</td>
</tr>
<tr>
<td>startup</td>
<td>Shows if this file is used when the system is started.</td>
</tr>
<tr>
<td>size</td>
<td>The length of the file in bytes.</td>
</tr>
</tbody>
</table>

Example
The following example shows how to display all file information:

```
Console# dir 1:
file name                      file type       startup size
----------------------     --------------  ------- -------------
D2218                            Boot-Rom image  Y 214124
V2271                            Operation Code  Y 1761944
Factory_Default_Config.cfg       Config File     Y 5197
-----------------------------------------------------------------------------
Total free space: 5242880

Console#
```
whichboot
This command displays which files were booted when the system powered up.

Syntax

\[
\text{whichboot [unit]}
\]

- \textit{unit} - Stack unit. (Always unit 1)

Default Setting
None

Command Mode
Privileged Exec

Example
This example shows the information displayed by the \textit{whichboot} command. See the table under the \textit{dir} command for a description of the file information displayed by this command.

\begin{verbatim}
Console#whichboot
(file name) file type startup size
(bye) ------------------ ------------------
Unit1: D2218 Boot-Rom image Y
214124 V2271 Operation Code Y
1761944 Factory_Default_Config.cfg Config File Y
5197
Console#
\end{verbatim}

boot system
This command specifies the image used to start up the system.

Syntax

\[
\text{boot system [unit:} \{\text{boot-rom| config | opcode}: filename
\]

- The type of file or image to set as a default includes:
 - \textit{boot-rom} - Boot ROM.
 - \textit{config} - Configuration file.
 - \textit{opcode} - Run-time operation code.
 - \textit{filename} - Name of the configuration file or code image.
 - \textit{unit} - Specifies the unit number. (Always unit 1)

* The colon (:) is required.

Default Setting
None

Command Mode
Global Configuration
Command Usage

- A colon (:) is required after the specified unit number and file type.
- If the file contains an error, it cannot be set as the default file.

Example

```
Console(config)#boot system config: startup
Console(config)#
```

Related Commands

dir (4-68)
whichboot (4-69)

Authentication Commands

You can configure this switch to authenticate users logging into the system for management access using local or RADIUS authentication methods. You can also enable port-based authentication for network client access using IEEE 802.1X.

Table 4-27 Authentication Commands

<table>
<thead>
<tr>
<th>Command Group</th>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication Sequence</td>
<td>Defines logon authentication method and precedence</td>
<td>4-70</td>
</tr>
<tr>
<td>RADIUS Client</td>
<td>Configures settings for authentication via a RADIUS server</td>
<td>4-73</td>
</tr>
<tr>
<td>TACACS+ Client</td>
<td>Configures settings for authentication via a TACACS+ server</td>
<td>4-77</td>
</tr>
<tr>
<td>Port Security</td>
<td>Configures secure addresses for a port</td>
<td>4-79</td>
</tr>
<tr>
<td>Port Authentication</td>
<td>Configures host authentication on specific ports using 802.1X</td>
<td>4-81</td>
</tr>
</tbody>
</table>

Authentication Sequence

Table 4-28 Authentication Sequence

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>authentication login</td>
<td>Defines logon authentication method and precedence</td>
<td>GC</td>
<td>4-71</td>
</tr>
<tr>
<td>authentication enable</td>
<td>Defines the authentication method and precedence for command mode change</td>
<td>GC</td>
<td>4-72</td>
</tr>
</tbody>
</table>
authentication login
This command defines the login authentication method and precedence. Use the no form to restore the default.

Syntax

```plaintext
authentication login {[local] [radius] [tacacs]}
no authentication login
```

- **local** - Use local password.
- **radius** - Use RADIUS server password.
- **tacacs** - Use TACACS server password.

Default Setting
Local

Command Mode
Global Configuration

Command Usage

- RADIUS uses UDP while TACACS+ uses TCP. UDP only offers best effort delivery, while TCP offers a connection-oriented transport. Also, note that RADIUS encrypts only the password in the access-request packet from the client to the server, while TACACS+ encrypts the entire body of the packet.
- RADIUS and TACACS+ logon authentication assigns a specific privilege level for each user name and password pair. The user name, password, and privilege level must be configured on the authentication server.
- You can specify three authentication methods in a single command to indicate the authentication sequence. For example, if you enter “authentication login radius tacacs local,” the user name and password on the RADIUS server is verified first. If the RADIUS server is not available, then authentication is attempted on the TACACS+ server. If the TACACS+ server is not available, the local user name and password is checked.

Example

```
Console(config)#authentication login radius
Console(config)#
```

Related Commands

- **username** - for setting the local user names and passwords (4-25)
authentication enable
This command defines the authentication method and precedence to use when changing from Exec command mode to Privileged Exec command mode with the `enable` command (see page 4-19). Use the `no` form to restore the default.

Syntax
```
authentication enable {[local] [radius] [tacacs]}
no authentication enable
```
- **local** - Use local password only.
- **radius** - Use RADIUS server password only.
- **tacacs** - Use TACACS server password.

Default Setting
Local

Command Mode
Global Configuration
Command Usage

- RADIUS uses UDP while TACACS+ uses TCP. UDP only offers best effort delivery, while TCP offers a connection-oriented transport. Also, note that RADIUS encrypts only the password in the access-request packet from the client to the server, while TACACS+ encrypts the entire body of the packet.
- RADIUS and TACACS+ logon authentication assigns a specific privilege level for each user name and password pair. The user name, password, and privilege level must be configured on the authentication server.
- You can specify three authentication methods in a single command to indicate the authentication sequence. For example, if you enter `authentication enable radius tacacs local`, the user name and password on the RADIUS server is verified first. If the RADIUS server is not available, then authentication is attempted on the TACACS+ server. If the TACACS+ server is not available, the local user name and password is checked.

Example

```
Console(config)#authentication enable radius
Console(config)#
```

Related Commands

- `enable password` - sets the password for changing command modes (4-26)

RADIUS Client

Remote Authentication Dial-in User Service (RADIUS) is a logon authentication protocol that uses software running on a central server to control access to RADIUS-aware devices on the network. An authentication server contains a database of multiple user name/password pairs with associated privilege levels for each user or group that require management access to a switch.

Table 4-29 RADIUS Client Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>radius-server host</td>
<td>Specifies the RADIUS server</td>
<td>GC</td>
<td>4-74</td>
</tr>
<tr>
<td>radius-server port</td>
<td>Sets the RADIUS server network port</td>
<td>GC</td>
<td>4-74</td>
</tr>
<tr>
<td>radius-server key</td>
<td>Sets the RADIUS encryption key</td>
<td>GC</td>
<td>4-75</td>
</tr>
<tr>
<td>radius-server retransmit</td>
<td>Sets the number of retries</td>
<td>GC</td>
<td>4-75</td>
</tr>
<tr>
<td>radius-server timeout</td>
<td>Sets the interval between sending authentication requests</td>
<td>GC</td>
<td>4-76</td>
</tr>
<tr>
<td>show radius-server</td>
<td>Shows the current RADIUS settings</td>
<td>PE</td>
<td>4-76</td>
</tr>
</tbody>
</table>
radius-server host
This command specifies primary and backup RADIUS servers and authentication parameters that apply to each server. Use the no form to restore the default values.

Syntax

```
[no] radius-server index host {host_ip_address | host_alias}
[auth-port auth_port] [timeout timeout] [retransmit retransmit] [key key]
```

- **index** - Allows you to specify up to five servers. These servers are queried in sequence until a server responds or the retransmit period expires.
- **host_ip_address** - IP address of server.
- **host_alias** - Symbolic name of server. (Maximum length: 20 characters)
- **port_number** - RADIUS server UDP port used for authentication messages. (Range: 1-65535)
- **timeout** - Number of seconds the switch waits for a reply before resending a request. (Range: 1-65535)
- **retransmit** - Number of times the switch will try to authenticate logon access via the RADIUS server. (Range: 1-30)
- **key** - Encryption key used to authenticate logon access for client. Do not use blank spaces in the string. (Maximum length: 20 characters)

Default Setting

- **auth-port** - 1812
- **timeout** - 5 seconds
- **retransmit** - 2

Command Mode

Global Configuration

Example

```
Console(config)#radius-server 1 host 192.168.1.20 auth-port 181 timeout 10 retransmit 5 key green
Console(config)#
```

radius-server port
This command sets the RADIUS server network port. Use the no form to restore the default.

Syntax

```
radius-server port port_number
no radius-server port
```

- **port_number** - RADIUS server UDP port used for authentication messages. (Range: 1-65535)

Default Setting

1812
Command Mode
Global Configuration

Example

```
Console(config)#radius-server port 181
Console(config)#
```

radius-server key
This command sets the RADIUS encryption key. Use the `no` form to restore the default.

Syntax

```
radius-server key key_string
no radius-server key
```

- `key_string` - Encryption key used to authenticate logon access for client. Do not use blank spaces in the string. (Maximum length: 20 characters)

Default Setting
None

Command Mode
Global Configuration

Example

```
Console(config)#radius-server key green
Console(config)#
```

radius-server retransmit
This command sets the number of retries. Use the `no` form to restore the default.

Syntax

```
radius-server retransmit number_of_retries
no radius-server retransmit
```

- `number_of_retries` - Number of times the switch will try to authenticate logon access via the RADIUS server. (Range: 1-30)

Default Setting
2

Command Mode
Global Configuration

Example

```
Console(config)#radius-server retransmit 5
Console(config)#
```
radius-server timeout
This command sets the interval between transmitting authentication requests to the RADIUS server. Use the no form to restore the default.

Syntax

\[
\text{radius-server timeout } \text{number_of_seconds} \\
\text{no radius-server timeout} \\
\text{number_of_seconds} - \text{Number of seconds the switch waits for a reply before resending a request. (Range: 1-65535)}
\]

Default Setting
5

Command Mode
Global Configuration

Example

```
Console(config)#radius-server timeout 10
Console(config)#
```

show radius-server
This command displays the current settings for the RADIUS server.

Default Setting
None

Command Mode
Privileged Exec

Example

```
Console#show radius-server

Remote RADIUS server configuration:

  Global settings
  Communication key with RADIUS server: ****
  Server port number: 1812
  Retransmit times: 2
  Request timeout: 5

  Server 1:
  Server IP address: 192.168.1.1
  Communication key with RADIUS server: ****
  Server port number: 1812
  Retransmit times: 2
  Request timeout: 5

Console#
```
TACACS+ Client

Terminal Access Controller Access Control System (TACACS+) is a logon authentication protocol that uses software running on a central server to control access to TACACS-aware devices on the network. An authentication server contains a database of multiple user name/password pairs with associated privilege levels for each user or group that require management access to a switch.

Table 4-30 TACACS Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>tacacs-server host</td>
<td>Specifies the TACACS+ server</td>
<td>GC</td>
<td>4-77</td>
</tr>
<tr>
<td>tacacs-server port</td>
<td>Specifies the TACACS+ server network port</td>
<td>GC</td>
<td>4-77</td>
</tr>
<tr>
<td>tacacs-server key</td>
<td>Sets the TACACS+ encryption key</td>
<td>GC</td>
<td>4-78</td>
</tr>
<tr>
<td>show tacacs-server</td>
<td>Shows the current TACACS+ settings</td>
<td>GC</td>
<td>4-78</td>
</tr>
</tbody>
</table>

tacacs-server host

This command specifies the TACACS+ server. Use the no form to restore the default.

Syntax

```
tacacs-server host  host_ip_address
no tacacs-server host
```

host_ip_address - IP address of a TACACS+ server.

Default Setting

10.11.12.13

Command Mode

Global Configuration

Example

```
Console(config)#tacacs-server host 192.168.1.25
Console(config)#
```

tacacs-server port

This command specifies the TACACS+ server network port. Use the no form to restore the default.

Syntax

```
tacacs-server port  port_number
no tacacs-server port
```

port_number - TACACS+ server TCP port used for authentication messages. (Range: 1-65535)

Default Setting

49
Command Mode
Global Configuration

Example

```
Console(config)#tacacs-server port 181
Console(config)#
```

tacacs-server key
This command sets the TACACS+ encryption key. Use the `no` form to restore the default.

Syntax
```
tacacs-server key key_string
no tacacs-server key
```

- `key_string` - Encryption key used to authenticate logon access for the client. Do not use blank spaces in the string.
 (Maximum length: 20 characters)

Default Setting
None

Command Mode
Global Configuration

Example

```
Console(config)#tacacs-server key green
Console(config)#
```

show tacacs-server
This command displays the current settings for the TACACS+ server.

Default Setting
None

Command Mode
Privileged Exec

Example

```
Console#show tacacs-server
Remote TACACS server configuration:
  Server IP address: 10.11.12.13
  Communication key with TACACS server: *****
  Server port number: 49
Console#
```
Port Security Commands
These commands can be used to enable port security on a port. When using port security, the switch stops learning new MAC addresses on the specified port when it has reached a configured maximum number. Only incoming traffic with source addresses already stored in the dynamic or static address table for this port will be authorized to access the network. The port will drop any incoming frames with a source MAC address that is unknown or has been previously learned from another port. If a device with an unauthorized MAC address attempts to use the switch port, the intrusion will be detected and the switch can automatically take action by disabling the port and sending a trap message.

Table 4-31 Port Security Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>port security</td>
<td>Configures a secure port</td>
<td>IC</td>
<td>4-79</td>
</tr>
<tr>
<td>mac-address-table</td>
<td>Maps a static address to a port in a VLAN</td>
<td>GC</td>
<td>4-140</td>
</tr>
<tr>
<td>show mac-address-table</td>
<td>Displays entries in the bridge-forwarding database</td>
<td>PE</td>
<td>4-141</td>
</tr>
</tbody>
</table>

port security
This command enables or configures port security. Use the `no` form without any keywords to disable port security. Use the `no` form with the appropriate keyword to restore the default settings for a response to security violation or for the maximum number of allowed addresses.

Syntax
```plaintext
port security [action {shutdown | trap | trap-and-shutdown} | max-mac-count address-count]
no port security [action | max-mac-count]
```

- **action** - Response to take when port security is violated.
 - **shutdown** - Disable port only.
 - **trap** - Issue SNMP trap message only.
 - **trap-and-shutdown** - Issue SNMP trap message and disable port.
- **max-mac-count**
 - **address-count** - The maximum number of MAC addresses that can be learned on a port. (Range: 0-1024)

Default Setting
- Status: Disabled
- Action: None
- Maximum Addresses: 0

Command Mode
Interface Configuration (Ethernet)
Command Usage

- If you enable port security, the switch stops learning new MAC addresses on the specified port when it has reached a configured maximum number. Only incoming traffic with source addresses already stored in the dynamic or static address table will be accepted.
- First use the port security max-mac-count command to set the number of addresses, and then use the port security command to enable security on the port.
- Use the no port security max-mac-count command to disable port security and reset the maximum number of addresses to the default.
- You can also manually add secure addresses with the mac-address-table static command.
- A secure port has the following restrictions:
 - Cannot use port monitoring.
 - Cannot be a multi-VLAN port.
 - Cannot be connected to a network interconnection device.
 - Cannot be a trunk port.
- If a port is disabled due to a security violation, it must be manually re-enabled using the no shutdown command.

Example

The following example enables port security for port 5, and sets the response to a security violation to issue a trap message:

```
Console(config)#interface ethernet 1/5
Console(config-if)#port security action trap
```

Related Commands

shutdown (4-121)
mac-address-table static (4-140)
show mac-address-table (4-141)
802.1X Port Authentication

The switch supports IEEE 802.1X (dot1x) port-based access control that prevents unauthorized access to the network by requiring users to first submit credentials for authentication. Client authentication is controlled centrally by a RADIUS server using EAP (Extensible Authentication Protocol).

Table 4-32 802.1X Port Authentication

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot1x system-auth-control</td>
<td>Enables dot1x globally on the switch.</td>
<td>GC</td>
<td>4-81</td>
</tr>
<tr>
<td>dot1x default</td>
<td>Resets all dot1x parameters to their default values</td>
<td>GC</td>
<td>4-82</td>
</tr>
<tr>
<td>dot1x max-req</td>
<td>Sets the maximum number of times that the switch retransmits an EAP request/identity packet to the client before it times out the authentication session</td>
<td>IC</td>
<td>4-82</td>
</tr>
<tr>
<td>dot1x port-control</td>
<td>Sets dot1x mode for a port interface</td>
<td>IC</td>
<td>4-82</td>
</tr>
<tr>
<td>dot1x operation-mode</td>
<td>Allows single or multiple hosts on an dot1x port</td>
<td>IC</td>
<td>4-83</td>
</tr>
<tr>
<td>dot1x re-authenticate</td>
<td>Forces re-authentication on specific ports</td>
<td>PE</td>
<td>4-84</td>
</tr>
<tr>
<td>dot1x re-authentication</td>
<td>Enables re-authentication for all ports</td>
<td>IC</td>
<td>4-84</td>
</tr>
<tr>
<td>dot1x timeout quiet-period</td>
<td>Sets the time that a switch port waits after the Max Request Count has been exceeded before attempting to acquire a new client</td>
<td>IC</td>
<td>4-84</td>
</tr>
<tr>
<td>dot1x timeout re-authperiod</td>
<td>Sets the time period after which a connected client must be re-authenticated</td>
<td>IC</td>
<td>4-85</td>
</tr>
<tr>
<td>dot1x timeout tx-period</td>
<td>Sets the time period during an authentication session that the switch waits before re-transmitting an EAP packet</td>
<td>IC</td>
<td>4-85</td>
</tr>
<tr>
<td>show dot1x</td>
<td>Shows all dot1x related information</td>
<td>PE</td>
<td>4-86</td>
</tr>
</tbody>
</table>

dot1x system-auth-control

This command enables 802.1X port authentication globally on the switch. Use the no form to restore the default.

Syntax

[n] dot1x system-auth-control

Default Setting

Disabled

Command Mode

Global Configuration

Example

```
Console(config)#dot1x system-auth-control
Console(config)#
```
dot1x default
This command sets all configurable dot1x global and port settings to their default values.

Command Mode
Global Configuration

Example

```
Console(config)#dot1x default
Console(config)#
```

dot1x max-req
This command sets the maximum number of times the switch port will retransmit an EAP request/identity packet to the client before it times out the authentication session. Use the no form to restore the default.

Syntax

```
dot1x max-req count
no dot1x max-req
```

- `count` – The maximum number of requests (Range: 1-10)

Default

2

Command Mode

Interface Configuration

Example

```
Console(config)#interface eth 1/2
Console(config-if)#dot1x max-req 2
Console(config-if)#
```

dot1x port-control
This command sets the dot1x mode on a port interface. Use the no form to restore the default.

Syntax

```
dot1x port-control {auto | force-authorized | force-unauthorized}
no dot1x port-control
```

- `auto` – Requires a dot1x-aware connected client to be authorized by the RADIUS server. Clients that are not dot1x-aware will be denied access.
- `force-authorized` – Configures the port to grant access to all clients, either dot1x-aware or otherwise.
- `force-unauthorized` – Configures the port to deny access to all clients, either dot1x-aware or otherwise.
Default
force-authorized

Command Mode
Interface Configuration

Example

```
Console(config)#interface eth 1/2
Console(config-if)#dot1x port-control auto
Console(config-if)#
```

dot1x operation-mode
This command allows single or multiple hosts (clients) to connect to an 802.1X-authorized port. Use the no form with no keywords to restore the default to single host. Use the no form with the multi-host max-count keywords to restore the default maximum count.

Syntax

```
dot1x operation-mode {single-host | multi-host [max-count count]}
no dot1x operation-mode [multi-host max-count]
```

- **single-host** – Allows only a single host to connect to this port.
- **multi-host** – Allows multiple host to connect to this port.
- **max-count** – Keyword for the maximum number of hosts.
 - **count** – The maximum number of hosts that can connect to a port.
 (Range: 1-1024; Default: 5)

Default
Single-host

Command Mode
Interface Configuration

Command Usage

- The “max-count” parameter specified by this command is only effective if the dot1x mode is set to “auto” by the dot1x port-control command (page 4-82).
- In “multi-host” mode, only one host connected to a port needs to pass authentication for all other hosts to be granted network access. Similarly, a port can become unauthorized for all hosts if one attached host fails re-authentication or sends an EAPOL logoff message.

Example

```
Console(config)#interface eth 1/2
Console(config-if)#dot1x operation-mode multi-host max-count 10
Console(config-if)#
```
dot1x re-authenticate
This command forces re-authentication on all ports or a specific interface.

Syntax

```
dot1x re-authenticate [interface]
```

- **interface**
 - **ethernet unit/port**
 - *unit* - Stack unit. (Always unit 1)
 - *port* - Port number. (Range: 1-26/50)

Command Mode
Privileged Exec

Example

```
Console#dot1x re-authenticate
Console#
```

dot1x re-authentication
This command enables periodic re-authentication globally for all ports. Use the **no** form to disable re-authentication.

Syntax

```
[no] dot1x re-authentication
```

Command Mode
Interface Configuration

Example

```
Console(config)#interface eth 1/2
Console(config-if)#dot1x re-authentication
Console(config-if)#
```

dot1x timeout quiet-period
This command sets the time that a switch port waits after the Max Request Count has been exceeded before attempting to acquire a new client. Use the **no** form to reset the default.

Syntax

```
dot1x timeout quiet-period seconds
no dot1x timeout quiet-period
```

- **seconds** - The number of seconds. (Range: 1-65535)

Default
60 seconds
Command Mode
 Interface Configuration

Example

```
Console(config)#interface eth 1/2
Console(config-if)#dot1x timeout quiet-period 350
Console(config-if)#
```

dot1x timeout re-authperiod
This command sets the time period after which a connected client must be re-authenticated.

Syntax

```
dot1x timeout re-authperiod seconds
no dot1x timeout re-authperiod

seconds - The number of seconds. (Range: 1-65535)
```

Default

3600 seconds

Command Mode
 Interface Configuration

Example

```
Console(config)#interface eth 1/2
Console(config-if)#dot1x timeout re-authperiod 300
Console(config-if)#
```

dot1x timeout tx-period
This command sets the time that an interface on the switch waits during an authentication session before re-transmitting an EAP packet. Use the no form to reset to the default value.

Syntax

```
dot1x timeout tx-period seconds
no dot1x timeout tx-period

seconds - The number of seconds. (Range: 1-65535)
```

Default

30 seconds

Command Mode
 Interface Configuration
Example

Console(config)#interface eth 1/2
Console(config-if)#dot1x timeout tx-period 300
Console(config-if)#

show dot1x

This command shows general port authentication related settings on the switch or a specific interface.

Syntax

```
show dot1x [statistics] [interface interface]
```

- **statistics** - Displays dot1x status for each port.
- **interface**
 - **ethernet unit/port**
 - **unit** - Stack unit. (Always unit 1)
 - **port** - Port number. (Range: 1-26/50)

Command Mode

Privileged Exec

Command Usage

This command displays the following information:

- **Global 802.1X Parameters** – Shows whether or not 802.1X port authentication is globally enabled on the switch.
- **802.1X Port Summary** – Displays the port access control parameters for each interface, including the following items:
 - **Status** – Administrative state for port access control.
 - **Operation Mode** – Dot1x port control operation mode (page 4-83).
 - **Mode** – Dot1x port control mode (page 4-82).
 - **Authorized** – Authorization status (yes or n/a - not authorized).
• **802.1X Port Details** – Displays the port access control parameters for each interface, including the following items:

- reauth-enabled – Periodic re-authentication (page 4-84).
- reauth-period – Time after which a connected client must be re-authenticated (page 4-85).
- quiet-period – Time a port waits after Max Request Count is exceeded before attempting to acquire a new client (page 4-84).
- tx-period – Time a port waits during authentication session before re-transmitting EAP packet (page 4-85).
- supplicant-timeout – Supplicant timeout.
- server-timeout – Server timeout.
- reauth-max – Maximum number of reauthentication attempts.
- max-req – Maximum number of times a port will retransmit an EAP request/identity packet to the client before it times out the authentication session (page 4-82).
- Status – Authorization status (authorized or not).
- Operation Mode – Shows if single or multiple hosts (clients) can connect to an 802.1X-authorized port.
- Max Count – The maximum number of hosts allowed to access this port (page 4-83).
- Port-control – Shows the dot1x mode on a port as auto, force-authorized, or force-unauthorized (page 4-82).
- Supplicant – MAC address of authorized client.
- Current Identifier – The integer (0-255) used by the Authenticator to identify the current authentication session.

• **Authenticator State Machine**

- State – Current state (including initialize, disconnected, connecting, authenticating, authenticated, aborting, held, force_authorized, force_unauthorized).
- Reauth Count – Number of times connecting state is re-entered.

• **Backend State Machine**

- State – Current state (including request, response, success, fail, timeout, idle, initialize).
- Request Count – Number of EAP Request packets sent to the Supplicant without receiving a response.
- Identifier(Server) – Identifier carried in the most recent EAP Success, Failure or Request packet received from the Authentication Server.

• **Reauthentication State Machine**

- State – Current state (including initialize, reauthenticate).
Command Line Interface

Example

```
Console# show dot1x
Global 802.1X Parameters
    system-auth-control: enable

802.1X Port Summary

<table>
<thead>
<tr>
<th>Port Name</th>
<th>Status</th>
<th>Operation Mode</th>
<th>Mode</th>
<th>Authorized</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>disabled</td>
<td>Single-Host</td>
<td>ForceAuthorized</td>
<td>n/a</td>
</tr>
<tr>
<td>1/2</td>
<td>enabled</td>
<td>Single-Host</td>
<td>auto</td>
<td>yes</td>
</tr>
<tr>
<td>1/26</td>
<td>disabled</td>
<td>Single-Host</td>
<td>ForceAuthorized</td>
<td>n/a</td>
</tr>
</tbody>
</table>

802.1X Port Details

802.1X is disabled on port 1/1

802.1X is enabled on port 1/2
    reauth-enabled: Enable
    reauth-period: 1800
    quiet-period: 30
    tx-period: 40
    supplicant-timeout: 30
    server-timeout: 10
    reauth-max: 2
    max-req: 5
    Status Authorized
    Operation mode Single-Host
    Max count 5
    Port-control Auto
    Supplicant 00-12-cf-49-5e-dc
    Current Identifier 3

Authenticator State Machine
    State Authenticated
    Reauth Count 0

Backend State Machine
    State Idle
    Request Count 0
    Identifier(Server) 2

Reauthentication State Machine
    State Initialize

802.1X is disabled on port 1/26
```

Console#
Access Control List Commands

Access Control Lists (ACL) provide packet filtering for IP frames (based on address, protocol, or Layer 4 protocol port number) or any frames (based on MAC address or Ethernet type). To filter packets, first create an access list, add the required rules and then bind the list to a specific port.

Access Control Lists

An ACL is a sequential list of permit or deny conditions that apply to IP addresses, MAC addresses, or other more specific criteria. This switch tests ingress or egress packets against the conditions in an ACL one by one. A packet will be accepted as soon as it matches a permit rule, or dropped as soon as it matches a deny rule. If no rules match for a list of all permit rules, the packet is dropped; and if no rules match for a list of all deny rules, the packet is accepted.

There are three filtering modes:

- Standard IP ACL mode (STD-ACL) filters packets based on the source IP address.
- Extended IP ACL mode (EXT-ACL) filters packets based on source or destination IP address, as well as protocol type and protocol port number.

The following restrictions apply to ACLs:

- Each ACL can have up to 96 rules.
- However, due to resource restrictions, the average number of rules bound the ports should not exceed 20.
- This switch supports ACLs for ingress filtering only. You can only bind one IP ACL to any port for ingress filtering. In other words, only one ACL can be bound to an interface - Ingress IP ACL.

The order in which active ACLs are checked is as follows:

1. User-defined rules in the Ingress IP ACL for ingress ports.
2. Explicit default rule (permit any any) in the ingress IP ACL for ingress ports.
3. If no explicit rule is matched, the implicit default is permit all.

Table 4-33 Access Control Lists

<table>
<thead>
<tr>
<th>Command Groups</th>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP ACLs</td>
<td>Configures ACLs based on IP addresses, TCP/UDP port number, and protocol type</td>
<td>4-90</td>
</tr>
<tr>
<td>MAC ACLs</td>
<td>Configures ACLs based on hardware addresses, packet format, and Ethernet type</td>
<td>4-95</td>
</tr>
<tr>
<td>ACL Information</td>
<td>Displays ACLs and associated rules; shows ACLs assigned to each port</td>
<td>4-99</td>
</tr>
</tbody>
</table>
IP ACLs

Table 4-34 IP ACLs

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list ip</td>
<td>Creates an IP ACL and enters configuration mode</td>
<td>GC</td>
<td>4-90</td>
</tr>
<tr>
<td>permit, deny</td>
<td>Filters packets matching a specified source IP address</td>
<td>STD-ACL</td>
<td>4-91</td>
</tr>
<tr>
<td>permit, deny</td>
<td>Filters packets meeting the specified criteria, including source and destination IP address, TCP/UDP port number, and protocol type</td>
<td>EXT-ACL</td>
<td>4-91</td>
</tr>
<tr>
<td>show ip access-list</td>
<td>Displays the rules for configured IP ACLs</td>
<td>PE</td>
<td>4-93</td>
</tr>
<tr>
<td>ip access-group</td>
<td>Adds a port to an IP ACL</td>
<td>IC</td>
<td>4-93</td>
</tr>
<tr>
<td>show ip access-group</td>
<td>Shows port assignments for IP ACLs</td>
<td>PE</td>
<td>4-93</td>
</tr>
</tbody>
</table>

access-list ip

This command adds an IP access list and enters configuration mode for standard or extended IP ACLs. Use the no form to remove the specified ACL.

Syntax

\[\text{[no]} \text{ access-list ip \{standard | extended\} acl_name}\]

- **standard** – Specifies an ACL that filters packets based on the source IP address.
- **extended** – Specifies an ACL that filters packets based on the source or destination IP address, and other more specific criteria.
- **acl_name** – Name of the ACL. (Maximum length: 16 characters)

Default Setting

None

Command Mode

Global Configuration

Command Usage

- When you create a new ACL or enter configuration mode for an existing ACL, use the permit or deny command to add new rules to the bottom of the list. To create an ACL, you must add at least one rule to the list.
- To remove a rule, use the no permit or no deny command followed by the exact text of a previously configured rule.
- An ACL can contain up to 96 rules.

Example

```
Console(config)#access-list ip standard david
Console(config-std-acl)#
```
Related Commands

- permit, deny 4-91
- ip access-group (4-93)
- show ip access-list (4-93)

permit, deny (Standard ACL)

This command adds a rule to a Standard IP ACL. The rule sets a filter condition for packets emanating from the specified source. Use the **no** form to remove a rule.

Syntax

```
[no] {permit | deny} {any | source bitmask | host source}
```

- **any** – Any source IP address.
- **source** – Source IP address.
- **bitmask** – Decimal number representing the address bits to match.
- **host** – Keyword followed by a specific IP address.

Default Setting

None

Command Mode

Standard ACL

Command Usage

- New rules are appended to the end of the list.
- Address bitmasks are similar to a subnet mask, containing four integers from 0 to 255, each separated by a period. The binary mask uses 1 bits to indicate "match" and 0 bits to indicate "ignore." The bitmask is bitwise ANDed with the specified source IP address, and then compared with the address for each IP packet entering the port(s) to which this ACL has been assigned.

Example

This example configures one permit rule for the specific address 10.1.1.21 and another rule for the address range 168.92.16.x – 168.92.31.x using a bitmask.

```
Console(config-std-acl)#permit host 10.1.1.21
Console(config-std-acl)#permit 168.92.16.0 255.255.240.0
```

Related Commands

- access-list ip (4-90)

permit, deny (Extended ACL)

This command adds a rule to an Extended IP ACL. The rule sets a filter condition for packets with specific source or destination IP addresses, protocol types, or source or destination protocol ports. Use the **no** form to remove a rule.

Access Control List Commands

Syntax

[no] {permit | deny} [protocol-number | udp]
{any | source address-bitmask | host source}
{any | destination address-bitmask | host destination}
[source-port sport [end]] [destination-port dport [end]]

[no] {permit | deny} tcp
{any | source address-bitmask | host source}
{any | destination address-bitmask | host destination}
[source-port sport [end]] [destination-port dport [end]]

- `protocol-number` – A specific protocol number. (Range: 0-255)
- `source` – Source IP address.
- `destination` – Destination IP address.
- `address-bitmask` – Decimal number representing the address bits to match.
- `host` – Keyword followed by a specific IP address.
- `sport` – Protocol^{15} source port number. (Range: 0-65535)
- `dport` – Protocol^{15} destination port number. (Range: 0-65535)
- `end` – Upper bound of the protocol port range. (Range: 0-65535)

Default Setting
None

Command Mode
Extended ACL

Command Usage
- All new rules are appended to the end of the list.
- Address bitmasks are similar to a subnet mask, containing four integers from 0 to 255, each separated by a period. The binary mask uses 1 bits to indicate “match” and 0 bits to indicate “ignore.” The bitmask is bitwise ANDed with the specified source IP address, and then compared with the address for each IP packet entering the port(s) to which this ACL has been assigned.

Example

This example accepts any incoming packets if the source address is within subnet 10.7.1.x. For example, if the rule is matched; i.e., the rule (10.7.1.0 & 255.255.255.0) equals the masked address (10.7.1.2 & 255.255.255.0), the packet passes through.

```
Console(config-ext-acl)#permit 10.7.1.1 255.255.255.0 any
Console(config-ext-acl)#
```

^{15}. Includes TCP, UDP or other protocol types.
This allows TCP packets from class C addresses 192.168.1.0 to any destination address when set for destination TCP port 80 (i.e., HTTP).

```plaintext
Console(config-ext-acl)#permit 192.168.1.0 255.255.255.0 any
destination-port 80
Console(config-ext-acl)#
```

Related Commands
access-list ip (4-90)

show ip access-list
This command displays the rules for configured IP ACLs.

Syntax
```
show ip access-list {standard | extended} [acl_name]
```
- **standard** – Specifies a standard IP ACL.
- **extended** – Specifies an extended IP ACL.
- **acl_name** – Name of the ACL. (Maximum length: 16 characters)

Command Mode
Privileged Exec

Example
```
Console#show ip access-list standard
IP standard access-list david:
  permit host 10.1.1.21
  permit 168.92.0.0 255.255.255.0
Console#
```

Related Commands
permit, deny 4-91
ip access-group (4-93)

ip access-group
This command binds a port to an IP ACL. Use the **no** form to remove the port.

Syntax
```
[no] ip access-group acl_name in
```
- **acl_name** – Name of the ACL. (Maximum length: 16 characters)
- **in** – Indicates that this list applies to ingress packets.

Default Setting
None

Command Mode
Interface Configuration (Ethernet)
Command Usage

- A port can only be bound to one ACL.
- If a port is already bound to an ACL and you bind it to a different ACL, the switch will replace the old binding with the new one.
- You must configure a mask for an ACL rule before you can bind it to a port.

Example

```
Console(config)#int eth 1/25
Console(config-if)#ip access-group david in
Console(config-if)#
```

Related Commands

```
show ip access-list (4-93)
```

show ip access-group

This command shows the ports assigned to IP ACLs.

Command Mode

Privileged Exec

Example

```
Console#show ip access-group
Interface ethernet 1/25
  IP access-list david in
Console#
```

Related Commands

```
ip access-group (4-93)
```
MAC ACLs

The commands in this section configure ACLs based on hardware addresses, packet format, and Ethernet type. To configure MAC ACLs, first create an access list containing the required permit or deny rules, and then bind the access list to one or more ports.

Table 4-35 MAC ACL Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list mac</td>
<td>Creates a MAC ACL and enters configuration mode</td>
<td>GC</td>
<td>4-95</td>
</tr>
<tr>
<td>permit, deny</td>
<td>Filters packets matching a specified source and destination address, packet format, and Ethernet type</td>
<td>MAC-ACL</td>
<td>4-96</td>
</tr>
<tr>
<td>show mac access-list</td>
<td>Displays the rules for configured MAC ACLs</td>
<td>PE</td>
<td>4-97</td>
</tr>
<tr>
<td>mac access-group</td>
<td>Adds a port to a MAC ACL</td>
<td>IC</td>
<td>4-98</td>
</tr>
<tr>
<td>show mac access-group</td>
<td>Shows port assignments for MAC ACLs</td>
<td>PE</td>
<td>4-98</td>
</tr>
</tbody>
</table>

access-list mac

This command adds a MAC access list and enters MAC ACL configuration mode. Use the no form to remove the specified ACL.

Syntax

```
[no] access-list mac acl_name
```

`acl_name` – Name of the ACL. (Maximum length: 16 characters)

Default Setting

None

Command Mode

Global Configuration

Command Usage

- When you create a new ACL or enter configuration mode for an existing ACL, use the permit or deny command to add new rules to the bottom of the list. To create an ACL, you must add at least one rule to the list.
- To remove a rule, use the no permit or no deny command followed by the exact text of a previously configured rule.
- An ACL can contain up to 32 rules.

Example

```
Console(config)#access-list mac jerry
Console(config-mac-acl)#
```

Related Commands

- permit, deny (4-96)
- mac access-group (4-98)
- show mac access-list (4-97)
permit, deny (MAC ACL)
This command adds a rule to a MAC ACL. The rule filters packets matching a specified MAC source or destination address (i.e., physical layer address), or Ethernet protocol type. Use the no form to remove a rule.

Syntax

[no] {permit | deny}
 {any | host source | source address-bitmask}
 {any | host destination | destination address-bitmask}
 [vid vid vid-bitmask] [ethertype protocol [protocol-bitmask]]

 Note:- The default is for Ethernet II packets.

[no] {permit | deny} tagged-eth2
 {any | host source | source address-bitmask}
 {any | host destination | destination address-bitmask}
 [vid vid vid-bitmask] [ethertype protocol [protocol-bitmask]]

[no] {permit | deny} untagged-eth2
 {any | host source | source address-bitmask}
 {any | host destination | destination address-bitmask}
 [ethertype protocol [protocol-bitmask]]

[no] {permit | deny} tagged-802.3
 {any | host source | source address-bitmask}
 {any | host destination | destination address-bitmask}
 [vid vid vid-bitmask]

[no] {permit | deny} untagged-802.3
 {any | host source | source address-bitmask}
 {any | host destination | destination address-bitmask}

 • tagged-eth2 – Tagged Ethernet II packets.
 • untagged-eth2 – Untagged Ethernet II packets.
 • tagged-802.3 – Tagged Ethernet 802.3 packets.
 • untagged-802.3 – Untagged Ethernet 802.3 packets.
 • any – Any MAC source or destination address.
 • host – A specific MAC address.
 • source – Source MAC address.
 • destination – Destination MAC address range with bitmask.
 • address-bitmask\(^{16}\) – Bitmask for MAC address (in hexadecimal format).
 • vid – VLAN ID. (Range: 1-4093)
 • vid-bitmask – VLAN bitmask. (Range: 1-4093)
 • protocol – A specific Ethernet protocol number. (Range: 600-fff hex.)
 • protocol-bitmask – Protocol bitmask. (Range: 600-fff hex.)

\(^{16}\) For all bitmasks, “1” means care and “0” means ignore.
Default Setting
None

Command Mode
MAC ACL

Command Usage
• New rules are added to the end of the list.
• The ethertype option can only be used to filter Ethernet II formatted packets.
• A detailed listing of Ethernet protocol types can be found in RFC 1060. A few of the more common types include the following:
 - 0800 - IP
 - 0806 - ARP
 - 8137 - IPX

Example
This rule permits packets from any source MAC address to the destination address 00-e0-29-94-34-de where the Ethernet type is 0800.

```console
Console (config-mac-acl)#permit any host 00-e0-29-94-34-de ethertype 0800
Console (config-mac-acl)#
```

Related Commands
access-list mac (4-95)

show mac access-list
This command displays the rules for configured MAC ACLs.

Syntax
```
show mac access-list [acl_name]
```

- `acl_name` – Name of the ACL. (Maximum length: 16 characters)

Command Mode
Privileged Exec

Example
```
Console # show mac access-list
MAC access-list jerry:
  permit any 00-e0-29-94-34-de ethertype 0800
Console #
```

Related Commands
permit, deny 4-96
mac access-group (4-98)
mac access-group
This command binds a port to a MAC ACL. Use the no form to remove the port.

Syntax
mac access-group acl_name in
 • acl_name – Name of the ACL. (Maximum length: 16 characters)
 • in – Indicates that this list applies to ingress packets.

Default Setting
None

Command Mode
Interface Configuration (Ethernet)

Command Usage
• A port can only be bound to one ACL.
• If a port is already bound to an ACL and you bind it to a different ACL, the
 switch will replace the old binding with the new one.

Example

```text
Console(config)#interface ethernet 1/2
Console(config-if)#mac access-group jerry in
Console(config-if)#
```

Related Commands
 show mac access-list (4-97)

show mac access-group
This command shows the ports assigned to MAC ACLs.

Command Mode
Privileged Exec

Example

```text
Console#show mac access-group
interface ethernet 1/5
 MAC access-list M5 in
Console#
```

Related Commands
 mac access-group (4-98)
ACL Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>show access-list</td>
<td>Show all ACLs and associated rules</td>
<td>PE</td>
<td>4-99</td>
</tr>
<tr>
<td>show access-group</td>
<td>Shows the ACLs assigned to each port</td>
<td>PE</td>
<td>4-99</td>
</tr>
</tbody>
</table>

show access-list

This command shows all ACLs and associated rules, as well as all the user-defined masks.

Command Mode

Privileged Exec

Command Usage

Once the ACL is bound to an interface (i.e., the ACL is active), the order in which the rules are displayed is determined by the associated mask.

Example

```
Console#show access-list
IP standard access-list david:
  permit host 10.1.1.21
  permit 168.92.16.0 255.255.240.0
IP extended access-list bob:
  permit 10.7.1.1 255.255.255.0 any
  permit 192.168.1.0 255.255.255.0 any destination-port 80 80
IP access-list jerry:
  permit any host 00-30-29-94-34-de ethertype 800 800
IP extended access-list A6:
  permit any any
Console#
```

show access-group

This command shows the port assignments of ACLs.

Command Mode

Privileged Executive

Example

```
Console#show access-group
Interface ethernet 1/1
  IP access-list jerry in
  :
Interface ethernet 1/26
  IP access-list jerry in
Console#
```
SNMP Commands

Controls access to this switch from management stations using the Simple Network Management Protocol (SNMP), as well as the error types sent to trap managers.

SNMP Version 3 also provides security features that cover message integrity, authentication, and encryption; as well as controlling user access to specific areas of the MIB tree. To use SNMPv3, first set an SNMP engine ID (or accept the default), specify read and write access views for the MIB tree, configure SNMP user groups with the required security model (i.e., SNMP v1, v2c or v3) and security level (i.e., authentication and privacy), and then assign SNMP users to these groups, along with their specific authentication and privacy passwords.

Table 4-37 SNMP Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>snmp-server</td>
<td>Enables the SNMP agent</td>
<td>GC</td>
<td>4-101</td>
</tr>
<tr>
<td>show snmp</td>
<td>Displays the status of SNMP communications</td>
<td>NE, PE</td>
<td>4-101</td>
</tr>
<tr>
<td>snmp-server community</td>
<td>Sets up the community access string to permit access to SNMP commands</td>
<td>GC</td>
<td>4-102</td>
</tr>
<tr>
<td>snmp-server contact</td>
<td>Sets the system contact string</td>
<td>GC</td>
<td>4-103</td>
</tr>
<tr>
<td>snmp-server location</td>
<td>Sets the system location string</td>
<td>GC</td>
<td>4-103</td>
</tr>
<tr>
<td>snmp-server host</td>
<td>Specifies the recipient of an SNMP notification operation</td>
<td>GC</td>
<td>4-104</td>
</tr>
<tr>
<td>snmp-server enable traps</td>
<td>Enables the device to send SNMP traps (i.e., SNMP notifications)</td>
<td>GC</td>
<td>4-106</td>
</tr>
<tr>
<td>snmp-server engine-id</td>
<td>Sets the SNMP engine ID</td>
<td>GC</td>
<td>4-107</td>
</tr>
<tr>
<td>show snmp engine-id</td>
<td>Shows the SNMP engine ID</td>
<td>PE</td>
<td>4-108</td>
</tr>
<tr>
<td>snmp-server view</td>
<td>Adds an SNMP view</td>
<td>GC</td>
<td>4-109</td>
</tr>
<tr>
<td>show snmp view</td>
<td>Shows the SNMP views</td>
<td>PE</td>
<td>4-110</td>
</tr>
<tr>
<td>snmp-server group</td>
<td>Adds an SNMP group, mapping users to views</td>
<td>GC</td>
<td>4-110</td>
</tr>
<tr>
<td>show snmp group</td>
<td>Shows the SNMP groups</td>
<td>PE</td>
<td>4-112</td>
</tr>
<tr>
<td>snmp-server user</td>
<td>Adds a user to an SNMP group</td>
<td>GC</td>
<td>4-113</td>
</tr>
<tr>
<td>show snmp user</td>
<td>Shows the SNMP users</td>
<td>PE</td>
<td>4-115</td>
</tr>
</tbody>
</table>
snmp-server
This command enables the SNMPv3 engine and services for all management clients (i.e., versions 1, 2c, 3). Use the no form to disable the server.

Syntax

```
[no] snmp-server
```

Default Setting

Enabled

Command Mode

Global Configuration

Example

```
Console(config)#snmp-server
```

show snmp

This command can be used to check the status of SNMP communications.

Default Setting

None

Command Mode

Normal Exec, Privileged Exec

Command Usage

This command provides information on the community access strings, counter information for SNMP input and output protocol data units, and whether or not SNMP logging has been enabled with the snmp-server enable traps command.
Example

```
Console# show snmp

SNMP Agent: enabled

SNMP traps:
Authentication: enable
Link-up-down: enable

SNMP communities:
  1. private, and the privilege is read-write
  2. public, and the privilege is read-only

0 SNMP packets input
  0 Bad SNMP version errors
  0 Unknown community name
  0 Illegal operation for community name supplied
  0 Encoding errors
  0 Number of requested variables
  0 Number of altered variables
  0 Get-request PDUs
  0 Get-next PDUs
  0 Set-request PDUs

0 SNMP packets output
  0 Too big errors
  0 No such name errors
  0 Bad values errors
  0 General errors
  0 Response PDUs
  0 Trap PDUs

SNMP logging: disabled
Console#
```

snmp-server community

This command defines the SNMP v1 and v2c community access string. Use the **no** form to remove the specified community string.

Syntax

```
snmp-server community string [ro|rw]
no snmp-server community string
```

- **string** - Community string that acts like a password and permits access to the SNMP protocol. (Maximum length: 32 characters, case sensitive; Maximum number of strings: 5)
- **ro** - Specifies read-only access. Authorized management stations are only able to retrieve MIB objects.
- **rw** - Specifies read/write access. Authorized management stations are able to both retrieve and modify MIB objects.

Default Setting

- **public** - Read-only access. Authorized management stations are only able to retrieve MIB objects.
• private - Read/write access. Authorized management stations are able to both retrieve and modify MIB objects.

Command Mode
 Global Configuration

Example
 Console(config)#snmp-server community alpha rw
 Console(config)#

snmp-server contact
This command sets the system contact string. Use the **no** form to remove the system contact information.

Syntax
 snmp-server contact *string*
 no snmp-server contact

 string - String that describes the system contact information.
 (Maximum length: 255 characters)

Default Setting
 None

Command Mode
 Global Configuration

Example
 Console(config)#snmp-server contact Paul
 Console(config)#

Related Commands
 snmp-server location (4-103)

snmp-server location
This command sets the system location string. Use the **no** form to remove the location string.

Syntax
 snmp-server location *text*
 no snmp-server location

 text - String that describes the system location.
 (Maximum length: 255 characters)

Default Setting
 None
Command Mode
Global Configuration

Example

```
Console(config)#snmp-server location WC-19
```

Related Commands
snmp-server contact (4-103)

snmp-server host
This command specifies the recipient of a Simple Network Management Protocol notification operation. Use the no form to remove the specified host.

Syntax

```
snmp-server host host-addr [inform [retry retries | timeout seconds]]
community-string [version {1 | 2c | 3 {auth | noauth | priv} [udp-port port]]]
```

- `host-addr` - Internet address of the host (the targeted recipient). (Maximum host addresses: 5 trap destination IP address entries)
- `inform` - Notifications are sent as inform messages. Note that this option is only available for version 2c and 3 hosts. (Default: traps are used)
- `retry` - The maximum number of times to resend an inform message if the recipient does not acknowledge receipt. (Range: 0-255; Default: 3)
- `timeout` - The number of seconds to wait for an acknowledgment before resending an inform message. (Range: 0-2147483647 centiseconds; Default: 1500 centiseconds)
- `community-string` - Password-like community string sent with the notification operation to SNMP V1 and V2c hosts. Although you can set this string using the `snmp-server host` command by itself, we recommend that you define this string using the `snmp-server community` command prior to using the `snmp-server host` command. (Maximum length: 32 characters)
- `version` - Specifies whether to send notifications as SNMP Version 1, 2c or 3 traps. (Range: 1, 2c, 3; Default: 1)
 - `auth` | `noauth` | `priv` - This group uses SNMPv3 with authentication, no authentication, or with authentication and privacy. See “Simple Network Management Protocol” on page 5-1 for further information about these authentication and encryption options.
- `port` - Host UDP port to use. (Range: 1-65535; Default: 162)

Default Setting
- Host Address: None
- Notification Type: Traps
SNMP Commands

- SNMP Version: 1
- UDP Port: 162

Command Mode
Global Configuration

Command Usage

- If you do not enter an `snmp-server host` command, no notifications are sent. In order to configure the switch to send SNMP notifications, you must enter at least one `snmp-server host` command. In order to enable multiple hosts, you must issue a separate `snmp-server host` command for each host.

- The `snmp-server host` command is used in conjunction with the `snmp-server enable traps` command. Use the `snmp-server enable traps` command to enable the sending of traps or informs and to specify which SNMP notifications are sent globally. For a host to receive notifications, at least one `snmp-server enable traps` command and the `snmp-server host` command for that host must be enabled.

- Some notification types cannot be controlled with the `snmp-server enable traps` command. For example, some notification types are always enabled.

- Notifications are issued by the switch as trap messages by default. The recipient of a trap message does not send a response to the switch. Traps are therefore not as reliable as inform messages, which include a request for acknowledgement of receipt. Informs can be used to ensure that critical information is received by the host. However, note that informs consume more system resources because they must be kept in memory until a response is received. Informs also add to network traffic. You should consider these effects when deciding whether to issue notifications as traps or informs.

To send an inform to a SNMPv2c host, complete these steps:

1. Enable the SNMP agent (page 4-101).
2. Allow the switch to send SNMP traps; i.e., notifications (page 4-106).
3. Specify the target host that will receive inform messages with the `snmp-server host` command as described in this section.
4. Create a view with the required notification messages (page 4-109).
5. Create a group that includes the required notify view (page 4-110).

To send an inform to a SNMPv3 host, complete these steps:

1. Enable the SNMP agent (page 4-101).
2. Allow the switch to send SNMP traps; i.e., notifications (page 4-106).
3. Specify the target host that will receive inform messages with the `snmp-server host` command as described in this section.
4. Create a view with the required notification messages (page 4-109).
5. Create a group that includes the required notify view (page 4-110).
6. Specify a remote engine ID where the user resides (page 4-107).
7. Then configure a remote user (page 4-113).

- The switch can send SNMP Version 1, 2c or 3 notifications to a host IP address, depending on the SNMP version that the management station
supports. If the `snmp-server host` command does not specify the SNMP version, the default is to send SNMP version 1 notifications.

- If you specify an SNMP Version 3 host, then the community string is interpreted as an SNMP user name. If you use the V3 “auth” or “priv” options, the user name must first be defined with the `snmp-server user` command. Otherwise, the authentication password and/or privacy password will not exist, and the switch will not authorize SNMP access for the host. However, if you specify a V3 host with the “noauth” option, an SNMP user account will be generated, and the switch will authorize SNMP access for the host.

Example

```
Console(config)#snmp-server host 10.1.19.23 batman
Console(config)#
```

Related Commands

`snmp-server enable traps (4-106)`

snmp-server enable traps

This command enables this device to send Simple Network Management Protocol traps or informs (i.e., SNMP notifications). Use the `no` form to disable SNMP notifications.

Syntax

```
[no] snmp-server enable traps [authentication | link-up-down]
```

- `authentication` - Keyword to issue authentication failure notifications.
- `link-up-down` - Keyword to issue link-up or link-down notifications.

Default Setting

Issue authentication and link-up-down traps.

Command Mode

Global Configuration

Command Usage

- If you do not enter an `snmp-server enable traps` command, no notifications controlled by this command are sent. In order to configure this device to send SNMP notifications, you must enter at least one `snmp-server enable traps` command. If you enter the command with no keywords, both authentication and link-up-down notifications are enabled. If you enter the command with a keyword, only the notification type related to that keyword is enabled.
- The `snmp-server enable traps` command is used in conjunction with the `snmp-server host` command. Use the `snmp-server host` command to specify which host or hosts receive SNMP notifications. In order to send notifications, you must configure at least one `snmp-server host` command.
- The authentication, link-up, and link-down traps are legacy notifications, and therefore when used for SNMP Version 3 hosts, they must be enabled in...
conjunction with the corresponding entries in the Notify View assigned by the
\texttt{snmp-server group} command (page 4-110).

\textbf{Example}

```
Console(config)#snmp-server enable traps link-up-down
Console(config)#
```

\textbf{Related Commands}

\texttt{snmp-server host} (4-104)

\textbf{snmp-server engine-id}

This command configures an identification string for the SNMPv3 engine. Use the \texttt{no} form to restore the default.

\textbf{Syntax}

```
\texttt{snmp-server engine-id} \{local | remote \{ip-address\}} engineid-string
\texttt{no snmp-server engine-id} \{local | remote \{ip-address\}}
```

- \texttt{local} - Specifies the SNMP engine on this switch.
- \texttt{remote} - Specifies an SNMP engine on a remote device.
- \texttt{ip-address} - The Internet address of the remote device.
- \texttt{engineid-string} - String identifying the engine ID.
 (Range: 9-64 hexadecimal characters)

\textbf{Default Setting}

A unique engine ID is automatically generated by the switch based on its MAC address.

\textbf{Command Mode}

Global Configuration

\textbf{Command Usage}

- An SNMP engine is an independent SNMP agent that resides either on this switch or on a remote device. This engine protects against message replay, delay, and redirection. The engine ID is also used in combination with user passwords to generate the security keys for authenticating and encrypting SNMPv3 packets.
- A remote engine ID is required when using SNMPv3 informs. (See \texttt{snmp-server host} on page 4-104.) The remote engine ID is used to compute the security digest for authenticating and encrypting packets sent to a user on the remote host. SNMP passwords are localized using the engine ID of the authoritative agent. For informs, the authoritative SNMP agent is the remote agent. You therefore need to configure the remote agent’s SNMP engine ID before you can send proxy requests or informs to it.
- An engine ID can be specified by entering 5 to 32 octets of hexadecimal characters; that is, 9 to 64 hexadecimal characters. If an odd number of hexadecimal characters are specified, a trailing zero is added to the value to
fill the octet. For example, entering the value “123456789” results in an engine ID of “1234567890.”

- A local engine ID is automatically generated that is unique to the switch. This is referred to as the default engine ID. If the local engine ID is deleted or changed, all SNMP users will be cleared. You will need to reconfigure all existing users (page 4-113).

Example

```
Console(config)#snmp-server engine-id local 12345abcdef
Console(config)#snmp-server engineID remote 54321fedcba
Console(config)#
```

Related Commands

- `snmp-server host` (4-104)
- `show snmp engine-id`

 This command shows the SNMP engine ID.

Command Mode

 Privileged Exec

Example

This example shows the default engine ID.

```
Console#show snmp engine-id
Local SNMP engineID: 8000002a8000000000e8666672
Local SNMP engineBoots: 1

Remote SNMP engineID                                         IP address
80000000030004e2b316c54321                                   192.168.1.19

Console#
```

Table 4-38 show snmp engine-id - display description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local SNMP engineID</td>
<td>String identifying the engine ID.</td>
</tr>
<tr>
<td>Local SNMP engineBoots</td>
<td>The number of times that the engine has (re-)initialized since the SNMP EngineID was last configured.</td>
</tr>
<tr>
<td>Remote SNMP engineID</td>
<td>String identifying an engine ID on a remote device.</td>
</tr>
<tr>
<td>IP address</td>
<td>IP address of the device containing the corresponding remote SNMP engine.</td>
</tr>
</tbody>
</table>
snmp-server view

This command adds an SNMP view which controls user access to the MIB. Use the no form to remove an SNMP view.

Syntax

```
    snmp-server view  view-name  oid-tree  {included | excluded}
    no  snmp-server view  view-name
```

- **view-name** - Name of an SNMP view. (Range: 1-64 characters)
- **oid-tree** - Object identifier of a branch within the MIB tree. Wild cards can be used to mask a specific portion of the OID string. (Refer to the examples.)
- **included** - Defines an included view.
- **excluded** - Defines an excluded view.

Default Setting

defaultview (includes access to the entire MIB tree)

Command Mode

Global Configuration

Command Usage

- Views are used in the **snmp-server group** command to restrict user access to specified portions of the MIB tree.
- The predefined view “defaultview” includes access to the entire MIB tree.

Examples

This view includes MIB-2.

```
Console(config)#snmp-server view mib-2 1.3.6.1.2.1 included
Console(config)#
```

This view includes the MIB-2 interfaces table, ifDescr. The wild card is used to select all the index values in this table.

```
Console(config)#snmp-server view ifEntry.2 1.3.6.1.2.1.2.2.1.*.2 included
Console(config)#
```

This view includes the MIB-2 interfaces table, and the mask selects all index entries.

```
Console(config)#snmp-server view ifEntry.a 1.3.6.1.2.1.2.2.1.1.* included
Console(config)#
```
show snmp view
This command shows information on the SNMP views.

Command Mode
Privileged Exec

Example

```
Console#show snmp view
View Name: mib-2
Subtree OID: 1.2.2.3.6.2.1
View Type: included
Storage Type: permanent
Row Status: active

View Name: defaultview
Subtree OID: 1
View Type: included
Storage Type: volatile
Row Status: active

Console#
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>View Name</td>
<td>Name of an SNMP view.</td>
</tr>
<tr>
<td>Subtree OID</td>
<td>A branch in the MIB tree.</td>
</tr>
<tr>
<td>View Type</td>
<td>Indicates if the view is included or excluded.</td>
</tr>
<tr>
<td>Storage Type</td>
<td>The storage type for this entry.</td>
</tr>
<tr>
<td>Row Status</td>
<td>The row status of this entry.</td>
</tr>
</tbody>
</table>

Table 4-39 show snmp view - display description

snmp-server group
This command adds an SNMP group, mapping SNMP users to SNMP views. Use the no form to remove an SNMP group.

Syntax

```
snmp-server group groupname {v1 | v2c | v3 {auth | noauth | priv}}
   [read readview] [write writeview] [notify notifyview]
no snmp-server group groupname
```

- **groupname** - Name of an SNMP group. (Range: 1-32 characters)
- **v1 | v2c | v3** - Use SNMP version 1, 2c or 3.
- **auth | noauth | priv** - This group uses SNMPv3 with authentication, no authentication, or with authentication and privacy. See “Simple Network Management Protocol” on page 5-1 for further information about these authentication and encryption options.
- **readview** - Defines the view for read access. (1-64 characters)
- **writeview** - Defines the view for write access. (1-64 characters)
- **notifyview** - Defines the view for notifications. (1-64 characters)
Default Setting
 • Default groups: public\(^{17}\) (read only), private\(^{18}\) (read/write)
 • readview - Every object belonging to the Internet OID space (1.3.6.1).
 • writeview - Nothing is defined.
 • notifyview - Nothing is defined.

Command Mode
 Global Configuration

Command Usage
 • A group sets the access policy for the assigned users.
 • When authentication is selected, the MD5 or SHA algorithm is used as specified in the `snmp-server user` command.
 • When privacy is selected, the DES 56-bit algorithm is used for data encryption.
 • For additional information on the notification messages supported by this switch, see “Supported Notification Messages” on page 5-13. Also, note that the authentication, link-up and link-down messages are legacy traps and must therefore be enabled in conjunction with the `snmp-server enable traps` command (page 4-106).

Example

```
Console(config)#snmp-server group r&d v3 auth write daily
Console(config)#
```
show snmp group

Four default groups are provided – SNMPv1 read-only access and read/write access, and SNMPv2c read-only access and read/write access.

Command Mode

Privileged Exec

Example

<table>
<thead>
<tr>
<th>Group Name</th>
<th>Security Model</th>
<th>Read View</th>
<th>Write View</th>
<th>Notify View</th>
<th>Storage Type</th>
<th>Row Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>r&d</td>
<td>v3</td>
<td>defaultview</td>
<td>daily</td>
<td>none</td>
<td>permanent</td>
<td>active</td>
</tr>
<tr>
<td>public</td>
<td>v1</td>
<td>defaultview</td>
<td>none</td>
<td>none</td>
<td>volatile</td>
<td>active</td>
</tr>
<tr>
<td>public</td>
<td>v2c</td>
<td>defaultview</td>
<td>none</td>
<td>none</td>
<td>volatile</td>
<td>active</td>
</tr>
<tr>
<td>private</td>
<td>v1</td>
<td>defaultview</td>
<td>defaultview</td>
<td>none</td>
<td>volatile</td>
<td>active</td>
</tr>
<tr>
<td>private</td>
<td>v2c</td>
<td>defaultview</td>
<td>defaultview</td>
<td>none</td>
<td>volatile</td>
<td>active</td>
</tr>
</tbody>
</table>

Console#
snmp-server user

This command adds a user to an SNMP group, restricting the user to a specific SNMP Read, Write, or Notify View. Use the `no` form to remove a user from an SNMP group.

Syntax

```
snmp-server user username groupname [remote ip-address] {v1 | v2c | v3 [encrypted] [auth {md5 | sha} auth-password [priv des56 priv-password]]}
no snmp-server user username {v1 | v2c | v3 | remote}
```

- `username` - Name of user connecting to the SNMP agent.
 (Range: 1-32 characters)
- `groupname` - Name of an SNMP group to which the user is assigned.
 (Range: 1-32 characters)
- `remote` - Specifies an SNMP engine on a remote device.
- `ip-address` - The Internet address of the remote device.
- `v1` | `v2c` | `v3` - Use SNMP version 1, 2c or 3.
- `encrypted` - Accepts the password as encrypted input.
- `auth` - Uses SNMPv3 with authentication.
- `md5` | `sha` - Uses MD5 or SHA authentication.
- `auth-password` - Authentication password. Enter as plain text if the `encrypted` option is not used. Otherwise, enter an encrypted password.
 (A minimum of eight characters is required.)
- `priv des56` - Uses SNMPv3 with privacy with DES56 encryption.
- `priv-password` - Privacy password. Enter as plain text if the `encrypted` option is not used. Otherwise, enter an encrypted password.

Table 4-40 show snmp group - display description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>groupname</td>
<td>Name of an SNMP group.</td>
</tr>
<tr>
<td>security model</td>
<td>The SNMP version.</td>
</tr>
<tr>
<td>readview</td>
<td>The associated read view.</td>
</tr>
<tr>
<td>writeview</td>
<td>The associated write view.</td>
</tr>
<tr>
<td>notifyview</td>
<td>The associated notify view.</td>
</tr>
<tr>
<td>storage-type</td>
<td>The storage type for this entry.</td>
</tr>
<tr>
<td>Row Status</td>
<td>The row status of this entry.</td>
</tr>
</tbody>
</table>
Default Setting
None

Command Mode
Global Configuration

Command Usage

- The SNMP engine ID is used to compute the authentication/privacy digests from the password. You should therefore configure the engine ID with the `snmp-server engine-id` command before using this configuration command.

- Before you configure a remote user, use the `snmp-server engine-id` command (page 4-107) to specify the engine ID for the remote device where the user resides. Then use the `snmp-server user` command to specify the user and the IP address for the remote device where the user resides. The remote agent's SNMP engine ID is used to compute authentication/privacy digests from the user's password. If the remote engine ID is not first configured, the `snmp-server user` command specifying a remote user will fail.

- SNMP passwords are localized using the engine ID of the authoritative agent. For informs, the authoritative SNMP agent is the remote agent. You therefore need to configure the remote agent’s SNMP engine ID before you can send proxy requests or informs to it.

Example

```
Console(config)#snmp-server user steve group r&d v3 auth md5 greenpeace priv des56 einstien
Console(config)#snmp-server user mark group r&d remote 192.168.1.19 v3 auth md5 greenpeace priv des56 einstien
Console(config)#
```
show snmp user
This command shows information on SNMP users.

Command Mode
Privileged Exec

Example

```
Console#show snmp user
EngineId: 800000ca030030f1df9ca00000
User Name: steve
Authentication Protocol: md5
Privacy Protocol: des56
Storage Type: nonvolatile
Row Status: active

SNMP remote user
EngineId: 80000000030004e2b316c54321
User Name: mark
Authentication Protocol: mdt
Privacy Protocol: des56
Storage Type: nonvolatile
Row Status: active

Console#
```

Table 4-41 show snmp user - display description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EngineId</td>
<td>String identifying the engine ID.</td>
</tr>
<tr>
<td>User Name</td>
<td>Name of user connecting to the SNMP agent.</td>
</tr>
<tr>
<td>Authentication Protocol</td>
<td>The authentication protocol used with SNMPv3.</td>
</tr>
<tr>
<td>Privacy Protocol</td>
<td>The privacy protocol used with SNMPv3.</td>
</tr>
<tr>
<td>Storage Type</td>
<td>The storage type for this entry.</td>
</tr>
<tr>
<td>Row Status</td>
<td>The row status of this entry.</td>
</tr>
<tr>
<td>SNMP remote user</td>
<td>A user associated with an SNMP engine on a remote device.</td>
</tr>
</tbody>
</table>
Interface Commands

These commands are used to display or set communication parameters for an Ethernet port, aggregated link, or VLAN.

Table 4-42 Interface Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface</td>
<td>Configures an interface type and enters interface configuration mode</td>
<td>GC</td>
<td>4-116</td>
</tr>
<tr>
<td>description</td>
<td>Adds a description to an interface configuration</td>
<td>IC</td>
<td>4-117</td>
</tr>
<tr>
<td>speed-duplex</td>
<td>Configures the speed and duplex operation of a given interface when autonegotiation is disabled</td>
<td>IC</td>
<td>4-117</td>
</tr>
<tr>
<td>negotiation</td>
<td>Enables autonegotiation of a given interface</td>
<td>IC</td>
<td>4-118</td>
</tr>
<tr>
<td>capabilities</td>
<td>Advertises the capabilities of a given interface for use in autonegotiation</td>
<td>IC</td>
<td>4-119</td>
</tr>
<tr>
<td>flowcontrol</td>
<td>Enables flow control on a given interface</td>
<td>IC</td>
<td>4-120</td>
</tr>
<tr>
<td>shutdown</td>
<td>Disables an interface</td>
<td>IC</td>
<td>4-121</td>
</tr>
<tr>
<td>switchport broadcast</td>
<td>Configures the broadcast storm control threshold</td>
<td>IC</td>
<td>4-122</td>
</tr>
<tr>
<td>packet-rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>clear counters</td>
<td>Clears statistics on an interface</td>
<td>PE</td>
<td>4-122</td>
</tr>
<tr>
<td>show interfaces status</td>
<td>Displays status for the specified interface</td>
<td>NE, PE</td>
<td>4-123</td>
</tr>
<tr>
<td>show interfaces counters</td>
<td>Displays statistics for the specified interfaces</td>
<td>NE, PE</td>
<td>4-124</td>
</tr>
<tr>
<td>show interfaces switchport</td>
<td>Displays the administrative and operational status of an interface</td>
<td>NE, PE</td>
<td>4-125</td>
</tr>
</tbody>
</table>

interface
This command configures an interface type and enter interface configuration mode. Use the no form to remove a trunk.

Syntax

interface interface

no interface port-channel channel-id

interface

• ethernet unit/port
 - unit - Stack unit. (Always unit 1)
 - port - Port number. (Range: 1-26/50)
• port-channel channel-id (Range: 1-32)
• vlan vlan-id (Range: 1-4094)

Default Setting

None
Command Mode

Global Configuration

Example

To specify port 24, enter the following command:

```
Console(config)#interface ethernet 1/24
Console(config-if)#
```

description

This command adds a description to an interface. Use the **no** form to remove the description.

Syntax

```
description string
no description
```

- **string** - Comment or a description to help you remember what is attached to this interface. (Range: 1-64 characters)

Default Setting

None

Command Mode

Interface Configuration (Ethernet, Port Channel)

Example

The following example adds a description to port 24.

```
Console(config)#interface ethernet 1/24
Console(config-if)#description RD-SW#3
Console(config-if)#
```

speed-duplex

This command configures the speed and duplex mode of a given interface when autonegotiation is disabled. Use the **no** form to restore the default.

Syntax

```
speed-duplex {1000full | 100full | 100half | 10full | 10half}
no speed-duplex
```

- **1000full** - Forces 1000 Mbps full-duplex operation
- **100full** - Forces 100 Mbps full-duplex operation
- **100half** - Forces 100 Mbps half-duplex operation
- **10full** - Forces 10 Mbps full-duplex operation
- **10half** - Forces 10 Mbps half-duplex operation
Default Setting

- Auto-negotiation is enabled by default.
- When auto-negotiation is disabled, the default speed-duplex setting is 100half for 100BASE-TX ports and 1000full for Gigabit Ethernet ports.

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- To force operation to the speed and duplex mode specified in a speed-duplex command, use the no negotiation command to disable auto-negotiation on the selected interface.
- When using the negotiation command to enable auto-negotiation, the optimal settings will be determined by the capabilities command. To set the speed/duplex mode under auto-negotiation, the required mode must be specified in the capabilities list for an interface.

Example

The following example configures port 5 to 100 Mbps, half-duplex operation.

```
Console(config)#interface ethernet 1/5
Console(config-if)#speed-duplex 100half
Console(config-if)#no negotiation
Console(config-if)#
```

Related Commands

- negotiation (4-118)
- capabilities (4-119)

negotiation

This command enables autonegotiation for a given interface. Use the no form to disable autonegotiation.

Syntax

```
[no] negotiation
```

Default Setting

Enabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- When auto-negotiation is enabled the switch will negotiate the best settings for a link based on the capabilities command. When auto-negotiation is disabled, you must manually specify the link attributes with the speed-duplex and flowcontrol commands.
• If autonegotiation is disabled, auto-MDI/MDI-X pin signal configuration will also be disabled for the RJ-45 ports.

Example
The following example configures port 11 to use autonegotiation.

```
Console(config)#interface ethernet 1/11
Console(config-if)#negotiation
Console(config-if)#
```

Related Commands

 capabilities (4-119)
 speed-duplex (4-117)

capabilities
This command advertises the port capabilities of a given interface during autonegotiation. Use the no form with parameters to remove an advertised capability, or the no form without parameters to restore the default values.

Syntax

```
[no] capabilities {1000full | 100full | 100half | 10full | 10half | flowcontrol | symmetric}
```

- 1000full - Supports 1000 Mbps full-duplex operation
- 100full - Supports 100 Mbps full-duplex operation
- 100half - Supports 100 Mbps half-duplex operation
- 10full - Supports 10 Mbps full-duplex operation
- 10half - Supports 10 Mbps half-duplex operation
- flowcontrol - Supports flow control
- symmetric (Gigabit only) - When specified, the port transmits and receives pause frames; when not specified, the port will auto-negotiate to determine the sender and receiver for asymmetric pause frames. (The current switch ASIC only supports symmetric pause frames.)

Default Setting

- 100BASE-TX: 10half, 10full, 100half, 100full
- 1000BASE-T: 10half, 10full, 100half, 100full, 1000full
- SFP: 1000full

Command Mode

 Interface Configuration (Ethernet, Port Channel)

Command Usage

When auto-negotiation is enabled with the negotiation command, the switch will negotiate the best settings for a link based on the capabilities command. When auto-negotiation is disabled, you must manually specify the link attributes with the speed-duplex and flowcontrol commands.
Example

The following example configures Ethernet port 5 capabilities to 100half, 100full and flow control.

```
Console(config)#interface ethernet 1/5
Console(config-if)#capabilities 100half
Console(config-if)#capabilities 100full
Console(config-if)#capabilities flowcontrol
Console(config-if)#
```

Related Commands

- negotiation (4-118)
- speed-duplex (4-117)
- flowcontrol (4-120)

flowcontrol

This command enables flow control. Use the no form to disable flow control.

Syntax

```
[no] flowcontrol
```

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- Flow control can eliminate frame loss by “blocking” traffic from end stations or segments connected directly to the switch when its buffers fill. When enabled, back pressure is used for half-duplex operation and IEEE 802.3x for full-duplex operation.
- To force flow control on or off (with the flowcontrol or no flowcontrol command), use the no negotiation command to disable auto-negotiation on the selected interface.
- When using the negotiation command to enable auto-negotiation, the optimal settings will be determined by the capabilities command. To enable flow control under auto-negotiation, “flowcontrol” must be included in the capabilities list for any port.
- Avoid using flow control on a port connected to a hub unless it is actually required to solve a problem. Otherwise back pressure jamming signals may degrade overall performance for the segment attached to the hub.
Example

The following example enables flow control on port 5.

```
Console(config)#interface ethernet 1/5
Console(config-if)#flowcontrol
Console(config-if)#no negotiation
Console(config-if)#
```

Related Commands

- negotiation (4-118)
- capabilities (flowcontrol, symmetric) (4-119)

shutdown

This command disables an interface. To restart a disabled interface, use the no form.

Syntax

```
[no] shutdown
```

Default Setting

All interfaces are enabled.

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

This command allows you to disable a port due to abnormal behavior (e.g., excessive collisions), and then reenable it after the problem has been resolved. You may also want to disable a port for security reasons.

Example

The following example disables port 5.

```
Console(config)#interface ethernet 1/5
Console(config-if)#shutdown
Console(config-if)#
```
switchport broadcast packet-rate
This command configures broadcast storm control. Use the no form to disable broadcast storm control.

Syntax

```
switchport broadcast octet-rate rate
no switchport broadcast
```

`rate` - Threshold level as a rate; i.e., kilobits per second.
(Range: 500-262143)

Default Setting

- Enabled for all ports
- Packet-rate limit: 500 pps

Command Mode

Interface Configuration (Ethernet)

Command Usage

- When broadcast traffic exceeds the specified threshold, packets above that threshold are dropped.
- This command can enable or disable broadcast storm control for the selected interface. However, the specified threshold value applies to all ports on the switch.

Example

The following shows how to configure broadcast storm control at 500 packets per second:

```
Console(config)#interface ethernet 1/5
Console(config-if)#switchport broadcast packet-rate 500
Console(config-if)#
```

clear counters

This command clears statistics on an interface.

Syntax

```
clear counters interface
```

`interface`

```
• ethernet unit/port
  - unit - Stack unit. (Always unit 1)
  - port - Port number. (Range: 1-26/50)
```

Default Setting

None
Command Mode
Privileged Exec

Command Usage
Statistics are only initialized for a power reset. This command sets the base value for displayed statistics to zero for the current management session. However, if you log out and back into the management interface, the statistics displayed will show the absolute value accumulated since the last power reset.

Example
The following example clears statistics on port 5.

```
Console#clear counters ethernet 1/5
Console#
```

show interfaces status
This command displays the status for an interface.

Syntax
```
show interfaces status [interface]
```

interface
- ethernet unit/port
 - unit - Stack unit. (Always unit 1)
 - port - Port number. (Range: 1-26/50)
- port-channel channel-id (Range: 1-32)
- vlan vlan-id (Range: 1-4094)

Default Setting
Shows the status for all interfaces.

Command Mode
Normal Exec, Privileged Exec

Command Usage
If no interface is specified, information on all interfaces is displayed. For a description of the items displayed by this command, see “Displaying Connection Status” on page 3-76.
Example

Console#show interfaces status ethernet 1/5
Information of Eth 1/5
Basic information:
 Port type: 100TX
 Mac address: 00-12-CF-12-34-61
Configuration:
 Name:
 Port admin: Up
 Speed-duplex: Auto
 Capabilities: 10half, 10full, 100half, 100full,
 Broadcast storm: Enabled
 Broadcast storm limit: 500 packets/second
 Flow control: Disabled
 Lacp: Disabled
 Port security: Disabled
 Max MAC count: 0
 Port security action: None
Current status:
 Link status: Up
 Port operation status: Up
 Operation speed-duplex: 100full
 Flow control type: None
Console#show interfaces status vlan 1
Information of VLAN 1
 MAC address: 00-12-CF-12-34-56

show interfaces counters
This command displays interface statistics.

Syntax

show interfaces counters [interface]

 interface
 • ethernet unit/port
 - unit - Stack unit. (Always unit 1)
 - port - Port number. (Range: 1-26/50)
 • port-channel channel-id (Range: 1-32)

Default Setting

 Shows the counters for all interfaces.

Command Mode

 Normal Exec, Privileged Exec

Command Usage

 If no interface is specified, information on all interfaces is displayed. For a description of the items displayed by this command, see “Showing Port Statistics” on page 3-95.
Example

```
Console#show interfaces counters ethernet 1/7
Ethernet 1/7
Ifhtable stats:
  Octets input: 30658, Octets output: 196550
  Unicast input: 6, Unicast output: 5
  Discard input: 0, Discard output: 0
  Error input: 0, Error output: 0
  Unknown protos input: 0, QLen output: 0
Extended iftable stats:
  Multi-cast input: 0, Multi-cast output: 3064
  Broadcast input: 262, Broadcast output: 1
Ether-like stats:
  Alignment errors: 0, FCS errors: 0
  Single Collision frames: 0, Multiple collision frames: 0
  SQE Test errors: 0, Deferred transmissions: 0
  Late collisions: 0, Excessive collisions: 0
  Internal mac transmit errors: 0, Internal mac receive errors: 0
  Frame too longs: 0, Carrier sense errors: 0
  Symbol errors: 0
RMON stats:
  Drop events: 0, Octets: 227208, Packets: 3338
  Broadcast pkts: 263, Multi-cast pkts: 3064
  Undersize pkts: 0, Oversize pkts: 0
  Fragments: 0, Jabbers: 0
  CRC align errors: 0, Collisions: 0
  Packet size <= 64 octets: 3150, Packet size 65 to 127 octets: 139
  Packet size 128 to 255 octets: 49, Packet size 256 to 511 octets: 0
  Packet size 512 to 1023 octets: 0, Packet size 1024 to 1518 octets: 0
Console#
```

show interfaces switchport

This command displays the administrative and operational status of the specified interfaces.

Syntax

```
show interfaces switchport [interface]
```

interface

- **ethernet unit/port**
 - unit - Stack unit. (Always unit 1)
 - port - Port number. (Range: 1-26/50)
- **port-channel channel-id** (Range: 1-32)

Default Setting

Shows all interfaces.

Command Mode

Normal Exec, Privileged Exec

Command Usage

If no interface is specified, information on all interfaces is displayed.
Example

This example shows the configuration setting for port 24.

```
Console#show interfaces switchport ethernet 1/24
Broadcast threshold:   Enabled, 500 packets/second
LACP status:          Enabled
Ingress Rate Limit:   Disabled, 100000 Kbits per second
Egress Rate Limit:    Disabled, 100000 Kbits per second
VLAN membership mode: Hybrid
Ingress rule:         Enabled
Acceptable frame type: All frames
Native VLAN:          1
Priority for untagged traffic: 0
Gvrp status:         Disabled
Allowed Vlan:        1(u),
Forbidden Vlan:
Private-VLAN mode:  NONE
Private-VLAN host-association:  NONE
Private-VLAN mapping:  NONE
Console#
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadcast threshold</td>
<td>Shows if broadcast storm suppression is enabled or disabled; if enabled it also shows the threshold level (page 4-122).</td>
</tr>
<tr>
<td>LACP status</td>
<td>Shows if Link Aggregation Control Protocol has been enabled or disabled (page 4-132).</td>
</tr>
<tr>
<td>Ingress rate limit</td>
<td>Shows if ingress rate limiting is enabled, and the current rate limit. (page 4-129).</td>
</tr>
<tr>
<td>Egress rate limit</td>
<td>Shows if egress rate limiting is enabled, and the current rate limit. (page 4-129).</td>
</tr>
<tr>
<td>VLAN membership mode</td>
<td>Indicates membership mode as Trunk or Hybrid (page 4-170).</td>
</tr>
<tr>
<td>Ingress rule</td>
<td>Shows if ingress filtering is enabled or disabled (page 4-171). Note: Ingress filtering is always enabled.</td>
</tr>
<tr>
<td>Acceptable frame type</td>
<td>Shows if acceptable VLAN frames include all types or tagged frames only (page 4-171).</td>
</tr>
<tr>
<td>Native VLAN</td>
<td>Indicates the default Port VLAN ID (page 4-172).</td>
</tr>
<tr>
<td>Priority for untagged traffic</td>
<td>Indicates the default priority for untagged frames (page 4-184).</td>
</tr>
<tr>
<td>Gvrp status</td>
<td>Shows if GARP VLAN Registration Protocol is enabled or disabled (page 4-165).</td>
</tr>
<tr>
<td>Allowed Vlan</td>
<td>Shows the VLANs this interface has joined, where “(u)” indicates untagged and “(t)” indicates tagged (page 4-173).</td>
</tr>
<tr>
<td>Forbidden Vlan</td>
<td>Shows the VLANs this interface can not dynamically join via GVRP (page 4-174).</td>
</tr>
<tr>
<td>Private VLAN mode</td>
<td>Shows the private VLAN mode as host, promiscuous, or none (4-182).</td>
</tr>
<tr>
<td>Private VLAN host-association</td>
<td>Shows the secondary (or community) VLAN with which this port is associated (4-183).</td>
</tr>
<tr>
<td>Private VLAN mapping</td>
<td>Shows the primary VLAN mapping for a promiscuous port (4-184).</td>
</tr>
</tbody>
</table>
Mirror Port Commands

This section describes how to mirror traffic from a source port to a target port.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>port monitor</td>
<td>Configures a mirror session</td>
<td>IC</td>
<td>4-127</td>
</tr>
<tr>
<td>show port monitor</td>
<td>Shows the configuration for a mirror port</td>
<td>PE</td>
<td>4-128</td>
</tr>
</tbody>
</table>

port monitor

This command configures a mirror session. Use the **no** form to clear a mirror session.

Syntax

```
port monitor interface [rx | tx]
no port monitor interface
```

- **interface** - ethernet unit/port (source port)
 - **unit** - Stack unit. (Always unit 1)
 - **port** - Port number. (Range: 1-26/50)
- **rx** - Mirror received packets.
- **tx** - Mirror transmitted packets.

Default Setting

No mirror session is defined.

Command Mode

Interface Configuration (Ethernet, destination port)

Command Usage

- You can mirror traffic from any source port to a destination port for real-time analysis. You can then attach a logic analyzer or RMON probe to the destination port and study the traffic crossing the source port in a completely unobtrusive manner.
- The destination port is set by specifying an Ethernet interface.
- The mirror port and monitor port speeds should match, otherwise traffic may be dropped from the monitor port.
- All mirror sessions must share the same destination port.
- When mirroring port traffic, the target port must be included in the same VLAN as the source port.
Example

The following example configures the switch to mirror received packets from port 6 to 11:

```
Console(config)#interface ethernet 1/11
Console(config-if)#port monitor ethernet 1/6 rx
Console(config-if)#
```

show port monitor

This command displays mirror information.

Syntax

```
show port monitor [interface]
```

- `interface` - ethernet unit/port (source port)
 - `unit` - Stack unit. (Always unit 1)
 - `port` - Port number. (Range: 1-26/50)

Default Setting

Shows all sessions.

Command Mode

Privileged Exec

Command Usage

This command displays the currently configured source port, destination port, and mirror mode (i.e., RX, TX).

Example

The following shows mirroring configured from port 6 to port 11:

```
Console(config)#interface ethernet 1/11
Console(config-if)#port monitor ethernet 1/6 rx
Console(config-if)#end
Console#show port monitor
Port Mirroring
-------------------------------------
Destination port(listen port):Eth1/11
Source port(monitored port) :Eth1/6
Mode                         :RX
```

```
Rate Limit Commands

This function allows the network manager to control the maximum rate for traffic received on an interface. Rate limiting is configured on interfaces at the edge of a network to limit traffic into or out of the network. Traffic that falls within the rate limit is transmitted, while packets that exceed the acceptable amount of traffic are dropped.

Rate limiting can be applied to individual ports or trunks. When an interface is configured with this feature, the traffic rate will be monitored by the hardware to verify conformity. Non-conforming traffic is dropped, conforming traffic is forwarded without any changes.

Table 4-45  Rate Limit Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>rate-limit</td>
<td>Configures the maximum input or output rate for a port</td>
<td>IC</td>
<td>4-129</td>
</tr>
</tbody>
</table>

rate-limit

Use this command to define the rate limit level for a specific interface. Use this command without specifying a rate to restore the default rate limit level. Use the no form to restore the default status of disabled.

Syntax

```
rate-limit <input | output> [rate]
no rate-limit <input | output>
```

- **input** – Input rate limit
- **output** – Output rate limit
- **rate** – Maximum value in Mbps. (Range: 1 to 1000 Mbps)

Default Setting

Gigabit Ethernet: 1000 Mbps

Command Mode

Interface Configuration (Ethernet, Port Channel)

Example

```
Console(config)#interface ethernet 1/1
Console(config-if)#rate-limit input 1000
Console(config-if)#
```
**Link Aggregation Commands**

Ports can be statically grouped into an aggregate link (i.e., trunk) to increase the bandwidth of a network connection or to ensure fault recovery. Or you can use the Link Aggregation Control Protocol (LACP) to automatically negotiate a trunk link between this switch and another network device. For static trunks, the switches have to comply with the Cisco EtherChannel standard. For dynamic trunks, the switches have to comply with LACP. This switch supports up to 32 trunks. For example, a trunk consisting of two 1000 Mbps ports can support an aggregate bandwidth of 4 Gbps when operating at full duplex.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Manual Configuration Commands</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>interface port-channel</td>
<td>Configures a trunk and enters interface configuration mode for the trunk</td>
<td>GC</td>
<td>4-116</td>
</tr>
<tr>
<td>channel-group</td>
<td>Adds a port to a trunk</td>
<td>IC (Ethernet)</td>
<td>4-131</td>
</tr>
<tr>
<td><strong>Dynamic Configuration Command</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lACP</td>
<td>Configures LACP for the current interface</td>
<td>IC (Ethernet)</td>
<td>4-132</td>
</tr>
<tr>
<td>lACP system-priority</td>
<td>Configures a port's LACP system priority</td>
<td>IC (Ethernet)</td>
<td>4-133</td>
</tr>
<tr>
<td>lACP admin-key</td>
<td>Configures a port's administration key</td>
<td>IC (Ethernet)</td>
<td>4-134</td>
</tr>
<tr>
<td>lACP admin-key</td>
<td>Configures an port channel's administration key</td>
<td>IC (Port Channel)</td>
<td>4-135</td>
</tr>
<tr>
<td>lACP port-priority</td>
<td>Configures a port's LACP port priority</td>
<td>IC (Ethernet)</td>
<td>4-136</td>
</tr>
<tr>
<td><strong>Trunk Status Display Command</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>show interfaces status port-channel</td>
<td>Shows trunk information</td>
<td>NE, PE</td>
<td>4-123</td>
</tr>
<tr>
<td>show lACP</td>
<td>Shows LACP information</td>
<td>PE</td>
<td>4-136</td>
</tr>
</tbody>
</table>
Guidelines for Creating Trunks

General Guidelines –
• Finish configuring port trunks before you connect the corresponding network cables between switches to avoid creating a loop.
• A trunk can have up to eight ports.
• The ports at both ends of a connection must be configured as trunk ports.
• All ports in a trunk must be configured in an identical manner, including communication mode (i.e., speed, duplex mode and flow control), VLAN assignments, and CoS settings.
• All the ports in a trunk have to be treated as a whole when moved from/to, added or deleted from a VLAN via the specified port-channel.
• STP, VLAN, and IGMP settings can only be made for the entire trunk via the specified port-channel.

Dynamically Creating a Port Channel –
Ports assigned to a common port channel must meet the following criteria:
• Ports must have the same LACP system priority.
• Ports must have the same port admin key (Ethernet Interface).
• If the port channel admin key (lacp admin key - Port Channel) is not set when a channel group is formed (i.e., it has the null value of 0), this key is set to the same value as the port admin key (lacp admin key - Ethernet Interface) used by the interfaces that joined the group.
• However, if the port channel admin key is set, then the port admin key must be set to the same value for a port to be allowed to join a channel group.
• If a link goes down, LACP port priority is used to select the backup link.

channel-group
This command adds a port to a trunk. Use the no form to remove a port from a trunk.

Syntax
  channel-group channel-id
  no channel-group

  channel-id - Trunk index (Range: 1-32)

Default Setting
The current port will be added to this trunk.

Command Mode
Interface Configuration (Ethernet)

Command Usage
• When configuring static trunks, the switches must comply with the Cisco EtherChannel standard.
• Use no channel-group to remove a port group from a trunk.
• Use no interfaces port-channel to remove a trunk from the switch.
Example
The following example creates trunk 1 and then adds port 11:

```plaintext
Console(config)#interface port-channel 1
Console(config-if)#exit
Console(config)#interface ethernet 1/11
Console(config-if)#channel-group 1
Console(config-if)#
```

**lacp**
This command enables 802.3ad Link Aggregation Control Protocol (LACP) for the current interface. Use the **no** form to disable it.

**Syntax**

```plaintext
[no] lacp
```

**Default Setting**

Disabled

**Command Mode**

Interface Configuration (Ethernet)

**Command Usage**

- The ports on both ends of an LACP trunk must be configured for full duplex, and auto-negotiation.
- A trunk formed with another switch using LACP will automatically be assigned the next available port-channel ID.
- If the target switch has also enabled LACP on the connected ports, the trunk will be activated automatically.
- If more than eight ports attached to the same target switch have LACP enabled, the additional ports will be placed in standby mode, and will only be enabled if one of the active links fails.
Example

The following shows LACP enabled on ports 11-13. Because LACP has also been enabled on the ports at the other end of the links, the `show interfaces status port-channel 1` command shows that Trunk 1 has been established.

```
Console(config)#interface ethernet 1/11
Console(config-if)#lacp
Console(config-if)#exit
Console(config)#interface ethernet 1/12
Console(config-if)#lacp
Console(config-if)#exit
Console(config)#interface ethernet 1/13
Console(config-if)#lacp
Console(config-if)#exit
Console(config)#exit
Console#show interfaces status port-channel 1
Information of Trunk 1
Basic information:
 Port type: 100TX
 Mac address: 00-12-CF-12-34-72
Configuration:
 Name:
 Port admin: Up
 Speed-duplex: Auto
 Capabilities: 10half, 10full, 100half, 100full
 Flow control status: Disabled
 Port security: Disabled
 Max MAC count: 0
Current status:
 Created by: LACP
 Link status: Up
 Operation speed-duplex: 100full
 Flow control type: None
 Member Ports: Eth1/11, Eth1/12, Eth1/13,
Console#
```

**lacp system-priority**

This command configures a port's LACP system priority. Use the `no` form to restore the default setting.

**Syntax**

```
lacp {actor | partner} system-priority priority
no lacp {actor | partner} system-priority
```

- **actor** - The local side an aggregate link.
- **partner** - The remote side of an aggregate link.
- **priority** - This priority is used to determine link aggregation group (LAG) membership, and to identify this device to other switches during LAG negotiations. (Range: 0-65535)

**Default Setting**

32768
Command Mode

Interface Configuration (Ethernet)

Command Usage

- Port must be configured with the same system priority to join the same LAG.
- System priority is combined with the switch’s MAC address to form the LAG identifier. This identifier is used to indicate a specific LAG during LACP negotiations with other systems.
- Once the remote side of a link has been established, LACP operational settings are already in use on that side. Configuring LACP settings for the partner only applies to its administrative state, not its operational state, and will only take effect the next time an aggregate link is established with the partner.

Example

```
Console(config)#interface ethernet 1/5
Console(config-if)#lacp actor system-priority 3
Console(config-if)#
```

**Iacp admin-key** (Ethernet Interface)
This command configures a port’s LACP administration key. Use the **no** form to restore the default setting.

Syntax

```
lacp {actor | partner} admin-key key
[no] lacp {actor | partner} admin-key
```

- **actor** - The local side an aggregate link.
- **partner** - The remote side of an aggregate link.
- **key** - The port admin key must be set to the same value for ports that belong to the same link aggregation group (LAG). (Range: 0-65535)

Default Setting

0

Command Mode

Interface Configuration (Ethernet)

Command Usage

- Ports are only allowed to join the same LAG if (1) the LACP system priority matches, (2) the LACP port admin key matches, and (3) the LACP port channel key matches (if configured).
- If the port channel admin key (**lacp admin key** - Port Channel) is not set when a channel group is formed (i.e., it has the null value of 0), this key is set to the same value as the port admin key (**lacp admin key** - Ethernet Interface) used by the interfaces that joined the group.
• Once the remote side of a link has been established, LACP operational settings are already in use on that side. Configuring LACP settings for the partner only applies to its administrative state, not its operational state, and will only take effect the next time an aggregate link is established with the partner.

Example

```
Console(config)#interface ethernet 1/5
Console(config-if)#lacp actor admin-key 120
Console(config-if)#
```

**lacp admin-key** (Port Channel)
This command configures a port channel's LACP administration key string. Use the no form to restore the default setting.

**Syntax**

```
lacp {actor | partner} admin-key key
[no] lacp {actor | partner} admin-key
```

key - The port channel admin key is used to identify a specific link aggregation group (LAG) during local LACP setup on this switch. (Range: 0-65535)

**Default Setting**

0

**Command Mode**

Interface Configuration (Port Channel)

**Command Usage**

- Ports are only allowed to join the same LAG if (1) the LACP system priority matches, (2) the LACP port admin key matches, and (3) the LACP port channel key matches (if configured).
- If the port channel admin key (**lacp admin key** - Port Channel) is not set when a channel group is formed (i.e., it has the null value of 0), this key is set to the same value as the port admin key (**lacp admin key** - Ethernet Interface) used by the interfaces that joined the group. Note that when the LAG is no longer used, the port channel admin key is reset to 0.

**Example**

```
Console(config)#interface port-channel 1
Console(config-if)#lacp actor admin-key 3
Console(config-if)#
```
**lACP port-priority**
This command configures LACP port priority. Use the `no` form to restore the default setting.

**Syntax**
```
lACP {actor | partner} port-priority priority
no lACP {actor | partner} port-priority
```
- **actor** - The local side an aggregate link.
- **partner** - The remote side of an aggregate link.
- **priority** - LACP port priority is used to select a backup link. (Range: 0-65535)

**Default Setting**
32768

**Command Mode**
Interface Configuration (Ethernet)

**Command Usage**
- Setting a lower value indicates a higher effective priority.
- If an active port link goes down, the backup port with the highest priority is selected to replace the downed link. However, if two or more ports have the same LACP port priority, the port with the lowest physical port number will be selected as the backup port.
- Once the remote side of a link has been established, LACP operational settings are already in use on that side. Configuring LACP settings for the partner only applies to its administrative state, not its operational state, and will only take effect the next time an aggregate link is established with the partner.

**Example**
```
Console(config)#interface ethernet 1/5
Console(config-if)#lacp actor port-priority 128
```

**show lACP**
This command displays LACP information.

**Syntax**
```
show lACP [port-channel] {counters | internal | neighbors | sysid}
```
- **port-channel** - Local identifier for a link aggregation group. (Range: 1-32)
- **counters** - Statistics for LACP protocol messages.
- **internal** - Configuration settings and operational state for local side.
- **neighbors** - Configuration settings and operational state for remote side.
- **sysid** - Summary of system priority and MAC address for all channel groups.
**Default Setting**
Port Channel: all

**Command Mode**
Privileged Exec

**Example**

```
Console#show lacp 1 counters
Port channel : 1

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LACPDU Sent</td>
<td>Number of valid LACPDU's transmitted from this channel group.</td>
</tr>
<tr>
<td>LACPDU Received</td>
<td>Number of valid LACPDU's received on this channel group.</td>
</tr>
<tr>
<td>Marker Sent</td>
<td>Number of valid Marker PDUs transmitted from this channel group.</td>
</tr>
<tr>
<td>Marker Received</td>
<td>Number of valid Marker PDUs received by this channel group.</td>
</tr>
<tr>
<td>LACPDU Unknown Pkts</td>
<td>Number of frames received that either (1) Carry the Slow Protocols Ethernet Type value, but contain an unknown PDU, or (2) are addressed to the Slow Protocols group MAC Address, but do not carry the Slow Protocols Ethernet Type.</td>
</tr>
<tr>
<td>LACPDU Illegal Pkts</td>
<td>Number of frames that carry the Slow Protocols Ethernet Type value, but contain a badly formed PDU or an illegal value of Protocol Subtype.</td>
</tr>
</tbody>
</table>
```

```
Console#show lacp 1 internal
Port channel : 1

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oper Key</td>
<td>4</td>
</tr>
<tr>
<td>Admin Key</td>
<td>0</td>
</tr>
<tr>
<td>Eth 1/1</td>
<td></td>
</tr>
<tr>
<td>LACPDU Internal</td>
<td>30 sec</td>
</tr>
<tr>
<td>LACP System Priority</td>
<td>32768</td>
</tr>
<tr>
<td>LACP Port Priority</td>
<td>32768</td>
</tr>
<tr>
<td>Admin Key</td>
<td>4</td>
</tr>
<tr>
<td>Oper Key</td>
<td>4</td>
</tr>
<tr>
<td>Admin State</td>
<td>defaulted, aggregation, long timeout, LACP-activity</td>
</tr>
<tr>
<td>Oper State</td>
<td>distributing, collecting, synchronization, aggregation, long timeout, LACP-activity</td>
</tr>
</tbody>
</table>
```

Table 4-47  `show lacp counters` - display description

- **LACPDU Sent**: Number of valid LACPDU's transmitted from this channel group.
- **LACPDU Received**: Number of valid LACPDU's received on this channel group.
- **Marker Sent**: Number of valid Marker PDUs transmitted from this channel group.
- **Marker Received**: Number of valid Marker PDUs received by this channel group.
- **LACPDU Unknown Pkts**: Number of frames received that either (1) Carry the Slow Protocols Ethernet Type value, but contain an unknown PDU, or (2) are addressed to the Slow Protocols group MAC Address, but do not carry the Slow Protocols Ethernet Type.
- **LACPDU Illegal Pkts**: Number of frames that carry the Slow Protocols Ethernet Type value, but contain a badly formed PDU or an illegal value of Protocol Subtype.
### Table 4-48  show lacp internal - display description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oper Key</td>
<td>Current operational value of the key for the aggregation port.</td>
</tr>
<tr>
<td>Admin Key</td>
<td>Current administrative value of the key for the aggregation port.</td>
</tr>
<tr>
<td>LACPDU Internal</td>
<td>Number of seconds before invalidating received LACPDU information.</td>
</tr>
<tr>
<td>LACP System Priority</td>
<td>LACP system priority assigned to this port channel.</td>
</tr>
<tr>
<td>LACP Port Priority</td>
<td>LACP port priority assigned to this interface within the channel group.</td>
</tr>
</tbody>
</table>
| Admin State, Oper State | Administrative or operational values of the actor’s state parameters:  
  • Expired – The actor’s receive machine is in the expired state;  
  • Defaulted – The actor’s receive machine is using defaulted operational partner information, administratively configured for the partner.  
  • Distributing – If false, distribution of outgoing frames on this link is disabled; i.e., distribution is currently disabled and is not expected to be enabled in the absence of administrative changes or changes in received protocol information.  
  • Collecting – Collection of incoming frames on this link is enabled; i.e., collection is currently enabled and is not expected to be disabled in the absence of administrative changes or changes in received protocol information.  
  • Synchronization – The System considers this link to be IN_SYNC; i.e., it has been allocated to the correct Link Aggregation Group, the group has been associated with a compatible Aggregator, and the identity of the Link Aggregation Group is consistent with the System ID and operational Key information transmitted.  
  • Aggregation – The system considers this link to be aggregatable; i.e., a potential candidate for aggregation.  
  • Long timeout – Periodic transmission of LACPDUUs uses a slow transmission rate.  
  • LACP-Activity – Activity control value with regard to this link. (0: Passive; 1: Active) |

```console
Console#show lacp 1 neighbors
Port channel 1 neighbors

Eth 1/1

Partner Admin System ID : 32768, 00-00-00-00-00-00
Partner Oper System ID : 32768, 00-00-00-00-00-01
Partner Admin Port Number : 1
Partner Oper Port Number : 1
Port Admin Priority : 32768
Port Oper Priority : 32768
Admin Key : 0
Oper Key : 4
Admin State : defaulted, distributing, collecting, synchronization, long timeout,
Oper State : distributing, collecting, synchronization, aggregation, long timeout, LACP-activity
```
### Table 4-49 show lacp neighbors - display description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partner Admin System ID</td>
<td>LAG partner’s system ID assigned by the user.</td>
</tr>
<tr>
<td>Partner Oper System ID</td>
<td>LAG partner’s system ID assigned by the LACP protocol.</td>
</tr>
<tr>
<td>Partner Admin Port Number</td>
<td>Current administrative value of the port number for the protocol Partner.</td>
</tr>
<tr>
<td>Partner Oper Port Number</td>
<td>Operational port number assigned to this aggregation port by the port’s protocol partner.</td>
</tr>
<tr>
<td>Port Admin Priority</td>
<td>Current administrative value of the port priority for the protocol partner.</td>
</tr>
<tr>
<td>Port Oper Priority</td>
<td>Priority value assigned to this aggregation port by the partner.</td>
</tr>
<tr>
<td>Admin Key</td>
<td>Current administrative value of the Key for the protocol partner.</td>
</tr>
<tr>
<td>Oper Key</td>
<td>Current operational value of the Key for the protocol partner.</td>
</tr>
<tr>
<td>Admin State</td>
<td>Administrative values of the partner’s state parameters. (See preceding table.)</td>
</tr>
<tr>
<td>Oper State</td>
<td>Operational values of the partner’s state parameters. (See preceding table.)</td>
</tr>
</tbody>
</table>

```
Console#show lacp sysid
Port Channel | System Priority | System MAC Address
-------------|-----------------|-------------------
1 | 32768 | 00-12-CF-8F-2C-A7|
2 | 32768 | 00-12-CF-8F-2C-A7|
3 | 32768 | 00-12-CF-8F-2C-A7|
4 | 32768 | 00-12-CF-8F-2C-A7|
```

### Table 4-50 show lacp sysid - display description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel group</td>
<td>A link aggregation group configured on this switch.</td>
</tr>
<tr>
<td>System Priority*</td>
<td>LACP system priority for this channel group.</td>
</tr>
<tr>
<td>System MAC Address*</td>
<td>System MAC address.</td>
</tr>
</tbody>
</table>

* The LACP system priority and system MAC address are concatenated to form the LAG system ID.
Address Table Commands

These commands are used to configure the address table for filtering specified addresses, displaying current entries, clearing the table, or setting the aging time.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac-address-table static</td>
<td>Maps a static address to a port in a VLAN</td>
<td>GC</td>
<td>4-140</td>
</tr>
<tr>
<td>clear mac-address-table dynamic</td>
<td>Removes any learned entries from the forwarding database</td>
<td>PE</td>
<td>4-141</td>
</tr>
<tr>
<td>show mac-address-table</td>
<td>Displays entries in the bridge-forwarding database</td>
<td>PE</td>
<td>4-141</td>
</tr>
<tr>
<td>mac-address-table aging-time</td>
<td>Sets the aging time of the address table</td>
<td>GC</td>
<td>4-142</td>
</tr>
<tr>
<td>show mac-address-table aging-time</td>
<td>Shows the aging time for the address table</td>
<td>PE</td>
<td>4-143</td>
</tr>
</tbody>
</table>

mac-address-table static
This command maps a static address to a destination port in a VLAN. Use the no form to remove an address.

Syntax

mac-address-table static mac-address interface interface vlan vlan-id [action]
no mac-address-table static mac-address vlan vlan-id

- mac-address - MAC address.
- interface
- ethernet unit/port
  - unit - Stack unit. (Always unit 1)
  - port - Port number. (Range: 1-26/50)
- port-channel channel-id (Range: 1-32)
- vlan-id - VLAN ID (Range: 1-4094)
- action -
  - delete-on-reset - Assignment lasts until the switch is reset.
  - permanent - Assignment is permanent.

Default Setting
No static addresses are defined. The default mode is permanent.

Command Mode
Global Configuration
Command Usage

The static address for a host device can be assigned to a specific port within a specific VLAN. Use this command to add static addresses to the MAC Address Table. Static addresses have the following characteristics:

- Static addresses will not be removed from the address table when a given interface link is down.
- Static addresses are bound to the assigned interface and will not be moved. When a static address is seen on another interface, the address will be ignored and will not be written to the address table.
- A static address cannot be learned on another port until the address is removed with the `no` form of this command.

Example

```
Console(config)#mac-address-table static 00-12-cf-94-34-de interface ethernet 1/1 vlan 1 delete-on-reset
Console(config)#
```

clear mac-address-table dynamic

This command removes any learned entries from the forwarding database and clears the transmit and receive counts for any static or system configured entries.

Default Setting

None

Command Mode

Privileged Exec

Example

```
Console#clear mac-address-table dynamic
Console#
```

show mac-address-table

This command shows classes of entries in the bridge-forwarding database.

Syntax

```
show mac-address-table [address mac-address [mask]] [interface interface] [vlan vlan-id] [sort {address | vlan | interface}]
```

- `mac-address` - MAC address.
- `mask` - Bits to match in the address.
- `interface`
  - `ethernet unit/port`
    - `unit` - Stack unit. (Always unit 1)
    - `port` - Port number. (Range: 1-26/50)
  - `port-channel channel-id` (Range: 1-32)
  - `vlan-id` - VLAN ID (Range: 1-4094)
• sort - Sort by address, vlan or interface.

Default Setting
None

Command Mode
Privileged Exec

Command Usage
• The MAC Address Table contains the MAC addresses associated with each interface. Note that the Type field may include the following types:
  - Learned - Dynamic address entries
  - Permanent - Static entry
  - Delete-on-reset - Static entry to be deleted when system is reset
• The mask should be hexadecimal numbers (representing an equivalent bit mask) in the form xx-xx-xx-xx-xx-xx that is applied to the specified MAC address. Enter hexadecimal numbers, where an equivalent binary bit “0” means to match a bit and “1” means to ignore a bit. For example, a mask of 00-00-00-00-00-00 means an exact match, and a mask of FF-FF-FF-FF-FF means “any.”
• The maximum number of address entries is 8191.

Example

```
Console#show mac-address-table
Interface Mac Address Vlan Type
--------- ----------------- ---- -----------------
Eth 1/1 00-12-cf-94-34-de 1 Delete-on-reset
Trunk 2 00-12-cf-8f-aa-1b 1 Learned
Console#
```

**mac-address-table aging-time**
This command sets the aging time for entries in the address table. Use the no form to restore the default aging time.

**Syntax**

```
mac-address-table aging-time seconds
no mac-address-table aging-time

seconds - Aging time. (Range: 10-30000 seconds; 0 to disable aging)
```

Default Setting

300 seconds

Command Mode

Global Configuration

Command Usage

The aging time is used to age out dynamically learned forwarding information.
Example

```
Console(config)#mac-address-table aging-time 100
Console(config)#
```

**show mac-address-table aging-time**
This command shows the aging time for entries in the address table.

**Default Setting**

None

**Command Mode**

Privileged Exec

Example

```
Console#show mac-address-table aging-time
Aging time: 100 sec.
Console#
```
Spanning Tree Commands

This section includes commands that configure the Spanning Tree Algorithm (STA) globally for the switch, and commands that configure STA for the selected interface.

### Table 4-52 Spanning Tree Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>spanning-tree</td>
<td>Enables the spanning tree protocol</td>
<td>GC</td>
<td>4-145</td>
</tr>
<tr>
<td>spanning-tree mode</td>
<td>Configures STP, RSTP or MSTP mode</td>
<td>GC</td>
<td>4-145</td>
</tr>
<tr>
<td>spanning-tree forward-time</td>
<td>Configures the spanning tree bridge forward time</td>
<td>GC</td>
<td>4-146</td>
</tr>
<tr>
<td>spanning-tree hello-time</td>
<td>Configures the spanning tree bridge hello time</td>
<td>GC</td>
<td>4-147</td>
</tr>
<tr>
<td>spanning-tree max-age</td>
<td>Configures the spanning tree bridge maximum age</td>
<td>GC</td>
<td>4-147</td>
</tr>
<tr>
<td>spanning-tree priority</td>
<td>Configures the spanning tree bridge priority</td>
<td>GC</td>
<td>4-148</td>
</tr>
<tr>
<td>spanning-tree path-cost method</td>
<td>Configures the path cost method for RSTP/MSTP</td>
<td>GC</td>
<td>4-149</td>
</tr>
<tr>
<td>spanning-tree transmission-limit</td>
<td>Configures the transmission limit for RSTP/MSTP</td>
<td>GC</td>
<td>4-150</td>
</tr>
<tr>
<td>spanning-tree mst-configuration</td>
<td>Changes to MSTP configuration mode</td>
<td>GC</td>
<td>4-150</td>
</tr>
<tr>
<td>mst vlan</td>
<td>Adds VLANs to a spanning tree instance</td>
<td>MST</td>
<td>4-151</td>
</tr>
<tr>
<td>mst priority</td>
<td>Configures the priority of a spanning tree instance</td>
<td>MST</td>
<td>4-151</td>
</tr>
<tr>
<td>name</td>
<td>Configures the name for the multiple spanning tree</td>
<td>MST</td>
<td>4-152</td>
</tr>
<tr>
<td>revision</td>
<td>Configures the revision number for the multiple spanning tree</td>
<td>MST</td>
<td>4-153</td>
</tr>
<tr>
<td>max-hops</td>
<td>Configures the maximum number of hops allowed in the region before a BPDU is discarded</td>
<td>MST</td>
<td>4-153</td>
</tr>
<tr>
<td>spanning-tree spanning-disabled</td>
<td>Disables spanning tree for an interface</td>
<td>IC</td>
<td>4-154</td>
</tr>
<tr>
<td>spanning-tree cost</td>
<td>Configures the spanning tree path cost of an interface</td>
<td>IC</td>
<td>4-154</td>
</tr>
<tr>
<td>spanning-tree port-priority</td>
<td>Configures the spanning tree priority of an interface</td>
<td>IC</td>
<td>4-155</td>
</tr>
<tr>
<td>spanning-tree edge-port</td>
<td>Enables fast forwarding for edge ports</td>
<td>IC</td>
<td>4-156</td>
</tr>
<tr>
<td>spanning-tree portfast</td>
<td>Sets an interface to fast forwarding</td>
<td>IC</td>
<td>4-156</td>
</tr>
<tr>
<td>spanning-tree link-type</td>
<td>Configures the link type for RSTP/MSTP</td>
<td>IC</td>
<td>4-157</td>
</tr>
<tr>
<td>spanning-tree mst cost</td>
<td>Configures the path cost of an instance in the MST</td>
<td>IC</td>
<td>4-158</td>
</tr>
<tr>
<td>spanning-tree mst port-priority</td>
<td>Configures the priority of an instance in the MST</td>
<td>IC</td>
<td>4-159</td>
</tr>
<tr>
<td>spanning-tree protocol-migration</td>
<td>Re-checks the appropriate BPDU format</td>
<td>PE</td>
<td>4-160</td>
</tr>
<tr>
<td>show spanning-tree</td>
<td>Shows spanning tree configuration for the common spanning tree (i.e., overall bridge), a selected interface, or an instance within the multiple spanning tree</td>
<td>PE</td>
<td>4-160</td>
</tr>
<tr>
<td>show spanning-tree mst configuration</td>
<td>Shows the multiple spanning tree configuration</td>
<td>PE</td>
<td>4-162</td>
</tr>
</tbody>
</table>
spanning-tree
This command enables the Spanning Tree Algorithm globally for the switch. Use the no form to disable it.

Syntax
[no] spanning-tree

Default Setting
Spanning tree is enabled.

Command Mode
Global Configuration

Command Usage
The Spanning Tree Algorithm (STA) can be used to detect and disable network loops, and to provide backup links between switches, bridges or routers. This allows the switch to interact with other bridging devices (that is, an STA-compliant switch, bridge or router) in your network to ensure that only one route exists between any two stations on the network, and provide backup links which automatically take over when a primary link goes down.

Example
This example shows how to enable the Spanning Tree Algorithm for the switch:

```
Console(config)#spanning-tree
Console(config)#
```

spanning-tree mode
This command selects the spanning tree mode for this switch. Use the no form to restore the default.

Note: MSTP is not supported in the current software.

Syntax
spanning-tree mode {stp | rstp | mstp}
no spanning-tree mode

- stp - Spanning Tree Protocol (IEEE 802.1D)
- rstp - Rapid Spanning Tree Protocol (IEEE 802.1w)
- mstp - Multiple Spanning Tree (IEEE 802.1s)

Default Setting
rstp

Command Mode
Global Configuration

Command Usage
- Spanning Tree Protocol
  Uses RSTP for the internal state machine, but sends only 802.1D BPDUs.
- This creates one spanning tree instance for the entire network. If multiple VLANs are implemented on a network, the path between specific VLAN members may be inadvertently disabled to prevent network loops, thus isolating group members. When operating multiple VLANs, we recommend selecting the MSTP option.

• Rapid Spanning Tree Protocol

RSTP supports connections to either STP or RSTP nodes by monitoring the incoming protocol messages and dynamically adjusting the type of protocol messages the RSTP node transmits, as described below:

- STP Mode – If the switch receives an 802.1D BPDU after a port’s migration delay timer expires, the switch assumes it is connected to an 802.1D bridge and starts using only 802.1D BPDUs.

- RSTP Mode – If RSTP is using 802.1D BPDUs on a port and receives an RSTP BPDU after the migration delay expires, RSTP restarts the migration delay timer and begins using RSTP BPDUs on that port.

• Multiple Spanning Tree Protocol

- To allow multiple spanning trees to operate over the network, you must configure a related set of bridges with the same MSTP configuration, allowing them to participate in a specific set of spanning tree instances.

- A spanning tree instance can exist only on bridges that have compatible VLAN instance assignments.

- Be careful when switching between spanning tree modes. Changing modes stops all spanning-tree instances for the previous mode and restarts the system in the new mode, temporarily disrupting user traffic.

Example

The following example configures the switch to use Rapid Spanning Tree:

```
Console(config)#spanning-tree mode rstp
Console(config)#
```

```
spanning-tree forward-time
```

This command configures the spanning tree bridge forward time globally for this switch. Use the `no` form to restore the default.

Syntax

```
spanning-tree forward-time seconds
no spanning-tree forward-time
```

- `seconds` - Time in seconds. (Range: 4 - 30 seconds)

  The minimum value is the higher of 4 or \([(\text{max-age} / 2) + 1]\).

Default Setting

- 15 seconds

Command Mode

- Global Configuration
Command Usage

This command sets the maximum time (in seconds) the root device will wait before changing states (i.e., discarding to learning to forwarding). This delay is required because every device must receive information about topology changes before it starts to forward frames. In addition, each port needs time to listen for conflicting information that would make it return to the discarding state; otherwise, temporary data loops might result.

Example

```
Console(config)#spanning-tree forward-time 20
Console(config)#
```

spanning-tree hello-time
This command configures the spanning tree bridge hello time globally for this switch. Use the no form to restore the default.

Syntax

```
spanning-tree hello-time time
no spanning-tree hello-time
```

- `time` - Time in seconds. (Range: 1-10 seconds).
  The maximum value is the lower of 10 or \([(\text{max-age} / 2) -1]\).

Default Setting

2 seconds

Command Mode

Global Configuration

Command Usage

This command sets the time interval (in seconds) at which the root device transmits a configuration message.

Example

```
Console(config)#spanning-tree hello-time 5
Console(config)#
```

Related Commands

- spanning-tree forward-time (4-146)
- spanning-tree max-age (4-147)
**spanning-tree max-age**
This command configures the spanning tree bridge maximum age globally for this switch. Use the **no** form to restore the default.

**Syntax**

```
spanning-tree max-age seconds
no spanning-tree max-age
```

- **seconds** - Time in seconds. (Range: 6-40 seconds)
- The minimum value is the higher of 6 or \(2 \times (\text{hello-time} + 1)\).
- The maximum value is the lower of 40 or \(2 \times (\text{forward-time} - 1)\).

**Default Setting**

20 seconds

**Command Mode**

Global Configuration

**Command Usage**

This command sets the maximum time (in seconds) a device can wait without receiving a configuration message before attempting to reconfigure. All device ports (except for designated ports) should receive configuration messages at regular intervals. Any port that ages out STA information (provided in the last configuration message) becomes the designated port for the attached LAN. If it is a root port, a new root port is selected from among the device ports attached to the network.

**Example**

```
Console(config)#spanning-tree max-age 40
```

**Related Commands**

- spanning-tree forward-time (4-146)
- spanning-tree hello-time (4-147)

**spanning-tree priority**
This command configures the spanning tree priority globally for this switch. Use the **no** form to restore the default.

**Syntax**

```
spanning-tree priority priority
no spanning-tree priority
```

- **priority** - Priority of the bridge. (Range: 0 - 65535)
  (Range – 0-61440, in steps of 4096; Options: 0, 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, 61440)
Spanning Tree Commands

Default Setting
32768

Command Mode
Global Configuration

Command Usage
Bridge priority is used in selecting the root device, root port, and designated port. The device with the highest priority (i.e., lower numeric value) becomes the STA root device. However, if all devices have the same priority, the device with the lowest MAC address will then become the root device.

Example

```
Console(config)#spanning-tree priority 40000
Console(config)#
```

```spanning-tree pathcost method```
This command configures the path cost method used for Rapid Spanning Tree and Multiple Spanning Tree. Use the `no` form to restore the default.

Syntax

```
spanning-tree pathcost method {long | short}
no spanning-tree pathcost method
```

- **long** - Specifies 32-bit based values that range from 1-200,000,000. This method is based on the IEEE 802.1w Rapid Spanning Tree Protocol.
- **short** - Specifies 16-bit based values that range from 1-65535. This method is based on the IEEE 802.1 Spanning Tree Protocol.

Default Setting
Long method

Command Mode
Global Configuration

Command Usage
The path cost method is used to determine the best path between devices. Therefore, lower values should be assigned to ports attached to faster media, and higher values assigned to ports with slower media. Note that path cost (page 4-154) takes precedence over port priority (page 4-155).

Example

```
Console(config)#spanning-tree pathcost method long
Console(config)#
```
spanning-tree transmission-limit
This command configures the minimum interval between the transmission of consecutive RSTP/MSTP BPDUs. Use the no form to restore the default.

Syntax

spanning-tree transmission-limit count
no spanning-tree transmission-limit

count - The transmission limit in seconds. (Range: 1-10)

Default Setting

3

Command Mode

Global Configuration

Command Usage

This command limits the maximum transmission rate for BPDUs.

Example

```console
Console(config)#spanning-tree transmission-limit 4
Console(config)#
```

spanning-tree mst-configuration
This command changes to Multiple Spanning Tree (MST) configuration mode.

Default Setting

- No VLANs are mapped to any MST instance.
- The region name is set the switch’s MAC address.

Command Mode

Global Configuration

Example

```console
Console(config)#spanning-tree mst-configuration
Console(config-mstp)#
```

Related Commands

- mst vlan (4-151)
- mst priority (4-151)
- name (4-152)
- revision (4-153)
- max-hops (4-153)
mst vlan
This command adds VLANs to a spanning tree instance. Use the no form to remove the specified VLANs. Using the no form without any VLAN parameters to remove all VLANs.

Syntax
```
[no] mst instance_id vlan vlan-range
```
- `instance_id` - Instance identifier of the spanning tree. (Range: 0-4094)
- `vlan-range` - Range of VLANs. (Range: 1-4094)

Default Setting
none

Command Mode
MST Configuration

Command Usage
- Use this command to group VLANs into spanning tree instances. MSTP generates a unique spanning tree for each instance. This provides multiple pathways across the network, thereby balancing the traffic load, preventing wide-scale disruption when a bridge node in a single instance fails, and allowing for faster convergence of a new topology for the failed instance.
- By default all VLANs are assigned to the Internal Spanning Tree (MSTI 0) that connects all bridges and LANs within the MST region. This switch supports up to 58 instances. You should try to group VLANs which cover the same general area of your network. However, remember that you must configure all bridges within the same MSTI Region (page 4-152) with the same set of instances, and the same instance (on each bridge) with the same set of VLANs. Also, note that RSTP treats each MSTI region as a single node, connecting all regions to the Common Spanning Tree.

Example
```
Console(config-mstp)#mst 1 vlan 2-5
Console(config-mstp)#
```

mst priority
This command configures the priority of a spanning tree instance. Use the no form to restore the default.

Syntax
```
mst instance_id priority priority
do mst instance_id priority
```
- `instance_id` - Instance identifier of the spanning tree. (Range: 0-4094)
- `priority` - Priority of the spanning tree instance.
 (Range: 0-61440 in steps of 4096; Options: 0, 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, 61440)
Default Setting
32768

Command Mode
MST Configuration

Command Usage
- MST priority is used in selecting the root bridge and alternate bridge of the specified instance. The device with the highest priority (i.e., lowest numerical value) becomes the MSTI root device. However, if all devices have the same priority, the device with the lowest MAC address will then become the root device.
- You can set this switch to act as the MSTI root device by specifying a priority of 0, or as the MSTI alternate device by specifying a priority of 16384.

Example

```
Console(config-mstp)#mst 1 priority 4096
Console(config-mstp)#
```

name
This command configures the name for the multiple spanning tree region in which this switch is located. Use the `no` form to clear the name.

Syntax
```
name name
```
- `name` - Name of the spanning tree.

Default Setting
Switch’s MAC address

Command Mode
MST Configuration

Command Usage
The MST region name and revision number (page 4-153) are used to designate a unique MST region. A bridge (i.e., spanning-tree compliant device such as this switch) can only belong to one MST region. And all bridges in the same region must be configured with the same MST instances.

Example

```
Console(config-mstp)#name R&D
Console(config-mstp)#
```

Related Commands
revision (4-153)
revision
This command configures the revision number for this multiple spanning tree configuration of this switch. Use the no form to restore the default.

Syntax
```
revision number
```

- `number` - Revision number of the spanning tree. (Range: 0-65535)

Default Setting
0

Command Mode
MST Configuration

Command Usage
The MST region name (page 4-152) and revision number are used to designate a unique MST region. A bridge (i.e., spanning-tree compliant device such as this switch) can only belong to one MST region. And all bridges in the same region must be configured with the same MST instances.

Example
```
Console(config-mstp)#revision 1
Console(config-mstp)#
```

Related Commands
- `name (4-152)`

max-hops
This command configures the maximum number of hops in the region before a BPDU is discarded. Use the no form to restore the default.

Syntax
```
max-hops hop-number
```

- `hop-number` - Maximum hop number for multiple spanning tree. (Range: 1-40)

Default Setting
20

Command Mode
MST Configuration

Command Usage
An MSTI region is treated as a single node by the STP and RSTP protocols. Therefore, the message age for BPDUs inside an MSTI region is never changed. However, each spanning tree instance within a region, and the internal spanning tree (IST) that connects these instances use a hop count to
specify the maximum number of bridges that will propagate a BPDU. Each bridge decrements the hop count by one before passing on the BPDU. When the hop count reaches zero, the message is dropped.

Example

```
Console(config-mstp)#max-hops 30
Console(config-mstp)#
```

spanning-tree spanning-disabled

This command disables the spanning tree algorithm for the specified interface. Use the no form to reenable the spanning tree algorithm for the specified interface.

Syntax

```
[no] spanning-tree spanning-disabled
```

Default Setting

Enabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Example

This example disables the spanning tree algorithm for port 5.

```
Console(config)#interface ethernet 1/5
Console(config-if)#spanning-tree spanning-disabled
Console(config-if)#
```

spanning-tree cost

This command configures the spanning tree path cost for the specified interface. Use the no form to restore the default.

Syntax

```
spanning-tree cost cost
no spanning-tree cost
```

- **cost** - The path cost for the port.
- **Range**: 0 for auto-configuration, or 1-200,000,000
- The recommended range is:
 - Ethernet: 200,000-20,000,000
 - Fast Ethernet: 20,000-2,000,000
 - Gigabit Ethernet: 2,000-200,000
 - 10 Gigabit Ethernet: 200-20,000

Default Setting

By default, the system automatically detects the speed and duplex mode used on each port, and configures the path cost according to the values shown below. Path cost “0” is used to indicate auto-configuration mode.

- Ethernet – half duplex: 2,000,000; full duplex: 1,000,000; trunk: 500,000
• Fast Ethernet – half duplex: 200,000; full duplex: 100,000; trunk: 50,000
• Gigabit Ethernet – full duplex: 10,000; trunk: 5,000
• 10 Gigabit Ethernet – full duplex: 1000; trunk: 500

Command Mode
Interface Configuration (Ethernet, Port Channel)

Command Usage
• This command is used by the Spanning Tree Algorithm to determine the best path between devices. Therefore, lower values should be assigned to ports attached to faster media, and higher values assigned to ports with slower media.
• Path cost takes precedence over port priority.
• When the spanning-tree pathcost method (page 4-149) is set to short, the maximum value for path cost is 65,535.

Example

```
Console(config)#interface ethernet 1/5
Console(config-if)#spanning-tree cost 50
Console(config-if)#
```

spanning-tree port-priority
This command configures the priority for the specified interface. Use the no form to restore the default.

Syntax
```
spanning-tree port-priority priority
no spanning-tree port-priority
```

- `priority` - The priority for a port. (Range: 0-240, in steps of 16)

Default Setting
128

Command Mode
Interface Configuration (Ethernet, Port Channel)

Command Usage
• This command defines the priority for the use of a port in the Spanning Tree Algorithm. If the path cost for all ports on a switch are the same, the port with the highest priority (that is, lowest value) will be configured as an active link in the spanning tree.
• Where more than one port is assigned the highest priority, the port with lowest numeric identifier will be enabled.

Example

```
Console(config)#interface ethernet 1/5
Console(config-if)#spanning-tree port-priority 0
```

spanning-tree edge-port
This command specifies an interface as an edge port. Use the **no** form to restore the default.

Syntax

```
[no] spanning-tree edge-port
```

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- You can enable this option if an interface is attached to a LAN segment that is at the end of a bridged LAN or to an end node. Since end nodes cannot cause forwarding loops, they can pass directly through to the spanning tree forwarding state. Specifying Edge Ports provides quicker convergence for devices such as workstations or servers, retains the current forwarding database to reduce the amount of frame flooding required to rebuild address tables during reconfiguration events, does not cause the spanning tree to initiate reconfiguration when the interface changes state, and also overcomes other STA-related timeout problems. However, remember that Edge Port should only be enabled for ports connected to an end-node device.
- This command has the same effect as the **spanning-tree portfast**.

Example

```
Console(config)#interface ethernet ethernet 1/5
Console(config-if)#spanning-tree edge-port
Console(config-if)#
```

Related Commands

- spanning-tree portfast (4-156)

spanning-tree portfast
This command sets an interface to fast forwarding. Use the **no** form to disable fast forwarding.

Syntax

```
[no] spanning-tree portfast
```

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet, Port Channel)
Command Usage

- This command is used to enable/disable the fast spanning-tree mode for the selected port. In this mode, ports skip the Discarding and Learning states, and proceed straight to Forwarding.
- Since end-nodes cannot cause forwarding loops, they can be passed through the spanning tree state changes more quickly than allowed by standard convergence time. Fast forwarding can achieve quicker convergence for end-node workstations and servers, and also overcome other STA related timeout problems. (Remember that fast forwarding should only be enabled for ports connected to a LAN segment that is at the end of a bridged LAN or for an end-node device.)
- This command is the same as `spanning-tree edge-port`, and is only included for backward compatibility with earlier products. Note that this command may be removed for future software versions.

Example

```
Console(config)#interface ethernet 1/5
Console(config-if)#bridge-group 1 portfast
Console(config-if)#
```

Related Commands

- `spanning-tree edge-port` (4-156)

`spanning-tree link-type`

This command configures the link type for Rapid Spanning Tree and Multiple Spanning Tree. Use the `no` form to restore the default.

Syntax

```
spanning-tree link-type {auto | point-to-point | shared}
nospanning-tree link-type
```

- `auto` - Automatically derived from the duplex mode setting.
- `point-to-point` - Point-to-point link.
- `shared` - Shared medium.

Default Setting

```
auto
```

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- Specify a point-to-point link if the interface can only be connected to exactly one other bridge, or a shared link if it can be connected to two or more bridges.
- When automatic detection is selected, the switch derives the link type from the duplex mode. A full-duplex interface is considered a point-to-point link, while a half-duplex interface is assumed to be on a shared link.
• RSTP only works on point-to-point links between two bridges. If you designate a port as a shared link, RSTP is forbidden. Since MSTP is an extension of RSTP, this same restriction applies.

Example

```
Console(config)#interface ethernet ethernet 1/5
Console(config-if)#spanning-tree link-type point-to-point
```

spanning-tree mst cost

This command configures the path cost on a spanning instance in the Multiple Spanning Tree. Use the **no** form to restore the default.

Syntax

```
spanning-tree mst instance_id cost cost
no spanning-tree mst instance_id cost
```

• **instance_id** - Instance identifier of the spanning tree. (Range: 0-4094, no leading zeroes)
• **cost** - Path cost for an interface. (Range: 1-200,000,000)

The recommended range is -
- Ethernet: 200,000-20,000,000
- Fast Ethernet: 20,000-2,000,000
- Gigabit Ethernet: 2,000-200,000
- 10 Gigabit Ethernet: 200-20,000

Default Setting

By default, the system automatically detects the speed and duplex mode used on each port, and configures the path cost according to the values shown below. Path cost “0” is used to indicate auto-configuration mode.

• Ethernet – half duplex: 2,000,000; full duplex: 1,000,000; trunk: 500,000
• Fast Ethernet – half duplex: 200,000; full duplex: 100,000; trunk: 50,000
• Gigabit Ethernet – full duplex: 10,000; trunk: 5,000
• 10 Gigabit Ethernet – full duplex: 1000; trunk: 500

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

• Each spanning-tree instance is associated with a unique set of VLAN IDs.
• This command is used by the multiple spanning-tree algorithm to determine the best path between devices. Therefore, lower values should be assigned to interfaces attached to faster media, and higher values assigned to interfaces with slower media.
• Use the **no spanning-tree mst cost** command to specify auto-configuration mode.
• Path cost takes precedence over interface priority.
Spanning Tree Commands

Example

```
Console(config)#interface ethernet ethernet 1/5
Console(config-if)#spanning-tree mst 1 cost 50
Console(config-if)#
```

Related Commands

`spanning-tree mst port-priority` (4-159)

spanning-tree mst port-priority
This command configures the interface priority on a spanning instance in the Multiple Spanning Tree. Use the no form to restore the default.

Syntax

```
spanning-tree mst instance_id port-priority priority
no spanning-tree mst instance_id port-priority
```

- `instance_id` - Instance identifier of the spanning tree.
 (Range: 0-4094, no leading zeroes)
- `priority` - Priority for an interface. (Range: 0-240 in steps of 16)

Default Setting

128

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- This command defines the priority for the use of an interface in the multiple spanning-tree. If the path cost for all interfaces on a switch are the same, the interface with the highest priority (that is, lowest value) will be configured as an active link in the spanning tree.
- Where more than one interface is assigned the highest priority, the interface with lowest numeric identifier will be enabled.

Example

```
Console(config)#interface ethernet ethernet 1/5
Console(config-if)#spanning-tree mst 1 port-priority 0
Console(config-if)#
```

Related Commands

`spanning-tree mst cost` (4-158)
spanning-tree protocol-migration
This command re-checks the appropriate BPDU format to send on the selected interface.

Syntax

spanning-tree protocol-migration interface

interface

• ethernet unit/port
 - unit - Stack unit. (Range: 1-8)
 - port - Port number. (Range: 1-26/50)

• port-channel channel-id (Range: 1-32)

Command Mode
Privileged Exec

Command Usage
If at any time the switch detects STP BPDUs, including Configuration or Topology Change Notification BPDUs, it will automatically set the selected interface to forced STP-compatible mode. However, you can also use the spanning-tree protocol-migration command at any time to manually re-check the appropriate BPDU format to send on the selected interfaces (i.e., RSTP or STP-compatible).

Example

Console#spanning-tree protocol-migration eth 1/5
Console#

show spanning-tree
This command shows the configuration for the common spanning tree (CST) or for an instance within the multiple spanning tree (MST).

Syntax

show spanning-tree [interface | mst instance_id]

• interface

• ethernet unit/port
 - unit - Stack unit. (Range: 1-8)
 - port - Port number. (Range: 1-26/50)

• port-channel channel-id (Range: 1-32)

• instance_id - Instance identifier of the multiple spanning tree.
 (Range: 0-4094, no leading zeroes)

Default Setting
None

Command Mode
Privileged Exec
Command Usage

- Use the `show spanning-tree` command with no parameters to display the spanning tree configuration for the switch for the Common Spanning Tree (CST) and for every interface in the tree.
- Use the `show spanning-tree interface` command to display the spanning tree configuration for an interface within the Common Spanning Tree (CST).
- Use the `show spanning-tree mst instance_id` command to display the spanning tree configuration for an instance within the Multiple Spanning Tree (MST).
- For a description of the items displayed under “Spanning-tree information,” see “Configuring Global Settings” on page 3-128. For a description of the items displayed for specific interfaces, see “Displaying Interface Settings” on page 3-132.

Example

```
Console#show spanning-tree
Spanning-tree information
-----------------------------------------------
Spanning tree mode:                  MSTP
Spanning tree enable/disable:        enable
Instance:                           0
Vlans configuration:                1-4094
Priority:                          32768
Bridge Hello Time (sec.):           2
Bridge Max Age (sec.):              20
Bridge Forward Delay (sec.):        15
Root Hello Time (sec.):             2
Root Max Age (sec.):                20
Root Forward Delay (sec.):          15
Max hops:                          20
Remaining hops:                     20
Designated Root:                    32768.0.0000ABCD0000
Current root port:                  1
Current root cost:                  10000
Number of topology changes:         1
Last topology changes time (sec.):   22
Transmission limit:                 3
Path Cost Method:                   long
```
show spanning-tree mst configuration
This command shows the configuration of the multiple spanning tree.

Command Mode
Privileged Exec

Example

```
Console#show spanning-tree mst configuration
Mstp Configuration Information
-----------------------------------------------
Configuration name: R&D
Revision level:0

Instance Vlans
-----------------------------------------------
    1    2
Console#
```
VLAN Commands

A VLAN is a group of ports that can be located anywhere in the network, but communicate as though they belong to the same physical segment. This section describes commands used to create VLAN groups, add port members, specify how VLAN tagging is used, and enable automatic VLAN registration for the selected interface.

Table 4-53 VLANs

<table>
<thead>
<tr>
<th>Command Groups</th>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GVRP and Bridge Extension</td>
<td>Configures GVRP settings that permit automatic VLAN learning; shows the configuration for bridge extension MIB</td>
<td>4-163</td>
</tr>
<tr>
<td>Editing VLAN Groups</td>
<td>Sets up VLAN groups, including name, VID and state</td>
<td>4-167</td>
</tr>
<tr>
<td>Configuring VLAN Interfaces</td>
<td>Configures VLAN interface parameters, including ingress and egress tagging mode, ingress filtering, PVID, and GVRP</td>
<td>4-169</td>
</tr>
<tr>
<td>Displaying VLAN Information</td>
<td>Displays VLAN groups, status, port members, and MAC addresses</td>
<td>4-175</td>
</tr>
<tr>
<td>Configuring Private VLANs</td>
<td>Configures private VLANs, including uplink and downlink ports</td>
<td>4-179</td>
</tr>
<tr>
<td>Configuring Protocol VLANs</td>
<td>Configures protocol-based VLANs based on frame type and protocol</td>
<td>4-181</td>
</tr>
</tbody>
</table>

GVRP and Bridge Extension Commands

GARP VLAN Registration Protocol defines a way for switches to exchange VLAN information in order to automatically register VLAN members on interfaces across the network. This section describes how to enable GVRP for individual interfaces and globally for the switch, as well as how to display default configuration settings for the Bridge Extension MIB.

Note: GVRP is not supported in the current software.

Table 4-54 GVRP and Bridge Extension Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>bridge-ext gvrp</td>
<td>Enables GVRP globally for the switch</td>
<td>GC</td>
<td>4-164</td>
</tr>
<tr>
<td>show bridge-ext</td>
<td>Shows the global bridge extension configuration</td>
<td>PE</td>
<td>4-164</td>
</tr>
<tr>
<td>switchport gvrp</td>
<td>Enables GVRP for an interface</td>
<td>IC</td>
<td>4-165</td>
</tr>
<tr>
<td>switchport forbidden vlan</td>
<td>Configures forbidden VLANs for an interface</td>
<td>IC</td>
<td>4-174</td>
</tr>
<tr>
<td>show gvrp configuration</td>
<td>Displays GVRP configuration for the selected interface</td>
<td>NE, PE</td>
<td>4-165</td>
</tr>
<tr>
<td>garp timer</td>
<td>Sets the GARP timer for the selected function</td>
<td>IC</td>
<td>4-166</td>
</tr>
<tr>
<td>show garp timer</td>
<td>Shows the GARP timer for the selected function</td>
<td>NE, PE</td>
<td>4-166</td>
</tr>
</tbody>
</table>
bridge-ext gvrp
This command enables GVRP globally for the switch. Use the no form to disable it.

Syntax
\[\text{[no]} \text{ bridge-ext gvrp}\]

Default Setting
Disabled

Command Mode
Global Configuration

Command Usage
GVRP defines a way for switches to exchange VLAN information in order to register VLAN members on ports across the network. This function should be enabled to permit automatic VLAN registration, and to support VLANs which extend beyond the local switch.

Example

```
Console(config)#bridge-ext gvrp
Console(config)#
```

show bridge-ext
This command shows the configuration for bridge extension commands.

Default Setting
None

Command Mode
Privileged Exec

Command Usage
See “Displaying Basic VLAN Information” on page 3-126 and “Displaying Bridge Extension Capabilities” on page 3-13 for a description of the displayed items.

Example

```
Console#show bridge-ext
Max support vlan numbers: 255
Max support vlan ID: 4094
Extended multicast filtering services: No
Static entry individual port: Yes
VLAN learning: SVL
Configurable PVID tagging: Yes
Local VLAN capable: No
Traffic classes: Enabled
Global GVRP status: Enabled
GMRP: Disabled
Console#
```
switchport gvrp
This command enables GVRP for a port. Use the `no` form to disable it.

Syntax

```
[no] switchport gvrp
```

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet, Port Channel)

Example

```
Console(config)#interface ethernet 1/6
Console(config-if)#switchport gvrp
Console(config-if)#
```

show gvrp configuration
This command shows if GVRP is enabled.

Syntax

```
show gvrp configuration [interface]
```

interface

- **ethernet unit/port**
 - `unit` - Stack unit. (Always unit 1)
 - `port` - Port number. (Range: 1-26/50)
- **port-channel channel-id** (Range: 1-32)

Default Setting

Shows both global and interface-specific configuration.

Command Mode

Normal Exec, Privileged Exec

Example

```
Console#show gvrp configuration ethernet 1/6
Eth 1/ 6:  
  GVRP configuration: Enabled
Console#
```
garp timer
This command sets the values for the join, leave and leaveall timers. Use the no form to restore the timers' default values.

Syntax

```
garp timer {join | leave | leaveall} timer_value

no garp timer {join | leave | leaveall}
```

- `{join | leave | leaveall}` - Which timer to set.
- `timer_value` - Value of timer.

Ranges:
- join: 20-1000 centiseconds
- leave: 60-3000 centiseconds
- leaveall: 500-18000 centiseconds

Default Setting

- join: 20 centiseconds
- leave: 60 centiseconds
- leaveall: 1000 centiseconds

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- Group Address Registration Protocol is used by GVRP and GMRP to register or deregister client attributes for client services within a bridged LAN. The default values for the GARP timers are independent of the media access method or data rate. These values should not be changed unless you are experiencing difficulties with GMRP or GVRP registration/deregistration.
- Timer values are applied to GVRP for all the ports on all VLANs.
- Timer values must meet the following restrictions:
 - leave >= (2 x join)
 - leaveall > leave

Note: Set GVRP timers on all Layer 2 devices connected in the same network to the same values. Otherwise, GVRP may not operate successfully.

Example

```
Console(config)#interface ethernet 1/1
Console(config-if)#garp timer join 100
Console(config-if)#
```

Related Commands

```
show garp timer (4-166)
```

show garp timer
This command shows the GARP timers for the selected interface.
Syntax

```
show garp timer [interface]
```

interface

- **ethernet unit/port**
 - **unit** - Stack unit. (Always unit 1)
 - **port** - Port number. (Range: 1-26/50)
- **port-channel channel-id** (Range: 1-32)

Default Setting

Shows all GARP timers.

Command Mode

Normal Exec, Privileged Exec

Example

```
Console#show garp timer ethernet 1/1
Eth 1/1 GARP timer status:
  Join timer: 100 centisseconds
  Leave timer: 60 centisseconds
  Leaveall timer: 1000 centisseconds
Console#
```

Related Commands

garp timer (4-166)

Editing VLAN Groups

Table 4-55 Editing VLAN Groups

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan database</td>
<td>Enters VLAN database mode to add, change, and delete VLANs</td>
<td>GC</td>
<td>4-167</td>
</tr>
<tr>
<td>vlan</td>
<td>Configures a VLAN, including VID, name and state</td>
<td>VC</td>
<td>4-168</td>
</tr>
</tbody>
</table>

vlan database

This command enters VLAN database mode. All commands in this mode will take effect immediately.

Default Setting

None

Command Mode

Global Configuration
Command Usage

- Use the VLAN database command mode to add, change, and delete VLANs. After finishing configuration changes, you can display the VLAN settings by entering the `show vlan` command.
- Use the `interface vlan` command mode to define the port membership mode and add or remove ports from a VLAN. The results of these commands are written to the running-configuration file, and you can display this file by entering the `show running-config` command.

Example

```
Console(config)#vlan database
Console(config-vlan)#
```

Related Commands

- `show vlan (4-175)`

`vlan`

This command configures a VLAN. Use the `no` form to restore the default settings or delete a VLAN.

Syntax

```
vlan vlan-id [name vlan-name] media ethernet [state {active | suspend}]
no vlan vlan-id [name | state]
```

- **vlan-id** - ID of configured VLAN. (Range: 1-4094, no leading zeroes)
- **name** - Keyword to be followed by the VLAN name.
 - **vlan-name** - ASCII string from 1 to 32 characters.
- **media ethernet** - Ethernet media type.
- **state** - Keyword to be followed by the VLAN state.
 - **active** - VLAN is operational.
 - **suspend** - VLAN is suspended. Suspended VLANs do not pass packets.

Default Setting

By default only VLAN 1 exists and is active.

Command Mode

VLAN Database Configuration

Command Usage

- `no vlan vlan-id` deletes the VLAN.
- `no vlan vlan-id name` removes the VLAN name.
- `no vlan vlan-id state` returns the VLAN to the default state (i.e., active).
- You can configure up to 255 VLANs on the switch.
Example

The following example adds a VLAN, using VLAN ID 105 and name RD5. The VLAN is activated by default.

```console
Console(config)#vlan database
Console(config-vlan)#vlan 105 name RD5 media ethernet
Console(config-vlan)#
```

Related Commands

- `show vlan (4-175)`

Configuring VLAN Interfaces

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface vlan</td>
<td>Enters interface configuration mode for a specified VLAN</td>
<td>GC</td>
<td>4-169</td>
</tr>
<tr>
<td>switchport mode</td>
<td>Configures VLAN membership mode for an interface</td>
<td>IC</td>
<td>4-170</td>
</tr>
<tr>
<td>switchport acceptable-frame-types</td>
<td>Configures frame types to be accepted by an interface</td>
<td>IC</td>
<td>4-171</td>
</tr>
<tr>
<td>switchport ingress-filtering</td>
<td>Enables ingress filtering on an interface</td>
<td>IC</td>
<td>4-171</td>
</tr>
<tr>
<td>switchport native vlan</td>
<td>Configures the PVID (native VLAN) of an interface</td>
<td>IC</td>
<td>4-172</td>
</tr>
<tr>
<td>switchport allowed vlan</td>
<td>Configures the VLANs associated with an interface</td>
<td>IC</td>
<td>4-173</td>
</tr>
<tr>
<td>switchport gvrp</td>
<td>Enables GVRP for an interface</td>
<td>IC</td>
<td>4-165</td>
</tr>
<tr>
<td>switchport forbidden vlan</td>
<td>Configures forbidden VLANs for an interface</td>
<td>IC</td>
<td>4-174</td>
</tr>
<tr>
<td>switchport priority default</td>
<td>Sets a port priority for incoming untagged frames</td>
<td>IC</td>
<td>4-185</td>
</tr>
</tbody>
</table>

interface vlan

This command enters interface configuration mode for VLANs, which is used to configure VLAN parameters for a physical interface.

Syntax

```
interface vlan vlan-id
```

vlan-id - ID of the configured VLAN. (Range: 1-4094, no leading zeroes)

Default Setting

None

Command Mode

Global Configuration
Example

The following example shows how to set the interface configuration mode to VLAN 1, and then assign an IP address to the VLAN:

```console
Console(config)#interface vlan 1
Console(config-if)#ip address 192.168.1.254 255.255.255.0
Console(config-if)#
```

Related Commands

- shutdown (4-121)

switchport mode

This command configures the VLAN membership mode for a port. Use the `no` form to restore the default.

Syntax

```
switchport mode {trunk | hybrid | private-vlan}
no switchport mode
```

- **trunk** - Specifies a port as an end-point for a VLAN trunk. A trunk is a direct link between two switches, so the port transmits tagged frames that identify the source VLAN. Note that frames belonging to the port's default VLAN (i.e., associated with the PVID) are also transmitted as tagged frames.
- **hybrid** - Specifies a hybrid VLAN interface. The port may transmit tagged or untagged frames.
- **private-vlan** - For an explanation of this command see “switchport mode private-vlan” on page 4-182.

Default Setting

All ports are in hybrid mode with the PVID set to VLAN 1.

Command Mode

Interface Configuration (Ethernet, Port Channel)

Example

The following shows how to set the configuration mode to port 1, and then set the switchport mode to hybrid:

```console
Console(config)#interface ethernet 1/1
Console(config-if)#switchport mode hybrid
Console(config-if)#
```

Related Commands

- switchport acceptable-frame-types (4-171)
switchport acceptable-frame-types
This command configures the acceptable frame types for a port. Use the **no** form to restore the default.

Syntax
```plaintext
switchport acceptable-frame-types {all | tagged}
no switchport acceptable-frame-types
```
- **all** - The port accepts all frames, tagged or untagged.
- **tagged** - The port only receives tagged frames.

Default Setting

All frame types

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

When set to receive all frame types, any received frames that are untagged are assigned to the default VLAN.

Example

The following example shows how to restrict the traffic received on port 1 to tagged frames:

```
Console(config)#interface ethernet 1/1
Console(config-if)#switchport acceptable-frame-types tagged
Console(config-if)#
```

Related Commands

- `switchport mode (4-170)`

switchport ingress-filtering
This command enables ingress filtering for an interface.

Note: Although the ingress filtering command is available, the switch has ingress filtering permanently set to enable. Therefore, trying to disable the filtering with the **no switchport ingress-filtering** command will produce this error message: “Note: Failed to ingress-filtering on ethernet interface !”

Syntax
```plaintext
switchport ingress-filtering
no switchport ingress-filtering
```

Default Setting

Enabled
Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- Ingress filtering only affects tagged frames.
- With ingress filtering enabled, a port will discard received frames tagged for VLANs for which it is not a member.
- Ingress filtering does not affect VLAN independent BPDU frames, such as GVRP or STA. However, they do affect VLAN dependent BPDU frames, such as GMRP.

Example

The following example shows how to select port 1 and then enable ingress filtering:

```
Console(config)#interface ethernet 1/1
Console(config-if)#switchport ingress-filtering
Console(config-if)#
```

switchport native vlan

This command configures the PVID (i.e., default VLAN ID) for a port. Use the no form to restore the default.

Syntax

```
switchport native vlan vlan-id
no switchport native vlan
```

- `vlan-id` - Default VLAN ID for a port. (Range: 1-4094, no leading zeroes)

Default Setting

VLAN 1

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- Setting the native VLAN for a port can only be performed when the port is a member of the VLAN and the VLAN is untagged. The no switchport native vlan command will set the native VLAN of the port to untagged VLAN 1.
- If acceptable frame types is set to all or switchport mode is set to hybrid, the PVID will be inserted into all untagged frames entering the ingress port.

Example

The following example shows how to set the PVID for port 1 to VLAN 3:

```
Console(config)#interface ethernet 1/1
Console(config-if)#switchport native vlan 3
Console(config-if)#
```
switchport allowed vlan
This command configures VLAN groups on the selected interface. Use the no form to restore the default.

Note: Each port can only have one untagged VLAN. If a second VLAN is defined for a port as untagged, the other VLAN that had untagged status will automatically be changed to tagged. Setting a VLAN untagged will also change the native VLAN of the port to this VLAN.

Syntax

switchport allowed vlan {add vlan-list [tagged | untagged] | remove vlan-list}
no switchport allowed vlan

- add vlan-list - List of VLAN identifiers to add.
- remove vlan-list - List of VLAN identifiers to remove.
- vlan-list - Separate nonconsecutive VLAN identifiers with a comma and no spaces; use a hyphen to designate a range of IDs. Do not enter leading zeros. (Range: 1-4094).

Default Setting

All ports are assigned to VLAN 1 by default.
The default frame type is untagged.

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- A port, or a trunk with switchport mode set to hybrid, must be assigned to a VLAN as untagged.
- If a trunk has switchport mode set to trunk (i.e., 1Q Trunk), then you can only assign an interface to VLAN groups as a tagged member.
- Frames are always tagged within the switch. The tagged/untagged parameter used when adding a VLAN to an interface tells the switch whether to keep or remove the tag from a frame on egress.
- The interface can be added to a VLAN as an untagged member regardless of connected devices to this interface. The default setting is untagged VLAN 1. Note that each port can only have one untagged VLAN. If a second VLAN is defined for a port as untagged, the other VLAN that had untagged status will automatically be changed to tagged. Setting a VLAN untagged will also change the native VLAN of the port to this VLAN.
- If a VLAN on the forbidden list for an interface is manually added to that interface, the VLAN is automatically removed from the forbidden list for that interface.
Example
The following example shows how to add VLANs 1, 2, 5 and 6 to the allowed list as tagged VLANs for port 1:

```
Console(config)#interface ethernet 1/1
Console(config-if)#switchport allowed vlan add 1,2,5,6 tagged
```

switchport forbidden vlan
This command configures forbidden VLANs. Use the `no` form to remove the list of forbidden VLANs.

Syntax

```
switchport forbidden vlan {add vlan-list | remove vlan-list}
no switchport forbidden vlan
```

- **add vlan-list** - List of VLAN identifiers to add.
- **remove vlan-list** - List of VLAN identifiers to remove.
- **vlan-list** - Separate nonconsecutive VLAN identifiers with a comma and no spaces; use a hyphen to designate a range of IDs. Do not enter leading zeros. (Range: 1-4094).

Default Setting

No VLANs are included in the forbidden list.

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- This command prevents a VLAN from being automatically added to the specified interface via GVRP.
- If a VLAN has been added to the set of allowed VLANs for an interface, then you cannot add it to the set of forbidden VLANs for that same interface.

Example

The following example shows how to prevent port 1 from being added to VLAN 3:

```
Console(config)#interface ethernet 1/1
Console(config-if)#switchport forbidden vlan add 3
```
Displaying VLAN Information

Table 4-57 Show VLAN Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>show vlan</td>
<td>Shows VLAN information</td>
<td>NE, PE</td>
<td>4-175</td>
</tr>
<tr>
<td>show interfaces status vlan</td>
<td>Displays status for the specified VLAN interface</td>
<td>NE, PE</td>
<td>4-123</td>
</tr>
<tr>
<td>show interfaces switchport</td>
<td>Displays the administrative and operational status of an interface</td>
<td>NE, PE</td>
<td>4-125</td>
</tr>
</tbody>
</table>

show vlan
This command shows VLAN information.

Syntax

```
show vlan [id vlan-id | name vlan-name | private-vlan private-vlan-type]
```

- **id** - Keyword to be followed by the VLAN ID.
 - `vlan-id` - ID of the configured VLAN. (Range: 1-4094, no leading zeroes)

- **name** - Keyword to be followed by the VLAN name.
 - `vlan-name` - ASCII string from 1 to 32 characters.

- **private-vlan** - For an explanation of this command see “show vlan private-vlan” on page 4-184
 - `private-vlan-type` - Indicates the private vlan type.
 (Options: Community, Isolated, Primary)

Default Setting
Shows all VLANs.

Command Mode
Normal Exec, Privileged Exec

Example
The following example shows how to display information for VLAN 1:

```
Console#show vlan id 1
Vlan ID:               1
Type:                  Static
Name:                  DefaultVlan
Status:                Active
Ports/Port channel:    Eth1/ 1(S) Eth1/ 2(S) Eth1/ 3(S) Eth1/ 4(S) Eth1/ 5(S)
                       Eth1/ 6(S) Eth1/ 7(S) Eth1/ 8(S) Eth1/ 9(S) Eth1/10(S)
                       Eth1/11(S) Eth1/12(S) Eth1/13(S) Eth1/14(S) Eth1/15(S)
                       Eth1/16(S) Eth1/17(S) Eth1/18(S) Eth1/19(S) Eth1/20(S)
                       Eth1/21(S) Eth1/22(S) Eth1/23(S) Eth1/24(S) Eth1/25(S)
                       Eth1/26(S)
```
Configuring IEEE 802.1Q Tunneling

IEEE 802.1Q tunneling (QinQ tunneling) uses a single Service Provider VLAN (SPVLAN) for customers who have multiple VLANs. Customer VLAN IDs are preserved and traffic from different customers is segregated within the service provider’s network even when they use the same customer-specific VLAN IDs. QinQ tunneling expands VLAN space by using a VLAN-in-VLAN hierarchy, preserving the customer’s original tagged packets, and adding SPVLAN tags to each frame (also called double tagging).

This section describes commands used to configure QinQ tunneling.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot1q-tunnel system-tunnel-control</td>
<td>Configures the switch to operate in normal mode or QinQ mode</td>
<td>GC</td>
<td>4-176</td>
</tr>
<tr>
<td>switchport dot1q-tunnel mode</td>
<td>Configures an interface as a QinQ tunnel port</td>
<td>IC</td>
<td>4-177</td>
</tr>
<tr>
<td>switchport dot1q-tunnel tpid</td>
<td>Sets the Tag Protocol Identifier (TPID) value of a tunnel port</td>
<td>IC</td>
<td>4-178</td>
</tr>
<tr>
<td>show dot1q-tunnel</td>
<td>Displays the configuration of QinQ tunnel ports</td>
<td>PE</td>
<td>4-178</td>
</tr>
<tr>
<td>show interfaces switchport</td>
<td>Displays port QinQ operational status</td>
<td>PE</td>
<td>4-125</td>
</tr>
</tbody>
</table>

General Configuration Guidelines for QinQ

1. Configure the switch to QinQ mode (dot1q-tunnel system-tunnel-control, page 4-176).
2. Create a SPVLAN (vlan, page 4-168).
3. Configure the QinQ tunnel access port to dot1Q-tunnel access mode (switchport dot1q-tunnel mode, page 4-177).
4. Set the Tag Protocol Identifier (TPID) value of the tunnel access port. This step is required if the attached client is using a nonstandard 2-byte ethertype to identify 802.1Q tagged frames. The standard ethertype value is 0x8100. (See switchport dot1q-tunnel tpid, page 4-178.)
5. Configure the QinQ tunnel access port to join the SPVLAN as an untagged member (switchport allowed vlan, page 4-173).
6. Configure the SPVLAN ID as the native VID on the QinQ tunnel access port (switchport native vlan, page 4-172).
7. Configure the QinQ tunnel uplink port to dot1Q-tunnel uplink mode (switchport dot1q-tunnel mode, page 4-177).
8. Configure the QinQ tunnel uplink port to join the SPVLAN as a tagged member (switchport allowed vlan, page 4-173).

Syntax

```
[no] dot1q-tunnel system-tunnel-control
```

This command sets the switch to operate in QinQ mode. Use the no form to disable QinQ operating mode.
Default Setting
Disabled

Command Mode
Global Configuration

Command Usage
QinQ tunnel mode must be enabled on the switch for QinQ interface settings to be functional.

Example
```
Console(config)#dot1q-tunnel system-tunnel-control
Console(config)#
```

Related Commands
- show dot1q-tunnel (4-178)
- show interfaces switchport (4-125)

switchport dot1q-tunnel mode
This command configures an interface as a QinQ tunnel port. Use the no form to disable QinQ on the interface.

Syntax
```
switchport dot1q-tunnel mode <access | uplink>
noswitchport dot1q-tunnel mode
```

- **access** – Sets the port as an 802.1Q tunnel access port.
- **uplink** – Sets the port as an 802.1Q tunnel uplink port.

Default Setting
Disabled

Command Mode
Interface Configuration (Ethernet, Port Channel)

Command Usage
Use the dot1q-tunnel system-tunnel-control command to set the switch to QinQ mode before entering this command.

Example
```
Console(config)#interface ethernet 1/1
Console(config-if)#switchport dot1q-tunnel mode access
Console(config-if)#
```

Related Commands
- show dot1q-tunnel (4-178)
- show interfaces switchport (4-125)
switchport dot1q-tunnel tpid
This command sets the Tag Protocol Identifier (TPID) value of a tunnel port. Use the no form to restore the default setting.

Syntax

```
switchport dot1q-tunnel tpid tpid
no switchport dot1q-tunnel tpid
```

`tpid` – Sets the ethertype value for 802.1Q encapsulation. This identifier is used to select a nonstandard 2-byte ethertype to identify 802.1Q tagged frames. The standard ethertype value is 0x8100. (Range: 0800-FFFF hexadecimal)

Default Setting

0x8100

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- Use the `switchport dot1q-tunnel tpid` command to set a custom 802.1Q ethertype value on the selected interface. This feature allows the switch to interoperate with third-party switches that do not use the standard 0x8100 ethertype to identify 802.1Q-tagged frames. For example, 0x1234 is set as the custom 802.1Q ethertype on a trunk port, incoming frames containing that ethertype are assigned to the VLAN contained in the tag following the ethertype field, as they would be with a standard 802.1Q trunk. Frames arriving on the port containing any other ethertype are looked upon as untagged frames, and assigned to the native VLAN of that port.
- All ports on the switch will be set to the same ethertype.

Example

```
Console(config)#interface ethernet 1/1
Console(config-if)#switchport dot1q-tunnel tpid 9100
Console(config-if)#
```

Related Commands

- `show interfaces switchport` (4-125)

show dot1q-tunnel
This command displays information about QinQ tunnel ports.

Command Mode

Privileged Exec
Example

```console
Console(config)#dot1q-tunnel system-tunnel-control
Console(config)#interface ethernet 1/1
Console(config-if)#switchport dot1q-tunnel mode access
Console(config-if)#interface ethernet 1/2
Console(config-if)#switchport dot1q-tunnel mode uplink
Console(config-if)#end
Console#show dot1q-tunnel

Current double-tagged status of the system is Enabled

The dot1q-tunnel mode of the set interface 1/1 is Access mode, TPID is 0x8100.
The dot1q-tunnel mode of the set interface 1/2 is Uplink mode, TPID is 0x8100.
The dot1q-tunnel mode of the set interface 1/3 is Normal mode, TPID is 0x8100.
The dot1q-tunnel mode of the set interface 1/4 is Normal mode, TPID is 0x8100.
The dot1q-tunnel mode of the set interface 1/5 is Normal mode, TPID is 0x8100.
The dot1q-tunnel mode of the set interface 1/6 is Normal mode, TPID is 0x8100.
The dot1q-tunnel mode of the set interface 1/7 is Normal mode, TPID is 0x8100.
...
The dot1q-tunnel mode of the set interface 1/24 is Normal mode, TPID is 0x8100.
Console#
```

Related Commands

switchport dot1q-tunnel mode (4-177)

Configuring Private VLANs

Private VLANs provide port-based security and isolation between ports within the assigned VLAN. This section describes commands used to configure private VLANs.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>pvlan</td>
<td>Enables and configured private VLANs</td>
<td>GC</td>
<td>4-179</td>
</tr>
<tr>
<td>show pvlan</td>
<td>Displays the configured private VLANs</td>
<td>PE</td>
<td>4-180</td>
</tr>
</tbody>
</table>

pvlan

This command enables or configures a private VLAN. Use the no form to disable the private VLAN.

Syntax

```
pvlan [up-link interface-list down-link interface-list ]
no pvlan
```
4-180

Command Line Interface

- **up-link** - Specifies an uplink interface.
- **down-link** - Specifies a downlink interface.

Default Setting

No private VLANs are defined.

Command Mode

Global Configuration

Command Usage

- A private VLAN provides port-based security and isolation between ports within the VLAN. Data traffic on the downlink ports can only be forwarded to, and from, the uplink port.
- Private VLANs and normal VLANs can exist simultaneously within the same switch.
- Entering the `pvlan` command without any parameters enables the private VLAN. Entering `no pvlan` disables the private VLAN.

Example

This example enables the private VLAN, and then sets port 12 as the uplink and ports 5-8 as the downlinks.

```
Console(config)#pvlan
Console(config)#pvlan up-link ethernet 1/12 down-link ethernet 1/5-8
Console(config)#
```

show pvlan

This command displays the configured private VLAN.

Command Mode

Privileged Exec

Example

```
Console#show pvlan
Private VLAN status: Enabled
Up-link port:
  Ethernet 1/12
Down-link port:
  Ethernet 1/5
  Ethernet 1/6
  Ethernet 1/7
  Ethernet 1/8
Console#
```
Configuring Protocol-based VLANs

The network devices required to support multiple protocols cannot be easily grouped into a common VLAN. This may require non-standard devices to pass traffic between different VLANs in order to encompass all the devices participating in a specific protocol. This kind of configuration deprives users of the basic benefits of VLANs, including security and easy accessibility.

To avoid these problems, you can configure this switch with protocol-based VLANs that divide the physical network into logical VLAN groups for each required protocol. When a frame is received at a port, its VLAN membership can then be determined based on the protocol type in use by the inbound packets.

To configure protocol-based VLANs, follow these steps:

1. First configure VLAN groups for the protocols you want to use (page 4-168). Although not mandatory, we suggest configuring a separate VLAN for each major protocol running on your network. Do not add port members at this time.
2. Create a protocol group for each of the protocols you want to assign to a VLAN using the `protocol-vlan protocol-group` command (General Configuration mode).
3. Then map the protocol for each interface to the appropriate VLAN using the `protocol-vlan protocol-group` command (Interface Configuration mode).

protocol-vlan protocol-group (Configuring Groups)

This command creates a protocol group, or to add specific protocols to a group. Use the `no` form to remove a protocol group.

Syntax

```
protocol-vlan protocol-group group-id [{add | remove} frame-type frame
protocol-type protocol]
```

```
no protocol-vlan protocol-group group-id
```

- `group-id` - Group identifier of this protocol group. (Range: 1-2147483647)
- `frame` - Frame type used by this protocol. (Options: ethernet, rfc_1042, llc_other)

1. SNAP frame types are not supported by this switch due to hardware limitations.
• **protocol** - Protocol type. The only option for the llc_other frame type is ipx_raw. The options for all other frames types include: ip, arp, rarp, and user-defined (0801-FFFF hexadecimal).

Default Setting
No protocol groups are configured.

Command Mode
Global Configuration

Example
The following creates protocol group 1, and specifies Ethernet frames with IP and ARP protocol types:

```
Console(config)#protocol-vlan protocol-group 1 add frame-type ethernet protocol-type ip
Console(config)#protocol-vlan protocol-group 1 add frame-type ethernet protocol-type arp
Console(config)#
```

protocol-vlan protocol-group (Configuring Interfaces)
This command maps a protocol group to a VLAN for the current interface. Use the **no** form to remove the protocol mapping for this interface.

Syntax
```
protocol-vlan protocol-group group-id vlan vlan-id
no protocol-vlan protocol-group group-id vlan
```

• **group-id** - Group identifier of this protocol group. (Range: 1-2147483647)
• **vlan-id** - VLAN to which matching protocol traffic is forwarded.
 (Range: 1-4094)

Default Setting
No protocol groups are mapped for any interface.

Command Mode
Interface Configuration (Ethernet, Port Channel)

Command Usage
• When creating a protocol-based VLAN, only assign interfaces via this command. If you assign interfaces using any of the other VLAN commands (such as **vlan** on page 4-168), these interfaces will admit traffic of any protocol type into the associated VLAN.
• When a frame enters a port that has been assigned to a protocol VLAN, it is processed in the following manner:
 - If the frame is tagged, it will be processed according to the standard rules applied to tagged frames.
 - If the frame is untagged and the protocol type matches, the frame is forwarded to the appropriate VLAN.
- If the frame is untagged but the protocol type does not match, the frame is forwarded to the default VLAN for this interface.

Example
The following example maps the traffic entering Port 1 which matches the protocol type specified in protocol group 1 to VLAN 2.

```
Console(config)#interface ethernet 1/1
Console(config-if)#protocol-vlan protocol-group 1 vlan 2
Console(config-if)#
```

show protocol-vlan protocol-group
This command shows the frame and protocol type associated with protocol groups.

Syntax

```
show protocol-vlan protocol-group [group-id]
```

- **group-id** - Group identifier for a protocol group. (Range: 1-2147483647)

Default Setting
All protocol groups are displayed.

Command Mode
Privileged Exec

Example
This shows protocol group 1 configured for IP over Ethernet:

```
Console#show protocol-vlan protocol-group
+------------------ ------------- ---------------
| ProtocolGroup ID | Frame Type  | Protocol Type |
+------------------ ------------- ---------------
| 1                | ethernet    | 08 00          |
+------------------ ------------- ---------------
Console#
```

show interfaces protocol-vlan protocol-group
This command shows the mapping from protocol groups to VLANs for the selected interfaces.

Syntax

```
show interfaces protocol-vlan protocol-group [interface]
```

- **interface**
 - **ethernet unit/port**
 - **unit** - Stack unit. (Range: 1-8)
 - **port** - Port number. (Range: 1-26/50)
 - **port-channel channel-id** (Range: 1-32)

Default Setting
The mapping for all interfaces is displayed.
Command Mode

Privileged Exec

Example

This shows that traffic entering Port 1 that matches the specifications for protocol group 1 will be mapped to VLAN 2:

```
console#show interfaces protocol-vlan protocol-group

<table>
<thead>
<tr>
<th>Port</th>
<th>ProtocolGroup ID</th>
<th>Vlan ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eth 1/1</td>
<td>1</td>
<td>vlan2</td>
</tr>
</tbody>
</table>
```

Priority Commands

The commands described in this section allow you to specify which data packets have greater precedence when traffic is buffered in the switch due to congestion. This switch supports CoS with four priority queues for each port. Data packets in a port’s high-priority queue will be transmitted before those in the lower-priority queues. You can set the default priority for each interface, the relative weight of each queue, and the mapping of frame priority tags to the switch’s priority queues.

Table 4-61 Priority Commands

<table>
<thead>
<tr>
<th>Command Groups</th>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority (Layer 2)</td>
<td>Configures default priority for untagged frames, sets queue weights, and maps class of service tags to hardware queues</td>
<td>4-184</td>
</tr>
<tr>
<td>Priority (Layer 3 and 4)</td>
<td>Maps IP DSCP tags to class of service values</td>
<td>4-189</td>
</tr>
</tbody>
</table>

Priority Commands (Layer 2)

Table 4-62 Priority Commands (Layer 2)

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>queue mode</td>
<td>Sets the queue mode to strict priority or Weighted Round-Robin (WRR)</td>
<td>GC</td>
<td>4-185</td>
</tr>
<tr>
<td>switchport priority default</td>
<td>Sets a port priority for incoming untagged frames</td>
<td>IC</td>
<td>4-185</td>
</tr>
<tr>
<td>queue bandwidth</td>
<td>Assigns round-robin weights to the priority queues</td>
<td>GC</td>
<td>4-186</td>
</tr>
<tr>
<td>queue cos map</td>
<td>Assigns class-of-service values to the priority queues</td>
<td>IC</td>
<td>4-187</td>
</tr>
<tr>
<td>show queue mode</td>
<td>Shows the current queue mode</td>
<td>PE</td>
<td>4-188</td>
</tr>
<tr>
<td>show queue bandwidth</td>
<td>Shows round-robin weights assigned to the priority queues</td>
<td>PE</td>
<td>4-188</td>
</tr>
<tr>
<td>show queue cos-map</td>
<td>Shows the class-of-service map</td>
<td>PE</td>
<td>4-189</td>
</tr>
<tr>
<td>show interfaces switchport</td>
<td>Displays the administrative and operational status of an interface</td>
<td>PE</td>
<td>4-125</td>
</tr>
</tbody>
</table>
queue mode

This command sets the queue mode to strict priority or Weighted Round-Robin (WRR) for the class of service (CoS) priority queues. Use the no form to restore the default value.

Syntax

```
queue mode {strict | wrr}
no queue mode
```

- **strict** - Services the egress queues in sequential order, transmitting all traffic in the higher priority queues before servicing lower priority queues.
- **wrr** - Weighted Round-Robin shares bandwidth at the egress ports by using scheduling weights 1, 2, 4, 8 for queues 0 - 3 respectively.

Default Setting

Weighted Round Robin

Command Mode

Global Configuration

Command Usage

You can set the switch to service the queues based on a strict rule that requires all traffic in a higher priority queue to be processed before lower priority queues are serviced, or use Weighted Round-Robin (WRR) queuing that specifies a relative weight of each queue. WRR uses a predefined relative weight for each queue that determines the percentage of service time the switch services each queue before moving on to the next queue. This prevents the head-of-line blocking that can occur with strict priority queuing.

Example

The following example sets the queue mode to strict priority service mode:

```
Console(config)#queue mode strict
Console(config)#
```

switchport priority default

This command sets a priority for incoming untagged frames. Use the no form to restore the default value.

Syntax

```
switchport priority default default-priority-id
no switchport priority default
```

- **default-priority-id** - The priority number for untagged ingress traffic. The priority is a number from 0 to 7. Seven is the highest priority.
Default Setting

The priority is not set, and the default value for untagged frames received on the interface is zero.

Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- The precedence for priority mapping is IP DSCP, and default switchport priority.
- The default priority applies for an untagged frame received on a port set to accept all frame types (i.e., receives both untagged and tagged frames). This priority does not apply to IEEE 802.1Q VLAN tagged frames. If the incoming frame is an IEEE 802.1Q VLAN tagged frame, the IEEE 802.1p User Priority bits will be used.
- This switch provides eight priority queues for each port. It is configured to use Weighted Round Robin, which can be viewed with the `show queue bandwidth` command. Inbound frames that do not have VLAN tags are tagged with the input port’s default ingress user priority, and then placed in the appropriate priority queue at the output port. The default priority for all ingress ports is zero. Therefore, any inbound frames that do not have priority tags will be placed in queue 0 of the output port. (Note that if the output port is an untagged member of the associated VLAN, these frames are stripped of all VLAN tags prior to transmission.)

Example

The following example shows how to set a default priority on port 3 to 5:

```
Console(config)#interface ethernet 1/3
Console(config-if)#switchport priority default 5
```

queue bandwidth

This command assigns weighted round-robin (WRR) weights to the four class of service (CoS) priority queues. Use the `no` form to restore the default weights.

Syntax

```
queue bandwidth weight1...weight4
no queue bandwidth
```

- `weight1...weight4` - The ratio of weights for queues 0-3 determines the weights used by the WRR scheduler. (Range: 1-31)

Default Setting

Weights 1, 2, 4, 8 are assigned to queues 0-3 respectively.

Command Mode

Global Configuration
Command Usage

WRR controls bandwidth sharing at the egress port by defining scheduling weights.

Example

This example shows how to assign WRR weights to priority queues 0 - 2:

```
Console(config)#queue bandwidth 6 9 12
Console(config)#
```

Related Commands

```
show queue bandwidth (4-188)
```

queue cos-map

This command assigns class of service (CoS) values to the priority queues (i.e., hardware output queues 0 - 3). Use the no form set the CoS map to the default values.

Syntax

```
queue cos-map queue_id [cos1 ... cosn]
no queue cos-map
```

- **queue_id** - The ID of the priority queue. Ranges are 0 to 3, where 3 is the highest priority queue.
- **cos1 .. cosn** - The CoS values that are mapped to the queue ID. It is a space-separated list of numbers. The CoS value is a number from 0 to 7, where 7 is the highest priority.

Default Setting

This switch supports Class of Service by using four priority queues, with Weighted Round Robin queuing for each port. Eight separate traffic classes are defined in IEEE 802.1p. The default priority levels are assigned according to recommendations in the IEEE 802.1p standard as shown below.

<table>
<thead>
<tr>
<th>Queue</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority</td>
<td>1,2</td>
<td>0,3</td>
<td>4,5</td>
<td>6,7</td>
</tr>
</tbody>
</table>

Command Mode

Interface Configuration (Ethernet, Port Channel)
Command Usage

- CoS values assigned at the ingress port are also used at the egress port.

Example

The following example shows how to change the CoS assignments:

```
Console(config)#interface ethernet 1/1
Console(config-if)#queue cos-map 0 0
Console(config-if)#queue cos-map 1 1
Console(config-if)#queue cos-map 2 2
Console(config-if)#exit
Console#show queue cos-map ethernet 1/1
Information of Eth 1/1
  Traffic Class : 0 1 2 3 4 5 6 7
  Priority Queue: 0 1 2 1 2 2 3 3
Console#
```

Related Commands

- show queue cos-map (4-189)
- show queue mode

 This command shows the current queue mode.

 Default Setting

 None

 Command Mode

 Privileged Exec

Example

```
Console#show queue mode
Queue mode: wrr
Console#
```

show queue bandwidth

This command displays the weighted round-robin (WRR) bandwidth allocation for the four priority queues.

Default Setting

None

Command Mode

Privileged Exec
Example

Console# show queue bandwidth

<table>
<thead>
<tr>
<th>Queue ID</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

Console#

show queue cos-map

This command shows the class of service priority map.

Syntax

```
show queue cos-map [interface]
```

- **interface**
 - **ethernet unit/port**
 - *unit* - Stack unit. (Always unit 1)
 - *port* - Port number. (Range: 1-26/50)
 - **port-channel channel-id** (Range: 1-32)

Default Setting

None

Command Mode

Privileged Exec

Example

```
Console# show queue cos-map ethernet 1/1
Information of Eth 1/1
Traffic Class : 0 1 2 3 4 5 6 7
Priority Queue: 1 0 0 1 2 2 3 3
Console#
```

Priority Commands (Layer 3 and 4)

Table 4-64 Priority Commands (Layer 3 and 4)

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>map ip dscp</td>
<td>Enables IP DSCP class of service mapping</td>
<td>GC</td>
<td>4-189</td>
</tr>
<tr>
<td>map ip dscp</td>
<td>Maps IP DSCP value to a class of service</td>
<td>IC</td>
<td>4-190</td>
</tr>
<tr>
<td>show map ip dscp</td>
<td>Shows the IP DSCP map</td>
<td>PE</td>
<td>4-191</td>
</tr>
</tbody>
</table>

map ip dscp (Global Configuration)

This command enables IP DSCP mapping (i.e., Differentiated Services Code Point mapping). Use the **no** form to disable IP DSCP mapping.
Syntax

[no] map ip dscp

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

• The precedence for priority mapping is IP DSCP, and default switchport priority.

Example

The following example shows how to enable IP DSCP mapping globally:

```console
Console(config)#map ip dscp
Console(config)#
```

map ip dscp (Interface Configuration)

This command sets IP DSCP priority (i.e., Differentiated Services Code Point priority). Use the no form to restore the default table.

Syntax

```
map ip dscp dscp-value cos cos-value
no map ip dscp
```

• `dscp-value` - 8-bit DSCP value. (Range: 0-63)
• `cos-value` - Class-of-Service value (Range: 0-7)

Default Setting

The DSCP default values are defined in the following table. Note that all the DSCP values that are not specified are mapped to CoS value 0.

<table>
<thead>
<tr>
<th>IP DSCP Value</th>
<th>CoS Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>10, 12, 14, 16</td>
<td>2</td>
</tr>
<tr>
<td>18, 20, 22, 24</td>
<td>3</td>
</tr>
<tr>
<td>26, 28, 30, 32, 34, 36</td>
<td>4</td>
</tr>
<tr>
<td>38, 40, 42</td>
<td>5</td>
</tr>
<tr>
<td>48</td>
<td>6</td>
</tr>
<tr>
<td>46, 56</td>
<td>7</td>
</tr>
</tbody>
</table>
Command Mode

Interface Configuration (Ethernet, Port Channel)

Command Usage

- The precedence for priority mapping is IP DSCP, and default switchport priority.
- DSCP priority values are mapped to default Class of Service values according to recommendations in the IEEE 802.1p standard, and then subsequently mapped to the four hardware priority queues.
- This command sets the IP DSCP priority for all interfaces.

Example

The following example shows how to map IP DSCP value 1 to CoS value 0:

```
Console(config)#interface ethernet 1/5
Console(config-if)#map ip dscp 1 cos 0
Console(config-if)#
```

show map ip dscp

This command shows the IP DSCP priority map.

Syntax

```
show map ip dscp [interface]

interface

- ethernet unit/port
  - unit - Stack unit. (Always unit 1)
  - port - Port number. (Range: 1-26/50)
- port-channel channel-id (Range: 1-32)
```

Default Setting

None

Command Mode

Privileged Exec
Example

Console# show map ip dscp ethernet 1/1
DSCP mapping status: disabled

<table>
<thead>
<tr>
<th>Port</th>
<th>DSCP</th>
<th>COS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eth 1/1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eth 1/1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Eth 1/1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Eth 1/1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth 1/1</td>
<td>61</td>
<td>0</td>
</tr>
<tr>
<td>Eth 1/1</td>
<td>62</td>
<td>0</td>
</tr>
<tr>
<td>Eth 1/1</td>
<td>63</td>
<td>0</td>
</tr>
</tbody>
</table>

Related Commands

- `map ip dscp` (Global Configuration) (4-189)
- `map ip dscp` (Interface Configuration) (4-190)

Quality of Service Commands

The commands described in this section are used to configure Differentiated Services (DiffServ) classification criteria and service policies. You can classify traffic based on access lists, IP Precedence or DSCP values, or VLANs. Using access lists allows you select traffic based on Layer 2, Layer 3, or Layer 4 information contained in each packet.

Note: Due to a chip limitation, IP source guard and Quality of Service (only for IP related QoS function) cannot be enabled at the same time. Thus, if the user has already enabled the IP source guard function, it needs to be disabled first in order for the QoS function to work and vice versa.
To create a service policy for a specific category of ingress traffic, follow these steps:

1. Use the **class-map** command to designate a class name for a specific category of traffic, and enter the Class Map configuration mode.
2. Use the **match** command to select a specify type of traffic based on an access list, a DSCP or IP Precedence value, or a VLAN.
3. Set an ACL mask to enable filtering for the criteria specified in the **match** command.
4. Use the **policy-map** command to designate a policy name for a specific manner in which ingress traffic will be handled, and enter the Policy Map configuration mode.
5. Use the **class** command to identify the class map, and enter Policy Map Class configuration mode. A policy map can contain multiple class statements.
6. Use the **set** command to modify the QoS value for matching traffic class, and use the **policer** command to monitor the average flow and burst rate, and drop any traffic that exceeds the specified rate, or just reduce the DSCP service level for traffic exceeding the specified rate.
7. Use the **service-policy** command to assign a policy map to a specific interface.

Notes:
1. You can configure up to 16 rules per Class Map. You can also include multiple classes in a Policy Map.
2. You should create a Class Map (page 4-194) before creating a Policy Map (page 4-195). Otherwise, you will not be able to specify a Class Map with the **class** command (page 4-196) after entering Policy-Map Configuration mode.
class-map

This command creates a class map used for matching packets to the specified class, and enters Class Map configuration mode. Use the `no` form to delete a class map and return to Global configuration mode.

Syntax

```
[no] class-map class-map-name [match-any]
```

- `match-any` - Match any condition within a class map.
- `class-map-name` - Name of the class map. (Range: 1-16 characters)

Default Setting

None

Command Mode

Global Configuration

Command Usage

- First enter this command to designate a class map and enter the Class Map configuration mode. Then use the `match` command (page 4-194) to specify the criteria for ingress traffic that will be classified under this class map.
- Up to 16 `match` commands are permitted per class map.
- The class map is used with a policy map (page 4-195) to create a service policy (page 4-199) for a specific interface that defines packet classification, service tagging, and bandwidth policing.

Example

This example creates a class map call "rd_class," and sets it to match packets marked for DSCP service value 3:

```
Console(config)#class-map rd_class match-any
Console(config-cmap)#match ip dscp 3
Console(config-cmap)#
```

Related Commands

- `show class map` (4-199)

match

This command defines the criteria used to classify traffic. Use the `no` form to delete the matching criteria.

Syntax

```
[no] match {access-list acl-name | ip dscp dscp | ip precedence ip-precedence | vlan vlan}
```

- `access-list acl-name` - Name of the access control list. Any type of ACL can be specified, including standard or extended IP ACLs and MAC ACLs. (Range: 1-16 characters)
- `ip dscp dscp` - A DSCP value. (Range: 0-63)
- `ip precedence ip-precedence` - An IP Precedence value. (Range: 0-7)
Quality of Service Commands

- **vlan** - A VLAN. (Range: 1-4094)

Default Setting
None

Command Mode
Class Map Configuration

Command Usage
- First enter the **class-map** command to designate a class map and enter the Class Map configuration mode. Then use the **match** command to specify the fields within ingress packets that must match to qualify for this class map.
- Only one **match** command can be entered per class map.

Example
This example creates a class map called “rd_class#1,” and sets it to match packets marked for DSCP service value 3:

```bash
Console(config)#class-map rd_class#1 match-any
Console(config-cmap)#match ip dscp 3
Console(config-cmap)#
```

This example creates a class map call “rd_class#2,” and sets it to match packets marked for IP Precedence service value 5:

```bash
Console(config)#class-map rd_class#2 match-any
Console(config-cmap)#match ip precedence 5
Console(config-cmap)#
```

This example creates a class map call “rd_class#3,” and sets it to match packets marked for VLAN 1:

```bash
Console(config)#class-map rd_class#3 match-any
Console(config-cmap)#match vlan 1
Console(config-cmap)#
```

policy-map
This command creates a policy map that can be attached to multiple interfaces, and enters Policy Map configuration mode. Use the **no** form to delete a policy map and return to Global configuration mode.

Syntax

```
[no] policy-map policy-map-name

policy-map-name - Name of the policy map. (Range: 1-16 characters)
```

Default Setting
None

Command Mode
Global Configuration
Command Usage

- Use the `policy-map` command to specify the name of the policy map, and then use the `class` command to configure policies for traffic that matches criteria defined in a class map.
- A policy map can contain multiple class statements that can be applied to the same interface with the `service-policy` command (page 4-199).
- You must create a Class Map (page 4-195) before assigning it to a Policy Map.

Example

This example creates a policy called “rd_policy,” uses the `class` command to specify the previously defined “rd_class,” uses the `set` command to classify the service that incoming packets will receive, and then uses the `police` command to limit the average bandwidth to 100,000 Kbps, the burst rate to 1522 bytes, and configure the response to drop any violating packets.

```
Console(config)#policy-map rd_policy
Console(config-pmap)#class rd_class
Console(config-pmap-c)#set ip dscp 3
Console(config-pmap-c)#police 100000 1522 exceed-action drop
Console(config-pmap-c)#
```

class

This command defines a traffic classification upon which a policy can act, and enters Policy Map Class configuration mode. Use the `no` form to delete a class map and return to Policy Map configuration mode.

Syntax

```
[no] class class-map-name
```

- `class-map-name` - Name of the class map. (Range: 1-16 characters)

Default Setting

None

Command Mode

Policy Map Configuration

Command Usage

- Use the `policy-map` command to specify a policy map and enter Policy Map configuration mode. Then use the `class` command to enter Policy Map Class configuration mode. And finally, use the `set` and `police` commands to specify the match criteria, where the:
 - `set` command classifies the service that an IP packet will receive.
 - `police` command defines the maximum throughput, burst rate, and the action that results from a policy violation.
- You can configure up to 16 rules per Class Map. You can also include multiple classes in a Policy Map.
Example
This example creates a policy called “rd_policy,” uses the **class** command to specify the previously defined “rd_class,” uses the **set** command to classify the service that incoming packets will receive, and then uses the **police** command to limit the average bandwidth to 100,000 Kbps, the burst rate to 1522 bytes, and configure the response to drop any violating packets.

```
Console(config)#policy-map rd_policy
Console(config-pmap)#class rd_class
Console(config-pmap-c)#set ip dscp 3
Console(config-pmap-c)#police 100000 1522 exceed-action drop
Console(config-pmap-c)#
```

set
This command services IP traffic by setting a CoS, DSCP, or IP Precedence value in a matching packet (as specified by the **match** command on page 4-194). Use the **no** form to remove the traffic classification.

Syntax
```
[no] set {cos new-cos | ip dscp new-dscp | ip precedence new-precedence }
```

- **new-cos** - New Class of Service (CoS) value. (Range: 0-7)
- **new-dscp** - New Differentiated Service Code Point (DSCP) value. (Range: 0-63)
- **new-precedence** - New IP Precedence value. (Range: 0-7)

Default Setting
None

Command Mode
Policy Map Class Configuration

Example
This example creates a policy called “rd_policy,” uses the **class** command to specify the previously defined “rd_class,” uses the **set** command to classify the service that incoming packets will receive, and then uses the **police** command to limit the average bandwidth to 100,000 Kbps, the burst rate to 1522 bytes, and configure the response to drop any violating packets.

```
Console(config)#policy-map rd_policy
Console(config-pmap)#class rd_class
Console(config-pmap-c)#set ip dscp 3
Console(config-pmap-c)#police 100000 1522 exceed-action drop
Console(config-pmap-c)#
```
police
This command defines an policer for classified traffic. Use the no form to remove a policer.

Syntax

```plaintext
[no] police rate-kbps burst-byte [exceed-action {drop | set}]
```

- **rate-kbps** - Rate in kilobits per second. (Range: 1-100000 kbps or maximum port speed, whichever is lower)
- **burst-byte** - Burst in bytes. (Range: 64-1522 bytes)
- **drop** - Drop packet when specified rate or burst are exceeded.
- **set** - Set DSCP service to the specified value. (Range: 0-63)

Default Setting

Drop out-of-profile packets.

Command Mode

Policy Map Class Configuration

Command Usage

- You can configure up to 64 policers (i.e., meters or class maps) for each of the following access list types: MAC ACL, IP ACL (including Standard ACL and Extended ACL).
- Policing is based on a token bucket, where bucket depth (i.e., the maximum burst before the bucket overflows) is by specified the `burst-byte` field, and the average rate tokens are removed from the bucket is by specified by the `rate-bps` option.

Example

This example creates a policy called “rd_policy,” uses the `class` command to specify the previously defined “rd_class,” uses the `set` command to classify the service that incoming packets will receive, and then uses the `police` command to limit the average bandwidth to 100,000 Kbps, the burst rate to 1522 bytes, and configure the response to drop any violating packets.

```plaintext
Console(config)#policy-map rd_policy
Console(config-pmap)#class rd_class
Console(config-pmap-c)#set ip dscp 3
Console(config-pmap-c)#police 100000 1522 exceed-action drop
Console(config-pmap-c)#
```
service-policy
This command applies a policy map defined by the policy-map command to the ingress queue of a particular interface. Use the no form to remove the policy map from this interface.

Syntax

\[
\text{[no]} \text{ service-policy input policy-map-name}
\]

- input - Apply to the input traffic.
- policy-map-name - Name of the policy map for this interface.
 (Range: 1-16 characters)

Default Setting
No policy map is attached to an interface.

Command Mode
Interface Configuration (Ethernet, Port Channel)

Command Usage
- You can only assign one policy map to an interface.
- You must first define a class map, then define a policy map, and finally use the service-policy command to bind the policy map to the required interface.

Example
This example applies a service policy to an ingress interface.

```
Console(config)#interface ethernet 1/1
Console(config-if)#service-policy input rd_policy
Console(config-if)#
```

show class-map
This command displays the QoS class maps which define matching criteria used for classifying traffic.

Syntax

```
show class-map [class-map-name]
```

- class-map-name - Name of the class map. (Range: 1-16 characters)

Default Setting
Displays all class maps.

Command Mode
Privileged Exec
Example

```
Console#show class-map
Class Map match-any rd_class#1
   Match ip dscp 3
Class Map match-any rd_class#2
   Match ip precedence 5
Class Map match-any rd_class#3
   Match vlan 1
Console#
```

show policy-map

This command displays the QoS policy maps which define classification criteria for incoming traffic, and may include policers for bandwidth limitations.

Syntax

```
show policy-map [policy-map-name [class class-map-name]]
```

- `policy-map-name` - Name of the policy map. (Range: 1-16 characters)
- `class-map-name` - Name of the class map. (Range: 1-16 characters)

Default Setting

Displays all policy maps and all classes.

Command Mode

Privileged Exec

Example

```
Console#show policy-map
Policy Map rd_policy
   class rd_class
   set ip dscp 3
Console#show policy-map rd_policy class rd_class
Policy Map rd_policy
   class rd_class
   set ip dscp 3
Console#
```

show policy-map interface

This command displays the service policy assigned to the specified interface.

Syntax

```
show policy-map interface interface input
```

- `interface`
 - `ethernet unit/port`
 - `unit` - Stack unit. (Always unit 1)
 - `port` - Port number. (Range: 1-26/50)
 - `port-channel channel-id` (Range: 1-32)
Multicast Filtering Commands

This switch uses IGMP (Internet Group Management Protocol) to query for any attached hosts that want to receive a specific multicast service. It identifies the ports containing hosts requesting a service and sends data out to those ports only. It then propagates the service request up to any neighboring multicast switch/router to ensure that it will continue to receive the multicast service.

Table 4-67 Multicast Filtering Commands

<table>
<thead>
<tr>
<th>Command Groups</th>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP Snooping</td>
<td>Configures multicast groups via IGMP snooping or static assignment,</td>
<td>4-201</td>
</tr>
<tr>
<td></td>
<td>sets the IGMP version, displays current snooping and query settings,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and displays the multicast service and group members</td>
<td></td>
</tr>
<tr>
<td>IGMP Query</td>
<td>Configures IGMP query parameters for multicast filtering at Layer 2</td>
<td>4-206</td>
</tr>
<tr>
<td>Static Multicast Routing</td>
<td>Configures static multicast router ports</td>
<td>4-209</td>
</tr>
<tr>
<td>IGMP Filtering and Throttling</td>
<td>Configures IGMP filtering and throttling</td>
<td>4-211</td>
</tr>
<tr>
<td>Multicast VLAN Registration</td>
<td>Configures a single network-wide multicast VLAN shared by hosts</td>
<td>4-212</td>
</tr>
<tr>
<td></td>
<td>residing in other standard or private VLAN groups, preserving</td>
<td></td>
</tr>
<tr>
<td></td>
<td>security and data isolation for normal traffic</td>
<td></td>
</tr>
</tbody>
</table>

IGMP Snooping Commands

Table 4-68 IGMP Snooping Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip igmp snooping</td>
<td>Enables IGMP snooping</td>
<td>GC</td>
<td>4-202</td>
</tr>
<tr>
<td>ip igmp snooping vlan static</td>
<td>Adds an interface as a member of a multicast group</td>
<td>GC</td>
<td>4-202</td>
</tr>
<tr>
<td>ip igmp snooping version</td>
<td>Configures the IGMP version for snooping</td>
<td>GC</td>
<td>4-203</td>
</tr>
<tr>
<td>ip igmp snooping leave-proxy</td>
<td>Enables IGMP leave proxy on the switch</td>
<td>GC</td>
<td>4-203</td>
</tr>
<tr>
<td>ip igmp snooping immediate-leave</td>
<td>Enables IGMP immediate leave for a VLAN interface</td>
<td>IC</td>
<td>4-204</td>
</tr>
<tr>
<td>show ip igmp snooping</td>
<td>Shows the IGMP snooping and query configuration</td>
<td>PE</td>
<td>4-203</td>
</tr>
<tr>
<td>show mac-address-table multicast</td>
<td>Shows the IGMP snooping MAC multicast list</td>
<td>PE</td>
<td>4-205</td>
</tr>
</tbody>
</table>
ip igmp snooping
This command enables IGMP snooping on this switch. Use the no form to disable it.

Syntax

[no] ip igmp snooping

Default Setting

Enabled

Command Mode

Global Configuration

Example
The following example enables IGMP snooping.

```
Console(config)#ip igmp snooping
Console(config)#
```

ip igmp snooping vlan static
This command adds a port to a multicast group. Use the no form to remove the port.

Syntax

[no] ip igmp snooping vlan vlan-id static ip-address interface

- vlan-id - VLAN ID (Range: 1-4094)
- ip-address - IP address for multicast group
- interface
 - ethernet unit/port
 - unit - Stack unit. (Always unit 1)
 - port - Port number. (Range: 1-26/50)
 - port-channel channel-id (Range: 1-32)

Default Setting

None

Command Mode

Global Configuration

Example
The following shows how to statically configure a multicast group on a port:

```
Console(config)#ip igmp snooping vlan 1 static 224.0.0.12 ethernet 1/5
Console(config)#
```
ip igmp snooping version
This command configures the IGMP snooping version. Use the no form to restore the default.

Syntax

```
ip igmp snooping version {1 | 2}
no ip igmp snooping version
```

• 1 - IGMP Version 1
• 2 - IGMP Version 2

Default Setting
IGMP Version 2

Command Mode
Global Configuration

Command Usage

• All systems on the subnet must support the same version. If there are legacy devices in your network that only support Version 1, you will also have to configure this switch to use Version 1.
• Some commands are only enabled for IGMPv2, including ip igmp query-max-response-time and ip igmp query-timeout.

Example

The following configures the switch to use IGMP Version 1:

```
Console(config)#ip igmp snooping version 1
Console(config)#
```

ip igmp snooping leave-proxy
This command enables IGMP leave proxy on the switch. Use the no form to disable the feature.

Syntax

```
[no] ip igmp snooping leave-proxy
```

Default Setting
Disabled

Command Mode
Global Configuration

Command Usage

• The IGMP snooping leave-proxy feature suppresses all unnecessary IGMP leave messages so that the non-querier switch forwards an IGMP leave packet only when the last dynamic member port leaves a multicast group.
• The leave-proxy feature does not function when a switch is set as the querier.

Example

```
Console(config)#ip igmp snooping leave-proxy
Console(config)#
```

`ip igmp snooping immediate-leave`

This command enables IGMP immediate leave for specific VLAN. Use the `no` form to disable the feature for a VLAN.

Syntax

```
[no] ip igmp snooping immediate-leave
```

Default Setting

Disabled

Command Mode

Interface Configuration (VLAN)

Command Usage

The IGMP snooping immediate-leave feature enables a Layer 2 LAN interface to be removed from the multicast forwarding table without first sending an IGMP group-specific query to the interface. Upon receiving a group-specific IGMPv2 leave message, the switch immediately removes the interface from the Layer 2 forwarding table entry for that multicast group, unless a multicast router was learned on the port.

Example

```
Console(config)#interface vlan 1
Console(config-if)#ip igmp snooping immediate-leave
Console(config-if)#
```

`show ip igmp snooping`

This command shows the IGMP snooping configuration.

Default Setting

None

Command Mode

Privileged Exec

Command Usage

See “Configuring IGMP Snooping and Query Parameters” on page 3-163 for a description of the displayed items.
Example

The following shows the current IGMP snooping configuration:

```
Console#show ip igmp snooping
Service status: Enabled
Querier status: Enabled
Leave proxy status: Disabled
Query count: 10
Query interval: 100 sec
Query max response time: 20 sec
Router port expire time: 300 sec
Immediate Leave Processing: Disabled on all VLAN
IGMP snooping version: Version 2
Console#
```

show mac-address-table multicast

This command shows known multicast addresses.

Syntax

```
show mac-address-table multicast [vlan vlan-id] [user | igmp-snooping]
```

- `vlan-id` - VLAN ID (1 to 4094)
- `user` - Display only the user-configured multicast entries.
- `igmp-snooping` - Display only entries learned through IGMP snooping.

Default Setting

None

Command Mode

Privileged Exec

Command Usage

Member types displayed include IGMP or USER, depending on selected options.

Example

The following shows the multicast entries learned through IGMP snooping for VLAN 1:

```
Console#show mac-address-table multicast vlan 1 igmp-snooping
VLAN M'cast IP addr. Member ports Type
---- ------------------ ----------- -------
1 224.1.2.3 Eth1/11 IGMP
Console#
```
IGMP Query Commands (Layer 2)

Table 4-69 IGMP Query Commands (Layer 2)

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip igmp snooping querier</td>
<td>Allows this device to act as the querier for IGMP snooping</td>
<td>GC</td>
<td>4-206</td>
</tr>
<tr>
<td>ip igmp snooping query-count</td>
<td>Configures the query count</td>
<td>GC</td>
<td>4-206</td>
</tr>
<tr>
<td>ip igmp snooping query-interval</td>
<td>Configures the query interval</td>
<td>GC</td>
<td>4-207</td>
</tr>
<tr>
<td>ip igmp snooping query-max-response-time</td>
<td>Configures the report delay</td>
<td>GC</td>
<td>4-208</td>
</tr>
<tr>
<td>ip igmp snooping router-port-expire-time</td>
<td>Configures the query timeout</td>
<td>GC</td>
<td>4-208</td>
</tr>
</tbody>
</table>

ip igmp snooping querier
This command enables the switch as an IGMP querier. Use the no form to disable it.

Syntax

[n]o ip igmp snooping querier

Default Setting

Enabled

Command Mode

Global Configuration

Command Usage

If enabled, the switch will serve as querier if elected. The querier is responsible for asking hosts if they want to receive multicast traffic.

Example

```console
        Console(config)#ip igmp snooping querier
        Console(config)#
```

ip igmp snooping query-count
This command configures the query count. Use the no form to restore the default.

Syntax

```
ip igmp snooping query-count count
no ip igmp snooping query-count
```

count - The maximum number of queries issued for which there has been no response before the switch takes action to drop a client from the multicast group. (Range: 2-10)
Default Setting

2 times

Command Mode

Global Configuration

Command Usage

The query count defines how long the querier waits for a response from a multicast client before taking action. If a querier has sent a number of queries defined by this command, but a client has not responded, a countdown timer is started using the time defined by `ip igmp snooping query-max-response-time`. If the countdown finishes, and the client still has not responded, then that client is considered to have left the multicast group.

Example

The following shows how to configure the query count to 10:

```
Console(config)#ip igmp snooping query-count 10
Console(config)#
```

Related Commands

`ip igmp snooping query-max-response-time (4-208)`

`ip igmp snooping query-interval`

This command configures the query interval. Use the `no` form to restore the default.

Syntax

```
ip igmp snooping query-interval seconds
no ip igmp snooping query-interval
```

seconds - The frequency at which the switch sends IGMP host-query messages. (Range: 60-125)

Default Setting

125 seconds

Command Mode

Global Configuration

Example

The following shows how to configure the query interval to 100 seconds:

```
Console(config)#ip igmp snooping query-interval 100
Console(config)#
```
ip igmp snooping query-max-response-time
This command configures the query report delay. Use the no form to restore the default.

Syntax

```plaintext
ip igmp snooping query-max-response-time seconds
no ip igmp snooping query-max-response-time
```

seconds - The report delay advertised in IGMP queries. (Range: 5-25)

Default Setting

10 seconds

Command Mode

Global Configuration

Command Usage

- The switch must be using IGMPv2 for this command to take effect.
- This command defines the time after a query, during which a response is expected from a multicast client. If a querier has sent a number of queries defined by the `ip igmp snooping query-count`, but a client has not responded, a countdown timer is started using an initial value set by this command. If the countdown finishes, and the client still has not responded, then that client is considered to have left the multicast group.

Example

The following shows how to configure the maximum response time to 20 seconds:

```
Console(config)#ip igmp snooping query-max-response-time 20
Console(config)#
```

Related Commands

- `ip igmp snooping version (4-203)`
- `ip igmp snooping query-max-response-time (4-208)`

ip igmp snooping router-port-expire-time
This command configures the query timeout. Use the no form to restore the default.

Syntax

```plaintext
ip igmp snooping router-port-expire-time seconds
no ip igmp snooping router-port-expire-time
```

seconds - The time the switch waits after the previous querier stops before it considers the router port (i.e., the interface which had been receiving query packets) to have expired.

(Range: 300-500)
Multicast Filtering Commands

Default Setting

300 seconds

Command Mode

Global Configuration

Command Usage

The switch must use IGMPv2 for this command to take effect.

Example

The following shows how to configure the default timeout to 300 seconds:

```
Console(config)#ip igmp snooping router-port-expire-time 300
Console(config)#
```

Related Commands

ip igmp snooping version (4-203)

Static Multicast Routing Commands

Table 4-70 Static Multicast Routing Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip igmp snooping vlan mrouter</td>
<td>Adds a multicast router port</td>
<td>GC</td>
<td>4-209</td>
</tr>
<tr>
<td>show ip igmp snooping mrouter</td>
<td>Shows multicast router ports</td>
<td>PE</td>
<td>4-210</td>
</tr>
</tbody>
</table>

ip igmp snooping vlan mrouter

This command statically configures a multicast router port. Use the no form to remove the configuration.

Syntax

```
[no] ip igmp snooping vlan vlan-id mrouter interface
```

- `vlan-id` - VLAN ID (Range: 1-4094)
- `interface`
 - `ethernet unit/port`
 - `unit` - Stack unit. (Always unit 1)
 - `port` - Port number. (Range: 1-26/50)
 - `port-channel channel-id` (Range: 1-32)

Default Setting

No static multicast router ports are configured.

Command Mode

Global Configuration
Command Usage

Depending on your network connections, IGMP snooping may not always be able to locate the IGMP querier. Therefore, if the IGMP querier is a known multicast router/switch connected over the network to an interface (port or trunk) on your router, you can manually configure that interface to join all the current multicast groups.

Example

The following shows how to configure port 11 as a multicast router port within VLAN 1:

```plaintext
Console(config)#ip igmp snooping vlan 1 mrouter ethernet 1/11
Console(config)#
```

show ip igmp snooping mrouter

This command displays information on statically configured and dynamically learned multicast router ports.

Syntax

```
show ip igmp snooping mrouter [vlan vlan-id]
```

`vlan-id` - VLAN ID (Range: 1-4094)

Default Setting

Displays multicast router ports for all configured VLANs.

Command Mode

Privileged Exec

Command Usage

Multicast router port types displayed include Static.

Example

The following shows that port 11 in VLAN 1 is attached to a multicast router:

```plaintext
Console#show ip igmp snooping mrouter vlan 1
    VLAN M'cast Router Ports Type
        ---- ------------------- -------
        1      Eth 1/11  Static
        2      Eth 1/12  Static
Console#
```
IGMP Filtering and Throttling Commands

In certain switch applications, the administrator may want to control the multicast services that are available to end users. For example, an IP/TV service based on a specific subscription plan. The IGMP filtering feature fulfills this requirement by restricting access to specified multicast services on a switch port, and IGMP throttling limits the number of simultaneous multicast groups a port can join.

Table 4-71 IGMP Filtering and Throttling Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip igmp filter</td>
<td>Enables IGMP filtering and throttling on the switch</td>
<td>GC</td>
<td>4-211</td>
</tr>
<tr>
<td>ip igmp profile</td>
<td>Sets a profile number and enters IGMP filter profile configuration mode</td>
<td>GC</td>
<td>4-212</td>
</tr>
<tr>
<td>permit, deny</td>
<td>Sets a profile access mode to permit or deny</td>
<td>IPC</td>
<td>4-212</td>
</tr>
<tr>
<td>range</td>
<td>Specifies one or a range of multicast addresses for a profile</td>
<td>IPC</td>
<td>4-213</td>
</tr>
<tr>
<td>ip igmp filter</td>
<td>Assigns an IGMP filter profile to an interface</td>
<td>IC</td>
<td>4-213</td>
</tr>
<tr>
<td>ip igmp max-groups</td>
<td>Specifies an IGMP throttling number for an interface</td>
<td>IC</td>
<td>4-214</td>
</tr>
<tr>
<td>ip igmp max-groups action</td>
<td>Sets the IGMP throttling action for an interface</td>
<td>IC</td>
<td>4-215</td>
</tr>
<tr>
<td>show ip igmp filter</td>
<td>Displays the IGMP filtering status</td>
<td>PE</td>
<td>4-215</td>
</tr>
<tr>
<td>show ip igmp profile</td>
<td>Displays IGMP profiles and settings</td>
<td>PE</td>
<td>4-216</td>
</tr>
<tr>
<td>show ip igmp throttle interface</td>
<td>Displays the IGMP throttling setting for interfaces</td>
<td>PE</td>
<td>4-216</td>
</tr>
</tbody>
</table>

ip igmp filter (Global Configuration)

This command globally enables IGMP filtering and throttling on the switch. Use the **no** form to disable the feature.

Syntax

```
[no] ip igmp filter
```

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- IGMP filtering enables you to assign a profile to a switch port that specifies multicast groups that are permitted or denied on the port. An IGMP filter profile can contain one or more, or a range of multicast addresses; but only one profile can be assigned to a port. When enabled, IGMP join reports received on the port are checked against the filter profile. If a requested multicast group is permitted, the IGMP join report is forwarded as normal. If a requested multicast group is denied, the IGMP join report is dropped.
- IGMP filtering and throttling only applies to dynamically learned multicast groups, it does not apply to statically configured groups.
The IGMP filtering feature operates in the same manner when MVR is used to forward multicast traffic.

Example

```bash
Console(config)#ip igmp filter
Console(config)#
```

ip igmp profile

This command creates an IGMP filter profile number and enters IGMP profile configuration mode. Use the `no` form to delete a profile number.

Syntax

```
[no] ip igmp profile profile-number
```

profile-number - An IGMP filter profile number. (Range:1-4294967295)

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

A profile defines the multicast groups that a subscriber is permitted or denied to join. The same profile can be applied to many interfaces, but only one profile can be assigned to one interface. Each profile has only one access mode; either permit or deny.

Example

```bash
Console(config)#ip igmp profile 19
Console(config-igmp-profile)#
```

permit, deny

This command sets the access mode for an IGMP filter profile. Use the `no` form to delete a profile number.

Syntax

```
{permit | deny}
```

Default Setting

Deny

Command Mode

IGMP Profile Configuration

Command Usage

- Each profile has only one access mode; either permit or deny.
• When the access mode is set to permit, IGMP join reports are processed when a multicast group falls within the controlled range. When the access mode is set to deny, IGMP join reports are only processed when a multicast group is not in the controlled range.

Example

```
Console(config)#ip igmp profile 19
Console(config-igmp-profile)#permit
Console(config-igmp-profile)#
```

range
This command specifies multicast group addresses for a profile. Use the no form to delete addresses from a profile.

Syntax

```
[no] range low-ip-address [high-ip-address]
```

- low-ip-address - A valid IP address of a multicast group or start of a group range.
- high-ip-address - A valid IP address for the end of a multicast group range.

Default Setting
None

Command Mode
IGMP Profile Configuration

Command Usage
Enter this command multiple times to specify more than one multicast address or address range for a profile.

Example

```
Console(config)#ip igmp profile 19
Console(config-igmp-profile)#range 239.1.1.1
Console(config-igmp-profile)#range 239.2.3.1 239.2.3.100
Console(config-igmp-profile)#
```

ip igmp filter (Interface Configuration)
This command assigns an IGMP filtering profile to an interface on the switch. Use the no form to remove a profile from an interface.

Syntax

```
[no] ip igmp filter profile-number
```

- profile-number - An IGMP filter profile number. (Range:1-4294967295)

Default Setting
None
Command Mode

Interface Configuration

Command Usage

• The IGMP filtering profile must first be created with the `ip igmp profile` command before being able to assign it to an interface.
• Only one profile can be assigned to an interface.
• A profile can also be assigned to a trunk interface. When ports are configured as trunk members, the trunk uses the filtering profile assigned to the first port member in the trunk.

Example

```
Console(config)#interface ethernet 1/1
Console(config-if)#ip igmp filter 19
Console(config-if)#
```

`ip igmp max-groups`
This command sets the IGMP throttling number for an interface on the switch. Use the no form to restore the default setting.

Syntax

```
ip igmp max-groups number

no ip igmp max-groups
```

- `number` - The maximum number of multicast groups an interface can join at the same time. (Range: 0-64)

Default Setting

64

Command Mode

Interface Configuration

Command Usage

• IGMP throttling sets a maximum number of multicast groups that a port can join at the same time. When the maximum number of groups is reached on a port, the switch can take one of two actions; either “deny” or “replace.” If the action is set to deny, any new IGMP join reports will be dropped. If the action is set to replace, the switch randomly removes an existing group and replaces it with the new multicast group.
• IGMP throttling can also be set on a trunk interface. When ports are configured as trunk members, the trunk uses the throttling settings of the first port member in the trunk.
Multicast Filtering Commands

Example

```
Console(config)#interface ethernet 1/1
Console(config-if)#ip igmp max-group 10
Console(config-if)#
```

ip igmp max-groups action
This command sets the IGMP throttling action for an interface on the switch.

Syntax

```
ip igmp max-groups action {replace | deny}
```

- replace - The new multicast group replaces an existing group.
- deny - The new multicast group join report is dropped.

Default Setting
Deny

Command Mode
Interface Configuration

Command Usage

When the maximum number of groups is reached on a port, the switch can take one of two actions; either “deny” or “replace.” If the action is set to deny, any new IGMP join reports will be dropped. If the action is set to replace, the switch randomly removes an existing group and replaces it with the new multicast group.

Example

```
Console(config)#interface ethernet 1/1
Console(config-if)#ip igmp max-group action replace
Console(config-if)#
```

show ip igmp filter
This command displays the global and interface settings for IGMP filtering.

Syntax

```
show ip igmp filter [interface interface]
```

- interface

 • ethernet unit/port
 - -unit - Stack unit. (Range: 1)
 - -port - Port number. (Range: 1-29)
 • port-channel channel-id (Range: 1-32)

Default Setting
None
Command Mode

Privileged Exec

Example

```bash
Console#show ip igmp filter
IGMP filter enabled
console#show ip igmp filter interface ethernet 1/1
Ethernet 1/1 information
-----------------------------
IGMP Profile 19
  Deny
  range 239.1.1.1 239.1.1.1
  range 239.2.3.1 239.2.3.100
Console#
```

show ip igmp profile
This command displays IGMP filtering profiles created on the switch.

Syntax

```bash
show ip igmp profile [profile-number]
```

- **profile-number** - An existing IGMP filter profile number.

(Range: 1-4294967295)

Default Setting

None

Command Mode

Privileged Exec

Example

```bash
Console#show ip igmp profile
IGMP Profile 19
IGMP Profile 50
Console#show ip igmp profile 19
IGMP Profile 19
  Deny
  range 239.1.1.1 239.1.1.1
  range 239.2.3.1 239.2.3.100
Console#
```

show ip igmp throttle interface
This command displays the interface settings for IGMP throttling.

Syntax

```bash
show ip igmp throttle interface [interface]
```

- **interface**
 - **ethernet** unit/port
 - -unit - Stack unit. (Range: 1)
Multicast Filtering Commands

- -port - Port number. (Range: 1-29)
 • port-channel channel-id (Range: 1-32)

Default Setting

None

Command Mode

Privileged Exec

Command Usage

Using this command without specifying an interface displays all interfaces.

Example

```console
Console#show ip igmp throttle interface ethernet 1/1
Eth 1/1 Information
  Status : TRUE
  Action : Deny
  Max Multicast Groups : 32
  Current Multicast Groups : 0
Console#
```

Multicast VLAN Registration Commands

This section describes commands used to configure Multicast VLAN Registration (MVR). A single network-wide VLAN can be used to transmit multicast traffic (such as television channels) across a service provider’s network. Any multicast traffic entering an MVR VLAN is sent to all subscribers. This can significantly reduce to processing overhead required to dynamically monitor and establish the distribution tree for a normal multicast VLAN. Also note that MVR maintains the user isolation and data security provided by VLAN segregation by passing only multicast traffic into other VLANs to which the subscribers belong.

Table 4-72 Multicast VLAN Registration Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>mvr</td>
<td>Globally enables MVR, statically configures MVR group address(es), or specifies the MVR VLAN identifier</td>
<td>GC</td>
<td>4-218</td>
</tr>
<tr>
<td>mvr</td>
<td>Configures an interface as an MVR receiver or source port, enables immediate leave capability, or configures an interface as a static member of the MVR VLAN</td>
<td>IC</td>
<td>4-219</td>
</tr>
<tr>
<td>show mvr</td>
<td>Shows information about the global MVR configuration settings, the interfaces attached to the MVR VLAN, or the multicast groups assigned to the MVR VLAN</td>
<td>PE</td>
<td>4-221</td>
</tr>
</tbody>
</table>
mvr (Global Configuration)
This command enables Multicast VLAN Registration (MVR) globally on the switch, statically configures MVR multicast group IP address(es) using the group keyword, or specifies the MVR VLAN identifier using the vlan keyword. Use the no form of this command without any keywords to globally disable MVR. Use the no form with the group keyword to remove a specific address or range of addresses. Or use the no form with the vlan keyword restore the default MVR VLAN.

Syntax

```
(no) mvr [group ip-address [count] | vlan vlan-id]
```

- *ip-address* - IP address for an MVR multicast group. (Range: 224.0.1.0 - 239.255.255.255)
- *count* - The number of contiguous MVR group addresses. (Range: 1-255)
- *vlan-id* - MVR VLAN ID (Range: 1-4094)

Default Setting

- MVR is disabled.
- No MVR group address is defined.
- The default number of contiguous addresses is 0.
- MVR VLAN ID is 1.

Command Mode
Global Configuration

Command Usage

- Use the mvr group command to statically configure all multicast group addresses that will join the MVR VLAN. Any multicast data associated an MVR group is sent from all source ports, and to all receiver ports that have registered to receive data from that multicast group.
- The IP address range from 224.0.0.0 to 239.255.255.255 is used for multicast streams. MVR group addresses cannot fall within the reserved IP multicast address range of 224.0.0.x.
- IGMP snooping must be enabled to allow a subscriber to dynamically join or leave an MVR group (see ip igmp snooping on page 4-202). Note that only IGMP version 2 or 3 hosts can issue multicast join or leave messages.

Example
The following example enables MVR globally, and configures a range of MVR group addresses:

```
Console(config)#mvr
Console(config)#mvr group 228.1.23.1 10
Console(config)#
```
mvr (Interface Configuration)
This command configures an interface as an MVR receiver or source port using the type keyword, enables immediate leave capability using the immediate keyword, or configures an interface as a static member of the MVR VLAN using the group keyword. Use the no form to restore the default settings.

Syntax

[no] mvr {type {receiver | source} | immediate | group ip-address}

- **receiver** - Configures the interface as a subscriber port that can receive multicast data.
- **source** - Configure the interface as an uplink port that can send and receive multicast data for the configured multicast groups.
- **immediate** - Configures the switch to immediately remove an interface from a multicast stream as soon as it receives a leave message for that group.
- **ip-address** - Statically configures an interface to receive multicast traffic from the IP address specified for an MVR multicast group. (Range: 224.0.1.0 - 239.255.255.255)

Default Setting

- The port type is not defined.
- Immediate leave is disabled.
- No receiver port is a member of any configured multicast group.

Command Mode

Interface Configuration (Ethernet, Port Channel)
Command Usage

- A port which is not configured as an MVR receiver or source port can use IGMP snooping to join or leave multicast groups using the standard rules for multicast filtering.
- MVR receiver ports cannot be members of a trunk. Receiver ports can belong to different VLANs, but should not be configured as a member of the MVR VLAN. IGMP snooping can be used to allow a receiver port to dynamically join or leave multicast groups within the MVR VLAN. Multicast groups can also be statically assigned to a receiver port using the **group** keyword.
- One or more interfaces may be configured as MVR source ports. A source port is able to both receive and send data for multicast groups which it has joined through IGMP snooping or which have been statically assigned using the **group** keyword.
- The IP address range from 224.0.0.0 to 239.255.255.255 is used for multicast streams. MVR group addresses cannot fall within the reserved IP multicast address range of 224.0.0.x.
- Immediate leave applies only to receiver ports. When enabled, the receiver port is immediately removed from the multicast group identified in the leave message. When immediate leave is disabled, the switch follows the standard rules by sending a group-specific query to the receiver port and waiting for a response to determine if there are any remaining subscribers for that multicast group before removing the port from the group list.
- Using immediate leave can speed up leave latency, but should only be enabled on a port attached to one multicast subscriber to avoid disrupting services to other group members attached to the same interface.
- Immediate leave does not apply to multicast groups which have been statically assigned to a port.
- IGMP snooping must be enabled to allow a subscriber to dynamically join or leave an MVR group (see **ip igmp snooping** on page 4-202). Note that only IGMP version 2 or 3 hosts can issue multicast join or leave messages.

Example

The following configures one source port and several receiver ports on the switch, enables immediate leave on one of the receiver ports, and statically assigns a multicast group to another receiver port:

```
Console(config)#interface ethernet 1/5
Console(config-if)#mvr type source
Console(config-if)#exit
Console(config)#interface ethernet 1/6
Console(config-if)#mvr type receiver
Console(config-if)#mvr immediate
Console(config-if)#exit
Console(config)#interface ethernet 1/7
Console(config-if)#mvr type receiver
Console(config-if)#mvr group 225.0.0.5
Console(config-if)#
```
show mvr
This command shows information about the global MVR configuration settings when entered without any keywords, the interfaces attached to the MVR VLAN using the interface keyword, or the multicast groups assigned to the MVR VLAN using the members keyword.

Syntax

```
show mvr [interface [interface] | members [ip-address]]
```

- interface
- ethernet unit/port
 - unit - Stack unit. (Range: 1)
 - port - Port number. (Range: 1-28)
- port-channel channel-id (Range: 1-12)
- ip-address - IP address for an MVR multicast group.
 (Range: 224.0.1.0 - 239.255.255.255)

Default Setting
Displays global configuration settings for MVR when no keywords are used.

Command Mode
Privileged Exec

Command Usage
Enter this command without any keywords to display the global settings for MVR. Use the interface keyword to display information about interfaces attached to the MVR VLAN. Or use the members keyword to display information about multicast groups assigned to the MVR VLAN.

Example
The following shows the global MVR settings:

```
Console#show mvr
MVR Status:enable
MVR running status:TRUE
MVR multicast vlan:1
MVR Max Multicast Groups:255
MVR Current multicast groups:10
Console#
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVR Status</td>
<td>Shows if MVR is globally enabled on the switch.</td>
</tr>
<tr>
<td>MVR running status</td>
<td>Indicates whether or not all necessary conditions in the MVR environment are satisfied.</td>
</tr>
<tr>
<td>MVR multicast vlan</td>
<td>Shows the VLAN used to transport all MVR multicast traffic.</td>
</tr>
<tr>
<td>MVR Max Multicast Groups</td>
<td>Shows the maximum number of multicast groups which can assigned to the MVR VLAN.</td>
</tr>
<tr>
<td>MVR Current multicast groups</td>
<td>Shows the number of multicast groups currently assigned to the MVR VLAN.</td>
</tr>
</tbody>
</table>

Table 4-73 show mvr - display description
The following displays information about the interfaces attached to the MVR VLAN:

```
Console#show mvr interface
Port    Type            Status         Immediate Leave
------- --------        -------------   ---------------
eth1/1  SOURCE        ACTIVE/UP       Disable
eth1/2  RECEIVER       ACTIVE/UP       Disable
eth1/5  RECEIVER       INACTIVE/DOWN   Disable
eth1/6  RECEIVER       INACTIVE/DOWN   Disable
eth1/7  RECEIVER       INACTIVE/DOWN   Disable
```

Table 4-74 show mvr interface - display description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>Shows interfaces attached to the MVR.</td>
</tr>
<tr>
<td>Type</td>
<td>Shows the MVR port type.</td>
</tr>
<tr>
<td>Status</td>
<td>Shows the MVR status and interface status. MVR status for source ports is</td>
</tr>
<tr>
<td></td>
<td>“ACTIVE” if MVR is globally enabled on the switch. MVR status for receiver</td>
</tr>
<tr>
<td></td>
<td>ports is “ACTIVE” only if there are subscribers receiving multicast traffic</td>
</tr>
<tr>
<td></td>
<td>from one of the MVR groups, or a multicast group has been statically assigned</td>
</tr>
<tr>
<td></td>
<td>to an interface.</td>
</tr>
<tr>
<td>Immediate Leave</td>
<td>Shows if immediate leave is enabled or disabled.</td>
</tr>
</tbody>
</table>

The following shows information about the interfaces associated with multicast groups assigned to the MVR VLAN:

```
Console#show mvr members
MVR Group IP      Status    Members
----------------  --------  -------
225.0.0.1         ACTIVE    eth1/1(d), eth1/2(s)
225.0.0.2         INACTIVE  None
225.0.0.3         INACTIVE  None
225.0.0.4         INACTIVE  None
225.0.0.5         INACTIVE  None
225.0.0.6         INACTIVE  None
225.0.0.7         INACTIVE  None
225.0.0.8         INACTIVE  None
225.0.0.9         INACTIVE  None
225.0.0.10        INACTIVE  None
```

Table 4-75 show mvr members - display description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVR Group IP</td>
<td>Multicast groups assigned to the MVR VLAN.</td>
</tr>
<tr>
<td>Status</td>
<td>Shows whether or not there are active subscribers for this multicast group.</td>
</tr>
<tr>
<td>Members</td>
<td>Shows the interfaces with subscribers for multicast services provided through</td>
</tr>
<tr>
<td></td>
<td>the MVR VLAN. Also shows if an interface has dynamically joined a multicast</td>
</tr>
<tr>
<td></td>
<td>group (d), or if a multicast group has been statically bound to the interface</td>
</tr>
</tbody>
</table>

4-222
IP Interface Commands

An IP address may be used for management access to the switch over your network. The IP address for this switch is obtained via DHCP by default. You can manually configure a specific IP address, or direct the device to obtain an address from a BOOTP or DHCP server when it is powered on. You may also need to establish a default gateway between this device and management stations or other devices that exist on another network segment.

Table 4-76 IP Interface Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip address</td>
<td>Sets the IP address for the current interface</td>
<td>IC</td>
<td>4-223</td>
</tr>
<tr>
<td>ip default-gateway</td>
<td>Defines the default gateway through which this switch can reach other subnetworks</td>
<td>GC</td>
<td>4-224</td>
</tr>
<tr>
<td>ip dhcp restart</td>
<td>Submits a BOOTP or DHCP client request</td>
<td>PE</td>
<td>4-225</td>
</tr>
<tr>
<td>show ip interface</td>
<td>Displays the IP settings for this device</td>
<td>PE</td>
<td>4-225</td>
</tr>
<tr>
<td>show ip redirects</td>
<td>Displays the default gateway configured for this device</td>
<td>PE</td>
<td>4-226</td>
</tr>
<tr>
<td>ping</td>
<td>Sends ICMP echo request packets to another node on the network</td>
<td>NE, PE</td>
<td>4-226</td>
</tr>
</tbody>
</table>

ip address

This command sets the IP address for the currently selected VLAN interface. Use the no form to restore the default IP address.

Syntax

```
ip address {ip-address netmask | bootp | dhcp}
no ip address
```

Default Setting

DHCP

Command Mode

Interface Configuration (VLAN)

Command Usage

- You must assign an IP address to this device to gain management access over the network. You can manually configure a specific IP address, or direct the device to obtain an address from a BOOTP or DHCP server. Valid IP addresses consist of four numbers, 0 to 255, separated by periods. Anything outside this format will not be accepted by the configuration program.
• If you select the **bootp** or **dhcp** option, IP is enabled but will not function until a BOOTP or DHCP reply has been received. Requests will be broadcast periodically by this device in an effort to learn its IP address. (BOOTP and DHCP values can include the IP address, default gateway, and subnet mask).

• You can start broadcasting BOOTP or DHCP requests by entering an **ip dhcp restart** command, or by rebooting the switch.

 Note: Only one VLAN interface can be assigned an IP address (the default is VLAN 1). This defines the management VLAN, the only VLAN through which you can gain management access to the switch. If you assign an IP address to any other VLAN, the new IP address overrides the original IP address and this becomes the new management VLAN.

Example

In the following example, the device is assigned an address in VLAN 1.

```bash
Console(config)#interface vlan 1
Console(config-if)#ip address 192.168.1.5 255.255.255.0
Console(config-if)#
```

Related Commands

- **ip dhcp restart** (4-225)

ip default-gateway

This command establishes a static route between this switch and devices that exist on another network segment. Use the **no** form to remove the static route.

Syntax

```
ip default-gateway gateway
no ip default-gateway
```

- **gateway** - IP address of the default gateway

Default Setting

No static route is established.

Command Mode

Global Configuration

Command Usage

A gateway must be defined if the management station is located in a different IP segment.

Example

The following example defines a default gateway for this device:

```bash
Console(config)#ip default-gateway 10.1.1.254
Console(config)#
```

Related Commands

- **show ip redirects** (4-226)
ip dhcp restart
This command submits a BOOTP or DHCP client request.

Default Setting
None

Command Mode
Privileged Exec

Command Usage
- This command issues a BOOTP or DHCP client request for any IP interface that has been set to BOOTP or DHCP mode via the `ip address` command.
- DHCP requires the server to reassign the client’s last address if available.
- If the BOOTP or DHCP server has been moved to a different domain, the network portion of the address provided to the client will be based on this new domain.

Example
In the following example, the device is reassigned the same address.

```
Console(config)#interface vlan 1
Console(config-if)#ip address dhcp
Console(config-if)#end
Console#ip dhcp restart
Console#show ip interface
   IP address and netmask: 192.168.1.54 255.255.255.0 on VLAN 1,
   and address mode: DHCP.
Console#
```

Related Commands
- `ip address (4-223)`
- `show ip interface`

This command displays the settings of an IP interface.

Default Setting
All interfaces

Command Mode
Privileged Exec

Example

```
Console#show ip interface
   IP address and netmask: 192.168.1.54 255.255.255.0 on VLAN 1,
   and address mode: User specified.
Console#
```

Related Commands
- `show ip redirects (4-226)`
show ip redirects
This command shows the default gateway configured for this device.

Default Setting
None

Command Mode
Privileged Exec

Example

```
Console#show ip redirects
IP default gateway 10.1.0.254
Console#
```

Related Commands
- `ip default-gateway (4-224)`

ping
This command sends ICMP echo request packets to another node on the network.

Syntax
```
ping host [size size] [count count]
```
- `host` - IP address or IP alias of the host.
- `size` - Number of bytes in a packet. (Range: 32-512, default: 32) The actual packet size will be eight bytes larger than the size specified because the switch adds header information.
- `count` - Number of packets to send. (Range: 1-16, default: 5)

Default Setting
This command has no default for the host.

Command Mode
Normal Exec, Privileged Exec

Command Usage
- Use the ping command to see if another site on the network can be reached.
- Following are some results of the ping command:
 - *Normal response* - The normal response occurs in one to ten seconds, depending on network traffic.
 - *Destination does not respond* - If the host does not respond, a “timeout” appears in ten seconds.
 - *Destination unreachable* - The gateway for this destination indicates that the destination is unreachable.
 - *Network or host unreachable* - The gateway found no corresponding entry in the route table.
- Press <Esc> to stop pinging.
Example

```console
Console#ping 10.1.0.9
Type ESC to abort.
PING to 10.1.0.9, by 5 32-byte payload ICMP packets, timeout is 5 seconds
response time: 10 ms
Ping statistics for 10.1.0.9:
5 packets transmitted, 5 packets received (100%), 0 packets lost (0%)
Approximate round trip times:
Minimum = 10 ms, Maximum = 20 ms, Average = 10 ms
```

```
Console#
```

Related Commands

- `interface (4-116)`

IP Source Guard Commands

IP Source Guard is a security feature that filters IP traffic on network interfaces based on manually configured entries in the IP Source Guard table, or static and dynamic entries in the DHCP Snooping table when enabled (see “DHCP Snooping Commands” on page 4-231). IP source guard can be used to prevent traffic attacks caused when a host tries to use the IP address of a neighbor to access the network. This section describes commands used to configure IP Source Guard.

Note: Due to a chip limitation, IP source guard and Quality of Service (only for IP related QoS function) cannot be enabled at the same time. Thus, if the user has already enabled the IP source guard function, it needs to be disabled first in order for the QoS function to work and vice versa.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip source-guard</code></td>
<td>Configures the switch to filter inbound traffic based on source IP address, or source IP address and corresponding MAC address</td>
<td>IC</td>
<td>4-227</td>
</tr>
<tr>
<td><code>ip source-guard binding</code></td>
<td>Adds a static address to the source-guard binding table</td>
<td>GC</td>
<td>4-229</td>
</tr>
<tr>
<td><code>show ip source-guard</code></td>
<td>Shows whether source guard is enabled or disabled on each interface</td>
<td>PE</td>
<td>4-230</td>
</tr>
<tr>
<td><code>show ip source-guard binding</code></td>
<td>Shows the source guard binding table</td>
<td>PE</td>
<td>4-230</td>
</tr>
</tbody>
</table>

ip source-guard

This command configures the switch to filter inbound traffic based source IP address, or source IP address and corresponding MAC address. Use the `no` form to disable this function.
Syntax

```
ip source-guard {sip | sip-mac}
no ip source-guard
```

- **sip** - Filters traffic based on IP addresses stored in the binding table.
- **sip-mac** - Filters traffic based on IP addresses and corresponding MAC addresses stored in the binding table.

Default Setting

Disabled

Command Mode

Interface Configuration (Ethernet)

Command Usage

- Source guard is used to filter traffic on an unsecure port which receives messages from outside the network or firewall, and therefore may be subject to traffic attacks caused by a host trying to use the IP address of a neighbor.
- Setting source guard mode to “sip” or “sip-mac” enables this function on the selected port. Use the “sip” option to check the VLAN ID, source IP address, and port number against all entries in the binding table. Use the “sip-mac” option to check these same parameters, plus the source MAC address. Use the `no source guard` command to disable this function on the selected port.
- When enabled, traffic is filtered based upon dynamic entries learned via DHCP snooping, static entries configured in the DHCP snooping table, or static addresses configured in the source guard binding table.
- Table entries include a MAC address, IP address, lease time, entry type (Static-IP-SG-Binding, Dynamic-DHCP-Binding, Static-DHCP-Binding), VLAN identifier, and port identifier.
- Static addresses entered in the source guard binding table with the `ip source-guard binding` command (page 4-229) are automatically configured with an infinite lease time. Dynamic entries learned via DHCP snooping are configured by the DHCP server itself; static entries include a manually configured lease time.
- If the IP source guard is enabled, an inbound packet’s IP address (sip option) or both its IP address and corresponding MAC address (sip-mac option) will be checked against the binding table. If no matching entry is found, the packet will be dropped.
- Filtering rules are implemented as follows:
 - If the DHCP snooping is disabled (see page 4-231), IP source guard will check the VLAN ID, source IP address, port number, and source MAC address (for the sip-mac option). If a matching entry is found in the binding table and the entry type is static IP source guard binding, the packet will be forwarded.
 - If the DHCP snooping is enabled, IP source guard will check the VLAN ID, source IP address, port number, and source MAC address (for the sip-mac option). If a matching entry is found in the binding table and the entry type
is static IP source guard binding, static DHCP snooping binding or dynamic DHCP snooping binding, the packet will be forwarded.

- If IP source guard if enabled on an interface for which IP source bindings (dynamically learned via DHCP snooping or manually configured) are not yet configured, the switch will drop all IP traffic on that port, except for DHCP packets.

Example
This example enables IP source guard on port 5.

```
Console(config)#interface ethernet 1/5
Console(config-if)#ip source-guard sip
Console(config-if)#
```

Related Commands

- `ip source-guard binding (4-229)`
- `ip dhcp snooping (4-231)`
- `ip dhcp snooping vlan (4-233)`

ip source-guard binding

This command adds a static address to the source-guard binding table. Use the **no** form to remove a static entry.

Syntax

```
ip source-guard binding mac-address vlan vlan-id ip-address
    interface ethernet unit/port
no ip source-guard binding mac-address vlan vlan-id
```

- `mac-address` - A valid unicast MAC address.
- `vlan-id` - ID of a configured VLAN (Range: 1-4094)
- `ip-address` - A valid unicast IP address, including classful types A, B or C.
- `unit` - Stack unit. (Always unit 1)
- `port` - Port number. (Range: 1-28)

Default Setting

No configured entries

Command Mode

Global Configuration

Command Usage

- Table entries include a MAC address, IP address, lease time, entry type (Static-IP-SG-Binding, Dynamic-DHCP-Binding, Static-DHCP-Binding), VLAN identifier, and port identifier.
- All static entries are configured with an infinite lease time, which is indicated with a value of zero by the `show ip source-guard` command (page 4-230).
- When source guard is enabled, traffic is filtered based upon dynamic entries learned via DHCP snooping, static entries configured in the DHCP snooping
table, or static addresses configured in the source guard binding table with this command.

- Static bindings are processed as follows:
 - If there is no entry with same VLAN ID and MAC address, a new entry is added to binding table using the type of static IP source guard binding.
 - If there is an entry with same VLAN ID and MAC address, and the type of entry is static IP source guard binding, then the new entry will replace the old one.
 - If there is an entry with same VLAN ID and MAC address, and the type of the entry is dynamic DHCP snooping binding, then the new entry will replace the old one and the entry type will be changed to static IP source guard binding.

Example

This example configures a static source-guard binding on port 5.

```
Console(config)#ip source-guard binding 11-22-33-44-55-66 vlan 1
192.168.0.99 interface ethernet 1/5
Console(config-if)#
```

Related Commands

- ip source-guard (4-227)
- ip dhcp snooping (4-231)
- ip dhcp snooping vlan (4-233)

show ip source-guard

This command shows whether source guard is enabled or disabled on each interface.

Command Mode

Privileged Exec

Example

```
Console#show ip source-guard
Interface   Filter-type
---------   -----------
Eth 1/1     DISABLED
Eth 1/2     DISABLED
Eth 1/3     DISABLED
Eth 1/4     DISABLED
Eth 1/5     SIP
Eth 1/6     DISABLED
```

show ip source-guard binding

This command shows the source guard binding table.

Command Mode

Privileged Exec
DHCP Snooping Commands

DHCP snooping allows a switch to protect a network from rogue DHCP servers or other devices which send port-related information to a DHCP server. This information can be useful in tracking an IP address back to a physical port. This section describes commands used to configure DHCP snooping.

Table 4-78 DHCP Snooping Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip dhcp snooping</td>
<td>Enables DHCP snooping globally</td>
<td>GC</td>
<td>4-231</td>
</tr>
<tr>
<td>ip dhcp snooping vlan</td>
<td>Enables DHCP snooping on the specified VLAN</td>
<td>GC</td>
<td>4-233</td>
</tr>
<tr>
<td>ip dhcp snooping trust</td>
<td>Configures the specified interface as trusted</td>
<td>IC</td>
<td>4-234</td>
</tr>
<tr>
<td>ip dhcp snooping verify mac-address</td>
<td>Verifies the client's hardware address stored in the DHCP packet against the source MAC address in the Ethernet header</td>
<td>GC</td>
<td>4-235</td>
</tr>
<tr>
<td>ip dhcp snooping information option</td>
<td>Enables or disables DHCP Option 82 information relay</td>
<td>GC</td>
<td>4-235</td>
</tr>
<tr>
<td>ip dhcp snooping information policy</td>
<td>Sets the information option policy for DHCP client packets that include Option 82 information</td>
<td>GC</td>
<td>4-236</td>
</tr>
<tr>
<td>show ip dhcp snooping</td>
<td>Shows the DHCP snooping configuration settings</td>
<td>PE</td>
<td>4-237</td>
</tr>
<tr>
<td>show ip dhcp snooping binding</td>
<td>Shows the DHCP snooping binding table entries</td>
<td>PE</td>
<td>4-237</td>
</tr>
</tbody>
</table>

ip dhcp snooping

This command enables DHCP snooping globally. Use the no form to restore the default setting.

Syntax

[no] ip dhcp snooping

Default Setting

 Disabled

Command Mode

 Global Configuration

Command Usage

• Network traffic may be disrupted when malicious DHCP messages are received from an outside source. DHCP snooping is used to filter DHCP messages received on an unsecure interface from outside the network or
firewall. When DHCP snooping is enabled globally by this command, and enabled on a VLAN interface by the `ip dhcp snooping vlan` command (page 4-233), DHCP messages received on an untrusted interface (as specified by the `no ip dhcp snooping trust` command, page 4-234) from a device not listed in the DHCP snooping table will be dropped.

- When enabled, DHCP messages entering an untrusted interface are filtered based upon dynamic entries learned via DHCP snooping.
- Table entries are only learned for untrusted interfaces. Each entry includes a MAC address, IP address, lease time, entry type (Dynamic-DHCP-Binding, Static-DHCP-Binding), VLAN identifier, and port identifier.
- When DHCP snooping is enabled, the rate limit for the number of DHCP messages that can be processed by the switch is 100 packets per second. Any DHCP packets in excess of this limit are dropped.
- Filtering rules are implemented as follows:
 - If the global DHCP snooping is disabled, all DHCP packets are forwarded.
 - If DHCP snooping is enabled globally, and also enabled on the VLAN where the DHCP packet is received, all DHCP packets are forwarded for a trusted port. If the received packet is a DHCP ACK message, a dynamic DHCP snooping entry is also added to the binding table.
 - If DHCP snooping is enabled globally, and also enabled on the VLAN where the DHCP packet is received, but the port is not trusted, it is processed as follows:
 * If the DHCP packet is a reply packet from a DHCP server (including OFFER, ACK or NAK messages), the packet is dropped.
 * If the DHCP packet is from a client, such as a DECLINE or RELEASE message, the switch forwards the packet only if the corresponding entry is found in the binding table.
 * If the DHCP packet is from client, such as a DISCOVER, REQUEST, INFORM, DECLINE or RELEASE message, the packet is forwarded if MAC address verification is disabled (as specified by the `ip dhcp snooping verify mac-address` command, page 4-235). However, if MAC address verification is enabled, then the packet will only be forwarded if the client’s hardware address stored in the DHCP packet is the same as the source MAC address in the Ethernet header.
 * If the DHCP packet is not a recognizable type, it is dropped.
 - If a DHCP packet from a client passes the filtering criteria above, it will only be forwarded to trusted ports in the same VLAN.
 - If a DHCP packet is from server is received on a trusted port, it will be forwarded to both trusted and untrusted ports in the same VLAN.
- If the DHCP snooping is globally disabled, all dynamic bindings are removed from the binding table.
- **Additional considerations when the switch itself is a DHCP client** – The port(s) through which the switch submits a client request to the DHCP server must be configured as trusted (`ip dhcp snooping trust`, page 4-234). Note that the switch will not add a dynamic entry for itself to the binding table when it
receives an ACK message from a DHCP server. Also, when the switch sends out DHCP client packets for itself, no filtering takes place. However, when the switch receives any messages from a DHCP server, any packets received from untrusted ports are dropped.

Example
This example enables DHCP snooping globally for the switch.

```
Console(config)#ip dhcp snooping
Console(config)#
```

Related Commands
- `ip dhcp snooping vlan (4-233)`
- `ip dhcp snooping trust (4-234)`

ip dhcp snooping vlan
This command enables DHCP snooping on the specified VLAN. Use the `no` form to restore the default setting.

Syntax
```
[no] ip dhcp snooping vlan vlan-id
```

- `vlan-id` - ID of a configured VLAN (Range: 1-4094)

Default Setting
Disabled

Command Mode
Global Configuration

Command Usage
- When DHCP snooping enabled globally using the `ip dhcp snooping` command (page 4-231), and enabled on a VLAN with this command, DHCP packet filtering will be performed on any untrusted ports within the VLAN as specified by the `ip dhcp snooping trust` command (page 4-234).
- When the DHCP snooping is globally disabled, DHCP snooping can still be configured for specific VLANs, but the changes will not take effect until DHCP snooping is globally re-enabled.
- When DHCP snooping is globally enabled, configuration changes for specific VLANs have the following effects:
 - If DHCP snooping is disabled on a VLAN, all dynamic bindings learned for this VLAN are removed from the binding table.

Example
This example enables DHCP snooping for VLAN 1.

```
Console(config)#ip dhcp snooping vlan 1
Console(config)#
```
ip dhcp snooping trust
This command configures the specified interface as trusted. Use the no form to restore the default setting.

Syntax
 [no] ip dhcp snooping trust

Default Setting
 All interfaces are untrusted

Command Mode
 Interface Configuration (Ethernet, Port Channel)

Command Usage
 • An untrusted interface is an interface that is configured to receive messages from outside the network or firewall. A trusted interface is an interface that is configured to receive only messages from within the network.
 • When DHCP snooping enabled globally using the ip dhcp snooping command (page 4-231), and enabled on a VLAN with this command, DHCP packet filtering will be performed on any untrusted ports within the VLAN according to the default status, or as specifically configured for an interface with the no ip dhcp snooping trust command.
 • When an untrusted port is changed to a trusted port, all the dynamic DHCP snooping bindings associated with this port are removed.
 • Additional considerations when the switch itself is a DHCP client – The port(s) through which it submits a client request to the DHCP server must be configured as trusted.

Example
This example sets port 5 to untrusted.

```
Console(config)#interface ethernet 1/5
Console(config-if)#no ip dhcp snooping trust
Console(config-if)#
```

Related Commands
 ip dhcp snooping (4-231)
 ip dhcp snooping vlan (4-233)
ip dhcp snooping verify mac-address
This command verifies the client’s hardware address stored in the DHCP packet against the source MAC address in the Ethernet header. Use the no form to disable this function.

Syntax
[no] ip dhcp snooping verify mac-address

Default Setting
Enabled

Command Mode
Global Configuration

Command Usage
If MAC address verification is enabled, and the source MAC address in the Ethernet header of the packet is not same as the client’s hardware address in the DHCP packet, the packet is dropped.

Example
This example enables MAC address verification.

```
Console(config)#ip dhcp snooping verify mac-address
Console(config)#
```

Related Commands
ip dhcp snooping (4-231)
ip dhcp snooping vlan (4-233)
ip dhcp snooping trust (4-234)

ip dhcp snooping information option
This command enables the DHCP Option 82 information relay for the switch. Use the no form to disable this function.

Syntax
[no] ip dhcp snooping information option

Default Setting
Disabled

Command Mode
Global Configuration

Command Usage
• DHCP provides a relay mechanism for sending information about the switch and its DHCP clients to the DHCP server. Known as DHCP Option 82, it allows compatible DHCP servers to use the information when assigning IP addresses, or to set other services or policies for clients.
• When the DHCP Snooping Information Option is enabled, clients can be
identified by the switch port to which they are connected rather than just their MAC address. DHCP client-server exchange messages are then forwarded directly between the server and client without having to flood them to the entire VLAN.

- DHCP snooping must be enabled on the switch for the DHCP Option 82 information to be inserted into packets.

Example
This example enables the DHCP Snooping Information Option.

```
Console(config)#ip dhcp snooping information option
Console(config)#
```

ip dhcp snooping information policy
This command sets the DHCP snooping information option policy for DHCP client packets that include Option 82 information.

Syntax
```
ip dhcp snooping information policy <drop | keep | replace>
```
- **drop** - Discards the Option 82 information in a packet and then floods it to the entire VLAN.
- **keep** - Retains the client’s DHCP information
- **replace** - Overwrites the DHCP client packet information with the switch’s relay information.

Default Setting
```
replace
```

Command Mode
Global Configuration

Command Usage
When the switch receives DHCP packets from clients that already include DHCP Option 82 information, the switch can be configured to set the action policy for these packets. Either the switch can drop the DHCP packets, keep the existing information, or replace it with the switch’s relay information.

Example
```
Console(config)#ip dhcp snooping information policy drop
Console(config)#
```
show ip dhcp snooping
This command shows the DHCP snooping configuration settings.

Command Mode
Privileged Exec

Example
```
Console#show ip dhcp snooping
Global DHCP Snooping status: disable
DHCP Snooping is configured on the following VLANs:
  1
Verify Source Mac-Address: enable

<table>
<thead>
<tr>
<th>Interface</th>
<th>Trusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eth 1/1</td>
<td>No</td>
</tr>
<tr>
<td>Eth 1/2</td>
<td>No</td>
</tr>
<tr>
<td>Eth 1/3</td>
<td>No</td>
</tr>
<tr>
<td>Eth 1/4</td>
<td>No</td>
</tr>
<tr>
<td>Eth 1/5</td>
<td>Yes</td>
</tr>
</tbody>
</table>
```

show ip dhcp snooping binding
This command shows the DHCP snooping binding table entries.

Command Mode
Privileged Exec

Example
```
Console#show ip dhcp snooping binding
<table>
<thead>
<tr>
<th>MacAddress</th>
<th>IpAddress</th>
<th>Lease(sec)</th>
<th>Type</th>
<th>VLAN</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-22-33-44-55-66</td>
<td>192.168.0.99</td>
<td>0</td>
<td>Static</td>
<td>1</td>
<td>Eth 1/5</td>
</tr>
</tbody>
</table>
```

Switch Cluster Commands

Switch Clustering is a method of grouping switches together to enable centralized management through a single unit. A switch cluster has a “Commander” unit that is used to manage all other “Member” switches in the cluster. The management station uses Telnet to communicate directly with the Commander through its IP address, and the Commander manages Member switches using cluster “internal” IP addresses. There can be up to 16 Member switches in one cluster. Cluster switches are limited to within a single IP subnet.

Table 4-79 Switch Cluster Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>cluster</td>
<td>Configures clustering on the switch</td>
<td>GC</td>
<td>4-238</td>
</tr>
<tr>
<td>cluster commander</td>
<td>Configures the switch as a cluster Commander</td>
<td>GC</td>
<td>4-239</td>
</tr>
</tbody>
</table>
Table 4-79 Switch Cluster Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
<th>Mode</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>cluster ip-pool</td>
<td>Sets the cluster IP address pool for Members</td>
<td>GC</td>
<td>4-239</td>
</tr>
<tr>
<td>cluster member</td>
<td>Sets Candidate switches as cluster members</td>
<td>GC</td>
<td>4-240</td>
</tr>
<tr>
<td>rcommand</td>
<td>Provides configuration access to Member switches</td>
<td>GC</td>
<td>4-240</td>
</tr>
<tr>
<td>show cluster</td>
<td>Displays the switch clustering status</td>
<td>PE</td>
<td>4-241</td>
</tr>
<tr>
<td>show cluster members</td>
<td>Displays current cluster Members</td>
<td>PE</td>
<td>4-241</td>
</tr>
<tr>
<td>show cluster candidates</td>
<td>Displays current cluster Candidates in the network</td>
<td>PE</td>
<td>4-242</td>
</tr>
</tbody>
</table>

cluster

This command enables clustering on the switch. Use the no form to disable clustering.

Syntax

```
[no] cluster
```

Default Setting

Enabled

Command Mode

Global Configuration

Command Usage

- To create a switch cluster, first be sure that clustering is enabled on the switch (the default is enabled), then set the switch as a Cluster Commander. Set a Cluster IP Pool that does not conflict with any other IP subnets in the network. Cluster IP addresses are assigned to switches when they become Members and are used for communication between Member switches and the Commander.
- Switch clusters are limited to a single IP subnet (Layer 2 domain).
- A switch can only be a Member of one cluster.
- Configured switch clusters are maintained across power resets and network changes.

Example

```
Console(config)#cluster
Console(config)#
```
cluster commander
This command enables the switch as a cluster Commander. Use the `no` form to disable the switch as cluster Commander.

Syntax
```
[no] cluster commander
```

Default Setting
Disabled

Command Mode
Global Configuration

Command Usage
- Once a switch has been configured to be a cluster Commander, it automatically discovers other cluster-enabled switches in the network. These “Candidate” switches only become cluster Members when manually selected by the administrator through the management station.
- Cluster Member switches can be managed through only using a Telnet connection to the Commander. From the Commander CLI prompt, use the `rcommand id` command to connect to the Member switch.

Example
```
Console(config)#cluster commander
Console(config)#
```

cluster ip-pool
This command sets the cluster IP address pool. Use the `no` form to reset to the default address.

Syntax
```
cluster ip-pool <ip-address>
no cluster ip-pool
  ip-address - The base IP address for IP addresses assigned to cluster Members. The IP address must start 10.x.x.x.
```

Default Setting
10.254.254.1

Command Mode
Global Configuration

Command Usage
- An “internal” IP address pool is used to assign IP addresses to Member switches in the cluster. Internal cluster IP addresses are in the form `10.x.x.member-ID`. Only the base IP address of the pool needs to be set since Member IDs can only be between 1 and 16.
- Set a Cluster IP Pool that does not conflict with addresses in the network IP
subnet. Cluster IP addresses are assigned to switches when they become Members and are used for communication between Member switches and the Commander.

- You cannot change the cluster IP pool when the switch is currently in Commander mode. Commander mode must first be disabled.

Example

```
Console(config)#cluster ip-pool 10.2.3.4
Console(config)#
```

cluster member
This command configures a Candidate switch as a cluster Member. Use the no form to remove a Member switch from the cluster.

Syntax

```
cluster member mac-address <mac-address> id <member-id>
no cluster member id <member-id>
```

- `mac-address` - The MAC address of the Candidate switch.
- `member-id` - The ID number to assign to the Member switch.
 (Range: 1-16)

Default Setting
No Members

Command Mode
Global Configuration

Command Usage

- The maximum number of cluster Members is 16.
- The maximum number of switch Candidates is 100.

Example

```
Console(config)#cluster member mac-address 00-12-34-56-78-9a id 5
Console(config)#
```

rcommand
This command provides access to a cluster Member CLI for configuration.

Syntax

```
rcommand id <member-id>
```

- `member-id` - The ID number of the Member switch. (Range: 1-16)

Command Mode
Privileged Exec

Command Usage

- This command only operates through a Telnet connection to the Commander switch. Managing cluster Members using the local console CLI on the
Commander is not supported.
• There is no need to enter the username and password for access to the Member switch CLI.

Example

```
Vty-0#rcommand id 1
    CLI session with the TigerSwitch 10/100/1000 is opened.
    To end the CLI session, enter [Exit].
Vty-0#
```

show cluster
This command shows the switch clustering configuration.

Command Mode
Privileged Exec

Example

```
Console#show cluster
Role:      commander
Interval heartbeat: 30
Heartbeat loss count: 3
Number of Members: 1
Number of Candidates: 2
Console#
```

show cluster members
This command shows the current switch cluster members.

Command Mode
Privileged Exec

Example

```
Console#show cluster members
Cluster Members:
   ID: 1
   Role: Active member
   IP Address: 10.254.254.2
   MAC Address: 00-12-cf-23-49-c0
   Description: TigerSwitch 10/100/1000 SPORT MANAGE
Console#
```
show cluster candidates
This command shows the discovered Candidate switches in the network.

Command Mode
Privileged Exec

Example

```
Console# show cluster candidates
Cluster Candidates:
Role            Mac                       Description
--------------- ----------------------------------------------------------
ACTIVE MEMBER   00-12-cf-23-49-c0    TigerSwitch 10/100/1000 SPORT MANAGE
CANDIDATE       00-12-cf-0b-47-a0    TigerSwitch 10/100/1000 SPORT MANAGE
Console#
```
Appendix A: Software Specifications

Software Features

Authentication
 Local, RADIUS, TACACS, Port (802.1X), HTTPS, SSH, Port Security
Access Control Lists
 128 ACLS (96 MAC rules, 96 IP rules)
DHCP Client
Port Configuration
 100BASE-TX: 10/100 Mbps, half/full duplex
 1000BASE-T: 10/100 Mbps at half/full duplex, 1000 Mbps at full duplex
 1000BASE-SX/LX/ZX - 1000 Mbps at full duplex (SFP)
Flow Control
 Full Duplex: IEEE 802.3-2002
 Half Duplex: Back pressure
Broadcast Storm Control
 Traffic throttled above a critical threshold
Port Mirroring
 Multiple source ports, one destination port
Rate Limits
 Input limit
 Output limit
Port Trunking
 Static trunks (Cisco EtherChannel compliant)
 Dynamic trunks (Link Aggregation Control Protocol)
Spanning Tree Algorithm
 Spanning Tree Protocol (STP, IEEE 802.1D)
 Rapid Spanning Tree Protocol (RSTP, IEEE 802.1w)
 Multiple Spanning Trees (MSTP)
VLAN Support
 Up to 256 groups; port-based or tagged (802.1Q),
 Private VLANs
 Protocol-based VLANs
Class of Service
 Supports 4 levels of priority and Weighted Round Robin Queueing
 (which can be configured by VLAN tag or port),
 Layer 3/4 priority mapping: IP DSCP
Multicast Filtering
 IGMP Snooping (Layer 2)
 Multicast VLAN Registration
Quality of Service
DiffServ supports class maps, policy maps, and service policies

Additional Features
- BOOTP client
- SNTP (Simple Network Time Protocol)
- SNMP (Simple Network Management Protocol)
- RMON (Remote Monitoring, groups 1,2,3,9)
- SMTP Email Alerts
- DHCP Snooping
- IP Source Guard
- Switch Clustering

Management Features

In-Band Management
- Telnet, Web-based HTTP or HTTPS, SNMP manager, or Secure Shell

Out-of-Band Management
- RS-232 console port

Software Loading
- TFTP in-band or XModem out-of-band

SNMP
- Management access via MIB database
- Trap management to specified hosts

RMON
- Groups 1, 2, 3, 9 (Statistics, History, Alarm, Event)

Standards

IEEE 802.1D Spanning Tree Protocol and traffic priorities
IEEE 802.1p Priority tags
IEEE 802.1Q VLAN
IEEE 802.1v Protocol-based VLANs
IEEE 802.1w Rapid Spanning Tree Protocol
IEEE 802.1X Port Authentication
IEEE 802.3-2005
 - Ethernet, Fast Ethernet, Gigabit Ethernet
 - Full-duplex flow control
 - Link Aggregation Control Protocol
IEEE 802.3ac VLAN tagging
DHCP Client (RFC 1541)
HTTPS
IGMP (RFC 1112)
IGMPv2 (RFC 2236)
RADIUS+ (RFC 2618)
Management Information Bases

Bridge MIB (RFC 1493)
Differentiated Services MIB (RFC 3289)
Entity MIB (RFC 2737)
Ether-like MIB (RFC 2665)
Extended Bridge MIB (RFC 2674)
Extensible SNMP Agents MIB (RFC 2742)
Forwarding Table MIB (RFC 2096)
IGMP MIB (RFC 2933)
Interface Group MIB (RFC 2233)
Interfaces Evolution MIB (RFC 2863)
IP Multicasting related MIBs
MAU MIB (RFC 2668)
MIB II (RFC 1213)
Port Access Entity MIB (IEEE 802.1X)
Port Access Entity Equipment MIB
Private MIB
Quality of Service MIB
RADIUS Authentication Client MIB (RFC 2621)
RMON MIB (RFC 2819)
RMON II Probe Configuration Group (RFC 2021, partial implementation)
SNMPv2 IP MIB (RFC 2011)
SNMP Community MIB (RFC 3584)
SNMP Framework MIB (RFC 3411)
SNMP-MPD MIB (RFC 3412)
SNMP Target MIB, SNMP Notification MIB (RFC 3413)
SNMP User-Based SM MIB (RFC 3414)
SNMP View Based ACM MIB (RFC 3415)
TACACS+ Authentication Client MIB
TCP MIB (RFC 2013)
Trap (RFC 1215)
UDP MIB (RFC 2012)
Troubleshooting

Problems Accessing the Management Interface

Table B-1 Troubleshooting Chart

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Action</th>
</tr>
</thead>
</table>
| Cannot connect using Telnet, web browser, or SNMP software | • Be sure the switch is powered up.
• Check network cabling between the management station and the switch.
• Check that you have a valid network connection to the switch and that the port you are using has not been disabled.
• Be sure you have configured the VLAN interface through which the management station is connected with a valid IP address, subnet mask and default gateway.
• Be sure the management station has an IP address in the same subnet as the switch’s IP interface to which it is connected.
• If you are trying to connect to the switch via the IP address for a tagged VLAN group, your management station, and the ports connecting intermediate switches in the network, must be configured with the appropriate tag.
• If you cannot connect using Telnet, you may have exceeded the maximum number of concurrent Telnet/SSH sessions permitted. Try connecting again at a later time. |
| Cannot connect using Secure Shell | • If you cannot connect using SSH, you may have exceeded the maximum number of concurrent Telnet/SSH sessions permitted. Try connecting again at a later time.
• Be sure the control parameters for the SSH server are properly configured on the switch, and that the SSH client software is properly configured on the management station.
• Be sure you have generated a public key on the switch, and exported this key to the SSH client.
• Be sure you have set up an account on the switch for each SSH user, including user name, authentication level, and password.
• Be sure you have imported the client’s public key to the switch (if public key authentication is used). |
| Cannot access the on-board configuration program via a serial port connection | • Be sure you have set the terminal emulator program to VT100 compatible, 8 data bits, 1 stop bit, no parity, and 9600 bps.
• Check that the null-modem serial cable conforms to the pin-out connections provided in the Installation Guide. |
| Forgot or lost the password | • Contact your local distributor. |
Using System Logs

If a fault does occur, refer to the Installation Guide to ensure that the problem you encountered is actually caused by the switch. If the problem appears to be caused by the switch, follow these steps:

1. Enable logging.
2. Set the error messages reported to include all categories.
3. Designate the SNMP host that is to receive the error messages.
4. Repeat the sequence of commands or other actions that lead up to the error.
5. Make a list of the commands or circumstances that led to the fault. Also make a list of any error messages displayed.
6. Contact your distributor’s service engineer.

For example:

```
Console(config)#logging on
Console(config)#logging history flash 7
Console(config)#snmp-server host 192.168.1.23
. .
```
Glossary

Access Control List (ACL)
ACLs can limit network traffic and restrict access to certain users or devices by checking each packet for certain IP or MAC (i.e., Layer 2) information.

Boot Protocol (BOOTP)
BOOTP is used to provide bootup information for network devices, including IP address information, the address of the TFTP server that contains the devices system files, and the name of the boot file.

Class of Service (CoS)
CoS is supported by prioritizing packets based on the required level of service, and then placing them in the appropriate output queue. Data is transmitted from the queues using weighted round-robin service to enforce priority service and prevent blockage of lower-level queues. Priority may be set according to the port default, the packet’s priority bit (in the VLAN tag), TCP/UDP port number, or DSCP priority bit.

Differentiated Services Code Point Service (DSCP)
DSCP uses a six-bit tag to provide for up to 64 different forwarding behaviors. Based on network policies, different kinds of traffic can be marked for different kinds of forwarding. The DSCP bits are mapped to the Class of Service categories, and then into the output queues.

Domain Name Service (DNS)
A system used for translating host names for network nodes into IP addresses.

Dynamic Host Control Protocol (DHCP)
Provides a framework for passing configuration information to hosts on a TCP/IP network. DHCP is based on the Bootstrap Protocol (BOOTP), adding the capability of automatic allocation of reusable network addresses and additional configuration options.

Extensible Authentication Protocol over LAN (EAPOL)
EAPOL is a client authentication protocol used by this switch to verify the network access rights for any device that is plugged into the switch. A user name and password is requested by the switch, and then passed to an authentication server (e.g., RADIUS) for verification. EAPOL is implemented as part of the IEEE 802.1X Port Authentication standard.
GARP VLAN Registration Protocol (GVRP)
Defines a way for switches to exchange VLAN information in order to register necessary VLAN members on ports along the Spanning Tree so that VLANs defined in each switch can work automatically over a Spanning Tree network.

Generic Attribute Registration Protocol (GARP)
GARP is a protocol that can be used by endstations and switches to register and propagate multicast group membership information in a switched environment so that multicast data frames are propagated only to those parts of a switched LAN containing registered endstations. Formerly called Group Address Registration Protocol.

Generic Multicast Registration Protocol (GMRP)
GMRP allows network devices to register end stations with multicast groups. GMRP requires that any participating network devices or end stations comply with the IEEE 802.1p standard.

Group Attribute Registration Protocol (GARP)
See Generic Attribute Registration Protocol.

IEEE 802.1D
Specifies a general method for the operation of MAC bridges, including the Spanning Tree Protocol.

IEEE 802.1Q
VLAN Tagging—Defines Ethernet frame tags which carry VLAN information. It allows switches to assign endstations to different virtual LANs, and defines a standard way for VLANs to communicate across switched networks.

IEEE 802.1p
An IEEE standard for providing quality of service (QoS) in Ethernet networks. The standard uses packet tags that define up to eight traffic classes and allows switches to transmit packets based on the tagged priority value.

IEEE 802.1X
Port Authentication controls access to the switch ports by requiring users to first enter a user ID and password for authentication.

IEEE 802.3ac
Defines frame extensions for VLAN tagging.

IEEE 802.3x
Defines Ethernet frame start/stop requests and timers used for flow control on full-duplex links. (Now incorporated in IEEE 802.3-2002)
IGMP Snooping
Listening to IGMP Query and IGMP Report packets transferred between IP Multicast Routers and IP Multicast host groups to identify IP Multicast group members.

IGMP Query
On each subnetwork, one IGMP-capable device will act as the querier — that is, the device that asks all hosts to report on the IP multicast groups they wish to join or to which they already belong. The elected querier will be the device with the lowest IP address in the subnetwork.

Internet Group Management Protocol (IGMP)
A protocol through which hosts can register with their local router for multicast services. If there is more than one multicast switch/router on a given subnetwork, one of the devices is made the “querier” and assumes responsibility for keeping track of group membership.

In-Band Management
Management of the network from a station attached directly to the network.

IP Multicast Filtering
A process whereby this switch can pass multicast traffic along to participating hosts.

Layer 2
Data Link layer in the ISO 7-Layer Data Communications Protocol. This is related directly to the hardware interface for network devices and passes on traffic based on MAC addresses.

Link Aggregation
See Port Trunk.

Link Aggregation Control Protocol (LACP)
Allows ports to automatically negotiate a trunked link with LACP-configured ports on another device.

Management Information Base (MIB)
An acronym for Management Information Base. It is a set of database objects that contains information about a specific device.

MD5 Message-Digest Algorithm
An algorithm that is used to create digital signatures. It is intended for use with 32 bit machines and is safer than the MD4 algorithm, which has been broken. MD5 is a one-way hash function, meaning that it takes a message and converts it into a fixed string of digits, also called a message digest.
Multicast Switching
A process whereby the switch filters incoming multicast frames for services for which no attached host has registered, or forwards them to all ports contained within the designated multicast VLAN group.

Network Time Protocol (NTP)
NTP provides the mechanisms to synchronize time across the network. The time servers operate in a hierarchical-master-slave configuration in order to synchronize local clocks within the subnet and to national time standards via wire or radio.

Out-of-Band Management
Management of the network from a station not attached to the network.

Port Authentication
See IEEE 802.1X.

Port Mirroring
A method whereby data on a target port is mirrored to a monitor port for troubleshooting with a logic analyzer or RMON probe. This allows data on the target port to be studied unobstructively.

Port Trunk
Defines a network link aggregation and trunking method which specifies how to create a single high-speed logical link that combines several lower-speed physical links.

Private VLANs
Private VLANs provide port-based security and isolation between ports within the assigned VLAN. Data traffic on downlink ports can only be forwarded to, and from, uplink ports.

Remote Authentication Dial-in User Service (RADIUS)
RADIUS is a logon authentication protocol that uses software running on a central server to control access to RADIUS-compliant devices on the network.

Remote Monitoring (RMON)
RMON provides comprehensive network monitoring capabilities. It eliminates the polling required in standard SNMP, and can set alarms on a variety of traffic conditions, including specific error types.

Rapid Spanning Tree Protocol (RSTP)
RSTP reduces the convergence time for network topology changes to about 10% of that required by the older IEEE 802.1D STP standard.
Secure Shell (SSH)
A secure replacement for remote access functions, including Telnet. SSH can authenticate users with a cryptographic key, and encrypt data connections between management clients and the switch.

Simple Network Management Protocol (SNMP)
The application protocol in the Internet suite of protocols which offers network management services.

Simple Network Time Protocol (SNTP)
SNTP allows a device to set its internal clock based on periodic updates from a Network Time Protocol (NTP) server. Updates can be requested from a specific NTP server, or can be received via broadcasts sent by NTP servers.

Spanning Tree Algorithm (STA)
A technology that checks your network for any loops. A loop can often occur in complicated or backup linked network systems. Spanning Tree detects and directs data along the shortest available path, maximizing the performance and efficiency of the network.

Telnet
Defines a remote communication facility for interfacing to a terminal device over TCP/IP.

Terminal Access Controller Access Control System Plus (TACACS+)
TACACS+ is a logon authentication protocol that uses software running on a central server to control access to TACACS-compliant devices on the network.

Transmission Control Protocol/Internet Protocol (TCP/IP)
Protocol suite that includes TCP as the primary transport protocol, and IP as the network layer protocol.

Trivial File Transfer Protocol (TFTP)
A TCP/IP protocol commonly used for software downloads.

User Datagram Protocol (UDP)
UDP provides a datagram mode for packet-switched communications. It uses IP as the underlying transport mechanism to provide access to IP-like services. UDP packets are delivered just like IP packets – connection-less datagrams that may be discarded before reaching their targets. UDP is useful when TCP would be too complex, too slow, or just unnecessary.
Virtual LAN (VLAN)
A Virtual LAN is a collection of network nodes that share the same collision domain regardless of their physical location or connection point in the network. A VLAN serves as a logical workgroup with no physical barriers, and allows users to share information and resources as though located on the same LAN.

XModem
A protocol used to transfer files between devices. Data is grouped in 128-byte blocks and error-corrected.
Index

Numerics
802.1Q tunnel 3-133, 4-176
description 3-133
interface configuration 3-138,
 4-177–4-178
mode selection 3-138
TPID 3-137, 4-178
802.1X, port authentication 3-60, 3-67

A
acceptable frame type 3-132, 4-171
Access Control List See ACL
ACL
 Extended IP 4-89, 4-90, 4-91
 MAC 4-95, 4-95–4-97
 Standard IP 4-89, 4-90, 4-91
address table 3-99, 4-140
 aging time 3-102, 4-143

B
BOOTP 3-16, 4-223
BPDU 3-103
broadcast storm, threshold 3-91, 4-122

C
Class of Service See CoS
CLI, showing commands 4-4
command line interface See CLI
community string 2-6, 3-33, 3-37, 3-40,
 3-41, 3-45, 4-102
community VLANs 4-179
configuration settings, saving or
 restoring 2-8, 3-19, 4-64
console port, required connections 2-2
CoS
 configuring 3-144, 4-184, 4-192
 DSCP 3-152, 4-189
IP precedence 3-150
layer 3/4 priorities 3-149, 4-189
queue mapping 3-145, 4-187
queue mode 3-147, 4-185
traffic class weights 3-148, 4-186

D
default gateway, configuration 3-14,
 4-224
default priority, ingress port 3-144,
 4-185
default settings, system 1-6
DHCP 3-16, 4-223
 client 3-14
 dynamic configuration 2-5
DHCP snooping
 global configuration 4-231, 4-238,
 4-239
 specifying trusted interfaces 4-234
 verifying MAC addresses 4-235,
 4-236
 VLAN configuration 4-233
Differentiated Code Point Service See
 DSCP
Differentiated Services See DiffServ
DiffServ 3-155, 4-192
 binding policy to interface 3-161,
 4-199
 class map 3-155, 4-194, 4-196
 policy map 3-158, 4-195
 service policy 3-161, 4-199
DNS
 default domain name 3-181
 displaying the cache 3-185
 domain name list 3-181
 enabling lookup 3-181
 name server list 3-181
 static entries 3-183
Domain Name Service See DNS
downloading software 3-18, 4-64
DSCP
 enabling 3-149, 4-189
 mapping priorities 3-152, 4-190
dynamic addresses, displaying 3-100,
 4-141

E
edge port, STA 3-112, 3-115, 4-156
event logging 4-43
F
firmware
displaying version 3-11, 4-62
upgrading 3-18, 4-64

G
GARP VLAN Registration Protocol See GVRP
gateway, default 3-14, 4-224
GVRP
global setting 3-125, 4-164
interface configuration 4-165

H
hardware version, displaying 3-11, 4-62
HTTPS 3-52, 4-30
HTTPS, secure server 3-52, 4-30

I
IEEE 802.1D 3-102, 4-145
IEEE 802.1s 4-145
IEEE 802.1w 3-102, 4-145
IEEE 802.1X 3-60, 3-67, 4-81
IGMP
filtering and throttling 3-169
groups, displaying 3-167, 4-205
Layer 2 3-162, 4-201
query 3-162, 4-206
query, Layer 2 3-163, 4-206
snooping 3-162, 4-202
snooping, configuring 3-163, 4-201
ingress filtering 3-132, 4-171
IP address
BOOTP/DHCP 3-16, 4-223, 4-225
setting 2-4, 3-14, 4-223
IP precedence
enabling 3-149
mapping priorities 3-150
IP source guard
configuring static entries 4-229
setting filter criteria 4-227

J
jumbo frame 4-63

L
LACP
local parameters 4-136
partner parameters 4-136
protocol message statistics 4-136
link type, STA 3-113, 3-115, 3-117, 3-119, 3-122, 4-157
logging
syslog traps 4-46
to syslog servers 4-45
log-in, Web interface 3-2
logon authentication 3-46, 4-70
RADIUS client 4-73
RADIUS server 4-73
TACACS+ client 3-48, 4-77
TACACS+ server 3-48, 4-77
logon authentication, sequence 3-49, 4-71, 4-72

M
main menu 3-4
Management Information Bases (MIBs) A-3
mirror port, configuring 3-93, 4-127
MSTP 4-145
global settings 4-144
interface settings 4-144
multicast filtering 3-162, 3-174, 3-194, 4-201
multicast groups 3-167, 4-205
displaying 4-205
static 3-167, 4-202, 4-203, 4-205
multicast services
configuring 3-168, 3-175, 3-176, 3-179, 4-202, 4-203
displaying 3-167, 4-205
multicast, static router port 3-166, 4-209
MVR
setting interface type 4-219
setting multicast groups 4-218
specifying a VLAN 4-218
using immediate leave 4-219
Index

P
password, line 4-12, 4-13
passwords 2-4
 administrator setting 3-46, 4-25
 path cost 3-105, 3-112
 method 3-109, 4-149
 STA 3-105, 3-112, 4-149
port authentication 3-60, 3-67
port priority
 configuring 3-144, 4-184, 4-192
 default ingress 3-144, 4-185
 STA 3-112, 4-155
port security, configuring 3-59, 4-79
port, statistics 3-95, 4-124
ports
 autonegotiation 3-79, 4-118
 broadcast storm threshold 3-91, 4-122
 capabilities 3-79, 4-119
 duplex mode 3-79, 4-117
 flow control 3-79, 4-120
 speed 3-79, 4-117
ports, configuring 3-76, 4-116
ports, mirroring 3-93, 4-127
priority, default port ingress 3-144, 4-185
problems, troubleshooting B-1
profiles, IGMP filter 3-172
protocol migration 3-115, 4-160
PVLAN
 interface configuration 3-142, 3-143

Q
QoS 3-154, 4-192
Quality of Service See QoS
queue weights 3-148, 4-186

R
RADIUS, logon authentication 4-73
rate limits, setting 3-94, 4-129
remote logging 4-46
restarting the system 3-30, 4-22
RSTP 3-102, 4-145
 global configuration 3-105, 4-145
secure shell 3-54, 4-33
 configuration 3-54, 4-36, 4-37
serial port
 configuring 4-10
show dot1q-tunnel 4-178
Simple Network Management Protocol
 See SNMP
SNMP 3-33
 community string 3-33, 3-37, 3-40, 3-41, 3-45, 4-102
 enabling traps 3-34, 4-106
 filtering IP addresses 3-74
 trap manager 3-34, 4-104
software
 displaying version 3-11, 4-62
 downloading 3-18, 4-64
Spanning Tree Protocol See STA
specifications, software A-1
SSH, configuring 3-54, 4-36, 4-37
STA 3-102, 4-144
 edge port 3-112, 3-115, 4-156
 global settings, configuring 3-107, 4-145–4-150
 global settings, displaying 3-105, 4-160
 interface settings 3-111, 4-154–4-160, 4-161
 link type 3-113, 3-115, 3-117, 3-119, 3-122, 4-157
 path cost 3-105, 3-112, 4-154
 path cost method 3-109, 4-149
 port priority 3-112, 4-155
 protocol migration 3-115, 4-160
 transmission limit 3-109, 4-150
standards, IEEE A-2
startup files
 creating 3-20
 displaying 3-18, 4-57
 setting 3-18, 4-69
static addresses, setting 3-99, 4-140
statistics
 port 3-95, 4-124
 STP 3-107, 4-145
 STP Also see STA
switchport dot1q-ethertype 4-178

Index-3
Index

switchport mode dot1q-tunnel 4-177
system clock, setting 3-31, 4-53
system logs 3-25
system mode, normal or QinQ 3-137, 4-176
system software, downloading from
server 3-18

T
TACACS+, logon authentication 3-48, 4-77
throttling, IGMP 3-169
time, setting 3-31, 4-53
TPID 3-137, 4-178
traffic class weights 3-148, 4-186
trap manager 2-7, 3-34, 4-104
troubleshooting B-1
trunk
configuration 3-80, 4-130
LACP 3-82, 4-132
static 3-81, 4-131

U
upgrading software 3-18
user password 3-46, 4-25, 4-26

V
VLANs 3-122–3-142, ??–3-144, 4-163
802.1Q tunnel mode 3-138
adding static members 3-129, 3-131, 4-173
creating 3-128, 4-168
description 3-122, 3-144
displaying basic information 3-126, 4-164
displaying port members 3-126, 4-175
egress mode 3-132, 4-170
interface configuration 3-132, 4-174–4-174
private 3-141, 3-142, 4-179
protocol 4-181

W
Web interface
access requirements 3-1
configuration buttons 3-3
home page 3-2
menu list 3-4
panel display 3-3
TECHNICAL SUPPORT
From U.S.A. and Canada (24 hours a day, 7 days a week)
Phn: 800-SMC-4-YOU / 949-679-8000
Fax: 949-502-3400

ENGLISH
Technical Support information available at www.smc.com

FRENCH
Informations Support Technique sur www.smc.com

DEUTSCH
Technischer Support und weitere Information unter www.smc.com

SPANISH
En www.smc.com Ud. podrá encontrar la información relativa a servicios de soporte técnico

DUTCH
Technische ondersteuningsinformatie beschikbaar op www.smc.com

PORTUGUES
Informações sobre Suporte Técnico em www.smc.com

SWEDISH
Information om Teknisk Support finns tillgängligt på www.smc.com

INTERNET
E-mail address: techsupport@smc.com

Driver updates
http://www.smc.com/
index.cfm?action=tech_support_drivers_downloads

World Wide Web
http://www.smc.com/