

WebSphere Voice Server

Speaker Verification guide

Version 6.1.1

ii Speaker Verification Guide

Second Edition (December 2008)

����������	
���������	��������������������	����������������	
�������������������	�����������
�����������
��
�	��������	
���
���	����������
���������
�
��������	
����
�
 �������!	����	���
����	"��
�
���
���	
������
���������
���#	��	����	
��
$�������
���%& ��
'�(���)��*�+,��
%������������
-��'��./�0	����#��	�
���
112+3�+,�
�
���
�!	����
���
�	�����	
��	����/�!	��-��
��������
	
�)���������-����	�����	������������������
�	�����	
��
��
!�
��!����������������	�����������	����
�����
-��
!�	��-���	
��	�!	����
�
© Copyright International Business Machines Corporation 2007, 2008. All rights reserved.
4��5	���
��
��4�����%����������%�-����6�4��/���������	
�	������	�����������������!�5� � $'���������#	
������
���������#	����

����"�����	������
-�������
�	�����	
��
��������	������������	���/����������	�����������
�	�����	
��
�70	������8

© Copyright IBM Corp. 2007,, 2008 iii

Contents

Contents ... iii
Chapter 1. About this guide ... 1
Chapter 2. Introduction ... 4

Functionality Overview .. 5
Chapter 3. Developing .. 6

Audio Considerations.. 7
Input audio format... 7
Audio length required for enrollment ... 7

Requirements and limitations ... 8
Speaker Verification Web API ... 9
Session unbound mode ... 9

SIV Query Voiceprint ... 10
SIV Delete Voiceprint... 12
SIV Enroll ... 14
SIV Score .. 16

Session bound mode ... 18
SIV Start Session .. 19
SIV End Session ... 21
SIV Query Voiceprint ... 23
SIV Delete Voiceprint... 25
SIV Verify... 27

Sample VoiceXML applications... 29
Tips for speaker verification applications... 30

Define ‘blanket’ event catchers when running in session-bound mode 30
Use session bound mode to concatenate audio streams.. 32
Always check for ‘undecided’ decision when performing enrollment 34
End verification session after enrollment is complete .. 34

Voiceprint repository API... 35
Chapter 4. Planning... 37

Understanding the speech application using speaker verification .. 37
Application load.. 38
Application design .. 39
System resource .. 39
Estimating resources for speaker verification... 39

Chapter 5. Installing.. 40
Chapter 6. Configuring ... 41

Configuring speaker verification Resource Adapter connector.. 41
Chapter 7. Administering.. 42
Chapter 8. Tuning ... 43

Collect audio samples from multiple speakers on multiple devices ... 43
Enroll speakers.. 44
Augment speaker models.. 44

iv Speaker Verification Guide

Collect scores for all audio clips... 44
Determine acceptance threshold ... 45

Chapter 9. Troubleshooting .. 46
Monitoring log messages .. 46

Speaker verification resource adapter - CWVSV0000X-CWVSV0099X............................ 47
Speaker verification engine: CWVSV0100X-CWVSV0199X .. 49
Speaker verification web connector: CWVSV1000X-CWVSV1199X................................ 50
Enabling and monitoring trace for speaker verification ... 51

Collecting information for IBM support... 51
Notices .. 52

Copyright license .. 54
Trademarks ... 54
Accessibility.. 55

© Copyright IBM Corp. 2007,, 2008 1

Chapter 1. About this guide

This guide provides information about the speaker verification component, which is a part of
IBM® WebSphere® Voice Server.

This chapter includes the following topics:

� Who should read this guide
� Related publications
� How this guide is organized
� Document conventions and terminology

Who should read this guide?

Read this guide if you:

� Want to find out more about IBM’s speaker verification technology.
� Are working on a solution/application that utilizes the speaker verification component of

the IBM® WebSphere® Voice Server.

Related publications

Reference, design, and programming information for creating voice applications is available
from a variety of sources, as represented by the documents listed in this section.

NOTE: Guidelines and publications cited in this guide are for your information only and do not
in any manner serve as an endorsement of those materials. You alone are responsible for
determining the suitability and applicability of this information to your needs.

Specifications and standards

You may want to refer to the following sources for information about relevant specifications and
standards:

� High-Performance Text-Independent Speaker Verification, available at
http://www.research.ibm.com/CBG/papers/icassp03_syspaper.pdf

� Voice Extensible Markup Language (VoiceXML) Version 2.1 specification, published by
W3C and available at http://www.w3.org/TR/voicexml21/

� Voice Extensible Markup Language (VoiceXML) Version 2.0 specification, published by
W3C and available at http://www.w3.org/TR/voicexml20/

� HTTP 1.1 Specification, available at http://www.ietf.org/rfc/rfc2616.txt
� HTTP State Management Mechanism (Cookie Specification), available at

http://www.w3.org/Protocols/rfc2109/rfc2109
� Speaker Identification and Verification Requirements for VoiceXML Applications,

available at http://www.voicexml.org/resources/SIV_requirements_for_VoiceXML_20050914.pdf

2 Speaker Verification Guide

Speech user interface design

The speech user interface guidelines presented in this guide are an evolving set of
recommendations based on industry research and lessons learned in the process of developing
our own VoiceXML and telephony applications. For more information, refer to speech industry
literature and publications such as the following sources:

� Audio System for Technical Readings (ASTeR) by T. V. Raman, a Ph.D. thesis published
by Cornell University, May 1994.

� Auditory User Interfaces—Towards The Speaking Computer by T. V. Raman, published
by Kluwer Academic Publishers, August 1997.

� “Directing the Dialog: The Art of IVR” by Myra Hambleton, published in Speech
Technology, Feb/Mar 2000.

� Handbook of Human-Computer Interaction by Thomas K Landauer, Martin Helander,
and Prasad V. Prabhu, published by Elsevier Science, Amsterdam, North Holland, June
1997.

� How to Build a Speech Recognition Application: A Style Guide for Telephony Dialogues
(Second Edition) by Bruce Balentine, David P. Morgan, and William S. Meisel,
published by Enterprise Integration Group, San Ramon, CA, 2001.

� Human Factors and Voice Interactive Systems by Daryle Gardner-Bonneau, published by
Kluwer Academic Publishers, Boston, MA, March 1999.

Server-side programming

Information about server-side programming is available from a number of sources, including the
following:

� Design and Implement Servlets, JSPs, and EJBs for IBM WebSphere Application Server
(IBM Redbooks) SG24-5754-00

� Developing an e-business Application for the IBM WebSphere Application Server (IBM
Redpiece) SG24-5423-00

� JavaServer Pages (JSP) at http://java.sun.com/products/jsp
� Java™ Servlet at http://java.sun.com/products/servlet/
� Servlet/JSP/EJB Design and Implementation Guide (IBM Redbooks) SG24-5754-00

Deployment information

For information about deploying your voice applications, refer to the documentation provided
with WebSphere Voice Server for Multiplatforms.

The following documentation is provided in softcopy only with the product, or can be
downloaded from the IBM Publications Center:

� IBM Text-to-Speech SSML Programming Guide
� WebSphere Voice Server for Multiplatforms Information Center
� WebSphere Voice Server for Multiplatforms: Administrator’s Guide, G210-1561

© Copyright IBM Corp. 2007,, 2008 3

Document conventions and terminology

The following conventions are used to present information in this document:

Italic Used for emphasis, to indicate variable text, and for references to other documents.
Bold Used for configuration parameters, file names, URLs, and user-interface controls such as
command buttons and menus.
Monospace Used for sample code.
<text> Used for editorial comments in scripts.

4 Speaker Verification Guide

Chapter 2. Introduction

Speaker verification is the ability of verifying that a person is who they say they are, based on
the analysis of their voice. Each person has unique features associated with their voice. The
extraction of these features through the analysis of incoming audio allows the creation of a
unique speaker model containing distinct characteristics associated with a person’s voice. This
model is known a voiceprint.

Note that speaker verification is different from speaker identification (the ability to identify any
speaker from all known speakers by voice alone). The process of speaker verification consists of
two distinct steps, enrollment and verification. Both steps require a unique identifier or claim of
association with the person being enrolled or verified.

Enrollment is the process of creating a person’s voiceprint. It involves someone speaking for a
certain period of time and the speaker verification system processing the audio. During
enrollment, a unique voiceprint identifier (claim) must also be provided by the user (or by the
enrollment application itself). After enrollment is complete, the user can use the voiceprint
identifier for further verification requests.

The actual process of verification takes place after someone is successfully enrolled with the
system. This process, also referred to as scoring, also involves the same concepts used for
enrollment. The user provides his or her voiceprint identifier, and the system fetches the enrolled
voiceprint associated with it and starts analyzing the audio. During this process, the same
features and characteristics analyzed during the voiceprint creation are now used to compare
with the information stored in the voiceprint itself. The outcome of this analysis is a similarity
score, which tells how close the analyzed voice is to the one that originated the voiceprint. This
score can be used as a hint to the application, which can grant or deny access to the user.

IBM’s speaker verification technology is text independent, therefore does not require any kind of
speech grammars to function. Any text can be said for both enrollment and verification phases.
Note that text independence naturally implies language independence. But, for best results, IBM
recommends use of the same language for enrollment and verification.

IBM recommends the usage of its speaker verification technology as an extra (not the only) layer
of security for speech applications/solutions. Robust applications should consider this technology
in conjunction with other security mechanisms such as knowledge-based verification such as
secret passwords.

© Copyright IBM Corp. 2007,, 2008 5

Functionality Overview

The speaker verification component provided by the WebSphere® Voice Server allows speech
applications (VoiceXML) to access IBM’s speaker verification technology. VoiceXML
applications can submit audio to be verified by the voice server through a simple Web interface.

In terms of voiceprint storage, this product includes a file-based voiceprint repository, which
should be exclusively used for evaluation and/or application development and testing. Customers
must ensure they implement a production voiceprint repository (e.g., RDB-based) prior to
solution deployment. For more information about how to implement a voiceprint repository, see
the Voiceprint API section.

6 Speaker Verification Guide

Chapter 3. Developing

From a speech application point of view, speaker verification is performed in two distinct steps.
The first step is referred to as the designation phase, where the application interacts with the
caller to establish his or her identity (claim). Note that this phase does not necessarily involve
any speaker verification resource as the claim is normally gathered using only speech (or DTMF)
recognition. After the claim is established, the application enters the execution phase for actual
interaction with the speaker verification resource through enrolling or verifying the caller.

The WebSphere® Voice Server component for speaker verification provides a Web interface for
VoiceXML applications. Applications can perform speaker verification by submitting requests to
a Web Connector module deployed during product installation. The Web Module is in charge of
communicating locally with the voice server, but this communication is transparent to the
application developer. Therefore, the Web interface is the only public interface exposed by the
WebSphere® Voice Server for accessing its speaker verification resources.

Note that it is the application’s responsibility to gather and submit the claim as well as the audio
to be verified. As far as speaker verification is concerned, there are no restrictions in terms of
how the application is instrumented to collect the audio. This is normally done though standard
VoiceXML elements, such as the <record> tag or the recordutterance property.

The Web interface provides two modes of operation: session bound and session unbound.
When operating in session unbound mode, every request is treated as an atomic operation. For
example, you might want to have an application record someone’s enrollment phrase in a single
utterance, so you use the session unbound mode to send a single request to process the audio.
Session bound mode allows multiple requests with audio to be submitted throughout the lifetime
of a session. In this mode, an application may, for example, break the enrollment phrase into
multiple utterances, using multiple requests to submit the audio. The web interface concatenates
the audio samples from the multiple requests into a single audio sample for verification. You
might choose to use a session bound operation if a single utterance is too short for verification
but the total concatenated utterances would suffice.

As a rule of thumb, the session unbound mode is provided as more convenient for developers.
But it is expected and recommended that robust applications opt for the use of session bound
mode, since it allows better integration from a user experience point of view. Session bound
instrumentation is also more likely to provide better results, as applications can be written to
score/verify over multiple utterances, improving overall efficiency.

© Copyright IBM Corp. 2007,, 2008 7

Audio Considerations

Input audio format

Speaker verification supports both G711-ulaw and G711-alaw audio input, both sampled at
8KHz rate, 8bit, mono. The audio format expected by the speaker verification engine is
configurable (see Chapter 6. Configuring for more details).

NOTE: Converting audio from one format to another (a-law to u-law and vice versa) before
submitting for verification is not supported as it impacts the accuracy. This kind of conversion
normally takes place on the Interactive Voice Response (IVR) side and should be avoided.

Audio length required for enrollment

The amount of audio used to create a voiceprint has a direct effect on the system’s overall
accuracy. Ideally, applications should be designed to provide as much audio as possible during
enrollment. The following table can be used as a reference.

Table 1: Audio quality

Enrollment Duration (s) Accuracy Quality
30-45 AVERAGE
45-60 GOOD
>60 EXCELENT

Keep in mind, however, that several factors (e.g., background noise, audio quality, and volume)
influence the amount of audio actually processed by the speaker verification engine. The engine
tries to balance these discrepancies in signal quality but, when developing and testing a speaker
verification application, be aware that these factors may have a significant impact on the
numbers displayed in the table above.

Internally, the speaker verification engine counts the number of frames actually processed during
enrollment. If, at the end of the enrollment process, this counter is not higher than its internal
threshold, the enrollment fails with an ‘undecided’ return code (see the Speaker Verification
Web API section for more details).

8 Speaker Verification Guide

Requirements and limitations

The following requirements must be met by all clients (applications, IVR platforms, etc.) in
order to use the speaker verification API provided by the WebSphere® Voice Server.

Table 2: Requirements

Requirement Reason
VoiceXML 2.1 All responses returned by the web connector use version 2.1 in the top-level

document. Use of <record.utterance> allows applications to perform
speech recognition and speaker verification in the same utterance.

HTTP Cookie support Required for session bound mode. Cookie is used to store/retrieve the
verification session to/from the HTTP session.

The product currently has the following limitations:

Table 3: Limitations

Limitation Description
No HTTP support for input-
wave-uri header.

This header only supports the use of file://. Therefore, all audio files
submitted for verification using this header must be located in the WVS
box where speaker verification has been deployed.

No UTF-8 support for
voiceprint parameter

Valid voiceprint names are required to be in US-ASCII characters
(character code 33 (decimal) to 126 (decimal))

© Copyright IBM Corp. 2007,, 2008 9

Speaker Verification Web API

All requests are tunneled through the HTTP protocol. Requests containing audio are expected to
be in the multi-part message format defined by the HTTP specification (refer to Section 19.2 of
the HTTP 1.1 specification listed in the reference section for further information). All HTTP
responses include a message body containing VoiceXML data to be interpreted by the
application.

Session unbound mode

When using this mode, all operations are performed independently of one another. Internally, the
speaker verification Web Module establishes a session with the server only to handle a specific
request, disconnecting from the server immediately after returning a response.

request: SIV Query Voiceprint

response: VoiceXML data

request: SIV Delete Voiceprint

response: VoiceXML data

request: SIV Enroll

response: VoiceXML data

request: SIV Score

response: VoiceXML data

VoiceXML Application WVS speaker verification Web Module

Available API calls: session unbound mode

10 Speaker Verification Guide

SIV Query Voiceprint

Purpose
 Checks if a given voiceprint is available in the repository. In other words, allows

applications to check if a given user has already been enrolled.

URI
 http://<hostname>[:port]/ibmsiv/queryVP

Parameters
 voiceprint (required)
 The unique ID associated with a voiceprint.

 repository-uri (optional)
 The location of the voiceprint repository (if not specified, defaults to configured

repository).

Returns
 HTTP response body contains the following VoiceXML excerpt:

<vxml>
 <form id=”siv”>
 <var name=”result” expr=”new Object();”/>
 <block>
 <assign name=”result.exists” expr=”true | false“/>
 <assign name=”result.id” expr=”<voiceprint>”/>
 </block>
 </form>
</vxml>

 Where
 result.exists – True if voiceprint exists, false otherwise.
 result.id – The specified voiceprint identifier.

© Copyright IBM Corp. 2007,, 2008 11

Example
 The VoiceXML snippet below is an example of how to query the voiceprint repository.

<block name=”SIV_QUERY_VP”>

 <!-- assuming variable ‘claim’ containing voiceprint id has already -->
 <!-- been collected by the application -->
 <var name=”voiceprint” expr=”application.claim”/>

 <subdialog name="sivquery"
 <!-- var name="sivbaseurl" expr="'http://<wvs-host-
name>:<port-number>'" /-->
 <var name="sivbaseurl" expr="''" />
 srcexpr="sivbaseurl+'/ibmsiv/queryVP?"
 method="get"
 namelist=”voiceprint”>
 <filled>
 <if cond="sivquery.result.exists == 'false'">
 <log>
 SIV_QUERY_VP::voiceprint <value expr="voiceprint"/>
 not found.
 </log>
 <else/>
 <log>
 SIV_QUERY_VP::voiceprint <value expr="voiceprint"/>
 has been found in the repository
 </log>
 </if>
 </filled>

 <catch event="error.siv.failure">
 <log>
 SIV_QUERY_VP:: ev=<value expr="_event"/>
 msg=<value expr="_message"/>
 </log>
 </catch>

 </subdialog>

</block>

12 Speaker Verification Guide

SIV Delete Voiceprint

Purpose
 Deletes the specified voiceprint from the repository. This call has no effect if the

voiceprint does not exist.

URI
 http://<hostname>[:port]/ibmsiv/deleteVP

Parameters
 voiceprint (required)
 The unique ID associated with a voiceprint.

 repository-uri (optional)
 The location of the voiceprint repository.
 (If not specified, defaults to configured repository.)

Returns
 HTTP response body contains the following VoiceXML excerpt:

<vxml>
 <form id=”siv”>
 <var name=”result” expr=”new Object();”/>
 <block>
 <assign name=”result.deleted” expr=”true | false“/>
 <assign name=”result.id” expr=”<voiceprint>”/>
 </block>
 </form>
</vxml>

 Where
 result.deleted – True if voiceprint exists and has been deleted. False if voiceprint exists
 and could not be deleted. True if voiceprint does not exist.
 result.id – The specified voiceprint identifier.

© Copyright IBM Corp. 2007,, 2008 13

Example
 The VoiceXML snippet below is an example of how to delete a voiceprint from the

repository.

<block name=”SIV_DELETE_VP”>

 <!-- assuming variable ‘claim’ containing voiceprint id has already -->
 <!-- been collected by the application -->
 <var name=”voiceprint” expr=”application.claim”/>

 <subdialog name="sivdelete"
 <!-- var name="sivbaseurl" expr="'http://<wvs-host-
name>:<port-number>'" /-->
 <var name="sivbaseurl" expr="''" />
 srcexpr="sivbaseurl+'/ibmsiv/deleteVP’”

 method="get"
 namelist=”voiceprint”>
 <filled>
 <log>
 SIV_DELETE_VP::voiceprint <value expr="sivdelete.result.id"/>
 has been deleted.
 </log>
 </filled>

 <catch event="error.siv.failure">
 <log>
 SIV_DELETE_VP:: ev=<value expr="_event"/>
 msg=<value expr="_message"/>
 </log>
 </catch>

 </subdialog>

</block>

14 Speaker Verification Guide

SIV Enroll

Purpose
 Enrolls by creating a new voiceprint or updating (adapting) an existent voiceprint, based

on the audio provided with the request. Audio data MUST be provided (except if the
input-wave-uri parameter is specified), encapsulated in the request body (multipart type),
according to HTTP 1.1 specifications.

URI (POST)
 http://<hostname>[:port]/ibmsiv/enroll

Parameters
 voiceprint (required)
 The unique ID associated with a voiceprint.

 repository-uri (optional)
 The location of the voiceprint repository.
 (If not specified, defaults to configuration property.)

 input-wave-uri (optional)
 If available, specifies the location of the audio to be used for processing.
 NOTE: Only supports file protocol.

Returns
 HTTP response body contains the following VoiceXML excerpt:

<vxml>
 <form id=”siv”>
 <var name=”result” expr=”new Object();”/>
 <block>
 <assign name=”result.decision”
 expr=”undecided | accepted“/>
 <assign name=”result.id” expr=”<voiceprint>”/>
 </block>
 </form>
</vxml>

 Where
 result.decision – The enrollment result; one of the following:
 undecided – application did not provide enough audio to complete enrollment
 accepted – enrollment completed successfully

 result.id – The specified voiceprint identifier.

© Copyright IBM Corp. 2007,, 2008 15

Example

The VoiceXML snippet below is an example of how to submit audio to enroll a
voiceprint.

<block name=”SIV_ENROLL”>

 <!-- assuming variable ‘claim’ containing voiceprint ID has already -->
 <!-- been collected by the application -->
 <var name=”voiceprint” expr=”application.claim”/>

 <!-- also assuming that utterance has already been recorded and -->
 <!-- the audio is available through the variable ‘utterance’ -->
 <subdialog name="sivenroll"
 <!-- var name="sivbaseurl" expr="'http://<wvs-host-
name>:<port-number>'" /-->
 <var name="sivbaseurl" expr="''" />
 srcexpr="sivbaseurl+'/ibmsiv/enroll?voiceprint='+voiceprint"
 method="post"
 enctype=”multipart/form-data”
 namelist=”application.utterance”>
 <filled>
 <if cond=”sivenroll.result.decision == ‘accepted’”>
 <log>
 SIV_ENROLL::done enrolling <value expr="sivenroll.result.id"/>
 </log>
 <else />
 <log>
 SIV_ENROLL::Unable to create voiceprint. Not enough audio.
 </log>
 </if>
 </filled>

 <catch event="error.siv.failure">
 <log>
 SIV_ENROLL:: ev=<value expr="_event"/>
 msg=<value expr="_message"/>
 </log>
 </catch>

 </subdialog>

</block>

16 Speaker Verification Guide

SIV Score

Purpose
 Perform speaker verification using the specified voiceprint as the claim and the provided

audio for processing. The voiceprint associated with the claim must be available
(enrolled) in the repository. The returned result contains the similarity score and a
decision based on the configured acceptance threshold. Audio data MUST be provided
(except if the input-wave-uri parameter is specified), encapsulated in the request body
(multipart type), according to HTTP 1.1 specifications. Note that it is up to the
application to honor the decision returned by the server.

URI (POST)
 http://<hostname>[:port]/ibmsiv/score

Parameters
 voiceprint (required)
 The unique ID associated with a voiceprint.

 repository-uri (optional)
 The location of the voiceprint repository.
 (If not specified, defaults to configuration property.)

 input-wave-uri (optional)
 If available, specify the location of the audio to be used for processing.
 (NOTE: Only supports file protocol.)

Returns
 HTTP response body contains the following VoiceXML excerpt:

<vxml>
 <form id=”siv”>
 <var name=”result” expr=”new Object();”/>
 <block>
 <assign name=”result.decision”
 expr=”undecided | rejected | accepted“/>
 <assign name=”result.score” expr=”<value>”/>
 <assign name=”result.id” expr=”<voiceprint>”/>
 </block>
 </form>
</vxml>

 Where
 result.decision – The suggested decision; one of the following:
 undecided – application did not provide enough audio to produce a valid score
 rejected – the generated score is lower than the acceptance threshold
 accepted – the generated score is higher than the acceptance threshold

© Copyright IBM Corp. 2007,, 2008 17

 result.score - The similarity score produced by the engine, ranging from -1 to 1.
 result.id – The specified voiceprint identifier.

Example
 The VoiceXML snippet below is an example of how to verify (score) someone’s voice.

<block name=”SIV_SCORE”>

 <!-- assuming variable ‘claim’ containing voiceprint ID has already -->
 <!-- been collected by the application -->
 <var name=”voiceprint” expr=”application.claim”/>

 <!-- also assuming that utterance has already been recorded and -->
 <!-- the audio is available through the variable ‘utterance’ -->

 <subdialog name="sivscore"
 <!-- var name="sivbaseurl" expr="'http://<wvs-host-
name>:<port-number>'" /-->
 <var name="sivbaseurl" expr="''" />
 srcexpr="sivbaseurl+'/ibmsiv/score?voiceprint='+voiceprint"
 method="post"
 enctype=”multipart/form-data”
 namelist=”application.utterance”>
 <filled>
 <log>
 SIV_SCORE::score <value expr=”sivscore.result.score”/>
 SIV_SCORE::decision <value expr=”sivscore.result.decision”/>
 </log>
 <if cond=”sivscore.result.decision == ‘accepted’”>
 <log>
 SIV_SCORE::access granted.
 </log>
 <elseif cond=”sivscore.result.decision == `undecided’”/>
 <log>
 SIV_SCORE::Need more audio to make a decision.
 </log>
 <elseif cond=”sivscore.result.decision == ‘rejected’”/>
 <log>
 SIV_SCORE::access denied.
 </log>
 </if>
 </filled>

 <catch event="error.siv.failure">
 <log>
 SIV_SCORE:: ev=<value expr="_event"/>
 msg=<value expr="_message"/>
 </log>
 </catch>

 </subdialog>

</block>

18 Speaker Verification Guide

Session bound mode

When operating in this mode, the speaker verification Web module establishes a session with the
server and keeps that session open until the client explicitly tells it to disconnect or an internal
timeout expires. In this mode, multiple operations can be performed, targeting the same session
on the server side. The verification process may be split transparently into multiple utterances,
with the final outcome being the same as having a single (longer) utterance. There is no need for
the application to concatenate the individual audio streams as this is handled by the API. Note
that this mode of operation requires HTTP cookie support on the client side.

request: SIV Start Session

response: VoiceXML data

request: SIV End Session

response: VoiceXML data

VoiceXML Application WVS speaker verification Web Module

Available API calls: session bound mode

application ends
connection.disconnect.hangup
connection.disconnect.transfer

request: SIV Verify

response: VoiceXML data

request: Query Voiceprint

response: VoiceXML data

request: SIV Delete Voiceprint

response: VoiceXML data

verification session
lifecycle

© Copyright IBM Corp. 2007,, 2008 19

SIV Start Session

Purpose
 Establish an enrollment or verification session with the server. The parameters specified

are persistent throughout the lifetime of the session. If called during an ongoing
verification session, the request automatically causes the previous session to be aborted.

URI
 http://<hostname>[:port]/ibmsiv/startsession

Parameters
 voiceprint (required)
 The unique ID associated with a voiceprint.

 repository-uri (optional)
 The location for the voiceprint repository.
 (If not specified, defaults to configured repository.)

 mode (optional)
 The verification mode (‘score’ | ‘enroll’).
 (If not available, defaults to ‘score’.)

Returns
 The HTTP response body contains the following VoiceXML excerpt:

<vxml>
 <form id=”siv”>
 <var name=”result” expr=”new Object();”/>
 <block>
 </block>
 </form>
</vxml>

20 Speaker Verification Guide

Example
 The VoiceXML snippet below is an example of how to establish a verification session.

<block name=”SIV_START_SESSION”>

 <!-- assuming variable ‘claim’ containing voiceprint ID has already -->
 <!-- been collected by the application -->

 <var name=”voiceprint” expr=”application.claim”/>
 <var name=”mode” expr=”’score’”/>

 <subdialog name="startsession"
 <!-- var name="sivbaseurl" expr="'http://<wvs-host-
name>:<port-number>'" /-->
 <var name="sivbaseurl" expr="''" />
 srcexpr="sivbaseurl+'/ibmsiv/startsession'
 method=”get”
 namelist=”voiceprint mode">
 <filled>
 <log>
 SIV_START_SESSION::session established for
 voiceprint <value expr="voiceprint"/>
 </log>
 </filled>

 <catch event="error.siv.failure">
 <log>
 SIV_START_SESSION:: ev=<value expr="_event"/>
 msg=<value expr="_message"/>
 </log>
 </catch>

 </subdialog>

</block>

© Copyright IBM Corp. 2007,, 2008 21

SIV End Session

Purpose
 End a previously established verification session. All resources associated with the

session are released. This request has no effect if there is no active session established for
the caller. NOTE: In case of successful enrollment, the associated voiceprint is only
created or updated by the server when the session is terminated. Therefore, applications
MUST end the enrollment session before verifying the enrolled/adapted voiceprint.

URI
 http://<hostname>[:port]/ibmsiv/endsession

Parameters
 None

Returns
 The HTTP response body contains the following VoiceXML excerpt:

<vxml>
 <form id=”siv”>
 <var name=”result” expr=”new Object();”/>
 <block>
 </block>
 </form>
</vxml>

22 Speaker Verification Guide

Example
 The VoiceXML snippet below is an example of how to end a verification session.

<block name=”SIV_END_SESSION”>

 <subdialog name="endsession"
 <!-- var name="sivbaseurl" expr="'http://<wvs-host-
name>:<port-number>'" /-->
 <var name="sivbaseurl" expr="''" />
 srcexpr="sivbaseurl+'/ibmsiv/endsession'”
 method=”get”>
 <filled>
 <log>
 SIV_END_SESSION::session ended normally.
 </log>
 </filled>

 <catch event="error.siv.failure">
 <log>
 SIV_START_SESSION:: ev=<value expr="_event"/>
 msg=<value expr="_message"/>
 </log>
 </catch>

 </subdialog>

</block>

© Copyright IBM Corp. 2007,, 2008 23

SIV Query Voiceprint

Purpose

Checks if a given voiceprint is available in the repository. In other words, allow
applications to check if a given user has already been enrolled.

URI
 http://<hostname>[:port]/ibmsiv/queryVP

Parameters
 voiceprint (required)
 The unique ID associated with a voiceprint.

 repository-uri (optional)
 The location for the voiceprint repository.
 (If not specified, defaults to the session repository.)

Returns
 The HTTP response body contains the following VoiceXML excerpt:

<vxml>
 <form id=”siv”>
 <var name=”result” expr=”new Object();”/>
 <block>
 <assign name=”result.exists” expr=”true | false“/>
 <assign name=”result.id” expr=”<voiceprint>”/>
 </block>
 </form>
</vxml>

 Where
 result.exists – True if voiceprint exists, false otherwise.
 result.id – The specified voiceprint identifier.

24 Speaker Verification Guide

Example
 The VoiceXML snippet below is an example of how to query the voiceprint repository.

<block name=”SIV_QUERY_VP”>

 <!-- assuming verification session previously established -->
 <!-- also assuming variable ‘claim’ containing voiceprint ID has -->
 <!-- already been collected by the application -->
 <var name=”voiceprint” expr=”application.claim”/>

 <subdialog name="sivquery"
 <!-- var name="sivbaseurl" expr="'http://<wvs-host-
name>:<port-number>'" /-->
 <var name="sivbaseurl" expr="''" />
 srcexpr="sivbaseurl+'/ibmsiv/queryVP?"
 method="get"
 namelist=”voiceprint”>
 <filled>
 <if cond="sivquery.result.exists == 'false'">
 <log>
 SIV_QUERY_VP::voiceprint <value expr="voiceprint"/>
 not found.
 </log>
 <else/>
 <log>
 SIV_QUERY_VP::voiceprint <value expr="voiceprint"/>
 has been found in the repository
 </log>
 </if>
 </filled>

 <catch event="error.siv.failure">
 <log>
 SIV_QUERY_VP:: ev=<value expr="_event"/>
 msg=<value expr="_message"/>
 </log>
 </catch>

 </subdialog>

</block>

© Copyright IBM Corp. 2007,, 2008 25

SIV Delete Voiceprint

Purpose

Deletes the specified voiceprint from the repository. This call has no effect if the
voiceprint does not exist.

URI
 http://<hostname>[:port]/ibmsiv/deleteVP

Parameters
 voiceprint (required)
 The unique ID associated with a voiceprint.

 repository-uri (optional)
 The location for the voiceprint repository.
 (If not specified, defaults to session repository.)

Returns
 The HTTP response body contains the following VoiceXML excerpt:

<vxml>
 <form id=”siv”>
 <var name=”result” expr=”new Object();”/>
 <block>
 <assign name=”result.deleted” expr=”true | false“/>
 <assign name=”result.id” expr=”<voiceprint>”/>
 </block>
 </form>
</vxml>

 Where
 result.deleted – True if voiceprint exists and has been deleted. False if voiceprint exists
 and could not be deleted. True if voiceprint does not exist.
 result.id – The specified voiceprint identifier.

26 Speaker Verification Guide

Example:

 The VoiceXML snippet below shows an example of how to delete a voiceprint from the

repository.

<block name=”SIV_DELETE_VP”>

 <!-- assuming verification session previously established -->
 <!-- also assuming variable ‘claim’ containing voiceprint ID has -->
 <!-- already been collected by the application -->
 <var name=”voiceprint” expr=”application.claim”/>

 <subdialog name="sivdelete"
 <!-- var name="sivbaseurl" expr="'http://<wvs-host-
name>:<port-number>'" /-->
 <var name="sivbaseurl" expr="''" />
 srcexpr="sivbaseurl+'/ibmsiv/deleteVP”
 method="get"
 namelist=”voiceprint”>
 <filled>
 <log>
 SIV_DELETE_VP::voiceprint <value expr="sivdelete.result.id"/>
 has been deleted.
 </log>
 </filled>

 <catch event="error.siv.failure">
 <log>
 SIV_DELETE_VP:: ev=<value expr="_event"/>
 msg=<value expr="_message"/>
 </log>
 </catch>

 </subdialog>

</block>

© Copyright IBM Corp. 2007,, 2008 27

SIV Verify

Purpose

Enrolls or gets the score for the session voiceprint. Audio data MUST be provided
(except if input-wave-uri parameter is specified) and encapsulated in the request body
(multipart type), according to HTTP 1.1 specifications.

URI (POST)
 http://<hostname>[:port]/ibmsiv/verify

Parameters
 input-wave-uri (optional)
 If available, specify the location of the audio to be used for processing.
 NOTE: Only supports file protocol.

Returns
 The HTTP response body contains the following VoiceXML excerpt.

<vxml>
 <form id=”siv”>
 <var name=”result” expr=”new Object();”/>
 <block>
 <assign name=”result.decision”
 expr=”undecided | rejected | accepted“/>
 <assign name=”result.score” expr=”<value>”/>
 <assign name=”result.id” expr=”<voiceprint>”/>
 </block>
 </form>
</vxml>

 Where
 result.decision – The suggested decision; one of the following:
 undecided – If enrolling, the application did not provide enough audio to create a
 voiceprint. If scoring, there is not enough audio to generate a valid score.
 rejected – If enrolling, not applicable. If scoring, the generated score is lower
 than the acceptance threshold (score only).

accepted – If enrolling, the voiceprint has been enrolled successfully. If scoring,
the generated score is higher than the acceptance threshold.

 result.score – the similarity score produced by the engine, ranging from -1 to 1. If
 enrolling, ignore (always 0.0).
 result.id – The specified voiceprint identifier.

28 Speaker Verification Guide

Example
The VoiceXML snippet below is an example of how to use the verify request. Note that
this snippet could be used for both enrollment and score verification. The mode
parameter specified by the preceding session start (not shown here) dictates the behavior.

<block name=”SIV_VERIFY”>

<!-- assuming variable ‘claim’ containing voiceprint ID has already -->
<!-- been collected by the application -->
<var name=”voiceprint” expr=”application.claim”/>

<!-- assuming session has already been started for score -->
<!-- also assuming that utterance has already been recorded and -->
<!-- the audio is available through the variable ‘utterance’ -->

 <subdialog name="sivscore”
 <!-- var name="sivbaseurl" expr="'http://<wvs-host-
name>:<port-number>'" /-->
 <var name="sivbaseurl" expr="''" />
 srcexpr="sivbaseurl+'/ibmsiv/verify’”
 method="post"
 enctype=”multipart/form-data”
 namelist=”application.utterance”>
 <filled>
 <log>
 SIV_VERIFY::voiceprint <value expr=”sivscore.result.id”/>
 SIV_VERFIY::score <value expr=”sivscore.result.score”/>
 SIV_VERIFY::decision <value expr=”sivscore.result.decision”/>
 </log>
 <if cond=”sivscore.result.decision == ‘accepted’”>
 <log>
 SIV_VERIFY::access granted.
 </log>
 <elseif cond=”sivscore.result.decision == `undecided’”/>
 <log>
 SIV_VERIFY::Need more audio to make a decision.
 </log>
 <elseif cond=”sivscore.result.decision == ‘rejected’”/>
 <log>
 SIV_VERIFY::access denied.
 </log>
 </if>
 </filled>

 <catch event="error.siv.failure">
 <log>
 SIV_VERIFY:: ev=<value expr="_event"/>
 msg=<value expr="_message"/>
 </log>
 </catch>
 </subdialog>

</block>

© Copyright IBM Corp. 2007,, 2008 29

Sample VoiceXML applications

The following directories contain sample applications that can be used for further reference:

� WVS_ROOT/siv/samples/vxml
� WVS_ROOT\siv\samples\vxml

In the application root document (sivapp.vxml) you can find more information about the
available samples, including usage of both session-unbound (sivscore.vxml) and session-bound
(sivscore1stutt.vxml) modes of the speaker verification Web API.

These VoiceXML documents are also deployed during product installation and should also be
available through the same URI used to access the API:
 http://<hostname>[:port]/ibmsiv/samples

30 Speaker Verification Guide

Tips for speaker verification applications

The next sections provide some tips for developing speaker verification applications.

Define ‘blanket’ event catchers when running in session-bound mode

When using session-bound mode it is good practice to define global catch events to avoid exiting
applications without properly ending a verification session. Global event catchers are normally
defined in the root document of a VoiceXML application.

The example below illustrates the usage of global event catchers to end a verification session.
Since calling an end session without previously establishing a verification session has no effect
on the server side, it is OK to define the constructs below at the application scope.

<!-- ** -->
<!-- These should be defined in root document of the VoiceXML app -->
<!-- ** -->

<catch event="error.siv.failure">
 <log>
 siv error - Ev=<value expr="_event"/>
 Msg=<value expr="_message"/>
 </log>
 <data <!-- var name="sivbaseurl" expr="'http://<wvs-host-name>:<port-
number>'" /-->
 <var name="sivbaseurl" expr="''" />
 srcexpr="sivbaseurl+'/ibmsiv/endsession'" />
 <exit />
</catch>

<catch event=”connection.disconnect.hangup”>
 <log>
 Call hangup – Ev=<value expr=”_event”/>
 Msg=<value expr=”_message”/>
 <log>
 <data <!-- var name="sivbaseurl" expr="'http://<wvs-host-name>:<port-
number>'" /-->
 <var name="sivbaseurl" expr="''" />
 srcexpr=”sivbaseurl+’/ibmsiv/endsession’”/>
</catch>

<catch>
 <log>
 Generic - Ev=<value expr="_event"/>
 Msg=<value expr="_message"/>
 </log>
 <data <!-- var name="sivbaseurl" expr="'http://<wvs-host-name>:<port-
number>'" /-->
 <var name="sivbaseurl" expr="''" />
 srcexpr="sivbaseurl+'/ibmsiv/endsession'" />
 <exit />
</catch>

© Copyright IBM Corp. 2007,, 2008 31

32 Speaker Verification Guide

Use session bound mode to concatenate audio streams

You can use the session bound mode of the Web API to ‘concatenate’ different audio streams
from multiple utterances into a single verification procedure. This allows applications more
flexibility when balancing the speaker verification requirements in terms of audio duration, with
the usability requirements for each speech application.

The example below shows the usage of session bound mode to handle enrollment across multiple
turns.

<block name=”SIV_ENROLL”>

 <!-- assuming variable ‘claim’ containing voiceprint ID has already -->
 <!-- been collected by the application -->
 <var name=”voiceprint” expr=”application.claim”/>
 <var name=”mode” expr=”’enroll’”/>

 <!-- ** -->
 <!-- Establishing a verification session first. -->
 <!-- ** -->
 <subdialog name="startsession"
 <!-- var name="sivbaseurl" expr="'http://<wvs-host-name>:<port-
number>'" /-->
 <var name="sivbaseurl" expr="''" />
 srcexpr="sivbaseurl+'/ibmsiv/startsession'
 method=”get”
 namelist=”voiceprint mode">
 <filled>
 <log>
 SIV_ENROLL::enrollment session established for <value expr="voiceprint"/>
 </log>
 </filled>
 </subdialog>

 <!-- ** -->
 <!-- Record the first utterance -->
 <!-- ** -->
 <record name="clip1" beep="true" maxtime="300s"
 dtmfterm="true" type="audio/basic">
 <prompt>Please, say your enrollment phrase now.</prompt>
 <filled>
 <prompt>Please, wait while we process your request.</prompt>
 </filled>
 </record>

 <!-- ** -->
 <!-- Send first audio clip for enrollment. -->
 <!-- ** -->
 <subdialog name=”utterance1”
 <!-- var name="sivbaseurl" expr="'http://<wvs-host-name>:<port-
number>'" /-->
 <var name="sivbaseurl" expr="''" />
 srcexpr="sivbaseurl+'/ibmsiv/verify’”
 method="post"
 enctype=”multipart/form-data”
 namelist=”clip1”>
 <filled>
 <log>SIV_ENROLL::utterance 1:
 decision <value expr=”utterance1.result.decision”/>
 </log>
 <if cond=”utterance1.result.decision == ‘accepted’”>
 <log>SIV_ENROLL::enrollment accepted.</log>
 <prompt>Congratulations! You have been enrolled</prompt>

© Copyright IBM Corp. 2007,, 2008 33

 <data <!-- var name="sivbaseurl" expr="'http://<wvs-host-name>:<port-
number>'" /-->
 <var name="sivbaseurl" expr="''" />
 srcexpr=”sivbaseurl+’/ibmsiv/endsession’”/>
 <exit/>
 <elseif cond=”utterance1.result.decision == `undecided’”/>
 <log>
 SIV_ENROLL::Need more audio to make a decision.
 Proceeding to second utterance.
 </log>
 </if>
 </filled>
 </subdialog>

 <!-- ** -->
 <!-- Record the second utterance -->
 <!-- ** -->
 <record name="clip2" beep="true" maxtime="300s"
 dtmfterm="true" type="audio/basic">
 <prompt>Please, speak your second enrollment phrase.</prompt>
 <filled>
 <prompt>Please, wait while we process your request.</prompt>
 </filled>
 </record>

 <!-- ** -->
 <!-- Send second audio clip for enrollment. -->
 <!-- ** -->
 <subdialog name=”utterance2”
 <!-- var name="sivbaseurl" expr="'http://<wvs-host-name>:<port-
number>'" /-->
 <var name="sivbaseurl" expr="''" />
 srcexpr="sivbaseurl+'/ibmsiv/verify’”
 method="post"
 enctype=”multipart/form-data”
 namelist=”clip2”>
 <filled>
 <log>SIV_ENROLL::utterance 2:
 decision <value expr=”utterance2.result.decision”/>
 </log>
 <if cond=”utterance1.result.decision == ‘accepted’”>
 <log>SIV_ENROLL::enrollment accepted.</log>
 <prompt>Congratulations! You have been enrolled</prompt>
 <exit/>
 <elseif cond=”utterance1.result.decision == `undecided’”/>
 <log>SIV_ENROLL::still not enough audio.</log>
 <prompt>I’m sorry, please try again later.</prompt>
 </if>
 </filled>
 </subdialog>

 <!-- ** -->
 <!-- Ending the session. -->
 <!-- ** -->
 <subdialog name="endsession"
 <!-- var name="sivbaseurl" expr="'http://<wvs-host-name>:<port-
number>'" /-->
 <var name="sivbaseurl" expr="''" />
 srcexpr="sivbaseurl+'/ibmsiv/endsession'
 method=”get”>
 <filled>
 <log>
 SIV_ENROLL::enrollment session ended"/>
 </log>
 </filled>
 </subdialog>

</block>

34 Speaker Verification Guide

Always check for ‘undecided’ decision when performing enrollment

As stated before, the speaker verification engine has an internal threshold controlling the amount
of audio processed during enrollment. This threshold must be reached for the engine to declare
the voiceprint ‘accepted’. Therefore, it is good practice for the application to check for an
‘undecided’ decision (i.e., more audio needed) before considering that the enrollment has been
completed. If the speaker verification engine does not report an accepted decision, the voiceprint
will not be enrolled (created).

End verification session after enrollment is complete

When enrolling using the session bound mode, keep in mind that the voiceprint is only created
when the session terminates. Therefore, it is good practice for your application to check for the
decision and end the session as soon as it gets an ‘accepted’ result from the server.

© Copyright IBM Corp. 2007,, 2008 35

Voiceprint repository API

The speaker verification component relies on a persistent repository to keep all enrolled
voiceprints. The location of the voiceprint repository is abstracted by the Voiceprint Repository
(VPR) API, which makes the speaker verification component agnostic to the backend used to
store the voiceprints. NOTE: The VPR API is used internally by the speaker verification
component and it is not directly exposed to the application developer.

The repository location is specified by the repository-uri parameter (either through configuration
or as one of the speaker verification Web API parameters). Through the Voiceprint Repository
abstraction, customers can provide centralized access to their own voiceprint repository by
providing an implementation of the HTTP interface defined below for the Voiceprint Repository
abstraction.

HTTP GET
 The speaker verification component sends an HTTP GET request to the VPR Servlet to
perform one of the operations specified below.

Parameters
 voiceprint (required)
 The voiceprint associated with the request.

 op (required)
 The type of operation to perform.
 Expected values:
 query: detects whether or not the specified voiceprint is available
 delete: deletes the specified voiceprint from the repository
 fetch: retrieves the specified voiceprint from the repository

Response
 The speaker verification component relies on the HTTP response return code to indicate

whether the operation completed successfully. Note that the return codes may assume
slightly different meanings, depending on the type of operation being performed. The
following return codes are expected:

 200 – The voiceprint exists (or has been successfully deleted by a delete operation)
 400 – The request is missing a required parameter
 404 – The voiceprint does not exist (or could not be deleted by a delete operation)
 Any other status code is handled as a generic error.

 The HTTP response body must contain the voiceprint binary data (from a successful

fetch operation).

36 Speaker Verification Guide

HTTP POST
 The SV Resource Adapter sends an HTTP POST request to the VPR Servlet when it
needs to save a voiceprint in the repository. The body of the request contains the binary data for
the specified voiceprint. If the specified voiceprint already exists, the contents are overwritten.

Parameters
 voiceprint (required)
 The voiceprint associated with the request.

Response
 The SV Resource Adapter relies on the HTTP response return code to indicate whether

the operation completed successfully. The following return codes are expected:
 200 – The voiceprint was saved successfully
 400 – The request is missing a required parameter
 Any other status code is handled as a generic error.

NOTE: The implementation of the Voiceprint Repository Servlet and the instrumentation to
access the underlying database are not provided by this product. A reference implementation is
provided as an example and can be found in the installation directory, under

� WVS_ROOT/siv/samples/vpr/sivvpr.war
� WVS_ROOT\siv\samples\vpr\sivvpr.war

© Copyright IBM Corp. 2007,, 2008 37

Chapter 4. Planning

This section explains the considerations when you plan to add speaker verification to your
existing WebSphere® Voice Server system. The additional requirements for speaker verification
vary, depending on the following issues:

� The number of telephone lines or channels supported that will use speaker verification.
� When to verify the speaker.
� The size of your voice print repository.
� The length of the audio from a user to verify.

Planning your WebSphere Voice Server system involves the following steps:
� Understanding the speech application using speaker verification.
� Estimating speaker verification CPU requirements.

Understanding the speech application using speaker verification

When planning a voice system using WebSphere® Voice Server speaker verification, you must
determine:

� The number of telephony lines requiring speaker verification support.
� When will you perform speaker verification in the application? Only at the beginning of

the call to verify the caller’s identify or continually during the call?
� How many seconds of audio will be collected and used to verify the speaker?
� How many active telephony lines will perform speaker verification concurrently?

NOTE: This document can only provide approximate guidelines regarding the exact size and
number of machines you need for your WebSphere Voice Server system. It is essential that you
test any implementation with realistic call volumes before you put it into production. For
guidance about capacity planning for your specific configuration, contact your IBM®
representative.

In terms of persistent storage, you must determine:

� What kind of voiceprint repository to use? Understand the requirements, so you can plan
and develop your own implementation of the VPR Servlet to access your persistent
storage backend.

� How many voiceprints are expected to be in the repository? What size space is needed to
store all the voiceprints (each voiceprint is approximately 43K bytes)?

38 Speaker Verification Guide

Application load

To estimate the application load on the system, you need to know the following:

� The number of telephony channels required to handle the number of expected calls for
applications using WebSphere Voice Server speaker verification.

Your WebSphere Voice Server system should be able to handle the maximum demand for
speech resources. The maximum demand is the resources needed at the peak calling hour, rather
than a day's average number of hourly calls. The primary speech resource is the speaker
verification engine. The demand for engines is influenced both by the frequency of calls and how
they are distributed. If all the incoming calls use the same application and start at the same time,
each call will need an engine at the same time so the demand will be high. If, on the other hand,
calls are distributed normally, the number of engines needed simultaneously may be
considerably smaller.
For your applications, you must determine the acceptable performance or desirability of an
engine being available for a call without a significant delay. Delays can cause performance
degradation, such as not recognizing speech input or stuttering output. If degradation of
performance is acceptable during peak utilization, fewer engines will be required.
The following variables affect application load:

� The time that engines are allocated or assigned as a proportion of a call. This is known as
the allocation duty cycle. The allocation model for speaker verification engine depends
on the API usage. If session unbound mode is used, the engines are allocated dynamically
to perform a single verification operation and immediately freed. If session mode is used,
an engine is allocated for the lifecycle of the session.

� The time that engines are active (in processing the verification audio) as a proportion of a
call. This is known as the active duty cycle. This can vary considerably, depending on the
design of your voice applications and their complexity. These factors determine the
number of concurrent speaker verification sessions that are required.

The number of concurrent speaker verification sessions, in turn, determines the number of
processors required and how powerful they must be. Similarly, these two variables—the number
and speed of the processors—dictate the number and size of the machines needed for your
WebSphere Voice Server installation.
For example, an application using speaker verification at the start of the call with five seconds
worth of audio is likely to be actively engaged for only a short proportion of the length of a call.
It will have a short active speaker verification duty cycle and require less CPU.
An application continually verifying the user with longer amounts of audio is likely to spend
more time actively engaged. In this case, the active duty cycle for speaker verification is longer
and more CPU processing is required.

© Copyright IBM Corp. 2007,, 2008 39

Application design

The amount of CPU processing required for speaker verification is highly dependent upon the
amount of audio to process for each verification request and the number of other concurrent
verification requests in progress.
If you perform batch processing of speaker verification requests, then you can manage the
amount of CPU processing available by reducing the number of concurrent requests issued. In
this situation, longer audio samples can be used.
If you have a user waiting for the speaker verification request to complete, then use small audio
samples and perform verification only at the beginning of the call.

System resource

Once you know the maximum number of concurrent sessions required for speaker verification
and the average amount of audio, you can determine how many WebSphere Voice Server
machines are necessary. You can also determine the minimum specifications for the machines,
which are also dependent on the operating system you select.
The actual number of concurrent speaker verification requests that will run on each machine is
solution-dependent. A solution must be tested to verify that a system can handle a condition
where all the speaker verification, ASR, and TTS engines are fully utilized.

Estimating resources for speaker verification

This section describes the resources required for speaker verification.
The critical resource is CPU. CPU is consumed when processing a speaker verification request.
The amount of the audio determines how long CPU is consumed. Memory is consumed when
WVS started with speaker verification installed and is minimal.
CPU utilization is determined by:

� The active duty cycle of the started speaker verification engines
� The length of the audio submitted for verification

Memory utilization is determined by:

� The number of active (allocated) engines at a given time
� The number of speaker models in the CCSM directory. By default, the speaker

verification engine is installed with 396 models, which are loaded and remain in memory
during system startup

NOTE: There are limits to the desirable CPU load. If the CPU utilization is too high, application
response time can increase.

40 Speaker Verification Guide

Chapter 5. Installing

Refer to the Getting Started Guide document for detailed instructions on how to install and
uninstall the WebSphere® Voice Server component for speaker verification.

© Copyright IBM Corp. 2007,, 2008 41

Chapter 6. Configuring

The table below lists the configuration properties used by this speaker verification component.
These parameters can be changed using the methods described in the WebSphere® Voice Server
information center and in Chapter 6. Configuring.

����� ����	
����	�����	������
��
�	� �������������� ���
��������

�������	���

���������

��������������	�
��
���
����
������
����������������
�	����

�������������������������������
	�����������������
�

���
����������
�������
	���

	�������	
	���������

���� !"#"$�

���
��%����� ��������������	�
��
���
����
������
�������������

�������
���������������������
	���
	�����
���

�

&'""����� &'""��������

&'""�����

(���
�����)(*� ��������������	�
��
�	�����������
�
���	���
���
��

+���
�
����������������
����
	������
����������
�	�������
��	�	��

����
�
���,����������
���
�	��

-
��.//012�+3(44�5/

�/��
����
	��

�	�����
���
���

��������)(*�

Configuring speaker verification Resource Adapter connector

You can configure the pool of connections to the speaker verification Resource Adapter through
the WebSphere Application Server administration console. Each Resource Adapter connection
represents an actual connection to the speaker verification engine. By default, the product is
installed with the following connection pool settings.

Table 4: Connection pool settings

����� ����
��
�	� ��������������

6
	�%�		���
�	� �����
	
����	��,��������		���
�	�����������7������
�
���
�	�

�	�
	��

8�

6�9�%�		���
�	� ������9
����	��,��������		���
�	�����������7������
�
���
�	�

�	�
	��

8��

More information about how to configure the connection pool for a resource adapter can be
found in WebSphere Application® Server Infocenter, in the Configuring����Resources����Data
Access-����Configuring Java 2 Connector connection factories����Connection pool settings
section.

NOTE: Do not change any other connection pool setting without direct instructions from IBM
support.

42 Speaker Verification Guide

Chapter 7. Administering

The administration of servers involves operational and monitoring functionality listed in the
WebSphere Voice Server information center ‘Administering’ topic.

© Copyright IBM Corp. 2007,, 2008 43

Chapter 8. Tuning

It is important to note that the WebSphere® Voice Server component for speaker verification is
not intended to be used straight out of the box. For the speaker verification engine to perform
properly, it needs to be tuned to accommodate the specific characteristics of the target
deployment environment.

Tuning must be performed before application/solution deployment in the same (or similar)
conditions of the target environment. Since this speaker verification component does not include
features to help with the procedure, contact your IBM representative before proceeding with
tuning. In this section, we give an outline of how the process looks.

Before you can start tuning, you need to understand how the application is expected to use the
speaker verification technology. Questions you should be asking include: How long are the audio
clips used for enrollment? How long are the audio clips used for scoring? What kind of audio
clips are used for scoring (only digits, date of birth, etc.)? What is the audio codec to be used:
u-law or a-law?

Once you have the information, you can proceed with tuning, which should include the following
steps:

1. Collect multiple audio samples from multiple speakers.
2. Enroll speakers (off-line).
3. Augment speaker models.
4. Collect the scores for all audio clips (off-line).
5. Determine acceptance threshold for the solution.

Collect audio samples from multiple speakers on multiple devices

Collect audio samples from multiple speakers, making sure the samples resemble the ones the
application will use. It is also important to make sure the input devices (landline, cell phones,
VoIP, etc.) used to collect these samples are similar to those used by the application. Use as
many speakers as possible in this phase and collect as many audio samples as possible from each
one. As a rule of thumb, we recommend 50 speakers, with at least one audio clip for enrollment
and five others for scoring. The outcome of this step should be a collection of audio clips (or
files). Each speaker should be assigned a unique identification, which should be used to identify
the audio clips for each speaker (for instance, you could save all the audio files from a given
speaker in a separate directory with the speaker identification name).

44 Speaker Verification Guide

Enroll speakers

Once the audio samples are collected and saved to a safe location, enroll each speaker by
submitting his or her enrollment audio clip to the speaker verification engine.
This step is normally performed off-line, through the Web connector API (for example, using
Perl scripts). The outcome of this step is a number of newly created voiceprints, one for each
speaker. We recommend the usage of the default file repository to facilitate the procedure (you
should see the new voiceprint files in the default repository directory). Also, consider saving
these voiceprints in a separate location after enrollment is complete.

Augment speaker models

The speaker verification engine relies on statistical speaker models to operate. These models are
generated off line and deployed during product installation. During system startup, the speaker
verification component loads these models into memory.

The idea behind augmenting the models used for speaker verification is to provide the engine
with more information about the deployment environment. This can be achieved by simply
adding (copying) the voiceprints created in the previous step to the location for loading the
default models. These are the steps:

1. Stop the WAS.
2. Make a backup copy of the relevant directory:

WVS_ROOT/siv/engine/ccsm
WVS_ROOT\siv\engine\ccsm

3. Copy all new voiceprints to the directory.
4. Restart the WAS.

Collect scores for all audio clips

Collect scores for all audio clips using the same mechanism used to enroll each speaker (e.g.,
Perl scripts). This time, however, each audio clip should be submitted for scoring, first against its
own voiceprint (target score), and then against each of the remaining voiceprints (non-target
scores) created during the enrollment step. IMPORTANT: Do not use any of the enrollment
audio clips during this phase.

The outcome of this step should be two sets of scores. The first one contains all the target scores;
the second contains all the non-target scores.

© Copyright IBM Corp. 2007,, 2008 45

Determine acceptance threshold

A speaker verification tuner application is available for download from the WebSphere® Voice
Server support site. The tuner analyzes the provided target and non-target scores, determining the
acceptance threshold in terms of False Acceptance (FA) and False Rejection (FR) rates. Note
that the speaker verification tuner is not part of this component. The tool can also calculate the
Equal Error Rate (EER), defined as the point of operation where FA and FR are the same.

The outcome of this step is the target acceptance threshold for the application. Use this value to
configure the Acceptance Threshold property (see Configuring for more details).

46 Speaker Verification Guide

Chapter 9. Troubleshooting

Most of the tasks involved in troubleshooting speaker verification are common to the
WebSphere® Voice Server product. Refer to the troubleshooting section of the WebSphere®
Voice Server Infocenter for further details on how to diagnose problems.

Monitoring log messages

Similarly to all WebSphere® Voice Server components, speaker verification log messages are
written to the WebSphere Application Server log file, located in the relevant directory:

� WAS_ROOT/profiles/<profile>/logs/server1/SystemOut.log
� WAS_ROOT\profiles\<profile>\logs\server1\SystemOut.log

All log messages used by the speaker verification components follow the conventions used by
other WebSphere® Voice Server components, adding the following message prefix:
CWVSVXXXXS

Where
CWV: IBM-registered three-character prefix identifying WebSphere Voice Server.
SV: Identifies speaker verification components.
NNNN: Numeric message ID (4-digits).
T: Severity type (Information, Warning, or Error).

© Copyright IBM Corp. 2007,, 2008 47

Speaker verification resource adapter - CWVSV0000X-CWVSV0099X

CWVSV0001I: Starting Verifier...
Explanation: Informational message indicating that the Verifier has started.
User Response: None.

CWVSV0010E: Invalid state transition. Not allowed to switch from state {0} to {1}.
Explanation: SIV subsystem cannot handle the received request in its current state.
User Response: None.

CWVSV0011E: Error creating adapter connection. Reason: {0}:{1}.
Explanation: The SIV subsystem failed to create a new adapter connection.
User Response: Check the reported reason for more details.

CWVSV0012E: Error detected while processing audio.
Explanation: The SIV subsystem found an I/O error while reading the WAV input [is this
right?] file.
User Response: Enable the trace for more details.

CWVSV0020E: Cannot start verification for {0}. Failed to open input wave file: {0}.
Reason: {1}
Explanation: The SIV subsystem failed to read the WAV input file.
User Response: Make sure the input directory exists and has read/write permissions. Make sure
the file system is not full. Enable the trace for more details.

CWVSV0021E: Cannot start verification for {0}. Failed to fetch voiceprint. Reason: {1}
Explanation: The SIV subsystem failed to fetch the specified voiceprint from the repository.
User Response: Make sure the voiceprint repository is accessible. Enable the trace for more
details.

CWVSV0022E: Cannot start verification for {0}. The specified voiceprint does not exist.
Explanation: The voiceprint could not be located in the voiceprint repository.
User Response: Make sure the specified voiceprint was previously enrolled.

CWVSV0023E: Cannot start verification for {0} due to internal error. Reason: {1}
Explanation: None.
User Response: Check the reported reason for more details.

(WAS error messages)

J2CA0020E: The Connection Pool Manager could not allocate a Managed Connection:
com.ibm.websphere.ce.j2c.ConnectionWaitTimeoutException: Connection not available.
Explanation: A request to the speaker verification resource adapter failed because the maximum
number of connections was exceeded.

48 Speaker Verification Guide

User Response: Change the resource adapter configuration to increase the number of maximum
connections.

© Copyright IBM Corp. 2007,, 2008 49

Speaker verification engine: CWVSV0100X-CWVSV0199X

CWVSV0101E: Invalid value for configuration property {0}.
Explanation: The specified configuration has an invalid value.
User Response: Change the property value.

50 Speaker Verification Guide

Speaker verification web connector: CWVSV1000X-CWVSV1199X

CWVSV1001I: WVS SIV Connector started. Build date: {0}
Explanation: Informational message indicating that the SIV Connector has started.
User Response: None.

CWVSV1002E: Configuration problem detected while starting up SIV Connector.
Explanation: The SIV Connector found a missing or invalid configuration parameter.
User Response: Check the logs for more details. Fix the specified configuration setting and
restart the SIV Connector.

CWVSV1011E: Exception caught while decoding HTTP message boundary.
Explanation: The message boundary received by the HTTP connector appears to be invalid.
User Response: Check the logs for more details.

CWVSV1012E: IO Exception caught while building HTTP response.
Explanation: The SIV Connector found an exception while building an HTTP response.
User Response: Check the logs for more details.

CWVSV1013E: Exception caught while handling HTTP request targeting {0}, Reason: {1}
Explanation: The SIV Connector reported an error when handling a request to the specified
target.
User Response: Check the reported reason and the logs for more details.

CWVSV1020I: SIV installation verification test has completed successfully.
Explanation: Informational message indicating that the SIV IVT servlet was invoked and ran
successfully.
User Response: None.

CWVSV1021E: SIV installation verification test has failed.
Explanation: Message indicating that the SIV IVT servlet was invoked but failed to complete.
User Response: Check logs for more details.

CWVSV1100W: Speaker verification session has expired. Session id={0}
Explanation: An application established a verification session but did not send any requests for
a certain period of time. The session timed out and was automatically cleaned up.
User Response: The application should either send more requests or end the verification session
within the timeout period.

© Copyright IBM Corp. 2007,, 2008 51

Enabling and monitoring trace for speaker verification

Use the WebSphere® Application Server administrative console to enable traces. The trace files
are located in one of the following paths, based on your operating system:

� WAS_ROOT/profiles/<profile>/logs/server1/trace.log
� WAS_ROOT\profiles\<profile>\logs\server1\trace.log

The trace components in the following table are available for speaker verification.

Table 5 - SIV components

��
����� �
�����
����

�������������	�����

����������

�:(*-*:(� *;6�2�+�+*�� ���
�
��������	�	��

+*�(�� *;6�2�+�+*�� +��(���������������

+*�:�&� *;6�2�+�+*�� +*��:	�
	��

+*�<��=%4��:%�4(� *;6�2�+�+*�� +*��2�,�6������

+*�6(%=� *;6�2�+�+*�� (�+=/6(%=�������

Collecting information for IBM support

The WebSphere® Voice Server collector includes support for speaker verification. Refer to the
WebSphere® Voice Server product documentation for information on how to run the WVS
collector.

52 Speaker Verification Guide

Notices

This information was developed for products and services offered in the United States.

IBM may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information about the products and services
currently available in your area. Any reference to an IBM product, program, or service is not
intended to state or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to evaluate and verify
the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You
can send license inquiries, in writing, to:

IBM Director of Licensing IBM
Corporation North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country
where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS
MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not
allow disclaimer of express or implied warranties in certain transactions, therefore, this statement
may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new editions
of the publication. IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose of enabling:
(i) the exchange of information between independently created programs and other programs

© Copyright IBM Corp. 2007,, 2008 53

(including this one) and (ii) the mutual use of the information which has been exchanged, should
contact:

IBM Corporation
Department T01B
3039 Cornwallis Road
Research Triangle Park, NC 27709-2195
USA

Such information may be available, subject to appropriate terms and conditions, including in
some cases, payment of a fee.

The licensed program described in this information and all licensed material available for it are
provided by IBM under terms of the IBM Customer Agreement, IBM International Program
License Agreement, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore,
the results obtained in other operating environments may vary significantly. Some measurements
may have been made on development-level systems and there is no guarantee that these
measurements will be the same on generally available systems. Furthermore, some measurement
may have been estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. IBM has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims
related to non-IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

Any references in this information to non-IBM Web sites are provided for convenience only and
do not in any manner serve as an endorsement of those Web sites. The materials at those Web
sites are not part of the materials for this IBM product and use of those Web sites is at your own
risk.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal
without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color illustrations may not
appear.

The products offered by IBM in this publication are platforms or middleware that can provide
the capability for you to add, design, or create applications to take advantage of the products.
Notwithstanding the terms of any other agreements You have with International Business
Machines Corporation, or any of its related or affiliated companies, IBM shall not be liable to
You for any and all claims of patent infringement, including inducement or contributory
infringement, or any claims for indemnification for such claims brought against the products or

54 Speaker Verification Guide

based on the combination, use or operation of the products with software or hardware. You also
should be aware that it may be necessary for You to obtain a patent license from one or more
third parties, including, but not limited to, Ronald A. Katz or Ronald A. Katz Technology
Licensing, L.P. (commonly referred to as RAKTL), before using certain applications designed
and built to run on the IBM products listed in this publication.

Copyright license

This information contains sample application programs in source language, which illustrates
programming techniques on various operating platforms. You may copy, modify, and distribute
these sample programs in any form without payment to IBM, for the purposes of developing,
using, marketing or distributing application programs conforming to the application
programming interface for the operating platform for which the sample programs are written.
These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs.

Trademarks

AIX®, IBM and WebSphere are registered trademarks of International Business Machines
Corporation in the United States, other countries, or both.

Microsoft® and Windows® are registered trademarks of Microsoft Corporation in the United
States, other countries, or both.

Dialogic and Intel® are registered trademarks of Intel Corporation in the United States, other
countries, or both.

Cisco is a registered trademark of Cisco Systems, Inc., in the United States, other countries, or
both.

Sun, Java and Java-based marks are registered trademarks of Sun Microsystems, Inc., in the
United States, other countries, or both.

For more information on CallPath products please contact Genesys Telecommunications
Laboratories, Inc. On the World Wide Web, go to the CallPath Framework part of the Genesys
Web site (http://www.genesyslabs.com).

Other company, product and service names may be trademarks or service marks of others.

© Copyright IBM Corp. 2007,, 2008 55

Accessibility

Accessibility features help a user who has a physical disability, such as restricted mobility or
limited vision, to use software products successfully. These are the major accessibility features in
WebSphere Voice Server:

� You can use screen-reader software and a digital speech synthesizer to hear the HTML
version of this guide.

� You can operate many features using the keyboard instead of the mouse.

