IBM Security Directory Server
Version 6.3.1

Performance Tuning and Capacity Planning Guide
Figures

1. IBM Security Directory Server components .. 1
2. Varying the size of the filter cache ... 34
3. Effect of updates on the performance of the filter cache 35
4. Varying the size of the entry cache ... 36
5. Operations per second ... 43
6. Entries returned per second ... 44
7. The relationship between data size and memory used 92
8. The relationship between data size and time to load data 93
9. The relationship between the number of replication threads and transactions per second .. 95
10. The relationship between the replication context cache size and transactions per second ... 96
11. The relationship between the replication ready size limit and processor usage for transactions per second ... 97
Tables

1. DB2 parameters with their type and values .. 59
2. Time to bulkload 100,000 entries in 2 stages .. 109
3. Time to bulkload 1,000,000 entries in 2 stages 110
4. Time to bulkload in 2 stages for 1,000,000 small entries on 2 different systems 110
5. Bulkload space for 100,000 entries ... 111
6. Bulkload space for 1,000,000 entries ... 112
7. Search throughput with 1, 2, and 4 processors 113
8. Update throughput for 1, 2, and 4 processors ... 114
9. Effect on search throughput when database is split across 2 hard disks 115
10. Effect on update throughput when database is split across 2 hard disks 115
About this publication

IBM® Security Directory Server, previously known as IBM Tivoli® Directory Server, is an IBM implementation of Lightweight Directory Access Protocol for the following operating systems:

- Microsoft Windows
- AIX®
- Linux (System x®, System z®, System p®, and System i®)
- Solaris
- Hewlett-Packard UNIX (HP-UX) (Itanium)

Access to publications and terminology

This section provides:

- A list of publications in the *IBM Security Directory Server library.*
- Links to "Online publications” on page x.
- A link to the "IBM Terminology website” on page x.

IBM Security Directory Server library

The following documents are available in the IBM Security Directory Server library:

- *IBM Security Directory Server, Version 6.3.1 Product Overview, GC27-6212-00*
 Provides information about the IBM Security Directory Server product, new features in the current release, and system requirements information.
 Provides help for getting started with IBM Security Directory Server. Includes a short product description and architecture diagram, and a pointer to the product documentation website and installation instructions.
 Contains instructions for administrative tasks through the Web Administration tool and the command line.
 Describes the syntax and usage of the command-line utilities included with IBM Security Directory Server.
 Contains information about writing server plug-ins.

© Copyright IBM Corp. 2003, 2013
Contains information about writing Lightweight Directory Access Protocol (LDAP) client applications in C and Java™.

 Contains information about tuning the directory server for better performance. Describes disk requirements and other hardware requirements for directories of different sizes and with various read and write rates. Describes known working scenarios for each of these levels of directory and the disk and memory used; also suggests rules of thumb.

 Contains information about possible problems and corrective actions that can be taken before you contact IBM Software Support.

 Contains a list of all warning and error messages associated with IBM Security Directory Server.

Online publications

IBM posts product publications when the product is released and when the publications are updated at the following locations:

IBM Security Directory Server documentation website

IBM Security Systems Documentation Central and Welcome page
[IBM Security Systems Documentation Central](http://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss) provides an alphabetical list of all IBM Security Systems product documentation. You can also find links to the product documentation for specific versions of each product.

IBM Publications Center

IBM Terminology website

Accessibility

Accessibility features help users with a physical disability, such as restricted mobility or limited vision, to use software products successfully. With this product, you can use assistive technologies to hear and navigate the interface. You can also use the keyboard instead of the mouse to operate all features of the graphical user interface.

For more information, see the Accessibility Appendix in the IBM Security Directory Server Product Overview.
Technical training

For technical training information, see the following IBM Education website at http://www.ibm.com/software/tivoli/education.

Support information

IBM Support assists with code-related problems and routine, short duration installation or usage questions. You can directly access the IBM Software Support site at http://www.ibm.com/software/support/probsub.html.

IBM Security Directory Server Troubleshooting Guide provides details about:

- What information to collect before you contact IBM Support.
- The various methods for contacting IBM Support.
- How to use IBM Support Assistant.
- Instructions and problem-determination resources to isolate and fix the problem yourself.

Note: The Community and Support tab on the product documentation can provide additional support resources.

Statement of Good Security Practices

IT system security involves protecting systems and information through prevention, detection, and response to improper access from within and outside your enterprise. Improper access can result in information being altered, destroyed, misappropriated, or misused or can result in damage to or misuse of your systems, including for use in attacks on others. No IT system or product should be considered completely secure and no single product, service or security measure can be completely effective in preventing improper use or access. IBM systems, products and services are designed to be part of a comprehensive security approach, which will necessarily involve additional operational procedures, and may require other systems, products or services to be most effective. IBM DOES NOT WARRANT THAT ANY SYSTEMS, PRODUCTS OR SERVICES ARE IMMUNE FROM, OR WILL MAKE YOUR ENTERPRISE IMMUNE FROM, THE MALICIOUS OR ILLEGAL CONDUCT OF ANY PARTY.
Chapter 1. Directory server tuning general overview

You must tune IBM Security Directory Server and the associated IBM DB2 database to obtain optimum server performance.

IBM Security Directory Server is a Lightweight Directory Access Protocol (LDAP) directory that provides a layer on top of DB2. You can use IBM Security Directory Server to efficiently organize, manipulate, and retrieve data that are stored in the DB2 database. Tuning for optimal performance is primarily a matter of configuring the relationships between a directory server and DB2 according to the nature of your workload.

Based on the directory environment, each workload might be different. Therefore, instead of providing exact values for tuning settings, guidelines are provided, where appropriate, to determine the best settings for your system to obtain optimal performance.

Attention: The examples performance test results that are provided are captured in a lab environment. The workload that is used for the test includes a mixture of searches and binds, including wildcard searches that return multiple entries. Your results might differ from the lab results shown in this document.

Directory server application components

IBM Security Directory Server interacts with various application components to query and retrieve data. You must tune each application component for optimal performance.

The following figure illustrates how IBM Security Directory Server components interact with each other. Tuning these components results in improved performance.

The arrows in the figure represent the interaction path for a query that is issued from a client computer. The query follows a path from the IBM Security Directory Server through the DB2 database and back to the client.
Server client to the server, to DB2, to the physical disks in search of the entries that meets the search filter criteria. The shorter the path to matching entries, the better overall performance you can expect from your system.

For example, if a query locates all the matching entries in a server, access to DB2 and the disks is not necessary. If the matching entries are not found in the server, the query continues on to DB2 and, if necessary, to the physical disks. From a performance standpoint, it is better to allocate a significant amount of memory to the server caches and setting the DB2 buffer pools to AUTOMATIC. Otherwise, the server might take considerable amount of time and resources to retrieve data from disk.

LDAP caches and DB2 buffer pools

You can use the LDAP caches and DB2 buffer pools to cache the previously accessed data. The cached data improves the performance of a directory server by reducing the disk access.

When the requested data is found within a cache or buffer pool, it is called a cache hit. A cache miss occurs when requested data is not in a cache or buffer pool.

The information type that is stored in each cache and buffer pool is different. To obtain better results, you must understand how and when each cache and buffer pool is accessed.

LDAP caches

You can load an LDAP cache with the LDAP data for retrieving the data faster.

Search operations attempt to use one or more caches to resolve the search filter and returning the matching entries. Most base-scoped searches can be resolved directly in memory. You can retrieve the base entry from the entry cache or the database buffer pool and compare the entry with the filter.

If a base-scoped search is not resolved directly in memory or the search is not base-scoped, the following options are checked.

- Use the attribute cache to resolve the filter in memory.
- Use the filter cache to retrieve the results of a previously run search operation.

If LDAP caches does not resolve the filter, the filter is resolved by using DB2. When entries are returned to the client, they are retrieved from memory by using the entry cache, if possible. If entries are not found in the entry cache, they are retrieved from DB2.

The four LDAP caches that are used in IBM Security Directory Server:

- LDAP attribute cache

Note: Starting from IBM Security Directory Server, version 6.3, attribute cache is deprecated. You must avoid use of attribute cache when you tune a directory server.

- LDAP filter cache
- Entry cache
- ACL cache

For more information about the LDAP caches, see [“LDAP caches” on page 28](#).
DB2 buffer pools

A directory server uses the DB2 buffer pools to store cached data and to improve database performance.

A buffer pool is associated with a single database and can be used by more than one table space. Adequate buffer pool size is essential for good database performance because it reduces disk I/O, which uses a considerable amount of time.

IBM Security Directory Server uses two DB2 buffer pools.

LDAPBP

LDAPBP contains cached entry data, ldap_entry, and all of the associated indexes. LDAPBP is similar to the entry cache, except that LDAPBP uses different algorithms to determine which entries are cached. It is possible that an entry that is not cached in the entry cache is in LDAPBP. If the requested data is not found in the entry cache or LDAPBP, the query must access the physical disks.

IBMDEFAULTBP

When you create a database, a default buffer pool named IBMDEFAULTBP is created, which is shared by all table spaces. DB2 system information, including system tables and other LDAP information, is cached in the IBMDEFAULTBP.

Directory server tuning overview

You can use the directory server performance statistics to decide when to tune a directory server.

You can store the frequently used LDAP data in the caches to tune an LDAP server to improve the performance of the server. It is important to remember that tuning an LDAP server alone is insufficient. You must also tune DB2 for optimal performance.

To get best results, it is advisable to tune a directory server instance immediately after the instance is configured. If a directory server is not tuned, it is likely to run poorly as the size of the instance grows. The deciding factors that you must consider for tuning a directory server instance.

- Poor or slow search and update response time.
- Considerable execution time for the **bulkload** command.

To improve poor performance, tune the directory server instance after you load data on the server. Later, update the DB2 system statistics after any large number of updates to the server.

Before you tune a directory server, you must take backup of the instance, database, and configuration files. For more information about directory server backup and restore, see the usage of **idsdbback** and **idsdbrestore** commands in *IBM Security Directory Server Version 6.3.1 Command Reference*.

The fastest way to load and tune a directory server with millions of entries is to configure the server, tune the server, use the **bulkload** command to load the entries into the server, and finally update the DB2 system statistics.
The most significant performance tuning related to the IBM Security Directory Server involves the LDAP caches. LDAP caches are fast storage buffers in memory that stores LDAP information such as queries, results, and user authentication for future use. While LDAP caches are useful mostly for applications that frequently retrieve repeated cached information, they improve performance by avoiding calls to the database. For information about how to tune the LDAP caches, see “LDAP caches” on page 28.

DB2 tuning overview

You must identify the DB2 configuration parameters that you must tune to improve DB2 database performance.

DB2 serves as the data storage component of IBM Security Directory Server. You can improve the performance of directory server by tuning DB2 database that is associated with the instance.

You can use the following suggestions for tuning DB2:

- **DB2 buffer pools**: DB2 buffer pools are DB2 data caches. Each buffer pool is a data cache between the applications and the physical database files. In IBM Security Directory Server, version 6.2 and later, buffer pools are automatically tuned by default. For information about buffer pool, see “DB2 buffer pool” on page 46.

- **Optimization and organization**: After a directory server is loaded with data or after updates, it is important to update database statistics and organization for DB2 to run optimally. For more information, see “Optimization and organization of database” on page 69.

- **Indexes**: Indexes help locate data on disk in lesser time, providing a significant boost to performance. For information about how to create indexes, see “DB2 indexes” on page 78.

Attention: You must store the DB2 log on a physical disk drive separate from the data. For improved data-integrity and performance, store the DB2 log and the data on separate drives. Use the following command to set the path to the DB2 log file directory.

```
DB2 UPDATE DATABASE CONFIGURATION FOR database_alias USING NEWLOGPATH path
```

Be sure that the database instance owner has write access to the specified path or the command might fail. For more information about using the DB2 commands, see Chapter 3, “Tuning DB2 and LDAP caches,” on page 45.

After the DB2 database is restored, you must retune the server unless the optimizations on a backed up DB2 database are known. When you run DB2 backup, the optimizations on the database are preserved in the backed up database. For example, DB2 system statistics and DB2 parameter settings are preserved in the backed up database. When you back up a directory server by using the `idsdbback` command, the server configuration is backed up along with the DB2 database. Users can also use the `idsperftune` command to improve the performance of the directory server. For more information about the `idsperftune` command, see “The performance tuning tool” on page 55.
Effect of multiple password policy on performance

When you configure multiple password policy to secure a directory server, there might be some performance degradation. You must consider the trade-off when you configure multiple password policies.

To evaluate effective password policy for an LDAP user, the directory server considers all the password policies that are associated with a user. A directory server evaluates the individual, group, and global password policies to determine effective password policy for a user. When you provide credentials to authenticate to a directory server, the effective password policy and group membership are resolved to apply password policies.

If you define group password policies, the performance of bind operations might get degraded.

Enforcing minimum ulimit values

You can set the minimum ulimit values that are based on the system resource availability for the optimal usage of resources by a directory server.

A directory server enforces minimum ulimit values such process data size, process virtual memory, and process file size that are considered important for running the server. To enforce minimum ulimit, a server checks if the ulimit values for the current processes are greater than or equal to the ulimit values specified in the configuration file. If the ulimit values for the current processes are lesser than the specified values, the server sets the ulimit values of the current processes to the specified values.

On Linux or UNIX operating systems, resource limits are defined for each user. When a process is started, the process inherits the resource limits set for the user context under which it was started. For example, if the idsslapd process, is started under the root user context, the idsslapd process inherits the resource limits of the root user. The inheritance occurs even if the process switches user contexts as the idsslapd process does. The idsslapd process switches the user context to the DB2 instance owner when need arises for the idsslapd process to take on the resource limits of the DB2 instance owner. In such case, the idsslapd process must be started while the DB2 instance owner is logged in.

In IBM Security Directory Server, version 6.2 and later, the directory server uses the ulimit values that are set in the configuration file sets them for the current processes. To modify the existing ulimit values, you can modify the entries under the cn=Ulimits, cn=Configuration DN entry. For example:

dn: cn=Ulimits, cn=Configuration
 cn: Ulimits
 ibm-slapdUlimitDataSegment: 262144
 ibm-slapdUlimitDescription: Prescribed minimum ulimit option values
 ibm-slapdUlimitFileSize: 2097152
 ibm-slapdUlimitNoFile: 500
 ibm-slapdUlimitStackSize: 10240
 ibm-slapdUlimitVirtualMemory: 1048576
 objectclass: top
 objectclass: ibm-slapdConfigUlimit
 objectclass: ibm-slapdConfigEntry

Note: An administrator can modify the minimum ulimit values by using Web Administration Tool or through command line.
Generic tips for using a directory server

You can optimize a directory server to improve the search and update performance of the server.

The following are some tips that can help improve directory server performance.

- Run searches on indexed attributes only. For instructions for defining and verifying indexes for directory server, see "DB2 indexes" on page 78.
- Open a connection and reuse it for many operations if possible.
- Minimize the number of searches by retrieving multiple attribute values in a single search.
- Retrieve only the attributes that you need. Do not use ALL by default. For example, when you search for the groups a user belong to, ask for only the Distinguished Names (DNs) values, and not the entire group. Do not request the member or uniquemember attributes if possible.
- Minimize and batch updates, such as add, modify, modrdn, or delete, when possible.
- Use base-scoped searches whenever possible rather than one-level or subtree searches.
- You must not use wildcard searches where the wildcard is in any position other than the leading character in a term, or a trailing character. Use wildcard searches that are similar to the following order. Leading character:
 sn=*term

 Trailing character:
 sn=term*

 Note: A filter such as sn=*term* is less efficient than the examples listed.
- When you use nested groups, keep the depth of nesting to 50 groups or less. Greater nesting depths can result in increased processing times when you run add or delete operation that involves updates to the nested group hierarchy.
- Set server search limits to prevent accidental long-running searches.
- Use the ldap_modify interface to add members to or delete members from a group. Do not run search to retrieve all members, edit the returned list, then send the updated list as a modify-replace operation. This modify-replace scenario might not function correctly with large groups.
- For a proxy server, do not set the value in the Connection pool size field to less than 5.
Chapter 2. Directory server tuning

You must decide the tuning roadmap, tuning LDAP caches, and the effect of directory size on the performance of a directory server.

Directory server tuning tasks

You can tune a directory server for general-purpose use or for a specific use for which you must configure the directory server.

To use IBM Security Directory Server in an LDAP environment, you must configure the server before you tune the server.

You must create an instance and configure the server with a database. If the directory server is loaded with entries, it is advisable to back up the directory server instance with database. You can prevent loss of data in case of failures during the tuning process. To know more about installing IBM Security Directory Server and configuring an instance, see the IBM Security Directory Server Version 6.3.1 Installation and Configuration Guide.

Directory server tuning roadmap

You can use the roadmap to identify the tasks that you must run to tune a directory server.

Procedure

1. You can use the **idsdbback** command to back up the directory server. It is advisable to back up the directory server before you do any major change. See “Directory server backup methods” on page 8. To know more about the **idsdbback** command, see IBM Security Directory Server Version 6.3.1 Command Reference.

2. Expand the storage capabilities for your server. For more information, see Expanding storage area.

3. Start the directory server to complete the instance configuration. DB2 database tables for the directory server instance are not created until the first startup of the instance. See “Starting a directory server instance” on page 14.

4. Tune the resource limits of the operating system. See Tuning Linux or UNIX operating system resource limits.

5. Tune the DB2 database parameters. See Tuning DB2 and LDAP caches.

6. Create the LDAP_DESC (AEID, DEID) index. See Creating the LDAP_DESC(AEID, DEID) index.

7. Tune the directory server change log if it is configured. If the change log is configured, then the performance of the directory server might degrade. The performance of a directory server is better when the change log is not configured. See “Change log” on page 20.

8. Tune the directory server audit log. If the audit log is set, then the performance of the directory server might degrade. The performance is better when the audit log is not enabled. See “Audit log” on page 20.

9. Configure the suffixes on the directory server. See “Configuring the suffixes on a directory server” on page 21.

11. Prepare the directory server instance for loading the entries. See "Commands to add user entries" on page 22.

12. Tune the access control lists (ACLs). See "Directory server ACL tuning" on page 22.

13. Tune the DB2 indexes. See DB2 indexes.

14. Update the DB2 system statistics. See Updating the DB2 statistics.

15. Optionally, back up the directory server instance after every major updates.

16. Start the directory server instance.

Directory server backup methods

You can use various commands to back up and restore a directory server instance. Based on your requirements, you must choose the appropriate command to back up and restore a directory server.

There are several ways to back up and restore a directory server instance, each with its own set of advantages and disadvantages.

idsdbback and idsdbrestore

The `idsdbback` and `idsdbrestore` commands are provided by IBM Security Directory Server to back up a directory server instance. When you back up, both DB2 database and directory server configuration files are backed up. The advantages of using these commands are in backing up and restoring of the directory server configuration. To know more about these commands, see IBM Security Directory Server Version 6.3.1 Command Reference.

The other backup options that are provided with IBM Security Directory Server do not include the directory server configuration information. The directory server configuration information includes directory schema, configuration file, and key stash file. Although, it is possible to back up these files manually; the `idsdbback` and `idsdbrestore` commands make this task easier.

The disadvantage of using the `idsdbback` and `idsdbrestore` commands is less flexibility in how the underlying DB2 restore is done. For example, with the `idsdbrestore` command, the DB2 restore cannot be directed to distribute the database across multiple disks.

db2ldif, ldif2db, and bulkload

The `db2ldif` and `ldif2db` commands are provided by IBM Security Directory Server to export data from a database to a Lightweight Directory Interchange Format (LDIF) file. You can also use the commands to import the data into the database from the LDIF file. The advantage to using these commands is the portability, standardization, and size factors that they provide.

The output LDIF file can be used to restore a directory server on a different operating system. Because the LDIF format is text-based, it is relatively easy to modify an LDIF file.

The disk space that is required for an LDIF file with entries is considerably less than the space required for a DB2 backup with the entries. The disk space requirement for the LDIF output from `db2ldif` is approximately six times less than the backed up database from `db2 backup` or `idsdbback`. The
disadvantage with `db2ldif` and `ldif2db` is the time that is required to complete the process, which is more when compared to `db2 backup` and `db2 restore`.

For restoring the database, the `bulkload` command is many times faster than the `ldif2db` command, but is still much slower than `db2 restore`. It is because the `db2 backup` and `db2 restore` commands are essentially a disk copy, and they are the fastest alternative.

Unlike `db2 restore`, to restore a directory server by using `bulkload`, the directory server must be empty. It can be accomplished by restoring an empty database, or by unconfiguring, and then reconfiguring the directory server. It is not advisable to drop the database and re-create it using DB2 commands. Creating the database manually misses some important configuration steps that are part of Configuration Tool.

db2 backup and db2 restore

The `db2 backup` and `db2 restore` commands are provided by IBM DB2. The advantage of using these commands is the performance and flexibility in specifying the location of the database files. The `db2 restore` command can be used to distribute the database across multiple disks or to move the database to another directory. For more information, see [Distributing the database across multiple physical disks](#).

A disadvantage of the `db2 backup` and `db2 restore` commands are their complexity. Another disadvantage is the potential incompatibility in backing up and restoring across operating systems and across DB2 versions. For more information, see the appropriate DB2 backup and restore documentation.

An important consideration when you use the `db2 backup` and `db2 restore` commands is the preservation of DB2 configuration parameters and system statistics optimizations in the backed-up database. The restored database has the same performance optimizations as the backed-up database. When you use the LDAP commands `db2ldif`, `ldif2db`, or `bulkload`, the performance optimization might not be restored.

If you restore over an existing database, any performance optimization on that existing database is lost. Check all DB2 configuration parameters after you restore the directory server instance. If you do not know whether `db2 runstats` was run before the database was backed up, tune the DB2 system statistics after the restore (see [Update the DB2 system statistics](#)). Use the following DB2 commands to run backup and restore operations:

```
  db2 force applications all
  db2 backup db ldapdb2 to directory_or_device
  db2 restore db ldapdb2 from directory_or_device replace existing
```

Where, `directory_or_device` is the name of a directory or device where the backup is stored.

One of the most common errors that occurs during a restore operation is a file permission error. Following are some of the reasons why the error might occur:

- The DB2 instance owner does not have permission to access the specified directory and file. One way to solve this issue is to change directory and file ownership to the DB2 instance owner. For example, enter the following command:

  ```bash
  chown ldapdb2 file_or_dev
  ```
• The backed-up database is distributed across multiple directories, and those directories do not exist on the target system of the restore. Distributing the database across multiple directories is accomplished with a redirected restore. To solve this problem, create the same directories on the target system or run a redirected restore to specify the directories on the new system. If you create the same directories, ensure that the owner of the directories is the DB2 instance owner typically, the ldapdb2 user. For more information about redirected restore, see Distributing the database across multiple physical disks.

Expansion of storage area
You must expand the disk space or distribute the data storage when a directory server database expands and reaches its disk space limits. If you do not handle the disk space requirement, the server might generate errors and exist.

You can use one of the following ways to expand storage.
• Use storage area network. It is beyond the scope of the document.
• Distribute the database across multiple physical disks.

Distributing the database across multiple physical disks
Distributing the database across multiple disks improves performance. If you use multiple disk drives, you can derive better performance due to concurrency.

Before you distribute the database across multiple physical disks, stop the directory server. For example:
ibmslapd -I instance_name -k

Setting up the file system permission and running the DB2 commands to distribute the database across multiple disks can be a complex task.

See the appropriate DB2 documentations to distribute the database across multiple disks.

Table spaces in IBM Security Directory Server
When you create a directory database, it uses the db2 create database command with the database name specified on the directory configuration command.

Before you begin, switch context to the DB2 instance owner. These examples assume that the DB2 instance owner is ldapdb2.
• On Linux and UNIX operating systems, run the following command:
su - ldapdb2
db2cmd
set DB2INSTANCE=ldapdb2
You can view the table spaces by using the following DB2 commands. Run the command with the DB2 instance owner, typically the ldapdb2 user.
db2 connect to ldapdb2
db2 list tablespaces

The following examples show table space output for a directory server:
Tablespace Information

<table>
<thead>
<tr>
<th>Tablespace ID</th>
<th>Name</th>
<th>Type</th>
<th>Contents</th>
<th>State</th>
<th>Detailed Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SYSCATSPACE</td>
<td>System managed space</td>
<td>Any data</td>
<td>0x0000</td>
<td>Normal</td>
</tr>
<tr>
<td>1</td>
<td>TEMPSPACE1</td>
<td>System managed space</td>
<td>Temporary data</td>
<td>0x0000</td>
<td>Normal</td>
</tr>
<tr>
<td>2</td>
<td>USERSPACE1</td>
<td>System managed space</td>
<td>Any data</td>
<td>0x0000</td>
<td>Normal</td>
</tr>
<tr>
<td>3</td>
<td>LDAPSPACE1</td>
<td>System managed space</td>
<td>Any data</td>
<td>0x0000</td>
<td>Normal</td>
</tr>
</tbody>
</table>

IBM Security Directory Server stores data in the user table space (USERSPACE1) and in the LDAP table space (LDAPSPACE1). By default, there is only one container or directory for each of these table spaces. To view the details about the user table space, enter the following DB2 command:

```
db2 list tablespace containers for 2
```

The output of the command is:

<table>
<thead>
<tr>
<th>Container ID</th>
<th>Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>/ldapdb2/NODE0000/SQL00001/SQLT0002.0</td>
<td>Path</td>
</tr>
</tbody>
</table>

The container or directory that DB2 uses for table space 2 is `/ldapdb2/NODE0000/SQL00001/SQLT0002.0`. It contains LDAP attribute database tables.

Table space 3 contains the `ldap_entry` table. For more information about table spaces, see [Table spaces](#).

Creating file systems and directories on the target disks

To distribute the DB2 database across multiple disk drives, you must create and format the file systems and directories on the physical disks.

Guidelines for distributing the DB2 database across multiple disk drives include:

- DB2 distributes the database equally across all directories. Therefore, you must make all the file systems, directories, or both, of the same size.
- Directories to use for the DB2 database must be empty. AIX and Solaris systems create a `lost+found` directory at the root of any file system. Instead of deleting the `lost+found` directory, create a subdirectory at the
root of each file system for distributing the database. For example, create a subdirectory, ldapdb2_containers, on each file system where the DB2 database is to be stored.

* You must create two more directories under the ldapdb2_containers directory. One directory to hold table space 2 and the other for table space 3. For example, these directories can be named tblspc2 and tblspc3. Then, specify these directories on the set table space commands that are provided in Running a redirected restore of the database.

* The DB2 instance user must have write permission on the created directories. For AIX and Solaris systems, the following command sets the appropriate permissions:

 `chown ldapdb2 directory_name`

Platform-specific guidelines include:

* For the AIX operating system, create an Enhanced Journaled Files System (JFS2) or create the file system with the Large File Enabled option. This option is one of the options on the Add a Journaled File System smit menu.

* For AIX and Solaris systems, set the file size limit to unlimited. You can also set file size limit to the size of the largest file system under which the DB2 database files are stored. On AIX systems, the `/etc/security/limits` file controls system limits and `-1` means unlimited. On Solaris systems, the `ulimit` command controls system limits.

Backing up the existing database

To back up the existing database, follow these steps:

1. Stop the directory server instance.
2. To close all DB2 connections, run the following commands:

 `db2 force applications all`
 `db2 list applications`

 The following message is shown when the commands are run. For example:

 `SQL1611W No data was returned by Database System Monitor.`

3. To initiate the backup process, run the following command:

 `db2 backup db ldapdb2 to [file system | tape device]`

 If the database is backed up successfully, the following message is shown. For example:

 `Backup successful. The timestamp for this backup image is : 20100420204056`

 Note: You must ensure that the backup process was successful before you remove the existing database. If the backup was not successful, the existing database is lost. You can verify whether the backup was successful by restoring to a separate system.

Running a redirected restore of the database

A DB2 redirected restore operation restores the specified database table space to multiple containers or directories. In the following example, assume that the following directories to hold table space 2 are created and are empty. The directories are set with the correct permissions for write access by the DB2 instance owner, typically the ldapdb2 user.
In the following example, assume the following directories for table space 3 is created:

/disk1/ldapdb2_containers/tblspc3
/disk2/ldapdb2_containers/tblspc3
/disk3/ldapdb2_containers/tblspc3
/disk4/ldapdb2_containers/tblspc3
/disk5/ldapdb2_containers/tblspc3

Follow these steps for a redirected restore:

1. To start the DB2 restore process, run the command of the following format:

 db2 restore db ldapdb2 from [location of backup] replace existing redirect

 The following message is shown when the command is run. For example:

 SQL2539W Warning! Restoring to an existing database that is the same as
 the backup image database. The database files will be deleted.

 SQL1277N Restore has detected that one or more tablespace containers are
 inaccessible, or has set their state to 'storage must be defined'.

 DB20000I The RESTORE DATABASE command completed successfully.

 This command prepares for the restore, but does not actually run the
 restore operation. These messages indicate that DB2 is prepared to
 receive the next commands, which define the location of the database
 files.

2. To define the containers for table space 2 and for table space 3, enter:

 db2 "set tablespace containers for 2 using (path \n '/disk1/ldapdb2_containers/tblspc2', \n '/disk2/ldapdb2_containers/tblspc2', \n '/disk3/ldapdb2_containers/tblspc2', \n '/disk4/ldapdb2_containers/tblspc2', \n '/disk5/ldapdb2_containers/tblspc2')"

 db2 "set tablespace containers for 3 using (path \n '/disk1/ldapdb2_containers/tblspc3', \n '/disk2/ldapdb2_containers/tblspc3', \n '/disk3/ldapdb2_containers/tblspc3', \n '/disk4/ldapdb2_containers/tblspc3', \n '/disk5/ldapdb2_containers/tblspc3')"

 Note: If many containers are defined, these commands can become too
 long to fit within the limits of a shell command. In such a case, you can
 put the command in a file and run within the current shell by using the
 dot notation. For example, assume that the commands are in a file
 named set_containers.sh. The following command runs it in the
 current shell: . set_containers.sh

 After completion of the DB2 set table space command, the following
 message is returned:

 DB20000I The SET TABLESPACE CONTAINERS command completed successfully.

Chapter 2. Directory server tuning 13
The command might also return the following message: SQL0298N Bad container path. SQLSTATE=428B2. This message indicates that one of the containers is not empty or the write permission is not set for the DB2 instance owner.

Note: A newly created file system on AIX and Solaris contains a directory lost+found. You must create a directory at the same level as lost+found to hold the table space and then run the set table space command again. If you experience problems, see the DB2 documentation. The following files might also contain the required information to resolve the issue:

- ldapdb2_home_dir /sqlib/db2dump/db2diag.log

Note the db2diag.log file contains some fairly low-level details that can be difficult to interpret.

3. Restore to new table space containers. This step takes considerable time to complete. The time varies depending on the size of the directory. To restore to the new table space containers, enter the following command:

   ```
   db2 restore db ldapdb2 continue
   ```

 If problems occur with the redirected restore and you want to stop the restore process, run the following command:

   ```
   db2 restore db ldapdb2 abort
   ```

Using raw device support for DMS table spaces

In IBM Security Directory Server, version 6.2 and later, you can select the type of table space. The table space options are Database Managed Space (DMS) and System Managed Space (SMS).

IBM Security Directory Server, version 6.2 and later support raw device with DMS table spaces. You can add a raw device along with a file to the containers in DB2, version 9.1 or later. Raw devices provide an alternative way to add multiple physical disks to the containers for LDAP table spaces LDAPSPACE and USERSPACE.

To know more about adding disk space to SMS or DMS table spaces, *IBM Security Directory Server Version 6.3.1 Administration Guide*.

Starting a directory server instance

To use a directory server instance, you must start the instance.

About this task

After you configure a directory server instance, you must start the instance to complete the database configuration. Database tables and indexes are not defined until you start the server for the first time.

Procedure

1. Log in with the directory server instance owner credentials.
2. Determine whether a directory server instance is running.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform</td>
<td>Run this command:</td>
</tr>
<tr>
<td>AIX, Linux, and Solaris</td>
<td>`ps -ef</td>
</tr>
</tbody>
</table>
On AIX, Linux, and Solaris, if the output shows a slapd or ibmslapd process, the directory server is running. On Windows, check the status of the services that are associated with the directory server instance.

3. Start the directory server instance.

 Note: On Windows, you can start the services that are associated with the directory server instance.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>Start -> Administrative Tools -> Services</td>
</tr>
</tbody>
</table>

Run this command:

```
ibmslapd -I instance
```

The `instance` variable is the name of the directory server instance to start.

Tuning Linux or UNIX operating system resource limits

You can improve the performance of a directory server instance if you tune the operating system resource limits.

You can tune the resource limits of the Linux, AIX, or Solaris operating system that are necessary to support directories with millions of users.

Resource limits on Linux and UNIX operating systems (**ulimit**)

On Linux and UNIX operating systems, the `ulimit` command controls the limits that can be set on system resource. You can modify the system resource, such as process data size, process virtual storage, and process file size.

- On Solaris operating systems, by default, the root user has unlimited access to these resources (for example, unlimited).
- On AIX operating systems, some limits might apply to the root user.

On Linux or UNIX operating system, resource limits are defined for each user. When you start a process, the process inherits or takes the resource limits of the user context under which it was started.

For example, if you start the `idsslapd` process under the root user context, the `idsslapd` process takes the resource limits of the root user. This inheritance occurs even if the process switches user contexts as the `idsslapd` process does.

The `idsslapd` process switches the user context to the DB2 instance owner. For the `idsslapd` process to take the resource limits of the DB2 instance owner, you must start the `idsslapd` process as the DB2 instance owner.

Resource limits on Solaris operating system

You can set the following system resources on a Solaris system:

- Increasing the shared memory maximum (**shmax**)
- Setting process limits in IBM Security Directory Server, version 6.2 and later
- Setting process limits in IBM Security Directory Server, version 6.1 and earlier

Increasing the shared memory maximum (shmax**)**
You must increase the shared memory to maximum for DB2 processes to allocate the buffer pool space.

For better results, the shared memory size must be set to the size of the physical memory on the system. For example, if a system with directory server contains 512 MB of physical memory, set the shared memory maximum size to 540000000.

On Solaris operating systems, you must update the shared memory maximum in the /etc/system file. For example, you must change the following entry in the file:

```
set shmsys:shminfo_shmmax = physical_memory
```

Where, `physical_memory` is the size of the physical memory on the system in bytes. After you set the shared memory maximum, restart the system for changes to take effect.

Examining the contents of the /etc/system file is not a reliable way to determine the operating system setting for the shared memory maximum. To verify the operating system setting for the shared memory, run the following command:

```
sysdef | grep -i shmmax
```

The following message indicates that the shared memory maximum is not set large enough for the DB2 cache:

```
SQL1478W The database has been started but only one buffer pool has been activated.
SQLSTATE=01626
```

An insufficient size for the shared memory maximum can also prevent DB2 from starting. In such case, the following message is returned:

```
SQL1220N The database manager shared memory set cannot be allocated.
```

These messages are also returned when you start a directory server instance or running the following DB2 command:

```
db2 connect to ldapdb2
```

Setting process limits in IBM Security Directory Server, version 6.2 and later

In IBM Security Directory Server, version 6.2 and later, set the ulimit values with the values that are set under the `cn=Ulimits, cn=Configuration` entry in the configuration file. An example of the `cn=Ulimits, cn=Configuration` entry in the instance configuration.

```
dn: cn=Ulimits, cn=Configuration
cn: Ulimits
ibm-slapdUlimitDataSegment:262144
ibm-slapdUlimitDescription: Prescribed minimum ulimit option values
ibm-slapdUlimitFileSize:2097152
ibm-slapdUlimitNofile:500
ibm-slapdUlimitStackSize: 10240
ibm-slapdUlimitVirtualMemory:1048576
objectclass: top
objectclass: ibm-slapdConfigUlimit
objectclass: ibm-slapdConfigEntry
```

Setting process limits in IBM Security Directory Server, version 6.1 and earlier
Increasing the process memory size limit

To check the current process data size and virtual memory size limits, enter the following command:

ulimit -d
ulimit -v

You can set the process data size and virtual storage size to unlimited. Run the following commands:

ulimit -d unlimited
ulimit -v unlimited

At the minimum, you must set the size limits to 256 MB. Set the value to 256000 by using the ulimit command. Increase the limits if you are using a cache that is larger than the default value.

Increasing file size limits

To check the current file size limits, enter the following command:

ulimit -f

You can set the file size limit to unlimited. Run the following command:

ulimit -f unlimited

The following files increase as the directory server size gets bigger. To support the growing size, you must set the file size to unlimited.

- DB2 table and index files
- Temporary files that are used by bulkload and as part of a bulk load (for example, the input LDIF file)

Resource limits on AIX operating system

On AIX system, you can consider the following options when you set the resource limits:

- Applying AIX settings
- Setting process limits in IBM Security Directory Server, version 6.2 and later
- Setting process limits in IBM Security Directory Server, version 6.1 and earlier
- Creating file systems with large file support
- Setting the environment variables

Applying AIX settings

In AIX, system settings take effect when you restart the shell program. Operations, such as su -, login, and a process restart, effects the modified system settings; su does not effect the settings. You can test resource limits by running the ulimit command and restarting the affected processes.

Setting process limits in IBM Security Directory Server, version 6.2 and later
In IBM Security Directory Server, version 6.2 and later, set the ulimit values with the values that are set under the cn=Ulimits, cn=Configuration entry in the configuration file. An example of the cn=Ulimits, cn=Configuration entry in the instance configuration.

dn: cn=Ulimits, cn=Configuration
 cn: Ulimits
 ibm-slapdUlimitDataSegment:262144
 ibm-slapdUlimitDescription: Prescribed minimum ulimit option values
 ibm-slapdUlimitFileSize:2097152
 ibm-slapdUlimitNofile:500
 ibm-slapdUlimitStackSize: 10240
 ibm-slapdUlimitVirtualMemory:1048576
 objectclass: top
 objectclass: ibm-slapdConfigUlimit
 objectclass: ibm-slapdConfigEntry

Setting process limits in IBM Security Directory Server, version 6.1 and earlier

To check the current process data size and virtual memory size limits, you must run the following command:

```
ulimit -d
ulimit -m
```

You must set the process data size and virtual storage size to unlimited. To set the size to unlimited, modify the /etc/security/limits file for the following entries:

```
data = -1
rss = -1
```

For the changes to the /etc/security/limits file to take effect, you must log out of the current session and log again.

At the minimum, you must set the size limits to 256 MB. Set the value to 256000 in the /etc/security/limits file. Increase the limits if you are using a cache that is larger than the default value.

The process virtual storage size is limited by the number of segments that a process can use. By default, a process can use only one memory segment, which limits it to 128 MB. AIX supports a large memory model that can be set by using the LDR_CNTRL environment variable.

Creating file systems with large file support

The standard file system on AIX has a 2-GB file size limit, regardless of the ulimit setting.

You can enable files larger than the 2-GB limit by the following methods:

- Create the file system as Enhanced Journaled file system or JFS2. This option is available in AIX, version 5.2 and later versions.
- Create the file system with the Large File Enabled option. You can find this option through Add a Journaled file system of the smit menu.

For information and file system options, see the AIX documentation.

Setting the environment variables
The environment variable, SPINLOOPTIME=650, for SMP systems improves the performance of a directory server.

You can set the environment variables in the following ways:

- Temporarily define the environment variables before you start the server, then undefine them. For example:
  ```
  export SPINLOOPTIME=650
  ibmslapd unset SPINLOOPTIME
  ```
- Pass the environment variable on the server start command. For example:
  ```
  SPINLOOPTIME=650 ibmslapd
  ```
- For a directory server, set the environment variables in the slapd32.conf or ibmslapd.conf configuration files.
- Define the variables in the /etc/environment file.

For the environment variables in the /etc/environment file to take effect, you must log off and log in again before you start the server. The advantage of this approach is that it is automatic and reduces the possibility of an error.

The disadvantage is the potential to affect other processes in the system. By the setting of these environment variables, currently there are no known processes that are detrimentally affected.

The LDAP_DESC(AEID, DEID) index

You can create the LDAP_DESC(AEID,DEID) index to tune and improve the performance directory server for subtree operations.

When you create the LDAP_DESC(AEID,DEID) index, you must stop the directory server instance. You can run create index without stopping the directory server instance. If you use the server when you run indexing on the server, it might result in timeouts.

You must create the (AEID,DEID) index on the DB2 LDAP_DESC table. The following examples show how indexing can improve performance:

- Running a subtree search with an objectclass=* filter when 100000 entries exist in the directory server.
- Setting an ACL on a small subtree when millions of entries exist in the directory server. For example, running the ldapmodify command to set the ACL.

Propagating ACLs to the child entries of a large subtree is slow regardless of the existence of the index. Without the LDAP_DESC(AEID,DEID) index, all subtree searches with the objectclass=* filter are slow on a large directory server, even if the subtree that you are searching is small.

When you design an LDAP search, you must consider the order in which the subtree criterion is used in evaluating the response. The subtree criterion is used last. Subtree searches specifying a commonly used object class values on a small subtree of a large directory are slow even if the LDAP_DESC(AEID,DEID) exists. For best performance, you must not use searches that specify a commonly used object class value.

If the directory server has many existing entries, the index creation takes time. To check for the existence of the LDAP_DESC(AEID,DEID) index, run the following command:
db2 connect to ldapdb2
db2 describe indexes for table ldap_desc show detail

If the output does not include the +DEID+AEID keyword, then the index does not exist.

To create the LDAP_DESC(AEID,DEID) index, run the following command:

db2 connect to ldapdb2
db2 "create index LDAP_DESC_DEID on LDAP_DESC(AEID,DEID)"

You can remove the LDAP_DESC(AEID,DEID) index by running the following command:

db2 connect to ldapdb2
db2 drop index IDSLDAP.LDAP_DESC_DEID

Change log

You can record all the directory updates in a change log DB2 database, which is different from the DB2 database associated an instance. When you configure the change log, it significantly slows down the update performance of a directory server.

To tune the directory server change log, you must start the directory server instance.

To determine the change log configuration status, you must search for the CN=CHANGELOG suffix. For example:

```bash
ldapsearch -h ldap_host -D cn=root -w admin_passwd -s base -b "" \ "objectclass=*" | grep "CN=CHANGELOG"
```

where, admin_passwd is the password for the primary administrator.

Audit log

You must determine whether you require auditing of operations that are run against a directory server. If you do not require to audit operations, you can disable the audit feature.

To tune audit log, you must start the directory server instance.

The directory server audit log feature significantly slows down the directory server performance, depending upon which audit log features are turned on. It is advisable to turn off all audit log features.

To check the status of the audit log feature, run the following `ldapsearch` command:

```bash
ldapsearch -D cn=root -w admin_passwd -s base -b "cn=Audit,cn=Log Management,cn=Configuration" \ "objectclass=*" ibm-audit
```

Where, cn=root is the directory server root administrator user, and admin_passwd is the password for the administrator.

The following output is returned if the audit log is not set:

cn=Audit, cn=Log Management, cn=Configuration
ibm-audit=false

where, ibm-audit=false indicates that the audit log feature is turned off.

If this value is true, run the following command to turn it off:
Configuring the suffixes on a directory server

You must create and configure at least one suffix before you add an LDAP entry to a directory server instance.

Before you begin

You must ensure that the directory server instance is running in normal mode.

About this task

For optimum directory server authentication performance, you must define another suffix to hold all directory server user entries. You can define more than one suffix, and distribute the user entries among multiple suffixes. In such a hierarchy, the server might need more time to search and determine under which suffix a user entry exists during authentication. Instead of storing users in multiple suffixes, you must store users entries in multiple LDAP containers under the same suffix for better performance.

Procedure

1. Log in as the directory server instance owner.
2. To determine the existing suffixes, run the following command:


   ```
   ldapsearch -p port -D cn=root -w password -s base -b "cn=Directory, cn=RDBM Backends, cn=IBM Directory, cn=Schemas, cn=Configuration" "objectclass=*
   ibm-slapdSuffix
   ```

 In addition to any user created suffixes, the output from the command returns the following suffixes:

   ```
   ibm-slapdSuffix: cn=localhost
   ibm-slapdSuffix: cn=ibmpolicies
   ibm-slapdSuffix: cn=Deleted Objects
   ```

3. Run the following command to create a suffix:

   ```
   ldapmodify -p port -D cn=root -w password
   dn: cn=Directory, cn=RDBM Backends, cn=IBM Directory, cn=Schemas, cn=Configuration
   changetype: modify
   replace: ibm-slapdSuffix
   ibm-slapdSuffix: suffix_name
   ```

 where, `password` is the password for the primary administrator, and `suffix_name` is the LDAP suffix to configure.

4. Run one the following commands to effect the changes that are made to the directory server configuration file:

   ```
   • Restart the directory server instance and the administration server.
     ibmslapd -I instance -k
     ibmdiradm -I instance -k
     ibmslapd -I instance
     ibmdiradm -I instance
   ```

 • Run the `ldapexop` command to reread the attribute.

     ```
     ldapexop -p port -D cn=root -w password -op readconfig -scope single -b "cn=Directory, cn=RDBM Backends, cn=IBM Directory, cn=Schemas, cn=Configuration" ibm-slapdSuffix
     ```

Chapter 2. Directory server tuning 21
LDAP entries for suffixes

You must create a suffix entry to represent as the parent entry in an LDAP directory information tree (DIT) hierarchy.

You can create LDAP entries for the suffixes by one of the following ways:

- Use the `ldapadd` command to create the LDAP entries for suffixes.
- Restore a directory database that contains the LDAP entries for suffixes.
- Load the directory server with an LDIF file that contains the LDAP entries for suffixes.

To create suffix entry for an `o=sample` suffix, run the `ldapadd` command. For example:

```bash
ldapadd -h host -p port -D cn=root -w admin_passwd
dn: o=sample
objectClass: organization
objectClass: top
o: sample
```

where, the variables indicate:

- `cn=root` is the primary administrator of an instance
- `admin_passwd` is the password credentials of the administrator
- `host` is the host name where the directory server instance is running
- `port` is the port number of the directory server instance

In the example, access control lists (ACLs) are not assigned to the suffix object. You can assign the appropriate ACLs based on your LDAP environment requirement.

Commands to add user entries

You must add user entries in a directory server if you plan to use the entries for retrieving information or for configuring LDAP authentication.

To add user entries to a directory server instance, you must prepare an LDIF file with user entries. You can use the `ldapadd`, `ldif2db`, or `bulkload` command to add entries to a directory server instance.

Before you load user entries to a directory server instance, you must create a directory tree on the directory server. The directory tree includes LDAP container entries for holding user and group information.

To add few entries, use the `ldapadd` command. Before you add entries by using the `ldapadd` command, you must ensure that the directory server instance is running.

To add many entries, use the `ldif2db` or `bulkload` command. Before you add entries by using the `ldif2db` or `bulkload` command, you must ensure that the directory server instance is stopped.

Directory server ACL tuning

You can assign specific access rights to the LDAP users by assigning the required access control list (ACL) to the entries in a directory server.

You must start the directory server instance before you tune the access control lists (ACLs).

If you set ACLs on the suffixes, you might observe performance delays and requirement for large transaction log spaces. The conditions are true, if:
• Millions of LDAP entries exist under the suffix.
• There is no previous ACL on the suffix.

To prevent performance delays, you must set ACLs on the suffixes when there are few or no user entries or LDAP entries under the suffix. You must set the ACLs on the suffixes before you add entries under the suffix. For more about assigning ACL on all suffixes, see the IBM Security Directory Server Version 6.3.1 Administration Guide.

If you configure ACLs when millions of user entries exist under the suffix and there is no previous ACL on the suffix, performance delays might occur.

DB2 statistics

When you run update operations against a directory server, the DB2 statistics of the directory server database is affected. You must update the DB2 statistics of the directory server database after large updates to the directory server.

When you update the DB2 statistics of a database, you must stop the directory server to prevent any failures. You can update the DB2 statistics, while the directory server is running. However, application that is accessing the directory server might timeout.

The DB2 optimizer uses DB2 system statistics and the volatile table definitions to optimize DB2 queries. When LDAP entries are added to a directory server, the DB2 statistics on the affected tables can become out of date. The out-of-date system statistics can result in wrong choices by the DB2 optimizer, and can result in poor performance.

Not updating DB2 system statistics is one of the most common performance tuning mistakes that are made with DB2 databases. The first step in updating the DB2 system statistics is to run the DB2 runstats command on every table or run the DB2 reorgchk command. Later versions of DB2 provide method to tune automatic checks for out-of-date system statistics and update the out-of-date system statistic by using the runstats command.

Do not use the automatic runstats option with a directory server. Updating the DB2 system statistics for a directory server also involves overriding of the default DB2 system statistics by the runstats command.

After you update the DB2 system statistics, you must define all tables as volatile. You can also manually update the DB2 statistics by running the appropriate DB2 command.

Update system statistics with DB2 runstats or reorgchk

You can update the DB2 system statistics by running a DB2 runstats command on all tables in the database or by running the DB2 reorgchk command. You can obtain the list of tables in a database by running the following command:

```
db2 connect to ldapdb2 db2 list tables for all
```

It is only necessary to perform the DB2 runstats command on the tables having the DB2 instance schema. For example, in this document, the DB2 instance schema is ldapdb2. The DB2 runstats command is run as follows:

```
For DB2, version 9.1 and later:
```
db2 runstats on table tablename with distribution and detailed indexes all
shrlevel change

Where, tablename is the name of the table on which to run the runstats
command.

If you provide the shrlevel change and allow write access options, the
database becomes accessible to the directory server instance. When the
runstats commands are running, it can result in poor performance and
timeouts in directory server operations.

Running the runstats command on all tables can be tedious if not
automated with a script. The alternative is the DB2 reorgchk command. To
update DB2 statistics, run the DB2 reorgchk command. For example:
db2 connect to ldapdb2 db2 reorgchk update statistics on table all

The reorgchk command does some additional checking and reports on the
organization of the data in the database. It is useful when an application
requires to read the database sequentially. When you access a directory
server for common use, the database is accessed randomly.

The main advantage of the DB2 runstats command is the ability to select
which tables to tune. When you run the DB2 runstats command, you
must selectively limit it to the tables that are less than 100,000 rows. In
most cases, tables with 100,000 rows no longer require tuning. By limiting
the runstats command for relatively small tables, the frequency to run
runstats decreases. For example, if a million users are added to a directory
server that already contain a million users, it is likely that the affected
tables already have a million rows and making it unnecessary to do
runstats on that table.

If the second million users introduce a new LDAP attribute that the first
million did not have, it is necessary to run runstats on the tables for the
new attributes. But it is not required for those tables that already have a
million rows. In both these cases, the time to update the system statistics
by using the runstats command is less than it would take to run runstats
on all tables of the directory database.

Updating system statistics with idsrunstats
You can run the idsrunstats tool that is provided with IBM Security
Directory Server, version 6.2 and later, while the directory server is
running. From IBM Security Directory Server, version 6.3.1, the
idsrunstats command collects the distribution statics on all the columns
and indexes of LDAP_DESC and LDAP_ENTRY tables.

To know more about idsrunstats, see Optimization and organization
(idsrunstats, reorgchk and reorg)

Improving disk utilization with DB2 row compression
If you installed a fully licensed version of DB2 Enterprise Server Edition, in
addition to a DB2 Storage Optimization Feature license, you can use
row-level compression.

You can improve the disk utilization and the overall performance with the
DB2 row compression capability. You can select the rows that you want to
compress by using the idsdbmaint tool that is provided with IBM Security
Directory Server, version 6.2 and later. For more information, see DB2 row
compression

Defining DB2 tables as volatile
DB2, version 9.1 and later support the option to define tables as volatile. Defining the tables as volatile, enables the DB2 optimizer to use the indexes that are defined on the table. If you tune the DB2 optimizer, the DB2 optimizer makes the correct optimization choice when the statistics are out of date. For example, when a table suddenly grows in size before the system statistics is updated. Run the following command to define a table as volatile:

```
db2 connect to ldapdb2 db2 alter table tablename volatile
```

Where, `tablename` is the name of the table to be defined as volatile.

Override system statistics

In some cases, the DB2 optimizer makes a wrong choice in optimizing a query even if the system statistics are up to date. In such cases, it is necessary to override the DB2 system statistics to influence the DB2 optimizer to make the correct choice. A directory server can override some of the system statistic. For example, when the directory server is started as part of the `idsrunstats` command.

You can set the `LDAP_MAXCARD` environment variable to control system statistic overrides by a directory server. For more information about setting `LDAP_MAXCARD` and its behavior, see the [IBM website](http://www-01.ibm.com/support/docview.wss?uid=swg21316267).

LDAP_DESC

When you set the variable, it sets the cardinality column of the LDAP_DESC table in the system statistic tables to a value of 9E18, which is the scientific notation for a large number. A directory server can also force this override.

To tune manually, run the following command:

```
db2 "update sysstat.tables set card = 9E18 where tabname = 'LDAP_DESC'"
```

When you override, it chooses the LDAP_DESC table last during an LDAP search. The LDAP_DESC table is used on subtree searches when the LDAP_DESC(AEID,DEID) index is defined.

If the LDAP_DESC(AEID,DEID) index is not defined, this override has no effect. This override allows small subtree searches to be fast if they are specified with an `objectclass=*` filter. The main purpose of this override is to prevent use of the LDAP_DESC(AEID,DEID) index with large subtrees. It ensures that the attributes on the filter are used first with an LDAP search, if attributes are specified.

LDAP_ENTRY

For one level searches, entry IDs are resolved using the PEID column of the LDAP_ENTRY table.

When you set the variable, it sets the cardinality column of the LDAP_ENTRY table in the system statistic tables to a value of 9E18, which is scientific notation for a large number. A directory server cannot force this override.

To tune manually, run the following command:

```
db2 "update sysstat.tables set card = 9E18 where tabname = 'LDAP_ENTRY'"
```

In an LDAP search, the LDAP_ENTRY table PEID index is queried last because of the override. The PEID index is used when you run a
one level search. It ensures that the attributes on the filter are used first with an LDAP search, if attributes are specified.

CN

When you set the variable, it sets the cardinality column of the CN table in the system statistic tables to a value of 9E10. A directory server cannot force this override.

To tune manually, run the following command:

```
db2 "update sysstat.tables set card = 9E10 where tabname = 'CN'"
```

The override chooses the CN table before the subtree criteria (LDAP_DESC table) and the one level criteria (LDAP_ENTRY table).

This override also uses the OBJECTCLASS filter before the CN attribute with an LDAP search.

REPLCHANGE

When you set the variable, it sets the cardinality column of the REPLCHANGE table in the system statistic tables to a value of 9E18, which is scientific notation for a large number. It also sets the colcard and high2key columns of the REPLCHANGE table with a colname of ID in the system statistic columns table to 9E18 and 2147483646. A directory server can also force this override.

To tune manually, run the following commands:

```
db2 "update sysstat.tables set card = 9E18 where tabname = 'REPLCHANGE'"
db2 "update sysstat.columns set colcard=9E18, high2key='2147483646'
where colname = 'ID' and tabname = 'REPLCHANGE'"
```

DB2 can use the index that is defined on the REPLCHANGE table when the override is set. The DB2 optimizer does not use indexes on an empty table. For DB2, version 8 and later, if you define the table as volatile then the override is redundant.

db2look command

The *db2look* command is useful for reporting all the system statistic settings of the database. Use the mimic option, `-m`, to generate a report that contains the DB2 command which produces the current system statistic settings. For example:

```
db2look -m -d ldapdb2 -u ldapdb2 -o output_file
```

Where, *output_file* is the file location for storing the results.

Before you run the *db2look* command, switch the user context to the database instance owner.

Backing up a directory server instance

To restore a directory server from an unexpected failure, you must back up the directory server instance.

You can preserve the existing tuning configuration of a directory server instance if you back up the instance. For more information, see IBM Security Directory Server backup methods.

Starting a directory server instance

To use a directory server instance, you must start the instance.
About this task

After you configure a directory server instance, you must start the instance to complete the database configuration. Database tables and indexes are not defined until you start the server for the first time.

Procedure

1. Log in with the directory server instance owner credentials.
2. Determine whether a directory server instance is running.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform</td>
<td>Run this command:</td>
</tr>
<tr>
<td>AIX, Linux, and Solaris</td>
<td>`ps -ef</td>
</tr>
<tr>
<td>Windows</td>
<td>Start -> Administrative Tools -> Services</td>
</tr>
</tbody>
</table>

On AIX, Linux, and Solaris, if the output shows a `slapd` or `ibmslapd` process, the directory server is running. On Windows, check the status of the services that are associated with the directory server instance.

3. Start the directory server instance.

Note: On Windows, you can start the services that are associated with the directory server instance.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform</td>
<td>Run this command:</td>
</tr>
<tr>
<td>AIX, Linux, Solaris, and Windows</td>
<td><code>ibmslapd -I instance</code></td>
</tr>
</tbody>
</table>

The `instance` variable is the name of the directory server instance to start.

Commands for tuning a directory server instance

You can use various commands to tune a directory server instance. Each command tunes a specific aspect of a directory server.

IBM Security Directory Server provides the following commands to tune a directory server instance.

idrunstats

You can use this command to collect DB2 system statistics.

idsperftune

You can use this command to run a number of tuning activities that are based on user provided settings.

- Providing recommendations
- Updating parameters

This command can be used to run more advanced tuning of DB2 parameters.

idsdbmaint

You can use this command for the following operations:

- Index reorganization
- Row compression, see [*Improving disk utilization with DB2 row compression*](#)
- Table space conversion (from SMS table space to DMS table space and from DMS table space to SMS table space)
The following developerWorks® documents can provide more information about analyzing DB2 and LDAP performance. For more information, see the following websites:

Directory server performance statistics

You can use the operational statistics of a directory server to determine the server performance.

Monitor search

You can run the monitor search against a directory server to check the server performance statistics. You can use the directory server statistics to calculate server throughput.

To search for server status, run the `ldapsearch` command with the `cn=monitor` base:

```
ldapsearch -h ldap_host -p port -s base -b cn=monitor "objectclass=*"
```

The command returns several statistics. For a directory server, you can check the `opsinitiated` statistic for monitoring performance. It indicates the number of LDAP operations that were initiated after the server started.

The `ldapsearch` command itself accounts for three operations. The following formula can be used to determine the throughput for interval:

\[
\text{throughput for interval} = \frac{\text{opsinitiated(at stop time)} - \text{opsinitiated(at start time)} - 3}{\text{stop_time} - \text{start_time}}
\]

Concurrent updates

You can run concurrent updates by using multiple clients against a directory server to obtain better update performance.

The amount of performance improvement is limited to the speed of the system disk on the master, and in a replicated environment on the replica servers. In a replication environment, you might require to tune the number of replica threads (or consumer connections) in the master server configuration. Tuning of the number of replica threads is required if you observe an increased update rate on the master server.

IBM Security Directory Server, version 6.0 and later support multi-threaded replication, which improves the performance by supporting concurrent updates on replica servers.

LDAP caches

You can populate and tune LDAP caches to reduce disk I/O operations and to improve directory server performance.

LDAP caches are fast storage buffers in memory and stores LDAP information such as queries, results, and user authentication for future use. Tuning the LDAP caches is crucial for improving performance.

An LDAP search command that accesses an LDAP cache can be faster than the one that requires a connection to DB2. The data retrieval from an LDAP cache is even faster that retrieving the information that is cached in DB2. For this reason, tuning
LDAP caches can improve performance by avoiding calls to the database. The LDAP caches are especially useful for applications that frequently retrieve repeated cached information.

You must determine how to use LDAP caches, such as filter cache, ACL cache, and entry cache, and the optimum cache settings for your system. Cache sizes for the filter cache, ACL cache, and entry cache are measured in numbers of entries. Keep in mind that every workload is different, and some experimentation is required to find the best settings for your workload.

LDAP attribute cache

You can use LDAP attribute cache to resolve search filters faster if the attributes requested in the search filter are cached.

Note: Starting from IBM Security Directory Server, version 6.3, attribute cache is deprecated. You must avoid configuring attribute cache.

The attribute cache stores configured attributes and their values in memory. When a one-level, subtree, or base search is run against a server, the server attempts to resolve the filter in memory by using the entry cache. If a filter cannot be resolved, the server uses the attribute cache manager to resolve the filter in memory if the following conditions are met:

- All the attributes that are used in the filter are cached.
- Filter type is supported by the attribute cache manager.

Resolving filters in memory improves the search performance over resolving filters in DB2.

You can configure the attribute cache to store attributes. You can configure the attribute cache to automatically select the attributes that are expected to provide the most cache hits, see [Configuring attribute caching](#). Alternatively, you can choose specific attributes to cache.

You can determine the attributes to store in the attribute cache by considering how the queries are resolved by the attribute cache.

Processing queries in the attribute cache

All attributes that are used in the search filter are cached if the filter type can be resolved by the attribute cache manager. If such cases, the list of matching entry IDs are resolved in memory by using the attribute cache manager. The list of matching IDs are then sent to the entry cache. The attribute cache is most efficient when you use it in combination with the entry cache.

Resolving simple filters in the attribute cache

The attribute cache manager can resolve simple filters of the following types:

- Exact match filters
- Presence filters

Resolving complex filters in the attribute cache

The attribute cache manager can also resolve complex filters that are conjunctive or disjunctive. The subfilters within complex filters must be exact match, presence, conjunctive, or disjunctive. The complex filters can of the following types:

- Exact match filters
- Presence filters
- Conjunctive filters
- Disjunctive filters

Processing language tags in the attribute cache
Filters containing attributes with language tags are not resolved by the attribute cache manager. For example, if the attributes objectclass, uid, and cn are cached, the following filters can be resolved in memory within the attribute cache manager:

- `(cn=Karla)`
- `(cn=*))
- `(&(objectclass=eperson)(cn=Karla))`
- `(&(objectclass=eperson)(cn=*)(uid=1234567))`
- `(&(objectclass=eperson)(cn=*))((uid=1234567))`
- `(&(uid=1234567)&(objectclass=eperson)(cn=*))`

The attribute cache might not resolve the query for the following conditions:

- Some or all of the attributes that are used in the search filter are not cached.
- The filter type cannot be resolved by the attribute cache manager.

If there are no attributes in the attribute cache, the attribute cache manager sends the query to the filter cache to resolve. For example, if the attributes objectclass, uid, and cn are the only cached attributes, the following filters cannot be resolved in memory by the attribute cache manager:

- `(sn=Smith)`
- `(cn=K*)`
- `(&(objectclass=eperson)(cn=Karla))`
- `(&(objectclass=eperson)(cn=K*)(uid=1234567))`
- `(&(objectclass=eperson)(cn=K*)(uid=1234567))`
- `(&(uid=1234567)&(objectclass=eperson)(sn=*))`

Note: Choosing to cache the member, uniquemember, or ibm-membergroup attributes can lead to reduced performance with the delete and modrdn operations. If you are deleting or renaming an entry that is a member of many groups, then the attribute caches must be updated. The update is required to reflect the change for every group in which the entry was a member.

Attribute caching
You must identify the attributes that are most referenced and must cache them in the attribute cache to reduce the search operation time.

To determine which attributes to cache, you must experiment by adding some or all of the attributes that are listed in cached_attribute_candidate_hit to the attribute cache. Then, run your workload and measure the differences in operations per second. For information about the cached_attribute_candidate_hit attribute, see "Search with the cn=monitor base" on page 98.

Note: Choosing to cache the member, uniquemember, or ibm-membergroup attributes can lead to reduced performance with the delete and modrdn operations. If you are deleting or renaming an entry that is a member of many groups, then the attribute caches must be updated. The update must be reflected on every group in which the entry was a member. The additional processing can lead to slower performance with search or update operations.
You can retrieve information about attributes that are cached, their individual sizes in KB, and their hit counts by running the `ldapsearch` command with the `cn=monitor` base. You can retrieve up to 10 attributes that are most used in the search filters. The attribute cache manager must be able to process these attributes, which are not yet cached. Use a combination of the search output from the `cn=monitor` searches and different types of searches that your applications use to determine which attributes to cache.

Examples

Example 1:
If you do not configure a directory server for attribute caching, the following results are returned by the `ldapsearch` command with the `cn=monitor` parameter:

```
ldapsearch -h ldaphost -p port -s base -b cn=monitor objectclass=* 
  cached_attribute_total_size cached_attribute_configured_size 
  cached_attribute_hit cached_attribute_size 
  cached_attribute_candidate_hit

  cn=monitor
  cached_attribute_total_size=0
  cached_attribute_configured_size=1200
  cached_attribute_candidate_hit=mail:50000
  cached_attribute_candidate_hit=uid:45000
  cached_attribute_candidate_hit=givenname:500
  cached_attribute_candidate_hit=sn:200
```

Based on the result that is returned by the `ldapsearch` search, you can consider caching the `uid` and `mail` attributes. Even though, `givenname` and `sn` are used in search filters that are resolved by the attribute cache manager. If these attributes are cached, their hit counts are low in comparison to the `uid` and `mail` attributes. Therefore, caching the `givenname` and `sn` attributes in memory is not appropriate.

After you cache the `uid` and `mail` attributes, rerun the application or performance test. You must run `ldapsearch` for `cn=monitor` again to determine whether there is enough memory to cache both the attributes. If there is not enough memory, then more memory must be configured or the least-used attribute must be removed from the list of attributes to cache.

Example 2:
Consider that the attribute cache is configured with the `givenname` and `sn` attributes. The cache hit count for `objectclass` is high. Also, the cache hit rates for `uid` and `mail` are high.

```
ldapsearch -h ldaphost -p port -s base -b cn=monitor objectclass=* 
  cached_attribute_total_size cached_attribute_configured_size 
  cached_attribute_hit cached_attribute_size cached_attribute_candidate_hit

  cn=monitor
  cached_attribute_total_size=1000
  cached_attribute_configured_size=1200
  cached_attribute_hit=givenname:500
  cached_attribute_size=givenname:300
  cached_attribute_hit=sn:200
  cached_attribute_size=sn:400
  cached_attribute_candidate_hit=objectclass:11000
  cached_attribute_candidate_hit=mail:90000
  cached_attribute_candidate_hit=uid:85000
  cached_attribute_candidate_hit=workloc:25000
```

The `cached_attribute_total_size` attributes specifies the amount of memory that is used by the directory attribute cache in KB. It includes the additional memory that is used to manage the cache that is not charged to
the individual attribute caches. The total is larger than the sum of the memory that is used by all the individual attribute caches.

In the example, givenname and sn are not good choices for caching because of their low hit count in comparison to the other attributes. From the search results, objectclass is a good choice for caching. The uid and mail attributes are also good choice for caching.

Configure attribute cache to cache the objectclass, uid and mail attributes and rerun the performance tests to verify whether the performance results are as expected. If the cn=monitor search returns the results with a hit count much lesser after caching objectclass compared to when it was a candidate.

```
ldapsearch -h ldaphost -p port -s base -b cn=monitor objectclass=* \
        cached_attribute_total_size cached_attribute_configured_size \
        cached_attribute_hit cached_attribute_size cached_attribute_candidate_hit
```

cached_attribute_total_size=1000
 cached_attribute_configured_size=1200
 cached_attribute_hit=objectclass:10000
 cached_attribute_size=objectclass:750
 cached_attribute_candidate_hit=mail:90000
 cached_attribute_candidate_hit=uid:85000
 cached_attribute_candidate_hit=workloc:25000
 cached_attribute_candidate_hit=givenname:300
 cached_attribute_candidate_hit=sn:200

If you observe unexpected results, you can consider the following reasons:

- The objectclass attribute table is large in comparison to the other attribute tables. Even though objectclass, uid and mail are cached, objectclass is the only attribute that fit within the maximum memory that is set for attribute caching.

- You must analysis the search filters used by your application. In the example, the results shows that objectclass is not used in search filters. The attribute cache manager might not resolve many filters because all the attributes in the filter are not cached. A combination of the cn=monitor search result and analysis of the filters helps you to determine which attributes to cache. The following are the search filters and the number of hits:

 - (objectclass=*)10000 hits
 - (givenname=*)300 hits
 - (sn=*)200 hits
 - (mail=*) 50000 hits
 - (uid=*)45000 hits
 - (workloc=*)5000 hits
 - (&(objectclass=person)(mail=*))40000 hits
 - (&(objectclass=person)(uid=*))40000 hits
 - (&(objectclass=person)(workloc=*))20000 hits

From the search filter results, when the objectclass attribute is specified alone in the filter the attribute gets 10000 hits. Therefore, if the only attribute cached is objectclass, the attribute cache manager can resolve 10000 out of the 210500 total search filters. If the server is configured to have enough memory to hold both the objectclass and mail attributes, 100000 of the search filters can be resolved by the attribute cache manager. If objectclass, uid and mail are all configured and enough memory is available, 185000 of the search filters can be resolved by the attribute cache manager. However, if memory is constrained and only one attribute can be cached, the best choice is mail with 50000 hits. If both uid and mail can be
cached, 95000 filters can be resolved by the attribute cache manager. It is almost as many hits as caching objectclass and mail instead.

For example, assume that caching uid and mail uses less memory than caching objectclass and mail. In such cases, caching uid and mail instead of objectclass and mail might be a better choice if enough memory is not available on the server. Therefore, it is necessary to understand and consider the types of search filters that are used by an application to determine the appropriate attributes to cache. You must also consider the amount of memory available on the server to use for attribute caching.

LDAP filter cache

The filter cache stores cached entry IDs that match a search filter that was previously resolved in DB2.

When the client issues a query for data, the query goes to the filter cache in the following conditions:

- The query is not a base-scoped search that can be resolved in memory.
- The filter cannot be resolved in memory by the attribute cache manager.

When a query arrives at the filter cache, one of the following actions occur:

- The IDs that match the filter settings that are used in the query are in the filter cache. If such cases, the list of the matching entry IDs is sent to the entry cache.
- The matching entry IDs are not cached in the filter cache. In such cases, the query must access DB2 in search of the data.

Filter cache size

You must determine the optimum filter cache size to resolve maximum filters in the memory.

To determine the size for the filter cache, run the workload with the cache set to different values and measure the differences in operations per second. For example, the figure shows varying number of operations per second based on different filter cache sizes.
For the workload, a filter cache large enough to hold 55,000 entries results in the best performance. There is no benefit in configuring the filter cache larger than the value that result in best performance. For more information about setting the filter cache size, see “LDAP cache configuration variables” on page 38.

Filter cache size with updates
You must determine the filter cache size that is required to cache filters if your directory server environment handles frequent updates.

In a directory server environment, if a small fraction of the operations in the workload is updates then setting filter cache does not benefit. There is no performance benefit in allocating memory to the filter cache as shown in Figure 3 on page 35.

If the workload is similar in your environment, you must batch your updates to retain the performance advantage of a filter cache. Batch updates provide intervals during which there are only searches. If you cannot batch updates, specify a filter cache size of zero and allocate more memory to other caches. For more information about setting the filter cache size, see “LDAP cache configuration variables” on page 38.
Filter cache bypass limits
You can set the limit to prevent uncommon searches from overwriting the cache entries.

You can set the filter cache bypass limit to specify the maximum number of entries to add to the filter cache. For example, if the bypass limit is set to 1000, search filters that match more than 1000 entries are not added to the filter cache. For more information about setting the filter cache bypass limit, see "LDAP cache configuration variables" on page 38.

Entry cache
You can retrieve the entry IDs faster for the search filters that are resolved and the entry IDs are in the entry cache.

When you run queries to access entries, the entry IDs are cached in the entry cache. If the entries that match the entry IDs are in the entry cache, then the results are returned to the client. If the entry cache does not contain the entries for the entry IDs, the query is sent to DB2 to retrieve the matching entries.

Entry cache size
You must determine the optimum entry cache size to store and retrieve maximum entry IDs from the cache to improve the search performance.

To determine the required entry cache size, run the workload with the entry cache set to different sizes and measure the differences in operations per second. For example, Figure 4 on page 36 shows varying operations per second based on different entry cache sizes.
Based on the results in Figure 4, an entry cache large enough to hold 460,000 entries results in the optimum performance. There is no benefit in configuring the entry cache larger than the value that result in best performance. Setting the entry cache at 460,000 results in four times as many operations per second than when the entry cache is set to zero. To find the best cache size for your workload, you must run your workload with different cache sizes. For more information about setting the cache size, see "LDAP cache configuration variables" on page 38.

Note: A test with entry cache size set to 345000 results in unpredictable performance. The nature of the test case, workload, and cache size set might affect performance.

Group members cache

You can use the group members cache to store member and uniquemember attributes and their values with entries.

The group members cache is an extension of the entry cache. The group entries are part of the group members cache if the entry structures have members and uniquemembers. Otherwise, they are part of the regular entry cache. Group member caching can be controlled with the following configuration attributes:

- `ibm-slapdGroupMembersCacheSize` defines the number of groups whose members are cached. The default value for the attribute is 25.
- `ibm-slapdGroupMembersCacheBypassLimit` defines the maximum number of members a group can contain to cache it in the group members cache. The default value of the attribute is 25000.

ACL cache

You can use the access control list (ACL) cache to store information about the access permissions for the recently queried entries.
The ACL cache stores information such as `entryOwner` and whether the permissions of the entry are explicit or inherited. Caching the ACL information in memory can quickly resolve the ACLs of a user who submitted a query. It also resolves whether the user is authorized to see all, some, or none of the results of the query.

Measuring cache entry size

Filter cache and entry cache size are measured in numbers of entries. To determine the number of entries to cache in the LDAP caches, you must find how large the entries in the caches are.

About this task

You can calculate the average size of an entry in a sample entry cache, but the average filter cache entry size can be calculated similarly.

Procedure

1. Log in with the directory server instance owner credentials.
2. Take the following actions on the LDAP server:
 a. Set the filter cache size to 0.
 b. Set the entry cache size to a small value. For example, 200.
 c. Start the `ibmslapd` process of an instance.
3. Take the following actions from the client:
 a. Run your application.
 b. Run the following command to find the entry cache population, `population1`:
      ```
      ldapsearch -h server -p port -s base -b cn=monitor objectclass=* | grep entry_cache_current
      ```
4. Take the following actions on the LDAP Server:
 a. Run the following command to find the memory that is used by the `ibmslapd` process, `ibmslapd1`:
      ```
      Platform Run this command:
      AIX ps -e -o vsz -o command | grep ibmslapd
      Windows Task Manage > Virtual Memory size
      ```
 b. Stop the `ibmslapd` process.
 c. Increase the size of the entry cache but keep it smaller than your working set.
 d. Start the `ibmslapd` process.
5. Run your application again and find the entry cache population, `population2`.
   ```
   ldapsearch -h server -p port -s base -b cn=monitor objectclass=* | grep entry_cache_current
   ```
6. Find the memory that is used by the `ibmslapd` process, `ibmslapd2`.
7. Calculate the size of an entry cache entry by using the following formula:
   ```
   \frac{ibmslapd\ size2 - ibmslapd\ size1}{(entry\ cache\ population2 - entry\ cache\ population1)}
   ```

Results

For example, when you use the formula for a 500000 entry database, the following entry size is calculated:
LDAP cache configuration variables

You can use the LDAP cache configuration variables to assign values to the LDAP cache sizes, bypass limits, and other variables that affect directory server performance.

Attribute cache configuration

You can configure attribute cache for a directory database, change log database, or both to improve directory server performance during search operations.

The attribute cache size is measured by the amount of memory the attribute cache requires. You can configure the maximum amount of memory available to use for attribute caching. There is no benefit from configuring attribute caching for the change log database; unless you run frequent searches against change log.

Note: Starting from IBM Security Directory Server, version 6.3 general availability (GA), attribute cache is deprecated. You must avoid configuring attribute cache.

Configuring attribute cache by using Web Administration Tool

You can configure attribute cache by using Web Administration Tool to improve directory server performance when search operations are run against the server.

About this task

You can configure attribute cache from Web Administration Tool or from the command prompt.

Procedure

1. Log in as the directory server administrator on a directory server from Web Administration Tool.
2. In the navigation pane, expand Server administration > Manage cache properties, and click Attribute cache.
3. In the Attribute cache page, take the following actions:
 a. To configure memory for the directory cache, assign an appropriate value in KB in the Directory cached attribute size field. The default is 16384 KB (16 MB).
 b. To configure memory for the change log cache, assign an appropriate value in KB in the Changelog cached attribute size field. The default is 16384 KB (16 MB).

 Note: If change log is not configured, you cannot configure memory size for the change log cache.
4. To set directory automatic attribute caching, take the following actions:
 a. Select the Enable directory automatic attribute cache check box.
 b. Enter the start time for directory automatic attribute caching in the Start Time field.
 c. From the Interval list, select the interval at which to run the directory automatic attribute caching.
5. To set change log automatic attribute caching, take the following actions:
Note: You must not configure automatic attribute caching for change log unless frequent searches against the change log is required.

a. Select the **Enable change log automatic attribute cache** check box.

b. Enter the start time for change log automatic attribute caching in the **Start Time** field.

c. From the Interval list, select the interval at which to run the change log automatic attribute caching.

6. To add specific attributes to cache, take the following actions:

 a. Select the attribute to cache from the **Available attributes** list. In the list, the attributes that are designated as cached attributes are listed. For example, `sn`. An attribute remains in the list of available attributes until it is placed in the **Database** or **Change log** containers. You can assign the same attribute in both containers.

 b. To place to the attribute in the Database container, click **Add to Database**.

 c. To place to the attribute in the Change log container, click **Add to Change log**.

 d. Add the required attributes to cache by repeating the process. An attribute is removed from the **Available attributes** list when it is added to both the **Cached attributes under Database** and **Cached attributes under Change log** lists. If change log is not set, then **Add to Change log** is disabled. You cannot add the attribute to **Cached attributes under Change log** list.

 e. To save the changes, click **Apply**. You can click **OK** to save the changes and to exit the page. You can click **Cancel** to exist the page without saving any changes.

Configuring attribute cache from the command line

You can configure the attribute cache from the command line to improve directory server performance when search operations are run against the server.

Procedure

1. Log in as the directory server instance owner on the system where the directory server instance is running.

2. To configure specific attributes for the directory database, run the following command:

   ```bash
   ldapmodify -p port -D adminDN -w adminPW -i filename
   ```

 where, **filename** contains the following entries:

   ```
   dn: cn=Directory, cn=ROBM Backends, cn=IBM Directory, cn=Schemas, cn=Configuration
   changetype: modify
   add: ibm-slapdCachedAttribute
   ibm-slapdCachedAttribute:sn
   -
   add: ibm-slapdCachedAttribute
   ibm-slapdCachedAttribute:cn
   -
   replace: ibm-SlapdCachedAttributeSize
   ibm-SlapdCachedAttributeSize: 262144
   ```

3. To configure automatic attribute caching for the directory database, run the following command:

   ```bash
   ldapmodify -D adminDN -p port -w adminPW -i filename
   ```

 where, **filename** contains the following entries:

   ```
   dn: cn=Directory, cn=ROBM Backends, cn=IBM Directory, cn=Schemas, cn=Configuration
   changetype: modify
   replace: ibm-SlapdCachedAttributeSize
   ```
4. To configure specific attributes for the change log, run the following command:

```
ldapmodify -D adminDN -p port -w adminPW -i filename
```

where, `filename` contains the following entries:

```
dn: cn=change log, cn=RDBM Backends, cn=IBM Directory, cn=Schemas, cn=Configuration
  changetype: modify
  add: ibm-slapdCachedAttribute
  ibm-slapdCachedAttribute: changetype
  replace: ibm-SlapdCachedAttributeSize
  ibm-SlapdCachedAttributeSize: 32768
```

5. Restart the directory server and administration server to effect the changes made.

```
ibmslapd -I instance -k
ibmdiradm -I instance -k
ibmslapd -I instance
ibmdiradm -I instance
```

ACL cache, entry cache, and filter cache configuration

You can set ACL cache, entry cache, and filter cache configuration variables with the values based on your requirement. Setting optimal values to the caches improves update and search performance of a directory server.

Configuring ACL cache, entry cache, and filter cache by using Web Administration Tool

You can configure ACL cache, entry cache, and filter cache by using Web Administration Tool to tune your directory server performance for search operations.

Procedure

1. Log in with the directory server administrator credentials by using Web Administration Tool.
2. In the navigation pane, expand **Server administration > Manage cache properties**.
3. To configure the ACL cache, click **ACL cache**.
 a. Click **Cache ACL information** to cache the ACL details of entries.
 b. In the Maximum number of elements in ACL cache field, type the number of elements to cache. The default is 25,000.
4. To configure the number of entries to cache in the entry cache, click **Entry cache**.
 a. In the Maximum number of elements in entry cache field, type the number of entries to cache. The default is 25,000.
5. To configure the number of elements to cache in the filter cache, click **Filter cache**.
 a. In the Maximum number of elements in search filter cache field, type the number of elements to cache. The default is 25,000.
 b. To specify the maximum number of entries to add to the filter cache that are matched by a search filter, click **Elements** and type a number. The default is 100. You can click **Unlimited** to cache the maximum number of entries that is supported by filter cache.
6. To save the changes, click **Apply**. You can click **OK** to save the changes and to exit the page. You can click **Cancel** to exist the page without saving any changes.

Related concepts:

- **“Entry cache” on page 35**
 You can retrieve the entry IDs faster for the search filters that are resolved and the entry IDs are in the entry cache.

- **“LDAP filter cache” on page 33**
 The filter cache stores cached entry IDs that match a search filter that was previously resolved in DB2.

- **“Filter cache bypass limits” on page 35**
 You can set the limit to prevent uncommon searches from overwriting the cache entries.

Configuring ACL cache, entry cache, and filter cache from the command line

You can configure the ACL cache, entry cache, and filter cache from the command line. You must tune these caches to improve a directory server performance for search operations.

Procedure

1. Log in with the directory server instance owner credentials.
2. To configure LDAP cache configuration variables, run the following command:
   ```
   ldapmodify -p port -D adminDN -w adminPW -i filename
   ```
 where, `filename` contains the following entries:
   ```
   dn: cn=Directory,cn=RDBM Backends,cn=IBM Directory, cn=Schemas,cn=Configuration
   changetype: modify
   replace: ibm-slapdDbConnections
   ibm-slapdDbConnections:15

   dn: cn=Front End, cn=Configuration
   changetype: modify
   replace: ibm-slapdACLCache
   ibm-slapdACLCache: TRUE
   - replace: ibm-slapdACLCacheSize
     ibm-slapdACLCacheSize: 25000
   - replace: ibm-slapdEntryCacheSize
     ibm-slapdEntryCacheSize: 25000
   - replace: ibm-slapdFilterCacheSize
     ibm-slapdFilterCacheSize: 25000
   - replace: ibm-slapdFilterCacheBypassLimit
     ibm-slapdFilterCacheBypassLimit: 100
   ```
3. Restart the directory server and administration server to effect the changes made.
   ```
   ibmslapd -I instance -k
   ibmdiradm -I instance -k
   ibmslapd -I instance
   ibmdiradm -I instance
   ```

Additional attribute settings

You can improve the performance of a server by setting attributes that limit client activity and minimize the effect on server throughput and resource usage.
You can set the following attributes to limit various operations. The default values for the attributes are specified.

- `ibm-slapdSizeLimit`: 500
- `ibm-slapdTimeLimit`: 900
- `ibm-slapdIdleTimeOut`: 300
- `ibm-slapdMaxEventsPerConnection`: 100
- `ibm-slapdMaxEventsTotal`: 0
- `ibm-slapdMaxNumOfTransactions`: 20
- `ibm-slapdMaxOpPerTransaction`: 5
- `ibm-slapdMaxTimeLimitOfTransactions`: 300
- `ibm-slapdPagedResAllowNonAdmin`: TRUE
- `ibm-slapdPagedResLmt`: 3
- `ibm-slapdSortKeyLimit`: 3
- `ibm-slapdSortSrchAllowNonAdmin`: TRUE

The directory server response time for searches with the alias dereferencing can vary based on the options set. The time for searches to complete is greater if the dereferencing option is set to always or searching than when the dereferencing option set to never. You can use the `ibm-slapdDerefAliases` attribute under the `cn=Configuration` entry to override the dereference option that is specified in the client search requests. The supported values are:

- never
- find
- search
- always

If you set the value to never, the server does not attempt to dereference possible aliases, and the response time for searches improves.

SLAPD_OCHSELECT_USECS environment variable

Set the `SLAPD_OCHSELECT_USECS` environment variable to call OCH select() with a timeout value. The timeout value is of microsecond granularity.

If the `SLAPD_OCHSELECT_USECS` variable is not present or set to 0, the OCH select() call continues with an indefinite timeout value. If `SLAPD_OCHSELECT_USECS` is set to a positive integer value, the OCH select() call continues with the set timeout value.

You can set the `SLAPD_OCHSELECT_USECS` environment variable or add the `ibm-slapdSetEnv` attribute with the variable as value. You must add the attribute under the `cn=Front End, cn=Configuration` entry in the `ibmslapd.conf` file. For example, to set the value of `SLAPD_OCHSELECT_USECS` to 1000 microseconds, run the `ldapmodify` command. For example:

```
idsldapmodify -p port -D adminDN -w adminPW
dn: cn=Front End, cn=Configuration
changetype: modify
add: ibm-slapdSetEnv
ibm-slapdSetenv: SLAPD_OCHSELECT_USECS=1000
```
You must restart the directory server to effect the changes made. When you restart the server, \textit{SLAPD_OCHSELECT_USECS} is set with a value of 1000 microseconds (or 1 millisecond).

\section*{Directory size}

You must consider the directory size and potential growth in directory size when you configure a directory server.

It is important when you run your workload that you consider several measurements. For example, the number of operations per second as shown in Figure 5. The number of operations the server resolves reduces as the database size grows.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{directory_size.png}
\caption{Operations per second}
\end{figure}

However, the benchmark tool test includes a large fraction of wildcard searches and exact-match searches, such as \texttt{sn=Smith}. It returns all entries where the \texttt{sn} value is \texttt{Smith}. The wildcard and exact-match searches return multiple entries in response to a single search request. The figure indicates as the size of the directory grows, the number of entries that are returned for wildcard and exact-match search grows.
The number of entries that are returned per second is a better measure of throughput than operations per second. It is because, each operation requires more time as the size of the database grows.

Note: As your directory grows, it might become necessary to readjust the sizes of the LDAP caches. You can determine the optimal sizes for your caches and buffer pools by using the guidelines in “LDAP caches” on page 28 and “DB2 buffer pool” on page 46. The DB2 buffer pool is tuned automatically in IBM Security Directory Server, version 6.2 and later.
Chapter 3. Tuning DB2 and LDAP caches

You can tune the DB2 database that is configured with a directory server instance to reduce the search and update time.

IBM Security Directory Server uses DB2 as the data store; and Structured Query Language (SQL) as the query retrieval mechanism. While the LDAP server caches LDAP queries, results, and authentication information; DB2 caches tables, indexes, and statements.

Many DB2 configuration parameters affect either the memory (buffer pools) or disk resources. Since disk access is usually much slower than memory access, the key database performance tuning objective is to decrease the amount of disk activity. In DB2, version 9.1 and later, you can use Self Tuning Memory Manager (STMM) instead of manually tuning several DB2 parameters. When you use the STMM, DB2 assigns the correct values to memory consumers based on the usage of the system and available resources. You can use the DB2 STMM by setting the values of DB2 buffer pool to AUTOMATIC.

When you tune DB2, you must consider the following options:
- Tuning DB2 buffer pool
- Tuning DB2 and LDAP caches by using the `idsperftune` tool
- Database maintenance by using the `idsdbmaint` tool. You can use the tool for DB2 index organization, DB2 row compression, and table space conversion.
- Database maintenance by using the `idsrunstats` tool.
- Optimization and organization (`reorgchk` and `reorg`)
- Other DB2 configuration parameters
- Backup and restore the database
- Data row compression

For more information about DB2 commands, see the IBM DB2 documentation website at http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp.

Attention: Users that are listed as database administrators can run the DB2 commands. When you run the DB2 commands, you must use a user ID that is in a member of the `dbsysadm` group (UNIX operating systems) or a member of the Administrator group (Windows operating systems.) The DB2 instance owner and root are members of the `dbsysadm` group.

If you have any issues when you run the DB2 commands, check to ensure that the DB2 environment variables are set by running `db2profile`. If not, the `db2 get` and `db2 update` commands might not work. The script file `db2profile` is in the `sql11ib` subdirectory of the instance owner home directory. To modify the file, follow the comments inside the file to set your instance name, user paths, and default database name (the default path is `/home/ldapdb2/sql11ib/db2profile`). It is assumed that the user is logged in as `ibm-slapdDbUser1d`. If logged in as the root user on a UNIX operating system, you can switch the user context to the instance owner.

`su - instance_owner`

where, `instance_owner` is the defined owner of the LDAP database.
To log on as the database administrator on a Windows 2000 operating system, run the following command:

```
runas /user:instance_owner db2cmd
```

where, `instance_owner` is the defined owner of the LDAP database.

DB2 buffer pool

You can use the DB2 buffer pools to cache entries and their attributes. If the entries are in cache, the search time reduces when querying for the cached data.

Tuning DB2 buffer pool is one of the most significant types of DB2 performance tuning. A buffer pool is a data cache between LDAP and the physical DB2 database files for both tables and indexes. If entries and their attributes are not found in the entry cache, the server searches the DB2 buffer pools for the values. You must tune the buffer pool when the database is initially loaded and when the database size changes significantly. Disabling file system caching is advisable when buffer pools are used. It improves the performance of utilities like `bulkload`, by removing a redundant level of caching.

IBM Security Directory Server uses two buffer pools, one for the `USERSPACE1` table space and the other for the `LDAPSPACE` table space. The buffer pool for `USERSPACE1` is named `IBMDEFAULTBP` and the buffer pool for the `LDAPSPACE` table space is named `LDAPBP`. For more information about `USERSPACE1` and `LDAPSPACE`, see [Table spaces](#).

There are several points that you must consider are related to DB2 buffer pools. For example:

- If there are no buffer pools, all database activity results in disk access.
- If the size of each buffer pool is too small, LDAP must wait for DB2 disk activity to satisfy DB2 SQL requests.
- If one or more buffer pools are too large, memory on the LDAP server might be wasted.
- If the space that is used by the LDAP caches and the buffer pools is larger than the memory available on a server, operating system paging might occur. Operating system paging might result in increased disk activity.
- Tuning buffer pools do not improve performance of a directory server significantly, if the server contains tens of millions of users. It is not possible or practical to cache a large enough percentage of the database to greatly improve performance. With directories up to millions of users, it is possible to cache a large enough percentage of the database to make an improvement to performance.
- The DB2 buffer pools sizes must be low enough to prevent operating system paging, but high enough to provide maximum benefit.
- Most importantly, current versions of DB2 support automatic tuning of the buffer pools.

The `idsperftune` performance tuning tool sets the DB2 configuration options so that the buffer pools automatically tuned.

To retrieve the current DB2 buffer pool sizes, run the following commands:

```
db2 connect to database_name
db2 select varchar(bpname,20) as bpname,npages,pagesize from syscat.bufferpools
```

where, `database_name` is the name of the database.
The following example output shows the default settings:

<table>
<thead>
<tr>
<th>BPNAME</th>
<th>NPAGES</th>
<th>PAGESIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBMDEFAULTBP</td>
<td>29500</td>
<td>4096</td>
</tr>
<tr>
<td>LDAPBP</td>
<td>1230</td>
<td>32768</td>
</tr>
</tbody>
</table>

2 record(s) selected.

To determine the current file system caching option for each of the table space, run the following commands:

db2 get snapshot for tablespaces on ldapdb2 | egrep 'tablespace name|File system caching'

To turn off file system caching with DB2, version 8.2 or later in operating systems and file system environments that support it, run the following command:

db2 connect toldapdb2
db2 alter tablespace USERSPACE1no file systemcaching
db2 alter tablespace LDAPSPACE1no file systemcaching
db2 terminate
db2stop
db2start

To set the buffer pool sizes, use the following commands:

db2 alter bufferpool ibmdefaultbp size new size in 4096 byte pages
db2 alterbufferpool ldapbpsize new size in 32768 byte pages
db2 terminate
db2stop
db2start

If these commands are run while the directory server is running, the `db2stop` command fails. An error message is generated indicating there are applications that are connected to the database. If an error is generated, stop the directory server and then run the following commands:

db2stop
db2start

To assign optimum memory size for the DB2 buffer pools, you must determine the values. For more information, see "Analyzing DB2 buffer pool performance" on page 48.

If any of the buffer pool sizes are set too high, DB2 fails to start because of insufficient memory. If DB2 fails, the DB2 might generate a core dump file, usually there are no error messages. On AIX systems, the system error log might report a memory allocation failure. To view the log, run the following command:

erp -a | more

If DB2 fails to start because of large buffer pool size, set the buffer pool size to lower values and restart DB2. If you restore a database to a target system from a source system with large buffer pool sizes, the restore operation might fail.

On Windows systems, if you cannot connect to the database check the `DB2INSTANCE` environment variable. By default, the variable is set to `DB2`. To connect to the database, you must set the variable to the database instance name. You must also consider upgrading DB2 to latest fix pack level for stability and performance enhancements.

In DB2, version 9.1 and later, the `self_tuning_mem` database configuration parameter is automatically set to ON when you create a single-partition database.
The value for the parameter is set to AUTOMATIC. The following memory consumers are enabled to tune automatically if you set the value to AUTOMATIC:

- Buffer pools (controlled by the ALTER BUFFERPOOL and CREATE BUFFERPOOL statements)
- Package cache (controlled by the pckcachesz configuration parameter)
- Locking memory (controlled by the locklist and maxlocks configuration parameters)
- Sort memory (controlled by the sheapths_zhr and the sortheap configuration parameter)
- Database shared memory (controlled by the database_memory configuration parameter)

You must ensure that the database memory is optimally used when the Self Tuning Memory Manager (STMM) is set. You can determine the optimal value for the DATABASE_MEMORY parameter. For more information, see “Determining the DATABASE_MEMORY parameter value” on page 49.

You can limit DB2 buffer pools from using all the available memory. To limit the use of memory, consider the following settings before you enable the STMM:

- To use the default automatic values, set the database shared memory size configuration parameter, DATABASE_MEMORY:

 db2 ALTER BUFFERPOOL LDAPBP SIZE AUTOMATIC
 db2 ALTER BUFFERPOOL IBMDEFAULTBP SIZE AUTOMATIC

- Run the instance under normal load and monitor the value of DATABASE_MEMORY to determine an optimum size for the setting.

- Set DATABASE_MEMORY to the determined size instead of automatic.

 db2 ALTER BUFFERPOOL LDAPBP SIZE Determined_Value
 db2 ALTER BUFFERPOOL IBMDEFAULTBP SIZE Determined_Value

The Determined_Value value optimizes the performance of database.

Analyzing DB2 buffer pool performance

You must analyze the server performance for varying size of DB2 buffer pool to determine the optimum DB2 buffer pool size for your server.

Procedure

1. Log in with the directory server instance owner credentials.
2. Run the following command to turn on buffer pool monitoring:

 db2 update database manager configuration using DFT_MON_BUFPOOL ON
 db2stop
 db2start

3. Run the following command to connect to the database:

 db2 connect to ldapdb2

 where, ldapdb2 is the database instance.

4. Start the workload to be analyzed.
5. Reset the monitor data.

 db2 resetmonitor all

6. Obtain the statistics with the workload in progress.
7. Take a snapshot of the buffer pool statistics and process the output. Run the following command to take a snapshot of the current buffer pool statistics:
8. Run the following command to take a snapshot and report the read times:
   ```
   db2 get snapshot for bufferpools on ldapdb2 | awk '{
       if ($1=="Bufferpool" && $2=="name") {print $0}
       if (index($0,"pool read time")) {print "$0"}
   }
   ' 
   ```

9. Run the following command to take a snapshot and report the number of logical and physical reads:
   ```
   db2 get snapshot for bufferpools on idsdb | awk '{
       if ($1=="Bufferpool" && $2=="name") {print $0}
       if (index($0,"cal reads")) {print "$0"}
   }' | grep-vtemp 
   ```

10. Run the following command to take a snapshot and report miss ratios:
    ```
    db2 get snapshot for bufferpools on idsdb | grep -v temporary | awk '{
        if ($1=="Bufferpool" && $2=="name") {print $0}
        if (index($0,"logical reads")) {l=$NF; getline; p=$NF;
        if (l==0) {r=0} else {r=p/l}; print "$0"
    Miss ratio: "$3"r}
    }' 
    ```

11. Tune the buffer pool sizes such that the IBMDEFAULTBP buffer pool meets the following conditions:
 - A low read time.
 - A low number of reads.
 - A low miss ratio.
 - Must not exceed system physical memory size.
 - Must not reduce the LDAPBP size to less than 2075 pages of 32 KB.

 A higher miss ratio indicates that there are a higher number of physical reads and a lower number of cache hits.

12. Allocate the remaining physical memory to the LDAPBP with the following criteria:
    ```
    With file system cache turned off
    LDAPBP size = ( total physical memory - 1 GB(for DS and DB2) - (IBMDEFAULTBP size) * 4096 ) / 32768
    
    With file system cache turned on
    LDAPBP size = ( total physical memory - 1.75GB (for DS, DB2, and file system caching) - (IBMDEFAULTBP size) * 4096 ) / 32768
    ```

Determining the DATABASE_MEMORY parameter value

To use database memory efficiently when the Self Tuning Memory Manager (STMM) is set, you must determine the optimal value of DATABASE_MEMORY parameter.

Procedure

1. Log in with the database instance owner credentials.
2. Stop the directory server instance.
3. Verify that the DATABASE_MEMORY parameter is set to AUTOMATIC.
4. On Solaris and Linux systems, stop and start DB2. DB2 adjusts the size of DATABASE_MEMORY when DB2 starts.
5. Run the system under normal loads to determine the optimal size of DATABASE_MEMORY for the workload.
6. To view the value that is set for DATABASE_MEMORY by DB2, run the following command:
   ```
   db2 get db cfg show detail 
   ```
7. To optimize performance, change the `DATABASE_MEMORY` parameter value with the value determined by DB2 instead of AUTOMATIC.

8. On Solaris and Linux systems, stop and start DB2.

9. Run the system under normal load again.

Results

On Solaris and Linux systems, DB2 adjusts the size of `DATABASE_MEMORY` when DB2 starts. On Windows and AIX systems, DB2 adjusts the size of `DATABASE_MEMORY` while the system is under load.

DB2 transaction log size

You must tune the transaction log size for the logs to grow to their maximum allowed size.

IBM Security Directory Server uses transaction log disk space for storing uncommitted DB2 transactions from directory update operations.

You can set the following DB2 parameters to specify the space that is required by DB2 transaction log:

- `LOGFILSIZ`
- `LOGPRIMARY`
- `LOGSECOND`
- `NEWLOGPATH`

To view the DB2 parameters that are associated with the DB2 transaction log and their values, run the following command:

```
db2 get database configuration for ldapdb2 | \
egrep 'LOGFILSIZ|LOGPRIMARY|LOGSECOND|NEWLOGPATH|Path to logfiles'
```

Log file size (4KB) `LOGFILSIZ` = 2000
Number of primary log files `LOGPRIMARY` = 8
Number of secondary log files `LOGSECOND` = 3
Changed path to log files `NEWLOGPATH` =

The transaction log size is limited by the values of DB2 parameters `LOGFILSIZ`, `LOGPRIMARY`, and `LOGSECOND`. The log size is also affected by the disk space in the directory that is specified by the `NEWLOGPATH` DB2 parameter.

If the transaction log size exceeds the limit that is set, the transaction is backed out by using the information in the logs. If the transaction logs exceed the limit because of the lack of disk space, the database becomes corrupted and unusable. If the database becomes corrupted, it is possible to use the DB2 commands to recover the database. The database can also be restored from a backup or reloaded. If the database becomes corrupted, you can use the recovery commands in the `sql11b/db2dump/db2diag.log` file. The file is in the DB2 instance owner home directory.

By default, the DB2 transaction log file size (`LOGFILSIZ`) is defined to 2000 blocks of 4 KB or 8000 KB per log file. The number of primary logs files (`LOGPRIMARY`) is defined to 8 and the number of secondary log files (`LOGSECOND`) is 3. To increase the DB2 transaction log limits for millions of users, it is necessary to increase the size of the transaction logs (`LOGFILSIZ`) and increase the number of secondary files.
LOGSECOND). You must increase the number of secondary files rather than the number of primary files. It is because the secondary files periodically get deleted when not in use.

The transaction log requirements are small for a directory server with a normal workload. It is observed that runtime directory operations increases the transaction log requirements for a short time.

- The `ldapadd` or `ldapmodify` commands use some amount of transaction log space. It is because log space is required when you use a command to add a number of multivalued attributes to a single LDAP entry. For example, when you load many members into a group.
- An ACL placed on a suffix object can result in the propagation of the ACL to every entry under that suffix. The directory server runs ACL propagation as one single committed DB2 transaction.

You can set the transaction log by running the following DB2 commands:

```
db2 update database configuration for LOGFILSIZE using 10000
db2 update database configuration for LOGPRIMARY using 2
db2 terminate
db2 force applications all
db2 connect to ldapdb2
db2 get database configuration for ldapdb2 | \ egrep 'LOGFILSIZ|LOGPRIMARY|LOGSECOND|NEWLOGPATH|Path to log files'
```

In IBM Security Directory Server, version 6.2 and later, you can set the LOGFILSIZ and NEWLOGPATH parameters by using the `idsperftune` tool.

Separate disks for transaction logs

You can store the DB2 table spaces and transaction logs on different disks to improve DB2 performance.

To improve DB2 performance, you can create containers for the LDAPSPACE and USERSPACE1 table spaces on a separate physical disk from the DB2 transaction logs. Separating table spaces and logs require three disks:

- Use two disks for the table spaces.
- Create containers for each table space on each disk.
- Use one disk for the transaction logs.

To move the table spaces, you must run backup and redirected restore commands. To move the transaction log, set the DB2 NEWLOGPATH and LOGFILSIZ parameters.

Directory server and DB2 database

To use IBM Security Directory Server as a repository in your organization for identity and access management, you must configure a DB2 database with the directory server. A directory server stores a representation of the directory in a DB2 database.

To implement a directory representation, directory server uses database tables. You can use commands to list the database tables that are associated with a directory server. It is not necessary to access a directory server with DB2 commands, this information might be useful to database administrators.

The IBM Security Directory Server tables can be grouped into the following categories:

- LDAP entry table
In the examples, the ldapdb2 DB2 database name is used. To view the table that is associated with the database, you must use the database instance owner credentials. For your environment, substitute the database instance owner and database name as per your configuration. You must switch the user context to the DB2 instance owner to run the commands. For example, to log in with the ldapdb2 DB2 instance owner credentials, run the following command:

On AIX, Linux, and Solaris systems

```
su - ldapdb2
```

On Windows systems

```
db2cmd
   set DB2INSTANCE=ldapdb2
```

To connect to the database, run the following command:

```
db2 connect to ldapdb2
```

LDAP entry table

The LDAP entry category consists of a single table, the LDAP_ENTRY table.

The LDAP_ENTRY table contains the LDIF definition of each LDAP entry. One of the columns in the table is the EID (Entry ID) column. All other tables of the database use the EID column to identify the LDAP entry that is referenced from the LDAP_ENTRY table. Directory server uses the LDAP_ENTRY table in the following ways:

- To retrieve the requested attribute values for a `ldapsearch` command.
- To evaluate the one level scope on a `ldapsearch` command.

The one level scope is evaluated by using the EID (Parent EID) column of the LDAP_ENTRY table. To include indexes on the distinguished name (DN), the LDAP_ENTRY table includes a DN_TRUNC column and a full non-searchable DN column.

To describe the LDAP_ENTRY table, run the `db2 describe` command. The `show detail` parameters are optional.

```
db2 describe table ldap_entry show detail
```

To find the EID of a particular DN, run the following command. The dn_trunc value must be in uppercase.

```
db2 "select eid from ldap_entry where dn_trunc = 'CN=USER1,O=SAMPLE'"
```

To find the DN entry name of a particular EID, run the following command:

```
db2 "select dn_trunc from ldap_entry where eid = 100"
```

To find the LDIF definition of a particular DN, run the following command:

```
db2 "select ENTRYDATA from ldap_entry where dn_trunc = 'CN=USER1,O=SAMPLE'"
```

To find the DN entries for the first 10 rows in the LDAP_ENTRY table, run the following command:

```
db2 "select dn_trunc from ldap_entry fetch first 10 rows only"
```
To find the DN entries for the next 10 rows in the LDAP_ENTRY table, run the following command:
```
db2 "select dn_trunc from ldap_entry where eid > 10 fetch first 10 rows only"
```

To find all LDAP suffixes, run the following command:
```
db2 "select dn_trunc from ldap_entry where peid = -1"
```

To find the DN entries of all the immediate child entries (one level search) of the LDAP entry with DN O=SAMPLE, run the following command:
```
db2 "select dn_trunc from ldap_entry where peid in (select eid from ldap_entry where dn_trunc = 'O=SAMPLE')"
```

Subtree tables

The subtree category consists of the LDAP_DESC table and the LDAP_GRP_DESC table. You can evaluate the subtree scope on a `ldapsearch` command with the LDAP_DESC table. This table contains a list of parent and child LDAP entry relationships in two columns:

- A Descendant EID or DEID column
- An Ancestor EID or AEID column

For each LDAP entry, there is a full list of parents for that LDAP entry in the LDAP_DESC table. Parent in this case includes immediate parent and all ancestors. For example, the following command lists all the parents or ancestors of EID 100:
```
db2 "select * from ldap_desc where deid = 100"
```

An example output that the command generates:
```
DEID  AEID
------  ----
100    11
100    17
100    23
100    24
100    100
```

The output indicates that the EID is four levels deep in the directory information tree.

To find all the parent entries of an entry with the EID value 100, run the following command:
```
db2 "select dn_trunc from ldap_entry where eid = 100"
```
```
DN_TRUNC
---------
CN=TESTUSER1,CN=USERS,OU=HRGROUP,OU=MYCITY,O=SAMPLE
```

The parent entries along with the entry that match the filter is generated.
```
CN=TESTUSER1,CN=USERS,OU=HRGROUP,OU=MYCITY,O=SAMPLE
CN=USERS,OU=HRGROUP,OU=MYCITY,O=SAMPLE
OU=HRGROUP,OU=MYCITY,O=SAMPLE
OU=MYCITY,O=SAMPLE
O=SAMPLE
```

You can join DB2 tables in a single command to list all the parents of an LDAP entry with the DN CN=TESTUSER1,CN=USERS,OU=HRGROUP,OU=MYCITY,O=SAMPLE. For example:
```
db2 "select * from ldap_desc where aeid in (select eid from ldap_entry where dn_trunc = 'CN=TESTUSER1,CN=USERS,OU=HRGROUP,OU=MYCITY,O=SAMPLE')"
```
The LDAP_DESC table is also used in subtree searches. To find all the child LDAP entries (both immediate and all descendants) for the CN=USERS, O=SAMPLE LDAP entry, run the following command:

db2 "select * from ldap_desc where aeid in (select eid from ldap_entry where dn_trunc = 'CN=USERS,O=SAMPLE')"

An example output:

<table>
<thead>
<tr>
<th>DEID</th>
<th>AEID</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>2000042</td>
<td>12</td>
</tr>
<tr>
<td>2000043</td>
<td>12</td>
</tr>
<tr>
<td>2000044</td>
<td>12</td>
</tr>
<tr>
<td>2000056</td>
<td>12</td>
</tr>
<tr>
<td>2000057</td>
<td>12</td>
</tr>
<tr>
<td>2000058</td>
<td>12</td>
</tr>
</tbody>
</table>

You can use the LDAP_GRP_DESC table to track nested group relationships.

Attribute tables

The attribute tables consist of one table per attribute that is used in the directory server. The purpose of the attribute tables is to improve the performance of the LDAP searches with the search filters, particularly when the attribute is indexed. The attribute tables are named by the attributes they represent. For example, the DB2 table for the cn attribute is named cn.

To describe the cn table, run the following command:

db2 describe table cn

The example output of the command is as follows:

<table>
<thead>
<tr>
<th>Column name</th>
<th>Data type schema</th>
<th>Data type name</th>
<th>Column Scale</th>
<th>Nulls</th>
</tr>
</thead>
<tbody>
<tr>
<td>EID</td>
<td>SYSIBM</td>
<td>INTEGER</td>
<td>4 0</td>
<td>No</td>
</tr>
<tr>
<td>CN</td>
<td>SYSIBM</td>
<td>VARCHAR</td>
<td>256 0</td>
<td>No</td>
</tr>
<tr>
<td>CN_T</td>
<td>SYSIBM</td>
<td>VARCHAR</td>
<td>240 0</td>
<td>No</td>
</tr>
<tr>
<td>RCN_T</td>
<td>SYSIBM</td>
<td>VARCHAR</td>
<td>240 0</td>
<td>No</td>
</tr>
</tbody>
</table>

4 record(s) selected.

The CN column contains the full name for the attribute. The values in column, Column name, with names that end with T are truncated to 240 character attribute name that is used for searching. The column name beginning with R is the attribute name in reverse. This column is used for searching for attributes that are specified with a trailing wildcard.

ACL tables

The ACL tables consist of the SRC, ACLPROP, OWNPROP, ENTRYOWNER, ACLPERM, and ACLINHERIT tables. The SRC table identifies from which LDAP entry a particular LDAP entry obtains the source for or inherits its ACL and owner information. The SRC table is also the attribute table for the aclsource and entryowner attributes.

To describe the src table, run the following command:

db2 describe table src

The example output of the command is as follows:

<table>
<thead>
<tr>
<th>Column name</th>
<th>Data type schema</th>
<th>Data type name</th>
<th>Column Scale</th>
<th>Nulls</th>
</tr>
</thead>
<tbody>
<tr>
<td>EID</td>
<td>SYSIBM</td>
<td>INTEGER</td>
<td>4 0</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Replication tables
The replication tables consist of the REPLSTATUS, REPLCHGnnnn, REPLERROR, and several other tables. There is one REPLCHGnnnn table for each replication context. Where, nnnn is EID of the base entry of the replication context. The REPLCHGnnnn implements the replication change table.

The REPLSTATUS table is a pointer to the REPLCHGnnnn table that indicates the last replicated operation.

Database connections
You can improve the performance of a directory server by increasing the DB2 connections. The performance improvement also depends on the server load and the nature of connections.

The default number of connections that are created between a directory server and DB2 is 15. The default value suffices for most environment in which a directory server is used. Based on the requirement, you can increase the database connection to unlimited. The upper limit that you can assign is INT_MAX (2147483647). You can modify the ibm-slapdDbConnections attribute to set the database connections. If you assign a value of less than or equal to zero, or greater than INT_MAX, then the default value of 15 is set.

You must determine the number of worker threads in use to assign an appropriate value for database connections. To find the number of worker threads, use the available_workers threads value in the monitor search result. To increase the workers threads or to increase the back-end connections, you must set ibm-slapdDbConnections under the cn=Directory, cn=RDBM Backends, cn=IBM Directory, cn=Schemas, cn=Configuration DN entry. To view the monitor search result, run the idsldapsearch command:

```
idsldapsearch -p port -D adminDN -w adminPwd -s base -b "cn=monitor" objectclass=* \ | grep -i available_workers
```

The performance tuning tool
You can use the idsperftune tool to tune directory caches, DB2 buffer pools, and DB2 parameters to improve the directory server performance.

The idsperftune tool (the performance tuning tool) is available in IBM Security Directory Server, version 6.2 and later. You must run the idsperftune tool against a directory server instance that is configured with DB2 database. If the tool is run against a proxy server instance, the tool generates an appropriate error message and exits.
You must provide inputs to the `idsperftune` tool to tune the directory server. To provide inputs to the `idsperftune` tool, you must update the `perftune_input.conf` property file by using the administrator credentials. If the inputs are not provided, then the default values are considered.

You can find the `perftune_input.conf` file in the following directory:

On AIX and Solaris systems

The default location for the `perftune_input.conf` file is `/opt/IBM/ldap/V6.3.1/etc/`.

On Linux systems

The default location for the `perftune_input.conf` file is `/opt/ibm/ldap/V6.3.1/etc/`.

On Windows systems

The default location for the `perftune_input.conf` file is `sys_drive\Program Files\IBM\LDAP\V6.3.1\etc`.

For information about the performance tuning tool, see the *IBM Security Directory Server Version 6.3.1 Command Reference*.

The `idsperftune` tool works in two modes: basic and advanced.

Basic tuning mode

You can use the performance tuning tool to run basic tuning on a directory server with the existing server statistics.

In the basic tuning mode, the `idsperftune` tool tunes the following server components:

- **LDAP caches**

 The LDAP caches include entry cache, filter cache, group member cache, and group member cache bypass limit.

- **DB2 buffer pools**

 These include `IBMDEFAULTBP` and `LDAPBP`.

The basic tuning mode suggests the optimum tuning values for LDAP caches and DB2 buffer pools. The tool also updates the LDAP cache and DB2 buffer pool parameters with the values that are determined. These recommendations are based on the following inputs:

- **Amount of free system memory (%) to allot to a directory server instance**

 It specifies the total memory that is allocated to an instance. This value is also used as an input to the tool when you tune the size of entry cache, filter cache, and group member cache. If a value is not specified, when `idsperftune` is run the default value of 90% of system memory available is allocated.

- **The number of entries and the average size of an entry that is in a directory server instance**

 The total number of entries that can be stored in a directory is used to estimate the required cache size.

 Another value that is used as input for the tool is the average size of an entry in bytes.
The average size of an entry and the total number of entries are used by the `idsperftune` tool to calculate the total size of the directory. Based on these values, the size that must be allotted to the Entry cache and Filter cache are calculated.

Note: The `idsperftune` tool provides a parameter to calculate the total number of entries and average size of entries that are present in the directory. For example, if you run `idsperftune` with the `-s` parameter, the tool computes the total number of entries and average size of entries and logs the details in the `perftune_input.conf` file. If you do not provide the parameter, then the total number of entries is set to 10000 by default.

Update frequency:
You must specify whether frequent updates or only batch updates to run. If you specify frequent updates are expected, then the filter cache is set to 0. Otherwise, it is set to 1 KB.

Total number of groups to be cached:
You can tune this value by providing the approximate value for the total number of groups whose members must be cached. This value must be the number of groups frequently used. If not specified, the default value of 25 is set.

Average number of members in a group:
You can tune the total number of members within a group to cache. If the value is not specified, the default value of 25000 is set.

Server instance name:
The instance name is retrieved from the `IDS_LDAP_INSTANCE` environment variable. If the environment variable is not set, then the server instance name is set with an available directory server instance name. If more than one instance is available and no instance name is provided by the administrator, then an appropriate error message is generated.

When you run `idsperftune` with the `-u` parameter to update the configuration settings, the DB2 buffer pools `IBM_DEFAULT_BP` and `LDAPBP` are set to AUTOMATIC. The DB2 Self Tuning Memory Manager (STMM) dynamically adjust the sizes of the DB2 buffer pools when the DB2 buffer pools are set to AUTOMATIC. When you run the `idsperftune` tool, the memory size to allocate for LDAP entry cache is calculated. When you run the `idsperftune` tool in basic mode by providing the `-B` and `-u` parameters, the DB2 buffer pools are set to AUTOMATIC.

If the available memory can cache at least 80% of the entries, then 80% or more of total entries is cached in the entry cache. To override the default requirement to cache at least 80% of entries in LDAP entry cache, run `idsperftune` with the `-E` parameter and the target percentage of entries to be cached. For example, to cache a minimum of 50% of entries in the entry cache run the following command:

```
idsperftune -I instance_name -E 50
```

If the allotted memory is not enough to cache 80% of total entries, then the entry cache is set to a minimum value of 1000.

SYS_MEM_AVL

If the `SYS_MEM_AVL` variable in the `perftune_stat.log` file is set to TRUE, then 80% of the directory entries are cached. If the `SYS_MEM_AVL` variable is set to FALSE, a minimum amount of system memory is allotted to LDAP entry cache.
The remaining system memory is allotted to DB2 buffer pools.

Examples

Example 1:
To retrieve the basic tuning recommendations, run the `idsperftune` command with the following parameters:

```
idsperftune -I instance_name -B
```

Example 2:
To update the database with the suggested values during basic tuning, run the `idsperftune` command with the following parameters:

```
idsperftune -I instance_name -B -u
```

or

```
idsperftune -I instance_name -u
```

Example 3:
To update the property file with the total number of entries and average entry size, run the `idsperftune` tool with the following parameters:

```
idsperftune -I instance_name -s
```

Advanced tuning mode

You can use the performance tuning tool to run advanced tuning on a directory server with the values set in the property files.

For the advanced tuning, you must configure the directory server and populate the server with entries. To obtain better values to tune, you must ensure that the directory server is servicing client requests for some time. You can run the `idsperftune` tool against a server on which no operations are run to obtain values for basic or advanced tuning mode. In advanced tuning mode, when you set the DB2 monitor switches to ON it initiates data collection. You can use the data to tune DB2. To set DB2 monitor switches to ON, you must run the `idsperftune` command with the `-m` parameter. If you want tune the server that is loaded with a typical workload, you must run `idsperftune` with the `-A` and `-m` parameters. This command sets the DB2 monitor switches to ON and then waits for some minutes before it collects the statistics. The tuning is based on the workload you ran against the server before you collected the DB2 monitor information. You can also set the DB2 monitor switches to OFF by running the `idsperftune` command with the `-o` parameter. You can run `idsperftune` with the appropriate advanced tuning options to monitor different DB2 parameters. For more information about the `idsperftune` tool, see *IBM Security Directory Server Version 6.3.1 Command Reference*.

You can monitor the following DB2 parameters at server run time:

PCKCACHESZ
The `PCKCACHESZ` parameter is allocated out of the database shared memory. It is used for caching of sections for static and dynamic SQL and XQuery statements on a database.

LOGFILSIZ
The `LOGFILSIZ` parameter defines the size of each primary and secondary log file. The size of these log files limits the number of log records that can be written before they become full.

LOGBUFSZ
The `LOGBUFSZ` parameter specifies the amount of the database heap (defined
by the `dbheap` parameter). You can use the parameter as a buffer for log records before you write these records to disk.

SORTHEAP
- The `SORTHEAP` parameter defines the maximum number of private memory pages to use for private sorts. It also defines the maximum number of shared memory pages to use for shared sorts.

MAXFILOP
- The `MAXFILOP` parameter specifies the maximum number of file handles that can be opened for each database agent.

DBHEAP
- The `DBHEAP` parameter specifies the maximum memory that is used by the database heap.

CHNGPGS_THRESH
- The `CHNGPGS_THRESH` parameter specifies the percentage of changed pages at which the asynchronous page cleaners start.

NEWLOGPATH
- The `NEWLOGPATH` parameter specifies the location where the log files are stored. The path must not be more than 242 bytes in length.

When you run the `idsperftune` tool, it checks whether the self-tuning memory is enabled. When you run `idsperftune` with the `-A` and `-u` parameters, the tool enables the self-tuning memory if it is disabled. Self-tuning memory sets the values for memory configuration parameters automatically and buffer pools size. When the self-tuning memory is enabled, the memory tuner dynamically distributes available memory resources among several memory consumers. The memory consumers include the sort, package cache, lock list areas, and buffer pools.

The `idsperftune` tool checks if DB2 parameters, such as `SELF_TUNING_MEM`, `AUTO_MAINT`, `AUTO_TBL_MAINT`, and `AUTO_RUNSTATS`, are set to ON. When you run `idsperftune` with the `-A` and `-u` parameters, then these parameters are automatically set to ON if the values of the variables are OFF. The `AUTO_TBL_MAINT` parameter is the key parameter for other table maintenance parameters (`AUTO_RUNSTATS`, `AUTO_STATS_PROF`, `AUTO_PROF_UPD`, and `AUTO_REORG`). To enable `AUTO_MAINT`, the `AUTO_TBL_MAINT` parameter must be set to ON.

The `idsperftune` tool also checks for DB2 parameters, such as `LOCKLIST`, `NUM_IOSERVERS`, and `NUM_IOCLEANERS`, are set to AUTOMATIC. When you run `idsperftune` with the `-A` and `-u` parameters, then these variables are set to AUTOMATIC.

Table 1. DB2 parameters with their type and values

<table>
<thead>
<tr>
<th>DB2 parameters</th>
<th>Type</th>
<th>Value in the <code>perftune_stat.log</code> file</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>NUM_IOCLEANERS</code></td>
<td>AUTOMATIC</td>
<td>AUTOMATIC / Numeric value</td>
</tr>
<tr>
<td><code>NUM_IOSERVERS</code></td>
<td>AUTOMATIC</td>
<td>AUTOMATIC / Numeric value</td>
</tr>
<tr>
<td><code>LOCKLIST</code></td>
<td>AUTOMATIC</td>
<td>AUTOMATIC / Numeric value</td>
</tr>
<tr>
<td><code>SELF_TUNING_MEM</code></td>
<td>AUTOMATIC</td>
<td>ON / OFF</td>
</tr>
<tr>
<td><code>AUTO_MAINT</code></td>
<td>AUTOMATIC</td>
<td>ON / OFF</td>
</tr>
<tr>
<td><code>AUTO_RUNSTATS</code></td>
<td>AUTOMATIC</td>
<td>ON / OFF</td>
</tr>
</tbody>
</table>
Table 1. DB2 parameters with their type and values (continued)

<table>
<thead>
<tr>
<th>DB2 parameters</th>
<th>Type</th>
<th>Value in the perftune_stat.log file</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO_TBL_MAINT</td>
<td>AUTOMATIC</td>
<td>ON / OFF</td>
</tr>
<tr>
<td>IBMDEFAULTBP</td>
<td>AUTOMATIC</td>
<td>AUTOMATIC</td>
</tr>
<tr>
<td>LDAPBP</td>
<td>AUTOMATIC</td>
<td>AUTOMATIC</td>
</tr>
</tbody>
</table>

To monitor DB2 parameters SORTHEAP, MAXFILOP, DBHEAP, CHNGPGS_THRESH, NUM_IOSERVERS, and NUM_IOCLEANERS, you must enable monitor switches BUFFERPOOL and SORTHEAP. To enable the monitor switches, run the idsperftune tool with the -m parameter. DB2 collects more run time data when you set the monitor switches. However, enabling these monitor switches might negatively affect the performance of a directory server. If you do not set monitor switches BUFFERPOOL and SORTHEAP, then the status of these parameters is set to "Not Collected" in the perftune_stat.log file. If you enable monitor switches, then the suggested values are updated for the parameters in the log file.

When the idsperftune tool updates the directory server and DB2 configuration parameters, it stores the previous values in the perftune_stat.log file. The initial values that existed in the file are recorded under the INITIAL TUNING PARAMETER VALUE section with the prefix I_. For example, I_MAXFILOP. When the tool updates any DB2 configuration settings, the previous values are stored under the OLD DB2 PARAMETER VALUE section with the prefix O_. For example, O_LOGFILSIZ.

The idsperftune tool determines the values for DB2 parameters and lists in the following format:

```<DB2 parameters>=<Current Value>:<Recommendation>```

The parameter might be updated with one of the following values:

```<Not Collected>|<OK>|<Increase>|<Decrease>```

For example, the idsperftune tool suggests increasing the value that is set in the PCKCACHESZ parameter.

```
PCKCACHESZ=1533:Increase
```

With this input, you can find the current value and the action you must take.

The description of the DB2 parameters status is listed.

- **Not Collected**
 Specifies that the value of DB2 parameter is not monitored.

- **OK**
 Specifies that the value currently set for the DB2 parameter is optimal.

- **Increase**
 Specifies that the value of DB2 parameter must be increased to achieve optimal performance.

- **Decrease**
 Specifies that the value of DB2 parameter must be decreased to achieve optimal performance.
Examples

Example 1:
To retrieve advanced tuning values without setting the monitor switches to ON, run the `idsperftune` command with the following parameters:
```
idsperftune -I instance_name -A
```

Example 2:
To set monitor switches to ON for DB2 parameters, run the `idsperftune` command with the following parameters:
```
idsperftune -I instance_name -m
```

Example 3:
To set monitor switches to OFF for DB2 parameters, run the `idsperftune` command with the following parameters:
```
idsperftune -I instance_name -o
```

Example 4:
To update the database with the suggested DB2 parameter values without setting the monitor switches to ON, run the `idsperftune` command:
```
idsperftune -I instance_name -A -u
```

Example 5:
To obtain advanced tuning recommendations with the monitor switches set to ON, run the `idsperftune` command:
```
idsperftune -I instance_name -A -m
```

After the `idsperftune` command completes the operation, the monitor switches are set to OFF.

Example 6:
To update the database with the suggested DB2 parameter values with the monitor switches set to ON, run the `idsperftune` command:
```
idsperftune -I instance_name -A -u -m
```

After the `idsperftune` command completes the operation, the monitor switches are set to OFF.

The performance tuning tool input file

To tune a directory server with the `idsperftune` command, you must update the `perftune_input.conf` property file with the configurable values.

The `perftune_input.conf` property file contains a list of inputs for the `idsperftune` command in the form attribute-value pairs. To update the `perftune_input.conf` file, you must log in with directory server instance owner credentials. If you do not want to specify values for the attributes, then you must leave the values as None.

You must update the attribute values as per your requirements, and then run the tool by providing the property file as an input. You must ensure that the attribute names are not modified in the property file. If the attribute names are modified, the `idsperftune` tool generates an appropriate error message and exits. On AIX, Linux, and Solaris systems, the `perftune_input.conf` file is in `instance-home/idsslapd-inst_name/etc`. On Windows systems, the `perftune_input.conf` file is in `instance-location\idsslapd-inst_name\etc`. The format of an example `perftune_input.conf` file is as follows:
The performance tuning tool statistics file

You can use the perftune_stat.log property file to store the performance values that are suggested by the idsperftune command. Based on the values in the perftune_stat.log file, you must update the values tune a directory server instance.

The information that is gathered during the basic tuning and advanced tuning phases are logged in the perftune_stat.log property file. The log file provides what action to take on a DB2 parameter value to get better performance from the directory server. On AIX, Linux, and Solaris systems, the perftune_stat.log file is in instance-home/idsslapd-inst_name/logs. On Windows system, the perftune_stat.log file is in instance-location\idsslapd-inst_name\logs.
A sample perfstats.log file is generated from a directory server instance on a
Linux system. The directory server is loaded with entries from the
/opt/ibm/ldap/V6.3.1/examples/sample.ldif file.

The format of a sample perfstats.log file is as follows:

```
#------------------------------------------------------
# Perftune Basic tuning parameters
#------------------------------------------------------
# Directory Cache
#------------------------------------------------------
TDS_ENTRY_CACHE=1000
TDS_FILTER_CACHE=0
TDS_GROUP_CACHE=25
TDS_GROUP_MEMBER=25000
#-----------------------------------------------------
# DB2 BUFFERPOOL (Number of pages)
#-----------------------------------------------------
IBMDEFAULTBP=AUTOMATIC
LDAPBP=AUTOMATIC
#-----------------------------------------------------------------
# System memory allotted to Directory Server Instance (Kilo Bytes)
#------------------------------------------------------
SYSTEM_MEMORY=102417.12
#------------------------------------------------------
# Will be set to True if enough system memory is available to
# the directory instance to make directory caching effective
#------------------------------------------------------
SYS_MEM_AVL=FALSE
#------------------------------------------------------
# Perftune Advance tuning parameters
#------------------------------------------------------
# NEWLOGPATH allows you to specify a string of up to 242 bytes to
# change the location where the log files are stored.
NEWLOGPATH=None
#------------------------------------------------------------------
# DB2 PARAMETER STATUS
# <DB2 parameters>=<Current Value>:<Recommendation>
# Recommendation can be <Not Collected>/<OK>/<Increase>/<Decrease>
# LOGFILSIZ defines the size of each primary and secondary log file.
# The size of these log files limits the number of log records that can
# be written to them before they become full and a new log file is required.
LOGFILSIZ=2000:OK
# PCKCACHESZ is allocated out of the database shared memory, and is used
# for caching of sections for static and dynamic SQL and XQuery statements
# on a database.
PCKCACHESZ=2299:Increase
# LOGBUFFSZ allows you to specify the amount of the database heap
# (defined by the dbheap parameter) to use as a buffer for log records
# before writing these records to disk.
LOGBUFFSZ=98:OK
# MAXFILOP specifies the maximum number of file handles that can be open
# for each database agent.
MAXFILOP=Not Collected
# CHNGPGS_THRESH specifies the level (percentage) of changed pages at
# which the asynchronous page cleaners
# will be started, if they are not currently active.
CHNGPGS_THRESH=Not Collected
# SOR THEAP defines the maximum number of private memory pages to be used for
# private sorts, or the maximum number of shared memory pages to be used for
# shared sorts.
SOR THEAP=Not Collected
#-----------------------------------------------------------
# DB2 parameters whose value will be automatically set by
# DB2 self tuning memory manager
```
DB2 parameters = Current Value / AUTOMATIC
Indicates the amount of storage that is allocated to the lock list.
There is one lock list per database and it contains the locks held by all
applications concurrently connected to the database.
LOCKLIST=AUTOMATIC
Number of I/O servers configuration parameter
NUM_IOSERVER=AUTOMATIC
Number of asynchronous page cleaners configuration parameter
NUM_IOCLEANER=AUTOMATIC
DB2 AUTOMATIC PARAMETERS
<DB2 parameters> = <ON> / <OFF>
SELF_TUNING_MEM determines whether the memory tuner will dynamically distribute
available memory resources as required between memory consumers that
are enabled for self tuning.
SELF_TUNING_MEM=ON
AUTO_MAINT Automatic maintenance configuration parameter
AUTO_MAINT=ON
This parameter is the parent of all table maintenance parameters
(auto_runstats, auto_stats_prof, auto_prof_upd, and auto_reorg).
AUTO_TBL_MAINT=ON
AUTO_RUNSTATS Automatic table maintenance configuration parameter
AUTO_RUNSTATS=ON
OLD TDS CACHE PARAMETER (Prior to last Update Operation)
OLD DB2 PARAMETER VALUE (Prior to last Update Operation)
O_TDS_ENTRY_CACHE=25000
O_TDS_FILTER_CACHE=25000
O_TDS_GROUP_CACHE=25
O_TDS_GROUP_MEMBER=25000
O_IBMDEFAULTBP=AUTOMATIC
O_LDAPBP=AUTOMATIC
O_PCKCACHESZ=2299
O_LOGBUFSZ=98
O_MAXFILOP=64
O_CHNGPGS_THRESH=80
O_SORTHEAP=355
O_DBHEAP=2333
O_NEWLOGPATH=None
O_LOGFILSIZ=2000
INITIAL TUNING PARAMETER VALUE (Prior to First Update Operation)
I_TDS_ENTRY_CACHE=25000
I_TDS_FILTER_CACHE=25000
I_TDS_GROUP_CACHE=25
I_TDS_GROUP_MEMBER=25000
I_IBMDEFAULTBP=AUTOMATIC
I_LDAPBP=AUTOMATIC
I_PCKCACHESZ=2299
I_LOGBUFSZ=98
I_MAXFILOP=64
I_CHNGPGS_THRESH=80
I_SORTHEAP=355
I_DBHEAP=2333
I_NEWLOGPATH=None
I_LOGFILSIZ=2000
The database maintenance tool

You can use the *idsdbmaint* tool to run database maintenance activities, such as DB2 index reorganization and DB2 row compression.

You must stop the directory server instance before you run the *idsdbmaint* tool. When you stop the server and run the *idsdbmaint* tool, it ensures that the database remains in a consistent state after all the database maintenance activities.

Table spaces

A table space is a set of volumes on disks that hold the data sets in which tables are stored. A table space can have one or more tables.

Table space 0: SYSCATSPACE

The SYSCATSPACE table space stores a description of the database and its structure and contents. The disk requirements for this table space do not change with the size of the directory server. The disk space requirements are covered by the default directory server disk requirements.

Table space 1: TEMPSPACE1

The TEMPSPACE1 table space holds temporary data for sorting and collating DB2 results. The disk requirements for this table space grow at run time if a complex search is run against the directory server. The disk space requirement for this table space grows with the usage utilities, such as the *bulkload* tool.

When the *bulkload* utility is run, the disk requirement for the table space is approximately 2 GB. The *bulkload* utility uses the maximum space when millions of entries are loaded into the directory server.

Table space 2: USERSPACE1

USERSPACE1 holds the portion of the database that contains the attribute tables and attribute table indexes of the directory server. These tables are used for optimizing searches on specific attributes.

Table space 3: LDAPSPACE

LDAPSPACE contains the portion of the database that contains the LDAP entry table and LDAP entry table indexes of the directory server. The LDAP entry table contains a few searchable attributes, such as distinguished name (DN), and a full, non-searchable definition of each LDAP entry.

The LDAP entry table returns the attributes for an LDAP search operation.

In IBM Security Directory Server, version 6.2 and later, Database Managed Space (DMS) is the default table space type and the file system cache is disabled. In IBM Security Directory Server, version 6.1 and earlier, the default table space type is system-managed space (SMS) and the file system cache is enabled. In the SMS type table space, data are cached in the DB2 buffer pools and in the file system cache.

In IBM Security Directory Server, version 6.2 and later, you can select the table space type to use for the directory server. The table space type can be SMS or DMS. When DMS table space is set for a directory server, it supports the use of raw devices and disables file system caching. Along with a file, a raw device can also be added to the containers in DB2, version 9.1 and later. DMS provides an alternative to adding multiple physical disks to the containers for LDAP table...
You can use the `idsdbmaint` tool to convert an SMS table space to a DMS table space; and a DMS table space to an SMS table space. The `idsdbmaint` command supports the table space conversion. You cannot use Configuration Tool (`idsxcfg`) for table space conversion, as the tool do not support table space conversion. The maintenance of the LDAPSPACE and USERSPACE1 table spaces are supported by the `idsdbmaint` tool.

DB2 index reorganization

You can run DB2 index reorganization on a directory server to eliminate fragmented data in the database table and to restructure the index data. You must run the DB2 index reorganization operation on the directory server instance with the instance owner credentials.

When you run the `idsdbmaint` command to initiate DB2 index reorganization, the following operations are run:

- Queries DB2 `sysibm.sysindexes` on the tables of the directory server instance, and then fetches all the tables for which indexes are defined.
- Runs index reorganization on all the indexes.
- Updates the table statistics after index reorganization is run on the table.

To optimize the database, you can run the `idsdbmaint` command with the index reorganization parameter. For example:

```
idsdbmaint -I instance_name -i
```

DB2 row compression

You can use DB2 row compression to save on storage requirement. You must run the DB2 row compression operation against a directory server instance with the instance owner credentials.

DB2 row compression uses a static dictionary-based compression algorithm to compress data by row. DB2 row compression can replace the repeating patterns that span multiple column values within a row with shorter symbol strings. The row compression on a table is applied by reconstructing the compression dictionary and compressing the information to eliminate fragmented data. Data compression reduces space that is required for the directory server, reduces I/O, and improves performance. When you run the `idsdbmaint` command to compress rows, the following operations are run:

- Queries DB2 `syscat.tables` and fetches all the tables of the directory server instance.
- Inspects the table and fetches the row compression estimates for each table.
- Runs the following operations, if the compression estimate is more than 30 percent:
 - Alters the table to enable ROW COMPRESSION.
 - Runs the DB2 `reorg` command on the table and builds a new compression dictionary.
 - Runs the DB2 `runstats` command on the table to update all the statistics on the table.
- Creates a compression dictionary.
To optimize the database, you can run the `idsdbmaint` command with the row compression parameter. For example:

```
idsdbmaint -I instance_name -r
```

Table space conversion

You can use the `idsdbmaint` command to convert the table space type that is associated with a directory server database.

You must understand the advantages and disadvantages of System Managed Space (SMS) and Database Managed Space (DMS), before you choose to convert the table space type of a database. For more information, see the Comparison of SMS, DMS and automatic storage table spaces section in the IBM DB2 documentation at http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.doc/welcome.html.

The conversion can be from System Managed Space (SMS) to Database Managed Space (DMS) or from DMS to SMS. When you convert the table space type with the `idsdbmaint` command, the type of the LDAPSPACE and USERSPACE1 table spaces are converted. You must provide the `-t is_type` parameter to the command to convert the table space type from SMS to DMS or from DMS to SMS. The valid values for the table space type are SMS and DMS. The `idsdbmaint` command calculates the database size and determines the disk space that is required to manage the user data. If the required disk space is not available, then the tool generates an appropriate error message and exits.

When you specify a container for the LDAPSPACE or USERSPACE1 table space with the -1 or -u parameter of the `idsdbmaint` command, you must meet the following requirements:

- The directory that you provide for the container must exist.
- The DB2 instance owner and the primary group of the instance owner must contain read, write, and execute permission on the directory that is assigned as the container.

The `idsdbmaint` command takes the following actions when it converts the table space type from SMS to DMS:

- Exports all the data from the LDAPSPACE and USERSPACE1 table spaces along with the table definitions.
- Drops the table space of type SMS.
- Creates the table space of type DMS.
- Uses a FILE container for a REGULAR table space that can run auto-resize.
- Reconstructs all the tables within the table space and loads all the data into the database.

The `idsdbmaint` command takes the following actions when it converts the table space type from DMS to SMS:

- Exports all the data from the LDAPSPACE and USERSPACE1 table spaces along with the table definitions.
- Drops the table space of type DMS.
- Creates the table space of type SMS.
- Uses a PATH (directory) container for a REGULAR table space that can run auto-resize.
Reconstructs all the tables within the table space and loads all the data into the database.

Examples

Note: You must assign the read and write access on the directory path that is specified with the `-k` parameter for the DB2 instance owner.

Example 1:
To convert the table space type from SMS to DMS and to export data to a directory, run the following command:
```
idsdbmaint -I instance_name -t DMS -k \instance_location/instance_name/mydata
```

Example 2:
Run the `idsdbmaint` command with the parameters to achieve the following objectives:
- To convert table space type from SMS to DMS.
- To specify a file container for the LDAPSPACE table space.
- To export data to a directory.
```
idsdbmaint -I instance_name -t DMS \-l /disk/32K_ldapspace_container/ldapspace -k /disk/mydata
```

Example 3:
Run the `idsdbmaint` command with the parameters to achieve the following objectives:
- To convert table space type from SMS to DMS.
- To specify a file container for the USERSPACE1 table space.
- To export data to a directory.
```
idsdbmaint -I instance_name -t DMS \-u /disk/container/userspace1 -k /disk/mydata
```

Example 4:
Run the `idsdbmaint` command with the parameters to achieve the following objectives:
- To convert table space type from SMS to DMS.
- To specify file containers for the LDAPSPACE and USERSPACE1 table spaces.
- To export data to a directory.
```
idsdbmaint -I instance_name -t DMS \-l /disk/32K_ldapspace_container/ldapspace \-u /disk/container/userspace1 -k /disk/mydata
```

Example 5:
Run the `idsdbmaint` command with the parameters to achieve the following objectives:
- To convert table space type from DMS to SMS.
- To export data to a directory.
```
idsdbmaint -I instance_name -t SMS \-k instance_location/instance_name/mydata
```

Example 6:
Run the `idsdbmaint` command with the parameters to achieve the following objectives:
- To convert table space type from DMS to SMS.
- To specify a path container for the LDAPSPACE table space.
- To export data to a directory.
idsdbmaint –I instance_name -t SMS \
-1 /disk/32K_ldapspace_container/ -k /disk/mydata

Example 7:
Run the idsdbmaint command with the parameters to achieve the following objectives:
- To convert table space type from DMS to SMS.
- To specify a path container for the USERSPACE1 table space.
- To export data to a directory.

idsdbmaint –I instance_name -t SMS \
-u /disk/userspace1_container/ -k /disk/mydata

Example 8:
Run the idsdbmaint command with the parameters to achieve the following objectives:
- To convert table space type from DMS to SMS.
- To specify path containers for the LDAPSPACE and USERSPACE1 table spaces.
- To export data to a directory.

idsdbmaint –I instance_name -t SMS \
-1 /disk/32K_ldapspace_container/ \
-u /disk/userspace1_container/ -k /disk/mydata

Optimization and organization of database

You can optimize and organize the DB2 database with the DB2 commands to reduce data access time and retrieval time.

DB2 uses a sophisticated set of algorithms to optimize the access to data stored in a database. These algorithms depend upon many factors, including the organization of the data in the database and the distribution of that data in each table. The database manager maintains a set of statistics to represent the distributed data.

A directory server creates a number of indexes for tables in the database. These indexes minimize the time that is required to access data and locate a particular row in a table.

In a read-only environment, the distribution of the data does not change much. With updates and additions to the database, it is not uncommon for the distribution of the data to change significantly. Similarly, it is possible for data in tables to become ordered in an inefficient manner.

To remedy these issues, DB2 provides tools to optimize the data access by updating the statistics. DB2 also provides tools to reorganize the data within the tables of the database.

Optimization

You must optimize the database and update the table statistics to improve query performance and to reduce data retrieval time.

You must optimize the database periodically or after database updates. For example, after you import entries into a directory server instance. You can optimize the database by using the idsrunstats command or from the Optimize database
panel of IBM Security Directory Server Configuration Tool. The tool internally calls the `idsrunstats` command to update database statistics that is used by the query optimizer for all the LDAP tables.

Note: You can also use the `reorgchk` command to update statistics. If you are planning to run `reorgchk`, optimizing the database is unnecessary. For more information about the `reorgchk` command, see “Database organization (reorgchk and reorg).”

You can run the `idsrunstats` command to update the DB2 system catalog statistics. The statistics include the physical characteristics of tables and associated indexes in the database of a directory server instance. The physical characteristics of a table include number of records, number of pages, and average record length. To collect database statistics, the following parameters, `DB2RUNSTATS_ALL_COLUMNS|DB2RUNSTATS_ALL_INDEXES`, are passed to the dbRunstats API. You can run the `idsrunstats` command against a directory server instance even when the instance is up and running.

To optimize the database, run the following command:

```
idsrunstats -I instance_name
```

The `instance_name` variable is the directory server instance name and is an optional parameter. If your computer contains more that one instance, you must specify the instance name.

After you complete the optimization, you might require to restart the directory server if you do not see performance benefits after you flush the package cache.

To know more about the usage of the `idsrunstats` command, see IBM Security Directory Server Version 6.3.1 Command Reference.

Viewing DB2 system statistics settings
You can view the reports of all the system statistic settings in a database. You can use the database statistics to compare with any other database that has better performance and to updates values based on your database usage.

Procedure
1. Log in with the database instance owner credentials.
2. Run the `db2look` command with the `-m` parameter to produce a report that contains the DB2 commands to reproduce the current system statistic settings.

```
db2look -m -d ldapdb2 -u ldapdb2 -o output_file
```

Database organization (reorgchk and reorg)
You can tune the organization of the data in a DB2 database to improve database performance and to save disk space.

To tune the organization of the data in DB2 database, you can use the `reorgchk` and `reorg` commands. You can reorganize table spaces to improve access performance and to reorganize indexes so that they are more efficiently clustered.

The `reorgchk` command does the following operations:
- Updates the DB2 optimizer with database statistics to improve database performance.
- Reports statistics on the organization of the database tables.
Based on the statistics that are generated by the `reorgchk` command, you must run the `reorg` command to update database table organization. The `reorgchk` and `reorg` commands can improve both search and update operation performance.

The DB2 `reorg` command reorganizes the table and its indexes by rebuilding the index data into unfragmented and contiguous area on the disk. This operating requires locking the data for movement. If there are applications that access this data, then the application performance might be degraded. You must not run the DB2 `reorg` command while the directory server and DB2 database is in production phase. You must run the `reorg` command against the directory server and the DB2 database during the maintenance phase.

After you complete the database organization operation, you might require to restart the directory server if you do not observe performance benefits. If the SQL statements are cached by DB2 and directory server instance, you might require to clear the package cache and restart the server.

You must run the `reorgchk` command periodically. For example, you must run `reorgchk` after you update a directory server instance with entries. The performance of the database must be monitored and you must run `reorgchk` if server performance starts to degrade.

In a replication environment, you must run the `reorgchk` command on all the replica servers because each replica uses a separate database. If database is optimized on a master server, the replication process does not propagate database optimizations to replica servers.

Guidelines for reorganization

You must consider the following guidelines before you run DB2 database reorganization:

- You can skip reorganization of a table or index, if you meet the following conditions:
 - A reorganization attempt is already done.
 - The number on the column that contains an asterisk is close to the suggested value that is described in the header of each section.
- From the `LDAP_ENTRY_TRUNC` index and the `SYSIBM.SQL` index in the `LDAPDB2.LDAP_ENTRY` table, preference must be given to the `SYSIBM.SQL` index.
- When an attribute length is defined with less than or equal to 240 bytes, the attribute table contains three columns: EID, attribute, and reversed attribute. In this case, the forward index is created by using the EID and attribute columns as index keys. For example, the SN attribute is defined with the maximum length, which is less than or equal to 240 bytes. The attribute table contains the EID, SN, and RSN columns and the following indexes are created for the attribute table:
 - `LDAPDB2.RSN` — A reverse index whose defined index keys are the EID and RSN columns.
 - `LDAPDB2.SN` — A forward index whose defined index keys are the EID and SN columns.
 - `LDAPDB2.SNI` — An update index whose defined index key is the EID column.
- Reorganize all the attribute tables that you want to use in searches. In most cases, you might want to reorganize to the forward index. For searches that begin with * (wildcard), reorganize to the reverse index.
- When an attribute length is defined with greater than 240 bytes, the attribute table contains four columns: EID, attribute, truncated attribute, and reversed truncated attribute. In this case, the forward index is created by using the EID...
and truncated attribute columns as index keys. For example, the CN attribute is defined with the maximum length, which is greater than 240 bytes. The attribute table contains the EID, CN, CN_T, and RCN_T columns and the following indexes are created for the attribute table:

```
LDAPDB2.RCN <------ A reverse index whose defined index keys are the EID and RCN_T columns.
LDAPDB2.CN<------ A forward index whose defined index keys are the EID and CN_T columns.
LDAPDB2.CNI <------ An update index whose defined index key is the EID column.
```

An example output with reverse, forward, and update indexes:

```
Table: LDAPDB2.SECUUID
LDAPDB2 RSECUUID <— This is a reverse index
LDAPDB2 SECUUIDI <— This is an update index
LDAPDB2 SECUUID <— This is a forward index
```

Running reorgchk on a DB2 database

You can retrieve database statistics and use the values to determine whether tables, indexes, or both must be reorganized.

About this task

The DB2 database can become suboptimal and the server performance can degrade, when many updates are made to database. You must run the DB2 **reorgchk** to update the database statistics.

Procedure

1. Log in with the directory server instance owner credentials.
2. Connect to the database.

   ```
   db2 connect to ldapdb2
   ```

 where, *ldapdb2* is the database name.
3. Run the **reorgchk** command.

   ```
   db2 reorgchk update statistics on table all
   ```
4. To generate an output file with the database statistics, run the **reorgchk** command and redirect the output to a file. If you plan to run the **reorg** command, you must save the database statistics that are generated from the **reorgchk** command.

   ```
   db2 reorgchk update statistics on table all > reorgchk.out
   ```

A sample database statistics from the **reorgchk** command.

```
db2 => reorgchk current statistics on table all

Table statistics:
F1: 100 * OVERFLOW / CARD < 5
F2: 100 * TSIZE / ((FPAGES-1) * (TABLEPAGESIZE-76)) > 70
F3: 100 * NPAGES / FPAGES > 80

CREATOR   NAME   CARD   OV   NP   FP   TSIZE   F1   F2   F3   REORG
-----------------------------------------------
LDAPDB2   ACLPERM   2   0   1   1   138   0   -   100   ---
LDAPDB2   ACLPROP   2   0   1   1   40   0   -   100   ---
LDAPDB2   ALIASEDOBJECT   -   -   -   -   -   -   -   -   ---
```
LDAPDB2 AUDIT 1 0 1 1 18 0 - 100 ---
LDAPDB2 AUDITADD 1 0 1 1 18 0 - 100 ---
LDAPDB2 AUDITBIND 1 0 1 1 18 0 - 100 ---
LDAPDB2 AUDITDELETE 1 0 1 1 18 0 - 100 ---
LDAPDB2 AUDITEXTOPEVENT 1 0 1 1 18 0 - 100 ---
LDAPDB2 AUDITFAILEDOPONLY 1 0 1 1 18 0 - 100 ---
LDAPDB2 AUDITLOG 1 0 1 1 77 0 - 100 ---

...SYSIBM SYSINDEXCOLUSE 480 0 6 6 22560 0 100 100 ---
SYSIBM SYSINDEXES 216 114 14 28 162216 52 100 50 --*

...SYSIBM SYSPLAN 79 0 6 6 41554 0 100 100 ---
SYSIBM SYSPLANAUTH 157 0 3 3 9106 0 100 100 ---
SYSIBM SYSPLANDEP 35 0 1 2 5985 0 100 50 --*

Index statistics:
F4: CLUSTERRAT10 or normalized CLUSTERFACTOR > 80
F5: 100 * (KEYS * (ISIZE+8) + (CARD-KEYS) + 4) / (NLEAF * INDEXPAGESIZE) > 50
F6: (100-PCTFREE) * (INDEXPAGESIZE-96) / (ISIZE+12) ** (NLEVELS-2) * (INDEXPAGESIZE-96) / (KEYS * (ISIZE+8) + (CARD-KEYS) + 4) < 100

CREATOR NAME CARD LEAF LVLS ISIZE KEYS F4 F5 F6 REORG

Table: LDAPDB2.ACLPERM
LDAPDB2 ACLPERM_INDEX 2 1 1 6 2 100 - - ---
Table: LDAPDB2.ACLPROP
LDAPDB2 ACLPROP_INDEX 2 1 1 6 2 100 - - ---
Table: LDAPDB2.ALIASEDOBJECT
LDAPDB2 ALIASEDOBJECT - - - - - - - - ---
LDAPDB2 ALIASEDOBJECTI - - - - - - - - ---
LDAPDB2 RALIASEDOBJECT - - - - - - - - ---
Table: LDAPDB2.AUDIT
LDAPDB2 AUDITI 1 1 1 4 1 100 - - ---
Table: LDAPDB2.AUDITADD
LDAPDB2 AUDITADDI 1 1 1 4 1 100 - - ---
Table: LDAPDB2.AUDITBIND
LDAPDB2 AUDITBINDI 1 1 1 4 1 100 - - ---
Table: LDAPDB2.AUDITDELETE
LDAPDB2 AUDITDELETEI 1 1 1 4 1 100 - - ---
Table: LDAPDB2.AUDITEXTOPEVENT

...Table: LDAPDB2.RSN
LDAPDB2 RSN 25012 148 2 14 25012 99 90 0 ---
LDAPDB2 SN 25012 200 3 12 25012 99 61 119 --*
LDAPDB2 SNI 25012 84 2 4 25012 99 87 1 ---

Table: LDAPDB2.TITLE

Chapter 3. Tuning DB2 and LDAP caches 73
Running reorg on a DB2 database

You can reorganize indexes on a table by rebuilding the index data into unfragmented, physically contiguous pages. Reorganizing indexes and tables reduce the time that is required to resolve a query and retrieve data that match the query filter.

Before you begin

You must retrieve organizational information about the database with the reorgchk command. For more information about retrieving DB2 database statistics, see “Running reorgchk on a DB2 database” on page 72.

About this task

You must use the database statistics to determine whether the tables and indexes require reorganizing. The time that is required to reorganize a table depends on the DB2 database size. Reorganizing a table takes more time than updating statistics. Therefore, it is best to update statistics first and confirm whether it improves database performance. Usually, data in LDAP is accessed by index, reorganizing tables is not as beneficial as reorganizing indexes.

Procedure

1. Log in with the directory server instance owner credentials.
2. Connect to the database.

   ```
   db2 connect to ldapdb2
   ```

 where, `ldapdb2` is the database name.
3. To reorganize the indexes and table in the database, run the appropriate command that is based on your requirement:
To reorganize the tables with an asterisk in the last column, run the following command:

```sql
db2 reorg table table_name
```

where, `table_name` is the name of the table to be reorganized. For example, `LDAPDB2.LDAP_ENTRY`.

To reorganize a table to match the order of a particular index, run the following command:

```sql
db2 reorg table table_name index index_name
```

where, `index_name` is the name of the index. For example, `LDAPDB2.SNI`.

To reorganize the indexes with an asterisk in the last column, run the following command:

```sql
db2 reorg index index_name
```

DB2 selectivity

You can set the environment variables to influence the DB2 optimizer to make better choice about how to access data in the LDAP tables.

You can use the following environment variables to control the DB2 optimizer:

- `LDAP_MAXCARD = YES | ONCE | NO`

 You can use the `LDAP_MAXCARD` environment variable to set the cardinality of the `LDAP_DESC` table. When you set this variable, a cardinality of 9E18 is assigned to the `LDAP_DESC` table. The cardinality value influences the data access sequence of the DB2 optimizer. DB2 resolves all attribute filters before it considers the `LDAP_DESC` table for query evaluation.

 If the variable is set to `YES`, the cardinality statistic for the `LDAP_DESC` table is tuned to prevent expensive scans of large subtree data. The cardinality statistic is set at the server startup and periodically thereafter.

 If the variable is set to `ONCE`, the cardinality is set during the server startup and not later when the server is running.

 If the variable is set to `NO` or not set, the cardinality statistic is not set during the server startup.

- `IBMSLAPD_USE_SELECTIVITY = NO | YES`

 If the `IBMSLAPD_USE_SELECTIVITY` variable is not set to any value or is set to `NO`, selectivity is not used to influence DB2 access sequence.

 If `IBMSLAPD_USE_SELECTIVITY` is set to `YES` and `LDAP_MAXCARD` is not set to `YES`, selectivity is used to influence the data access sequence of DB2 during the subtree search on a large subtree.

 Note: If `LDAP_MAXCARD` and `IBMSLAPD_USE_SELECTIVITY` are set to `YES`, the directory server generates a message and does not use selectivity.

You can improve the performance of subtree searches on search bases that are high in a directory tree by using SELECTIVITY in Structured Query Language (SQL). The inclusion of SELECTIVITY in SQL enables the DB2 optimizer in the formation of data access sequence to resolve the search requests. The data access sequence identifies which tables to access first during searches. Identifying the entries that are high in the tree (having many subentries) is based on DB2 statistics. If a subtree search is done by using one of these entries as the search base, the SELECTIVITY clause is added to the SQL query. When the SELECTIVITY clause is
added, DB2 uses the search filter to narrow down the search results. DB2 narrows down the search results before it reads from the table that identifies the entries that are descendants of a base in a search.

To use SELECTIVITY, **DB2_SELECTIVITY** must be set to **YES** in the DB2 registry for the database instance. You must set **DB2_SELECTIVITY** in addition to the environment variables. You can set **DB2_SELECTIVITY** when you create a database instance.

Examples

Example 1:
To check the status of **DB2_SELECTIVITY** for a directory server instance, myinst1, run the following commands:
```
su – myinst1
db2 connect to myinst1
db2set –all | grep –i selectivity
```

Example 2:
To set **DB2_SELECTIVITY** for the directory server instance, myinst1, run the following commands:
```
su – myinst1
db2 connect to myinst1
db2set DB2_SELECTIVITY=YES
```

Example 3:
To set **DB2_SELECTIVITY** in the configuration file of the directory server instance, myinst1, run the following commands:
```
idsldapmodify -h host -p port -D adminDN -w adminPW
dn: cn=Front End, cn=configuration
changetype: modify
add: ibm-slapdSetEnv
ibm-slapdSetEnv: IBMSLAPD_USE_SELECTIVITY=YES
```

DB2 query optimization for subtree searches

If a directory server hierarchy is deep nested, the subtree search might take considerable time to return the results. To retrieve subtree search results faster, you must optimize the SQL queries that access the **LDAP_DESC** table and other tables.

To optimize SQL queries for improved search performance, the DB2 optimizer analyzes the distribution statistics and creates a data access plan for each search. You can use environment variables to influence the data access plan or the query access plan that the DB2 optimizer generates. You must run the **idsrunstats** command against the directory server instance.

Environment variables

To influence the data access plan, use the following variables:

LDAP_MAXCARD

Use the **LDAP_MAXCARD** environment variable to set the cardinality value.

If you set cardinality, the attribute indexes are resolved first and the **LDAP_DESC** index is considered towards end for query evaluation. The following search performance might be observed:
• Improvement in subtree search performance against large subtrees with many descendants.
• The disadvantage is that all subtree searches are treated as search against a large subtree. Therefore, you might observe a performance degradation if the subtree search is against a small subtree with fewer descendants.

IBMSLAPD_USE_SELECTIVITY

Use the `IBMSLAPD_USE_SELECTIVITY` variable to set DB2 selectivity.

If you set DB2 selectivity, the following performance might be observed:
• Improvement in subtree search performance against top 10 subtrees that contains the most descendants. For top 10 subtrees with most descendants, the attributes filters are resolved first and the `LDAP_DESC` table is considered towards end for query evaluation.
• If a subtree search is run against a subtree that is not in top 10 with most descendants, you might observe a performance degrade. For the subtrees that are not in the top 10 with most descendants, the `LDAP_DESC` index is resolved first followed by the attribute indexes.

Query access plan

The `LDAP_MAXCARD` and `IBMSLAPD_USE_SELECTIVITY` environment variables are ways to improve subtree search performance in specific cases. In certain subtree search scenarios, even if you set the environment variables you might not obtain the required performance improvements. Instead of using the environment variables, use the query access plan that the DB2 optimizer generates. IBM Security Directory Server, version 6.3.1, provides an option to use the DB2 optimizer to improve the subtree search performance in all subtree search scenarios.

When you run a subtree search against a directory server, the following process occurs:
1. The LDAP search query is converted to a series of SQL queries that evaluate the `LDAP_DESC` index and attribute indexes.
2. The SQL query that contains the `LDAP_DESC` index is evaluated by using a parameterized value for an ancestor EID (AEID). In IBM Security Directory Server, version 6.3.1 and later, the parameterized value for AEID is replaced with the evaluated AEID literal value for further processing of the SQL queries.
3. The DB2 optimizer uses the AEID literal value to identify whether the subtree is large or small. The DB2 optimizer uses the collected distribution statistics to decide whether to resolve the attribute indexes or the `LDAP_DESC` index first in its data access plan.
4. Depending on the type of subtree and filter, the DB2 optimizer creates an optimal data access plan for subtree searches against both large and small subtrees.

DB2 query optimization for one level searches

To retrieve one level search results faster, you must optimize the SQL queries that access the `LDAP_ENTRY` table and other tables.

For one level searches, entry IDs are resolved by using the PEID column of the `LDAP_ENTRY` table. The SQL query that contains the `LDAP_ENTRY` table is evaluated by using a parameterized value of PEID. If a directory server hierarchy is deep nested or large, the one level search might take considerable time when the parameterized
value of PEID is used. You must run the `idsrunstats` command against the
directory server instance to optimize the database and update DB2 statistics.

When you run a one level search against a directory server, the following process
occurs:
- In IBM Security Directory Server, version 6.3.1 and later, the parameterized value
 for PEID is replaced with the evaluated PEID literal value for further processing
 of the SQL queries.
- The DB2 optimizer uses the PEID literal value to determine the subset of data in
 the large table. The DB2 optimizer uses the collected distribution statistics to
decide whether to resolve the attribute indexes or the LDAP_DESC index first in its
data access plan.
- Depending on the type of subtree and filter, the DB2 optimizer creates an
 optimal data access plan for subtree searches against both large and small
 subtrees.

DB2 Indexes

You can use DB2 indexes to improve the performance of search operations against
a directory server if the requested attributes are indexed.

When you index attributes that are frequently searched, it takes lesser time to
locate the requested data. DB2 indexes improve the performance of directory
operations, such as start time, subtree search of an LDAP entry, and finding all
subentries of an LDAP entry. It is beneficial from a performance standpoint to
index all relevant attributes used in searches.

IBM Security Directory Server contains a set of attributes that are indexed by
default. The attributes that are indexed by default can be found in the directory
schema files. An attribute with the EQUALITY keyword in the schema files indicates
that the attribute is indexed. Attributes can also be indexed by running the DB2
commands on the DB2 table that implement the attribute.

Use the following DB2 commands to verify whether a particular index is defined.
In the example, the `seeAlso` attribute is searched to verify whether the attribute is
indexed.

```
db2 connect to database_name
db2 list tables for all | grep -i seeAlso
db2 describe indexes for table database_name.seeAlso
```

where, `database_name` is the name of the database.

If the commands do not return three entries, the index is not properly defined. The
command must return the following results:

<table>
<thead>
<tr>
<th>IndexSchema</th>
<th>Index Name</th>
<th>Unique Rule</th>
<th>Number of Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDAPDB2</td>
<td>SEEALSOI</td>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>LDAPDB2</td>
<td>SEEALSO</td>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>LDAPDB2</td>
<td>RSEEALSO</td>
<td>D</td>
<td>2</td>
</tr>
</tbody>
</table>

3 record(s) selected.

It is important to run the `runstats` command on a table after you create an index.
The `runstats` command provides statistical information to the DB2 optimizer that
aids the optimizer to take decisions about optimizing searches on that table.
Creating an index for an attribute by using Web Administration Tool

You can create attribute indexes by using Web Administration Tool to locate and retrieve the frequently used attributes faster.

Procedure

1. Log in with the directory server administrator credentials to a directory server by using Web Administration Tool.
2. In the navigation pane, expand Schema management > Manage attributes.
3. Click Edit attribute.
4. Under Indexing rules on the IBM extensions tab, select the Equality check box.
5. To save the changes, click Apply. You can click OK to save the changes and to exit the page. You can click Cancel to exist the page without saving any changes.

What to do next

Run the runstats command against the directory server to update the DB2 statistics after you create an index.

idsrunstats -I instance_name

where, instance_name is the directory server instance name.

Creating an index for an attribute from the command line

You can create attribute indexes to locate and retrieve the frequently used attributes faster.

Procedure

1. Log in with the directory server instance owner credentials.
2. To create an index for the seeAlso attribute, run the following command:

ldapmodify -p port -D adminDN -w adminPW -i filename

where, filename contains the following entries:

dn: cn=schema
changetype: modify
replace: attributetypes
attributetypes: (2.5.4.34 NAME 'seeAlso'
DESC 'Identifies another directory server entry that may contain information related to this entry.'
SUP 2.5.4.49
EQUALITY 2.5.13.1
USAGE userApplications)

replace: ibmattributetypes
ibmattributetypes: (2.5.4.34
DBNAME('seeAlso' 'seeAlso')
ACCESS-CLASS normal
LENGTH 1000
EQUALITY)

3. Run the runstats command against the directory server to update the DB2 statistics after you create an index.
idsrunstats -I instance_name

where, instance_name is the directory server instance name.

DB2 configuration parameters

You can improve directory server performance by tuning the DB2 configuration parameters for the database that is associated with the directory server.

To improve the directory server performance, you can set the DB2 configuration parameters such as DBHEAP and LOGFILSZ. To update the parameters, run the following commands:

db2 update database configuration for database_name \
using parm_name parm_value
db2 force applications all
db2stop
db2start

where, the variable specifies:

- **database_name** is the name of your database.
- **parm_name** is the parameter to change.
- **parm_value** is the value to assign the parameter.

You can also use the **idsperftune** tool to set the DB2 configuration parameters. To update the DB2 configuration parameter with the values in the perftune_input.conf file, run the following command:

idsperftune -I instance_name -A -u update

To retrieve DB2 configuration parameters and their values, you can use the DB2 commands. You can retrieve the DB2 parameter and their current values with the following command:

db2 get database configuration for database_name

where, database_name is the name of your database. For example, the following output shows the default settings of a directory server instance, ldapdb2:

db2 get database configuration for ldapdb2 | egrep 'HEAP|MAXLOCKS|MINCOMMIT'

```
Percent. of lock lists per application (MAXLOCKS) = AUTOMATIC(98)
Sort heap thres for shared sorts (4KB) (SHEAPTHRES_SHR) = AUTOMATIC(273)
Sort list heap (4KB) (SORTHEAP) = AUTOMATIC(54)
Database heap (4KB) (DBHEAP) = AUTOMATIC(2579)
Utilities heap size (4KB) (UTIL_HEAP_SZ) = 85239
SQL statement heap (4KB) (STMTHEAP) = AUTOMATIC(4096)
Default application heap (4KB) (APPLHEAPSZ) = AUTOMATIC(1280)
Statistics heap size (4KB) (STAT_HEAP_SZ) = AUTOMATIC(4384)
Group commit count (MINCOMMIT) = 1
```

You must not modify the default settings of the parameters; unless you determined a value to assign for a parameter. For example, if you set MINCOMMIT to a value other than 1, you might get poor performance results. You can change the parameter values by using the following commands:

db2 update db cfg for ldapdb2 using parm_name parm_value
db2 terminate
db2 force applications all

where, `parm_name` is the name of the parameter. You can set a parameter that is generated from the `db2 get database configuration` command with a value. The `parm_value` variable indicates the new value to assign.

Incorrect settings for some database parameters can cause database failures. If database failure occurs, check the following files for DB2 error messages:

For IBM Security Directory Server, version 6.0 and later

- `db2instance_owner_home_directory/idsslapd-instance_name/logs/db2cli.log`
- `db2instance_owner_home_directory/sqllib/db2dump/db2diag.log`

You can also run the following command to retrieve the DB2 configuration parameter values. The command shows the DB2 configuration parameters for the entire database instance.

```
db2 get database manager configuration
```

Changes to DB2 configuration parameters do not take effect until you restart the database with the `db2stop` and `db2start` commands.

Note: If applications are connected to the database, you must run the `db2 force applications all` command before you run `db2stop`.

For tuning DB2 buffer pools, you can use the DB2 utility, `DB2 AUTOCONFIGURE`. This utility calculates and provides the values for the DB2 buffer pools, database configuration, and database manager configuration parameters. For example, if you specify `NONE` with `DB2 AUTOCONFIGURE`, the utility returns the values that are required to be modified in the configuration but does not apply them.

```
db2 AUTOCONFIGURE USINGMEM_PERCENT 60 WORKLOAD_TYPE simple NUM_STMTS 500 ADMIN_PRIORITY performance IS_POPULATED YES NUM_LOCAL_APPS 20 NUM_REMOTE_APPS 20 ISOLATION RRBP_RESIZEABLE YES APPLY NONE
```

The `DB2 AUTOCONFIGURE` utility with the `DB AND DBM` parameter returns and applies the changes to the buffer pool settings, database manager configuration, and the database configuration.

```
db2 AUTOCONFIGURE USINGMEM_PERCENT 60 WORKLOAD_TYPE simple NUM_STMTS 500 ADMIN_PRIORITY performance IS_POPULATED YES NUM_LOCAL_APPS 20 NUM_REMOTE_APPS 20 ISOLATION RRBP_RESIZEABLE YES APPLY DB AND DBM
```

For more information, search `DB2 AUTOCONFIGURE` in the [IBM DB2](http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp) documentation.

For a list of DB2 parameters that affect database performance, visit the [IBM DB2 version 9.7](http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp) documentation website.

Note: In a DB2 database analysis, if a parameter is configured insufficiently then the problem is logged in the `db2diag.log` file (diagnostic log). For example, if the DB2 buffer pools are too large then DB2 overrides the buffer pool settings and uses a minimal configuration. In such cases, no notice of the change in buffer pool sizes is logged except in the diagnostic log. It is important to view the log if you are experiencing poor performance. The `db2diag.log` file is in the `sqllib/db2dump` directory under the instance owner home directory. For example, for the `1dapdb2` instance on a Linux system you can find the `db2diag.log` file in the `/home/1dapdb2/sqllib/db2dump` directory.
Database backup and restore considerations

You can use the IBM DB2 commands to back up and restore a DB2 database that is associated with a directory server instance. The DB2 command reduces the time that is required for the backup and restore operations, and provides the flexibility to specify the database file location.

You can use the `db2 backup` command provided by IBM DB2 to back up the DB2 database that is associated with the directory server instance. You can use the `db2 restore` command to distribute the database across multiple disks or to move the database to another directory. An important consideration for using the `db2 backup` and `db2 restore` commands is the preservation of DB2 configuration parameters and system statistics in the backed-up database. The restored database has the same performance optimizations as the backed-up database. When you use the `db2ldif`, `ldif2db`, or `bulkload` commands, the DB2 system statistics and performance optimization are not maintained.

It is important to keep in mind that when you restore over an existing database, any tuning that are done on the existing database is lost. Check all the DB2 configuration parameters after you complete the database restore. If the `db2 runstats` command was not run before the database was backed up, tune the DB2 system statistics after the restore operation. You can use the following DB2 commands to back up and restore a database:

db2 force applications all

db2 backup db dsrdbm01 to directory_or_device

db2 restore db dsrdbm01 from directory_or_device replace existing

where, `dsrdbm01` is the name of the directory server instance; and `directory_or_device` is the name of a directory or device to store the backup.

When you run the `db2 restore` command, you might observe file permission error. The reason for the error and steps to prevent the error are as follows:

- The DB2 instance owner might not have the required permissions to access the specified directory or file. To resolve the error, you must change the directory and file ownership to the DB2 instance owner. For example, enter the following command:

 `chown dsrdbm01 file_or_device`

- The backed-up database is distributed across multiple directories and those directories do not exist on the target system of the restore. Distributing the database across multiple directories can be accomplished with a redirected restore. To prevent this problem, create the same directories on the target system or run a redirected restore to specify the directories on the new system. When you create the directories, ensure that the owner of the directories is the DB2 instance owner.
Chapter 4. Tuning AIX operating system

You can tune operating system and its resources to improve the performance of a directory server instance that is running on the system.

You can tune the following features on the AIX operating system:
• Support for large files
• Data prefetch optimization for AIX systems on POWER® architecture
• AIX environment variables
• The environment variables that are associated with the ibmslapd process

Support for large files

The standard file system on AIX has a 2-GB file size limit, regardless of the ulimit setting. The AIX operating system file system that holds a large directory server can grow beyond the default size limits that are imposed by AIX.

After the file size limit is reached, the directory server ceases to function properly. You can consider the following options ensure that the files can grow beyond the default limits set on an AIX operating system:
• You must create the file system as Enhanced Journaled File Systems or as Journaled File Systems (JFS2) with Large File Enabled to hold a directory server. You must also consider the file system with Large File Enabled for the DB2 instance home directory and for the bulkload temporary directory. The default path of bulkload temporary directory is instance_home/tmp.
• You must set the soft file size limit for the root, directory server, and the DB2 instance owner users to -1. A soft file size limit of -1 for a user specifies the maximum file size for that user as unlimited. You can change the soft file size limit with the smitty chuser command. A user must log off and log in for the changed soft file size limit to take effect. You must also restart DB2.

For more information about the file system options, see AIX documentation.

Data prefetch optimization for AIX systems on POWER architecture

You can use Data Stream Control Register (DSCR) to control the enablement, depth, and data prefetch settings for an AIX system on the POWER architecture.

When you activate data prefetch on an AIX system, the applications that contain predictable data access patterns might benefit from data prefetching. For such applications, you can set the operating system prefetch depth or use the setting that is most beneficial. If aggressive data prefetching is set, the performance might degrade for applications that contain unpredictable data access patterns.

You can view the current settings of the hardware stream mechanism and set a system-wide value for DSCR. You can set or unset the prefetch depth for an AIX system on the POWER architecture temporarily or permanently. Use the root user privileges to set or unset DSCR.

When you set or unset DSCR, consider the following points:
• Set DSCR only if the server maximizes the amount of information that it is able to access with minimum memory latency.

• Unset DSCR on a partition, only if the setting benefits all the applications that are running on the partition. You must consider the effect on application throughput and processor usage when you evaluate the performance.

Examples

Example 1:
To view the number of hardware streams, and default prefetch depth of the operating system, run the `dscrctl` command with the following parameters:
`dscrctl -q`

For more information about the `dscrctl` command, see the IBM AIX documentation at pic.dhe.ibm.com/infocenter/aix/v7r1/topic/com.ibm.aix.doc/doc/base/kc_welcome.htm.

Example 2:
To disable data prefetch optimization for the current session, run the `dscrctl` command with the following parameters:
`dscrctl -n -s 1`

Example 3:
To disable data prefetch optimization persistent across system startup operation, run the `dscrctl` command with the following parameters:
`dscrctl -b -s 1`

Example 4:
To set the operating system default for data prefetch optimization for the current session, run the `dscrctl` command with the following parameters:
`dscrctl -n -s 0`

Example 5:
To set the operating system default for data prefetch optimization persistent across system startup operation, run the `dscrctl` command with the following parameters:
`dscrctl -b -s 0`

AIX environment variables

You can improve the performance of an AIX system by setting the environment variables that control the AIX environment.

Set the following variables on an AIX system as per your requirement. Before you set the variables, see the AIX documentation to verify whether these settings are appropriate for your installation. For more information, see the IBM AIX documentation at pic.dhe.ibm.com/infocenter/aix/v7r1/topic/com.ibm.aix.doc/doc/base/kc_welcome.htm.

AIXTHREAD_SCOPE
To set contention scope to system-wide, run the following command:
`export AIXTHREAD_SCOPE=S`

NODISCLAIM
To suppress the disclaim() system call when a free() call is made, set `NODISCLAIM` to true. Run the following command:
`export NODISCLAIM=TRUE`
SPINLOOPTIME
To specify the number of times that a process can spin on a busy lock before it blocks, run the following command for SMP systems:
```
export SPINLOOPTIME=650
```

MALLOCCTYPE
To use the malloc subsystem, set the `MALLOCCTYPE` environment variable.
On AIX version 5.3 and later, run the following command:
```
export MALLOCCTYPE=buckets
```
To set `MALLOCCTYPE` to `buckets`, you must use the maintenance level ML03 or later. If you set `MALLOCCTYPE` to `buckets`, set `ulimits` for the directory server instance.
```
#ulimit -m unlimited
#ulimit -d unlimited
```
For SMP systems, run the following command to set the `MALLOCCMULTIHEAP` variable:
```
export MALLOCCMULTIHEAP=1
```

MALLOCOPTIONS
Use the `MALLOCOPTIONS` environment variable to tune memory allocation settings that is best suited for your applications on an AIX environment. You can set the following options by using the `MALLOCOPTIONS` environment variable:

- **multiheap**
 Configures the number of parallel heaps to be used by memory allocators. You can set the `multiheap` by exporting `MALLOCOPTIONS=multiheap:n`. The value `n` can vary from 1 through 32. The default value is 32, if `n` is not specified. This option is advisable for multithreaded applications, as it can significantly improve the performance.

- **pool**
 Maintains the bucket for each thread and provides a lock-free allocation and deallocation for blocks less than 513 bytes. This option improves the performance of multithreaded applications as it avoids the time that is spent on locking of memory size less than 513 bytes. The pool option makes small memory block allocations fast and efficient.

- **buckets**
 Controls the number of buckets, number of blocks per bucket, and size of each bucket. You can use the usage statistics of each bucket and refine the bucket settings.

 Set the bucket option by exporting the `MALLOCOPTIONS` variable:
  ```
  MALLOCOPTIONS=[buckets,[number_of_buckets:n | bucket_sizing_factor:n | blocks_per_bucket:n | bucket_statistics:[stdout|stderr|pathname] | no_mallinfo]...].
  ```
 When you set this option, it turns off the in-built bucket mechanism of the Watson allocator.

Note: When you run the `ibmslpad` process, the `MALLOCOPTIONS` environment variable is set internally to the following values:
```
MALLOCOPTIONS=multiheap,pool,buckets
```
Viewing environment variables of the `ibmslapd` process on an AIX system

You can view the environment variables and their values that are associated with the `ibmslapd` process.

Procedure

1. Log in as the directory server instance owner on an AIX system.
2. Run the `ps` command to list the `ibmslapd` process that is associated with your directory server instance.
   ```bash
   ps -ef | grep slapd
   ```
3. To view the environment variable settings of the `ibmslapd` process that is associated with your directory server instance, run the following command:
   ```bash
   ps eww PID | tr ' ' ''\012'' | grep = | sort
   ```
 where, `PID` is the `ibmslapd` process ID. The command generated the following output:

   ```
   ACLCACHE=YES
   ACLCACHESIZE=25000
   AUTHSTATE=compat
   _A__z=
   BKUP_LIBPATH=
   CLOMB_PASSTHRU=1
   DB2CODEPAGE=1208
   DB2INSTANCE=dsrdbm01
   DB2PATH=/opt/IBM/db2/V10.1
   DB2VERSION=10
   GSKIT_SHIPPED_ICC=FALSE
   HOME=/
   IDS_LDAP_HOME=/opt/IBM/ldap/V6.3.1
   IDS_LDAP_TDI_HOME=/opt/IBM/TDI/V7.1
   LANG=C
   LC_FASTMSG=true
   LIBPATH=/opt/IBM/db2/V6.3.1/lib64:/usr/lib:/home/dsrdbm01/idsslapd-dsrdbm01/db2instance/lib:
   /opt/IBM/db2/V10.1/lib64::
   LOCPATH=/usr/lib/nls/loc
   LOGIN=root
   LOGNAME=root
   MAIL=/usr/spool/mail/root
   MAILMSG=[YOU
   MAILOPTIONS=multitheap,pool,buckets
   NLSPATH=/opt/IBM/ldap/V6.3.1/nls/msg/%L/%N:/opt/IBM/ldap/V6.3.1/nls/msg/%L/%N.cat:
   /usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/%L/%N.cat:/usr/lib/nls/msg/%L/%N.cat
   ORIG_LIBPATH=/opt/IBM/ldap/V6.3.1/lib64:/usr/lib:/home/dsrdbm01/idsslapd-dsrdbm01/db2instance/lib:
   /opt/IBM/db2/V10.1/lib64::
   PATH=/opt/IBM/db2/V6.3.1/sbin:/opt/IBM/TDI/V7.1:/opt/IBM/TDI/V7.1/bin:
   /opt/IBM/idap/V6.3.1/bin:/opt/IBM/idap/V6.3.1/bin:/opt/IBM/idap/V6.3.1/bin:/opt/IBM/idap/V6.3.1/bin:
   /opt/IBM/db2/V6.3.1/sbin;/opt/IBM/idap/V6.3.1/sbin:/opt/IBM/idap/V6.3.1/bin:
   /opt/IBM/idap/V6.3.1/sbin;/opt/IBM/idap/V6.3.1/sbin:/opt/IBM/idap/V6.3.1/bin:
   /opt/IBM/idap/V6.3.1/sbin:/usr/bin:/etc:/usr/sbin:/usr/bin/X11:
   /sbin:/usr/java5/jre/bin:/usr/java5/bin:/home/dsrdbm01/sql/lib:
   /home/dsrdbm01/sql/lib/adm:/home/dsrdbm01/sql/lib/misc
   PWD=/home/dsrdbm01/idsslapd-dsrdbm01/workdir
   RDBM_CACHE_BYPASS_LIMIT=100
   RDBM_CACHE_SIZE=25000
   RDBM_FCACHE_SIZE=25000
   RDBM_VLV_ENABLED=TRUE
   RDBM_VLV_MAX_BCOUNT=100
   SHELL=/usr/bin/ksh
   SHLVL=1
   SSH_CLIENT=9.79.177.247
   SSH_CONNECTION=9.79.177.247
   SSH_TTY=/dev/pts/2
   TDI_HOME=/opt/IBM/TDI/V7.1
   ```
Hardware tuning

To improve the update performance of a directory server, you must improve disk drive speed.

Consideration to improve disk speed

If a directory server contains millions of entries, it can become impossible to cache all of the entries in memory. Even if you are able to cache a directory with small number of entries, update operations require to access disk. The speed of disk operations is important. You can consider the following points to improve the disk drive performance:

- Use fast disk drives
- Use a hardware write cache
- Spread data across multiple disk drives
- Spread the disk drives across multiple I/O controllers
- Store log files and data on separate physical disk drives
- Use raw devices for storing the table space data
Chapter 5. Hardware tuning

To improve the update performance of a directory server, you must improve disk drive speed.

Consideration to improve disk speed

If a directory server contains millions of entries, it can become impossible to cache all of the entries in memory. Even if you are able to cache a directory with small number of entries, update operations require to access disk. The speed of disk operations is important. You can consider the following points to improve the disk drive performance:

- Use fast disk drives
- Use a hardware write cache
- Spread data across multiple disk drives
- Spread the disk drives across multiple I/O controllers
- Store log files and data on separate physical disk drives
- Use raw devices for storing the table space data
Chapter 6. Tuning directory server features

You can configure and tune the features in IBM Security Directory Server based on your requirements. You can also monitor the directory server performance and decide whether you want use certain directory server feature or not.

You can configure the following directory server features and monitor the directory server performance:

- Bulk loading (bulkload)
- Replication
- Performance monitoring
- Directory server change log

Bulkload

You can use the bulkload utility to load data directly into the DB2 database from an LDIF file. The bulkload utility is a faster and better method to load large amount of data.

The bulkload utility parses the LDIF file, creates DB2 load files, and then loads the data directly into the DB2 database, bypassing IBM Security Directory Server.

The advantage to using the bulkload utility as compared to the ldif2db or ldapadd commands is the performance. The bulkload utility is many times faster than any other method of loading users. The bulkload utility might not be the right choice for every situation, such as to load small number of entries.

Consider the following points to determine whether to use the bulkload utility:

- When you load data by using the bulkload utility, the directory server might not be available for other LDAP-related operations. In a replication environment, ensure that one or more replicas or peer servers are available when data is loaded to a server with the bulkload utility.
- Updates that are made to a server by using the bulkload utility do not get automatically replicated in a replication environment. Each server in the replication environment must be updated by using the bulkload utility to synchronize all servers with the same data.
- In a replication environment, you can back up a server to other servers before you load data to the server by using the bulkload utility. For the backup and restore, you must re-create the replication agreements on the restored servers. After the restore, all servers contain the same database.

You can run the bulkload utility with the appropriate parameters based on the data to load into a directory server. You must not specify certain parameters as they are deprecated. The defaults for the following parameters are set for optimal performance and must be considered before you specify them.

-A yes|no
 Specifies whether to process the ACL information that is contained in the LDIF file. The default value is yes. If you specify no with the parameter, it loads the default ACLs.
-c yes\|no
 Specifies to skip index recreation. You can skip index recreation between the
 loads and postpone the index creation until the last idsbulkload operation.
 Run the last idsbulkload with the -c yes parameter.

-e yes\|no
 Drops indexes before the load operation.

Effects of using the -k parameter

You can use the -k parameter with idsbulkload to load data in smaller chunks.
You can use this parameter on systems where memory is limited. With the -k
parameter, idsbulkload parses and loads data in smaller increments.

Note: If you specify small chunk size to parse and load, it might take considerable
time to load data.

![Bulkload Maximum Memory Usage](image)

Figure 7. The relationship between data size and memory used

The graph illustrates the effects on memory usage. As the chunk size increases, the
memory utilization increases.
The graph illustrates that as the chunk size increases, the load time decreases. The recommendation is to use chunk sizes of at least 1 million entries.

Replication

You can use the replication feature in a directory server to improve performance, availability, and reliability of the server. The replication process synchronizes data that are stored in multiple directory servers.

By using multi-threaded replication (asynchronous), you can activate replication to use multiple threads during the replication process. Multi-threaded replication improves the overall throughput of replication.

Multi-threaded replication is difficult to administer if servers or networks are not reliable. You can consider switching to multi-threaded replication for the following replication environments:

- A high update rate
- No previous versions of directory servers
- Common Advanced Encryption Standard (AES) salt and synchronization if the encryption is AES and passwords are updated often
- Small fanout (for example, eight connections per agreement with 24 replicas might be too complicated depending on system configuration)
- Available servers and reliable network
- Real-time data consistency is not critical
- All replication schedules are immediate
- Multiprocessor systems

Figure 8. The relationship between data size and time to load data
If replication errors occur, the errors are logged in the log files. You must monitor the error logs and fix any replication issues. To search for the replication backlog for all agreements that are supplied by a server, run the following command:

```
ldapsearch -h sup_host -p port -D adminDN -w ? -s sub -b repl_context
objectclass=ibm-replicationagreement ibm-replicationpendingchangecount ibm-replicationstate
```

If the replication state is active and the pending count is growing, then the replication backlog might not decrease. For the replication backlog to decrease, the update rate must decrease or change the replication mode from synchronous to asynchronous (multi-threaded).

Replication also adds to the workload on the master server where the updates are first applied. In addition to updating its copy of the directory data, the master server sends the changes to all replica servers. If your application or users do not depend on immediate replication, then you must avoid setting the replication schedule at peak activity times. Scheduling replication at idle time can minimize the degrading the throughput on the master server.

You can tune the following configurable values to improve the replication performance:

- Number of replication threads per supplier and consumer
- Replication context cache size
- Replication ready size limit

Number of replication threads

You can tune the number of replication threads by setting the `ibm-replicaconsumerconnections` attribute with an appropriate value. The attribute value specifies the number of connections to use for each replication agreement.

If you increase the number of threads on both the supplier and consumer servers, the transaction rate also increases. In the following graph, a transaction is defined as a queued replication record that is sent to the supplier. In this example, the `ldap_modify` operation is used. The queued replication records (`ldap_modify`) are run with replication in the pending state. The replication state is then changed to `resume`, which starts the replication process.

Note: As the number of threads increases, the processor usage on both supplier and consumer systems increases. Tune the attribute as required based on an acceptable processor usage value and the required throughput.
If the throughput increases, the processor usage on both the supplier and consumer server increases. The processor cost per transaction on the consumer increases slightly when you add threads because there are more threads to manage now.

Replication context cache size

You can tune the memory size that you want to allocate to the replication context cache. The replication context cache stores replication update entries.

You can tune the replication context cache size by setting the `ibm-slapdReplContextCacheSize` attribute with an appropriate value in bytes. The default value is 100,000 bytes. The `ibm-slapdReplContextCacheSize` attribute is not a dynamic attribute.

![Replication Throughput varying Number of Threads](image)

Figure 9. The relationship between the number of replication threads and transactions per second
Replication ready size limit

You can tune the replication ready size limit by setting the `IBMSLAPD_REPL_READY_SIZE_LIMIT` environment variable. The replication ready size limit controls the queue size of the replication operations from the list of replication update entries.

The default size limit is 10. There is one queue per connection to a replica. Updates that are related, such as modifications or subentries of an entry, are placed in the same queue. If the queue size exceeds the set size limit, the main replication thread waits for the queue size to be lesser than the limit. When the queue size becomes lesser than the limit, it reduces the processor usage by the main replication thread to determine the dependencies between the updates. In test environment, the size of the queue was varied from one entry up to 200 entries. Although, an increase in raw throughput was not evident but processor usage was reduced at certain settings of this variable. The following graph shows that the throughput normalized to 100% of processor usage. In the test environment, the absolute throughput did not change. Bigger the replication ready size limit value in the graph, lesser processor usage for transactions per second. In this graph, a transaction is defined as a queued replication record (ldap_modify) that is sent to the supplier.

Figure 10. The relationship between the replication context cache size and transactions per second
Audit log

You can configure the audit log to audit operations that run against a directory server instance.

If you configure the audit feature, the performance of directory server instance can degrade based on the operations that are set for audit. If you do require auditing of operations against a directory server, it is advisable to turn off auditing of all operations. To disable the audit, you must ensure that the directory server instance is running. To check the status of the audit feature, run the following command:

```
idsldapsearch -p port -D adminDN -w adminPwd -s base \n-b "cn=audit,cn=log management,cn=configuration" objectclass=* ibm-audit
 cn=Audit, cn=Log Management, cn=Configuration
ibm-audit=false
```

where, `ibm-audit=false` indicates that the auditing is off. If the value of the `ibm-audit` attribute is true, set the value to false. To set the attribute to false, run the following command:

```
idsldapmodify -p port -D adminDN -w adminPwd
dn: cn=Audit, cn=Log Management, cn=Configuration
changenstype: modify
replace: ibm-audit
ibm-audit: false
```

Proxy server

You can use a proxy server in an LDAP environment where the data size exceeds the processing power and physical capacity of a single server. You can use a proxy server to distribute data across multiple directory servers.
Directory sizes that are greater than 40 million entries can be candidates for a distributed directory environment.

In a proxy server environment, the size of the connection pool can affect the throughput performance of a proxy server. You can configure the connection pool size for a proxy server. For best results, you must consider the following guidelines when you set the connection pool size:

- Configure more than one connection to the back-end server.
- Limit the connection pool size to the number of connections that the operating system can support. The connection pool is a static pool of connections that the proxy server sets up when the proxy server starts up. The operating system can impose a limit on the number of open file descriptors. The connection pool size must be less than the operating system limit.
- Ensure that the connection pool size is less than the number of database connections that are configured with the back-end server. You must keep a buffer for replication and change log.

For better performance, all the back-end servers and the proxy server must use the same stash files.

Directory server status

You can check the status of a directory server by searching the `cn=monitor` base.

You can retrieve the number of operations that are initiated and completed by the server from the time the server is running. You can use the `ldapsearch` command to find the directory server status.

Search with the `cn=monitor` base

You can search the `cn=monitor` base to determine the directory server status, such as cache configuration status, operation counts, connection type counts, and status of service.

To retrieve the directory server status, run the `ldapsearch` command with the `cn=monitor` base. For example:

```bash
ldapsearch -h ldap_host -p port -s base -b cn=monitor objectclass=*  
```

where, `ldap_host` is the host name or IP address of the LDAP host.

The `cn=monitor` search returns some of the following attributes of the directory server:

- **CN=MONITOR**

 The search base for the command.

- **version=IBM Security Directory, Version 6.3.1**

- **totalconnections**

 The total number of connections since the server was started.

- **currentconnections**

 The number of active connections.

- **maxconnections**

 The maximum number of active connections allowed.
writewaiters
The number of threads that send data back to the client.

readwaiters
The number of threads that read data from the client.

livethreads
The number of worker threads that are used by the server.

filter_cache_size
The maximum number of filters that are supported by the cache.

filter_cache_current
The number of filters currently in the cache.

filter_cache_hit
The number of filters that are retrieved from the cache rather than being resolved in DB2.

filter_cache_miss
The number of filters that were not found in the cache that then needed to be resolved by DB2.

filter_cache_bypass_limit
Search filters that return more entries than this limit are not cached.

entry_cache_size
The maximum number of entries that are supported by the cache.

entry_cache_current
The number of entries currently in the cache.

entry_cache_hit
The number of entries that were retrieved from the cache.

entry_cache_miss
The number of entries that were not found in the cache that then needed to be retrieved from DB2.

acl_cache
A boolean value that indicates whether the ACL cache is active (TRUE) or inactive (FALSE).

acl_cache_size
The maximum number of entries in the ACL cache.

currenttime
The current time of the server. The current time is in the following format:
year month day hour:minutes:seconds GMT

If expressed in local time the format is:
day month date hour:minutes:seconds timezone year

starttime
The time the server was started. The start time is in the following format:
year month day hour:minutes:seconds GMT

If expressed in local time the format is:
day month date hour:minutes:seconds timezone year

en_currentregs
The current number of client registrations for event notification.
en-notificationssent
 The total number of event notifications sent to clients since the server was
 started.

The following attributes are for operation counts:

bindsrequested
 The number of bind operations that are requested since the server was
 started.
bindscompleted
 The number of bind operations that are completed since the server was
 started.
unbindsrequested
 The number of unbind operations that are requested since the server was
 started.
unbindscompleted
 The number of unbind operations that are completed since the server was
 started.
addsrequested
 The number of add operations that are requested since the server was
 started.
addscCompleted
 The number of add operations that are completed since the server was
 started.
deletesrequested
 The number of delete operations that are requested since the server was
 started.
deletescompleted
 The number of delete operations that are completed since the server was
 started.
modrdnsrequested
 The number of modify RDN® operations that are requested since the server
 was started.
modrdnscompleted
 The number of modify RDN operations that are completed since the server
 was started.
modifiesrequested
 The number of modify operations that are requested since the server was
 started.
modifiescompleted
 The number of modify operations that are completed since the server was
 started.
comparesrequested
 The number of compare operations that are requested since the server was
 started.
comparescompleted
 The number of compare operations that are completed since the server was
 started.
abandonsrequested
The number of abandon operations that are requested since the server was started.

abandonscompleted
The number of abandon operations that are completed since the server was started.

extopsrequested
The number of extended operations that are requested since the server was started.

extopscompleted
The number of extended operations that are completed since the server was started.

unknownopsrequested
The number of unknown operations that are requested since the server was started.

unknownopscompleted
The number of unknown operations that are completed since the server was started. Unrecognized operations are rejected with a message is sent to the client, which might include the LDAP_UNWILLING_TO_PERFORM result code.

opsinitiated
The number of initiated requests since the server was started.

opscompleted
The number of completed requests since the server was started.

entryssent
The number of entries that are sent by the server since the server was started.

searchesrequested
The number of initiated searches since the server was started.

searchescompleted
The number of completed searches since the server was started.

The following attributes are associated with the server log counts:

slaperrorlog_messages
The number of server messages that are recorded since the server started or since a reset.

slapdclierrors_messages
The number of DB2 error messages that are recorded since the server was started or since a reset.

auditlog_messages
The number of audit messages that are recorded since the server was started or since a reset.

auditlog_failedop_messages
The number of failed operation messages that are recorded since the server was started or since a reset.

The following attributes are for connection type counts:

total_ssl_connections
The total number of SSL connections since the server was started.
total_tls_connections
The total number of TLS connections since the server was started.

The following attributes are for tracing:

trace_enabled
The current trace value for the server. If the server is set to collect trace data, the value is TRUE, or else the value is FALSE.

trace_message_level
The current ldap_debug value for the server. The value is in hexadecimal form, for example:
- 0x0=0
- 0xffff=65535

trace_message_log
The current LDAP_DEBUG_FILE environment variable setting for the server.

The following attributes are for denial of service prevention:

available_workers
The number of worker threads available for work.

current_workqueue_size
The current depth of the work queue.

largest_workqueue_size
The largest size that the work queue reached.

idle_connections_closed
The number of idle connections closed by the Automatic Connection Cleaner.

auto_connection_cleaner_run
The number of times that the Automatic Connection Cleaner process run.

The following attribute is for alias dereference processing:

bypass_deref_aliases
The server runtime value that indicates whether alias processing can be bypassed. The value is TRUE if no alias object exists in the directory, and FALSE if at least one alias object exists in the directory.

The following attributes are for the attribute cache:

cached_attribute_total_size
The amount of memory that is used by the directory attribute cache, in KB. This number includes the additional more memory that is used to manage the cache and is not charged to the individual attribute caches. If the total is larger than the sum of the memory that is used by all the individual attribute caches.

cached_attribute_configured_size
The maximum amount of memory, in KB, for use by the directory attribute cache.

cached_attribute_hit
The number of times the attribute is used in a filter and is processed by the attribute cache. The following value is generated in output:
- cached_attribute_hit=attrname:#####
cached_attribute_size
The amount of memory that is used for this attribute in the attribute cache. The following value in KB is generated in output:
cached_attribute_size=attrname:#####

cached_attribute_candidate_hit
A list of up to 10 most frequently used non-cached attributes that are used in a filter that can be processed by the directory attribute cache. The following value is generated in output:
cached_attribute_candidate_hit=attrname:#####

You can use this list to help you decide which attributes you want to cache. Typically, you want to put a limited number of attributes into the attribute cache because of memory constraints.

Examples

You can use the following examples to calculate throughput and workload on the server from the output that is returned by the `ldapsearch` command.

Throughput example

You can calculate the throughput of the server by monitoring the directory server statistic called `opscompleted`. This statistics value indicates the number of operations that are completed since the LDAP server started.

To determine the throughput, find the values for the `opscompleted` attributes by issuing two `ldapsearch` commands. To monitor the performance statistics, run the first `ldapsearch` at time `t1` and the other at time `t2`. For example, `opscompleted(t1)` and `opscompleted(t2)`.

The average throughput at the server during the interval between `t1` and `t2` can be calculated as:

\[(\text{opscompleted}(t_2) - \text{opscompleted}(t_1))/\langle t_2 - t_1 \rangle\]

A value of 3 is subtracted to account for the number of operations that are of the `ldapsearch` command.

Workload example

You can determine the server workload from the output values from the `ldapsearch` command with the `cn=monitor` base. For example, you can calculate the number of add operations that were completed in a certain amount of time.

To determine the number of add operations against the server in a time interval, find the values for the `addscompleted` attributes by issuing two `ldapsearch` commands. To monitor the performance statistics, run the first `ldapsearch` at time `t1` and the other at time `t2`. For example, `addscompleted(t1)` and `addscompleted(t2)`.

The number of add operations that are completed by the server during the interval between `t1` and `t2` can be calculated as:

\[\langle \text{addscompleted}(t_2) - \text{addscompleted}(t_1)\rangle/\langle t_2 - t_1 \rangle\]

You can find the workload on the server for the other operations, such as `searchescompleted`, `bindscompleted`, `deletescompleted`, and `modifiescompleted`.
Search with the cn=workers,cn=monitor base

You can retrieve the information about the operations that the worker threads are running and when the threads started the operations. You must run the monitor search command with the administrator credentials.

To retrieve the search results for the cn=workers,cn=monitor base, run the following command:

```
ldapsearch -p port -D adminDN -w adminPWD -b "cn=workers,cn=monitor" -s base objectclass=* 
```

The cn=workers,cn=monitor search returns detailed activity information only if audit is turned on. If audit is not on, cn=workers,cn=monitor returns only thread information for each of the workers.

The cn=workers,cn=monitor base search result is useful when a server performance is poor or not functioning as expected. You must use the information to get the insight into what the server is doing.

Attention: The cn=workers,cn=monitor search suspends all server activity until it is completed. For this reason, any application that runs a search with the cn=workers,cn=monitor base must issue a warning before the search. The response time for the search command increases as the number of server connections and active workers increase.

Search with the cn=connections, cn=monitor base

You can retrieve the server connections information of a server by searching the cn=connections, cn=monitor base. You must run the search command with the administrator credentials.

To retrieve server connection information, run the `ldapsearch` command with the cn=connections, cn=monitor base.

```
ldapsearch -h server -p port -D adminDN -w adminPWD \ 
-b cn=connections,cn=monitor -s base objectclass=* 
```

The search command returns information in the following format:

```
cn=connections,cn=monitor
connection=1487 : 127.0.0.1 : 2002-10-05 19:17:01 GMT: 1:1:CN=ADMIN : :
```

Note: If the directory server is configured for secure connection, an SSL or a TLS indicator as appropriate is added on the connections.

For more information, see the *IBM Security Directory Server Version 6.3.1 Administration Guide*.

Search with the cn=changelog, cn=monitor base

You can obtain the change log attribute cache information with a search against the cn=changelog, cn=monitor base. You must run the search command with the administrator credentials.

To retrieve the change log attribute cache information, run the `ldapsearch` command with the cn=changelog, cn=monitor base.

```
ldapsearch -h server -p port -D adminDN -w adminPWD \ 
-b cn=changelog,cn=monitor -s base objectclass=* 
```

The `ldapsearch` command with the `cn=changelog, cn=monitor` base returns the following attributes:

cached_attribute_total_size
- The amount of memory that is used by the change log attribute cache, in KB. The memory that is used includes memory to manage the cache that is not charged to the individual attribute caches. This total is larger than the sum of the memory that is used by all the individual attribute caches.

cached_attribute_configured_size
- The maximum amount of memory in KB that is set for use by the change log attribute cache

cached_attribute_hit
- The number of times the attribute is used in a filter that might be processed by the change log attribute cache.

The value is in the following format:
cached_attribute_hit=attrname:#####

cached_attribute_size
- The amount of memory that is used for this attribute in the change log attribute cache.

The value is reported in KB and is in the following format:
cached_attribute_size=attrname:######

cached_attribute_candidate_hit
- A list of up to 10 most frequently used non-cached attributes that are used in a filter. The change log attribute cache might process these attributes if the attributes used in the filter are cached.

The value is in the following format:
cached_attribute_candidate_hit=attrname:#####

You can use this list to decide which attributes to cache. Typically, you want to put a limited number of attributes into the attribute cache because of memory constraints.

Considerations to configure change log

You can configure the change log to record all updates to a directory server in a separate change log DB2 database. You can use the change log to query and track updated to the directory server instance.

When you configure the change log, it might degrade the directory server update performance. You must configure the change log only if needed. By default, the change log is disabled.

The change log database is different from database that holds the directory information tree (DIT) data.

You can check whether the change log is configured by searching for the `CN=CHANGELOG` suffix in a root DSE search result. If it exists, the change log is configured.
Chapter 7. Capacity planning

Before you install IBM Security Directory Server on a system, you must decide the hardware to use for setting up the existing capacity and scaling up when required.

The hardware resources that you must consider before you install and deploy IBM Security Directory Server are:

- Hard disk
- Memory
- Processors

IBM Security Directory Server performance on various hardware configurations might vary. It is important to understand the hardware configurations that can provide the system resources to the directory server for best performance.

Several tuning measures were taken to find the best settings under which the directory server provides the best results. Tuning factors tested were:

IBM Security Directory Server tuning
- LDAP entry cache

DB2 tuning
- DB2 buffer pools
 - LDAP buffer pool
 - IBMDEFAULT buffer pool
- Optimization and organization (**reorgchk** and **reorg**)
- DB2 configuration parameters
- Backing up and restoring the database (backup and restore)
- Splitting of database

The capacity planning information includes results that are observed from uploading data with the **bulkload** utility and running specific benchmarks on various AIX systems.

The results that are provided are obtained through the following methods:

- Two types of Lightweight Directory Interchange Format (LDIF) files were used. The first type of LDIF file contains small entries with a flat tree structure. The other LDIF file contains larger entry sizes and a deeper tree structure.
- LDIF files with 100,000 and 1 million entries were created. The first type of LDIF file was used only for search operations. The second type was used for both searches and updates.

In each case, a directory server instance is created on the system. The LDIF file is loaded into the database and the recording were made. Operating system information and information that is related to the directory server instance is collected at intervals throughout the load and the performance test run.
Note: The statistics reported here are specific to the particular hardware setups used and were generated in a lab environment. These results might not be reproducible in other environments. The results reported here must be used only as guidelines.

The directory server performance was monitored by running various workloads on different hardware configurations. These workloads were run on a number of AIX systems.

Disk requirements

You must determine the space requirement for your directory server to store the database and the log files. You can use the space information to determine the required disk space.

You can store large amounts of LDIF data in a directory server. You must determine the hard disk capacity that is required to store the LDAP data. The required space can be determined based on the size of an average entry and the number of entries. You must also determine the processor speed, memory, and time that is required to load the data into the directory server from an LDIF file.

The two most important factors you must consider for the disk requirements are:

- Time that is required to load the data into the directory server.
- Space that is required to store the data on the hard disk.

Time and space requirements

You must create an LDIF entry to determine the amount of space an entry requires on a system. You can use this data to determine the amount of space that is required for an LDIF file with similar entries.

In the examples test runs, two types of LDIF files were used to gather data statistics. The first file contains a flat structure LDIF file with entries of small size. The second file contains a deeper tree with entries of large size. The entries in the LDIF file do not contain access control lists (ACLs) or groups that are associated with them.

An example entry of small size (approximately 415 bytes):
```
dn: cn=Joline Hickey, ou=Accounting, o=IBM.com
objectClass: top
objectClass: person
objectClass: organizationalPerson
cn: Joline Hickey
sn: Hickey
description: Joline_Hickey
facsimileTelephoneNumber: +1 71 631-7308
l: Palo Alto
ou: Accounting
postalAddress: IBM.com$Accounting$Dept # 363$Room # 890
telephoneNumber: +1 408 995-7674
title: Supreme Accounting Mascot
userPassword: yekciHenil
seeAlso: cn=Joline
```

An example entry of large size (approximately 10,510 bytes):
```
dn: mdsListName=List219, mdsContainerName=container22, mdsUID=22, mdso=393, mdsc=C1,
dc=IBM, dc=com
objectClass: MDSBlobList
mdsListName: List219
mdsContainerName: List219
mdsBlobList: Listen Title 9
```
The `mdsdata` attribute contains binary data. Binary data is not stored in attribute tables and can put a significant storage constraint on total disk space and on parsing and loading time.

Time information
You must determine the time that is required to load the data in a directory server from an LDIF file. You can use the load time to decide whether to load the file at one time or in smaller chunks.

The following graphs and tables show results of the `bulkload` utility when LDIF files with 100,000 entries and 1 million entries (for small and large entries) are loaded. The `bulkload` utility was run in two passes, first the parse phase and then the load phase. The information was collected from an AIX 5.3 system with two 1656 MHz POWER5 processors and 3792 MB of memory. No tuning was done on the database settings before the `bulkload` utility was run. For the smaller entry, an index for the `seeAlso` attribute was added.

Note: The results were obtained by using the `bulkload` utility with DB2, version 9.7.

Time to bulkload LDIF files with 100,000 entries

<table>
<thead>
<tr>
<th>Time in seconds</th>
<th>Small entries</th>
<th>Large entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parse time</td>
<td>35</td>
<td>127</td>
</tr>
<tr>
<td>Load time</td>
<td>47</td>
<td>128</td>
</tr>
<tr>
<td>Total time</td>
<td>82</td>
<td>255</td>
</tr>
</tbody>
</table>
Time to bulkload LDIF files with 1,000,000 entries

Table 3. Time to bulkload 1,000,000 entries in 2 stages

<table>
<thead>
<tr>
<th>Time in minutes</th>
<th>Small entries</th>
<th>Large entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parse time</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Load time</td>
<td>8</td>
<td>112</td>
</tr>
<tr>
<td>Total time</td>
<td>13</td>
<td>137</td>
</tr>
</tbody>
</table>

By comparing the time to bulkload the same LDIF file on two different systems, the time variations, and difference in hardware type can be observed. The following graph and table show the results for two bulkload runs with an LDIF file of the 1,000,000 small entries. The two systems used were of the following specification:

System 1
AIX 5.3 with 2 1656-MHz POWER5 processors and 3792 MB of memory

System 2
AIX 6.1 with 2 1499-MHz POWER5 processors and 7967 MB of memory (for one logical partition (LPAR))

Time to bulkload LDIF file with 1,000,000 small entries

Table 4. Time to bulkload in 2 stages for 1,000,000 small entries on 2 different systems

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>System 1</th>
<th>System 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parse time</td>
<td>5</td>
<td>5.12</td>
</tr>
<tr>
<td>Load time</td>
<td>8</td>
<td>5.41</td>
</tr>
<tr>
<td>Total time</td>
<td>13</td>
<td>10.53</td>
</tr>
</tbody>
</table>
On the AIX 5.3 system, the bulkload parse operation is run in the same time as on AIX 6.1 system. On AIX 5.3 time to load the same amount of data took more time. The bulkload utility is a single threaded process, so improvements in time come from the processor speed, hard disk speed of the system, and the amount of memory used.

In general, the parse time increases linearly as the number of entries in the LDIF file increases. For example, the parse time for 100,000 small entries was 35 seconds and the parse time for 1,000,000 small entries was approximately 10 times. Load time does not increase linearly to the data set size.

During the parse phase, intermediate files are generated and these files are used in the load phase. If the input LDIF file is large, more data is written to the intermediate files. The increase in time is because of disk I/O and you can verify it based on the results that are obtained for the different LDIF files. The average entry parse time per second is greater for the larger entry size LDIF. For an LDIF File with 100,000 entries of small size, an average of 2800 entries were parsed per second. For the larger sized entries, only 780 entries were parsed per second.

Space information
You must determine the space that is required on your system to load data to a directory server with the bulkload utility. You must ensure that the system has enough space to store the data that are generated during the different phases of bulkload.

On AIX 5.3 system, the space that is required for three different file system directories was calculated for each of the four LDIF files. The first is the space in the temporary directory that is used by the parse phase of the bulkload operation. You can refer the space temporary as the parse size. The second is the space that is required in the directory where the database is stored. You can refer the space that is required for the directory as the database size. The third is the space that is required to hold a backup of the database and you can refer it as the backup size. The charts that are displayed show the statistics for both the small and large entry files. The small and large-size entries files are created with 100,000, 1,000,000 entries.

Space that is required to bulkload an LDIF file with 100,000 entries

<table>
<thead>
<tr>
<th>Size in MB</th>
<th>Small entries</th>
<th>Large entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDIF file size in MB</td>
<td>41</td>
<td>859</td>
</tr>
<tr>
<td>Parse space in MB</td>
<td>139</td>
<td>927</td>
</tr>
</tbody>
</table>
Table 5. Bulkload space for 100,000 entries (continued)

<table>
<thead>
<tr>
<th>Size in MB</th>
<th>Small entries</th>
<th>Large entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database space in MB</td>
<td>304</td>
<td>1213</td>
</tr>
<tr>
<td>Back up space in MB</td>
<td>320</td>
<td>1233</td>
</tr>
</tbody>
</table>

Space that is required to bulkload an LDIF file with 1,000,000 entries

<table>
<thead>
<tr>
<th>Size in MB</th>
<th>Small entries</th>
<th>Large entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDIF size in MB</td>
<td>407</td>
<td>8597</td>
</tr>
<tr>
<td>Parse space in MB</td>
<td>1405</td>
<td>9294</td>
</tr>
<tr>
<td>Database space in MB</td>
<td>2779</td>
<td>11864</td>
</tr>
<tr>
<td>Back up space in MB</td>
<td>2793</td>
<td>11866</td>
</tr>
</tbody>
</table>

From this data, you can generalize the amount of space that is needed per entry for the different types of entries. For the smaller entries about 3 KB of space per entry is needed for database storage. For the larger entries, the requirement increases to 12 KB per entry.

The space that is required to back up the database is roughly equivalent to the space needed for the database itself. The space that is required during the parse phase of the bulkload is about 3.5 times the size of LDIF file with the smaller entries. The space that is required for the parse phase of the bulkload is about 1.2 times the size of LDIF file for the larger entries.

Memory requirements

For a directory server to function properly, you must ensure that the system meets the minimum memory requirement.

The runtime memory requirements for the IBM Security Directory Server and the requisite product, IBM DB2, vary based on the following conditions:
- Number of users in the directory server
- Size of the directory server caches
- Size of DB2 buffer pools

When you tune a directory server for performance gain, you must tune the size of the LDAP caches and setting the DB2 buffer pools to AUTOMATIC. When you tune the memory size, you must consider the memory capacity of the system.
Allocating a large amount for the caches might result in an increase in the overall memory requirement. Therefore, cache sizes must be allocated carefully. For more information, see Chapter 2, “Directory server tuning,” on page 7 and Chapter 3, “Tuning DB2 and LDAP caches,” on page 45.

Processor requirements

To improve the directory server performance, you must ensure that the LDAP operations use the processor time efficiently.

You must consider the following guidelines to ensure that the processor is used at its optimum level:

- The required data is available in the caches results in low disk accesses. Accessing data from memory is faster than accessing from disk. If data is accessed from memory, it decreases the time that the processor must wait for input/output to occur.

- Enable simultaneous multithreading (SMT) on systems with hyper-threading capabilities. It increases the processing capability and the application throughput. For more information, see “Simultaneous multithreading” on page 115.

- Systems with fewer processors but greater processor frequency is more efficient than systems with more processors but lower processor frequency. For example, a system with two processors with 1200-MHz speed is faster than a system with four processors with 600-MHz speed.

Processor scaling comparison for search and update throughput

You must determine the search and update throughput values on systems with varying number of processors to identify the best system for your LDAP environment.

Scaling of throughput for varying number of processors

The number of processors and processor speed are the important factors for system performance. To determine the effect of the processors on the directory server performance, all the hardware configurations were kept common, except for the number of processors. The workloads were run on 3 different AIX 5.3 systems with 1, 2, and 4 POWER V processors (1499 MHz) and 6144-MB memory.

On each system, the directory server was loaded with 100,000 entries. The same update and search workload was run on all the systems. The update workload consisted of modify and modrdn operations, while the search workload consisted of root DSE searches along with subtree searches. The entry cache size was set to the default value of 25 KB. The following table shows the results for the search and update workloads with varied number of processors:

Search throughput

The following table shows the throughput numbers for a directory server with 100,000 entries:

<table>
<thead>
<tr>
<th>Number of processors</th>
<th>Throughput</th>
<th>User time</th>
<th>System time</th>
<th>Idle time</th>
<th>Wait time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11129.1</td>
<td>65</td>
<td>35</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
From the results, a dual processor configuration has better throughput than a computer with a single processor. Best results can be obtained by using a multiprocessor computer.

The following graph shows the scaling of the search throughput across varying number of processors:

Update throughput

The following table shows the throughput numbers for a directory server with 100,000 entries:

Table 8. Update throughput for 1, 2, and 4 processors

<table>
<thead>
<tr>
<th>Number of processors</th>
<th>Throughput</th>
<th>User time</th>
<th>System time</th>
<th>Idle time</th>
<th>Wait time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>383.5</td>
<td>65</td>
<td>35</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>398.7</td>
<td>59</td>
<td>34</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>400.4</td>
<td>37</td>
<td>23</td>
<td>40</td>
<td>0</td>
</tr>
</tbody>
</table>

The following graph shows the scaling of the update throughput with varying numbers of processors:
You can use the simultaneous multithreading (SMT) option to simulate a computer with more processors than that are physically present. For more information, see “Simultaneous multithreading.”

Database splits on multiple disks

To improve directory server throughput for search and update operations, you can split the database across multiple disks.

You can split the database across two different disks instead of placing the database on one disk. The test result shows the improvement in the throughput when the database is split across multiple disks. Processor utilization is an important factor that is responsible for improvement in throughput.

<table>
<thead>
<tr>
<th>Database Location</th>
<th>Throughput</th>
<th>IB</th>
<th>LB</th>
<th>CPU %</th>
<th>Idle %</th>
<th>Wait %</th>
<th>AVM (MB)</th>
<th>Memory (KB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>On 1 disk</td>
<td>260</td>
<td>95</td>
<td>74</td>
<td>23</td>
<td>68</td>
<td>8</td>
<td>191</td>
<td>389044</td>
</tr>
<tr>
<td>Split across 2 disks</td>
<td>416</td>
<td>95</td>
<td>74</td>
<td>46</td>
<td>37</td>
<td>16</td>
<td>179</td>
<td>378464</td>
</tr>
</tbody>
</table>

The update workload consists of search and modify operations on a directory with 1 million entries. An AIX 5.3 system with 2 POWER V processors (1499 MHz) and 6144-MB memory is used. The processor idle % is reduced to half when the database is split across two different disks. You can improve the throughput results if you use a high speed hard disk drive to save I/O time.

<table>
<thead>
<tr>
<th>Database Location</th>
<th>Throughput</th>
<th>IB</th>
<th>LB</th>
<th>CPU %</th>
<th>Idle %</th>
<th>Wait %</th>
<th>AVM (MB)</th>
<th>Memory (KB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>On 1 disk</td>
<td>118</td>
<td>92</td>
<td>73</td>
<td>23</td>
<td>68</td>
<td>9</td>
<td>496</td>
<td>400736</td>
</tr>
<tr>
<td>Split across 2 disks</td>
<td>237</td>
<td>93</td>
<td>72</td>
<td>47</td>
<td>36</td>
<td>16</td>
<td>451</td>
<td>398960</td>
</tr>
</tbody>
</table>

Simultaneous multithreading

You can improve the directory server performance if you run the server on a system that can run multiple threads to process an instruction.

Simultaneous multithreading (SMT) is a processor design that combines hardware multithreading with superscalar processor technology. Simultaneous multithreading can use multiple threads to issue instructions each cycle. In certain hardware multithreaded architectures only a single hardware context, or thread, is active on any cycle. SMT supports all thread contexts to simultaneously compete and share processor resources. Unlike conventional superscalar processors, which suffer from a lack of per-thread instruction-level parallelism, simultaneous multithreading uses multiple threads to compensate for low single-thread instruction-level parallelism. Simultaneous multithreading use multiple threads to run different instructions in the same clock cycle by using the process units that the first thread left.
For simultaneous multithreading, the changes that are required to the basic processor architecture are:

- The ability to fetch instructions from multiple threads in a cycle.
- A larger register file to hold data from multiple threads.

The performance benefits of a system that can run simultaneous multithreading are:

- Higher instruction throughput
- Programs are faster for various workloads that include commercial databases, web servers, and scientific applications in both multi-programmed and parallel environments

Frequently asked questions about simultaneous multithreading on AIX

You can verify whether your system supports simultaneous multithreading (SMT) on AIX. If the AIX system supports SMT, activate it to improve server performance.

How would I know whether an AIX system can use simultaneous multithreading?

A system can use SMT if it is a POWER5 based system with AIX 5L™, Version 5.3 or later installed.

How would I know whether SMT is active for an AIX system?

When you run the `smtctl` command without any parameters, the command generates an output with the SMT status.

Whether SMT is supported by the 32-bit kernel?

Yes, SMT is supported for both 32-bit and 64-bit kernel.

How do I activate or deactivate SMT?

You can activate or deactivate SMT by running the `smtctl` command. The `smtctl` command has the following syntax:

```
smtctl [-m off | on [-w boot | now]]
```

The `smtctl` command takes the following parameters:

- `-m off`
 Sets SMT mode to disabled.
- `-m on`
 Sets SMT mode to enabled.
- `-w boot`
 Makes the SMT mode change effective on next and subsequent restarts if you run the `bosboot` command before the next system restart.
- `-w now`
 Makes the SMT mode change immediately but the change does not persist across restart.

If the `-w boot` or the `-w now` parameter are specified, the mode change is made immediately. The mode persists across subsequent restarts if you run the `bosboot` command before the next system restart.
Appendix A. An example workload description

To configure a directory server with optimal settings for performance improvements, you must identify the data type and workload of your LDAP environment.

To obtain the performance results for your directory server, the performance tests must be a mix of base search and mixed job. The mixed job can include the update, search, and compare operations. You can divide the performance test scenarios in two phases, a warm-up phase and a run phase. During the warm-up phase, the search operations primarily request entries that are not in the LDAP caches. Most of these requests require interaction with the DB2 database. Before you consider recording the test results, you must run all the queries a minimum of one time in the warm-up phase. In the run phase LDAP cache memory might contain all the requested entries if the caches are large enough to hold all entries. The warm-up phase and the run phase can consist of two distinctly different workloads.

In the run phase, configure the client threads to send search requests to the directory server from the predetermined scripts (clients). The scripts can include different kinds of operations, including base searches, update, and compare operations that return multiple entries for each request. You can configure the time for which the client threads must run through their scripts. You must measure the throughput on the server at an interval of 1 minute. A 10-minute interval is referred to as a run. You must not restart the directory server between the runs.
Appendix B. TCP/IP settings

You can verify and update the TCP/IP parameter values if you observe timeout failures when you access a directory server.

If an LDAP server is protected behind a firewall, socket connection requests might timeout and can result in intermittent authentication failures. The socket connection request failures are because of a mismatch between the connection timeout settings of firewall and the frequency of keep alive network packets of an operating system. If socket connection failures occur, decrease the operating system network parameters that control the interval between the keep alive packets. The interval between two subsequent keep alive packets are also referred as the keep alive interval.

The parameters that control the keep alive frequency vary with each operating system. You must set the keep alive interval value lesser than the connection timeout value of the firewall. If you do not know the value of the firewall setting, set keep alive interval value to 2 minutes and verify.

The closed TCP/IP connections between the client and the LDAP server are cleaned at system-specified intervals. The LDAP server performance might degrade in environments where the connections are opened or closed at a high frequency. On Microsoft Windows systems, you can modify the registry keys to reduce the interval between the cleaning process.

Examples

Example 1

To change the TCP/IP parameter values on an AIX system, run the following command:

```
no -o parametername=value
```

You can use the command to change the following parameter values:

tcp_keepidle

Specifies the duration of time to keep the connection active. If you set this parameter, TCP generates a KEEPALIVE transmission for an application that requests to keep connection active. This value is defined in half second (1/2) unit and defaults to 14,400 units (7200 seconds or 2 hours). The **tcp_keepidle** parameter is a runtime parameter. You must assign a value to **tcp_keepidle** that is less than the connection timeout value of the firewall. If you do not know the value of the firewall setting, set keep alive interval value to 2 minutes and verify.

tcp_keepinit

Sets the initial timeout value for a TCP connection. This value is defined in half second (1/2) unit, and defaults to 150 (75 seconds). You can change the value with the **-o** parameter. The **tcp_keepinit** parameter is a runtime parameter.

tcp_keepintvl

Specifies the interval between packets that are sent to validate the
connection. This value is defined in half second (1/2) unit, and defaults to 150 (75 seconds). The `tcp_keepintvl` parameter is a runtime parameter.

Example 2

To change the TCP/IP settings on a Windows system, set the following registry keys:

Note: You must set the parameters on both the client and server systems.

1. Access the command prompt.
2. Run the `regedit` command to open Registry Editor.

 > regedit
3. In the Registry Editor window, expand `Computer > HKEY_LOCAL_MACHINE > SYSTEM > CurrentControlSet > services > Tcpip > Parameters`.
4. If the `TcpTimedWaitDelay` entry is not in the registry, add `TcpTimedWaitDelay`.
5. Set the DWORD value of the `TcpTimedWaitDelay` entry to 1e, which sets the value to 30 seconds.
6. If the `StrictTimeWaitSeqCheck` entry is not in the registry, add `TcpTimedWaitDelay`.
7. Set the DWORD value of the `StrictTimeWaitSeqCheck` entry to 1.
8. Restart the system.
Appendix C. System configurations

To install and configure IBM Security Directory Server, you must use a system that meets the minimum hardware and software requirements.

To run performance tests and measure the test results, the following system configurations are used:

Client configurations
- **System with SLAMD server**
 - One 2x3.2 GHz, 2048-MB memory, Intel PRO/100 VE
 - Red Hat Enterprise Linux (RHEL) 5

- **System with SLAMD clients**
 - Five 2x3.2 GHz, 2048-MB memory, Intel PRO/100 VE
 - Red Hat Enterprise Linux (RHEL) 5

Server configurations
- 4-Way 1.6 GHz, System p Model IBM 9118-575 with 1 or 4 processors active, 31744-MB memory
- AIX 5.3 ML 13
- IBM 10/100 Ethernet adapter
- IBM Security Directory Server, version 6.3.1
- AIXTHREAD_SCOPE=S
- MALLOCTYPE=buckets
- NODISCLAIM=true (one way)
- RDBM_CACHE_SIZE=460000 (except where noted)
- RDBM_FCACHE_SIZE=75000 (except where noted)
- RDBM_CACHE_BYPASS_LIMIT=100 (except where noted)
- Created indexes for the frequently accessed attributes
- No ACLs are set. By default, any user can search and compare. The directory administrator can update.

Configurations for IBM DB2
- IBM DB2, version 9.7
- maxlocks 100, sorheap 2500, dbheap 5000, ibmdefaultbp 20000 (4K pages), ldapbp 9800 (32K pages)
- logfilsiz 2048, logprimary 6

Miscellaneous configuration settings
- Run all scripts for a minimum of one time to load caches.
- Measurements were taken with 15 threads per client except where noted.
- DB2 log files are not on the same disk as the containers.
Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuoku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.
IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurement may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and distribute these sample programs in any form without payment to IBM for the purposes of developing, using, marketing, or distributing application programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information in softcopy form, the photographs and color illustrations might not be displayed.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at “Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml.

Adobe, Acrobat, PostScript and all Adobe-based trademarks are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, other countries, or both.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency which is now part of the Office of Government Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.

UNIX is a registered trademark of The Open Group in the United States and other countries.
Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license therefrom.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.
Index

A
accessibility x
AIX 83
ibmslapd, environment variables 86
simultaneous multithreading 116
SMT 116
AIX on POWER
data prefetch 83
analyzing performance 48
attribute cache
configuration 38

B
bulkload
load space requirement 111

C
cache entry size 37
caches
configuration variables 38
caches, LDAP
directory size 43
capacity planning
directory server 107
change log
directory server 105
components 1
configuration
suffixes 21
configuring
ACL cache, entry cache, filter cache
Web Administration Tool 40
attribute cache
command line 39
Web Administration Tool 38
LDAP cache configuration variables
command line 41
creating
indexes
command line 79
Web Administration Tool 79

D
data prefetch
discard command 83
database
splits on multiple disks 115
DB2 buffer pool 48
DB2 buffer pools
cache types 3
DB2 buffer pools (continued)
directory size 43
IBMDEFALTBP 3
LDAPBP 3
tuning considerations 46
tuning overview 45
DB2 configuration parameters
DBHEAP 80
LOGFILSZ 80
DB2 database
indexes 78
reorg 74
reorgchk 72
table space 65
DB2 query optimization
DB2 selectivity 75
LDAP_DESC, AEID literal value 76
LDAP_ENTRY, PEID literal value 76,
77
LDAP_MAXCARD 75
directory server
ACL cache 29
backup and restore 8
bulkload 91
directory server database
change log 107
directory server, add
suffix entries 22
directory server, applications 1
directory server, attribute cache
example 30
directory server, audit log
tune 20
directory server, back up and restore
commands
idsdbback 8
idsdbrstore 8
directory server, bypass limit
filter cache 35
directory server, cache
attribute 30
directory server, caches
DB2 buffer pools 2
LDAP caches 2
directory server, commands
tune server 27
directory server, components
tuning 7
directory server, configuration
index, LDAP_DESC (AEID,DEID) 19
suffixes 21
directory server, DB2 statistics
update 23
directory server, features
tuning overview 91
directory server, filter cache
bypass limit 35
size 33
size with updates 34
directory server, index
LDAP_DESC (AEID,DEID) 19
directory server, LDAP caches
cache types 2
general information 2
directory server, LDIF utilities
bulkload 8
db2lslld 8
ldif2db 8
directory server, methods to add
user entries 22
directory server, monitor
performance 28
directory server, performance
monitor 28
directory server, process queries
LDAP filter cache 5
directory server, replication
concurrent update 28
directory server, start
server 14, 27

© Copyright IBM Corp. 2003, 2013
directory server, suffix configuration 21
directory server, tune ACLs 22
attribute cache 29
audit log 20
LDAP caches 28
directory server, tune options attribute cache 29
directory server, tuning change log 20
commands 27
features overview 91
overview 1
roadmap 7
tasks 7
directory server, update DB2 statistics 23
suffix entries 22
directory server, user entries methods to add 22
directory size measuring effect on performance 43
size of LDAP caches 43
education xi
everty cache determining entry size 37
entry cache size 35
environment variable SLAPD_OCHSELECT_USECS 42
filter cache bypass limit 35
determining entry size 37
size with updates 34
filter cache, optimum filter cache size 33
size 33
filter cache, update optimum size 34
IBM
Software Support xi
Support Assistant xi
index
LDAP_DESC (AEID,DEID) 19
interaction 1
large files 83
LDAP filter cache processing queries 33
ldapsearch (continued)
cn=changelog, cn=monitor 104
LDIF data buildload 91
disk requirement 108
load time requirement 109
loading
LDIF data
time and space requirement 108
settings (continued)
ibm-
slapdMaxTimeLimitOfTransactions 42
ibm-
slapdPagedResAllowNonAdmin 42
ibm-slapdPagedResLmt 42
ibm-slapdSizeLimit 42
ibm-slapdSortKeyLimit 42
ibm-
slapdSortSrchAllowNonAdmin 42
ibm-slapdTimelimit 42
TCP/IP settings
directory server 119
terminology ix
training xi
transaction logs disk requirement 51
troubleshooting xi
tune
directory server audit log 20
tune, directory server ACLs 22
tuning
AIX 83
audit log 97
change log 20
commands 27
database connections 55
dB2 database 51
DB2 transaction log size 50
hardware 87, 89
proxy server 98
tuning, DB2 general information 4
tuning, directory server caches, LDAP 3
general overview 1
overview 3
update methods
DB2 statistics 23
viewing
DB2 system statistics 70
query optimization, DB2
LDAP_DESC, AEID literal value 76
LDAP_ENTRY, FEID literal value 77
replication concurrent update 28
context cache size 95
number of replication threads 94
ready size limit 96
settings ibm-slapdIdleTimeOut 42
ibm-
slapdMaxEventsPerConnection 42
ibm-slapdMaxEventsTotal 42
ibm-slapdMaxNumOfTransactions 42
ibm-slapdMaxOpPerTransaction 42