Clustering Principles
In order to handle categorical and continuous variables, the TwoStep Cluster Analysis procedure uses a likelihood distance measure which assumes that variables in the cluster model are independent. Further, each continuous variable is assumed to have a normal (Gaussian) distribution and each categorical variable is assumed to have a multinomial distribution. Empirical internal testing indicates that the procedure is fairly robust to violations of both the assumption of independence and the distributional assumptions, but you should try to be aware of how well these assumptions are met.
The two steps of the TwoStep Cluster Analysis procedure's algorithm can be summarized as follows:
Step 1. The procedure begins with the construction of a Cluster Features (CF) Tree. The tree begins by placing the first case at the root of the tree in a leaf node that contains variable information about that case. Each successive case is then added to an existing node or forms a new node, based upon its similarity to existing nodes and using the distance measure as the similarity criterion. A node that contains multiple cases contains a summary of variable information about those cases. Thus, the CF tree provides a capsule summary of the data file.
Step 2. The leaf nodes of the CF tree are then grouped using an agglomerative clustering algorithm. The agglomerative clustering can be used to produce a range of solutions. To determine which number of clusters is "best", each of these cluster solutions is compared using Schwarz's Bayesian Criterion (BIC) or the Akaike Information Criterion (AIC) as the clustering criterion.