IBM PowerHA SystemMirror for AIX
Standard Edition
Version 7.2

PowerHA SystemMirror commands
IBM PowerHA SystemMirror for AIX

Standard Edition

Version 7.2

PowerHA SystemMirror commands

IBM
Before using this information and the product it supports, read the information in "Notices" on page 103.

This edition applies to IBM PowerHA SystemMirror 7.2 Standard Edition for AIX and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2017, 2018.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
Contents

About this document
- Highlighting ... v
- Case sensitivity in AIX v
- ISO 9000 .. v
- Related information v

PowerHA SystemMirror commands
- What's new in PowerHA SystemMirror Commands 1
- cli_availability command 2
- cli_clstop command 3
- cli_convert command 4
- cli_ezupdate command 5
- cli_lsfs command 7
- cli_lgroup command 8
- cli_lsiv command 9
- cli_userr command 10
- cli_lsiv command 11
- cli_nodecmd command 12
- cli_rc_cluster command 12
- cli_analze command 13
- cli_convert_snapshot command 16
- cli_check_server command 17
- cli_findres command 18
- cli_getactivenodes command 18
- cli_getaddr command 18
- cli_assign_pvids command 19
- cli_chfs command 19
- cli_chlv command 20
- cli_chvg command 23
- cli_crsf command 25
- cli_crlfs command 26
- cli_extendlv command 27
- cli_extendvg command 28
- cli_importvg command 28
- cli_mirrorvg command 29
- cli_mklv command 30
- cli_mklvcopy command 33
- cli_mkv command 34
- cli_on_cluster command 36
- cli_on_node command 37
- cli_reducevg command 37
- cli_replacepv command 38
- cli_rmfs command 38
- cli_rmlv command 39
- cli_rmlvcopy command 39
- cli_syncvg command 39
- cli_unmirrorvg command 40
- cli_updatevg command 41
- cli_smscf command 41
- cli_sdisk command 42
- cli_sfs command .. 42
- cli_sgrp command 42
- cli_sparam command 43
- cli_sres command 43
- cli_sserv command 44
- cli_ssvg command 44
- cli_smgr command 45
- cli_passwd command 46
- cli_rlcmd command 89
- cli_reducvg command 93
- cli_replcpv command 93
- cli_rsvcs command 93
- cli_stop command 94
- cli_storinfo command 95
- cli_varyonvg command 98
- cli_varyoffvg command 98
- cli_get_local_nodename command 99
- cli_hlevel command 99
- cli_rc_cluster command 100

Notices
- Privacy policy considerations 105
- Trademarks .. 105

Index
- .. 107
About this document

You can use commands to manage and configure PowerHA® SystemMirror® clusters. Each command has syntax and examples.

Highlighting

The following highlighting conventions are used in this document:

Bold

Identifies commands, subroutines, keywords, files, structures, directories, and other items whose names are predefined by the system. Bold highlighting also identifies graphical objects, such as buttons, labels, and icons that you select.

Italics

Identifies parameters for actual names or values that you supply.

Monospace

Identifies examples of specific data values, examples of text similar to what you might see displayed, examples of portions of program code similar to what you might write as a programmer, messages from the system, or text that you must type.

Case sensitivity in AIX

Everything in the AIX® operating system is case sensitive, which means that it distinguishes between uppercase and lowercase letters. For example, you can use the `ls` command to list files. If you type `LS`, the system responds that the command `is not found`. Likewise, `FILEA`, `FiLea`, and `filea` are three distinct file names, even if they reside in the same directory. To avoid causing undesirable actions to be performed, always ensure that you use the correct case.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Related information

- The PowerHA SystemMirror Version 7.2 for AIX PDF documents are available in the PowerHA SystemMirror 7.2 PDFs topic.
- The PowerHA SystemMirror Version 7.2 for AIX release notes are available in the PowerHA SystemMirror 7.2 release notes topic.
PowerHA SystemMirror commands

The following commands are commonly used to obtain information about the cluster environment or to run a specific function. Each of the following commands has syntax and examples.

For complete information on a command's capabilities and restrictions, see the man page. Man pages for PowerHA SystemMirror for AIX commands are installed in the /usr/share/man/info/EN_US/a_doc_lib/cmds/powerha_cmds directory.

To view the man page information for a command, use the following command:

```
man command-name
```

The `command-name` is the actual name of the PowerHA SystemMirror command or script. For example, enter `man clpasswd` to obtain information about the PowerHA SystemMirror `clpasswd` command.

What's new in PowerHA SystemMirror Commands

Read about new or significantly changed information for the PowerHA SystemMirror commands topic collection.

How to see what's new or changed

In this PDF file, you might see revision bars (|) in the left margin that identifies new and changed information.

December 2018

The following information is a summary of the updates that were made to this topic collection:

- Added the "cl_availability command" on page 2 that generates a text report displaying the duration of events that occurred in the cluster.
- Added the following operations in the "clmgr command" on page 45:
 - `clmgr add backup_profile`
 - `clmgr modify backup_profile`
 - `clmgr delete backup_profile`
 - `clmgr query backup_profile`

February 2018

Updated information about the add cluster and manage cluster operations in the "clmgr command" on page 45 topic.

January 2018

Updated information about the Manage attribute of an online cluster in the "clmgr command" on page 45 topic.

December 2017

The following information is a summary of the update that is made to this topic collection:

- Added the "clanalyze command" on page 13 topic to support log analysis feature.
- Added information about rollback feature in the "cl_ezupdate command" on page 5 topic.

© Copyright IBM Corp. 2017, 2018
• Updated the following topics:
 – “clRGinfo command” on page 84
 – “clmgr command” on page 45

cl_availability command

Purpose

The cl_availability tool generates a text report that shows the duration of events that occurred in the cluster. The tool can generate a node-centric report that shows the duration of the latest event and the average duration for the last five events. Optionally, the cl_availability tool can produce a resource group centric report that shows the duration required to acquire a resource group acquire and to release of resource groups on each node. Both the node-centric report and the resource group centric report can show durations required to acquire and release the resources that are contained in the resource groups.

Syntax

```
cl_availability [-n ALL|<node_name>[,<node_name#2>]]
cl_availability -d [-n ALL|<node_name>[,<node_name#2>]]
cl_availability [-r ALL|<resource_group>[,<resource_group#2>]]
cl_availability -d [-r ALL|<resource_group>[,<resource_group#2>]]
cl_availability [-s ALL|<site_name>[,<site_name#2>]]
cl_availability -d [-s ALL|<site_name>[,<site_name#2>]]
cl_availability [-v [-n ALL|<node_name>[,<node_name#2>]]]
cl_availability [-m [-n ALL|<node_name>[,<node_name#2>]]]
cl_availability [-R <resource_type>:ALL|resource_name[,resource_name#2]>]
```

Options

- `-n` Displays node-centric report for specified nodes.
- `-d` Displays a detailed report that captures the time taken for each sub-event or operation.
- `-r` Displays a resource group centric report for specified resource groups.
- `-s` Displays a site centric report for specified sites.
- `-v` Displays the verification and synchronization reports.
- `-R` Displays a resource group centric report.

 Resource type can be `service_ip`, `volume_group`, applications, file system, Network File System (NFS), or `WPAR_NAME`.
- `-m` Displays the miscellaneous events report such as the Network Events Report.

Examples:

1. To display node-centric reports for all the specified nodes, enter:

   ```
   cl_availability -n ALL
   ```

2. To display a detailed report that captures the time taken for each sub-event or operation in the nodes, enter:

   ```
   cl_availability -d -n node1,node2
   ```
3. To display the service_ip centric report, enter:
 cl_availability -R service_ip
4. To display the service_ip centric report for different service IP addresses, enter:
 cl_availability -R service_ip ip1,ip2
5. To display all node-centric reports and miscellaneous event reports such as the network events report, enter:
 cl_availability -m -n ALL
6. To display the verification and synchronization reports, enter:
 cl_availability -v

cl_clstop command

Purpose

Stops cluster daemons using the System Resource Controller (SRC) facility.

Syntax

cl_clstop [-cspoc "[-f] [-n NodeList | -g ResourceGroup]"] -f
cl_clstop [-cspoc "[-f] [-n NodeList | -g ResourceGroup]"] -g [-s] [-y] [-N | -R | -B]

Description

The cl_clstop command shuts down cluster services across cluster nodes. By default, the cl_clstop command stops cluster services across all cluster nodes. However, you can specify the list of nodes on which to stop cluster services. The cl_clstop stops the cluster daemons by using the System Resource Controller (SRC). You stop the cluster daemons by using the gracefully option or forcefully option. The command optionally removes automatic start on reboot through the entry in the /etc/inittab file. You must specify a node list if the cluster daemons are being shut down by using the gracefully with takeover option. By default, the cl_clstop command requires that all nodes in a cluster or all nodes in a node list are accessible over the network and online; otherwise, the cl_clstop command fails.

Flags

-cspoc
You can use the following arguments for the C-SPOC options:

-f Forces C-SPOC command to skip default verification. If this flag is set and a cluster node is not accessible, the cl_clstop command reports a warning and continues execution on the other nodes.

-n NodeList
Shuts down cluster services on the nodes that are specified in the node list.

-g ResourceGroup
Generates a list of nodes that are participating in the resource group on which the cl_clstop command is run.

-f Forces a shutdown. Cluster daemons terminate without running any local procedures.

-g Graceful shutdown with no takeover.

-gr Graceful shutdown with the resources that are being released by this node and taken over by another node. The daemon terminates gracefully, and the node releases its resources, which are taken over. A node list must be specified for graceful shutdown with takeover.

-s Performs a silent shutdown. This flag does not broadcast a shutdown message through wall command. The default setting is to broadcast.
-y Do not ask operator for confirmation before shutting down the cluster nodes. This flag is the default.
-B Stop now and on subsequent system restart.
-N Shut down now.
-R Stops on subsequent system restart and removes the entry in the /etc/inittab file.

Examples
1. To shut down the cluster node by using the gracefully with takeover option on node1 (releasing the resources) without sending a warning message to users before the cluster processes are stopped and resources are released, enter:
 cl_clstop -cspoc "-n node1" -ysNgr
2. To forcefully and immediately shut down the cluster on all cluster nodes (resources not released) with a warning message that is broadcast to users before the cluster processes are stopped, enter:
 cl_clstop -yNf
3. To shut down the cluster node by using the gracefully on all cluster nodes options with a warning message that is broadcast to users before the cluster processes are stopped, enter:
 cl_clstop -yg

Note: If you do not specify either the -g or -n flags, the default action occurs on all cluster nodes.

Related reference:
“clmgr command” on page 45

cl_convert command

Purpose
Upgrading PowerHA SystemMirror software to the newest version involves converting the Configuration Database from a previous release to that of the current release. When you install PowerHA SystemMirror, cl_convert is run automatically. However, if installation fails, you must run cl_convert from the command line. Root user privilege is required to run cl_convert.

Syntax
[-F] -v < release> [-s < simulationfile>] [-i]

Description
The command copies the previous version’s ODM data to the new version’s ODM structure. If fields were deleted in the new version, the data is saved to /tmp/cl_convert_PowerHA SystemMirror_OLD. The command then ensures that the data is in the correct form for the new version.

When the new version is installed, the install script adds the suffix OLD to the PowerHA SystemMirrorxxx classes stored in the /etc/objrepos directory, and it creates the new PowerHA SystemMirrorxxx classes for the new version. The install script issues the cl_convert command which converts the data in PowerHA SystemMirrorxxxOLD to the corresponding new classes in PowerHA SystemMirrorxxx.

You may run the cl_convert command from the command line, but it is expecting the PowerHA SystemMirrorxxx and PowerHA SystemMirrorxxxOLD ODM’s to already exist.

You may want to run the cl_convert command with the -F option. If the option is not specified, the cl_convert command checks for configured data in the new ODM class PowerHA SystemMirrorcluster. If data is present, the command exits without performing the conversion. If the -F option is specified, the command will continue without checking for present data.
Note that `cl_convert` copies the PowerHA SystemMirrorxxx and PowerHA SystemMirrorxxxOLD ODM's to a temporary file (`/tmp/tmpodmdir`) for processing before writing the final data to the PowerHA SystemMirrorxxx ODM's. If `cl_convert` encounters any kind of error, the PowerHA SystemMirrorxxx ODM's are not overwritten. If no error occurs, the PowerHA SystemMirrorxxx ODM's are overwritten and the install script will remove the PowerHA SystemMirrorxxxOLD ODM's.

Note that you must be in the conversion directory to run this command:

```
/usr/es/sbin/cluster/conversion
```

Also, `cl_convert` assumes that the correct value for ODMDIR is set. The results of `cl_convert` can be found in `/tmp/clconvert.log`.

Flags

- **-F** Force flag. Causes `cl_convert` to overwrite existing ODM object classes, regardless of the number of existing entries. Omitting this flag causes `cl_convert` to check for data in PowerHA SystemMirrorcluster (which there will always be from the previous configuration) and exit if data is encountered.

- **-v** Release version flag. Indicates the release number of the old version.

 Important: Do not use the `cl_convert` command unless you know the version from which you are converting.

- **-s <simulation_file>**

 Simulation flag. Indicates that instead of writing the resulting ODM data back to the new PowerHA SystemMirrorxxx ODM's, write to the specified file in text format.

- **-i** Ignore copy flag. Specifies not to copy the PowerHA SystemMirrorxxxOLD data to the new PowerHA SystemMirrorxxx ODM's, but just operate directly on the new PowerHA SystemMirrorxxx ODM's. This is used primarily by `clconvert_snapshot`.

Note: The AIX environmental variable ODMDIR must be set to the directory you want to convert.

Example

If a cluster is already configured for a previous release, during the installation of a new version of PowerHA SystemMirrorxx, the installing script will call `cl_convert` as:

```
cl_convert -F -v <version of prior release>
```

`cl_ezupdate` command

Purpose

Manages PowerHA SystemMirror and AIX software updates across the entire cluster, often without interrupting workloads that are currently running.

Syntax

```
cl_ezupdate [-v] -h
cl_ezupdate [-v] -Q {cluster|node|nim|lpp} [-N <node1,node2,...>]
cl_ezupdate [-v] {-Q {lpp|all} |-A|-R} [-U -N <node1:hdisk1 hdisk2 hdisk3*,node2:hdisk2,...>]
cl_ezupdate [-v] {-Q {lpp|all} |-A|-R} [-U -N <node1:hdisk1 hdisk2 hdisk3*,node2:hdisk2,...>]
cl_ezupdate [-v] {-Q {lpp|all} |-A|-R} [-U <Multiple -N instances, each giving a *node:hdisk* pair> ...]
-s <repository> [-F]
```
You can use the `cl_ezupdate` command to query information about the current cluster configuration and available software updates such as AIX and PowerHA SystemMirror service packs, interim fixes, and technology levels. You can also use the `cl_ezupdate` command to preview the installation of updates and to apply or reject updates.

To use the `cl_ezupdate` tool, each node must have access to updates that you want to install. The updates can be located on a Network Installation Management (NIM) server or in a shared file system.

The `cl_ezupdate` tool provides an automatic comparison of the available updates on each of the nodes. If using NIM, all nodes must be configured to access the same `lpp_source` resource and contents. If the repository is a local file system directory, the local node is the reference node. The `cl_ezupdate` tool provides an automatic copy of the local file system when the file system does not exist or is empty on any of the nodes.

If you run the `cl_ezupdate` tool and if an error occurs in a node during an installation or uninstallation process, you can use the rollback feature of the `cl_ezupdate` tool to return the node to the previous state. When you use the rollback feature, you can choose to roll back only the node that encountered the error or roll back all nodes that were updated.

The rollback process creates a copy of the rootvg volume group on each node by using the `alt_disk_copy` command and reboots the copy of the rootvg volume group when an error occurs during the installation or removal of service images. For the rollback process, one `hdisk` must be present on each node that can contain a copy of the rootvg volume group.

Flags

- `-A` Applies the updates that are available in the location that is specified by the `-S` flag.
- `-C` Commits software updates to the latest installed version of PowerHA SystemMirror or the AIX operating system.
- `-F` Forces installation of the service pack. If an interim fix has locked a fileset and if the updates are halted from installation, this flag removes the lock and installs the service pack.

 Note: This flag must always be used with the `-A` flag.
- `-H` Displays the help information for the `cl_ezupdate` command.
- `-Q` Queries the status of the Network Installation Management (NIM) setup, cluster software, or available updates. The value option is `cluster`, `node`, `nim`, or `lpp`.
- `-N` Specifies the node names where you want to install updates. If you specify multiple node names, you must separate each node name with a comma. By default, updates are installed on all nodes in a cluster. If the `-U` or `-u` flag is specified to enable the rollback feature, the `-N` flag specifies a `<node name>:hdisk` pair. If a node has multiple `hdisks` for rootvg volume group, multiple `-N` arguments are required to map the node to each of the `hdisks`. An example follows:

  ```
  -N node1:hdisk1 -N node1:hdisk2 -N node1:hdisk3 -N node2:hdisk1
  ```
- `-P` Runs the cluster installation in `preview` mode. When you use `preview` mode, all of the installation prerequisites are checked, but updates are not installed on the system.
- `-R` Rejects non-committed service pack that is installed and stored in the location that is specified by the `-S` flag.
- `-S` Specifies location of the update image that are to be installed. If you specify a file system name, the path must begin with a Forward Slash key (`/`). If you do not specify a Forward Slash key (`/`), the `lpp_source` location of the NIM server will be used for installing updates.
- `-V` Displays extended help information.
-I Specifies an interactive mode. If you specify the value as yes, you must specify whether the rollback feature must continue to run when an error is shown. The interactive mode is active by default. If you specify the value as no, the interactive mode is turned off and you are not prompted before you start the rollback operation.

-U Enables rollback of all modified nodes when an error occurs during an Apply or Reject operation.

-u Enables rollback of only the node that encountered an error during an Apply or Reject operation.

-X Exits after creating a copy of rootvg volume group by using the alt_disk_copy command on each node. You must use the -x argument to use the alternative copies of rootvg volume group for rollback operation on subsequent runs.

-x Specifies not to create the copy of rootvg volume group by using the alt_disk_copy command on each node for rollback operation. If the rootvg volume group fails, you can use disks that are specified in the -N argument for the rollback operation.

-T Specifies the timeout value for the backup operation of the rootvg volume group in minutes. If the rootvg volume group was not copied before the specified timeout value, the operation exits. The default value of this flag is infinite.

Output File

Output from the cl_ezupdate command is captured in the /var/hacmp/EZUpdate/EZUpdate.log file.

Examples

1. To display information about the NIM server, enter the following command:
 cl_ezupdate -Q nim

2. To check and display contents of updates that are available, enter the following command:
 cl_ezupdate -Q lpp -S /tmp/lppsource/inst.images

3. To install an update in an apply mode, enter the following command:
 cl_ezupdate -A -S HA_v720_SP1

4. To force an installation of PowerHA SystemMirror or AIX updates that are located on a NIM server and the affected filesets are locked by an interim fix, enter the following command:
 cl_easyupdate –A –F –S HA_v720_SP1

5. To install an update on all nodes of a three-node cluster that is on a NIM server in apply mode with the rollback feature enabled, so that all nodes that are altered are rolled back to the previous rootvg state, enter the following command:
 cl_ezupdate -A -U Multiple -N arguments are given,node2:hdisk5,node3:hdisk2 -S HA_v720_SP1

6. To install an update on all nodes of a three-node cluster that is on a NIM server in apply mode with the rollback feature enabled, so that all nodes that are altered are rolled back to the previous rootvg state and if an error occurs during the installation process, roll back the error node without prompting the user, enter the following command:
 cl_ezupdate -A -X No -U -N node1:hdisk3,node2:hdisk5,node3:hdisk2 -S HA_v720_SP1

cl_lsfs command

Purpose

Displays the characteristics of shared file systems.

Note: Arguments associated with a particular flag must be specified immediately following the flag.

Syntax

cl_lsfs [-cspoc"[-f] [-g ResourceGroup | -n Nodelist]" [-q] [-c | -l] FileSystem]...
Flags

-cspoc
Argument used to specify one of the following C-SPOC options:
- f - This option has no effect when used with the cl_lsfs command.
- g ResourceGroup - Generates the list of nodes participating in the resource group where the command will be executed.
- n nodelist - Runs the command on this list of nodes. If more than one node, separate nodes listed by commas.
- c Specifies a different search pattern to determine if the underlying AIX lsfs command returned data or not.
- l Specifies that the output should be in list format.
- q Queries the logical volume manager (LVM) for the logical volume size (in 512-byte blocks) and queries the JFS superblock for the file system size, the fragment size, the compression algorithm (if any), and the number of bytes per i-node (nbpi). This information is displayed in addition to other file system characteristics reported by the lsfs command.

Examples
1. To display characteristics about all shared file systems in the cluster, enter:
 cl_lsfs
2. Display characteristics about the file systems shared amongst the participating nodes in resource_grp1.
 cl_lsfs -cspoc "-g resource_grp1"

cl_lsgroup command

Purpose
Displays attributes of groups that exist on a PowerHA SystemMirror cluster.

Note: Arguments associated with a particular flag must be specified immediately following the flag.

Syntax
cl_lsgroup [-cspoc "[-f] [-g ResourceGroup | -n Nodelist] [-c|-f] [-a | -a List] [ALL | Group [,Group] ...]

Flags

-cspoc
Argument used to specify the following C-SPOC option:
- f - This option has no effect when used with the cl_lsgroup command.
- g ResourceGroup - Generates the list of nodes participating in the resource group where the command will be executed.
- n nodelist - Runs the command on this list of nodes. If more than one node, separate nodes listed by commas.
- a List Specifies the attributes to display. The List parameter can include any attribute defined in the chgroup command, and requires a blank space between attributes. If you specify an empty list using only the -a flag, only the group names are listed.
- c Displays the attributes for each group in colon-separated records, as follows:
 # name: attribute1: attribute2:...
 Group: value1:value2: ...
-f Displays the group attributes in stanzas. Each stanza is identified by a group name. Each
 Attribute=Value pair is listed on a separate line:

 group:
 attribute1=value
 attribute2=value
 attribute3=value

ALL | group [group]...
 All resource groups, or particular group or groups to display.

Examples
1. To display the attributes of the finance group from all cluster nodes enter:
 cl_lsgroup finance
2. To display in stanza format the ID, members (users), and administrators (adms) of the finance group
 from all cluster nodes, enter:
 cl_lsgroup -f -a id users adms finance
3. To display the attributes of all the groups from all the cluster nodes in colon-separated format, enter:
 cl_lsgroup -c ALL

cl_lslv command

Purpose
Displays shared logical volume attributes.

Note: Arguments associated with a particular flag must be specified immediately following the flag.

Syntax
cl_lslv [-cspoc "[-f] [-g ResourceGroup | -n Nodelist"]] [-l | -m] LogicalVolume

Flags
-cspoc
 Argument used to specify one of the following C-SPOC options:
 -f - This option has no effect when used with the cl_lslv command.
 -g ResourceGroup - Generates the list of nodes participating in the resource group where the command
 will be executed.
 -n Nodelist - Runs the command on this list of nodes. If more than one node, separate nodes listed by
 commas.

-l Logical Volume
 Lists information for each physical volume in the shared logical volume. Refer to the lslv command
 for information about the fields displayed.

-m Logical Volume
 Lists information for each logical partition. Refer to the lslv command for information about the fields
 displayed. If no flags are specified, information about the shared logical volume and its
 underlying shared volume group is displayed. Refer to the lslv command for the information about
 the fields displayed.

Examples
1. To display information about the shared logical volume lv03, enter:
 cl_lslv -cspoc -g resource_grp1 lv03
Information about logical volume lv03, its logical and physical partitions, and the volume group to which it belongs is displayed.

2. To display information about a specific logical volume, using the identifier, enter:

 cl_lslv -g resource_grp1 00000256a81634bc.2

 All available characteristics and status of this logical volume are displayed.

cl_lsuser command

Purpose

Displays user account attributes for users that exist on a PowerHA SystemMirror cluster.

Note: Arguments associated with a particular flag must be specified immediately following the flag.

Syntax

cl_lsuser [-cspoc "[-f] [-g ResourceGroup | -n Nodelist]" | [-c | -f] [-a List] {ALL | Name [,Name] ... }

Flags

- **-cspoc**

 Argument used to specify the following C-SPOC option:

 - **-f** - This option has no effect when used with the cl_lsuser command.

 - **-g ResourceGroup** - Generates the list of nodes participating in the resource group where the command will be executed.

 - **-n Nodelist** - Runs the command on this list of nodes. If more than one node, separate nodes listed by commas.

- **-a Lists**

 Specifies the attributes to display. The List variable can include any attribute defined in the chuser command and requires a blank space between attributes. If you specify an empty list, only the user names are displayed.

- **-c**

 Displays the user attributes in colon-separated records, as follows:

 # name: attribute1: attribute2: ...
 User: value1: value2: ...

- **-f**

 Displays the output in stanzas, with each stanza identified by a user name. Each Attribute=Value pair is listed on a separate line:

 user:
 attribute1=value
 attribute2=value
 attribute3=value

Examples

1. To display in stanza format the user ID and group-related information about the smith account from all cluster nodes, enter:

 cl_lsuser -fa id pgrp groups admgroups smith

2. To display all attributes of user smith in the default format from all cluster nodes, enter:

 cl_lsuser smith

3. To display all attributes of all the users on the cluster, enter:

 cl_lsuser ALL
cl_lsvg command

Purpose
Displays information about shared volume groups.

Note: Arguments associated with a particular flag must be specified immediately following the flag.

Syntax
cl_lsvg [-cspoc "[-f] [-g ResourceGroup | n- Nodelist]" [-o] |[-l | -M | -p] Volume Group...INFO HERE

Flags
-cspoc
 Argument used to specify one of the
 -f - This option has no effect when used with the cl_lsvg command.
 -g ResourceGroup - Specifies the name of the resource group whose participating nodes share the
 volume group. The command executes on these nodes.
 -n Nodelist - Runs the command on this list of nodes. If more than one node, separate nodes listed by
 commas.

-p
 Lists the following information for each physical volume within the group specified by the
 VolumeGroup parameter:
 - Physical volume: A physical volume within the group.
 - PVstate : State of the physical volume.
 - Total PPs : Total number of physical partitions on the physical volume.
 - Free PPs : Number of free physical partitions on the physical volume.
 - Distribution : The number of physical partitions allocated within each section of the physical
 volume: outer edge, outer middle, center, inner middle, and inner edge of the physical volume.

-l
 Lists the following information for each logical volume within the group specified by the
 VolumeGroup parameter:
 - LV : A logical volume within the volume group.
 - Type : Logical volume type.
 - LPs : Number of logical partitions in the logical volume.
 - PPs: Number of physical partitions used by the logical volume.
 - PVs : Number of physical volumes used by the logical volume.

-M
 Lists the following fields for each logical volume on the physical volume:
 - PVname: PNum [LVname : LNum [: Copynum] [: PPstate]] : Name of the physical volume as specified by the system.
 - PPnum : Physical partition number. Physical partition numbers can range from 1 to 1016.

-o
 Lists only the active volume groups (those that are varied on). An active volume group is one that is
 available for use. Refer to the lsvg command for the information displayed if no flags are specified.

Examples
1. To display the names of all shared volume groups in the cluster, enter:
To display the names of all active shared volume groups in the cluster, enter:

```
cl_lsvg -o nodeA: testvg
```

3. To display information about the shared volume group `vg02`, enter:

```
cl_lsvg -cspoc testvg
```

cl_nodecmd command

Purpose

Runs a given command in parallel on a given set of nodes.

Syntax

```
cl_nodecmd [-q] [-cspoc "[-f] [-n nodelist | -g resourcegroup]" ] command args
```

Flags

- `-q` Specifies quiet mode. All standard output is suppressed.

- `-cspoc`
 Argument used to specify one of the following C-SPOC options:

 - `-f` Forces `cl_nodecmd` to skip PowerHA SystemMirror version compatibility checks and node accessibility verification.

 - `-g resource group` Generates the list of nodes participating in the resource group where the command will be executed.

 - `-n nodelist` Runs the command on this list of nodes. If more than one node, separate nodes listed by commas.

command

Specifies the command to be run on all nodes in the nodelist.

args

Specifies arguments that are passed to the `cl_nodecmd` command.

Examples

1. Run the `lspv` command on all cluster nodes.

   ```
   cl_nodecmd lspv
   ```

2. Runs the `lsvg rootvg` command on nodes `beaver` and `dam`, suppressing standard output.

   ```
   cl_nodecmd -cspoc "-n beaver,dam" lsvg rootvg
   ```

cl_rc.cluster command

Purpose

Sets up the operating system environment and starts the cluster daemons across cluster nodes.

Syntax

```
cl_rc.cluster [-cspoc "[-f] [-g ResourceGroup | -nNodeList ]"] [-boot]
```

Note: Arguments associated with a particular flag must be specified immediately following the flag.
Flags

-cspoc
Argument used to specify the following C-SPOC option:

-f Forces cl_rc.cluster to skip PowerHA SystemMirror version compatibility checks and node accessibility verification.

-g ResourceGroup - Specifies the name of the resource group whose participating nodes share the volume group. The command executes on these nodes.

-n Nodelist - Executes underlying AIX commands across nodes in the nodelist.

-boot
Configures the service network interface to be on its boot address if IPAT is enabled.

-i Starts the Cluster Information (clinfoES) daemon with its default options.

-1 Starts the Cluster Information (clinfoES) daemon with traps enabled.

-b Broadcasts the startup.

-N Starts the daemons immediately (no inittab change).

-R Starts the PowerHA SystemMirror daemons on system restart only (the PowerHA SystemMirror startup command is added to inittab file).

-B Starts the daemons immediately and adds the PowerHA SystemMirror entry to the inittab file.

-C Specifies the mode to use for corrective action when a problem occurs. Specify yes to automatically correct problems. Specify interactive to be prompted before each corrective action is run.

-M Starts the cluster services with Manual resource acquisition mode. Use this option if you want to bring the resource groups online manually.

-A Starts the cluster services with Automatic resource acquisition mode. Use this option if you want to bring resource groups online automatically on cluster startup. This is the default option.

-f Forced startup. Cluster daemons should initialize running local procedures.

-r Reacquires cluster resources after a forced down. Use this option if you changed the state of any cluster resources (ip labels, disks, applications) while the cluster was forced down.

-v Ignore verification errors during startup (auto ver sync)

-x Activates NFS cross-mounts.

Examples
1. To start the cluster with clinfo running on all the cluster nodes, run the following command:
 cl_rc.cluster -boot -i
2. To start the cluster with clinfo running on all the cluster nodes with traps enabled, run the following command:
 cl_rc.cluster -boot -I

clanalyze command

Purpose
Analyzes PowerHA SystemMirror log files for errors and provides the analysis report.

Syntax
clanalyze -a -s <start_time> -e <end_time> [-n <ALL|node1,node2,...>]

Commands 13
clanalyze -a -s <start_time> -e <end_time>
 -p <Error String> [-n <ALL|node1,node2,...>]
clanalyze -a -p <Error String>
 [-n <ALL|node1,node2,...>]
clanalyze -a -o <all|recent>
 [-n <ALL|node1,node2,...>]
clanalyze -a -o <all|recent>
 -d <PATH of snap file>
clanalyze -a -p <Error String>
 -d <PATH of snap file>
clanalyze -a -s <start_time> -e <end_time>
 -p <Error String> -d <PATH of snap>
clanalyze -a -s <start_time> -e <end_time>
 -d <PATH of snap file>
clanalyze -a -u [-n <ALL|node1,node2,...>]
clanalyze -s <start_time> -e <end_time>
 -f <Path of log file> [-n <ALL|node1,node2,...>]
clanalyze -s <start_time> -e <end_time>
 -x <Path of log file> -d <Path of snap file>
clanalyze -c <Path to copy snap>
clanalyze -v [-n <ALL|node1,node2,...>]

Description

The **clanalyze** command performs the following tasks:
- Analyzes the log files and provides an error report based on error strings or time stamps.
- Analyzes the core dump file from the AIX error log.
- Analyzes the log files that are collected through the **snap** and **clsnap** utility.
- Analyzes user-specified **snap** file based on error strings that are provided and generates a report.

Flags

- **-a** All log analysis operations are performed by the **-a** flag. This flag does not require any argument.

- **-c <path to copy snap file>**
 Copies the log file to the directory specified by user.

- **-d** Specifies the **snap** file on which the analysis or extraction is performed.

 Note: This flag must always be used with the **-a** flag.

- **-e** Displays the end time of log analysis or extraction operation. The format is YYYY-MM-DDTHH:MM:SS.

 Note: The uppercase letter T in the following example separates the date part of the field from the time part. For example, 2017-04-28T11:45:00

- **-f** Represents a log file that is extracted from the live cluster.

- **-n** Specifies the node names of the cluster that must be part of analysis, extraction, or verification. It can be comma-separated list of names or **all**. If you specify **all**, all active nodes of cluster are considered for analysis.

- **-o** Applies analysis. You can specify the option as **all** or **recent**. If you specify the **all** option, error analysis is performed for all supported errors. If you specify the **recent**, the last supported error is displayed.

- **-p <error string>**
 Performs analysis based on specified error string. For example, if diskfailure is specified as a string, the analysis is performed for diskfailure errors.
-s Specifies the start time for log analysis or extraction. The format is YYYY-MM-DDTHH:MM:SS. For example, 2017-04-28T11:45:00
-u Analyze the errpt log and filters the log information that is related to core dumps.
-v Checks the status and configuration of daemons such as syslogd and errdaemon. The v flag displays the current status and configuration.
-x Specifies the file name that must be extracted from the snap file.

Output File

The output from the clanalyze command is stored in the /var/hacmp/log/loganalyzer/loganalyzer.log file.

Examples

1. The clanalyze command analyzes all the key log files and displays a report of events or errors that occurred within the start and end time. The analysis is performed on log files of specified nodes. The default value for the attribute node is all. To analyze log files for all the errors or events that occurred between the specified start time and end time, enter the following command:
 clanalyze -a -s "2017-04-28T13:45:00" -e "2017-04-28T13:45:00" [-n ALL|node1|node2]

2. The clanalyze command performs analysis on the specified error or event for all key log files. The clanalyze command performs an extensive search and analyzes the error or event because time limit is not applicable. To analyze log files for a specific error or events, enter the following command:
 clanalyze -a -p "Disk failure" [-n ALL|node1|node2]

3. The clanalyze command performs search and analysis for a specific error that occurred within a period on all available log files. Search and analysis are performed on all log files of specific nodes or all nodes in the cluster. To analyze log files for all errors or events that occurred within a period, enter the following command:
 clanalyze -a -s "2017-04-28T13:45:00" -e "2017-04-28T13:45:00" -p "Disk failure" [-n ALL|node1|node2]

4. To analyze log files for all applicable errors or only recent errors, enter the following command:
 clanalyze -a -o "all/recent" [-n ALL|node1|node2]

5. To extract core dump specific data from the errpt log file and to display it, enter the following command:
 clanalyze -a -u [-n ALL|node1|node2]

6. To analyze log files for all the errors or events that occurred between the specified start time and end time for the snap or tar file, enter the following command:
 clanalyze -a -s "2017-04-28T13:45:00" -e "2017-04-28T13:45:00" -d <PATH of snap>

7. The clanalyze command performs search and analysis on error or event in all the key log files. To analyze the log files for a special error or event, enter the following command:
 clanalyze -a -p "Error String" -d <PATH of snap>

8. To analyze log files for all errors or events that occurred within given period for the snap or tar file, enter the following command:
 clanalyze -a -s "2017-04-28T13:45:00" -e "2017-04-28T13:45:00" -d <PATH of snap>

9. To copy log files from all nodes of a cluster and to store them in a remote location, enter the following command:
 clanalyze -c /tmp/CLANALYZE

10. To verify the status of several daemons such as syslogd or errdaemon on specific nodes, enter the following command:
 clanalyze -v [-n ALL|node1|node2]

11. To extract specific log files from the tar, pax, gz, or Z file, enter the following command:
The `clanalyze` command receives .tar file as input and extracts specific user-specified file for a specific time range.

12. To extract a specific log file from the live node for a time stamp, enter the following command:

 `clanalyze -s <start_time> -e <end_time> -f <file_name> [-n ALL|node1|node2]`

Notes:

- If data is not available in log files, the tool might not produce complete data.
- The start time and end time are in the YYYY-MM-DDTHH:MM:SS format. For example, 2017-04-28T13:45:00
- The log file name must be an absolute path.
- All PowerHA SystemMirror log files must be located in a default directory and must not be directed to other directories.
- The `clanalyze` command works only with PowerHA SystemMirror 7.2.2, or later, for both live environment analysis and snap utility.
- The following error strings are supported for the log analysis:
 - diskfailure
 - applicationfailure
 - interfacefailure
 - networkfailure
 - globalnetworkfailure
 - nodefailure
 - sitefailure
- **Progress indicator:** As the log analyzer runs, it displays the progress in terms of the percentage of analysis completed. The progress indicator message looks like:

 49% analysis is completed. 150sec elapsed.

clconvert_snapshot command

Purpose

The command copies the previous version's ODM data from the snapshot_file to the format of the new version's ODM structure.

Syntax

`clconvert_snapshot -v release -s < snapshotfile >`

Description

You can run `clconvert_snapshot` to upgrade cluster snapshots from a previous version of PowerHA SystemMirror to the most recent version of PowerHA SystemMirror. The command by default assumes you are converting to the latest version of the software.

If fields were deleted in the new version, the data is saved to `/tmp/cl_convert_PowerHA SystemMirror_OLD`. The command then ensures that the data is in the correct form for the new version.

Once a snapshot file has been upgraded, it is assigned the same name as the previous version and cannot be reverted back to the previous version. A copy of the old version of the snapshot will be saved for you with the same original name plus the .old extension.
You must be in the /usr/es/sbin/cluster/conversion directory on the same node that took the snapshot to run the clconvert_snapshot command.

Once the snapshot file has been upgraded and all of the nodes in the cluster have the current level installed, the upgraded snapshot can be applied and then the cluster can be brought up.

The script clconvert_snapshot creates an old version of the ODMs and populates those ODMs with the values from the user-supplied snapshot file. It then calls the same commands that cl_convert uses to convert those ODMs to the current version. A new snapshot is taken from the upgraded ODMs and copied to the user supplied snapshot file.

The clconvert_snapshot is not run automatically during installation, and must always be run from the command line.

Table 1. clconvert_snapshot flags

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-v</td>
<td>Release version flag. Specifies the release number from which the conversion is to be performed. Important: Do not use the clconvert_snapshot command unless you know the version from which you are converting.</td>
</tr>
<tr>
<td>-s</td>
<td>Snapshot file flag. Specifies the snapshot file to convert. If you do not specify a path, for the snapshot file, the command uses the path specified in the $SNAPSHOTPATH variable. The default is /usr/es/sbin/cluster/snapshots.</td>
</tr>
</tbody>
</table>

Example

Run the following command to convert a PowerHA SystemMirror 5.3 snapshot to a current PowerHA SystemMirror snapshot named "mysnapshot."

clconvert_snapshot -v 5.3 -s mysnapshot

The file "mysnapshot" is in turn placed in the directory specified by the $SNAPSHOTPATH environment variable. If a $SNAPSHOTPATH variable is not specified, the file is put in /usr/es/sbin/cluster/snapshots.

clcheck_server command

Purpose

Returns status of daemons in a PowerHA SystemMirror cluster.

Syntax

clcheck_server daemon

Description

The clcheck_server command returns the status of the named daemon. This command is for use within shell scripts that need to reliably determine the status of a daemon. This command makes extra checks beyond what is done by the lssrc command that is provided by the System Resource Controller (SRC).

Before you use the clcheck_server command, you must understand the purpose of the daemon that is being checked.

Flags

` daemon`

 Specifies the name of the daemon that you want to check.
Example

To check the status of the clinfo daemon, enter:

 if ! clcheck_server clinfoES
 then
 echo "clinfo is active"
 else
 echo "clinfo is inactive"
 fi

clfindres command

Purpose

Finds a given resource group or groups in a cluster configuration.

Syntax

clfindres [-s] [resgroup1] [resgroup2]...

Description

When you run clfindres, it calls clRGinfo, and the command output for clfindres is the same as it is for the clRGinfo command. Therefore, use the clRGinfo command to find the status and the location of the resource groups. The -s flag for the clfindres command requests abbreviated (location only) output. See the clRGinfo command for more information.

clgetactivenodes command

Purpose

Retrieves the names of all cluster nodes.

Syntax

clgetactivenodes [-n nodename] [-o odmdir] [-t timeout] [-v verbose]

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-n nodename</td>
<td>Determines if the specified node is active.</td>
</tr>
<tr>
<td>-o odmdir</td>
<td>Specifies odmdir as the ODM object repository directory instead of the default /etc/objrepos.</td>
</tr>
<tr>
<td>-t timeout</td>
<td>Specifies a maximum time interval for receiving information about active nodes.</td>
</tr>
<tr>
<td>-v verbose</td>
<td>Specifies that information about active nodes be displayed as verbose output.</td>
</tr>
</tbody>
</table>

Example

Run the following command to verify that node java is active.

cgetactivenodes -n java

clgetaddr command

Purpose

Returns an address that you can ping for the specified node name.
Syntax
clgetaddr [-o odmdir] nodename
-o Specifies an alternate ODM directory.

Example
To get a PINGable address for the node seaweed, enter:
clgetaddr seaweed
The following address is returned: 2361059035

cli_assign_pvids command
Purpose
Assigns a PVID to each of the disks that are passed as arguments, then update all other cluster nodes
with those PVIDs.

Syntax
cli_assign_pvids PhysicalVolume ...

Description
The Logical Volume Manager (LVM) assigns a PVID to each of the physical volumes in the list (if one is
not already present), and then makes those PVIDs known on all cluster nodes.

Example
To assign PVIDs to a list of disks and have those PVIDs known across the cluster, enter:
cli_assign_pvids hdisk101 hdisk102 hdisk103

cli_chfs command
Purpose
Change the attributes of a file system on all nodes in a cluster.

Syntax
cli_chfs [-m NewMountPoint] [-u MountGroup] [-p { ro | rw }]
[-t { yes | no }] [-a Attribute=Value] [-d Attribute]
FileSystem

Description
Uses C-SPOC to run the chfs command with the parameters, and update file system definition on all
cluster nodes.

Flags
-d Attribute
Deletes the specified attribute from the /etc/filesystems file for the specified file system.

-m NewMountPoint
Specifies a new mount point for the specified file system. The following values are valid:

-p Sets the permissions for the file system. The following values are valid:
ro Specifies read-only permissions.

rw Specifies read-write permissions.

-t Sets the accounting attribute for the specified file system. The following values are valid:

yes File system accounting is processed by the accounting subsystem.

no File system accounting is not processed by the accounting subsystem. This is the default value.

-u MountGroup
Specifies the mount group. Mount groups are used to group related mounts so that they can be mounted as one group instead of mounting each individually. For example, when you perform certain tests, if several scratch file systems are required to be mounted together, they can each be placed in the test mount group. You can mount this mount group with a single command, such as the mount -t command.

-a Attribute=Value
Specifies the Attribute=Value pairs dependent on virtual file system type. To specify more than one Attribute=Value pair, provide multiple -a Attribute=Value parameters.

Example

To change the size of the shared file system that is named /test_fs, enter:

cli_chfs -a size=32768 /test_fs

Related information:

cli_chfs command

cli_chlv command

Purpose

Change the attributes of a logical volume on all nodes in a cluster.

Syntax

cli_chlv [-a Position] [-b BadBlocks] [-d Schedule] [-e Range]
[-L label] [-p Permission] [-r Relocate] [-s Strict]
[-t Type] [-u Upperbound] [-v Verify] [-w MirrorWriteConsistency]

Description

Uses C-SPOC to run the chlv command with specified the parameters, and update the logical volume definition on all cluster nodes.

Flags

-a Position
Sets the physical volume allocation policy (the position of the logical partitions on the physical volume). The following Position variables are valid:

m Allocates logical partitions in the outer middle section of each physical volume. This variable is the default setting.

c Allocates logical partitions in the center section of each physical volume.

e Allocates logical partitions in the outer edge section of each physical volume.

d Allocates logical partitions in the inner edge section of each physical volume.
-m Allocates logical partitions in the inner middle section of each physical volume.

-b BadBlocks
Sets the bad-block relocation policy. The following BadBlocks variables are valid:

- y Causes bad-block relocation to occur.
- n Prevents bad block relocation from occurring.

-d Schedule
Sets the scheduling policy when more than one logical partition is written. You must use parallel or sequential processing to mirror a striped logical volume. The following Schedule variables are valid:

- p Establishes a parallel scheduling policy.
- ps Parallel write with sequential read policy. All mirrors are written in parallel but always read from the first mirror if it is available.
- pr Parallel write and reads are done for all mirrors. This policy is similar to the parallel policy, except an attempt is made to spread the reads to the logical volume more evenly across all mirrors.
- s Establishes a sequential scheduling policy. Use this variable when you specify policy of parallel or sequential strictness (super strictness).

-e Range
Sets the physical volume allocation policy. The allocation policy is the number of physical volumes to extend across by using the volumes that provide the best allocation. The value of the Range variable is limited by the Upperbound variable that is set with the -u flag. The following Range variables are valid:

- x Allocates logical partitions across the maximum number of physical volumes.
- m Allocates logical partitions across the minimum number of physical volumes.

-G Groupid
Specifies group ID for the logical volume special file.

-L Label
Sets the logical volume label. The maximum size for this variable is 127 characters.

-n NewLogicalVolume
Changes the name of the logical volume that is specified by the NewLogicalVolume variable. Logical volume names must be unique system wide and can have a maximum of 15 characters.

-p Permission
Sets the access permission to read/write or read-only. The following Permission variables are valid:

- w Sets the access permission to read/write.
- r Sets the access permission to read-only. Mounting a JFS file system on a read-only logical volume is not supported.

-P Modes
Specifies permissions (file modes) for the logical volume special file.

-r Relocate
Specifies whether you want to allow or prevent the relocation of the logical volume during reorganization. The following Relocate variables are valid:

- y Allows the logical volume to be relocated during reorganization. If the logical volume is striped, you cannot use the chlv command to change the relocation flag to y.
- n Prevents the logical volume from being relocated during reorganization.
-s Strict
Determines the strict allocation policy. You can allocate copies of a logical partition to be shared or not shared for the same physical volume. The following Strict variables are valid:

 y Sets a strict allocation policy, so copies of a logical partition cannot share the same physical volume.
 n Does not set a strict allocation policy, so copies of a logical partition can share the same physical volume.
 s Sets a super strict allocation policy, so that the partitions allocated for one mirror cannot share a physical volume with the partitions from another mirror. When you change to a non-super strict logical volume to a super strict logical volume, you must use the -u flag.

-t Type
Sets the logical volume type. The maximum size is 31 characters. If the logical volume is striped, you cannot change the Type variable to boot.

-U Userid
Specifies user ID for the logical volume special file.

-u Upperbound
Sets the maximum number of physical volumes for the new allocation. The value of the Upperbound variable is between one and the total number of physical volumes. When you use super strictness, the upper bound indicates the maximum number of physical volumes that are allowed for each mirror copy. When you use striped logical volumes, the upper bound must be multiple of Stripe_width variable.

-v Verify
Sets the write-verify state for the logical volume. Causes all writes to the logical volume either to be verified with a follow-up read or not to be verified with a follow-up read. The following Verify variables are valid:

 y All writes to the logical volume are verified with a follow-up read.
 n All writes to the logical volume are not verified with a follow-up read.

-w MirrorWriteConsistency
The following MirrorWriteConsistency variables are valid:

 y Turns on active mirror write consistency. This variable verifies data consistency on the mirrored copies of a logical volume during normal I/O processing.
 p Turns on passive mirror write consistency. This variable verifies data consistency on the mirrored copies during volume group synchronization after a system interruption. This function is only available on Big Volume Groups.
 n No mirror write consistency.

-x Maximum
Sets the maximum number of logical partitions that can be allocated to the logical volume. The maximum number of logical partitions per logical volume is 32,512.

Example

To change the physical volume allocation of logical volume that is named lv01, enter:
cli_chlv -e m lv01

Related information:

chlv command
cli_chvg command

Purpose
Change the attributes of a volume group on all nodes in a cluster.

Syntax
cli_chvg [-s Sync { y | n }] [-L LTGSize] [-Q { n | y }] [-u]
[-t { factor }] [-M { y | n | s }] [-B] [-C] VolumeGroup

Description
Uses C-SPOC to run the chvg command with the specified parameters and make the updated volume group definition available on all cluster nodes.

Flags
-B Changes the volume group to Big VG format. This flag can accommodate up to 128 physical volumes and 512 logical volumes. You cannot use this flag if there are any stale physical partitions in the cluster node. To use this flag, you must have enough free partitions available on each physical volume for the VGDA expansion.

Because the VGDA resides on the edge of the disk and it requires contiguous space for expansion, the free partitions are required on the edge of the disk. If those partitions are allocated for application data, they are migrated to other free partitions on the same disk. The rest of the physical partitions are renumbered to reflect the loss of the partitions for VGDA usage. This process changes the mappings of the logical to physical partitions in all the physical volumes in the volume group.

If you saved the mappings of the logical volumes for a potential recovery operation, you can generate the maps again after the completion of the conversion operation. If the backup of the volume group is taken with the map option and if you plan to restore using those maps, the restore operation can fail since the partition number might not exist (due to reduction). It is recommended that you back up your logical volumes before you start the conversion process, and right after the conversion process completes if you use the map option.

Because the VGDA space is increased substantially, every VGDA update operation (creating a logical volume, changing a logical volume, adding a physical volume, and so on) might take considerably more time to run.

-C Changes the volume group into an enhanced concurrent capable volume group. Changes the volume group from a non-concurrent mode (varied on) to enhanced concurrent mode. This process requires that the volume group is reimported on all other nodes before activation of the enhanced concurrent mode. Changes the volume group from a concurrent mode (varied on) to an enhanced concurrent mode. You can use this flag only in a PowerHA SystemMirror cluster, and the cluster must be configured before you activate an enhanced concurrent volume group.

-L LTGSize
Sets the logical track group size to the common max transfer size of the disks when a volume group is varied on. The value of the LTGSize variable must be 0, 128, 256, 512, or 1024. The LTGSize variable must be less than or equal to the maximum transfer size of all disks in the volume group. The default value for the LTGSize variable is 128. If you specify an LTGSize of 0, the varyonvg command sets the logical track group size to the common max transfer size of the disks.

-M Changes the mirror pool structures for the volume group. The following values are valid:
 y Each logical volume copy that is created in the volume group must be assigned to a mirror pool.
 n Restrictions are not placed on the user of the mirror pool. This option is the default value.
 s Super-strict mirror pools are enforced on the volume group.
Note: Local and remote physical volumes cannot belong to the same mirror pool. A volume group can contain a maximum of three mirror pools. Each mirror pool must contain at least one copy of each logical volume in the volume group.

- **Q**: Determines whether the volume group is automatically varied off after losing its quorum of physical volumes. The default value is yes. The change takes effect the next time the volume group is activated. The following values are valid:

 - y: The volume group is automatically varied off after losing its quorum of physical volumes.
 - n: The volume group is active until it loses all of its physical volumes.

- **-s Sync**: Sets the synchronization characteristics for the volume group that is specified by the *VolumeGroup* variable. This flag does not affect non-mirrored logical volumes. This flag is not supported for concurrent capable volume groups.

 Automatic synchronization is a recovery mechanism that is only attempted after the Logical Volume Manager (LVM) device driver logs LVM_SA_STALEPP in the AIX operating system error log. A partition that becomes stale through any other path (for example, the *mkvlcopy* command) is not automatically resynced. The following values are valid:

 - y: Attempts to automatically synchronize stale partitions.
 - n: Prohibits automatic synchronization of stale partitions. This value is the default setting for a volume group.

- **-t factor**: Changes the limit of the number of physical partitions per physical volume, which is specified by a factor. The factor must be 1 - 16 for 32 physical volumes groups. The factor must be 1 - 64 for 128 physical volume groups.

 If you do not specify the factor, it is set to the lowest value such that the number of physical partitions of the largest disk in the volume group is less than the factor value multiplied by 1016.

 If you do specify a factor, the maximum number of physical partitions per physical volume for the volume group changes to the factor value multiplied by 1016.

 Review the following information when you are determining the value for the factor:

 - This flag is ignored for scalable-type volume groups.
 - This flag cannot be used if the volume group is varied on in concurrent mode.
 - The factor value cannot be changed if there are any stale physical partitions in the volume group.
 - The maximum number of physical volumes that are allowed in this volume group is reduced to the value you get when you divide MAXPVS by the factor value (MAXPVS/factor).
 - Changing an existing volume group to scalable volume group format, modifies the device subtype (reported by the *IOCINFO ioctl()* call) for all associated logical volumes to *DS_LVZ*, regardless of the previous subtype. This change does not alter any behavior of the logical volumes beyond the reported subtype.

- **-u**: Unlocks the volume group. This flag is available if the volume group is left in a locked state by an abnormal termination of another LVM operation (such as the command core dumping or the system crashing). Before you can use this flag, you must verify that the volume group is not being used by another LVM command.

Example

To turn off quorum for a volume group that is named *vg01*, enter:

```
c11_chvg -Q n vg01
```

Related information:

- [chvg command](#)
cli_crfs command

Purpose

Create a new file system and make it available on all nodes in a cluster

Syntax

cli_crfs -v VfsType { -g VolumeGroup | -d Device } [-l LogPartitions]
 -m MountPoint [-u MountGroup] [-A { yes | no }]
 [-p { ro | rw }] [-a Attribute=Value ...] [-t { yes | no }]

Description

Uses C-SPOC to run the crfs command with the specified parameters, and make the updated file system definition available on all cluster nodes.

Flags

-a Attribute=Value
 Specifies a virtual file system-dependent attribute and value pair. To specify more than one attribute and value pair, provide multiple -a Attribute=Value parameters.

-d Device
 Specifies the device name of a device or logical volume on which to make the file system. This flag is used to create a file system on a logical volume that exists.

-g VolumeGroup
 Specifies an existing volume group on which to make the file system. A volume group is a collection of one or more physical volumes.

-l LogPartitions
 Specifies the size of the log logical volume, expressed as a number of logical partitions. This flag applies only to JFS and JFS2 file systems that do not have a log device.

-m MountPoint
 Specifies the mount point, which is the directory where the file system is made available. If you specify a relative path name, it is converted to an absolute path name before it is inserted into the /etc/filesystems file.

-p Sets the permissions for the file system.
 ro Read-only permissions
 rw Read/write permissions

-t Specifies whether the file system is processed by the accounting subsystem. The following values are valid:
 yes Accounting is enabled on the file system.
 no Accounting is not enabled on the file system. This value is the default setting.

-u MountGroup
 Specifies the mount group.

-v VfsType
 Specifies the virtual file system type. The agblksize attribute is set when you create the file system and cannot be changed after the file system is created. The size attribute defines the minimum file system size. You cannot decrease the file system size with the size attribute after the file system is created.
Example

To create a JFS file system on an existing logical volume that is named lv01, enter:
cli_crfs -v jfs -d lv01 -m /tstvg -a 'size=32768'

Related information:
[crfs command]

cli_crlvfs command

Purpose

Create a new logical volume and file system, and make it available on all nodes in a cluster

Syntax

cli_crlvfs -v VfsType -g VolumeGroup [-l LogPartitions] -m MountPoint
[-u MountGroup] [-A { yes | no }] [-p { ro | rw }]
[-a Attribute=Value ...] [-t { yes | no }]

Description

Uses C-SPOC to run the crfs command with the specified parameters, and make the updated file system definition available on all cluster nodes.

Flags

-a Attribute=Value
Specifies a virtual file system-dependent attribute and value pair. To specify more than one attribute and value pair, provide multiple -a Attribute=Value parameters.

-g VolumeGroup
Specifies an existing volume group on which to make the file system. A volume group is a collection of one or more physical volumes.

-l LogPartitions
Specifies the size of the log logical volume, expressed as a number of logical partitions. This flag applies only to JFS and JFS2 file systems that do not have a log device.

-m MountPoint
Specifies the mount point, which is the directory where the file system is made available. If you specify a relative path name, it is converted to an absolute path name before it is inserted into the /etc/filesystems file.

-p Sets the permissions for the file system.
 ro Read-only permissions
 rw Read/write permissions

-t Specifies whether the file system is processed by the accounting subsystem. The following values are valid:
 yes Accounting is enabled on the file system.
 no Accounting is not enabled on the file system. This value is the default setting.

-u MountGroup
Specifies the mount group.

-v VfsType
Specifies the virtual file system type. The agblksize attribute is set when you create the file system and
cannot be changed after the file system is created. The size attribute defines the minimum file system size. You cannot decrease the file system size with the size attribute after the file system is created.

Example

To create a JFS file system on a volume group that is named vg01, enter:

```
cli_crlvfs -v jfs -g vg01 -m /tstvg -a 'size=32768'
```

cli_extendlv command

Purpose

Increases the size of a logical volume on all nodes in a cluster by adding unallocated physical partitions from within the volume group.

Syntax

```
cli_extendlv [ -a Position ] [ -e Range ] [ -u Upperbound ] [ -s Strict ]
  LogicalVolume Partitions [ PhysicalVolume ... ]
```

Description

Uses C-SPOC to run the `extendlv` command with the specified parameters, and make the updated logical volume definition available on all cluster nodes.

Flags

- **-a Position**

 Sets the physical volume allocation policy (the position of the logical partitions on the physical volume). The following `Position` variables are valid:

 - m Allocates logical partitions in the outer middle section of each physical volume. This variable is the default setting.
 - c Allocates logical partitions in the center section of each physical volume.
 - e Allocates logical partitions in the outer edge section of each physical volume.
 - ie Allocates logical partitions in the inner edge section of each physical volume.
 - im Allocates logical partitions in the inner middle section of each physical volume.

- **-e Range**

 Sets the physical volume allocation policy. The allocation policy is the number of physical volumes to extend across by using the volumes that provide the best allocation. The value of the `Range` variable is limited by the `Upperbound` variable that is set with the `-u` flag. The following `Range` variables are valid:

 - x Allocates logical partitions across the maximum number of physical volumes.
 - m Allocates logical partitions across the minimum number of physical volumes.

- **-s Strict**

 Determines the strict allocation policy. You can allocate copies of a logical partition to be shared or not shared for the same physical volume. The following `Strict` variables are valid:

 - y Sets a strict allocation policy, so copies of a logical partition cannot share the same physical volume.
 - n Does not set a strict allocation policy, so copies of a logical partition can share the same physical volume.
 - s Sets a super strict allocation policy, so that the partitions allocated for one mirror cannot share a
physical volume with the partitions from another mirror. When you change to a non-super strict logical volume to a super strict logical volume, you must use the -u flag.

-\textit{u} \textit{Upperbound}

Sets the maximum number of physical volumes for the new allocation. The value of the \textit{Upperbound} variable is between one and the total number of physical volumes. When you use super strictness, the upper bound indicates the maximum number of physical volumes that are allowed for each mirror copy. When you use striped logical volumes, the upper bound must be multiple of \textit{Stripe_width} variable.

\textbf{Example}

To increase the size of the logical volume that is name \textit{lv01} by three logical partitions, enter:
\begin{verbatim}
cli_extendlv lv01 3
\end{verbatim}

\textbf{Related information:}
\begin{verbatim}
extendlv command
\end{verbatim}

\textbf{cli_extendlvg command}

\textbf{Purpose}

Adds physical volumes to a volume group on all nodes in a cluster.

\textbf{Syntax}

\begin{verbatim}
cli_extendlvg [-p \textit{MirrorPool}] \textit{VolumeGroup} \textit{PhysicalVolume} ...
\end{verbatim}

\textbf{Description}

Uses C-SPOC to run the \texttt{extendvg} command with the specified parameters, and make the updated volume group definition available on all cluster nodes.

You must verify that the physical volumes (hdisks), that are going to be included, are available to all cluster nodes and have PVIDs assigned before you run this command.

\textbf{Flag}

\begin{verbatim}
-p \textit{MirrorPool}
\end{verbatim}

Assigns each of the physical volumes, which are added to the specified mirror pool.

\textbf{Example}

To add disks that are named \textit{hdisk101} and \textit{hdisk111} to a volume group that is named \textit{vg01}, enter:
\begin{verbatim}
cli_extendlvg vg01 hdisk101 hdisk111
\end{verbatim}

\textbf{Related information:}
\begin{verbatim}
extendvg command
\end{verbatim}

\textbf{cli_importvg command}

\textbf{Purpose}

Imports a new volume group definition from a set of physical volumes on all nodes in a cluster.

\textbf{Syntax}

\begin{verbatim}
cli_importvg \[-y \textit{VolumeGroup} \] \[-V \textit{MajorNumber} \] \textit{PhysicalVolume}
\end{verbatim}
Description

Uses C-SPOC to run the `importvg` command with the specified parameters. This command causes the Logical Volume Manager (LVM) on each cluster node to read the LVM information on the disks in the volume group, and update the local volume group definition.

Flags

- **-V MajorNumber**
 Specifies the major number of the imported volume group.

- **-y VolumeGroup**
 Specifies the name to use for the new volume group. If you do not use this flag, the system automatically generates a new name. The volume group name can contain only the following characters:
 - A - Z
 - a - z
 - 0 - 9
 - _ (underscore character)
 - - (minus character)
 - . (period character)

Example

To make the volume group that is name `bkvg` from the physical volume that is named `hdisk07` available on all cluster nodes, enter:

```
cli_importvg -y bkvg hdisk07
```

Related information:
- `import vg` command

cli_mirrorvg command

Purpose

Syntax

```
cli_mirrorvg [-S | -s] [-Q] [-c Copies] [-m] VolumeGroup [PhysicalVolume...]
```

Description

Uses C-SPOC to run the `mirrorvg` command with the specified parameters, and make the updated volume group definition available on all cluster nodes.

Flags

- **-c Copies**
 Specifies the minimum number of copies that each logical volume must have after you run the `mirrorvg` command. It might be possible, through the independent use of the `mklvcopy` command, that some logical volumes might have more than the minimum number specified after you run the `mirrorvg` command. The minimum value that you can specify is 2 and the maximum value you can specify is 3. A value of 1 is ignored.

- **-m exact map**
 Allows mirroring of logical volumes in the exact physical partition order that is in the original copy. You must specify a physical volume where the exact map copy is placed. If the space is insufficient for an exact mapping, then the command fails. You must add new drives or pick a different set of drives that satisfy an exact logical volume mapping of the entire volume group. The designated disks
must be equal to or exceed the size of the drives that are being mirrored (regardless of if the entire
disk is used). If any logical volume has already been mirrored the command fails.

-Quorum Keep
By default, when the content of a volume group is mirrored, the quorum for the volume group is
disabled. If you want to keep the volume group quorum requirement after mirroring is complete, you
can use this flag. For later quorum changes, see the chvg command.

-S Background Sync
Returns the mirrorvg command immediately and starts the syncvg command of the volume group in
the a background. If you use this flag, it is not obvious when the mirrors complete their
synchronization. However, as portions of the mirrors become synchronized, they are immediately
used by the Logical Volume Manager (LVM) for mirroring.

-s Disable Sync
Returns the mirrorvg command immediately without performing any type of mirror synchronization.
If you use this flag, the mirror might exist for a logical volume but it is not used by the operating
system until it has been synchronized with the syncvg command.

Example
To specify two copies for every logical volume in shared volume group that is named vg01, enter:
cli_mirrorvg -c 2 vg01

Related information:
mirrorvg command

cli_mklv command

Purpose
Create a new logical volume on all nodes in a cluster.

Syntax
cli_mklv [-a Position] [-b BadBlocks] [-c Copies] [-d Schedule]
[-e Range] [-i] [-L Label] [-o y / n] [-r Relocate]
[-s Strict] [-t Type] [-u UpperBound] [-v Verify]
[-w MirrorWriteConsistency] [-x Maximum] [-y NewLogicalVolume]
VolumeGroup NumberOfLPs [PhysicalVolume ...]

Description
Uses C-SPOC to run the mklv command with parameters, and make the new logical volume definition
available on all cluster nodes.

Flags
-a Position
Sets the physical volume allocation policy (the position of the logical partitions on the physical
volume). The following Position variables are valid:

m Allocates logical partitions in the outer middle section of each physical volume. This variable is
the default setting.

c Allocates logical partitions in the center section of each physical volume.

e Allocates logical partitions in the outer edge section of each physical volume.

i Allocates logical partitions in the inner edge section of each physical volume.
-i Allocates logical partitions in the inner middle section of each physical volume.

-b BadBlocks
Sets the bad-block relocation policy. The following BadBlocks variables are valid:

 y Causes bad-block relocation to occur.
 n Prevents bad block relocation from occurring.

-c Copies
Specifies the minimum number of copies that each logical volume must have after you run the mirrorvg command. It might be possible, through the independent use of the mklvcopy command, that some logical volumes might have more than the minimum number specified after you run the mirrorvg command. The minimum value that you can specify is 2 and the maximum value you can specify is 3. A value of 1 is ignored.

-d Schedule
Sets the scheduling policy when more than one logical partition is written. You must use parallel or sequential processing to mirror a striped logical volume. The following Schedule variables are valid:

 p Establishes a parallel scheduling policy.
 ps Parallel write with sequential read policy. All mirrors are written in parallel but always read from the first mirror if it is available.
 pr Parallel write and reads are done for all mirrors. This policy is similar to the parallel policy, except an attempt is made to spread the reads to the logical volume more evenly across all mirrors.
 s Establishes a sequential scheduling policy. Use this variable when you specify policy of parallel or sequential strictness (super strictness).

-e Range
Sets the physical volume allocation policy. The allocation policy is the number of physical volumes to extend across by using the volumes that provide the best allocation. The value of the Range variable is limited by the Upperbound variable that is set with the -u flag. The following Range variables are valid:

 x Allocates logical partitions across the maximum number of physical volumes.
 m Allocates logical partitions across the minimum number of physical volumes.

-G Groupid
Specifies group ID for the logical volume special file.

-L Label
Sets the logical volume label. The maximum size for this variable is 127 characters.

-n NewLogicalVolume
Changes the name of the logical volume that is specified by the NewLogicalVolume variable. Logical volume names must be unique system wide and can have a maximum of 15 characters.

-p Permission
Sets the access permission to read/write or read-only. The following Permission variables are valid:

 w Sets the access permission to read/write.
 r Sets the access permission to read-only. Mounting a JFS file system on a read-only logical volume is not supported.

-P Modes
Specifies permissions (file modes) for the logical volume special file.

-r Relocate
Specifies whether you want to allow or prevent the relocation of the logical volume during reorganization. The following Relocate variables are valid:
y Allows the logical volume to be relocated during reorganization. If the logical volume is striped, you cannot use the chlv command to change the relocation flag to y.

n Prevents the logical volume from being relocated during reorganization.

-s Strict
Determines the strict allocation policy. You can allocate copies of a logical partition to be shared or not shared for the same physical volume. The following Strict variables are valid:
y Sets a strict allocation policy, so copies of a logical partition cannot share the same physical volume.
n Does not set a strict allocation policy, so copies of a logical partition can share the same physical volume.
s Sets a super strict allocation policy, so that the partitions allocated for one mirror cannot share a physical volume with the partitions from another mirror. When you change to a non-super strict logical volume to a super strict logical volume, you must use the -u flag.

-S StripSize
Specifies the number of bytes per strip (the strip size that is multiplied by the number of disks in an array equals the stripe size). Valid values include 4K, 8K, 16K, 32K, 64K, 128K, 256K, 512K, 1M, 2M, 4M, 8M, 16M, 32M, 64M, and 128M. You cannot use the -d, -e, and -s flags when you are creating a striped logical volume with this flag.

-t Type
Sets the logical volume type. The following are the standard types:
• jfs (journaled file systems)
• jfslog (journaled file system logs)
• jfs2 (enhanced journaled file system)
• jfs2log (enhanced journaled file system logs)
• paging (paging spaces)

You can define other logical volume types with this flag. You cannot create a striped logical volume of type boot. The default value is jfs. If a logical volume is created with a type of jfslog or jfs2log, C-SPOC automatically runs the logform command so that it can be used.

-U Userid
Specifies user ID for the logical volume special file.

-u Upperbound
Sets the maximum number of physical volumes for the new allocation. The value of the Upperbound variable is between one and the total number of physical volumes. When you use super strictness, the upper bound indicates the maximum number of physical volumes that are allowed for each mirror copy. When you use striped logical volumes, the upper bound must be multiple of Stripe_width variable.

-v Verify
Sets the write-verify state for the logical volume. Causes all writes to the logical volume either to be verified with a follow-up read or not to be verified with a follow-up read. The following Verify variables are valid:
y All writes to the logical volume are verified with a follow-up read.
n All writes to the logical volume are not verified with a follow-up read.

-w MirrorWriteConsistency
The following MirrorWriteConsistency variables are valid:
y Turns on active mirror write consistency. This variable verifies data consistency on the mirrored copies of a logical volume during normal I/O processing.
p Turns on passive mirror write consistency. This variable verifies data consistency on the mirrored copies during volume group synchronization after a system interruption. This function is only available on Big Volume Groups.

n No mirror write consistency.

-x Maximum
Sets the maximum number of logical partitions that can be allocated to the logical volume. The maximum number of logical partitions per logical volume is 32,512.

-y NewLogicalVolume
Specifies the logical volume name to use instead of using a system-generated name. Logical volume names must be unique system-wide name, and can range from 1-15 characters. The new name must be unique across all nodes on which the volume group is defined. The name cannot begin with a prefix already defined in the predefined device database (PdDv) class in the device configuration database for other devices.

-Y Prefix
Specifies the prefix value to use instead of the prefix in a system-generated name for the new logical volume. The prefix value must be less than or equal to 13 characters. The name cannot begin with a prefix already defined in the predefined device database (PdDv) class in the device configuration database for other devices, and it cannot be a name that is already used by another device.

Example
To make a logical volume in volume group that is named vg02 with one logical partition and a total of two copies of the data, enter:

cli_mklv -c 2 vg01 1

Related information:

mklv command

cli_mklvcopy command

Purpose
Increase the number of copies in each logical partition in a logical volume on all nodes in a cluster.

Syntax
cli_mklvcopy [-a Position] [-e Range] [-k] [-s Strict]
[-u UpperBound] LogicalVolume Copies [PhysicalVolume...]

Description
Uses C-SPOC to run the mklvcopy command with parameters, and make the updated logical volume definition available on all cluster nodes.

Flags

-a Position
Sets the physical volume allocation policy (the position of the logical partitions on the physical volume). The following Position variables are valid:

m Allocates logical partitions in the outer middle section of each physical volume. This variable is the default setting.

c Allocates logical partitions in the center section of each physical volume.
Allocates logical partitions in the outer edge section of each physical volume.

Allocates logical partitions in the inner edge section of each physical volume.

Allocates logical partitions in the inner middle section of each physical volume.

-e Range
Sets the physical volume allocation policy. The allocation policy is the number of physical volumes to extend across by using the volumes that provide the best allocation. The value of the Range variable is limited by the Upperbound variable that is set with the -u flag. The following Range variables are valid:

x Allocates logical partitions across the maximum number of physical volumes.

m Allocates logical partitions across the minimum number of physical volumes.

-k Synchronizes data in the new partitions.

-s Strict
Determines the strict allocation policy. You can allocate copies of a logical partition to be shared or not shared for the same physical volume. The following Strict variables are valid:

y Sets a strict allocation policy, so copies of a logical partition cannot share the same physical volume.

n Does not set a strict allocation policy, so copies of a logical partition can share the same physical volume.

s Sets a super strict allocation policy, so that the partitions allocated for one mirror cannot share a physical volume with the partitions from another mirror. When you change to a non-super strict logical volume to a super strict logical volume, you must use the -u flag.

-u Upperbound
Sets the maximum number of physical volumes for the new allocation. The value of the Upperbound variable is between one and the total number of physical volumes. When you use super strictness, the upper bound indicates the maximum number of physical volumes that are allowed for each mirror copy. When you use striped logical volumes, the upper bound must be multiple of Stripe_width variable.

Example

To add physical partitions to the logical partitions of a logical volume that is named lv01 so that total of three copies exist for each logical partition, enter:

cli_mklvcopy lv01 3

Related information:

mklvcopy command

cli_mkvg command

Purpose

Create a volume group on all nodes in a cluster.

Syntax

cli_mkvg [-B] [-P Partitions] [-t factor] [-C] [-G] [-x] [-s Size] [-V MajorNumber] [-v LogicalVolumes] [-y VolumeGroup]

PhysicalVolume ...
Description

You can use C-SPOC to run the `mkvg` command with parameters, and make the new logical volume definition available on all cluster nodes.

Flags

-B Creates a big-type volume group. This type of volume group can accommodate up to 128 physical volumes and 512 logical volumes. Because the vgda space was increased substantially, every vgda update operation (creating a logical volume, changing a logical volume, and adding a physical volume) might take considerably longer to run.

-C Creates an enhanced concurrent capable volume group. You can use this flag only in a configured PowerHA SystemMirror cluster. You can use this flag to create an enhanced concurrent capable volume group.

Enhanced concurrent volume groups use group services. Group services are available with PowerHA SystemMirror and must be configured before you activate a volume group in this mode.

Only enhanced concurrent capable volume groups are supported by a 64-bit kernel. Concurrent capable volume groups are not supported by a 64-bit kernel.

-P Partitions
Specifies the total number of partitions in the volume group. The `Partitions` variable is represented in units of 1024 partitions. The following values are valid for this flag:

- 32
- 64
- 128
- 256
- 512
- 768
- 1024
- 2048

The default value is 32 k (32768 partitions). You can use the `chvg` command to increase the number of partitions up to the maximum of 2048 k (2097152 partitions). This flag is only valid with the -s flag.

-s size
Sets the number of megabytes (MB) in each physical partition. The size variable is expressed in units of megabytes from 1 (1 MB) - 131072 (128 GB). The size variable must be equal to a power of 2 (example 1, 2, 4, 8). The default value for 32 physical volume groups and 128 physical volume groups is the lowest value that remains within the limitation of 1016 physical partitions per physical volume. The default value for scalable volume groups is the lowest value to accommodate 2040 physical partitions per physical volume.

-t factor
Changes the limit of the number of physical partitions per physical volume, which is specified by a factor. The factor must be 1 - 16 for 32 physical volumes groups. The factor must be 1 - 64 for 128 physical volume groups. The maximum number of physical partitions per physical volume for this volume group changes to a factor of x 1016. The default is the lowest value to remain within the physical partition limit of factor x 1016. The maximum number of physical volumes that can be included in the volume group is maxpvs/factor. This flag is ignored if you use the -s flag.

-V major
Specifies the major number of the volume group that is created.

-v
Specifies the number of logical volumes that can be created. The following values are valid for this flag:

- 256
The default value is 256. You can use the `chvg` command to increase the number of logical volumes up to the maximum of 4096. This flag is only valid with the `-s` flag. The last logical volume is reserved for metadata.

-y volumegroup

Specifies the volume group name rather than having the name generated automatically. The volume group names must be unique system wide and can range 1-15 characters. The name cannot begin with a prefix already defined in the predefined device database (PdDv) class in the device configuration database for other devices. The volume group name that is created is sent to standard output. The volume group name can contain only the following characters:

- a-z
- 0-9
- _ (underscore character)
- - (minus character)
- . (period character)

Example

To create a volume group that contains disks named `hdisk3`, `hdisk5`, and `hdisk6` with a physical partition size set to 1 megabyte, enter:

```
cli_mkvg -s 1 hdisk3 hdisk5 hdisk6
```

Related information:

- `mkvg` command

cli_on_cluster command

Purpose

Run a command on all nodes in the cluster.

Syntax

```
cli_on_cluster [ -S | -P ] 'command string'
```

Description

Runs a command as root, either serially or in parallel, on all cluster nodes. The output from the command (stdout and stderr) is displayed at the command line. Each line of output is preceded by the node name followed by a colon.

Flags

- `-S` Runs one command at a time on each node in the cluster. Once the command finishes, the next command is run.
- `-P` Run the command in parallel on all nodes in the cluster simultaneously.
Example

To reboot every node in the cluster, enter:
```
cli_on_cluster -S 'shutdown -Fr'
```

cli_on_node command

Purpose

Run an arbitrary command on a specific node in the cluster.

Syntax

```
cli_on_node [ -V <volume group> | -R <resource group> | -N <node> ] 'command string'
```

Description

Runs a command as root on either an explicitly specified node, or on the cluster node that owns a specified volume group or resource group. Any output from the command (stdout and stderr) is displayed at the command line.

Flags

- **-V volume group**
 - Runs the command on the node or nodes on which the specified volume group is in a varied on state. If the volume group is in a varied on state in concurrent mode on multiple nodes, the command is run on all nodes.

- **-R resource group**
 - Runs the command on the node that currently owns the specified resource group.

- **-N node**
 - Runs the command on the specified node. This flag identifies the PowerHA SystemMirror node name.

Example

To run the `ps -efk` command on the node that is named `awesome`, enter:
```
cli_on_node -N awesome 'ps -efk'
```

cli_reducevg command

Purpose

Removes a physical volume from a volume group and make the updated changes available on all cluster nodes. When all physical volumes are removed from the volume group, the volume group is deleted on all cluster nodes.

Syntax

```
cli_reducevg VolumeGroup PhysicalVolume ...
```

Description

Uses C-SPOC to run the `reducevg` command with parameters, and make the updated volume group definition available on all cluster nodes.
Example

To remove physical disk that is named *hdisk10* from a volume group that is named *vg01*, enter:

```
cli_reducevg vg01 hdisk10
```

Related information:
reducevg command

cli_replacepv command

Purpose

Replace a physical volume in a volume group with another physical volume and make the changes available on all cluster nodes.

Syntax

```
cli_replacepv SourcePhysicalVolume DestinationPhysicalVolume
```

Description

Uses C-SPOC to run the replacepv command with parameters, and make the updated volume group definition available on all cluster nodes.

Example

To replace a disk that is named *hdisk10* with a disk that is named *hdisk20* in the volume group that owns the *hdisk10* disk, enter:

```
cli_replacepv hdisk10 hdisk20
```

Related information:
replacepv command

cli_rmfs command

Purpose

Remove a file system from all nodes in a cluster.

Syntax

```
cli_rmfs [ -r ] FileSystem
```

Description

Uses C-SPOC to run the rmfs command with parameters, and remove the file system definition from all cluster nodes.

Flags

- `-r` Removes the mount point of the file system

Example

To remove the shared file system called `/test_fs`, enter:

```
cli_rmfs -r /test_fs
```

Related information:
rmfs command

38 PowerHA SystemMirror commands
cli_rmlv command

Purpose

Remove a logical volume from all nodes in a cluster.

Syntax

cli_rmlv LogicalVolume ...

Description

Uses C-SPOC to run the rmlv command with parameters, and make the updated logical volume definition available on all cluster nodes.

Example

To change the shared logical volume that is named lv01, enter:
cli_rmlv lv01

Related information:

rmlv command

cli_rmlvcopy command

Purpose

Remove copies from a logical volume on all nodes in a cluster.

Syntax

cli_rmlvcopy LogicalVolume Copies [PhysicalVolume...]

Description

Uses C-SPOC to run the rmlvcopy command with parameters on all cluster nodes.

Example

To reduce the number of copies of each logical partition that belong to a logical volume that is named lv01 so that there is only a single copy, enter:
cli_rmlvcopy lv01 1

Related information:

rmlvcopy command

cli_syncvg command

Purpose

Run the syncvg command with parameters and make the updated volume group definition available on all cluster nodes.

Syntax

cli_syncvg [-f] [-H] [-P NumParallelLps] {-l|-v} Name
Description

Uses C-SPOC to run the syncvg command, which causes the Logical Volume Manager (LVM) for each cluster node to read the LVM information on the disks in the volume group. This command also updates the local volume group definition.

Flags

- **f** Specifies a good physical copy is selected and propagated to all other copies of the logical partition, even if they are not stale.
- **H** Delays the write operation, until the sync operation completes, for the selected volume group on any other cluster nodes where the concurrent volume group is active. When you use this flag, it is not required that all nodes in the cluster support the -P flag for the cli_syncvg command. This flag is ignored if the volume group is not varied on in concurrent mode.
- **l** Specifies that the Name variable represents a logical volume device name.
- **P NumParallelLps**
 Specifies the number of logical partitions that are synchronized in parallel. The valid range for the NumParallelLps variable is 1 - 32. The NumParallelLps variable must be specific to the system, disks in the volume group, system resources, and volume group mode.
- **v** Specifies that the Name variable represents a volume group device name.

Example

To synchronize the copies on a volume group that is named v01, enter:
cli_syncvg -v vg01

Related information:
syncvg command

cli_unmirrorvg command

Purpose

Unmirror a volume group on all nodes in a cluster.

Syntax

cli_unmirrorvg [-c Copies] VolumeGroup [PhysicalVolume ...]

Description

Uses C-SPOC to run the unmirrorvg command with parameters, and make the updated volume group definition available on all cluster nodes.

Flags

- **c Copies**
 Specifies the minimum number of copies that each logical volume must have after you run the unmirrorvg command. If you do not want all logical volumes to have the same number of copies, then reduce the mirrors manually with the rmlvcopy command. If you do not use this flag, the default value of 1 is used.

Example

To specify a single copy for shared volume group that is named vg01, enter:
cli_unmirrorvg -c 1 vg01
Related information:

unmirroryg command

cli_updatevg command

Purpose

Updates the definition of a volume group on all cluster nodes to match the current actual state of the volume group.

Syntax

cli_updatevg VolumeGroup

Description

Uses C-SPOC to run the updatevg command, which causes the Logical Volume Manager (LVM) on each cluster node to read the LVM information on the disks in the volume group and update the local volume group definition.

Example

To update the volume group definition for volume group that is name vg11 on all cluster nodes, enter:

cli_updatevg vg11

cllsclf command

Purpose

List cluster topology information.

Syntax

cllsclf

Description

The cllsclf command lists the cluster topology information that is defined in the cluster, network, and adapter configuration ODM object classes. The cllsclf command summarizes the cluster configuration information.

Examples

To display cluster information defined in the default or active cluster configuration, enter:

cllscf

The command displays output information similar to the following example:

```
# /usr/es/sbin/cluster/utilities/cllscf
Cluster Name: hadev11_cluster
Cluster Type: Standard
Heartbeat Type: Unicast
Repository Disk: hdisk10 (00c0f592e54367f2)

There were 2 networks defined: net_ether_01, net_ether_02
There are 2 nodes in this cluster

NODE hadev11:
    This node has 0 service IP label(s):
```
NODE hadev12:
 This node has 0 service IP label(s):

Breakdown of network connections:

Connections to network net_ether_01
 Node hadev11 is connected to network net_ether_01 by these interfaces:
 hadev11
 Node hadev12 is connected to network net_ether_01 by these interfaces:
 hadev12

Connections to network net_ether_02
 Node hadev12 is connected to network net_ether_02 by these interfaces:
 hadev12_en1_boot
 hadev12_en2_boot

Related reference:
"clmgr command" on page 45

cllsdisk command

Purpose
Lists PVIDs of accessible disks in a specified resource chain.

Syntax
cllsdisk {-g Resource Group }

Example
Run the following command to list PVIDs of disks accessible by all participating nodes in resource group grp3.
cllsdisk -g grp3

cllsfs command

Purpose
Lists shared file systems accessible by all participating nodes in a resource group.

Syntax
cllsfs {-g resource group } [-n]

Table 3. cllsfs flags

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-g resource group</td>
<td>Specifies name of resource group for which to list file systems.</td>
</tr>
<tr>
<td>-n</td>
<td>Lists the nodes that share the file system in the resource group.</td>
</tr>
</tbody>
</table>

Note: Do not run the cllsfs command from the command line. Use the SMIT interface to retrieve file system information, as explained in (See Managing Shared LVM Components).

cllsgrp command

Purpose
Lists all resource groups that are configured for a cluster.
Syntax
cllsgrp

Description
Displays the names of all resource groups in the cluster.

Example
To display resource group information for a cluster, enter:
cllsgrp

The command displays the following output:
grp1
grp2
grp3
grp4

cllsparam command

Purpose
Lists runtime parameters.

Syntax
cllsparam { -n nodename } [-c] [-s] [-d odmdir]

Flags
- -n nodename
 Specifies a node for which to list the information.
- -c
 Specifies a colon output format.
- -s
 Used along with the -c flag, specifies native language instead of English.
- -d odmdir
 Specifies an alternate ODM directory.

Example
Run the following example to display runtime parameters for node abalone:
cllsparam -n abalone

cllsres command

Purpose
ISorts PowerHA SystemMirror for AIX Configuration Database resource data by name and arguments.

Syntax
cllsres [-g group] [-e] [-c] [-s] [-d odmdir] [-query]

Flags
- -g group
 Specifies name of resource group to list.
-c Specifies a colon output format.
-e Expands the user-defined resource list in "resourcetype=resourcenames" format.
-s Used with the -c flag, specifies native language instead of English.
-d odmdir
 Specifies an alternate ODM directory.
-q query
 Specifies search criteria for ODM retrieve. See the odmget man page for information on search criteria.

Examples
1. Run the following command to list source data for all resource groups.
 cllsres
2. Run the following command to list resource data for grp1 resource group.
 cllsres -g grp1
3. Run the following command to list file system resource data for grp1 resource group.
 cllsres -g grp1 -q"name = FILESYSTEM"

cllsserv command
Purpose
Lists application controllers by name.

Syntax
cllsserv [-c] [-h] [-n name] [-d odmdir]

Flags
-c Specifies a colon output format.
-h Specifies to print a header.
-n name
 Specifies an application controller for which to check information.
-d odmdir
 Specifies an alternate ODM directory.

Examples
1. Run the following command to lists all application controllers.
 cllsserv
2. Run the following command to lists information in colon format for test1 application controller.
 cllsserv -c -n test1

cllserv command
Purpose
Lists volume groups shared by nodes in a cluster. A volume group is considered shared if it is accessible by all participating nodes in a configured resource group. Note that the volume groups listed may or may not be configured as a resource in any resource group. If neither -s nor -c is selected, then both shared and concurrent volume groups are listed.
Syntax

cllsvg {-g resource group } [-n] [-v] [-s | -c]

Flags

-g resource group
 Specifies name of resource group for which to list volume groups that are shared amongst nodes participating in that resource group.

-n nodes
 Specifies all nodes participating in each resource group.

-v
 Lists only volume groups that are varied on, and match other command line criteria.

-s
 Lists only shared volume groups that also match other criteria.

-c
 Lists only concurrent volume groups that also match other criteria.

Example

Run the following command to list all shared volume groups in grp1 resource group.

cllsvg -g grp1

clmgr command

Purpose

The clmgr command provides a consistent, reliable interface for performing PowerHA SystemMirror cluster operations by using a terminal or script.

Syntax

The following is the full syntax for the clmgr command:

clmgr ([-c | -d <DELIMITER>] [-S | -x])
[-v] ([-t | -l <error|standard|low|med|high|max]) [-a <ATTR#1>,<ATTR#2>,...] [-l <ACTION> <CLASS> <NAME>]
[-h] [-<ATTR#1>=<VALUE#1> <ATTR#2>=<VALUE#2> <ATTR#n>=<VALUE#n>]

clmgr ([-c | -d <DELIMITER>] [-S | -x])
[-v] ([-t | -l <error|standard|low|med|high|max]) [-a <ATTR#1>,<ATTR#2>,...] [-l <ACTION> <CLASS> <NAME>]

ACTION={add|modify|delete|query|online|offline...}
CLASS={cluster|site|node|network|resource_group...}

clmgr [-h|-?] [-v]
clmgr [-v] help

The following is the basic format for using the clmgr command:

clmgr <ACTION> <CLASS> [<NAME>] [<ATTRIBUTES...>]

Help is available for the clmgr command from the command line. For example, when you run the clmgr command without any flags or parameters a list of the available ACTIONS is displayed. Entering clmgr ACTION from the command line with no CLASS provided, results in a list of all the available CLASSES for the specified ACTION. Entering clmgr ACTION CLASS with no NAME or ATTRIBUTES provided is slightly different, because some ACTION+CLASS combinations do not require any additional parameters. To display help in this scenario, you must explicitly request the help by appending the -h flag to the clmgr command.
ACTION CLASS command. You cannot display help from the command line for each of the \texttt{clmgr} commands individual ATTRIBUTES.

Description

The high degree of consistency used by the \texttt{clmgr} command helps make it easier to learn and use. In addition to consistency of execution, \texttt{clmgr} also provides consistent return codes to make scripting easier. Several output formats are also provided for data queries to make collecting cluster information as easy as possible.

All \texttt{clmgr} command operations are logged in the clutils.log file, including the name of the command that was executed, the commands start and stop time, and the user name that initiated the command.

Note: If the resource groups have more than one dependency, you cannot use the \texttt{clmgr} command to move multiple resource groups.

Flags

ACTION

Describes the operation to be performed.

Note: ACTION is not case-sensitive. All ACTION flags provide a shorter alias. For example, \texttt{rm} is an alias for delete. Aliases are provided for convenience from the command line and must not be used in scripts.

The following four ACTION flags are available on almost all the supported CLASS objects:
- \texttt{add} (Alias: \texttt{a})
- \texttt{query} (Aliases: \texttt{q, ls, get})
- \texttt{modify} (Aliases: \texttt{mod, ch, set})
- \texttt{delete} (Aliases: \texttt{de, rm, er})

The remaining ACTIONS are typically only supported on a small subset of the supported CLASS objects:
- Cluster, Node, Resource Group:
 - \texttt{start} (Aliases: \texttt{online, on})
 - \texttt{stop} (Aliases: \texttt{offline, off})
- Resource Group, Service IP, Persistent IP:
 - \texttt{move} (Alias: \texttt{mv})
- Cluster, Interface, Log, Node, Snapshot, Network, Application Monitor:
 - \texttt{manage} (Alias: \texttt{mg})
- Cluster and File Collection:
 - \texttt{sync} (Alias: \texttt{sy})
- Cluster, Method:
 - \texttt{verify} (Alias: \texttt{ve})
- Log, Report, Snapshot:
 - \texttt{view} (Alias: \texttt{vi})
- Repository:
 - \texttt{replace} (Alias: \texttt{rep, switch, swap})

CLASS

The type of object upon which the ACTION is performed.
Note: CLASS is not case-sensitive. All CLASS objects provide a shorter alias. For example, fc is an alias for file_collection. Aliases are provided for convenience from the command line and must not be used in scripts.

The following is the complete list of supported CLASS objects:

- cluster (Alias: cl)
- repository (Alias: rp)
- site (Alias: st)
- node (Alias: no)
- interface (Aliases: in, if)
- network (Aliases: ne, nw)
- resource_group (Alias: rg)
- service_ip (Alias: si)
- persistent_ip (Alias: pi)
- application_controller (Aliases: ac, app)
- application_monitor (Aliases: am, mon)
- tape (Alias: tp)
- dependency (Alias: de)
- file_collection (Aliases: fi, fc)
- snapshot (Aliases: sn, ss)
- method (Alias: me)
- volume_group (Alias: vg)
- logical_volume (Alias: lv)
- file_system (Alias: fs)
- physical_volume (Aliases: pv, disk)
- mirror_pool (Alias: mp)
- user (Alias: ur)
- group (Alias: gp)
- ldap_server (Alias: ls)
- ldap_client (Alias: lc)
- event
- hmc
- cod (Alias: cuod, dlp

Name
The specific object, of type CLASS, upon which the ACTION is to be performed.

ATTR=VALUE
An optional flag that has attribute pairs and value pairs that are specific to the ACTION+CLASS combination. Use these pairs flag to specify configuration settings or to adjust particular operations.

When used with the query action, the ATTR=VALUE specifications can be used to perform attribute-based searching and filtering. When used for this purpose, you can use simple wildcards. For example, "*" matches zero or greater of any character, "?" matches zero or one of any character.

Note: An ATTR might not always need to be fully typed out. Only the number of leading characters required to uniquely identify the attribute from the set of attributes available for the specified operation must be provided. Instead of entering FC_SYNC_INTERVAL, for the add cluster operation, you can enter FC for the same result.
-a Displays only the specified attributes, and is only valid with the query, add, and modify ACTIONs. Attribute names are not case-sensitive, and can be used with the standard UNIX wildcards, "*", and "?".

-c Displays all data in colon-delimited format, and is only valid with the query, add, and modify ACTIONs.

-d Valid only with the query, add, and modify ACTION flags, requests all data to be displayed in delimited format, using the specified delimiter.

-D Disables the dependency mechanism in clmgr command that attempts to create any requisite resources by using default values if they are not already defined within the cluster.

-f Overrides any interactive prompts, forcing the current operation to be attempted (if forcing the operation is a possibility).

-h Displays help information.

-l Activates the following trace logging values for serviceability:
 - Error: Only updates the log file if an error is detected.
 - Standard: Logs basic information for every clmgr operation.
 - Low: Basic entry and exit tracing for every function.
 - Med: Performs low tracing, adding function entry parameters, and function return values.
 - High: Performs med tracing, adding tracing of every line of execution, omitting routine, utility functions.
 - Max - Performs high tracing, adding the routine function and utility function. Adds a time and date stamp to the function entry message and exit message.

 Note: All trace data is written into the clutils.log file. This flag is ideal for troubleshooting problems.

-M Allows multiple operations to be specified and run via one invocation of clmgr, with one operation being specified per line. All the operations will share a common transaction ID.

-S Displays data with column headers suppressed, and is only valid with the query ACTION and -c flag.

-T A transaction ID is applied to all logged output, to help group one or more activities into a single body of output that can be extracted from the log for analysis. This flag is ideal for troubleshooting problems.

-v Displays maximum verbosity in the output.

 Note: Displays all instances of the specified class, when used with the query ACTION and no specific object name. For example, entering clmgr -v query node display all nodes and their attributes. Displays resulting attributes after the operation is complete (only if the operation was successful), when this flag is used with the add or modify ACTION.

-x Displays all data in a simple XML format, and is only valid with the query, add, and modify ACTIONs.

Syntax

The following sections describe the syntax for all possible clmgr operations.

- Application controller
- Application monitor
- Backup Profiles
- Cluster
- CoD
Cluster

clmgr add cluster \
[<cluster_label>] \
[NODES=<host>[,<host#2>,...]] \
[TYPE={NSC|SC}] \
[HEARTBEAT_TYPE={unicast|multicast}] \
[CLUSTER_IP=<IP_Address>] \
[REPOSITORIES=<disk>[,<backup_disk>,...]] \
[FC_SYNC_INTERVAL=##] \
[RG_SETTLING_TIME=##] \
[MAX_EVENT_TIME=###] \
[MAX_RG_PROCESSING_TIME=####] \
[DAILY_VERIFICATION={Enabled|Disabled}] \
[VERIFICATION_NODE={Default|<node>}] \
[VERIFICATION_HOUR=<00..23>] \
[VERIFICATION_DEBUGGING={Enabled|Disabled}] \
[HEARTBEAT_FREQUENCY=<10..600>] \
[HEARTBEAT_FREQUENCY=<5..600>] \
[SITE_POLICY_FAILURE_ACTION={fallover|notify}] \

Commands 49
clmgr add cluster
 [<cluster_label>] \
 [NODES=<host>[,<host#2>,...]] \
 TYPE="LC" \
 [HEARTBEAT_TYPE=(unicast|multicast)] \
 [FC_SYNC_INTERVAL=##] \
 [RG_SETTLING_TIME=##] \
 [MAX_EVENT_TIME=##] \
 [MAX_RG_PROCESSING_TIME=##] \
 [DAILY_VERIFICATION=(Enabled|Disabled)] \
 [VERIFICATION_NODE=(Default|<node>)] \
 [VERIFICATION_HOUR=<00..23>] \
 [VERIFICATION_DEBUGGING=(Enabled|Disabled)] \
 [HEARTBEAT_FREQUENCY=<10..600>] \
 [GRACE_PERIOD=<5..600>] \
 [SITE_POLICY_FAILURE_ACTION=(failover|notify)] \
 [SITE_POLICY_NOTIFY_METHOD="<FULL_PATH_TO_FILE>"] \
 [SITE_HEARTBEAT_CYCLE=<min..max>] \
 [SITE_GRACE_PERIOD=<5..600>] \
 [TEMP_HOSTNAME=(disallow|allow)] \
 [MONITOR_INTERFACES=(enable|disable)] \
 [LPM_POLICY=(manage|unmanage)] \
 [NETWORK_FAILURE_DETECTION_TIME=<0,5..590>] \
 [LVM_PREFERRED_READ=(roundrobin|favorcopy|siteaffinity)]

Table 4. Acronyms and their meaning

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSC</td>
<td>Nonsite cluster (no sites will be defined)</td>
</tr>
<tr>
<td>SC</td>
<td>Stretched cluster (simplified infrastructure, ideal for limited distance data replication; sites must be defined)</td>
</tr>
<tr>
<td>LC</td>
<td>Linked cluster (full-featured infrastructure, ideal for long distance data replication; sites must be defined)</td>
</tr>
</tbody>
</table>

Note: CLUSTER_IP can only be used with a cluster type of NSC or SC. For LC clusters, the multicast address must be set for each site.

Note: The REPOSITORIES option can be used only with a cluster type of NSC or SC. For LC clusters, the REPOSITORIES option is identified for each site. The REPOSITORIES option can use seven disks. The first disk is the active repository disk and the following disks are the backup repositories disks.

clmgr modify cluster
 [<new_cluster_label>] \
 [NODES=<host>[,<host#2>,...]] \
 TYPE={NSC|SC} \
 [HEARTBEAT_TYPE=(unicast|multicast)] \
 [CLUSTER_IP=<IP_Address>] \
 [REPOSITORIES=<disk>[,<backup_disk>,...]] \
 [FC_SYNC_INTERVAL=##] \
 [RG_SETTLING_TIME=##] \
 [MAX_EVENT_TIME=##] \
 [MAX_RG_PROCESSING_TIME=##] \
 [DAILY_VERIFICATION=(Enabled|Disabled)] \
 [VERIFICATION_NODE=(Default|<node>)] \
 [SITE_POLICY_FAILURE_ACTION=(failover|notify)] \
 [SITE_POLICY_NOTIFY_METHOD="<FULL_PATH_TO_FILE>"] \
 [SITE_HEARTBEAT_CYCLE=<min..max>] \
 [SITE_GRACE_PERIOD=<5..600>] \
 [TEMP_HOSTNAME=(disallow|allow)] \
 [MONITOR_INTERFACES=(enable|disable)] \
 [LPM_POLICY=(manage|unmanage)] \
 [NETWORK_FAILURE_DETECTION_TIME=<0,5..590>] \
 [LVM_PREFERRED_READ=(roundrobin|favorcopy|siteaffinity)]
[VERIFICATION_HOUR=<00..23>]

[VERIFICATION_DEBUGGING={Enabled|Disabled}]

[HEARTBEAT_FREQUENCY=<10..600>]

[GRACE_PERIOD=<5..600>]

[SITE_POLICY_FAILURE_ACTION={failover|notify}]

[SITE_POLICY_NOTIFY_METHOD="<FULL_PATH_TO_FILE>"

[SITE_HEARTBEAT_CYCLE=<min..max>]

[TEMP_HOSTNAME={disallow|allow}]

[MONITOR_INTERFACES={enable|disable}]

[LPM_POLICY={manage|unmanage}]

[HEARTBEAT_FREQUENCY_DURING_LPM=###]

[NETWORK_FAILURE_DETECTION_TIME=<0,5...590>]

[CAA_AUTO_START_DR={Enabled|Disabled}]

[CAA_DEADMAN_MODE={assert|event}]

[CAA_REPOS_MODE={assert|event}]

[LVM_PREFERRED_READ=<roundrobin|favorcopy|siteaffinity>]

Note: The REPOSITORIES option can be used only with a cluster type of NSC or SC. For LC clusters, the REPOSITORIES option is identified for each site. The REPOSITORIES option can use six backup repository disks.

clmgr modify cluster

[NAME=<new_cluster_label>]

[NODES=<host>[,<host#2>,...]

[TYPE="LC"]

[HEARTBEAT_TYPE={unicast|multicast}]

[FC_SYNC_INTERVAL=##]

[RG_SETTLING_TIME=##]

[MAX_EVENT_TIME=###]

[SPLIT_POLICY={none|tiebreaker|manual|NFS}]

[TIEBREAKER=<disk>]

[MERGE_POLICY={none|majority|tiebreaker|manual|NFS}]

[NFS_QUORUM_SERVER=<server>]

[LOCAL_QUORUM_DIRECTORY=<local_mount>]

[REMOTE_QUORUM_DIRECTORY=<remote.mount>]

[CRITICAL_RG=<rgname>]

[NOTIFY_METHOD=<method>]

[NOTIFY_INTERVAL=##]

[MAXIMUM_NOTIFICATIONS=###]

[DEFAULT_SURVIVING_SITE=<site>]

[APPLY_TO_PPRC_TAKEOVER={yes|no}]

[ACTION_PLAN={reboot|disable_rgs_autostart|disable_cluster_services_autostart}]

Commands 51
Note: After sites are fully defined and synchronized and if sites are already in use, the cluster type cannot be modified.

clmgr query cluster [ALL | {CORE,SECURITY,SPLIT-MERGE,HMC,ROHA}]
clmgr delete cluster [NODES={ALL|[<node>,<node#2>,...]}]

Note: The delete action defaults to deleting the cluster completely, from all available nodes.

clmgr discover cluster
clmgr recover cluster
[CANCEL_EVENT = {false/true}]
clmgr sync cluster \[
 [VERIFY={yes/no}] \[
 [CHANGES_ONLY={yes/no}] \[
 [DEFAULT_TESTS={yes/no}] \[
 [METHODS={method#1},...,method#2,...]] \[
 [FIX={yes/no}] \[
 [LOGGING={standard|verbose}] \[
 [LOGFILE=<PATH_TO_LOG_FILE>] \[
 [MAX_ERRORS=##] \[
 [FORCE={yes/no}]

Note: All options are verification parameters, so they are only valid when VERIFY is set to yes.

clmgr manage cluster {reset|unlock}

clmgr manage cluster security \[
 [LEVEL={Disable|Low|Med|High}] \[
 [ALGORITHM={DES|3DES|AES}] \[
 [GRACE_PERIOD=<SECONDS>] \[
 [REFRESH=<SECONDS>]] \[
 [MECHANISM={OpenSSL|SSH}] \[
 CERTIFICATE=<PATH_TO_FILE> \[
 PRIVATE_KEY=<PATH_TO_FILE>

Note: If a MECHANISM of SSL or SSH is specified, then a custom made certificate and private key file must be provided.

clmgr manage cluster security \[
 [LEVEL={Disable|Low|Med|High}] \[
 [ALGORITHM={DES|3DES|AES}] \[
 [GRACE_PERIOD=<SECONDS>] \[
 [REFRESH=<SECONDS>]] \[
 [MECHANISM="SelfSigned"] \[
 [CERTIFICATE=<PATH_TO_FILE>] \[
 [PRIVATE_KEY=<PATH_TO_FILE>]

Note: If a MECHANISM of Self-Signed is specified, then specifying a certificate and private key file is optional. If neither is provided, a default pair is automatically generated. GRACE_PERIOD defaults to 21600 seconds (6 hours). REFRESH defaults to 86400 seconds (24 hours).

clmgr manage cluster hmc \[
 [DEFAULT_HMC_TIMEOUT=<MINUTES>] \[
 [DEFAULT_HMC_RETRY_COUNT=<INTEGER>] \[
 [DEFAULT_HMC_RETRY_DELAY=<SECONDS>] \[
 [DEFAULT_HMCS_LIST=<HMCS>]

clmgr manage cluster roha \[
 [ALWAYS_START_RG={YES|NO}] \[
 [ADJUST_SPP_SIZE={YES|NO}] \[
 [FORCE_SYNC_RELEASE={YES|NO}] \[
 [AGREE_TO_COD_COSTS={YES|NO}]] \[
 [ONOFF_DAYS=<DAYS>]] \[
 [RESOURCE_ALLOCATION_ORDER={enterprise_pool_first|free_pool_first}]
clmgr verify cluster \
[CHANGES_ONLY={no|yes}] \n[DEFAULT_TESTS={yes|no}] \n[METHODS={method#1][<method#2>,...]] \n[FIX={no|yes}] \n[LOGGING={standard|verbose}] \n[LOGFILE=<PATH_TO_LOG_FILE>] \n[MAX_ERRORS=#] \n[SYNC={no|yes}] \n[FORCE={no|yes}]

Note: The FORCE option can be used when SYNC is set to yes.

clmgr offline cluster \
[WHEN={now|restart|both}] \n[MANAGE={offline|move|unmanage}] \n[BROADCAST={true|false}] \n[TIMEOUT=<seconds_to_wait_for_completion>] \n[STOP_CAA={no|yes}]

clmgr online cluster \
[WHEN={now|restart|both}] \n[MANAGE={auto|manual|delayed}] \n[BROADCAST={false|true}] \n[CLINFO={false|true|consistent}] \n[FORCE={false|true}] \n[FIX={no|yes|interactively}] \n[TIMEOUT=<seconds_to_wait_for_completion>] \n[START_CAA={no|yes}]

Note: The RG_SETTLING_TIME attribute only affects resource groups with a startup policy of Online On First Available Node. An alias for cluster is cl.

Note: The STOP_CAA and START_CAA options bring the Cluster Aware AIX (CAA) cluster services offline or online. Use these options when there is a specific known need for them, or at the direction of IBM® support. Do not deactivate CAA cluster services because it disables the ability to detect problems in the clustered environment. The only option starts only CAA services.

Repository

clmgr add repository <disk>[,<backup_disk#2>,...]
[SITE=<site_label>]
[NODE=<reference_node>]

Note: If an active repository is not already defined, the first disk is used as the active repository. Any other disks in the list are defined as backup repository disks. You can identify up to six backup repository disks per cluster for standard clusters and stretched clusters. You can identify up to six backup repository disks per site for linked clusters.

clmgr replace repository [<new_repository>]
[SITE=<site_label>]
[NODE=<reference_node>]

Note: If no disk is specified, the first disk in the backup list is used.

clmgr query repository [<disk>[,<disk#2>,...]]
clmgr delete repository {<backup_disk>[,<disk#2>,...]|ALL}
[SITE=<site_label>]
[NODE=<reference_node>]

Note: It is not possible to delete an active repository disk. Only backup repositories can be removed.
Site

clmgr add site <sitename> \
 NODES=<node>[.,<node#2>,...] \
 [SITE_IP=<multicast_address>] \
 [RECOVERY_PRIORITY={MANUAL|1|2}] \
 [REPOSITORIES=<disk>[.,<backup_disk>,...]]

Note: The REPOSITORIES option can be used only with a cluster type of LC. The REPOSITORIES option can use seven disks. The first disk is the active repository disk and the following disks are the backup repositories disks.

clmgr modify site <sitename> \
 [NAME=<new_site_label>] \
 [NODES=<node>[.,<node#2>,...]] \
 [SITE_IP=<multicast_address>] \
 [RECOVERY_PRIORITY={MANUAL|1|2}] \
 [REPOSITORIES=<backup_disk>[.,<backup_disk>,...]] \
 [HMCS=<hmc>[.,<hmc#2>,...]]

Note: The SITE_IP attribute can be used only with a cluster type of LC (linked clusters) and a cluster heartbeat type of multicast.

Note: The REPOSITORIES option can be used only with a cluster type of LC. The REPOSITORIES option can use six backup repository disks.

clmgr query site [<sitename>[.,<sitename#2>,...]]
clmgr delete site {<sitename>[.,<sitename#2>,...]|ALL}
clmgr recover site [CANCEL_EVENT = {false|true}]
clmgr offline site <sitename> \
 [WHEN={now|restart|both}] \
 [MANAGE={offline|move|unmanage}] \
 [BROADCAST={true|false}] \
 [TIMEOUT={seconds_to_wait_for_completion}] \
 [STOP_CAA={no|yes}]
clmgr online site <sitename> \
 [WHEN={now|restart|both}] \
 [MANAGE={auto|manual}] \
 [BROADCAST={false|true}] \
 [CLINFO={false|true|consistent}] \
 [FORCE={false|true}] \
 [FIX={no|yes|interactively}] \
 [TIMEOUT={seconds_to_wait_for_completion}] \
 [START_CAA={no|yes|only}]
clmgr manage site respond {continue|recover}

Note: An alias for site is st.

Note: The STOP_CAA and START_CAA options bring the Cluster Aware AIX (CAA) cluster services offline or online. Use these options when there is a specific known need for them, or at the direction of IBM support. Do not deactivate CAA cluster services because it disables the ability to detect problems in the clustered environment. The only option starts only CAA services.

Node

clmgr add node <node> \
 [COMMPATH=<ip_address_or_network-resolvable_name>] \
 [RUN_DISCOVERY={true|false}] \
 [PERSISTENT_IP=<IP> NETWORK=<network>]
 [NETMASK=<255.255.255.0 | PREFIX=1..128]] \
 [START_ON_BOOT={false|true}] \

54 PowerHA SystemMirror commands
Note: The TIMEOUT attribute defaults to 120 seconds. An alias for node is no.

Note: The STOP_CAA and START_CAA options bring the Cluster Aware AIX (CAA) cluster services offline or online. Use these options when there is a specific known need for them, or at the direction of IBM support. Do not deactivate CAA cluster services because it disables the ability to detect problems in the clustered environment. The only option starts only CAA services.

Network

Note: By default, an IPv4 network is constructed using a netmask of 255.255.255.0. To create an IPv6 network, specify a valid prefix.

Note: The possible values for the RESOURCE_DIST_PREF attribute follow:

AC Anti-collocation
ACS
 Anti-collocation with source
C Collocation
CS Collocation with source
CPL
 Collocation with persistent label
ACPL
 Anti-collocation with persistent label
ACPLS
 Anti-collocation with persistent label and source
NOALI
 Disables first alias

Note: If the RESOURCE_DIST_PREF attribute uses the CS or ACS value, the SOURCE_IP attribute must be a service label.

clmgr query network [<network> [, <network#2>, ...]]
clmgr delete network { <network> [, <network#2>, ...] | all}

Note: Aliases for network are ne and nw.

Interface

clmgr add interface <interface> \
 NETWORK=<network> \
 [NODE=<node>] \
 [TYPE={ether|XD_data|XD_ip}] \
 [INTERFACE=<network_interface>]

clmgr modify interface <interface> \
 NETWORK=<network>

clmgr query interface [<interface> [, <if#2>, ...]]
clmgr delete interface { <interface> [, <if#2>, ...] | all}
clmgr discover interfaces

Note: The interface can be either an IP address or label. The NODE attribute defaults to the local node name. The TYPE attribute defaults to ether. The <network_interface> might look like en1, en2, en3. Aliases for interface are in and if.

Resource group

clmgr add resource_group <resource_group> [, <rg#2>, ...] \
 NODES=nodeA1,nodeA2,... \
 [SECONDARYNODES=nodeB2 [, nodeB1,...]] \
 [SITE_POLICY={ignore|primary|either|both}] \
 [STARTUP={OHN|OFAN|OAAN|OUDP}] \
 [FALLOVER={FNP|FUDNP|BO}] \
 [Fallback={NPB|FBHPN}] \
 [Fallback AT=<Fallback TIMER>] \
 [NODE_PRIORITY_POLICY={default|mem|cpu|disk|least|most}] \
 [NODE_PRIORITY_POLICY_SCRIPT= </path/to/script>] \
 [NODE_PRIORITY_POLICY_TIMEOUT=###] \
 [SERVICE_LABEL=service_ip#1 [, service_ip#2,...]] \
 [APPLICATIONS=appctlr#1 [, appctlr#2,...]] \
 [SHARED_TAPE_RESOURCES=<TAPE> [, <TAPE#2>, ...]] \
 [VOLUME_GROUP=<VG> [, <VG#2>, ...]] \
 [FORCED_VARYON={true|false}] \
 [VOLUME_AUTO_IMPORT={true|false}] \
 [FILESYSTEM=/file_system#1 [, /file_system#2,...]] \
 [DISK=<raw_disk> [, <raw_disk#2>, ...]] \
 [SERVICE_LABEL=service_ip#1 [, service_ip#2,...]] \
 [APPLICATIONS=appctlr#1 [, appctlr#2,...]] \
 [SHARED_TAPE_RESOURCES=<TAPE> [, <TAPE#2>, ...]] \
 [VOLUME_GROUP=<VG> [, <VG#2>, ...]] \
 [FORCED_VARYON={true|false}] \
 [VOLUME_AUTO_IMPORT={true|false}] \
 [FILESYSTEM=/file_system#1 [, /file_system#2,...]] \
 [DISK=<raw_disk> [, <raw_disk#2>, ...]]
STARTUP:
ONH ---- Online Home Node (default value)
OFAN ---- Online on First Available Node
OAAN ---- Online on All Available Nodes (concurrent)
OUDP ---- Online Using Node Distribution Policy

FALLOVER:
FNPN ---- Fallover to Next Priority Node (default value)
FUDNP ---- Fallover Using Dynamic Node Priority
BO ------ Bring Offline (On Error Node Only)

FALLBACK:
NFB ------ Never Fallback
FBHPN --- Falback to Higher Priority Node (default value)

NODE_PRIORITY_POLICY:
default - next node in the NODES list
mem ----- node with most available memory
disk ----- node with least disk activity
cpu ----- node with most available CPU cycles
least --- node where the dynamic node priority script returns the lowest value
most ----- node where the dynamic node priority script returns the highest value

Note: The NODE_PRIORITY_POLICY policy can only be established if the FALLOVER policy has been set to FUDNP.

SITE_POLICY:
ignore -- Ignore
primary - Prefer Primary Site
either -- Online On Either Site
both ----- Online On Both Sites

clmgr modify resource_group <resource_group> \
[NAME=<new_resource_group_label>] \
[NODES=nodeA1[,nodeA2,...]] \
[SECONDARYNODES=nodeB2[,nodeB1,...]] \
[SITE_POLICY={ignore|primary|either|both}] \
[STARTUP={ONH|OFAN|OAAN|OUDP}] \
[FALLOVER={FNPN|FUDNP|BO}] \
[FALLBACK={NFB|FBHPN}] \
[FALLBACK_AT=<FALLBACK_TIMER>] \
[NODE_PRIORITY_POLICY={default|mem|cpu|disk|least|most}] \
[NODE_PRIORITY_POLICY_SCRIPT=<path/to/script>] \
[NODE_PRIORITY_POLICY_TIMEOUT=###] \
[SERVICE_LABEL=service_ip1[,service_ip2,...]] \
[APPLICATIONS=appctlr1[#1][appctlr1[#2][...]] \
[VOLUME_GROUP=volume_group1[,volume_group2,...]] \
[FORCED_VARYON={true|false}] \
[VG_AUTO_IMPORT={true|false}] \
[FILESYSTEM=/file_system#1[,/file_system#2,...]] \
[DISK=<raw_disk>[:<raw_disk#2>,...]] \
[FS_BEFORE_IPADDR={true|false}] \
[WPAR_NAME="wpar_name"] \
[EXPORT_FILESYSTEM=/expfs#1[,/expfs#2,...]]
Note: The appctlr value is an abbreviation for application_controller.

clmgr query resource_group [<resource_group>[,<rg#2>,...]]
clmgr delete resource_group (<resource_group>[,<rg#2>,...] | ALL)
clmgr online { resource_group <resource_group>[,<rg#2>,...] | ALL} \
 [NODES=<node>[,<node#2>,...] | ALL]}
clmgr offline resource_group [<resource_group>[, <rg#2>,...] | ALL] \
 [NODES=<node>[,<node#2>,...] | ALL]

Note: The special ALL target for the NODES attribute is only applicable to concurrent resource groups.

clmgr move resource_group <resource_group>[, <rg#2>, ...] \
 {NODE|SITE}=<node_or_site_label> \
 [SECONDARY={false|true}] \
 [STATE={online|offline}]

Note: The SITE and SECONDARY attributes are only applicable when sites are configured in the cluster. The resource group STATE remains unchanged if STATE is not explicitly specified. An alias for resource_group is rg.

Fallback timer

clmgr add fallback_timer <timer> \
 [YEAR=<####>] \
 [MONTH=<1..12 | Jan..Dec>] \
 [DAY_OF_MONTH=<1..31>] \
 [DAY_OF_WEEK=<0..6 | Sun..Sat>] \
 [HOUR=<0..23>] \
 [MINUTE=<0..59>]
clmgr modify fallback_timer <timer> \
 [YEAR=<####>] \
 [MONTH=<1..12 | Jan..Dec>] \
 [DAY_OF_MONTH=<1..31>] \
 [DAY_OF_WEEK=<0..6 | Sun..Sat>] \
 [HOUR=<0..23>] \
 [MINUTE=<0..59>]
 [REPEATS=<0,1,2,3,4 | Never,Daily,Weekly,Monthly,Yearly>]
clmgr query fallback_timer [<timer>[, <timer#2>, ...]]
clmgr delete fallback_timer { <timer>[, <timer#2>, ...] | ALL }

Note: Aliases for fallback_timer are fa and timer.

Persistent IP/Label

clmgr add persistent_ip <persistent_IP> \
 NETWORK=<network> \
 [(NETMASK=<255.255.255.0 | PREFIX=1..128]]]
 [NODE=<node>]
clmgr modify persistent_ip <persistent_label> \
 [NAME=<new_persistent_label>] \
 [NETWORK=<new_network>] \
 [NETMASK=<node> 255.255.255.0 | PREFIX=1..128]]]

58 PowerHA SystemMirror commands
Note: Any value provided for NETMASK or PREFIX is ignored unless the underlying network uses a different protocol (IPv4 versus IPv6). In that case, the NETMASK or PREFIX is required.

clmgr query persistent_ip [<persistent_IP>[,<pIP#2>,...,]]
clmgr delete persistent_ip [<persistent_IP>[,<pIP#2>,...,] | ALL]
clmgr move persistent_ip <persistent_IP> \ INTERFACE=<new_interface>

Note: An alias for persistent_ip is pe.

Service IP/Label

clmgr add service_ip <service_ip> \ NETWORK=<network> \ [{NETMASK=<255.255.255.0 | PREFIX=1..128> } \ [HWADDR=<new_hardware_address>] \ [SITE=<new_site>]
clmgr modify service_ip <service_ip> \ [NAME=<new_service_ip>] \ [NETWORK=<new_network>] \ [{NETMASK=<###.###.###.###> | PREFIX=1..128> } \ [HWADDR=<new_hardware_address>] \ [SITE=<new_site>]
clmgr query service_ip [<service_ip>[,<service_ip#2>,...,]]
clmgr delete service_ip {<service_ip>[,<service_ip#2>,...,] | ALL}
clmgr move service_ip <service_ip> \ INTERFACE=<new_interface>

Note: If the NETMASK/PREFIX attributes are not specified, the netmask or prefix value for the underlying network is used. An alias for service_ip is si.

Application controller

clmgr add application_controller <application_controller> \ STARTSCRIPT="/path/to/start/script" \ STOPSCRIPT="/path/to/stop/script" \ [MONITORS=<monitor>[,<monitor#2>,...,]] \ [STARTUP_MODE={background|foreground}]
clmgr add application_controller STARTSCRIPT="/path/to/start/script" \ STOPSCRIPT="/path/to/stop/script" CPU_USAGE_MONITOR="yes" | "no" PROCESS_TO_MONITOR_CPU_USAGE="/path/to/binary" CPU_USAGE_MONITOR_INTERVAL=<time interval in minutes>
clmgr modify application_controller <application_controller> \ [NAME=<new_application_controller_label>] \ [STARTSCRIPT="/path/to/start/script"] \ [STOPSCRIPT="/path/to/stop/script"] \ [MONITORS=<monitor>[,<monitor#2>,...,]] \ [STARTUP_MODE={background|foreground}]
clmgr modify application_controller STARTSCRIPT="/path/to/start_script" \ STOPSCRIPT="/path/to/stop_script" CPU_USAGE_MONITOR="yes" | "no" PROCESS_TO_MONITOR_CPU_USAGE="/path/to/binary" CPU_USAGE_MONITOR_INTERVAL=<time interval in minutes>
clmgr query application_controller [<appctlr>[,<appctlr#2>,...,]]
clmgr delete application_controller [<appctlr>[,<appctlr#2>,...,] | ALL]
clmgr manage application_controller {suspend|resume} \ <application_controller> \ RESOURCE_GROUP=<resource_group>
clmgr manage application_controller {suspend|resume} ALL
Note: The appctlr value is an abbreviation for application_controller. Aliases for application_controller are ac and app.

Application monitor

clmgr add application_monitor <monitor>
 TYPE=Process \
 MODE={longrunning|startup|both} \
 PROCESSES="pmon1,dbmon,..." \
 OWNER="<processes_owner_name>" \
 [APPLICATIONS=<appctlr#1>[,<appctlr#2>,...]] \
 [STABILIZATION="1 .. 3600"] \
 [RESTARTCOUNT="0 .. 100"] \
 [FAILUREACTION={notify|fallover}] \
 [STABILIZATION="1 .. 3600"] \
 [INSTANCECOUNT="1 .. 1024"] \
 [RESTARTINTERVAL="1 .. 3600"] \
 [NOTIFYMETHOD="/script/to/notify"] \
 [CLEANUPMETHOD="/script/to/cleanup"] \
 [RESTARTMETHOD="/script/to/restart"]

clmgr add application_monitor <monitor>
 TYPE=Custom \
 MODE={longrunning|startup|both} \
 MONITORMETHOD="/script/to/monitor" \
 [APPLICATIONS=<appctlr#1>[,<appctlr#2>,...]] \
 [STABILIZATION="1 .. 3600"] \
 [RESTARTCOUNT="0 .. 100"] \
 [FAILUREACTION={notify|fallover}] \
 [INSTANCECOUNT="1 .. 1024"] \
 [RESTARTINTERVAL="1 .. 3600"] \
 [NOTIFYMETHOD="/script/to/notify"] \
 [CLEANUPMETHOD="/script/to/cleanup"] \
 [RESTARTMETHOD="/script/to/restart"]

Note: STABILIZATION defaults to 180. RESTARTCOUNT defaults to 3

clmgr modify application_monitor <monitor>
 [See the "add" action, above, for a list of supported modification attributes.]

clmgr query application_monitor [<monitor>[,<monitor#2>,...]]

clmgr delete application_monitor (<monitor>[,<monitor#2>,...]|ALL)

Note: The appctlr value is an abbreviation for application_controller. Aliases for application_monitor are am and mon.

Dependency

Temporal Dependency (parent ==> child)
clmgr add dependency \
 PARENT=<rg#1> \
 CHILD="<rg#2>[,<rg#2>,...]

clmgr modify dependency <parent_child_dependency> \
 [TYPE=PARENT_CHILD] \
 [PARENT=<rg#1>] \
 [CHILD="<rg#2>[,<rg#2>,...]"

Temporal Dependency (start/stop after)
clmgr add dependency \
 {STOP|START}="<rg#2>[,<rg#2>,...]
 AFTER=<rg#1>

clmgr modify dependency \
 [TYPE={STOP_AFTER|START_AFTER}] \
 [{STOP|START}="<rg#2>[,<rg#2>,...]"] \
 [AFTER=<rg#1>]
Location Dependency (colocation)
clmgr add dependency \
 SAME={NODE|SITE} \
 GROUPS="<rg1>,<rg2>[,<rg#n>,...]
clmgr modify dependency <colocation_dependency> \
 [TYPE={SAME_NODE|SAME_SITE}] \
 GROUPS="<rg1>,<rg2>[,<rg#n>,...]

Location Dependency (anti-colocation)
clmgr add dependency \
 HIGH="<rg1>,<rg2>,..." \
 INTERMEDIATE="<rg3>,<rg4>,..." \
 LOW="<rg5>,<rg6>,..."
clmgr modify dependency <anti-colocation_dependency> \
 [TYPE=DIFFERENT_NODES] \
 [HIGH="<rg1>,<rg2>,..."] \
 [INTERMEDIATE="<rg3>,<rg4>,..."] \
 [LOW="<rg5>,<rg6>,..."]

Acquisition/Release Order
clmgr add dependency \
 TYPE={ACQUIRE|RELEASE} \
 { SERIAL="<rg1>,<rg2>,...|ALL} | \
 PARALLEL="<rg1>,<rg2>,...|ALL"
clmgr modify dependency \
 TYPE={ACQUIRE|RELEASE} \
 { SERIAL="<rg1>,<rg2>,...|ALL} | \
 PARALLEL="<rg1>,<rg2>,...|ALL"
clmgr query dependency [<dependency>]
clmgr delete dependency {<dependency> | ALL} \
 [TYPE={PARENT_CHILD|STOP_AFTER|START_AFTER| \
 SAME_NODE|SAME_SITE|DIFFERENT_NODES}]
clmgr delete dependency RESOURCE_GROUP=<RESOURCE_GROUP>

Note: An alias for dependency is de.

Tape

clmgr add tape <tape> \
 DEVICE=<tape_device_name> \
 [DESCRIPTION=<tape_device_description>] \
 [STARTSCRIPT="</script/to/start/tape/device>"] \
 [START_SYNCHRONOUSLY={no|yes}] \
 [STOPSCRIPT="</script/to/stop/tape/device>"] \
 [STOP_SYNCHRONOUSLY={no|yes}]
clmgr modify tape <tape> \
 [NAME=<new_tape_label>] \
 [DEVICE=<tape_device_name>] \
 [DESCRIPTION=<tape_device_description>] \
 [STARTSCRIPT="</script/to/start/tape/device>"] \
 [START_SYNCHRONOUSLY={no|yes}] \
 [STOPSCRIPT="</script/to/stop/tape/device>"] \
 [STOP_SYNCHRONOUSLY={no|yes}]
clmgr query tape [<tape>,<tape#2>,...]
clmgr delete tape {<tape> | ALL}

Note: An alias for tape is tp.

File collection

clmgr add file_collection <file_collection> \
 FILES="/path/to/file1,/path/to/file2,..." \
 [SYNC_WITH_CLUSTER={no|yes}] \
 [SYNC_WHEN_CHANGED={no|yes}] \
 [DESCRIPTION="<file_collection_description>"]
clmgr modify file_collection <file_collection> \
[NAME="<new_file_collection_label>"] \
[ADD="/path/to/file1,/path/to/file2,..."] \
[DELETE="/path/to/file1,/path/to/file2,..."|ALL] \
[REPLACE="/path/to/file1,/path/to/file2,..."|""] \
[SYNC_WITH_CLUSTER={no|yes}] \
[SYNC_WHEN_CHANGED={no|yes}] \
[DESCRIPTION="<file_collection_description>"]

clmgr delete file_collection [<file_collection>[,<fc#2>,...]] \
[ALL]

clmgr sync file_collection <file_collection>

Note: The REPLACE attribute replaces all existing files with the specified set. Aliases for file_collection are fc and fi.

Snapshot
clmgr add snapshot <snapshot> \
[DESCRIPTION="<snapshot_description>"] \
[METHODS="method1,method2,..."]
clmgr add snapshot <snapshot> TYPE="xml"
clmgr modify snapshot <snapshot> \
[NAME="<new_snapshot_label>"] \
[DESCRIPTION="<snapshot_description>"]
clmgr query snapshot [<snapshot>[,<snapshot#2>,...]]
clmgr view snapshot <snapshot> \
[TAIL=<number_of_trailing_lines>] \
[HEAD=<number_of_leading_lines>] \
[FILTER=<pattern>[,<pattern#2>,...]] \
[DELIMITER=<alternate_pattern_delimiter>] \
[CASE={insensitive|no|off|false}]
clmgr delete snapshot <snapshot>[,<snapshot#2>,...] \
[ALL]

clmgr manage snapshot restore <snapshot> \
[CONFIGURE={yes|no}] \
[FORCE={no|yes}]

Note: The view action displays the contents of the .info file for the snapshot, if that file exists. Aliases for snapshot are sn and ss.

clmgr manage snapshot restore <snapshot> \
[NODES=<HOST>,<HOST#2>] \
[REPOSITORIES=<DISK>[,:<BACKUP>[,:<DISK>[,:<BACKUP>]]] \
[CLUSTER_NAME=<NEW_CLUSTER_LABEL>] \
[CONFIGURE={yes|no}] \
[FORCE={no|yes}]

Note: For the REPOSITORIES option, any disks specified after the colon are applied to the second site. When you restore a linked cluster snapshot, any disks specified after the colon in the REPOSITORIES option are applied to the second site.

Method
clmgr add method <method_label> \
[TYPE=snapshot] \
[FILE=<executable_file>] \
[DESCRIPTION=<description>]
clmgr add method <method_label> \
[TYPE=verify] \
[FILE=<executable_file>] \
[SOURCE={script|library}] \
[DESCRIPTION=<description>]
clmgr modify method <method_label> \
[NAME="<new_method_label>"] \
[TYPE={snapshot|verify}] \
[DESCRIPTION=<description>]

clmgr manage method restore <method_label> \
[CONFIGURE={yes|no}] \
[FORCE={no|yes}]
clmgr add method <method_label> \
 TYPE=notify \
 CONTACT=<number_to_dial_or_email_address> \
 EVENT=<event>[,<event#2>,...] \
 NODES=<node>[,<node#2>,...] \
 FILE=<message_file> \
 DESCRIPTION=<description> \
 RETRY=<retry_count> \
 TIMEOUT=<timeout>]

Note: NODES defaults to the local node.

clmgr modify method <method_label> \
 TYPE=notify \
 [NAME=<new_method_label>] \
 [DESCRIPTION=<description>] \
 [CONTACT=<number_to_dial_or_email_address>] \
 [EVENT=<cluster_event_label>] \
 [NODES=<node>[,<node#2>,...]] \
 [RETRY=<retry_count>] \
 [TIMEOUT=<timeout>]

clmgr query method [<method>[,<method#2>,...]] \
 [TYPE={notify|snapshot|verify}]

clmgr delete method {<method>[,<method#2>,...] | ALL} \
 [TYPE={notify|snapshot|verify}]

clmgr verify method <method>

Note: The verify action can only be applied to notify methods. If more than one method exploits the same event, and that event is specified, then both methods will be invoked. An alias for *method* is me.

Log

clmgr modify logs ALL DIRECTORY="<new_logs_directory>"

clmgr modify log <log>[ALL] \
 [DIRECTORY="<new_log_directory>"|DEFAULT] \
 [FORMATTING={none|standard|low|high}] \
 [TRACE_LEVEL={low|high}] \
 [REMOTE_FS={true|false}]

clmgr query log [<log>[,<log#2>,...]]

clmgr view log [<log>[EVENTS]] \
 [TAIL=<number_of_trailing_lines>] \
 [HEAD=<number_of_leading_lines>] \
 [FILTER=<pattern>[,<pattern#2>,...]] \
 [DELIMITER=<alternate_pattern_delimiter>] \
 [CASE={insensitive|no|off|false}]

clmgr manage logs collect \
 [DIRECTORY="<directory_for_collection>"] \
 [NODES=<node>[,<node#2>,...]] \
 [RSCT_LOGS={yes|no}]

Note: When DEFAULT is specified for the DIRECTORY attribute, then the original, default PowerHA SystemMirror directory value is restored

The FORMATTING attribute only applies to the hacmp.out log, and is ignored for all other logs. The FORMATTING and TRACE_LEVEL attributes only apply to the hacmp.out and clstrmgr.debug logs, and are ignored for all other logs.

When ALL is specified in place of a log name, then the provided DIRECTORY and REMOTE_FS modifications are applied to all the logs.
When EVENTS is specified in place of a log name, then an events summary report is displayed.

Volume group

```bash
clmgr add volume_group [ <vgname> ] \ 
   NODES="<node#1>,<node#2>,[,...]" \ 
   PHYSICAL_VOLUMES="<disk#1>,[<disk#2>,[,...]]" \ 
   [ TYPE={original|big|scalable|legacy} ] \ 
   [ RESOURCE_GROUP=<RESOURCE_GROUP> ] \ 
   [ PPART_SIZE={4|8|16|32|64|128|256|512|1024} ] \ 
   [ MAJOR_NUMBER=## ] \ 
   [ ACTIVATE_ON_RESTART={false|true} ] \ 
   [ QUORUM_NEEDED={true|false} ] \ 
   [ LTG_SIZE=### ] \ 
   [ MAX_LOGICAL_VOLUMES={256|512|1024|2048} ] \ 
   [ MIGRATE_FAILED_DISKS={false|one|pool|remove} ] \ 
   [ CRITICAL={false|true} ] \ 
   [ FAILUREACTION={halt|notify|fence|stoprg|moverg} ] \ 
   [ NOTIFYMETHOD="</file/to/invoke>" ] \ 
   [ LVM_PREFERRED_READ=<roundrobin|favorcopy|siteaffinity> ]
```

Note: Setting the volume group major number might result in the command being unable to execute successfully on a node that does not have the major number currently available. Check for a commonly available major number on all nodes before changing this setting.

```bash
clmgr modify volume_group <vgname> \ 
   [ ADD=<disk>,[<disk#n>,[,...]] ] \ 
   [ REMOVE=<disk>,[<disk#n>,[,...]] ] \ 
   [ TYPE={big|scalable} ] \ 
   [ ACTIVATE_ON_RESTART={false|true} ] \ 
   [ QUORUM_NEEDED={true|false} ] \ 
   [ LTG_SIZE=### ] \ 
   [ MIGRATE_FAILED_DISKS={false|one|pool|remove} ] \ 
   [ CRITICAL={false|true} ] \ 
   [ FAILUREACTION={halt|notify|fence|stoprg|moverg} ] \ 
   [ NOTIFYMETHOD="</file/to/invoke>" ] \ 
   [ LVM_PREFERRED_READ=<roundrobin|favorcopy|siteaffinity> ]
```

MAX_PHYSICAL_PARTITIONS, MAX_LOGICAL_VOLUMES, and MIRROR_POOL_NAME only apply to scalable volume groups.

```bash
clmgr query volume_group [ <vg#1>[,<vg#2>,[,...]] ]
clmgr delete volume_group 
   {<volume_group> [,<vg#2>,[,...]] | ALL } 
clmgr discover volume_groups
```

Note: An alias for `volume_group` is vg.

Logical volume

```bash
clmgr add logical_volume [ <lvname> ] \ 
   VOLUME_GROUP=<vgname> \ 
   LOGICAL_PARTITIONS=## \ 
   [ DISKS="<disk#1>,[<disk#2>,[,...]]" ] \ 
   [ TYPE={jfs|jfs2|sysdump|paging|jfslog|jfs2log|aio_cache|boot} ]
```

Note: An alias for `volume_group` is vg.

Logical volume commands

64 PowerHA SystemMirror commands
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td>{outer_middle</td>
</tr>
<tr>
<td>PV_RANGE</td>
<td>{minimum</td>
</tr>
<tr>
<td>MAX_PVS_FOR_NEW_ALLOC</td>
<td>##</td>
</tr>
<tr>
<td>LPART_COPIES</td>
<td>{1</td>
</tr>
<tr>
<td>WRITE_CONSISTENCY</td>
<td>{active</td>
</tr>
<tr>
<td>LPARTS_ON_SEPARATE_PVS</td>
<td>{yes</td>
</tr>
<tr>
<td>RELOCATE</td>
<td>{yes</td>
</tr>
<tr>
<td>LABEL</td>
<td><label></td>
</tr>
<tr>
<td>MAX_LPATS</td>
<td>###</td>
</tr>
<tr>
<td>BAD_BLOCK_RELOCATION</td>
<td>{yes</td>
</tr>
<tr>
<td>SCHEDULING_POLICY</td>
<td>{parallel</td>
</tr>
<tr>
<td>VERIFY_WRITES</td>
<td>{false</td>
</tr>
<tr>
<td>ALLOCATION_MAP</td>
<td><file></td>
</tr>
<tr>
<td>STRIPE_SIZE</td>
<td>{4K</td>
</tr>
<tr>
<td>SERIALIZE_10</td>
<td>{false</td>
</tr>
<tr>
<td>FIRST_BLOCK_AVAILABLE</td>
<td>{false</td>
</tr>
<tr>
<td>FIRST_COPY_MIRROR_POOL</td>
<td><mirror_pool></td>
</tr>
<tr>
<td>SECOND_COPY_MIRROR_POOL</td>
<td><mirror_pool></td>
</tr>
<tr>
<td>THIRD_COPY_MIRROR_POOL</td>
<td><mirror_pool></td>
</tr>
<tr>
<td>GROUP</td>
<td><group></td>
</tr>
<tr>
<td>PERMISSIONS</td>
<td>###</td>
</tr>
<tr>
<td>NODE</td>
<td><reference_node_in_vg></td>
</tr>
</tbody>
</table>

Note: STRIPE_SIZE may not be used with LPARTS_ON_SEPARATE_PVS, PV_RANGE, or SCHEDULING_POLICY.

```
clmgr query logical_volume [ <lvname>[,.LV#2,...] ]
clmgr delete logical_volume { [ <lv#1>[,.LVV#2,...] ] | ALL }
```

Note: An alias for logical_volume is lv.

File system

```
clmgr add file_system <fsname> 
  VOLUME_GROUP=<group> 
  TYPE=enhanced 
  UNITS=### 
    SIZE_PER_UNIT={megabytes|gigabytes|512bytes} 
    PERMISSIONS={rw|ro} 
    OPTIONS={nodev,nosuid,all} 
    BLOCK_SIZE={4096|512|1024|2048} 
    LV_FOR_LOG={ <lvname> | "INLINE" } 
    INLINE_LOG_SIZE=#### 
    EXT_ATTR_FORMAT={v1|v2} 
    ENABLE_QUOTA_MGMT={no|all|user|group} 
    ENABLE_EFS={false|true} 
```

Note:
1. **BLOCK_SIZE** is in bytes. **LOG_SIZE** is in megabytes.
2. **LOG_SIZE** and **LV_FOR_LOG** can only be used if **INLINE_LOG** is set to true.
3. The size for an enhanced file system is 16 MB.

```
clmgr add file_system <fsname> 
  TYPE=enhanced 
  LOGICAL_VOLUME=<logical_volume> 
  PERMISSIONS={rw|ro} 
  OPTIONS={nodev,nosuid,all} 
  BLOCK_SIZE={4096|512|1024|2048} 
  LV_FOR_LOG={ <lvname> | "INLINE" } 
```
clmgr add file_system <fsname> \\
VOLUME_GROUP=<group> \\
TYPE={standard|compressed|large} \\
UNITS=### \\
 [SIZE_PER_UNIT={megabytes|gigabytes|512bytes}] \\
 [PERMISSIONS={rw|ro}] \\
 [OPTIONS={nodev|nosuid|all}] \\
 [DISK_ACCOUNTING={false|true}] \\
 [FRAGMENT_SIZE={4096|512|1024|2048}] \\
 [BYTES_PER_INODE={4096|512|1024|2048|8192|16384|32768|65536|131072}] \\
 [ALLOC_GROUP_SIZE={8|16|32|64}] \\
 [LV_FOR_LOG=<lvname>]

Note: FRAGMENT_SIZE is only valid for standard and compressed file systems.

clmgr add file_system <fsname> \\
 TYPE={standard|compressed|large} \\
 LOGICAL_VOLUME=<logical_volume> \\
 [PERMISSIONS={rw|ro}] \\
 [OPTIONS={nodev|nosuid|all}] \\
 [DISK_ACCOUNTING={false|true}] \\
 [FRAGMENT_SIZE={4096|512|1024|2048}] \\
 [BYTES_PER_INODE={4096|512|1024|2048|8192|16384|32768|65536|131072}] \\
 [ALLOC_GROUP_SIZE={8|16|32|64}] \\
 [LV_FOR_LOG=<lvname>]

clmgr query file_system [<fs#1>,<fs#2>,...]
clmgr delete file_system { <fsname>,<FS#2>,... | ALL } \\
 [REMOVE_MOUNT_POINT={false|true}]

Note: An alias for file_system is fs.

Physical volume

clmgr query physical_volume \
 [<disk>[,<disk#2>,...]] \\
 [NODES=<node>,<node#2>[,<node#3>,...]] \\
 [TYPE={available|all|tiebreaker}]

Note: Node can be either a node name or a network-resolvable name, for example, host name or IP address.

Disk can be either a device name (hdisk0) or a PVID (00c3a28ed9aa3512).

clmgr modify physical_volume <disk_name_or_PVID> \\
 NAME=<new_disk_name> \\
 [NODE=<reference_node>] \\
 [ALL NODES={false|true}] \\
 [SCSIPR_ACTION={clear}]

Note: The NODE attribute is required if the specified disk is provided using a device name, such as hdisk#. If the disk is specified using the PVID, you do not need to reference the NODE attribute.

An alias for physical_volume is pv.

Mirror pool
clmgr add mirror_pool <pool_name> \
 VOLUME_GROUP=<vgname> \
 [PHYSICAL_VOLUMES="<disk>[,<disk#2>,...]"] \
 [STORAGE_LOCATION={flashstorage|<sitename>}] \
 [MODE={sync|async}] \
 [ASYNC_CACHE_LV=<lvname>] \
 [ASYNC_CACHE_HW_MARK=##]

clmgr add mirror_pool <pool_name> \
 [VOLUME_GROUP=<vgname>] \
 PHYSICAL_VOLUMES="<disk>[,<disk#2>,...]" \
 STORAGE_LOCATION={flashstorage|<sitename>}

Note: If an *add* operation is performed on an existing mirror pool, the specified physical volumes are added to that mirror pool.

clmgr modify mirror_pool <pool_name> \
 [VOLUME_GROUP=<vgname>] \
 [NAME=<new_pool_name>] \
 [STORAGE_LOCATION={flashstorage|<sitename>}] \
 [MODE={sync|async}] \
 [FORCE_SYNC={false|true}] \
 [ASYNC_CACHE_LV=<lvname>] \
 [ASYNC_CACHE_HW_MARK=##]

clmgr query mirror_pool [<pool_name>[,<pool#2>,...]]
clmgr delete mirror_pool <pool_name>,[<pool#2>,...] ALL \
 [VOLUME_GROUP=<vgname>]
clmgr delete mirror_pool <pool_name> \
 [VOLUME_GROUP=<vgname>] \
 PHYSICAL_VOLUMES="<disk>[,<disk#2>,...]"

Note: When physical volumes are specified for a delete operation, the list of disks will be removed from the mirror pool. If all disks are removed, the mirror pool is removed.

Note: An aliases for *mirror_pool* are mp and pool.

EFS

clmgr add efs \
 MODE=ldap \
 [PASSWORD=<password>]
clmgr add efs \
 MODE=shared_fs \
 VOLUME_GROUP=<vgname> \
 SERVICE_IP=<service_ip> \
 [PASSWORD=<password>]
clmgr modify efs \
 MODE={ldap|shared_fs} \
 [VOLUME_GROUP=<vgname>] \
 [SERVICE_IP=<service_ip>] \
 [PASSWORD=<password>]
clmgr query efs
clmgr delete efs

Report

clmgr view report [<report>] \
 [FILE=<PATH TO NEW FILE>] \
 [TYPE={text|html}]
clmgr view report {nodeinfo|rginfo|lvinfo|fsinfo|vginfo|dependencies} \
 [TARGETS=<target>[,<target#2>,...]] \
Note: The currently supported reports are basic, cluster, status, topology, applications, availability, events, nodeinfo, rginfo, networks, vginf0, lvinfo, fsinfo, dependencies, and roha. Some of these reports provide overlapping information, but each also provides its own, unique information, as well.

The appctlr value is an abbreviation for application_controller.

MM must be 1 - 12. DD must be 1 - 31.

If no BEGIN_TIME is provided, then a report will be generated for the last 30 days prior to END_TIME.

If no END_TIME is provided, then the current time will be the default.

An alias for report is re.

LDAP server

The following syntax is used for configuring one or more LDAP servers for the cluster.

clmgr add ldap_server <server>[,<server#2>,...,] \n ADMIN_DN=<admin_distinguished_name> \n PASSWORD=<admin_password> \n BASE_DN=<suffix_distinguished_name> \n SSL_KEY=<full_path_to_key> \n SSL_PASSWORD=<SSL_key_password> \n VERSION=<version> \n DB2_INSTANCE_PASSWORD=<password> \n ENCRYPTION_SEED=<seed> \n [SCHEMA=<schema_type>] \n [PORT={636|###}]

Note: An alias for ldap_server is ls.

The following syntax is used for adding one or more LDAP servers that is already configured to the cluster.

clmgr add ldap_server <server>[,<server#2>,...,] \n ADMIN_DN=<admin_distinguished_name> \n PASSWORD=<admin_password> \n BASE_DN=<suffix_distinguished_name> \n SSL_KEY=<full_path_to_key> \n SSL_PASSWORD=<SSL_key_password> \n PORT={636|###}]

Note: If more than one server is specified, they must be in a peer-to-peer configuration, sharing the same port number.
clmgr query ldap_server
clmgr delete ldap_server

LDAP client

clmgr add ldap_client
 SERVERS=<LDAP_server>[,<LDAP_server#2>]
 BIND_DN=<bind_distinguished_name>
 PASSWORD=<LDAP_admin_password>
 BASE_DN=<base_dn>
 SSL_KEY=<full_path_to_key>
 SSL_PASSWORD=<SSL_key_password>
 [PORT={636|###}]

clmgr query ldap_client
clmgr delete ldap_client

Note: An alias for ldap_client is lc.

User

clmgr add/modify user <user_name>
 [REGISTRY={local|ldap}]
 [RESOURCE_GROUP=<resource_group>]
 [ID=###]
 [PRIMARY=<group>]
 [PASSWORD={"<password>|"}]
 [CHANGE_ON_NEXT_LOGIN={true|false}]
 [GROUPS=<group#1>[,<group#2>,...]]
 [ADMIN_GROUPS=<group#1>[,<group#2>,...]]
 [ROLES=<role#1>[,<role#2>,...]]
 [SWITCH_USER={true|false}]
 [SU_GROUPS={ALL|[<group#1>,...]}]
 [HOME=<full_directory_path>]
 [SHELL=<defined_in_/etc/shells>]
 [INFO=<user_information>]
 [EXPIRATION=<MMDDhhmmyy>]
 [LOCKED={false|true}]
 [LOGIN={true|false}]
 [REMOTE_LOGIN={true|false}]
 [SCHEDULE=<range#1>[,<range#2>,...]]
 [MAX_FAILED_LOGINS=#0]
 [AUTHENTICATION={compat|files|DCE|ldap}]
 [ALLOWED_TTYS=<tty#1>[,<tty#2>,...]]
 [DAYS_TO_WARN=#0]
 [PASSWORD_VALIDATION_METHODS=<meth#1>[,<meth#2>,...]]
 [PASSWORD_FILTERS=<filter#1>[,<filter#2>,...]]
 [MIN_PASSWORDS=<number_of_passwords_before_reuse>]
 [MAX_FAILED_LOGINS={#|0}]
 [AUTHENTICATION={compat|files|DCE|ldap}]
 [ALLOWED_TTYS=<tty#1>[,<tty#2>,...]]
 [DAYS_TO_WARN=#0]
 [PASSWORD_VALIDATION_METHODS=<meth#1>[,<meth#2>,...]]
 [PASSWORD_FILTERS=<filter#1>[,<filter#2>,...]]
 [MIN_PASSWORDS=<number_of_passwords_before_reuse>]
 [MAX_PASSWORD_AGE={0..52}]
 [MIN_PASSWORD_LENGTH={0..8}]
 [MIN_PASSWORD_ALPHAS={0..8}]
 [MIN_PASSWORD_OTHERS={0..8}]
 [MAX_PASSWORD_REPEATED_CHARS={0..52}]
 [MIN_PASSWORD_DIFFERENT={0..8}]
 [UMASK=####]
 [AUDIT_CLASSES=<class#1>[,<class#2>,...]]
 [TRUSTED_PATH={nosak|on|notsh|always}]
 [PRIMARY_AUTH={SYSTEM}]
 [SECONDARY_AUTH={NONE|SYSTEM}<token>;<user>]
 [PROJECTS=<project#1>[,<project#2>,...]]
 [KEYSTORE_ACCESS={file|none}]
 [ADMIN_KEYSTORE_ACCESS={file|none}]
 [KEYSTORE_MODE={admin|guard}]

Commands 69
ALLOW_MODE_CHANGE={false|true} \
KEYSTORE_ENCRYPTION={RSA_1024|RSA_2048|RSA_4096} \
FILE_ENCRYPTION={AES_128_CBC|AES_128_ECB \
AES_192_CBC|AES_192_ECB \
AES_256_CBC|AES_256_ECB} \
ALLOW_PASSWORD_CHANGE={no|yes}

Note: The INFO field only accepts alphanumeric characters including a space, an underscore (_), and a hyphen (-).

Note: For an *add* operation, REGISTRY indicates where to create the user. For *modify*, it indicates which instance of the specified user to change.

Note: SCHEDULE defines the times when the user is allowed to login to this system. The SCHEDULE value is a comma separated list of items as follows:

* [!] [MMdd[-MMdd]]:hhmm-hhmm
* [!] [MMdd[-MMdd]:hhmm-hhmm
* [!] [w[-w]]:hhmm-hhmm
* [!] [w[-w]:hhmm-hhmm

Where **MM** is a month number (00=January, 11=December), **dd** is the day of the month, **hh** is the hour of the day (00 - 23), **mm** is the minute of the hour, and **w** is the day of the week (0=Sunday, 6=Saturday). An exclamation point can be used to indicate that the access during the specified time range is disallowed.

MAX_FAILED_LOGINS, DAYS_TO_WARN, MIN_PASSWORDS, REUSE_TIME can be set to zero to disable these features.

LOCKOUT_DELAY can be set to -1 to disable these features.

c1mgr modify user <user_name> | ALL_USERS \
ALLOW_PASSWORD_CHANGE={no|yes}

Note: ALLOW_PASSWORD_CHANGE indicates if the user is allowed to change their password across the entire cluster using C-SPOC.

c1mgr query user TYPE={AVAILABLE|ALLOWED}
c1mgr query user RESOURCE_GROUP=<resource_group>
c1mgr query user <user_name> \
[RESOURCE_GROUP=<resource_group>]
c1mgr delete user <user_name> \
[RESOURCE_GROUP=<resource_group>] \
[REMOVE_AUTH_INFO={true|false}] \
[REGISTRY={files | LDAP}]

Group

c1mgr add group <group_name>
[REGISTRY={local(files)|LDAP}] \
[RESOURCE_GROUP=<resource_group>] \
[ID=###] \
[ADMINISTRATIVE={false|true}] \
[USERS=<user#1>[,<user#2>,...]] \
[ADMINS=<admin#1>[,<admin#2>,...]] \
[PROJECTS=<project#1>[,<project#2>,...]] \
[KEYSTORE_MODE={admin|guard}] \
[KEYSTORE_ENCRYPTION={RSA_1024|RSA_2048|RSA_4096}] \
[KEYSTORE_ACCESS={file|none}]

70 PowerHA SystemMirror commands
clmgr modify group <group_name> \\
[RESOURCE_GROUP=<resource_group>] \\
[ID=###] \\
[ADMINISTRATIVE={false|true}] \\
[USERS=<user#1>[,<user#2>,...]] \\
[ADMINS=<admin#1>[,<admin#2>,...]] \\
[PROJECTS=<project#1>[,<project#2>,...]] \\
[KEYSTORE_MODE={admin|guard}] \\
[KEYSTORE_ENCRYPTION={ RSA_1024|RSA_2048|RSA_4096 }] \\
[KEYSTORE_ACCESS={file|none}]

Note: The RG option is required for locally defined groups. If the RG option is not provided, it is assumed there is an LDAP group.

clmgr query group RESOURCE_GROUP=<resource_group>
clmgr query group <group_name> \\
[RESOURCE_GROUP=]

clmgr delete group <group_name> \\
[RESOURCE_GROUP=] \\
[REGISTRY={files|LDAP}]

Note: The RG option is required for locally defined groups. An alias for group is gp.

Storage agent

clmgr add storage_agent <agent_name> \\
TYPE={ds8k_gm|xiv_rm} \\
ADDRESSES=<IP>[<IP#2>,...] \\
[USER=<user_id>] \\
[PASSWORD=<password>] \\
[ATTRIBUTES=<NAME>#<VALUE>[,<NAME#2>#<VALUE#2>,...]]

clmgr modify storage_agent <agent_name> \\
[NAME=<new_agent_name>] \\
[ADDRESSES=<IP>[<IP#2>,...]] \\
[USER=<user_id>] \\
[PASSWORD=<password>] \\
[ATTRIBUTES=<NAME>#<VALUE>[,<NAME#2>#<VALUE#2>,...]]

clmgr query storage_agent [<agent>[,<agent#2>,...]]
clmgr delete storage_agent [<agent>[,<agent#2>,...] | ALL]

Note: An alias for storage agent is sta.

Storage system

clmgr add storage_system <storage_system_name> \\
TYPE={ds8k_gm|xiv_rm} \\
SITE=<site> \\
AGENTS=<agent>[,<agent#2>,...] \\
VENDOR_ID=<identifier> \\
[WWNN=<world_wide_node_name>] \\
[ATTRIBUTES=<NAME>#<VALUE>[,<NAME#2>#<VALUE#2>,...]]

clmgr add storage_system <storage_system_name> \\
TYPE=ds8k_inband_mm \\
SITE=<site> \\
VENDOR_ID=<identifier> \\
[WWNN=<world_wide_node_name>] \\
[ATTRIBUTES=<NAME>#<VALUE>[,<NAME#2>#<VALUE#2>,...]]

clmgr add storage_system <storage_system_name> \\
TYPE=svc \\
ADDRESSES=<IP>[<IP#2>,...] \\
USER=<username> \\
BACKUP_PROFILE=true
clmgr modify storage_system <storage_system_name> \
 [NAME=<new_storage_system_name>] \
 [SITE=<site>] \
 [AGENTS=<agent>,<agent#2>,...] \
 [WWNN=<world_wide_node_name>] \
 [VENDOR_ID=<identifier>] \
 [ADDRESSES=<IP>,<IP#2>,...] \
 [MASTER=<Master/Auxiliary>] \
 [PARTNER=<Remote Partner>] \
 [USER=<username>] \
 [BACKUP_PROFILE={Enable|Disable}] \
 [ATTRIBUTES=<NAME>[@<VALUE>],<NAME#2>[@<VALUE#2>],...]]

clmgr query storage_system [<storage_system>,<storage_system#2>,...] BACKUP=1
clmgr -v query storage_system BACKUP=1

clmgr -a VENDOR_ID query storage_system \ TYPE={ds8k_gm|ds8k_inband_mm|xiv_rm}
query => get, show
storage_system => sts

Note: The following query lists the available vendor IDs.
clmgr delete storage_system {<storage_system>[,<storage_system#2>,...] | ALL}
[BACKUP_PROFILE={"Yes|no"}]

Note: An alias for storage system is sts. Aliases for delete are erase, remove, and rm.

Mirror pair

clmgr add mirror_pair <mirror_pair_name> \
 FIRST_DISK=<disk_1> \
 SECOND_DISK=<disk_2>
clmgr modify mirror_pair <mirror_pair_name> \
 [NAME=<new_mirror_pair_name>] \
 [FIRST_DISK=<disk_1>] \
 [SECOND_DISK=<disk_2>]
clmgr query mirror_pair [<mirror_pair>,<mp#2>,...]
clmgr delete mirror_pair {<mirror_pair>[,<mp#2>,...] | ALL}

Note: An alias for mirror_pair is mip.

Mirror group
: HyperSwap user mirror groups
clmgr add mirror_group <mirror_group_name> \
 TYPE=ds8k_inband_mm \
 MG_TYPE=user \
 VOLUME_GROUPS=<volume_group>[,<vg#2>,...] \
 DISKS=<raw_disk>[,<disk#2>,...] \
 [HYPERSWAP_ENABLED={no|yes}] \
 [CONSISTENT={yes|no}] \
 [UNPLANNED_HS_TIMEOUT=##] \
 [HYPERSWAP_PRIORITY={medium|high}] \
 [RECOVERY={manual|auto}] \
 [RESYNC={manual|auto}] \
 [ATTRIBUTES=<NAME>[@<VALUE>],<NAME#2>[@<VALUE#2>],...]]

clmgr modify mirror_group <mirror_group_name> \
 [NAME=<new_mirror_group_name>] \
 [VOLUME_GROUPS=<volume_group>[,<vg#2>,...]] \
 [DISKS=<raw_disk>[,<disk#2>,...]] \
 [STORAGE_SYSTEMS=<storage_system>[,<ss#2>,...]] \
 [HYPERSWAP_ENABLED={no|yes}] \
 [CONSISTENT={yes|no}] \
 [UNPLANNED_HS_TIMEOUT=##] \
 [HYPERSWAP_PRIORITY={medium|high}] \

72 PowerHA SystemMirror commands
HyperSwap system mirror groups
clmgr add mirror_group <mirror_group_name> \
 TYPE=ds8k_inband_mm \
 VOLUME_GROUPS=<volume_group>[,<vg#2>,...] \
 DISKS=<raw_disk>[,<disk#2>,...] \
 NODE=<node> \
 HYPERSWAP_ENABLED={no|yes} \
 CONSISTENT={yes|no} \
 UNPLANNED_HS_TIMEOUT=## \
 HYPERSWAP_PRIORITY={medium|high} \
 ATTRIBUTES=<NAME>@<VALUE>[,<NAME#2>@<VALUE#2>,...] \
clmgr modify mirror_group <mirror_group_name> \
 NAME=<new_mirror_group_name> \
 VOLUME_GROUPS=<volume_group>[,<vg#2>,...] \
 DISKS=<raw_disk>[,<disk#2>,...] \
 NODE=<node> \
 STORAGE_SYSTEMS=<storage_system>[,<ss#2>,...] \
 HYPERSWAP_ENABLED={no|yes} \
 CONSISTENT={yes|no} \
 UNPLANNED_HS_TIMEOUT=## \
 HYPERSWAP_PRIORITY={medium|high} \
 RESYNC={manual|auto} \
 ATTRIBUTES=<NAME>@<VALUE>[,<NAME#2>@<VALUE#2>,...]

HyperSwap repository mirror groups
clmgr add mirror_group <mirror_group_name> \
 TYPE=ds8k_inband_mm \
 MG_TYPE=repository \
 SITE=<site> \
 NON_HS_DISK=<Non-HyperSwap_disk> \
 HS_DISK=<HyperSwap_disk> \
 HYPERSWAP_ENABLED={no|yes} \
 CONSISTENT={yes|no} \
 UNPLANNED_HS_TIMEOUT=## \
 HYPERSWAP_PRIORITY={medium|high} \
 RESYNC={manual|auto} \
 ATTRIBUTES=<NAME>@<VALUE>[,<NAME#2>@<VALUE#2>,...]

clmgr modify mirror_group <mirror_group_name> \
 NAME=<new_mirror_group_name> \
 SITE=<node> \
 NON_HS_DISK=<Non-HyperSwap_disk> \
 HS_DISK=<HyperSwap_disk> \
 STORAGE_SYSTEMS=<storage_system>[,<ss#2>,...] \
 HYPERSWAP_ENABLED={no|yes} \
 CONSISTENT={yes|no} \
 UNPLANNED_HS_TIMEOUT=## \
 HYPERSWAP_PRIORITY={medium|high} \
 RESYNC={manual|auto} \
 ATTRIBUTES=<NAME>@<VALUE>[,<NAME#2>@<VALUE#2>,...]

DS8000 Global Mirror and XIV mirror groups
clmgr add mirror_group <mirror_group_name> \
 TYPE={ds8k_gm|xiv_rm} \
 MODE={sync|async} \
 RECOVERY={auto|manual} \
 STORAGE_SYSTEMS=<storage_system>[,<ss#2>,...] \
 VENDOR_ID=<vendor_specific_identifier> \
 ATTRIBUTES=<NAME>@<VALUE>[,<NAME#2>@<VALUE#2>,...]

clmgr modify mirror_group <mirror_group_name> \
 NAME=<new_mirror_group_name> \

Commands 73
SVC mirror groups
clmgr add mirror_group <mirror_group_name> \ TYPE=svc \ STORAGE_SYSTEMS=<MASTER_SVC>,<AUXILIARY_SVC> \ MIRROR_PAIRS=<mirror_pair>[,<mirror_pair#2>,...,] \ [MODE={sync|async}] \ [RECOVERY={auto|manual}]

clmgr modify mirror_group <mirror_group_name> \ [NAME=<new_mirror_group_name>] \ [STORAGE_SYSTEMS=<MASTER_SVC>,<AUXILIARY_SVC>] \ [MIRROR_PAIRS=<mirror_pair>[,<mirror_pair#2>,...,]] \ [MODE={sync|async}] \ [RECOVERY={auto|manual}]

Hitachi mirror groups
clmgr add mirror_group <mirror_group_name> \ TYPE=hitachi \ VENDOR_ID=<device_group> \ HORMC_INSTANCE=<instance> \ [MODE={sync|async}] \ [RECOVERY={auto|manual}] \ [HORMC_TIMEOUT=###] \ [PAIR_EVENT_TIMEOUT=###]

clmgr modify mirror_group <mirror_group_name> \ [NAME=<new_mirror_group_name>] \ [VENDOR_ID=<device_group>] \ [HORMC_INSTANCE=<instance>] \ [MODE={sync|async}] \ [RECOVERY={auto|manual}] \ [HORMC_TIMEOUT=###] \ [PAIR_EVENT_TIMEOUT=###]

EMC mirror groups
clmgr add mirror_group <mirror_group_name> \ TYPE=emc \ [MG_TYPE={composite|device}] \ [MODE={sync|async}] \ [RECOVERY={auto|manual}] \ [CONSISTENT={yes|no}] \ [VENDOR_ID=<vendor_specific_identifier>]

clmgr modify mirror_group <mirror_group_name> \ [NAME=<new_mirror_group_name>] \ [MG_TYPE={composite|device}] \ [MODE={sync|async}] \ [RECOVERY={auto|manual}] \ [CONSISTENT={yes|no}] \ [VENDOR_ID=<vendor_specific_identifier>]

HyperSwap mirror groups
clmgr {swap|view} mirror_group <mirror_group_name>[,<mg#2>,...,] \ [NODE=<node_name>]

clmgr {swap|view} mirror_group \ NODES=<node_name>[,<node#2>,...,] \ [SYSTEM_GROUPS={yes|no}]

clmgr {swap|view} mirror_group \ SITES=<site_name>[,<site#2>] \ [SYSTEM_GROUPS={yes|no}] \ [REPOSITORY_GROUP={yes|no}]
Note: The swap and view attributes are only valid for DS-Series Inband (HyperSwap®).

clmgr manage mirror_group refresh
 <mirror_group_name>[,<mg#2>,...] \
 [NODE=<node_name>]
clmgr manage mirror_group refresh \
 NODES=<node_name>[,<node#2>,...] \
 [SYSTEM_GROUPS={yes|no}]
clmgr manage mirror_group refresh \
 SITES=<site_name>[,<site#2>] \
 [SYSTEM_GROUPS={yes|no}] \
 [REPOSITORY_GROUP={yes|no}]

: All mirror groups
clmgr query mirror_group [<mirror_group>[,<mg#2>,...]]
clmgr delete mirror_group {<mirror_group>[,<mg#2>,...] | ALL}

Note: An alias for mirror_group is mg.

Event

clmgr add event <EVENT_NAME> \
 FILE=<EXECUTABLE_FILE> \
 [DESCRIPTION=<EVENT_DESCRIPTION>]
clmgr modify event <EVENT_NAME> \
 [NAME=<NEW_EVENT_NAME>] \
 [FILE=<EXECUTABLE_FILE>] \
 [DESCRIPTION=<EVENT_DESCRIPTION>]
clmgr modify event <PRE-DEFINED_EVENT_NAME> \
 [NOTIFY_COMMAND=<COMMAND OR_FILE>] \
 [PRE_EVENT_COMMAND=<CUSTOM_EVENT OR_FILE>] \
 [POST_EVENT_COMMAND=<CUSTOM_EVENT OR_FILE>] \
 [PREPOSTFAILS={false|true}]
clmgr query event [<EVENT_NAME>[,<EVENT_NAME#2>,...]]
 [TYPE={CUSTOM|PREDEFINED|ALL}]
clmgr delete event { <EVENT_NAME>[,<EVENT_NAME#2>,...] | ALL }

Note: An alias for event is ev.

HMC

clmgr add hmc <HMC> \
 [TIMEOUT=<###>] \
 [RETRY_COUNT=<###>] \
 [RETRY_DELAY=<###>] \
 [NODES=<node>[,<node#2>,...]] \
 [SITES=<site>[,<site#2>,...]] \
 [CHECK_HMC={Yes|No}]
clmgr modify hmc <HMC> \
 [TIMEOUT=<###>] \
 [RETRY_COUNT=<###>] \
 [RETRY_DELAY=<###>] \
 [NODES=<node>[,<node#2>,...]] \
 [SITES=<site>[,<site#2>,...]] \
 [CHECK_HMC={Yes|No}]

clmgr query hmc [<HMC>[,<HMC#2>,...]]
clmgr delete hmc { <HMC> | ALL }

Note: The clmgr delete example removes either the specified HMC, or all HMCs, associated with the specified node. If no nodes are specified, all nodes are removed.

Backup Profiles
clmgr add backup_profile {<resource_group>|ALL|rootvg_profile} \
ENABLE_BACKUP={yes|no} \
VOLUME_GROUP={<vg_name>,<vg_name#2>,...|ALL|rootvg} \
REPLICATED_RESOURCES={<replicated_resource>,<replicated_resource#2>,...} \
BACKUP_METHOD={cloud} \
STORAGE_NAME={<storage_name>,<storage_name#2>,...} \
BUCKET_NAME={<bucket_name>} \
TARGET_LOCATION={<directory>} \
[CLOUD_SERVICE={ibm|aws}] \
[COMPRESSION={enabled|disabled}] \
[BACKUP_FREQUENCY=<0...999 days>] \
[BACKUP_SCHEDULE=<HH:MM>] \
[INC_BACKUP_FREQ=<0...999 hours>] \
[NOTIFYMETHOD=<script/to/notify>] \
[ENCRYPTION={disable|kms|aes}]

clmgr modify backup_profile <resource_group|rootvg_profile> \
[ENABLE_BACKUP={yes|no}] \
[VOLUME_GROUP={<vg_name>,<vg_name#2>,...|ALL|rootvg}] \
[REPLICATED_RESOURCES={<replicated_resource>,<replicated_resource#2>,...}] \
[STORAGE_NAME={<storage_name>,<storage_name#2>,...}] \
[BUCKET_NAME={<bucket_name>}] \
[TARGET_LOCATION={<directory>}] \
[CLOUD_SERVICE={ibm|aws}] \
[COMPRESSION={enabled|disabled}] \
[BACKUP_FREQUENCY=<0...999 days>] \
[BACKUP_SCHEDULE=<HH:MM>] \
[INC_BACKUP_FREQ=<0...999 hours>] \
[NOTIFYMETHOD=<script/to/notify>] \
[ENCRYPTION={disable|kms|aes}]

clmgr modify backup_profile <resource_group> \
[ENABLE_BACKUP={yes|no}] \
[VOLUME_GROUP={<vg_name>,<vg_name#2>,...|ALL}] \
[REPLICATED_RESOURCES={<replicated_resource>,<replicated_resource#2>,...}] \
[STORAGE_NAME={<storage_name>,<storage_name#2>,...}] \
[BUCKET_NAME={<bucket_name>}] \
[TARGET_LOCATION={<directory>}] \
[CLOUD_SERVICE={ibm|aws}] \
[COMPRESSION={enabled|disabled}] \
[BACKUP_FREQUENCY=<0...999 days>] \
[BACKUP_SCHEDULE=<HH:MM>] \
[INC_BACKUP_FREQ=<0...999 hours>] \
[NOTIFYMETHOD=<script/to/notify>] \
[ENCRYPTION={disable|kms|aes}]

Note: Aliases for add are create, make, and mk. Aliases for backup_profile are bp, backup_p, and replication_profile.

clmgr delete backup_profile {<resource_group>,<resource_group#2>,... | ALL} \
[CANCEL_BACKUP={no|yes}]

Note: Aliases for delete are erase, remove, and rm. Aliases for backup_profile are bp, backup_p, and replication_profile.

clmgr query backup_profile {<resource_group>,<resource_group#2>,...}

Note: Aliases for query are get, list, ls, and show. Aliases for backup_profile are bp, backup_p, and replication_profile.

clmgr query backup_files \
 BUCKET_NAME=<bucket_name> \
 RG_NAME=<rg_name> \
 [START_TIME=<yyyy-mm-ddThh>]

76 PowerHA SystemMirror commands
clmgr query backup_files \
BUCKET_NAME=<bucket_name> \
[RG_NAME=<rg_name>] \
[START_TIME=<yyyy-mm-ddThh>] \
[END_TIME=<yyyy-mm-ddThh>]

clmgr query backup_files \
RG_NAME=<rg_name> \
[BUCKET_NAME=<bucket_name>] \
[START_TIME=<yyyy-mm-ddThh>] \
[END_TIME=<yyyy-mm-ddThh>]

Note: Aliases for query are get and show. Aliases for backup_files are bf and backup_f.

CoD

clmgr add cod <APPCTRL> \
[USE_DESIRED="Yes|No">] \
[OPTIMAL_MEM=#.##] \
[OPTIMAL_CPU=#] \
[OPTIMAL_PU=#.##] \
[OPTIMAL_VP=#]

clmgr modify cod <APPCTRL> \
[USE_DESIRED="Yes|No">] \
[OPTIMAL_MEM=#.##] \
[OPTIMAL_CPU=#] \
[OPTIMAL_PU=#.##] \
[OPTIMAL_VP=#]

Note:
1. You can use this command to provision the optimal level of resources that are required to run the application controller.
2. If you set USE_DESIRED=1, the desired level of the LPAR profile that provides the optimal level of resources for the application controller is used.
3. If you set USE_DESIRED=0, you can be more precise and use the OPTIMAL_MEM, OPTIMAL_CPU, OPTIMAL_PU and OPTIMAL_VP values to configuring the level of resources that are required by the application controller.
4. Provisioning a level of resources for an application controller allows PowerHA SystemMirror to perform operations (DLPAR, On/Off CoD, EPCoD) that provide the optimal level of resources for the application controller.
5. You can check the level of provisioning by verifying your cluster with the clmgr verify cluster command.
6. Aliases for cod are roha, dlpars, and cuod.

clmgr query cod [<APPCTRL>]
clmgr delete cod {<APPCTRL> | ALL}

Examples

In the following examples, the class attribute for the clmgr command is not case sensitive. For example, in the following command, the NODES attribute could be NODES, nodes, or Nodes.

clmgr create cluster clMain NODES=nodeA,nodeB

1. The following example creates a PowerHA SystemMirror Standard Edition for AIX cluster that contains two nodes named nodeA and nodeB. The cluster name is haCL, and it has a repository disk named hdisk5. The environment requires the use of a predetermined multicast address of 229.9.3.17 for the cluster.
clmgr create cluster haCL NODES=nodeA,nodeB
 REPOSITORY=hdisk5
 CLUSTER_IP=229.9.3.17
clmgr sync cluster

Note: The CLUSTER_IP attribute is required in this example only because the environment requires a multicast address. If a multicast address is not provided, the system selects an address based on the addresses currently in use at that time.

2. The following example creates a standard (nonconcurrent) resource group using default policies. The resource group is named db2RG, contains a service IP address named access1, and contains an application controller named db2Controller. The resource group manages two nonconcurrent volume groups named vg1 and vg2.

 clmgr add resource_group db2RG SERVICE_IP=access1
 APPLICATIONS=db2Controller
 VOLUME_GROUP=vg1,vg2
clmgr sync cluster

3. You can use the following commands to check the status of various objects inside a cluster.

 clmgr -a STATE query cluster
 clmgr -a STATE query node nodeA
 clmgr -a STATE query resource_group rg1

Note:
- The STATE class returns a logical worst-case aggregation for the entire cluster. For example, if one cluster in a four-node cluster is experiencing an error, the status returned for the entire cluster is reported as an error.
- The value returned from running this command is in the standard ATTR=VALUE format. For example, if a cluster is offline, the value returned is STATE=OFFLINE.
- You can retrieve multiple attributes at once by using the -a flag. For example, if you run the following command, you get both the name and state of the cluster:

 clmgr -a STATE,NAME query cluster

4. All actions, classes, and attributes can be shortened to either an explicitly named alias or the fewest number of characters that make them unique. The following examples display the full command on and the shortened version of the same command below it.

 - clmgr query resource_group
 clmgr q rg
 - clmgr modify node mynode PERSISTENT_IP=myIP NETWORK=myNet
 clmgr mod node mynode pe=myIP netw=myNet
 - clmgr online node nodeA
 clmgr start node nodeA

Note: The shortening of these actions, classes, and attributes is intended for use when you are using the clmgr command interactively on a cluster. Although these abbreviations can be used within scripts, avoid using them inside scripts because they do not provide easily readable code.

5. Help information is provided from the command line for the clmgr command. If you do not know the entire command that you want to run, you can type as much as you know and help information is displayed. For example, if you provide an invalid object or value for part of the command, the help information displays only valid objects or values. Run the following commands as examples to view how different help information is displayed from the command line.

 clmgr
 clmgr view
 clmgr view report
 clmgr view report -h

Note: You can only use the -h flag after either an object class or a set of option pairs that request a listing of all valid options for a particular operation. This flag is the only flag for the clmgr command that need not be placed immediately after the clmgr command.
The following examples describe some common usage scenarios of clmgr command. All of the examples have been tested. Substitute the value for values that are valid for your environment. The following tasks are the basis for the scenarios and are described in detail.

- Create a cluster
- Create a resource group
- Check current status
- View all attributes and settings
- Display objects based on some filter or criteria
- Make the clmgr command a little easier to use
- Get instant help for the clmgr command

Example: Create a standard cluster

Details:

This cluster is a standard cluster with two nodes and does not have any associated sites. The cluster name is DB2_cluster and the nodes are named DBPrimary and DBBackup. The repository disk is created on the disk named hdisk5.

Example:
1. clmgr create cluster DB2_cluster NODES=DBPrimary, DBBackup
 \ REPOSITORY=hdisk5
2. clmgr sync cluster

Comments:
- The repository disk resolves on the node that runs the clmgr command. You can specify the repository disk in PVID or UUID format.
- A heartbeat type was not specified. Thus, the cluster uses the default of unicast communication.
- The clmgr command is not case-sensitive. You can specify the repository attribute as REPOSITORY, Repository, or repository.

Example: Create a stretched cluster

Details:

This cluster is a stretched cluster named Oracle_cluster. The cluster has four nodes named Ora1, Ora2, Ora3, and Ora4. The cluster has two sites named Ora_Primary and Ora_Secondary. The site named Ora_Primary manages the nodes named Ora1 and Ora2. The site named Ora_Secondary manages the nodes named Ora3 and Ora4. The repository disk is created on the disk named hdisk5. The cluster uses multicast communication as the heartbeat type.

Example:
1. clmgr create cluster Oracle_cluster \
 NODES=Ora1,Ora2,Ora3,Ora4 \
 TYPE=SC \
 REPOSITORY=hdisk5 \
 HEARTBEAT_TYPE=multicast
2. clmgr add site Ora_Primary NODES=Ora1,Ora2
3. clmgr add site Ora_Secondary NODES=Ora3,Ora4
4. clmgr sync cluster

Comment:
The repository disk resolves on the node that runs the `clmgr` command. You can specify the repository disk in PVID or UUID format.

Example: Create a linked cluster

Details:

This cluster is a linked cluster named `SAP-cluster`. The cluster has four nodes named `SAP-A1`, `SAP-A2`, `SAP-B1`, and `SAP-B2`. The cluster has two sites named `SAP_Active` and `SAP_Backup`. The site named `SAP_Active` manages the nodes named `SAP-A1` and `SAP-A2`. The site named `SAP_Backup` manages the nodes named `SAP-B1` and `SAP-B2`. The repository disk on the `SAP_Active` site is named `hdisk5`. The repository disk on the `SAP_Backup` site is named `hdisk11`. The cluster uses unicast communication for the heartbeat type.

Example:

1. `clmgr create cluster SAP-cluster NODES=SAP-A1,SAP-A2,SAP-B1,SAP-B2 TYPE=LC HEARTBEAT_TYPE=unicast`
2. `clmgr add site SAP_Active NODES=SAP-A1,SAP-A2 REPOSITORY=hdisk5`
3. `clmgr add site SAP_Backup NODES=SAP-B1,SAP-B2 REPOSITORY=hdisk11`
4. `clmgr sync cluster`

Comments:

- A linked cluster requires that each site has a repository disk. You must identify a repository disk for each site.
- A Repository disk resolves on the first node that the `clmgr` command is able to communicate with. For linked clusters, the first node that is defined for each site is the node that the `clmgr` command attempts to communicate with. In this example, the `hdisk5` repository disk resolves on the `SAP-A1` node and the `hdisk11` repository disk resolves on the `SAP-B1` node.
- You can specify the repository disk in PVID or UUID format.

Example: Create a resource group

Details:

This resource group will be a standard (non-concurrent) resource group, using default policies, and will be named `db2RG`. The resource group will contain a service IP address named `access1`, and an application controller named `db2Controller`. Further, the resource group will also manage two volume groups named `vg1` and `vg2`, neither of which are concurrent.

Examples:

- `clmgr add resource_group db2RG SERVICE_IP=access1 APPLICATIONS=db2Controller VOLUME_GROUP=vg1,vg2`
- `clmgr sync cluster`

Example: Check current status

Details:

Very often it is important to know exactly what state a given object is in, so that appropriate actions can be taken. Using `clmgr`, this can be done via the query action.

Examples:

- `clmgr -a STATE query cluster`
• `clmgr -a STATE query site siteA`
• `clmgr -a STATE query node nodeA`
• `clmgr -a STATE query resource_group rg1`

Comments:
• For both the site and cluster classes, the STATE that is returned is a logical, worst-case aggregation of the member nodes. For example, in four node cluster, if even one node is experiencing an error, the status of the whole cluster will be reported as ERROR.
• The value returned will be in the standard ATTR=VALUE format, such as STATE=OFFLINE. If you need just the value, then you can combine a couple of other flags with the `-a` to good effect to achieve this. Using the flag combination of `-cSa` will return just the VALUE, such as OFFLINE. This will only work for a single value at a time.
• It is possible to retrieve multiple attributes at once with the `-a` flag, such as `-a NAME,STATE`. Further, the `-a` flag is not case sensitive (-a Name,state), and supports wildcards (-a N*).

Example: View all attributes and settings

Details:

PowerHA SystemMirror is a product that, once set up and fully tested, is typically no longer actively interacted with until either a problem occurs, or some sort of maintenance is required. When such things occur, it is necessary to be able to view the contents of the cluster, plus all settings. With clmgr, this is done using the query action, optionally requesting specific formats, colon-delimited or XML. The following command examples use resource groups, but the principles are the same for all object classes.

Examples:
• `clmgr query resource_group`
• `clmgr query resource_group rg1,rg2`
• `clmgr -c query resource_group rg1,rg2`
• `clmgr -x query resource_group rg1,rg2`
• `clmgr -v query resource_group`
• `clmgr -cv query resource_group`
• `clmgr -xv query resource_group`

Comments:
• When no target object is provided in a query command, and the verbose flag, `-v`, is not used, a simple listing of objects is displayed.
• When one or more target objects are provided in a query command, then all the known attributes or settings for those objects are displayed. This overrides the `-v` flag.
• When the `-v` flag is used with the query command, all the known attributes or settings for all known objects of the specified class are displayed.
• When detailed attributes or settings are displayed, by default they are displayed in ATTR=VALUE format, one per line. If `-c` is provided, then all values are displayed on one line in colon-delimited format. If `-x` is provided, then all attributes and values are displayed in a simple XML format.

Example: Display objects based on some filter or criteria

Details:

It is not uncommon to have large numbers of objects defined for a given class, such as resource groups, or to have large numbers settings defined within a given class. This can sometimes make it challenging to find the information that you really need. Fortunately, clmgr provides the ability to specify filtering criteria to the query action to solve this problem.
Examples:
- clmgr query file_collection FILE="*rhosts*"
- clmgr query resource_group CURRENT_NODE='get_local_nodename'

Comments:
- The first example shows a simple way to find an object that contains a particular value or setting; in this case, which file collection that contains a file named rhosts (note that wildcard characters are supported here).
- The second example shows a nice practical example of how to find an object that matches dynamic value. In this case, the example shows how to obtain the list of all resource groups that are currently running on the local node.
- This filtering capability can be used in combination with the -a flag to provide very powerful, flexible data retrieval.

Example: Make clmgr a little easier to use

Details:
Nothing in clmgr is case sensitive, which helps eliminate frustrating typing mistakes. Further, all actions, classes, and attributes or options can be shortened to either an explicitly named alias (such as start instead of online, or rg instead of resource_group), or to the fewest number of letters that make them unique. The following pairs of commands are functionally identical.

Examples:
- clmgr query resource_group
 clmgr q rg
- clmgr modify node mynode PERSISTENT_IP=myIP NETWORK=myNet
 clmgr mod node mynode pe=myIP netw=net_ether_0
- clmgr online node nodeA
 clmgr start node nodeA

Comments:
The shortening of actions and classes is intended for when clmgr is being used interactively within a terminal. Although these abbreviations can also be used in scripts, it is strongly suggested that scripts use the full names of both actions and classes. Doing so will provide more readable and serviceable code.

Example: Get instant help for clmgr

Details:
Help is always available online for clmgr. However, launching a web browser is often inconvenient, and sometimes impractical, or even impossible. So clmgr provides as much built-in help as it can, so that you might be able to get the help you need now. One type of help provided is when an object or value from a known set of objects or values is required. If an invalid object or value is provided, not only is an appropriate error message displayed, but also a list of the objects or values that are valid for that operation. This is wonderful in helping you overcome persistent typing errors! More help is available from clmgr when you are not sure what action, class, or object is needed. Just type as much as you know, then clmgr will tell you all the values that could possibly be next. Then you only have to choose one of them to proceed! Try running the following commands to see some examples of the help that clmgr is prepared to provide to you.

Examples:
- clmgr
- clmgr view
- clmgr view report
• clmgr view report -h

Comments:

The -h flag, when provided on the command line after either an object class or some set of option pairs, requests a listing of all valid options for this particular operation. This is the only flag in clmgr command that does not have to be positioned immediately after clmgr command itself.

Related information:
- Resource group dependencies

clpasswd command

Purpose

Change the current user's password on all nodes in a cluster, or in a resource group.

Syntax

clpasswd [-g resource group] user

Description

The Cluster Password (clpasswd) utility lets users to change their own password on all nodes in a cluster, or in a resource group as specified by the PowerHA SystemMirror administrator, from a single node. Before users can change their password across cluster nodes, the PowerHA SystemMirror administrator adds any users who do not have root privileges to the list of users allowed to change their password.

This Cluster Password utility can also replace the AIX password utility from the SMIT fastpath cl_passwd.

The following table shows where a user's password is changed based on the user's authorization and the password utility that is active:

<table>
<thead>
<tr>
<th>User authorization level</th>
<th>When the system password utility is linked to clpasswd and /bin/passwd is invoked</th>
<th>When the system password utility is active</th>
</tr>
</thead>
<tbody>
<tr>
<td>User authorized to change password across cluster</td>
<td>The password is changed on all cluster nodes.</td>
<td>The password is changed on all cluster nodes.</td>
</tr>
<tr>
<td>User not authorized to change password across cluster</td>
<td>The password is changed only on the local node.</td>
<td>The password is not changed.</td>
</tr>
</tbody>
</table>

Flags

- -g Specifies the name of the resource group in which the user can change their password. The password is changed on each node in the specified resource group.

user

The username of the user who is changing their password.

Example

clpasswd -g rgl myusername
clRGinfo command

Purpose

Creates a report that displays the location and state of one or more specified resource groups.

Syntax

clRGinfo [-h][-v][-s|-c][-t][-p][-a][-m][i][resgroup1] [resgroup2]...

Description

If the cluster services are not running on the local node, this clRGinfo command identifies a node where the cluster services are active and obtains the resource group information from the active cluster manager. If this command is used without any resource groups that are specified, the information about all the configured resource groups is displayed.

The output of the command displays both the global state of the resource group and the special state of the resource group on the local node.

The primary instance of a resource group can be in one of the following states:

Online
 All resources for this resource group are active.

Error
 An error occurred while PowerHA SystemMirror was processing the resource group.

Unmanaged
 Cluster services were stopped with the unmanage option.

Offline
 The resource group is not active.

A resource group can be in the following transitional state while cluster events are in progress:

Acquiring
 Resources for the resource group are being activated.

Releasing
 Resources for the resource group are being released.

Temp error
 A recoverable error occurred.

When a cluster uses sites and replicated resources, the resource group that contains the replicated resources has a primary and secondary instance that manages the replication end points. The clRGinfo command displays the following states for the secondary instance of a resource group:

Online secondary
 All secondary resources for this resource group are active.

Error secondary
 An error occurred while PowerHA SystemMirror was processing the secondary resources for a resource group.

Unmanaged secondary
 Cluster services were stopped with the unmanage option.

Offline secondary
 The secondary instance of a resource group is not active.

Acquiring secondary
 The secondary resources for the resource group are being activated.
Releasing secondary
The secondary resources for the resource group are being released.

Temp error secondary
A recoverable error occurred while PowerHA SystemMirror was processing the secondary resources for a resource group.

Resource groups can be configured with dependencies that enable automatic placement and management of resource groups in relationship to other resource groups. The clRGinfo command displays the following states for resource groups with parent and child relationships and for resource groups that have location dependencies:

Offline due to parent offline
The child resource group is not active because the parent resource group is not active.

Offline due to fallover
A fallover occurred and the resource group is not active.

Offline due to lack of node
The resource group is not identified to a node in the cluster.

Offline due to target offline
The resource group that is involved in the relationship with a resource group is not active, and the configured dependencies dictate that this resource group must not be active.

Flags
-a Displays the current location of a resource group and its destination after a cluster event. Use this flag in pre-event and post-event scripts, especially in PowerHA SystemMirror clusters that have dependent resource groups. When PowerHA SystemMirror processes dependent resource groups, multiple resource groups can be moved at once with the rg_move event.
-c Displays the output in a colon-separated format.
-h Displays the usage message.
-i Displays any administrator directed online or offline operations.
-m Displays the status of the application.
-p Displays the priority override location information for a resource group.
-s Displays the output in a colon-separated format.
-t Displays the delayed timer information, all delayed fallback timers, and settling timers that are currently active on the local node.

Note: You can only use this flag if the cluster manager is active on the local node.
-v Displays the verbose output.

Examples
1. The following example displays the report for running the clRGinfo command without specifying any flag parameters:

```
# clRGinfo
```

<table>
<thead>
<tr>
<th>Group Name</th>
<th>State</th>
<th>Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS_DATA_RG</td>
<td>ONLINE</td>
<td>powerha53</td>
</tr>
<tr>
<td>VS_DATA_RG</td>
<td>ONLINE</td>
<td>powerha54</td>
</tr>
<tr>
<td>VS_DATA_RG</td>
<td>ONLINE</td>
<td>powerha63</td>
</tr>
<tr>
<td>VS_DATA_RG</td>
<td>ONLINE</td>
<td>powerha64</td>
</tr>
<tr>
<td>VS_REDO_RG</td>
<td>ONLINE</td>
<td>powerha53</td>
</tr>
</tbody>
</table>
ONLINE powerha54
ONLINE powerha63
ONLINE powerha64
RG1 ONLINE powerha53
 OFFLINE powerha54
 ACQUIRING powerha63
 OFFLINE powerha64

2. The following example displays the report for running the `clRGinfo` command in a cluster with sites.

```
# clRGinfo
-----------------------------------------------------------------------------
<table>
<thead>
<tr>
<th>Group Name</th>
<th>State</th>
<th>Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>OASTRG</td>
<td>ONLINE</td>
<td>als0180220@site1</td>
</tr>
<tr>
<td></td>
<td>ONLINE SECONDARY</td>
<td>alm1942000@site2</td>
</tr>
<tr>
<td>VOTERG</td>
<td>ONLINE</td>
<td>als0180220@site1</td>
</tr>
<tr>
<td></td>
<td>ONLINE SECONDARY</td>
<td>alm1942000@site2</td>
</tr>
</tbody>
</table>
-----------------------------------------------------------------------------
```

3. The following example displays the report for running the `clRGinfo -m` command:

```
$ /usr/es/sbin/cluster/utilities/clRGinfo -m
-----------------------------------------------------------------------------
<table>
<thead>
<tr>
<th>Group Name</th>
<th>State</th>
<th>Application state</th>
<th>Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group1</td>
<td>ONLINE</td>
<td>ONLINE MONITORED</td>
<td>merry</td>
</tr>
</tbody>
</table>
-----------------------------------------------------------------------------
```

Application state could be any one of the below possible values:
- OFFLINE
- ONLINE FAILED
- ONLINE FAILOVER
- ONLINE MONITORED
- ONLINE NOT MONITORED
- ONLINE MONITOR FAILED
- ONLINE MONITOR SUSPENDED

4. The following example displays the report for running the `clRGinfo -i` command:

```
$ /usr/es/sbin/cluster/utilities/clRGinfo -i
-----------------------------------------------------------------------------
<table>
<thead>
<tr>
<th>Group Name</th>
<th>State</th>
<th>Application state</th>
<th>Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rg1</td>
<td>ONLINE</td>
<td>ONLINE STOPPED BY ADMINISTRATOR</td>
<td>node1</td>
</tr>
<tr>
<td>INSTANCE_SAP</td>
<td>OFFLINE</td>
<td></td>
<td>node2</td>
</tr>
</tbody>
</table>
-----------------------------------------------------------------------------
```

Application state could be any one of the below possible values:
- OFFLINE
- ONLINE FAILED
- ONLINE FAILOVER
- ONLINE MONITORED
- ONLINE NOT MONITORED
- ONLINE MONITOR FAILED
- ONLINE MONITOR SUSPENDED
- ONLINE STOPPED BY ADMINISTRATOR
- OFFLINE STARTED BY ADMINISTRATOR

clRGmove command

Purpose

Perform a user-requested rg_move event to bring a resource group offline or online, or to move a resource group from one node to another node.

Syntax

```
clRGmove -g <groupname> -n <nodename> | -x -n <sitename> | -r | -a [-m | -u | -d] [-i] [-s true | false]
```
Description

You can use the clRGmove to manually control the location and state of resource groups.

You can perform any of the following actions for a non-concurrent resource group:
- Take the resource group offline from an online or online secondary node.
- Bring the resource group online or online secondary to a specific node.
- Move the resource group from its current hosting node to a new location.

You can perform any of the following actions for a concurrent resource group:
- Take the resource group offline from all nodes in the group node list.
- Take the resource group offline from one node in the group node list.
- Bring the resource group online on all nodes in the group node list.
- Bring the resource group online on one node in the group node list.

Priority Override Location

A priority override location overrides all other node policies and possible locations for the resource group.

The following are the priority override locations for non-concurrent resource groups:
- For every non-concurrent resource group movement that uses the -n flag to explicitly specify a destination instead of the -r flag, the destination becomes the priority override location. The priority override location lasts until you explicitly use the -r flag for the location instead of the -n flag when you manually move the resource group again.
- When you move a resource group offline, the resource group remains offline until you manually bring it back online. If you manually bring the resource group back online with the -n flag to specify a node, that node becomes the priority override location. When you bring a resource group back online with the -r flag, the active highest priority node is used and the priority override location is removed from the resource group.

The following are the priority override locations for concurrent resource groups:
- When you bring a concurrent resource group offline on all nodes, the priority override location is in the OFFLINE state for all nodes in the resource group. When you bring a concurrent resource group offline on just one node, the OFFLINE state for the resource group on the node is added to the priority override location list.
- When you bring a concurrent resource group online on all nodes, the priority override location is removed for all nodes in the resource group. When you bring a concurrent resource group online on just one node, the OFFLINE state for the resource group on that node is removed from the priority override location list.

For all resource group movements you can use one of the following movements:

non-persistent movement
Lasts until all nodes in the cluster are offline. As soon as the entire cluster goes offline, the priority override location is forgotten, and the resource group resumes normal behavior when the cluster comes back online.

persistent movement
Lasts after a cluster reboots. The priority override location remains when the cluster comes back online.
Limitations

The following are limitations for the **clRGmove** command:

- You can bring only one resource group online or offline at a time.
- When you move multiple resource groups with the command line, you must make sure that the request is rational. Thus, it is recommended that you use the SMIT interface for moving resource groups as it eliminates any possibility of administrative errors. To move resource groups with the SMIT interface enter `smitt cspoc` from the command line and select **Resource Group and Applications**.

Flags

- **-a** You can use this flag only for concurrent resource groups. Use this flag to bring the resource group online or offline for all nodes in the resource group. Use the **-n** flag to bring a concurrent resource group online or offline on a single node.
- **-d** Brings the resource group offline. You cannot use this flag with the **-u** flag or the **-m** flag.
- **-g** Specifies the name of the resource group to move in the following formats:
 - `-g <groupname>`
 Specific a single resource group name.
 - `-g "groupname1,groupname2,..."`
 Specifies a comma-separated list of multiple resource group names.
- **-i** Runs the **clRGinfo** command after the resource group has been moved successfully.
- **-m** Moves the resource group to another node. You cannot use this flag with the **-u** flag or the **-d** flag. Use this flag to move multiple online resource groups to another node one node at a time.
- **-n <nodename>**
 The name of the node that contains the resource group that is moved, brought online, or brought offline. You cannot use this flag with the **-r** or the **-a** flag. If the node name has a * character in front of it, that node is configured to be the highest priority node for this resource group and the resource group was moved to another node. If you move a resource group in a node that is identified with a * character, the movement changes the original configuration for the resource group.
- **-n <sitename>**
 The name of the site that contains the resource group that is moved across a site. You must use this flag with the **-x** flag. If the site name has a * character in front of it, that site is configured to be the highest priority site for this resource group and the resource group was moved to another site. If you move a resource group in a site that is identified with a * character, the movement changes the original configuration for the resource group.
- **-r** You can use this flag only for non-concurrent resource groups. Use the highest priority node that is available for the destination node where the resource group is moving. This flag removes the priority override location attribute for the resource group that is being moved. You can use this flag only when you are bringing a non-concurrent resource group online or moving a non-concurrent resource group to another node. You cannot use this flag with the **-n** flag or the **-a** flag.
- **-s true | false**
 Specifies actions on the primary or secondary instance of a resource group (if sites are defined). You use this flag to take the primary or the secondary instance of the resource group offline, online, or move it to another node within the same site. You can use this flag with the **-r**, **-d**, **-u**, and **-m** flags.
 - **-s true**
 Specifies actions on the secondary instance of a resource group.
 - **-s false**
 Specifies actions on the primary instance of a resource group.
- **-u** Brings the resource group online. You cannot use this flag with the **-d** flag or the **-m** flag.
You can use this flag to move the resource group across a site. You must use this flag with the -n <sitename> flag.

Examples

1. To bring an offline non-concurrent resource group online on a node named nodeB:
   ```
   clRmove -g rgA -n nodeB -u
   ```
2. To move an online non-concurrent resource group to another node named nodeB:
   ```
   clRmove -g rgA -n nodeB -m
   ```
3. To move multiple online non-concurrent resource groups to another node named nodeB:
   ```
   clRmove -g "rgA,rgB,rgC" -n nodeB -m
   ```
4. To bring an online non-concurrent resource group offline on a node named nodeB:
   ```
   clRmove -g rgA -n nodeB -d
   ```
5. To move an online non-concurrent resource group to the active highest priority node that is removing the previous configuration settings that are caused by another rg_move event:
   ```
   clRmove -g *rgA -m -r
   ```
6. To bring an online concurrent resource group offline on one node named nodeB:
   ```
   clRmove -g rgA -n nodeB -d
   ```
7. To bring an online concurrent resource group offline on all nodes:
   ```
   clRmove -g rgA -a -d
   ```
8. To bring an offline concurrent resource group online on one node named nodeB:
   ```
   clRmove -g rgA -n nodeB -u
   ```
9. To bring an offline concurrent resource group online on all nodes:
   ```
   clRmove -g rgA -a -u
   ```
10. To move a resource group to a site named site2:
    ```
    clRmove -s false -x -g rgA -n site2
    ```

Related reference:

["clmgr command" on page 45]

clruncmd command

Purpose

Restores cluster manager to normal operation.

Syntax

```
clruncmd { -c } nodename
```

Note: The nodename represents the name of a cluster node where cluster services are active.

Description

The **clruncmd** command instructs the cluster manager on the specified node to resume event processing after an event script failure occurs. Run the **clruncmd** command only after the reasons for the failure have been manually corrected. After an event script failure occurs, the remainder of the failed event is skipped, and the event processing resumes with the next event in the event queue. You must manually perform any actions which were skipped after the event failure occurred.

Flag

- **-c** By default, event processing resumes with the next event in the queue. You can use this flag to skip the renaming event processes and cancel any other events that are in the queue.
Example
To instruct the cluster manager to return to normal operations for a node that is named node1, enter:
clruncmd node1
Related reference:
"clmgr command" on page 45

clshowres command

Purpose
Displays resource group information for a cluster or a node.

Syntax
clshowres [-g group] [-n nodename] [-d odmdir]

Flags
-g group
 Name of resource group to show.
-n nodename
 Searches the resources Configuration Database from the specified node.
-d odmdir
 Specifies odmdir as the ODM object repository directory instead of the default /etc/objrepos.

Examples
1. Run the following command to list all the resource group information for the cluster.
 clshowres
2. Run the following command to lists the resource group information for clam node.
 clshowres -n clam

clshowsrv command

Purpose
Displays the status of PowerHA SystemMirror subsystems.

Syntax
clshowsrv [-a | -v | subsystem ...]

Description
The clshowsrv command displays the status of PowerHA SystemMirror subsystems. Status includes the subsystem name, group name, process ID, and status. The status of a daemon can be any of the states that are reflected by the System Resource Controller (SRC) subsystem (active, inoperative, warned to stop, and so on).

Flags
-a Displays all the PowerHA SystemMirror daemons.
subsystem
Displays the status of the specified PowerHA SystemMirror subsystem. Valid values for this flag are clstrmgrES, clinfoES, and clcmd. If you specify more than one subsystem, you must separate the entries with a space.

-v Displays all RSCT, PowerHA SystemMirror, and optional PowerHA SystemMirror daemons.

Examples
1. To display the status of all PowerHA SystemMirror and RSCT subsystems, enter:
 clshowsrv -v

The command displays the output information similar to the following example:

 Cluster services status: "OFFLINE" ("ST_INIT")
 Remote communications: "UP"
 Cluster-Aware AIX status: "UP"

 Remote node: "hadev12" ("hadev12.aus.stglabs.ibm.com", "hadev12")
 Cluster services status: "OFFLINE" ("ST_INIT")
 Remote communications: "UP"
 Cluster-Aware AIX status: "UP"

 Status of the RSCT subsystems used by PowerHA SystemMirror:
 Subsystem Group PID Status
 cthags cthags 9371848 active
 ctrmc rsct 11862036 active

 Status of the PowerHA SystemMirror subsystems:
 Subsystem Group PID Status
 clstrmgrES cluster 12124406 active

 Status of the CAA subsystems:
 Subsystem Group PID Status
 clconfd caa 10420354 active
 clcomd caa 8912916 active

2. To display the status of all PowerHA SystemMirror subsystems, enter:
 clshowsrv -a
3. To display the status of the clstrmgr subsystem, enter:
 clshowsrv clstrmgrES
4. To display the status of the clstrmgr and clinfo subsystems, enter:
 clshowsrv clstrmgrES clinfo

Related reference:
"clmgr command" on page 45

clsnapshot command

Purpose
Creates a cluster snapshot. A snapshot is a set of ASCII files which contain PowerHA SystemMirror cluster configuration data and state information.

Syntax
Description

The `clsnapshot` command creates, modifies, or removes two files. The first file is identified by the file extension `.odm` and contains the current PowerHA SystemMirror ODM class objects. You can write a brief description to the file. The second file with an extension of `.info` contains information useful for troubleshooting PowerHA SystemMirror clusters.

The `clsnapshot` command is run on every configured node to obtain node-specific information.

You can use the `clsnapshot` command to apply a snapshot to the current cluster hardware. A verification utility is run, and must pass before the configuration information is synchronized to the cluster nodes. You can use the `-f` flag to forces a snapshot to be applied even if the verification routine fails.

Note: The environment variable `SNAPSHOTPATH` contains the path that leads to the snapshot file. By default, this path is `/usr/es/sbin/cluster/snapshots`.

Flags

- `-a` Apply a cluster snapshot
- `-c` Create a cluster snapshot
- `-C` Do not refresh an active cluster resource when you are applying a snapshot.
- `-d text` Added a description to the snapshot.
- `-e` Save cluster logs in the snapshot. Saving the logs to the snapshot can significantly increase the file size of the snapshot.
- `-f true|false` Force the application of a snapshot if verification fails.
- `-g` Generate a temporary ODM holding the snapshot
- `-h` Usage of the snapshot
- `-i` Generates files with the `.info` extension.
- `-l` Lists the snapshot files.
- `-m methodlist` Runs each custom snapshot method that is listed in the methodlist file.
- `-n file` Specifies the name of the snapshot.
- `-N file` Specifies the new name of the snapshot.
- `-o odmdir` Specify the ODM directory (ODMDIR) for the PowerHA SystemMirror ODM classes.
- `-r` Removes a snapshot.
- `-R` Replaces a snapshot.
- `-s` Displays a snapshot.
- `-t` Resets cluster options.

Related reference:

"`clmgr command` on page 45"
clsnapshotinfo command

Purpose

Retrieves and displays certain PowerHA SystemMirror cluster configuration information.

Syntax

clsnapshotinfo [-m <METHOD> [<-METHOD2> ...]]

Description

The clsnapshotinfo command runs PowerHA SystemMirror and AIX commands to gather information about the PowerHA SystemMirror cluster. The clsnapshotinfo command gathers information from only the node where the command is run. The output from the command is written to STDOUT. When the clsnapshotinfo command is run from the clsnapshot command, which happens automatically, information from all nodes in the cluster is gathered and the output is stored in a snapshot file with the .info extension.

It is recommended that you run the clsnapshotinfo command as part of the clsnapshot command to collect as much information as possible about the cluster.

Flags

-m Specifies one or more custom snapshot methods. The output from these methods is part of the overall data that is collected by the clsnapshotinfo command.

Related reference:

"clmgr command" on page 45

clstat command (ASCII mode and X Windows mode)

Note: This topic contains information about the ASCII mode and the X Windows mode for the clstat command.

ASCII mode

Purpose

Cluster Status Monitor (ASCII mode).

Syntax

clstat [-c cluster ID | -n cluster name] [-i] [-r seconds] [-a] [-o][-s]

Flags

-c cluster id
 Displays cluster information only about the cluster with the specified ID. If the specified cluster is not available, clstat continues looking for the cluster until the cluster is found or the program is canceled. May not be specified if the -i option is used.

-i Runs ASCII clstat in interactive mode. Initially displays a list of all clusters accessible to the system. The user must select the cluster for which to display the detailed information. A number of functions are available from the detailed display.

-n name
 Displays cluster information about the cluster with the specified name. May not be specified if the -i option is used.
-r seconds
 Updates the cluster status display at the specified number of seconds. The default is 1 second; however, the display is updated only if the cluster state changes.

-a
 Causes clstat to display in ASCII mode.

-o
 Provides a single snapshot of the cluster state and exits. This flag can be used to run clstat out of a cron job. Must be run with -a; ignores -i and -r options.

-s
 Displays service labels and their state (up or down).

X Windows mode

Purpose

Cluster Status Monitor (X Windows mode).

Syntax

clstat [-a] [-c id | -n name] [-r tenths-of-seconds][-s]

Flags

-a
 Runs clstat in ASCII mode.

-c id
 Displays cluster information only about the cluster with the specified ID. If the specified cluster is not available, clstat continues looking for the cluster until the cluster is found or the program is canceled. Might not be specified if the -n option is used.

-n name
 Displays cluster information only about the cluster with the specified name.

-r tenths-of-seconds
 The interval at which the clstat utility updates the display. For the graphical interface, this value is interpreted in tenths of seconds. By default, clstat updates the display every 0.10 seconds.

-s
 Displays service labels and their state (up or down).

Examples

1. Run the following command to display the cluster information about the mycluster cluster.
 clstat -n mycluster

2. Runs ASCII clstat in interactive mode, allowing multi-cluster monitoring.
 clstat -i
 The following are the buttons on X Window System Display:
 - Prev Displays previous cluster.
 - Next Displays next cluster.
 - Name:Id Refresh bar, pressing bar causes clstat to refresh immediately.
 - Quit Exits application.
 - Help Pop-up help window shows the clstat manual page.

clstop command

Purpose

Stops the cluster subsystems.
Syntax
clstop { -f | -g | -gr } [-s] [-y] [-N | -R | -B]

Description
The clstop stops cluster services on the local node and processes any active resource groups according to the flags that you specify. The command optionally removes automatic start on reboot through the entry in the /etc/inittab file.

Flags
-f Forces a shutdown. Cluster daemons terminate without running any local procedures.
-g Graceful shutdown with no takeover.
-gr Graceful shutdown with the resources that are being released by this node and taken over by another node. The daemon terminates gracefully, and the node releases its resources, which are taken over. A node list must be specified for graceful shutdown with takeover.
-s Performs a silent shutdown. This flag does not broadcast a shutdown message through wall command. The default setting is to broadcast.
-y Do not ask operator for confirmation before shutting down the cluster nodes. This flag is the default.
-B Stop now and on subsequent system restart.
-N Shut down now.
-R Stops on subsequent system restart and removes the entry in the /etc/inittab file.

Note: The /etc/rc.shutdown file is an optional file that contains commands that are run during the shutdown command.

Examples
1. To shut down the cluster node by using the gracefully option and releasing the resources without sending a warning message to users before the cluster processes are stopped, enter:
 clstop -gr -s -y
2. To forcefully and immediately shut down the cluster on all cluster nodes (resources not released) with a warning message that is broadcast to users before the cluster processes are stopped, enter:
 clstop -f -y
3. To shut down the cluster node by using the gracefully option and releasing resources that are taken over with a warning message that is broadcast to users before cluster processes are stopped, enter:
 clstop -gr -y

Related reference:
“clmgr command” on page 45

cltopinfo command

Purpose
Displays complete topology information: The cluster name, total number of networks, total number of missed heartbeats and nodes configured in the cluster. Displays all the configured networks for each node. Displays all the configured interfaces for each network. Also displays all the resource groups defined.

Syntax
cltopinfo [-c] [-l] [-n] [-w]
Flags

- `c` Shows the cluster name and the security mode (Standard or Enhanced)

- `i` Shows all interfaces configured in the cluster. The information includes the interface label, the network it’s attached to (if appropriate), the IP address, netmask, nodename and the device name.

- `n` Shows all the nodes configured in the cluster. For each node, lists all the networks defined. For each network, lists all the interfaces defined and the distribution preference for service IP label aliases (if defined).

- `w` Shows all the networks configured in the cluster. For each network, lists all the nodes attached to that network. For each node, lists all the interfaces defined and the distribution preference for service IP label aliases (if defined).

Example 1

To show all of the nodes and networks defined in the cluster (nodes coffey1 and lee1), use the `cltopinfo` command. The following cluster is configured with IPv4 addresses and IPv6 addresses. The output looks similar to the following:

Cluster Name: hacmp_full_ipv6
Cluster Connection Authentication Mode: Standard
Cluster Message Authentication Mode: None
Cluster Message Encryption: None
Use Persistent Labels for Communication: No
There are 2 node(s) and 2 network(s) defined

NODE coffey1:
Network net_ether_01
 service_ipv4_2 1.8.4.2
 service_ipv6_1 fe80::c862:67ff:fe58:5646
 coffey1_boot3 1.4.6.4
 coffey1_boot1 1.2.4.4
Network net_ether_02
 service_ipv4_32 1.8.4.4
 service_ipv6_31 fe80::c862:67ff:fe58:5846
 coffey1_boot_v6 fe80::c872:67ff:fe59:8647
 coffey1_boot_v6 fe80::c872:67ff:fe95:8683

NODE lee1:
Network net_ether_01
 service_ipv4_2 1.8.4.2
 service_ipv6_1 fe80::c862:67ff:fe58:5646
 lee1_boot1 1.2.4.3
 lee1_boot3 1.4.6.3
Network net_ether_02
 service_ipv4_32 1.8.4.4
 service_ipv6_31 fe80::c862:67ff:fe58:5846
 lee1_boot_v6 fe80::c872::fe56:fe82:2345
 lee1_boot_v6 fe80::fe34:3456:f873:f345

Resource Group RG1
Startup Policy Online On Home Node Only
Fallover Policy Fallover To Next Priority Node In The List
Fallback Policy Fallback To Higher Priority Node In The List
Participating Nodes coffey1 lee1
Service IP Label service_ipv4_1
Service IP Label service_ipv4_31

Resource Group RG2
Startup Policy Online On Home Node Only
Fallover Policy Fallover To Next Priority Node In The List
Fallback Policy Fallback To Higher Priority Node In The List
Participating Nodes lee1 coffey1
Service IP Label service_ipv4_2
Service IP Label service_ipv4_32
Example 2

To show the cluster name and current security mode, use the ctopinfo command. The output looks similar to the following:

```bash
# ctopinfo -c

Cluster Name: c10
Cluster Connection Authentication Mode: Standard
Cluster Message Authentication Mode: None
Cluster Message Encryption: None
Use Persistent Labels for Communication: No
```

Example 3

To show all of the nodes defined in the cluster, use the ctopinfo command. The following cluster is configured with IPv4 addresses and IPv6 addresses. The output looks similar to the following:

```bash
# ctopinfo -n

NODE abby:
    Network net_ether_01
    abby_enlstby  192.168.121.7
    abby_en0boot  192.168.120.7
    Network net_ether_02
    abby_boot1_v6  fe80::c872:67ff:fe59:8647
    abby_boot2_v6  fe80::c872:67ff:fe59:8683
    Network net_rs232_01
    Network net_rs232_02
    abby_tty0_01  /dev/tty0

NODE polly:
    Network net_ether_01
    polly_en0boot  192.168.120.9
    polly_enlstby  192.168.121.9
    Network net_ether_02
    polly_boot1_v6  fe80::c672:fe56:fe82:2345
    polly_boot2_v6  fe80::fe34:3456:f873:f345
    Network net_rs232_01
    Network net_rs232_02
    polly_tty0_01  /dev/tty0
```

Example 4

To show all of the networks defined in the cluster, use the ctopinfo command. The following cluster is configured with IPv4 addresses and IPv6 addresses. The output looks similar to the following:

```bash
# ctopinfo -w

Network net_ether_01
    NODE abby:
        abby_enlstby  192.168.121.7
        abby_en0boot  192.168.120.7
    NODE polly:
        polly_en0boot  192.168.120.9
        polly_enlstby  192.168.121.9

Network net_ether_02
    NODE abby:
        abby_boot1_v6  fe80::c872:67ff:fe59:8647
        abby_boot2_v6  fe80::c872:67ff:fe59:8683
    NODE polly:
        polly_boot1_v6  fe80::c672:fe56:fe82:2345
        polly_boot2_v6  fe80::fe34:3456:f873:f345
```
Example 5

To show all of the interfaces defined in the cluster, use the `cltopinfo` command. The output looks similar to the following:

```
# cltopinfo -i
IP                   Label  NetworkType  Node  Address  If  Netmask  Prefixlength
abby_en1stby         net_ether_01  ether  abby  192.168.121.7  en2  255.255.255.0
abby_en0boot         net_ether_01  ether  abby  192.168.120.7  en1  255.255.255.0
abby_boot1_v6        net_ether_02  ether  abby  fe80::c872  en3  64
abby_boot2_v6        net_ether_02  ether  abby  fe80::c672  en4  64
abby_tty0_01          net_rs232_02  rs232  abby  /dev/tty0  tty0
polly_en0boot        net_ether_01  ether  polly  192.168.120.9  en1  255.255.255.0
polly_en1stby        net_ether_01  ether  polly  192.168.121.9  en2  255.255.255.0
polly_boot1_v6       net_ether_02  ether  polly  fe80::c072  en3  64
polly_boot2_v6       net_ether_02  ether  polly  fe80::c172  en5  64
polly_tty0_01         net_rs232_02  rs232  polly  /dev/tty0  tty0
```

`clvaryonvg` command

Purpose

Varies on a volume group.

Syntax

```
```

Description

The `clvaryonvg` command is designed as a replacement for the `varyonvg` command that is part of the AIX operating system. This command performs some checks on the volume group to determine if there are any changes were made to the volume group before calling the AIX `varyonvg` command. If any changes have been made since the last time the volume group was varied on locally, the volume group is exported and then imported before it is varied on. This process verifies that all nodes have a consistent view of the content for the volume group.

If a system failure occurs during a volume group update, the volume group can become invisible to the node. The following mechanisms are implemented to safeguard against a system failure:

- Before you export a volume group, a file is created in the `/usr/es/sbin/cluster/etc/vg` directory that is called `<VG>.replay`, where VG is the name of the volume group. This file is a shell script that contains a set of commands to restore the volume group if it becomes invisible to the node or does not exist. If the volume group does not exist, the commands in the `<VG>.replay` file are automatically run the next time that you use the `clvaryonvg` command.

- If the replay file does not fix the problem, you can view the messages in the `hacmp.out` file. These messages explain how to manually restore the volume group. The messages in the `hacmp.out` file can also be found in the `/usr/es/sbin/cluster/etc/vg/<VG>.desc` file, where VG is the name of the volume group. A copy of the failed replay file is placed in the `/var/tmp` directory.
Flags

- **f** Passes the flag to the `importvg` command or the `varyonvg` command.

- **F** Forces an update by using the `exportvg` command or the `importvg` command on the volume group and ignoring the time stamp.

- **n** Disables the synchronization of the stale physical partitions within the volume group. This flag is passed to the `varyonvg` command.

- **p** Specifies that all physical volumes must be available to use the `clvaryonvg` command.

- **s** Makes the volume group available only in system management mode.

- **o** Leaves the volume group varied off after completion. The completion process includes performing all the integrity checks, and if required, running the `importvg` command and the `exportvg` command.

Examples

1. To activate volume group that is labeled `vg03`, enter:
   ```bash
clvaryonvg vg03
   ```

2. To force the update of a node's information on volume group that is labeled `vg03`, enter:
   ```bash
clvaryonvg -F vg03
   ```

get_local_nodename command

Purpose

Retrieves the name of the local node.

Syntax

```bash
get_local_nodename
```

Description

Displays the name of the local node.

Example

To display the name for the local node, enter
```bash
get_local_nodename
```

hallevel command

Purpose

Displays the PowerHA SystemMirror version, release, modification, and service pack level that is installed on your system.

Syntax

```bash
hallevel [-h|-?] [-s] [-x]
```

Description

If you run this command from a PowerHA SystemMirror client the command does not work correctly. You must run this command from a PowerHA SystemMirror server node.
Flags
-h | -?
 Displays help information.
-s Displays the service pack level.
-x Turns on debugging (ksh set -x)

Examples
1. To display the PowerHA SystemMirror version, release, and modification level, enter:
 `halevel`
2. To display the PowerHA SystemMirror version, release, modification, and service pack level, enter:
 `halevel -s`
3. To display the PowerHA SystemMirror version, release, modification, and service pack level on all
 cluster nodes, enter:
 `/usr/es/sbin/cluster/cspoc/cli_on_cluster -S halevel -s`

rc.cluster command

Purpose
Use the rc.cluster command to setup the operating system environment and start the cluster daemons
across cluster nodes.

Note: Arguments associated with a particular flag must be specified immediately following the flag.
PowerHA SystemMirror

Syntax

Flags
-boat
 Configures the service network interface to be on its boot address if IPAT is enabled.
-i Starts the Cluster Information (clinfoES) daemon with its default options.
-I Starts the Cluster Information (clinfoES) daemon with traps enabled.
-b Broadcasts the startup.
-N Starts the daemons immediately (no inittab file change).
-R Starts the PowerHA SystemMirror daemons on system restart only. The PowerHA SystemMirror
 startup command is added to the inittab file.
-B Starts the daemons immediately and adds the PowerHA SystemMirror entry to the inittab file.
-C Specifies the mode to use for corrective action when a problem occurs. Specify yes to automatically
 correct problems. Specify interactive to be prompted before each corrective action is run.
-M Starts the cluster services with Manual resource acquisition mode. Use this option if you want to
 bring the resource groups online manually.
-A Starts the cluster services with Automatic resource acquisition mode. Use this option if you want to
 bring resource groups online automatically on cluster startup. This is the default option.
-r Reacquires cluster resources after a forced down. Use this option if you changed the state of any
 cluster resources (ip labels, disks, applications) while the cluster was forced down.
-v Ignore verification errors during startup (auto ver sync)
-x Activates NFS cross-mounts.

Example

To start the cluster with clinfo services and to broadcast the event, run the following command:
rc.cluster -boot -N -i
Notices

This information was developed for products and services offered in the US.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an endorsement of those websites. The materials at those websites are not part of the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:
IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to actual people or business enterprises is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice as follows:

© (your company name) (year).

Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_.

104 PowerHA SystemMirror commands
Privacy policy considerations

IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies or other technologies to collect product usage information, to help improve the end user experience, to tailor interactions with the end user or for other purposes. In many cases no personally identifiable information is collected by the Software Offerings. Some of our Software Offerings can help enable you to collect personally identifiable information. If this Software Offering uses cookies to collect personally identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable information.

If the configurations deployed for this Software Offering provide you as the customer the ability to collect personally identifiable information from end users via cookies and other technologies, you should seek your own legal advice about any laws applicable to such data collection, including any requirements for notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/software/info/product-privacy

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

UNIX is a registered trademark of The Open Group in the United States and other countries.
Index

C
- `cl_convert command` 4
- `cl_ezupdate command` 5
- `cl_lsfs command` 7
- `cl_lsgroup command` 8
- `cl_lslv command` 9
- `cl_lsuser command` 10
- `cl_lsvg command` 11
- `cl_nodecmd command` 12
- `cl_rc.cluster command` 12
- `clanalyze command` 13
- `clconvert_snapshot command` 16
- `clfindres command` 18
- `clgetactivenodes command` 18
- `clgetaddr command` 18
- `cllsdisk command` 42
- `cllsfs command` 42
- `cllsparam command` 43
- `cllsres command` 43
- `cllsvg command` 44
- `clRGinfo command` 84
- `clshowres command` 90
- `clstat command` 93
- `cltopinfo command` 95

R
- `rc.cluster command` 100