
z/OS
2.4

File System Administration

IBM

SC23-6887-40

Note

Before using this information and the product it supports, read the information in “Notices” on page
465.

This edition applies to Version 2 Release 4 of z/OS (5650-ZOS) and to all subsequent releases and modifications until
otherwise indicated in new editions.

Last updated: 2021-06-22
© Copyright International Business Machines Corporation 2001, 2021.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures... ix

Tables.. xi

About this document...xiii
How this document is organized... xiii
Conventions used in this document ... xiii
z/OS information..xiv

How to send your comments to IBM..xv
If you have a technical problem...xv

Summary of changes.. xvii
Summary of changes for zFS for z/OS Version 2 Release 4 (V2R4).. xvii
Summary of changes for zFS for z/OS Version 2 Release 3 (V2R3) .. xix
Summary of changes for zFS for z/OS Version 2 Release 2 (V2R2)... xxiii

Part 1. zFS administration guide.. 1

Chapter 1. Overview of the zFS File System..3
Features.. 3
Terminology and concepts... 4
What's new or changed for zFS in z/OS V2R4..7
What's new or changed for zFS in z/OS V2R3..7
What's new or changed for zFS in z/OS V2R2..8
What's new or changed for zFS in z/OS V2R1..8

Chapter 2. Installing and configuring zFS... 11
zFS installation and configuration steps..11
Applying required APARs for z/OS V2R4... 14
Specifying zFS file systems as sysplex-aware...14

Using zFS read/write sysplex-aware file systems..14
Changing the sysplex-awareness of a mounted zFS read/write file system.................................15

zFS running in the z/OS UNIX address space..16

Chapter 3. Managing zFS processes..17
Starting zFS...17
Stopping zFS...17

Determining zFS status...18

Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates................... 19
Creating a compatibility mode aggregate..19
Using version 1.5 aggregates and extended (v5) directories..21

Creating a version 1.5 aggregate..21
Converting an existing aggregate to version 1.5..22
Converting an existing v4 directory to an extended (v5) directory... 23
Guidelines for v4 to v5 conversion... 23

Growing a compatibility mode aggregate..24
Dynamically growing a compatibility mode aggregate..24

 iii

Creating a multi-volume compatibility mode aggregate...25
Adding volumes to a compatibility mode aggregate... 26
Increasing the size of a compatibility mode aggregate.. 27

Copying each file and directory of the aggregate to a larger data set...27
Copying the physical blocks of the aggregate to a larger data set.. 29

Encrypting and compressing zFS file system data.. 30
The encryption process..31

Creating a new file system that is always encrypted on DASD..31
Encrypting existing file system data...33
Monitoring and displaying the encryption status...34

The compression process.. 34
Defining a new file system that is always compressed..35
Compressing existing file system data...35
Monitoring and displaying the compression status... 36

Decreasing the size of a compatibility mode aggregate..37
Renaming or deleting a compatibility mode aggregate...38
Changing zFS attributes on a mounted zFS compatibility mode file system......................................39
Unmounting zFS file systems before copying or moving.. 40
Understanding zFS disk space allocation.. 40

How data is stored on systems before z/OS V1R13.. 42
Support for type 30 SMF record .. 43

Sharing zFS data in a non-shared file system sysplex.. 44
Minimum and maximum file system sizes...44

Version 1.5 aggregates... 44
Version 1.4 aggregates... 44
v4 directory considerations.. 45

Chapter 5. Using zFS in a shared file system environment...47
Overview of the shared file system environment.. 47
Read-only mounted file systems... 47
zFS support for read/write file systems with different levels of sysplex-awareness.........................48
zFS-enhanced sysplex-aware support.. 49
zFS ownership versus z/OS UNIX ownership of file systems..49

Determining the file system owner.. 50
When is the z/OS UNIX owner important?...51
Dynamic movement of the zFS owner... 52
Considerations when using zFS in a shared file system environment.. 54
Specifying the high availability option for read/write sysplex-aware file systems.............................55

Chapter 6. Copying or performing a backup of a zFS..57
Backing up a zFS aggregate... 57

Restoring an aggregate with DFSMSdss logical restore.. 58

Chapter 7. Migrating data from HFS or zFS to zFS..61

Chapter 8. Performance and debugging... 63
Performance tuning..63

Total cache size...63
Metadata cache...64
Vnode cache..64
User file cache...64
Log files... 65
Log file cache.. 65
Fixed storage...65
I/O balancing...65

Monitoring zFS performance..65
Resetting performance monitoring data.. 67
Sample zFS QUERY reports.. 67

iv

Using SMF records to report on activities ...87
SMF record type 92...87

Debugging aids for zFS...89
Steps for tracing on zFS.. 89
Understanding the salvager utility... 90
Understanding zFS dumps..91
Determining the XCF protocol interface level.. 92
Saving initialization messages in a data set...92
Determining service levels... 92
Understanding namespace validation and correction... 92
Understanding delays and hangs in zFS using the zFS hang detector.. 93
Hangs and delays in shared file system environment... 94
Steps for diagnosing and resolving a zFS hang..94
Identifying storage shortages in zFS..98

Diagnosing disabled aggregates.. 99
Handling disabled aggregates..99
Running the salvage utility...100

Chapter 9. Overview of the zFS audit identifier.. 101
Enabling the zFS auditid.. 102

Part 2. zFS administration reference.. 103

Chapter 10. z/OS system commands..105
MODIFY ZFS PROCESS.. 106
SETOMVS RESET.. 113

Chapter 11. zFS commands.. 115
ioeagfmt..116
ioeagslv...120
ioefsutl..125
ioefsutl converttov4 .. 126
ioefsutl converttov5 .. 127
ioefsutl format..129
ioefsutl salvage.. 133
MOUNT... 137
zfsadm.. 140
zfsadm aggrinfo..144
zfsadm apropos ...147
zfsadm attach...149
zfsadm chaggr.. 152
zfsadm compress... 156
zfsadm config .. 158
zfsadm configquery..163
zfsadm convert...167
zfsadm decompress... 170
zfsadm decrypt ..172
zfsadm define...174
zfsadm delete...177
zfsadm detach..179
zfsadm encrypt ..181
zfsadm fileinfo..184
zfsadm format.. 190
zfsadm fsinfo.. 193
zfsadm grow .. 203
zfsadm help.. 204
zfsadm lsaggr .. 206

 v

zfsadm lsfs..208
zfsadm lssys .. 210
zfsadm query..211
zfsadm quiesce.. 214
zfsadm setauditfid..216
zfsadm salvage...218
zfsadm shrink... 220
zfsadm unquiesce.. 223

Chapter 12. The zFS configuration options file (IOEPRMxx or IOEFSPRM)...225
IOEFSPRM.. 225

Chapter 13. zFS application programming interface information..237
pfsctl (BPX1PCT)..238
Attach Aggregate..244
Change Aggregate Attributes...247
Define Aggregate ...250
Detach Aggregate...254
Encrypt (Decrypt, Compress, or Decompress) Aggregate.. 256
File Snapshot..259
Format Aggregate ..264
Grow Aggregate..268
List Aggregate Status (Version 1).. 271
List Aggregate Status (Version 2).. 274
List Attached Aggregate Names (Version 1)..281
List Attached Aggregate Names (Version 2)..284
List Detailed File System Information... 288
List File Information...302
List File System Names (Version 1)... 310
List File System Names (Version 2)... 314
List File System Status...318
List Systems... 326
Query Config Option...329
Quiesce Aggregate... 334
Reset Backup Flag..336
Salvage Aggregate..339
Set Auditfid...341
Set Config Option... 344
Shrink Aggregate.. 347
Statistics Compression Information..350
Statistics Directory Cache Information... 354
Statistics Iobyaggr Information...358
Statistics Iobydasd Information.. 365
Statistics Iocounts Information...371
Statistics Kernel Information...377
Statistics Locking Information...383
Statistics Log Cache Information...391
Statistics Metadata Cache Information...400
Statistics Server Token Management Information..406
Statistics Storage Information...411
Statistics Sysplex Client Operations Information... 421
Statistics Sysplex Owner Operations Information.. 427
Statistics Transaction Cache Information... 433
Statistics User Cache Information...437
Statistics Vnode Cache Information.. 447
Unquiesce Aggregate... 454

vi

Appendix A. Running the zFS pfsctl APIs in 64-bit mode.....................................457
Statistics Iocounts Information (64-bit mode)...457

Appendix B. Accessibility...461
Accessibility features.. 461
Consult assistive technologies.. 461
Keyboard navigation of the user interface.. 461
Dotted decimal syntax diagrams...461

Notices..465
Terms and conditions for product documentation... 466
IBM Online Privacy Statement.. 467
Policy for unsupported hardware..467
Minimum supported hardware..467
Programming Interface Information...468
Trademarks.. 468

Glossary.. 469

Index.. 471

 vii

viii

Figures

1. z/OS UNIX and zFS file system ownership... 5

2. Example job to create a compatibility mode file system using IOEFSUTL..20

3. Sample job to copy each file and directory of an aggregate to a larger data set.......................................28

4. Sample job to copy the physical blocks of an aggregate to a larger data set..29

5. Copying blocks from a full zFS data set into a larger data set... 30

6. Allocating disk space (example 1) ... 42

7. Allocating disk space (example 2).. 43

8. Example of a secondary zfsadm define command...44

9. Sysplex-aware file system (read-only)... 48

10. zFS read/write file systems sysplex-aware and non-sysplex aware on a file system basis. 49

11. zFS sysplex-aware file system with new owner... 50

12. zfsadm lsaggr and df -v output after mount...50

13. D OMVS,F output after mount...50

14. zfsadm lsaggr and df -v output after movement..51

15. D OMVS,F output after movement..51

16. File system ownership when mount fails... 52

17. Steps for quiesce and unquiesce..57

18. Job to back up a zFS aggregate.. 58

19. Job to restore a zFS aggregate... 58

20. Job to restore a zFS aggregate with replace.. 59

21. Example of how to check whether user tasks are hung.. 97

22. zFS auditid examples..101

23. Sample job to create a compatibility mode aggregate and file system.. 119

 ix

24. Job to verify a zFS aggregate that uses debug parameters specified in IOEFSPRM............................ 124

25. Job to verify a zFS aggregate that uses debug parameters specified in parmlib member
IOEPRM03 ... 124

26. Job to convert a version 1.5 aggregate to a version 1.4 aggregate...126

27. Job to convert a version 1.4 aggregate to a version 1.5 aggregate...128

28. Sample job to create and format a version 1.5 aggregate ..132

29. Job to verify a zFS aggregate using debug parameters specified in IOEZPRM.................................... 136

30. Job to attach to an aggregate... 151

x

Tables

1. Determining sysplex-awareness for zFS read/write file systems.. 48

2. DATASET report fields... 68

3. FILE report fields...69

4. IOBYDASD report fields.. 70

5. LFS report fields.. 75

6. COMPRESS report fields..76

7. STKM report fields...79

8. STOR report fields... 81

9. User File (VM) Caching System Statistics report fields.. 85

10. Subtypes for SMF record type 92... 88

11. zFS man command examples...115

12. Return codes for -verifyonly that are returned by the salvager...120

13. Return codes for -recoveronly that are returned by the salvager... 121

14. Criteria for selecting aggregates...195

15. Definitions of abbreviated values when the -basic or -owner options are specified............................196

16. Statistics displayed when the -owner option is specified... 197

17. Sorting options when the -sort option is specified.. 199

18. Local statistics displayed when the full option is specified...199

19. Summary of APIs for pfsctl ..239

20. Summary of w_pioctl calls for zFS... 243

 xi

xii

About this document

The purpose of this document is to provide complete and detailed guidance and reference information.
This information is used by system administrators who work with z/OS File System (zFS).

How this document is organized
This document is divided into parts, each part divided into chapters:

• Part 1, “zFS administration guide,” on page 1 provides guidance information for the z/OS File System
(zFS).

• Part 2, “zFS administration reference,” on page 103 provides reference information about z/OS File
System (zFS), which includes z/OS® system commands, zFS commands, and zFS data sets.

Conventions used in this document
This document uses the following typographic conventions:

Bold
Bold words or characters represent system elements that you must enter into the system literally,
such as commands.

Italic
Italicized words or characters represent values for variables that you must supply.

Example Font
Examples and information displayed by the system are printed using an example font that is a
constant width typeface.

[]
Optional items found in format and syntax descriptions are enclosed in brackets.

{ }
A list from which you choose an item found in format and syntax descriptions are enclosed by braces.

|
A vertical bar separates items in a list of choices.

< >
Angle brackets enclose the name of a key on a keyboard.

…
Horizontal ellipsis points indicated that you can repeat the preceding item one or more times.

\
A backslash is used as a continuation character when entering commands from the shell that exceed
one line (255 characters). If the command exceeds one line, use the backslash character \ as the last
nonblank character on the line to be continued, and continue the command on the next line.

Note: When you enter a command from this document that uses the backslash character (\), make
sure that you immediately press the Enter key and then continue with the rest of the command. In
most cases, the backslash has been positioned for ease of readability.

#
A pound sign is used to indicate a command is entered from the shell, specifically where root
authority is needed (root refers to a user with a UID = 0).

© Copyright IBM Corp. 2001, 2021 xiii

z/OS information
This information explains how z/OS references information in other documents and on the web.

When possible, this information uses cross document links that go directly to the topic in reference using
shortened versions of the document title. For complete titles and order numbers of the documents for all
products that are part of z/OS, see z/OS Information Roadmap.

To find the complete z/OS library, go to IBM Documentation (www.ibm.com/docs/en/zos).

xiv z/OS: z/OS File System Administration

https://www.ibm.com/docs/en/zos

How to send your comments to IBM

We invite you to submit comments about the z/OS product documentation. Your valuable feedback helps
to ensure accurate and high-quality information.

Important: If your comment regards a technical question or problem, see instead “If you have a technical
problem” on page xv.

Submit your feedback by using the appropriate method for your type of comment or question:
Feedback on z/OS function

If your comment or question is about z/OS itself, submit a request through the IBM RFE Community
(www.ibm.com/developerworks/rfe/).

Feedback on IBM® Documentation function
If your comment or question is about the IBM Documentation functionality, for example search
capabilities or how to arrange the browser view, send a detailed email to IBM Documentation Support
at ibmdocs@us.ibm.com.

Feedback on the z/OS product documentation and content
If your comment is about the information that is provided in the z/OS product documentation library,
send a detailed email to mhvrcfs@us.ibm.com. We welcome any feedback that you have, including
comments on the clarity, accuracy, or completeness of the information.

To help us better process your submission, include the following information:

• Your name, company/university/institution name, and email address
• The following deliverable title and order number: z/OS File System Administration, SC23-6887-50
• The section title of the specific information to which your comment relates
• The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive authority to use or distribute the
comments in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the
issues that you submit.

If you have a technical problem
If you have a technical problem or question, do not use the feedback methods that are provided for
sending documentation comments. Instead, take one or more of the following actions:

• Go to the IBM Support Portal (support.ibm.com).
• Contact your IBM service representative.
• Call IBM technical support.

© Copyright IBM Corp. 2001, 2021 xv

http://www.ibm.com/developerworks/rfe/
http://www.ibm.com/developerworks/rfe/
mailto:ibmdocs@us.ibm.com
mailto:mhvrcfs@us.ibm.com
http://support.ibm.com

xvi z/OS: z/OS File System Administration

Summary of changes

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line to the left of
the change.

Summary of changes for zFS for z/OS Version 2 Release 4 (V2R4)

New
The following content is new.
June 2021 refresh

With APAR OA60931, clarification was added to the notes section in “MOUNT” on page 137. Updates
were also made to “What's new or changed for zFS in z/OS V2R3” on page 7.

February 2021 refresh

• The usage notes section in “Specifying the high availability option for read/write sysplex-aware file
systems” on page 55 was updated for clarity.

• A tip was added to “Guidelines for v4 to v5 conversion” on page 23.

September 2020 refresh

• “Usage notes for zfsadm chaggr” on page 153 was updated for clarity.

August 2020 refresh

• With the PTF for APAR OA59435 applied, wildcard capability is added to the zfsadm chaggr
command. For more information about how to use wildcards with zfsadm chaggr, see “Usage
notes for zfsadm chaggr” on page 153.

Prior to August 2020 refresh

• If the PTF for APAR OA59145 is applied, the 65-second wait for mounting a copy will not occur in
certain situations if the copy is done while the zFS aggregates are being quiesced. For more
information, see “Unmounting zFS file systems before copying or moving” on page 40.

• A restriction was documented in “Copying the physical blocks of the aggregate to a larger data set”
on page 29. zFS data sets that have key labels cannot be used with the REPRO command.

• With the zFS high availability option, if the file system owner experiences an outage, applications
that are accessing that file system on other systems are not affected.

– “What's new or changed for zFS in z/OS V2R4” on page 7 was added.
– “Using zFS read/write sysplex-aware file systems” on page 14 was updated.
– “Changing zFS attributes on a mounted zFS compatibility mode file system” on page 39 was

updated.
– “Specifying the high availability option for read/write sysplex-aware file systems” on page 55

was added.
– The HA option was added to the following commands:

- “MOUNT” on page 137
- “zfsadm chaggr” on page 152
- “ zfsadm config ” on page 158
- “zfsadm configquery” on page 163

– The HA value shows aggregates that were mounted with the high availability option. See Table 14
on page 195.

© Copyright IBM Corp. 2001, 2021 xvii

– The HA abbreviation was added to Table 15 on page 196.
– The HA option was added to IOEFSPRM. It specifies whether high availability is enabled by

default for mounts of sysplex-aware file systems. See “IOEFSPRM” on page 225.
– Set HA (263) and Query HA (269) was added to “pfsctl (BPX1PCT)” on page 238.
– The Change Aggregate Attributes API was updated. See “Change Aggregate Attributes” on page

247.
• In z/OS V2R4 and in z/OS V2R3 with the PTF for APAR OA56145 applied, support was added for the

backup of zFS file system data on a file basis. These sections were added or updated:

– A new API, File Snapshot, was added. See “File Snapshot” on page 259.
– A new field, backup progress, was added to the -localonly option of zfsadm fileinfo. It

indicates that the file is being backed up and the percentage of completion. The example was also
updated. See “zfsadm fileinfo” on page 184.

– Updates were made to zfsadm fsinfo.

- The BK value shows aggregates that contain files being backed up. See Table 14 on page 195.
- The BK value was also added to Table 15 on page 196.
- You can also obtain statistics for files that are being backed up. See Table 16 on page 197.

– A usage note was added to these commands to indicate that you cannot perform them with active
file backups.

- “zfsadm compress” on page 156
- “zfsadm decompress” on page 170
- “zfsadm decrypt ” on page 172
- “zfsadm encrypt ” on page 181
- “zfsadm shrink” on page 220

– Examples were updated for these APIs:

- “List Detailed File System Information” on page 288
- “List File Information” on page 302

Changed
The following content is changed.
Prior to August 2020 refresh

• APAR OA57297 clarified that automatic conversion is disabled if the aggregate is salvaged. It is also
disabled if the aggregate was quiesced for the purpose of backup. These sections were updated:

– “Guidelines for v4 to v5 conversion” on page 23
– “zfsadm quiesce” on page 214
– “zfsadm salvage” on page 218
– “Unquiesce Aggregate” on page 454

• With the PTF for APAR OA57508 applied, you can take advantage of the zFS high availability support
on V2R3 systems. The following sections were updated to reflect that change.

– “What's new or changed for zFS in z/OS V2R4” on page 7
– “Specifying the high availability option for read/write sysplex-aware file systems” on page 55

• Distributed File Service was renamed zFS File System because SMB/DFS is no longer shipped.

– Distributed File Service zFS Administration is now z/OS File System Administration.
– Distributed File Service Messages and Codes is now z/OS File System Messages and Codes.

xviii z/OS: z/OS File System Administration

• “zFS installation and configuration steps” on page 11 was updated to reflect the removal of SMB
support.

• Chapter 7, “Migrating data from HFS or zFS to zFS,” on page 61 was updated.
• As of V2R4, you can no longer format a version 1.4 aggregate. These commands were updated to

reflect the change.

– “ioeagfmt” on page 116
– “ioefsutl converttov4 ” on page 126
– “ioefsutl format” on page 129
– “ zfsadm config ” on page 158
– “zfsadm format” on page 190
– “IOEFSPRM” on page 225

• Release updates were made to “Determining service levels” on page 92.

Deleted
The following content was deleted.
Prior to August 2020 refresh

• Because Server Message Block (SMB) is no longer supported, information about it was deleted.
• The section on applying required APARs in Version 2 Release 3 was deleted because the information

is no longer applicable.
• The section on using the z/OS UNIX pax command was deleted.
• In “zFS installation and configuration steps” on page 11, the recommendation to specify

KERNELSTACKS(ABOVE) in the BPXPRMxx parmlib member was deleted. Starting in z/OS V2R4,
KERNELSTACKS is always above the bar. It is not necessary to update BPXPRMxx to accommodate
the change.

Summary of changes for zFS for z/OS Version 2 Release 3 (V2R3)
The most recent updates are listed at the beginning of each section.

New
• With APAR OA55235, clarification was added that, beginning with z/OS V2R3, the DEFINE CLUSTER

command string contains the ZFS parameter to indicate that the specified VSAM linear set is intended to
be used as a ZFS aggregate. See the usage notes section in “zfsadm define” on page 174.

• Health check ZFS_VERIFY_COMPRESSION_HEALTH was added. It checks whether all user cache pages
are registered with the zEDC Express service when there are compressed file systems. For more
information about the health check, see ZFS_VERIFY_COMPRESSION_HEALTH in IBM Health Checker
for z/OS User's Guide.

• “What's new or changed for zFS in z/OS V2R3” on page 7 was added.
• Subcommands that were missing in previous releases were added in the pfsctl section. See the table on

summary of APIs for pfsctl in “pfsctl (BPX1PCT)” on page 238.
• VSAM linear data sets that are created on z/OS V2R3 systems with the zfsadm define command or

the Define Aggregate API do not need to be formatted before they are mounted. If IDCAMS is used to
define the VSAM linear sets and the ZFS keyword is used, they also do not need to be formatted before
they are mounted. When the aggregates are formatted at mount, default values are used for all format
options. If the IOEFSPRM format_aggrversion option is not specified, the defaults will result in the
creation and mount of a version 1.5 aggregate.

– The -format_perms option was added to “ zfsadm config ” on page 158 and “zfsadm configquery”
on page 163.

Summary of changes xix

– A new configuration option, format_perms, was added to the IOEFSPRM configuration file. See
“IOEFSPRM” on page 225.

– Two new subcommands were added: Query format_perms(267) and Set
format_perms(266). See the ZFSCALL_CONFIG section in the table on summary of APIs for pfsctl
in “pfsctl (BPX1PCT)” on page 238.

• zFS has added support for encrypting file system data using the DFSMS access method encryption.
Support was added for compressing file system data using the zEDC compression method. New file
systems can be defined and formatted so that any data added to them is automatically encrypted,
compressed, or both. For more information, see “Encrypting and compressing zFS file system data” on
page 30.

New commands were added:

– “zfsadm compress” on page 156
– “zfsadm decompress” on page 170
– “zfsadm decrypt ” on page 172
– “zfsadm encrypt ” on page 181

These commands have new options:

– “ioeagfmt” on page 116
– “ioefsutl format” on page 129
– “ zfsadm config ” on page 158
– “zfsadm configquery” on page 163
– “zfsadm format” on page 190

New APIs were added.

– “Encrypt (Decrypt, Compress, or Decompress) Aggregate” on page 256
– “Statistics Compression Information” on page 350

These APIs were updated:

– “Define Aggregate ” on page 250
– “Format Aggregate ” on page 264
– “List Detailed File System Information” on page 288
– “List File Information” on page 302
– “Statistics User Cache Information” on page 437

– The contents of the VM report was updated. For a sample report, see “VM” on page 83.
– New processing options (edc_buffer_pool, format_compression, format_encryption, and
long_cmd_threads) were added to the IOEFSPRM configuration file. The edc_fixed option was
added to user_cache_size. See “IOEFSPRM” on page 225.

• The size of a zFS aggregate can be reduced by releasing space from the associated VSAM data set.

– A new command, zfsadm shrink, was added. See “zfsadm shrink” on page 220.
– A new API was added. See “Shrink Aggregate” on page 347. This API can be accessed via a new

subcommand opcode (266).
– A new section was added. See “Decreasing the size of a compatibility mode aggregate” on page 37.

• Certain common mount options such as aggrfull and aggrgrow can be changed dynamically without
the overhead of unmounting and remounting the file system.

– A new command, zfsadm chaggr, was added. See “zfsadm chaggr” on page 152.
– A new API was added. See “Change Aggregate Attributes” on page 247. This API is accessed with a

new subcommand opcode (160). See the table on summary of APIs for pfsctl in “pfsctl
(BPX1PCT)” on page 238.

xx z/OS: z/OS File System Administration

• With appropriate authority, a system programmer can initiate an online salvage of a zFS aggregate in
order to repair a damaged file system while the file system is still mounted.

– A new command, zfsadm salvage, was introduced. See “zfsadm salvage” on page 218.
– A new API was added. See “Salvage Aggregate” on page 339. This API is accessed by using a new

subcommand opcode (155). See the table on summary of APIs for pfsctl in “pfsctl (BPX1PCT)” on
page 238.

• The zfsadm commands have a new option, -trace. The privilege section for these commands was
updated because READ access is no longer needed to the IOEFSPRM data set.

• zFS can record file system events, performance data, and per-file system statistics n the System
Management Facility (SMF). See “Using SMF records to report on activities ” on page 87. A new option,
-smf_recording, was added to two commands.

– “ zfsadm config ” on page 158
– “zfsadm configquery” on page 163

The smf_recording processing option was added to the IOEFSPRM configuration file. See
“IOEFSPRM” on page 225.

• Chapter 7, “Migrating data from HFS or zFS to zFS,” on page 61 was updated to include information
about the new bpxwmigf shell command.

Changed
• With APAR OA55616, the AGGRFULL and FSFULL descriptions were updated in these sections:

– “MOUNT” on page 137
– “IOEFSPRM” on page 225

• In “zfsadm fileinfo” on page 184, compressed # saved was changed to compress-eligible #
saved.

• “The encryption process” on page 31 was updated with the following information:

– Decryption is supported. However, the decryption process does not remove key labels. File systems
that have had key labels assigned cannot be mounted on a release prior to V2R3, even if those file
systems have not been encrypted or are currently not encrypted. Therefore, if there is no zFS system
in the shared file system environment that is eligible to own a file system with a key label assigned to
it, the file system will be inaccessible.

– If you must back out to a release that is prior to V2R3, any file systems that are encrypted or have key
labels assigned to them cannot be owned on a system running the prior release. You may also need
to back out the file system by taking one of the following actions:

- Restore a version of the file system that was backed up prior to encrypting it or assigning a key label
to it.

- Create a new file system that does not have a key label assigned to it and follow the migration
procedures in Chapter 7, “Migrating data from HFS or zFS to zFS,” on page 61.

• “Encrypting existing file system data” on page 33 was updated with the following important note:
Before an existing file system has a key label assigned to it, or is encrypted for the first time, do a full
backup of the file system.

• “The compression process” on page 34 was updated with the following restriction: Compressed file
systems cannot be mounted on a release prior to V2R3. Therefore, if there is no zFS system in the
shared file system environment that is eligible to own a compressed file system, the file system will be
inaccessible.

• These changes were made for APAR OA54472:

– “zFS installation and configuration steps” on page 11 was updated.
– A reminder to take ICSF into consideration when enabling encryption was added. See “Encrypting

and compressing zFS file system data” on page 30.

Summary of changes xxi

– The zfsadm chaggr command was updated to indicate that The -aggrfull, -aggrgrow, -
rwshare, and -norwshare options are mutually exclusive. See “zfsadm chaggr” on page 152.

– For zsfadm fileinfo, the partially encrypted field was updated to include an explanation
that the completion percentage is displayed for large files. The partially decrypted field was
added. See “zfsadm fileinfo” on page 184.

– For the List File Information API, fo_CEprogress in the Format section was updated to include only
encryption and decryption. See “List File Information” on page 302.

– Clarification was added to indicate that COMPRESS is part of the LFS report. “LFS” on page 71
contains the updated LFS report.

– “zFS installation and configuration steps” on page 11 was updated to indicate that the DFS user ID
(or the OMVS user ID, if running in the OMVS address space) must have at least READ access to any
CSFKEYS and CSFSERV profiles for encrypted aggregates.

– A new usage note was added to zfsadm encrypt. See “zfsadm encrypt ” on page 181.
– Usage notes were added to zfsadm shrink. See “zfsadm shrink” on page 220.

• This change was made for APAR OA54416:

– The values for the long_cmd_thread option in the configuration option file were changed. The
allowed range for the foreground threads is now 1-3. The default number of foreground threads is
now 1. See “IOEFSPRM” on page 225.

• Prior to V2R3, user data was kept in data spaces. In V2R3, the data is now kept in chunks of memory
called cache spaces.

• Privileged users can no longer format without at least UPDATE access to the VSAM linear data set.
Privileged users are those who are either UID 0 or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIIXPRIV class. Various updates have been made
to reflect this change.

• Release updates were made to the service levels. See “Determining service levels” on page 92.
• The default for the romount_recovery option for the IOEFSPRM configuration file was changed from

OFF to ON. See “IOEFSPRM” on page 225.
• The default of the format_aggrversion option was changed from 4 to 5.
• The default of the change_aggrversion_on_mount option was changed from OFF to ON.
• The zfsadm fsinfo and MODIFY FSINFO commands have new owner status values, new selection

criteria, and a progress indicator for long-running administrative options.
• The F ZFS,QUERY,KNPFS output was updated. See “KN” on page 70.
• In V2R2, APAR OA49516 was made available. When applied, zFS ownership movement could be

controlled by using the honor_syslist option in IOEFSPRM. The honor_syslist option could be
dynamically queried and changed with zfsadm config and zfsadm configquery.

• – “Dynamic movement of the zFS owner” on page 52 was updated to indicate that zFS always uses
the AUTOMOVE specification to limit zFS ownership to a subset of sysplex members.

– “IOEFSPRM” on page 225 was updated to indicate that the honor_syslist is no longer supported.
If it is specified, it is accepted but not used.

– “ zfsadm config ” on page 158 was updated to indicate that the -honor_syslist option is no longer
supported. If it is specified, it is accepted but not used.

– “zfsadm configquery” on page 163 was updated to indicate that the -honor_syslist option is no
longer supported. If it is specified, it is accepted but not used.

– “zfsadm attach” on page 149 was updated to indicate that the command will be removed in a future
release

• These APIs were updated to return 8-bit timestamp values:

– “List Attached Aggregate Names (Version 1)” on page 281
– “List Aggregate Status (Version 2)” on page 274

xxii z/OS: z/OS File System Administration

• The descriptions of certain field names were changed for the List Aggregate Status (Version 2) API. See
“List Aggregate Status (Version 2)” on page 274.

• The authorization level was changed from ALTER to UPDATE.

– “ioeagfmt” on page 116
– “ioefsutl format” on page 129
– “zfsadm format” on page 190
– “Format Aggregate ” on page 264

• LINEAR was replaced by ZFS in the sample job to create and format a version 1.4 aggregate. See the
Examples section in “ioefsutl format” on page 129.

Deleted
The zfsspace, largedir.pl, and auditid utilities are no longer available. Information about them
was deleted.

Summary of changes for zFS for z/OS Version 2 Release 2 (V2R2)

New
• “What's new or changed for zFS in z/OS V2R2” on page 8 was added.
• zFS can be run in the OMVS address space, which is used by z/OS UNIX. See “zFS running in the z/OS

UNIX address space” on page 16.
• You can display detailed information about the zFS file system. See “Usage notes for displaying file

system information” on page 110 and “Examples of displaying file system information” on page 111.
• MODIFY ZFS PROCESS has a new parameter, fsinfo, which displays detailed information about zFS
file systems. Usage notes and examples for displaying file system information were also added. See
“MODIFY ZFS PROCESS” on page 106.

• The zfsadm config and zfsadm configquery commands have a new option, -
modify_cmd_threads. It specifies the current number of threads that are defined to handle zFS
modify commands. See “ zfsadm config ” on page 158 and“zfsadm configquery” on page 163 .

• The zfsadm fsinfo command displays detailed information about zFS file systems. See “zfsadm
fsinfo” on page 193.

• New reports are available that can be printed with the zfsadm query command using the keywords -
stkm, -ctkc, and -svi. This information is also available in new application programming interfaces
for Client Token Caching Component, Server Token Manager, and Statistics from the Server Vnode
Interface. For more information about the keywords, see “zfsadm query” on page 211.

• The IOEFSPRM configuration options file has new options.

– The modify_cmd_threads option controls the number of modify commands that are running
simultaneously.

– The user_running_hangdump option specifies whether a hang dump should be taken for a user
task that has been hanging for approximately 5 minutes.

– The quiesceinfo_message_delay option specifies the minimum number of seconds to delay
issuing the IOEZ00830E message. See “Processing options for IOEFSPRM and IOEPRMxx” on page
227.

• The pfsctl (BPX1PCT) application programming interface was updated to include a new command,
ZFSCALL_FSINFO. Two subcommands (query modify_cmd_threads and set
modify_cmd_threads) were added to ZFSCALL_CONFIG. See Table 19 on page 239.

• These application programming interfaces (APIs) were added:

– “List Detailed File System Information” on page 288. It lists detailed file or directory information.

Summary of changes xxiii

– “Statistics Server Token Management Information” on page 406. It returns statistics for the server
token manager.

– “Statistics Sysplex Client Operations Information” on page 421. It returns information about the
number of local operations that required the sending of a message to another system.

– “Statistics Sysplex Owner Operations Information” on page 427. It returns information about the
number of calls that are processed on the local system as a result of a message that was sent from
another system.

Changed
• zFS caches can now be obtained in virtual storage above the 2 GB bar (64-bit storage). As a result, much

larger caches can be used to increase zFS performance. zFS performance can further be increased
because it can be run in the OMVS address space, which is used by z/OS UNIX. See “zFS running in the
z/OS UNIX address space” on page 16.

• Clarification was added about the statistics that zFS supplies for SMF type 30 records. See “Support for
type 30 SMF record ” on page 43.

• "Performing a backup of zFS " was renamed to "Copying or performing a backup of a zFS" and a warning
was added. See Chapter 6, “Copying or performing a backup of a zFS,” on page 57.

• Chapter 8, “Performance and debugging,” on page 63 was updated.
• The QUERY,KN report was updated because the statistics report now allows for larger counter values to

be displayed. These displays will use a suffix indicating the multiplier that is to be used for the displayed
counter value. See “KN” on page 70.

• The LFS report was updated because large fast lookup statistics is no longer supported. See “LFS” on
page 71.

• Information about thrashing was added to the STKM report. See “STKM” on page 78.
• The STOR report was updated. See “STOR” on page 79.
• The VM report was updated because client caching is no longer supported. See “VM” on page 83.
• Release updates were made to “Determining service levels” on page 92.
• Starting in V2R2, zFS uses the enhanced log and enhanced status APIs XCF communication

protocol. Previously, it used the extended directory XCF communications protocol. For more
information, see “Determining the XCF protocol interface level” on page 92.

• The -client_cache_size and -tran_cache_size keywords for the zfsadm config and zfsadm
configquery commands are no longer supported. If they are specified, they are accepted but not
used.

• Various updates were made to the IOEFSPRM configuration options file.

– The client_cache_size option is now ignored because V1R12 can no longer exist in the sysplex.
– The tran_cache_size option is now ignored because there is no longer a separate transaction

cache.
– The expected default value for the meta_cache_size and metaback_cache_size options were

changed because the entire calculated default for the size of the metadata cache is now assigned to
meta_cache_size.

– The upper end of the expected value for token_cache_size was changed from 2621440 to 20
million.

– The upper end of the expected value for meta_cache_size was changed from 1024 M to 64 G.
– The upper end of the expected value for trace_table_size and xcf_trace_table_size were

changed from 2048 M to 65535 M.
– The upper end of the expected value for vnode_cache_size was changed from 500000 to 10

million.

See “IOEFSPRM” on page 225.

xxiv z/OS: z/OS File System Administration

• The APIs in Chapter 13, “zFS application programming interface information,” on page 237 were
reformatted. One of the changes was that long was changed to int because the length of a long can
be 4 bytes or 8 bytes, depending on compiler options.

• The pfsctl (BPX1PCT) application programming interface was updated to include a new command,
ZFSCALL_FSINFO. See “pfsctl (BPX1PCT)” on page 238.

• The Statistics Log Cache Information format was changed because a new log cache facility is used in
V2R2. New statistics are returned pertaining to this new logging method. See “Statistics Log Cache
Information” on page 391.

• Statistics Storage Information returns information for storage above the 2 G addressing bar. See
“Statistics Storage Information” on page 411.

• The Statistics Transaction Cache Information is no longer used, but documentation about it was kept.
See “Statistics Transaction Cache Information” on page 433.

Deleted
• The section "Transaction cache" in Chapter 8, “Performance and debugging,” on page 63 was deleted

because a separate transaction cache no longer exists.
• The flc IOEPRMxx configuration option was deleted because it is no longer supported.
• The Delete File System API was deleted because it is no longer supported.
• The sections "zFS support for read/write non-sysplex aware mounted file system" and "zFS support for

read/write sysplex aware mounted file system" were deleted because they described how zFS in V1R11
or V1R12 systems handled read/write file systems. These systems can no longer exist in the sysplex
with V2R2.

• The section "Disabled aggregates when there are no z/OS V1R13 or later systems" was deleted because
all systems must now be at z/OS V1R13 or later.

• The description of the IOEFSPRM configuration file option client_cache_size was deleted because
V1R12 can no longer exist in the sysplex.

• The description of the IOEFSPRM configuration file option tran_cache_size was deleted because the
new zFS aggregate metadata logging method does not require a transaction cache.

• Information about large fast lookup statistics was deleted because it is no longer supported.
• Information about large FLC processing was deleted because it is no longer supported.

Summary of changes xxv

xxvi z/OS: z/OS File System Administration

Part 1. zFS administration guide
This part of the document discusses guidance information for the z/OS File System (zFS).

• Chapter 1, “Overview of the zFS File System,” on page 3
• Chapter 2, “Installing and configuring zFS,” on page 11
• Chapter 3, “Managing zFS processes,” on page 17
• Chapter 4, “Creating and managing zFS file systems using compatibility mode aggregates,” on page 19
• Chapter 5, “Using zFS in a shared file system environment,” on page 47
• Chapter 6, “Copying or performing a backup of a zFS,” on page 57
• Chapter 7, “Migrating data from HFS or zFS to zFS,” on page 61
• Chapter 8, “Performance and debugging,” on page 63
• Chapter 9, “Overview of the zFS audit identifier,” on page 101

© Copyright IBM Corp. 2001, 2021 1

2 z/OS: z/OS File System Administration

Chapter 1. Overview of the zFS File System

z/OS File System (zFS) is a z/OS UNIX System Services (z/OS UNIX) file system. zFS file systems contain
files and directories that can be accessed with z/OS UNIX application programming interfaces (APIs).
These file systems can support access control lists (ACLs). zFS file systems can be mounted into the z/OS
UNIX hierarchy along with other local (or remote) file system types (for example, HFS, TFS, AUTOMNT,
and NFS).

zFS can be used for all levels of the z/OS UNIX System Services hierarchy (including the root file system).

zFS can run sysplex-aware for read/write mounted file systems and for read-only mounted file systems.
For more information, see “Terminology and concepts” on page 4, “Specifying zFS file systems as
sysplex-aware” on page 14, and Chapter 5, “Using zFS in a shared file system environment,” on page
47.

Beginning with z/OS V1R13, zFS has enhanced its sysplex-aware support. For many file operations, zFS
can now directly access zFS read/write mounted file systems in a shared file system environment from
zFS client systems. In z/OS V1R13 and later releases, when zFS runs in a shared file system environment,
zFS always runs sysplex-aware on a file system basis (sysplex=filesys). See “zFS-enhanced sysplex-
aware support” on page 49 for more information.

zFS and HFS can both participate in a shared sysplex. However, only zFS supports security labels.
Therefore, in a multilevel-secure environment, you must use zFS file systems instead of HFS file systems.
For more information about multilevel security and migrating your HFS version root to a zFS version root
with security labels, see z/OS Upgrade Workflow.

Notes:

1. Beginning with z/OS V2R1, zFS no longer supports multi-file system aggregates. If you have data that
is stored in zFS multi-file system aggregates, copy that data from the zFS multi-file system aggregate
file systems into zFS compatibility mode aggregates. Because zFS multi-file system aggregates cannot
be mounted in z/OS V2R1, you must copy the data from any file systems that are contained in multi-
file system aggregates into zFS compatibility mode file systems using a non-shared file system
environment on a system that is running a release prior to z/OS V2R1.

2. Beginning with z/OS V2R1, zFS no longer supports clones. If you have read-only clone (.bak) file
systems, you should delete them using the zfsadm delete command on a system that is running a
release prior to z/OS V2R2.

3. Beginning with z/OS V2R2, zFS will only allow aggregates that contain exactly one file system in it to be
attached.

Features
zFS provides many features and benefits, which are described in the following sections:

Performance
zFS provides significant performance gains in many customer environments. zFS provides additional
performance improvements when running sysplex-aware in a shared file system environment.

Restart
zFS reduces the exposure to loss of updates. zFS writes data blocks asynchronously and does not wait
for a sync interval. zFS is a logging file system. It logs metadata updates. If a system failure occurs,
zFS replays the log when it comes back up to ensure that the file system is consistent.

Aggregate movement
As a part of supporting read/write mounted file systems that are accessed as sysplex-aware, zFS
automatically moves zFS ownership of a zFS file system to the system that has the most read/write
activity. This system must also satisfy the restrictions that are imposed by the automove mount
options for the file system. “Terminology and concepts” on page 4 has an explanation of z/OS UNIX

© Copyright IBM Corp. 2001, 2021 3

file system ownership and zFS file system ownership. Chapter 5, “Using zFS in a shared file system
environment,” on page 47 contains details.

Terminology and concepts
To present all the benefits and details of zFS administration, the following concepts and terminology are
introduced:

Attach
When a zFS file system is mounted, the data set is also attached. Attach means that zFS allocates and
opens the data set. This attach occurs the first time a file system contained in the data set is mounted.

A zFS data set can also be attached (by issuing the zfsadm attach command) without mounting it.
Beginning in z/OS V2R2, only zFS data sets that contain exactly one file system are allowed to be
attached. However, there are many restrictions in this case. For example, the zFS data set would not
be available to z/OS UNIX applications because it was not mounted. In a shared file system
environment, the zFS data set would be detached, not moved, if the system went down or zFS
internally restarted. You might attach a zFS data set to explicitly grow it (zfsadm grow) or to
determine the free space available (zfsadm aggrinfo). You must detach the zFS data set (zfsadm
detach) before mounting it.

Catch-up mount
When a file system mount is successful on a system in a shared file system environment, z/OS UNIX
automatically issues a corresponding local mount, which is called a catch-up mount, to every other
system's PFS for a zFS read/write mounted file system that is mounted RWSHARE or for a read-only
mounted file system.

If the corresponding local mount is successful, z/OS UNIX does not function ship from that system to
the z/OS UNIX owning system when that file system is accessed. Rather, the file request is sent
directly to the local PFS. This is sometimes referred to as Client=N, as indicated by the output of the D
OMVS,F operator command, or df -v shell command. If the corresponding local mount is
unsuccessful (for instance, DASD is not accessible from that system), z/OS UNIX function ships
requests to the z/OS UNIX owning system when that file system is accessed (message BPXF221I
might be issued). This is sometimes referred to as Client=Y, as indicated by the output of the D
OMVS,F or df -v commands. For examples of the command output, see “Determining the file system
owner” on page 50.

File system ownership
IBM defines a file system owner as the system that coordinates sysplex activity for a particular file
system. In a shared file system environment, there is also the concept of file system ownership. The
owner of a file system is the first system that processes the mount. This system always accesses the
file system locally; that is, the system does not access the file system through a remote system. Other
non-owning systems in the sysplex access the file system either locally or through the remote owning
system, depending on the PFS and the mount mode.

The file system owner is the system to which file requests are forwarded when the file system is
mounted non-sysplex aware. Having the appropriate owner is important for performance when the file
system is mounted read/write and non-sysplex aware. The term z/OS UNIX file system owner refers to
the owner of the zFS file system as z/OS UNIX recognizes it. This is typically the system where the file
system is first mounted, but it can differ from the zFS file system owner (see zFS file system owner).
zFS file system owner

zFS has its own concept of file system ownership, called the zFS file system owner. This is also
typically the system where the file system is first mounted in a sysplex-aware environment. File
requests to sysplex-aware file systems are sent directly to the local zFS PFS, rather than being
forwarded to the z/OS UNIX file system owner. This concept is shown in Figure 1 on page 5. The
local zFS PFS forwards the request to the zFS file system owner, if necessary. The z/OS UNIX file
system owner can be different from the zFS file system owner. (In reality, zFS owns aggregates.
Generally, we simplify this to say zFS file system owner because zFS compatibility mode
aggregates only have a single file system.)

4 z/OS: z/OS File System Administration

z/OS UNIX file system owner
The term z/OS UNIX file system owner refers to the owner of the zFS file system as z/OS UNIX
knows it. This is typically the system where the file system is first mounted.

For details about sysplex considerations and the shared file system environment, see “Determining
the file system owner” on page 50 and Chapter 5, “Using zFS in a shared file system environment,”
on page 47.

z/OS UNIX

zFS

z/OS UNIX

zFS

z/OS UNIX

zFS

z/OS UNIX

zFSzFS

z/OS UNIX

zFSzFS

cache

z/OS UNIX

zFSzFS

cache

zFS read/write file system mounted with NORWSHARE zFS read/write file system mounted with RWSHARE

z/OS UNIX
application

z/OS UNIX
application

z/OS UNIX
application

z/OS UNIX
application

z/OS UNIX
application

z/OS UNIX
application

Figure 1. z/OS UNIX and zFS file system ownership

When a file system is not sysplex-aware (that is, mounted as NORWSHARE), file requests are function-
shipped by z/OS UNIX to the z/OS UNIX file system owner, and then to the PFS. When a file system is
sysplex-aware (that is, mounted as RWSHARE), file requests are sent directly to the local zFS PFS and
then function-shipped by zFS to the zFS file system owner, if necessary.

Function shipping
Function shipping means that a request is forwarded to the owning system and the response is
returned to the requestor through XCF communications.

Local mount
A local mount means that z/OS UNIX issues a successful mount to the local PFS, which in this case is
zFS. z/OS UNIX does this when either the file system is mounted sysplex-aware for that mode (read/
write or read-only) or the system is the z/OS UNIX owner. When a file system is locally mounted on the
system, z/OS UNIX does not function ship requests to the z/OS UNIX owning system. To determine if a
system has a local mount, see “Determining the file system owner” on page 50.

Non-sysplex aware (sysplex-unaware)
A file system is non-sysplex aware (or sysplex-unaware) if the PFS (Physical File System) supporting
that file system requires it to be accessed through the remote owning system from all other systems
in a sysplex (allowing only one connection for update at a time) for a particular mode (read-only or
read/write). The system that connects to the file system is called the file system owner. Other
system's access is provided through XCF communication with the file system owner. For a non-sysplex
aware zFS file system, file requests for read/write mounted file systems are function-shipped to the
owning system by z/OS UNIX. The owning system is the only system where the file system is locally
mounted and the only system that does I/O to the file system. See zFS file system owner and z/OS
UNIX file system owner.

OMVS address space
The address space used by z/OS UNIX, it runs a program that initializes the kernel. Starting in V2R2,
zFS can be run in the OMVS address space.

Read-only file system
A file system that is mounted for read-only access is a read-only file system.

Chapter 1. Overview of the zFS File System 5

Read/write file system
A file system that is mounted for read and write access is a read/write file system.

Shared file system environment
The shared file system environment refers to a sysplex that has a BPXPRMxx specification of
SYSPLEX(YES).

Sysplex
The term sysplex as it applies to zFS, means a sysplex that supports the z/OS UNIX shared file system
environment. That is, a sysplex that has a BPXPRMxx specification of SYSPLEX(YES).

Sysplex-aware
Pertains to a physical file system that handles file requests for mounted file systems locally instead of
shipping function requests through z/OS UNIX.
Sysplex-aware PFS

A physical file system (PFS), for example zFS, is sysplex-aware or non-sysplex aware for a
particular mount mode (read-only or read/write) in a shared file system environment. When it is
sysplex-aware, the PFS is capable of handling a local mount on the system that is not the z/OS
UNIX owning system. The PFS that is sysplex-aware can avoid z/OS UNIX function shipping for
that mode. Both HFS and zFS file systems are always sysplex-aware for read-only mounts. HFS is
always non-sysplex aware for read/write mounts and always results in z/OS UNIX function
shipping from systems that are not the z/OS UNIX owning system. As of z/OS V1R13, zFS always
runs sysplex-aware (SYSPLEX=FILESYS) in a shared file system environment. Individual file
systems can be non-sysplex aware or sysplex-aware, with the default being non-sysplex aware.

Sysplex-aware file system
A file system can be mounted sysplex-aware or non-sysplex aware. When a file system is mounted
sysplex-aware, it means that the file system is locally mounted on every system (when the PFS is
capable of handling a local mount on every system - that is, the PFS is running sysplex-aware) and
therefore, file requests are handled by the local PFS. All read-only mounted file systems are
always mounted sysplex-aware (see Figure 9 on page 48). HFS read/write mounted file systems
are always mounted non-sysplex aware. This means that file requests from non z/OS UNIX owning
systems are always function-shipped by z/OS UNIX to the z/OS UNIX owning system where the
file system is locally mounted and the I/O is actually done.

Beginning with z/OS V1R11, zFS read/write mounted file systems can be mounted sysplex-aware
or non-sysplex aware.

zFS address space
Because zFS can run in its own colony address space or inside the OMVS address space, which is the
address space used by z/OS UNIX, any reference to the zFS address space will mean the address
space in which zFS is running.

zFS aggregate
The data set that contains a zFS file system is called a zFS aggregate. A zFS aggregate is a Virtual
Storage Access Method (VSAM) linear data set. After the zFS aggregate is defined and formatted, a
zFS file system is created in the aggregate. In addition to the file system, a zFS aggregate contains a
log file and a bitmap describing the free space. A zFS aggregate has a single read/write zFS file system
and is sometimes called a compatibility mode aggregate. Compatibility mode aggregates are similar to
HFS.

Restriction: zFS does not support the use of a striped VSAM linear data set as a zFS aggregate. If you
attempt to mount a compatibility mode file system that had previously been formatted and is a striped
VSAM linear data set, it will only mount as read-only. zFS does not support a zFS aggregate that has
guaranteed space.

zFS file system
Refers to a hierarchical organization of files and directories that has a root directory and can be
mounted into the z/OS UNIX hierarchy. zFS file systems are located on DASD.

6 z/OS: z/OS File System Administration

zFS Physical File System (PFS)
Refers to the code that runs in the zFS address space. The zFS PFS can handle many users accessing
many zFS file systems at the same time.

ZFS PROC
The PROC that is used to start ZFS. It is typically called ZFS. If ZFS is running in the OMVS address
space, then this refers to the OMVS PROC.

What's new or changed for zFS in z/OS V2R4
With the zFS high availability option, if the file system owner experiences an outage, applications that are
accessing that file system on other systems are not affected. You can use a mount parameter or the
IOEFSPRM option to designate a zFS sysplex-aware file system as high availability. To take advantage of
the zFS high availability support on V2R3 and V2R4 systems, apply the PTF for APAR OA57508 on your
V2R3 systems. For more information, see “Specifying the high availability option for read/write sysplex-
aware file systems” on page 55.

With the zFS File Snapshot API, you can create a point-in-time snapshot (or copy) of a file in a zFS file
system that is at the V2R4 level and allow subsequent read requests from that snapshot. Each time files
are changed, backup programs can save only the changed files in a file system instead of saving all the
files in the file system. To take advantage of the zFS File Snapshot support on V2R3 systems, apply the
PTF for APAR OA56145 to your V2R3 systems. For more information about the File Snapshot API, see
“File Snapshot” on page 259.

What's new or changed for zFS in z/OS V2R3
A new zfsadm shrink command makes zFS aggregates smaller. Unused free space can be released
from existing aggregates to more efficiently use DASD space.

User data in zFS file systems can be encrypted, compressed, or both. This provides additional security
and the ability for files to be stored on disk in a compressed format that requires less space.

Some attributes assigned to file systems when the are mounted can be dynamically changed using the
zfsadm chaggr command without having to unmount and remount the file system.

A mounted file system can be verified by an online salvage utility. The file system can also be repaired, if
needed. The online salvage is done with the zfsadm salvage command.

zFS aggregates that are created using the new ZFS keyword on the IDCAMS DEFINE CLUSTER command,
or the zfsadm define command, do not have to be formatted in a separate step prior to being mounted.
zFS will automatically format them during mount. File systems formatted during mount will use default
values for all of the formatting keywords. The default UID and GID is determined by the issuer of the
mount. In a sysplex, the issuer of the mount is always OMVS, which is UID 0.

New IOEFSPRM configuration options were added to supply global default values during formatting:

• -format_encryption
• -format_compression
• -format_perms

With z/OS V2R3, the zFS defaults for format_aggrversion and change_aggrversion_on_mount
will favor the creation of version 5 aggregates and the conversion of version 4 aggregates to version 5 at
mount time. Once an aggregate is at version 5, any new files or directories will also be version 5. For a
converted aggregate, the old files and directories will remain version 4. A version 5 aggregate can be
converted back to version 4 by using the ioefsutl converttov4 batch utility if the limits of a version 4
aggregate have not been exceeded. Note that Version 5 aggregates cannot be mounted on z/OS V1R13.

Health check ZFS_VERIFY_COMPRESSION_HEALTH was added. For more information about the health
check, see ZFS_VERIFY_COMPRESSION_HEALTH in IBM Health Checker for z/OS User's Guide.

For information about interface changes in zFS, see “Summary of changes for zFS for z/OS Version 2
Release 3 (V2R3) ” on page xix.

Chapter 1. Overview of the zFS File System 7

What's new or changed for zFS in z/OS V2R2
In z/OS V2R2, zFS caches were moved above the 2 G addressing bar to allow for the use of very large zFS
caches. These IOEFSPRM configuration variables were changed to support the following ranges of values:

Variable Range of values

vnode_cache_size 1000 to 10000000

meta_cache_size 1 M to 64 G

token_cache_size 20480 to 20000000

trace_table_size 1 M to 65535 M

xcf_trace_table_size 1 M to 65535 M

With the zFS caches above the 2-G addressing bar, zFS can now be run inside the OMVS address space.
This change yields improved performance for each file or directory operation.

The metaback cache is no longer a separate cache in a data space. It is combined with
meta_cache_size into one single metadata cache. For simplicity and to avoid future confusion, update
the IOEFSPRM configuration file to combine these two options and remove the metaback_cache_size
setting from the file.

zFS performance counters were changed from 4 bytes to 8 bytes. This change allows for monitoring of zFS
performance over longer periods of time before the counters wrap. The counters are made available via
the zFS Statistics Application Programming Interfaces. This information is available in the zFS modify and
zfsadm query command reports.

• New reports are available that can be printed with the zfsadm query command using the keywords -
stkm, -ctkc, and -svi. This information is also available in new Application Programming Interfaces
for Client Token Caching Component, Server Token Manager, and Statistics from the Server Vnode
Interface. For more information about the keywords, see “zfsadm query” on page 211.

The zfsadm -storage report now contains information about storage usage above the 2 G bar.

The new zfsadm fsinfo command displays detailed information for one or more file systems. File
systems can be specified with a specific name, or in a group by using a common prefix or common suffix.
They can also be selected by specifying common attributes. Another way to obtain the detailed
information is by using the new File System Information Application Programming Interface or the
modify zfs,fsinfo command.

zFS is using a better performing method for handling the writing of records to the zFS aggregate log. The
new logging method displays different statistics in the zfsadm query -logcache command and in the
MODIFY ZFS,QUERY,LOG performance report. The Statistics Log Cache Information Application
Programming Interface will also return new statistics pertaining to this new logging method.

Health checks ZOSMIGV1R13_ZFS_FILESYS and ZOSMIGREC_ZFS_RM_MULTIFS were removed, and
CACHE_REMOVALS was added. For more information about CACHE_REMOVALS, see
ZFS_CACHE_REMOVALS in IBM Health Checker for z/OS User's Guide.

What's new or changed for zFS in z/OS V2R1
Beginning with z/OS V2R1, zFS no longer supports multi-file system aggregates and clones. As a result,
the following zfsadm commands are no longer supported:

• zfsadm clone
• zfsadm clonesys
• zfsadm create
• zfsadm lsquota
• zfsadm rename

8 z/OS: z/OS File System Administration

• zfsadm setquota

The following options are no longer supported on zfsadm config:

• -fsgrow
• -user_cache_readahead

The following options are no longer supported on zfsadm configquery:

• -auto_attach
• -fsgrow
• -user_cache_readahead

The following pfsctl subcommands are no longer supported:

• On the Aggregate command:

– Create File System
• On the File System command:

– Clone File System
– Rename File System
– Set File System Quota

• On the Config command:

– Query auto_attach setting
– Query fsgrow setting
– Set fsgrow
– Set user_cache_readahead

If you are using multi-file system aggregates or clones, you must stop using them. Be sure that you
complete the migration actions described in z/OS Upgrade Workflow.

The zFS salvager program (ioeagslv) has been improved in z/OS V2R1:

• It can process larger zFS file systems by using storage above the 2 GB bar.
• It can complete its repair processing without needing to be run multiple times.
• All messages that it issues have message numbers.
• The verify option (-verifyonly) replays the log when necessary. This replay avoids reports of

inconsistencies that occur when the log has not been replayed.

Quiesce processing for zFS file systems has been modified in z/OS V2R1. The zFS commands and zFS
APIs used to quiesce and unquiesce zFS file systems are unchanged, but the way quiesce works internally
and the way the quiesce status is displayed are modified.

In z/OS V2R1, the name "zSeries File System" was changed to "z/OS File System". The document z/OS
Distributed File Service zSeries File System Administration was retitled to z/OS Distributed File Service zFS
Administration.

Beginning with z/OS V2R1, zFS provides an optional, new format zFS aggregate, the version 1.5
aggregate. The current zFS aggregates are version 1.4 aggregates. The main purpose of the version 1.5
aggregate is to support a new directory format (extended (v5) directory) that will scale better when the
directory contains many names (over 10,000). Since the format of a new directory is different in a version
1.5 aggregate, zFS provides toleration APAR OA39466 to cause a mount of a version 1.5 aggregate in an
earlier release to fail. Earlier releases cannot access extended (v5) directories or version 1.5 aggregates.
In order to control the transition to the new format directories, extended (v5) directories can only be
created in version 1.5 aggregates. To create or change to a version 1.5 aggregate, you must explicitly
request it. By default, aggregates created in z/OS V2R1 are version 1.4 aggregates. You should only
create or change to a version 1.5 aggregate if you are sure you will not run releases prior to z/OS
V2R1. Over time (possibly several releases), most zFS aggregates will be version 1.5 aggregates. IBM is
likely to then change the default to version 1.5.

Chapter 1. Overview of the zFS File System 9

zFS toleration APAR OA39466 applies to z/OS V1R12 and V1R13.

zFS recommends that you should begin using the new zFS batch utility program IOEFSUTL. It contains all
the function of the zFS format utility (IOEAGFMT) and the zFS salvage utility (IOEAGSLV). IOEFSUTL
supports both version 1.5 aggregates and version 1.4 aggregates.

Beginning with z/OS V2R1, the batch utility ioeagfmt requires that the ZFS PFS be active.

New IOEPRMxx configuration options control what version an aggregate is formatted as by default
(format_aggrversion), whether a version 1.4 aggregate is changed to a version 1.5 aggregate on
mount (change_aggrversion_on_mount) and whether directories are converted to extended (v5)
directories as they are accessed (converttov5).

A new MOUNT PARM controls whether a particular zFS aggregate's directories are converted to extended
(v5) directories as they are accessed (CONVERTTOV5).

zFS has enhanced its support for the backup change activity flag in the VTOC (D1DSCHA in the Format
1/8). This flag indicates whether a backup of the file system is needed (that is, data has been modified in
the file system since the last backup).

Beginning with z/OS V2R1, the default value for IOEPRMxx configuration options user_cache_size,
meta_cache_size, and metaback_cache_size are now calculated based on the amount of real
storage in the system.

Beginning with z/OS V2R1, the default will be to create zFS auditfids during aggregate formatting.

A new configuration variable was added to IOEFSPRM: user_running_hangdump.

To help alleviate the version 4 large directory performance problem before migrating to version 1.5
aggregates, zFS will allow the creation of new Large Fast Lookup Cache buffers above the bar (64-bit
storage) that will be used to fully cache large directories. This is done with a new IOEPRMxx configuration
option flc. This option will only be valid in releases z/OS V1R13 and V2R1. It is available on z/OS V1R13
in APAR OA40530.

10 z/OS: z/OS File System Administration

Chapter 2. Installing and configuring zFS

z/OS File System (zFS) is a base element of z/OS. To use the zFS support, you must configure the support
on the system. Configuration includes the following administrative tasks:

• Decide if you want to run zFS in its own colony address space or in the OMVS address space. For more
information that you can use to help make this decision, see “zFS running in the z/OS UNIX address
space” on page 16.

• Define the zFS physical file system to z/OS UNIX.
• Create or update the zFS parameter data set (IOEFSPRM); see “IOEFSPRM” on page 225.
• Define zFS aggregates and file systems.
• Create mount points and mount zFS file systems.
• Change owner/group and set permissions on the file system root.
• Optionally, add MOUNT statements in your BPXPRMxx member to cause zFS file systems to be mounted

at IPL.

zFS installation and configuration steps
To install, configure, and access zFS, you must perform the following administrative steps:

1. Install and perform postinstallation of z/OS File System (zFS) by following the applicable instructions
in z/OS Program Directory or in ServerPac: Installing Your Order. Following is a summary of the
information that is contained in those documents:

a. Ensure that the target and distribution libraries for zFS are available.
b. Run the prefix.SIOESAMP(IOEISMKD) job from UID 0 to create the symbolic links that are used

by zFS. This job reads the member prefix.SIOESAMP(IOEMKDIR) to delete and create the
symbolic links.

c. Ensure that the DDDEF statements for zFS are defined by running the
prefix.SIOESAMP(IOEISDDD) job.

d. Install the Load Library for zFS. The Load Library (hlq.SIEALNKE) must be APF-authorized and
must be in the link list.

e. Install the samples (hlq.SIOESAMP).
f. Install the sample PROC for ZFS (hlq.SIOEPROC).

g. One method of providing an IOEFSPRM configuration file is to define it as a data set with an
IOEZPRM DD card. If zFS is to run in the OMVS address space, the IOEZPRM DD card should be
placed in the OMVS PROC. If zFS is to run in its own colony address space, create a JCL PROC for
the zFS started task in SYS1.PROCLIB by copying the sample PROC from the previous step.

The DDNAME IOEZPRM identifies the optional zFS configuration file. Although this DD statement is
optional, it is recommended that it be included to identify the parameter data set to be used for
zFS. For now, it is suggested that this DD refer to a PDS with a member called IOEFSPRM that has a
single line that begins with an asterisk (*) in column 1. Subsequent modifications can be made to
the IOEFSPRM member, see “IOEFSPRM” on page 225.

As the preferred alternative to the IOEZPRM DDNAME specification, delete the IOEZPRM DDNAME
and use the IOEPRMxx parmlib member. In this case, the member has the name IOEPRMxx, where
you specify xx in the parmlib member list. See “IOEFSPRM” on page 225 for more information.

To run zFS so that it is not under control of JES, see step 2. You might want to do this so that zFS
does not interfere with shutting down JES.

© Copyright IBM Corp. 2001, 2021 11

h. Add the following RACF® commands:

ADDGROUP ZFSGRP SUPGROUP(SYS1) OMVS(GID(2))
ADDUSER ZFS OMVS(HOME('/') UID(0)) DFLTGRP(ZFSGRP) AUTHORITY(USE) UACC(NONE)
RDEFINE STARTED ZFS.** STDATA(USER(ZFS))
SETROPTS RACLIST(STARTED)
SETROPTS RACLIST(STARTED) REFRESH

The preceding commands define what will be referred to as the zFS user ID. You can specify ZFS as
the user ID, or you can specify a user ID other than ZFS to run the zFS started task if it is defined
with the same RACF characteristics as shown in the previous example. If zFS is to run in the OMVS
address space, specify OMVS instead of ZFS for the user ID.

The ZFS user ID must have at least ALTER authority to all VSAM linear data sets that contain zFS
aggregates.

If there are encrypted zFS aggregates, the ZFS user ID must also have at least READ access to any
CSFKEYS profiles for aggregates that are encrypted. If ICSF is configured with CHECKAUTH(YES),
the ZFS user ID must also have at least READ access to the CSFKRR2 CSFSERV profile. For more
information about the CSFKEYS and CSFSERV profiles and the encryption of data sets, see Data set
encryption in z/OS DFSMS Using Data Sets.

As an alternative to permitting the ZFS user ID to all of the necessary security profiles, you can
assign the TRUSTED attribute to the zFS started task.

2. Create a BPXPRMxx entry for zFS.

Add a FILESYSTYPE statement to your BPXPRMxx parmlib member:

FILESYSTYPE TYPE(ZFS)ENTRYPOINT(IOEFSCM) ASNAME(ZFS)

Specifying the ASNAME(ZFS) keyword causes zFS to run in its own colony address space. To have zFS
run in the OMVS address space, omit the ASNAME keyword.

FILESYSTYPE TYPE(ZFS) ENTRYPOINT(IOEFSCM)

Update your IEASYSxx parmlib member to contain the OMVS=(xx,yy) parameter for future IPLs.

If necessary, you can specify that zFS should not be only run under control of JES by including
SUB=MSTR. For example:

FILESYSTYPE TYPE(ZFS) ENTRYPOINT(IOEFSCM) ASNAME(ZFS,'SUB=MSTR')

To use the IOEPRMxx parmlib members (mentioned in step 1.g), specify the xx values in the
FILESYSTYPE statement for zFS as in the following example:

FILESYSTYPE TYPE(ZFS) ENTRYPOINT(IOEFSCM) ASNAME(ZFS,'SUB=MSTR')
PARM('PRM=(01,02,03)')

In this case, you must not have an IOEZPRM DD statement in your ZFS PROC. Step 4 contains an
explanation as to why you should not have an IOEZPRM DD. For more information about using
IOEPRMxx, see “IOEFSPRM” on page 225.

3. (Optional) Create or update the zFS configuration options file (IOEPRMxx, also known as IOEFSPRM).

The zFS configuration options file is optional. There are two methods to specify the zFS configuration
options file: use IOEPRMxx in the parmlib or use an IOEZPRM DD statement in the PROC that is used
to start the address space where zFS is running.

• As the preferred alternative to the IOEZPRM DD statement, the IOEFSPRM member can be specified
as a true parmlib member. In this case, the member has the name IOEPRMxx, where xx is specified
in the parmlib member list. You must omit the IOEZPRM DD statement in the PROC that is used to
start the address space in which zFS will run. The IOEPRMxx configuration options file can be
specified with no options contained in it. Options are only required if you want to override the default
zFS options. As mentioned in step 1.g, it is recommended that you create an empty IOEPRMxx

12 z/OS: z/OS File System Administration

parmlib member. The IOEPRMxx member should only contain one line that is a comment (an asterisk
(*) in column 1). See “IOEFSPRM” on page 225 for more information.

• If you use the IOEZPRM DD statement, the PDS (organization PO) to which it points should have a
record format of FB with a record length of 80. The block size can be any multiple of 80 that is
appropriate for the device. A sample IOEFSPRM is provided in hlq.SIOESAMP(IOEFSPRM).
IOEFSPRM is also known as IOEZS001. See “IOEFSPRM” on page 225 for a description of the
IOEFSPRM options. Update the IOEZPRM DD statement in the OMVS or ZFS PROC to contain the
name of the IOEFSPRM member, as shown in the following example:

IOEZPRM DD DSN=SYS4.PVT.PARMLIB(IOEFSPRM),DISP=SHR

If you are running a sysplex, you must have different zFS configuration files for different systems.
Chapter 5, “Using zFS in a shared file system environment,” on page 47 explains why different zFS
configuration files are required. In this case, you should also specify a system qualifier in the data set
name in the IOEZPRM DD, as shown in the following example:

IOEZPRM DD DSN=SYS4.&SYSNAME..PARMLIB(IOEFSPRM),DISP=SHR

4. (Optional) Preallocate data sets for debugging.

This step is optional because trace information is always available in the dump data set, and can be
requested only by IBM Service. If needed, allocate the zFS trace output data set as a PDSE with
RECFM=VB, LRECL=133 with a primary allocation of at least 50 cylinders and a secondary allocation of
30 cylinders. The name of this trace output data set should be specified in the trace_dsn option in
the IOEFSPRM file. Next, allocate a debug settings data set as a PDS member with an LRECL=80. Add
one comment line in the member (use a /* followed by */). Specify the name of this debug settings
data set member in the debug_settings_dsn option of the IOEFSPRM file. Perform this process for
each member of the sysplex.

5. Create a zFS (compatibility mode) file system.

A zFS file system resides in a zFS aggregate. A zFS aggregate is a VSAM linear data set. See Chapter 4,
“Creating and managing zFS file systems using compatibility mode aggregates,” on page 19 for
details on creating zFS file systems.

Beginning in z/OS V2R1, ioeagfmt fails if the zFS PFS is not active on the system.
6. Create a directory and mount the zFS file system on it.

You can create a directory with the z/OS UNIX mkdir command or you can use an existing directory.
The TSO/E MOUNT command or the /usr/sbin/mount REXX exec can be used to mount the zFS file
system on the directory. See Chapter 4, “Creating and managing zFS file systems using compatibility
mode aggregates,” on page 19 for details on mounting zFS file systems.

Note: Steps 6 and 7 can be repeated as many times as necessary for each permanently mounted zFS
file system. Only step 6 is needed for zFS automounted file systems (assuming that the automount file
system has been set up.)

7. Add mount statements to BPXPRMxx members to mount the zFS file systems on the next IPL.

For example:

MOUNT FILESYSTEM('OMVS.PRV.COMPAT.AGGR001') TYPE(ZFS) MOUNTPOINT('/etc/mountpt')

All MVS data sets that are specified in DD statements in the zFS PROC, in options in the IOEFSPRM
configuration file, and in MOUNT statements in BPXPRMxx must be available at IPL time. If an MVS data
set is migrated by hierarchical storage management (HSM), then the initialization of zFS might wait
indefinitely for the data set recall. This hang on one system can lead to a sysplex-wide hang. Any
ARC0055A message that is issued for the migrated data set will need a reply to prevent this hang.

Chapter 2. Installing and configuring zFS 13

Applying required APARs for z/OS V2R4
In z/OS V2R4, you do not need to apply any zFS coexistence function after you complete the “zFS
installation and configuration steps” on page 11.

You can take advantage of the zFS File Snapshot and high availability support on V2R3 systems as
follows:

• For the zFS File Snapshot support, apply the PTF for APAR OA56145.
• For the high availability support, apply the PTF for APAR OA57508.

Specifying zFS file systems as sysplex-aware
You can determine whether to make a zFS read/write file system be sysplex-aware.

If you are running your sysplex in a shared file system environment, where BPXPRMxx specifies
SYSPLEX(YES), zFS is always enabled to allow zFS read/write sysplex-aware file systems (zFS runs
sysplex=filesys). You can individually choose which file systems are sysplex-aware for read/write and
which ones are not. The default is that zFS read/write file systems will not be sysplex-aware. A newly
mounted zFS read/write file system will be sysplex-aware if you specify the RWSHARE MOUNT PARM, as
shown:

MOUNT FILESYSTEM('OMVS.PRV.COMPAT.AGGR001') TYPE(ZFS) MOUNTPOINT('/etc/mountpt') PARM('RWSHARE')

As an alternative, you can specify sysplex_filesys_sharemode=rwshare in your IOEFSPRM. The
default is changed so that each zFS read/write file system is mounted sysplex-aware unless you explicitly
specify the NORWSHARE MOUNT PARM.

Typically, if you make a zFS read/write file system sysplex-aware, you see a performance improvement in
most shared file system environments when accessing the data from a system that is not the zFS owner.
However, some servers cannot fully support zFS read/write file systems that are sysplex-aware.

• The Fast Response Cache Accelerator support of the IBM HTTP Server for z/OS V5.3 uses an API called
register file interest (BPX1IOC using the Iocc#RegFileInt subcommand). Because this API cannot
support zFS sysplex-aware read/write file systems, the Cache Accelerator support cannot cache static
Web pages that are contained in files in a zFS read/write sysplex-aware file system. Other servers that
use this API can also be impacted. Generally, these are servers that cache files and must be aware of
file updates from other sysplex members without having the server read the file or the file modification
timestamp.

• The Policy Agent (Pagent) server, which is part of the z/OS Communications Server, cannot export any
zFS read/write file systems that are sysplex-aware.

If you are using any of these servers, ensure that any zFS read/write file systems that are accessed by
these servers are non-sysplex aware.

Note that there are some modifications to the way file system ownership works for zFS read/write
sysplex-aware file systems. These modifications can cause some operational differences. For information
about file system ownership, see Chapter 5, “Using zFS in a shared file system environment,” on page
47.

Using zFS read/write sysplex-aware file systems
When you run zFS in a shared file system environment, the zFS PFS runs as sysplex-aware. However, by
default, each zFS file system is mounted as non-sysplex aware. zFS allows zFS read/write file systems to
run as sysplex-aware but you must explicitly request the sysplex-awareness on a file system basis by
using either the RWSHARE mount parameter or the sysplex_filesys_sharemode=rwshare
configuration option.

Consider which zFS read/write file systems you might want to be sysplex-aware. Good candidates are zFS
read/write file systems that are accessed from multiple systems or are mounted with AUTOMOVE and
might be moved by z/OS UNIX (as a result of a shutdown or IPL) to systems that do not necessarily do the

14 z/OS: z/OS File System Administration

most accesses. Be aware that RWSHARE file systems use more virtual storage in the zFS address space
than NORWSHARE file systems. Beginning in z/OS V2R2, this storage is 64-bit storage (above the 2 G
line). Do not use more real or auxiliary storage in the system than is needed. See the sample zFS query
report “STOR” on page 79 for information about monitoring storage usage in the zFS address space.
Generally, the system-specific file system (and /dev, /etc, /tmp, /var) should be mounted
NORWSHARE and UNMOUNT because they typically are accessed only from the owning system.

An additional consideration for read/write sysplex-aware file systems is whether they should be high
availability. If you are concerned about application availability after a system experiences an outage,
consider using the high availability option. For more information about high availability file systems, see
“Specifying the high availability option for read/write sysplex-aware file systems” on page 55

zFS read-only mounted file systems are not affected by the sysplex aware support. However, if you
remount a read-only file system to read/write by using the chmount command or the TSO/E UNMOUNT
REMOUNT command, the remount is treated like a primary mount on the current z/OS UNIX owning
system. In this case, mount parameters (such as RWSHARE or NORWSHARE) or mount defaults (such as
the current sysplex_filesys_sharemode setting on that system) take effect when it is mounted read/
write. When you remount back to read-only, those mount options are irrelevant again. These mount
parameters and mount defaults do not take effect when a remount to the same mode is run.

The sysplex_filesys_sharemode option on a system specifies if a zFS read/write file system will be
mounted as sysplex-aware when a mount is issued on that system without specifying either NORWSHARE
or RWSHARE in the mount parameter. The default value for sysplex_filesys_sharemode is
norwshare. A mount for a zFS read/write file system that does not have NORWSHARE or RWSHARE
specified in the mount parameter results in the file system being non-sysplex aware. If you want zFS
read/write mounts to be sysplex-aware, then specify sysplex_filesys_sharemode=rwshare. This
option can be specified in the IOEFSPRM configuration options file and takes effect on the next IPL or
restart of zFS. It can also be specified dynamically with the zfsadm config -
sysplex_filesys_sharemode command. Typically, you should specify the same
sysplex_filesys_sharemode value on all your systems. Otherwise, z/OS UNIX file system ownership
movement might change the sysplex-awareness of a file system that does not have NORWSHARE or
RWSHARE specified in the mount parameter.

If any zFS read/write file systems were previously mounted as NORWSHARE, they will usually remain
non-sysplex aware until they are unmounted and then mounted back on the RWSHARE system. However,
there are situations when the sysplex awareness might change. See “Changing zFS attributes on a
mounted zFS compatibility mode file system” on page 39 for more information.

Your sysplex root file system should be read-only. However, if your sysplex root file system is normally
read/write, you should make it sysplex-aware. You cannot unmount the sysplex root file system so you
need an alternative method. One method is to remount your sysplex root to read-only, move z/OS UNIX
ownership of the file system, if necessary, to a system that has
sysplex_filesys_sharemode=rwshare, and then remount the sysplex root back to read/write. You
might want to update your ROOT statement in BPXPRMxx to add PARM('RWSHARE') to ensure that you do
not lose the sysplex-aware attribute if the ROOT is mounted again. In this case, you might see a
USS_PARMLIB health check message indicating that your BPXPRMxx ROOT PARM does not match your
current sysplex root PARM. This behavior is expected and is normal.

Changing the sysplex-awareness of a mounted zFS read/write file system
In a shared file system environment, after a zFS read/write file system is mounted it is either sysplex-
aware or non-sysplex aware. You can determine the sysplex-awareness of a mounted zFS read/write file
system by using the zfsadm aggrinfo -long command. If it displays sysplex-aware, then it is sysplex-
aware. If it is blank, then it is non-sysplex aware.

You can also use FSINFO to determine sysplex-awareness of a mounted zFS file system. The status field
will show RS when mounted sysplex aware (RWSHARE), and will show NS when mounted non-sysplex
aware (NORWSHARE).

Alternatively, you can also issue the f zfs,query,file console command. As indicated in Table 3 on
page 69, an "S" indicates that the zFS read/write file system is mounted sysplex aware. Because you do

Chapter 2. Installing and configuring zFS 15

not have to be running in the shell, this command can be useful if a file system is under recovery or having
other problems.

You can change the sysplex-awareness of a mounted zFS read/write file system by using the zfsadm
chaggr command if all systems in the sysplex are at least the z/OS V2R3 level. Otherwise, use the
following method:

• Unmount the file system.
• Specify the MOUNT PARM (RWSHARE to make it sysplex-aware; NORWSHARE to make it non-sysplex

aware).
• Mount the file system again.

If you want to change the sysplex-awareness and you have not specified either the RWSHARE or
NORWSHARE MOUNT PARM, you can change the sysplex-awareness with remount. To do so:

• Remount the file system to read-only.
• Move z/OS UNIX ownership of the file system (if necessary) to a system that has
sysplex_filesys_sharemode specified to the sharemode that you want (RWSHARE or
NORWSHARE).

• Remount the file system back to read/write.

zFS running in the z/OS UNIX address space
In releases before z/OS V2R2, the amount of 31-bit virtual storage that was needed by both z/OS UNIX
and zFS combined would have exceeded the size of a 2 GB address space. Due to that size limitation, zFS
and z/OS UNIX could not coexist in the same address space.

In z/OS V2R2, zFS caches were moved above the 2 GB bar into 64-bit storage. You can now choose to
have zFS run in its own colony address space or in the address space that is used by z/OS UNIX, which is
OMVS.

When running zFS in the OMVS address space, each file system vnode operation (such as creating a
directory entry, removing a directory entry, or reading from a file) will have better overall performance.
Each operation will take the same amount of time while inside zFS itself. The performance benefit occurs
because z/OS UNIX can call zFS for each operation in a more efficient manner.

Some inherent differences exist when zFS is run in the OMVS address space.

1. MODIFY commands must be passed to zFS through z/OS UNIX. Use the form MODIFY
OMVS,pfs=zfs,cmd. For more information, see Passing a MODIFY command string to a physical file
system in z/OS MVS System Commands. This form of the MODIFY command can be used whether zFS
is in its own address space or in the OMVS address space.

Note: When zFS is running in the OMVS address space, any zFS MODIFY commands that are issued
through an automated process or system automation must be changed to accommodate the new
command format.

2. The CANCEL ZFS command is not available.
3. When the IOEFSPRM configuration file location is defined by the IOEZPRM DD card, it must be placed

in the OMVS PROC. For more information, see Chapter 12, “The zFS configuration options file
(IOEPRMxx or IOEFSPRM),” on page 225.

4. zFS will run under the OMVS user ID.
5. You can determine if zFS is in its own address space by issuing D OMVS,PFS. If the output shows an

ASNAME value, zFS is running as a colony address space. Otherwise, the lack of an ASNAME value
means that zFS is running in the OMVS address space.

16 z/OS: z/OS File System Administration

Chapter 3. Managing zFS processes

Managing zFS processes includes starting and stopping zFS, as well as determining zFS status.

Starting zFS
zFS is started by z/OS UNIX, based on the FILESYSTYPE statement for zFS in the BPXPRMxx parmlib
member. Beginning in z/OS V2R2, if there is no ASNAME keyword on the FILESYSTYPE statement, zFS is
started inside the OMVS address space (the address space used by z/OS UNIX). If there is an ASNAME
keyword, zFS is started in its own colony address space.

Requirement: Before zFS can start in its own colony address space, a ZFS PROC must be available.

zFS can be started at IPL if the BPXPRMxx parmlib member is in the IEASYSxx parmlib member's
OMVS=(xx,yy) list. To start it later, use the SETOMVS RESET=(xx) operator command.

Stopping zFS
In general, do not stop zFS. Stopping zFS is disruptive to applications that are using zFS file systems. zFS
stops automatically when you shut down z/OS UNIX. To shut down an LPAR or to re-IPL an LPAR, use the
MODIFY OMVS,SHUTDOWN operator command to shut down z/OS UNIX. This action synchronizes data to
the file systems and unmounts or moves ownership in a shared file system environment. A planned
system shutdown must include the unmount or move of all owned file systems and the shut down of zFS.
The MODIFY OMVS,SHUTDOWN command unmounts and moves the owned file systems and shuts down
zFS. For shutdown procedures using F OMVS,SHUTDOWN, see Planned shutdowns using F
OMVS,SHUTDOWN in z/OS UNIX System Services Planning.

zFS can be stopped using the MODIFY OMVS,STOPPFS=ZFS operator command. Automatic ownership
movement can occur for both the z/OS UNIX owner and the zFS owner. For information about the various
automove settings for z/OS UNIX file system ownership, see Using the automount facility in z/OS UNIX
System Services Planning. When z/OS UNIX notifies zFS that a shutdown is going to occur, zFS aggregate
ownership moves to other zFS systems in the shared file system environment. z/OS UNIX then processes
its file system ownership changes, or unmounts, as appropriate.

When zFS is stopped, you receive the following message (after replying Y to message BPXI078D):

nn BPXF032D FILESYSTYPE ZFS TERMINATED. REPLY ’R’ WHEN READY TO RESTART. REPLY ’I’ TO IGNORE.

When an LPAR is shut down without the orderly shutdown of zFS, it is likely that recovery actions
(automatic recovery on the next mount; if the mount fails, it might be necessary to manually run salvager)
will be necessary to bring zFS aggregates back to a consistent state. In addition, some file activity can be
lost.

To restart zFS, reply r to message nn. (For example, r 1,r). If you want zFS to remain stopped, you can
reply i to remove the prompt. In this case, zFS can be redefined later using the SETOMVS
RESET=(xx)operator command. However, this can result in zFS file systems becoming NOT ACTIVE. An
unmount and remount is required to activate a file system that is NOT ACTIVE. If you plan to restart zFS,
you should reply r to the message.

Note: Stopping zFS can have shared file system (sysplex) implications. See Chapter 5, “Using zFS in a
shared file system environment,” on page 47 for information about shared file systems.

If zFS has an internal failure, it typically does not terminate. It might disable an aggregate (see
“Diagnosing disabled aggregates” on page 99). If it is a case where it does terminate, normally zFS will
restart automatically. Otherwise, message BPXF032D (the same message you receive when the MODIFY
OMVS,STOPPFS=ZFS operator command is used) is issued and a reply is requested.

On z/OS V1R13 and later systems, if an internal problem occurs, zFS attempts an internal restart. It
internally remounts any zFS file systems that were locally mounted, without requiring any support from

© Copyright IBM Corp. 2001, 2021 17

z/OS UNIX. The zFS ownership for aggregates that are owned on the system that is internally restarted
might be moved (by zFS for sysplex-aware file systems) to another system. For more information, refer to
Step “10” on page 98.

Determining zFS status
To determine whether zFS is active, issue the D OMVS,PFS command. The column titled ST (for STatus)
contains an A if zFS is active. It contains an S (Stopped) if it is not.

To display zFS internal restart information, issue the MODIFY ZFS,QUERY,STATUS operator command.

Beginning in z/OS V1R11, you can issue D OMVS,P to display the state of the PFS, including the start or
exit timestamp. Message BPXO068I returns the PFS in one of the following possible states:
A

Active; the timestamp is the start time of the PFS.
I

Inactive. When the PFS is inactive with no timestamp, the PFS address space has not yet started.
When the PFS is inactive with timestamp, the PFS has stop at that time.

S
Stopped; it is waiting for a reply of R to restart or I to terminate the PFS.

U
Unavailable.

18 z/OS: z/OS File System Administration

Chapter 4. Creating and managing zFS file systems
using compatibility mode aggregates

A zFS file system is created in a zFS aggregate (which is a VSAM linear data set). In a compatibility mode
aggregate, the aggregate and the file system are created at the same time. For simplicity, we refer to a file
system in a compatibility mode aggregate as a compatibility mode file system, or just as a file system. A
compatibility mode file system is created by using the ioeagfmt utility, which is described in “ioeagfmt”
on page 116.

Creating a compatibility mode aggregate
Creating a compatibility mode aggregate is typically a two-step process.

1. First, use IDCAMS to create a VSAM linear data set.

Note: Carefully consider defining the aggregate as extended format, extended addressability, and with
a secondary allocation size. If you do not use these attributes in the beginning, to add them, you will
need to define and format a new zFS aggregate, migrate the data from the original file system into the
new one, unmount the original, and then mount the new one. You might want to extend beyond the 4 G
aggregate size because version 1.5 aggregates can be much larger than version 1.4 aggregates, or
because secondary extents are required to dynamically grow the aggregate, and dynamic grow
(aggrgrow) is the default. For more information, see “Dynamically growing a compatibility mode
aggregate” on page 24.

2. Then format the VSAM linear data set as a compatibility mode aggregate and create a file system in the
aggregate using ioeagfmt (see “ioeagfmt” on page 116). Before you can issue ioeagfmt, you must
have UPDATE authority to the VSAM linear data set. If you specified -owner, -group, or -perms to
override the default values, you must also be UID 0 or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIX UNIXPRIV class.

Beginning in z/OS V2R3, you do not have to explicitly format the VSAM linear data set if it is created with
the zfsadm define command, or if it is created with the ZFS keyword on the IDCAMS DEFINE CLUSTER
command. It will be automatically formatted the first time it is mounted. For more information about
aggregates being formatted during mount processing, see “MOUNT” on page 137.

Beginning in z/OS V2R1, ioeagfmt fails if the zFS PFS is not active on the system. In addition, if the zFS
started task does not have the TRUSTED attribute or the OPERATIONS attribute, the DFS user ID must
have at least ALTER authority to all VSAM linear data sets that contain zFS aggregates.

You can also create a compatibility mode aggregate by using the ISHELL, or the automount facility, or the
zfsadm define and zfsadm format commands.

• For more information about ISHELL, see ISHELL in z/OS UNIX System Services Command Reference.
• For more information about automount, see automount: Configure the automount facility in z/OS UNIX

System Services Command Reference.
• For more information about the zfsadm define command, see “zfsadm define” on page 174.
• For more information about the zfsadm format command, see “zfsadm format” on page 190.

The VSAM linear data set, the aggregate, and the file system all have the same name and that name is
equal to the VSAM linear data set cluster name. The zFS file system is then mounted into the z/OS UNIX
hierarchy.

Rule: The Control Interval (CI) size of a VSAM linear data set that is formatted as a zFS aggregate must be
4 K, which is the default for IDCAMS. As such, it is not specified in the following figure, which shows an
example of a job that creates a compatibility mode file system.

//USERIDA JOB ,'Compatibility Mode',
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)

© Copyright IBM Corp. 2001, 2021 19

//DEFINE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//AMSDUMP DD SYSOUT=H
//DASD0 DD DISP=OLD,UNIT=3390,VOL=SER=PRV000
//SYSIN DD *
 DEFINE CLUSTER (NAME(OMVS.PRV.COMPAT.AGGR001) -
 VOLUMES(PRV000) -
 ZFS CYL(25 0) SHAREOPTIONS(3))
/*
//CREATE EXEC PGM=IOEAGFMT,REGION=0M,
// PARM=('-aggregate OMVS.PRV.COMPAT.AGGR001 -compat')
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//*

The -compat parameter in the CREATE step tells ioeagfmt to create a compatibility mode file system.
The -compat parameter is the default, but ignored, and zFS always formats a compatibility mode file
system. The result of this job is a VSAM linear data set that is formatted as a zFS aggregate and contains
one zFS file system. The zFS file system has the same name as the zFS aggregate (and the VSAM linear
data set). The size of the zFS file system (that is, its available free space) is based on the size of the
aggregate.

//USERIDA JOB ,'Compatibility Mode',
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//DEFINE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=H
//SYSIN DD *
 DEFINE CLUSTER (NAME(OMVS.PRV.COMPAT.AGGR001) -
 VOLUMES(PRV000) -
 ZFS CYL(25 10) SHAREOPTIONS(3))
/*
//CREATE EXEC PGM=IOEFSUTL,REGION=0M,
// PARM=('format -aggregate OMVS.PRV.COMPAT.AGGR001')
//SYSPRINT DD SYSOUT=H
//*

Figure 2. Example job to create a compatibility mode file system using IOEFSUTL

The ioefsutl format utility can also be used to format a compatibility mode file system. It has options
similar to ioeagfmt and the same authority requirements. The -compat option is not needed or allowed.
The ioefsutl format utility only formats compatibility mode aggregates. You are encouraged to use
the ioefsutl format utility rather than the ioeagfmt utility.

The default for the size of the aggregate is the number of 8 KB blocks that fits in the primary allocation.
You can specify a -size option giving the number of 8 KB blocks for the aggregate.

• If you specify a number that is less than (or equal to) the number of blocks that fits into the primary
allocation, the primary allocation size is used.

• If you specify a number that is larger than the number of 8 KB blocks that fits into the primary
allocation, the VSAM linear data set is extended to the size specified if the total size will fit in the
primary allocation and a single extension.

A secondary extension cannot be used; instead, see “Growing a compatibility mode aggregate” on page
24. The single extension must be no larger than a single volume. This occurs during its initial formatting.
Sufficient space must be available on the volume. Multiple volumes can be specified on the DEFINE of the
VSAM linear data set. The multiple volumes are used during extension of the data set later. If you want to
create a multi-volume data set initially that is larger than two volumes, see “Creating a multi-volume
compatibility mode aggregate” on page 25. DFSMS decides when to allocate on these volumes during
extension. Any VSAM linear data set greater than 4 GB can be specified by using the extended format and
extended addressability capability in the data class of the data set. See z/OS DFSMS Using Data Sets for
information about VSAM data sets greater than 4 GB in size.

Restriction: zFS does not support the use of a striped VSAM linear data set as a zFS aggregate. If you
attempt to mount a compatibility mode file system that was previously formatted and is a striped VSAM
linear data set, it is mounted as read-only.

20 z/OS: z/OS File System Administration

There are several other options to use when you create a compatibility mode file system that set the
owner, group, and the permissions of the root directory.

• The -owner option specifies the owner of the root directory.
• The -group option specifies the group of the root directory.
• The -perms option specifies the permissions on the root directory.

Now, you can mount the zFS file system into the z/OS UNIX hierarchy with the TSO/E MOUNT command.
For example, the following command mounts the compatibility mode file system that was created.

MOUNT FILESYSTEM(’OMVS.PRV.COMPAT.AGGR001’) TYPE(ZFS) MODE(RDWR) MOUNTPOINT(’/usr/mountpt1’)

Alternatively, as the following example shows, you can use the z/OS UNIX mount shell command to
mount the compatibility mode file system that was created.

/usr/sbin/mount -t ZFS -f OMVS.PRV.COMPAT.AGGR001 /usr/mountpt1

These examples assume that the directory /usr/mountpt1 exists and is available to become a mount
point. For more information about mount points, see z/OS UNIX System Services Planning.

Using version 1.5 aggregates and extended (v5) directories
CAUTION: Do not use zFS version 1.5 aggregates until you have finished migrating all of your
systems to z/OS V2R1 or later. Version 1.5 aggregates are not supported on releases prior to z/OS
V2R1. All systems in a sypslex must be a V2R1 level or later before any version 1.5 aggregates on
any system in the sysplex are implemented.

Beginning in z/OS V2R1, zFS supports a new version aggregate, the version 1.5 aggregate. The current
aggregates are version 1.4 aggregates. Version 1.5 aggregates support extended (v5) directories.
Extended (v5) directories provide the following benefits:

• They can support larger directories with performance.
• They store names more efficiently than v4 directories.
• When names are removed from extended (v5) directories, the space is reclaimed, when possible, unlike

v4 directories where space is not reclaimed until the directory is removed.

Version 1.5 aggregates have a larger architected maximum size than version 1.4 aggregates
(approximately 16 TB versus approximately 4 TB). Also, extended (v5) directories can support more
subdirectories than v4 directories (4G-1 versus 64K-1).

Because version 1.5 aggregates will benefit all environments that consist of systems that are all at release
z/OS V2R1 or later, you are encouraged to use this function after all or your systems have been migrated
to z/OS V2R1 or later. Version 1.5 aggregates can contain both extended (v5) directories and v4
directories and either can be a subdirectory of the other, while version 1.4 aggregates cannot contain
extended (v5) directories. Version 1.5 aggregates can be mounted on directories that are contained in
version 1.4 aggregates, and the reverse is also allowed.

Creating a version 1.5 aggregate
A version 1.5 aggregate can be created using one of the following methods:

• Formatting a VSAM linear data set as a version 1.5 using the zFS ioefsutl format batch utility.
• Using the zFS ioeagfmt batch utility.
• Via the Format Aggregate API.
• Using the zfsadm format command.

You can specify the default version that is formatted by setting the IOEFSPRM configuration option
format_aggrversion to 4 or 5. The format_aggrversion value from the zFS PFS is used when any
formatting method is used without the -version4 or -version5 parameters. Beginning in z/OS V2R3,
formatting version 1.5 aggregates is the default.

Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates 21

The zFS format utilities ioeagfmt and ioefsutl format both request the value of the
format_aggrversion configuration option from the zFS kernel when determining the default aggregate
version for the format. If the zFS PFS is down, both utilities will simply fail. Formatting of a version 1.5
aggregate is not allowed when a z/OS V1R13 system is in a shared file system environment when using
the batch utility ioeagfmt, the zfsadm format command or the Format Aggregate API.

Following is an example of a job to create and format a version 1.5 aggregate:

//USERIDA JOB ,'Compatibility Mode',
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//DEFINE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//AMSDUMP DD SYSOUT=H
//DASD0 DD DISP=OLD,UNIT=3390,VOL=SER=PRV000
//SYSIN DD *
 DEFINE CLUSTER (NAME(OMVS.PRV.COMPAT.AGGR001) -
 VOLUMES(PRV000) -
 ZFS CYL(25 10) SHAREOPTIONS(3))
/*
//CREATE EXEC PGM=IOEFSUTL,REGION=0M,
// PARM=('format -aggregate OMVS.PRV.COMPAT.AGGR001 -version5')
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//*

The zfsadm format command can also be used to format a version 1.5 aggregate. For example:

zfsadm define -aggr OMVS.PRV.ZFS.AGGR005.LDS0005 -volumes PRV000 -cyl 10 5
IOEZ00248I VSAM linear dataset OMVS.PRV.ZFS.AGGR005.LDS0005 successfully created.
zfsadm format -aggr OMVS.PRV.ZFS.AGGR005.LDS0005 -version5
IOEZ00077I HFS-compatibility aggregate OMVS.PRV.ZFS.AGGR005.LDS0005 has
been successfully created

Converting an existing aggregate to version 1.5
An existing version 1.4 aggregate can be changed to a version 1.5 aggregate and, optionally, existing
directories that are contained in the aggregate can be converted to extended (v5) directories. Use any one
of the following methods to change an aggregate to version 1.5.

• Explicitly, for a mounted aggregate that uses the zfsadm convert -aggrversion command, or
• Automatically, on mount when the change_aggrversion_on_mount configuration option is on (set in

IOEPRMxx or using the zfsadm config command), or
• Automatically, on mount when the converttov5 configuration option is on (set in IOEPRMxx or using

the zfsadm config command), or
• Automatically, on mount when the CONVERTTOV5 MOUNT PARM is specified, or
• Offline, using the IOEFSUTL converttov5 batch utility with the -aggrversion_only option.

Note: Beginning in z/OS V2R3, the default value of change_aggrversion_on_mount is ON. The
CONVERTTOV5 option and MOUNT PARM will also cause accessed directories to be converted to
extended (v5) directories after the aggregate is converted to version 1.5.

An aggregate is not automatically changed if the NOCONVERTTOV5 MOUNT PARM is specified. An
aggregate is not explicitly or automatically changed if there are earlier release systems (prior to z/OS
V2R1) in the shared file system environment.

Following is an example of the zfsadm convert command to change a version 1.4 aggregate to a
version 1.5 aggregate without converting any directories to extended (v5) directories:

zfsadm convert -aggrversion OMVS.PRV.ZFS.AGGR005.LDS0005
IOEZ00810I Successfully changed aggregate OMVS.PRV.ZFS.AGGR005.LDS0005 to version 1.5

22 z/OS: z/OS File System Administration

Converting an existing v4 directory to an extended (v5) directory
Once an aggregate is a version 1.5 aggregate, new directories that are created in it will be extended (v5)
directories. Existing directories can be converted to extended (v5) directories:

• Explicitly, one at a time, for a mounted aggregate by using the zfsadm convert -path command, or
• Automatically, as they are accessed, for a mounted aggregate when the aggregate has the
converttov5 attribute, or

• Offline, converting all directories by using the ioefsutl converttov5 batch utility.

Existing directories in a version 1.5 aggregate are not automatically converted if the NOCONVERTTOV5
MOUNT PARM is specified. Explicit and offline directory conversion will change the aggregate from version
1.4 to 1.5, if necessary.

Following is an example of the zfsadm convert command to convert a v4 directory to an extended (v5)
directory:

zfsadm convert -path /home/suimgkp/zfsmnt5
IOEZ00791I Successfully converted directory /home/suimgkp/zfsmnt5 to version 5 format.

Converting a directory from version 1.4 to an extended (v5) directory requires both versions of the
directory to exist on disk at the same time, temporarily. If the aggregate becomes full during the
allocation of the new directory, a dynamic grow is attempted. If there is not enough space to complete the
conversion, the new directory is deleted and the conversion operation fails. See “Dynamically growing a
compatibility mode aggregate” on page 24 for information about controlling dynamic growth of an
aggregate.

When the conversion is completed, the old directory is deleted. The size of the resulting new directory will
vary based on the actual directory contents. In some cases, it may require more space than the original
directory. In other cases, it might require less space.

If a system outage occurs during a directory conversion, the directory will be made consistent during log
recovery processing. That is, either the old directory will exist or the new directory will exist, but both will
not exist.

Guidelines for v4 to v5 conversion
Extended (v5) directories have better performance than v4 directories of the same size. For optimal
performance after all systems at your site have been migrated to z/OS V2R1 or later, all of the directories
should be converted from v4 to v5 even though support will continue to be provided for v4 directories. To
convert selected file systems or directories, you can use automatic methods (such as specifying the
MOUNT parameters or by using the offline conversion utility). You can also convert them explicitly with
the zfsadm convert command.

If your installation exports zFS file systems to NFS, it is recommended that the zfsadm convert
command not be used for conversions for directories that are exported by these servers. In rare cases,
remote applications can get unexpected errors if a directory that is being manually converted is
simultaneously being accessed by NFS users. Use one of the other methods for the conversion, such as
offline conversion or the CONVERTTOV5 MOUNT parameter, for these file systems. These methods will
ensure that each individual directory is completely converted before it can be exported.

If you are not planning to convert all file systems to v5, then it is best to at least do the most active file
systems or the file systems with large directories. A directory will get a nontrivial benefit by conversion to
v5 if it has 10000 entries or more (a length of approximately 800 K or more). You can determine the most
active file systems by issuing MODIFY ZFS,QUERY,FILESETS or by using the wjsfsmon tool. The number
of entries in a directory can be determined by issuing the command df -t. The approximate rate of
conversion for the directories is between 3500 (for z9®) and 10000 (for zEC12) directory entries per
second, depending on your processor.

After you decide that a file system is going to be converted to v5, you need to decide what conversion
method to use. If the file system can be unmounted, the ioefsutl converttov5 batch utility or
MOUNT parameters can be used. If it cannot be unmounted and it is not exported by NFS servers, use the

Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates 23

zfsadm convert command. If it is exported by an NFS server, add the converttov5 attribute to the
mounted aggregate. See “Changing zFS attributes on a mounted zFS compatibility mode file system” on
page 39 for instructions about how to add the converttov5 attribute to the mounted file system.

Tip: For optimal performance when the file system is very large and the ioefsutl converttov5
function is used, specify a larger meta_cache_size for ioefsutl converttov5. The recommended
size is 256 M. Specify this option in the IOEFSPRM file for the IOEFSUTL program via the IOEZPRM DD
statement in the JCL that is used to run IOEFSUTL.

Migrating data to version 1.5 aggregates
Data can be migrated from HFS file systems into a version 1.5 aggregate in much the same manner as it
would be migrated into a version 1.4 aggregate. You can also copy data from a version 1.4 aggregate to a
version 1.5 aggregate with the z/OS UNIX shell command pax. For more information, see Chapter 7,
“Migrating data from HFS or zFS to zFS,” on page 61.

Note: Automatic conversion is disabled in the following situations:

• If the aggregate is salvaged.
• If the aggregate is quiesced by the zfsadm quiesce command or by the Quiesce Aggregate API.
• If DFSMSdss is performing a backup procedure and a quiesce occurs.

Growing a compatibility mode aggregate
If a compatibility mode aggregate becomes full, the administrator can grow the aggregate (that is, cause
an additional allocation to occur and format it to be part of the aggregate). This is accomplished with the
zfsadm grow command. There must be space available on the volume to extend the aggregate's VSAM
linear data set. The size that is specified on the zfsadm grow command must be larger than the current
size of the aggregate.

For example, suppose a two cylinder (primary allocation, 3390) aggregate has a total of 180 8-KB blocks
and a (potential) secondary allocation of one cylinder. 180 8-KB blocks is 1440 KB. A zfsadm aggrinfo
command for this aggregate might show 1440 KB. When you issue the zfsadm grow command with a
larger size, the file system becomes larger because DFSMS is called to allocate the additional DASD space.

zfsadm aggrinfo omvs.prv.aggr003.lds0003

OMVS.PRV.AGGR003.LDS0003 (R/W COMP): 1279 K free out of total 1440

zfsadm grow omvs.orv.aggr003.lds0003 -size 1440

IOEZ00173I Aggregate OMVS.PRV.AGGR003.LDS0003 successfully grown
OMVS.PRV.AGGR003.LDS0003 (R/W COMP): 1279 K free out of total 1440

In the next example, notice that the zfsadm grow command indicates success, but the aggregate was
not made any larger because the size specified on the command was the same as the existing size.

zfsadm grow omvs.prv.aggr003.lds0003 -size 1441

IOEZ00173I Aggregate OMVS.PRV.AGGR003.LDS0003 successfully grown
OMVS.PRV.AGGR003.LDS0003 (R/W COMP): 1999 K free out of total 2160

The aggregate now has a total size of 2160 KB. You can specify 0 for the size to get a secondary allocation
size extension. The file system free space has also been increased based on the new aggregate size.
Aggregates cannot be made smaller without copying the data to a new, smaller aggregate.

Dynamically growing a compatibility mode aggregate
An aggregate can be dynamically grown if it becomes full. The aggregate (that is, the VSAM linear data
set) must have secondary allocation that is specified when it is defined and space must be available on
the volume. The number of extensions that are allowed is based on VSAM rules set by DFSMS. For more

24 z/OS: z/OS File System Administration

information about the extension rules, see Extension to another DASD volume in z/OS DFSMS Using Data
Sets. The aggregate is extended when an operation cannot complete because the aggregate is full. If the
extension is successful, the operation is again transparently driven to the application.

An administrator can restrict aggregates from growing dynamically, either on an individual aggregate basis
or globally. To restrict dynamic growing of a specific aggregate, use the NOAGGRGROW parameter on the
MOUNT command. To globally restrict dynamic growing of all aggregates, specify the aggrgrow=off
option of the IOEFSPRM configurations option file (see “IOEFSPRM” on page 225).

If all systems in the shared file system environment are running release z/OS V2R3 or later, the aggrgrow
attribute of a mounted file system can be dynamically changed by using the zfsadm chaggr command.
See “zfsadm chaggr” on page 152 for more details about changing attributes of mounted file systems.

During the extension, a portion of the extension is formatted. Applications that cause new blocks to be
allocated or that are reading a file that is being extended will wait. Other applications will not wait.
Applications that must wait, will wait for the extension and the (portion) format. Look for HI-A-RBA, the
size of the data set in bytes, and HI-U-RBA, how much of it is formatted in bytes. If the aggregate has
previously been extended but not fully formatted (that is, the HI-U-RBA (or hi-used-RBA) is less than the
HI-A-RBA (or hi-allocated-RBA)), zFS will format another portion of the existing extension to make more
space available. You can determine the HI-U-RBA and HI-A-RBA by using the IDCAMS LISTCAT ALL utility
against the zFS aggregate and looking for HI-U-RBA and HI-A-RBA in the job output. Dividing HI-A-RBA or
HI-U-RBA by 8192 will convert them to the number of 8K blocks.

Each time zFS formats a portion of the extension or each time zFS dynamically grows the aggregate and
formats a portion of the extension, zFS issues message IOEZ00312I. Then it issues one of the following
messages:

• IOEZ00309I, when successful
• IOEZ00308E, when unsuccessful

When a dynamic extension fails (for example, because of insufficient space), zFS sets an internal indicator
to avoid attempting another dynamic extension. This indicator can be reset by a successful explicit grow
(for example, by using the zfsadm grow command) or by an unmount and mount of the file system.

Creating a multi-volume compatibility mode aggregate
Before you can create a large zFS aggregate (for example, ten full volumes), you must have the following
prerequisites:

• Ten empty volumes.
• A DFSMS DATACLASS that provides extended addressability (because the total size is greater than 4

GB).
• A JOB that defines and formats the aggregate.

Assuming that:

• Each volume is a 3390 with 3338 cylinders, and 3336 of those cylinders are free,
• There are 15 tracks per cylinder,
• And that you can get six 8-KB blocks per track (15 x 6 = 90 8 KB blocks per cylinder),

you should get 90 x 3336 = 300,240 8-KB blocks per volume and 10 x 300,240 = 3,002,400 8-KB blocks
in the aggregate. The example in the next paragraph is an example job that defines the VSAM linear data
set in the first step and formats it as a zFS aggregate in the second step. The FORMAT step formats the
primary allocation (3336 cylinders) and then extends the data set by the -grow amount (300,240 8-KB
blocks) ten times (one extend for each full volume) until it reaches the total -size amount (3,002,400 8
KB blocks).

Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates 25

In the following example, 10 full volumes are allocated and formatted by using the -size and the -grow
options on the IOEAGFMT step so that the result is a 10-volume (empty) file system. The -grow option is
needed in order to allow the specification of a grow increment size that is less than the size of a volume.

//USERIDA JOB ,'Multi-Volume',
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//DEFINE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//AMSDUMP DD SYSOUT=H
//SYSIN DD *
 DEFINE CLUSTER (NAME(OMVS.VOL10.COMPAT.AGGR001) -
 VOLUMES(PRV000 PRV001 PRV002 PRV003 PRV004 -
 PRV005 PRV006 PRV007 PRV008 PRV009) -
 DATACLASS(EXTATTR) -
 ZFS CYL(3336) SHAREOPTIONS(3))
/*
//FORMAT EXEC PGM=IOEAGFMT,REGION=0M,
// PARM=('-aggregate OMVS.VOL10.COMPAT.AGGR001 -compat -size 3002400 -gX
// row 300240')
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//*

As another example, you could define a VSAM linear data set as before with 10 volumes but with a
secondary allocation size of 3336 cylinders, as shown in the following example. Then, you could format
only the first volume by leaving out the -size and the -grow and let zFS dynamic secondary allocation
allocate and format the additional volumes (up to 9 more) as needed. The IOEPRMxx aggrgrow
configuration option must be on.

 //USERIDA JOB ,'Multi-Volume',
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//DEFINE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//AMSDUMP DD SYSOUT=H
//SYSIN DD *
 DEFINE CLUSTER (NAME(OMVS.VOL10.COMPAT.AGGR001) -
 VOLUMES(PRV000 PRV001 PRV002 PRV003 PRV004 -
 PRV005 PRV006 PRV007 PRV008 PRV009) -
 DATACLASS(EXTATTR) -
 ZFS CYL(3336 3336) SHAREOPTIONS(3))
/*
//FORMAT EXEC PGM=IOEAGFMT,REGION=0M,
// PARM=('-aggregate OMVS.VOL10.COMPAT.AGGR001 -compat')
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//*

Adding volumes to a compatibility mode aggregate
To add a candidate volume to a zFS aggregate, use the IDCAMS utility ALTER command with the
ADDVOLUMES parameter. An example job that adds two volumes to the (SMS-managed)
OMVS.ZFS.AGGR1 zFS aggregate is as follows:

//SUIMGVMA JOB (ACCTNO),'SYSPROG',CLASS=A,
// MSGCLASS=H,MSGLEVEL=(1,1),NOTIFY=&SYSUID
//STEP01 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 ALTER OMVS.ZFS.AGGR1.DATA -
 ADDVOLUMES(* *)
/*

In this case, DFSMS is choosing the particular candidate volumes. If you want to specify the volumes, use
their volume serials in place of the asterisks. For more information about IDCAMS ALTER ADDVOLUMES,

26 z/OS: z/OS File System Administration

see ALTER in z/OS DFSMS Access Method Services Commands. DFSMS states, if an ALTER ADDVOLUMES is
done to a data set already opened and allocated, the data set must be closed, unallocated, reallocated,
and reopened before VSAM can extend onto the newly added candidate volume.

For zFS, this means that if the zFS aggregate is already attached when the ALTER ADDVOLUMES is done, it
must be detached and attached again before zFS can extend to the newly added candidate volume.
Compatibility mode aggregates must be unmounted and mounted again (because that is when they are
detached and attached). You can use the remount capability of z/OS UNIX. For more information, see
Remounting a mounted file system in z/OS UNIX System Services Planning.

Increasing the size of a compatibility mode aggregate
If your zFS file system runs out of space, you have several options to increase its size.

• You can grow the aggregate. For more information, see “Growing a compatibility mode aggregate” on
page 24.

• If you cannot grow the aggregate (because, for example, there is no more room on the volume), you can
add a volume to the aggregate. For more information, see “Adding volumes to a compatibility mode
aggregate” on page 26.

• If you cannot grow the aggregate and you cannot add a volume (because, for example, you do not have
any more volumes available), you can copy the aggregate into a larger VSAM linear data set. There are
two ways to copy the data:

– You can copy each file and directory of the zFS aggregate to a larger data set.
– You can copy the physical blocks of the zFS aggregate to a larger data set.

Copying each file and directory of the aggregate to a larger data set
One method to increase the size of a zFS aggregate is to copy each file and directory of the aggregate to a
larger data set. Figure 3 on page 28 shows an example of this approach.

Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates 27

//SUIMGVMB JOB ,'EXPAND AGGR WITH PAX',
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//* Make sure you have no line numbers in this JCL
//DEFINE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=H
//SYSIN DD *
 DEFINE CLUSTER (NAME(PLEX.NEW.AGGR002.LDS0002) -
 ZFS CYL(100 5) SHAREOPTIONS(3) -
 VOLUMES(CFC000 CFC001))
/*
//FORMAT EXEC PGM=IOEAGFMT,REGION=0M,
//* On the next line, aggregate and compat must be lower case
// PARM=('-aggregate PLEX.NEW.AGGR002.LDS0002 -compat')
//SYSPRINT DD SYSOUT=H
//***
//** **
//** note - use a + sign at the end of each line to indicate there**
//** is another line to be processed. **
//** use a ; at the end of each COMMAND **
//** **
//** a single command can span multiple lines if each line **
//** ends in a +. when you have reached the end of the **
//** command, terminate the command with a ; **
//** **
//***
//PAX1 EXEC PGM=IKJEFT01,REGION=0M
//SYSTSPRT DD SYSOUT=*
//SYSEXEC DD DSN=SYS1.SBPXEXEC,DISP=SHR
//SYSTSIN DD *
 OSHELL /usr/sbin/mount -t ZFS -f PLEX.OLD.AGGR002.LDS0002 +
 /service2 ; +
 /usr/sbin/mount -t ZFS -f PLEX.NEW.AGGR002.LDS0002 /service3 ; +
 cd /service2 ; +
 pax -rwvCMX -p eW . /service3 ;
/*
//* The result of these next two steps should show that
//* More free space is available in the new file system
//AGGRINF1 EXEC PGM=IOEZADM,REGION=0M,
// PARM=('aggrinfo PLEX.OLD.AGGR002.LDS0002 -long')
//SYSPRINT DD SYSOUT=*
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
/*
//AGGRINF2 EXEC PGM=IOEZADM,REGION=0M,
// PARM=('aggrinfo PLEX.NEW.AGGR002.LDS0002 -long')
//SYSPRINT DD SYSOUT=*
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
/*

Figure 3. Sample job to copy each file and directory of an aggregate to a larger data set

This approach uses the pax command to copy the individual files and directories into an already
formatted and empty zFS file system. Both file systems must be mounted. pax uses the z/OS UNIX file
and directory APIs to read and write each individual file and directory of the hierarchy of the file system.
(It does not copy lower mounted file systems because of the -X and -M options.) You can use the ISHELL
command or the automount command with the allocany or allocuser keyword to create the new
larger aggregate to copy into with pax, because they format the aggregate.

If you are running this job on a system that is running z/OS V1R13 or later, and the file system was written
to using a prior release of z/OS, zFS might use more DASD space for the same data than it did on the prior
release. The increase in DASD space can occur for small files (1 KB in size or less) because beginning with
z/OS VR13 zFS does not store data in 1-KB fragments; instead, it stores data in 8-KB blocks. For example,
if the file system contained 1000 files that are 1 KB in size, zFS on z/OS V1R13 or later could use a
maximum of 10 cylinders more than on previous releases. You can determine how many files are in the
file system that are 1 KB or less by using the following z/OS UNIX command:

find mountpoint -size -3 -type f -xdev | wc -l

28 z/OS: z/OS File System Administration

After you successfully copy the data, when you are comfortable with the new, larger aggregate, you can
delete the old aggregate.

Copying the physical blocks of the aggregate to a larger data set
Another method to increase the size of a zFS aggregate is to copy the physical blocks of the aggregate to a
larger data set using the DFSMS REPRO command. This approach is normally faster than using the pax
command. However, do not format the target zFS data set before using the REPRO command. Figure 4 on
page 29 shows an example of this approach.

Restriction: zFS data sets that have key labels cannot be used with the REPRO command. For more
information about that restriction, see DEFINE CLUSTER in z/OS DFSMS Access Method Services
Commands.

//SUIMGVMB JOB ,'EXPAND AGGR WITH REPRO',
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//DEFINE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=H
//SYSIN DD *
 DEFINE CLUSTER (NAME(PLEX.NEW.AGGR002.LDS0002) -
 ZFS CYL(100 5) SHAREOPTIONS(3) -
 VOLUMES(CFC000 CFC001))
/*
//LCAT1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//* This step should show a HI-U-RBA of 0
//* for PLEX.NEW.AGGR002.LDS002
//SYSIN DD *
 LISTCAT ENTRIES(PLEX.OLD.AGGR002.LDS0002) -
 ALL
 LISTCAT ENTRIES(PLEX.NEW.AGGR002.LDS0002) -
 ALL
/*
//REPRO1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=H
//* The next line guarantees that the file system is not mounted
//IN1 DD DSN=PLEX.OLD.AGGR002.LDS0002,DISP=OLD
//SYSIN DD *
 REPRO -
 INFILE(IN1) -
 OUTDATASET(PLEX.NEW.AGGR002.LDS0002)
/*
//LCAT2 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//* This step should show the HI-U-RBA of
//* PLEX.NEW.AGGR002.LDS002 equal to the HI-U-RBA
//* of PLEX.OLD.AGGR002.LDS002
//SYSIN DD *
 LISTCAT ENTRIES(PLEX.OLD.AGGR002.LDS0002) -
 ALL
 LISTCAT ENTRIES(PLEX.NEW.AGGR002.LDS0002) -
 ALL
/*

Figure 4. Sample job to copy the physical blocks of an aggregate to a larger data set

Figure 5 on page 30 shows a zFS file system (PLEX.OLD.AGGR002.LDS0002) that is full and a newly-
defined zFS data set (PLEX.NEW.AGGR002.LDS0002 before the REPRO) that is larger.
PLEX.NEW.AGGR002.LDS0002 has a larger HI-A-RBA than PLEX.OLD.AGGR002.LDS0002. When the
blocks from PLEX.OLD.AGGR002.LDS0002 are copied into PLEX.NEW.AGGR002.LDS0002 using REPRO,
the result is PLEX.NEW.AGGR002.LDS0002 after REPRO. There is now room to add data to
PLEX.NEW.AGGR002.LDS0002.

Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates 29

HI-U-RBA = HI-A-RBA

PLEX.OLD.AGGR002.LDS0002

PLEX.NEW.AGGR002.LDS0002 before REPRO

PLEX.NEW.AGGR002.LDS0002 after REPRO

HI-A-RBA

HI-A-RBA

HI-A-RBA

HI-A-RBAHI-A-RBA

HI-U-RBA

HI-U-RBA – The high-used relative byte address indicates how many bytes were written by zFS.

HI-A-RBA – The high-allocated relative byte address indicates how many bytes could be written by zFS
into the current allocation.

HI-U-RBA = 0

HI-U-RBA < HI-A-RBA

HI-U-RBAHI-U-RBA

HI-U-RBA

Figure 5. Copying blocks from a full zFS data set into a larger data set

With this approach, the new VSAM linear data set must not be formatted as an empty zFS file system
before the REPRO command is used. (If the new data set was formatted, the REPRO would copy blocks to
the end of the primary allocation, not the beginning. The data blocks being copied contain all the file
system data and the file system information, so formatting is not necessary.) Neither file system needs to
be mounted. REPRO uses native VSAM calls to read and write the blocks.

Follow these guidelines:

• When you issue the REPRO command, do not use the z/OS UNIX ishell command or the z/OS UNIX
automount command with the allocany or allocuser keyword, because those commands will
automatically format the aggregate.

• Do not use this approach to copy an HFS file system to a zFS file system because you will be copying the
physical blocks of the file system (not the individual files) and the internal format of HFS file systems is
different than the internal format of zFS file systems.

Notice that the ZFS attribute is not set in the LISTCAT output for the target data set
(PLEX.NEW.AGGR002.LDS0002). It is set the first time the zFS file system is mounted read-write.

Now the new aggregate can grow into the available space in the allocated portion of the data set or even
extend to additional extents if there is space on the volume.

After you successfully copy the data, when you are comfortable with the new, larger aggregate, you can
delete the old aggregate.

Encrypting and compressing zFS file system data
New zFS file system data can be encrypted and compressed. The file system can be defined and
formatted so that any data added to them is automatically encrypted, compressed, or both. After a file
system is encrypted or compressed, additional new entries will also be encrypted or compressed. Use
format_encryption=on or format_compression=on in your IOEFSPRM configuration file if you want
data in all new zFS file systems to be automatically encrypted, compressed, or both. The default for both
is off.

30 z/OS: z/OS File System Administration

Existing zFS file system data can be encrypted and compressed. Encrypting or compressing an existing
file system is a long-running administrative command. Operator messages are issued during the
operation, and the progress of the operation can be monitored with FSINFO. During this process,
background tasks on the zFS owning system will process every object in the file system. Application
access is fully allowed to the file system during the operation.

The encryption process
The encryption process uses the VSAM encryption support that is provided by DFSMS. When zFS encrypts
a file system, it encrypts all security information, access control lists, symbolic link contents, and file
contents. For more detailed information about encrypting data sets, review the following documentation:

• Data set encryption in z/OS DFSMS Using Data Sets.
• Storage administration (STGADMIN) profiles in the FACILITY class in z/OS DFSMSdfp Storage

Administration. It contains information about the STGADMIN.SMS.ALLOW.DATASET.ENCRYPT profile.

Restrictions:

1. Do not enable encryption for any file system until you migrate all of your systems to z/OS V2R3.
Because encryption is not supported before z/OS V2R3, all systems in a sysplex must be at least z/OS
V2R3 before encryption can begin. Also, do not begin the encryption process until you know that no
system will be regressed to an earlier release.

Decryption is supported. However, the decryption process does not remove key labels. File systems
that have had key labels assigned cannot be mounted on a release prior to V2R3, even if those file
systems have not been encrypted or are currently not encrypted. Therefore, if there is no zFS system in
the shared file system environment that is eligible to own a file system with a key label assigned to it,
the file system will be inaccessible.

2. Version 1.4 aggregates cannot be encrypted.
3. Key labels cannot be changed or removed after you assign them.
4. You cannot encrypt or decrypt an aggregate that is in a partially compressed or partially decompressed

state. In other words, if compression or decompression was stopped for an aggregate, you cannot
encrypt or decrypt it until after the compression or decompression is completed.

5. New file systems should be defined with the DFSMS extended format option.

Because encryption affects performance of file I/O paths, user file cache performance is important. Even
though the default cache size is often sufficient, ensure that the zFS user cache is large enough. Also,
consider pairing encryption with compression. If the compression is done first, the amount of data to be
encrypted is smaller, which might slightly improve performance.

For any ICSF considerations when you enable encryption, see Starting and stopping ICSF in z/OS
Cryptographic Services ICSF System Programmer's Guide.

Creating a new file system that is always encrypted on DASD
You can create a new file system that is always encrypted on DASD by defining a VSAM data set that has a
key label. You can also format an encryption-eligible VSAM linear data set and create a zFS file system
that is always encrypted on disk.

Defining a VSAM linear data set that has a key label
You can define a new VSAM data set that is always eligible for encryption by assigning the data set a key
label.

Extended format VSAM data sets record the encryption status for each control interval in the dataset,
providing improved integrity checking. Therefore, it is recommended that new zFS data sets be defined
with the extended format option.

These requirements must be met when you assign a key label to a data set:

Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates 31

1. Integrated Cryptographic Service Facility (ICSF) must be active.
2. The key label should exist in ICSF.

To create a VSAM linear data set with a key label, use one of the following commands:

• The zfsadm define command with the -keylabel keyword.
• The IDCAMS command DEFINE CLUSTER command with the ZFS and KEYLABEL keywords.

In these two commands, the specification of a key label can be replaced with the specification of a data
class that has a key label.

If you are using the IDCAMS command DEFINE CLUSTER to create an aggregate that is to be encrypted,
using the ZFS keyword instead of LINEAR is strongly recommended. The encryption support provided by
DFSMS is normally only allowed for SMS-managed extended format data sets. zFS aggregates are exempt
from this restriction. Use of the ZFS keyword instead of LINEAR will allow key labels to be assigned to any
VSAM linear data set that is supported by zFS.

For more information about the DEFINE CLUSTER command, see DEFINE CLUSTER in z/OS DFSMS Access
Method Services Commands.

Formatting an encryption-eligible VSAM linear data set and creating a zFS file
system that is always encrypted on disk
You can format a VSAM linear data set that has a key label to create a zFS file system whose contents are
always encrypted on disk by using one of the following methods:

• Explicitly use the -encrypt keyword if you are using formatting methods ioeagfmt, ioefsutl
format, or the zfsadm format command.

• Use a global default with IOEFSPRM configuration option format_encryption=on.

To format an unencrypted file system that does not have a key label, you can override the IOEFSPRM
configuration option format_encryption=on by specifying the -noencrypt keyword.

To format a VSAM linear data set with a key label to create a zFS file system whose contents are not to be
encrypted on disk, you can override the IOEFSPRM configuration option format_encryption=on by
specifying the -noencrypt keyword.

If you format a VSAM linear data set that has a key label and do not use the -encrypt keyword or the
format_encryption=on configuration option, the contents of the resulting zFS file system will not be
encrypted on disk until you use the zfsadm encrypt command. Even though a zFS file system with a
key label might not be encrypted on disk, ICSF still needs to be active before zFS can mount it.

The following example is JCL for defining and formatting an aggregate with a key label.

//ZDEFFMT JOB ,'DEFINE AND FORMAT with ENCRYPTION',
// MSGCLASS=H,
// CLASS=A,
// TIME=(1440),MSGLEVEL=(1,1)
//*---
//* DEFINE FORMAT ENCRYPT
//*---
//*
//DEFINE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//AMSDUMP DD SYSOUT=H
//DASD0 DD DISP=OLD,UNIT=3390,VOL=SER=SMBRS3
//SYSIN DD *
 DEFINE CLUSTER (NAME(SUIMGNS.HIGHRISK.TEST) -
 ZFS CYL(2 0) SHAREOPTIONS(3) -
 KEYLABEL(PROTKEY.AES.SECURE.KEY.32BYTE))
/*
//CREATE EXEC PGM=IOEFSUTL,REGION=0M,
// PARM=('format -aggregate SUIMGNS.ENCRYPT.TEST -encrypt')
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H

32 z/OS: z/OS File System Administration

//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H

The following example uses zfsadm define to define a zFS aggregate with a key label.

zfsadm define -aggregate PLEX.DCEIMGNJ.ENC -keylabel PROTKEY.AES.SECURE.KEY.32BYTE -cyl 500 100
 IOEZ00248I VSAM linear dataset PLEX.DCEIMGNJ.ENC successfully created.

The following example uses zfsadm format to format a zFS aggregate with encryption.

zfsadm format -aggregate PLEX.DCEIMGNJ.ENC -encrypt
IOEZ00077I HFS-compatibility aggregate PLEX.DCEIMGNJ.ENC successfully created.

Encrypting existing file system data
Existing zFS file systems can be encrypted. The zFS aggregate that contains these file systems does not
need to be SMS-managed extended format.

Before file system data can be encrypted, these requirements must be met:

1. Integrated Cryptographic Service Facility (ICSF) must be active.
2. The file system that contains the data to be encrypted must be mounted in read/write mode.

Important: Before an existing file system has a key label assigned to it, or is encrypted for the first time,
do a full backup of the file system.

If you must back out to a release that is prior to V2R3, any file systems that are encrypted or have key
labels assigned to them cannot be owned on a system running the prior release. You may also need to
back out the file system by taking one of the following actions:

• Restore a version of the file system that was backed up prior to encrypting it or assigning a key label to
it.

• Create a new file system that does not have a key label assigned to it and follow the migration
procedures in Chapter 7, “Migrating data from HFS or zFS to zFS,” on page 61.

If you cancel an encryption that is in progress, the file system remains partially encrypted. However,
leaving file systems partially encrypted might have performance impacts. You can resume the encryption
later with another zfsadm encrypt command.

Use the zfsadm encrypt command to encrypt the existing file system. You can use the -cancel option
to cancel the encryption of the existing file system or reverse it with the zfsadm decrypt command. If
the file system does not have a key label, you can specify it when you are encrypting it with the zfsadm
encrypt command by specifying the -keylabel keyword.

The following example uses zfsadm encrypt to encrypt the data in an existing zFS aggregate.

zfsadm encrypt -aggregate PLEX.DCEIMGNJ.BIGENC -keylabel
PROTKEY.AES.SECURE.KEY.32BYTE
 IOEZ00877I Aggregate PLEX.DCEIMGNJ.BIGENC is successfully encrypted.

The following example uses the -cancel option of zfsadm encrypt to cancel the encryption of a zFS
aggregate.

zfsadm encrypt -aggregate PLEX.DCEIMGNJ.BIGENC -cancel
 IOEZ00892I Aggregate PLEX.DCEIMGNJ.BIGENC encrypt or decrypt successfully canceled.

Then use zfsadm fsinfo to display the encryption status:

zfsadm fsinfo -aggregate PLEX.DCEIMGNJ.BIGENC
File System Name: PLEX.DCEIMGNJ.BIGENC
*** owner information ***
..........
Status: RW,RS,EI,NC
...
...
Encrypt Progress: stopped, 23%

Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates 33

...
Legend: RW=Read-write, RS=Mounted RWSHARE, EI=Partially encrypted
NC=Not compressed

Monitoring and displaying the encryption status
Use the zfsadm fsinfo command to monitor the encryption status. To display the encryption status,
use either zfsadm fileinfo or zfsadm fsinfo.

The following example uses zfsadm fsinfo to monitor the encryption status:

zfsadm fsinfo -aggregate PLEX.DCEIMGNJ.BIGENC
File System Name: PLEX.DCEIMGNJ.BIGENC

 *** owner information ***

 Status: RW,RS,EI,NC
 ...
 ...
 Encrypt Progress: running, 23% complete started at Nov 21 14:54:40 2016 task 57F5E0
 ...

Legend: RW=Read-write, RS=Mounted RWSHARE, EI=Partially Encrypted
 NC=Not compressed

The following example uses zfsadm fileinfo to display the encryption status.

zfsadm fileinfo /tst/file
 path: /tst/file
 *** global data ***
 ...
 mtime Nov 2 11:18:35 2015 atime Nov 2 11:18:35 2015
 ctime Nov 2 11:18:35 2015 create time Nov 2 11:18:35 2015
 reftime none
 encrypted not compressed

The following example uses zfsadm fsinfo with the -basic option to display the encryption status.

zfsadm fsinfo -aggregate PLEX.DCEIMGNJ.ENC2 -basic
PLEX.DCEIMGNJ.ENC2 DCEIMGNJ RW,RS,EN,NC
Legend: RW=Read-write, RS=Mounted RWSHARE, EN=Encrypted, NC=Not compressed

The compression process
The compression process uses zEDC. The average amount of disk space that is saved per file averages
approximately 65%, depending on the type of data that is being compressed.

If you cancel a compression that is in progress, the zFS file system will remain partially compressed. In a
partially compressed file system, new files may or may not be compressed. You can resume the
compression later with another zfsadm compress command.

The compression process is not mandatory. If the compression of a file does not reduce space, the file is
left in its uncompressed format.

Restrictions:

1. Do not enable compression for any file system until you migrate all of your systems to z/OS V2R3. All
systems in a sysplex must be at least z/OS V2R3 before any file systems are compressed because
compression is not supported prior to z/OS V2R3. Also, do not use compression until you know that no
system will be regressed to a prior release. Compressed file systems cannot be mounted on a release
prior to V2R3. Therefore, if there is no zFS system in the shared file system environment that is eligible
to own a compressed file system, the file system will be inaccessible.

Decompression is supported if there are pre-V2R3 systems in the sysplex in order to allow the
compression to be backed out.

2. Only files larger than 8 K can be compressed. Directories and other control information inside the zFS
file system are not compressed.

34 z/OS: z/OS File System Administration

3. You cannot compress or decompress an aggregate that is in a partially encrypted or partially decrypted
state. In other words, if an encryption or decryption process was stopped for an aggregate, you cannot
compress or decompress that aggregate until after the encryption or decryption is completed.

Defining a new file system that is always compressed
The IOEFSPRM configuration option format_compression=on indicates a global default that is used by
all formatting methods when determining the default compression behavior while formatting a new file
system. This global compression default can be overridden by specifying the -nocompress keyword.

If IOEFSPRM configuration option format_compression=off is specified, all formatting methods can
explicitly specify the -compress keyword to format the file system with compression.

The following example is JCL for defining and compressing a new aggregate.

//ZDEFFMT JOB ,'DEF FORMAT COMPRESS',
// MSGCLASS=H,
// CLASS=A,
// TIME=(1440),MSGLEVEL=(1,1)
//*---
//* DEFINE FORMAT COMPRESS
//*---
//*
//DEFINE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//AMSDUMP DD SYSOUT=H
//DASD0 DD DISP=OLD,UNIT=3390,VOL=SER=SMBRS3
//SYSIN DD *
 DEFINE CLUSTER (NAME(SUIMGNS.HIGHRISK.TEST) -
 ZFS CYL(2 0) SHAREOPTIONS(3))
/*
//CREATE EXEC PGM=IOEFSUTL,REGION=0M,
// PARM=('format -aggregate SUIMGNS.COMPRESS.TEST -compress')
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H

The following example uses the zfsadm format command with the -compress option to compress the
new file system.

zfsadm format -aggregate PLEX.DCEIMGNJ.ENC -compress
 IOEZ00077I HFS-compatibility aggregate PLEX.DCEIMGNJ.ENC was successfully created.

Compressing existing file system data
Use the zfsadm compress command to compress existing file system data. You can cancel compression
with the -cancel option and reverse compression with the zfsadm decompress command.

Before file system data can be compressed, these requirements must be met:

• The file system that contains the data to be compressed must be mounted in read/write mode.
• To avoid performance issues when the file system data is compressed, ensure that the system has
sufficient zEDC capacity. For more information about performance analysis, see z/OS RMF User's Guide.

Important: IBM highly recommends backing up file systems before you begin the compression process.

Tips to improve performance:

1. If you are compressing data in a zFS aggregate, fixing the user file cache with the edcfixed option
often results in CPU savings, especially if enough real memory is available to support fixing the user
file cache and compression is used with zFS. If you are not compressing data in a zFS aggregate, then
the edcfixed option of the user file cache might slightly reduce the CPU.

2. The zEDC user cache limit that can be fixed with the edcfixed option is 14 G but might be less,
depending on real memory. To determine how much of the user file cache is fixed, use F
ZFS,QUERY,VM or zfsadm query -usercache.

Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates 35

3. For optimum performance, use the health check ZFS_VERIFY_COMPRESSION_HEALTH to determine
whether compression is being used and all user cache pages are registered with zEDC Express.

The following example uses the zfsadm compress command to compress the data in an existing
aggregate.

zfsadm compress -aggregate PLEX.DCEIMGNJ.BIGENC
IOEZ00899I Aggregate PLEX.DCEIMGNJ.BIGENC is successfully compressed.

The following example shows a file that was compressed.

zfsadm fileinfo -path testmtpt/file4
 path: /home/suimgju/C81500/testmtpt/file4
 *** global data ***
 fid 5,1 anode 291,1524
 length 24960 format BLOCKED
 1K blocks 8 permissions 755
 uid,gid 0,10 access acl 0,0
 dir model acl na file model acl na
 user audit F,F,F auditor audit N,N,N
 set sticky,uid,gid 0,0,0 seclabel none
 object type FILE object linkcount 1
 object genvalue 0 dir version na
 dir name count na dir data version na
 dir tree status na dir conversion na
 file format bits 0x0,0,0 file charset id 0x0
 file cver none charspec major,minor na
 direct blocks 0x00000007 0x80000401 0x80000000 0x80000000
 indirect blocks none
 mtime Jan 19 12:27:56 2017 atime Jan 19 12:27:56 2017
 ctime Jan 19 12:27:56 2017 create time Jan 19 12:27:56 2017
 reftime none
 not encrypted compressed 24K saved

The following example uses the zfsadm compress command with the -cancel option to cancel a
compression request.

zfsadm compress -aggregate PLEX.DCEIMGNJ.BIGENC -cancel
IOEZ00903I Aggregate PLEX.DCEIMGNJ.BIGENC compress or decompress successfully
canceled.

Then use zfsadm fsinfo to display the status:

Monitoring and displaying the compression status
Use the zfsadm fsinfo command to monitor the compression status. To display the compression
status, use either zfsadm fileinfo or zfsadm fsinfo.

The following example uses zfsadm fsinfo to monitor the compression status.

zfsadm fsinfo -aggregate PLEX.DCEIMGNJ.BIGENC

File System Name: PLEX.DCEIMGNJ.BIGENC

 *** owner information ***

 Status: RW,RS,NE,CI
 ...
 ...
 Compress Progress: running, 48% started at Nov 21 16:34:40 2016 task 57F5E0
 ...

Legend: RW=Read-write, RS=Mounted RWSHARE, NE=Not encrypted
 CI=Partially compressed

The following example uses zfsadm fsinfo with the -basic option to display the compression status.

zfsadm fsinfo -aggregate PLEX.DCEIMGNJ.BIGENC -basic
PLEX.DCEIMGNJ.BIGENC DCEIMGNJ RW,RS,EI,CO

36 z/OS: z/OS File System Administration

Legend: RW=Read-write, RS=Mounted RWSHARE, EI=Partially Encrypted
 CO=Compressed

The following example uses zfsadm query with the -compress option to monitor the compression
effectiveness and performance of zEDC services.

zfsadm query -compress

Compression calls: 246428 Avg. call time: 0.177
 KB input 13190960 KB output 1971456
Decompression calls: 509140 Avg. call time: 0.154
 KB input 4073128 KB output 21406072

The zfsadm fileinfo command shows an exact count of kilobytes saved for a file that is compressed.
The following example uses zfsadm fileinfo to display the compression status.

zfsadm fileinfo /tst/myfile
 path: /tst/myfile
 *** global data ***
 ...
 mtime Nov 2 11:21:01 2015 atime Nov 2 11:21:01 2015
 ctime Nov 2 11:21:01 2015 create time Nov 2 11:21:01 2015
 reftime none
 not encrypted compressed 4762K saved

Decreasing the size of a compatibility mode aggregate
If a compatibility mode aggregate becomes too large, the administrator, or user that mounted the
aggregate, can shrink the aggregate by using the zfsadm shrink command. Shrinking an aggregate
releases a specified amount of free space from the VSAM linear data set.

For example, you have an aggregate that is 2000000 K in size. The size can be determined by using the
zfsadm fsinfo command. This command also indicates the number of free 8 K blocks; in this example,
it indicates 11000 free 8 K blocks, for a total of 88000 K. That number indicates that the new size of the
aggregate must be in the range of approximately 1912008 K to 1999990 K. After the shrink operation is
completed, the aggregate VSAM linear data set is smaller and the amount of free space in the aggregate is
reduced by the difference between the old aggregate size and the new one.

The display:

zfsadm fsinfo -aggr omvs.prv.aggr003.lds0003

Part of the owner information could display:
 Size: 2000000K Free 8K Blocks: 11000

zfsadm shrink -aggr omvs.prv.aggr003.lds0003 -size 1950000K
 IOEZ00873I Aggregate OMVS.PRV.AGGR003.LDS0003 successfully shrunken.

zfsadm fsinfo -aggr omvs.prv.aggr003.lds0003

Part of the owner information could now show:

 Size: 1950000K Free 8K Blocks: 4750

When a shrink operation is requested for an aggregate, an IOEZ00881I action message is displayed on
the console. This message is removed when the shrink operation is completed or if the shrink operation is
interrupted by a shutdown, unmount with the force option, or a zfsadm shrink command with the -
cancel option specified.

The actual process of shrinking an aggregate can be lengthy because zFS must scan every object in the
file system to see whether it owns blocks in the portion of the aggregate to be released. If blocks are
found, they are moved to the remaining portion. zFS then changes the size of the aggregate to the
specified new size. After the size is changed, the DFSMShsm PARTREL service is called to release the
space. Even if the process of releasing the space fails, zFS continues to operate with the new aggregate
size.

Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates 37

Applications can continue to access the file system during the shrink operation, which can cause delays if
the application needs to access blocks that are being moved by the shrink operation. To avoid these
delays, it is recommended to shrink aggregates during periods of low file system activity, if possible.

Applications that are accessing the file system may also cause additional blocks to be allocated if data is
added to files, or if files or directories are added to the file system. These new blocks that are allocated
during a shrink operation are allocated in the portion aggregate that is to remain after the free space is
released. If the aggregate runs out of free blocks in the portion of the aggregate that is to remain after the
space is released, zFS will automatically increase the new size that was specified on the zfsadm shrink
command so that more free blocks will be made available. This process is called active increase. If active
increase causes the new size to go back to the original size, the shrink operation will be considered to
have failed. If active increase is not to be used during a shrink operation, the -noai keyword should be
specified on the zfsadm shrink command.

The size of the aggregate can be increased again with the zfsadm grow command. The aggregate can
also be dynamically grown if it becomes full, as explained in “Dynamically growing a compatibility mode
aggregate” on page 24. Any space that is still allocated to the data set is used first before another attempt
is made to allocate more space.

If you attempt to unmount a shrinking compatibility mode aggregate, the attempt fails unless you specify
unmount force.

For more information about shrinking aggregates, see “zfsadm shrink” on page 220.

Renaming or deleting a compatibility mode aggregate
To rename a compatibility mode aggregate, use the IDCAMS utility ALTER command with the NEWNAME
parameter. You cannot rename an aggregate if it is mounted.

After the rename is done, the name of the file system that is stored in the zFS aggregate will not match the
aggregate name. This is a requirement for compatibility mode zFS aggregates. To reconcile the file system
and aggregate name, the zFS file system must be mounted initially as read/write after the IDCAMS utility
RENAME is complete. This allows zFS to reconcile the file system name with the new aggregate name.
After the name is reconciled, the aggregate can then be mounted read-only.

The following example assumes that:

• The data component name is the same as the cluster name with DATA appended.
• You want to rename both the cluster name and the data component name.

//SUIMGVMS JOB (ACCTNO),'SYSPROG',CLASS=A,
// MSGCLASS=X,MSGLEVEL=(1,1),NOTIFY=&SYSUID
//STEP01 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 ALTER PLEX.JMS.AGGR006.LDS0006 -
 NEWNAME(PLEX.JMS.AGGR008.LDS0008)
 ALTER PLEX.JMS.AGGR006.LDS0006.* -
 NEWNAME(PLEX.JMS.AGGR008.LDS0008.*)
/*

To delete a compatibility mode aggregate, use the IDCAMS utility DELETE command. You cannot delete an
aggregate if it is mounted. The following example shows a sample job that deletes both the cluster name
and the data component.

//SUIMGVMD JOB (ACCTNO),'SYSPROG',CLASS=A,
// MSGCLASS=H,MSGLEVEL=(1,1),NOTIFY=&SYSUID
//STEP01 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DELETE PLEX.JMS.AGGR006.LDS0006
/*

For more information about IDCAMS ALTER and DELETE, see ALTER and DELETE in z/OS DFSMS Access
Method Services Commands.

38 z/OS: z/OS File System Administration

Changing zFS attributes on a mounted zFS compatibility mode file
system

zFS attributes are assigned to a zFS compatibility mode file system when it is mounted. The attributes can
be set by specifying a zFS MOUNT parameter or they can be set from the zFS default values of the system
where the primary mount occurs. These attributes, which are generally only meaningful for read/write
mounted file systems, include the following ones:

• AGGRFULL
• AGGRGROW
• CONVERTTOV5
• FSFULL
• RWSHARE
• NORWSHARE
• HA

These attributes typically remain with that file system until it is explicitly unmounted. When all systems
are at z/OS V2R3, some of these attributes can be changed dynamically with the zfsadm chaggr
command. Otherwise, they can only be changed when the file system is unmounted and remounted, as
indicated in the rest of this section. For more information about zfsadm chaggr, see “zfsadm chaggr”
on page 152.

If the file system's attributes were assigned from a zFS default set on the system, they can be changed in
the following situations:

• The file system is NORWSHARE and z/OS UNIX ownership moves to another system with a different zFS
default.

• The file system is remounted samemode and the z/OS UNIX owning system has a different default.
• The file system is remounted from read-only to read/write and the z/OS UNIX owning system has a

different default.
• The file system is NOAUTOMOVE and the system is coming up with a different default.

The RWSHARE and NORWSHARE attributes of a compatibility mode file system may also be changed if
they were assigned from a zFS default of the system on which they were mounted.

For example, the RWSHARE attribute of a file system can be changed to NORWSHARE in these situations:

• The file system is remounted from read-only to read/write and the z/OS UNIX owning system has a
NORWSHARE default.

• The file system is NOAUTOMOVE and the system is coming up with a NORWSHARE default.

Similarly, if the NORWSHARE attribute was assigned from a zFS default, it can be changed to RWSHARE in
the following situations:

• The file system has z/OS UNIX ownership moved to another system that has specified RWSHARE as the
default.

• The file system is remounted from read-only to read/write and the z/OS UNIX owning system has an
RWSHARE default.

• The file system is NOAUTOMOVE and the system is coming up with an RWSHARE default.

You can query the current default value of a zFS attribute by issuing the zfsadm configquery
command. For example, to query the default value of the following attributes, you can issue the following
commands:

zfsadm configquery -aggrfull
zfsadm configquery -converttov5
zfsadm configquery -fsfull
zfsadm configquery -aggrgrow

Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates 39

zfsadm configquery -sysplex_filesys_sharemode
zfsadm configquery -ha

You can change a zFS attribute on a mounted file system. To do so, take an appropriate action, as
described for the attribute that you want to change. For example, to change the NORWSHARE attribute of
a compatibility mode file system to RWSHARE, you can move the z/OS UNIX ownership of that file system
to a different system that specifies RWSHARE as the zFS default.

Also, as the following examples show, you can change the zFS default values by issuing the zfsadm
config command:

zfsadm config -aggrfull 95,5
zfsadm config -converttov5 on
zfsadm config -fsfull 90,10
zfsadm config -aggrgrow on
zfsadm config -sysplex_filesys_sharemode rwshare
zfsadm config -ha on

Tip: Generally, to avoid getting unexpected attribute changes, it is best to have the zFS default values be
the same on all members of the sysplex. However, if you want to change an attribute of a mounted file
system, you can temporarily change a zFS default and then cause one of the situations that was
described. For example, move the z/OS UNIX ownership of the file system to a different system where the
zFS default was temporarily changed, then change the default back to the original value. You can only
change a zFS attribute of a mounted file system if you did not specify the attribute in a MOUNT PARM.

Unmounting zFS file systems before copying or moving
When a user mounts (attaches) an aggregate to a particular system, zFS records the name of the system,
the sysplex name (when it is a sysplex), and a timestamp in the zFS aggregate in block zero of the
aggregate. While the aggregate is mounted, zFS updates the timestamp every 30 seconds. If another
system that is not in the same sysplex sharing the DASD attempts to mount the same aggregate, zFS on
that system recognizes that the system name in the aggregate is not blank and does not match this
system. In this case, zFS waits 65 seconds to see whether the timestamp is updated by the original
system.

• If the timestamp is updated in that 65-second period, zFS does not mount the aggregate and returns
ENXIO(X'8A') with reason code EF096058. This action prevents a system from writing to a zFS
aggregate that is mounted read/write on another system.

• If the timestamp is not updated, the mount succeeds after waiting for 65 seconds.

A similar situation might occur when a copy was made of a zFS aggregate or an entire DASD volume while
the zFS aggregates were mounted. In this case, when a mount is attempted of these copies, a 65-second
block zero wait might be seen for each mount and an IOEZ00807I message issued by zFS. If the PTF for
APAR OA59145 is applied, the 65-second wait for mounting a copy will not occur if the copy is done while
the zFS aggregates are being quiesced in the following situations:

• When the zfsadm quiesce command is issued.
• When the application is using the Quiesce Aggregate API. DFSMSdss calls the Quiesce Aggregate API

when logically copying or dumping a mounted zFS.

When a zFS aggregate is unmounted (detached), the system name and the timestamp are cleared. In this
case, the next mount does not wait because zFS knows that the aggregate is not mounted. If the
aggregate is being mounted on a different member in the same sysplex after a failure, zFS does not wait
because it recognizes that this is a different system that is in the same sysplex. If you do not unmount
(detach) a zFS aggregate before copying it or moving it to another system, you might cause zFS to wait
during mount unnecessarily and z/OS UNIX latch contention might occur.

Understanding zFS disk space allocation
Unlike releases prior to z/OS V1R13, data is not stored in 1 K fragments. Instead, the data is stored in 8 K
blocks. Releases z/OS V1R13 and later can read data that is stored in fragments; however, when the data

40 z/OS: z/OS File System Administration

is updated, it is moved into 8 K blocks. Note that because previous releases of zFS can read an 8 K block
that is not full, no toleration support is required on those systems. Also, in previous releases, when zFS
stored data in fragments, data from multiple files typically resided in separate 8 K blocks.

However, there are certain cases when z/OS V1R13 and later will require more DASD space than zFS in
previous releases. For example, if every file in the file system were 1 K or less, zFS on z/OS V1R13 or later
releases could require up to twice as much DASD storage as previous releases. As a second example,
because HFS uses 4 K blocks to store data and zFS uses 8 K blocks, if every file in the file system were 4K
or less, zFS R13 could require up to twice as much DASD space to store these files. As another example, if
the file system contained 1000 files that are 1 K in size, zFS in z/OS V1R13 and later releases could take a
maximum of 10 cylinders more than zFS in previous releases. Typically, however, any increase in the
DASD storage used by zFS V1R13 and later releases will be negligible. For example, the R13 version root
file system that is copied using zFS R13 takes approximately 2% more space than the same file system
copied using zFS R11. Note that zFS releases z/OS V1R13 and later packs multiple ACLs and symbolic
links into an 8 K block, which previous releases did not do.

Another result of moving fragments into 8-KB blocks is that the following situation can occur:

• A zFS file system is full, and
• It is zFS-owned on a V1R13 or later system, and
• It has no secondary allocation specified, or cannot extend because there is no space on the volume, and
• You try to remove some files in order to free up some space, but the remove fails due to return code

ENOSPC (133)

This failure can occur because you are trying to remove an entry from a directory that was created before
z/OS V1R13 and is smaller than 7 KB, so it is stored in fragments. But the file system is zFS-owned on a
z/OS V1R13 or later system and needs a free 8-KB block to do the remove. To resolve this problem, you
must explicitly grow the file system in order to make free 8-KB blocks available. You can do this even if the
zFS file system data set does not have a secondary allocation size specified. Free space on the volume is
required. For example:

rm /service6/testdir2/filea
rm: FSUM9195 cannot unlink entry "/service6/testdir2/filea":
EDC5133I No space left on device.
zfsadm aggrinfo PLEX.JMS.AGGR006.LDS0006
PLEX.JMS.AGGR006.LDS0006 (R/W COMP): 21 K free out of total 7200
zfsadm grow PLEX.JMS.AGGR006.LDS0006 7920
IOEZ00173I Aggregate PLEX.JMS.AGGR006.LDS0006 successfully grown
PLEX.JMS.AGGR006.LDS0006 (R/W COMP):741 K free out of total 7920
rm /service6/testdir2/filea
#

If you need to add a volume, you can add one using the IDCAMS ALTER command with the ADDVOLUMES
option. For more information, see “Adding volumes to a compatibility mode aggregate” on page 26.

A zFS aggregate is an array of 8-KB blocks. Three special objects are present in all zFS aggregates. These
objects take up space in an aggregate, which means that space cannot be used for user files:
Log file

Records metadata changes. By default, its size is 1% of the disk size. However, it will never be smaller
than 14 blocks and it will never be larger than 16,384 blocks (128 MB).

Bitmap
Lists the blocks that are free on disk. The file size depends on the size of the aggregate.

Aggregate File System List
Describes the file systems that are contained in the aggregate. For compatibility mode aggregates it is
usually only one 8-KB block.

The zfsadm aggrinfo command shows aggregate disk space usage. This is based on the number of 8-
KB blocks. It subtracts the space that is reserved for the previous three objects in its calculations (and
tells you this in the output). The zfsadm aggrinfo command shows output in units of 1-KB blocks. If
you use the -long option of the zfsadm aggrinfo command, it shows the number of free 8-K blocks,
the number of free 1 K fragments and the size (in K) taken up by the log file, the file system table, and the
bitmap.

Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates 41

The zFS threshold monitoring function aggrfull reports space usage based on total aggregate disk size.
It incorporates the space for the above three special objects when showing total disk space and amount
that is used on disk in its messages. The aggrfull message shows units in 8 K blocks.

The zfsadm aggrinfo command shows the free space and the total aggregate size in 1-KB units.

The df command shows the file system free space, but because the df command shows things in 512-
byte units, usually the df output for zFS is exactly twice the numbers that are shown for zfsadm
aggrinfo.

zFS stores files on disk in one of three ways:
inline

If the file is 52 bytes or less, it is stored in the same data structure on disk that holds the file status
(such as owner, size, and permissions). A file 52 bytes or less takes no extra disk space.

fragmented
On systems before z/OS V1R13, if the file is 7 KB or less and has never been larger than 7 KB, zFS
stores it in 1-KB fragments; as such, it is stored in part of an 8-KB block. Multiple small files can share
the same 8-KB block on disk. On z/OS releases z/OS V1R13 and later, zFS no longer stores files in 1-
KB fragments.

blocked
On systems before z/OS V1R13, if the file is over 7 KB, it is stored in one or more 8-KB blocks. On
releases z/OS V1R13 and later systems, if a file is over 52 bytes, it is stored in one or more 8-KB
blocks.

How data is stored on systems before z/OS V1R13
On systems before z/OS V1R13, zFS can store data in fragmented blocks to conserve disk space. On these
systems, each small file does not need to use a full 8-KB block of disk space. However, as a result of this
method of storing data, a problem can occur when data is stored using zFS. That is, the amount of free
space that is displayed by the z/OS UNIX df command might not give the entire picture of free space. The
df -k command displays free space in a file system in 1-KB units. In zFS, this space is a combination of
full 8-KB blocks plus the free 1-KB fragments in fragmented blocks. For example, as Figure 6 on page 42
shows, if there were two 8-KB blocks and twenty 1-KB blocks that are left, df -k reports 36 KB
available.

Figure 6. Allocating disk space (example 1)

Because this is a combination of 8-KB blocks and 1-KB blocks, it is possible that many 1-KB blocks are
available but no 8-KB blocks remain. As shown in Figure 7 on page 43 for example, if there were 0 8-KB
blocks left and 20 1-KB blocks available, df -k reports 20 KB available. If you try to create a 10-KB file,
you might think that there is plenty of space. However, a 10-KB file is larger than 7 KB, and therefore uses
full 8 KB blocks. Because there are no 8-KB blocks available, there is no room for a 10 KB file, even
though there is 20-KB free space.

42 z/OS: z/OS File System Administration

Figure 7. Allocating disk space (example 2)

Other rules can further restrict how free space is used. A file that is 7 KB must be stored in 7 contiguous
fragments. Therefore, even if there is 20 KB available in the file system, if there is no fragmented block
with 7 contiguous 1-KB blocks available, the file system will report that there is no space for the file. Also,
a file that is stored as fragments cannot share the same 8-KB block as a directory stored as fragments.

Fragments save disk space, but make space allocation more complicated. To provide the maximum
options for space allocation, you need to have free 8-KB blocks. The aggrfull option of MOUNT and
IOEFSPRM indicates the number of free 8-KB blocks. If you are out of 8-KB blocks, you will be limited in
how much additional file space that can be allocated in the file system. You should grow the aggregate or
allow it to be dynamically extended.

When a zFS compatibility mode aggregate becomes full, you can make more space available. This
happens automatically if you have specified aggrgrow for the aggregate and you specified a secondary
allocation size when you defined the aggregate (that is, the VSAM linear data set). You can increase the
size of the aggregate with the zfsadm grow command. Of course, in each of these cases, you must have
space available on the volume to extend into. Or, you might be able to erase some files from the file
system to free up some space.

Note that because of the difference between how HFS and zFS manage disk space and block sizes, certain
z/OS UNIX commands, such as df and du might display information differently.

Support for type 30 SMF record
The type 30 SMF record provides accounting information. z/OS UNIX contributes to them, in part, by
providing a count of the number of blocks that are read from file system disk blocks, or written to file
system disk blocks, during each operation performed in a UNIX file system by a user or an application.
The SMF30OFR and SMF30OFW fields of the SMF record contain these counts. The zFS PFS provides the
count of blocks that are involved in these I/O operations to z/OS UNIX in the OSI control block fields
readibc and writeibc.

Due to the aggressive caching that zFS does with the contents of the disk blocks, it is not possible for zFS
to provide an exact count of actual I/O operations that are done by each user or application. Instead, zFS
provides a weighted cost estimation of the number of disk blocks an operation could read or write. This
method of counting the blocks is not the same as that used by HFS, so comparisons of HFS versus zFS file
systems will not be accurate. This method of counting the blocks should be consistent enough to allow
the comparison of two users or applications accessing the same zFS file system. This will be true even if
the file system is mounted RWSHARE and accessed from two different systems that are sharing it.

Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates 43

Sharing zFS data in a non-shared file system sysplex
For information about sharing zFS data in a shared file system in a multisystem sysplex environment, see
Chapter 5, “Using zFS in a shared file system environment,” on page 47 and review “Unmounting zFS file
systems before copying or moving” on page 40.

The only fully supported way to share zFS data between systems in a non-shared file system sysplex
environment is read-only sharing, where a zFS file system is mounted read-only to each system. Results
are undefined when a zFS file system is mounted read/write to one system and mounted read-only on
another.

Minimum and maximum file system sizes
The minimum zFS compatibility mode aggregate size is six 3390 tracks, which hold thirty-six 8 KB blocks
(six 8 KB blocks per track × 6 tracks). In the example in Figure 8 on page 44, DFSMS allocates 7 tracks.
Six 8-KB blocks per track x 7 tracks is 42 8-KB blocks or 336 KB. This only leaves 184 KB of free space
available for files and directories. Small file systems tend to fill up quickly because of block and fragment
allocation and can appear to have free space when they really do not. (For more information, see
“Understanding zFS disk space allocation” on page 40). Using such small file systems is not a good idea.
You can permit the file system to grow automatically (you must have aggrgrow=on in the IOEFSPRM file,
which is the default, or in the MOUNT PARM. You must also have a secondary allocation specified on the
zfsadm define command, which is specified as 5 in Figure 8 on page 44). However, your log file size is
very small and might cause contention. The log file size cannot be increased after the aggregate is
formatted.

zfsadm define -aggr PLEX.JMS.AGGR006.LDS0006 -volumes CFC000 -tracks 6 6

IOEZ00248I VSAM linear dataset PLEX.JMS.AGGR006.LDS0006 successfully created.

zfsadm format PLEX.JMS.AGGR006.LDS0006

IOEZ00077I HFS-compatibility aggregate PLEX.JMS.AGGR006.LDS0006 has been successfully created
/usr/sbin/mount -t ZFS -f PLEX.JMS.AGGR006.LDS0006 -o 'RWSHARE' /service6
zfsadm aggrinfo PLEX.JMS.AGGR006.LDS0006 -long
PLEX.JMS.AGGR006.LDS0006 (R/W COMP): 184 K free out of total 336
version 1.4
auditfid C3C6C3F0 F0F200CC 0000
sysplex-aware
 23 free 8k blocks; 0 free 1K fragments
 112 K log file; 8 K filesystem table
 8 K bitmap file

Figure 8. Example of a secondary zfsadm define command

Version 1.5 aggregates
For a version 1.5 aggregate, the architected maximum size for compatibility mode aggregates is
approximately 16 TB (4 KB x 4 GB). If you use 3390 DASD that has 262,668 cylinders per volume, you can
create a compatibility mode aggregate of about 11,425,931,919,360 bytes.

262668 cylinders per volume
x 90 blocks per cylinder
x 8KB per block
x 59 volumes

10641 GB or 10.39 TB

Version 1.5 aggregates have a larger architected maximum size than version 1.4 aggregates
(approximately 16 TB versus approximately 4 TB). Also, extended (v5) directories can support more
subdirectories than v4 directories (4G-1 versus 64K-1).

Version 1.4 aggregates
For a version 1.4 aggregate, the architected maximum size for compatibility mode aggregates is
approximately 4 TB (1 KB x 4 GB). If you use 3390 DASD that has 65,520 cylinders per volume, you can
create a compatibility mode aggregate of about 2,850,088,550,400 bytes.

44 z/OS: z/OS File System Administration

65520 cylinders per volume
x 90 blocks per cylinder
x 8KB per block
x 59 volumes

2654 GB or 2.59 TB

Restriction: A zFS version 1.4 compatibility mode aggregate is limited to 4 TB even on extended address
volume (EAV) devices. A zFS version 1.5 compatibility mode aggregate is limited to 16 TB even on
extended address volume (EAV) devices.

The maximum number of objects (files, directories, and ACLs) in a zFS file system is 4 G. The maximum
size of a file is approximately 4 TB. The maximum size of a directory is 4 GB. There is a limit of 65,533
(64K -1) subdirectories in a directory for a v4 directory. There is a limit of 4,294,967,293 (4G-1)
subdirectories in a directory for an extended (v5) directory. The maximum number of names in a directory
is dependent on the length of the names. However, there is a known performance problem when you have
a large number of names (hundreds of thousands or millions) in a single zFS v4 directory. For best
performance, use an extended (v5) directory in a version 1.5 aggregate. See “Using version 1.5
aggregates and extended (v5) directories” on page 21 for information about extended (v5) directories. If
you must use a version 1.4 aggregate because you are still running releases prior to z/OS V2R1, try to
spread names among many directories.

Do not use version 1.5 aggregates until you are sure you will not run any releases before z/OS V2R1.

v4 directory considerations
For v4 directories only, if you have long response times, you can get a first indication whether you might
have a directory size problem by examining the output of the MODIFY ZFS,QUERY,KN operator command
or the z/OS UNIX zfsadm query -knpfs command. Look at the Avg Time field on the lines for
operations that require zFS to search through names of a directory (for example, zfs_lookup,
zfs_create, or zfs_remove). Typically, the average times should be on the order of a few milliseconds.
If they are relatively large (perhaps ten to a hundred times larger than that), it is possible that you have a
directory that is too large and is causing performance problems.

To determine how large a particular directory is (how many bytes the directory contains), use the ls -ld
command against the directory to display its size in bytes. For example, if you suspect /zfsmnt5/
testdir is too large, issue a command similar to the following one:

ls -ld /zfsmnt5/testdir
drwxr-xr-x 2 G0DOUG AUDIT 1638400 Jan 18 2007 /zfsmnt5/testdir

The output shows /zfsmnt5/testdir is over 1 MB and contains many names (or at one time contained
many names).

Space is not reclaimed when names are removed from a v4 directory. Therefore, you must look at the size
of the directory rather than the number of names it currently contains. To reclaim the space, you can
remove the directory rather than erasing names within it, or you can convert it to an extended (v5)
directory. So if the directory currently has few names, but is large, try using either one of the following
sets of commands to make a new directory:

mkdir /zfsmnt5/testdir2
cp /zfsmnt5/testdir/* /zfsmnt5/testdir2
rm -r /zfsmnt5/testdir
mv /zfsmnt5/testdir2 /zfsmnt5/testdir

 - or -

mkdir /zfsmnt5/testdir2
/samples/copytree /zfsmnt5/testdir /zfsmnt5/testdir2 (if testdir has subdirectories)
rm -r /zfsmnt5/testdir
mv /zfsmnt5/testdir2 /zfsmnt5/testdir

 - or -

Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates 45

zfsadm convert -path /zfsmnt5/testdir

If the large directory had mount points that are contained in it, you must unmount those file systems and
mount them onto the mount points in the new directory before you remove the large directory.

If the large directory is the root directory of a file system, you cannot remove it. You have two options:

• Copy the file system to another (new) file system and delete the original file system, or
• Convert the file system to a version 1.5 file system

See Chapter 7, “Migrating data from HFS or zFS to zFS,” on page 61 for information about copying one
file system to another. For information about converting an existing file system to version 1.5, see “Using
version 1.5 aggregates and extended (v5) directories” on page 21.

When you must have many file names in a single directory, it is best to use a version 1.5 directory for that
application.

46 z/OS: z/OS File System Administration

Chapter 5. Using zFS in a shared file system
environment

zFS supports a shared file system capability in a multisystem sysplex environment. The term shared file
system environment refers to a sysplex that has a specification of SYSPLEX(YES) in the BPXPRMxx parmlib
member. That is, users in a sysplex can access zFS data that is owned by another system in the sysplex.
For full sysplex support, zFS must be running on all systems in the sysplex in a shared file system
environment.

To better understand the terminology and concepts, review “Terminology and concepts” on page 4.

Overview of the shared file system environment
In a shared file system environment, file systems that are mounted read-only are always sysplex-aware.

Beginning with z/OS V1R13, zFS runs sysplex-aware on a file system basis (sysplex=filesys). That is,
a system running zFS V1R13 or later in a shared file system environment is always capable of mounting
zFS read/write file systems as sysplex-aware. The default is to mount all zFS read/write file systems as
non-sysplex aware. However, you can specify that you want any individual zFS read/write file system to be
sysplex-aware in one of two ways:

• You can specify the RWSHARE MOUNT PARM.
• You can specify the sysplex_filesys_sharemode=rwshare zFS configuration option in your

IOEFSPRM file. This option sets the default to be that all zFS read/write file systems are sysplex-aware,
unless you specify a MOUNT PARM of NORWSHARE to make a specific file system non-sysplex aware.

Beginning with z/OS V1R13, if you specify sysplex=on in your IOEFSPRM file, zFS runs with
sysplex=filesys; however, it internally sets the sysplex_filesys_sharemode value to rwshare (if
you did not explicitly specify a different sysplex_filesys_sharemode value in your IOEFSPRM file).
This behavior makes zFS read/write mounted file systems sysplex-aware by default. You should change
your sysplex specification to sysplex=filesys, and you should also specify
sysplex_filesys_sharemode=rwshare if you want zFS read/write file systems to be sysplex-aware
by default.

The following sections describe how the shared file system environment works using various
configurations and the commands for determining the file system owner.

Read-only mounted file systems
When a file system is mounted read-only (such as on SY2), the mount request is sent to the local physical
file system (in this case, zFS) and zFS opens the file system data set (for read). If the mount is successful
on that system, z/OS UNIX records the mount and sends a signal to the other sysplex member systems to
issue a "catch-up" mount on each system. Each z/OS UNIX on each other system then reads the couple
data set (CDS) and determines that it needs to send a mount request to the local zFS for that file system.
Each "local mount" causes zFS to open the data set (for read). In this way, the mount on SY2 causes the
file system to be mounted on every member of the sysplex.

© Copyright IBM Corp. 2001, 2021 47

Read-only

z/OS UNIX

zFS

z/OS UNIX

Application

SY1

z/OS UNIX

owner

zFS

SY2

zFS

z/OS UNIX

SY3

z/OS UNIX

Application

z/OS UNIX

Application

Local mount
or request

Function ship

LEGEND

zFS sysplex-aware
for read-write

Figure 9. Sysplex-aware file system (read-only)

For read-only mounted file systems, file requests are sent directly to the local physical file system, which
directly reads the file system data on DASD (see Figure 9 on page 48). That means each zFS on each
system has the zFS file system opened (for read) and directly accesses the data. Read-only mounted file
systems are referred to as being sysplex-aware.

zFS support for read/write file systems with different levels of
sysplex-awareness

zFS allows individual zFS read/write file systems to be mounted sysplex-aware or non-sysplex aware.
During mount processing, the sysplex-awareness of an individual zFS read/write file system can be
controlled by the value that is specified on the mount PARM for that file system or by the
sysplex_filesys_sharemode option that is specified in IOEFSPRM. Table 1 on page 48 summarizes
how the sysplex awareness is determined.

Table 1. Determining sysplex-awareness for zFS read/write file systems

MOUNT PARM Resulting awareness of the zFS read/write file system

RWSHARE Sysplex-aware

NORWSHARE Non-sysplex aware

None specified Determined by the value, if any, specified on the sysplex_filesys_sharemode
option.

• rwshare. The file system is sysplex-aware.
• norwshare. The file system is non-sysplex aware.
• If a value is not specified, the file system defaults to be non-sysplex aware.

Figure 10 on page 49 shows one file system that is mounted NORWSHARE and the other mounted
RWSHARE. They are both owned by z/OS UNIX on SY2. The NORWSHARE file system is a non-sysplex
aware file system; it is only locally mounted on the z/OS UNIX owner and requests from z/OS UNIX clients
are function shipped to the z/OS UNIX owner by z/OS UNIX.

• A df -v command for the NORWSHARE file system (FS1) from SY1 would display Client=Y, or a D
OMVS,F command would display CLIENT=YES. The other file system is mounted RWSHARE. It is a
sysplex-aware file system; it is locally mounted on all systems and z/OS UNIX does not normally
function ship requests to the z/OS UNIX owner.

• A df -;v command for the RWSHARE file system (FS2) from SY1 would display Client=N, or a D
OMVS,F command would display CLIENT=N.

The following example shows the mount of a zFS read/write file system with a mount PARM of RWSHARE:

48 z/OS: z/OS File System Administration

MOUNT FILESYSTEM('OMVS.PRV.COMPAT.AGGR001') TYPE(ZFS) MODE(RDWR)
MOUNTPOINT('/usr/mountpt1') PARM('RWSHARE')

zFS-enhanced sysplex-aware support
Beginning in z/OS V1R13, zFS provides enhanced sysplex-aware support. When a zFS read/write file
system is mounted sysplex-aware in a shared file system environment where all systems are running z/OS
V1R13 or later, zFS can directly read and write zFS data from all of the V1R13 or later systems. If both the
owning system and the requesting system are running z/OS V1R13 or later (and the file system is sysplex-
aware), zFS directly accesses the file system. While zFS data is directly read and written, zFS metadata is
normally read and written through the zFS owning system (SY2 in Figure 10 on page 49). In some cases,
zFS metadata can be directly read.

z/OS UNIX

zFS

z/OS UNIX

zFS

SY1

zFS
owner

SY2

zFS

z/OS UNIX

zFS

SY3

Local mount
or request

LEGEND

Direct I/O for
sysplex-aware

z/OS UNIX
owner

z/OS UNIX
application

z/OS UNIX
application

z/OS UNIX
application

Non-sysplex
aware

owner(fs1) owner(fs2)

owner(fs2)

FS1 FS2

Read-write
RWSHARE

Read-write
NORWSHARE

Figure 10. zFS read/write file systems sysplex-aware and non-sysplex aware on a file system basis.

In the figure, FS2 is being directly accessed from all z/OS V1R13 or later systems.

There are some cases when an application running on a system (SY1) that is doing direct I/O can be
affected by problems on the zFS owning system (SY2) such as a failing system or having I/O failures on
the owning system during metadata updates. The application can also be affected if it needs to traverse a
higher level directory contained in a file system that is owned by the failing system.

zFS ownership versus z/OS UNIX ownership of file systems
For zFS read/write sysplex-aware file systems, zFS takes responsibility for determining how to access the
data. This means that zFS must have the concept of a file system owner to coordinate file requests. That
system is the zFS owner. z/OS UNIX has its indication of owner, which is called the z/OS UNIX owner. The
zFS owner is independent of the z/OS UNIX owner. The zFS owner is the system that coordinates file
access. The z/OS UNIX owner generally does not have any performance implications when zFS runs
sysplex-aware because file requests are sent to the local zFS rather than being function shipped to the
z/OS UNIX owner. There are some cases when the z/OS UNIX owner is relevant (see “When is the z/OS
UNIX owner important?” on page 51).

In Figure 11 on page 50, SY2 is the z/OS UNIX owner and the zFS owner. This is typically the case for the
system where the mount was issued. If SY2 goes down, a new zFS owner is chosen randomly (such as
SY3) and a new z/OS UNIX owner is chosen randomly (such as SY1) assuming it was mounted with
AUTOMOVE. Figure 11 on page 50 shows the situation after SY2 has come back up. (zFS on SY1
communicates directly with zFS on SY3.) The fact that SY1 is the z/OS UNIX owner is not important for
performance in this case.

For zFS non-sysplex aware file systems, the z/OS UNIX owner and the zFS owner are always the same
system.

Chapter 5. Using zFS in a shared file system environment 49

Figure 11. zFS sysplex-aware file system with new owner

Determining the file system owner
To determine the zFS owner of a zFS file system, use the zfsadm lsaggr command. To determine the
z/OS UNIX owner, use the following commands:

• df -v shell command
• D OMVS,F operator command
• F BPXOINIT,FILESYS=D,ALL operator command

The following figure shows the output of the zfsadm lsaggr command and the df -v command after
the file system was mounted.

zfsadm lsaggr
IOEZ00106I A total of 1 aggregates are attached
PLEX.JMS.AGGR008.LARGE08 SY2 R/W

df -v
Mounted on Filesystem Avail/Total Files Status
/zfsmnt5 (PLEX.JMS.AGGR008.LARGE08) 2853944/3745440 4294917290 Available
ZFS, Read/Write, Device:26, ACLS=Y
File System Owner : SY2 Automove=Y Client=N
Filetag : T=off codeset=0
Aggregate Name : PLEX.JMS.AGGR008.LARGE08

Figure 12. zfsadm lsaggr and df -v output after mount

The next figure shows the output of the D OMVS,F command after the file system was mounted.

D OMVS,F
BPXO045I 14.38.11 DISPLAY OMVS
OMVS 000E ACTIVE OMVS=(P0,VM)
TYPENAME DEVICE ----------STATUS----------- MODE MOUNTED LATCHES
ZFS 26 ACTIVE RDWR 02/02/2011 L=55
 NAME=PLEX.JMS.AGGR008.LARGE08 14.37.44 Q=0
 PATH=/zfsmnt5
 OWNER=SY2 AUTOMOVE=Y CLIENT=N

Figure 13. D OMVS,F output after mount

The next figure shows the output of the zfsadm lsaggr command and the df -v command after the
file system was moved (as shown in Figure 11 on page 50) by both z/OS UNIX and zFS and SY2 has come
back up. The zfsadm lsaggr and df -v commands are issued from SY2:

50 z/OS: z/OS File System Administration

zfsadm lsaggr
IOEZ00106I A total of 1 aggregates are attached
PLEX.JMS.AGGR008.LARGE08 SY3 R/W

df -v
Mounted on Filesystem Avail/Total Files Status
/zfsmnt5 (PLEX.JMS.AGGR008.LARGE08) 2853944/3745440 4294917290 Available
ZFS, Read/Write, Device:26, ACLS=Y
File System Owner : SY1 Automove=Y Client=N
Filetag : T=off codeset=0
Aggregate Name : PLEX.JMS.AGGR008.LARGE08

Figure 14. zfsadm lsaggr and df -v output after movement

The next figure shows the output of the D OMVS,F operator command after the file system was moved.
Notice two important points:

• The zFS owner (SY3) and the z/OS UNIX owner (SY1) are different.
• The last df -v command reports that SY2 is not a client, even though SY2 is not the z/OS UNIX owner.

D OMVS,F
BPXO045I 14.38.11 DISPLAY OMVS
OMVS 000E ACTIVE OMVS=(P0,VM)
TYPENAME DEVICE ----------STATUS----------- MODE MOUNTED LATCHES
ZFS 26 ACTIVE RDWR 02/02/2011 L=55
 NAME=PLEX.JMS.AGGR008.LARGE08 14.37.44 Q=0
 PATH=/zfsmnt5
 OWNER=SY1 AUTOMOVE=Y CLIENT=N

Figure 15. D OMVS,F output after movement

This situation occurs because the zFS file system is sysplex-aware and file requests are not function
shipped by z/OS UNIX. Rather, the file requests are handled by zFS and metadata updates are sent to the
zFS owner. Each local catch-up mount causes zFS to open the file system data set for read/write, and
each system is prepared to read and write the file system. Because the file system is opened on each
system, each system prepares to take ownership of the file system if that becomes necessary.

Tip: You can use the DISPLAY GRS system command to determine the zFS owner of a zFS file system. Use
the RNAME for either the read-only or read/write file system. For example, issue the following command
to display the system name of the zFS owner as the exclusive owner of the resource name.

D GRS,RES=(SYSZIOEZ,IOEZLT.file_system_name)

For more information, see the serialization summary and list of ENQs in Serialization summary in z/OS
MVS Diagnosis: Reference.

When is the z/OS UNIX owner important?
The z/OS UNIX owner is important when a zFS read/write file system is non-sysplex aware. In this case,
all file requests are handled through z/OS UNIX function shipping to the z/OS UNIX owning system. The
z/OS UNIX owner and the zFS owner are always the same system.

When a zFS sysplex-aware file system is mounted, z/OS UNIX causes the file system to be locally
mounted on each system (where zFS is running sysplex-aware). These are called catch-up mounts. If a
local catch-up mount fails (for example, because the DASD is not accessible from that system), then z/OS
UNIX treats that system (such as SY1) as a client and function ships requests to the z/OS UNIX owner
(SY2). The system (SY1) might issue message BPXF221I. In this case, a df -v command issued from SY1
indicates Client=Y for that file system. In turn, zFS directly accesses the file system and function ships
metadata updates to the zFS owner, if the zFS owner is a different system than the z/OS UNIX owner. In
this case, it is not different (for example, see Figure 16 on page 52).

The zFS owner can be different than the z/OS UNIX owner. In this case, the request is function shipped by
z/OS UNIX (from SY1) to the z/OS UNIX owner (SY2) and then is handled by direct access to the file
system. Metadata updates will be function shipped by zFS to the zFS owner.

Chapter 5. Using zFS in a shared file system environment 51

Similarly, if a local mount fails in the read-only mount case, z/OS UNIX treats that system as a client and
function ships (the read) requests to the z/OS UNIX owning system. zFS does not typically function ship in
the read-only case regardless of which system is the zFS owner.

Read-write

z/OS UNIX

zFS

z/OS UNIX

cache

SY1

zFS
owner

SY2

z/OS UNIX

zFS

z/OS UNIX

cache

SY3

z/OS UNIX
owner

z/OS UNIX
application

z/OS UNIX
application

z/OS UNIX
application

Local mount
or request

Function ship

LEGEND

zFS sysplex-aware
for read-write

Figure 16. File system ownership when mount fails

Dynamic movement of the zFS owner
For zFS read/write sysplex-aware file systems, an important aspect of performance is knowing which
system is the zFS owner. The zFS owner is the system that handles metadata updates to the file system.
zFS automatically moves the zFS owner among zFS systems, based on the amount of activity at the zFS
owner from each system. The frequency of the dynamic ownership movement varies, depending on the
zFS level. Ownership moves less often than on systems that are running previous levels of the z/OS
system. File requests do not fail as a result of dynamic aggregate movement. New requests are
suspended until the aggregate is moved and then requests are allowed to complete. The system produces
the following messages, for example:

Source system
22.19.12 DCEIMGVN IOEZ00548I Requesting that DCEIMGVM takeover aggregate PLEX.JMS.AGGR006.LDS0006 LDS0006
(requests: local 2, new owner 1202 total 1204

Target system
22.19.12 DCEIMGVM IOEZ00388I Aggregate takeover being attempted for aggregate PLEX.JMS.AGGR006.LDS0006
22.19.12 DCEIMGVM IOEZ00044I Aggregate PLEX.JMS.AGGR006.LDS0006 attached successfully.

In message IOEZ00548I, local requests is the number of requests on the source system during the
measurement period. New owner requests is the number of requests from the target system during the
measurement period. Total requests is the total number of requests from all systems during the
measurement period. (Total requests can be greater than the sum of the local requests and the new
owner requests). This information is provided to aid in problem determination.

For zFS sysplex-aware file systems, zFS aggregate movement is independent of z/OS UNIX ownership
movement except for the cases that are discussed later in this section. When z/OS UNIX ownership
movement occurs because of the mount AUTOMOVE specification (for example, AUTOMOVE or
AUTOMOVE(INCLUDE,SY1,SY2) or AUTOMOVE(EXCLUDE,SY1,SY2)), the z/OS UNIX ownership movement
is as expected. Because z/OS UNIX sends requests directly to the local zFS system, the z/OS UNIX
ownership movement does not change the way that the zFS aggregate is accessed. z/OS UNIX ownership
movement between zFS sysplex-aware file systems that have local mounts does not change how the file
system is accessed.

Certain z/OS UNIX automove settings will change file system access.

• If the NOAUTOMOVE setting is used, the file system is made unavailable. In other words, the file system
becomes unowned. In that situation, z/OS UNIX denies requests for file access.

• If the UNMOUNT setting is used, the file system is unmounted across the sysplex. Any file access will
occur on the underlying file system.

52 z/OS: z/OS File System Administration

Tip: Mount system-specific zFS file systems with the UNMOUNT setting instead of the NOAUTOMOVE
setting.

Remember the following facts about the relationship between z/OS UNIX ownership movement and zFS
aggregate ownership movement:

• z/OS UNIX controls whether any access exists at all.
• zFS ownership controls which system updates the metadata.

If a zFS read/write file system is non-sysplex aware, then z/OS UNIX controls movement of zFS read/write
mounted file systems as in prior releases for a shared file system environment and the z/OS UNIX owner
and the zFS owner are always the same.

For zFS read/write sysplex-aware file systems, zFS ownership can be moved dynamically in three
situations:

1. For performance reasons,
2. When zFS or z/OS UNIX is shut down, or
3. When a system outage exists that was caused by an abnormal shutdown or an internal restart of zFS.

An abnormal shutdown occurs if, for example, zFS is canceled or if zFS abends.

For systems that are z/OS V2R3 or later, and any prior release system that has honor_syslist=on, zFS
takes the z/OS UNIX automove options into consideration when determining whether to move zFS
ownership. If zFS ownership is to be moved, the z/OS UNIX automove system lists are used to determine
which systems are eligible to become the new zFS owner. For more information about system lists, see
Using system lists in z/OS UNIX System Services Planning.

Tip: In order for the z/OS UNIX automove options to be used consistently throughout the entire sysplex,
each system in the sysplex is required to have honor_syslist=on or be at least at the V2R3 level.

When all systems in the sysplex are release z/OS V2R3 or later, or a prior release with
honor_syslist=on, zFS will not move ownership of read/write sysplex-aware file systems that have
z/OS UNIX automove options UNMOUNT or NOAUTOMOVE. It also will not move ownership to systems
that are excluded by a z/OS UNIX automove system list. zFS ownership will move only to systems that are
included by a z/OS UNIX automove system list. z/OS UNIX uses the list of included systems, as
determined by the automove system list, as a priority ordered list. zFS considers the list as a list of eligible
systems with no priority given to any system based on its order in the list. The automove INCLUDE system
list can also have a wildcard (*) in it. In that situation, from the zFS viewpoint, any system with a local
mount is eligible to become the new zFS owner. Again, from the zFS viewpoint, the absence of a z/OS
UNIX automove system list also means that any system with a local mount is eligible to become the new
zFS owner.

When all systems in the sysplex are at release z/OS V2R3 or later, or at a prior release with
honor_syslist=on, you can create subgroups of systems that own specific zFS read/write sysplex-
aware file systems by including the members of the subgroup of systems in a z/OS UNIX automove
INCLUDE system list. You can also prevent systems from becoming the zFS owner of certain file systems
by using a z/OS UNIX automove EXCLUDE system list. To keep zFS ownership of a specific file system on a
specific system, use the z/OS UNIX automove option NOAUTOMOVE, UNMOUNT, or a system INCLUDE list
with that one system name specified in it.

Additionally, when movement is occurring for performance reasons, zFS-owning systems that are at the
V2R4 level or at the V2R3 level with APAR OA56145 applied, will only move ownership to other V2R4
systems or V2R3 systems that have APAR OA56145 applied.

When movement is occurring because zFS or z/OS UNIX is being shut down, zFS-owning systems that are
at the V2R4 level or at the V2R3 level with APAR OA56145 applied, will first attempt to move ownership
to other V2R4 systems or V2R3 systems that have APAR OA56145 applied, as previously described. If no
eligible system is found that is at the V2R4 level or at the level with APAR OA56145, ownership can move
to any other eligible system in the sysplex.

Chapter 5. Using zFS in a shared file system environment 53

Considerations when using zFS in a shared file system
environment

The following considerations apply when using zFS in a sysplex in shared file system mode:

• The file system hierarchy appears different when viewed from systems with zFS mounted file systems
than it does from those systems not running zFS. The path name traversal through zFS mount points
have different results in such cases because the zFS file system is not mounted on those systems not
running zFS.

• zFS file systems that are owned by another system are accessible from a member of the sysplex that is
running zFS.

• zFS compatibility mode file systems can be automoved and automounted. A zFS compatibility mode file
system can only be automoved to a system where zFS is running.

• To share IOEFSPRM across a sysplex, configuration options that specify data set names should use
system symbols in the names. This needs to be done for data sets that zFS writes into, such as the data
sets specified by configuration options trace_dsn or msg_output_dsn. It is also allowed, but not
necessary, to use system symbols in the names of data sets that zFS reads data from, such as the data
set specified by the configuration option debug_settings_dsn. For more information, see Chapter
12, “The zFS configuration options file (IOEPRMxx or IOEFSPRM),” on page 225.

In this case, you should use the &SYSNAME system variable in the IOEZPRM DD of the ZFS PROC to
specify a different IOEFSPRM for different systems.

If you are not specifying a msg_output_dsn or a trace_dsn (or you can use system symbols), and
you use the same options for all ZFS PFSs on all systems, you can share the same IOEFSPRM across
systems.

If you want to share IOEFSPRM and you want to specify data set names in IOEFSPRM, you might be
able to use system symbols. For example, if you have sysplex member systems SY1 and SY2, and you
have allocated trace data sets named USERA.SY1.ZFS.TRACE and USERA.SY2.ZFS.TRACE, you can
specify trace_dsn=USERA.&SYSNAME..ZFS.TRACE in your shared IOEFSPRM.

As a preferred alternative to the IOEZPRM DDNAME specification, the IOEFSPRM member can be
specified as a true PARMLIB member. In this case, the member has the name IOEPRMxx, where xx is
specified in the parmlib member list. It is possible to have multiple IOEPRMxx members and it is also
possible to have an IOEPRMxx member that are shared among all members of the sysplex and another
IOEPRMxx member that contains options that are specific to a particular sysplex member. See
“IOEFSPRM” on page 225 for more information about IOEPRMxx.

The following information describes z/OS UNIX considerations when some or all systems are running zFS:

• All systems running zFS see zFS compatibility mode file systems. The file system hierarchy appears
differently when viewed from systems with zFS mounted compatibility mode file systems than it does
from those systems that are not running zFS. The path name traversal through zFS mount points have
different results in such cases because the zFS compatibility mode file system is not mounted on those
systems that are not running zFS.

• If a system running zFS is brought down:

– zFS compatibility mode file systems owned by the system that can be automoved are automoved to
another system running zFS. If this function fails to find another owner, the file system becomes
unowned. IBM recommends mounting zFS file systems with UNMOUNT instead of NOAUTOMOVE.

– zFS compatibility mode file systems that are NOAUTOMOVE, become unowned.
– zFS compatibility mode file systems that are unowned are not visible in the file system hierarchy, but

can be seen from a D OMVS,F command. To recover a zFS compatibility mode file system that is
mounted and unowned, the zFS compatibility mode file system must be unmounted.

– The unowned zFS compatibility mode file systems can be recovered if the original owning system is
brought back into the sysplex.

• If zFS is brought down on one system in the sysplex:

54 z/OS: z/OS File System Administration

– zFS compatibility mode file systems owned by the system that can be automoved are automoved to
another system running zFS. If this function does not find another z/OS UNIX owner, the zFS
compatibility mode file system, and all file systems mounted under it, are unmounted in the sysplex.

– zFS compatibility mode file systems that are NOAUTOMOVE and, all file systems mounted under
them, are unmounted in the sysplex.

– When zFS is down on one system (SY1) in the sysplex, z/OS UNIX does not function ship any zFS
compatibility mode file system that is subsequently mounted on another system. That file system is
not visible from SY1. zFS can be brought up again on that system by responding R to the BPXF032D
prompt. When this occurs, mounted file system visibility is established by one of the following
methods:

- If the zFS file system is non-sysplex aware, z/OS UNIX function shipping is established
- If zFS file system is sysplex-aware, the zFS file system is locally mounted

– When a zFS is brought down after a compatibility mode file system is mounted, the file system either
continues to be function shipped or becomes function shipped. When zFS is brought back up on that
system, the file system either:

- Continues to be function shipped, when the zFS file system is non-sysplex aware
- Is locally mounted, when the zFS file system is sysplex-aware

zfsadm commands work across the shared file system environment. You can display and modify zFS
compatibility mode aggregates and file systems using zfsadm from any member of the sysplex,
regardless of which member owns the aggregate.

Specifying the high availability option for read/write sysplex-
aware file systems

With the zFS high availability option, if the file system owner experiences an outage, applications from
other systems that are accessing that particular file system are not affected. File systems such as
WebSphere Application Server and CICS that do not make frequent directory operations from non-owning
systems might find the high availability option useful.

To designate a zFS file system as high availability, you have two choices:

• Specify the HA option in the MOUNT parameter of the BPXPRMxx parmlib member. See “MOUNT” on
page 137.

• Use the HA=ON option in the IOEFSPRM file. See “IOEFSPRM” on page 225.

To dynamically enable or disable the high availability function for a file system, use the zfsadm chaggr
command. See “zfsadm chaggr” on page 152.

Important: Do not use the HA option or have the IOEFSPRM option default to ON unless all sysplex
members have the PTF for APAR OA57508 applied.

Usage notes:

1. You cannot use the high availability option if there are systems in the sysplex that are not at the 2.4
level or are at the 2.3 level without APAR OA57508 applied. Even if the IOEFSPRM HA option is set so
that high availability is enabled by default and if HA is specified in the mount parameter, zFS will still
consider the file system to be non-high availability.

2. If a high availability file system is mounted in the sysplex, systems in the sysplex that do not have the
PTF for APAR OA57508 applied will not be allowed to initialize. If those systems must be initialized,
you will have to either unmount the high availability file systems or use the zfsadm chaggr
command to remove the high availability option from the file systems. The zfsadm fsinfo command
can be used to determine which file systems are mounted with the high availability option. However,
the high availability option might be ignored in certain situations. For more information, see Usage note
6.

Chapter 5. Using zFS in a shared file system environment 55

3. In a high availability file system, applications that are creating or updating files will not see errors if the
owning system goes down. However, if the application is working with a FIFO special file, it will see
errors if the owning system goes down.

4. To ensure that applications do not receive errors, use the high availability option when you are
mounting any file system that is accessed by applications in a parallel sysplex. Also, include the file
systems in a higher level in the mount tree. The high availability option is not needed for file systems
that are mounted read-only. However, the high availability option might be ignored in certain
situations. For more information, see Usage note 6.

5. The high availability option is not needed for file systems that are mounted with the noautomove or
unmount automove options. Those file systems are not accessed by other systems if the owning
system is terminated.

6. The high availability option will provide no added benefit for file systems that are mounted read-only or
read/write file systems that are mounted NORWSHARE. If the global HA=ON option is specified in the
zFS parmlib IOEFSPRM, zFS will ignore it. zfsadm fsinfo will still show that these file systems are
high availability if the option was set when they were mounted. If the mount mode for the file system is
changed to RWSHARE, this high availability option will take effect.

7. If the high availability option is used, disk synchronization of the internal log file in the file system
occurs more often. An increase in the response time of metadata (any file system data that is not the
contents of user files) operations for requests from sysplex client systems will occur. Applications on
the owning system do not need to synchronize the log file. However, because the log file is shared,
workloads that frequently update the directories from non-owning systems of the file system will
experience slower performance on both the client systems and the owning system. If performance is
critical, the high availability option might not be a good choice.

56 z/OS: z/OS File System Administration

Chapter 6. Copying or performing a backup of a zFS

CAUTION: Do not perform any type of COPY or DUMP operation of DASD that contains a mounted
zFS file system that is not quiesced, or that is mounted on a system that is not a member of the
same GRS configuration as the system from which the COPY or DUMP operation is being done.
Doing so might result in the copy being a corrupted (or unusable) zFS file system. For additional
information about DFSMSdss logical DUMP and COPY utilities, see Dumping zFS data sets in z/OS
DFSMSdss Storage Administration.

You can back up a zFS aggregate using a DFSMSdss logical dump. DFSMSdss automatically performs a
quiesce of the mounted zFS aggregate before dumping the data set and an unquiesce when the dump
ends. Before performing a backup, review the information in “Unmounting zFS file systems before copying
or moving” on page 40 and the following guidelines.

Review the following guidelines before performing a backup of zFS:

1. Do not specify TOL(ENQF) when backing up zFS aggregates because it can cause corruption of the file
system.

2. Full volume dumps of volumes that contain mounted zFS file systems will not quiesce the file systems.
As a result, all file systems that reside on the volume must be unmounted before performing a full
volume dump.

3. The term sysplex as it applies to zFS means a sysplex that supports the z/OS UNIX shared file system
environment. That is, a sysplex that has a BPXPRMxx specification of SYSPLEX(YES).

4. If a quiesce is not done before the backup of a mounted file system, corruption of the file system can
result. If you are using a different program or different commands than shown in “Backing up a zFS
aggregate” on page 57, verify that a quiesce is done (automatically by the backup program) while the
back up is occurring. If it is not, then you need to unmount the file system before backing it up or
supply a before and after job step to quiesce and then unquiesce the aggregate before and after the
backup. The steps are similar to the following figure:

//*---
//* THIS STEP QUIESCES THE AGGREGATE.
//*---
//QUIESCE EXEC PGM=IOEZADM,REGION=0M,
// PARM=('quiesce -aggregate hlq.ZFS.AGGR004')
//*
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//*
//*---
//* THIS STEP UNQUIESCES THE AGGREGATE.
//*---
//UQUIESCE EXEC PGM=IOEZADM,REGION=0M,
// PARM=('unquiesce -aggregate hlq.ZFS.AGGR004')
//*
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//*

Figure 17. Steps for quiesce and unquiesce

Backing up a zFS aggregate
The following figure shows an example of a job for backing up a zFS aggregate (and all the file systems).
Ensure that the size of the target sequential data set has sufficient space. For additional information about
the DUMP command and its keywords, see DUMP command in z/OS DFSMSdfp Storage Administration.

Important: Do not specify TOL(ENQF) when backing up zFS aggregates.

© Copyright IBM Corp. 2001, 2021 57

//ZFSBKUP1 JOB (OS390),'PROGRAMMER',CLASS=A,
// MSGCLASS=X,MSGLEVEL=(1,1)
//*---
//* THIS JOB QUIESCES A ZFS AGGREGATE, DUMPS IT, THEN UNQUIESCES IT.
//*---
//DUMP EXEC PGM=ADRDSSU,REGION=4096K
//SYSPRINT DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//OUT DD DSN=hlq.AGGR004.BACKUP,
// DISP=(NEW,CATLG,DELETE),SPACE=(CYL,(5,1),RLSE)
//SYSIN DD *
 DUMP DATASET(INCLUDE(hlq.ZFS.AGGR004)) -
 RESET -
 OUTDD(OUT)
/*
//

Leading blanks are required before the control statements (DUMP, RESET, OUTDD).

Figure 18. Job to back up a zFS aggregate

Restoring an aggregate with DFSMSdss logical restore
Use DFSMSdss logical restore to restore a zFS aggregate. If the original aggregate (in the example,
hlq.ZFS.AGGR004) still exists, the aggregate is restored into a new aggregate (in the example,
OMVS.PRV.AGGR005.LDS0005). The following figure is an example of a job to restore a zFS aggregate.

//ZFSREST1 JOB (OS390),'PROGRAMMER',CLASS=A,
// MSGCLASS=X,MSGLEVEL=(1,1)
//*---
//* THIS JOB RESTORES A ZFS AGGREGATE.
//*---
//ZFSREST EXEC PGM=ADRDSSU,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//INDS DD DISP=SHR,DSN=hlq.AGGR004.BACKUP
//SYSIN DD *
 RESTORE DATASET(INCLUDE(**)) -
 CATALOG -
 RENAMEU(-
 hlq.ZFS.AGGR004, -
 OMVS.PRV.AGGR005.LDS0005) -
) -
 WRITECHECK -
 INDD(INDS)
/*
//

Leading blanks are required before the control statements (RESTORE, CATALOG, RENAMU).

Figure 19. Job to restore a zFS aggregate

For a compatibility mode aggregate, perform the following steps after the aggregate is restored:

1. Unmount the original aggregate (in this case, hlq.ZFS.AGGR004) if it still exists (this also detaches
it).

2. Mount the file system in the restored aggregate (in this case, OMVS.PRV.AGGR005.LDS0005).

The following figure is an example of a job to perform a logical restore of a zFS aggregate using DFSMSdss
by replacing the existing aggregate. The backup is restored into the original aggregate (in this case,
hlq.ZFS.AGGR004). The aggregate cannot be mounted (or attached) during the restore operation.

58 z/OS: z/OS File System Administration

//ZFSREST2 JOB (OS390),'PROGRAMMER',CLASS=A,
// MSGCLASS=X,MSGLEVEL=(1,1)
//*---
//* THIS JOB RESTORES A ZFS AGGREGATE.
//*---
//ZFSREST EXEC PGM=ADRDSSU,REGION=0M
//SYSPRINT DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//INDS DD DISP=SHR,DSN=hlq.AGGR004.BACKUP
//SYSIN DD *
 RESTORE DATASET(INCLUDE(hlq.ZFS.AGGR004)) -
 CATALOG -
 REPLACE -
 WRITECHECK -
 INDD(INDS)
/*
//

Figure 20. Job to restore a zFS aggregate with replace

Leading blanks are required before the control statements (RESTORE, CATALOG, RENAMU).

For more information about DFSMSdss logical restore, see RESTORE command for DFSMSdss in z/OS
DFSMSdss Storage Administration.

Beginning in z/OS V2R1, zFS enhanced its support for the backup change activity flag in the VTOC
(D1DSCHA in the Format 1/8). This flag indicates to a program (like DFSMShsm) whether the backup of a
file system is needed (that is, data in the file system has been modified since the last backup).

In releases before z/OS V2R1, zFS would set the change activity flag when a file system was mounted.
This is no longer done. Essentially, zFS will cause the setting of the change activity bit in the following
cases:

1. During the first write after a MOUNT
2. During the first write after a successful backup (that is, after a successful reset of the change activity

flag)
3. During log recovery (that is, during the replay of an aggregate log during the next mount after a system

failure)
4. During salvager operation if the log is replayed or a repair is made
5. During administrative operations such as grow, shrink, encrypt, decrypt, compress, decompress, and

setauditfid.

The formatting of a new zFS aggregate will not cause the setting of the change activity flag. If an existing
zFS aggregate is formatted using the -overwrite option, then the change activity flag is set.

Beginning in z/OS V2R1, zFS supplies an application programming interface that can be used to reset the
change activity flag for a file system. This interface is intended to be used by DFSMSdss during a backup
of a mounted zFS file system. For more information, see “Reset Backup Flag” on page 336.

Chapter 6. Copying or performing a backup of a zFS 59

60 z/OS: z/OS File System Administration

Chapter 7. Migrating data from HFS or zFS to zFS

You can migrate data from HFS to zFS, or you might need to copy data efficiently from an existing zFS file
system to a larger one, or to one that is created with different attributes (for example, if you want to have
a secondary allocation to enable it to be dynamically grown).

The bpxwmigf command is the recommended method to use when migrating in-use HFS file systems to
zFS. For more information about bpxwmigf, see bpxwmigf - Migrate HFS or zFS file systems to zFS in
z/OS UNIX System Services Command Reference.

The number of storage blocks that are needed to store a zFS file system might not be exactly the same as
the amount needed for HFS. For example, starting with z/OS V1R13, zFS uses 8 K blocks to contain small
files; however, HFS uses 4 K blocks. In this case, some HFS file systems might need additional storage
(possibly twice as much) when they are migrated to zFS. For more information about migrating data from
HFS to zFS, see z/OS Upgrade Workflow.

© Copyright IBM Corp. 2001, 2021 61

62 z/OS: z/OS File System Administration

Chapter 8. Performance and debugging

This section discusses performance tuning techniques and what should be done if a problem occurs that
requires IBM service assistance. The examples are for illustrative purposes only.

In releases prior to z/OS V2R2, it was typical for the 4-byte counters used in the reports to wrap. Starting
in z/OS V2R2, 8-byte counters are used, which allows for monitoring of much longer time periods. The
numbers being output into the report fields still use the same field width sizes, with the addition of a letter
to indicate the units of the number if it is too large to fit into the field.

Letter Unit of number

b The number should be multiplied by 1,000,000,000.

G The number should be multiplied by 1,073,741,824.

t The number should be multiplied by 1000.

T The number should be multiplied by 1,099,511,627,776.

tr The number should be multiplied by 1,000,000,000,000.

m The number should be multiplied by 1,000,000.

K The number should be multiplied by 1024.

M The number should be multiplied by 1,048,576.

Performance tuning
zFS performance depends on many factors. zFS provides performance information to help the
administrator determine bottlenecks. The IOEFSPRM file contains many tuning options that can be
adjusted. The output of the system modify zfs,query commands provide feedback about the
operation of zFS. This section describes those IOEFSPRM options and the operator commands that relate
to performance.

It is always better for performance in a shared file system environment if you can mount a file system
read-only rather than read/write. For example, the sysplex root file system and the version file systems
perform better if they are mounted read-only. For more information, see Sharing file systems in a sysplex
in z/OS UNIX System Services Planning.

In addition, if a file system is mounted read/write, but accessed mainly from one system (for instance,
SY1), it is better for performance if that file system is z/OS UNIX owned on that system (SY1). To keep
z/OS UNIX ownership on SY1, you might want to mount it with the UNMOUNT option or the
NOAUTOMOVE option. If you must use the AUTOMOVE option because you want the file system to remain
available even when SY1 is down, move z/OS UNIX ownership of that file system back to SY1 when SY1
becomes available. This is not necessary for zFS read/write file systems that are sysplex-aware.

zFS performance can be optimized by tailoring the size of its caches to reduce I/O rates and pathlength. It
is also important to monitor DASD performance to ensure that there are no volumes or channels that are
pushed beyond their capacity. The following sections describe areas to consider when tuning zFS
performance.

Total cache size
In releases prior to z/OS V2R2, the total storage size available for all the caches in the zFS address space
had to be less than 2 GB. If the cache sizes specified in the IOEFSPRM file were too large, zFS would
terminate. In addition to the zFS address space caches, storage is necessary for processing file requests
and for the products zFS might use. As a result, the total address space cache storage was restricted to
approximately 1.5 GB. Use modify zfs,query,storage to determine the total allocated zFS storage.

© Copyright IBM Corp. 2001, 2021 63

See “STOR” on page 79 for more information about determining how much of the available zFS address
space storage is being used by the zFS caches.

In z/OS V2R2, zFS uses 64-bit storage above the 2 GB line. Therefore, zFS cache sizes are no longer
restricted by the 2 GB storage size. Caches start at the minimum size during zFS initialization, and are
allowed to grow as needed to the size specified in the IOEFSPRM file. Carefully consider how large you
want your zFS caches to be, taking into account such things as the amount of real and auxiliary storage in
your system.

The modify zfs,query,all command also shows the total zFS storage that is allocated, but includes
the storage that is allocated for all the caches and everything else zFS might need. The zFS address space
caches include the following caches:

• “Metadata cache” on page 64
• “Vnode cache” on page 64
• “Log file cache” on page 65

The data in the user file cache is stored in data spaces, not zFS address space storage.

Metadata cache
The metadata cache is used to contain all file system metadata; this metadata includes all directory
contents, file status information (such as, atime, mtime, size, and permission bits), and file system
structures.

Generally, metadata is referred to and updated frequently for most zFS file operations; hence, achieving a
good hit ratio is often essential to good performance for most workloads. A good hit ratio might be
considered to be 90% or more, depending on your workload.

The metadata cache is stored in the primary address space. Because the metadata cache contains only
metadata and small files, it typically does not need to be nearly as large as the user file cache. The
operator modify zfs,query,all command output shows statistics for the metadata cache including
the cache hit ratio.

Vnode cache
Every object in the zFS file system is represented by a data structure called a vnode in memory. zFS keeps
a cache of these vnodes and recycles them in a least recently used (LRU) manner. Every operation in zFS
requires a vnode and z/OS UNIX keeps pointers to zFS vnodes. Because z/OS UNIX keeps references to
zFS vnodes, zFS might be forced to dynamically increase the size of this cache to meet the demands of
z/OS UNIX. To create a zFS vnode for a newly referenced file or a newly created file for a user requires the
pathlength to initialize the structure and obtain its status information from the metadata cache. If the
status of the file is not in the metadata cache, then a disk I/O might also be required.

The vnode cache is stored in the zFS primary address space and the default number of vnodes is 32,768.
As with any cache, a good hit ratio is desirable and the operator MODIFY ZFS,QUERY,ALL command shows
the vnode cache hit ratio. Because the vnode cache is backed by the metadata cache, if the vnode hit ratio
is low but the metadata cache hit ratio is high your performance might not suffer too much because a
vnode cache miss requires only some pathlength to initialize the vnode structures.

User file cache
The user file cache is used to cache all "regular" files. It caches any file, no matter what its size, and
performs write-behind and asynchronous read-ahead for files.

The user file cache is allocated in memory regions in the primary zFS address space. The default size of
user_cache_size is calculated. For more information, see “IOEFSPRM” on page 225. However, you can
tailor this size to meet your performance needs, based on your overall system memory. The maximum
size for user_cache_size is 65,536 MB (64 GB). The general rule for any cache is to ensure a good hit
ratio. Additionally, it is good to have a user file cache that is large enough for write-behind activity to
occur. If the cache is too small, you need to recycle buffers more frequently and that might degrade write-

64 z/OS: z/OS File System Administration

behind performance. The MODIFY ZFS,QUERY,ALL command output shows the cache hit ratio, which is
actually the "fault ratio". To get the hit ratio, subtract the fault ratio from 100%.

In general, you should have a hit ratio of at least 80% or more. A hit ratio over 90% will typically give good
performance. However, the hit ratio is very much workload-dependent.

Log files
Every zFS aggregate contains a log file that is used to record transactions that describe changes to the file
system structure. This log file is, by default, 1% of the aggregate size; but, you can tailor it on the
ioeagfmt command. Typically, 1% is sufficient for most aggregates. However, larger aggregates might
need less than 1%, while very small aggregates might need more than 1% if a high degree of parallel
update activity occurs for the aggregate.

Log file cache
The log file cache is a pool of 4 KB buffers used to contain log file updates. You must not modify the log
file cache size unless under the direction of IBM service. Log file buffers are always written
asynchronously to disk and typically need to be waited upon only when the log is becoming full, or if a file
is in file synchronization (fsync).

The log file cache is stored in the primary address space and its default size is 16 MB. The log file cache is
grown dynamically by adding two 4 KB buffers for each attached aggregate. This growth ensures that
each aggregate always has one log cache buffer to use to record its most recent changes to file system
metadata. Because log files are written asynchronously, the cache essentially allows write-behind of log
files and because the cache is shared among all aggregates. Aggregates that have a higher write rate use
more buffers in the cache using a least-recently-used (LRU) algorithm.

Fixed storage
By default, zFS does not fix pages in any of the caches except when an I/O is pending to or from the cache
buffers. The administrator can permanently page fix the user file cache, the metadata cache, and the log
file cache by choosing the fixed option for the cache. This option ensures that the cache experiences no
paging and avoids page fixing for each I/O. This option does come at the expense of using real storage for
the cache, which means the real storage is not available for other applications.

If you are compressing a zFS aggregate, fixing the user file cache with the edcfixed option results in a
significant CPU savings. If enough real memory is available to support fixing the user file cache and
compression is used with zFS, then the edcfixed option will provide much benefit. If you are not
compressing a zFS aggregate, then the fixed option of the user file cache can reduce CPU slightly. Fixing
the log cache is generally not recommended and fixing the metadata cache by using the fixed option can
also reduce CPU slightly.

I/O balancing
The performance of any file system is heavily dependent on DASD I/O performance. If any channels or
DASD volumes are overloaded, then it is possible for excessive I/O waits to occur on that DASD.
Performance products such as RMF show DASD performance.

zFS MODIFY ZFS,QUERY,ALL operator commands also provide reports that show I/O rates per aggregate,
and file system request rates per aggregate and per file system. This information, along with DASD
performance information from RMF or performance products similar to RMF can be used to balance I/O
among your DASD. For example, you can use the query command output to show the file systems that
can be moved to different DASD to achieve a better balance among disks.

Monitoring zFS performance
You can monitor zFS performance using the MODIFY command. The output from the MODIFY ZFS,QUERY
command is written to the system log. The syntax of this command and an explanation of the report and
their option values, if any, are shown as follows.

Chapter 8. Performance and debugging 65

modify zfs,query,<report>,<option>

If zFS is running in the OMVS address space, the syntax of the modify command is as follows:

modify omvs,pfs=zfs,query,<report>,<option>

ALL
Shows all of the reports. However, for the STOR report, the DETAILS option is off and the FILE report
indicates only active file systems.

CTKC
Displays the client token manager statistics. CTKC is only present when the system is a sysplex client
of another system and the zFS CTKC component on this system sent a message to another system.
See “CTKC” on page 67 for details of the report.

DATASET
Displays zFS statistics about file systems.

FILE
Provides a detailed breakdown of requests per zFS file system and aggregate. By default, this report
lists only file systems and aggregates that had active requests since the last statistics reset. If you use
the ALL option, you get all file system and aggregates regardless of whether they were active or not.
See “FILE” on page 68 for details of the report.

IOBYDASD
Displays the I/O statistics by currently attached DASD volumes including the total number of waits for
I/O and the average wait time per I/O. See “IOBYDASD” on page 69 for details of the report.

KN
Provides counts of calls that are made to zFS from z/OS UNIX and the average response time of each
call. This information is the basic measure of zFS performance. See “KN” on page 70 for details of
the report.

LFS
Provides detailed file system statistics including the performance of the zFS metadata cache, the
vnode cache, and the aggregate I/O statistics. See “LFS” on page 71 for details of the report.

LOCK
Provides a measure of lock contention and how often z/OS UNIX threads wait for certain events such
as user file cache reclaim. See “LOCK” on page 77 for details of the report.

LOG
Provides performance information for the log file cache. See “LOG” on page 77 for details of the
report.

STKM
Displays the current server token manager (STKM) statistics. See “STKM” on page 78 for details of
the report.

STOR
Provides a detailed breakdown of zFS allocated storage by component. By default, this report lists
only storage usage by zFS component. If you use the DETAILS option, you get more detailed
information for each zFS component. See “STOR” on page 79 for details of the report.

SVI
Displays the calls from other systems to this server through the server vnode interface (SVI)
component. Output is only displayed when the zFS SVI component on the local system has received a
message from a client system.

VM
Provides performance information for the user file cache including cache hit ratios, I/O rates, and
storage usage. See “VM” on page 83 for details of the report.

66 z/OS: z/OS File System Administration

Resetting performance monitoring data
You can reset the performance monitoring statistics for any given zFS report or reset all of the internal zFS
statistics. The syntax of this command is as follows, where report is KN, VM, LFS, LOG, LOCK, STOR, FILE,
STKM, CTKC, IOBYDASD, DATASET, SVI, or ALL.

modify zfs,reset,<report>

Note: If zFS is running in the OMVS address space, the syntax of the modify command is:

modify omvs,pfs=zfs,reset,<report>

Resetting the statistics is useful if you want to view zFS performance for a given time of day, such as
during peak usage. For example, if you want performance of zFS between 1 PM and 3 PM, you enter
MODIFY ZFS,RESET,ALL at 1 PM and enter MODIFY ZFS,QUERY,ALL at 3 PM.

To start the monitoring period at 1 PM, enter MODIFY ZFS,RESET,ALL.
To end the monitoring period at 3 PM, enter MODIFY ZFS,QUERY,ALL.

Sample zFS QUERY reports
The following sections show sample output from zFS QUERY reports and describe the relevant fields of
each report. Some fields are used mainly by IBM service, but are included here for completeness.

• “CTKC” on page 67
• “DATASET” on page 68
• “FILE” on page 68
• “IOBYDASD” on page 69
• “KN” on page 70
• “LFS” on page 71
• “LOCK” on page 77
• “STKM” on page 78
• “STOR” on page 79
• “SVI” on page 82
• “VM” on page 83

CTKC
The CTKC report displays the statistics relating to calls made to other systems that were caused by
operations on the local system (called client operations). The output is displayed only when the system is
a sysplex client of another system and the zFS CTKC component on this system has sent a message to
another system. The following report shows an example of the total number of call counts and the
average response time in milliseconds of the call to the system indicated (in this case NP1).

Note: Output is only displayed when the zFS CTKC component on this system has sent a message to
another system.

 SVI Calls to System NP1

SVI Call Count Avg. Time
-------------------- ---------- ----------
GetToken 211324 15.996
GetMultTokens 0 0.000
ReturnTokens 31 0.621
ReturnFileTokens 0 0.000
FetchData 0 0.000
StoreData 27005 3.354
Setattr 184762 4.486
FetchDir 25 20.464

Chapter 8. Performance and debugging 67

Lookup 30 4.772
GetTokensDirSearch 0 0.000
Create 3 17.921
Remove 0 0.000
Rename 0 0.000
Link 0 0.000
ReadLink 0 0.000
SetACL 0 0.000
Statfs 42 2.006
TSR 0 0.000
FilesysSyncTable 0 0.000
FileSyncMeta 0 0.000
BitmapReserve 0 0.000
BitmapUnreserve 0 0.000
BitmapReclaim 0 0.000
FileUpdateIB 0 0.000
FileCreateIB 0 0.000
FwdReaddir 0 0.000
LkupInvalidate 0 0.000
FileDebug 0 0.000
FetchPage 0 0.000
ServerIO 0 0.000
BulkFetchStatus 0 0.000
Convert 0 0.000
ConvertFID 0 0.000
 -------------------- ---------- ----------
TOTALS 423222 10.162

DATASET
The DATASET report lists zFS data set statistics. Table 2 on page 68 describes the contents of the report.

Printing Dataset Allocation Stats
 Allocates 2
 Allocates failed 0
 Unallocates 2
 Unallocates failed 0
 Opens 2
 Open failures 0
 Closes 2

Table 2. DATASET report fields

Field name Contents

Allocates Number of allocations issued by zFS for zFS data sets.

Allocates failed Number of allocations issued by zFS for zFS data sets that were unsuccessful.

Unallocates Number of unallocations issued by zFS for zFS data sets.

Unallocates failed Number of unallocations issued by zFS for zFS data sets that were unsuccessful.

Opens Number of opens issued by zFS for zFS data sets.

Opens failed Number of opens issued by zFS for zFS data sets that were unsuccessful.

Closes Number of closes issued by zFS for zFS data sets.

FILE
The FILE report lists every file system that was active since the last reset by default. If you use the ALL
option, it lists all file systems. The file systems are listed in the report with the most active file systems
listed first. Table 3 on page 69 describes the contents of the report.

FILE:
File System Name Aggr # Flg Operations
--- ------ --- ----------

OMVS.ZFS.DFBLD.DFSSRC 8 AM 274472

OMVS.ZFS.LOCAL 9 AM 111722

OMVS.ZFS.DCEDFBLD.DCES390.ETC.DCE 10 AMQ 81632

68 z/OS: z/OS File System Administration

OMVS.ZFS.DCEDFBLD.DFSLOCAL 12 AM 52154

OMVS.ZFS.DCEDFBLD.OS390R10.ETC 4 AM 44108

OMVS.ZFS.GPLTOOLS 6 AM 8458

OMVS.ZFS.BLDTOOLS 7 AM 8120

OMVS.ZFS.DCEDFBLD.VAR 5 AM 314

OMVS.ZFS.USR.LOCAL 11 AM 54

Table 3. FILE report fields

Field name Contents

Aggr # The aggregate ID that can be seen in the zfsadm lsfs -long command.

Flg Indicates the aggregate status, as follows:

A
Attached

G
Growing

L
Locally owned

M
Mounted

O
Offline (disabled)

Q
Quiesced

S
Sysplex-aware (if the aggregate is sysplex-aware for read/write)

This command only reports on locally mounted (attached) aggregates. You can use the operator
ROUTE command to issue this command to all systems in your sysplex (for example, ROUTE
*ALL,F ZFS,QUERY,FILE,ALL). Note that the zFS owning system can flag an aggregate as growing
(G) while the other (zFS client) systems can flag it as quiesced (Q). That flagging occurs because
an aggregate that is growing is quiesced on all other systems.

Operations Indicates the count of z/OS UNIX vnode calls to that particular file system; it is not an I/O rate.
You can use the RMF DASD reports, the LFS Aggregate I/O report, and the FILE report to
balance your file systems among disks to provide a more even I/O spread.

IOBYDASD
The IOBYDASD report lists the currently attached DASD by volume. This report is important for viewing
the average wait time per I/O (in milliseconds).

IOEZ00438I Starting Query Command IOBYDASD.
 zFS I/O by Currently Attached DASD/VOLs

DASD PAV
VOLSER IOs Reads bytes Writes bytes Waits Average Wait
------ ----- ----- ----- ----- ----- ----- ------------
CFC002 1 5m 40M 2m 52M 5m 5.964
SMBD80 1 5136 21784 197t 1M 138t 3.377
ZFSD50 1 3m 27M 1m 32M 4m 7.629
ZFSD32 1 5097 21620 57227 1M 13173 4.372
ZFSD33 1 4m 33M 2m 37M 5m 8.316
ZFS183 1 663t 4M 262t 4M 669t 8.506

Total number of waits for I/O: 16111355
Average wait time per I/O: 7.228

Table 4 on page 70 describes the contents of the report.

Chapter 8. Performance and debugging 69

Table 4. IOBYDASD report fields

Field name Contents

DASD VOLSER The DASD volumes that contain the zFS aggregates.

PAV IOs The maximum number of concurrent I/O requests to volume.

Reads The number of read I/O requests.

K bytes The number of bytes read or written in K units.

Writes The number of write I/O requests.

Waits The number of waits for I/O completion.

Average Wait The average wait time for I/O requests in milliseconds.

Total number of waits for
I/O

Total of Waits column

Average wait time per I/O The average of the Average Wait times, in milliseconds.

KN
The QUERY,KN report shows basic zFS performance for both the PFS file system owner and the PFS client.
It shows all calls made to zFS by z/OS UNIX since the last statistics reset or since zFS was first initialized
if no explicit reset has been done, and the average response time in milliseconds for each request. These
requests are the official interface between z/OS UNIX and zFS; this is the most fundamental measure of
zFS performance because it includes any CPU, I/O wait time, or lock wait time.

The times here represent only the zFS portion of the overall command response time. For example,
entering a mkdir command from z/OS UNIX will actually result in many zFS calls, and the zfs_mkdir time
is only the portion of time it took zFS to perform the actual mkdir. Hence, application time and time spent
processing in z/OS UNIX is not included here.

If you see abnormally long times that are listed for zfs_lookup, zfs_creates, or zfs_removes and
you are using v4 directories, you might have a zFS large directory problem. For information about the zFS
large directory performance problem, see “Minimum and maximum file system sizes” on page 44.

In the following sample KN report, the Operation column is the z/OS UNIX operation being performed,
the Count column is the number of operations, the XCF Reqn column is the number of XCF messages
that were sent during the processing of the operation and Avg Time is the average response time for the
operations. The server could send XCF messages to revoke tokens and the client might send XCF
messages to obtain needed tokens and security information from a server or to write metadata changes to
the server. If XCF messages need to be sent, then you should expect average response times to be longer
than if messages were not sent.

 F ZFS,QUERY,KNPFS
 IOEZ00438I Starting Query Command KN. 761
 PFS Calls on Owner

 Operation Count XCF req. Avg Time Bytes
 --------- ---------- ---------- ---------- ----------
 zfs_opens 65972 4 0.182
 zfs_closes 66015 0 0.014
 zfs_reads 62522 3 8.668 231.024M
 zfs_writes 1320 3 0.324 9.995M
 zfs_ioctls 0 0 0.000
 zfs_fileinfos 0 0 0.000
 zfs_converts 0 0 0.000
 zfs_getattrs 182493 1 0.039
 zfs_setattrs 0 0 0.000
 zfs_accesses 65926 0 0.056
 zfs_lookups 627118 935 0.987
 zfs_creates 1 0 0.183
 zfs_removes 4 2 267.854
 zfs_links 0 0 0.000
 zfs_renames 0 0 0.000
 zfs_mkdirs 1 1 308.082

70 z/OS: z/OS File System Administration

 zfs_rmdirs 0 0 0.000
 zfs_readdirs 71717 0 3.322 7573.907K
 zfs_symlinks 0 0 0.000
 zfs_readlinks 2 1 92.339
 zfs_fsyncs 0 0 0.000
 zfs_inactives 1200 0 0.002
 zfs_setacls 0 0 0.000
 zfs_getacls 0 0 0.000
 zfs_truncs 1 0 0.014
 zfs_recoveries 0 0 0.000
 zfs_audits 9 0 0.071
 zfs_pfsctls 380 0 25.583
 zfs_statfss 2 0 0.021
 zfs_vgets 0 0 0.000
 zfs_mounts 2 0 463.188
 zfs_unmounts 0 0 0.000
 zfs_vinacts 0 0 0.000
 zfs_sync 4 0 0.000
 zfs_backups 0 0 0.000
 --------- ---------- ---------- ----------
 TOTALS 1144689 950 1.254

IOEZ00438I Starting Query Command KN. 762
 PFS Calls on Client

 Operation Count XCF req. Avg Time Bytes
 --------- ---------- ---------- ---------- ----------
 zfs_opens 30468 89 2.628
 zfs_closes 30389 12 0.156
 zfs_reads 212342 28 10.582 1118.438M
 zfs_writes 315220 71 1.581 1595.615M
 zfs_ioctls 0 0 0.000
 zfs_fileinfos 0 0 0.000
 zfs_converts 0 0 0.000
 zfs_getattrs 47298 105 18.012
 zfs_setattrs 6 5 263.333
 zfs_accesses 30125 2 0.548
 zfs_lookups 213659 23038 33.436
 zfs_creates 51 51 243.079
 zfs_removes 37 37 535.925
 zfs_links 1 1 140.882
 zfs_renames 4 3 1593.482
 zfs_mkdirs 8 8 415.752
 zfs_rmdirs 9 9 736.476
 zfs_readdirs 31417 2370 36.865 12.724M
 zfs_symlinks 2 2 960.494
 zfs_readlinks 4018 4008 7.883
 zfs_fsyncs 8 8 12041.074
 zfs_inactives 56196 0 0.002
 zfs_setacls 0 0 0.000
 zfs_getacls 0 0 0.000
 zfs_truncs 32 12 1364.853
 zfs_recoveries 0 0 0.000
 zfs_audits 51 0 0.042
 zfs_pfsctls 0 0 0.000
 zfs_statfss 25 25 95.533
 zfs_vgets 0 0 0.000
 zfs_mounts 6 0 981.206
 zfs_unmounts 0 0 0.000
 zfs_vinacts 0 0 0.000
 zfs_sync 0 0 0.000
 zfs_backups 0 0 0.000
 --------- ---------- ---------- ----------
 TOTALS 971372 29884 12.593

IOEZ00025I zFS kernel: MODIFY command - QUERY,KNPFS completed
successfully.

LFS
The LFS report provides detailed file system statistics; the following sample shows an example of the
content. Each part of the report is described.

 F
ZFS,QUERY,LFS

 IOEZ00438I Starting Query Command LFS.
790
 zFS Vnode Op

Chapter 8. Performance and debugging 71

Counts

 Vnode Op Count Vnode Op
Count
 ----------------- ---------- -----------------

 efs_hold 0 efs_readdir
12473
 efs_rele 0 efs_create
11209
 efs_inactive 0 efs_remove
4
 efsvn_getattr 71182435 efs_rename
0
 efs_setattr 13 efs_mkdir
84
 efs_access 64240 efs_rmdir
3
 efs_lookup 216423 efs_link
0
 efs_getvolume 0 efs_symlink
0
 efs_getlength 0 efs_readlink
1208
 efs_afsfid 0 efs_rdwr
0
 efs_fid 0 efs_fsync
0
 efs_vmread 0 efs_waitIO
61121
 efs_vmwrite 0 efs_cancelIO
5
 efs_clrsetid 0 efs_audit
23
 efs_getanode 2498 efs_vmblkinfo
0
 efs_readdir_raw 33 efs_convert
0

 Average number of names per convert
0
 Number of version5 directory splits
0
 Number of version5 directory merges
0
 Total zFS Vnode Ops
71551772

 zFS Vnode Cache
Statistics

 Vnodes Requests Hits Ratio Allocates
Deletes
 ---------- ---------- ---------- ----- ----------

 29295 766173 716967 93.578% 7
34171

 zFS Vnode structure size: 240
bytes
 zFS extended vnodes: 13830, extension size 864 bytes
(minimum)
 Held zFS vnodes: 8 (high
11293)
 Open zFS vnodes: 0 (high
5)
 Reusable:
29286

 Total osi_getvnode Calls: 13495 (high resp
0)
 Avg. Call Time: 0.008
(msecs)
 Total SAF Calls: 87013 (high resp
0)

72 z/OS: z/OS File System Administration

 Avg. Call Time: 0.001
(msecs)

 Remote Vnode Extension Cleans:
0
 zFS Fast Lookup
Statistics

 Buffers Lookups Hits Ratio Neg. Hits
Updates
 ---------- ---------- ---------- ------ ----------

 1000 4660 2452 52.618% 1357
2271
YSID EIMG DATE 07/05/2017 2017.186 LINE 4,584 PAGE
2

 Metadata Caching
Statistics

 Buffers (K bytes) Requests Hits Ratio Updates
PartialWrt
 --------- --------- ---------- ---------- ------ ----------

 83484 23848 981046 967961 98.6% 476870
1813

 I/O Summary By
Type

 Count Waits Cancels Merges
Type
 ---------- ---------- ---------- ----------

 44579 27968 0 1968 File System
Metadata
 422 34 0 0 Log
File
 121373 60255 0 0 User File
Data

 I/O Summary By
Circumstance

 Count Waits Cancels Merges
Circumstance
 ---------- ---------- ---------- ----------

 40251 23846 0 1968 Metadata cache
read
 52102 52101 0 0 User file cache direct
read
 34 34 0 0 Log file
read
 0 0 0 0 Metadata cache async delete
write
 159 4 0 0 Metadata cache async
write
 0 0 0 0 Metadata cache lazy
write
 983 983 0 0 Metadata cache sync delete
write
 0 0 0 0 Metadata cache sync
write

Chapter 8. Performance and debugging 73

 68257 7140 0 0 User File cache direct
write
 19 19 0 0 Metadata cache file sync
write
 51 0 0 0 Metadata cache sync daemon
write
 0 0 0 0 Metadata cache aggregate detach
write
 0 0 0 0 Metadata cache buffer block reclaim
write
 53 53 0 0 Metadata cache buffer allocation
write
 4034 4034 0 0 Metadata cache file system quiesce
write
 4 4 0 0 Metadata cache log file full
write
 388 0 0 0 Log file
write
 8 8 0 0 Metadata cache shutdown
write
 31 31 0 0 Format, grow
write

 zFS I/O by Currently Attached
Aggregate

 DASD
PAV

 VOLSER IOs Mode Reads K bytes Writes K
bytes
 ------ --- ---- ---------- ---------- ----------

*OMVS.MNT.OMVSSPA.SVT.TOOLS.ZFS

 SMMMN0 1 R/O 8007 35880 0
0

*POSIX.CFCIMGKA.ICTROOT

 POSIX6 1 R/W 338 2688 7094
28472

*SUIMGKA.HIGHRISK.LTE

 SMBRS1 1 R/W 21 488 7342
29920

*POSIX.ZFSFVT.REGFS

 POSIX5 1 R/O 7014 28636 0
0

*ZFSAGGR.BIGZFS.FS1

 ZFSD33 1 R/W 2306 46992 2403
48032
 ------ ---------- ---------- ----------

TOTALS

 5 17686 114684 16839
106424

 Compression calls: 6708 Avg. call time:
2.316
 KB input 411216 KB output
59488
 Decompression calls: 5892 Avg. call time:
2.190
 KB input 48864 KB output
373536

74 z/OS: z/OS File System Administration

 Total number of waits for I/O:
88257
 Average I/O wait time: 3.532
(msecs)
 IOEZ00025I zFS kernel: MODIFY command - QUERY,LFS completed
791

successfully.

Table 5. LFS report fields

Field name Contents

zFS Vnode Op
Counts:

Shows the number of calls to the lower layer zFS components. One request from z/OS UNIX
typically requires more than one lower-layer call. Note that the output of this report wraps.

zFS Vnode Cache
Statistics:

zFS Fast Lookup Statistics:

Shows the basic performance characteristics of the zFS fast lookup cache. The fast lookup cache is
used on the owning system for a zFS sysplex-aware file system to improve the performance of the
lookup operation. There are no externals for this cache (other than this display). The statistics
show the total number of buffers (each are 8K in size), the total number of lookups, the cache hits
for lookups and the hit ratio. The higher the hit ratio, the better the performance.

Metadata Caching
Statistics:

Shows the basic performance characteristics of the metadata cache. The metadata cache contains
a cache of all disk blocks that contain metadata and any file data for files less than 7 K in size. For
files smaller than 7 K, zFS places multiple files in one disk block (for zFS a disk block is 8 K bytes).
Only the lower metadata management layers have the block fragmentation information, so the
user file I/O for small files is performed directly through this cache rather than the user file cache.

The statistics show the total number of buffers (each buffer is 8 K in size), the total bytes, the
request rates, hit ratio of the cache, Updates (the number of times an update was made to a
metadata block), and Partial writes (the number of times that only half of an 8-K metadata block
needed to be written). The higher the hit ratio the better the performance. Metadata is accessed
frequently in zFS and all metadata is contained only (for the most part) in the metadata cache
therefore, a hit ratio of 80% or more is typically sufficient.

Chapter 8. Performance and debugging 75

Table 5. LFS report fields (continued)

Field name Contents

zFS I/O by Currently
Attached Aggregate:

The zFS I/O driver is essentially an I/O queue manager (one I/O queue per DASD). It uses Media
Manager to issue I/O to VSAM data sets. It generally sends no more than one I/O per DASD volume
to disk at one time. The exception is parallel access volume (PAV) DASD. These DASD often have
multiple paths and can perform multiple I/O in parallel. In this case, zFS will divide the number of
access paths by two and round any fraction up. (For example, for a PAV DASD with five paths, zFS
will issue, at the most, three I/Os at one time to Media Manager).

zFS limits the I/O because it uses a dynamic reordering and prioritization scheme to improve
performance by reordering the I/O queue on demand. Thus, high priority I/Os (I/Os that are
currently being waited on, for example) are placed up front. An I/O can be made high priority at any
time during its life. This reordering has been proven to provide the best performance, and for PAV
DASD, performance tests have shown that not sending quite as many I/Os as available paths
allows zFS to reorder I/Os and leave paths available for I/Os that become high priority.

Another feature of the zFS I/O driver is that by queuing I/Os, it allows I/Os to be canceled. For
example, this is done in cases where a file was written, and then immediately deleted. Finally, the
zFS I/O driver merges adjacent I/Os into one larger I/O to reduce I/O scheduling resource, this is
often done with log file I/Os because often times multiple log file I/Os are in the queue at one time
and the log file blocks are contiguous on disk. This allows log file pages to be written aggressively
(making it less likely that users lose data in a failure) and yet batched together for performance if
the disk has a high load.

This section contains the following information:

• PAV IO, which shows how many I/Os are sent in parallel to Media Manager by zFS, non PAV DASD
always shows the value 1.

• DASD VOLSER for the primary extent of each aggregate and the total number of I/Os and bytes
read/written.

• Number of times a thread processing a request must wait on I/O and the average wait time in
milliseconds is shown.

• For each zFS aggregate, the name of the aggregate is listed, followed by a line of its statistics.

By using this information with the KN report, you can break down zFS response time into what
percentage of the response time is for I/O wait. To reduce I/O waits, you can run with larger cache
sizes. Small log files (small aggregates) that are heavily updated might result in I/Os to sync
metadata to reclaim log file pages resulting in additional I/O waits. Note that this number is not
DASD response time. It is affected by it, but it is not the same. If a thread does not have to wait for
an I/O then it has no I/O wait; if a thread has to wait for an I/O but there are other I/Os being
processed, it might actually wait for more than one I/O (the time in queue plus the time for the
I/O).

This report, along with RMF DASD reports and the zFS FILE report, can be also used to balance zFS
aggregates among DASD volumes to ensure an even I/O spread.

Table 6. COMPRESS report fields

Field name Contents

Compression calls The number of compression calls.

Decompression calls The number of decompression calls.

Average call time The average number of milliseconds per compression or decompression
call.

KB input The number of kilobytes sent to zEDC cards for compression or
decompression calls.

KB output The number of kilobytes returned from zEDC cards for compression or
decompression calls.

76 z/OS: z/OS File System Administration

LOCK
The LOCK report is mainly for IBM service to use when diagnosing performance problems relating to lock
contention. This report shows a detailed breakdown of how often zFS waits for locks. It also shows which
locks cause the most contention. Additionally, the report monitors how often a thread sleeps while
waiting for an event.

 LOCK:
 Locking Statistics

 Untimed sleeps: 22 Timed Sleeps: 0 Wakeups: 21

 Total waits for locks: 3698
 Average lock wait time: 8.261 (msecs)

 Total monitored sleeps: 22
 Average monitored sleep time: 0.792 (msecs)

 Total starved waiters: 0
 Total task priority boosts: 0

 Top 15 Most Highly Contended Locks
 Thread Async Spin
 Wait Disp. Resol. Pct. Description
 ---------- ---------- ---------- ----- --------------
 877 0 899 35.763% Log system map lock
 1464 0 40 30.285% Anode bitmap allocation handle
 481 0 28 10.249% Anode fileset quota lock
 291 0 42 6.705% Transaction lock
 205 0 62 5.376% Metadata-cache buffer lock
 210 0 4 4.309% Anode fileset handle lock
 84 68 7 3.201% User file cache main segment lo
 0 55 0 1.107% Volser I/O queue lock
 38 0 0 0.765% Vnode-cache access lock
 2 23 11 0.724% Transaction-cache main lock
 19 0 3 0.443% Transaction-cache equivalence c
 21 0 0 0.422% Async IO event lock
 0 14 0 0.281% Cache Services association main
 6 0 0 0.120% Cache Services hashtable resize
 0 0 5 0.100% Transaction-cache complete list

 Total lock contention of all kinds: 4966
 Top 15 Most Common Thread Sleeps
 Thread Wait Pct. Description
 ----------- ------- -----------
 22 100.000% Transaction allocation wait
 0 0.000% OSI cache item cleanup wait
 0 0.000% Directory Cache Buffer Wait
 0 0.000% User file cache Page Wait
 0 0.000% User file cache File Wait

LOG
The LOG report shows performance statistics for the Log File Cache. The Log File Cache is a write-only
cache that is stored in the primary address space and is shared among all attached R/W aggregates that
are zFS-owned on a system. Because zFS will ensure that there is at least one Log File Buffer for each
aggregate it represents, modifying IOEFSPRM configuration option log_cache_size to change the size
of the cache should not be necessary.

An example of a query of log cache statistics report is provided. Each field in the report is self-
explanatory. This information is useful only to IBM service personnel, but is shown here for completeness.

 Log File Caching Statistics

Logs

 7 : Log files cached
 0 : Log file recoveries performed
 1494 : Log file syncs (filesys quiesce)

Policies

 16 : Reclaim pct. (amount reclaimed at log-full time)

Chapter 8. Performance and debugging 77

 16 : Maximum log pages per IO
 50 : Inactive buffer schedule pct. (of log size)

Storage

 4116 : Log Cache Size (in 4K pages, fixed=NO)
 0 : Pct. of cache in-use
 0 : Free page obtain waits
 0 : Allocations to avoid deadlock

Transactions

 148034756 : Transactions started
 42074853 : Transactions merged
 98.1 : Average number of transactions batched together
 324426 : Sync calls to an active transaction
 1059260 : Sync calls to a completed transaction

IOs and Blocks

 0 : Log IOs in progress
 10403 : Dirty metadata blocks
 893555 : Metadata block kill calls
 1507583 : Log File writes initiated
 5.2 : Average number of pages per log write
 719 : Avoided IOs for metadata block due to deallocation
 234215 : Scheduled not-recently-updated (NRU) metadata blocks
 16.4 : Average number of blocks per NRU IO
 848508 : Metadata buffers forced to disk
 0.9 : Avg where metadata write forced write of log
 99.8 : Pct. of metadata buffer forces waited on log IO
 3250 : Log-full processing calls
 262.4 : Avg number of metadata blocks written per log-full

Update Records

 330.2 : Avg number of update records per log IO.
 13709331 : Number of NBS records written
1514937445 : Number of metadata buffer updates
 3814761 : Number of updates requiring old-byte copying
 796990391 : Avoided buffer update records due to overlap
 2854045 : Avoided merge update records due to overlap

STKM
The STKM report lists the server token manager statistics. LOCALUSR is the local system (the server).
ZEROLINK is a "special client" used to handle zero link count files and vnode inactivations.

 Server Token Manager (STKM) Statistics

Maximum tokens: 30724 Allocated tokens: 30720
Tokens In Use: 27687 File structures: 27696
Token obtains: 3542592 Token returns: 3485439
Token revokes: 1309562 Async Grants: 0
Garbage Collects: 666 Thrash Resolutions: 0
Thrashing Files: 8

 Usage Per System:
System Tokens Obtains Returns Revokes Async Grt
-------- ---------- ---------- ---------- ---------- ----------
 NP1 3781 897812 894887 502842 0
 NP2 15147 1233561 1188354 415917 0
 NP3 3 912 909 0 0
 NP4 8756 1410737 1402062 504757 0
ZEROLINK 0 0 0 0 0
LOCALUSR 0 0 0 0 0

 Thrashing Objects:
Inode Uniquifier File system
---------- ---------- --------------------
 19305 181700 PLEX.ZFS.SMALL2
 1 1 ZFSAGGR.BIGZFS.DHH.FS4.EXTATTR
 711 184733 PLEX.ZFS.SMALL2
 1 1 ZFSAGGR.BIGZFS.DHH.FS14.EXTATTR
 1 1 ZFSAGGR.BIGZFS.DHH.FS1.EXTATTR
 13 1 ZFSAGGR.BIGZFS.DHH.FS4.EXTATTR

78 z/OS: z/OS File System Administration

 11 1 ZFSAGGR.BIGZFS.DHH.FS14.EXTATTR
 21761 8528 ZFSAGGR.BIGZFS.DHH.FS6.EXTATTR

Table 7 on page 79 describes the contents of the report.

Table 7. STKM report fields

Field Contents

Maximum tokens: Lists the token limit at the server which is defined by the IOEFSPRM configuration
option token_cache_size. The server runs garbage collection to ensure that token
maximum is not exceeded. In some cases, the system workload might cause the token
maximum to be exceeded, such as when there are many open files.

Allocated tokens: Number of tokens allocated in server memory. Tokens are allocated as needed, up to
maximum tokens.

File structures: Number of file structures.

Tokens In Use: Number of tokens currently held by all clients and the local system. If this number
approaches maximum tokens, then consider increasing the token_cache_size
setting.

Token obtains: Total number of token obtains by all clients and local system.

Token revokes: Total number of token revokes by all clients and local system.

Token returns: Total number of token returns by all clients and local system.

Async grants: Number of asynchronously granted tokens to all clients and local system. Asynchronous
grant is used during file deletion processing when the file is still opened by some
process in the sysplex, and in support of NFS V4 share modes.

Garbage collects: Number of garbage collections of tokens. Garbage collection is used to keep the total
number of client/local system tokens below the maximum whenever possible. If this
number gets high, consider increasing the token_cache_size setting.

Thrashing files: Number of files or directories that are thrashing.

Thrashing
resolutions:

Number of thrashing situations that were resolved.

The report indicates how many tokens each system currently has, how many token obtains and token
returns each system has done, and how many times each system has had some tokens revoked.

The report also contains a list of objects that are undergoing thrashing. Thrashing means that the system
that owns the file system containing the object needed to keep revoking tokens for the object because
multiple systems were repeatedly writing to it. The list contains the inode and uniquifier of the object and
the file system that contains it.

STOR
The STOR report shows the storage that zFS has allocated below the 2 G addressing line, and the storage
that is allocated above the 2 G address line. The STOR report also provides a breakdown of zFS storage
usage. This report can be used to determine how much storage zFS uses, based on a configuration change
(such as increasing or decreasing a zFS cache through the zfsadm config command). Table 8 on page
81 explains the contents of each field. (Not shown here is the output of QUERY,STOR,DETAILS, which
breaks down each component and shows how much storage is used for each data structure class; this
report is intended primarily for IBM service.)

You can check zFS storage usage by issuing the operator command MODIFY ZFS,QUERY,STORAGE. If you
compare the third line of data (USS/External Storage Access Limit) to the fourth line (Total
Storage Below 2G Bar Allocated), you can determine how close zFS is to using its maximum storage below
the 2 G addressing line. The vast majority of the storage that is used by zFS should be above the 2 G

Chapter 8. Performance and debugging 79

addressing line. The storage that is allocated below the 2 G Bar should be far less than the USS/External
Storage Access Limit. For example, in the following figure, the storage that is allocated below the 2 G bar
(approximately 231 M) is much less than the USS/External storage access limit (1793 M).

If the Total Storage Below 2G Bar Allocated becomes greater than or equal to the USS/External Storage
Access Limit, zFS issues message IOEZ00662I. If the Total Storage Below 2G Bar Allocated approaches
the value of the USS/External Storage Access Limit, you can attempt to dynamically decrease the caches
using the zfsadm config command. (Also make the corresponding changes in your IOEFSPRM file for
the next zFS restart.) Alternatively, you can stop and restart zFS after you make the cache size changes to
your IOEFSPRM file.

If zFS failed to initialize and is not active, decrease some of your zFS IOEFSPRM settings, especially if they
are significantly larger than the default values, and restart zFS. The settings to review include:

• meta_cache_size
• recovery_max_storage
• token_cache_size
• vnode_cache_size

If zFS is active but message IOEZ00662I was issued, you can issue the zfsadm config command to
attempt to decrease the cache sizes dynamically. Also make the corresponding changes in your
IOEFSPRM file for the next zFS restart. Alternatively, you can stop and restart zFS after you make the
cache size changes to your IOEFSPRM file.

You can also use the MODIFY ZFS,QUERY,STORAGE command to see Total Storage Above 2G Bar
Allocated. If the amount of storage allocated becomes more than you want, overall system performance
can be impacted. If this occurs, you can attempt to use the zfsadm config command to decrease the
size of a zFS cache that is using too much storage dynamically.

In the report, Discarded (or unbacked) storage is storage that is allocated to zFS, but is currently not in
use. So, it is not occupying real storage frames, which reduce the need for paging by the system. If the
storage is needed later, then it will again be used.

IOEZ00438I Starting Query Command STORAGE.
 zFS Primary Address Space <2G Stge Usage
 --

Total Storage Below 2G Bar Available: 1943011328
Non-critical Storage Limit: 1922039808
USS/External Storage Access Limit: 1880096768
Total Storage Below 2G Bar Allocated: 242671616

IOEFSCM Heap Bytes Allocated: 26560184
IOEFSCM Heap Pieces Allocated: 1671
IOEFSCM Heap Allocation Requests: 1680
IOEFSCM Heap Free Requests: 9

IOEFSKN Heap Bytes Allocated: 3610517
IOEFSKN Heap Pieces Allocated: 54383
IOEFSKN Heap Allocation Requests: 242678
IOEFSKN Heap Free Requests: 188295

 Storage Usage By Sub-component
 Bytes No. of No. of
 Allocated Pieces Allocs Frees Component
 ---------- ------ ------ ------ ---------
 2375 7 7 0 Interface
 14544 2 2 0 Media Manager I/O driver
 1888 5 5 0 Trace Facility
 434088 7 7 0 Message Service
 546428 164 164 0 Miscellaneous
 33168 1 1 0 Aggregate Management
 200384 2 2 0 Filesystem Management
 32160 27 36 9 Administration Command Handling
 1264 5 130652 130647 Vnode Management
 50632 14 57614 57600 Anode Management
 0 0 0 0 Directory Management
 1904 2 2 0 Log File Management
 272 1 1 0 Metadata Cache
 0 0 0 0 Transaction Management
 2192 1 1 0 Asynchronous I/O Component

80 z/OS: z/OS File System Administration

 119436 1909 1909 0 Lock Facility
 10440 348 348 0 Threading Services
 1768592 51561 51597 36 Cache Services
 49366 8 9 1 Config. parameters processing
 8496 4 4 0 User File Cache

 313784 182 182 0 Storage Management
 12456 126 128 2 XCF Services
 0 0 0 0 Cross system attach validation
 5464 4 4 0 Server Token Manager (STKM)
 224 1 1 0 Server Token Cache (STKC)
 936 1 1 0 Client Token Cache (CTKC)
 0 0 0 0 Server Vnode Interface (SVI)
 0 0 0 0 Name Space (NS)
 24 1 1 0 Directory storage
 0 0 0 0 Salvage storage
IOEZ00438I Starting Query Command STORAGE.
 zFS Primary Address Space >2G Stge Usage
 --

Total Storage Above 2G Bar Available: 4294963200M
Total Storage Above 2G Bar Allocated: 1766850560

Total Bytes Allocated by IOEFSCM (Stack+Heap): 22020096
IOEFSCM Heap Bytes Allocated: 22020096
IOEFSCM Heap Pieces Allocated: 462
IOEFSCM Heap Allocation Requests: 462
IOEFSCM Heap Free Requests: 0

Total Bytes Allocated by IOEFSKN (Stack+Heap): 648019968
Total Bytes Discarded (unbacked) by IOEFSKN: 55504896
IOEFSKN Heap Bytes Allocated: 546676397
IOEFSKN Heap Pieces Allocated: 1122125
IOEFSKN Heap Allocation Requests: 6739163
IOEFSKN Heap Free Requests: 5617038

 Storage Usage by Sub-component
 Bytes No. of No. of
 Allocated Pieces Allocs Frees Component
 ---------- ------ ------ ------ ---------
 459628 16 16 0 Interface
 675080 193 213 20 Media Manager I/O driver
 73400320 2 2 0 Trace Facility
 0 0 0 0 Message Service
 8399061 284 315 31 Miscellaneous
 77216 117 126 9 Aggregate Management
 21376 14 14 0 Filesystem Management
 1464 10 20 10 Administration Command Handling
 15026992 56535 453053 396518 Vnode Management
 43586724 329845 387711 57866 Anode Management
 0 0 0 0 Directory Management
 45070848 44098 267949 223851 Log File Management
 164305040 38354 38366 12 Metadata Cache
 0 0 0 0 Transaction Management
 5874464 68159 69176 1017 Asynchronous I/O Component
 1048576 1 3 2 Lock Facility
 1048576 1 1 0 Threading Services
 87901088 490273 1214627 724354 Cache Services
 0 0 0 0 Config. parameters processing
 4696016 16004 16022 18 User File Cache
 6047280 4322 4607 285 Storage Management
 65608048 1678 1678 0 XCF Services
 17680 13 22 9 Cross system attach validation
 1167992 6050 4117454 4111404 Server Token Manager (STKM)
 263528 3058 3058 0 Server Token Cache (STKC)
 20930824 63097 63097 0 Client Token Cache (CTKC)
 0 0 101623 101623 Server Vnode Interface (SVI)
 0 0 9 9 Name Space (NS)
 1048576 1 1 0 Directory storage
 0 0 0 0 Salvage storage

Table 8. STOR report fields

Field name Contents

Total storage below 2G bar available
Total storage above 2G bar available

Total virtual storage in the zFS address space that is available for
usage (such as caches, control blocks, and stacks).

Chapter 8. Performance and debugging 81

Table 8. STOR report fields (continued)

Field name Contents

Non-critical Storage Limit The value that, when exceeded, will cause zFS to issue message
IOEZ00663I ZFS is critically low on storage.

USS/External Storage Access Limit The value that, when exceeded, will cause zFS to issue message
IOEZ00662I ZFS is low on storage.

Total storage below 2G bar allocated
Total storage above 2G bar allocated

The current usage of virtual storage in the zFS address space
(requested by zFS and other components that are running in the zFS
address space).

IOEFSCM Heap Bytes Allocated
IOEFSKN Heap Bytes Allocated

The current amount of storage that is allocated to the zFS heaps.

IOEFSCM Heap Pieces Allocated
IOEFSKN Heap Pieces Allocated

The current number of storage pieces that are in the IOEFSCM and
IOEFSKN heaps.

Total Bytes Allocated by IOEFSCM
(Stack + Heap)
Total Bytes Allocated by IOEFSKN
(Stack + Heap)

The total bytes of storage that is allocated by the zFS IOEFSCM and
IOEFSKN components.

IOEFSCM Heap Allocation Requests
IOEFSKN Heap Allocation Requests

Number of requests that zFS made to obtain heap storage since the
last zFS storage statistics reset.

IOEFSCM Heap Free Allocated
IOEFSKN Heap Free Allocated

Number of requests that zFS made to free heap storage since the last
zFS storage statistics reset.

Storage Usage by Sub-component Storage usage for each zFS component.

Total Bytes Discarded (unbacked) by
IOEFSKN

Total number of bytes that IOEFSKN has discarded (made unbacked)
from allocated storage.

SVI
The server vnode interface component handles this call. The following example report displays the total
number of calls that the server received from the specific client and the average server response time in
milliseconds, including the XCF transmit and CPU time of the reply. XCF Req is the count of XCF
messages that had to be sent to other systems (most likely for token revokes) to process the client
request. Qwait counts the number of times a wait was done for an available zFS thread to process the
client request.

Note: The output is displayed only when the zFS svi component on this system has received a message
from another system.

 SVI Calls from System NP1

SVI Call Count Qwait XCF Req. Avg. Time
-------------------- ---------- -------- -------- ----------
GetToken 663624 2 180593 4.246
GetMultTokens 0 0 0 0.000
ReturnTokens 814 0 0 8.139
ReturnFileTokens 0 0 0 0.000
FetchData 132962 0 13222 1.016
StoreData 1401717 9 0 0.229
Setattr 228600 0 0 0.527
FetchDir 5 0 0 0.188
Lookup 93113 1 1934 2.875
GetTokensDirSearch 0 0 0 0.000
Create 1 0 1 5.056
Remove 1 0 1 9.040
Rename 0 0 0 0.000
Link 0 0 0 0.000
ReadLink 0 0 0 0.000
SetACL 0 0 0 0.000

82 z/OS: z/OS File System Administration

Statfs 14 0 0 0.448
TSR 0 0 0 0.000
FilesysSyncTable 0 0 0 0.000
FileSyncMeta 3 0 0 0.097
BitmapReserve 0 0 0 0.000
BitmapUnreserve 0 0 0 0.000
BitmapReclaim 0 0 0 0.000
FileUpdateIB 0 0 0 0.000
FileCreateIB 0 0 0 0.000
FwdReaddir 0 0 0 0.000
LkupInvalidate 0 0 0 0.000
FileDebug 0 0 0 0.000
FetchPage 0 0 0 0.000
ServerIO 0 0 0 0.000
BulkFetchStatus 5563 0 0 4.404
Convert 0 0 0 0.000
ConvertFID 0 0 0 0.000
------------ ---------- -------- -------- ----------
TOTALS 2520851 12 195751 1.557

VM
The VM report shows the statistics that relate to the performance of the zFS user file caching system. The
size of this cache is controlled by the IOEFSPRM user_cache_size configuration option or the zfsadm
config command.

Before V2R3, the user data was kept in data spaces. Starting in V2R3, the data is kept in chunks of
memory called cache spaces.

The zFS user file cache is stored in a collection of cache spaces. zFS prefers to use multiple cache spaces
rather than one large cache space when possible in order to reduce lock contention (as shown in this
example). zFS has a structure for each file that is cached. The user cache breaks the cached file into 64 K
segments. Each segment is broken into 4 K pages. A segment is assigned to a cache space; therefore, the
pages for any given segment belong only to one cache space. A file's pages can be scattered throughout
multiple segments.

At any given time, a file need not (and for large files often might not) have all of its segments in the cache.
Furthermore, any segment does not need (and often might not) have all of its pages in the cache. Reuse of
pages and segments is done in a least-recently used (LRU) fashion.

The cache provides asynchronous read-ahead and write-behind of large files when access is considered
sequential. Read-ahead and write-behind for a file is performed by reading and writing segments (up to
64 KB).

Following is a sample VM report.

 User File (VM) Caching System Statistics
 --

External Requests:

Reads 20868497 Fsyncs 0 Schedules 11338
Writes 20839431 Setattrs 4006 Unmaps 3990
Asy Reads 20714262 Getattrs 178114 Flushes 0

File System Reads:

Reads Faulted 0 (Fault Ratio 0.000%)
Writes Faulted 0 (Fault Ratio 0.000%)
Read Waits 0 (Wait Ratio 0.000%)
Total Reads 0

File System Writes:

Scheduled Writes 384576 Sync Waits 0
Error Writes 0 Error Waits 0
Scheduled deletes 0
Page Reclaim Writes 0 Reclaim Waits 0
Write Waits 3 (Wait Ratio 0.000%)

Chapter 8. Performance and debugging 83

Page Management (Segment Sizes = 64K/256K) (Page Size = 8K)
--
Total Pages 262144 Free 233870
Segments 4625
Steal Invocations 0 Waits for Reclaim 0

Space Total 8K Free Assigned
Address Pages Pages Segments Fix Type
---------- ---------- ---------- ---------- --------
5154000000 8192 7305 112 Not Fixed
5055A00000 8192 7311 111 FPZ4RMR
5059A00000 8192 7311 111 FPZ4RMR
505DB00000 8192 7304 111 FPZ4RMR
5061B00000 8192 7306 111 FPZ4RMR
5065B00000 8192 7310 111 FPZ4RMR
5069C00000 8192 7308 112 FPZ4RMR
506DC00000 8192 7304 112 FPZ4RMR
5071D00000 8192 7305 111 FPZ4RMR
5075D00000 8192 7309 111 FPZ4RMR
5079D00000 8192 7310 111 FPZ4RMR
5100000000 8192 7309 112 FPZ4RMR
5104000000 8192 7310 111 FPZ4RMR
5108000000 8192 7306 111 FPZ4RMR
510C000000 8192 7306 111 FPZ4RMR
5110000000 8192 7310 111 FPZ4RMR
5114000000 8192 7306 111 FPZ4RMR
5118000000 8192 7306 111 FPZ4RMR
511C000000 8192 7308 111 FPZ4RMR
5120000000 8192 7310 111 FPZ4RMR
5124000000 8192 7309 112 FPZ4RMR
5128000000 8192 7312 110 FPZ4RMR
512C000000 8192 7312 110 FPZ4RMR
5130000000 8192 7307 112 FPZ4RMR
5134000000 8192 7305 111 FPZ4RMR
5138000000 8192 7312 111 FPZ4RMR
513C000000 8192 7310 112 FPZ4RMR
5140000000 8192 7306 111 FPZ4RMR
5144000000 8192 7312 110 FPZ4RMR
5148000000 8192 7312 110 FPZ4RMR
514C000000 8192 7306 111 Not Fixed
5150000000 8192 7312 111 Not Fixed

The fields of the User File (VM) Caching System Statistics report are described in the following table:

84 z/OS: z/OS File System Administration

Table 9. User File (VM) Caching System Statistics report fields

Field name Contents

External Requests: Describes the requests that are made to the user file cache to perform operations as requested by
applications.

Reads
The number of times that the cache was called to read files.

Writes
The number of times that the cache was called to write files.

Asy Reads
How often read-ahead is performed.

Fsyncs
How often applications requested that zFS synchronize a file's data to disk.

Setattr
The number of set attribute requests.

Getattr
The number of get attribute requests.

Schedules
The number of asynchronous write IOs that the file cache sends to the zFS IO driver.

Unmaps
The count of file deletions.

Flushes
For internal testing only.

File System Reads: Shows how often the cache reads data from disk for a file. Cache misses and read I/Os degrade
application response time and the goal is for these numbers to be as low as possible. Increasing
the cache size is the typical method for making these numbers lower.

Reads Faulted
Count of read requests that needed to perform at least one I/O to read the requested portion
of the file from disk.

Writes Faulted
Count of how often a write to a file needed to perform a read from disk. If a write only updates
a portion of a page of a file on disk and that page is not in memory, then the page must be
read in before the new data is written to the in-memory page. (The zFS I/O driver can only
perform I/O in whole pages.)

Read Waits
How often a read had to wait for a pending I/O. For example, how often a read of a file found
that the range of the file is pending read (probably because of asynchronous read ahead).

Total Reads
Total number of file system reads made for any reason.

Chapter 8. Performance and debugging 85

Table 9. User File (VM) Caching System Statistics report fields (continued)

Field name Contents

File System Writes: Shows how often the cache wrote the data to disk. In general, it is desirable to minimize the Page
Reclaim Writes and Reclaim Waits. If these occur often, relative to the external zFS request rate
(shown in the KN report), then the cache might be too small.

Scheduled Writes
The number of times the cache wrote out dirty segments for a file. Segments are written as
soon as every page becomes dirty. (Segments are said to be dirty if they contain live blocks.)
When a file is closed, all of its dirty segments are scheduled asynchronously and segments
are also written asynchronously during file system syncs through the zFS sync daemon. The
zFS sync daemon runs every 30 seconds by default.

Error Writes
Count of error handling writes. The number is always 0 unless a disk hardware error occurs. If
an unexpected error occurs for a file, all of its dirty segments are written and synced to disk.
(A file system that is running out of space is not an error condition that causes the cache to
sync a file. The cache reserves storage for files as they are written, which ensures no
unexpected out of space conditions arise.)

Scheduled Deletes
Count of times a pending I/O was canceled because a file was being deleted. In this case, the
data is not appropriate to be on disk (because the file is 0 link count). Therefore, canceling the
I/O is done to avoid an I/O wait. This is a performance optimization for removing files.

Page Reclaim Writes
Count of times that a segment had to be written to DASD to reclaim space in the cache.

Write Waits
Count of times a write occurred to a page that was already pending I/O. In this case, the I/O
must be waited upon before the page is updated with the new data.

Sync Waits
Count of how often a fsync request that is needed to wait on pending I/O for dirty segments.

Error Waits
Count of waits for an IO that was scheduled due to an error. The number is always 0 unless a
disk hardware error occurs. If an unexpected error occurs for a file, all of its dirty segments
are written and synced to disk. (A file system that is running out of space is not an error
condition that causes the cache to sync a file. The cache reserves storage for files as they are
written, which ensures no unexpected out of space conditions arise.)

Page Reclaim Waits
Count of times that the reclaim function waited on pending I/O to reclaim segment pages.

86 z/OS: z/OS File System Administration

Table 9. User File (VM) Caching System Statistics report fields (continued)

Field name Contents

Page Management: Shows how storage in the user file cache is used. It is generally desirable to minimize the number
of steal invocations (reclaims). To minimize the number of steal invocations, increase the size of
the cache. Performance is increased as more data spaces are used.

Total pages
The number of 4 K pages in the cache. That is, (user_cache_size / 8K).

Free
The number of available 8 KB pages in the cache.

Segments
The number of 64 K sections that was referenced in a file. The number of segments starts out
as half of vnode_cache_size and is allocated as needed, similar to vnodes.

Steal Invocations
The number of times 8 KB pages were reclaimed from the cache.

Waits for Reclaim
The number of times a task waited for space to be reclaimed from the cache.

Number of cache spaces
The number of cache spaces that are used to hold the 8 KB pages in the cache. The pages are
spread evenly across the cache spaces to allow for better performance of the cache. The
number of data spaces that are used is approximately one per 16384 8 KB pages, up to a
maximum of 32.

Pages per cache space
The number of 8 KB pages that is assigned to each cache space.

Using SMF records to report on activities
System Management Facilities (SMF) provides a means to record data that can be used for various
purposes. zFS can use this facility to record information that describes events that are related to the file
system. zFS can also record statistics that are generally available from existing zFS queries so that
administrators can get a better sense of system performance over an extended period of time.

To have zFS record this information, use the IOEFSPRM configuration option smf_recording. For a full
description of this option and its values, see “IOEFSPRM” on page 225. The values of smf_recording
can also be dynamically modified with the zfsadm config -smf_recording command. See “ zfsadm
config ” on page 158. For information about defining what information that zFS is to collect in SMF and
how often it should be collected, see Record type 92 (5C) — File system activity in z/OS MVS System
Management Facilities (SMF).

The information to be collected can be defined only in parmlib member SMFPRMxx. The time interval that
defines how often zFS is to record data in SMF can be specified in the parmlib member or by using the zFS
IOEFSPRM configuration option smf_recording.

• The default value, smf_recording=OFF, indicates that zFS is not to record any SMF records,
regardless of the values specified in parmlib member SMFPRMxx.

• smf_recording=ON means that zFS will create SMF records for the record types that are specified in
the parmlib member SMFPRMxx, but it will use the time interval that was specified in the parmlib
member.

• smf_recording=ON,intvl means that zFS will create SMF records for the record types that are
specified in the parmlib member and it will also use the time interval intvl that is specified in
smf_recording.

See z/OS MVS System Management Facilities (SMF) for information about the contents of the SMF records
provided by zFS, and for information about how to obtain the records from SMF.

SMF record type 92
zFS records file system-related data in type 92 records with subtypes of 50 through 59.

Chapter 8. Performance and debugging 87

• Subtype 50 is used when administrative actions or other significant events occur to a file system.
Subtype 50 records are recorded when the event occurs, regardless of the SMF time interval setting.
See Table 10 on page 88 for a complete list of file system events.

• Records in subtypes 51-59 provide reports that contain performance-related statistics. These statistics
are the same information that is displayed when the zFS modify command is used to print reports. See
Chapter 8, “Performance and debugging,” on page 63 for examples of the reports that are displayed
with the zFS modify command. These statistics are gathered for each subtype that is being recorded
when the time interval expires.

The statistics contained in a record will represent a delta from the last time the subtype record was
created. This allows for monitoring of performance changes over a long period of time. The data in the
SMF records is not affected by a reset of the statistics by a zFS modify command or a zfsadm query –
reset command. Similarly, the creation of SMF records also does not cause a reset of statistics that
might affect the results from the zFS modify command or zfsadm query command. See Table 10 on
page 88 for a complete list of the performance statistics available in SMF records.

Table 10. Subtypes for SMF record type 92. This table lists the subtypes for SMF record type 92 and
explains when they are produced.

Subtype Record contents

50 This record represents one of the following events that has occurred:

• Log file recovery performed during mount or during aggregate recovery of a
system that is internally restarting.

• Successful grow or dynamic grow of a file system.
• Failed grow or dynamic grow of a file system.
• Aggregate data set is different after a file system mount.
• File system ownership change in a sysplex.
• File system is disabled when zFS detects an internal error or when metadata

I/O fails.
• File system is salvaged.
• File system is successfully shrunk.
• The result of an encryption operation.
• The result of a decryption operation.
• The result of a compression operation.
• The result of a decompression operation.

51 Shows the accumulated counts and response times for vnode operations.

52 Contains the statistics for the zFS user file cache.

53 Contains statistics for the zFS metadata cache.

54 Contains zFS locking and sleep statistics, including most highly contended
locks.

55 Contains general zFS disk IO statistics.

56 Provides statistics for the token manager.

57 Details zFS use of memory, with total bytes allocated to each zFS
subcomponent.

58 Contains records that indicate how many XCF messages were sent between
zFS members in the sysplex, and the average time for these messages.

88 z/OS: z/OS File System Administration

Table 10. Subtypes for SMF record type 92. This table lists the subtypes for SMF record type 92 and
explains when they are produced. (continued)

Subtype Record contents

59 Contains per-file system usage. There is data for each file system that is
mounted at the time the records are created. Although zFS will bundle data for
multiple file systems into a record, the more file systems you have, the more
records zFS will write to SMF. If you select records of this subtype, you should
ensure that the SMF data sets are large enough to prevent these records from
flooding it.

Debugging aids for zFS
If a problem occurs in zFS that requires the attention of IBM support, it is important to obtain the
appropriate problem determination information to help resolve the problem quickly. This section covers
topics to help you gather this information.

One of the most important aspects of zFS problem determination is its tracing capability. zFS has an
internal (wrap around) trace table that is always tracing certain events. The size of this trace table is
controlled by the IOEFSPRM trace_table_size option.

Steps for tracing on zFS
If you are re-creating a problem and need to collect a zFS trace, use the following steps:

1. Allocate the trace output data set as a PDSE, RECFM=VB, LRECL=133 with a primary allocation of at
least 50 cylinders and a secondary allocation of 30 cylinders.

2. Define the zFS trace output data set to zFS by either using the IOEFSPRM trace_dsn option, or
dynamically by using the zfsadm config -trace_dsn command.

If you use the IOEFSPRM option, zFS must be stopped and then restarted to pick up the change,
unless you also dynamically activate the trace output data set with the zfsadm config -
trace_dsn command.

3. When you are ready to re-create the problem, reset the zFS trace table using the MODIFY
ZFS,TRACE,RESET command.

4. Re-create the problem.
5. Enter the MODIFY ZFS,TRACE,PRINT command. This formats and prints the trace table to the PDSE

defined on the trace_dsn option.
6. Capture the ZFSKNTnn member from the trace output data set, (for example, copy it to a sequential

data set) so that it can be sent to IBM service.

A separate trace output data set is required for each member of a sysplex.

1. Ensure that you set up the trace data sets so that each system in the sysplex can write to its own trace
output data set concurrently. This requires separate IOEFSPRM files or the use of system symbols in
the trace_dsn name or the use of an IOEPRMxx parmlib member. For more information, see Chapter
5, “Using zFS in a shared file system environment,” on page 47.

2. Allocate the data set as a PDSE, RECFM=VB, LRECL=133 with a primary allocation of at least 50
cylinders and a secondary allocation of 30 cylinders. Each trace output is created as a new member
with a name of ZFSKNTnn, where nn starts at 01 and increments for each trace output until zFS is
restarted. After restart, when the next trace output is sent to the trace output data set, ZFSKNT01 is
overlaid. You should not be accessing the trace output data set while a trace is being sent to the trace
output data set. The space that is used by a particular trace depends on how large the
trace_table_size is and how recently the trace was reset. For example, a 32-MB
trace_table_size can generate a trace output member of 100 cylinders of 3390. It is important
that the trace output data set be large enough to hold the trace output. If it runs out of room while
sending the trace to the trace output data set, the complete trace will not be captured.

Chapter 8. Performance and debugging 89

Note: You can have a trace_table_size up to 65535 MB, but to print the trace to a PDSE you must
limit its size to 750 MB.

IBM service might require you to trace more events. Additional trace information can be obtained using
the following methods:

• Add events to trace by specifying the ioedebug statements in a data set that is read when zFS is
started (or restarted). The data set name is specified in the IOEFSPRM debug_settings_dsn option.
It is a PDS member with an LRECL of at least 80. IBM specifies the exact statements needed in the data
set.

• Dynamically add the events to trace by entering the MODIFY ZFS,IOEDEBUG command. IBM specifies
the exact statements needed.

• If you were not able to capture the trace, but you have a zFS dump, IBM service can obtain the trace
from the dump. To obtain a dump, you can issue a MODIFY ZFS command. See “Understanding zFS
dumps” on page 91 for additional information.

The zFS trace table is above the 2-GB bar to avoid consuming space in the zFS address space, which is
below the bar.

Understanding the salvager utility
The salvager (ioeagslv or ioefsutl salvage) utility is a zFS-supplied program that runs as a batch
job. It examines a zFS aggregate to determine if there are any inconsistencies in the structure of the
aggregate. In many cases, it can also fix a corrupted aggregate. Before you run the salvager utility against
an aggregate, the aggregate must be unmounted (detached). If unmounting the aggregate is not possible
or not convenient, it can still be salvaged while it is mounted by using the zfsadm salvage command.
For more information about salvaging online, see “zfsadm salvage” on page 218.

When a zFS aggregate is not cleanly unmounted (for example, system is re-IPLed without a shutdown,
system goes down, zFS abends and goes down, zFS is canceled, and so on), the next time the aggregate is
mounted, zFS will play the aggregate log to bring the aggregate back to a consistent state. Message
IOEZ00397I (among others) is issued to indicate zFS is playing the log. Usually, running the log is
successful and does not require any other action. However, even though the aggregate is consistent, you
can still have some data loss if information was being written shortly before or at the time the failure
occurred.

There are times, listed in the following list, when it might be appropriate to run the salvager utility against
a zFS aggregate. Depending on how the file system is used at your installation, you might want to run the
salvager to ensure that there is no corruption or to attempt to correct a corruption. For example, if the file
system has not yet been mounted or you can take it offline without impacting many users or applications,
you might want to run the salvager soon after the problem occurs. Conversely, if the file system is used
extensively, you might decide not to run the salvager or wait for a more convenient time to do so.

• An internal error has occurred during zFS processing for the aggregate.

In this situation, zFS issues abend 2C3 and message IOEZ00422E. zFS detected a problem and
disabled the aggregate so that no reads or writes can occur for this aggregate until it is remounted. This
action attempts to avoid writing incorrect data that might corrupt the aggregate. If you want to run the
salvage utility, you must first unmount the aggregate.

• An I/O error has occurred while accessing the aggregate. zFS detected a physical I/O error on the
device.

In this case, zFS issues messages IOEZ00001E or IOEZ00550E and the message IOEZ00422E. zFS
detected the I/O error and disabled the aggregate. This is most likely a hardware problem. Follow your
local procedures for analyzing I/O problems to determine if you want to run the salvage utility. If you run
the utility, you must first unmount the aggregate.

• A zFS problem occurs during a mount of a zFS aggregate.

zFS detected a problem while mounting a zFS aggregate. The mount might receive a return code of
EMVSERR (decimal 157). zFS might issue a non-terminating abend during the mount. In this case, you
might choose to run the salvager because the aggregate was not yet mounted.

90 z/OS: z/OS File System Administration

If an aggregate cannot be repaired successfully, the salvager marks it as damaged. If it is then mounted,
an IOEZ00783E message is issued indicating that a damaged aggregate was mounted.

If you decide to run the salvager utility, specify the -verifyonly option to examine the aggregate
structures. If there are no error messages, the aggregate is not corrupted. If you run the salvager utility
with no options, it attempts to fix any corruptions that it finds.

In the following situations, the salvager utility might not always be able to fix a corrupted aggregate:

• If a fundamental aggregate structure is corrupted, the salvager will not be able to recover the aggregate.
• If the aggregate is large or has many objects, the salvager might not be able to complete successfully.

Even when the salvager is successful, an aggregate with many objects will take a long time to examine
and attempt to repair. It might take less time to restore a backup copy of the aggregate than to salvage
it.

The salvager is designed to make all repairs in one pass, but due to the nature of the program's inputs (a
corrupted, possibly vastly corrupted file system) IBM recommends a second running of the salvage
program to verify that the aggregate is truly repaired. If verifying the aggregate shows that it is not
repaired, then you should try running the salvager again to repair the aggregate. If this does not repair the
aggregate, you can create a copy of the aggregate and run the salvager more times to try to repair it. If the
salvager cannot repair the aggregate after several repair attempts, the copy of the aggregate and salvager
job logs will allow IBM service to determine why.

It is important to maintain backups of zFS aggregates to restore in case of a corrupted aggregate. It is also
very important to maintain a regular backup regimen (for example, daily, weekly, monthly) so that if a
recent backup is corrupted, you can use an older backup. However, if a quiesce is not done before backup,
corruption of the file system can result. See Chapter 6, “Copying or performing a backup of a zFS,” on
page 57 for recommendations for backing up zFS aggregates.

Understanding zFS dumps
Another important source of information is a zFS dump. Any time a zFS failure occurs, you should check
the system log to see if zFS has performed a dump. In a sysplex, zFS typically requests a dump on the
other sysplex members; check to see if other members have zFS dumps. Typically, these will have the
following message:

IOEZ00337E zFS kernel: non-terminating exception 2C3 occurred, reason EA2F0385

The abend reason of EAxx0385 indicates that the dump was requested by zFS from another sysplex
member. If zFS does not automatically request a dump from the other sysplex members, you should enter
the MODIFY ZFS,DUMP command on these other systems.

zFS also sends the trace to the trace output data set when a zFS dump occurs. When a zFS abend occurs,
other application failures might occur. For problem determination, these failures are not as important as
the original zFS failure and dump.

Typically, zFS does not stop as a result of a zFS failure. An aggregate might become disabled (see
“Diagnosing disabled aggregates” on page 99). If zFS does stop, zFS attempts to perform an internal
restart after the terminating exception occurs. If the internal restart is unsuccessful, zFS attempts a stop
and restart sequence. If the restart is successful, you might need to remount any zFS file systems. You
might need to remount zFS file systems. The SETOMVS command can be used to remount file systems
that were mounted from a BPXPRMxx parmlib member statement.

If a failure of a zFS operation occurs (other than a user error), but zFS does not dump, you should get a
trace of the failure, if possible. Perform the steps outlined in “Steps for tracing on zFS” on page 89.

You can also obtain a dump of the zFS address space by entering the MODIFY ZFS,DUMP command. The
dump should contain the zFS trace table. You must ensure that the dump is complete. Partial dumps are
of little use.

Alternatively, you can enter the MODIFY ZFS,ABORT command to cause zFS to send the trace to the trace
output data set and to perform a dump. This also causes zFS to attempt an internal restart.

Chapter 8. Performance and debugging 91

Determining the XCF protocol interface level
Beginning with z/OS V2R3, zFS uses the long-running command support protocol and runs with
sysplex=filesys.

Message IOEZ00617I is issued during zFS initialization to indicate whether zFS is running sysplex-aware
on a file system basis (referred to as sysplex filesys), sysplex-aware for all read/write file systems (referred
to as sysplex file-support), or neither (referred to as sysplex admin-only). It also indicates the zFS interface
level that is being used.

Saving initialization messages in a data set
The IOEFSPRM msg_output_dsn option specifies the name of a data set that contains output messages
that come from the zFS PFS during zFS initialization. This option might be helpful for debugging because
the data set can be sent to IBM service if needed. The msg_output_dsn option is optional. If it is not
specified, zFS PFS messages go only to the system log. If it is specified, the data set should be
preallocated as a sequential data set with a RECFM=VB and LRECL=248 and should be large enough to
contain all zFS PFS initialization messages between restarts. The space used depends on how many zFS
initialization messages are issued. A suggested primary allocation is two cylinders with a secondary
allocation of two cylinders. If the data set fills up, no more messages are written to the data set. (They still
go to the system log.) After zFS restarts, the message output data set is overwritten.

Determining service levels
You can determine the service level of the zFS physical file system by examining the messages that occur
on the operator's console when zFS initializes.

IOEZ00559I zFS kernel: Initializing z/OS zFS
Version 02.04.00 Service Level 0000000 - HZFS440.
Created on Tue Mar 5 08:04:47 EST 2019.
Address space asid x79

Alternatively, you can issue the MODIFY ZFS,QUERY,LEVEL operator command and look for the following
message:

IOEZ00639I zFS kernel: z/OS zFS
Version 02.04.00 Service Level 0000000 - HZFS440.
Created on Tue Mar 5 08:04:47 EST 2019.
sysplex(filesys,rwshare) interface(4)

In a z/OS V1R13 or later shared file system environment, the sysplex level is (filesys,norwshare) or
(filesys,rwshare), depending on the sysplex_filesys_sharemode. The interface is (4).

In addition, you can determine the service level of the zfsadm command by issuing the -level option of
the zfsadm command. For example:

IOEZ00020I zfsadm: z/OS zFS
Version 02.04.00 Service Level 0000000 - HZFS440.
Created on Tue Mar 5 08:04:47 EST 2019.

Understanding namespace validation and correction
zFS provides namespace validation and correction in a shared file system environment. First, it is
important to understand the concept of a namespace. zFS communicates between sysplex members
using XCF protocols. The zFS XCF protocol exchanges information among members about zFS ownership
and other attributes of zFS mounted file systems. This information, which is kept in the memory of each
zFS member, is called the zFS namespace. If zFS members do not agree on the zFS owner of each file
system, there might be problems that require a zFS restart or an IPL to recover.

zFS namespace validation is invoked in one of four ways:

• When an administration command experiences an XCF message timeout.
• Automatically at zFS initialization.

92 z/OS: z/OS File System Administration

• Automatically when zFS detects a problem that might be because of a namespace inconsistency.
• Explicitly using the MODIFY ZFS,NSVALIDATE operator command.

zFS namespace validation compares the information that is stored in each zFS member. If zFS validation
detects an inconsistency, one or more messages can occur (for example, IOEZ00612I) and zFS attempts
to correct the inconsistency, using one of the following actions:

• Updating the inconsistent information.
• Automatically remounting a file system.
• Internally restarting zFS on one or more members.

The corrective action is disruptive and might cause one or more applications to receive I/O errors and
display messages IOEZ00618E through IOEZ00637E. In addition, zFS might take SVC dumps when it
detects a name inconsistency; therefore, do not issue the MODIFY ZFS,DUMP,ALL command.

Each zFS only keeps track of file systems that are locally mounted. z/OS UNIX locally mounts file systems
on systems where the mount was issued (or directed to through the SYSNAME parameter), and for
sysplex-aware file systems, on other systems. z/OS UNIX keeps mount information that is hardened in the
couple data set. In addition, zFS keeps track of zFS ownership by using cross system ENQ. The zFS owner
of an aggregate always has an exclusive ENQ with a QNAME of SYSZIOEZ and an RNAME of
IOEZLT.aggregatename. In this way, zFS hardens zFS ownership information in an independent
repository. When an inconsistency is detected in the zFS namespace information between zFS members,
this hardened information can be queried to determine how to automatically correct the inconsistency.

Tip: Use the DISPLAY GRS,RES=(SYSZIOEZ,*) operator command to display zFS ENQs. For RNAME
explanations and use, see Serialization summary in z/OS MVS Diagnosis: Reference.

Understanding delays and hangs in zFS using the zFS hang detector
The zFS hang detector automatically monitors the current location of the various tasks processing in zFS.
At a set interval, the hang detector thread wakes up and scans the current user requests that have been
called into zFS. The hang detector processes this list of tasks and notes various pieces of information to
determine the location of the task. When the hang detector determines that a task has remained in the
same location for a predefined period of time, it attempts to determine why it is not making progress. This
might cause zFS messages or dumps. Certain zFS messages can remain on the screen while the delay
continues. If subsequently, the hang detector recognizes that this task has finally progressed, it removes
zFS message from the console. If the zFS message is removed, it means that the delay has cleared and
was just a slowdown because of a stressful workload or some other issue. In this case, you can discard
any zFS dumps that occur because of this delay.

Several zFS messages warn of potential problems in the zFS address space that have to do with delays. If
zFS determines there is a true deadlock, zFS initiates dumps of all systems. The system that detected the
deadlock stops and restarts zFS to clear the deadlock. Some delays involve only a single system; other
delays in a shared file system environment can involve other systems and XCF communications.

IOEZ00xxx zFS messages are issued by the zFS hang detector and generally remain on the console until
the situation is resolved. Resolution occurs when:

• The delayed task completes without any external correction. This is a slowdown and not a hang, Discard
any zFS system dumps.

• The delayed task is canceled or the request is timed out. In these cases, you should supply any system
dump taken by zFS to IBM service for diagnosis.

For delays, zFS issues several messages to attempt to diagnose what might be involved in the delay. A
delay might occur when:

• zFS invokes another component such as allocation, open/close, or global resource serialization. In this
case, zFS issues message IOEZ00604I or IOEZ00660I to recommend that you use the other
component's diagnosis material to determine the cause of the delay. zFS does not produce a dump.

Chapter 8. Performance and debugging 93

• There is heavy system activity with higher priority tasks that are delaying lower priority tasks or a delay
in another system service that is not covered by message IOEZ00604I. In this case, zFS issues message
IOEZ00605I, but does not produce a dump.

Hangs and delays in shared file system environment
When there is an XCF communication delay, the zFS hang detector sends you a message. For example:

• If the other system never received the XCF message, zFS issues message IOEZ00591I.
• If the other system received the XCF message, but it is not making any progress on the other system or

zFS cannot determine its status, zFS issues message IOEZ00547I.
• If the other system received the XCF message but the progress is very slow or long running, zFS issues

message IOEZ00661I.
• If the other system processed the XCF message and sent a response back, but zFS did not receive the

response, zFS issues message IOEZ00592I.

In these cases, zFS does not issue a system dump. Use the message information that refers to the
systems that are not responding and determine the status of those systems. There might also be
messages on the other systems that indicate the real problem. (Typically, each system issues its own
messages when there is a problem.) There are timeouts on each XCF message. Wait to see whether a
request timing out resolves the hang. If a request times out, the request will fail.

zFS also determines how long remote requests can take by supplying a timeout value to XCF
(approximately 10 to 15 minutes). XCF monitors the request and if it takes longer than the timeout value,
XCF indicates to zFS that the request timed out. In this case, zFS issues message IOEZ00658E or
IOEZ00659E and fails the request. The message indicates an aggregate name if the timeout can be
associated with an aggregate. The administrator should use the information in the message that refers to
the system that is not responding and determine the status of that system. You might see zFS hang
detector messages and the operation might not have run on the target system.

Steps for diagnosing and resolving a zFS hang

About this task
Perform the following steps when a hang condition is suspected.

Procedure
1. Continually monitor for the following messages:

IOEZ00524I
zFS has a potentially hanging thread that is caused by: UserList, where: UserList is a list of address
space IDs and TCB addresses causing the hang.

IOEZ00547I
zFS has a potentially hanging XCF request on systems: Systemnames, where: Systemnames is the
list of system names.

To start investigating, if in a sysplex file sharing environment check for message IOEZ00547I
(hanging XCF request), which can indicate an XCF issue. If you see this message:

a. Check the status of XCF on each system in the sysplex.
b. Check for any outstanding message that might need a response to determine whether a system is

leaving the sysplex or not (for example, IXC402D). The wait for a response to the message might
appear to be a zFS hang.

If there is no apparent problem with XCF, continue diagnosis and resolution of the hang by looking for
the following messages in syslog or on the operator console. Check each system in the sysplex if
applicable.

94 z/OS: z/OS File System Administration

IOEZ00604I or IOEZ00660I
The delay is outside of zFS. zFS called the identified system service and is waiting for a response.
Investigate the identified system service. The problem is likely not with zFS.

IOEZ00605I
The delay is either in zFS or in a system service that zFS did not specifically identify in message
IOEZ00604I. zFS cannot determine whether there is a hang, a slowdown, or some other system
problem. To take action, look for other symptoms. For example, if you see messages about
components that are using a significant amount of auxiliary storage, resolve the auxiliary storage
shortage. If the message persists, continue to the next step.

2. Enter the MODIFY ZFS,QUERY,THREADS command to determine whether any zFS threads are
hanging and why.

The type and amount of information that is displayed as a result of this command is for internal use
and can vary between releases or service levels. For an example, see Figure 21 on page 97.

3. Enter the DISPLAY A,ZFS command to determine the zFS ASID.
4. Enter MODIFY ZFS,QUERY,THREADS at one to two-minute intervals for six minutes.
5. Check the output for any user tasks (tasks that do not show the zFS ASID) that are repeatedly in the

same state during the time you requested MODIFY ZFS,QUERY,THREADS. If there is a hang, the task
that is hanging persists unchanged over the course of this time span. If the information is different
each time, there is no hang.

6. If message IOEZ00581E is highlighted on the console, there are or recently were quiesced zFS
aggregates. Verify that no zFS aggregates are in the QUIESCED state by checking their status using
the zfsadm lsaggr, zfsadm aggrinfo -long, or zfsadm fsinfo command. For example,
quiesced aggregates are displayed as follows:

DCESVPI:/home/susvpi/> zfsadm lsaggr
IOEZ00106I A total of 1 aggregates are attached
SUSVPI.HIGHRISK.TEST DCESVPI R/W QUIESCE
DCESVPI:/home/susvpi/> zfsadm aggrinfo
IOEZ00370I A total of 1 aggregates are attached.
SUSVPI.HIGHRISK.TEST (R/W COMP QUIESCED): 35582 K free out of total 36000
DCESVPI:/home/susvpi/>

or

DCESVPI:/home/susvpi/> zfsadm aggrinfo susvpi.highrisk.test1.zfs -long
SUSVPI.HIGHRISK.TEST1.ZFS (R/W COMP QUIESCED): 50333 K free out of total 72000
version 1.4
auditfid 00000000 00000000 0000
6289 free 8k blocks; 21 free 1K fragments
720 K log file; 40 K filesystem table
16 K bitmap file
Quiesced by job SUSVPI5 on system DCESVPI on Tue Jan 3 13:36:37 2013

This example shows how to determine which aggregates are quiesced with the owner information.

> ./zfsadm fsinfo -select Q
PLEX.DCEIMGNJ.FS4 DCEIMGNJ RW,RS,Q
PLEX.DCEIMGNK.FS6 DCEIMGNK RW,RS,Q

Legend: RW=Read-write,Q=Quiesced,RS=Mounted RWSHARE

If the hang condition prevents you from issuing shell commands, you can also issue the MODIFY
ZFS,QUERY,FILE,ALL command to determine whether any file systems are quiesced. As indicated in
Table 3 on page 69, a quiesced file system is identified by a "Q" in the flg column.

Resolve the QUIESCED state before continuing to the next step. The hang condition message can
remain on the console for up to a minute after the aggregate is unquiesced.

Message IOEZ00581E appears on the zFS owning systems that contain at least one zFS aggregate
that is quiesced. There is a delay between the time that the aggregate is quiesced and the time that
the message appears. Typically, this time delay is about 30 seconds. You can control this time delay

Chapter 8. Performance and debugging 95

by using the IOEFSPRM QUIESCE_MESSAGE_DELAY option. This option allows you to specify that the
delay should be longer than 30 seconds before the IOEZ00581E message is first displayed. When
there are no quiesced zFS aggregates on the system, this message is removed from the console.

There is also a delay between the time that the last aggregate is unquiesced and the time that the
message is removed from the console. This message is handled by a thread that wakes up every 30
seconds and checks for any quiesced aggregates that are owned by this system. It is possible for an
aggregate to be quiesced and unquiesced in the 30-second sleep window of the thread and not
produce a quiesce message. This message remains if one aggregate is unquiesced and another is
quiesced within the 30-second sleep window.

7. Check whether any user tasks are hung, focusing on the tasks that are identified by message
IOEZ00524I or message IOEZ00660I. User tasks do not have the same address space identifier
(ASID) as the zFS address space. One or more threads consistently at the same location might
indicate a hang (for example, Recov, TCB, ASID Stack, Routine, State). The threads in the zFS address
space with the zFS ASID (for example, xcf_server) are typically waiting for work. It is typical for the
routine these threads are waiting in to have the same name as the entry routine, as shown in the
following example.

If successive iterations of the MODIFY ZFS,QUERY,THREADS command show that the STK/Recov,
TCB, ASID, Routine, and State for a thread are constant, it is probable that this thread is hung.

96 z/OS: z/OS File System Administration

 zFS and z/OS UNIX Tasks

STK/Recov TCB ASID Stack Routine State
---------- -------- ---- ---------- -------- --------
48338F0000 005CABE8 005A 48338F0700 ZFSRDWR OSIWAIT
48000AF8F0
 since Oct 14 04:15:57 2014 Current DSA: 48338F2D38
 wait code location offset=0ACA rtn=allocate_pages
 wait for resource=7BCC6330 0
 resource description=VNOPS user file cache page reclaim wait
 ReadLock held for 4823FDBF50 state=2 0
 lock description=Vnode-cache access lock
 Operation counted for OEVFS=7E7EC190 VOLP=4826660200
fs=PLEX.ZFS.SMALL1

48338E8000 005CA1D0 00B8 48338E8810 ZFSCREAT WAITLOCK
48000B0640
 since Oct 14 04:15:57 2014 Current DSA: 48338EB5C8
 wait code location offset=3D74 rtn=epit4_Allocate
 lock=48203E30F0 state=80000048000D6AA1 owner=(48000D6AA0 00B8
5CA830)
 lock description=ANODETB status area lock
 ReadLock held for 4833F0DE50 state=A 0
 lock description=Vnode-cache access lock
 ReadLock held for 4833F0DEC0 state=8 0
 lock description=Vnode lock
 ReadLock held for 482060CC20 state=7 7A94FEF0
 lock description=Vnode lock
 ReadLock held for 482606BA00 state=4 0
 lock description=Anode fileset handle lock
 ReadLock held for 48203E30E0 state=4 0
 lock description=ANODETB main update lock
 Resource 4833F0DE40 1A held
 resource description=STKC held token by local user task
 Resource 4826661800 17 held
 resource description=ANODE maximum transactions started for a
 Resource 4830D68580 2F held
 resource description=Transaction in progress
 Operation counted for OEVFS=7AB8DA20 VOLP=4826661A00
fs=ZFSAGGR.BIGZFS.DHH.FS1.EXTATTR

48338E0000 005C12F8 0084 48338E0700 ZFSRDWR WAITLOCK
48000B1390
 since Oct 14 04:15:57 2014 Current DSA: 48338E23C8
 wait code location offset=4940 rtn=stkc_getTokenLocked
 lock=4823F8CFD0 state=5 owner=(2 read holders)
 lock description=Vnode-cache access lock
 Operation counted for OEVFS=7AB8D1E0 VOLP=4826663200
fs=ZFSAGGR.BIGZFS.DHH.FS6.EXTATTR

48338D8000 005CAD80 0079 48338D8700 ZFSRDWR OSIWAIT
48000B20E0
 since Oct 14 04:15:57 2014 Current DSA: 48338DAE38
 wait code location offset=0ACA rtn=allocate_pages
 wait for resource=7BCC6330 0
 resource description=VNOPS user file cache page reclaim wait
 ReadLock held for 4823F49F10 state=A 0
 lock description=Vnode-cache access lock
 Operation counted for OEVFS=7AB8D1E0 VOLP=4826663200
fs=ZFSAGGR.BIGZFS.DHH.FS6.EXTATTR

48338D0000 005CAA50 00B7 48338D0810 ZFSCREAT RUNNING
48000B2E30
 since Oct 14 04:15:57 2014
 ReadLock held for 7E5C2670 state=2 0
 lock description=Cache Services hashtable resize lock
 Resource 4823FF4820 1A held
 resource description=STKC held token by local user task
 Resource 4826661E00 17 held
 resource description=ANODE maximum transactions started for a
 Resource 4831569A80 2F held
 resource description=Transaction in progress
 Operation counted for OEVFS=7AB8D810 VOLP=4826662000
fs=ZFSAGGR.BIGZFS.DHH.FS2.EXTATTR

48338C8000 005CABE8 00A6 48338C8700 ZFSRDWR OSIWAIT
48000B3B80
 since Oct 14 04:15:57 2014 Current DSA: 48338CAD38
 wait code location offset=0ACA rtn=allocate_pages
 wait for resource=7BCC6330 0
 resource description=VNOPS user file cache page reclaim wait
 ReadLock held for 4835B3ABD0 state=6 0
 lock description=Vnode-cache access lock
 Operation counted for OEVFS=7E7EC190 VOLP=4826660200
fs=PLEX.ZFS.SMALL1

 7F37B000 005D5528 0044 7F37C000 openclose_task RUNNING
 since Oct 14 03:43:35 2014

 7F3B4000 005F81D0 0044 7F3B5000 CNMAIN WAITING
 since Oct 14 02:58:01 2014

 7BC45000 005C19C0 0044 7BC46000 comm_daemon RUNNING
4800004290
 since Oct 14 04:15:57 2014

Figure 21. Example of how to check whether user tasks are hung

Chapter 8. Performance and debugging 97

8. IBM Support must have dumps of zFS, OMVS and the OMVS data spaces and also possibly the user
address space identified on any preceding IOEZ00605 for problem resolution. Obtain and save
SYSLOG and dumps of zFS, OMVS and the OMVS data spaces , and the user ASID using
JOBNAME=(OMVS,ZFS,user_jobname),DSPNAME=('OMVS'.*) in your reply to the DUMP
command. If you are running in a sysplex and zFS is running on other systems in the sysplex, dump all
the systems in the sysplex where zFS is running, dumping zFS, OMVS and OMVS data spaces. The
following is an example of the DUMP command:

DUMP COMM=(zfs hang)
R x,JOBNAME=(OMVS,ZFS),SDATA=(RGN,LPA,SQA,LSQA,PSA,CSA,GRSQ,TRT,SUM,COUPLE),
JOBNAME=(OMVS,ZFS,user_jobname)
DSPNAME=('OMVS'.*),END

Do not specify the job name ZFS if zFS is running inside the OMVS address space.

You must capture dumps for IBM Support before taking any recovery actions (HANGBREAK, CANCEL,
ABORT).

9. If you know which user task is hung (for example, returned in IOEZ00524I or determined to be hung
after review of the output from repeated MODIFY ZFS,QUERY,THREADS,OLDEST commands),
consider entering the CANCEL or STOP command to clear that task from the system.

10. Finally, if the previous steps do not clear the hang, issue the MODIFY ZFS,ABORT command to initiate
a zFS internal restart.

An internal restart causes the zFS kernel (IOEFSKN) to end and then restart, under control of the zFS
controller task (IOEFSCM). The zFS address space does not end and the z/OS UNIX mount tree is
preserved. During the internal restart, requests that are already in the zFS address space fail and new
requests are suspended. File systems owned by zFS on the system that is doing the internal restart
become temporarily unowned. These file systems are taken over by other zFS systems (or by the zFS
system doing the internal restart when it completes the internal restart). When the internal restart is
complete, the suspended new requests resume.

If you question the hang condition or if the MODIFY ZFS,ABORT command does not resolve the
situation, contact IBM Support and provide all the dumps and SYSLOG information.

Identifying storage shortages in zFS
When zFS can no longer obtain sufficient storage to complete a request, it issues message IOEZ00188A,
possibly creates a dump, and restarts. If you see message IOEZ00188A before zFS initialization is
complete (before message IOEZ00055I), either increase the REGION size in the ZFS PROC or decrease
some cache sizes in the IOEFSPRM configuration file.

In addition, the zFS hang detector periodically checks a warning limit and a critical limit. When it reaches
the warning limit, message IOEZ00662I displays and remains on the console until the situation is
resolved, or until the critical limit is reached. If the critical limit is reached, message IOEZ00663I displays
and remains on the console until storage usage goes below the critical limit to the warning limit, and then
message IOEZ00662I displays again. See “STOR” on page 79 for more information about how to
determine the amount of storage being used in the zFS address space.

A zFS storage shortage can be caused by the number of active vnodes in use in zFS. You can query the
number of held vnodes using either the MODIFY ZFS,QUERY,LFS system command, or the zfsadm
query -vnodecache command. You can also query the current sizes of the zFS caches in the zFS
address space using the zfsadm configquery command with its cache size parameters, such as -
meta_cache_size or -vnode_cache_size. For example, zfsadm configquery -
meta_cache_size returns the metadata cache size. When zFS is running in a shared file system
environment, you can query the client reply storage using zfsadm configquery -
client_reply_storage. You can also determine cache sizes by using the MODIFY
ZFS,QUERY,STORAGE command. Decreasing one or more cache sizes might relieve the zFS storage
shortage.

Tips:

98 z/OS: z/OS File System Administration

• Changing the size of a cache can cause delays. Try to change the size during low activity periods.
• In general, if you see a return code of 132 (ENOMEM), zFS is short on storage; take steps to reduce zFS

storage usage. When storage shortages become critical, you can also see 157 (EMVSERR) and mounts
might begin to fail.

• Started subtasks, such as the zFS colony address space, fall under SUBSYS STC. These address spaces
might be subject to IEFUSI limitations if IEFUSI exits are allowed for SUBSYS STC. IBM strongly
recommends that you always set REGION=0M and MEMLIMIT=NOLIMIT for the zFS colony address
space.

Diagnosing disabled aggregates
If zFS detects a problem on an aggregate that is mounted read/write, zFS attempts to isolate the failure.
As a result, zFS might mark an aggregate unavailable and issue message IOEZ00422E, as shown in the
following example.

IOEZ00422E Aggregate PLEX.JMS.AGGR001.LDS0001 disabled

In addition, a dump and possibly zFS trace information might be generated. You can contact IBM service
and provide the dump and the trace and any other information that is useful for diagnosing the problem
(for example, what was running on the system when the problem occurred).

When an aggregate is disabled, applications cannot read from, or write to, the aggregate. Other
aggregates that are not involved in the failure remain available. However, the disabled aggregate is not
available for reading and writing until it is automatically re-enabled by zFS, or it is unmounted and
mounted.

• zFS attempts an internal remount samemode on the zFS-owning system in the following situations:

– It is in a non-shared file system environment.
– The file system is non-sysplex aware.
– The file system is sysplex-aware, but no other system in the shared file system environment can take

it over.
• Alternatively, in a shared file system environment where the file system is sysplex-aware, the zFS

owning system requests that another system take over the aggregate.

The preceding re-enablement actions (aggregate movement or internal remount samemode) are taken
only if the file system became disabled due to an internal zFS error or a corruption.

Even though the aggregate is disabled, z/OS UNIX System Services continues to display the aggregate
mounted as R/W. To determine whether the aggregate has been marked as disabled, use the zfsadm
fsinfo command, zfsadm lsaggr command or the zfsadm aggrinfo command.

An aggregate that was disabled might be corrupted, even if it was disabled and remounted. To be sure
that the aggregate is internally consistent, run the ioefsutl salvage batch utility against the
aggregate that was disabled, to repair any corruption, and prevent loss of data. See “ioefsutl” on page 125
for more information.

Handling disabled aggregates
An aggregate can become disabled for many reasons, such as:

• An I/O error or failure of a DASD device.
• Loss of connectivity to a DASD device.
• An internal zFS error.
• Permanent corruption of the aggregate.

If a compatibility mode aggregate becomes disabled, zFS attempts to automatically re-enable the
disabled aggregate. It either requests that another system in the shared file system environment take

Chapter 8. Performance and debugging 99

over the aggregate (if it is sysplex-aware) or it attempts an internal remount samemode. This action
should recover the aggregate and it will no longer be disabled.

Generally, an aggregate that has become disabled (unless it was due to a planned activity, such as a vary
offline of a device) should be salvaged by using the ioefsutl salvage utility as soon as possible.
Because zFS has detected a problem, there is a chance that the file system is corrupted, even if it has
been successfully re-enabled.

• If the file system can be taken offline (unmounted) immediately or at a regularly scheduled time, take it
offline and run salvager.

• If the file system is a critical production file system that cannot be easily unmounted, you can run the
online salvage utility if the file system is zFS-owned on a system that is running release V2R3 or later.

Otherwise, you will have to use your best judgment when considering the inconvenience of unmounting
the file system against the risk of continuing to use a file system that might possibly be corrupted. When
the file system is backed up according to your installation's regular schedule, you might be backing up a
corrupted file system. If this continues, you might lose any previous backed-up versions of the file system
that were not corrupted. In this case, you might want to arrange to salvage the first backup copy of the file
system after it was disabled and re-enabled.

Running the salvage utility
To run the ioefsutl salvage utility, you must first unmount the aggregate. The z/OS UNIX shell
unmount command (/usr/sbin/unmount) may query the status of the file system before unmounting
it. Because the file system is disabled, this query will fail which, in turn, might cause the entire unmount
to fail. Therefore, you might need to use the TSO/E UNMOUNT command or the operator MODIFY
BPXOINIT,FILESYS=UNMOUNT,FILESYSTEM=filesysname command to unmount the disabled file system.
If you do not unmount before running ioefsutl salvage, the system issues messages such as the
following one:

IKJ56225I DATA SET PLEX.JMS.AGGR001.LDS0001 ALREADY IN USE, TRY LATER+
IKJ56225I DATA SET IS ALLOCATED TO ANOTHER JOB OR USER
IOEZ00003E While opening minor device 1, could not open dataset
PLEX.JMS.AGGR001.LDS0001.

After you run the ioefsutl salvage utility and are satisfied that the aggregate is in a consistent state,
mount the aggregate again.

To run the online salvage utility on a z/OS V2R3 or later system, issue the zfsadm salvage command.
For more information about running the online salvage utility, see “zfsadm salvage” on page 218. If
automatic re-enablement of the disabled aggregate fails three times, zFS will automatically run the online
salvage utility. If the salvage is successful, the aggregate can continue to be used without needing to
unmount and mount it again.

100 z/OS: z/OS File System Administration

Chapter 9. Overview of the zFS audit identifier

An auditid is a 16-byte value that is associated with each z/OS UNIX file or directory. The auditid identifies
a z/OS UNIX file or directory in an SMF audit record or in certain authorization failure messages (for
example, RACF message ICH408I). An auditid appears in Type 80 SMF records and in the output of
certain z/OS UNIX APIs (for example, stat). zFS allows the administrator to specify whether zFS uses a
more unique auditid for a zFS file or directory, or uses the non-unique, standard auditid.

Figure 22 on page 101 shows the format of the unique zFS auditid, the standard zFS auditid, and the HFS
auditid.

}

zFS auditid
(standard)

zFS auditid
(unique)

HFS auditid

auditfid

i-node uniq

CCHH i-node uniqvolser

01 volser TTR i-node uniq

0 0

Figure 22. zFS auditid examples

Together, the i-node and unique identifier identify the file or directory within a file system. The remainder
of the auditid identifies the file system. The i-node is a slot number that identifies an existing file or
directory, but it is reused when a file or directory is deleted. When that same i-node slot is used for a
different file or directory, the uniquifier is incremented so that the combination of the i-node and
uniquifier is unique. When the uniquifier is two bytes, they are the low-order bytes (the bytes that change
most often) of the four-byte uniquifier. In the unique zFS auditid, the file system part of the auditid is
known as the auditfid. The VOLSER is the volume serial of the volume that contains the first extent of the
zFS aggregate data set. The CCHH is the CCHH of the first extent of the zFS aggregate data set.

The auditfid in the zFS aggregate controls the type of auditid zFS uses: unique auditid or less unique
auditid (auditfid of binary zeros). Typically, a zFS aggregate contains a zero auditfid, but you can take
steps to store a unique zFS auditfid, which subsequently causes zFS to generate a unique format auditid
for each file or directory in the aggregate.

There are three ways to control the zFS auditfid that is stored in the aggregate, which thereby controls the
format of the zFS auditid for files and directories that are contained in the aggregate:

• When formatting an aggregate, you get a unique auditfid by default (that is, if you do not specify -
nonewauditfid). This is true for the IOEAGFMT batch utility and the zfsadm format command. If
you specify -nonewauditfid, the aggregate has the standard auditfid (binary zeros). The IOEFSUTL
format always provides a unique auditfid.

• You can optionally specify a zFS configuration option (convert_auditfid=on) in the IOEFSPRM file to
control whether the aggregate's auditfid is converted from a standard format auditfid to a unique
auditfid when a zFS file system is mounted. If you specify on, zFS converts the standard auditfid to the
unique auditfid on the read/write mount (attach) of the aggregate. You can also specify the
convert_auditfid configuration option by using the zfsadm config -convert_auditfid option and
query by using the zfsadm configquery -convert_auditfid option. The default for
convert_auditfid is ON.

• You can explicitly set an aggregate's auditfid to a unique auditfid by using the zfsadm setauditfid
command.

© Copyright IBM Corp. 2001, 2021 101

Enabling the zFS auditid
To enable the unique auditid, start by following scenario “2” on page 102 with some new aggregates to
verify that it does not cause problems for your installation. Then, use scenario “3” on page 102 to convert
the rest of the aggregates. The next time that the aggregates are mounted, they have a unique auditfid.

Scenarios:

1. You want all your aggregates to have the unique auditfid (and therefore, all auditids) use the new
method:

a. Do nothing. The default is convert_auditfid=on in your IOEPRMxx configuration file and new
aggregates get unique auditfids by default.

Any existing aggregates are converted to the unique auditfid the next time they are mounted
(attached). Newly formatted aggregates using IOEAGFMT, or zfsadm format get unique auditfids by
default. IOEFSUTL format always creates unique auditfids.

2. You want your new aggregates to have the unique auditfid and your existing aggregates to remain with
the standard auditfid:

a. Specify convert_auditfid=off in your IOEPRMxx configuration file.
b. Specify (or default to) -newauditfid when you format new aggregates using IOEAGFMT or
zfsadm format. Use IOEFSUTL to format new aggregates.

Result: Old aggregates are not converted to unique auditfids when you mount (attach), but new
aggregates have the unique auditfids.

3. You want all your aggregates to remain with the standard auditfid (and therefore all auditids have the
standard format):

a. Specify convert_auditfid=off in your IOEPRMxx configuration file and specify -
nonewauditfid when you use IOEAGFMT or zfsadm format to format new aggregates. Do not
use IOEFSUTL format to format new aggregates.

Any existing aggregates are converted to the unique auditfid the next time they are mounted
(attached). When you format new aggregates and specify the -newauditfid option, the aggregates
have the unique auditfid.

Tip: New aggregates formatted with ISHELL, automount allocany, allocuser, or the BPXWH2Z utility will
not have unique auditfids after they are formatted. However, they will be converted to unique auditfids by
default the first time they are mounted unless you specify convert_auditfid=off in your IOEPRMxx
configuration file or specify zfsadm config -convert_auditfid off.

If a zFS aggregate is moved to another DASD location, the auditfid remains the same, unless you change it
using the zfsadm setauditfid -force command. This is a trade-off between changing the auditfid,
which causes auditids for the same file to be generated differently, versus not changing the auditfid,
which causes auditids to remain the same but with the possibility that another zFS aggregate might get
allocated with the first extent exactly in the place (and on the same volume) as the moved aggregate was
located. This means that two different zFS files/directories might have the same auditid.

Even though the zFS auditid format is described, the internal contents of an auditid might not match
exactly as stated. The VOLSER might not match the VOLSER of the volume containing the first extent
because of moving the aggregate. The main use should be as an opaque number (that is, you should only
use it to compare for equality of the whole auditid against another auditid).

Use the following algorithm to help distinguish between the unique auditfid, the standard zFS auditfid,
and HFS auditid (which does not depend on the internal contents of the new zFS auditid):

If the last eight bytes of the auditid are binary zero, the auditid is zFS standard format
 Else, if the first byte of the auditid is X'01', the auditid is an HFS format
 Else, the auditid is the unique zFS format

102 z/OS: z/OS File System Administration

Part 2. zFS administration reference

This part of the document contains reference information for zFS.

• Chapter 10, “z/OS system commands,” on page 105
• Chapter 11, “zFS commands,” on page 115
• Chapter 12, “The zFS configuration options file (IOEPRMxx or IOEFSPRM),” on page 225
• Chapter 13, “zFS application programming interface information,” on page 237.

© Copyright IBM Corp. 2001, 2021 103

104 z/OS: z/OS File System Administration

Chapter 10. z/OS system commands

These system commands are available.

• MODIFY ZFS PROCESS queries internal counters and values. Use it to initiate or gather debugging
information.

• SETOMVS RESET starts the zFS Physical File System (PFS) if it has not been started at IPL, or if the PFS
was stopped and the BPXF032D message was responded to with a reply of i.

Run these commands from the console or from System Display and Search Facility (SDSF).

© Copyright IBM Corp. 2001, 2021 105

MODIFY ZFS PROCESS

Purpose
The MODIFY ZFS PROCESS command enables you to query internal zFS counters and values. They are
displayed on the system log. It also allows you to initiate or gather debugging information. To use this
command, the zFS PFS must be running.

Prior to z/OS V2R2, zFS always ran as a colony address space. The syntax of that command was modify
zfs,<cmd>.

Beginning in z/OS V2R2, zFS can be run as a colony address space or in the OMVS address space. In both
cases, the syntax of the modify command can be modify omvs,pfs=zfs,<cmd>. This form of the
modify command should also be used if you have any zFS modify commands that are issued through an
automated process or system automation.

When zFS modify commands in this documentation are mentioned, they are shown in the historical
modify zfs,<cmd> form, as they always have been, rather than always mentioning both forms.

Format
You can use any of the following formats for this command.

modify procname,query,{level|settings|threads[,{allwait|oldest}]|status|
[{kn|vm|lfs|lock|storage|file|stkm|ctkc|svi|iobydasd|dataset|all}]

modifyprocname,reset,{kn|vm|lfs|lock|storage|file|stkm|ctkc|svi|iobydasd |
 dataset | all}

modify procname,trace,{reset | print}

modify procname,abort

modify procname,dump

modify procname,hangbreak

modify procname,unquiesce,aggregate_name

modify procname,nsvalidate[,print]

modify procname,fsinfo[,{aggrname | all} [,{full | basic | owner | reset}
[,{select=criteria | exceptions}] [,sort=sort_name]]]

Parameters
procname

The name of the zFS PFS PROC. The default procname is ZFS.

If zFS is running in the OMVS address space (the address space that is used by z/OS UNIX), procname
must direct the command to zFS through OMVS. For example:

modify omvs,pfs=zfs,command

command
The action that is performed on the zFS PFS. This parameter can have one of the following values:
abort

Causes zFS to dump and then perform an internal restart. The internal trace table is also printed to
the data set specified in the IOEFSPRM file trace_dsn entry.

dump
Causes the zFS PFS to dump and to print the internal trace table to the data set specified in the
IOEFSPRM file trace_dsn entry.

MODIFY ZFS PROCESS

106 z/OS: z/OS File System Administration

fsinfo
Displays detailed information about a zFS file system, which is also known as a zFS aggregate.
aggrname

Specifies the name of the aggregate that the detailed zFS information is for. The aggregate
name is not case-sensitive and is converted to uppercase. To specify multiple aggregates with
similar names, use an asterisk (*) at the beginning, at the end, or both at the beginning and
the end of aggrname as a wildcard. If aggrname is specified with wildcards, the default display
is basic. Otherwise, the default display is owner. For more information, see “Usage notes for
displaying file system information” on page 110 and “Examples of displaying file system
information” on page 111.

all
Displays information for all aggregates in the sysplex. It is the default when aggrname is not
specified. The default information display will be as if basic were specified.

basic
Displays a line of basic file system information for each specified file system. This option is the
default in the following situations:

• The all option is specified but full, owner, and reset are not specified.
• If aggrname and all are not specified.
• aggrname is specified with wildcards.

For more information about what is displayed when the basic option is used, see Table 15 on
page 196.

exceptions
Displays information about any specified aggregate that is quiesced, disabled, had grow
failures, is low on space, failed to convert a directory to version5, or is damaged. Any specified
aggregate is also displayed if it has had XCF communication failures or an error because it ran
out of space or when doing I/O. This option cannot be specified with reset, select, and
aggrname with no wildcard.

full
Displays information that is maintained by the system owning each specified file system. It
also displays information that is locally maintained by each system in the sysplex that has
each specified file system locally mounted.

Tip: If a large number of file systems are to be displayed, a large amount of output will be
displayed. For that case, consider using either the basic output option or the zfsadm
fsinfo command so that the output can be redirected to a file.

owner
Displays only information that is maintained by the system owning each file system specified.
This option is the default when aggrname with no wildcards is specified. For more information
about what is displayed when the owner option is used, see Table 15 on page 196 and Table
16 on page 197.

Tip: If a large number of file systems are to be displayed, a large amount of output will be
displayed. For that case, consider using either the basic output option or the zfsadm
fsinfo command so that the output can be redirected to a file.

reset
Resets zFS statistics that relate to each specified file system. reset cannot be specified with
basic, full, owner, exceptions, select, or sort.

select=criteria
Displays each specified file system that matches the criteria.

This option cannot be specified with exceptions, reset, and aggrname with no wildcard.

To use this option, specify a selection criteria from Table 14 on page 195. Multiple criteria are
separated by spaces.

MODIFY ZFS PROCESS

Chapter 10. z/OS system commands 107

sort=sort_option
Sorts the displayed information using the value of sort_option. The default is to sort by Name.
This option cannot be specified with reset. For a list of the sorting options, see Table 17 on
page 199.

hangbreak
Causes a zFS internal restart; this produces the same result as issuing a modify zfs,abort
command.

nsvalidate
Initiates the zFS namespace validation on the system where the command is entered. The
modify nsvalidate command should only be used in a shared file system environment;
typically, it is only used as a part of a recovery procedure when a problem with zFS is suspected. If
the command finds an inconsistency, it might cause zFS to abort and internally restart the zFS
address space on one or more systems to correct the zFS namespace inconsistency. The modify
nsvalidate command consists of the following option:
print

The optional print parameter displays additional name space information that is obtained after
validation.

query
Displays zFS counters or values.
level

Displays the zFS level for the zFS physical file system kernel. When running in a shared file
system environment, level also displays the zFS sysplex level and the zFS XCF
communication interface level (1, 2, 3 or 4). The zFS sysplex level is controlled by the
IOEFSPRM sysplex configuration option. When the sysplex level is filesys, the default mount
PARM (NORWSHARE or RWSHARE) is also displayed. (As of z/OS V1R13, zFS always runs with
sysplex=filesys.) For an example and more information, see “Determining service levels”
on page 92.

settings
Displays the zFS configuration settings, which are based on the IOEFSPRM file and defaults.

status
Displays zFS internal restart information.

threads[,{allwait | oldest }]
Displays the threads that are monitored by the zFS hang detector. To display all zFS threads,
use the modify zfs,query,threads,allwait command. The time of day values is shown
in Greenwich mean time (GMT). To display the oldest thread of each system, use the modify
zfs,query,threads,oldest command.

<report>
One of the following report options. These parameters all produce reports; for details about
these reports, see “Monitoring zFS performance” on page 65.
all

Displays all the zFS counters.
ctkc

Displays the client calls to other systems. Output is only displayed when the zFS ctkc
component on this system has sent a message to another system.

dataset
Displays zFS statistics about file systems.

file
Displays the requests per zFS file system and aggregate.

iobydasd
Displays the DASD that is attached by volume.

kn
Displays the calls that were made to zFS from z/OS UNIX.

MODIFY ZFS PROCESS

108 z/OS: z/OS File System Administration

lfs
Displays the file system statistics, including the performance of the zFS metadata caches,
the vnode cache, and the aggregate I/O statistics.

lock
Displays the lock contention values.

log
Displays the log statistics.

stkm
Displays the current server token manager (STKM) statistics.

storage
Displays the zFS storage values.

svi
Displays the calls from other systems to this server through the server vnode interface
(SVI) component. Output is only displayed when the zFS svi component on this system has
received a message from another system.

vm
Displays the user file cache, including cache hit ratios, I/O rates, and storage usage.

reset
Resets zFS counters and consists of the following options:
all

Resets all the zFS counters to zero.
ctkc

Resets the client call statistics.
dataset

Reset the zFS statistics about file systems.
file

Resets the requests for zFS file system and aggregate.
iobydasd

Resets the count of the DASD that is attached by volume.
kn

Resets the calls that were made to zFS from z/OS UNIX.
lfs

Resets the file system statistics, including the performance of the zFS metadata caches,
the vnode cache, and the aggregate I/O statistics.

lock
Resets the lock contention values.

log
Resets the log statistics.

stkm
Resets the server token manager (STKM) statistics.

storage
Resets the zFS storage counters.

svi
Resets the received calls from other systems statistics.

vm
Resets the user file cache, including cache hit ratios, I/O rates, and storage usage.

No other options are allowed after reset.

trace
Resets or prints the internal zFS trace table.

MODIFY ZFS PROCESS

Chapter 10. z/OS system commands 109

print
Formats and sends the current trace table to the data set specified in the IOEFSPRM file
trace_dsn entry. This data set must be preallocated as a PDSE with RECFM VB and LRECL
133. It must be large enough to hold the formatted trace table. See Chapter 8, “Performance
and debugging,” on page 63 for more information about the trace output data set.

reset
Resets the internal (wrap around) trace table to empty.

unquiesce
Causes a quiesced aggregate to become unquiesced. Only locally attached aggregates can be
unquiesced using the modify unquiesce command. You must issue this command on the
system that is the zFS owner of the aggregate. Use the z/OS UNIX zfsadm lsaggr command to
determine which system is the zFS owner of the aggregate.

Usage notes for MODIFY ZFS PROCESS
The modify zfs command is used to display zFS counters or values and to initiate or gather debugging
information. You cannot issue modify zfs commands during a zFS internal restart.

Usage notes for displaying file system information

Use the MODIFY FSINFO command to display detailed information about zFS file systems, which are also
known as zFS aggregates. Normally, file systems must be attached before this command can be used to
display their information. However, when specifying a specific aggregate name (with no wildcards), the file
system does not need to be attached. You can use several methods to specify aggregates, based on their
names, as follows:

• aggrname with an exact aggregate name. The aggregate can either be mounted or not mounted.
• aggrname using a wildcard (*) at the beginning of the name value to select aggregates with a common
suffix.

• aggrname using a wildcard (*) at the end of the name value to select aggregates with a common prefix.
• aggrname using a wildcard (*) at the beginning and the end of the name value to select aggregates with

both a common prefix and a common suffix.
• all can be specified or defaulted to mean all file systems that are currently mounted in the sysplex.

The MODIFY FSINFO command options are positional. Each option must be separated by a comma. Only
the options at the end of the line can be omitted. If options are omitted, the default values are used
instead. Examples of supported syntax are as follows:

F ZFS,FSINFO
F ZFS,FSINFO,ALL
F ZFS,FSINFO,ALL,BASIC,SELECT=RW Q
F ZFS,FSINFO,ALL,BASIC,SELECT=RW Q,SORT=REQUESTS

The owner option displays all available information for each specified file system from the zFS-owning
system. The information is obtained via XCF communication with the owning system if the owning system
is not the local system. It also displays the statistics that are shown in Table 16 on page 197.

The full option displays statistics for each specified file system from the zFS owning system and from
each system in the sysplex that has it locally mounted. This will be obtained via XCF communication with
each system in the sysplex. The statistics are described in Table 18 on page 199.

Aggregates can also be selected using the exceptions option. This option can be useful for identifying
file systems which have encountered unexpected conditions, and might need attention. Unexpected
conditions include I/O errors, XCF communication failures or being low on space. An aggregate can also
be damaged, quiesced, or disabled.

MODIFY ZFS PROCESS

110 z/OS: z/OS File System Administration

Aggregates can also be selected by use of the select option. To use this option, specify a criteria from
the list in Table 14 on page 195. You can specify more than one criteria by using a space to separate
them.

The displayed information has the file system status as part of the output. The status field contains
abbreviated values. For quick reference, these values are defined in a Legend string at the end of the
output. The full definitions of these abbreviations are listed in Table 15 on page 196.

All times are in milliseconds. To display large numbers, use the following suffixes:
Letter

Unit of number
b

The number should be multiplied by 1,000,000,000.
G

The number should be multiplied by 1,073,741,824.
t

The number should be multiplied by 1000.
T

The number should be multiplied by 1,099,511,627,776.
tr

The number should be multiplied by 1,000,000,000,000.
m

The number should be multiplied by 1,000,000.
K

The number should be multiplied by 1024.
M

The number should be multiplied by 1,048,576.

Privilege required
This command is a z/OS system command.

Examples for MODIFY ZFS PROCESS

The following example queries all the zFS counters:

modify zfs,query,all

The following example resets the zFS storage counters:

modify zfs,reset,storage

The following example formats and sends the trace table to the data set specified in the IOEFSPRM file
trace_dsn entry:

The following example causes the zFS PFS to execute an internal restart:

modify zfs,abort

The following example queries all the zFS counters when zFS is running inside the OMVS address space:

modify omvs,pfs=zfs,query,all

Examples of displaying file system information

1. To display basic file system information for zFS aggregate PLEX.DCEIMGNK.FSINFO:

MODIFY ZFS PROCESS

Chapter 10. z/OS system commands 111

modify zfs,fsinfo,PLEX.DCEIMGNK.FSINFO,basic

2. To display file system owner status by using a wildcard:

modify zfs,fsinfo,PLEX.DCEIMGNK.*,owner

3. To display full file system status for all zFS aggregates that are quiesced, damaged, or disabled:

modify zfs,fsinfo,all,full,select=Q DA DI

4. To display basic file system status for all zFS aggregates that are quiesced, damaged, or disabled and
also to sort aggregate names by response time:

modify zfs,fsinfo,all,basic,select=Q DA DI,sort=response

Related information
Files:

• IOEFSPRM
• zfsadm fsinfo

For details about stopping zFS, see the topic on Recycling z/OS UNIX System Services in z/OS MVS System
Commands.

MODIFY ZFS PROCESS

112 z/OS: z/OS File System Administration

SETOMVS RESET

Purpose
Use SETOMVS RESET to start the zFS PFS if it has not been started at IPL. It can also be used to redefine
it if it has been terminated by replying i to the BPXF032D operator message (after stopping the zFS PFS).

Format
setomvs reset=(xx)

Parameters
xx

The suffix of a BPXPRMxx member of PARMLIB that contains the FILESYSTYPE statement for the zFS
PFS.

Usage
The SETOMVS RESET command can be used to start the zFS PFS.

Privilege required
This command is a z/OS system command.

Examples

The following command starts the zFS Physical File System if the BPXPRMSS member of the PARMLIB
contains the zFS FILESYSTYPE statement:

setomvs reset=(ss)

Related information
File: IOEFSPRM

The SETOMVS command also processes zFS FILESYSTYPE statements. For more information, see
SETOMVS command in z/OS MVS System Commands.

SETOMVS RESET

Chapter 10. z/OS system commands 113

SETOMVS RESET

114 z/OS: z/OS File System Administration

Chapter 11. zFS commands

This section provides a description of zFS commands and batch utilities. In the options section for each
command, options are described in alphabetic order to make them easier to locate; this does not reflect
the format of the command. The formats are presented the same as on your system.

In addition to displaying z/OS UNIX reason codes, the z/OS UNIX shell command, bpxmtext, also
displays the text and action of zFS reason codes (EFxxnnnn) returned from the kernel. zFS does not use
the xx part of the reason code to display a module name. It always displays zFS. If you only know the
nnnn part of the zFS reason code, you can use EF00nnnn as the reason code. The date and time returned
with the zFS reason code matches the date and time returned from the zFS kernel (displayed with
operator command MODIFY ZFS,QUERY,LEVEL).

Restriction: The bpxmtext command is not valid for zFS abend reason codes (EAxxnnnn).

You can use the man command to view the descriptions of zFS command manual pages. To use man
pages, enter man followed by the command information you want to display. You must enter the zfsadm
command suite entries as one word. Table 11 on page 115 shows examples of the zFS man commands.

Table 11. zFS man command examples

zFS command man command

ioefsutl salvage man ioefsutlsalvage

ioeagfmt man ioeagfmt

mount man zfsmount

zfsadm aggrinfo man zfsadmaggrinfo

zfsadm query man zfsadmquery

For more information about the man command, see

• man - Display sections of the online reference manual in z/OS UNIX System Services Command
Reference.

• .

© Copyright IBM Corp. 2001, 2021 115

ioeagfmt

Purpose
ioeagfmt is a batch utility that formats a VSAM linear data set to become a zFS compatibility mode
aggregate.

Format

ioeagfmt -aggregate name
 [-encrypt|-noencrypt][-compress|-nocompress]
 [-initialempty blocks] [-size blocks]
 [-logsize blocks] [-overwrite] [-compat]
 [-owner {uid|name}][-group {gid|name}]
 [-perms {number}][-grow blocks]
 [{-newauditfid|-nonewauditfid}][{-version4|-version5}]
 [-level][-help]

Options
-aggregate name

Specifies the name of the data set to format. This is also the aggregate name. The aggregate name is
always converted to uppercase and cannot be longer than 44 characters. The following characters can
be included in the name of an aggregate:

• All uppercase and lowercase alphabetic characters (a to z, A to Z)
• All numerals (0 to 9)
• The . (period)
• The - (dash)
• The @ (at sign)
• The # (number sign)
• The $ (dollar)

-compat
Indicates that a compatibility mode aggregate should be created. This means that in addition to
formatting the VSAM linear data set as a zFS aggregate, a zFS file system is created with the same
name as the aggregate and its free space is set to the size of the available blocks on the aggregate.
Beginning with z/OS V2R1, only HFS compatibility mode aggregates can be created. This option is
being allowed for compatibility with earlier versions and is not needed.

-compress
Specifies that the aggregate will be compressed. See “Usage notes for ioeagfmt” on page 118 for the
default value that is used.

-encrypt
Specifies that the aggregate will be encrypted. See “Usage notes for ioeagfmt” on page 118 for the
default value that is used.

-group gid | name
Specifies the group owner for the root directory of the file system. It can be specified as a z/OS group
name or as a GID. The default is the GID of the issuer of ioeagfmt. If only -owner name is specified,
the group is that owner's default group. If only -owner uid is specified, the group is the issuer's
group.

-grow blocks
Specifies the number of 8-KB blocks that zFS will use as the increment for extension when the -size
option specifies a size greater than the primary allocation.

ioeagfmt

116 z/OS: z/OS File System Administration

-help
Prints the online help for this command. All other valid options that are specified with this option are
ignored.

-initialempty blocks
This option is being allowed for compatibility with earlier versions and is ignored. One 8-KB block at
the beginning of the aggregate is reserved for IBM use.

-level
Prints the level of the ioeagfmt command. This is useful when you are diagnosing a problem. Except
for -help, all other valid options that are specified with -level are ignored.

-logsize blocks
Specifies the size in 8-KB blocks of the log. The valid range is from 13 to 16384 blocks (128
megabytes). The default is 1% of the aggregate size. This default logsize will never be smaller than 14
blocks and it will never be larger than 4096 blocks (32 megabytes). This size is normally sufficient.
However, a small aggregate that is grown to be very large will still have a small log. You might want to
specify a larger log if you expect the aggregate to grow very large.

-newauditfid
Specifies that the aggregate should be formatted with the zFS auditfid and stored in the aggregate.
Beginning with z/OS V2R1, -newauditfid is the default.

-nocompress
Specifies that the aggregate will not be compressed. See “Usage notes for ioeagfmt” on page 118 for
the default value that is used.

-noencrypt
Specifies that the aggregate will not be encrypted. See “Usage notes for ioeagfmt” on page 118 for
the default value that is used.

-nonewauditfid
Specifies that the aggregate should not be formatted with a zFS auditfid that is stored in it. Before
z/OS V2R1, this was the default.

-overwrite
Required if you are reformatting an existing aggregate. Use this option with caution because it deletes
any existing data. This option is not typically specified.

-owner uid | userid
Specifies the owner for the root directory of the file system. It can be specified as a z/OS user ID or as
a UID. The default is the UID of the issuer of ioeagfmt.

-perms number
Specifies the permissions for the root directory of the file system. The number can be specified as
octal (for example, o755), as hexadecimal (for example, x1ED), or as decimal (for example, 493). See
“Usage notes for ioeagfmt” on page 118 for the default value that is used.

-size blocks
Specifies the number of 8-KB blocks that should be formatted to form the zFS aggregate. The default
is the number of blocks that will fit in the primary allocation of the VSAM linear data set. If a number
less than the default is specified, it is rounded up to the default. If a number greater than the default
is specified, a single extend of the VSAM linear data set is attempted after the primary allocation is
formatted unless the -grow option is specified. In that case, multiple extensions of the amount that is
specified in the -grow option will be attempted until the -size is satisfied. The size can be rounded
up to a control area (CA) boundary by DFSMS. It is not necessary to specify a secondary allocation size
on the DEFINE of the VSAM linear data set for this extension to occur. Space must be available on the
volume.

-version4
Specifies that the aggregate should be a version 1.4 aggregate. Because you can no longer format a
version 1.4 aggregate, a version 1.5 aggregate is formatted instead if -version4 is specified.

-version5
Specifies that the aggregate should be a version 1.5 aggregate. See “Usage notes for ioeagfmt” on
page 118 for the default value that is used.

ioeagfmt

Chapter 11. zFS commands 117

Usage notes for ioeagfmt
1. Beginning in z/OS V2R1, ioeagfmt fails if the zFS PFS is not active on the system.
2. The ioeagfmt utility formats an existing VSAM linear data set as a zFS aggregate.
3. The aggregate version of the compatibility mode aggregate that was created can be specified by using

the -version4 or the -version5 option. Because you can no longer format a version 1.4 aggregate,
if -version4 is specified, -version5 is used instead. If you do not use either option, the setting of
the zFS PFS format_aggrversion IOEFSPRM option is used. See “Processing options for IOEFSPRM
and IOEPRMxx” on page 227 for a description of the format_aggrversion option.

4. The encryption status of the compatibility mode aggregate that was created can be specified by using
the -encrypt or the -noencrypt option. If you do not use either option, then the setting of the zFS
PFS format_encrypt IOEFSPRM option is used. The -encrypt option can only be used if the VSAM
linear data set was defined with a key label. See “Processing options for IOEFSPRM and IOEPRMxx” on
page 227 for a description of the format_encryption option.

5. The compression status of the compatibility mode aggregate that was created can be specified by
using the -compress or the -nocompress option. If you do not use either option, then the setting of
the zFS PFS format_compress IOEFSPRM option is used. See “Processing options for IOEFSPRM
and IOEPRMxx” on page 227 for a description of the format_compression option.

6. The permissions on the file system root directory can be specified by using the -perms option. If the -
perms option is not used, then the setting of the zFS PFS format_perms IOEFSPRM option is used.
See “Processing options for IOEFSPRM and IOEPRMxx” on page 227 for a description of the
format_perms option.

7. The size of the aggregate is as many 8-KB blocks as fits in the primary allocation of the VSAM linear
data set or as specified in the -size option. The -size option can cause one additional extension to
occur during formatting. To extend it further, use the zfsadm grow command. If -overwrite is
specified, all existing primary and secondary allocations are formatted and the size includes all of that
space. If the VSAM linear data set has a SHAREOPTIONS value of other than 3, ioeagfmt changes it
to SHAREOPTIONS 3 during format. -overwrite will also cause the backup change activity flag to be
set.

8. For a batch job, the ioeagfmt options are specified in the EXEC PARM as a single subparameter (a
single character string enclosed in apostrophes with no commas separating the options). You cannot
put the ending apostrophe in column 72. If it needs to go to the next line, use a continuation character
in column 72 (continuing in column 16 with the ending apostrophe on the second line). Remember that
a JCL EXEC PARM is limited to 100 characters. For more information, see PARM parameter in z/OS MVS
JCL Reference.

Privilege required
Before you can issue ioeagfmt, you must have UPDATE authority to the VSAM linear data set.

If you specified -owner, -group, or -perms with values that differ from the defaults, you must also be
UID 0 or have READ authority to the SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIX UNIXPRIV
class. The defaults for -owner and -group are determined from the credentials of the issuer. The default
for -perms is the value of the IOEFSPRM FORMAT_PERMS option.

Examples

Figure 23 on page 119 shows an example of a job that creates a compatibility mode aggregate and file
system.

ioeagfmt

118 z/OS: z/OS File System Administration

//USERIDA JOB ,'Compatibility Mode',
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//DEFINE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//AMSDUMP DD SYSOUT=H
//DASD0 DD DISP=OLD,UNIT=3390,VOL=SER=PRV000
//SYSIN DD *
 DEFINE CLUSTER (NAME(OMVS.PRV.COMPAT.AGGR001) -
 VOLUMES(PRV000) -
 ZFS CYL(25 0) SHAREOPTIONS(3))
/*
//CREATE EXEC PGM=IOEAGFMT,REGION=0M,
// PARM=('-aggregate OMVS.PRV.COMPAT.AGGR001’)
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//*

Figure 23. Sample job to create a compatibility mode aggregate and file system

In the PARM=('-aggregate OMVS.PRV.COMPAT.AGGR001') statement, the -aggregate option must
be in lowercase.

ioeagfmt

Chapter 11. zFS commands 119

ioeagslv

Purpose
ioeagslv is a batch utility that scans an aggregate and reports inconsistencies. Aggregates can be
verified, recovered (that is, the log is replayed), or salvaged (that is, the aggregate is repaired). This utility
is known as the salvager.

This utility is not normally needed. If a system failure occurs, the aggregate log is replayed automatically
the next time the aggregate is attached or mounted. This action typically brings the aggregate back to a
consistent state. The aggregate must not be mounted or attached when ioeagslv is run. If the aggregate
cannot be unmounted, you can consider using the zfsadm salvage command to salvage the aggregate.

Format
ioeagslv -aggregate name
 [{-recoveronly|-verifyonly|-salvageonly}]
 [-verbose][-level][-help]

Options
-aggregate name

Specifies the name of the aggregate to be verified, recovered, or salvaged. The aggregate name is not
case-sensitive. It is translated to uppercase.

-help
Prints the online help for this command. All other valid options that are specified with this option are
ignored.

-level
Prints the level of the ioeagslv command. This option is useful when you are diagnosing a problem.
Except for -help, all other valid options that are specified with -level are ignored.

-recoveronly
Directs the salvager to recover the specified aggregate. The salvager replays the log of metadata
changes that resides on the aggregate. See “Usage notes for the ioeagslv utility” on page 121 for
information about using and combining the command's options.

-salvageonly
Directs the salvager to salvage the specified aggregate. The salvager attempts to repair any
inconsistencies it finds on the aggregate. See “Usage notes for the ioeagslv utility” on page 121 for
information about using and combining the command's options.

-verbose
This option is ignored.

-verifyonly
Directs the salvager to verify the specified aggregate. The salvager examines the structure of the
aggregate to determine if it contains any inconsistencies, reporting any that it finds. See “Usage notes
for the ioeagslv utility” on page 121 for information about using and combining the command's
options.

Results
The salvager returns the following return codes for -verifyonly:

Table 12. Return codes for -verifyonly that are returned by the salvager

Code Description

00 Success. The aggregate is correct and no repair is needed.

ioeagslv

120 z/OS: z/OS File System Administration

Table 12. Return codes for -verifyonly that are returned by the salvager (continued)

Code Description

04 The aggregate has some inconsistencies that need repair.

08 An error occurred during verification; the report might be incomplete.

12 A severe error occurred during verification. Verify that processing was halted. The
aggregate is not repairable.

16 Terminating error.

EIO The salvager could not read or write the DASD.

EBUSY The aggregate was mounted or attached.

EMVSERR The salvager had an internal error. This return code is preceded by a dump for an
abend 2C3 and reason code EA660701.

ENOMEM The salvager ran out of storage.

EINVAL The salvager arguments were incorrect.

ENOSPC Dynamic grow failed because the salvager ran out of disk space.

For no options specified (or the -recoveronly and -salvageonly options specified) the salvager
returns the following return codes:

Table 13. Return codes for -recoveronly that are returned by the salvager

Code Description

00 Success. The aggregate is correct and no repair is needed.

04 The aggregate had some inconsistencies that were repaired.

08 An error occurred during verification; the report might be incomplete; the aggregate
could not be repaired.

12 A severe error occurred during verification and the aggregate could not be repaired.
Verification processing was stopped..

16 Terminating error.

EIO The salvager could not read or write the DASD.

EBUSY The aggregate was mounted or attached.

EMVSERR The salvager had an internal error. This return code is preceded by a dump for an
abend 2C3 and reason code EA660701.

ENOMEM The salvager ran out of storage.

EINVAL The salvager arguments were incorrect.

Usage notes for the ioeagslv utility
1. You can run ioeagslv even if the zFS PFS is not active on the system. The ioeagslv utility invokes

the salvager on the zFS aggregate that is specified with the -aggregate option. After a system
restart, the salvager employs the zFS file system log mechanism to return consistency to a file system
by running recovery on the aggregate on which the file system resides. Recovery is the replaying of
the log on the aggregate; the log records all changes that are made to metadata as a result of
operations such as file creation and deletion. If problems are detected in the basic structure of the
aggregate, if the log mechanism is damaged, or if the storage medium of the aggregate is suspect, the
ioeagslv utility must be used to verify or repair the structure of the aggregate.

ioeagslv

Chapter 11. zFS commands 121

2. Use the utility's -recoveronly, -verifyonly, and -salvageonly options to indicate the
operations the salvager is to perform on the specified aggregate, as follows:

• Specify the -recoveryonly option

To run recovery on the aggregate without attempting to find or repair any inconsistencies found on
it. Recovery is the replaying of the log on the aggregate. Use this option to quickly return
consistency to an aggregate that does not need to be salvaged; this represents the normal
production use of the salvager. Unless the contents of the log or the physical structure of the
aggregate is damaged, replaying the log is an effective guarantee of a file system's integrity.

• Specify the -verifyonly option

To determine whether the structure of the aggregate contains any inconsistencies. Use this option
to assess the extent of the damage to an aggregate. The salvager runs log recovery and then
determines whether there are any inconsistencies. No repair is attempted other than running log
recovery.

• Specify the -salvageonly option

To attempt to repair any inconsistencies that are found in the structure of the aggregate without
first running recovery on it. Use this option if you believe the log is damaged or replaying the log
does not return consistency to the aggregate and might in fact further damage it. In most cases,
you do not salvage an aggregate without first recovering it.

• Omit the -recoveronly, -verifyonly, and -salvageonly options

To run recovery on the aggregate and then attempt to repair any inconsistencies that are found in
the structure of the aggregate. Because recovery eliminates inconsistencies in an undamaged file
system, an aggregate is typically recovered before it is salvaged. In general, it is good first to
recover and then to salvage an aggregate if a system goes down or experiences a hardware failure.

Omit these three options if you believe the log should be replayed before attempts are made to
repair any inconsistencies that are found on the aggregate. (Omitting the three options is equivalent
to specifying the -recoveronly and -salvageonly options.)

3. The salvager utility can set or clear the aggregate damaged bit:

• The -verifyonly option can set the bit if a true corruption is found or clear it if no corruption is
found.

• Repair (with no option) can clear the bit if a successful repair is done.
4. The following rule summarizes the interaction of the -recoveronly, -verifyonly, and -
salvageonly options: The salvage command runs recovery on an aggregate and attempts to repair
it unless one of the three salvage options is specified; after one of these options is specified, you
must explicitly request any operation that you want the salvager to perform on the aggregate.

5. The basic function of the salvager is similar to that of the fsck program in many UNIX systems. The
salvager recovers a zFS aggregate and repairs problems it detects in the structure of the aggregate. It
does not verify or repair the format of user data that is contained in files on the aggregate.

6. The salvager verifies the structure of an aggregate by examining all of the anodes, directories, and
other metadata in each file system on the aggregate. An anode is an area on the disk that provides
information that is used to locate data such as files, directories, ACLs, and other types of file system
objects. Each file system contains an arbitrary number of anodes, all of which must reside on the
same aggregate. By following the links between the various types of anodes, the salvager can
determine whether the organization of an aggregate and the file system it contains is correct and
make repairs if necessary.

7. The salvager is designed to make all repairs in one pass, but due to the nature of the program's inputs
(a corrupted, possibly vastly corrupted file system) IBM recommends a second running of the salvage
program to verify that the aggregate is truly repaired. If verifying the aggregate shows that it is not
repaired, then you should try running the salvager again to repair the aggregate. If this does not repair
the aggregate, you can create a copy of the aggregate and run the salvager more times to try to repair
it. If the salvager cannot repair the aggregate after several repair attempts, the copy of the aggregate
and salvager job logs will allow IBM service to determine why.

ioeagslv

122 z/OS: z/OS File System Administration

8. Not all aggregates can be salvaged. In cases of extensive damage to the structure of the metadata on
an aggregate or damage to the physical disk that houses an aggregate, the salvager cannot repair
inconsistencies. Also, the salvager cannot verify or repair damage to user data on an aggregate. The
salvager cannot detect problems that modified the contents of a file but did not damage the structure
of an aggregate or change the metadata of the aggregate.

9. Like the fsck command, the salvager analyzes the consistency of an aggregate by making successive
passes through the aggregate. With each successive pass, the salvager examines and extracts a
different type of information from the blocks and anodes on the aggregate. Later passes of the
salvager use information that is found in earlier passes to help in the analysis.

10. It is possible for the salvager to attempt a dynamic grow of an aggregate. One possible reason for this
is if an extended (v5) directory is found to be inconsistent (or broken). The salvager will try to repair it
by converting it to a new extended (v5) directory. To do this might require more disk space. If the disk
space is not available, the directory is marked read-only. The rest of the file system has already been
made consistent, so you should still be able to mount the file system and read from the directory.

11. In general, if the salvager is invoked for a VSAM linear data set that it is sure is not a zFS aggregate, it
exits with an error code of at least 16 without analyzing the VSAM linear data set. It exits with an
error code of EBUSY (114) if a file system on the aggregate to be recovered or salvaged is mounted or
attached. (If necessary, you can use the UNMOUNT command to unmount the aggregate.)

12. Beginning in z/OS V2R1, the salvager no longer supports salvaging aggregates that contain more than
one file system or clones (.bak file systems). For additional details about running the salvage utility,
see “Understanding the salvager utility” on page 90.

13. As the salvager runs, it maintains a list of sorted error records that need repair. Each record includes
details for the salvager to quickly repair the aggregate. The salvager displays corruption messages if
verification found any inconsistency. It also displays progress messages (IOEZ00782I) during
verification to indicate how many objects have been processed. Depending on the aggregate size and
system usage, the salvager batch job might take hours or even longer to complete.

14. For a batch job, the ioeagslv options are specified in the EXEC PARM as a single subparameter (a
single character string enclosed in apostrophes with no commas separating the options). You cannot
put the ending apostrophe in column 72. If it needs to go to the next line, use a continuation
character in column 72 (continuing in column 16 with the ending apostrophe on the second line).
Remember that a JCL EXEC PARM is limited to 100 characters. For more information about EXEC
PARM, see PARM parameter in z/OS MVS JCL Reference. For an example of the EXEC PARM for
ioeagslv, see Figure 24 on page 124.

15. The zFS configuration file can include debugging parameters for the salvager utility. The debugging
parameters are described in “IOEFSPRM” on page 225. There are two ways that you can implement
the configuration file:

• As a single file that is defined by a IOEZPRM DD card.
• As one or more parameter file members, named IOEPRMxx.

16. You can provide an optional IOEZPRM DD statement in the JCL for the batch job to specify the
location of the IOEFSPRM file. Or, you can omit the IOEZPRM DD statement and specify the -PRM
option on the EXEC PARM to use IOEPRMxx parameter file members. If you do not specify the
IOEZPRM DD statement, the utility searches the logical parmlib concatenation to find the IOEPRMxx
members that contain the debugging parameters, in the same way that the zFS PFS does if you do not
specify the IOEZPRM DD statement in the ZFS PROC. For more information about specifying the
configuration file, see “IOEFSPRM” on page 225.

17. ioeagslv causes the backup change activity flag to be set if the log is replayed or a repair is done.
18. ioeagslv can be used to salvage aggregate versions 1.4 and 1.5.
19. ioefsutl salvage can also be used to salvage aggregates that contain data that is compressed,

encrypted, or both compressed and encrypted.

ioeagslv

Chapter 11. zFS commands 123

Privilege required
The issuer must be logged in as a root user (UID=0) or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Examples

The following figures show examples of jobs that invoke the ioeagslv utility.

//USERIDA JOB ,'Salvage',
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//SALVAGE EXEC PGM=IOEAGSLV,REGION=0M,
// PARM=('-aggregate OMVS.PRV.COMPAT.AGGR001 -verifyonly')
//IOEZPRM DD DSN=SYS4.PVT.SY1.PARMLIB(IOEFSPRM),DISP=SHR
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//*

Figure 24. Job to verify a zFS aggregate that uses debug parameters specified in IOEFSPRM

//USERIDA JOB ,'Salvage',
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//SALVAGE EXEC PGM=IOEAGSLV,REGION=0M,
// PARM=('-aggregate OMVS.PRV.COMPAT.AGGR001 -verifyonly -PRM=(03)')
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//*

Figure 25. Job to verify a zFS aggregate that uses debug parameters specified in parmlib member
IOEPRM03

ioeagslv

124 z/OS: z/OS File System Administration

ioefsutl

Purpose
This section introduces the ioefsutl batch utility suite. It is run as a batch job. A zFS aggregate must be
unmounted (and not attached) before ioefsutl can process it.

Beginning in V2R4, zFS no longer allows the conversion of an aggregate to version 1.4.

If you are using the IOEFSPRM file, you can provide an optional IOEZPRM DD statement in the JCL for a
batch job to specify the location of the IOEFSPRM file. If you are using the IOEPRMxx parmlib member,
omit the IOEZPRM DD statement and specify the -PRM option on the EXEC PARM; for example, -
PRM=(03) if your configuration file is in the parmlib member IOEPRM03. If you do not specify the
IOEZPRM DD statement, the utility searches the logical parmlib concatenation to find the IOEPRMxx
members that contain the debugging parameters, in the same way that the zFS PFS does if you do not
specify the IOEZPRM DD statement in the ZFS PROC. For more information about specifying the
configuration file, see “IOEFSPRM” on page 225.

ioefsutl

Chapter 11. zFS commands 125

ioefsutl converttov4

Purpose
ioefsutl converttov4 is a batch utility that converts a version 1.5 aggregate to a version 1.4
aggregate.

Beginning in V2R4, you can no longer convert aggregates to version 1.4.

Format
ioefsutl converttov4 -aggregate name [-verbose][-level][-help]

Options
-aggregate name

Specifies the name of the aggregate to be converted. The aggregate name is not case-sensitive. It is
translated to uppercase.

-help
Prints the online help for this command. All other valid options specified with this option are ignored.

-level
Prints the level of the ioefsutl command. This information is useful when you are diagnosing a
problem. Except for -help, all other valid options that are specified with -level are ignored.

-verbose
Displays starting and ending messages of each directory being converted.

Privilege required
The issuer must be logged in as a root user (UID=0) or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Examples

Figure 26 on page 126 shows an example of a job that invokes the ioefsutl utility to convert a version
1.5 aggregate to a version 1.4 aggregate.

//USERIDA JOB ,'Convert to version 4',
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//CONVERT EXEC PGM=IOEFSUTL,REGION=0M,
// PARM=('converttov4 -aggregate OMVS.PRV.COMPAT.AGGR001')
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//*

Figure 26. Job to convert a version 1.5 aggregate to a version 1.4 aggregate

In the PARM=('converttov4 -aggregate OMVS.PRV.COMPAT.AGGR001') statement, the
converttov4 option -aggregate must be in lowercase.

ioefsutl converttov4

126 z/OS: z/OS File System Administration

ioefsutl converttov5

Purpose
ioefsutl converttov5 is a batch utility that converts a version 1.4 aggregate to a version 1.5
aggregate.

Format
ioefsutl converttov5 -aggregate name -aggrversion_only [-verbose][-level][-help]

Options
-aggregate name

Specifies the name of the aggregate to be converted. The aggregate name is not case-sensitive. It is
converted to uppercase.

-aggrversion_only
Only the aggregate version is converted from 1.4 to 1.5. No directories are converted.

-help
Prints the online help for this command. All other valid options that are specified with this option are
ignored.

-level
Prints the level of the ioefsutl command. This information is useful when you are diagnosing a
problem. Except for -help, all other valid options that are specified with -level are ignored.

-verbose
Displays starting and ending messages of each directory being converted.

Usage notes
1. The ioefsutl converttov5 command is used when you need to convert a zFS version 1.4

aggregate to a version 1.5 aggregate. All v4 directories are converted to extended (v5) directories. You
might use this command if you have migrated all your systems to z/OS V2R1 or later and you want to
exploit extended (v5) directories.

2. Converting a directory from version 1.4 to an extended (v5) directory requires both versions of the
directory to exist on disk at the same time, temporarily. If the aggregate becomes full during the
allocation of the new directory a dynamic grow will be attempted. See “Dynamically growing a
compatibility mode aggregate” on page 24 for information about controlling dynamic growth of an
aggregate. If there is not enough space to complete the conversion, the new directory is deleted and
the conversion operation fails.

3. When the conversion is completed, the old directory is deleted. The resulting new directory might
possibly require more space than the old directory, and could also possibly require less space than the
old directory. Results will vary based on the actual directory contents.

4. If a system outage occurs during a directory conversion, the directory will be made consistent during
log recovery processing. That is, either the old directory will exist or the new directory will exist, but
both will not exist.

5. The conversion causes the backup change activity flag to be set.
6. If the aggregate damaged bit is set, conversion does not start and an error is issued.
7. If the aggregate damaged bit is set, you can still mount the aggregate. The IOEZ00783E console

message is displayed:

IOEZ00783E Aggregate aggregate_name is damaged

ioefsutl converttov5

Chapter 11. zFS commands 127

Privilege required
The issuer must be logged in as a root user (UID=0) or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Examples

Figure 27 on page 128 shows an example of a job that invokes the ioefsutl utility to convert a version
1.4 aggregate to a version 1.5 aggregate.

//USERIDA JOB ,'Convert to version 5',
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
// CONVERT EXEC PGM=IOEFSUTL,REGION=0M,
// PARM=('converttov5 -aggregate OMVS.PRV.COMPAT.AGGR001')
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//*

Figure 27. Job to convert a version 1.4 aggregate to a version 1.5 aggregate

In the PARM=('converttov5 -aggregate OMVS.PRV.COMPAT.AGGR001') statement, the
converttov5 and option -aggregate must be in lowercase.

ioefsutl converttov5

128 z/OS: z/OS File System Administration

ioefsutl format

Purpose
ioefsutl format is a batch utility that formats a VSAM linear data set to become a zFS compatibility
mode aggregate.

As of V2R4, you can no longer format a version 1.4 aggregate.

Format
ioefsutl format -aggregate name
 [-encrypt|-noencrypt][-compress|-nocompress]
 [-size blocks][-logsize blocks]
 [-owner uid|name][-group gid|name]
 [-perms number][-grow blocks]
 [-overwrite][{-version4|-version5}]
 [-level][-help]

Options
-aggregate name

Specifies the name of the data set to format. This is also the aggregate name. The aggregate name is
always converted to uppercase and cannot be longer than 44 characters. The following characters can
be included in the name of an aggregate:

• All uppercase and lowercase alphabetic characters (a to z, A to Z)
• All numerals (0 to 9)
• The . (period)
• The - (dash)
• The _ (underscore)
• The @ (at sign)
• The # (number sign)
• The $ (dollar)

-compress
Specifies that the aggregate is compressed. For information about how the default compression
option is determined, see “Usage notes for ioefsutl format” on page 130.

-encrypt
Specifies that the aggregate is encrypted. For information about how the default encryption option is
determined, see “Usage notes for ioefsutl format” on page 130.

-group gid|name
Specifies the group owner for the root directory of the file system. It can be specified as a z/OS group
name or as a GID. The default is the GID of the issuer of ioefsutl format. If only -owner name is
specified, the group is that owner's default group. If only -owner uid is specified, the group is the
issuer's group.

-grow blocks
Specifies the number of 8-KB blocks that zFS uses as the increment for extension when the -size
option specifies a size greater than the primary allocation.

-help
Prints the online help for this command. All other valid options that are specified with this option are
ignored.

-logsize blocks
Specifies the size in 8-KB blocks of the log. The valid range is from 13 to 16384 blocks (128
megabytes). The default is 1% of the aggregate size. This default logsize will never be smaller than 14

ioefsutl format

Chapter 11. zFS commands 129

blocks and it will never be larger than 4096 blocks (32 megabytes). This size is normally sufficient.
However, a small aggregate that is grown to be very large will still have a small log. You might want to
specify a larger log if you expect the aggregate to grow very large.

-level
Prints the level of the ioefsutl command. This information is useful when you are diagnosing a
problem. Except for -help, all other valid options that are specified with -level are ignored.

-nocompress
Specifies that the aggregate will not be compressed. For information about how the default
compression option is determined, see “Usage notes for ioefsutl format” on page 130.

-noencrypt
Specifies that the aggregate will not be encrypted. For information about how the default encryption
option is determined, see “Usage notes for ioefsutl format” on page 130.

-overwrite
Required if you are reformatting an existing aggregate. Use this option with caution because it deletes
any existing data. This option is not usually specified.

-owner uid | name
Specifies the owner for the root directory of the file system. It can be specified as a z/OS user ID or as
a UID. The default is the UID of the issuer of ioefsutl format.

-perms number
Specifies the permissions for the root directory of the file system. The number can be specified as
octal (for example, o755), as hexadecimal (for example, x1ED), or as decimal (for example, 493). For
information about how the permissions for the file system root directory are determined, see “Usage
notes for ioefsutl format” on page 130.

-size blocks
Specifies the number of 8-KB blocks that should be formatted to form the zFS aggregate. The default
is the number of blocks that will fit in the primary allocation of the VSAM linear data set. If a number
less than the default is specified, it is rounded up to the default. If a number greater than the default
is specified, a single extend of the VSAM linear data set is attempted after the primary allocation is
formatted unless the -grow option is specified. In that case, multiple extensions of the amount that is
specified in the -grow option will be attempted until the -size is satisfied. The size can be rounded
up to a control area (CA) boundary by DFSMS. It is not necessary to specify a secondary allocation size
on the DEFINE of the VSAM linear data set for this extension to occur. Space must be available on the
volume.

-version4
Specifies that the aggregate is to be formatted as a version 1.4 aggregate. Because you can no longer
format a version 1.4 aggregate, a version 1.5 aggregate is formatted instead if -version4 is
specified.

-version5
Specifies that the aggregate is to be formatted as a version 1.5 aggregate. See “Usage notes for
ioefsutl format” on page 130 for information about how the default aggregate version is determined.
Do not use -version5 until all your systems are at z/OS V2R1 or later.

Usage notes for ioefsutl format
1. The ioefsutl format utility formats an existing VSAM linear data set as a zFS aggregate. All zFS

aggregates must be formatted before use.
2. The aggregate name is not case-sensitive. It is converted to uppercase. If -version4 or -version5

is specified, you can run ioefsutl format even if the zFS PFS is not active on the system. If neither
option is specified, the aggregate version default is determined by a call to the zFS PFS to obtain the
value of the format_aggrversion option from the IOEFSPRM file. If the zFS PFS is not active, then
the format will fail.

3. The encryption status of the compatibility mode aggregate that was created can be specified by using
the -encrypt or the -noencrypt option. If neither option is specified, then the default aggregate
encryption status is obtained from the zFS PFS format_encryption setting. See “Processing

ioefsutl format

130 z/OS: z/OS File System Administration

options for IOEFSPRM and IOEPRMxx” on page 227 for a description of the format_encryption
option. If the zFS PFS is not active while the format_encryption setting is obtained and if the
aggregate is not a version 1.4 aggregate and already has a key label defined, zFS will format the
aggregate with encryption. Otherwise, zFS will format the aggregate without encryption.

4. The compression status of the compatibility mode aggregate that was created can be specified by
using the -compress or -nocompress option. If you do not use either option, then the setting of the
zFS PFS format_compression is used. See “Processing options for IOEFSPRM and IOEPRMxx” on
page 227 for a description of the format_compression option. If the zFS PFS is not active when the
format_compression setting is obtained, zFS will format the aggregate without compression.

5. The permissions on the file system root directory can be specified by using the -perms option. If the -
perms option is not used, then the setting of the zFS PFS format_perms IOEFSPRM option is used.
See “Processing options for IOEFSPRM and IOEPRMxx” on page 227 for a description of the
format_perms option. When the zFS PFS is not active when obtaining the format_perms setting,
the root directory permissions will be o755.

6. The size of the aggregate is either the number of 8-K blocks that fits in the primary allocation of the
VSAM linear data set or the number that was specified by the -size option. The -size option can
cause one additional extension to occur during formatting. To extend it further, use the zfsadm grow
command. If -overwrite is specified, all existing primary and secondary allocations are formatted
and the size includes all of that space. If -overwrite is specified, the backup change activity flag is
set. If the VSAM linear data set has a SHAREOPTIONS value of other than 3, ioefsutl format
changes it to SHAREOPTIONS 3 during format.

7. For a batch job, the ioefsutl format options are specified in the EXEC PARM as a single
subparameter (a single character string enclosed in apostrophes with no commas separating the
options). You cannot put the ending apostrophe in column 72. If it needs to go to the next line, use a
continuation character in column 72 (continuing in column 16 with the ending apostrophe on the
second line). A JCL EXEC PARM is limited to 100 characters. For more information, see PARM
parameter in z/OS MVS JCL Reference.

8. ioefsutl format always formats with a unique auditfid.

Privilege required
Before you can issue ioefsutl format, you must have UPDATE authority to the VSAM linear data set.

If you specified -owner, -group, or -perms with values that differ from the defaults, you must also be
UID 0 or have READ authority to the SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIX UNIXPRIV
class. The defaults for -owner and -group are determined from the credentials of the issuer. The default
for -perms is the value of the IOEFSPRM FORMAT_PERMS option.

Restrictions
The zFS aggregate cannot be mounted (or attached). The batch job must be issued from a V2R1 or later
system and the VSAM linear data set must exist. If neither -version4 nor -version5 is specified, the
value of the format_aggrversion option on the server is used. In this case, if the value of the
format_aggrversion option cannot be determined, the format will fail.

Examples

Figure 28 on page 132 shows an example of a job that creates and formats a version 1.5 aggregate.

ioefsutl format

Chapter 11. zFS commands 131

//USERIDA JOB ,'Compatibility Mode',
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//DEFINE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//AMSDUMP DD SYSOUT=H
//DASD0 DD DISP=OLD,UNIT=3390,VOL=SER=PRV000
//SYSIN DD *
 DEFINE CLUSTER (NAME(OMVS.PRV.COMPAT.AGGR001) -
 VOLUMES(PRV000) -
 ZFS CYL(25 0) SHAREOPTIONS(3))
/*
//CREATE EXEC PGM=IOEFSUTL,REGION=0M,
// PARM=('format -aggregate OMVS.PRV.COMPAT.AGGR001 -version5')
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//*

Figure 28. Sample job to create and format a version 1.5 aggregate

In the PARM=('format -aggregate OMVS.PRV.COMPAT.AGGR001 -version5') statement, the
format, and options -aggregate and -version5 must be in lowercase.

ioefsutl format

132 z/OS: z/OS File System Administration

ioefsutl salvage

Purpose
ioefsutl salvage is a batch utility that scans an aggregate and reports inconsistencies. Aggregates
can be verified, recovered (that is, the log is replayed), or salvaged (that is, the aggregate is repaired). This
utility is known as the salvager.

This utility is not normally needed. If a system failure occurs, the aggregate log is replayed automatically
the next time the aggregate is attached or mounted. This action typically brings the aggregate back to a
consistent state. The aggregate must not be mounted or attached when ioefsutl salvage is run.

Format
ioefsutl salvage -aggregate name [-verifyonly][-level][-help]

Options
-aggregate name

Specifies the name of the aggregate to be verified or salvaged. The aggregate name is not case-
sensitive. It is converted to uppercase.

-help
Prints the online help for this command. All other valid options that are specified with this option are
ignored.

-level
Prints the level of the ioefsutl command. This information is useful when you are diagnosing a
problem. Except for -help, all other valid options that are specified with -level are ignored.

-verifyonly
Specifies that the salvager is to verify the specified aggregate. It should not attempt to repair any
damage that was found. The log is replayed before the verification unless an error occurs during the
replay. If this option is omitted, the salvager will replay the log, verify the specified aggregate, and
then attempt to repair any damage that was found.

Results
For -verifyonly, the salvager returns the following return codes:

Return code Explanation

00 Success. The aggregate is correct and no repair is needed.

04 The aggregate has some inconsistencies that need repair.

08 An error occurred during verification; the report might be incomplete.

12 A severe error occurred during verification. Verify that processing was halted. The
aggregate is not repairable.

16 Terminating error.

EIO The salvager could not read or write the DASD.

EBUSY The aggregate was mounted or attached.

EMVSERR The salvager had an internal error. This return code is preceded by a dump for an
abend 2C3 and reason code EA660701.

ENOMEM The salvager ran out of storage.

EINVAL The salvager arguments were incorrect.

ioefsutl salvage

Chapter 11. zFS commands 133

For no options specified, the salvager returns the following return codes:

Return code Explanation

00 Success. The aggregate is correct and no repair is needed.

04 The aggregate has some inconsistencies that were repaired.

08 An error occurred during verification; the report might be incomplete; the aggregate
could not be repaired.

12 A severe error occurred during verification; verify that processing has stopped; the
aggregate could not be repaired.

16 Terminating error.

EIO The salvager could not read or write the DASD.

EBUSY The aggregate was mounted or attached.

EMVSERR The salvager had an internal error. This return code is preceded by a dump for an
abend 2C3 and reason code EA660701.

ENOMEM The salvager ran out of storage.

EINVAL The salvager arguments were incorrect.

Usage notes
1. You can run ioefsutl salvage even if the zFS PFS is not active on the system. The ioefsutl
salvage utility invokes the salvager on the zFS aggregate that is specified with the -aggregate
option.

2. The salvager cannot process an aggregate that contains multiple file systems or a clone.
3. The processing of the aggregate is controlled by the specification or the omission of the -
verifyonly option.

• Specify the -verifyonly option

To determine whether the structure of the aggregate contains any inconsistencies. Use this option
to assess the extent of the damage to an aggregate. The salvager runs log recovery and then
determines whether there are any inconsistencies. No repair is attempted other than running log
recovery.

• Omit the -verifyonly option

To run log recovery on the aggregate, verify the aggregate and then attempt to repair any
inconsistencies that are found in the structure of the aggregate. Because log recovery eliminates
inconsistencies in an undamaged file system, an aggregate is typically recovered before it is
salvaged. In general, it is good practice to first recover and then to salvage an aggregate if a system
goes down or experiences a hardware failure.

4. The salvager sets the backup change activity flag if log recovery is run or a repair is done.
5. The basic function of the salvager is similar to that of the fsck program in many UNIX systems. The

salvager recovers a zFS aggregate and repairs problems it detects in the structure of the aggregate. It
does not verify or repair the format of user data that is contained in files on the aggregate.

6. The salvager verifies the structure of an aggregate by examining all of the anodes, directories, and
other metadata in each file system on the aggregate. An anode is an area on the disk that provides
information that is used to locate data such as files, directories, ACLs, and other types of file system
objects. Each file system contains an arbitrary number of anodes, all of which must reside on the
same aggregate. By following the links between the various types of anodes, the salvager can
determine whether the organization of an aggregate and the file system that it contains is correct and
make repairs if necessary.

7. Not all aggregates can be salvaged. In cases of extensive damage to the structure of the metadata on
an aggregate or damage to the physical disk that houses an aggregate, the salvager cannot repair

ioefsutl salvage

134 z/OS: z/OS File System Administration

inconsistencies. Also, the salvager cannot verify or repair damage to user data on an aggregate. The
salvager cannot detect problems that modified the contents of a file but did not damage the structure
of an aggregate or change the metadata of the aggregate.

8. The salvager is designed to make all repairs in one pass. However, due to the nature of the program's
inputs (a corrupted, possibly vastly corrupted file system), IBM recommends a second running of the
salvage program to verify that the aggregate is truly repaired. If verifying the aggregate shows that it
is not repaired, then try running the salvager again to repair the aggregate. If this action does not
repair the aggregate, you can create a copy of the aggregate and run the salvager more times to try to
repair it. If the salvager cannot repair the aggregate after several repair attempts, the copy of the
aggregate and salvager job logs will allow IBM service to determine why.

9. Like the fsck command, the salvager analyzes the consistency of an aggregate by making successive
passes through the aggregate. With each successive pass, the salvager examines and extracts a
different type of information from the blocks and anodes on the aggregate. Later passes of the
salvager use information that was found in earlier passes to help in the analysis.

10. It is possible for the salvager to attempt a dynamic grow of an aggregate. One possible reason for this
is if an extended (v5) directory is found to be inconsistent (or broken). The salvager will try to repair it
by converting it to a new extended (v5) directory. To do this might require more disk space. If the disk
space is not available the directory is marked read-only. The rest of the file system has already been
made consistent, so you should still be able to mount the file system and read from the directory.

11. In general, if the salvager is invoked for a VSAM linear data set that it is sure is not a zFS aggregate, it
exits with an error code of at least 16 without analyzing the VSAM linear data set. It exits with an
error code of EBUSY (114) if a file system on the aggregate to be recovered or salvaged is mounted or
attached. (If necessary, you can use the unmount command to unmount the aggregate.)

12. As the salvager runs, it maintains a list of sorted error records that need repair. Each record includes
details for the salvager to quickly repair the aggregate. The salvager displays corruption messages if
verification found any inconsistencies. It also displays progress messages (IOEZ00782I) during
verification to indicate how many objects were processed. Depending on the aggregate size and
system usage, the salvager batch job may take hours or even longer to complete.

13. For more information about running the salvage utility, see “Understanding the salvager utility” on
page 90.

14. For a batch job, the ioefsutl salvage options are specified in the EXEC PARM as a single
subparameter (a single character string enclosed in apostrophes with no commas separating the
options). You cannot put the ending apostrophe in column 72. If it needs to go to the next line, use a
continuation character in column 72 (continuing in column 16 with the ending apostrophe on the
second line). Remember that a JCL EXEC PARM is limited to 100 characters. For more information,
see PARM parameter in z/OS MVS JCL Reference. For an example of the EXEC PARM for ioefsutl
salvage, see Figure 29 on page 136.

15. ioefsutl salvage can be used to salvage aggregate versions 1.4 and 1.5.
16. The salvager utility can set or clear the aggregate damaged bit:

• The -verifyonly option can set the bit if a true corruption is found or clear it if no corruption is
found.

• Repair (with no option) can clear the bit if a successful repair is done.
17. ioefsutl salvage can also be used to salvage aggregates that contain data that is compressed,

encrypted, or both compressed and encrypted.

Privilege required
The issuer must be logged in as a root user (UID=0) or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Examples

Figure 29 on page 136 shows an example of a job to salvage a zFS aggregate:

ioefsutl salvage

Chapter 11. zFS commands 135

//USERIDA JOB ,'Salvage verify',
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//SALVAGE EXEC PGM=IOEFSUTL,REGION=0M,
// PARM=('salvage -aggregate OMVS.PRV.COMPAT.AGGR001 -verifyonly')
//IOEZPRM DD DSN=SYS4.PVT.SY1.PARMLIB(IOEFSPRM),DISP=SHR
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//*

Figure 29. Job to verify a zFS aggregate using debug parameters specified in IOEZPRM

In the PARM=('salvage -aggregate OMVS.PRV.COMPAT.AGGR001 -verifyonly') statement,
the salvage and options -aggregate and -verifyonly must be in lowercase.

ioefsutl salvage

136 z/OS: z/OS File System Administration

MOUNT

Purpose
MOUNT is a TSO/E command that mounts a file system into the z/OS UNIX hierarchy. This section only
documents MOUNT options that are unique to zFS. It can also be invoked from the z/OS UNIX shell
(/usr/sbin/mount). For more information about MOUNT, see MOUNT - Logically mount a file system in
z/OS UNIX System Services Command Reference.

Beginning with z/OS V2R3, a newly created VSAM linear data set is formatted during its first mount if the
following conditions are true:

• VSAM linear data set is defined with the ZFS keyword (instead of LINEAR) or defined by using the
zfsadm define command from a z/OS V2R3 or later system.

• The size of the aggregate is 0.
• The user who issues the mount also has the authorization that is needed for the format.
• The aggregate can be created with the default format options.
• The root directory of the aggregate can be created by using permissions from the IOEFSPRM
configuration option format_perms setting. See “IOEFSPRM” on page 225 for a description of the
format_perms option.

Notes:

1. Beginning with z/OS V2R1, zFS clones are no longer supported. An attempt to mount an aggregate that
contains a .bak (clone) file system is denied.

2. Beginning with z/OS V2R1, multi-file system aggregates are no longer supported. An attempt to mount
a zFS file system that is contained in a zFS multi-file system aggregate is denied.

3. Beginning in z/OS V2R3, zFS aggregates that are created with the ZFS keyword on the IDCAMS DEFINE
CLUSTER command, or the zfsadm define command, do not have to be formatted in a separate step
prior to being mounted. zFS will automatically format them during mount. File systems formatted
during mount will use default values for all of the formatting keywords. The default UID and GID is
determined by the issuer of the mount. In a sysplex, the issuer of the mount is always OMVS, which is
UID 0.

Format
MOUNT TYPE(file_system_type) [PARM(parameter_string)]

Options
TYPE (file_system_type)

Specifies the file system type. Specify ZFS or HFS and the correct file system type is determined for
the file system that is located by the data set name. If the TYPE specified (HFS) does not match the
real file system type (ZFS), any associated ZFS parameters are ignored. For more information, see
Mounting considerations in z/OS UNIX System Services Planning.

PARM(parameter_string)
Specifies a parameter string to be passed to zFS. Parameters are case-sensitive and separated by a
comma. Enclose the parameter string within quotation marks. If a parameter is specified multiple
times, the last parameter is used.

If the value specified on the TYPE parameter (HFS) does not match the real file system type (ZFS), any
associated ZFS parameters are ignored.

AGGRFULL(threshold,increment)
Specifies the threshold and increment for reporting aggregate utilization messages to the
operator. The default is the aggrfull specification in the IOEFSPRM file. For version 1.5

MOUNT

Chapter 11. zFS commands 137

aggregates, if aggrfull is not specified in the IOEFSPM file, the default is taken from the fsfull
specification.

AGGRFULL and FSFULL provide the same function. You can use either one (or both) to monitor the
space utilization for an aggregate. However, AGGRFULL tends to give a more accurate view of free
space and is the suggested choice.

• For version 1.4 aggregates, if both AGGRFULL and FSFULL are specified, both will be used.
• For version 1.5 aggregates, if AGGRFULL is specified, FSFULL is ignored.

If AGGRFULL is not specified, the FSFULL specification is used as if it were the AGGRFULL
specification.

AGGRGROW | NOAGGRGROW
Specifies whether the aggregate is eligible to be dynamically grown. The growth is based on the
secondary allocation of the aggregate and will occur when the aggregate becomes full. The default
is the aggrgrow specification in the IOEFSPRM file.

CONVERTTOV5 | NOCONVERTTOV5
Specifies whether a zFS read/write file system is assigned the converttov5 attribute. If it is
assigned the converttov5 attribute and the aggregate is a version 1.5 aggregate, zFS
automatically converts directories from v4 to extended (v5) as they are accessed. If the
converttov5 attribute is assigned at primary mount time, a version 1.4 aggregate is changed to
a version 1.5 aggregate.

If automatic directory conversion for a directory fails, the conversion is not attempted again until
the file system is unmounted and mounted again.

The converttov5 attribute can also be assigned if the MOUNT option is not specified but the
converttov5 specification in the IOEFSPRM file is on when the file system is mounted or
remounted.

The default is NOCONVERTTOV5. However, the converttov5 attribute can also be assigned if the
converttov5 specification in the IOEFSPRM file is on when the file system is mounted or
remounted.

FSFULL(threshold,increment)
Specifies the threshold and increment for reporting file system utilization messages to the
operator. The default is the fsfull specification in the IOEFSPRM file.

AGGRFULL and FSFULL provide the same function. You can use either one (or both) to monitor
space utilization for an aggregate. However, AGGRFULL tends to give a more accurate view of free
space and is the suggested choice. For version 1.5 aggregates, if AGGRFULL is specified, this
option is ignored. If it is not specified, the FSFULL threshold and increment values are used to
report aggregate utilization messages.

HA | NOHA
Specifies whether the system will provide high availability for applications on non-owning systems
for a sysplex-aware file system when the owning system experiences an outage. The default is the
HA specification in the IOEFSPRM file. For more information about the high availability option, see
“Specifying the high availability option for read/write sysplex-aware file systems” on page 55.

RWSHARE | NORWSHARE
Specifies whether a zFS read/write mounted file system will be mounted sysplex-aware or non-
sysplex aware. zFS must be running sysplex-aware on a file system basis (IOEFSPRM specifies
sysplex=filesys) for this parameter to take effect. The default is the
sysplex_filesys_sharemode specified in the IOEFSPRM file, or later by using the zfsadm
config command. For information about whether to make a read/write file system sysplex aware,
see “Using zFS read/write sysplex-aware file systems” on page 14.

Usage notes
1. A mount of a compatibility mode aggregate is serialized with other zfsadm commands (because the

mount of a compatibility mode aggregate does an implicit attach).

MOUNT

138 z/OS: z/OS File System Administration

2. If you attempt to mount a compatibility mode aggregate/file system read-only and it fails because it
needs to run recovery (return code EROFS (141) and reason code EFxx6271), you should temporarily
mount it read/write so it can complete the recovery process. Then mount it read-only. Alternatively,
you can specify the romount_recovery=on configuration option in IOEFSPRM. This causes the file
system to automatically be temporarily mounted read/write to allow log recovery to run and then to be
mounted read-only.

3. If the file system being mounted is eligible for compression and the user cache is not registered with
the zEDC Express service, zFS will attempt to register the user cache after the mount completes. zFS
constraints might prevent zFS from registering the entire user cache with the zEDC Express service.
The zfsadm compress command will cause the ZFS_VERIFY_COMPRESSION_HEALTH check to be
run.

4. If the DASD volume containing the zFS compatibility mode aggregate being mounted is read-only, you
can receive message IOEZ00336I. This message indicates that the zFS aggregate indicator cannot be
set in the catalog (actually, in the VVDS on the volume). The zFS aggregate is successfully mounted
(and attached). DFSMSdss backup (DUMP) will not automatically quiesce and unquiesce the zFS
aggregate because it cannot determine that the VSAM linear data set is a zFS aggregate. If the zFS
aggregate can be mounted with the DASD volume in read/write, the zFS aggregate indicator will be set.

5. You can determine whether the zFS aggregate indicator is set by using IDCAMS LISTCAT ALL against
the zFS aggregate and looking for the zFS indicator in the output.

6. Do not use a path entry as the file system name in the MOUNT command. For more information, see
DEFINE PATH in z/OS DFSMS Access Method Services Commands. The mount succeeds but the system
issues messages similar to the following ones:

IOEZ00412I Catalog search failed for aggregate PLEX.JMS.AGGR006.PATH. Shareoptions are not altered.

IOEZ00336I PLEX.JMS.AGGR006.PATH could not be marked as a zFS aggregate in the catalog, rc=60 rsn=104

7. Using the HA mount option increases the directory response time from non-owning systems.

Examples

The following TSO/E example mounts a zFS file system and specifies a threshold and increment to display
a message when the file system becomes almost full:

MOUNT FILESYSTEM('OMVS.PRV.AGGR004.LDS0004') MOUNTPOINT('/etc/zfscompat1')
 TYPE(ZFS) MODE(RDWR) PARM('AGGRFULL(90,5)')

The same example as a z/OS UNIX command follows:

/usr/sbin/mount -f OMVS.PRV.AGGR004.LDS0004 -t ZFS -o 'AGGRFULL(90,5)' /etc/
zfscompat1

Related information
Commands:

UNMOUNT. For more information about UNMOUNT, see UNMOUNT - Remove a file system from the file
hierarchy in z/OS UNIX System Services Command Reference.

Files:

IOEFSPRM

MOUNT

Chapter 11. zFS commands 139

zfsadm

Purpose
This section introduces the zfsadm command suite. The zfsadm command is run from the z/OS UNIX
shell. It can also be invoked from TSO/E by using the program name IOEZADM or as a batch job by using
PGM=IOEZADM. If PARM is coded in the JCL to pass options or arguments to IOEZADM and any of the
options or arguments contain a slash (for example, R/O), you must specify a leading slash as the first
character in the PARM string. See Figure 30 on page 151 for an example of invoking IOEZADM from a
batch job.

Command syntax
The zfsadm commands have the same general structure:

command {-option1 argument...|-option2 {argument1|argument2}...}[-optional_information]

The following example illustrates the elements of a zfsadm command:

zfsadm detach {-all | -aggregate name} [-help]

The following list summarizes the elements of the zfsadm command:
Command

A command consists of the command suite (zfsadm in the previous example) and the command
name (detach). The command suite and the command name must be separated by a space. The
command suite specifies the group of related commands.

Options
Command options always appear in monospace type in the text, are always preceded by a - (dash),
and are often followed by arguments. In the previous example, -aggregate is an option, with name
as its argument. An option and its arguments tell the program which entities to manipulate when
running the command (for example, which aggregate, or which file system). In general, the issuer
should provide the options for a command in the order detailed in the format description. The { | }
(braces separated by a vertical bar) indicate that the issuer must enter either one option or the other
(-all or -aggregate in the previous example).

Command options are described in alphabetic order to make them easier to locate; this does not
reflect the format of the command. The formats are presented the same as on your system.

Arguments
Arguments for options are highlighted in the text. The { | } indicate that the issuer must enter either
one argument or the other (-all or -aggregate in the preceding example). The ... (ellipsis) indicates
that the issuer can enter multiple arguments.

Options
Some commands have optional, as well as required, options, and arguments. Optional information is
enclosed in [] (brackets). All options except -all or -aggregate in the previous example are
optional.

Options
The following options are used with many zfsadm commands. They are also listed with the commands
that use them.

-aggregate name
Specifies the aggregate name of the aggregate to use with the command.

-filesystem name
Specifies the file system to use with the command.

zfsadm

140 z/OS: z/OS File System Administration

-help
Prints the online help for this command. All other valid options that are specified with this option are
ignored. For complete details about receiving help, see “Receiving help” on page 142.

-size kbytes
Specifies the size in K-bytes for the kbytes argument.

-system sysname
Specifies the name of the system that the request is sent to.

-trace file_name
Specifies the name of the file that will have the trace records written into it. The trace file can be a
z/OS UNIX file, an existing MVS sequential data set, or a member of either an existing partitioned data
set (PDS) or partitioned data set extended (PDSE). Use this option only at the direction of IBM
Support.

For information about preallocation instructions for debugging, see Step 5 (Optional) Preallocate data
sets for debugging in “zFS installation and configuration steps” on page 11.

Because MVS data set names must be fully qualified, z/OS UNIX has special rules for specifying MVS
data set names in the shell environment. For more information, see Specifying MVS data set names in
the shell environment in z/OS UNIX System Services Command Reference.

When an option is specified multiple times on one command, the first one is honored and the subsequent
ones are ignored. This can cause a subsequent argument to be interpreted as an option and be diagnosed
as unrecognized.

Usage notes
1. Most zfsadm commands are administrative-level commands that are used by system administrators

to manage file systems and aggregates. You can issue commands from OMVS, TSO/E, or as a batch job.
Use the IOEZADM format for TSO/E and batch. For an example, see Figure 30 on page 151. The
description of the zfsadm attach command shows an example of issuing them as a batch job. The
other zfsadm commands can be run as a batch job in a similar manner.

2. For a batch job, the zfsadm options are specified in the EXEC PARM as a single subparameter (a single
character string enclosed in apostrophes with no commas separating the options). You cannot put the
ending apostrophe in column 72. If it needs to go to the next line, use a continuation character in
column 72 (continuing in column 16 with the ending apostrophe on the second line). Remember that a
JCL EXEC PARM is limited to 100 characters. For more information about EXEC PARM, see PARM
parameter in z/OS MVS JCL Reference.

3. zfsadm commands are serialized with each other. That is, when a zfsadm command is in progress, a
subsequent zfsadm command is delayed until the active zfsadm completes. This also includes
MOUNT of a compatibility mode aggregate (because an implicit attach occurs). This does not include
zfsadm grow or implicit aggregate grow. This also does not include long-running zfsadm commands
such as zfsadm shrink or zfsadm encrypt. zfsadm commands do not delay normal file system
activity (except when the zfsadm command requires it, such as zfsadm quiesce).

4. zfsadm commands only work on zFS file systems and aggregates. All zfsadm commands work across
sysplex members that are in a shared file system environment.

5. When supplying an argument to a zfsadm command, the option (for example -aggregate)
associated with the argument (for example, OMVS.PRV.AGGR001.LDS0001) can be omitted if:

• All arguments that are supplied with the command are entered in the order in which they appear in
the command's syntax. (The syntax for each command is provided.)

• Arguments are supplied for all options that precede the option to be omitted.
• All options that precede the option to be omitted accept only a single argument.
• No options, either those that accept an argument or those that do not, are supplied before the option

to be omitted.
• The first option cannot be followed by an additional option before the vertical bar.

zfsadm

Chapter 11. zFS commands 141

In the case where two options are presented in

{ | }

(braces separated by a vertical bar), the option associated with the first argument can be omitted if
that argument is provided; however, the option associated with the second argument is required if that
argument is provided.

If it must be specified, an option can be abbreviated to the shortest possible form that distinguishes it
from other options of the command. For example, the -aggregate option found in many zfsadm
commands can typically be omitted or abbreviated to be simply -a. (One exception is the zfsadm
attach command because it has an -aggrfull option.)

It is also valid to abbreviate a command name to the shortest form that still distinguishes it from the
other command names in the suite. For example, it is acceptable to shorten the zfsadm grow
command to zfsadm g because no other command names in the zfsadm command suite begin with
the letter g. However, there are two zfsadm commands that begin with l: zfsadm lsaggr and
zfsadm lsfs. To remain unambiguous, they can be abbreviated to zfsadm lsa and zfsadm lsf.

The following examples illustrate three acceptable ways to enter the same zfsadm grow command:

• Complete command:

zfsadm grow -aggregate omvs.prv.aggr001.lds0001 -size 50000

• Abbreviated command name and abbreviated options:

zfsadm g -a omvs.prv.aggr001.lds0001 -s 50000

• Abbreviated command name and omitted options:

zfsadm g omvs.prv.aggr001.lds0001 50000

6. The ability to abbreviate or omit options is intended for interactive use. If you embed commands in a
shell script, do not omit options nor abbreviate them. If an option is added to a command in the future,
it might increase the minimum unique abbreviation that is required for an existing option or change the
order of options.

7. In general, zfsadm commands are processed on a worker thread while the zfsadm thread waits. If
you cancel a zfsadm command that is taking a long time (for example, zfsadm grow or zfsadm
config (to shrink a cache), the zfsadm (waiting) thread is canceled, but the worker thread continues
to process the request to completion. In addition, most zfsadm commands require a common zfsadm
lock while they are processing. If the zfsadm command cannot get the lock, it waits for it to become
available. This means, if you issue another zfsadm command (after canceling a previous one), it can
be delayed by this common zfsadm lock until the previous (possibly canceled) command completes.
The zfsadm fsinfo command does not have either of these possible processing delays.

Receiving help
There are several different ways to receive help about zfsadm commands. The following examples
summarize the syntax for the different help options available:

zfsadm help
Displays a list of commands in a command suite.

zfsadm help -topic command
Displays the syntax for one or more commands.

zfsadm apropos -topic string
Displays a short description of any commands that match the specified string.

When the zfsadm command displays help text or a syntax error message, it will show the name of the
command as IOEZADM, instead of zfsadm. This occurs because the zfsadm command is not a binary
module in the z/OS UNIX file system; rather, it is a shell script that invokes IOEZADM. IOEZADM is an
entry that has the sticky bit on in the permissions. The sticky bit means that the IOEZADM module is

zfsadm

142 z/OS: z/OS File System Administration

found and executed from the user's STEPLIB, link pack area, or link list concatenation. (IOEZADM is
usually located in SYS1.SIEALNKE.) However, you cannot run IOEZADM from the shell because IOEZADM
is not normally in your PATH.

Privilege required
zfsadm commands that query information (for example, lsfs, aggrinfo) usually do not require the
issuer to have any special authority. zfsadm commands that modify (for example, grow) usually require
the issuer to have one of the following authorizations:

• UID of 0. If you are permitted READ to the BPX.SUPERUSER resource in the RACF FACILITY class, you
can become a UID of 0 by issuing the su command.

• READ authority to the SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Specific privilege information is listed within each command’s description.

Related information
Commands:

zfsadm aggrinfo
zfsadm apropos
zfsadm attach
zfsadm chaggr
zfsadm compress
zfsadm config
zfsadm configquery
zfsadm convert
zfsadm decompress
zfsadm decrypt
zfsadm define
zfsadm delete
zfsadm detach
zfsadm encrypt
zfsadm fileinfo
zfsadm format
zfsadm grow
zfsadm help
zfsadm lsaggr
zfsadm lsfs
zfsadm lssys
zfsadm query
zfsadm quiesce
zfsadm salvage
zfsadm setauditfid
zfsadm shrink
zfsadm unquiesce

File:

IOEFSPRM

zfsadm

Chapter 11. zFS commands 143

zfsadm aggrinfo

Purpose
zfsadm aggrinfo displays information about an aggregate, or all attached aggregates, if there is no
specific aggregate specified.

Format
zfsadm aggrinfo [-aggregate name|-system sysname][-fast|-long]
 [-level][-help][-trace file_name]

Options
-aggregate name

Specifies the name of an aggregate about which information is to be displayed. The aggregate must be
attached. The aggregate name is not case-sensitive. It is translated to uppercase. If this option is
omitted, information is provided about all of the attached aggregates on the system. Compatibility
mode aggregates are implicitly attached when they are mounted.

-fast
Causes the command to display a single line of output for each attached aggregate. See “Usage notes
for zfsadm aggrinfo” on page 145 for an explanation of the information that is displayed on each line.

-help
Prints the online help for this command. All other valid options that are specified with this option are
ignored.

-level
Prints the level of the zfsadm command. This option is useful when you are diagnosing a problem.
Except for -help, all other valid options that are specified with -level are ignored.

-long
Causes the output of the command to be extended to display the following additional information
about space usage in an aggregate:

• Version of the aggregate
• File system identification (auditfid)
• Indicates sysplex-aware when the aggregate is sysplex-aware for read/write
• Indicates converttov5 if the aggregate has the converttov5 attribute
• Number of free 8-KB blocks
• Number of free 1-KB fragments
• Size of the log file
• Size of the filesystem table
• Size of the bitmap file
• If the aggregate is quiesced, the job name, system name and the time stamp of when the quiesce

occurred.

-system sysname
Specifies the name of the system that owns the attached aggregates for which the information is
displayed.

-trace file_name
Specifies the name of the file that will have the trace records written into it. The trace file can be a
z/OS UNIX file, an existing MVS sequential data set, or a member of either an existing partitioned data
set (PDS) or partitioned data set extended (PDSE). Use this option only at the direction of IBM
Support.

zfsadm aggrinfo

144 z/OS: z/OS File System Administration

For information about preallocation instructions for debugging, see Step 5 (Optional) Preallocate data
sets for debugging in “zFS installation and configuration steps” on page 11.

Because MVS data set names must be fully qualified, z/OS UNIX has special rules for specifying MVS
data set names in the shell environment. For more information, see Specifying MVS data set names in
the shell environment in z/OS UNIX System Services Command Reference.

Usage notes for zfsadm aggrinfo
1. The zfsadm aggrinfo command lists information about the total amount of disk space and the

amount of disk space currently available on attached aggregates. The -aggregate option can be used
to specify a single aggregate about which information is to be displayed. If this option is omitted,
information about all aggregates that are attached in the sysplex (if shared file systems are being used)
or the system is displayed. In a shared file system environment, you can limit the display to a single
system by using the -system option. Compatibility mode aggregates are implicitly attached when they
are mounted.

2. This command displays a separate line for each aggregate. Each line displays the following
information:

• The aggregate name.
• Whether the aggregate is read/write (R/W) or read-only (R/O), it is a mounted compatibility mode

aggregate (COMP) or an attached compatibility mode aggregate (MULT), or the aggregate is currently
quiesced (QUIESCED), disabled (DISABLED), or both.

• The amount of space available in KB.
• The total amount of space in the aggregate in KB. (To grow an aggregate using the zfsadm grow

command, specify a number larger than this number.)
• If -long is specified, the version of the aggregate, the auditfid, sysplex-aware if the aggregate is

sysplex-aware for read/write, the converttov5 attribute, the number of free 8-KB blocks, the
number of free 1-KB fragments, the size of the log file, the size of the file system table, the size of the
bitmap file, and if the aggregate is quiesced, the job name, time stamp, and system name of the job.

Privilege required
The issuer does not need special authorization.

Examples

Following is an example command that displays information about the disk space that is available on all
aggregates that are attached in the sysplex.

DCEIMGKC:/DCEIMGKC/home/suimgkc> zfsadm aggrinfo -long
IOEZ00369I A total of 1 aggregates are attached to the sysplex.
PLEX.AGGR (R/W COMP QUIESCED): 559 K free out of total 720
version 1.5
auditfid C3C6C3F0 F0F3000E 0000
sysplex-aware, converttov5
 69 free 8k blocks; 7 free 1K fragments
 112 K log file; 16 K filesystem table
 8 K bitmap file
Quiesced by job SUIMGKC3 on system DCEIMGKC on Mon Feb 11 16:04:36
2013

Related information
Commands:

zfsadm fsinfo
zfsadm lsaggr

Files:

zfsadm aggrinfo

Chapter 11. zFS commands 145

IOEFSPRM

zfsadm aggrinfo

146 z/OS: z/OS File System Administration

zfsadm apropos

Purpose
zfsadm apropos shows each help entry that contains a specified string.

Format
zfsadm apropos -topic string [-level] [-help] [-trace file_name]

Options
-help

Prints the online help for this command. All other valid options that are specified with this option are
ignored.

-level
Prints the level of the zfsadm command. This is useful when you are diagnosing a problem. Except for
-help, all other valid options that are specified with -level are ignored.

-topic
Specifies the keyword string for which to search. If it is more than a single word, surround it with
quotation marks ("") or another delimiter. Type all strings for zfsadm commands in all lowercase
letters.

-trace file_name
Specifies the name of the file that will have the trace records written into it. The trace file can be a
z/OS UNIX file, an existing MVS sequential data set, or a member of either an existing partitioned data
set (PDS) or partitioned data set extended (PDSE). Use this option only at the direction of IBM
Support.

For information about preallocation instructions for debugging, see Step 5 (Optional) Preallocate data
sets for debugging in “zFS installation and configuration steps” on page 11.

Because MVS data set names must be fully qualified, z/OS UNIX has special rules for specifying MVS
data set names in the shell environment. For more information, see Specifying MVS data set names in
the shell environment in z/OS UNIX System Services Command Reference.

Usage notes
The zfsadm apropos command displays the first line of the online help entry for any zfsadm command
containing the string specified by -topic in its name or short description. To display the syntax for a
command, use the zfsadm help command.

Privilege required
The issuer does not need special authorization.

Results
The first line of an online help entry for a command lists the command and briefly describes its function.
This command displays the first line for any zfsadm command where the string specified by -topic is
part of the command name or first line.

Examples

The following command lists all zfsadm commands that have the word list in their names or short
descriptions:

zfsadm apropos

Chapter 11. zFS commands 147

zfsadm apropos list
lsaggr: list aggregates
lsfs: list filesystem information

Related information
Commands:

zfsadm help

zfsadm apropos

148 z/OS: z/OS File System Administration

zfsadm attach

Purpose
zfsadm attach attaches an aggregate to zFS without mounting the file system. Beginning in z/OS V2R2,
this aggregate can only contain one file system.

Note: zfsadm aggrinfo displays an attached compatibility mode aggregate as MULT because it is not
mounted.

This command will be removed in a future release.

Format
zfsadm attach {-aggregate name
 [-system sysname]}
 [-aggrfull threshold,increment]
 [{-R/O|-ro|-rw}][-nbs|-nonbs]
 [-aggrgrow|-noaggrgrow]
 [-level][-help][-trace file_name]

Options
-aggregate name

Specifies the name of the aggregate to be attached. The aggregate name is not case-sensitive. It is
translated to uppercase. This aggregate does not need an entry in the IOEFSPRM file.

Compatibility mode aggregates do not need to be attached with the zfsadm attach command. They
are automatically attached on MOUNT of the compatibility mode file system.

-aggrfull threshold,increment
Specifies the threshold and increment for reporting aggregate full error messages to the operator.
Both numbers must be specified. The first number is the threshold percentage and the second
number is the increment percentage. For example, if 90,5 were specified, the operator is notified
when the aggregate is 90% full, then again at 95% full, and again at 100% full. The default is the
global aggrfull entry of the IOEFSPRM file.

-aggrgrow
Specifies that the aggregate should be dynamically grown if it runs out of physical space. The
aggregate (that is, the VSAM linear data set) must have a secondary allocation specified and there
must be space available on the volume. The default is the aggrgrow option of the IOEFSPRM file.

-help
Prints the online help for this command. All other valid options that are specified with this option are
ignored.

-level
Prints the level of the zfsadm command. This is useful when you are diagnosing a problem. Except for
-help, all other valid options that are specified with -level are ignored.

-nbs
Specifies that new block security is used for file systems in this aggregate. New block security refers to
the guarantee made when a system fails. If a file was being extended or new blocks were being
allocated for the file, but the user data had not yet made it to the disk when the failure occurred, zFS
shows the newly allocated blocks as all binary zeros and not whatever was on disk in those blocks at
time of failure.

-nonbs
The NONBS option is no longer supported; if NONBS is specified, it is ignored. zFS always runs with
NBS on.

zfsadm attach

Chapter 11. zFS commands 149

-noaggrgrow
Specifies that the aggregate should not be dynamically grown if it runs out of physical space. The
default is the aggrgrow option of the IOEFSPRM file.

-R/O | -ro
Specifies that the aggregate should be opened in read-only mode. The default is read/write unless -
R/O or -ro is specified.

-rw
Specifies that the aggregate should be opened in read/write mode. The default is read/write unless -
R/O or -ro is specified.

-system sysname
Specifies the name of the system that will be the zFS owner of the aggregate. The system name is not
case-sensitive. It is translated to uppercase.

-trace file_name
Specifies the name of the file that will have the trace records written into it. The trace file can be a
z/OS UNIX file, an existing MVS sequential data set, or a member of either an existing partitioned data
set (PDS) or partitioned data set extended (PDSE). Use this option only at the direction of IBM
Support.

For information about preallocation instructions for debugging, see Step 5 (Optional) Preallocate data
sets for debugging in “zFS installation and configuration steps” on page 11.

Because MVS data set names must be fully qualified, z/OS UNIX has special rules for specifying MVS
data set names in the shell environment. For more information, see Specifying MVS data set names in
the shell environment in z/OS UNIX System Services Command Reference.

Usage notes
1. The zfsadm attach command attaches zFS aggregates on this system. Beginning in z/OS V2R2, zFS

only attaches aggregates that contain exactly one file system.
2. If the attach fails because log recovery is unsuccessful, you can run the ioefsutl salvage batch

utility with the -verifyonly option on the aggregate to determine if there is an inconsistency. If so,
use ioefsutl salvage to recover the aggregate and reissue the zfsadm attach command.

3. The zfsadm lsaggr command can be used to display a current list of all aggregates that are
attached on this sysplex with the zFS owning system indicated, or this system when -system is used.

4. If the DASD volume containing the zFS aggregate that being attached is read-only, you might receive
message IOEZ00336I. This indicates that the zFS aggregate indicator cannot be set in the catalog
(actually, in the VVDS on the volume). The zFS aggregate is successfully attached. DFSMSdss backup
(DUMP) will not automatically quiesce and unquiesce the zFS aggregate because it cannot determine
that the VSAM linear data set is a zFS aggregate. If the zFS aggregate can be attached with the DASD
volume in read/write, the zFS aggregate indicator will be set.

5. You can determine if the zFS aggregate indicator is set by using IDCAMS LISTCAT ALL against the zFS
aggregate and looking for the zFS indicator in the output.

6. Compatibility mode aggregates do not need to be separately attached because they are attached
during MOUNT processing. However, if you want to issue a zfsadm command against a compatibility
mode aggregate without mounting the aggregate, you can use the zfsadm attach command. You
might attach an aggregate to grow it or display information about it.

Privilege required
The issuer must be logged in as a root user (UID=0) or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Examples

1. The following command attaches an aggregate.

zfsadm attach

150 z/OS: z/OS File System Administration

zfsadm attach -aggregate OMVS.PRV.AGGR001.LDS0001

2. The following example shows the same example as a job that invokes zfsadm attach.

//USERIDA JOB ,'Zfsadm Attach',
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//AGGRINFO EXEC PGM=IOEZADM,REGION=0M,
// PARM=('attach -aggregate OMVS.PRV.AGGR001.LDS0001')
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H
//*

Figure 30. Job to attach to an aggregate

If you want to specify the R/O option, you must specify a leading slash. Otherwise, Language
Environment® treats the characters before the slash as Language Environment parameters. That is, you
must use PARM=('/attach OMVS.PRV.AGGR001.LDS0001 -R/O').

Related information
Commands:

zfsadm fsinfo
zfsadm lsaggr

Files:

IOEFSPRM

zfsadm attach

Chapter 11. zFS commands 151

zfsadm chaggr

Purpose
zfsadm chaggr changes the attributes of an aggregate.

Restriction: All systems in the sysplex must be at least the V2R3 level in order to use the zfsadm
chaggr command.

Format
zfsadm chaggr -aggregate aggregate name
 {-aggrfull threshold,increment or off,|-aggrgrow on or off
 |-rwshare|-norwshare |-ha|-noha}[-trace file_name]
 [-level][-help]

Options
-aggregate aggregate name

Specifies the name of the aggregate whose attributes will be changed. The aggregate name is not
case-sensitive. It is converted to uppercase. To specify multiple aggregates with similar names, use
an asterisk (*) at the beginning, at the end, or both at the beginning and the end of aggregate name as
a wildcard. For more information, see “Usage notes for zfsadm chaggr” on page 153.

-aggrfull threshold,increment | off
Specifies the threshold and increment for reporting aggregate full error messages to the operator, or
specifies that aggregate full error messages are not to be issued.

-aggrgrow on | off
Specifies whether the aggregate is eligible to be dynamically grown.

-ha | -noha
Specifies whether an aggregate requires high availability processing to make the loss of the owning
system transparent to non-owning systems.

-help
Prints the online help for this command. All other valid options that are specified with this option are
ignored.

-level
Prints the level of the zfsadm command. This option is useful when you are diagnosing a problem.
Except for -help, all other valid options that are specified with -level are ignored.

-norwshare
Specifies that the aggregate is to be made non-sysplex aware.

-rwshare
Specifies that the aggregate is to be made sysplex aware.

-trace file_name
Specifies the name of the file that will have the trace records written into it. The trace file can be a
z/OS UNIX file, an existing MVS sequential data set, or a member of either an existing partitioned data
set (PDS) or partitioned data set extended (PDSE). Use this option only at the direction of IBM
Support.

For information about preallocation instructions for debugging, see Step 5 (Optional) Preallocate data
sets for debugging in “zFS installation and configuration steps” on page 11.

Because MVS data set names must be fully qualified, z/OS UNIX has special rules for specifying MVS
data set names in the shell environment. For more information, see Specifying MVS data set names in
the shell environment in z/OS UNIX System Services Command Reference.

zfsadm chaggr

152 z/OS: z/OS File System Administration

Usage notes for zfsadm chaggr
1. All systems in the sysplex must be at least the V2R3 level in order to use the zfsadm chaggr

command.
2. The aggregate must be mounted.
3. The threshold and increment values must be in the range 1-99.
4. The -norwshare, -rwshare, -ha, and -noha options will cause a samemode remount to be issued if

the aggregate is mounted read/write, which can be disruptive to overall performance in a sysplex. To
avoid possible disruption, do not use these options during peak usage times. If the aggregate is
mounted read-only, only the mount parameters are updated.

5. In addition to changing the aggregate attributes, the zfsadm chaggr command will also cause any
corresponding zFS mount parameters to be updated in the z/OS UNIX couple data set. When a mount
parameter is updated, duplicate and related mount parameters are first removed and the new mount
parameter is added to the end of the mount parm string. Under certain error conditions, the aggregate
attributes and the mount parameters that are stored in the z/OS UNIX couple data set might become
mismatched. This mismatch will not affect how zFS behaves. It will only be of concern if the aggregate
is remounted using the mount parameters that are stored in the couple data set.

If the mount parameters do not match the aggregate attributes, an aggregate might not have the same
behavior after a remount. Because the mount parameters in a z/OS UNIX couple data set are
ephemeral, any changes will not survive an unmount. Also, the mount parameters in a z/OS UNIX
couple data set only reflect the zFS mount parameters that are explicitly specified on a mount or the
zFS mount parameters that are explicitly changed with the zfsadm chaggr command. Hence the
parameters might not represent all the aggregate attributes in use.

6. The -aggrfull, -aggrgrow, -ha, -noha, -rwshare, and -norwshare options are mutually
exclusive.

7. zfsadm chaggr accepts several methods to specify aggregates based on their names.

a. Aggregate with an exact aggregate name. The aggregate name is not case-sensitive and is
converted to uppercase.

b. Aggregate using a wildcard ('*') at the beginning of the name value to select aggregates with a
common prefix.

c. Aggregate using a wildcard ('*') at the end of the name value to select aggregates with a common
suffix.

d. Aggregate using a wildcard ('*') at the beginning and the end of the name value to select
aggregates with both a common prefix and a common suffix.

Tip: To ensure proper processing by the z/OS UNIX shell, put single quotation marks around the
wildcard (*).

8. Valid candidate file systems will have their attributes changed as requested. If there are no file
systems that require a change to match the requested attribute, then no file systems will be changed.
In this situation, message IOEZ00857I will be displayed. (Valid candidates are file systems that match
the wildcard pattern and do not already have the requested attribute applied.)

Privilege required
The issuer must be logged in as a root user (UID=0) or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Examples

1. To show the current attributes of aggregate PLEX.ZFS.SMALL1:

zfsadm fsinfo plex.zfs.small1
File System Name: PLEX.ZFS.SMALL1

 *** owner information ***
 Owner: DCEIMGVY Converttov5: OFF,n/a

zfsadm chaggr

Chapter 11. zFS commands 153

 Size: 300240K Free 8K Blocks: 24337
 Free 1K Fragments: 7 Log File Size: 3008K
 Bitmap Size: 48K Anode Table Size: 8K
 File System Objects: 7 Version: 1.5
 Overflow Pages: 0 Overflow HighWater: 0
 Thrashing Objects: 0 Thrashing Resolution: 0
 Token Revocations: 0 Revocation Wait Time: 0.000
 Devno: 36 Space Monitoring: 0,0
 Quiescing System: n/a Quiescing Job Name: n/a
 Quiescor ASID: n/a File System Grow: ON,0
 Status: RW,RS,NE,NC
 Audit Fid: C3C6C3F0 F0F203EC 0000

 File System Creation Time: Nov 2 16:30:08 2015
 Time of Ownership: Nov 2 16:30:21 2015
 Statistics Reset Time: Nov 2 16:30:21 2015
 Quiesce Time: n/a
 Last Grow Time: n/a

 Connected Clients: n/a

Legend: RW=Read-write, RS=Mounted RWSHARE, NE=Not encrypted
 NC=Not compressed

2. To change the mount mode of aggregate PLEX.ZFS.SMALL1 to NORWSHARE:

zfsadm chaggr plex.zfs.small1 -
norwshare
IOEZ00650I Successfully changed the attributes of aggregate PLEX.ZFS.SMALL1.

3. To change aggregate PLEX.ZFS.SMALL1 to disallow dynamic growing:

zfsadm chaggr plex.zfs.small1 -aggrgrow
off
IOEZ00650I Successfully changed the attributes of aggregate PLEX.ZFS.SMALL1.

4. To change aggregate PLEX.ZFS.SMALL1 to use space monitoring, with a threshold of 96 percent full
and an increment of 2%:

zfsadm chaggr plex.zfs.small1 -aggrfull
96,2
IOEZ00650I Successfully changed the attributes of aggregate PLEX.ZFS.SMALL1.

5. To display the new attributes of aggregate PLEX.ZFS.SMALL1. Note the changed values in File System
Grow, Space Monitoring, the Status area, and the Legend:

zfsadm fsinfo plex.zfs.small1
File System Name: PLEX.ZFS.SMALL1

 *** owner information ***
 Owner: DCEIMGVY Converttov5: OFF,n/a
 Size: 300240K Free 8K Blocks: 37121
 Free 1K Fragments: 7 Log File Size: 3008K
 Bitmap Size: 48K Anode Table Size: 8K
 File System Objects: 7 Version: 1.5
 Overflow Pages: 0 Overflow HighWater: 0
 Thrashing Objects: 0 Thrashing Resolution: 0
 Token Revocations: 0 Revocation Wait Time: 0.000
 Devno: 36 Space Monitoring: 96,2
 Quiescing System: n/a Quiescing Job Name: n/a
 Quiescor ASID: n/a File System Grow: OFF,0
 Status: RW,NS,NE,NC
 Audit Fid: C3C6C3F0 F0F203EC 0000

 File System Creation Time: Nov 2 16:30:08 2015
 Time of Ownership: Nov 2 17:03:23 2015
 Statistics Reset Time: Nov 2 17:03:23 2015
 Quiesce Time: n/a
 Last Grow Time: n/a

 Connected Clients: n/a

Legend: RW=Read-write,NS=Mounted NORWSHARE,NE=Not encrypted

zfsadm chaggr

154 z/OS: z/OS File System Administration

 NC=Not compressed

Related information
Commands:

zfsadm config
zfsadm configquery
zfsadm fsinfo
MOUNT

Files:

IOEFSPRM

zfsadm chaggr

Chapter 11. zFS commands 155

zfsadm compress

Purpose
zfsadm compress compresses a zFS aggregate.

Format
zfsadm compress -aggregate name [-cancel][-trace file_name][-level][-help]

Options
-aggregate name

Specifies the name of the aggregate to be compressed. The aggregate name is not case-sensitive. It is
always converted to uppercase.

-cancel
Cancels an in-progress compress operation for the specified aggregate.

-help
Prints the online help for this command. All other valid options that are specified with this option are
ignored.

-level
Prints the level of the command. This option is useful when you are diagnosing a problem. Except for -
help, all other valid options that are specified with -level are ignored.

-trace file_name
Specifies the name of the file that will have the trace records written into it. The trace file can be a
z/OS UNIX file, an existing MVS sequential data set, or a member of either an existing partitioned data
set (PDS) or partitioned data set extended (PDSE). Use this option only at the direction of IBM
Support.

For information about preallocation instructions for debugging, see Step 5 (Optional) Preallocate data
sets for debugging in “zFS installation and configuration steps” on page 11.

Because MVS data set names must be fully qualified, z/OS UNIX has special rules for specifying MVS
data set names in the shell environment. For more information, see Specifying MVS data set names in
the shell environment in z/OS UNIX System Services Command Reference.

Usage notes
1. The zfsadm compress command is a long-running administrative command that uses the zEDC

compression method to compress an existing zFS aggregate.
2. To improve performance of the compression I/O, IBM recommends that you specify the edcfixed

option in the IOEFSPRM parameter user_cache_size. For more information about
user_cache_size, see “IOEFSPRM” on page 225.

3. If the user cache is not registered with the zEDC Express service, zFS will attempt to register the user
cache after the zfsadm compress command completes. zFS constraints might prevent zFS from
registering the entire user cache with the zEDC Express service. The zfsadm compress command
will cause the ZFS_VERIFY_COMPRESSION_HEALTH check to be run.

4. To process the compression request, the long-running command thread pool must have an available
foreground thread. See the IOEFSPRM configuration option long_cmd_threads for information
about controlling the size of the long-running foreground and background thread pools. The option is
described in “IOEFSPRM” on page 225.

5. The command must be issued from a z/OS V2R3 or later system, and the zFS file system must be
zFS-owned on a z/OS V2R3 or later system. The aggregate must be at least aggregate version 1.5 and
mounted read/write. Do not use this command before you have migrated all your systems to z/OS

zfsadm compress

156 z/OS: z/OS File System Administration

V2R3 or later. If there are systems that are active prior to z/OS V2R3 in the shared file system
environment, compression will not take place.

6. zFS will determine whether the compression can achieve space savings. If not, it will not perform
compression. Only regular files that are stored in blocked format can be compressed. Applications
can still access the aggregate while it is being compressed.

7. A compress operation can be interrupted by using the -cancel option, UNMOUNT immediate with
the -force option, or during a shutdown. If the compress operation is interrupted, the zFS aggregate
might be left with both compressed and uncompressed files. This partial state is allowed. Another
zfsadm compress command can be issued to resume the compression operation for the rest of the
files after the interruption.

8. You cannot compress an aggregate that is in a partially encrypted or partially decrypted state. In
other words, if encryption or decryption was interrupted for an aggregate, you cannot compress it.

9. Use either the zfsadm fsinfo or MODIFY FSINFO command to display whether an aggregate is
compressed or is being compressed. Progress of the compress operation can be seen in the owner
status display.

10. The zfsadm fileinfo command can be used to show whether a particular file is compressed or
not.

11. The backup change activity flag is set if any file data is compressed.
12. Aggregates with active file backups cannot be compressed.

Privilege required
The issuer must be logged in as a root user (UID=0) or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Examples

1. The following command compresses an existing zFS aggregate:

zfsadm compress -aggregate PLEX.ZFS.AGGR1
IOEZ00899I Aggregate PLEX.ZFS.AGGR1 successfully compressed.

Related information
Commands:

zfsadm encrypt
zfsadm decompress
zfsadm define
zfsadm fileinfo
zfsadm fsinfo
zfsadm shrink

Files:

IOEFSPRM

zfsadm compress

Chapter 11. zFS commands 157

zfsadm config

Purpose
zfsadm config changes the value of the zFS configuration file (IOEFSPRM) options in memory. See
Chapter 12, “The zFS configuration options file (IOEPRMxx or IOEFSPRM),” on page 225 for a complete
list of IOEFSPRM options.

Format
zfsadm config [-adm_threads number]
 [-user_cache_size cache_size[,fixed|edcfixed]]
 [-meta_cache_size cache_size[,fixed]]
 [-log_cache_size cache_size[,fixed]]
 [-sync_interval number][-vnode_cache_size number][-nbs {ON|OFF}]
 [-fsfull threshold,increment] [-aggrfull threshold,increment]
 [-trace_dsn dataset_name]
 [-tran_cache_size number][-msg_output_dsn dataset_name]
 [-metaback_cache_size cache_size[,fixed]][-aggrgrow {ON|OFF}]
 [-vnode_cache_limit number][-romount_recovery {ON|OFF}]
 [-convert_auditfid {ON|OFF}] [-client_reply_storage storage size]
 [-file_threads number]
 [-client_cache_size cache size[,fixed]] [-token_cache_size cache size]
 [-sysplex_filesys_sharemode {rwshare|norwshare}]
 [-change_aggrversion_on_mount {ON|OFF}] [-format_aggrversion {4|5}]
 [-converttov5 {ON|OFF}][-modify_cmd_threads number]
 [-honor_syslist {ON|OFF}]
 [-long_cmd_threads foreground,background]
 [-smf_recording {ON|ON,intvl|OFF}]
 [-format_encryption {ON|OFF}]
 [-edc_buffer_pool storage_size]
 [-format_perms number][-system sysname]
 [-trace file_name] [-ha ON|OFF]
 [-level] [-help]

Options
When you change options that apply to zFS aggregates and file systems, the current default changes.
However, the change does not affect file systems that were already mounted until they have been
unmounted and remounted. Those options are as follows:

aggrfull
aggrgrow
convert_auditfid
change_aggrversion_on_mount
converttov5
fsfull
sysplex_filesys_sharemode

-adm_threads number
Specifies the number of threads that are defined to handle pfsctl or mount requests.

-aggrfull threshold,increment
Specifies the threshold and increment for reporting aggregate full error messages to the operator.

Default value: None.

-aggrgrow ON | OFF
Specifies whether an aggregate should be dynamically extended when it runs out of physical space.

-change_aggrversion_on_mount ON | OFF
Specifies whether an aggregate should be changed to a version 1.5 aggregate on mount.

zfsadm config

158 z/OS: z/OS File System Administration

-client_cache_size cache size[,fixed]
Specifies the size, in bytes, of the client cache. This is only meaningful when zFS is running sysplex-
aware. This option is not supported; if it is specified, it is accepted but not used.

-client_reply_storage storage size
Specifies the number of bytes allocated for sysplex client reply storage. This is only meaningful when
zFS is running sysplex-aware.

-convert_auditfid ON | OFF
Specifies whether the zFS auditfid is automatically changed to the unique format on mount (attach). If
ON is specified, or defaulted, mount (attach) changes the standard auditfid format to the unique
auditfid format if the mount (attach) is read/write. If OFF is specified (or the mount (attach) is read-
only), the auditfid is not affected.

-converttov5 ON | OFF
Specifies whether directories in a version 1.5 aggregate should be converted from v4 directories to
extended (v5) directories as they are accessed. A version 1.4 aggregate is changed to a version 1.5
aggregate. You can override this setting at mount time by specifying CONVERTTOV5 or
NOCONVERTTOV5.

-edc_buffer_pool number
Specifies how much real storage will be permanently fixed by zFS for encryption and compression I/O.

-format_aggrversion 4 | 5
Specifies whether a version 1.4 aggregate or a version 1.5 aggregate should be formatted by default.
Because you can no longer format a version 1.4 aggregate, a version 1.5 aggregate is formatted
instead if -format_aggrversion 4 is specified.

-format_compression ON | OFF
Specifies whether a newly created zFS aggregate will be formatted with compression.

-format_encryption ON | OFF
Specifies whether a newly created zFS aggregate will be formatted with encryption.

-file_threads number
Specifies the current number of file threads. This option is only meaningful when zFS is running
sysplex-aware.

-format_perms number
Specifies the permissions that are used for the root directory of the file system during a format when
the -perms option is not specified. The valid values are in the range 0 to o7777. The number can be
specified as octal (for example, o755), as hexadecimal (for example, x1ED), or as decimal (for
example, 493).

-fsfull threshold,increment
Specifies the threshold and increment for reporting file system full error messages to the operator.

-ha ON | OFF
Specifies whether the high availability option is enabled by default for mounts of sysplex-aware file
systems.

-help
Prints the online help for this command. All other valid options that are specified with this option are
ignored.

-honor_syslist ON | OFF
Specifies whether to use the z/OS UNIX automove options when the new zFS owner is determined.
The -honor_syslist option is no longer supported. Its value can be changed but is ignored when
moving zFS ownership. For more information about zFS ownership movement, see “Dynamic
movement of the zFS owner” on page 52.

-level
Prints the level of the zfsadm command. This option is useful when you are diagnosing a problem.
Except for -help, all other valid options specified with -level are ignored.

-log_cache_size number [,fixed]
Specifies the size, in bytes, of the cache that is used to contain buffers for log file pages. The fixed
option reserves real storage for usage by zFS only.

zfsadm config

Chapter 11. zFS commands 159

-long_cmd_threads <foreground,background>
Specifies the number of foreground and background threads that are defined to handle long-running
administrative commands.

-meta_cache_size number [,fixed]
Specifies the size, in bytes, of the cache that is used to contain metadata. The fixed option reserves
real storage for usage by zFS only.

-metaback_cache_size number
Specifies the size of the metadata backing cache. This size is combined with meta_cache_size to
get the total size of the metadata cache.

-modify_cmd_threads number
Specifies the current number of threads that are defined to handle zFS modify commands.

-msg_output_dsn Seq_dataset_name
Specifies the name of a data set that contains any output messages that come from the zFS PFS.

-nbs ON | OFF
Controls the global new block security. zFS always runs with new block security on. The OFF option is
not supported. If it is specified, it is accepted but not used.

-romount_recovery ON | OFF
Specifies whether zFS will automatically avoid a read-only mount failure (zFS reason code EFxx6271)
because log recovery must be run for this aggregate. This situation can occur when the aggregate has
been mounted read/write and a failure occurred before it was unmounted. If the next mount is for
read-only, log recovery needs to be run before the mount can be successful. If the ON is specified and
this situation occurs, zFS temporarily mounts the aggregate read/write to allow log recovery to run.
After the log recovery is run, zFS unmounts and then mounts the aggregate read-only.

-smf_recording ON | ON,intvl | OFF
Specifies that data is to be collected and recorded by System Management Facilities (SMF).
ON

Specifies that SMF is to collect and record zFS data. The SMF parameters that were previously set
determines the type that is recorded and the recording interval that is used.

ON,intvl
Specifies that SMF is to collect and record zFS data at intvl interval. The SMF parameters that were
previously set determines the type of data that is recorded, but the SMF interval is overridden by
the intvl specification. The intvl option specifies the number of minutes between periodic
recording of statistics.

OFF
Specifies that SMF is not to collect and record zFS data.

-sync_interval number
Specifies the number of seconds between the times where zFS flushes data in its buffers to disk. The
default is 30 seconds.

-sysplex_filesys_sharemode rwshare | norwshare
Specifies the default for the mount PARM when a zFS read/write file system is mounted on a
sysplex=filesys system. You can override this setting at mount time by specifying an alternate
value in the actual mount PARM.

-system sysname
Specifies the name of the system that the configuration option change request is sent to.

-token_cache_size cache size
Specifies the token cache size maximum. When the token_cache_size is decreased, it is really the
maximum size that is being decreased. This is only possible if the current usage is less than the
maximum size. The token cache size cannot be decreased to lower than the current usage. The
current usage is displayed through the MODIFY ZFS,QUERY,STKM command. This option is only
meaningful when zFS is running sysplex-aware.

zfsadm config

160 z/OS: z/OS File System Administration

-trace_dsn PDSE_dataset_name
Specifies the name of a data set that contains the output of any operator MODIFY ZFS,TRACE,PRINT
commands or the trace output if zFS abends.

-tran_cache_size number
Specifies the number of transactions in the transaction cache. This option is not supported; if it is
specified, it is accepted but not used.

-trace file_name
Specifies the name of the file that will have the trace records written into it. The trace file can be a
z/OS UNIX file, an existing MVS sequential data set, or a member of either an existing partitioned data
set (PDS) or partitioned data set extended (PDSE). Use this option only at the direction of IBM
Support.

For information about preallocation instructions for debugging, see Step 5 (Optional) Preallocate data
sets for debugging in “zFS installation and configuration steps” on page 11.

Because MVS data set names must be fully qualified, z/OS UNIX has special rules for specifying MVS
data set names in the shell environment. For more information, see Specifying MVS data set names in
the shell environment in z/OS UNIX System Services Command Reference.

-user_cache_size number [,fixed|edcfixed]
Specifies the size, in bytes, of the cache that is used to contain file data. The fixed and edcfixed
options can fix the user file cache in real memory.

• The fixed option avoids page fix and page unfix for disk I/Os that do not use compression.
• The edcfixed option avoids page fix and page unfix for disk I/Os that use compression. It also

avoids data movement for compression I/Os.

-vnode_cache_size number
Specifies the number of vnodes that zFS will cache.

Usage notes
1. The zfsadm config command changes the configuration options (in memory) that were specified in

the IOEFSPRM file (or defaulted). The IOEFSPRM file is not changed. If you want the configuration
specification to be permanent, you must modify the IOEFSPRM file because zFS reads the IOEFSPRM
file to determine the configuration values when zFS is started. The values that can be specified for
each option are the same as the values that can be specified for that option in the IOEFSPRM file. You
can specify that the configuration option change request should be sent to another system by using
the -system option. The following options cannot be set by using the zfsadm config command:

• -cmd_trace
• -debug_dsn
• -group
• -msg_input_dsn
• -trace_table_size
• -sysplex_state

Privilege required
The issuer must be logged in as a root user (UID=0) or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Examples

The following example changes the size of the user cache:

zfsadm config -user_cache_size 64M
IOEZ00300I Successfully set -user_cache_size to 64M

zfsadm config

Chapter 11. zFS commands 161

Related information
Commands:

zfsadm configquery

Files:

IOEFSPRM

zfsadm config

162 z/OS: z/OS File System Administration

zfsadm configquery

Purpose
zfsadm configquery queries the current value of zFS configuration options.

Format
zfsadm configquery [-system sysname][-adm_threads][-aggrfull][-aggrgrow]
 [-all] [-change_aggrversion_on_mount][-client_cache_size][-client_reply_storage]
 [-cmd_trace] [-converttov5] [-convert_auditfid]
 [-debug_dsn] [-edc_buffer_pool] [-file_threads] [-format_aggrversion]
 [-format_compression] [-format_encryption] [-format_perms]
 [-fsfull] [-group] [-honor_syslist] [-log_cache_size]
 [-meta_cache_size] [-metaback_cache_size] [-modify_cmd_threads]
 [-msg_input_dsn] [-msg_output_dsn] [-nbs][-romount_recovery] [-long_cmd_threads]
 [-smf_recording] [-sync_interval] [-syslevel] [-sysplex_filesys_sharemode]
 [-sysplex_state] [-token_cache_size] [-trace_dsn] [-trace_table_size]
 [-tran_cache_size] [-user_cache_size] [-vnode_cache_limit] [-vnode_cache_size]
 [-ha] [-trace file_name][-level][-help]

Options
-adm_threads

Displays the number of threads that are defined to handle pfsctl or mount requests.
-aggrfull

Displays the threshold and increment for reporting aggregate full error messages to the operator.
-aggrgrow

Displays whether an aggregate should be dynamically extended when it runs out of physical space.
-all

Displays the full set of configuration options.
-change_aggrversion_on_mount

Displays whether a version 1.4 aggregate should be changed to a version 1.5 aggregate when it is
mounted.

-client_cache_size
Displays the size, in bytes, of the client cache. This option is only meaningful when zFS is running
sysplex-aware. If you use zfsadm config to set -client_cache_size to a value, the value is
displayed but not used.

-client_reply_storage
Displays the number of bytes allocated for sysplex client reply storage. This option is only meaningful
when zFS is running sysplex-aware.

-cmd_trace
Displays whether command tracing is active.

-converttov5
Displays whether an aggregate should be assigned the converttov5 attribute on mount or remount.
This attribute controls whether v4 directories will be converted to extended (v5) directories as they
are accessed.

-convert_auditfid
Displays whether the zFS auditfid is automatically changed to the unique format on mount (attach). If
on is specified or defaulted and the mount (attach) is read/write, the mount (attach) changes the
standard auditfid format to the unique auditfid format. If off is specified or the mount (attach) is
read-only, the auditfid is unaffected.

-debug_dsn
Displays the name of the debug input parameters data set.

zfsadm configquery

Chapter 11. zFS commands 163

-edc_buffer_pool
Displays how much real storage is permanently fixed by zFS for encryption and compression I/O.

-file_threads
Displays the current number of file threads. This option is only meaningful when zFS is running
sysplex-aware.

-format_aggrversion
Displays whether an aggregate formatting default should be to format as a version 1.4 or 1.5
aggregate.

-format_compression
Displays whether a newly created zFS aggregate will be formatted with compression.

-format_encryption
Displays whether a newly created zFS aggregate will be formatted with encryption.

-format_perms
Displays the permissions that are used for the root directory of a file system during a format when the
-perms format option is not specified.

-fsfull
Displays the threshold and increment for reporting file system full error messages to the operator.

-group
Displays the XCF group that is used by zFS for communication between sysplex members.

-ha
Displays whether the high availability option is enabled by default for mounts of sysplex-aware file
systems.

-help
Prints the online help for this command. All other valid options that are specified with this option are
ignored.

-honor_syslist
Displays the setting of the honor_syslist option that specifies whether to use the z/OS UNIX
automove options when the new zFS owner is determined. The -honor_syslist option is no longer
supported. The option is ignored when moving zFS ownership. For more information about system
lists, see “Dynamic movement of the zFS owner” on page 52.

-level
Prints the level of the zfsadm command. This option is useful when you are diagnosing a problem.
Except for -help, all other valid options that are specified with -level are ignored.

-log_cache_size
Displays the size, in bytes, of the cache that is used to contain buffers for log file pages.

-long_cmd_threads
Displays the number of foreground and background threads that are defined to handle long-running
administrative commands.

-meta_cache_size
Displays the size, in bytes, of the cache that is used to contain metadata.

-metaback_cache_size
Displays the size of the backing cache for metadata.

-modify_cmd_threads
Displays the number of threads that are defined to handle zFS modify commands.

-msg_input_dsn
Displays the name of the data set that contains translated zFS messages.

-msg_output_dsn
Displays the name of a data set that contains any zFS initialization output messages that come from
the zFS PFS.

zfsadm configquery

164 z/OS: z/OS File System Administration

-nbs
Controls the global new block security. zFS always runs with new block security on. If you use zfsadm
config to set -nbs to off, it is displayed as off, but the value is not used.

-romount_recovery
Displays whether read-only mount recovery is on or off. When romount_recovery=on, zFS
temporarily mounts the aggregate read/write to allow log recovery to run, and then zFS unmounts and
mounts the aggregate again in read-only format.

-smf_recording
Displays whether data is to be collected and recorded by System Management Facilities (SMF).

-sync_interval
Displays the number of seconds in the interval that zFS flushes data in the buffers to disk.

-syslevel
Displays the zFS kernel (the PFS) information, including:

• The version and release of z/OS
• The service level and FMID of zFS
• The date and time the PFS was built
• Whether the PFS is running sysplex-aware on a file system basis (referred to as filesys), or sysplex-

aware on a system basis (referred to as file), or not sysplex-aware (referred to as admin-only), and
the zFS XCF protocol level when running in a shared file system environment. (For information about
the XCF protocol level, see “Determining the XCF protocol interface level” on page 92.) When
filesys is indicated, the default mount PARM (NORWSHARE or RWSHARE) is also displayed.

This is the same information that is displayed by the operator command MODIFY ZFS,QUERY,LEVEL.
In contrast, zfsadm configquery -level shows the level information for the zfsadm command
itself.

-sysplex_filesys_sharemode
Displays the current default for the mount PARM (RWSHARE or NORWSHARE). It is only meaningful on
systems that are running zFS sysplex=filesys.

-sysplex_state
Displays the sysplex state of zFS.
3

zFS is running in a sysplex-aware environment with sysplex=filesys.
-system sysname

Specifies the name of the system the report request is sent to retrieve the requested data.
-token_cache_size

Displays the current token_cache_size maximum. The current usage is displayed through the
MODIFY ZFS,QUERY,STKM command. This option is only meaningful when zFS is running sysplex-
aware.

-trace_dsn
Displays the name of the data set that contains the output of any operator MODIFY ZFS, TRACE,PRINT
commands or the trace output if zFS abends.

-trace_table_size
Displays the size, in bytes, of the internal trace table.

-tran_cache_size
Displays the number of transactions in the transaction cache. If you use zfsadm config to set -
tran_cache_size to a value, the value is displayed but not used.

-trace file_name
Specifies the name of the file that will have the trace records written into it. The trace file can be a
z/OS UNIX file, an existing MVS sequential data set, or a member of either an existing partitioned data
set (PDS) or partitioned data set extended (PDSE). Use this option only at the direction of IBM
Support.

zfsadm configquery

Chapter 11. zFS commands 165

For information about preallocation instructions for debugging, see Step 5 (Optional) Preallocate data
sets for debugging in “zFS installation and configuration steps” on page 11.

Because MVS data set names must be fully qualified, z/OS UNIX has special rules for specifying MVS
data set names in the shell environment. For more information, see Specifying MVS data set names in
the shell environment in z/OS UNIX System Services Command Reference.

-user_cache_size
Displays the size, in bytes, of the cache that is used to contain file data.

-vnode_cache_size
Displays the number of vnodes that will be cached by zFS.

Usage notes
1. The zfsadm configquery command displays the current value of zFS configuration options. The

value is retrieved from zFS address space memory rather than from the IOEFSPRM file. You can specify
that the configuration option query request should be sent to another system by using the -system
option.

2. Ignore the following values when zFS is running non-sysplex aware. No storage is obtained even
though a value might be reported.

• -client_cache_size
• -client_reply_storage
• -file_threads
• -token_cache_size

Privilege required
The issuer does not need special authorization.

Examples

1. The following command displays the current value of the user_cache_size option:

zfsadm configquery -user_cache_size
IOEZ00317I The value for config option -user_cache_size is 64M.

2. The following command displays all the zFS configuration options from each member:

for sys in $(zfsadm lssys | grep -v IOEZ00361I); \
do; echo; echo $sys; zfsadm configquery -all -system $sys; done

Related information
Commands:

zfsadm config

Files:

IOEFSPRM

zfsadm configquery

166 z/OS: z/OS File System Administration

zfsadm convert

Purpose
zfsadm convert converts a v4 directory that is contained in a read/write mounted version 1.5
aggregate to an extended (v5) directory. The aggregate is changed from a version 1.4 aggregate to a
version 1.5 aggregate, if necessary. It can also be used to change a version 1.4 aggregate to a version 1.5
aggregate without converting any directories.

Format
zfsadm convert {-path name|-aggrversion name}[-level][-help][-trace file_name]

Options
-aggrversion name

Specifies the aggregate name that should be changed from a version 1.4 aggregate to a version 1.5
aggregate. No directories are converted. The aggregate name is not case-sensitive. It is converted to
uppercase.

-help
Prints the online help for this command. All other valid options that are specified with this option are
ignored.

-level
Prints the level of the zfsadm command. This option is useful when you are diagnosing a problem.
Except for -help, all other valid options that are specified with -level are ignored.

-path name
Specifies the path name of a directory that should be converted to an extended (v5) directory. The
aggregate is changed to a version 1.5 aggregate first, if necessary.

-trace file_name
Specifies the name of the file that will have the trace records written into it. The trace file can be a
z/OS UNIX file, an existing MVS sequential data set, or a member of either an existing partitioned data
set (PDS) or partitioned data set extended (PDSE). Use this option only at the direction of IBM
Support.

For information about preallocation instructions for debugging, see Step 5 (Optional) Preallocate data
sets for debugging in “zFS installation and configuration steps” on page 11.

Because MVS data set names must be fully qualified, z/OS UNIX has special rules for specifying MVS
data set names in the shell environment. For more information, see Specifying MVS data set names in
the shell environment in z/OS UNIX System Services Command Reference.

Usage notes
1. The zfsadm convert command can be used to explicitly convert a v4 directory to an extended (v5)

directory that is contained in a read/write mounted version 1.5 aggregate. In this case, the -path
option is used. If the containing aggregate is a version 1.4 aggregate, the command attempts to
change the aggregate to a version 1.5 aggregate before converting the directory. It can also be used to
explicitly change a version 1.4 aggregate to a version 1.5 aggregate without converting any directories.
In this case, the -aggrversion option is used.

2. The zfsadm convert command might cause the file system to grow if it needs more space for the
extended (v5) directory.

3. The command must be issued from a z/OS V2R1 or later system and the zFS file system must be zFS-
owned on a z/OS V2R1 or later system. The aggregate must be mounted read/write.

zfsadm convert

Chapter 11. zFS commands 167

4. Do not use this command before you have migrated all your systems to z/OS V2R1 or later. If there are
systems that are prior to z/OS V2R1 active in the shared file system environment, no conversion of a
directory nor change of aggregate version takes place.

5. If you use a job to invoke zfsadm convert, to specify the -path option, you must specify a leading
slash in the PARM string if the path argument contains a slash. Otherwise, Language Environment will
treat the characters before the slash as Language Environment parameters. That is, you must use
PARM=('/convert -path /home/myname/mydir').

Privilege required
The issuer must be the owner of the directory and must have write permission (w) to the directory. If the
aggregate version is to be changed, the issuer must be logged in as the root user (UID=0) or have READ
authority to the SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Examples

The following example contains the steps to convert an existing version 1.4 aggregate to a version 1.5
aggregate, and to convert a v4 directory to an extended (v5) directory.

1. To display the version of the aggregate:

zfsadm aggrinfo PLEX.JMS.AGGR009.LDS0009 -long
PLEX.JMS.AGGR009.LDS0009 (R/W COMP): 1271 K free out of total 1440
version 1.4
auditfid C3C6C3F0 F0F200A2 0000

 158 free 8k blocks; 7 free 1K fragments
 112 K log file; 16 K filesystem table
 8 K bitmap file

2. To change the version to 1.5:

zfsadm convert -aggrversion PLEX.JMS.AGGR009.LDS0009
IOEZ00810I Successfully changed aggregate PLEX.JMS.AGGR009.LDS0009 to version 1.5.

3. To verify the aggregate version change:

zfsadm aggrinfo PLEX.JMS.AGGR009.LDS0009 -long
PLEX.JMS.AGGR009.LDS0009 (R/W COMP): 1271 K free out of total 1440
version 1.5
auditfid C3C6C3F0 F0F200A2 0000

 158 free 8k blocks; 7 free 1K fragments
 112 K log file; 16 K filesystem table
 8 K bitmap file

4. To display the version of a directory:

zfsadm fileinfo /
service9

 path: /service9
 *** global data ***
 fid 1,1 anode 69,516
 length 8192 format BLOCKED
 1K blocks 8 permissions 755
 uid,gid 0,10 access acl 0,0
 dir model acl 0,0 file model acl 0,0
 user audit F,F,F auditor audit N,N,N
 set sticky,uid,gid 0,0,0 seclabel none
 object type DIR object linkcount 3
 object genvalue 0x00000000 dir version 4
 dir name count 3 dir data version 1
 dir tree status VALID dir conversion na
 file format bits na,na,na file charset id na
 file cver na charspec major,minor na
 direct blocks 0x00000025
 indirect blocks none
 mtime Jun 13 15:27:10 2012 atime Jun 13 10:41:43 2012
 ctime Jun 13 15:27:10 2012 create time Jun 13 10:41:43 2012

zfsadm convert

168 z/OS: z/OS File System Administration

 reftime none
 not encrypted not compressed

5. To convert the directory to an extended (v5) directory:

zfsadm convert -path /service

IOEZ00791I Successfully converted directory /service9 to version 5 format.

6. To display the version of the directory again:

zfsadm fileinfo /service9

 path: /service9
 *** global data ***
 fid 1,1 anode 69,516
 length 8192 format BLOCKED
 1K blocks 8 permissions 755
 uid,gid 0,10 access acl 0,0
 dir model acl 0,0 file model acl 0,0
 user audit F,F,F auditor audit N,N,N
 set sticky,uid,gid 0,0,0 seclabel none
 object type DIR object linkcount 3
 object genvalue 0x00000000 dir version 5
 dir name count 3 dir data version 1
 dir tree status VALID dir conversion na
 file format bits na,na,na file charset id na
 file cver na charspec major,minor na
 direct blocks 0x00000025
 indirect blocks none
 mtime Jun 13 15:27:10 2012 atime Jun 13 10:41:43 2012
 ctime Jun 13 15:27:10 2012 create time Jun 13 10:41:43 2012
 reftime none
 not encrypted not compressed

Related information
Commands:

zfsadm config
zfsadm fsinfo

Files:

IOEFSPRM

zfsadm convert

Chapter 11. zFS commands 169

zfsadm decompress

Purpose
zfsadm decompress decompresses a zFS aggregate that was previously compressed with the zEDC
compression method.

Format
zfsadm decompress -aggregate name [-cancel][-trace file_name][-level][-help]

Options
-aggregate name

Specifies the name of the aggregate to be decompressed. The aggregate name is not case-sensitive.
It is always converted to uppercase.

-cancel
Cancels an in-progress decompress operation for the specified aggregate.

-help
Prints the online help for this command. All other valid options that are specified with this option are
ignored.

-level
Prints the level of the command. This option is useful when you are diagnosing a problem. Except for -
help, all other valid options that are specified with -level are ignored.

-trace file_name
Specifies the name of the file that will have the trace records written into it. The trace file can be a
z/OS UNIX file, an existing MVS sequential data set, or a member of either an existing partitioned data
set (PDS) or partitioned data set extended (PDSE). Use this option only at the direction of IBM
Support.

For information about preallocation instructions for debugging, see Step 5 (Optional) Preallocate data
sets for debugging in “zFS installation and configuration steps” on page 11.

Because MVS data set names must be fully qualified, z/OS UNIX has special rules for specifying MVS
data set names in the shell environment. For more information, see Specifying MVS data set names in
the shell environment in z/OS UNIX System Services Command Reference.

Usage notes
1. The zfsadm decompress command is a long-running administrative command that uses the zEDC

decompression method to decompress an existing compressed zFS aggregate.
2. To process the decompression request, the long-running command thread pool must have an available

foreground thread. See the IOEFSPRM configuration option long_cmd_threads for information
about controlling the size of the long-running foreground and background thread pools. (“IOEFSPRM”
on page 225)

3. The command must be issued from a z/OS V2R3 or later system, and the zFS file system must be zFS-
owned on a z/OS V2R3 or later system. The aggregate must be at least aggregate version 1.5 and
mounted read/write. If you ever need to go back to an earlier z/OS V2R3 system, make sure to
decompress all previously compressed aggregates first.

4. Applications can still access the aggregate while it is being decompressed.
5. A decompress operation can be interrupted by using the -cancel option or during a shutdown. It can

also be interrupted when the shell command unmount or TSO/E command UNMOUNT is issued with
the force option. If the decompress operation is interrupted, the zFS aggregate might end up with
both compressed and decompressed files. This partial state is allowed. You can issue another zfsadm

zfsadm decompress

170 z/OS: z/OS File System Administration

decompress command to resume the decompress operation for the rest of files after the interruption.
You can also issue zfsadm compress command to compress the partially compressed aggregate.

6. You cannot decompress an aggregate that is in a partially encrypted or partially decrypted state. In
other words, if encryption or decryption was interrupted for an aggregate, you cannot decompress it.

7. Use either the zfsadm fsinfo or MODIFY FSINFO command to display whether an aggregate is
decompressed or being decompressed. Progress of the decompress operation can be seen in the
owner status display. The backup change activity flag is set if any data is decompressed.

8. The zfsadm fileinfo command can be used to show whether a particular file is decompressed.
9. Aggregates with active file backups cannot be decompressed.

Privilege required
The issuer must be logged in as a root user (UID=0) or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Examples

The following command decompresses aggregate PLEX.ZFS.AGGR1:

zfsadm decompress -aggregate PLEX.ZFS.AGGR1

IOEZ00900I Aggregate PLEX.ZFS.AGGR1 successfully decompressed

Related information
Commands:

zfsadm compress
zfsadm fileinfo
zfsadm fsinfo

Files:

IOEFSPRM

zfsadm decompress

Chapter 11. zFS commands 171

zfsadm decrypt

Purpose
zfsadm decrypt decrypts a zFS aggregate that was previously encrypted with DFSMS access method
encryption.

Format
zfsadm decrypt -aggregate name [-cancel][-trace file_name][-level][-help]

Options
-aggregate name

Specifies the name of the aggregate to be decrypted. The aggregate name is not case-sensitive. It is
always converted to uppercase.

-cancel
Cancels an in-progress decrypt operation for the specified aggregate.

-help
Prints the online help for this command. All other valid options that are specified with this option are
ignored.

-level
Prints the level of the command. This option is useful when you are diagnosing a problem. Except for -
help, all other valid options that are specified with -level are ignored.

-trace file_name
Specifies the name of the file that will have the trace records written into it. The trace file can be a
z/OS UNIX file, an existing MVS sequential data set, or a member of either an existing partitioned data
set (PDS) or partitioned data set extended (PDSE). Use this option only at the direction of IBM
Support.

For information about preallocation instructions for debugging, see Step 5 (Optional) Preallocate data
sets for debugging in “zFS installation and configuration steps” on page 11.

Because MVS data set names must be fully qualified, z/OS UNIX has special rules for specifying MVS
data set names in the shell environment. For more information, see Specifying MVS data set names in
the shell environment in z/OS UNIX System Services Command Reference.

Usage notes
1. The zfsadm decrypt command is a long-running administrative command that uses DFSMS access

method decryption to decrypt an existing encrypted zFS aggregate.
2. The command must be issued from a z/OS V2R3 or later system, and the zFS file system must be zFS-

owned on a z/OS V2R3 or later system. The aggregate must be at least aggregate version 1.5 and
mounted read/write.

3. To process the decryption request, the long-running command thread pool must have an available
foreground thread. See the IOEFSPRM configuration option long_cmd_threads for information
about controlling the size of the long-running foreground and background thread pools. The option is
described in “IOEFSPRM” on page 225.

4. A decryption operation can be interrupted by using the -cancel option or during a shutdown. It can
also be interrupted when the shell command unmount or TSO/E command UNMOUNT is issued with
the force option. If the decompress operation is interrupted, the zFS aggregate might be left with
both decrypted and encrypted files. This partial state is allowed. You can issue another zfsadm
decrypt command to resume the decrypt operation for the rest of files after it has been interrupted.
You can also issue zfsadm encrypt command to encrypt the partially encrypted aggregate.

zfsadm decrypt

172 z/OS: z/OS File System Administration

5. You cannot decrypt an aggregate that is in a partially compressed or partially decompressed state. In
other words, if compression or decompression was interrupted for an aggregate, you cannot decrypt it.

6. After the aggregate is fully decrypted, any newly created files are not encrypted. Applications can still
access the aggregate while it is being decrypted. The backup change activity flag is set if any data is
decrypted.

7. Use either the zfsadm fsinfo or MODIFY FSINFO command to display whether an aggregate has
been decrypted or is being decrypted. Progress of the decrypt operation can be seen in the owner
status display.

8. The zfsadm fileinfo command can be used to show whether a particular file is decrypted.
9. Aggregates with active file backups cannot be decrypted.

Privilege required
The issuer must be logged in as a root user (UID=0) or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Example

1. The following command decrypts an existing zFS aggregate:

zfsadm decrypt -aggregate PLEX.ZFS.FS

IOEZ00878I Aggregate PLEX.ZFS.FS is successfully decrypted.

Related information
Commands:

zfsadm encrypt
zfsadm fileinfo
zfsadm fsinfo

Files:

IOEFSPRM

zfsadm decrypt

Chapter 11. zFS commands 173

zfsadm define

Purpose
zfsadm define defines a VSAM linear data set that can be formatted as a zFS aggregate.

Format
zfsadm define -aggregate name
 [-keylabel label][-dataclass SMS_data_class]
 [-managementclass SMS_management_class]
 [-storageclass SMS_storage_class]
 [-catalog catalog][-system sysname]
 [-modelmodel[catalog]]
 [-volumes volume[volume ...]]
 [-cylinders primary[secondary]]
 [-kilobytes primary[secondary]]
 [-megabytes primary[secondary]]
 [-records primary[secondary]]
 [-tracks primary[secondary]]
 [-level][-help][-trace file_name]

Options
-aggregate name

Specifies the aggregate name of the aggregate to be defined. The aggregate name is the name of the
VSAM linear data set that is defined. The aggregate name is not case-sensitive. It is converted to
uppercase.

-catalog catalog
Specifies the name of the catalog in which the VSAM linear data set is to be defined.

-cylinders primary [secondary]
Specifies the primary and optionally, the secondary allocation size for the VSAM linear data set in
cylinders. The VSAM linear data set must have a secondary allocation size that is specified, if you want
to use dynamic grow. See “Dynamically growing a compatibility mode aggregate” on page 24 for more
information.

-dataclass SMS_data_class
Specifies the name of the data class to be used when the VSAM linear data set is defined.

-help
Prints the online help for this command. All other valid options that are specified with this option are
ignored.

-keylabel label
Specifies an encryption key label that is used to locate keys in the cryptographic key data set (CKDS)
or the public key data set (PKDS) when a zFS aggregate is defined. The key label is typically managed
by the ICSF administrator.

-kilobytes primary [secondary]
Specifies the primary and optionally, the secondary allocation size for the VSAM linear data set in
kilobytes. The VSAM linear data set must have a secondary allocation size specified, if you want to use
dynamic grow. See “Dynamically growing a compatibility mode aggregate” on page 24 for additional
information.

-level
Prints the level of the zfsadm command. This is useful when you are diagnosing a problem. Except for
-help, all other valid options specified with -level are ignored.

-managementclass SMS_management_class
Specifies the name of the management class to be used when the VSAM linear data set is defined.

zfsadm define

174 z/OS: z/OS File System Administration

-megabytes primary [secondary]
Specifies the primary and optionally, the secondary allocation size for the VSAM linear data set in
megabytes. The VSAM linear data set must have a secondary allocation size specified, if you want to
use dynamic grow. See “Dynamically growing a compatibility mode aggregate” on page 24 for
additional information.

-model model [catalog]
Specifies the name of the model and optionally, the model entry’s catalog to be used when the VSAM
linear data set is defined.

-records primary [secondary]
Specifies the primary and optionally, the secondary allocation size for the VSAM linear data set in
records. When records is specified, the record size is assumed to be 4089 bytes. The VSAM linear
data set must have a secondary allocation size specified, if you want to use dynamic grow. See
“Dynamically growing a compatibility mode aggregate” on page 24 for additional information.

-storageclass SMS_storage_class
Specifies the name of the storage class to be used when the VSAM linear data set is defined.

-system sysname
Specifies the name of the system that the define request will be sent to.

-trace file_name
Specifies the name of the file that will have the trace records written into it. The trace file can be a
z/OS UNIX file, an existing MVS sequential data set, or a member of either an existing partitioned data
set (PDS) or partitioned data set extended (PDSE). Use this option only at the direction of IBM
Support.

For information about preallocation instructions for debugging, see Step 5 (Optional) Preallocate data
sets for debugging in “zFS installation and configuration steps” on page 11.

Because MVS data set names must be fully qualified, z/OS UNIX has special rules for specifying MVS
data set names in the shell environment. For more information, see Specifying MVS data set names in
the shell environment in z/OS UNIX System Services Command Reference.

-tracks primary [secondary]
Specifies the primary and optionally, the secondary allocation size for the VSAM linear data set in
tracks. The VSAM linear data set must have a secondary allocation size specified, if you want to use
dynamic grow. See “Dynamically growing a compatibility mode aggregate” on page 24 for additional
information.

-volumes volume
Specifies the volume on which the VSAM linear data set can have space.

Usage notes
1. The zfsadm define command defines a VSAM linear data set. The VSAM linear data set is available

to be formatted as a zFS aggregate. The command creates a DEFINE CLUSTER command string for a
VSAM linear data set with SHAREOPTIONS(3) and passes it to the IDCAMS utility. If a failure occurs,
the zfsadm define command can display additional messages from IDCAMS indicating the reason
for the failure.

2. Starting in z/OS V2R3, the DEFINE CLUSTER command includes the ZFS parameter to indicate that this
VSAM linear data set is intended to be used as a ZFS aggregate. For more information about the
DEFINE CLUSTER command, see DEFINE CLUSTER in z/OS DFSMS Access Method Services Commands.

Privilege required
The issuer of the zfsadm define command requires sufficient authority to create the VSAM linear data
set.

Examples

The following command defines a VSAM linear data set.

zfsadm define

Chapter 11. zFS commands 175

zfsadm define -aggregate omvs.prv.aggr001.lds0001 -volumes prv000 prv001 -cylinders 10 5

Related information
Commands:

MOUNT
zfsadm format

zfsadm define

176 z/OS: z/OS File System Administration

zfsadm delete

Purpose
zfsadm delete removes a backup file system in a compatibility mode aggregate. Beginning in z/OS
V2R2, .bak file systems can only be deleted on aggregates that are zFS-owned on down-level systems.

This command will be removed in a future release.

Format
zfsadm delete -filesystem name[-aggregate name][-level][-help][-trace file_name]

Options
-aggregate name

Specifies the name of the aggregate where the zFS file system resides. It is specified to qualify the zFS
file system name (-filesystem) when there are multiple zFS file systems with the same name in
different aggregates. The aggregate name is not case-sensitive. It is always folded to uppercase.

-filesystem name
Specifies the name of the backup file system to be removed. Include the .bak extension. The file
system name is case-sensitive.

-help
Prints the online help for this command. All other valid options that are specified with this option are
ignored.

-level
Prints the level of the zfsadm command. This is useful when you are diagnosing a problem. Except for
-help, all other valid options that are specified with -level are ignored.

-trace file_name
Specifies the name of the file that will have the trace records written into it. The trace file can be a
z/OS UNIX file, an existing MVS sequential data set, or a member of either an existing partitioned data
set (PDS) or partitioned data set extended (PDSE). Use this option only at the direction of IBM
Support.

For information about preallocation instructions for debugging, see Step 5 (Optional) Preallocate data
sets for debugging in “zFS installation and configuration steps” on page 11.

Because MVS data set names must be fully qualified, z/OS UNIX has special rules for specifying MVS
data set names in the shell environment. For more information, see Specifying MVS data set names in
the shell environment in z/OS UNIX System Services Command Reference.

Usage notes
1. The zfsadm delete command removes the backup zFS file system that is indicated by the -
filesystem option from its aggregate. The aggregate containing the file system to be deleted must
be attached. Removing a backup file system does not remove the read/write file system.

2. Beginning in z/OS V2R2, no aggregates can be attached that contain more than one file system or a
clone (.bak). Therefore, file systems can only be deleted from aggregates that are zFS owned on down-
level systems.

3. You can delete a compatibility mode file system (and its aggregate) by using the IDCAMS DELETE
operation. This operation deletes the VSAM linear data set. For more information about renaming or
deleting a compatibility mode aggregate, see “Renaming or deleting a compatibility mode aggregate”
on page 38.

zfsadm delete

Chapter 11. zFS commands 177

Privilege required
The issuer must be logged in as a root user (UID=0) or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Examples

The following command deletes the backup (clone) file system from its attached compatibility mode
aggregate:

zfsadm delete OMVS.USER.PAT.bak

IOEZ00105I File System OMVS.USER.PAT.bak deleted successfully

Related information
Commands:

zfsadm attach
zfsadm detach
zfsadm lsfs

Files: File:

IOEFSPRM

zfsadm delete

178 z/OS: z/OS File System Administration

zfsadm detach

Purpose
zfsadm detach detaches one or more aggregates from zFS. Any file systems contained in the detached
aggregate are unavailable to zFS.

Format
zfsadm detach [{-aggregate aggregate name|-all [-system sysname]}]
 [-level][-help][-trace file_name]

Options
-aggregate aggregate name

Specifies the aggregate name of the aggregate to be detached. Use this option or use -all, but not
both. The aggregate name is not case-sensitive. It is always translated to uppercase.

-all
Specifies that all attached aggregates in the sysplex are to be detached. Use this option or use -
aggregate but not both.

-help
Prints the online help for this command. All other valid options specified with this option are ignored.

-level
Prints the level of the zfsadm command. This option is useful when you are diagnosing a problem.
Except for -help, all other valid options specified with -level are ignored.

-system sysname
Specifies the name of the system where the aggregates to be detached reside. It cannot be specified
without the -all option.

-trace file_name
Specifies the name of the file that will have the trace records written into it. The trace file can be a
z/OS UNIX file, an existing MVS sequential data set, or a member of either an existing partitioned data
set (PDS) or partitioned data set extended (PDSE). Use this option only at the direction of IBM
Support.

For information about preallocation instructions for debugging, see Step 5 (Optional) Preallocate data
sets for debugging in “zFS installation and configuration steps” on page 11.

Because MVS data set names must be fully qualified, z/OS UNIX has special rules for specifying MVS
data set names in the shell environment. For more information, see Specifying MVS data set names in
the shell environment in z/OS UNIX System Services Command Reference.

Usage notes
1. The zfsadm detach command is used to detach an aggregate. Detaching an aggregate makes it

unavailable to the system. To detach one or more aggregates, use the -all or the -aggregate option
to specify the aggregates to be detached. Use the -system option to limit the detach to a single
system. The -system option cannot be specified without the -all option.

2. zfsadm detach does not detach mounted compatibility mode aggregates.

Privilege required
The issuer must be logged in as a root user (UID=0) or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

zfsadm detach

Chapter 11. zFS commands 179

Examples

The following example shows a zfsadm detach command that detaches the aggregate
OMVS.PRV.AGGR001.LDS0001.

zfsadm detach -aggregate omvs.prv.aggr001.lds0001

IOEZ00122I Aggregate OMVS.PRV.AGGR001.LDS0001 detached successfully

Related information
Commands:

zfsadm attach

Files:

IOEFSPRM

zfsadm detach

180 z/OS: z/OS File System Administration

zfsadm encrypt

Purpose
zfsadm encrypt encrypts a zFS aggregate.

Format
zfsadm encrypt -aggregate name [{-cancel|-keylabel label}]
 [-trace file_name][-level][-help]

Options
-aggregate name

Specifies the name of the aggregate to be encrypted. The aggregate name is not case-sensitive. It is
always converted to uppercase.

-cancel
Cancels an in-progress encrypt operation for the specified aggregate.

-help
Prints the online help for this command. All other valid options that are specified with this option are
ignored.

-keylabel label
Specifies an identifier that is used to locate keys in the cryptographic key data set (CKDS) or the public
key data set (PKDS). The key label is typically managed by the ICSF administrator.

The -keylabel option is only needed when a zFS aggregate is encrypted for the first time if it was
not specified when the VSAM linear data set was created. The -keylabel option is not needed in the
following situations:

• If encryption is resumed from a partially encrypted zFS aggregate, or
• If the key label was already defined by using either the zfsadm define command with the -
keylabel option or the IDCAMS DEFINE CLUSTER command with the KEYLABEL keyword, as
described in DEFINE CLUSTER in z/OS DFSMS Access Method Services Commands.

-level
Prints the level of the command. This option is useful when you are diagnosing a problem. Except for -
help, all other valid options that are specified with -level are ignored.

-trace file_name
Specifies the name of the file that will have the trace records written into it. The trace file can be a
z/OS UNIX file, an existing MVS sequential data set, or a member of either an existing partitioned data
set (PDS) or partitioned data set extended (PDSE). Use this option only at the direction of IBM
Support.

For information about preallocation instructions for debugging, see Step 5 (Optional) Preallocate data
sets for debugging in “zFS installation and configuration steps” on page 11.

Because MVS data set names must be fully qualified, z/OS UNIX has special rules for specifying MVS
data set names in the shell environment. For more information, see Specifying MVS data set names in
the shell environment in z/OS UNIX System Services Command Reference.

Usage notes
1. The zfsadm encrypt command is a long-running administrative command that uses DFSMS access

method encryption to encrypt an existing zFS aggregate. Only symbolic links, ACLs, regular files, and
fragmented v4 directories can be encrypted.

zfsadm encrypt

Chapter 11. zFS commands 181

2. The command must be issued from a z/OS V2R3 or later system, and the zFS file system must be zFS
owned on a z/OS V2R3 or later system. The aggregate must be at least aggregate version 1.5 and
mounted read/write. Do not use this command before you have migrated all your systems to z/OS
V2R3 or later. If there are systems that are active prior to z/OS V2R3 in the shared file system
environment, encryption will not take place.

3. To process the encryption request, the long-running command thread pool must have an available
foreground thread. See the IOEFSPRM configuration option long_cmd_threads for information
about controlling the size of the long-running foreground and background thread pools. The option is
described in “IOEFSPRM” on page 225.

4. An encryption operation can be interrupted by using the -cancel option or during a shutdown. It can
also be interrupted when the shell command unmount or TSO/E command UNMOUNT is issued with
the force option. If the encryption operation is interrupted, the zFS aggregate can be left with both
encrypted and unencrypted files. This partial state is allowed. Another zfsadm encrypt command
can be issued to resume the encryption operation for the rest of files after the interruption.

5. You cannot encrypt an aggregate that is in a partially compressed or partially decompressed state. In
other words, if compression or decompression was interrupted for an aggregate, you cannot encrypt
it.

6. After the aggregate is fully encrypted, any newly created files will be encrypted. Applications can still
access the aggregate while it is being encrypted. The backup change activity flag is set if any data is
encrypted.

7. Use either the zfsadm fsinfo or MODIFY FSINFO command to display whether an aggregate is
encrypted or being encrypted. Progress of the encrypt operation can be seen in the owner status
display.

8. The zfsadm fileinfo command can be used to indicate whether a particular file is encrypted.
9. If you encrypt an aggregate that contains files or directories in fragmented format, the files or

directories will be converted to blocked format. If there are not enough free 8 K blocks to do the
conversion, the encryption can run out of space. In this case, a dynamic grow will be attempted.

10. The encryption conversion process will clear all unused areas of the file system. This action is called
scrubbing.

11. Extended format VSAM data sets record the encryption status for each control interval in the dataset,
providing improved integrity checking. Therefore, it is recommended that new zFS data sets be
defined with the extended format option.

12. Aggregates with active file backups cannot be encrypted.

Privilege required
The issuer must be logged in as a root user (UID=0) or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Example

The following command encrypts an existing zFS aggregate with the specified key label:

zfsadm encrypt -aggregate PLEX.ZFS.FS -keylabel PROTKEY.AES.SECURE.KEY.32BYTE

IOEZ00877I Aggregate PLEX.ZFS.FS is successfully encrypted.

Related information
Commands:

zfsadm decrypt
zfsadm define
zfsadm fileinfo

zfsadm encrypt

182 z/OS: z/OS File System Administration

zfsadm format
zfsadm fsinfo

Files:

IOEFSPRM

zfsadm encrypt

Chapter 11. zFS commands 183

zfsadm fileinfo

Purpose
zfsadm fileinfo displays detailed information about a file or directory.

Format
zfsadm fileinfo -path name [{-globalonly|-localonly|-both}]
 [-level][-help][-trace file_name]

Options
-both

Causes the command to display both global and local information about the file or directory.
-globalonly

Causes the command to display global (on-disk) information about the file or directory. This option is
the default.

-help
Prints the online help for this command. All other valid options that are specified with this option are
ignored.

-level
Prints the level of the zfsadm command. This option is useful when you are diagnosing a problem.
Except for -help, all other valid options that are specified with -level are ignored.

-localonly
Causes the command to display local (in memory on this system) information about the file or
directory.

-path name
Specifies the path name of a file or directory about which information should be displayed. The path
name is case-sensitive.

-trace file_name
Specifies the name of the file that will have the trace records written into it. The trace file can be a
z/OS UNIX file, an existing MVS sequential data set, or a member of either an existing partitioned data
set (PDS) or partitioned data set extended (PDSE). Use this option only at the direction of IBM
Support.

For information about preallocation instructions for debugging, see Step 5 (Optional) Preallocate data
sets for debugging in “zFS installation and configuration steps” on page 11.

Because MVS data set names must be fully qualified, z/OS UNIX has special rules for specifying MVS
data set names in the shell environment. For more information, see Specifying MVS data set names in
the shell environment in z/OS UNIX System Services Command Reference.

Usage notes for zfsadm fileinfo
1. The zfsadm fileinfo command can be used to display information about a file or directory. It

supports files and directories in version 1.4 aggregates. It also supports files and v4 or extended (v5)
directories in version 1.5 aggregates.

2. If an aggregate has the converttov5 attribute assigned to it, accessing a v4 directory with zfsadm
fileinfo can cause its conversion to an extended (v5) directory. For more information, see
“Converting an existing v4 directory to an extended (v5) directory” on page 23.

3. The command must be issued from a z/OS V2R1 or later system. The file or directory must be
contained in a file system that is locally zFS-owned or in a client file system.

zfsadm fileinfo

184 z/OS: z/OS File System Administration

4. If you use a job to invoke zfsadm fileinfo, to specify the -path option you must specify a leading
slash in the PARM string if the path argument contains a slash. Otherwise, Language Environment
treats the characters before the slash as Language Environment parameters. That is, you must use
PARM=('/fileinfo -path /home/myname/mydata').

5. Some of the fields are only applicable to files, some are only applicable to directories, some are only
applicable to the local system and some are only applicable to client systems. There can also be
attributes that are sometimes associated with a file or directory, such as ACLs. When these situations
occur, the fields of the output display will contain values such as 0 or na or none, depending on the
type of value that the field contains when it does have valid information.

6. If the -globalonly option is specified (or defaulted), the following fields are displayed:
access acl

Anode index to ACL and length of ACL, separated by a comma.
anode

Anode block and offset into anode block, separated by a comma.
atime

Last access time.
auditor audit

Auditor audit flags for read, write, and execute:
F

Audit failed attempts.
N

None.
S

Audit successful attempts.
charspec major,minor

Character special file, major number, minor number. Each character special file has a device major
number, which identifies the device type, and a device minor number, which identifies a specific
device of a given device type.

compress-eligible # saved
The file is fully compressed on the disk and the total space in kilobytes is saved by the compress
operation.

converting to compressed
The file is partially compressed.

converting to decompressed
The file is partially decompressed.

create time
Create time.

ctime
Last change time.

direct blocks
The block numbers of the first eight 8-K blocks.

dir conversion
For an extended (v5) directory, not applicable. For a v4 directory, FAILED (directory conversion was
unsuccessful) or not applicable.

dir data version
A number that is incremented each time that the directory is changed.

dir model acl
Anode index to directory model ACL and length of ACL separated by a comma.

dir name count
The number of objects in an extended (v5) directory.

zfsadm fileinfo

Chapter 11. zFS commands 185

dir tree status
For an extended (v5) directory, VALID (accessed by hash) or BROKEN (accessed as a flat file). Not
applicable for a v4 directory.

dir version
The version of the directory; 5 indicates an extended (v5) directory and 4 indicates a v4 directory.

encrypted
The file data is fully encrypted on the disk.

fid
The inode and uniquifier separated by a comma.

file charset id
The coded character set ID. This value is taken from at_charsetid in the z/OS UNIX structure
ATTR.

file cver
Creation verifier. This value is taken from AT_cver in the z/OS UNIX structure ATTR.

file format bits
For a file, the txt flag, the defer tag, the file format. For other objects, the text flag, the defer tag,
and the file format are not applicable.

file model acl
Anode index to file model ACL and length of ACL separated by a comma.

format
INLINE, FRAGMENTED, or BLOCKED.

indirect blocks
The block numbers of the level 0, level 1, and level 2 trees.

length
Length of data (directories are multiples of 8 K).

mtime
Last modification time.

not compressed
The file data is not compressed on the disk.

not encrypted
The file data is not encrypted on the disk.

object genvalue
Object general attributes. This value is taken from at_genvalue in the z/OS UNIX structure ATTR.

object linkcount
Link count for the object.

object type
DIR or FILE or LINK or CHARSPEC.

partially decrypted [pct%]
The file data is partially decrypted; for a large file with size more than 1 G, the completion
percentage is also displayed.

partially encrypted [pct%]
The file data is partially encrypted; for a large file with size more than 1 G, the completion
percentage is also displayed.

permissions
Permissions in octal format.

reftime
Last reference time.

seclabel
Security label for file or directory.

zfsadm fileinfo

186 z/OS: z/OS File System Administration

set sticky,uid,gid
Sticky bit, set uid, and set gid, separated by a comma.

uid,gid
UID and GID of owner that is separated by a comma.

user audit
User audit flags for read, write, and execute:
N

None
S

Audit successful attempts
F

Audit failed attempts
1K blocks

Number of blocks that are used to store data, in kilobytes.
7. If the -localonly option is specified, the following fields are displayed:

backup pct% complete
Indicates that the file is currently being backed up and shows the percentage of completion.

client cached anode
Indicates that the client has the object's attributes and location information for the directory or file.

client cached fsp
Indicates that the client has security information that is cached for the directory or file.

client cached symlink
Indicates that the content of a symbolic link was cached by the sysplex client. This flag is valid only
for symbolic links.

client meta buffers
Number of buffers in the metadata or backing cache for this object for the sysplex client.

client meta updates
Indicates whether the sysplex client has updated metadata for this object.

client ops to server
Number of requests that the client made to the server for this object.

client revoke
Indicates whether a revoke is in progress to this sysplex client for this file or directory.

client thrashing
Indicates whether the file or directory is considered thrashing by zFS, and as a result, uses the zFS
thrash resolution interface to the server.

client token rights
Indicates the token rights that are held by the sysplex client for the object.

client thrash ops
Number of forwarded requests.

dirty meta buffers
For owners, indicates the number of dirty buffers in the metadata cache for this file or directory.

file dirty segments
The number of dirty segments in the user file cache. Dirty segments are regions of the file that are
either dirty and not yet written to disk, or are waiting for an I/O to disk to complete.

file meta issued
Applicable to files or directories that were accessed by the sysplex client. It indicates whether the
client made a request recently to the server where the object's metadata was updated.

file meta pending
Applicable to files or directories that are accessed by sysplex client. It indicates whether the client
has an outstanding request to the server where the object's metadata might be updated.

zfsadm fileinfo

Chapter 11. zFS commands 187

file segments
The number of 64 K segments of the file that is cached in the user file cache.

file seq read
Indicates whether user file cache considers file to be read sequentially. Valid only for files.

file seq write
Indicates whether user file cache considers file to be written sequentially. Valid only for files.

file unscheduled
Indicates the number of unscheduled pages (dirty data) in the user file cache for files.

no backup
Indicates that the file is not currently being backed up.

open deny
ar

Number of advisory deny-read opens
aw

Number of advisory deny-write opens
rd

Number of deny-read opens
wr

Number of deny-write opens
opens

oi
Number of internal opens

ow
Number of tasks that are waiting to open due to deny mode opens

rd
Number of read opens

rw
Number of write opens

owner
zFS owning system.

vnode,vntok
Addresses of the ZFS vnode and the z/OS UNIX vnode.

Privilege required
The issuer must have lookup authority (x) to the directory and READ authority (r) to the file.

Examples

The following example displays information for the /service9 directory:

zfsadm fileinfo -both /service9
 path: /service9
 *** global data ***
 fid 1,1 anode 69,516
 length 8192 format BLOCKED
 1K blocks 8 permissions 755
 uid,gid 0,10 access acl 0,0
 dir model acl 0,0 file model acl 0,0
 user audit F,F,F auditor audit N,N,N
 set sticky,uid,gid 0,0,0 seclabel none
 object type DIR object linkcount 2
 object genvalue 0x00000000 dir version 4
 dir name count na dir data version 0
 dir tree status na dir conversion na
 file format bits na,na,na file charset id na
 file cver na charspec major,minor na

zfsadm fileinfo

188 z/OS: z/OS File System Administration

 direct blocks 0x00000107
 indirect blocks none
 mtime Jun 13 10:41:43 2012 atime Jun 13 10:41:43 2012
 ctime Jun 13 10:41:43 2012 create time Jun 13 10:41:43 2012
 reftime none
 not encrypted not compressed
 *** local data from system DCEIMGVM ***
 vnode,vntok 0x00000000,,0x794C0900 0x00FF7CA0,,0x00000000
 opens ow=0 oi=0 rd=0 wr=0
 open deny rd=0 wr=0 ar=0 aw=0
 owner DCEIMGVM file seq read na
 file seq write na file unscheduled na
 file pending na file segments na
 file dirty segments na file meta issued na
 file meta pending na client cached fsp na
 client cached anode na client cached symlink na
 client revoke na client thrashing na
 client token rights na client thrash ops na
 client ops to server na client meta buffers na
 client meta updates na dirty meta buffers 0

 backup 99% complete

Related information
Commands:

zfsadm fsinfo

zfsadm fileinfo

Chapter 11. zFS commands 189

zfsadm format

Purpose
zfsadm format formats a VSAM linear data set to become a zFS compatibility mode aggregate.

Format
zfsadm format -aggregate name
 [-encrypt|-noencrypt][-compress|-nocompress]
 [-initialempty blocks] [-size blocks]
 [-logsize blocks] [-group {gid | name}]
 [-perms decimal|octal|hex_number] [-grow blocks]
 [-system sysname][-compat]
 [-overwrite][-owner {uid|name}]
 [{-newauditfid]|-nonewauditfid}][{-version4|-version5}]
 [-level][-help][-trace file_name]

Options
-aggregate name

Specifies the name of the aggregate to be formatted. The aggregate name is not case-sensitive. It is
translated to uppercase.

-compat
Specifies that the zFS aggregate should be formatted as a compatibility mode aggregate. That is, it
should be formatted as an aggregate and then a zFS file system should be created in the aggregate.
The zFS file system will have the same name as the aggregate. -compat is the default but is ignored.

-compress
Specifies that the aggregate will be compressed. See “Usage notes for zfsadm format” on page 191
for the default value that is used.

-encrypt
Specifies that the aggregate will be encrypted. See “Usage notes for zfsadm format” on page 191 for
the default value that is used.

-group {gid | name}
Specifies the group owner of the root directory of the file system. It can be specified as a z/OS group
ID or as a GID. The default is the GID of the issuer of the zfsadm format command. If only -owner
is specified, the group is that owner's default group.

-grow blocks
Specifies the number of 8 KB blocks that zFS uses as the increment for extension when the -size
option specifies a size greater than the primary allocation.

-help
Prints the online help for this command. All other valid options that are specified with this option are
ignored.

-initialempty blocks
This option is being allowed for compatibility with earlier versions and is ignored. One 8-KB block at
the beginning of the aggregate is reserved for IBM use.

-level
Prints the level of the zfsadm command. This option is useful when you are diagnosing a problem.
Except for -help, all other valid options that are specified with -level are ignored.

-logsize blocks
Specifies the size in 8 KB blocks of the log. The valid range is from 13 to 16384 blocks (128
megabytes). The default is 1% of the aggregate size. This default logsize will never be smaller than 14
blocks and it will never be larger than 4096 blocks (32 megabytes). This size is normally sufficient.
However, a small aggregate that is grown to be very large will still have a small log. You might want to
specify a larger log if you expect the aggregate to grow very large.

zfsadm format

190 z/OS: z/OS File System Administration

-newauditfid
Specifies that the aggregate should be formatted with the zFS auditfid and stored in the aggregate.
This is the default.

-nocompress
Specifies that the aggregate will not be compressed. See “Usage notes for zfsadm format” on page
191 for the default value that is used.

-noencrypt
Specifies that the aggregate will not be encrypted. See “Usage notes for zfsadm format” on page 191
for the default value that is used.

-nonewauditfid
Specifies that the aggregate should not be formatted with a zFS auditfid stored in it.

-overwrite
Specifies that an existing zFS aggregate should be overlaid. All existing data is lost. Use this option
with caution. This option is not usually specified.

-owner {uid | name}
Specifies the owner of the root directory of the file system. It can be specified as a z/OS user ID or as
a UID. The default is the UID of the issuer of the zfsadm format command.

-perms number
Specifies the permissions of the root directory of the file system. It can be specified as an octal
number (for example, o755), as a hexadecimal number (for example, x1ED), or as a decimal number
(for example, 493). See “Usage notes for zfsadm format” on page 191 for the default value that is
used.

-size blocks
Specifies the number of 8 KB blocks that should be formatted to form the zFS aggregate. The default
is the number of blocks that fits in the primary allocation of the VSAM linear data set. If a number less
than the default is specified, it is rounded up to the default. If a number greater than the default is
specified, a single extend of the VSAM linear data set is attempted after the primary allocation is
formatted unless the -grow option is specified. In that case, multiple extensions of the amount that is
specified in the -grow option are attempted until the -size is satisfied. Space must be available on
the volume.

-system sysname
Specifies the system that the format request will be sent to.

-trace file_name
Specifies the name of the file that will have the trace records written into it. The trace file can be a
z/OS UNIX file, an existing MVS sequential data set, or a member of either an existing partitioned data
set (PDS) or partitioned data set extended (PDSE). Use this option only at the direction of IBM
Support.

For information about preallocation instructions for debugging, see Step 5 (Optional) Preallocate data
sets for debugging in “zFS installation and configuration steps” on page 11.

Because MVS data set names must be fully qualified, z/OS UNIX has special rules for specifying MVS
data set names in the shell environment. For more information, see Specifying MVS data set names in
the shell environment in z/OS UNIX System Services Command Reference.

-version4
Specifies that the aggregate should be a version 1.4 aggregate. Because you can no longer format a
version 1.4 aggregate, a version 1.5 aggregate is formatted instead if -version4 is specified.

-version5
Specifies that the aggregate should be a version 1.5 aggregate. See “Usage notes for zfsadm format”
on page 191 for the default value that is used.

Usage notes for zfsadm format
1. The zfsadm format command formats a VSAM linear data set as a zFS aggregate. All zFS aggregates

must be formatted before use. The zfsadm format command requires the zFS PFS to be active on

zfsadm format

Chapter 11. zFS commands 191

the system. The size of the aggregate is as many 8-KB blocks as fits in the primary allocation of the
VSAM linear data set or as specified in the -size option. To extend it, use the zfsadm grow
command. If -overwrite is specified, all existing primary and secondary allocations are formatted
and the size includes all of that space, and the backup change activity flag is set.

2. If the VSAM linear data set has a SHAREOPTIONS value of other than 3, zfsadm format changes it to
SHAREOPTIONS 3 during format.

3. If the -overwrite option is specified, the backup change flag is set.
4. The aggregate version of the compatibility mode aggregate that was created can be specified by using

the -version4 or the -version5 option. However, if you specify the -version4 option, a version
1.5 aggregate is formatted instead because you can no longer format a version 1.4 aggregate. If you do
not specify either option, the setting of the zFS PFS format_aggrversion IOEFSPRM option is used.
See “Processing options for IOEFSPRM and IOEPRMxx” on page 227 for a description of the
format_aggrversion option.

5. The aggregate encryption status will be as specified if the -encrypt or -noencrypt option is used. If
neither option is used, then the default encryption status is obtained from the zFS PFS
format_encryption setting. See “IOEFSPRM” on page 225 for a description of the
format_encryption variable.

6. The compression status of the compatibility mode aggregate that was created can be specified by
using the -compress or the -nocompress option. If you do not use either option, the setting of the
zFS PFS format_compress IOEFSPRM option is used. See “Processing options for IOEFSPRM and
IOEPRMxx” on page 227 for a description of the format_compression option.

7. The permissions on the file system root directory can be specified by using the -perms option. If the -
perms option is not used, the setting of the zFS PFS format_perms IOEFSPRM option is used. See
“Processing options for IOEFSPRM and IOEPRMxx” on page 227 for a description of the
format_perms option.

Privilege required
Before you can issue zfsadm format, you must have UPDATE authority to the VSAM linear data set.

If you specified -owner, -group, or -perms with values that differ from the defaults, you must also be
UID 0 or have READ authority to the SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIX UNIXPRIV
class. The defaults for -owner and -group are determined from the credentials of the issuer. The default
for -perms is the value of the IOEFSPRM FORMAT_PERMS option.

Examples

The following command formats the VSAM linear data set as a compatibility mode aggregate.

zfsadm format -aggregate omvs.prev.aggr001.lds0001 -owner usera -group audit -perms
o750

Related information
Commands:

zfsadm define

Files:

IOEFSPRM

zfsadm format

192 z/OS: z/OS File System Administration

zfsadm fsinfo

Purpose
zfsadm fsinfo displays detailed information about a zFS file system, which is also known as a zFS
aggregate.

Format
zfsadm fsinfo [-aggregate name|-path path|-all]
 [{-basic|-owner|-full|-reset}][-select criteria|-exceptions]
 [-sort sort_name]
 [-level][-help][-trace file_name]

Options
-aggregate name

Specifies the name of the aggregate to be displayed. The aggregate name is not case-sensitive and is
translated to uppercase. To specify multiple aggregates with similar names, use an asterisk (*) at the
beginning, at the end, or both at the beginning and the end of name as a wildcard. If -aggregate
name is specified with wildcards, the default display is -basic. Otherwise, the default display is -
owner. See “Usage notes for zfsadm fsinfo” on page 194 for more information.

-all
Displays information for all aggregates in the sysplex. It is the default when -aggregate and -path
are not specified. The default information display will be as if -basic were specified.

-basic
Displays a line of basic file system information for each specified file system. This option is the default
in the following situations:

• The -all option is specified but -full, -owner, and -reset are not specified.
• None of -aggregate, -all, -path, -full, -owner, and -reset options are specified.
• The -sort and -exceptions options are specified and neither -full nor -owner is specified.
• The -aggregate option is specified with one or more wildcards.

See “Usage notes for zfsadm fsinfo” on page 194 for more information.
-exceptions

Displays information about any specified aggregate that is quiesced, disabled, had grow failures, is
low on space or damaged. Any specified aggregate is also displayed if it has had XCF communication
failures or an error because it ran out of space or when doing an I/O operation. This option cannot be
specified with -reset, -path, -select and -aggregate with no wildcard in name. Information is
displayed by default as if the -basic option were specified. See “Usage notes for zfsadm fsinfo” on
page 194 for more information.

-full
Displays information that is maintained by the system that owns each specified file system. See Table
16 on page 197 for a description of the information that is displayed for the owner. It also displays
information that is locally maintained by each system in the sysplex that has each specified file
system locally mounted. For information about local statistics that are displayed when the -full
option is specified, see Table 18 on page 199.

-help
Prints the online help for this command. All other valid options that are specified with this option are
ignored.

-level
Prints the level of the zfsadm command. This information is useful when you are diagnosing a
problem. Except for -help, all other valid options that are specified with -level are ignored.

zfsadm fsinfo

Chapter 11. zFS commands 193

-owner
Displays only information that is maintained by the system that owns each specified file system. This
option is the default when -aggregate without wildcards is specified. See “Usage notes for zfsadm
fsinfo” on page 194 for more information.

-path path
Specifies the path name of a file or directory that is contained in the file system for which information
is to be displayed. The path name is case-sensitive and can start with or without a slash (/). The
default information display will be as if -owner were specified.

-reset
Resets zFS statistics that are related to each specified file system.

-select criteria
Displays each specified file system that matches the criteria. Information is displayed by default as if
the -basic option were specified. The information that is displayed can also be sorted by using the -
sort option.

To use this option, specify a selection criteria from Table 14 on page 195.

This option cannot be specified with -exceptions, -reset, -path, and -aggregate with no
wildcard in name. See “Usage notes for zfsadm fsinfo” on page 194 for more information.

-sort sort_name
Specifies that the information displayed is to be sorted as specified by the value of sort_name. The
default is sort by Name. This option cannot be specified with -reset. The valid sorting options are
listed in Table 17 on page 199.

-trace file_name
Specifies the name of the file that will have the trace records written into it. The trace file can be a
z/OS UNIX file, an existing MVS sequential data set, or a member of either an existing partitioned data
set (PDS) or partitioned data set extended (PDSE). Use this option only at the direction of IBM
Support.

For information about preallocation instructions for debugging, see Step 5 (Optional) Preallocate data
sets for debugging in “zFS installation and configuration steps” on page 11.

Because MVS data set names must be fully qualified, z/OS UNIX has special rules for specifying MVS
data set names in the shell environment. For more information, see Specifying MVS data set names in
the shell environment in z/OS UNIX System Services Command Reference.

Usage notes for zfsadm fsinfo
1. The zfsadm fsinfo command displays detailed information about the specified file systems.

Normally, file systems must be attached before this command can be used to display their
information. However, when a specific aggregate name (with no wildcards) is specified, the file
system does not need to be attached. You can use several methods to specify aggregates, based on
their names, as follows:

• -aggregate with an exact aggregate name. The aggregate name is not case-sensitive and is
translated to uppercase.

• -aggregate using a wildcard ('*') at the beginning of the name value to select aggregates with a
common suffix.

• -aggregate using a wildcard ('*') at the end of the name value to select aggregates with a
common prefix.

• -aggregate using a wildcard ('*') at the beginning and the end of the name value to select
aggregates with both a common prefix and a common suffix.

• -path with the path name of a file or directory in a zFS file system. Information for the file system
that contains the file or directory is displayed.

Tip: To ensure proper processing by the z/OS UNIX shell, put single quotation marks around the
wildcard (*).

zfsadm fsinfo

194 z/OS: z/OS File System Administration

The -all option selects all file systems that are attached in the sysplex. It is the default.
2. The -owner option displays all available information for each specified file system from the zFS-

owning system. The information is obtained via XCF communication with the owning system if the
owning system is not the local system.

3. Aggregates can be selected by use of the -select option. To use this option, specify a criteria from
Table 14 on page 195. You can specify more than one criteria by using a comma to separate them.

Table 14. Criteria for selecting aggregates

Value Shows aggregates that ...

BK Contain files currently being backed up.

CE Had XCF communication failures between client systems and owning systems. This result
typically means that applications have gotten timeout errors.

CO Are compressed or partially compressed.

DA Are marked damaged by the zFS salvager.

DI Are disabled for reading and writing.

EN Are encrypted or partially encrypted.

EP Are partially encrypted or partially compressed.

GD Have the AGGRGROW attribute assigned but disabled for dynamic grow.

GF Have failed dynamic grow attempts.

GR Are currently being grown.

HA Are mounted with the high availability option.

IE Have had disk I/0 errors.

L Have less than 1 MB of free space, which means that increased XCF traffic is required for
writing files.

NC Are not compressed.

NE Are not encrypted.

NOHA The system does not provide high availability for applications on non-owning systems for a
sysplex-aware file system when the owning system experiences an outage.

NS Are mounted NORWSHARE.

OV Contain extended (v5) directories that are using overflow pages.

Q Are currently quiesced.

RO Are mounted read-only.

RQ Had application activity.

RW Are mounted read/write.

RS Are mounted RWSHARE.

SE Have returned ENOSPC errors to applications.

SH Are currently being shrunk.

SL Are currently being salvaged.

TH Have sysplex thrashing objects in them.

V4 Are version 1.4.

V5 Are version 1.5.

V5D Are disabled for conversion to version 1.5.

zfsadm fsinfo

Chapter 11. zFS commands 195

Table 14. Criteria for selecting aggregates (continued)

Value Shows aggregates that ...

WR Had application write activity.

4. Aggregates can be selected by using the -exceptions option. This option can be useful for
identifying file systems that have encountered unexpected conditions, and might need attention.
Unexpected conditions include I/O errors, XCF communication failures or being low on space. An
aggregate can also be damaged, quiesced, or disabled.

5. The -basic option displays the file system name, the zFS-owning system name, and file system
status. Table 15 on page 196 lists the values of the file system status. A Legend string is also
displayed at the end of the output as a quick reference to show the definitions of the abbreviated
status values.

6. When you use the -owner option, the displayed information has the file system status as part of the
output. The status field contains abbreviated values. For quick reference, these values are defined in
a Legend string at the end of the output. The full definitions of these abbreviations are listed in Table
15 on page 196.

Table 15. Definitions of abbreviated values when the -basic or -owner options are specified

Values Explanation

BK The aggregate contains files that are currently being backed up.

CE The aggregate had XCF communication failures (timeout errors) since the last statistics reset.

CI The aggregate is partially compressed.

CO The aggregate is compressed.

DA The salvage operation considered the aggregate damaged and it has not been repaired yet.

DC The aggregate is partially decompressed.

DE The aggregate is partially decrypted.

DI The aggregate is disabled for access.

EI The aggregate is partially encrypted.

EN The aggregate is encrypted.

GD Dynamic grow was disabled. This value is set if an aggregate has the AGGRGROW attribute
assigned to it but due to a dynamic grow failure will not attempt future dynamic grows until an
explicit administrator grow command is issued against that file system.

GF The aggregate had failed dynamic grow attempts.

GR The aggregate is being grown.

HA The aggregate is mounted with the high availability option.

IE The aggregate had disk I/O errors since the last statistics reset.

L The aggregate is low on space as defined by the zFS distributed bitmap reservation algorithms
(less than 1 MB of free space left).

NC The aggregate is not compressed.

NE The aggregate is not encrypted.

NM The aggregate is attached, but not mounted.

NS The aggregate is mounted NORWSHARE, or the aggregate is attached.

OV The aggregate has directories with overflow pages.

Q The aggregate is quiesced.

RO The aggregate is mounted in R/O mode.

zfsadm fsinfo

196 z/OS: z/OS File System Administration

Table 15. Definitions of abbreviated values when the -basic or -owner options are specified (continued)

Values Explanation

RQ The aggregate had application activity.

RW The aggregate is mounted R/W.

RS The aggregate is mounted RWSHARE.

SE The aggregate ran out of space at some time since the last statistics reset.

SH The aggregate is currently being shrunk.

SL The aggregate is currently being salvaged.

TH The aggregate has objects in the sysplex that are undergoing thrashing.

7. The -owner option displays the statistics that are shown in Table 16 on page 197.

Table 16. Statistics displayed when the -owner option is specified

Statistics Description

Anode Table Size Total space that is occupied by the anode table in kilobytes, including indirect blocks.

Audit Fid The auditfid that is used to represent the file system for SAF auditing.

Backups Number of files that are being backed up.

Backup File Space Space that is pinned on disk for files being backed up. These are blocks that have been freed
but cannot be used for new files until the backup is complete.

Bitmap Size Size of the bitmap file in kilobytes, including indirect blocks.

Compress Progress Indicates whether the compress operation is running or stopped with the percentage
completion. If the compress operation is running, it also shows the time of the day when the
long-running compress command was started and its task ID.

Connected Clients All client systems in the sysplex that have local mounts for a file system that is mounted
RWSHARE.

Converttov5 Indicates whether the file system has the CONVERTTOV5 attribute assigned to it. If the
aggregate is version 1.4, or is version 1.5 and does not have the CONVERTTOV5 attribute
assigned to it, the second value is n/a. If the aggregate has the CONVERTTOV5 attribute
assigned to it, the second value indicates whether automatic conversion is enabled or
disabled. One possible reason it could be disabled is that the aggregate was quiesced after
this system assumed ownership of the file system.

Decompress Progress Indicates whether the decompress operation is running or stopped with the percentage
completion. If the decompress operation is running, it also shows the time of the day when the
long-running decompress command was started and its task ID.

Devno The z/OS UNIX device number for the mounted file system.

Decrypt Progress Indicates whether the decrypt operation is running or stopped with the percentage
completion. If the decrypt operation is running, it also shows the time of the day when the
long-running decrypt command was started and its task ID.

Encrypt Progress Indicates whether the encrypt operation is running or stopped with the percentage
completion. If the encrypt operation is running, it also shows the time of the day when the
long-running encrypt command was started and its task ID.

Encrypt-Scrubbing
Progress

Indicates whether the scrubbing phases (clearing of unused disk space) is running or stopped
with the percentage completion. If the encrypt operation is running, it also shows the time of
the day when the long-running encrypt command was started and its task ID.

File System Creation
Time

Time that the file system was last formatted.

File System Grow Shows whether the Aggrgrow attribute is enabled (ON or OFF). It also shows the number of
grows that were performed since this system assumed ownership of the file system.

zfsadm fsinfo

Chapter 11. zFS commands 197

Table 16. Statistics displayed when the -owner option is specified (continued)

Statistics Description

File System Objects The number of objects in the file system. The number includes files, directories, symbolic
links, ACLs, and z/OS UNIX special files.

Free 8K Blocks Number of free 8 K blocks.

Free 1K Fragments Number of free fragments in partially allocated blocks.

Last Grow Time The time that the file system was last grown (by command or dynamically) since this system
assumed ownership of the file system.

Log File Size Total space in kilobytes occupied by the log file, including indirect blocks.

Overflow HighWater The highest number of overflow pages that were ever allocated on disk in extended (v5)
directories.

Overflow Pages The number of overflow pages that are allocated to extended (v5) directories.

Owner The name of the system that currently owns the aggregate.

Quiesce ASID ASID of the job that quiesced the aggregate.

Quiesce Jobname Name of job that quiesced the aggregate.

Quiesce System Name of the system where the application was running that quiesced the aggregate.

Quiesce Time The time that the file system was last quiesced. For critical I/O operations, zFS sends I/O
operations in parallel, up to the maximum number that the parallel access volume (PAV)
device can handle concurrently.

Revocation Wait Time The average time that it took to revoke tokens from clients.

Salvage Progress Indicates that a salvage operation is running. It also shows the time of the day when the long-
running salvage operation was started, its task ID, and which step of the salvage process is
currently being performed.

Shrink Progress Indicates that a shrink operation is running. It also shows the time of the day when the long-
running shrink operation was started, its task ID, and which step of the shrink process is
currently being performed.

Size Size of the aggregate in kilobytes.

Space Monitoring The threshold and increment for space monitoring. 0,0 is used to mean that there is no space
monitoring in use for the file system.

Statistics Reset
Time

Time that the owner statistics were last reset.

Status The status of the aggregate as known by the owning system. The display is a subset of the
information that is available in the -basic display because it shows only what the owner
knows. The -basic display is a one-line summary for all chosen sysplex members.

Thrash Resolutions The number of times the owner invoked the thrash resolution protocol (as opposed to the
normal direct I/O protocol) to resolve sysplex contention of objects in the file system.

Thrashing Objects The current number of sysplex thrashing objects in the file system at one time.

Time of Ownership Time that the current owning system assumed ownership of the file system. That is, the time
of its primary mount or when it last assumed ownership due to aggregate movement.

Token Revocations The number of times the owner revoked tokens from other sysplex members, which means
there was contention on an object and a callback had to be made to one or more clients.

Version The version of the aggregate. For example, 1.4 or 1.5.

8. Table 17 on page 199 lists the sorting options when the -sort option is specified.

zfsadm fsinfo

198 z/OS: z/OS File System Administration

Table 17. Sorting options when the -sort option is specified

Sorting option Function

Name Sort by file system name, in ascending order. This sorting option is the default.

Requests Sort by the number of external requests that are made to the file system by user applications, in
descending order. The most actively requested file systems are listed first.

Response Sort by response time of requests to the file system, in descending order. The slower responding file
systems are listed first.

9. The -full option displays statistics for each specified file system from the zFS owning system and
from each system in the sysplex that has it locally mounted. This is obtained via XCF communication
with each system in the sysplex. The owning system statistics are described in Table 16 on page 197.
The local statistics are described in Table 18 on page 199.

Table 18. Local statistics displayed when the full option is specified

Statistics Description

Application
Reads

The number of read requests that were made by applications for files and directories in this file
system.

Application
Writes

The number of write requests that were made by applications for files or directories in this file
system.

Average The average task wait time when it had to wait for an I/O operation. This is the full wait time,
including any queue wait time and device response time.

Avg. Rd XCF
Resp. Time

The average response time for XCF read requests for objects on the owning system.

Avg. Read Resp.
Time

The average response time for read requests that were made by applications for files or directories
in this file system.

Avg. Wr XCF
Resp. Time

The average response time for XCF write requests for objects on the owning system.

Avg. Write Resp.
Time

The average response time for write requests that were made by applications for files or directories
in this file system.

Canceled
Operations

The number of times a task was asynchronously abended (forced or canceled) while accessing this
file system.

DDNAME The DDNAME for the data set allocation on this system.

Disk IO Errors The number of disk I/O errors for disk I/O operations performed on this system.

ENOSPC Errors The number of out of space (ENOSPC) errors that were seen by applications for this file system on
this system.

Kbytes The number of kilobytes read from the DASD volume for this system.

LFS Held Vnodes The number of vnodes that the z/OS UNIX logical file system has allocated for the file system.

Metadata Cache
8K Pages

The number of 8 K pages in the metadata cache for this file system.

Mount Time The time the file system was mounted on this system.

Open objects Number of files or directories that are open.

PAV The number of noncritical concurrent I/O operations that zFS will send to the DASD at one time for
this DASD volume. For critical I/O operations, zFS will send I/O operations in parallel, up to the
maximum number that the parallel access volume (PAV) device can handle concurrently. An I/O
operation is deemed critical if a task is, or will be waiting on that I/O operation to complete.

Quiesce Waiters YES if there are tasks that are waiting for the file system to be unquiesced. Otherwise, NO.

Reads The number of disk reads to the DASD volume for this system.

zfsadm fsinfo

Chapter 11. zFS commands 199

Table 18. Local statistics displayed when the full option is specified (continued)

Statistics Description

Read XCF Calls The number of XCF requests to read objects from the system that owns the file system. This will be
zero (0) on the owning system.

Statistics Reset
Time

The time that the statistics for the local file system were last reset.

Tokens The number of tokens that are held for objects in the file system by the token manager.

TOTALS The totals for all DASD volumes for the file system on this system.

User Cache 4K
Pages

The number of 4 K pages in the user file cache for this file system.

Vnodes Number of vnodes in memory for the file system.

VOLSER The DASD VOLSER that the file system resides on.

Waits The number of times a task had to wait for an I/O operation to complete for disk I/O operations on
this system.

Writes The number of disk writes to the DASD volume for this system.

Write XCF Calls The number of XCF requests to write objects to the system that owns the file system. This will be
zero (0) on the owning system.

XCF Comm.
Failures

The number of XCF communication failures (for example, timeouts) on XCF requests made for this
file system on this system.

10. All times are in milliseconds. Large numbers are displayed using the following suffixes:
t

Multiply the shown value by 1,000,000,000.
m

Multiply the shown value by 1000000.
t

Multiply the shown value by 1000.
tr

Multiply the shown value by 1,000,000,000,000.
K

Multiply the shown value by 1024.
M

Multiply the shown value by 1048576.
11. When you use the -owner option, the displayed file system status will indicate whether a long-

running administrative operation is running on the aggregate. The statistics and legend sections will
display status information about the current progress of the long operation. Also, you will see
percentage complete indicators for certain steps of the long operation that are expected to occupy
the bulk of the time in the operation. For more information about the overall processing of the long
option, refer to the appropriate zfsadm command.

Privilege required
To use the -reset option, the issuer must be a root user (UID=0) or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.Otherwise, the issuer does not need
special authorization.

Examples

1. To display basic file system information for zFS aggregate PLEX.DCEIMGNK.FSINFO:

zfsadm fsinfo

200 z/OS: z/OS File System Administration

zfsadm fsinfo -aggregate PLEX.DCEIMGNK.FSINFO -basic

PLEX.DCEIMGNK.FSINFO.DCEIMGNJ RW,RS,Q,GF,GD,L,SE,NE,NC
Legend: RW=Read-write, Q=Quiesced, GF=Grow failed, GD=AGGRGROW disabled
 L=Low on space, RS=mounted RWSHARE, SE=Space errors reported
 NE=Not encrypted, NC=Not compressed

2. To display full file system status for zFS aggregate PLEX.DCEIMGNK.FSINFO:

zfsadm fsinfo -aggregate PLEX.DCEIMGNK.FSINFO -full

File System Name: PLEX.DCEIMGNK.FSINFO

 *** owner information ***
 Owner: DCEIMGNJ Converttov5: ON,DISABLED
 Size: 336K Free 8K Blocks: 23
 Free 1K Fragments: 0 Log File Size: 112K
 Bitmap Size: 8K Anode Table Size: 8K
 File System Objects: 3 Version: 1.5
 Overflow Pages: 0 Overflow HighWater: 0
 Thrashing Objects: 0 Thrashing Resolution: 0
 Token Revocations: 0 Revocation Wait Time: 0
 Devno: 46 Space Monitoring: 0,0
 Quiescing System: DCEIMGNJ Quiescing Job Name: SUIMGNJ
 Quiescor ASID: x4C File System Grow: ON,0
 Status: RW,RS,Q,GF,GD,L,SE
 Audit Fid: 00000000 00000000 0000
 Backups: 0 Backup File Space: 0K

 File System Creation Time: Nov 5 15:15:54 2013
 Time of Ownership: Nov 5 15:25:32 2013
 Statistics Reset Time: Nov 5 15:25:32 2013
 Quiesce Time: Nov 5 15:28:39 2013
 Last Grow Time: n/a

 Connected Clients: DCEIMGNK

Legend: RW=Read-write, Q=Quiesced, GF=Grow failed, GD=Grow disabled
 L=Low on space, RS=mounted RWSHARE, SE=Space errors reported
 NE=Not encrypted, NC=Not compressed

 *** local data from system DCEIMGNJ (owner: DCEIMGNJ) ***
 Vnodes: 1 LFS Held Vnodes: 4
 Open Objects: 0 Tokens: 3
 User Cache 4K Pages: 5 Metadata Cache 8K Pages: 6
 Application Reads: 167837 Avg. Read Resp. Time: 0.059
 Application Writes: 23460 Avg. Writes Resp. Time: 0.682
 Read XCF Calls: 0 Avg. Rd XCF Resp. Time: 0.000
 Write XCF Calls: 0 Avg. Wr XCF Resp. Time: 0.000
 ENOSPC Errors: 0 Disk IO Errors: 0
 XCF Comm. Failures: 0 Cancelled Operations: 0

 DDNAME: SYS00004
 Mount Time: Nov 6 09:46:44 2013

VOLSER PAV Reads KBytes Writes KBytes Waits Average
______ ___ __________ __________ __________ __________ __________ _________
CFC001 1 12 88 25767 304116 18796 1.032
______ ___ __________ __________ __________ __________ __________ _________
TOTALS 12 88 25767 304116 18796 1.032

3. To display the status of the file system owner by using a wildcard:

zfsadm fsinfo -aggregate PLEX.DCEIMGNJ.FS'*'

PLEX.DCEIMGNJ.FS1. DCEIMGNJ RW,NS,NE,NC
PLEX.DCEIMGNJ.FS2 DCEIMGNJ RW,RS,NE,NC
PLEX.DCEIMGNJ.FS3 DCEIMGNJ RW,NS,NE,NC
PLEX.DCEIMGNJ.FS2 DCEIMGNJ RW,RS,NE,NC
PLEX.DCEIMGNJ.FS3 DCEIMGNJ RW,NS,NE,NC
Legend: RW=Read-write,NS=Mounted NORWSHARE,NE=Not encrypted
 NC=Not compressed,RS=Mounted RWSHARE

4. A job to obtain the file system information by using a wildcard:

zfsadm fsinfo

Chapter 11. zFS commands 201

//USERIDA JOB ,'Zfsadm fsinfo',
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//GETINFO EXEC PGM=IOEZADM,REGION=0M,
// PARM=('fsinfo -aggregate PLEX.DCEIMGNJ.FS*')
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H

The following lines are possible output from the job:

PLEX.DCEIMGNJ.FS1 DCEIMGNJ RW,NS,NE,NC
Legend: RW=Read-write,NS=Mounted NORWSHARE,NE=Not encrypted
 NC=Not compressed

5. A job to obtain information for the file system that contains directory /u/userida/fs1:

//USERIDA JOB ,'Zfsadm fsinfo',
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//GETINFO EXEC PGM=IOEZADM,REGION=0M,
// PARM=('/fsinfo -path /u/userida/fs1')
//SYSPRINT DD SYSOUT=H
//STDOUT DD SYSOUT=H
//STDERR DD SYSOUT=H
//SYSUDUMP DD SYSOUT=H
//CEEDUMP DD SYSOUT=H

The following lines are possible output from the job:

PLEX.DCEIMGNJ.FS1. DCEIMGNJ RW,NS,NE,NC
Legend: RW=Read-write,NS=Mounted NORWSHARE,NE=Not encrypted
 NC=Not compressed

Related information
Commands:

zfsadm aggrinfo
zfsadm lsaggr
zfsadm lsfs

Files:

IOEFSPRM
MODIFY ZFS PROCESS

zfsadm fsinfo

202 z/OS: z/OS File System Administration

zfsadm grow

Purpose
zfsadm grow makes the physical size of an aggregate larger.

Format
zfsadm grow -aggregate name -size kbytes [-level] [-help] [-trace file_name]

Options
-aggregate name

Specifies the name of the aggregate to be grown. The aggregate name is not case-sensitive. It is
always translated to uppercase.

-help
Prints the online help for this command. All other valid options that are specified with this option are
ignored.

-level
Prints the level of the zfsadm command. This option is useful when you are diagnosing a problem.
Except for -help, all other valid options specified with -level are ignored.

-size kbytes
Specifies the new total size in kilobytes of the aggregate after the grow operation. The size is rounded
up to a control area (CA). A control area is normally a cylinder or less and is based on the primary and
secondary allocation units. If zero is specified, the secondary allocation size is used. The value that is
specified cannot exceed the size of a single volume.

-trace file_name
Specifies the name of the file that will have the trace records written into it. The trace file can be a
z/OS UNIX file, an existing MVS sequential data set, or a member of either an existing partitioned data
set (PDS) or partitioned data set extended (PDSE). Use this option only at the direction of IBM
Support.

For information about preallocation instructions for debugging, see Step 5 (Optional) Preallocate data
sets for debugging in “zFS installation and configuration steps” on page 11.

Because MVS data set names must be fully qualified, z/OS UNIX has special rules for specifying MVS
data set names in the shell environment. For more information, see Specifying MVS data set names in
the shell environment in z/OS UNIX System Services Command Reference.

Usage notes
1. The zfsadm grow command attempts to extend the size of an aggregate when the size specified is

greater than the current size of the aggregate or when the size is specified as zero. If the extend fails
(for example, if there is no space on the volume, or if size zero is specified and there is no secondary
allocation specified for the VSAM linear data set), the grow operation fails. If the size specified is less
than or equal to the current size of the aggregate, no extend is attempted and the command
successfully returns. An aggregate cannot be made smaller than its current size. In any case, if the
aggregate's high used value is less than the aggregate's high allocated value, the aggregate will be
formatted up to the high allocated value (making the high used value equal to the high allocated
value). The current (formatted) size of an aggregate can be determined by using the zfsadm
aggrinfo command. The high used value (HI-U-RBA) and the high allocated value (HI-A-RBA) can be
determined by using the IDCAMS LISTCAT ALL command.

2. The size of the file system free space is increased by the amount of additional space available.

zfsadm grow

Chapter 11. zFS commands 203

Privilege required
The issuer must be logged in as a root user (UID=0) or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Examples

The following command displays the online help entry for the zfsadm grow command:

zfsadm grow -help

Usage: zfsadm grow -aggregate <name> -size <size in K bytes> [-level] [-help]

Related information
Commands:

zfsadm aggrinfo
zfsadm fsinfo

zfsadm help

Purpose
zfsadm help shows syntax of specified zfsadm commands or lists functional descriptions of all zfsadm
commands.

Format
zfsadm help [-topic command...] [-level] [-help] [-trace file_name]

Options
-help

Prints the online help for this command. All other valid options that are specified with this option are
ignored.

-level
Prints the level of the zfsadm command. This is useful when you are diagnosing a problem. Except for
-help, all other valid options that are specified with -level are ignored.

-topic command
Specifies each command whose syntax is to be displayed. Provide only the second part of the
command name (for example, lsfs, not zfsadm lsfs). Multiple topic strings can be specified. If
this option is omitted, the output provides a short description of all zfsadm commands.

-trace file_name
Specifies the name of the file that will have the trace records written into it. The trace file can be a
z/OS UNIX file, an existing MVS sequential data set, or a member of either an existing partitioned data
set (PDS) or partitioned data set extended (PDSE). Use this option only at the direction of IBM
Support.

For information about preallocation instructions for debugging, see Step 5 (Optional) Preallocate data
sets for debugging in “zFS installation and configuration steps” on page 11.

Because MVS data set names must be fully qualified, z/OS UNIX has special rules for specifying MVS
data set names in the shell environment. For more information, see Specifying MVS data set names in
the shell environment in z/OS UNIX System Services Command Reference.

zfsadm help

204 z/OS: z/OS File System Administration

Usage notes
1. The zfsadm help command displays the first line (name and short description) of the online help

entry for every zfsadm command if -topic is not provided. For each command name specified with -
topic, the output lists the entire help entry.

2. The online help entry for each zfsadm command consists of the following two lines:

• The first line names the command and briefly describes its function.
• The second line, which begins with Usage:, lists the command options in the prescribed order.

Use the zfsadm apropos command to show each help entry containing a specified string.

Privilege required
The issuer does not need special authorization.

Examples

The following command displays the online help entry for the zfsadm lsfs command and the zfsadm
lsaggr command:

zfsadm help -topic lsfs lsaggr

zfsadm lsfs: list filesystem information
Usage: zfsadm lsfs [-aggregate <aggregate name>] [{-fast|-long}] [-level] [-help]
zfsadm lsaggr: list aggregates
Usage: zfsadm lsaggr [-level] [-help]

Related information
Commands:

zfsadm apropos

zfsadm help

Chapter 11. zFS commands 205

zfsadm lsaggr

Purpose
zfsadm lsaggr lists all currently attached aggregates for zFS. The owning system is displayed in a
shared file system (sysplex) environment.

Format
zfsadm lsaggr [-system name] [-level] [-help] [-trace file_name]

Options
-help

Prints the online help for this command. All other valid options that are specified with this option are
ignored.

-level
Prints the level of the zfsadm command. This option is useful when you are diagnosing a problem.
Except for -help, all other valid options that are specified with -level are ignored.

-system name
Specifies the name of the system that owns the attached aggregates to be displayed.

-trace file_name
Specifies the name of the file that will have the trace records written into it. The trace file can be a
z/OS UNIX file, an existing MVS sequential data set, or a member of either an existing partitioned data
set (PDS) or partitioned data set extended (PDSE). Use this option only at the direction of IBM
Support.

For information about preallocation instructions for debugging, see Step 5 (Optional) Preallocate data
sets for debugging in “zFS installation and configuration steps” on page 11.

Because MVS data set names must be fully qualified, z/OS UNIX has special rules for specifying MVS
data set names in the shell environment. For more information, see Specifying MVS data set names in
the shell environment in z/OS UNIX System Services Command Reference.

Usage notes
1. zfsadm lsaggr displays information about all attached aggregates.
2. zfsadm lsaggr displays a separate line for each aggregate. Each line displays the following

information:

• The aggregate name. The name of the system that is the zFS owner of the aggregate. If the aggregate
is unowned, *UNOWNED is displayed.

• The mode of the aggregate.
• The status of the aggregate (for example, QUIESCED, DISABLED, or both).

You can use the zfsadm aggrinfo command to display information about the amount of disk space
available on a specific aggregate or on all aggregates on a system.

Privilege required
The issuer does not need special authorization.

Examples

The following example shows that five aggregates are attached to the system or the sysplex when running
in a shared file system environment.

zfsadm lsaggr

206 z/OS: z/OS File System Administration

zfsadm lsaggr
OMVS.PRV.AGGR004.LDS0004 JS000END R/W
OMVS.PRV.AGGR003.LDS0002 JS000END R/O
OMVS.PRV.AGGR003.LDS0001 JS000END R/W
OMVS.PRV.AGGR002.LDS0002 JS000END R/W
OMVS.PRV.AGGR001.LDS0001 JS000END R/W

Related information
Commands:

zfsadm aggrinfo
zfsadm fsinfo

Files:

IOEFSPRM

zfsadm lsaggr

Chapter 11. zFS commands 207

zfsadm lsfs

Purpose
zfsadm lsfs lists all the file systems on a given aggregate or all attached aggregates.

Format
zfsadm lsfs [-aggregate name| -system sysname]
 [{-fast | -long}] [-level] [-help] [-trace file_name]

Options
-aggregate name

Specifies an aggregate name that is used to retrieve file system information. The aggregate name is
not case-sensitive. It is always translated to uppercase. If this option is not specified, the command
displays information for all attached aggregates.

-fast
Causes the output of the command to be shortened to display only the aggregate name.

-help
Prints the online help for this command. All other valid options that are specified with this option are
ignored.

-level
Prints the level of the zfsadm command. This option is useful when you are diagnosing a problem.
Except for -help, all other valid options that are specified with -level are ignored.

-long
Causes the output of the command to be extended to display the following additional information
about space usage in a file system: the allocation limit, the free space limit, the size of the inode table,
the number of file requests, the version of the file system, the creation date and time, and the last
update date and time.

-system sysname
Specifies the name of the system that owns the aggregates that contain the file systems to be
displayed.

-trace file_name
Specifies the name of the file that will have the trace records written into it. The trace file can be a
z/OS UNIX file, an existing MVS sequential data set, or a member of either an existing partitioned data
set (PDS) or partitioned data set extended (PDSE). Use this option only at the direction of IBM
Support.

For information about preallocation instructions for debugging, see Step 5 (Optional) Preallocate data
sets for debugging in “zFS installation and configuration steps” on page 11.

Because MVS data set names must be fully qualified, z/OS UNIX has special rules for specifying MVS
data set names in the shell environment. For more information, see Specifying MVS data set names in
the shell environment in z/OS UNIX System Services Command Reference.

Usage notes
1. The zfsadm lsfs command displays information about file systems in aggregates. The file systems

do not need to be mounted. The zfsadm lsfs command displays the following information for a
specified aggregate or all attached aggregates on a system or all attached aggregates in the sysplex:

• The total number of file systems that are contained in the aggregate.
• The name of the file system (with a .bak extension, if appropriate).
• The type (RW for read/write, or BK for backup).

zfsadm lsfs

208 z/OS: z/OS File System Administration

• Whether it is mounted.
• The allocation usage and the free space usage, in kilobytes.
• Whether the file system is online.
• Whether the backup is being deleted.
• The total number of file systems online, offline, busy, and mounted appear at the end of the output

for all file systems.

If -fast is specified, it only displays the file system names.

If -long is specified, the following information is displayed:

• Total number of file systems that are contained in the aggregate.
• The name of the file system.
• The ID of the file system.
• The type (RW for read/write, or BK for backup).
• Whether it is mounted or not.
• State vector of the file system.
• Whether the file system is online or not.
• Whether the backup is being deleted.
• Allocation limit and allocation usage.
• Free space limit and free space usage.
• Size of the Filesystem Inode Table and the number of file requests.
• Version of the aggregate.
• Day, date, and time when the file system was created.
• Day, date, and time when the contents of the file system were last updated.
• Total number of file systems online, offline, busy, and mounted appears at the end of the output for

all file systems.

Privilege required
The issuer does not need special authorization.

Examples

The following example displays information for the aggregate OMVS.PRV.AGGR001.LDS0001:

zfsadm lsfs -aggregate omvs.prv.aggr001.lds0001 -long
IOEZ00129I Total of 1 file systems found for aggregate OMVS.PRV.AGGR001.LDS0001
OMVS.PRV.FS1 100000,,5 RW (Not Mounted) states 0x10010005 On-line
 4294967232 K alloc limit; 9 K alloc usage
 25000 K quota limit; 9 K quota usage
 8 K Filesystem Inode Table 0 file requests

 version 1.4
 Creation Thu Aug 9 17:17:03 2001
 Last Update Thu Aug 9 17:17:03 2001

Total file systems online 1; total off-line 0; total busy 0; total mounted 0

Related information
Commands:

zfsadm fsinfo

zfsadm lsfs

Chapter 11. zFS commands 209

zfsadm lssys

Purpose
zfsadm lssys displays the names of the members in a sysplex.

Format
zfsadm lssys [-level][-help] [-trace file_name]

Options
-help

Prints the online help for this command. All other valid options specified with this option are ignored.
-level

Prints the level of the zfsadm command. This option is useful when you are diagnosing a problem.
Except for -help, all other valid options specified with -level are ignored.

-trace file_name
Specifies the name of the file that will have the trace records written into it. The trace file can be a
z/OS UNIX file, an existing MVS sequential data set, or a member of either an existing partitioned data
set (PDS) or partitioned data set extended (PDSE). Use this option only at the direction of IBM
Support.

For information about preallocation instructions for debugging, see Step 5 (Optional) Preallocate data
sets for debugging in “zFS installation and configuration steps” on page 11.

Because MVS data set names must be fully qualified, z/OS UNIX has special rules for specifying MVS
data set names in the shell environment. For more information, see Specifying MVS data set names in
the shell environment in z/OS UNIX System Services Command Reference.

Privilege required
The issuer does not need special authorization.

Examples

The command that follows shows the current list of system names in the XCF group for zFS.

zfsadm lssys

IOEZ00361I A total of 3 systems are in the XCF group for zFS
DCEIMGVM
DCEIMGVQ
DCEIMGVN

Related information
Related commands:

zfsadm lsaggr

zfsadm lssys

210 z/OS: z/OS File System Administration

zfsadm query

Purpose
zfsadm query displays internal zFS statistics (counters and timers) that are maintained in the zFS
Physical File System (PFS).

Format
zfsadm query [-system sysname][-compress]
 [-locking][-reset][-storage][-usercache][-trancache]
 [-iocounts][-iobyaggregate][-iobydasd][-knpfs] -logcache]
 [-metacache][-dircache][-vnodecache][-ctkc][-svi][-stkm]
 [-level][-help][-trace file_name]

Options
-ctkc

Displays the sysplex client operations report. For more information about this report, see “Statistics
Sysplex Client Operations Information” on page 421.

-compress
Displays the compression statistics. For more information, see “Statistics Compression Information”
on page 350.

-ctkc
Displays the sysplex client operations report. For more information about this report, see “Statistics
Sysplex Client Operations Information” on page 421.

-dircache
Displays the directory cache counters report. Beginning in z/OS V1R13, this option is not meaningful;
the report will show zeros. For more information about this report, see “Statistics Directory Cache
Information” on page 354.

-help
Prints the online help for this command. All other valid options that are specified with this option are
ignored.

-iobyaggregate
Displays the I/O count by aggregate report. For more information about this report, see “Statistics
Iobyaggr Information” on page 358.

-iobydasd
Displays the I/O count by direct access storage device (DASD) report. For more information about this
report, see “Statistics Iobydasd Information” on page 365.

-iocounts
Displays the I/O count report. For more information about this report, see “Statistics Iocounts
Information” on page 371.

-knpfs
Displays the kernel counters report. This option only displays counters for PFS calls on the zFS owner.
It does not display (a second set of) counters for PFS calls when this system is a zFS client. For more
information about this report, see “Statistics Kernel Information” on page 377.

-level
Prints the level of the zfsadm command. This option is useful when you are diagnosing a problem.
Except for -help, all other valid options that are specified with -level are ignored.

-locking
Displays the locking statistics report. For more information about this report, see “Statistics Locking
Information” on page 383.

zfsadm query

Chapter 11. zFS commands 211

-logcache
Displays the log cache counters report. For more information about this report, see “Statistics Log
Cache Information” on page 391.

-metacache
Displays the metadata cache counters report. For more information about this report, see “Statistics
Metadata Cache Information” on page 400.

-reset
Resets the report counters to zero. Should be specified with a report type. The reset takes place after
the current values are displayed. For example, if you enter zfsadm query -knpfs -reset, the
command returns the current values for the kernel counters report before resetting to zero.

-stkm
Displays the server token manager report. For more information about this report, see “Statistics
Server Token Management Information” on page 406.

-storage
Displays the storage report. For more information about this report, see “Statistics Storage
Information” on page 411.

-svi
Displays the server vnode interface statistics report. For more information about this report, see
“Statistics Sysplex Owner Operations Information” on page 427.

-system sysname
To retrieve the data requested, specifies the name of the system that will receive the report request.

-trace file_name
Specifies the name of the file that will have the trace records written into it. The trace file can be a
z/OS UNIX file, an existing MVS sequential data set, or a member of either an existing partitioned data
set (PDS) or partitioned data set extended (PDSE). Use this option only at the direction of IBM
Support.

For information about preallocation instructions for debugging, see Step 5 (Optional) Preallocate data
sets for debugging in “zFS installation and configuration steps” on page 11.

Because MVS data set names must be fully qualified, z/OS UNIX has special rules for specifying MVS
data set names in the shell environment. For more information, see Specifying MVS data set names in
the shell environment in z/OS UNIX System Services Command Reference.

-trancache
Displays the transaction cache counters report. Beginning with z/OS V2R2, this option is not
meaningful; the report will show zeros. For more information about this report, see “Statistics
Transaction Cache Information” on page 433.

-usercache
Displays the user cache report. For more information about this report, see “Statistics User Cache
Information” on page 437.

-vnodecache
Displays the vnode cache counters report. For more information about this report, see “Statistics
Vnode Cache Information” on page 447.

Usage notes
Use the zfsadm query command to display performance statistics that are maintained by the zFS
Physical File System.

Privilege required
The issuer does not need special authorization.

zfsadm query

212 z/OS: z/OS File System Administration

Examples

The following example is one of the queries that displays performance statistics.

zfsadm query -iobyaggr
zFS I/O by Currently Attached Aggregate
DASD PAV
VOLSER IOs Mode Reads K bytes Writes K bytes Dataset Name
------ --- ---- ---------- ---------- ---------- ---------- ------------
CFC000 1 R/W 13 92 7641 30564
PLEX.JMS.AGGR001.LDS0001
CFC000 1 R/O 9 60 0 0
PLEX.JMS.AGGR002.LDS0002
CFC000 1 R/W 26 188 4483 17952
PLEX.JMS.AGGR004.LDS0004
------ --- ---- ---------- ---------- ---------- ---------- ------------
 3 48 340 12124 48516 *TOTALS*

Total number of waits for I/O: 52
Average I/O wait time: 3.886 (msecs)

Related information
Commands:

zfsadm fsinfo
zfsadm lsaggr

zfsadm query

Chapter 11. zFS commands 213

zfsadm quiesce

Purpose
zfsadm quiesce specifies that an aggregate and the file system that is contained in it should be
quiesced.

Format
zfsadm quiesce {-all | -aggregate name} [-level] [-help] [-trace file_name]

Options
-aggregate name

Specifies the name of the aggregate that is to be quiesced. The aggregate name is not case-sensitive.
It is always converted to uppercase. An aggregate must be attached to be quiesced. All current
activity against the aggregate is allowed to complete but no new activity is started. Any mounted file
systems are quiesced.

-all
Specifies that all attached aggregates are to be quiesced. Use this option or use -aggregate.

-help
Prints the online help for this command. All other valid options that are specified with this option are
ignored.

-level
Prints the level of the zfsadm command. This option is useful when you are diagnosing a problem.
Except for -help, all other valid options that are specified with -level are ignored.

-trace file_name
Specifies the name of the file that will have the trace records written into it. The trace file can be a
z/OS UNIX file, an existing MVS sequential data set, or a member of either an existing partitioned data
set (PDS) or partitioned data set extended (PDSE). Use this option only at the direction of IBM
Support.

For information about preallocation instructions for debugging, see Step 5 (Optional) Preallocate data
sets for debugging in “zFS installation and configuration steps” on page 11.

Because MVS data set names must be fully qualified, z/OS UNIX has special rules for specifying MVS
data set names in the shell environment. For more information, see Specifying MVS data set names in
the shell environment in z/OS UNIX System Services Command Reference.

Usage notes
1. The zfsadm quiesce command is used to temporarily drain activity to the aggregate. During this

time:

• The aggregate cannot be detached, or grown.
• No activity can occur against mounted file systems.
• If you attempt to unmount a quiesced compatibility mode aggregate, the attempt fails unless you

specify unmount force.
2. The aggregate can be the target of lsaggr, aggrinfo, lsfs (file systems are indicated as busy).

While at least one RWSHARE aggregate remains quiesced, message IOEZ00581E is displayed on the
zFS owning system's console. Also, if there is at least one task that is waiting for access to the
quiesced file system, message IOEZ00830E is displayed.

3. While an RWSHARE file system is quiesced, the command D OMVS,F displays QUIESCED in the PFS
EXCP field.

zfsadm quiesce

214 z/OS: z/OS File System Administration

4. The aggregate is typically quiesced before the aggregate is backed up. After the backup is complete,
the aggregate can be unquiesced.

5. If automatic conversion of V4 directories to V5 directories was occurring because the CONVERTTOV5
attribute was ON, it will be disabled. Before the CONVERTTOV5 attribute can be reenabled, the
aggregate must be mounted and remounted.

Privilege required
The issuer must be logged in as a root user (UID=0) or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Examples

The following command quiesces the aggregate OMVS.PRV.AGGR001.LDS0001.

zfsadm quiesce -aggregate omvs.prv.aggr001.lds0001

IOEZ00163I Aggregate OMVS.PRV.AGGR001.LDS0001 successfully quiesced

Related information
Commands:

zfsadm aggrinfo
zfsadm fsinfo
zfsadm unquiesce

zfsadm quiesce

Chapter 11. zFS commands 215

zfsadm setauditfid

Purpose
zfsadm setauditfid sets (or resets) the zFS auditfid in the mounted aggregate.

Format
zfsadm setauditfid -aggregate aggrname [-force|-old][-level][-help]
 [-trace file_name]

Options
-aggregate aggrname

Specifies the name of the aggregate whose auditfid is to be set. The aggregate must be attached
(mounted). The aggregate name is not case-sensitive. It is always converted to uppercase.

-force
Specifies to change the auditfid to a new zFS auditfid. If the aggregate already contains the new form
of the zFS auditfid that you want to change to a different new zFS auditfid (for example, if you copy an
aggregate and then rename it, but keep the old aggregate), you must specify -force to avoid
inadvertently changing the zFS auditfid.

-help
Prints the online help for this command. All other valid options that are specified with this option are
ignored.

-level
Prints the level of the zfsadm command. This option is useful when you are diagnosing a problem.
Except for -help, all other valid options that are specified with -level are ignored.

-old
Specifies that the zFS auditfid is set to binary zeros.

-trace file_name
Specifies the name of the file that will have the trace records written into it. The trace file can be a
z/OS UNIX file, an existing MVS sequential data set, or a member of either an existing partitioned data
set (PDS) or partitioned data set extended (PDSE). Use this option only at the direction of IBM
Support.

For information about preallocation instructions for debugging, see Step 5 (Optional) Preallocate data
sets for debugging in “zFS installation and configuration steps” on page 11.

Because MVS data set names must be fully qualified, z/OS UNIX has special rules for specifying MVS
data set names in the shell environment. For more information, see Specifying MVS data set names in
the shell environment in z/OS UNIX System Services Command Reference.

Usage notes
1. The zfsadm setauditfid command sets or resets the zFS auditfid in the aggregate on disk (based

on the VOLSER and the cylinder, cylinder, head, head [CCHH] of the first extent of the aggregate). The
aggregate must be attached (mounted). If you do not specify either -force or -old, a standard form
auditfid (binary zeros) is changed to the unique form auditfid. If the aggregate already contains the
unique form of the zFS auditfid and you want to change it to a different unique zFS auditfid (for
example, if you copy an aggregate and then rename it - keeping the old one), you must specify -force
to avoid inadvertently changing the zFS auditfid. The zFS auditfid is based on the VOLSER and the
CCHH of the first extent, unless you specify -old. In that case, the zFS auditfid is set to binary zeros.

2. In a shared file system environment, whether the zfsadm setauditfid command is issued from the
system owning the zFS aggregate or from a client system, the new auditfid value will only be visible on
the zFS owning system. To make it visible on client systems, issue a remount to the same mode.

zfsadm setauditfid

216 z/OS: z/OS File System Administration

Privilege required
The issuer must be logged in as a root user (UID=0) or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Examples

zfsadm setauditfid -aggregate OMVS.PRV.AGGR001.LDS0001 -force

Related information
Commands:

zfsadm aggrinfo
zfsadm format

Files:

IOEFSPRM

zfsadm setauditfid

Chapter 11. zFS commands 217

zfsadm salvage

Purpose
zfsadm salvage verifies and repairs file systems while they are still mounted. Use it only when the file
system cannot be unmounted for repairs.

Format
zfsadm salvage -aggregate name [{-verifyonly|-cancel}]
 [-trace file_name][-level][-help]

Options
-aggregate name

Specifies the name of the aggregate. The aggregate name is not case-sensitive. It is always converted
to uppercase.

-cancel
Specifies that the salvage for this aggregate is to be canceled.

-help
Prints the online help for this command. All other valid options that are specified with this option are
ignored.

-level
Prints the level of the zfsadm command. This option is useful when you are diagnosing a problem.
Except for -help, all other valid options that are specified with -level are ignored.

-trace file_name
Specifies the name of the file that will have the trace records written into it. The trace file can be a
z/OS UNIX file, an existing MVS sequential data set, or a member of either an existing partitioned data
set (PDS) or partitioned data set extended (PDSE). Use this option only at the direction of IBM
Support.

For information about preallocation instructions for debugging, see Step 5 (Optional) Preallocate data
sets for debugging in “zFS installation and configuration steps” on page 11.

Because MVS data set names must be fully qualified, z/OS UNIX has special rules for specifying MVS
data set names in the shell environment. For more information, see Specifying MVS data set names in
the shell environment in z/OS UNIX System Services Command Reference.

-verifyonly
Indicates whether only verification should be performed. If -verifyonly is not specified, then both
verification and repair are performed.

Usage notes
1. Use the zfsadm salvage command only when a file system cannot be unmounted. When a file

system can be unmounted, it is recommended that a batch job be used to run the salvager. For more
information about the salvager program and running it in a batch job, see “ioefsutl salvage” on page
133.

2. The salvage operation might take a long time, especially if the aggregate is large. No writes are allowed
to the aggregate while a salvage operation is running. Because the salvage command is a long-running
command, a foreground thread must be available in the long-running command thread pool. For more
information about controlling the size of the long-running foreground and background thread pools,
see the IOEFSPRM configuration option long_cmd_threads in “Processing options for IOEFSPRM
and IOEPRMxx” on page 227

zfsadm salvage

218 z/OS: z/OS File System Administration

3. The verification portion of a salvage operation can be interrupted by issuing another zfsadm salvage
command with the -cancel option at shutdown or with the shell or TSO unmount command issued
with the force option. Once the repair portion of a salvage operation is started, the salvage cannot be
interrupted.

4. Salvage processing is driven by the zFS owner. The zfsadm salvage command does not provide
detailed status information. This information is available in the system log of the zFS owner. The
zfsadm fsinfo command can also be used to display minimal point in time information about the
progress of a salvage operation.

5. An outage during a salvage operation of the owner will result in a new owner but the salvage operation
will not be resumed unless the aggregate is later disabled.

6. When the -verifyonly option is specified, if a problem is found during verification, the aggregate is
disabled and a repair is attempted.

7. If automatic conversion of V4 directories to V5 directories was occurring because the CONVERTTOV5
attribute was ON, it will be disabled. Before the CONVERTTOV5 attribute can be reenabled, the
aggregate must be mounted and remounted.

Privilege required
The issuer must be logged in as a root user (UID=0) or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Example

zfsadm salvage -aggregate OMVS.PRV.COMPAT.AGGR001 -cancel

Related information
Commands:

zfsadm config
zfsadm configquery
zfsadm fsinfo
MOUNT

Files:

IOEFSPRM

zfsadm salvage

Chapter 11. zFS commands 219

zfsadm shrink

Purpose
zfsadm shrink reduces the physical size of a zFS aggregate. The aggregate must be mounted before it
can be shrunk.

The zfsadm shrink command releases unused space from the aggregate data set so that the resulting
physical size of the data set is approximately the new total size that was requested by the -size option.

Format
zfsadm shrink -aggregate name {-size KBytes [-noai] | -cancel}
 [-trace file_name][-level][-help]

Options
-aggregate name

Specifies the name of the aggregate to be shrunk. The aggregate name is not case-sensitive. It is
always converted to uppercase.

-cancel
Cancels an in-progress shrink operation for the specified aggregate.

-help
Prints the online help for this command. All other valid options that are specified with this option are
ignored.

-level
Prints the level of the zfsadm shrink command. This option is useful when you are diagnosing a
problem. Except for -help, all other valid options that are specified with -level are ignored.

-noai
The new total size is not to be increased if more space is needed. For more information about active
increase, see “Usage notes for zfsadm shrink” on page 220.

-size Kbytes
Specifies the new total size in kilobytes of the aggregate after the shrink operation is completed. The
size is rounded up to an 8 K boundary.

-trace file_name
Specifies the name of the file that will have the trace records written into it. The trace file can be a
z/OS UNIX file, an existing MVS sequential data set, or a member of either an existing partitioned data
set (PDS) or partitioned data set extended (PDSE). Use this option only at the direction of IBM
Support.

For information about preallocation instructions for debugging, see Step 5 (Optional) Preallocate data
sets for debugging in “zFS installation and configuration steps” on page 11.

Because MVS data set names must be fully qualified, z/OS UNIX has special rules for specifying MVS
data set names in the shell environment. For more information, see Specifying MVS data set names in
the shell environment in z/OS UNIX System Services Command Reference.

Usage notes for zfsadm shrink
1. Shrinking an aggregate is a long-running administrative operation. This process involves moving any

blocks that are in the portion of the data set to be released into the portion that will remain. This can
be a long process because each internal aggregate structure has to be scanned to determine whether
it owns any blocks that need to be moved. The two aggregate structures that can be the largest are
the bitmap and the anode table (also called the File System Inode Table). The larger the bitmap and
anode table are, the longer this will take. Therefore, it is expected the bulk of the time of the shrink

zfsadm shrink

220 z/OS: z/OS File System Administration

operation will occur in scanning them. After all block movement is completed, the free space is
released. zFS will consider the new size of the aggregate to be the new total size, even if the partial
space release fails. For information about releasing space from VSAM data sets, see the following
references:

• Releasing unused space in in z/OS DFSMSdss Storage Administration

See z/OS DFSMSdss Storage Administration and z/OS DFSMSdfp Advanced Services for more
information about releasing space from VSAM data sets.

2. You can monitor the progress of the shrink operation by checking the progress indicators that are
displayed in the owner information of an FSINFO command to the aggregate. These steps are
intended for use by IBM Service personnel and should not be used as a programming interface. The
movements of the bitmap and the anode table are the steps that require the bulk of the time, so they
have a percentage complete value. The percentage complete value for the anode table movement
can at times appear to be decreasing. This change can happen because user activity is causing the
creation of new files and directories, which in turn causes an increase in size of the anode table. The
percentage complete is calculated each time FSINFO is called, so even though more anodes have
been processed, these anodes can be a smaller percentage of the current total number of anodes.
The FSINFO owner display contains the size of the bitmap and anode table.

3. The difference between the new total size of the aggregate and the current size of the aggregate
cannot be larger than the free space in the aggregate.

4. To process the request, the long-running command thread pool must have an available foreground
thread. See the IOEFSPRM configuration option long_cmd_threads for information about
controlling the size of the long-running foreground and background thread pools. (“IOEFSPRM” on
page 225)

5. Most of the shrink operation allows other applications to access file and directory blocks during the
shrink operation. This might cause additional blocks to be allocated. If this allocation causes more
space to be needed in the aggregate than the new total size specified in -size, zFS will actively
increase the new total size. The shrink command ends with an error if the size is actively increased
back to the original size of the aggregate. You can prevent active increase by specifying -noai. If -
noai is specified, and an active increase is needed, the shrink command ends with an error.

6. Ideally, aggregates should be shrunk during periods of inactivity because shrink operations can take
longer to complete if applications are updating files and directories.

7. A shrink operation can be interrupted by using the -cancel option or during a shutdown. It can also
be interrupted when the shell command unmount or TSO/E command UNMOUNT is issued with the
force option. If the system that is performing the shrink operation ends (via shutdown or
abnormally), any new zFS owner of the aggregate will not continue the shrink operation. Another
shrink command will need to be issued if you still want to do the shrink operation.

8. You can control whether SMS-managed zFS aggregates that are assigned to a management class are
allowed to shrink by use of the Partial Release setting in the management class definition. zFS
aggregates that are allocated with guaranteed space will use the Conditional Partial Release setting
to determine if a shrink is allowed. zFS aggregates that are not SMS-managed, or are SMS-managed
and not assigned to a management class, will always be allowed to shrink. For more information
about management classes, see Defining management classes in z/OS DFSMS OAM Planning,
Installation, and Storage Administration Guide for Object Support.

9. You cannot shrink an aggregate that is in a partially encrypted, partially decrypted, partially
compressed, or partially decompressed state. In other words, if encryption, decryption, compression,
or decompression was interrupted for an aggregate, you cannot shrink it.

10. Files and directories that are in the fragmented format will be converted to blocked format if the
shrink operation needs to move them. If there are not enough free 8 K blocks for this conversion, the
shrink operation will fail.

11. Aggregates with active file backups cannot be shrunk.

If you attempt to unmount a shrinking compatibility mode aggregate, the attempt fails unless you specify
unmount force.

zfsadm shrink

Chapter 11. zFS commands 221

Privilege required
The user must have UPDATE authority to the VSAM linear data set.

Examples
The following command shrinks aggregate PLEX.ZFS.AGGR1 to a size of 1400480 K:

zfsadm shrink -aggr PLEX.ZFS.AGGR1 -size 1400480
IOEZ00873I Aggregate PLEX.ZFS.AGGR1 successfully shrunk.

Related information
Commands:

zfsadm fsinfo
zfsadm grow

Files:

IOEFSPRM

zfsadm shrink

222 z/OS: z/OS File System Administration

zfsadm unquiesce

Purpose
zfsadm unquiesce makes an aggregate (and the file system that is contained in the aggregate)
available to be accessed.

Format
zfsadm unquiesce {-all | -aggregate name} [-level] [-help] [-trace file_name]

Options
-aggregate name

Specifies the name of the aggregate that is to be unquiesced. The aggregate name is not case-
sensitive. It is always translated to uppercase. An aggregate must be attached to be unquiesced. All
current activity against the aggregate is allowed to resume. Any mounted file systems are unquiesced.

-all
Specifies that all attached aggregates are to be unquiesced. Use this option or use -aggregate.

-help
Prints the online help for this command. All other valid options that are specified with this option are
ignored.

-level
Prints the level of the zfsadm command. This option is useful when you are diagnosing a problem.
Except for -help, all other valid options that are specified with -level are ignored.

-trace file_name
Specifies the name of the file that will have the trace records written into it. The trace file can be a
z/OS UNIX file, an existing MVS sequential data set, or a member of either an existing partitioned data
set (PDS) or partitioned data set extended (PDSE). Use this option only at the direction of IBM
Support.

For information about preallocation instructions for debugging, see Step 5 (Optional) Preallocate data
sets for debugging in “zFS installation and configuration steps” on page 11.

Because MVS data set names must be fully qualified, z/OS UNIX has special rules for specifying MVS
data set names in the shell environment. For more information, see Specifying MVS data set names in
the shell environment in z/OS UNIX System Services Command Reference.

Usage notes
1. The zfsadm unquiesce command allows activity that was suspended by zfsadm quiesce, to be

resumed.
2. The aggregate is typically quiesced prior to backing up the aggregate. After the backup is complete, the

aggregate can be unquiesced and the backup change activity flag can be reset.

Privilege required
The issuer must be logged in as a root user (UID=0) or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Examples

The following command unquiesces the aggregate OMVS.PRV.AGGR001.LDS0001

zfsadm unquiesce

Chapter 11. zFS commands 223

zfsadm unquiesce -aggregate omvs.prv.aggr001.lds0001

IOEZ00166I Aggregate OMVS.PRV.AGGR001.LDS0001 successfully unquiesced

Related information
Commands:

zfsadm aggrinfo
zfsadm fsinfo
zfsadm quiesce

zfsadm unquiesce

224 z/OS: z/OS File System Administration

Chapter 12. The zFS configuration options file
(IOEPRMxx or IOEFSPRM)

This section describes the IOEFSPRM file, which is a data set that is used during zFS processing.

IOEFSPRM

Purpose
The IOEFSPRM file lists the configuration options for the zFS PFS and the batch utilities ioefsutl and
ioeagslv. There is no mandatory information in this file; therefore, it is not required. The options all have
defaults. However, if you need to specify any options (for tuning purposes, for example), you must have an
IOEFSPRM file.

zFS allows for more than one method to specify the location of the IOEFSPRM configuration file. zFS uses
the following criteria to determine which method to use:

• If an IOEZPRM DD statement exists in the JCL, the data set that it defines will be the configuration file
for the local system.

• If there is no IOEZRPM DD statement, the IOEPRMxx parmlib members that are specified in the PARM
string of the zFS FILESYSTYPE statement is used.

• If there is no PARM string on the zFS FILESYSTYPE statement, parmlib member IOEPRM00 is used.
• If there is no IOEPRM00 parmlib member, no zFS configuration data set will be used.

The location of the IOEFSPRM file can be specified by the IOEZPRM DD statement in the ZFS PROC and in
the JCL for the ioefsutl or ioeagslv batch utilities. (See “Terminology and concepts” on page 4 for a
definition of the term "ZFS PROC.") However, the preferred method for specifying the zFS configuration
option file is to use the IOEPRMxx parmlib member as described in “Using PARMLIB (IOEPRMxx)” on
page 226. If you still want to use a single IOEFSPRM file, specify the IOEZPRM DD statement in your JCL.
The IOEFSPRM file is typically a PDS member, so the IOEZPRM DD statement might look like the following
example:

//IOEZPRM DD DSN=SYS4.PVT.PARMLIB(IOEFSPRM),DISP=SHR

If you need to have separate IOEFSPRM files and you want to share the ZFS PROC in a sysplex, you can
use a system variable in the ZFS PROC so that it points to different IOEFSPRM files. The IOEZPRM DD
might look like the following:

//IOEZPRM DD DSN=SYS4.PVT.&SYSNAME..PARMLIB(IOEFSPRM),DISP=SHR

Your IOEFSPRM file might reside in SYS4.PVT.SY1.PARMLIB(IOEFSPRM) on system SY1; in
SYS4.PVT.SY2.PARMLIB(IOEFSPRM) on system SY2; and others.

If you want to share a single IOEFSPRM file, you can use system symbols in data set names in the
IOEFSPRM file. For example, msg_output_dsn=USERA.&SYSNAME..ZFS.MSGOUT results in
USERA.SY1.ZFS.MSGOUT on system SY1. Each system has a single (possibly shared) IOEFSPRM file.

Any line beginning with # or * is considered a comment. The text in the IOEFSPRM file is not case-
sensitive. Any option or value can be uppercase or lowercase. Blank lines are allowed. Do not have any
sequence numbers in the IOEFSPRM file. If you specify an invalid text value, the default value is assigned.
If you specify an invalid numeric value, and it is smaller than the minimum allowed value, the minimum
value is assigned. If you specify an invalid numeric value, and it is larger than the maximum allowed value,
the maximum value is assigned.

IOEFSPRM

© Copyright IBM Corp. 2001, 2021 225

Using PARMLIB (IOEPRMxx)
The preferred alternative to a IOEZPRM DDNAME is specifying the IOEFSPRM file as a parmlib member. In
this case, the member has the name IOEPRMxx, where xx is specified in the parmlib member list.

When the IOEFSPRM is specified in a DD statement, there can only be one IOEFSPRM file for each
member of a sysplex. Using PARMLIB, zFS configuration options can be specified in a list of configuration
parmlib files. This allows an installation to specify configuration options that are common among all
members of the sysplex (for example, adm_threads) in a shared IOEPRMxx member and configuration
options that are system-specific (for example, trace_dsn) in a separate, system-specific IOEPRMxx
member. If a configuration option is specified more than once, the first one found is taken.

The IOEPRMxx files are contained in the logical parmlib concatenation. The logical parmlib concatenation
is a set of up to ten partitioned data sets defined by parmlib statements in the LOADxx member of either
SYSn.IPLPARM or SYS1.PARMLIB. The logical parmlib concatenation contains zFS IOEPRMyy members
that contain zFS configuration statements. Columns 72-80 are ignored in the IOEPRMyy member. The yy
values are specified in the PARM option of the FILESYSTYPE statement for the zFS PFS (in the BPXPRMxx
parmlib member). The only valid value that can be specified on the PARM option for the zFS PFS is the
parmlib search parameter PRM=. The PARM string is case-sensitive. As the following example shows, you
must enter the string in uppercase.

FILESYSTYPE TYPE(ZFS) ENTRYPOINT(IOEFSCM)
ASNAME(ZFS,'SUB=MSTR')
PARM('PRM=(01,02,03)')

The parmlib concatenation can also be specified in the ioeagslv and ioefsutl batch utility
parameters. Specify the -PRM keyword in the PARM string on the EXEC statement to use IOEPRMxx
parameter file members. For more information, see “ioeagslv” on page 120 and “ioefsutl” on page 125.

Up to 32 member suffixes can be specified. You can also use any system symbol that resolves to two
characters.

FILESYSTYPE TYPE(ZFS) ENTRYPOINT(IOEFSCM)
ASNAME(ZFS,'SUB=MSTR')
PARM('PRM=(01,&SYSCLONE.)')

See Figure 25 on page 124 for an example of using PRM.

If &SYSCLONE.=AB, parmlib member IOEPRMAB is searched after parmlib member IOEPRM01.
IOEPRM01 can contain common configuration options and IOEPRMAB can contain configuration options
that are specific to system AB. If a parmlib member is not found, the search for the configuration option
will continue with the next parmlib member.

To specify 32 members, type the member suffixes up to column 71; then, continue them in column 1 on
the next line, as shown in the following example:

 col 72
 |
 ▾
FILESYSTYPE TYPE(ZFS) ENTRYPOINT(IOEFSCM) ASNAME(ZFS,'SUB=MSTR')
 PARM('PRM=(00,01,02,03,04,05,06,07,08,09,10,11,12,13,14,
15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31)')
^
|
col 1

If no PRM suffix list is specified (and no IOEZPRM DD is specified in their respective JCL), then parmlib
member IOEPRM00 is read. Parmlib support is only used when no IOEZPRM DD is present in the JCL.

IOEFSPRM and IOEPRMxx

Descriptions of the valid configuration variables and their respective allowed values follow. If no
IOEFSPRM file is found, the default values for each configuration value are used.

IOEFSPRM

226 z/OS: z/OS File System Administration

Processing options for IOEFSPRM and IOEPRMxx
The following processing options are used for the zFS PFS.

adm_threads
Specifies the number of threads that are defined to handle pfsctl or mount requests. The expected
value is a number in the range 1 - 256. For example:

adm_threads=5

The default value is 10.

aggrfull
Specifies the threshold and increment for reporting aggregate utilization messages to the operator.
The expected value is two numbers separated by a comma in the range 1 - 99 within parentheses. For
example:

aggrfull(90,5)

The aggrfull parameter is independent of fsfull. However, aggrfull reports are based on free 8
K blocks; while fsfull reports are based on free 1 K blocks. The aggrfull value tends to give a
more accurate view of free space and is the recommended choice.

If aggrfull is specified for version 1.5 aggregates, fsfull is ignored.

The default value is OFF for version 1.4 aggregates. For version 1.5 aggregates, the fsfull threshold
and increment values are used as if they were specified on aggrfull.

aggrgrow
Specifies whether aggregates can be dynamically extended when they become full. By default, a zFS
read/write mounted file system that is mounted on a system running z/OS V1R13 or later attempts to
dynamically extend when it runs out of space. The aggregate (that is, the VSAM linear data set) must
have a secondary allocation that is specified to be dynamically extended and there must be space on
the volumes. This global value can be overridden on the MOUNT command for compatibility mode
aggregates.

The expected value is ON or OFF. For example:

aggrgrow=on

The default value is ON.

change_aggrversion_on_mount
Specifies whether a version 1.4 aggregate should be changed to a version 1.5 aggregate on a primary
read/write mount. No directories are converted to extended (v5) directories. The CONVERTTOV5 or
NOCONVERTTOV5 MOUNT PARM overrides this option.

The expected value is ON or OFF. For example:

change_aggrversion_on_mount=off

The default value is ON.

client_reply_storage
Specifies the amount of storage that is used to handle sysplex server replies. The expected value is a
number in the range 2 M - 128 M. K or M can qualify the number. For example:

client_reply_storage=8M

The default value is 10 M.
convert_auditfid

Specifies whether the zFS auditfid of an aggregate is automatically converted from the old form
auditfid (binary zeros) to the new form auditfid on a read/write mount (attach). If the auditfid is

IOEFSPRM

Chapter 12. The zFS configuration options file (IOEPRMxx or IOEFSPRM) 227

already the new form, it is not changed. An auditfid of the new form will cause zFS to generate new
auditids for files and directories in the file system.

The expected value is ON or OFF. For example:

convert_auditfid=on

The default value is ON.

converttov5
Specifies whether a zFS read/write file system is assigned the converttov5 attribute. If it is assigned
the converttov5 attribute and the aggregate is a version 1.5 aggregate, zFS will automatically convert
directories from v4 to extended (v5) as they are accessed. If the converttov5 attribute is assigned at
primary mount time, a version 1.4 aggregate will be changed to a version 1.5 aggregate. The
CONVERTTOV5 or NOCONVERTTOV5 MOUNT PARM overrides this option.

If automatic directory conversion for a directory fails, it is not attempted again until the file system is
unmounted and mounted again.

The expected value is ON or OFF. For example:

converttov5=off

The default value is OFF.

edc_buffer_pool
Specifies the real storage that will be reserved for encryption and compression I/O. The expected
value is a number in the range 1 M - 1 G. For example:

edc_buffer_pool=64M

The default value is 32 M for the zFS PFS, 10 M for the ioeagslv or ioefsutl batch utilities.
file_threads

Specifies the number of threads that handle sysplex server requests. The expected value is a number
in the range 1 - 256. For example:

file_threads=50

The default value is 32.
format_aggrversion

Specifies the default version of an aggregate when formatting it. Each method for formatting a zFS
aggregate obtains this value from the zFS PFS if the version is not specified.

You can specify 4 to format a version 1.4 aggregate or 5 to format a version 1.5 aggregate. Because
you can no longer format a version 1.4 aggregate, a version 1.5 aggregate is formatted instead if 4 is
specified.

An example of format_aggression is as follows:

format_aggrversion=5

The default value is 5.

format_compression
Specifies whether a newly created zFS aggregate will be formatted with compression. This is the
default compression value of an aggregate when the -compress option is not used. Each method for
formatting a zFS aggregate obtains this value from the zFS PFS if no compression value is specified.

The expected value is ON or OFF. For example:

format_compression=on

The default value is OFF.

IOEFSPRM

228 z/OS: z/OS File System Administration

format_encryption
Specifies whether a newly created zFS aggregate will be formatted with encryption. This is the default
encryption value of an aggregate when the -encrypt option is not used. Each method for formatting
a zFS aggregate obtains this value from the zFS PFS if no encryption value is specified.

The expected value is ON or OFF. For example:

format_encryption=on

The default value is OFF.

format_perms
Specifies the default permissions that are used for the root directory of the file system during a format
when the -perms option is not used. Each method for formatting a zFS aggregate obtains this value
from the zFS PFS if -perms is not specified.

The expected values are in the range 0 to o7777. The number can be specified as octal (for example,
o755), as hexadecimal (for example, x1ED), or as decimal (for example, 493). For example:

format_perms=o644

The default value is o775.

fsfull
Specifies the threshold and increment for reporting file system utilization messages to the operator.
The fsfull parameter is independent of aggrfull. While aggrfull reports are based on free 8 K
blocks, fsfull reports are based on free 1 K blocks. The aggrfull parameter tends to give a more
accurate view of free space and is the recommended choice.

fsfull is ignored for version 1.5 aggregates when aggrfull is specified.

The expected values are two numbers in the range 1 - 99 within parentheses and separated by a
comma. For example:

fsfull(85,5)

The default value is OFF.

group
Specifies the XCF group that zFS uses to communicate between sysplex members. The Expected
value characters must be acceptable to XCF. Generally, the characters A-Z, 0-9 and the national
characters ($, # and @) are acceptable. The value that is specified must match on all systems in the
sysplex that participate in a shared file system environment. Normally, there is no reason to specify
this option.

The expected value is 1 to 8 characters. For example:

group=IOEZFS1

The default value is IOEZFS.

HA
Specifies whether high availability is enabled by default for mounts of sysplex-aware file systems.

The expected value is ON or OFF. For example:

HA = ON

The default value is OFF.

honor_syslist
Specifies whether to use the z/OS UNIX automove option that is specified during mount to control zFS
ownership movement. The default is ON. For more information about zFS ownership movement, see
“Dynamic movement of the zFS owner” on page 52.

The honor_syslist option is no longer supported. If it is specified, it is accepted but not used.

IOEFSPRM

Chapter 12. The zFS configuration options file (IOEPRMxx or IOEFSPRM) 229

The expected value is ON or OFF. For example:

honor_syslist=on

The default value is ON.

log_cache_size
Specifies the size of the cache that is used to contain buffers for log file pages. You can also specify a
fixed option, which indicates that the pages are permanently fixed for performance. The fixed option
reserves real storage for usage by zFS only.

The expected value is a number in the range of 2 M - 1024 M. A K or M can be appended to the value
to mean kilobytes or megabytes, respectively. For example:

log_cache_size=32M,fixed

The default value is 16 M.

long_cmd_threads
Specifies the number of foreground and background threads that are defined to handle long-running
administrative commands. A foreground thread handles the overall operation while the background
threads are used by the foreground thread to allow for parallelism in the processing of individual
anodes.

For the expected value, the first value must be in the range 1-3 and the second value in the range
1-64. For example:

long_cmd_threads=3,30

The default value is 1,24.

meta_cache_size
Specifies the size of the cache that is used to contain metadata. You can also specify a fixed option,
which indicates that the pages are permanently fixed for performance. The fixed option reserves real
storage for usage by zFS only

If metaback_cache_size is specified, the size of the entire metadata cache will be a combination of
the two values. It is not required, but it is recommended to keep your IOEFSPRM configuration file
clean of outdated specifications for simplicity. Therefore, IBM recommends not to use the
metaback_cache_size option. Rather, the size of the entire metadata cache should be assigned to
the meta_cache_size option.

zFS provides a check to see if the metadata cache size is less than the calculated default metadata
cache size. See ZFS_VERIFY_CACHESIZE in IBM Health Checker for z/OS User's Guide.

The expected value is a number in the range 1 M - 64 G. A K or M or G can be appended to the value to
mean kilobytes, megabytes, or gigabytes, respectively. For example:

meta_cache_size=64M,fixed

For the default value, if metaback_cache_size is specified, then meta_cache_size is 64 M. If
metaback_cache_size is not specified, zFS calculates 10% of real storage that the system has
available during zFS initialization.

• If this amount is less than 64 M, then meta_cache_size is assigned 64 M.
• If this amount is between 64 M and 2 G+100 M, then meta_cache_size is assigned 10% of real

storage size.
• If the amount is greater than 2 G+100 M, then meta_cache_size is assigned 2 G+100 M

metaback_cache_size
Specifies the size of the backing portion of the metadata cache. The backing cache is no longer in a
data space. Rather, it is combined with meta_cache_size into one cache with a size of the sum of
the two values.

IOEFSPRM

230 z/OS: z/OS File System Administration

Tip: To avoid confusion, do not keep outdated specifications in your IOEFSPRM configuration file. Use
only the meta_cache_size option to specify the entire size of the metadata cache.

zFS provides a check to see if the sum of the metadata cache size and metadata backing cache size is
less than the sum of the default metadata cache size and metadata backing cache size. See
ZFS_VERIFY_CACHESIZE in IBM Health Checker for z/OS User's Guide.

zFS provides a check to indicate whether this configuration option is specified. See
ZFS_CACHE_REMOVALS in IBM Health Checker for z/OS User's Guide.

The expected value is a number in the range 1 M - 2048 M. A K or M can be appended to the value to
mean kilobytes or megabytes, respectively. For example:

metaback_cache_size=64M

There is no default value for the met aback cache if meta_cache_size is specified. Otherwise, see
the default calculation description in meta_cache_size.

modify_cmd_threads
Specifies the number of threads that are defined to handle zFS modify commands. The expected value
is a number in the range 1 - 256. For example:

modify_cmd_threads=1

The default value is 3.
quiesce_message_delay

Specifies the minimum number of seconds to delay issuing the IOEZ00830E message after it is
determined that there is at least one quiesced aggregate and it needs to be displayed. The expected
value is a number number in the range 30 - 21474836. For example:

quiesce_message_delay=300

The default value is 30.
quiesceinfo_message_delay

Specifies the minimum number of seconds to delay issuing the IOEZ00581E message after it is
determined that there is at least one task waiting to access a quiesced aggregate and it needs to be
displayed. The expected value is a number in the range 30 - 21474836. For example:

quiesceinfo_message_delay=300

The default value is 30.
recovery_max_storage

Indicates the maximum amount of zFS address space storage to use for concurrent log recovery
during multiple concurrent aggregate mounts (attaches). This allows multiple concurrent mounts to
occur when sufficient storage is available for multiple concurrent log recovery processing.

The expected value is a number in the range 128 M - 512 M. For example:

recovery_max_storage=128M

The default value is 256 M.

romount_recovery
Specifies whether zFS will automatically avoid a read-only mount failure because of the need to run
log recovery for this aggregate. This can occur when the aggregate has been mounted read/write, and
then a failure occurs before it was unmounted. If the next mount is for read-only, log recovery must
run for the mount to be successful. When this situation occurs and romount_recovery=on, zFS
temporarily mounts the aggregate read/write to run log recovery, and then zFS unmounts and mounts
the aggregate read-only.

The expected value is ON or OFF. For example:

IOEFSPRM

Chapter 12. The zFS configuration options file (IOEPRMxx or IOEFSPRM) 231

romount_recovery=off

The default value is ON.

-smf_recording
Specifies that data is to be collected and recorded by System Management Facilities (SMF). The
expected value is ON, OFF, or on,intvl, where intvl specifies the number of minutes between the
periodic recording of statistics. The number must be in the range 1 - 60. For example:

smf_recording=ON,60

The default value is OFF.
sync_interval

Specifies the number of seconds between syncs. The expected value is a number in the range 11 -
21474836. For example:

sync_interval=45

The default value is 30.
sysplex

Starting with z/OS V1R13, zFS always runs sysplex-aware by file system, regardless of the sysplex
specification. If you specify sysplex=on, zFS changes the default of
sysplex_filesys_sharemode to rwshare. Otherwise, the default for
sysplex_filesys_sharemode is norwshare. If you specify sysplex=off, the result is the same
as specifying sysplex=filesys. For information about whether to make a read/write file system
sysplex-aware, see “Using zFS read/write sysplex-aware file systems” on page 14.

The expected value is Off, filesys, or On, if BPXPRMxx specifies SYSPLEX(YES). For example,

sysplex=filesys

Ignored, if BPXPRMxx does not specify SYSPLEX(YES).

The default value is filesys.

Tip: Specify sysplex=filesys.

sysplex_filesys_sharemode
Specifies the default for the mount PARM for a zFS read/write file system that is mounted in a shared
file system environment. For information about whether to make a read/write file system sysplex-
aware, see “Using zFS read/write sysplex-aware file systems” on page 14.

The expected value is rwshare or norwshare. For example:

sysplex_filesys_sharemode=rwshare

The default value is norwshare (unless sysplex=on was specified, then the default is rwshare).

token_cache_size
Specifies the maximum number of tokens in the server token manager cache to use for cache
consistency between zFS members. The number of tokens that are initially allocated for the server
token manager cache is 20480.

The expected value is a number in the range 20480 - 20 million. For example:

token_cache_size=30720

For the default value, double the number of vnodes (see vnode_cache_size) when running in a shared
file system environment. If you are not running in a shared file system environment, then there is no
default value. This option is meaningful only when zFS is running sysplex-aware.

IOEFSPRM

232 z/OS: z/OS File System Administration

user_cache_size
Specifies the size, in bytes, of the cache that is used to contain file data. You can also specify a fixed
option, which indicates that the pages are permanently fixed for performance. The fixed and
edcfixed options can fix the user file cache in real memory.

• The fixed option avoids page fix and page unfix for disk I/Os that do not use compression.
• The edcfixed option avoids page fix and page unfix for disk I/Os that use compression. It also

avoids data movement for compression I/Os. If the edcfixed option is used, zFS will wait during
the initialization process for zEDC to be available. While it is waiting, zFS will display message
IOEZ01001I. When zEDC is ready, zFS will continue the initialization process.

zFS provides a check to see if the user cache size is less than the default user cache size. For more
information, see ZOSMIGV2R1_ZFS_VERIFY_CACHESIZE in IBM Health Checker for z/OS User's Guide.

zFS also provides a check to see if all the user cache pages are registered with the zEDC Express
service if there are compressed aggregates. This check raises an exception if the user cache pages are
not registered. For more information, see ZFS_VERIFY_COMPRESSION_HEALTH in IBM Health
Checker for z/OS User's Guide.

The expected value is a number in the range 10 MB - 65536 MB (64 G) if the edcfixed option is not
used. If the edcfixed option is used, the user cache size should be in the range 10 MB – 14336 MB
(14 G) due to zEDC compression limitations. K or M can be appended to the value to mean kilobytes or
megabytes. For example:

user_cache_size=64M,fixed

For the default value, zFS calculates 10% of real storage the system has available during zFS
initialization. If this amount is less than 256 M, then the default is 256 M. If this amount is between
256 M and 2 G, then the default is 10% of real storage. If the amount is greater than 2 G, then the
default is 2 G.

user_running_hangdump
Specifies whether a hang dump should be taken for a user task that has been hanging for
approximately 5 minutes. The expected value is ON or OFF. For example:

user_running_hangdump=on

The default value is OFF.
vnode_cache_size

Specifies the initial number of vnodes that will be cached by zFS. The number of vnodes with vnode
extensions will not exceed this number.

The expected value is a number in the range 1000 to 10 million. For example:

vnode_cache_size=131072

The default value is 32768. That number will be increased if z/OS UNIX needs more than this number.

The following options are used during debugging of the zFS PFS and the batch utilities (ioeagfmt,
ioeagslv, and ioefsutl). They might not apply to the utilities and commands that are listed in the
preceding section.

cmd_trace
Specifies whether command tracing is done for the batch utilities. If On, a zFS trace will be printed in
the data set that is specified by the zFS PFS trace_dsn configuration option after the batch utility
completes.

• Traces from ioeagfmt have a member name of IOEAGT01.
• Traces from ioeagslv have a member name of SALVAT01.
• Traces from ioefsutl have a member name of FSUTLT01.

The expected value is ON or OFF. For example:

IOEFSPRM

Chapter 12. The zFS configuration options file (IOEPRMxx or IOEFSPRM) 233

cmd_trace=on

The default value is OFF.
debug_settings_dsn

Specifies the name of a data set containing debug classes to enable when the zFS PFS or the batch
utilities start. It is read when zFS is started (or restarted). The debug classes are also used by the
batch utilities.

The expected value is the name of a data set containing debug classes to enable. For example:

debug_settings_dsn=usera.zfs.debug.input(file1)

There is no default value.

max_errors
The maximum number of errors that the salvager program allows before it stops. If this limit is
exceeded, the salvager program ends with message IOEZ00752E.

The expected value is a number in the range 1000 - 1000000. For example:

MAX_ERRORS=5000

The default value is 100000.

msg_input_dsn
Specifies the name of a data set containing translated zFS messages. It is specified when the
installation uses messages that are in languages other than English. (When you use English messages,
do not specify this option.) It is read when zFS or the batch job is started (or restarted). Currently,
Japanese messages are supported.

The expected value is the name of the data set that contains translated zFS messages. For example:

msg_input_dsn=usera.sioemjpn

There is no default value.

msg_output_dsn
Specifies the name of a data set that contains any output messages that come from the zFS PFS
during initialization. See Chapter 8, “Performance and debugging,” on page 63. This is not a required
parameter.

The expected value is the name of a data set that contains the zFS PFS messages that were issued.
For example:

msg_output_dsn=usera.zfs.msg.out

There is no default value.

trace_dsn
Specifies the name of a data set that contains the output of any operator MODIFY ZFS,TRACE,PRINT
commands or the trace output if the zFS PFS or the batch utilities abends. Each trace output creates a
member in the PDSE. This is not a required parameter. If it is not specified, only a dump is generated if
an abend occurs.

• Traces that come from the ioeagfmt program are named IOEAGTnn.
• Traces that come from the zFS PFS kernel have member names of ZFSKNTnn.
• Traces from the salvager program have member names of SALVATnn.
• Traces that come from the ioefsutl program have member names that start with FSUTLTnn. Note

that nn starts with 01 and increments for each trace output. nn is reset to 01 when zFS is started (or
restarted). See Chapter 8, “Performance and debugging,” on page 63.

The expected value is the name of a PDSE data set. For example:

IOEFSPRM

234 z/OS: z/OS File System Administration

trace_dsn=usera.zfs.trace.out

There is no default value.

trace_table_size
Specifies the size, in bytes, of the internal trace table. This is the size of the wrap-around trace table in
the zFS address space and the batch utility address spaces that is used for internal tracing that is
always on. The trace can be sent to the trace_dsn by using the operator MODIFY ZFS,TRACE,PRINT
command. You can set the trace_table_size up to 65535 M, but to print the trace to a PDSE you
must limit its size to 750 M.

The expected value is a number in the range 1 M - 65535 M. For example:

trace_table_size=256M

The default value is as follows:

• 16 M for the zFS address space.
• 64 M for the batch utility address spaces.

user_running_hangdump
Specifies that if a user task appears to be hung for approximately 5 minutes, a dump of the user
address space is obtained by the ZFS hang detector. This dump is with abend code 2C3 and reason
code EA5805DB. This dump is accompanied by message IOEZ00605I. Use this message description
to diagnose the problem.

The expected value is ON or OFF. For example:

user_running_hangdump=ON

The default is OFF.

xcf_trace_table_size
Specifies the size of the XCF trace table. The expected value is a number in the range 1 M - 65535 M.
For example:

xcf_trace_table_size=8M

The default value is 4 M.

Examples

Following is a sample IOEFSPRM file that contains program options.

**
* zFS Sample Parameter File: IOEFSPRM
* For a description of these and other zFS parameters, refer to the
* zFS Administration document.
* Notes:
* 1. The IOEFSPRM file and parameters in the file are optional but it
* is recommended that the parameter file be created in order to be
* referenced by the DDNAME=IOEZPRM statement the PROCLIB JCL for
* the zFS started task or through the IOEPRMxx parmlib member.
* 2. An asterisk in column 1 identifies a comment line.
* 3. A parameter specification must begin in column 1.
**
* The following msg_output_dsn parameter defines the optional output
* message data set. If this parameter is not specified, or if the data
* set is not found, messages will be written to the system log.
* You must delete the * from a line to activate the parameter.
**
*msg_output_dsn=usera.zfs.msg.out
**
* The following msg_input_dsn parameter is ONLY required if the optional
* NLS feature is installed. The parameter specifies the
* message input data set containing the NLS message text which is
* supplied by the NLS feature. If this parameter is not specified or if
* the data set is not found, English language messages will be generated
* by zFS. You must delete the * from a line to activate the parameter.

IOEFSPRM

Chapter 12. The zFS configuration options file (IOEPRMxx or IOEFSPRM) 235

**
*msg_input_dsn=usera.sioemjpn
**
* The following are examples of some of the optional parameters that
* control the sizes of caches, tuning options, and program operation.
* You must delete the * from a line to activate a parameter.
**
*adm_threads=5
*aggrfull(90,5)
*aggrgrow=on
*change_aggrversion_on_mount=off
*client_reply_storage=10M
*cmd_trace=off
*convert_auditfid=off
*converttov5=off
*file_threads=40
*format_aggrversion=4
*fsfull(85,5)
*group=IOEZFS1
*log_cache_size=32M
*meta_cache_size=64M
*romount_recovery=off
*recovery_max_storage=128M
*sync_interval=45
*sysplex=filesys
*sysplex_filesys_sharemode=norwshare
*token_cache_size=65536
*user_cache_size=256M
*vnode_cache_size=131072
**
* The following are examples of some of the options that control zFS
* debug facilities. These parameters are not required for normal
* operation and should only be specified on the recommendation of IBM.
* You must delete the * column from a line to activate a parameter.
**
*debug_settings_dsn=usera.zfs.debug(file1)
*trace_dsn=usera.zfs.trace.out
*trace_table_size=256M
*xcf_trace_table_size=8M

IOEFSPRM

236 z/OS: z/OS File System Administration

Chapter 13. zFS application programming interface
information

zFS commands and their respective subcommands can be used to manage zFS aggregates and file
systems, and to query or set configuration options. Following is a list of the zFS commands:

• ZFSCALL_AGGR (0x40000005)
• ZFSCALL_CONFIG (0x40000006)
• ZFSCALL_FILESYS (0x40000004)
• ZFSCALL_FSINFO (0x40000013)
• ZFSCALL_STATS (0x40000007)

The z/OS UNIX pfsctl (command X'C000000B') can also retrieve zFS reason code text. For more
information, see the description of the PC#ErrorText pfsctl command in the usage notes in the
BPX1PCT service in z/OS UNIX System Services Programming: Assembler Callable Services Reference.

For information about how to invoke the pfsctl (BPX1PCT) application programming interface in a 64-bit
environment, refer to Appendix A, “Running the zFS pfsctl APIs in 64-bit mode,” on page 457.

This topic also describes a zFS w_pioctl call for fileinfo and file snapshot.

© Copyright IBM Corp. 2001, 2021 237

pfsctl (BPX1PCT)

Purpose
The pfsctl (BPX1PCT) application programming interface is used to send requests to a physical file
system. For more information, see the BPX1PCT service in z/OS UNIX System Services Programming:
Assembler Callable Services Reference. zFS is a physical file system and supports several zFS-specific
pfsctl functions, which are documented in this section.

Format
BPX1PCT (File_system_type,
 Command,
 Argument_Length,
 Argument,
 Return_value,
 Return_code,
 Reason_code);

Parameters
File_system_type

An eight-character field. In the case of zFS, it contains the characters ZFS, followed by five blanks.
Command

An integer. There are five major ZFS commands:

• ZFSCALL_AGGR (0x40000005)
• ZFSCALL_CONFIG (0x40000006)
• ZFSCALL_FILESYS (0x40000004)
• ZFSCALL_FSINFO (0x40000013)
• ZFSCALL_STATS (0x40000007)

Each command has a set of subcommands.

Argument_Length
An integer that contains the length of the argument.

Argument
A structure that has the pfsctl parameters followed by the subcommand parameters. The definitions
of any structures that have padding bytes added by the compiler, have the padding bytes explicitly
declared in the examples.

The fields of the structures are described in the Format sections of each API. These descriptions
contain structure names, field names inside the structures, the length of the field, and a brief
description of what the field is used for. The lengths of the field names contain C types and are as
follows:

• int or unsigned int are four bytes.
• long long, unsigned long long, long long int, and unsigned long long int are 8

bytes.

The following list shows the general format of the Argument for all subcommands, where n depends
on the particular subcommand:

Subcommand operation code int
Parameter0 int
Parameter1 int
Parameter2 int
Parameter3 int
Parameter4 int
Parameter5 int

pfsctl (BPX1PCT)

238 z/OS: z/OS File System Administration

Parameter6 int
Buffer[n] char[n]

Return_value
An integer that contains 0 if the request is successful or -1 if it is not successful.

Return_code
An integer in which the return code is stored. For these codes, see Return codes (errnos) in z/OS UNIX
System Services Messages and Codes.

Reason_code
An integer that stores the reason code. If this code is of the form 0xEFnnxxxx, see EFxxrrrr reason
codes in z/OS File System Messages and Codes. Otherwise, see Reason codes in z/OS UNIX System
Services Messages and Codes.

Usage notes for pfsctl
1. The major commands are summarized in Table 19 on page 239 and described in detail in the following

sections. The zFS pfsctl APIs will work across sysplex members. That is, zFS pfsctl APIs can query and
set information on zFS aggregates that are owned by the current system. They can also access and set
file system information from other systems in the sysplex.

2. The z/OS UNIX pfsctl (command X'C000000B') can also retrieve zFS reason code text. For more
information, see the description of the PC#ErrorText pfsctl command in the usage notes for the
BPX1PCT service in z/OS UNIX System Services Programming: Assembler Callable Services Reference.

3. Most of the zFS pfsctl APIs have structures as input that allow a caller to specify both the version of
input structures and the version of the desired output structures. Refer to the Usage Notes and
Example sections of each individual zFS pfsctl API description to determine what versions need to be
specified to produce the output structures that you want.

Table 19. Summary of APIs for pfsctl

For Command Subcommands (opcodes)

Aggregate ZFSCALL_AGGR (0x40000005) • Attach Aggregate (105)
• Change Aggregate Attributes (160)
• Compress Aggregate (264)
• Define Aggregate (139)
• Delete File System (136)
• Detach Aggregate (104)
• Encrypt Aggregate (262)
• Decompress Aggregate (265)
• Decrypt Aggregate (263)
• Format Aggregate (134)
• Grow Aggregate (129)
• List Aggregate Status (137)
• List Aggregate Status (Version 2) (146)
• List Attached Aggregate Names (135)
• List Attached Aggregate Names (Version 2) (140)
• List File System Names (138)
• List File System Names (Version 2) (144)
• Quiesce Aggregate (132)
• Salvage Aggregate (155)
• Shrink Aggregate (266)
• Set Auditfid (149)
• Unquiesce Aggregate (133)

pfsctl (BPX1PCT)

Chapter 13. zFS application programming interface information 239

Table 19. Summary of APIs for pfsctl (continued)

For Command Subcommands (opcodes)

File System ZFSCALL_FILESYS
(0x40000004)

• List File System Status (142)

pfsctl (BPX1PCT)

240 z/OS: z/OS File System Administration

Table 19. Summary of APIs for pfsctl (continued)

For Command Subcommands (opcodes)

Configuration ZFSCALL_CONFIG
(0x40000006)

• List Systems (174)
• Query Adm_threads Setting (180)
• Query Aggrfull Setting (181)
• Query Aggrgrow Setting (182)
• Query Change_aggrversion_on_mount (246)
• Query Client_cache_size (231)
• Query Client_reply_storage (223)
• Query Cmd_trace (184)
• Query Convert_auditfid (237)
• Query Converttov5 (250)
• Query Debug_settings_dsn Setting (186)
• Query EDC_buffer_pool (265)
• Query File_threads (217)
• Query Format_aggrversion (248)
• Query Format_compression (262)
• Query Format_encryption (261)
• Query Format_perms (267)
• Query Fsfull Setting (187)
• Query Group Setting (214)
• Query HA (269)
• Query Honor_syslist Setting (253)
• Query Log_cache_size Setting (193)
• Query Long_cmd_threads (255)
• Query Meta_cache_size Setting (198)
• Query Metaback_cache_size Setting (199)
• Query Modify_cmd_threads (251)
• Query Msg_input_dsn Setting (200)
• Query Msg_output_dsn Setting (201)
• Query Romount_recovery (233)
• Query SMF_recording (257)
• Query Sync_interval Setting (205)
• Query Syslevel (238)
• Query Sysplex_filesys_sharemode (244)
• Query Sysplex_state (215)
• Query Token_cache_size (216)
• Query Trace_dsn Setting (206)
• Query Trace_table_size Setting (207)
• Query Tran_cache_size Setting (208)
• Query User_cache_size Setting (210)
• Query Vnode_cache_size Setting (212)
• Set Adm_threads (150)
• Set Aggrfull (158)
• Set Aggrgrow (171)

pfsctl (BPX1PCT)

Chapter 13. zFS application programming interface information 241

Table 19. Summary of APIs for pfsctl (continued)

For Command Subcommands (opcodes)

Configuration
(continued)

ZFSCALL_CONFIG
(0x40000006)

• Set Change_aggrversion_on_mount (245)
• Set Client_cache_size (230)
• Set Client_reply_storage (222)
• Set Convert_auditfid (236)
• Set Converttov5 (249)
• Set File_threads (176)
• Set Format_aggrversion (247)
• Set Format_perms (266)
• Set Fsfull (157)
• Set HA (268)
• Set Honor_syslist (252)
• Set Log_cache_size (153)
• Set Long_cmd_threads (255)
• Set Meta_cache_size (152)
• Set Metaback_cache_size (163)
• Set Modify_cmd_threads (173)
• Set Msg_output_dsn (161)
• Set Romount_recovery (232)
• Set Sync_interval (154)
• Set Sysplex_filesys_sharemode (243)
• Set Token_cache_size (177)
• Set Trace_dsn (159)
• Set Tran_cache_size (160)
• Set User_cache_size (151)
• Set Vnode_cache_size (155)

Statistics ZFSCALL_STATS (0x40000007) • Statistics Compression Information (256)
• Statistics Directory Cache Information (249)
• Statistics Iobyaggr Information (244)
• Statistics Iobydasd Information (245)
• Statistics Iocounts Information (243)
• Statistics Kernel Information (246)
• Statistics Locking Information (240)
• Statistics Log Cache Information (247)
• Statistics Metadata Cache Information (248)
• Statistics Storage Information (241)
• Statistics Transaction Cache Information (250)
• Statistics User Data Cache Information (242)
• Statistics Vnode Cache Information (251)
• Statistics Server Token Management Information (252)
• Statistics Client Vnode Operations (253)
• Statistics Server Vnode Operations (254)

File System
Information

ZFSCALL_FSINFO
(0x40000013)

• List Detailed File System Information (153)
• Reset File System Statistics (154)

pfsctl (BPX1PCT)

242 z/OS: z/OS File System Administration

The following table lists a summary of w_pioctl calls for zFS.

Table 20. Summary of w_pioctl calls for zFS

Command Code

file snapshot 0x0000A903

fileinfo 0x0000A901

pfsctl (BPX1PCT)

Chapter 13. zFS application programming interface information 243

Attach Aggregate

Purpose
This subcommand call is an aggregate operation that attaches an aggregate to a system. This action
makes the aggregate and all its file systems known to the zFS physical file system running on that system.
(Compatibility mode aggregates are attached during mount so that a separate attach is not necessary.)

Format
syscall_parmlist
 opcode int 105 AGOP_ATTACH_PARMDATA
 parms[0] int offset to AGGR_ID
 parms[1] int offset to AGGR_ATTACH
 parms[2] int offset to system name (optional)
 parms[3] int 0
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0
AGGR_ID
 aid_eye char[4] "AGID"
 aid_len char sizeof(AGGR_ID)
 aid_ver char 1
 aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"
 aid_reserved char[33] 0
AGGR_ATTACH
 at_eye char[4] "AGAT"
 at_len short sizeof(AGGR_ATTACH)
 at_ver char 1
 at_res1 char 0
 at_threshold char 90
 at_increment char 5
 at_flags char 0x80
 ATT_MONITOR 0x80 Monitor aggregate full
 ATT_RO 0x40 Attach aggregate as read-only
 ATT_NBS 0x20 Use New Block Security
 ATT_NONBS 0x10 No longer supported
 ATT_GROW 0x04 Allow dynamic grow
 ATT_NOGROW 0x02 Disallow dynamic grow
 at_res2 char 0
 at_reserved int[64] 0 reserved for future use
systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful

Return_code
 EEXIST Aggregate already attached
 EINTR ZFS is shutting down
 EMVSERR Internal error using an osi service
 EPERM Permission denied to perform request
 EINVAL Attempt to attach a multi-file system aggregate

Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage notes
1. The ATT_NBS and ATT_NONBS flags are no longer supported; zFS always runs with NBS on. If either of

these parameters is specified, it is ignored.
2. ATT_GROW and ATT_NOGROW are mutually exclusive. If neither is specified, the default is the
aggrgrow setting in the IOEFSPRM file. See “Dynamically growing a compatibility mode aggregate” on
page 24 for a description of dynamic grow.

3. The at_threshold and at_increment values are ignored unless ATT_MONITOR is set.
4. Reserved fields and undefined flags must be set to binary zeros.

Attach Aggregate

244 z/OS: z/OS File System Administration

Privilege required
The issuer must be logged in as root or have READ authority to the SUPERUSER.FILESYS.PFSCTL resource
in the z/OS UNIXPRIV class.

Related services
Detach Aggregate

Restrictions
None.

Examples

#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_ATTACH_PARMDATA 105

typedef struct syscall_parmlist_t {
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t {
 char aid_eye[4]; /* Eye Catcher */
#define AID_EYE "AGID"
 char aid_len; /* Length of this structure */
 char aid_ver; /* Version */
#define AID_VER_INITIAL 1 /* Initial version */
 char aid_name[ZFS_MAX_AGGRNAME+1]; /* aggr name, null terminated */
 char aid_reserved[33]; /* Reserved for the future */
} AGGR_ID;

typedef struct aggr_attach_t
{
 char at_eye[4]; /* Eye catcher */
 #define AT_EYE "AGAT"
 short at_len; /* Length of structure */
 char at_ver; /* Structure version */
#define AT_VER_INITIAL 1 /* Version 1 */
 char at_res1; /* Reserved for internal use */
 char at_threshold; /* Threshold for monitoring */
 char at_increment; /* Increment */
 char at_flags; /* Processing flags */
#define ATT_MONITOR 0x80 /* aggrfull monitoring should */
 /* be used */
#define ATT_RO 0x40 /* aggr should be attached ro */
#define ATT_NBS 0x20 /* aggr should be attached */
 /* with full NBS */
#define ATT_NONBS 0x10 /* no longer supported */
#define ATT_GROW 0x04 /* allow dynamic grow */
#define ATT_NOGROW 0x02 /* disallow dynamic grow */
 char at_res2; /* Reserved for future use */
 int at_reserved[64]; /* Reserved for future use */
} AGGR_ATTACH;

struct parmstruct {
 syscall_parmlist myparms;
 AGGR_ID aggr_id;
 AGGR_ATTACH myaggr;
 char systemname[9]; /* System to attach on */
};

int main(int argc, char **argv)
{

Attach Aggregate

Chapter 13. zFS application programming interface information 245

 int bpxrv;
 int bpxrc;
 int bpxrs;
 struct parmstruct myparmstruct;
 char aggrname[45] = "PLEX.DCEIMGQX.FS"; /* aggregate name to attach */

 AGGR_ID *idp = &(myparmstruct.aggr_id);
 AGGR_ATTACH *atp = &(myparmstruct.myaggr);
 char *asp = myparmstruct.systemname;

 myparmstruct.myparms.opcode = AGOP_ATTACH_PARMDATA;
 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
 myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(AGGR_ID);
 myparmstruct.myparms.parms[2] = 0;

 /* Only specify a non-zero offset for the next field (parms[2]) if */
 /* you are running z/OS 1.7 and above, and you want the owner of the one */
 /* aggregate to be a different system than this one */
 /* myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist) + */
 /* sizeof(AGGR_ID) + sizeof(AGGR_ATTACH); */

 myparmstruct.myparms.parms[3] = 0;
 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;

 /* Ensure reserved fields are 0 */
 memset(idp, 0, sizeof(AGGR_ID));
 memset(atp, 0, sizeof(AGGR_ATTACH));
 memset(asp, 0, sizeof(myparmstruct.systemname));

 memcpy(&myparmstruct.aggr_id.aid_eye, AID_EYE, 4);
 myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);
 myparmstruct.aggr_id.aid_ver = AID_VER_INITIAL;
 strcpy(myparmstruct.aggr_id.aid_name, aggrname);
 memcpy(&myparmstruct.myaggr.at_eye[0], AT_EYE, 4);

 myparmstruct.myaggr.at_len = sizeof(AGGR_ATTACH);
 myparmstruct.myaggr.at_ver = AT_VER_INITIAL;
 myparmstruct.myaggr.at_threshold = 90; /* 90 percent threshold */
 myparmstruct.myaggr.at_increment = 5; /* 5 percent increment */
 myparmstruct.myaggr.at_flags = 0;
 myparmstruct.myaggr.at_flags |= ATT_MONITOR; /* Use threshold and */
 /* increment */
 myparmstruct.myaggr.at_flags |= ATT_GROW; /* allow dynamic growing */

 /* This next field should only be set if parms[2] is non-zero */
 /* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

 BPX1PCT("ZFS ",
 ZFSCALL_AGGR, /* Aggregate operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv < 0)
 {
 printf("Error attaching aggregate %s on system %s\n",
 aggrname, myparmstruct.systemname);
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 return bpxrc;
 }
 else
 { /* Return from attach was successful */
 printf("Aggregate %s attached successfully on system %s\n",
 aggrname, myparmstruct.systemname);
 }
 return 0;
}

Attach Aggregate

246 z/OS: z/OS File System Administration

Change Aggregate Attributes

Purpose
An aggregate operation that changes the attributes of the specified aggregate.

Format
syscall_parmlist
 opcode int 160 AGOP_CHAGGR_REQ_PARMDATA
 parms[0] int offset to CHAGGR_REQ
 parms[1] int 0
 parms[2] int 0
 parms[3] int 0
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0
CHAGGR_REQ
 ch_eye char[4] "CARQ"
 ch_len short sizeof(CHAGGR_REQ)
 ch_version char Structure version, must be 1
 ch_name char[45] Name of aggregate, null-terminated
 ch_growflags char Flag bits; defined as:
 0x01 - Dynamic grow should be enabled.
 0x02 - Dynamic grow should be disabled for aggregate.
 ch_fullflags char Indicates if aggrfull processing is desired:
 1 - Aggrfull processing should be enabled.
 2 - Aggrfull processing should be disabled.
 ch_full_threshold char Threshold for aggrfull monitoring
 ch_full_increment char Increment for aggrfull monitoring
 ch_rwshareflags char Indicates if aggregate should be mounted RWSHARE or NORWSHARE.
 1 - File system should be mounted RWSHARE.
 2 - File system should be mounted NORWSHARE.
 ch_reserved_1 char Future use.
 ch_ha_flags char Indicates if aggregate should be high availability.
 1 - File system should be high availability.
 2 - File system should not be high availability.
 ch_reserved char(21) Future use.

Return_value 0 if request is successful, -1 if it is not successful

Return_code
 EPERM Caller does not have authority to perform request.
 ENOENT The file system is not mounted.
 EINVAL Bad parameter lists; various reason codes might apply.
 EMVSERR Internal error in zFS or z/OS UNIX that prevents the operation from running.
 EBUSY The file system is quiesced or cannot handle the operation now. Try again later.
 EIO A general failure to communicate between sysplex members or prior communication
 errors (that have not yet been resolved by name space correction) prevented the
 command from operating properly.

Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage notes
1. The aggregate must be mounted (as opposed to just attached).
2. ch_name is converted to uppercase before it is used.
3. The ch_growflags, ch_fullflags, ch_haflags, and ch_rwshareflags fields are mutually

exclusive. Unused flags must be set to 0.
4. The changed attribute remains with the aggregate, even if the zFS ownership of the aggregate changes

to another system in the sysplex. Any changes will disappear when the aggregate is unmounted.
5. Reserved fields and undefined flags must be set to binary zeros.

Change Aggregate Attributes

Chapter 13. zFS application programming interface information 247

Privilege required
The issuer must be logged in as a root user (UID=0) or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Related services
List Detailed File System Information

Restrictions
The aggregate cannot be attached as read-only. It also cannot be quiesced or be the object of any other
zFS command.

Examples

#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_CHAGGR_PARMDATA 160 /* change aggregate attributes */

typedef struct syscall_parmlist_
{
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

typedef struct chaggr_req_t
{
 char ch_eye[4]; /* eyecatcher "CARQ" */
 short ch_len; /* sizeof CHAGGR_REQ */
 char ch_ver; /* 1 */
 char ch_name[ZFS_MAX_AGGRNAME+1]; /* NULL terminates aggregate name */
 char ch_growflags; /* 1=aggrgow on 2=aggrgrow off */
 char ch_fullflags; /* 1=aggrfull on 2=aggrfill off */
 char ch_full_threshold; /* value between 1 and 99 */
 char ch_full_increment; /* value between 1 and 99 */
 char ch_rwshareflags; /* 1=rwshare 2=norwshare */
 char ch_reserved_1; /* reserved must be 0 */
 char ch_ha_flags; /* 1 = HA on, 2 = HA off */
 char ch_reserved1[1]; /* reserved must be 0 */
 int ch_reserved[5]; /* reserved must be 0 */
} CHAGGR_REQ;

struct parmstruct {
 syscall_parmlist myparms;
 CHAGGR_REQ chreq;
};

int main(int argc, char **argv)
{
 int bpxrv;
 int bpxrc;
 int bpxrs;
 struct parmstruct myparmstruct;
 char aggrname[45] = "PLEX.DCEIMGQX.FS";
 CHAGGR_REQ *reqp = &(myparmstruct.chreq);
 myparmstruct.myparms.opcode = AGOP_CHAGGR_PARMDATA;
 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
 myparmstruct.myparms.parms[1] = 0;
 myparmstruct.myparms.parms[2] = 0;
 myparmstruct.myparms.parms[3] = 0;
 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;

Change Aggregate Attributes

248 z/OS: z/OS File System Administration

 /* Ensure reserved fields are 0 */
 memset(&myparmstruct.chreq, 0, sizeof(CHAGGR_REQ));

 /* Set fields to change the aggrgrow attribute to ON */
 memcpy(&myparmstruct.chreq.ch_eye, "CARQ", 4);
 myparmstruct.chreq.ch_len = sizeof(CHAGGR_REQ);
 myparmstruct.chreq.ch_ver = 1;
 strcpy(myparmstruct.chreq.ch_name, aggrname);
 myparmstruct.chreq.ch_growflags = 1;

 BPX1PCT("ZFS ", /* must be blank padded to length 8 */
 ZFSCALL_AGGR, /* Aggregate operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */
 if (bpxrv < 0)
 {
 printf("Error changing attributes for aggregate %s\n", aggrname);
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 return bpxrc;
 }
 else /* Return from change aggregate attributes was successful */
 printf("Attributes for aggregate %s successfully changed.\n", aggrname);

 return 0;
}

Change Aggregate Attributes

Chapter 13. zFS application programming interface information 249

Define Aggregate

Purpose
An aggregate operation that defines (creates) a VSAM linear data set, which can then be formatted as a
zFS aggregate.

Format
syscall_parmlist
 opcode int 139 AGOP_DEFINE_PARMDATA
 parms[0] int Offset to AGGR_DEFINE
 parms[1] int Size of Buffer
 parms[2] int Offset to Buffer
 parms[3] int Offset to system name (optional)
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0
AGGR_DEFINE
 eye char[4] "AGDF"
 len short sizeof(AGGR_DEFINE)
 ver char 1
 aggrName char[45] Name of aggregate dataset to create
 dataClass char[9] Name of a data class
 managementClass char[9] Name of a management class
 storageClass char[9] Name of a storage class
 model char[45] Name of a model
 modelCatalog char[45] Name of a model catalog
 catalog char[45] Name of a catalog
 volumes[59] char[7] Null terminated list of VOLSERs
 reservedChars1 char Reserved
 numVolumes int Number of volumes to use
 spaceUnit int Units space is allocated in
 spacePrimary unsigned int Primary allocation
 spaceSecondary unsigned int Secondary allocation
 reservedIntsl int[32] Reserved space for future use

--or--

AGGR_DEFINE
 eye char[4] "AGDF"
 len short sizeof(AGGR_DEFINE)
 ver char 2
 aggrName char[45] Name of aggregate dataset to create
 dataClass char[9] Name of a data class
 managementClass char[9] Name of a management class
 storageClass char[9] Name of a storage class
 model char[45] Name of a model
 modelCatalog char[45] Name of a model catalog
 catalog char[45] Name of a catalog
 volumes[59] char[7] Null terminated list of VOLSERs
 reservedChars1 char Reserved
 numVolumes int Number of volumes to use
 spaceUnit int Units space is allocated in
 spacePrimary unsigned int Primary allocation
 spaceSecondary unsigned int Secondary allocation
 keylabel char[65] Null terminated key label
 reservedChar char[3] Reserved space for future use
 reservedIntsl int[32] Reserved space for future use

systemname char[9] System name where DEFINE should run

Return_value 0 if request is successful, -1 if it is not successful

Return_code
 EINTR ZFS is shutting down
 EINVAL Invalid parameters
 EMVSERR Internal error using an osi service
 ENOENT Aggregate is not attached
 EPERM Permission denied to perform request
Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Define Aggregate

250 z/OS: z/OS File System Administration

Usage notes
1. Reserved fields and undefined flags must be set to binary zeros.
2. Output buffer is space for IDCAMS to return error messages.
3. In order to specify a key label for the data set that is being defined, specify ver=2 in the
AGGR_DEFINE structure.

Privilege required
The issuer must have sufficient authority to create the VSAM linear data set.

Related services
Format Aggregate

Restrictions
The VSAM linear data set to be defined cannot already exist.

Examples

#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_DEFINE_PARMDATA 139

typedef struct syscall_parmlist_t {
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44
#define ZFS_MAX_SMSID 8
#define ZFS_MAX_VOLID 6

typedef struct aggr_define_t {
 char eye[4]; /* Eye catcher */
#define ADEF_EYE "AGDF"
 short len; /* Length of this structure */
 char ver; /* Version */
#define ADEF_VER_INITIAL 1 /* Initial version */
 char aggrName[ZFS_MAX_AGGRNAME+1];
 char dataClass[ZFS_MAX_SMSID+1];
 char managementClass[ZFS_MAX_SMSID+1];
 char storageClass[ZFS_MAX_SMSID+1];
 char model[ZFS_MAX_AGGRNAME+1];
 char modelCatalog[ZFS_MAX_AGGRNAME+1];
 char catalog[ZFS_MAX_AGGRNAME+1];
 char volumes[59][ZFS_MAX_VOLID+1];
 char reservedChars1;
 int numVolumes;
 int spaceUnit;
#define ZFS_SPACE_CYLS 1
#define ZFS_SPACE_KILO 2
#define ZFS_SPACE_MEGA 3
#define ZFS_SPACE_RECS 4
#define ZFS_SPACE_TRKS 5
 unsigned int spacePrimary;
 unsigned int spaceSecondary;
 char keylabel[65];
 char reservedChar[3];
 int reservedInts1[32];
} AGGR_DEFINE;

struct parmstruct {

Define Aggregate

Chapter 13. zFS application programming interface information 251

 syscall_parmlist myparms;
 AGGR_DEFINE aggdef;
 char Buffer[1024];
 char systemname[9];
};

int main(int argc, char **argv)
{
 int bpxrv;
 int bpxrc;
 int bpxrs;
 char aggrname[45] = "PLEX.DCEIMGQX.LDS"; /* aggregate name to define */
 char dataclass[9] = "";
 char managementclass[9] = "";
 char storageclass[9] = "";
 char model[45] = "";
 char modelcatalog[45] = "";
 char catalog[45] = "";
 char volumes[7] = "CFC000";

 struct parmstruct myparmstruct;
 AGGR_DEFINE *agp = &(myparmstruct.aggdef);
 char *bufp = &(myparmstruct.Buffer[0]);

 /* This next field should only be set if parms[3] is non-zero */
 /* strcpy(myparmstruct.systemname,"DCEIMGVN"); */
 /* set system to run define on */
 myparmstruct.myparms.opcode = AGOP_DEFINE_PARMDATA;
 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
 myparmstruct.myparms.parms[1] = sizeof(myparmstruct.Buffer);
 myparmstruct.myparms.parms[2] = myparmstruct.myparms.parms[0] +
 sizeof(AGGR_DEFINE); /* offset to Buffer */
 myparmstruct.myparms.parms[3] = 0;

 /* Only specify a non-zero offset for the next field (parms[3]) if */
 /* you are running z/OS 1.7 and above, and */
 /* you want the define to run on a different system than this one */
 /* myparmstruct.myparms.parms[3] = */
 /* myparmstruct.myparms.parms[0] + sizeof(AGGR_DEFINE)+ */
 /* sizeof(myparmstruct.Buffer); */

 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;
 memset(agp, 0, sizeof(*agp));
 strcpy(agp->eye, ADEF_EYE);

 agp->ver = ADEF_VER_INITIAL;
 agp->len = sizeof(AGGR_DEFINE);

 memset(bufp, 0, sizeof(myparmstruct.Buffer));
 strcpy(agp->aggrName, aggrname);
 strcpy(agp->model, model); /* If included next 4 can be null */
 strcpy(agp->dataClass, dataclass);
 strcpy(agp->managementClass, managementclass);
 strcpy(agp->storageClass, storageclass);
 strcpy(agp->modelCatalog, modelcatalog);
 strcpy(agp->volumes[0], (char *)volumes);

 agp->numVolumes = 1;
 agp->spaceUnit = ZFS_SPACE_CYLS;
 agp->spacePrimary = 10;
 agp->spaceSecondary = 1;

 BPX1PCT("ZFS ",
 ZFSCALL_AGGR,
 sizeof(myparmstruct),
 (char *)&myparmstruct,
 &bpxrv,
 &bpxrc,
 &bpxrs);

 if (bpxrv < 0)
 {
 printf("define: Error defining LDS %s\n", aggrname);
 printf("define: BPXRV = %d BPXRC = %d BPXRS = %x\n",
 bpxrv, bpxrc, bpxrs);
 printf("define: job output:\n\n%s\n", myparmstruct.Buffer);
 return bpxrc;
 }
 else
 printf("define: LDS %s defined successfully\n", aggrname);

Define Aggregate

252 z/OS: z/OS File System Administration

 return 0;
}

Define Aggregate

Chapter 13. zFS application programming interface information 253

Detach Aggregate

Purpose
Detach Aggregate is an aggregate operation that detaches an attached, but not mounted, compatibility
mode aggregate. Mounted compatibility aggregates are detached during unmount.

Format
syscall_parmlist
 opcode int 104 AGOP_DETACH_PARMDATA
 parms[0] int offset to AGGR_ID
 parms[1] int 0
 parms[2] int 0
 parms[3] int 0
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0
AGGR_ID
 aid_eye char[4] "AGID"
 aid_len char sizeof(AGGR_ID)
 aid_ver char 1
 aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"
 aid_reserved char[33] 0

Return_value 0 if request is successful, -1 if it is not successful

Return_code
 EBUSY Aggregate could not be detached due to mounted file system
 EINTR ZFS is shutting down
 EMVSERR Internal error using an osi service
 ENOENT Aggregate is not attached
 EPERM Permission denied to perform request

Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage notes
1. Reserved fields and undefined flags must be set to binary zeros.

Privilege required
The issuer must be logged in as a root user (UID=0) or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Related services
Attach Aggregate

Restrictions
All file systems in the aggregate must be unmounted before the aggregate can be detached.

Examples

#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_DETACH_PARMDATA 104

Detach Aggregate

254 z/OS: z/OS File System Administration

typedef struct syscall_parmlist_t {
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t {
 char aid_eye[4]; /* Eye catcher */
#define AID_EYE "AGID"
 char aid_len; /* Length of this structure */
 char aid_ver; /* Version */
#define AID_VER_INITIAL 1 /* Initial version */
 char aid_name[ZFS_MAX_AGGRNAME+1]; /* Name, null terminated */
 char aid_reserved[33]; /* Reserved for the future */
} AGGR_ID;

struct parmstruct {
 syscall_parmlist myparms;
 AGGR_ID aggr_id;
};

int main(int argc, char **argv)
{
 int bpxrv;
 int bpxrc;
 int bpxrs;
 char aggrname[45] = "PLEX.DCEIMGQX.FS";
 struct parmstruct myparmstruct;

 myparmstruct.myparms.opcode = AGOP_DETACH_PARMDATA;
 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
 myparmstruct.myparms.parms[1] = 0;
 myparmstruct.myparms.parms[2] = 0;
 myparmstruct.myparms.parms[3] = 0;
 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;

 /* Ensure reserved fields are 0 */
 memset(&myparmstruct.aggr_id, 0, sizeof(AGGR_ID));

 memcpy(&myparmstruct.aggr_id, AID_EYE, 4);
 myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);
 myparmstruct.aggr_id.aid_ver = AID_VER_INITIAL;
 strcpy(myparmstruct.aggr_id.aid_name, aggrname);

 BPX1PCT("ZFS ",
 ZFSCALL_AGGR, /* Aggregate operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv < 0)
 {
 printf("Error detaching aggregate %s\n", aggrname);
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 return bpxrc;
 }
 else
 { /* Return from detach was successful */
 printf("Aggregate %s detached successfully\n", aggrname);
 }
 return 0;
}

Detach Aggregate

Chapter 13. zFS application programming interface information 255

Encrypt (Decrypt, Compress, or Decompress) Aggregate

Purpose
To encrypt, decrypt, compress, or decompress a zFS aggregate.

Format
syscall_parmlist
 opcode int 262 AGOP_ENCRYPT_PARMDATA
 263 AGOP_DECRYPT_PARMDATA
 264 AGOP_COMPRESS_PARMDATA
 265 AGOP_DECOMPRESS_PARMDATA

 parms[0] int Offset to AGGR_ID
 parms[1] int One of the following flags:
 1 Encrypt request
 2 Decrypt request
 3 Cancel request. (See parms[4])
 4 Compress request
 5 Decompress request

 parms[2] int Length of the key label if parms[1] is 1 (encrypt), or 0
 parms[3] int Offset to the key label string if parms[1] is 1
 parms[4] int Cancel type. Valid only when parms[1] is 3 (cancel).
 One of the following flags:
 1 Cancel encryption
 2 Cancel decryption
 3 Cancel compression
 4 Cancel decompression
 parms[5] int 0
 parms[6] int 0

Return_value 0 if request is successful, -1 if it is not successful

Return_code
 EACCES Caller does not have authority to perform request.
 ENOENT File system is not mounted.
 EROFS Attempt to run operation against a R/O mounted file system.
 EINVAL Bad parameter lists.
 EMVSERR Internal error in zFS or z/OS UNIX.
 EBUSY File system is quiesced or cannot handle the operation
 at this time.
 EIO A general failure to talk to an owner or the disk
 (in other words, I/O error).
 ENOSPC If you run out of space during the conversion.

Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage notes
1. Reserved fields and undefined flags must be set to binary zeros.
2. Encryption, decryption, compression, and decompression can take a long time to complete. Use the

FSINFO command to check progress.
3. This operation will run on a zFS task that belongs to the long-running administrative command pool. If

all tasks in that pool are busy, the operation is rejected with EBUSY.
4. You cannot encrypt or decrypt an aggregate that is in a partially compressed or partially decompressed

state. In other words, if encryption or decryption was stopped for an aggregate, you cannot encrypt or
decrypt it.

5. You cannot compress or decompress an aggregate that is in a partially encrypted or partially decrypted
state. In other words, if compression or decryption was stopped for an aggregate, you cannot
compress or decompress it.

Encrypt (Decrypt, Compress, or Decompress) Aggregate

256 z/OS: z/OS File System Administration

Privilege required
The issuer must be logged in as a root user (UID=0) or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Related services
List Detailed File System Information.

Restrictions
None.

Examples

#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_ENCRYPT_PARMDATA 262 /* encrypt specified aggregate */

typedef struct syscall_parmlist_
{
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t {
 char aid_eye[4]; /* Eye Catcher */
#define AID_EYE "AGID"
 char aid_len; /* Length of this structure */
 char aid_ver; /* Version */
#define AID_VER_INITIAL 1 /* Initial version */
 char aid_name[ZFS_MAX_AGGRNAME+1]; /* aggr name, null terminated */
 char aid_reserved[33]; /* Reserved for the future */
} AGGR_ID;

struct parmstruct {
 syscall_parmlist myparms;
 AGGR_ID aggr_id;
 char keylabel[65];
};

int main(int argc, char **argv)
{
 int bpxrv;
 int bpxrc;
 int bpxrs;
 struct parmstruct myparmstruct;
 char aggrname[45] = "PLEX.DCEIMGNJ.ENC";
 char key_label[65] = "PROTKEY.AES.SECURE.KEY.32BYTE";

 myparmstruct.myparms.opcode = AGOP_ENCRYPT_PARMDATA;
 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
 myparmstruct.myparms.parms[1] = 1; /* request encrypt operation */
 myparmstruct.myparms.parms[2] = sizeof(key_label);
 myparmstruct.myparms.parms[3] = sizeof(syscall_parmlist) + sizeof(AGGR_ID);
 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;

 /* Ensure reserved fields are 0 */
 memset(&myparmstruct.aggr_id, 0, sizeof(AGGR_ID));

 memcpy(&myparmstruct.aggr_id, AID_EYE, 4);
 myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);
 myparmstruct.aggr_id.aid_ver = AID_VER_INITIAL;
 strcpy(myparmstruct.aggr_id.aid_name, aggrname);
 strcpy(myparmstruct.keylabel, key_label);

Encrypt (Decrypt, Compress, or Decompress) Aggregate

Chapter 13. zFS application programming interface information 257

 BPX1PCT("ZFS ", /* must be blank padded to length 8 */
 ZFSCALL_AGGR, /* Aggregate operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 if (bpxrv < 0)
 {
 printf("Error trying to encrypt aggregate %s\n", aggrname);
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 return bpxrc;
 }
 else
 printf("Encrypt of aggregate %s successful.\n", aggrname);

 return 0;
}

Encrypt (Decrypt, Compress, or Decompress) Aggregate

258 z/OS: z/OS File System Administration

File Snapshot

Purpose
Creates a point-in-time snapshot (or copy) of a file in a zFS file system and allows subsequent read
requests from that snapshot along with concurrent reads and writes to the actual file on-disk. When a
snapshot is created, backup programs can also request information about the file, which will help
determine whether the file was changed since the last backup.

The File Snapshot API is a w_ioctl (BPX1IOC) call that specifies a file descriptor rather than a pfsctl
(BPX1PCT) call that specifies a file system.

Format

BPX1IOC parameter list
 File_descriptor int
 Command int 0x0000A903
 Argument_length int sizeof(BK_REQ)
 Argument ptr to BK_REQ
 Return_value ptr to int 0
 Return_code ptr to int 0
 Reason_code ptr to int 0

BK_REQ
 bk_eye char[4] "BKRQ"
 bk_length short sizeof(BK_REQ)
 bk_flags short 0 - Non-first call to the API
 1 - First call to the API
 bk_sversion char 1
 bk_writers char Output, 1 if file was opened for write at time
 of registration request
 bk_eof char Output, 1 if end-of-file is reached
 bk_key char Key for the memory buffers, in the format
 of 0xK0, where K is the key
 bk_bufferSize int Size of bk_buffer.
 Minimum buffer length is 64K (65536).
 bk_filelength long long int Output, length of the file at snapshot time
 bk_nextReadOffset long long int Output, next offset into the file to read from
 bk_offset long long int Offset in file to read from
 bk_buffer long long int In/Out - buffer to place data into
 bk_outputLen int Output, amount of bytes placed in buffer
 bk_uncompressedLen int Output, amount of bytes if the data were
 not compressed. If outputLen and
 uncompressedLen do not match then
 the returned data was compressed.
 bk_attrBuffer long long int In/Out - If nonzero, then caller is
 requesting file attributes, only valid
 on first call(registration)
 bk_aclBuffer long long int In/Out - If non-zero, then caller is
 requesting file ACLs, only valid
 on first call(registration)
 bk_attrBufferLen int Length of bk_attrBuffer
 bk_aclBufferLen int Length of bk_aclBuffer
 bk_future char[32] Reserved

Return_value 0 if request is successful, -1 if it is not successful
Return_code
 EFAULT - Buffer address was bad or a storage key error.
 EFBIG - One of the provided buffer sizes is too small. The various buffer sizes
will be
 updated with the required size and a reason code will indicate which
buffer
 was too small.
 EINTR - The application task was abended while running the snapshot ioctl.
 EINVAL - Invalid parameter list. zFS will provide reason codes to help explain
 what is wrong.

File Snapshot

Chapter 13. zFS application programming interface information 259

 EIO - zFS had some sort of error accessing the disk or communicating with other
 sysplex members. This type of error would be preceded by many operator
messages
 and other warnings.
 EMVSERR - Internal error in zFS software.
 ENOMEM - zFS ran out of memory (not likely and would likely be a zFS internal
error).
 EPERM - The caller did not have the proper security credentials.

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage notes
1. If an input buffer is too small, the caller should obtain a buffer of the required size and retry the

operation. The minimum buffer length is 64 K (655536).
2. You cannot back up files that are stored in compressed format.
3. For file systems that are mounted NORWSHARE, backups can only be initiated from the file system

owner. For those that are mounted RWSHARE, backups can be initiated from any system in the
sysplex with a local mount for the file system.

4. If the open-read count of a file that has an in-progress backup becomes zero for any reason, zFS will
fail the in-progress backup. The caller must initiate a new backup request.

5. For fragmented files, if the data retrieved is written to a new file it will no longer be in fragmented
format and might increase disk space usage.

6. For file systems that are mounted RWSHARE, you can get slightly better performance if you issue the
backup request on the owning system.

7. If zFS goes down on the system performing the backup, or the owning system, errors will occur.
Active backups in progress will fail and will need to be reinitiated by the caller once zFS is restarted.

8. You cannot back up files on a file system that is being shrunk, encrypted, decrypted, compressed, or
decompressed.

9. While a file is undergoing backup, you cannot write to it from systems that do not have zFS File
Snapshot support installed.

10. You cannot back up files on a version 1.4 file system.

Privilege required
The user must have lookup authority (x) to the directory and READ authority (r) to the file.

The caller must be an authorized program.

Related services
List File Information
List Detailed File System Information

Restrictions
File Snapshot cannot be used while the containing aggregate is encrypting, decrypting, compressing,
decompressing, or shrinking. It also cannot be used while the containing aggregate is version 1.4, or on a
file that is stored in compressed format.

Examples

#pragma linkage(BPX1IOC, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1IOC(int, int, int, char *, int *, int *, int *);

File Snapshot

260 z/OS: z/OS File System Administration

#include <stdio.h>
#include <fcntl.h>

#define IOCTL_SNAPSHOT 0x0000A903

typedef struct bk_req_t {
 char bk_eye[4]; /* eye catcher */
#define BK_EYE "BKRQ"
 short bk_length; /* Length of this structure. */
 short bk_flags; /* Input flags. The following values: */
#define BK_FIRSTCALL 0x0001 /* 0x0001 - Signifies that this is the first */
 /* snapshot read call. */
 char bk_sversion; /* Structure version, must be the value 1. */
 char bk_writers; /* Output for registration call, value 1 if the*/
 /* file was opened for write by other users at */
 /* time of snapshot registration; 0 otherwise. */
 char bk_eof; /* Output parameter, 1 if the end-of-file is */
 /* reached, 0 otherwise. Valid even for */
 /* snapshot register because the file could be */
 /* empty. */
 char bk_key; /* Key for the memory buffer, in the format of */
 /* 0xK0 where K is the key. */
 int bk_bufferSize; /* Input: Buffer size on input, if too small */
 /* then EFBIG returned. */
#define BK_MINBUF 65536 /* Minimum required buffer size. */
 long long int bk_filelength;/* Output, Length of the file at snapshot time.*/
 long long int bk_nextReadOffset;/* Output, Next offset into the file to */
 /* read, handles sparseness. */
 long long int bk_offset; /* Input for read request, ignored for */
 /* registration request - next place in file */
 /* to read from. */
 long long int bk_buffer; /* In/Out for read request, ignored for */
 /* registration request - buffer for zFS to */
 /* place data into. */
 int bk_outputLen; /* Output for read request, ignored for */
 /* registration request - amount of bytes */
 /* placed in buffer. */
 int bk_uncompressedLen;/* Output for read request, ignored for */
 /* registration request - amount of bytes */
 /* if the data were not compressed. If */
 /* outputlen does not equal uncompressedLen, */
 /* the returned data is compressed; otherwise */
 /* the data was returned uncompressed. */
 long long int bk_attrBuffer;/* In/Out - If non-zero, then the caller is */
 /* requesting attributes, this parameter is */
 /* only valid on the first call for a file, */
 /* for subsequent reads of the file this will */
 /* be ignored. */
 long long int bk_aclBuffer; /* In/Out - If non-zero, then the caller is */
 /* requesting the ACL for the file. This */
 /* parameter is only valid on the first call */
 /* for a file, for subsequent reads of the file*/
 /* this will be ignored. */
 int bk_attrBufferLen;/* Input - Length of the buffer used to */
 /* contain the output attributes, which will be*/
 /* in the z/OS Unix ATTR format. If the ATTR is*/
 /* requested then the buffer used to contain */
 /* the ATTR should have the ATTR version field */
 /* set so that zFS knows which version of the */
 /* ATTR the caller expects. */
 int bk_aclBufferLen;/* Input - Length of the buffer used to */
 /* contain the access ACL of the file. zFS */
 /* recommends that this buffer be 64K in size */
 /* since 64K is theoretically the largest */
 /* possible ACL. Of course ACLs could be */
 /* written in-between calls, so it's best to */
 /* simply pass a 64K buffer. */
#define BK_FUT_LEN 32
 char bk_future[BK_FUT_LEN]; /* Future use, must be zero on input */
 /* for 2.3 systems. */
} BK_REQ;

int main(int argc, char **argv)
{
 int bpxrv = 0;
 int bpxrc = 0;
 int bpxrs = 0;
 int fd;
 BK_REQ myreq;
 char *bkbuf = NULL;
 char *attrbuf = NULL;
 char *aclbuf = NULL;

File Snapshot

Chapter 13. zFS application programming interface information 261

 /* Open file for read. Assumed to be valid input. */
 fd = open(argv[1], O_RDONLY);

 /* Allocate a buffer to use in the read loop later. */
 bkbuf = (char *)malloc(BK_MINBUF);
 if (bkbuf == NULL)
 {
 printf("Malloc of bkbuf failed.\n");
 bpxrc = -1;
 goto error;
 }

 /**/
 /* Optional - Snapshot API can return ACL and ATTR information for the */
 /* file if we choose to request it. To request this information, simply */
 /* create and pass in a buffer for bk_attrBuffer and bk_aclBuffer and */
 /* their corresponding size fields bk_attrBufferLen and bk_aclBufferLen. */
 /* The size only needs to be big enough to fit a standard ATTR structure */
 /* and ACL information respectively, but for this example we're making */
 /* them plenty large enough. */
 /**/
 attrbuf = (char *)malloc(65536);
 if (attrbuf == NULL)
 {
 printf("Malloc of attrbuf failed.\n");
 bpxrc = -1;
 goto error;
 }

 aclbuf = (char *)malloc(65536);
 if (aclbuf == NULL)
 {
 printf("Malloc of aclbuf failed.\n");
 bpxrc = -1;
 goto error;
 }

 /* Ensure reserved fields and bk_offset are 0 */
 memset(&myreq, 0, sizeof(BK_REQ));

 /* Set up input values. */
 memcpy(&myreq, BK_EYE, 4);
 myreq.bk_length = sizeof(myreq);
 myreq.bk_flags = BK_FIRSTCALL; /* Initialize snapshot */
 myreq.bk_sversion = 1;
 myreq.bk_key = 0x80;
 myreq.bk_attrBuffer = (long long int)attrbuf;
 myreq.bk_aclBuffer = (long long int)aclbuf;
 myreq.bk_attrBufferLen = 65536;
 myreq.bk_aclBufferLen = 65536;

 /**/
 /* The first call with the BK_FIRSTCALL flag set will register a snapshot */
 /* request. Future calls beyond that will be to read data, in up to 64K */
 /* pieces, ideally in a loop. These calls won't use the BK_FIRSTCALL flag.*/
 /**/
 BPX1IOC(fd,
 IOCTL_SNAPSHOT, /* IOCTL operation */
 sizeof(myreq), /* Length of Argument */
 (char *)&myreq, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value*/
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 if (bpxrv < 0)
 {
 printf("Error trying to register snapshot for file %s\n", argv[1]);
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 goto error;
 }
 printf("Registered snapshot of file %s\n\n", argv[1]);

 /* Set the appropriate BK_REQ fields for the next call. */
 myreq.bk_flags = 0;
 myreq.bk_buffer = (long long int)bkbuf;
 myreq.bk_bufferSize = 65536;

 while (myreq.bk_eof != 1)
 {
 /* Set the read offset each time we call. */

File Snapshot

262 z/OS: z/OS File System Administration

 myreq.bk_offset = myreq.bk_nextReadOffset;

 BPX1IOC(fd,
 IOCTL_SNAPSHOT, /* IOCTL operation */
 sizeof(myreq), /* Length of Argument */
 (char *)&myreq, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value*/
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 if (bpxrv < 0)
 {
 printf("Error reading snapshot data for file %s at offset %lld\n",
 argv[1], myreq.bk_offset);
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 goto error;
 }
 /* Some useful information to show about the progress. */
 printf("Read %d bytes from offset %lld of the file.\n",
 myreq.bk_outputLen, myreq.bk_offset);
 printf("Next read offset is %lld\n\n", myreq.bk_nextReadOffset);

 /* To create a backup file with this information, write the data */
 /* in <bk_buffer> at offset <bk_offset> for size <bk_outputLen>. */
 }
 printf("Backup of file %s successful.\n", argv[1]);

error:
 if (bkbuf != NULL)
 free(bkbuf);
 if (attrbuf != NULL)
 free(attrbuf);
 if (aclbuf != NULL)
 free(aclbuf);
 close(fd);
 return bpxrc;
}

File Snapshot

Chapter 13. zFS application programming interface information 263

Format Aggregate

Purpose
Format Aggregate is an aggregate operation that formats a VSAM linear data set as a zFS aggregate.

Format
syscall_parmlist
 opcode int 134 AGOP_FORMAT_PARMDATA
 parms[0] int offset to AGGR_ID
 parms[1] int offset to AGGR_FORMAT
 parms[2] int offset to system name (optional)
 parms[3] int 0
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0
AGGR_ID
 aid_eye char[4] "AGID"
 aid_len char Sizeof(AGGR_ID)
 aid_ver char 1
 aid_name char[45] Aggregate name
 aid_reserved char[33] 0 (Reserved for the future)
AGGR_FORMAT
 af_eye char[4] "AGFM"
 af_len short Sizeof(AGGR_FORMAT)
 af_ver char 1
 af_aggrversion char 0 means honor format_aggrversion value
 4 means format a version 1.4 aggregate
 5 means format a version 1.5 aggregate
 af_size int Amount of aggregate to format
 af_logsize int Size of the aggregate log
 af_initialempty int this is ignored - always use 1
 af_overwrite int Use caution if you specify 1
 af_compat int Compat aggr desired (ignored;
 always compat)
 af_owner int No uid specified
 af_ownerSpecified int Use uid of issuer
 af_group int No guid specified
 af_groupSpecified int Gid set to issuer default group
 af_perms int No perms specified
 af_permsSpecified int Perms not specified
 af_grow int Grow amount, 0 means grow not
 specified
 af_newauditfid int 0=old auditfid; 1=newauditfid
 af_encrypt char encryption specification
 0 – value is not set
 1 – request an encrypted file system
 2 – request the file system to be
 not encrypted

 af_compress char compression specification
 0 – value is not set
 1 – request a compressed file system
 2 – request the file system to be
 not compressed

 af_reserved char[54]
systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful

Return_code
 EBUSY Aggregate is busy or otherwise unavailable
 EINTR ZFS is shutting down
 EINVAL Invalid parameters
 EMVSERR Internal error using an osi service
 ENOENT No aggregate by this name is found
 EPERM Permission denied to perform request

Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes
 EINVAL Invalid parameters
 EMVSERR Internal error using an osi service
 ENOENT No aggregate by this name is found

Format Aggregate

264 z/OS: z/OS File System Administration

 EPERM Permission denied to perform request

Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage notes
1. Reserved fields and undefined flags must be set to binary zeros.
2. The af_compat bit is ignored. The VSAM linear data set is always formatted as a compatibility mode

aggregate.
3. If af_encrypt is not specified or 0, the default value that is used for encryption will be the value

specified in the IOEFSPRM option format_encryption.
4. If af_compress is not specified or 0, the default value used for compression will be the value

specified in the IOEFSPRM option format_compression.
5. If af_perms is not specified or 0, and af_permsSpecified is not specified or 0, the default value for

used for root directory permissions will be the value that is specified in the IOEFSPRM option
format_perms.

6. If af_aggrversion is specified as a 4, the aggregate will be formatted as a version 1.5 aggregate
because you can no longer format version 1.4 aggregates.

Privilege required
Before you can issue the Format Aggregate API, you must have UPDATE authority to the VSAM linear data
set.

If you specified af_owner, af_group, or af_perms, with values that differ from the defaults, you must
also be UID 0 or have READ authority to the SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIX
UNIXPRIV class. The defaults for af_owner and af_group are determined from the credentials of the
issuer. The default for af_perms is the value of the IOEFSPRM FORMAT_PERMS option.

Related services
Define Aggregate

Restrictions
The VSAM linear data set to be formatted cannot be attached.

Examples

#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_FORMAT_PARMDATA 134

typedef struct syscall_parmlist_t {
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t {
 char aid_eye[4]; /* Eye catcher */
#define AID_EYE "AGID"
 char aid_len; /* Length of this structure */
 char aid_ver; /* Version */

Format Aggregate

Chapter 13. zFS application programming interface information 265

#define AID_VER_INITIAL 1 /* Initial version */
 char aid_name[ZFS_MAX_AGGRNAME+1]; /* Name, null terminated */
 char aid_reserved[33]; /* Reserved for the future */
} AGGR_ID;

typedef struct aggr_format_t
{
 char af_eye[4]; /* Eye catcher */
#define AF_EYE "AGFM"
 short af_len; /* Length of structure */
 char af_ver; /* Version of cb */
#define AF_VER_INITIAL 1
 char af_aggrversion; /* 0 means honor */
 /* format_aggrversion value */
#define AF_VERSION4 4
#define AF_VERSION5 5
 int af_size; /* Amount to format of aggr */
#define AF_VERSION4 4 /* make a version 1.4 aggregate */
#define AF_VERSION5 5 /* make a version 1.5 aggregate */
#define AF_DEFAULT_SIZE 0 /* If set, we use default of entire */
 /* primary partition of LDS */
 int af_logsize; /* Size of logfile in aggr */
#define AF_DEFAULT_LOGSIZE 0 /* If set, we use default of */
 /* 1% of aggr size */
 int af_initialempty; /* Initial empty blocks */
#define AF_DEFAULT_INITIALEMPTY 1 /* This is the default & minumum too */
 int af_overwrite; /* Overwrite aggr if its not empty */
#define AF_OVERWRITE_OFF 0 /* Overwrite off, that means if aggr */
 /* not empty it will */
 /* NOT be formatted, th default */
#define AF_OVERWRITE_ON 1 /* Overwrite in effect */
 int af_compat; /* HFS-compat aggr desired */
#define AF_MULT 0 /* HFS-compat aggr desired */
#define AF_HFSCOMP 1 /* HFS-compat aggr desired */
 int af_owner; /* Owner for HFS-compat */
 int af_ownerSpecified; /* Indicates an owner was provided */
#define AF_OWNER_USECALLER 0 /* Owner is set to pfsctl issuer uid */
#define AF_OWNER_SPECIFIED 1 /* Use owner uid set in af_owner */
 int af_group; /* Group for HFS-compat */
 int af_groupSpecified; /* Indicates if group specified */
#define AF_GROUP_USECALLER 0 /* Group gets set to pfsctl */
 /* issuer default group */
#define AF_GROUP_SPECIFIED 1 /* Use group gid set in af_group */
 int af_perms; /* Perms for HFS-compat */
 int af_permsSpecified; /* Indicates if perms provided */
#define AF_PERMS_DEFAULT 0 /* Perms not specified, use default */
#define AF_PERMS_SPECIFIED 1 /* Use perms set in af_perms */
 int af_grow; /* Amount to extend each time until */
 /* we reach desired size */
 /* 0 means work the old way, just */
 /* extend to desired size once */
 int af_newauditfid; /* 0 = old format auditfid, */
 /* 1 = new format auditfid */
 char af_encrypt; /* 0 = not specified (default value)*/
 /* 1 = encrypted file system */
 /* 2 = unencrypted file system */
 char af_compress; /* 0 = not specified (default value)*/
 /* 1 = compressed file system */
 /* 2 = uncompressed file system */
 char af_reserved[54]; /* For future use */
} AGGR_FORMAT; /* */

struct parmstruct {
 syscall_parmlist myparms;
 AGGR_ID aid;
 AGGR_FORMAT aggformat;
 char systemname[9];
} myparmstruct;

int main(int argc, char **argv)
{
 int bpxrv;
 int bpxrc;
 int bpxrs;
 char aggrname[45] = "PLEX.DCEIMGQX.LDS"; /* aggregate name to format */
 AGGR_FORMAT *aggptr = &(myparmstruct.aggformat);
 AGGR_ID *idp = &(myparmstruct.aid);

 /* This next field should only be set if parms[2] is non-zero */
 /* strcpy(myparmstruct.systemname,"DCEIMGVN"); */
 /* set system to change*/

Format Aggregate

266 z/OS: z/OS File System Administration

 myparmstruct.myparms.opcode = AGOP_FORMAT_PARMDATA;
 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
 myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(AGGR_ID);
 myparmstruct.myparms.parms[2] = 0;

 /* Only specify a non-zero offset for the next field (parms[2]) if */
 /* you are running z/OS 1.7 and above, and */
 /* you want the format to be run on a different system than this one */
 /* myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist) + */
 /* sizeof(AGGR_ID)+sizeof(AGGR_FORMAT);*/

 myparmstruct.myparms.parms[3] = 0;
 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;

 memset(idp, 0, sizeof(AGGR_ID));
 memcpy(idp->aid_eye, AID_EYE, 4);
 idp->aid_ver = 1;
 strcpy(idp->aid_name, aggrname);
 idp->aid_len = (int)sizeof(AGGR_ID);
 memset(aggptr, 0, sizeof(myparmstruct.aggformat));
 memcpy(aggptr->af_eye, AF_EYE, 4);

 aggptr->af_len = sizeof(myparmstruct.aggformat);
 aggptr->af_ver = AF_VER_INITIAL;
 aggptr->af_size = AF_DEFAULT_SIZE;
 aggptr->af_compat = AF_HFSCOMP; /* HFS compatibility mode aggregate */

 /* aggptr->af_owner = owner; */
 aggptr->af_ownerSpecified = AF_OWNER_USECALLER;
 /* aggptr->af_group = group; */
 aggptr->af_groupSpecified = AF_GROUP_USECALLER;
 /* aggptr->af_perms = perms; */
 aggptr->af_permsSpecified = AF_PERMS_DEFAULT;

 aggptr->af_grow = 0; /* no grow size */
 aggptr->af_aggrversion = 0; /* format with default version defined by */
 /* format_aggrversion value */
 aggptr->af_newauditfid = 1; /* generate a new auditfid */

 BPX1PCT("ZFS ",
 ZFSCALL_AGGR, /* Aggregate operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv < 0)
 {
 printf("Error formatting, BPXRV = %d BPXRC = %d BPXRS = %x\n",
 bpxrv, bpxrc, bpxrs);
 return bpxrc;
 }
 else
 printf("Formatted aggregate %s\n", aggrname);

 return 0;
}

Format Aggregate

Chapter 13. zFS application programming interface information 267

Grow Aggregate

Purpose
Extends the physical size of an attached aggregate. It supports both version 1.4 aggregates and version
1.5 aggregates.

Format
syscall_parmlist
 opcode int 129 AGOP_GROW_PARMDATA
 parms[0] int offset to AGGR_ID
 parms[1] int new size of aggregate
 parms[2] int 0
 parms[3] int 0
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0
AGGR_ID
 aid_eye char[4] "AGID"
 aid_len char sizeof(AGGR_ID)
 aid_ver char 1 (new size is 32 bits)
 aid_name char[45] Name of aggregate
 aid_reserved char[33] 0 (Reserved for future use)

- OR -

syscall_parmlist
 opcode int 129 AGOP_GROW_PARMDATA
 parms[0] int offset to AGGR_ID
 parms[1] int high 32 bits of new 64 bit size of aggregate
 parms[2] int low 32 bits of new 64 bit size of aggregate
 parms[3] int 0
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0
AGGR_ID
 aid_eye char[4] "AGID"
 aid_len char sizeof(AGGR_ID)
 aid_ver char 3 (new size is 64 bits)
 aid_name char[45] Name of aggregate
 aid_reserved char[33] 0 (Reserved for future use)

Return_value 0 if request is successful, -1 if it is not successful

Return_code
 8 DFSMS did not extend the aggregate
 EBUSY Aggregate is busy or otherwise unavailable
 EINTR ZFS is shutting down
 EINVAL Invalid parameters
 EMVSERR Internal error using an osi service
 ENOENT No aggregate by this name is found
 EPERM Permission denied to perform request

Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage notes
1. The aggregate must be mounted or attached.
2. The size specified is the new total size (in 1 KB blocks) that is being requested. The size can be

rounded up by DFSMS. If a zero is specified for the new size, the aggregate is grown by a secondary
allocation. DFSMS determines whether to extend to another volume. Requests that write to files and
need aggregate blocks that are not available yet and other requests that access those files will wait.
Other requests will not wait during the grow.

3. For an AGGR_ID version 1, the new size cannot be larger than approximately 4 TB. For an AGGR_ID
version 3, the new size is a 64-bit number, and cannot be larger than approximately 16 TB.

Grow Aggregate

268 z/OS: z/OS File System Administration

4. Reserved fields and undefined flags must be set to binary zeros.

Privilege required
The issuer must have ALTER authority on the VSAM linear data set to be formatted and must be logged in
as root (UID=0) or have READ authority to the SUPERUSER.FILESYS.PFSCTL resource in the z/OS
UNIXPRIV class.

Related services
List Aggregate Status Version 2

Restrictions
The aggregate to be grown cannot already be quiesced or be attached as read-only. An aggregate cannot
be made smaller.

Examples

#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_GROW_PARMDATA 129

typedef struct syscall_parmlist_t {
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
 } syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t {
 char aid_eye[4]; /* Eye catcher */
#define AID_EYE "AGID"
 char aid_len; /* Length of this structure */
 char aid_ver; /* Version */
#define AID_VER_INITIAL 1 /* Initial version */
 char aid_name[ZFS_MAX_AGGRNAME+1]; /* Name, null terminated */
 char aid_reserved[33]; /* Reserved for the future */
} AGGR_ID;

struct parmstruct {
 syscall_parmlist myparms;
 AGGR_ID aggr_id;
};

int main(int argc, char **argv)
{
 int bpxrv;
 int bpxrc;
 int bpxrs;
 char aggrname[45] = "PLEX.DCEIMGQX.FS";

 struct parmstruct myparmstruct;

 /* Ensure reserved fields are 0 */
 memset(&myparmstruct.aggr_id, 0, sizeof(AGGR_ID));

 myparmstruct.myparms.opcode = AGOP_GROW_PARMDATA;
 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
 myparmstruct.myparms.parms[1] = 70000; /*New size of aggregate in K-bytes*/
 myparmstruct.myparms.parms[2] = 0;
 myparmstruct.myparms.parms[3] = 0;
 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;

Grow Aggregate

Chapter 13. zFS application programming interface information 269

 memcpy(&myparmstruct.aggr_id.aid_eye, AID_EYE, 4);
 myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);
 myparmstruct.aggr_id.aid_ver = AID_VER_INITIAL;
 strcpy(myparmstruct.aggr_id.aid_name, aggrname);

 BPX1PCT("ZFS ",
 ZFSCALL_AGGR, /* Aggregate operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv < 0)
 {
 printf("Error growing aggregate %s\n", aggrname);
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 return bpxrc;
 }
 else
 { /* Return from grow was successful */
 printf("Aggregate %s grown succssfully\n", aggrname);
 }
 return 0;
}

Grow Aggregate

270 z/OS: z/OS File System Administration

List Aggregate Status (Version 1)

Purpose
An aggregate operation that returns information about a specified attached aggregate on this system.

IBM recommends using the List Detailed File System Information API instead of List Aggregate Status or
List File System Status.

Format
syscall_parmlist
 opcode int 137 AGOP_GETSTATUS_PARMDATA
 parms[0] int offset to AGGR_ID
 parms[1] int offset to AGGR_STATUS
 parms[2] int 0
 parms[3] int 0
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0
AGGR_ID
 aid_eye char[4] "AGID"
 aid_len char sizeof(AGGR_ID)
 aid_ver char 1
 aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"
 aid_reserved char[33] 0
AGGR_STATUS
 as_eye char[4] "AGST"
 as_len short sizeof(AGGR_STATUS)
 as_ver char 1
 as_res1 char 0
 as_aggrId int Aggregate ID
 as_nFileSystems int Number of File Systems
 as_threshold char Aggrfull threshold
 as_increment char Aggrfull increment
 as_flags char
 AS_MONITOR 0x80
 AS_RO 0x40
 AS_NBS 0x20
 AS_COMPAT 0x10
 AS_GROW 0x08
 as_res2 char 0
 as_blocks unsigned int
 as_fragSize int
 as_blockSize int
 as_totalUsable unsigned int
 as_realFree unsigned int
 as_minFree unsigned int
 as_reserved char[128]

Return_value 0 if request is successful, -1 if it is not successful

Return_code
 EINTR ZFS is shutting down
 EINVAL Invalid parameter list
 EMVSERR Internal error using an osi service
 ENOENT Aggregate is not attached
Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage notes
1. To grow an aggregate, you need to specify a number larger than the sum of as_totalUsable and
as_minFree.

2. Reserved fields and undefined flags must be set to binary zeros.

Privilege required
None.

List Aggregate Status (Version 1)

Chapter 13. zFS application programming interface information 271

Related services
List Attached Aggregate Names
List Detailed File System Information

Restrictions
None.

Examples

#pragma linkage(BPX1PCT, OS)
extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_GETSTATUS_PARMDATA 137

typedef struct syscall_parmlist_t {
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused */
} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t {
 char aid_eye[4]; /* Eye Catcher */
#define AID_EYE "AGID"
 char aid_len; /* Length of this structure */
 char aid_ver; /* Version */
#define AID_VER_INITIAL 1 /* Initial version */
 char aid_name[ZFS_MAX_AGGRNAME+1]; /* aggr name, null terminated */
 char aid_reserved[33]; /* Reserved for the future */
} AGGR_ID;

typedef struct aggr_status_t {
 char as_eye[4]; /* Eye catcher */
#define AS_EYE "AGST"
 short as_len; /* Length of structure */
 char as_ver;
#define AS_VER_INITIAL 1 /* Initial version */
 char as_res1; /* Reserved. */
 int as_aggrId; /* Internal identifier */
 int as_nFileSystems; /* Number of filesystems in aggregate */
 char as_threshold; /* Threshold for aggrfull monitoring */
 char as_increment; /* Increment for aggrfull monitoring */
 char as_flags; /* Aggregate flags */
#define AS_MONITOR 0x80 /* Aggr monitored for aggr full */
#define AS_RO 0x40 /* Aggr attached Read-only */
#define AS_NBS 0x20 /* Aggr should guarantee NBS */
#define AS_COMPAT 0x10 /* Aggr is HFS compatible */
#define AS_GROW 0x08 /* Aggr can be dynamically grown */
 char as_res2; /* Reserved */
 unsigned int as_blocks; /* Number of fragments in aggregate */
 int as_fragSize; /* Size of fragment in
 aggregate (normally 1K) */
 int as_blockSize; /* Size of blocks on
 aggregate (normally 8K) */
 unsigned int as_totalUsable; /* Total available blocks on
 aggregate (normally 8K) */
 unsigned int as_realFree; /* Total kilobytes free */
 unsigned int as_minFree; /* Minimum kilobytes free */
 char as_reserved[128]; /* Reserved for future */
} AGGR_STATUS;

struct parmstruct {
 syscall_parmlist myparms;
 AGGR_ID aggr_id;
 AGGR_STATUS aggr_status;
};

int main(int argc, char **argv)
{
 int bpxrv;

List Aggregate Status (Version 1)

272 z/OS: z/OS File System Administration

 int bpxrc;
 int bpxrs;

 /* aggregate name to getstatus */
 char aggrname[45] = "PLEX.DCEIMGQX.FS";
 struct parmstruct myparmstruct;
 AGGR_ID *idp = &(myparmstruct.aggr_id);
 AGGR_STATUS *asp = &(myparmstruct.aggr_status);

 myparmstruct.myparms.opcode = AGOP_GETSTATUS_PARMDATA;
 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
 myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(AGGR_ID);
 myparmstruct.myparms.parms[2] = 0;
 myparmstruct.myparms.parms[3] = 0;
 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;

 memset(idp, 0, sizeof(AGGR_ID)); /* Ensure reserved fields are 0 */
 memset(asp, 0, sizeof(AGGR_STATUS)); /* Ensure reserved fields are 0 */
 memcpy(&myparmstruct.aggr_status.as_eye[0], AS_EYE, 4);

 myparmstruct.aggr_status.as_len = sizeof(AGGR_STATUS);
 myparmstruct.aggr_status.as_ver = AS_VER_INITIAL;
 memcpy(&myparmstruct.aggr_id, AID_EYE, 4);
 myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);
 myparmstruct.aggr_id.aid_ver = AID_VER_INITIAL;
 strcpy(myparmstruct.aggr_id.aid_name, aggrname);

 BPX1PCT("ZFS ",
 ZFSCALL_AGGR, /* Aggregate operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv < 0)
 {
 printf("Error getstatus aggregate %s\n", aggrname);
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 return bpxrc;
 }
 else
 {
 /* Return from getstatus was successful */
 printf("Aggregate %s getstatus successful\n", aggrname);
 printf("getstatus: aggr_id=%d, no_of_filesystems=%d, aggr_flags=%x\n",
 myparmstruct.aggr_status.as_aggrId,
 myparmstruct.aggr_status.as_nFileSystems,
 myparmstruct.aggr_status.as_flags);

 printf("getstatus: threshold=%d, increment=%d\n",
 myparmstruct.aggr_status.as_threshold,
 myparmstruct.aggr_status.as_increment);

 printf("getstatus: blocks=%d, frag_size=%d, block_size=%d\n",
 myparmstruct.aggr_status.as_blocks,
 myparmstruct.aggr_status.as_fragSize,
 myparmstruct.aggr_status.as_blockSize);

 printf("getstatus: total_usable=%d, real_free=%d, min_free=%d\n",
 myparmstruct.aggr_status.as_totalUsable,
 myparmstruct.aggr_status.as_realFree,
 myparmstruct.aggr_status.as_minFree);
 }
 return 0;
}

List Aggregate Status (Version 1)

Chapter 13. zFS application programming interface information 273

List Aggregate Status (Version 2)

Purpose
Returns information about a specified attached aggregate on this system. Version 2 returns additional
flags and fields.

IBM recommends that you use the List Detailed File System Information API instead of List Aggregate
Status or List File System Status.

Format

syscall_parmlist
 opcode int 146 AGOP_GETSTATUS2_PARMDATA
 parms[0] int Offset to AGGR_ID
 parms[1] int Offset to AGGR_STATUS2
 parms[2] int 0
 parms[3] int 0
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0
AGGR_ID
 aid_eye char[4] "AGID"
 aid_len char Sizeof(AGGR_ID)
 aid_ver char 1
 aid_name char[45] Aggregate name
 aid_reserved char[33] 0
AGGR_STATUS2
 as_eye char[4] "AGST"
 as_len short Sizeof(AGGR_STATUS2)
 as_ver char 2
 as_res1 char 0
 as_aggrId int Aggregate ID
 as_nFileSystems int Number of File Systems
 as_threshold char Aggrfull threshold
 as_increment char Aggrfull increment
 as_flags char
 AS_MONITOR 0x80 Monitoring for aggrfull
 AS_RO 0x40 Attached Read-only
 AS_NBS 0x20 NBS being guaranteed
 AS_COMPAT 0x10 Formatted as HFS-compat
 AS_GROW 0x08 Can be dynamically grown
 AS_QUIESCED 0x01 1 means aggr is quiesced
 as_flags2 char
 AS_DISABLED 0x80 Aggr is disabled
 AS_SYSPLEXAWARE 0x40 Aggr mounted RWSHARE and
 is sysplex-aware
 as_blocks unsigned int Number of fragments in aggr
 as_fragSize int Size of fragment in aggr (normally
1k)
 as_blockSize int Size of blocks (8K normally)
 as_totalUsable unsigned int Total available blocks
 as_realFree unsigned int Total free 1K blocks
 as_minFree unsigned int Minimum kilobytes free
 as_reserved2 int[3] Reserved
 as_freeblocks unsigned int K available in free 8K blocks
 as_freefrags unsigned int K available in free 1K frags
 as_directLog unsigned int K used on the log
 as_indirectLog unsigned int K used indirectly on the log
 as_fstbl unsigned int K used for file system table
 as_bitmap unsigned int K used for the bitmap
 as_diskFormatMajorVersion unsigned int Disk format major version
 as_diskFormatMinorVersion unsigned int Disk format minor version
s_auditfid char[10] Aggregate Audit Fid
 as_bytes_reserved char[2] Reserved
 as_reserved3 int Reserved
 as_quiesce_time struct timeval If quiesced, time quiesce

List Aggregate Status (Version 2)

274 z/OS: z/OS File System Administration

 occurred
 posix_time_low int Seconds since epoch
 posix_usecs int Micro-seconds
 as_quiesce_jbname char[9] If quiesced, Job name
 requesting quiesce
 as_quiesce_sysname char[9] If quiesced, system name
 quiesce request came from
 as_reserved char[42] Reserved

OR

 syscall_parmlist
 opcode int 146 AGOP_GETSTATUS2_PARMDATA
 parms[0] int Offset to AGGR_ID
 parms[1] int Offset to AGGR_STATUS3
 parms[2] int 0
 parms[3] int 0
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0
AGGR_ID
 aid_eye char[4] "AGID"
 aid_len char Sizeof(AGGR_ID)
 aid_ver char 1
 aid_name char[45] Aggregate name
 aid_reserved char[33] 0
AGGR_STATUS3
 as_eye char[4] "AGST"
 as_len short sizeof(AGGR_STATUS2)
 as_ver char 3 (supports 64 bit sizes)
 as_res1 char 0
 as_aggrId int Aggregate ID
 as_nFileSystems int Number of File Systems
 as_threshold char Aggrfull threshold
 as_increment char Aggrfull increment
 as_flags char
 AS_MONITOR 0x80 Monitoring for aggrfull
 AS_RO 0x40 Attached Read-only
 AS_NBS 0x20 NBS being guaranteed
 AS_COMPAT 0x10 Formatted as HFS-compat
 AS_GROW 0x08 Can be dynamically grown
 AS_QUIESCED 0x01 1 means aggr is quiesced
 as_flags2 char
 AS_DISABLED 0x80 Aggr is disabled
 AS_SYSPLEXAWARE 0x40 Aggr mounted RWSHARE and
 is sysplex-aware
 AS_CONVERTTOV5 0x20 Aggregate enabled for
 automatic V5 conversion
 as_blocks unsigned int Number of fragments in aggr
 as_fragSize int Size of fragment in aggr (normally
1K)
 as_blockSize int Size of blocks (8K normally)
 as_totalUsable unsigned int Total available blocks
 as_realFree unsigned int Total free 1K blocks
 as_minFree unsigned int Minimum kilobytes free
 as_reserved2 int[3] Reserved
 as_freeblocks unsigned int K available in free 8K blocks
 as_freefrags unsigned int K available in free 1K frags
 as_directLog unsigned int K used on the log
 as_indirectLog unsigned int K used indirectly on the log
 as_fstbl unsigned int K used for file system table
 as_bitmap unsigned int K used for the bitmap
 as_diskFormatMajorVersion unsigned int Disk format major version
 as_diskFormatMinorVersion unsigned int Disk format minor version
 as_auditfid char[10] Aggregate Audit Fid
 as_bytes_reserved char[2] Reserved
 as_reserved3 int Reserved

 as_quiesce_time struct timeval If quiesced, time quiesce
 occurred. Low order part of
 seconds since epoch
 posix_time_low int Seconds since epoch

List Aggregate Status (Version 2)

Chapter 13. zFS application programming interface information 275

 posix_usecs int Micro-seconds
 as_quiesce_jbname char[9] If quiesced, Job name
 requesting quiesce
 as_quiesce_sysname char[9] If quiesced, system name
 quiesce request came from
 as_reserved2 char[2] Reserved
 as_quiece_time_hi int If quiesced, high portion of
 seconds since epoch
 as_pad char[6] Gets alignment
 as_blocks_hyper hyper Number of fragments in aggr
 as_totalUsable_hyper hyper Total available blocks
 as_realFree_hyper hyper Total free 1K blocks
 as_minFree_hyper hyper Minimum kilobytes free
 as_freeblocks_hyper hyper K available in free 8K blocks
 as_freefrags_hyper hyper K available in free 1K frags
 as_directLog_hyper hyper K used on the log
 as_indirectLog_hyper hyper K used indirectly on the log
 as_fstbl_hyper hyper K used for file system table
 as_bitmap_hyper hyper K used for the bitmap
 as_quiesce_time_high int If quiesce, high portion
 of seconds since epoch
 as_reserved char[40] Reserved for future use

Return_value 0 if request is successful, -1 if it is not successful
Return_code
 EINTR ZFS is shutting down
 EINVAL Invalid parameter list
 EMVSERR Internal error using an osi service
 ENOENT Aggregate is not attached
Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage notes
1. The aggregate must be mounted or attached.
2. To grow an aggregate, you need to specify a number larger than the sum of as_totalUsable and
as_minFree.

3. For an AGGR_STATUS2, if a size is too large for 32 bits, 0xFFFFFFFF is returned. For an
AGGR_STATUS3, sizes are returned in both the normal fields and the hyper fields.

4. Reserved fields and undefined flags must be set to binary zeros.

Privilege required
None.

Related services
List Attached Aggregate Names
List Detailed File System Information

Restrictions
None.

Examples

#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_GETSTATUS2_PARMDATA 146

List Aggregate Status (Version 2)

276 z/OS: z/OS File System Administration

typedef struct syscall_parmlist_t {
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

typedef struct timeval {
 int posix_time_low; /* seconds since epoch */
 int posix_usecs; /* microseconds */
} TIMEVAL;

typedef struct hyper_t { /* unsigned 64 bit integers */
 unsigned int high;
 unsigned int low;
} hyper;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t {
 char aid_eye[4]; /* Eye Catcher */
#define AID_EYE "AGID"
 char aid_len; /* Length of this structure */
 char aid_ver; /* Version */
#define AID_VER_INITIAL 1 /* Initial version */
 char aid_name[ZFS_MAX_AGGRNAME+1]; /* aggr name, null terminated */
 char aid_reserved[33]; /* Reserved for the future */
} AGGR_ID;

typedef struct aggr_status_t {
 char as_eye[4]; /* Eye catcher */
#define AS_EYE "AGST"
 short as_len; /* Length of structure */
 char as_ver;
#define AS_VER_3 3 /* version 3 */
 char as_res1; /* Reserved. */
 int as_aggrId; /* Internal identifier */
 int as_nFileSystems; /* Number of filesystems in aggregate */
 char as_threshold; /* Threshold for aggrfull monitoring */
 char as_increment; /* Increment for aggrfull monitoring */
 char as_flags; /* Aggregate flags */
#define AS_MONITOR 0x80 /* Aggr monitored for aggr full */
#define AS_RO 0x40 /* Aggr attached Read-only */
#define AS_NBS 0x20 /* Aggr should guarantee NBS */
#define AS_COMPAT 0x10 /* Aggr is HFS compatible */
#define AS_GROW 0x08 /* Aggr can be dynamically grown */
#define AS_QUIESCED 0x01 /* 1 = Aggr is quiesced,
 0 = Aggr is unquiesced */
 char as_flags2; /* Aggregate flags2 */
#define AS_DISABLED 0x80 /* 1 = Aggr is disabled */
#define AS_SYSPLEXAWARE 0x40 /* Aggr is sysplex-aware
 for r/w. Attached but not
 mounted compats will never
 have AS_SYSPLEXAWARE on */

#define AS_CONVERTTOV5 0x20 /* automated conversion enabled*/

 unsigned int as_blocks; /* Number of fragments in aggregate */
 int as_fragSize; /* Size of fragment in aggregate
 (normally 1K) */
 int as_blockSize; /* Size of blocks on aggregate (normally 8K)*/
 unsigned int as_totalUsable; /* Total available blocks on aggregate
 (normally 8K) */
 unsigned int as_realFree; /* Total kilobytes free */
 unsigned int as_minFree; /* Minimum kilobytes free */
 int as_reserved2[3];
 unsigned int as_freeblocks; /*Number of k available in free 8k blocks*/
 unsigned int as_freefrags; /*Number of k available in free 1k fragments*/
 unsigned int as_directLog; /*Number of k used on the log*/
 unsigned int as_indirectLog; /*Number of k used indirectly on the log*/
 unsigned int as_fstbl; /*Number of k used for the filesystem table*/
 unsigned int as_bitmap; /*Number of k used for the bitmap file*/
 unsigned int as_diskFormatMajorVersion; /* disk format major version */
 unsigned int as_diskFormatMinorVersion; /* disk format minor version */
 char as_auditfid[10]; /* 6 byte volser followed by
 4 byte CCHH */
 short as_bytes_reserved; /* reserved */
 int as_reserved3;
 struct timeval as_quiesce_time; /* time of last quiesce */
 char as_quiesce_jbname[9]; /* job name of last quiesce -
 null terminated */

List Aggregate Status (Version 2)

Chapter 13. zFS application programming interface information 277

 char as_quiesce_sysname[9]; /* system where last quiesce
 issued - null terminated */
 char as_pad[6]; /* pad to double word boundary */

 /* new hyper fields */
 hyper as_blocks_hyper; /* Number of fragments in aggregate */
 hyper as_totalUsable_hyper; /* Total avail 1K blks on aggregate */
 hyper as_realFree_hyper; /* Total 1K blocks free */
 hyper as_minFree_hyper; /* Minimum kilobytes free */
 hyper as_freeblocks_hyper; /*Number of k available free 8k blocks*/
 hyper as_freefrags_hyper; /*Number of k available free 1k frags*/
 hyper as_directLog_hyper; /*Number of k used on the log*/
 hyper as_indirectLog_hyper; /*Number of k used indirectly on log*/
 hyper as_fstbl_hyper; /*Number of k used - filesystem table*/
 hyper as_bitmap_hyper; /*Number of k used for the bitmap file*/
 int as_quiesce_time_high; /* High piece of quiesce time */
 char as_reserved[40]; /* Reserved for future */
} AGGR_STATUS3;

struct parmstruct {
 syscall_parmlist myparms;
 AGGR_ID aggr_id;
 AGGR_STATUS3 aggr_status;
};

int main(int argc, char **argv)
{
 int bpxrv;
 int bpxrc;
 int bpxrs;
 int i;
 char buf[33];
 char aggrname[45]; /* aggregate name to getstatus */
 struct parmstruct myparmstruct;
 long long ptl;

 AGGR_ID *idp = &(myparmstruct.aggr_id);
 AGGR_STATUS3 *asp = &(myparmstruct.aggr_status);

 if (argc < 2)
 {
 printf("Please specify an aggregate name as a parameter\n");
 exit(1);
 }

 strncpy(aggrname, argv[1], sizeof(aggrname));
 myparmstruct.myparms.opcode = AGOP_GETSTATUS2_PARMDATA;
 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
 myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(AGGR_ID);
 myparmstruct.myparms.parms[2] = 0;
 myparmstruct.myparms.parms[3] = 0;
 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;

 memset(idp, 0, sizeof(AGGR_ID)); /* Ensure reserved fields are 0 */
 memset(asp, 0, sizeof(AGGR_STATUS3)); /* Ensure reserved fields are 0 */
 memcpy(&myparmstruct.aggr_status.as_eye[0], AS_EYE, 4);
 myparmstruct.aggr_status.as_len = sizeof(AGGR_STATUS3);
 myparmstruct.aggr_status.as_ver = AS_VER_3;
 memcpy(&myparmstruct.aggr_id, AID_EYE, 4);
 myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);
 myparmstruct.aggr_id.aid_ver = AID_VER_INITIAL;
 strcpy(myparmstruct.aggr_id.aid_name, aggrname);

 BPX1PCT("ZFS ",
 ZFSCALL_AGGR, /* Aggregate operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv < 0)
 {
 printf("Error getstatus aggregate %s\n", aggrname);
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 return bpxrc;
 }
 else
 { /* Return from getstatus was successful */
 printf("Aggregate %s getstatus successful\n", aggrname);

List Aggregate Status (Version 2)

278 z/OS: z/OS File System Administration

 printf("getstatus: aggr_id=%d, no_of_filesystems=%d, "
 "aggr_flags=%2.2x, aggr_flags2=%2.2x\n",
 myparmstruct.aggr_status.as_aggrId,
 myparmstruct.aggr_status.as_nFileSystems,
 myparmstruct.aggr_status.as_flags,
 myparmstruct.aggr_status.as_flags2);

 printf("getstatus: threshold=%d, increment=%d\n",
 myparmstruct.aggr_status.as_threshold,
 myparmstruct.aggr_status.as_increment);

 printf("getstatus: blocks=%d, frag_size=%d, block_size=%d\n",
 myparmstruct.aggr_status.as_blocks,
 myparmstruct.aggr_status.as_fragSize,
 myparmstruct.aggr_status.as_blockSize);

 printf("getstatus: total_usable=%d, real_free=%d, min_free=%d\n",
 myparmstruct.aggr_status.as_totalUsable,
 myparmstruct.aggr_status.as_realFree,
 myparmstruct.aggr_status.as_minFree);

 printf("getstatus: free_8K_blocks=%d, free_1K_fragments=%d\n",
 myparmstruct.aggr_status.as_freeblocks / 8,
 myparmstruct.aggr_status.as_freefrags);

 printf("getstatus: direct_Log=%d, indirect_Log=%d\n",
 myparmstruct.aggr_status.as_directLog,
 myparmstruct.aggr_status.as_indirectLog);

 printf("getstatus: filesystem_table=%d, bitmap=%d\n",
 myparmstruct.aggr_status.as_fstbl,
 myparmstruct.aggr_status.as_bitmap);

 printf("getstatus: blocksh=%d, blocksl=%d\n",
 myparmstruct.aggr_status.as_blocks_hyper.high,
 myparmstruct.aggr_status.as_blocks_hyper.low);

 printf("getstatus: total_usableh=%d, total_usablel=%d, "
 "real_freeh = %d, real_freel=%d, "
 "min_freeh=%d, min_freel=%d\n",
 myparmstruct.aggr_status.as_totalUsable_hyper.high,
 myparmstruct.aggr_status.as_totalUsable_hyper.low,
 myparmstruct.aggr_status.as_realFree_hyper.high,
 myparmstruct.aggr_status.as_realFree_hyper.low,
 myparmstruct.aggr_status.as_minFree_hyper.high,
 myparmstruct.aggr_status.as_minFree_hyper.low);

 printf("getstatus: free_8K_blocksh=%d, free_8K_blocksl=%d, "
 "free_1K_fragmentsh = %d, "
 "free_1K_fragmentsl=%d\n",
 myparmstruct.aggr_status.as_freeblocks_hyper.high/8,
 myparmstruct.aggr_status.as_freeblocks_hyper.low/8,
 myparmstruct.aggr_status.as_freefrags_hyper.high,
 myparmstruct.aggr_status.as_freefrags_hyper.low);

 printf("getstatus: direct_Logh=%d, direct_Logl=%d, "
 "indirect_Logh = %d, "
 "indirect_Logl=%d\n",
 myparmstruct.aggr_status.as_directLog_hyper.high,
 myparmstruct.aggr_status.as_directLog_hyper.low,
 myparmstruct.aggr_status.as_indirectLog_hyper.high,
 myparmstruct.aggr_status.as_indirectLog_hyper.low);

 printf("getstatus: filesystem_tableh=%d, filesystem_tablel=%d, "
 "bitmaph = %d, bitmapl=%d\n",
 myparmstruct.aggr_status.as_fstbl_hyper.high,
 myparmstruct.aggr_status.as_fstbl_hyper.low,
 myparmstruct.aggr_status.as_bitmap_hyper.high,
 myparmstruct.aggr_status.as_bitmap_hyper.low);

 printf("getstatus: version=%d.%d\n",
 myparmstruct.aggr_status.as_diskFormatMajorVersion,
 myparmstruct.aggr_status.as_diskFormatMinorVersion);

 printf("getstatus: auditfid=");

 for (i = 0; i < 10; i++)
 printf("%2.2X", myparmstruct.aggr_status.as_auditfid[i]);

 printf("\n");
 if (myparmstruct.aggr_status.as_flags & AS_QUIESCED)
 {

List Aggregate Status (Version 2)

Chapter 13. zFS application programming interface information 279

 if (myparmstruct.aggr_status.as_quiesce_jbname[0] != 0x00)
 {
 memcpy(4 + (char *)&ptl,
 &myparmstruct.aggr_status.as_quiesce_time.posix_time_low, 4);
 memcpy(&ptl, &myparmstruct.aggr_status.as_quiesce_time_high, 4);
 if (0 == ctime64_r((const long long *)& ptl, buf))
 {
 printf("Could not get timestamp.\n");
 }
 else
 { /* Insert the microseconds into the displayable time value */
 strncpy(&(buf[27]), &(buf[20]), 6);
 sprintf(&(buf[20]), "%06d",
 myparmstruct.aggr_status.as_quiesce_time.posix_usecs);
 buf[26] = ' ';
 buf[19] = '.';
 printf("Quiesced by job %s on system %s on %s",
 myparmstruct.aggr_status.as_quiesce_jbname,
 myparmstruct.aggr_status.as_quiesce_sysname,
 buf);
 }
 }
 }
 printf("\n");
 }
 return 0;
}

List Aggregate Status (Version 2)

280 z/OS: z/OS File System Administration

List Attached Aggregate Names (Version 1)

Purpose
List Attached Aggregate Names (Version 1) is an aggregate operation that returns a list of the names of all
attached aggregates on a system.

Format
syscall_parmlist
 opcode int 135 AGOP_LISTAGGRNAMES_PARMDATA
 parms[0] int buffer length or 0
 parms[1] int offset to AGGR_ID or 0
 parms[2] int offset to size
 parms[3] int offset to system name (optional)
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0
AGGR_ID[2] Array of AGGR_IDs (n can be 0)
 aid_eye char[4] "AGID"
 aid_len char sizeof(AGGR_ID)
 aid_ver char 1
 aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"
 aid_reserved char[33] 0
size needed int bytes returned or size needed
 if the return code is E2BIG

systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful

Return_code
 EINTR ZFS is shutting down
 EINVAL Invalid parameter list
 EMVSERR Internal error using an osi service
 ENOENT Aggregate is not attached
 E2BIG List is too big for buffer supplied

Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage notes
1. This call returns an array of AGGR_ID structures, one for each attached aggregate on the system. Each

AGGR_ID structure is 84 bytes. You can specify a buffer that you think might hold all of them or you
can specify a buffer length and offset to AGGR_ID of zero. If you get a return code of E2BIG, the
required size for the buffer is contained in the size field.

2. Reserved fields and undefined flags must be set to binary zeros.

Privilege required
None.

Related services
List Aggregate Status
List File System Names

Restrictions
None.

List Attached Aggregate Names (Version 1)

Chapter 13. zFS application programming interface information 281

Examples

#pragma linkage(BPX1PCT, OS)
extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_LISTAGGRNAMES_PARMDATA 135
#define E2BIG 145

typedef struct syscall_parmlist_t {
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t {
 char aid_eye[4]; /* Eye Catcher */
#define AID_EYE "AGID"
 char aid_len; /* Length of this structure */
 char aid_ver; /* Version */
#define AID_VER_INITIAL 1 /* Initial version */
 char aid_name[ZFS_MAX_AGGRNAME+1]; /* aggr name, null terminated */
 char aid_reserved[33]; /* Reserved for the future */
} AGGR_ID;

struct parmstruct {
 syscall_parmlist myparms;
 /* Real malloc'd structure will have an array of AGGR_IDs here */
 int size;
 char systemname[9];
};

int main(int argc, char **argv)
{
 int bpxrv;
 int bpxrc;
 int bpxrs;
 struct parmstruct myparmstruct;
 AGGR_ID *aggPtr;
 int aggSize = sizeof(AGGR_ID);
 int buflen = sizeof(AGGR_ID);
 struct parmstruct *myp = &myparmstruct;
 int mypsize;
 char *systemp;
 int count_aggrs,
 total_aggrs;

 myparmstruct.myparms.opcode = AGOP_LISTAGGRNAMES_PARMDATA;
 myparmstruct.myparms.parms[0] = 0;
 myparmstruct.myparms.parms[1] = 0;
 myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist);
 myparmstruct.myparms.parms[3] = 0;
 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;

 BPX1PCT("ZFS ",
 ZFSCALL_AGGR, /* Aggregate operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv < 0)
 {
 if (bpxrc == E2BIG)
 {
 buflen = myp->size; /* Get buffer size needed */
 mypsize = buflen + sizeof(syscall_parmlist) + sizeof(int) + 9;
 myp = (struct parmstruct *)malloc((int)mypsize);
 memset(myp, 0, mypsize);

 /* This next field should only be set if parms[3] is non-zero */
 /* systemp = (char *)myp + buflen + sizeof(syscall_parmlist) */
 /* + sizeof(int); */

List Attached Aggregate Names (Version 1)

282 z/OS: z/OS File System Administration

 /* strcpy(systemp,"DCEIMGVN"); */ /* set system to get lsaggr info from*/

 myp->myparms.opcode = AGOP_LISTAGGRNAMES_PARMDATA;
 myp->myparms.parms[0] = buflen;
 myp->myparms.parms[1] = sizeof(syscall_parmlist);
 myp->myparms.parms[2] = sizeof(syscall_parmlist) + buflen;
 myp->myparms.parms[3] = 0;

 /* Only specify a non-zero offset for the next field (parms[3]) if */
 /* you are running z/OS 1.7 and above, and */
 /* you want lsaggr aggregates owned on a single system */
 /* myp->myparms.parms[3] = sizeof(syscall_parmlist) + buflen */
 /* + sizeof(int); */

 myp->myparms.parms[4] = 0;
 myp->myparms.parms[5] = 0;
 myp->myparms.parms[6] = 0;

 BPX1PCT("ZFS ",
 ZFSCALL_AGGR, /* Aggregate operation */
 mypsize, /* Length of Argument */
 (char *)myp, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv == 0)
 {
 total_aggrs = buflen / aggSize;
 count_aggrs = 1;

 for (aggPtr = (AGGR_ID *) & (myp->size);
 count_aggrs <= total_aggrs;
 aggPtr++, count_aggrs++)
 {
 if (strlen(aggPtr->aid_name) != 0)
 printf("%-64.64s\n", aggPtr->aid_name);
 }

 free(myp);
 }
 else
 { /* lsaggr names failed with large enough buffer */
 printf("Error on ls aggr with large enough buffer\n");
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 free(myp);
 return bpxrc;
 }
 }
 else
 { /* error was not E2BIG */
 printf("Error on ls aggr trying to get required size\n");
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 free(myp);
 return bpxrc;
 }
 }
 else
 { /* asking for buffer size gave rv = 0; maybe there are no aggregates */
 if (myparmstruct.size == 0)
 printf("No attached aggregates\n");
 else /* No, there was some other problem with getting the size needed */
 printf("Error getting size required\n");
 }
 return 0;
}

List Attached Aggregate Names (Version 1)

Chapter 13. zFS application programming interface information 283

List Attached Aggregate Names (Version 2)

Purpose
The List Attached Aggregate Names (Version 2) subcommand call returns a list of the names of all
attached aggregates on a system with the system name.

Format
syscall_parmlist
 opcode int 140 AGOP_LISTAGGRNAMES2_PARMDATA
 parms[0] int buffer length or 0
 parms[1] int offset to AGGR_ID2 or 0
 parms[2] int offset to size
 parms[3] int offset to system name (optional)
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0
AGGR_ID2[n] Array of AGGR_ID2s (n can be 0)
 aid_eye char[4] "AGID"
 aid_len char sizeof(AGGR_ID)
 aid_ver char 2
 aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"
 aid_sysname char[9] "DCEIMGVN"
 aid_reserved char[24] 0
size int bytes returned or size needed
 if the return code is E2BIG
systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful

Return_code
 EINTR ZFS is shutting down
 EINVAL Invalid parameter list
 EMVSERR Internal error using an osi service
 ENOENT Aggregate is not attached
 E2BIG List is too big for buffer supplied
Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage notes
1. This call returns an array of AGGR_ID2 structures, one for each attached aggregate on the system.

Each AGGR_ID2 structure is 84 bytes. You can specify a buffer that you think might hold all of them or
you can specify a buffer length and offset to AGGR_ID2 of zero. If you get a return code of E2BIG, the
required size for the buffer is contained in the size field.

2. Reserved fields and undefined flags must be set to binary zeros.

Privilege required
None.

Related services
List Aggregate Status
List File System Names

Restrictions
None.

List Attached Aggregate Names (Version 2)

284 z/OS: z/OS File System Administration

Examples

#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_LISTAGGRNAMES2_PARMDATA 140 /* list attached aggregates */
 /* with system name */
#define E2BIG 145

typedef struct syscall_parmlist_t {
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44
#define SYS_MAX_NAMELEN 8 /* Max. z/OS system name length*/

typedef struct aggr_id2_t {
 char aid_eye[4]; /* Eye Catcher */
#define AID_EYE "AGID"
 char aid_len; /* Length of this structure */
 char aid_ver; /* Version */
#define AID_VER_2 2 /* version 2 */
 char aid_name[ZFS_MAX_AGGRNAME+1]; /* aggr name, null terminated */
 char aid_sysname[SYS_MAX_NAMELEN+1]; /* system name, NULL terminated */
 char aid_reserved[24]; /* Reserved for the future */
} AGGR_ID2;

struct parmstruct {
 syscall_parmlist myparms;

 /* Real malloc'd structure will have an array of AGGR_ID2s here */
 int size;
 char systemname[9];
};

int main(int argc, char **argv)
{
 int buffer_success = 0;
 int bpxrv;
 int bpxrc;
 int bpxrs;
 int t;
 struct parmstruct myparmstruct;
 AGGR_ID2 *aggPtr;
 int aggSize = sizeof(AGGR_ID2);
 int buflen = sizeof(AGGR_ID2);
 struct parmstruct *myp = &myparmstruct;
 int mypsize;
 char *systemp;
 int count_aggrs;
 int total_aggrs;

 myparmstruct.myparms.opcode = AGOP_LISTAGGRNAMES2_PARMDATA;
 myparmstruct.myparms.parms[0] = 0;
 myparmstruct.myparms.parms[1] = 0;
 myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist);
 myparmstruct.myparms.parms[3] = 0;
 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;

 BPX1PCT("ZFS ",
 ZFSCALL_AGGR, /* Aggregate operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 for(t = 0; t < 1000 && buffer_success == 0; t++)
 {
 if (bpxrv < 0)
 {

List Attached Aggregate Names (Version 2)

Chapter 13. zFS application programming interface information 285

 if (bpxrc == E2BIG)
 {
 buflen = myp->size; /* Get buffer size needed */
 mypsize = buflen + sizeof(syscall_parmlist) + sizeof(int) + 9;

 free(myp);

 myp = (struct parmstruct *)malloc((int)mypsize);
 memset(myp, 0, mypsize);

 /* This next field should only be set if parms[3] is non-zero */
 /* systemp = (char *)myp + buflen */
 /* + sizeof(syscall_parmlist) + sizeof(int); */
 /* strcpy(systemp,"DCEIMGVN"); */
 /* set system to get lsaggr info from */

 myp->myparms.opcode = AGOP_LISTAGGRNAMES2_PARMDATA;
 myp->myparms.parms[0] = buflen;
 myp->myparms.parms[1] = sizeof(syscall_parmlist);
 myp->myparms.parms[2] = sizeof(syscall_parmlist) + buflen;
 myp->myparms.parms[3] = 0;

 /* Only specify a non-zero offset for the next field (parms[3]) if */
 /* you are running z/OS 1.7 and above, and */
 /* you want lsaggr aggregates owned on a single system */
 /* myp->myparms.parms[3] = sizeof(syscall_parmlist) */
 /* + buflen + sizeof(int); */

 myp->myparms.parms[4] = 0;
 myp->myparms.parms[5] = 0;
 myp->myparms.parms[6] = 0;

 BPX1PCT("ZFS ",
 ZFSCALL_AGGR, /* Aggregate operation */
 mypsize, /* Length of Argument */
 (char *)myp, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if(bpxrv != 0 && bpxrc == E2BIG)
 printf("E2BIG: %d times total\n", t++);
 else if(bpxrv == 0)
 {
 buffer_success = 1;
 total_aggrs = buflen / aggSize;
 count_aggrs = 1;
 for (aggPtr = (AGGR_ID2 *) & (myp->size);
 count_aggrs <= total_aggrs;
 aggPtr++, count_aggrs++)
 {
 if (strlen(aggPtr->aid_name) != 0)
 printf("%-64.64s %-8.8s\n",
 aggPtr->aid_name, aggPtr->aid_sysname);
 }
 free(myp);
 }
 else
 { /* lsaggr names failed with large enough buffer */
 printf("Error on ls aggr with large enough buffer\n");
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 free(myp);
 return bpxrc;
 }
 }
 else
 { /* error was not E2BIG */
 printf("Error on ls aggr trying to get required size\n");
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 free(myp);
 return bpxrc;
 }
 }
 else
 { /* asking for buffer size gave rv = 0; maybe there are no aggregates */
 if (myparmstruct.size == 0)
 printf("No attached aggregates\n");
 else /* No, there was some other problem with getting the size needed */
 printf("Error getting size required\n");
 free(myp);
 return bpxrc;
 }

List Attached Aggregate Names (Version 2)

286 z/OS: z/OS File System Administration

 }

 if(t == 1000)
 printf("Number of failed buffer resizes exceeded.\n");

 free(myp);
 return 0;
}

List Attached Aggregate Names (Version 2)

Chapter 13. zFS application programming interface information 287

List Detailed File System Information

Purpose
Returns detailed information for one or more file systems. You can obtain information for file systems that
have common names, common attributes, or that have encountered similar unexpected conditions.

IBM recommends that you use the List Detailed File System Information API instead of List Aggregate
Status, List File System Status, List File System Names (Version 1), or List File System Names (Version 2).

Format
syscall_parmlist
 opcode int 153 AGOP_FSINFO_PARMDATA
 154 AGOP_FSINFO_RESET_PARMDATA
 parms[0] int offset to FSINFO_REQUEST
 parms[1] int 0
 parms[2] int 0
 parms[3] int 0
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0

FSINFO_REQUEST
 fr_eye char[4] "FIRQ"
 fr_length short Length of Structure
 fr_sversion char Structure Version, must be 1
 fr_reqtype char SingleQuery=0, NameCursor=1
 fr_version char Version of input/output buffer
 1 for pre-z/OS V2R3
 2 for returning FSINFO_OWNER with long-running
 commands information introduced in z/OS V2R3
 fr_output char Type of output/function selected, one of:
 0 - Local statistics only, use only local cache.
 Only allowed with fr_nameSelection=2.
 1 - Full sysplex-wide statistics(including owner statistics).
 2 - Reset statistics.
 fr_nameSelection char Selection of aggregates desired, one of:
 0 - When SingleQuery selected.
 Options for fr_reqtype=1 (NameCursor):
 1 - All aggregates. fr_output can be 1 (full) or 2 (reset).
 2 - Aggregates known on the local system.
 This is only allowed with fr_output 0 (local statistics).
 3 - All aggregates matching a specific pattern provided in
 fr_patternName. fr_output can be 1 (full) or 2 (reset).
 fr_eol char Indicates if a multi-aggregate read has completed.
 1 if yes, 0 if no.
 fr_selection int Selection mask for aggregates meeting certain state criteria.
 More than one bitcan be set. zFS will use an OR-ing of the criteria
 so that aggregates thatmeet one or more criteria are returned.
 0 - all aggregates desired.
 x1 - Show aggregates that have sysplex thrashing objects.
 x2 - Show aggregates that contain v5 directories with overflow pages.
 x4 - Show aggregates mounted R/W.
 x8 - Show aggregates mounted R/O.
 x10 - Show aggregates that are disabled.
 x20 - Show aggregates that are growing.
 x40 - Show aggregates that are quiesced.
 x80 - Show aggregates that had grow failures.
 x100 - Show aggregates that are low on space, as defined by the
 zFS bitmap manager.
 x200 - Show aggregates that are damaged.
 x400 - Show aggregates that are mounted RWSHARE.
 x800 - Show aggregates that are mounted NORWSHARE.
 x1000 - Show aggregates that had requests
 x2000 - Show aggregates that had write requests.
 x4000 - Show aggregates where applications saw ENOSPC errors.
 x8000 - Show aggregates that had disk I/O errors.
 x10000 - Show aggregates that had XCF timeouts between client
 systems and owning systems (for RWSHARE aggregates).
 x20000 - Show aggregates that are version
 1.4 aggregates.
 x40000 - Show aggregates that are version 1.5 aggregates.
 x80000 - Show aggregates that are disabled for dynamic grow.

List Detailed File System Information

288 z/OS: z/OS File System Administration

 x100000 - Show aggregates that are disabled for conversion to
 version 1.5.
 Field only available if fr_version=2
 x200000 - Show aggregates that are encrypted.
 Field only available if fr_version=2
 x400000 - Show aggregates that are not encrypted.
 Field only available if fr_version=2
 x800000 - Show aggregates that are compressed.
 Field only available if fr_version=2
 x1000000 - Show aggregates that are not compressed.
 Field only available if fr_version=2
 x2000000 - Show aggregates that are salvaging.
 Field only available if fr_version=2
 x4000000 - Show aggregates that are partially encrypted or
 compressed.
 Field only available if fr_version=2
 x8000000 - Show aggregates that are being shrunk.
 x10000000 - Show aggregates that have in-progress backups.
 x20000000 - Show aggregates that are high availability.
 x40000000 - Show aggregates that are not high availability.
 x80000000 - Tells zFS to use an AND-ing method of examining criteria.
 Only aggregates meeting all criteria are
returned.
 x801FFFFF - Represents all valid bits if fr_version=1
 0xBFFFFFFF - Represents all valid bits if fr_version=2

fr_entries unsigned int Number of aggregatess returned in output.
 fr_nonFatalRc int Non-fatal error code.
 fr_nonFatalRsn int Reason code if fr_nonFatalRc is nonzero.
 fr_resumeName char[45] Dataset name to resume with for NameCursor
 or the name of a single-aggregate query.
 fr_patternName char[45] The aggregate name to be used. This can contain wildcards.
 fr_future2 char[2] For future use (reserved).
FSINFO_NAME
 fn_eye char[4] "FINA"
 fn_slength short Structure length.
 fn_sversion short Structure version, must be 1.
 fn_name char[44] Aggregate name.
 fn_connected unsigned int Number of connected systems if owner output is requested;
 0 otherwise.
 fn_owner char[8] System name of the owner.
 fn_length unsigned int Total length of all information for this aggregate.
 fn_future char[4] For future use (reserved).
 fn_sysnames char[8] Names of connected systems (32 at most).

FSINFO_OWNER
 fo_eye char[4] "FIOW"
 fo_length short Length of structure
 fo_sversion short Structure version:
 1 for pre-z/OS V2R3
 2 for returning FSINFO_OWNER with long-running commands
 information introduced in z/OS V2R3
 fo_size unsigned int Number of 8K blocks in the aggregate.
 fo_free unsigned int Number of unused 8K blocks in the aggregate

 fo_frags unsigned long long int Number of free 1K fragments available in the aggregate.
 fo_logsize unsigned int Number of 8K blocks allocated to the log file for transaction
 logging, including indirect blocks.
 fo_bitmapsize unsigned int Number of 8K blocks allocated to the
 bitmap file, including indirect blocks.
 fo_anodesize unsigned int Number of 8K blocks allocated to the anode table.
 fo_objects unsigned int Number of objects in the file system.
 fo_version char Aggregate version number.
 fo_threshold char Space monitoring threshold.
 fo_increment char Space monitoring increment.

fo_stop_longpct char If fr_version=2, percent completed for the stopped encrypt,
 decrypt, compress or decompress command.
 If fr_version=1, reserved field.
 fo_flags int Flag bits:
 x01 - Mounted in R/W mode.
 x02 - Disabled for access.
 x04 - Grow failure occurred since last reset.
 x08 - Aggregate is low on space zfs definition).
 x10 - Aggregate considered damaged by salvage verification and
 not repaired yet.
 x20 - Aggregage using zFS sysplex sharing (RWSHARE).
 x40 - Dynamic grow set at mount time.
 x80 - Aggregate is in the process of growing at time of query.
 x100 - converttov5 is set.
 x200 - Aggregate is not mounted.
 x400 - Aggregate is unowned.

List Detailed File System Information

Chapter 13. zFS application programming interface information 289

 x800 - Dynamic grow allowed, no grow failures or since a
 grow failure an admin grow was done.
 x1000 - The quiesce is done for chgowner.
 x2000 - converttov5 disabled.
 x4000 - Aggregate version 1.4.
 x8000 - Aggregate version 1.5.
 x10000 - Aggregate is shrinking
 x20000 - Aggregate is high availability
 x100000 - Aggregate is being salvaged

 fo_overflow unsigned int Number of overflow pages used in v5 directories.
 fo_overflowhiwater unsigned int Hi-water mark of fo_overflow for life of the file system.
 fo_thrashing unsigned int Current number of objects using the thrash-resolution protocol.
 reserved2 char[4] Reserved. This field is only for fo_sversion=1.
or
 fo_snappinned unsigned int Number of free blocks pinned due to file backups.
 This field is only available if fo_sversion=2.

 fo_thrash_resolution unsigned long long int Number of thrash resolutions performed since last
 statistics reset.
 fo_revocations unsigned long long int Number of token revocations performed since last
 statistics reset.
 fo_revwait unsigned long long int Average revocation wait time in microseconds.
 fo_qsysname char[8] Name of system requesting quiesce, if the aggregate is quiesced,
 0 otherwise.
 fo_jobname char[8] Name of job requesting the quiesce, if the aggregate is quiesced,
 0 otherwise.
 fo_createtime unsigned long long int Creation time in seconds since last epoch.
 fo_ownership unsigned long long int Owership time in seconds since last epoch.
 fo_reset unsigned long long int Time statistic counters reset in seconds since last epoch.
 fo_quiesce unsigned long long int Quiesce time in seconds since epoch, 0 if not quiesced.
 fo_devno unsigned int z/OS UNIX device number.
 fo_auditfid char[10] Audit fid for file system.
 fo_qasid unsigned short ASID which issued the quiesce.
 fo_growcount unsigned int Number of grows since mount.
 reserved3 char[4] Reserved. This is only for fo_sversion=1.
or
 fo_backups unsigned int Number of in-progress backups.
 This field is only available if fo_sversion=2.
 fo_growtime unsigned long long int Time of the last grow as known by the owner.

 Field is only available if fo_sversion=2
 fo_longtime unsigned long long int Time that the long-running command was initiated
 on the aggregate.
 Field is only available if fo_sversion=2
 fo_edcFlag char Encryption and compression indicator flags:
 0x03 Encryption bits in fo_CEFlag
 0x00 Not-encrypted
 0x01 Decrypting
 0x02 Encrypting
 0x03 Encrypted
 0x20 Encrypt-scrubbing in progress or is required
 0x0C Compression bits in fo_CEFlag
 0x00 Not-compressed
 0x04 Decompressing
 0x08 Compressing
 0x0C Compressed
 Field is only available if fo_sversion=2
 fo_longstatus char Status indicator for long-running operations.
 This is only intended for IBM service information.
 Field is only available if fo_sversion=2
 fo_longpct char Percentage completion of the long-running command.
 This is only intended for IBM service information.
 Field is only available if fo_sversion=2
 fo_longtask int TCB address of the task performing the long-running operation, or 0.

FSINFO_LOCAL
 fl_eye char[4] "FILO"
 fl_length short Structure Length.
 fl_sversion short Structure version.
 fl_vnodes unsigned long long int Number of vnodes cached in memory on the local system.
 fl_ussheld unsigned long long int Number of vnodes held by z/OS UNIX.
 fl_sysname char[8] System name stats are for.
 fl_open unsigned long long int Number of open objects in the file system.
 fl_tokens unsigned long long int Number of tokens held from the token manager.
 fl_usercache unsigned int Number of 4K pages held in the user cache for file system.
 fl_metacache unsigned int Number of 8K pages held in the metadata cache.
 fl_appreads unsigned long long int Number of application reads done since last reset.
 fl_appreadresp unsigned long long int Average read response time, in microseconds.
 fl_appwrites unsigned long long int Number of application writes done since last reset.
 fl_appwriteresp unsigned long long int Average write response time, in microseconds.
 fl_xcfreads unsigned long long int Number of XCF read calls made

List Detailed File System Information

290 z/OS: z/OS File System Administration

 to the owner since last reset.
 fl_xcfreadresp unsigned long long int Average XCF read call response time, in microseconds.
 fl_xcfwrites unsigned long long int Number of XCF write calls made to the server since
 last reset.
 fl_xcfwriteresp unsigned long long int Average XCF write call response time, in microseconds.
 fl_enospc unsigned long long int Number of ENOSPC errors returned to applications since
 last reset.
 fl_ioerrs unsigned long long int Number of disk I/O errors since last reset.
 fl_commerrs unsigned long long int Number of XCF communication timeouts or failures since
 last reset.
 fl_cancels unsigned long long int Number of canceled operations since last reset by
 asynchronous abends, cancels, or forces.
 fl_ddname char[8] DDNAME during allocation of aggregate dataset.
 fl_mounttime struct timeval64 Mount time in seconds since the last epoch.
 fl_numdasd unsigned int Number of DASD volumes listed for aggregate in FSINFO_DASD
 array.
 fl_flags unsigned int 1 indicates this system has tasks waiting on a quiesced
 file system.

FSINFO_DASD
 fd_eye char[4] "FIDA"
 fd_length short Structure Length.
 fd_sversion short Structure version, must be 1.
 fd_volser char[6] Volume serial.
 fd_pavios short Number of I/Os zFS will issue at one time for non-critical
 I/Os.
 fd_reads unsigned long long int Number of reads to this volume.
 fd_readbytes unsigned long long int Number of kilobytes read.
 fd_writes unsigned long long int Number of writes to this volume
 fd_writebytes unsigned long long int Number of kilobytes written.
 fd_waits unsigned long long int Number of times a zFS task had to wait for an I/O to this
 volume.
 fd_waitTime unsigned long long int (includes all time, queue wait,DASD response time etc.)
 since last reset.
 fd_resptime unsigned long long int Avg. wait time in microseconds.

Return_value 0 if request is successful, -1 if it is not successful

Return_code
 EINTR zFS is shutting down
 EINVAL Invalid parameter list
 EMVSERR Internal error occurred
 E2BIG Information too big for buffer supplied
 ENOENT Specified data set is not found
 EPERM Permission denied to perform request
Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage notes
1. Specifying fr_version=2 will cause any FSINFO_OWNER structures returned in the output buffer to

be fo_sversion=2. fr_version=2 is not valid on systems running a release prior to z/OS V2R3.
Specifying fr_version=1 will cause any FSINFO_OWNER structures returned in the output buffer to
be fo_sversion=1.

2. The following fields in FSINFO_OWNER are only available if fo_sversion=2:

• fo_longtime
• fo_edcFlag
• fo_longstatus
• fo_longpct
• fo_longtask
• fo_snappinned
• fo_backups

3. The following fr_selection fields in FSINFO_REQUEST are only available if fr_version=2:

• x200000 (shows aggregates that are encrypted).
• x400000 (shows aggregates that are not encrypted).

List Detailed File System Information

Chapter 13. zFS application programming interface information 291

• x800000 (shows aggregates that are compressed).
• x1000000 (shows aggregates that are not compressed).
• x2000000 (shows aggregates that are being salvaged).
• x4000000 (shows aggregates that are partially compressed or encrypted).
• x8000000 (shows aggregates that are being shrunk).
• x10000000 (shows aggregates that have in-progress backups).
• x20000000 (shows aggregates that are high availability).

4. Users of the API supply an input buffer that contains a syscall_parmlist followed by an
FSINFO_REQUEST structure. Output will be placed in this buffer after the FSINFO_REQUEST.

5. A minimum length output buffer for a single-aggregate query is 10 K, and a minimum length output
buffer for a multi-aggregate query is 64 K.

6. A single specific aggregate can be queried by putting its name in fr_resumeName. The name must
be null-terminated. Also specify fr_reqtype 0 (SingleQuery). This aggregate does not need to
be attached. fr_selection and fr_nameSelection must also be 0.

7. Multiple aggregate names can be specified by entering a string in fr_patternName that can contain
a wildcard character ('*'). A wildcard can be specified at the beginning, at the end, or both at the
beginning and the end of the string. The string must be null-terminated. The input string is converted
to uppercase before it is processed. Use a fr_nameSelection value of 3 when specifying a
wildcard, and a fr_reqtype of NameCursor (1).

8. All attached aggregates can be specified by using fr_nameSelection value of 1 and a fr_reqtype
value of NameCursor (1).

9. If the output buffer cannot hold all of the returned information, fr_eol will be 0 and
fr_resumeName will contain a value to be returned to zFS on the next query. Keep querying zFS until
fr_eol is 1 to indicate that all information has been returned.

10. Use fr_selection to return only aggregates that match the specified criteria in a multiple
aggregate query. The options are defined in the Format section.

11. fr_output determines the output of the request. Options are defined in the Format section.
12. There is no file system information returned when a reset is requested (fr_output=2). A reset can

only be requested when the opcode is 154 (AGOP_FSINFO_RESET_PARMDATA) and fr_selection
is 0.

13. Reserved fields and undefined flags must be set to binary zeros.
14. Any names returned that are less than the full length of the field are null terminated. If the length of

the name is equal to the length of the field that contains it, then it is not null terminated.
15. Output consists of various structures following the FSINFO_REQUEST area in the buffer. For each

aggregate that has information returned, first will be an FSINFO_NAME structure. This contains the
name of an aggregate and the systems that are connected to it. Then, if present, will be the
FSINFO_OWNER structure. This contains aggregate statistics and attributes as known by the owner.
There can be no FSINFO_OWNER in some cases when the aggregate is unowned (fn_owner is
*UNOWNED). This is followed by FSINFO_LOCAL structures. There are fn_connected FSINFO_LOCAL
structures (if it is unowned), otherwise there are fn_connected+1 FSINFO_LOCAL structures. Each
FSINFO_LOCAL structure is followed by fl_numdasd FSINFO_DASD structures to describe the DASD
volumes that contain the zFS aggregate data set.

16. To move through the output buffer from one structure to the next, add the length field of each
structure to the beginning of its containing structure.

• For the FSINFO_REQUEST structure, the length field is fr_length.
• For the FSINFO_NAME structure, the length field is fn_slength.
• For the FSINFO_OWNER structure, the length field is fo_length.
• For the FSINFO_LOCAL structure, the length field is fl_length.
• For the FSINFO_DASD structure, the length field is fd_length.

List Detailed File System Information

292 z/OS: z/OS File System Administration

Privilege required
If a reset of the statistics values is requested and the fr_output field of the FSINFO_REQUEST structure
contains the value 2, the issuer must be UID 0 or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class. Otherwise, no privilege is required.

Related services
List Aggregate Status (Version 1)
List Aggregate Status (Version 2)
List Attached Aggregate Names (Version 1)
List Attached Aggregate Names (Version 2)
List File System Names (Version 1)
List File System Names (Version 2)
List File System Status

Restrictions
None.

Examples

#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>
#include <stddef.h>
#include <stdint.h>
#include <time.h>

#define ZFSCALL_FSINFO 0x40000013
#define ZFS_MAX_AGGRNAME 44
#define AGOP_FSINFO_PARMDATA 153 /* Get status on aggr & fs */
#define BUFFER_SIZE 1024 * 64

#define FSINFO_XCF_ERR 0x1
#define FSINFO_IO_ERR 0x2
#define FSINFO_SPC_ERR 0x4

typedef struct syscall_parmlist_t {
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[1]-parms[6] are currently unused*/
} syscall_parmlist;

struct timeval64 {
 uint64_t tv_sec;
 int32_t tv_usec_pad;
 uint32_t tv_usec;
};

typedef struct FSINFO_REQUEST_t {
 char fr_eye[4];
#define FR_EYE "FIRQ"
 short fr_length;
 char fr_sversion; /* Structure version. must be 1 */
 char fr_reqtype; /*request type. BulkList=0, OffsetCursor=1*/
#define FR_REQTYPE_SINGLEQUERY 0
#define FR_REQTYPE_NAMECURSOR 1
 char fr_version; /* Version of input/output buffer; must be
 1 or 2 (for long-running operations). */
#define FR_VERSION_INITIAL 1
#define FR_VERSION_LONG 2
#define FR_CURRENT_VERSION 2
 char fr_output; /* Type of output */
#define FR_OUT_LOCAL_STAT 0 /* Local stats from local system */
#define FR_OUT_FULL_STAT 1 /* Full stats from all systems*/
#define FR_OUT_RESET 2 /* reset statistics */
 char fr_nameSelection; /* Selection of aggregates desired, one of: */

List Detailed File System Information

Chapter 13. zFS application programming interface information 293

#define FR_NM_ALLAGGR 1 /* All aggregates */
#define FR_NM_LOCAL 2 /* Local aggregates */
#define FR_NM_PATTERN 3 /* All aggregates matching pattern */
 char fr_eol; /* Indicates if a multi-aggregate
 read has completed */
 int fr_selection; /* Selection criteria of aggregates desired */
 unsigned int fr_entries; /* Number of entries returned
 by zFS (for OffsetCusor) */
 int fr_nonFatalRc; /* Non-fatal error code */
 int fr_nonFatalRsn; /* Reason code if fr_nonFatalRc is non-0 */
 char fr_resumeName[45]; /* Dataset name to resume with for NameCursor or */
 /* the name for the single-aggregate query.*/
 char fr_patternName[45]; /* The pattern name to be used. */
 char fr_future2[2];
} FSINFO_REQUEST;

typedef struct FSINFO_NAME_t
{
 char fn_eye[4];
#define FN_EYE "FINA"
 short fn_slength; /* Structure length */
 short fn_sversion;
 char fn_name[44]; /* aggregate name */
 unsigned int fn_connected; /* number of conneceted systems if owner
 output is included; 0 otherwise*/
 char fn_owner[8]; /* system name of the owner */
 unsigned int fn_length; /* Total length of all information for this
 aggregate, so programs can quickly find the
 beginning of the next record
 in the output buffer. */
 char fn_future[4];
 char fn_sysnames[8]; /* Names of connected systems (32 at most).Actual
 number is defined fn_connected.*/
} FSINFO_NAME;

typedef struct FSINFO_OWNER_t {
 char fo_eye[4];
#define FSO_EYE "FIOW"
 short fo_length;
 short fo_sversion;
#define FO_VERSION FR_CURRENT_VERSION
 unsigned int fo_size; /* Num of 8K blocks in the aggregate */
 unsigned int fo_free; /* Number of unused 8K blocks
 in the aggregate.*/
 unsigned long long int fo_frags; /* Num of free 1K fragments
 available in the aggregate.*/
 unsigned int fo_logsize; /* Num of 8K blocks allocated
 to the log file for
 transaction logging,
 including indirect blocks.*/
 unsigned int fo_bitmapsize; /* Number of 8K blocks allocated to the
 bitmap file including indirect blocks.*/
 unsigned int fo_anodesize; /* Number of 8K blocks allocated
 to the anode table.*/
 unsigned int fo_objects; /* Number of objects in the file system. */
 char fo_version; /* Aggregate version number */
 char fo_threshold; /* Space monitoring threshold */
 char fo_increment; /* Space monitoring increment*/
 char fo_stop_longpct; /* Reserved for fo_sversion=1, otherwise
 percent complete of an interrupted
 compress, decompress, encrypt or decrypt
 long-running operation. */
 int fo_flags;
#define FO_OWNER_MNTRW 0x1 /* Mounted in RW mode */
#define FO_OWNER_DISABLED 0x2 /* Disabled for access */
#define FO_OWNER_GROWFAIL 0x4 /* Grow failure since last reset */
#define FO_OWNER_LOW_ONSPC 0x8 /* Low on space (zfs definition)*/
#define FO_OWNER_DAMAGED 0x10 /* Aggregate is damaged by salvage
 verification & not repaired yet */
#define FO_OWNER_RWSHARE 0x20 /* Aggregate using zFS sysplex
 sharing (RWSHARE) */
#define FO_OWNER_GROWSET 0x40 /* Dynamic grow set at mount time */
#define FO_OWNER_GROWING 0x80 /* Aggregate is in the process
 of growing at the time of query */
#define FO_CONVERTOV5 0x100 /* CONVERTTOV5 parm is set on mount. */
#define FO_NOTMOUNT 0x200 /* Aggregate is not mounted */
#define FO_NO_OWNER 0x400 /* Aggregate is un-owned */
#define FO_OWNER_ALLOWGROW 0x800 /* Dynamic grow allowed , no
 grow failures or since a grow
 failure an admin grow was done. */
#define FO_OWNER_CHGOWNER 0x1000 /* The quiesce is done for a
 chgowner instead of a backup */

List Detailed File System Information

294 z/OS: z/OS File System Administration

#define FO_CONVERTTOV5_DISABLED 0x2000 /* CONVERTTOV5 is disabled
 due to quiesce or failed convert */
#define FO_V4 0x4000 /* Aggregate with version 1.4 */
#define FO_V5 0x8000 /* Aggregate with version 1.5 */

 unsigned int fo_overflow; /* Num of overflow pages used for v5 directories */
 unsigned int fo_overflowhiwater; /* Hiwater mark of fo_overflow
 for life of file system.*/
 unsigned int fo_thrashing; /* Current number of objects using
 the thrash-resolution protocol*/
 char reserved2[4];
 unsigned long long int fo_thrash_resolution; /* Number of thrash resolutions
 performed since last
 statistics reset.*/
 unsigned long long int fo_revocations; /* Number of token revocations
 performed since last
 statistics reset*/
 unsigned long long int fo_revwait; /* Average revocation wait time
 in microseconds.*/
 char fo_qsysname[8]; /* Name of system requesting quiesce,
 if the aggregate is quiesced,
 0 otherwise.*/
 char fo_jobname[8]; /* Name of job requesting quiesce,
 if the aggregate is quiesced,
 0 otherwise.*/
 unsigned long long int fo_createtime; /* Creation time in
 seconds since epoch*/
 unsigned long long int fo_ownership; /* Owership time in
 seconds since epoch*/
 unsigned long long int fo_reset; /* Time statistic counters reset in
 seconds since last epoch*/
 unsigned long long int fo_quiesce; /* Quiesce time in seconds since
 epoch, 0 if file system
 not quiesced.*/
 unsigned int fo_devno; /* Devno for the mount*/
 char fo_auditfid[10]; /* Audit fid for file system*/
 unsigned short fo_qasid; /* ASID which issued the quiesce */
 unsigned int fo_growcount; /* Number of grows since mount. */
 char reserved3[4];
 unsigned long long int fo_growtime; /* Time of the last grow
 as known by owner */
#if FR_CURRENT_VERSION >= FR_VERSION_LONG
 /* Define fields only available when fr_version >= 2 and fo_sversion >= 2. */
 /* They will only have values if a long-running operation is active. */
 unsigned long long int fo_longtime; /* Time that a long-running operation
 was initiated on this aggregate. */
 char fo_edcFlag; /* Current state of encryption or
 compression of the file system. */
 char fo_longstatus; /* Current step of the operation.
 Intended for IBM service only. */
 char fo_longpct; /* Percent completion of the current
 step of the long running command.*/
 char fo_salvage_type; /* 1 = verify, 2 = verify and repair*/
 int fo_longtask; /* TCB of the long running task. */
#endif
} FSINFO_OWNER;

typedef struct FSINFO_LOCAL_t {
 char fl_eye[4];
#define FL_EYE "FILO"
 short fl_length;
 short fl_sversion; /* Structure version */
 unsigned long long int fl_vnodes; /* Number of vnodes cached in memory
 on the local system */
 unsigned long long int fl_ussheld; /* Number of USS held vnodes*/
 char fl_sysname[8]; /* System name these stats are for */
 unsigned long long int fl_open; /* Number of open objects in
 the file system */
 unsigned long long int fl_tokens; /* Number of tokens held from
 the token manager */
 unsigned int fl_usercache; /* Number of 4K pages held in the
 user cache for the file system */
 unsigned int fl_metacache; /* Number of 8k pages held in
 the metadata cache */
 unsigned long long int fl_appreads; /* Number of application reads made
 since last reset */
 unsigned long long int fl_appreadresp; /* Average read response
 time in microseconds*/
 unsigned long long int fl_appwrites; /* Number of application writes
 made since last reset */
 unsigned long long int fl_appwriteresp; /* Average write response
 time in microseconds*/

List Detailed File System Information

Chapter 13. zFS application programming interface information 295

 unsigned long long int fl_xcfreads; /* Number of xcf read calls made
 to the owner since last reset */
 unsigned long long int fl_xcfreadresp; /* Average xcf read call response
 time in microseconds*/
 unsigned long long int fl_xcfwrites; /* Number of xcf write calls made to
 the server since last reset */
 unsigned long long int fl_xcfwriteresp; /* Average xcf write call response
 time in microseconds*/
 unsigned long long int fl_enospc; /* Number of ENOSPC errors returned
 to apps since last reset */
 unsigned long long int fl_ioerrs; /* Number of disk IO errors
 since last reset*/
 unsigned long long int fl_commerrs; /* Number of XCF communication timeouts
 or failures since last reset*/
 unsigned long long int fl_cancels; /* Number of cancelled operations
 since last reset by asynchronus
 abends, cancel, forces and EOMs */
 char fl_ddname[8]; /* DDNAME of allocation of dataset */
 struct timeval64 fl_mounttime; /* Mount time, seconds since epoch */
 unsigned int fl_numdasd; /* Number of DASD volumes listed for
 aggregate in FSINFO_DASD array */
 unsigned int fl_flags; /* 1 indicates if this system has
 tasks waiting on a quiesced FS.*/
} FSINFO_LOCAL;

typedef struct FSINFO_DASD_t
{
 char fd_eye[4];
#define FSD_EYE "FIDA"
 short fd_length;
 short fd_sversion;
#define FSD_VER_INITIAL 1
 char fd_volser[6];
 short fd_pavios;
 unsigned long long int fd_reads;
 unsigned long long int fd_readbytes;
 unsigned long long int fd_writes;
 unsigned long long int fd_writebytes;
 unsigned long long int fd_waits;
 unsigned long long int fd_waitTime;
 unsigned long long int fd_resptime;
} FSINFO_DASD;

void check_local_error(char *buffp, FSINFO_REQUEST *fs_req, int *lerr_stat);

int main(int argc, char **argv)
{
 char* buffp = NULL;
 syscall_parmlist* parmp = NULL;
 FSINFO_REQUEST* fs_req = NULL;
 char owner_sys[9];

 int buff_fill_len = 0;
 int fs_ownerlen = 0;
 int fs_locallen = 0;
 int unowned = 0;
 int fr_nonFatalRc = 0;
 int fr_nonFatalRsn = 0;
 int sperr = 0;
 int ioerr = 0;
 int xcferr = 0;
 int lerr_stat = 0;
 int bpxrv, bpxrc, bpxrs;
 int i, j, k;
 unsigned long long int most_writes = 0;
 char busiest_volume[7];
 int locals = 0;

 /* aggrname for fsinfo */
 char aggrname[ZFS_MAX_AGGRNAME+1] = "PLEX.DCEIMGQY.FS";

 /* Output structure pointers */
 FSINFO_NAME* fs_namep = NULL;
 FSINFO_OWNER* fs_ownerp = NULL;
 FSINFO_LOCAL* fs_localp = NULL;
 FSINFO_DASD * fs_dasdp = NULL;
 char* outputp = NULL;

 /* Allocate buffer */
 buffp = (char*) malloc(BUFFER_SIZE);
 if(buffp == NULL)
 {

List Detailed File System Information

296 z/OS: z/OS File System Administration

 printf("Malloc Error\n");
 return 0;
 }

 /* Set the parmdata */
 parmp = (syscall_parmlist*) &buffp[0];
 parmp->opcode = AGOP_FSINFO_PARMDATA;
 parmp->parms[0] = buff_fill_len = sizeof(syscall_parmlist);
 parmp->parms[1] = 0;
 parmp->parms[2] = 0;
 parmp->parms[3] = 0;
 parmp->parms[4] = 0;
 parmp->parms[5] = 0;
 parmp->parms[6] = 0;

 fs_req = (FSINFO_REQUEST*) &buffp[buff_fill_len];
 memset(fs_req, 0x00, sizeof(FSINFO_REQUEST));

 /* First obtain the statistics for all file systems. We will look */
 /* through them to find the DASD volume with the most write operations. */
 memcpy(fs_req->fr_eye, FR_EYE, sizeof(fs_req->fr_eye));
 fs_req->fr_length = sizeof(FSINFO_REQUEST);
 fs_req->fr_sversion = 1;
 fs_req->fr_version = FR_CURRENT_VERSION;
 fs_req->fr_reqtype = FR_REQTYPE_NAMECURSOR;
 fs_req->fr_output = FR_OUT_FULL_STAT;
 fs_req->fr_nameSelection = FR_NM_ALLAGGR;

 buff_fill_len += sizeof(FSINFO_REQUEST);

 /* Loop getting file system information from zFS until we have it all. */
 do
 {
 /* Call zFS. */
 printf("call zfs\n");
 BPX1PCT("ZFS ",
 ZFSCALL_FSINFO, /* Aggregate operation */
 BUFFER_SIZE, /* Length of Argument */
 (char*) buffp, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if(bpxrv)
 {
 printf("Error getting fsinfo for aggregate %s\n", aggrname);
 printf("Return Value: %d Return Code: %d Reason Code: %x\n",
 bpxrv, bpxrc, bpxrs);
 goto done;
 }
 if(fs_req->fr_nonFatalRc)
 {
 fr_nonFatalRc = fs_req->fr_nonFatalRc;
 fr_nonFatalRsn = fs_req->fr_nonFatalRsn;
 goto print_non_fatals;
 }

 /* The first structure pointed by output buffer is FSINFO_NAME.*/
 fs_namep = (FSINFO_NAME *) &buffp[buff_fill_len];
 for (i=0; i<fs_req->fr_entries; i++)
 {
 fs_ownerp = (FSINFO_OWNER *)((char *)fs_namep+fs_namep->fn_slength);
 locals = fs_namep->fn_connected;

 /* If file system has an owner, there will be one more */
 /* FSINFO_LOCAL structure returned than this count. */
 if (memcmp(fs_namep->fn_owner, "*UNOWNED") != 0)
 locals++;

 /* Determine if there is an FSINFO_OWNER or not. */
 /* If not, then the structure should be an FSINFO_LOCAL. */
 if (memcmp(fs_ownerp->fo_eye, FSO_EYE, 4) == 0)
 { /* FSINFO_OWNER returned */
 fs_localp = (FSINFO_LOCAL *)((char *)fs_ownerp+fs_ownerp->fo_length);
 }
 else if (memcmp(fs_ownerp->fo_eye, FL_EYE, 4) == 0)
 {
 /* No FSINFO_OWNER returned. It's FSINFO_LOCAL */
 fs_localp = (FSINFO_LOCAL *)fs_ownerp;
 fs_ownerp = NULL;
 }
 else

List Detailed File System Information

Chapter 13. zFS application programming interface information 297

 {
 /* Should not get here!! */
 printf("Error exit: Incorrect structure sequence!!\n");
 goto done;
 }

 /* Loop through each FSINFO_LOCAL structure returned. */
 for (j=0; j<locals; j++)
 {
 fs_dasdp = (FSINFO_DASD *)((char *)fs_localp + fs_localp->fl_length);
 for (k=0; k<fs_localp->fl_numdasd; k++)
 {
 /* Determine if this DASD volume has more writes than the */
 /* previously higher one. Yes, remember DASD volume name. */
 if (fs_dasdp->fd_writes > most_writes)
 {
 strncpy(busiest_volume, fs_dasdp->fd_volser, 6);
 busiest_volume[6] = 0;
 most_writes = fs_dasdp->fd_writes;
 }
 /* Set up for next iteration. */
 fs_dasdp = (FSINFO_DASD *)((char *)fs_dasdp + fs_dasdp->fd_length);
 }
 /* After looping through all FSINFO_DASD structures, fs_dasdp */
 /* should be pointing at the next FSINFO_LOCAL structure. */
 fs_localp = (FSINFO_LOCAL *)fs_dasdp;
 }

 /* Get ready for next loop iteration. */
 fs_namep = (FSINFO_NAME *)((char *)fs_namep+fs_namep->fn_length);
 }
 }
 while (!fs_req->fr_eol);

 printf("DASD volume %s has the most writes (%llu)\n",
 busiest_volume, most_writes);

 /* Now do a single aggregate query for a specific file system. */
 memset(fs_req, 0x00, sizeof(FSINFO_REQUEST));
 memcpy(fs_req->fr_eye, FR_EYE, sizeof(fs_req->fr_eye));
 fs_req->fr_length = sizeof(FSINFO_REQUEST);
 fs_req->fr_sversion = 1;
 fs_req->fr_version = 1;
 fs_req->fr_output = FR_OUT_FULL_STAT;
 fs_req->fr_reqtype = FR_REQTYPE_SINGLEQUERY;
 memcpy(fs_req->fr_resumeName, aggrname, ZFS_MAX_AGGRNAME+1);

 BPX1PCT("ZFS ",
 ZFSCALL_FSINFO, /* Aggregate operation */
 BUFFER_SIZE, /* Length of Argument */
 (char*) buffp, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if(bpxrv)
 {
 printf("Error getting fsinfo for aggregate %s\n", aggrname);
 printf("Return Value: %d Return Code: %d Reason Code: %x\n",
 bpxrv, bpxrc, bpxrs);
 goto done;
 }
 if(fs_req->fr_nonFatalRc)
 {
 fr_nonFatalRc = fs_req->fr_nonFatalRc;
 fr_nonFatalRsn = fs_req->fr_nonFatalRsn;
 goto print_non_fatals;
 }

 buff_fill_len = sizeof(syscall_parmlist) + sizeof(FSINFO_REQUEST);
 outputp = buffp + buff_fill_len;
 check_local_error(outputp, fs_req, &lerr_stat);

 /* The first structure pointed by output buffer would be FSINFO_NAME. */
 fs_namep = (FSINFO_NAME *) &buffp[buff_fill_len];
 fs_ownerp = (FSINFO_OWNER *) ((char*) fs_namep + fs_namep->fn_slength);
 memcpy(owner_sys, fs_namep->fn_owner, 8);
 owner_sys[8] = '\0';

 if (memcmp(&owner_sys[0], "*UNOWNED", 8) == 0)
 {
 unowned = 1;

List Detailed File System Information

298 z/OS: z/OS File System Administration

 if (memcmp(fs_ownerp->fo_eye, FSO_EYE, 4) == 0)
 { /* FSINFO_OWNER returned */
 fs_localp = (FSINFO_LOCAL *)((char *)fs_ownerp + fs_ownerp->fo_length);
 }
 else if (memcmp(fs_ownerp->fo_eye, FL_EYE, 4) == 0)
 {
 /* No FSINFO_OWNER returned. It's FSINFO_LOCAL */
 fs_localp = (FSINFO_LOCAL *)fs_ownerp;
 fs_ownerp = NULL;
 }
 }
 else if (fs_ownerp->fo_flags & FO_NO_OWNER)
 {
 unowned = 1;
 fs_localp = (FSINFO_LOCAL *)((char *)fs_ownerp + fs_ownerp->fo_length);
 }
 else
 fs_localp = (FSINFO_LOCAL *)((char *)fs_ownerp + fs_ownerp->fo_length);

 if ((lerr_stat & FSINFO_SPC_ERR) == FSINFO_SPC_ERR)
 {
 fs_localp->fl_enospc = 1;
 sperr = 1;
 }
 if ((lerr_stat & FSINFO_IO_ERR) == FSINFO_IO_ERR)
 {
 fs_localp->fl_ioerrs = 1;
 ioerr = 1;
 }
 if ((lerr_stat & FSINFO_XCF_ERR) == FSINFO_XCF_ERR)
 {
 fs_localp->fl_commerrs = 1;
 xcferr = 1;
 }

 if(unowned && !fs_ownerp)
 {
 if (!xcferr && !ioerr && !sperr)
 printf("%-44.44s %-8.8s n/a \n\n",
 aggrname, "*UNOWNED");
 else
 {
 printf("%-44.44s %-8.8s %s%s%s \n\n",
 aggrname, "*UNOWNED",
 (sperr)? "SE" :"",
 (ioerr)?((sperr)?",IE":"IE"):"",
 (xcferr)?((sperr || ioerr)?",CE":"CE"):"");
 /* Define the flags in a legend */
 printf("Legend: %s%s%s\n\n",
 (sperr)? "SE = Space errors reported":"",
 (ioerr)?
 ((sperr)? ",IE = IO errors reported":
 "IE = IO errors reported") : "",
 (xcferr)?
 ((sperr || ioerr)?
 ",CE = Communication errors reported":
 "CE = Communication errors reported") : "");
 }
 }
 else
 {
 /* Print the aggregate info with flags */
 printf("%-44.44s %-8.8s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s \n\n",
 aggrname, fs_namep->fn_owner,
 (fs_ownerp->fo_flags & FO_NOTMOUNT) ? "NM" : "",
 /* Multiple Conditions */
 (!(fs_ownerp->fo_flags & FO_NOTMOUNT) &&
 (fs_ownerp->fo_flags & FO_OWNER_MNTRW)) ? "RW" :
 ((fs_ownerp->fo_flags & FO_NOTMOUNT) ? "" : "RO"),
 /* Multiple Conditions */
 (!(fs_ownerp->fo_flags & FO_NOTMOUNT) &&
 (fs_ownerp->fo_flags & FO_OWNER_RWSHARE)) ? ",RS" :
 ((fs_ownerp->fo_flags & FO_NOTMOUNT) ? "" : ",NS"),

 (fs_ownerp->fo_thrashing) ? ",TH" : "",
 (fs_ownerp->fo_qsysname[0] != '\0') ? ",Q" : "",
 (fs_ownerp->fo_flags & FO_OWNER_DISABLED) ? ",DI" : "",
 (fs_ownerp->fo_flags & FO_OWNER_GROWING) ? ",GR" : "",
 (fs_ownerp->fo_flags & FO_OWNER_GROWFAIL) ? ",GF" : "",
 /* Multiple Conditions */
 (!(fs_ownerp->fo_flags & FO_NOTMOUNT) &&
 (fs_ownerp->fo_flags & FO_OWNER_GROWSET) &&

List Detailed File System Information

Chapter 13. zFS application programming interface information 299

 !(fs_ownerp->fo_flags & FO_OWNER_ALLOWGROW)) ? ",GD" : "",

 (fs_ownerp->fo_flags & FO_OWNER_DAMAGED) ? ",DA" : "",
 (fs_ownerp->fo_flags & FO_OWNER_LOW_ONSPC) ? ",L" : "",
 (sperr) ? ",SE" : "",
 (fs_ownerp->fo_flags & FO_OWNER_DISABLED) ? ",DI" : "",
 (ioerr) ? ",IE" : "",
 (xcferr) ? ",CE" : "");

 /* Define the flags in a legend */
 printf("Legend: %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s \n\n",
 (fs_ownerp->fo_flags & FO_NOTMOUNT) ? "NM = Not mounted" : "",
 /* Multiple Conditions */
 (!(fs_ownerp->fo_flags & FO_NOTMOUNT) &&
 (fs_ownerp->fo_flags & FO_OWNER_MNTRW)) ? "RW = Read-write" :
 ((fs_ownerp->fo_flags & FO_NOTMOUNT) ? "" : "RO = Read-only"),
 /* Multiple Conditions */
 (!(fs_ownerp->fo_flags & FO_NOTMOUNT) &&
 (fs_ownerp->fo_flags & FO_OWNER_RWSHARE)) ?
 ",RS = Mounted RWSHARE" : ((fs_ownerp->fo_flags & FO_NOTMOUNT) ?
 "" : ",NS = Mounted NORWSHARE"),
 (fs_ownerp->fo_thrashing) ? ",TH = Thrashing" : "",
 (fs_ownerp->fo_qsysname[0] != '\0') ? ",Q = Queisced" : "",
 (fs_ownerp->fo_flags & FO_OWNER_DISABLED) ?
 ",DI = Disabled" : "",
 (fs_ownerp->fo_flags & FO_OWNER_GROWING) ?
 ",GR = Growing" : "",
 (fs_ownerp->fo_flags & FO_OWNER_GROWFAIL) ?
 ",GF = Grow Failed": "",
 /* Multiple Conditions */
 (!(fs_ownerp->fo_flags & FO_NOTMOUNT) &&
 (fs_ownerp->fo_flags & FO_OWNER_GROWSET) &&
 !(fs_ownerp->fo_flags & FO_OWNER_ALLOWGROW)) ?
 ",GD = AGGRGROW disabled" : "",
 (fs_ownerp->fo_flags & FO_OWNER_DAMAGED) ?
 ",DA = Damaged" : "",
 (fs_ownerp->fo_flags & FO_OWNER_LOW_ONSPC) ?
 ",L = Low on space": "",
 (sperr) ? ",SE = Space errors reported":"",
 (fs_ownerp->fo_flags & FO_OWNER_DISABLED) ?
 ",DI = Disabled" : "",
 (ioerr) ? ",IE = IO errors reported" : "",
 (xcferr) ? ",CE = Communication errors reported":"");
 }
 goto done;

print_non_fatals:
 if(fr_nonFatalRc)
 {
 printf("Non-Fatal errors:\n");
 printf("Return Code: %d Reason Code: %x\n\n",
 fr_nonFatalRc, fr_nonFatalRsn);
 }
done:
 free(buffp);
 return 0;
}

void check_local_error(char *buffptr, FSINFO_REQUEST *fs_req, int *lerr_stat)
{
 FSINFO_NAME * fs_namep;
 FSINFO_OWNER * fs_ownerp = NULL;
 FSINFO_LOCAL * fs_local;
 FSINFO_DASD * dasdp;
 int dasd_space;
 int i, j;
 int total_sys = 0;
 int unowned = 0;

 if ((*lerr_stat) == (FSINFO_XCF_ERR | FSINFO_IO_ERR | FSINFO_SPC_ERR))
 {
 printf("FSINFO_CheckLocalErr: all 3 bits are set in *lerr_stat=%X\n",
 *lerr_stat);
 return ;
 }

 /* The first structure pointed by output buffer would be FSINFO_NAME. */
 fs_namep = (FSINFO_NAME *)((char *)buffptr);
 fs_ownerp = (FSINFO_OWNER *)((char *)fs_namep + fs_namep->fn_slength);

 /* if UNOWNED, make sure we are processing the right stats. */

List Detailed File System Information

300 z/OS: z/OS File System Administration

 if (memcmp(&fs_namep->fn_owner, "*UNOWNED", 8) == 0)
 {
 unowned = 1;
 if (memcmp(fs_ownerp->fo_eye, FSO_EYE, 4) == 0)
 { /* FSINFO_OWNER block */
 fs_local = (FSINFO_LOCAL *)((char *)fs_ownerp + fs_ownerp->fo_length);
 }
 else if (memcmp(fs_ownerp->fo_eye, FL_EYE, 4) == 0)
 { /* FSINFO_LOCAL block */
 fs_local = (FSINFO_LOCAL *)((char *)fs_ownerp + fs_ownerp->fo_length);
 fs_ownerp = NULL;
 }
 else
 { /* We should not get here!! */
 return;
 }
 }
 else
 fs_local = (FSINFO_LOCAL *)((char *)fs_ownerp + fs_ownerp->fo_length);

 /* If FSINFO_OWNER is not returned, we have 1 less FSINFO_LOCAL to process */
 if (unowned && (fs_ownerp == NULL))
 total_sys = fs_namep->fn_connected;
 else
 total_sys = fs_namep->fn_connected+1;

 for (i=0; i < total_sys; i++)
 {
 if (fs_local->fl_commerrs)
 (*lerr_stat) |= FSINFO_XCF_ERR;

 if (fs_local->fl_enospc)
 (*lerr_stat) |= FSINFO_SPC_ERR;

 if (fs_local->fl_ioerrs)
 (*lerr_stat) |= FSINFO_IO_ERR;

 if ((*lerr_stat) == (FSINFO_XCF_ERR | FSINFO_IO_ERR | FSINFO_SPC_ERR))
 return ;

 /* Find the next FSINFO_LOCAL structure, which is after any FSINFO_DASD */
 /* structures that might be present. */
 if (fs_local->fl_numdasd > 0)
 {
 dasdp = (FSINFO_DASD *)((char *)fs_local + fs_local->fl_length);
 dasd_space = fs_local->fl_numdasd * dasdp->fd_length;
 }
 else
 dasd_space = 0;
 fs_local = (FSINFO_LOCAL *)((char *)fs_local + fs_local->fl_length +
 dasd_space);
 }

 return;
}

List Detailed File System Information

Chapter 13. zFS application programming interface information 301

List File Information

Purpose
Lists detailed file or directory information. This API is an w_pioctl (BPX1PIO) call specifying a path
name rather than a pfsctl (BPX1PCT) call specifying a file system name.

Format
PX1PIO parameter list
 Pathname_length int
 Pathname char[1025]
 Command int 0x0000A901
 Argument_length int sizeof(FOBJ_INFO)
 Argument ptr to FOBJ_INFO
 Return_value ptr to int 0
 Return_code ptr to int 0
 Reason_code ptr to int 0

FOBJ_TIME
 fo_seconds hyper Second since last epoch
 fo_mircoseconds int Micro seconds since last epoch
 fo_unused int Reserved

FOBJ_ACLINFO
 fo_index int Location of ACL
 fo_length int Length of ACL

FOBJ_AUDIT
 fo_read char Read information
 fo_write char Write information
 fo_exec char Exec information
 fo_res1 char 1 - No auditing
 2 - Success auditing
 3 - Failure auditing

FOBJ_SYSINFO
 fo_vnode hyper Address of zFS vnode
 fo_vntok hyper Address of z/OS UNIX vnode
 fo_openwaiters unsigned int Number of tasks waiting to open a
 file blocked by deny-mode opens
 fo_internalopens unsigned int Number of internal opens
 fo_readopens unsigned int Number of opens for read
 fo_writeopens unsigned int Number of opens for write
 fo_denyreads unsigned short Number of deny-read opens
 fo_denywrites unsigned short Number of deny-write opens
 fo_advdenyreads unsigned short Number of advisory deny-read opens
 fo_advdenywrites unsigned short Number of advisory deny-write opens
 fo_sysflags char Miscellaneous information:
 0x01 - file being read sequentially
 0x02 - file written sequentially
 0x04 - security information cached
 0x08 - file location information
 cached
 0x10 - symlink information cached
 0x20 - metadata updates sent to
 server, can not directly
 read without a server sync
 0x40 - tokens are being revoked
 0x80 - file is undergoing thrashing
 fo_sysflags2 char More miscellaneous information
 0x01 - file system owned locally
 fo_unused char[2] Reserved
 fo_unscheduled int Number of 4K pages in user file
 cache that need to be written
 fo_pending int Number of 4K pages being written
 fo_segments int Number of 64K segments in user cache
 fo_dirtysegment int Number of segments with pages that
 need to be written
 fo_metaissued int Number of I/Os in progress that will
 require a metadata update
 fo_metapending int Number of queued metadata updates
 fo_rights int Token rights held by object
 fo_xmits short Number of XCF messages client has
 sent server for this object

List File Information

302 z/OS: z/OS File System Administration

 fo_fwd short Number of in-progress operations
 for object using thrashing protocol
 fo_metabuffers int Number of buffers in metadata cache
 for this object, only client systems
 fo_dirtybuffers int Number of metadata buffers updated
 for object that are on server and
 need writing
 fo_owner char[9] Name of owning system
 fo_localsys char[9] Name of local system
 fo_pad char[2] Reserved
 fo_sysres int[9] Reserved

FOBJ_INFO
 fo_eye char[4] "FOIN"
 fo_len short Size of(FOBJ_INFO)
 fo_ver char 1
 2 for returning information
 introduced in z/OS V2R3
 fo_inflags char 1- Only in-memory system information
 is being requested.
 fo_inode int Object inode
 fo_unique int Object uniquifier
 fo_length hyper POSIX length of object (in bytes)
 fo_mtime FOBJ_TIME Last modification time
 fo_atime FOBJ_TIME Last access time
 fo_ctime FOBJ_TIME Last change time
 fo_reftime FOBJ_TIME Last reference time
 fo_create FOBJ_TIME Create time
 fo_allocation char How object stored on disk:
 1 - Object is stored inline
 2 - Object is stored fragmented
 3 - Object is stored blocked
 fo_owner_perms char Permissions for owner of file:
 0x01 - Execute permission
 0x02 - Write permission
 0x04 - Read permission
 fo_group_perms char Permissions for the group:access
 to the file:
 0x01 - Execute permission
 0x02 - Write permission
 0x04 - Read permission
 fo_other_perms char Permissions of other users of file:
 0x01 - Execute permission
 0x02 - Write permission
 0x04 - Read permission
 fo_allocated unsigned int Number of allocated bytes
 fo_locinfo union Location of object's data
 fo_direct unsigned int[8] Location of first 8 logical blocks
 fo_indirect unsigned int[4] Location of indirect tree roots
 -- or --
 fo_block unsigned int Block with object's data
 fo_start unsigned short Starting fragment in block
 fo_len unsigned short Number of fragments
 fo_uid int UID of owner
 fo_gid int GID of owner
 fo_access FOBJ_ACLINFO Access acl
 fo_dmodel FOBJ_ACLINFO Directory model acl
 fo_fmodel FOBJ_ACLINFO File model acl
 fo_user FOBJ_AUDIT User audit information
 fo_auditor FOBJ_AUDIT Auditor audit information
 fo_permbits char Sticky bit and other bits:
 0x01 - setgid
 0x02 - setuid
 0x04 - Sticky bit on
 <some bits> int Miscellaneous bits in an integer
 fo_txtflag bit 0 Context are pure text
 fo_deferflag bit 1 Defer tag set until first write
 fo_filefmt bits 2-7 File format attribute:
 0=NA
 1=BIN
 2=NL
 3=CR
 4=LF
 5=CRLF
 6=LFCR
 7=CRNL
 8=REC
 bits 8-31 Reserved
 fo_ccsid unsigned short Hex CCSID
 fo_seclabel char[8] Seclabel of object
 fo_entrycount unsigned int If object a directory, the number
 of names it contains.

List File Information

Chapter 13. zFS application programming interface information 303

 fo_linkcount unsigned int POSIX linkcount for object
 fo_dataversion unsigned int Data version for directory updates
 fo_genvalue unsigned int USS attribute flags of object
 fo_cver char[8] Creation verifier
 fo_majorminor char[8] If object a character special file,
 major/minor number.
 fo_type char Object type:
 0x01 - directory
 0x02 - regular file
 0x03 - symlink
 0x04 - FIFO
 0x05 - character special file
 fo_flags char Additional object flags:
 0x01 - object is a v5 directory
 0x02 - v5 directory tree structure
 is broken
 0x04 - automatic conversion to v5
 failed
 0x08 - contents are logged
 fo_offset short Offset of anode
 fo_anodeblock unsigned int Physical block that contains anode
 fo_status_level char Directory status byte
 0x80 - directory is v5
 0x1F - max depth of v5 tree
 fo_res char[3] Reserved
 fo_res3 int[3] Reserved

fo_CEprogress unsigned_int Next block to process for a blocked file
 that is undergoing encryption or
decryption.
fo_compBlocks unsigned_int Number of 8k blocks that were saved based on
 compression of file data.
fo_CEFlag char Encryption and compression indicator flags:
 0x03 Encryption bits in fo_CEFlag
 0x00 Not-encrypted
 0x01 Decrypting
 0x02 Encrypting
 0x03 Encrypted
 0x0C Compression bits in fo_CEFlag
 0x00 Not-compressed
 0x04 Decompressing
 0x08 Compressing
 0x0C Compressed
fo_res4 char[3] Reserved
fo_res5 int[8] Reserved
fo_info FOBJ_SYSINFO System based transient information

Return_value 0 if request is successful, -1 if it is not successful

Return_code
EBUSY Aggregate containing file system is quiesced
EINTR ZFS is shutting down
EINVAL Invalid parameter list
EMVSERR Internal error using an osi service
ENOENT No such file or directory exists

Reason_code
0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage notes
1. The aggregate must be mounted or attached.
2. If you set fo_inflags to 1, only local data is retrieved. If you set fo_inflags to 0, both global and

local data are retrieved.
3. Reserved fields and undefined flags must be set to binary zeros.

Privilege required
The issuer must have lookup authority (x) to the directory and READ authority (r) to the file.

Related services
List Aggregate Status (Version 2)

List File Information

304 z/OS: z/OS File System Administration

Restrictions
None.

Examples

#pragma linkage(BPX1GCW, OS)
#pragma linkage(BPX1PIO, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1GCW(int, char *, int *, int *, int *);
extern void BPX1PIO(int, char *, int, int, void *, int *, int *, int *);

#include <stdio.h>
#include <time.h>

#define ZFSIOCTL_FILEINFO 0x0000A901 /* zFS ioctl command to */
 /* return detailed fileinfo */
 /* for a zFS file or directory */

#define hiszero(a) ((a).low == 0 && (a).high == 0)
#define hcmp(a,b) ((a).high<(b).high? -1 : ((a).high > (b).high? 1 : \
 ((a).low <(b).low? -1 : ((a).low > (b).low? 1 : 0))))

#define u_int unsigned int
#define uint16_t unsigned short

typedef struct hyper { /* This is a 64 bit integer to zFS */
 unsigned int high;
 unsigned int low;
} hyper;

/***/
/* The FOBJ_INFO structure is used to contain the output of the fileinfo */
/* ioctl query to provide detailed information for a singular object in a */
/* zFS file system. */
/***/
typedef struct FOBJ_ACLINFO_t {
 int fo_index; /* Index into the anode table of */
 /* the location of the ACL */
 int fo_length; /* Length of the ACL */
} FOBJ_ACLINFO;

typedef struct FOBJ_AUDIT_t {
 char fo_read; /* read auditing information */
 char fo_write; /* write auditing information */
 char fo_exec; /* exec auditing information */
 char fo_res1;
#define FO_NONE 0 /* no auditing */
#define FO_SUCC 1 /* success auditing */
#define FO_FAIL 2 /* fail auditing */
} FOBJ_AUDIT;

typedef struct FOBJ_TIME_t {
 hyper fo_seconds; /* number of seconds since epoch */
 int fo_microseconds; /* number of microseconds since epoch*/
 int fo_tres1; /* unused */
} FOBJ_TIME;

typedef struct FOBJ_SYSINFO_t { /* HEX displacement into FOBJ_INFO */
 hyper fo_vnode; /* 138 - Address of vnode in zFS
 kernel memory */
 hyper fo_vntok; /* 140 - Address of USS vnode in
 z/OS Unix address space */
 unsigned int fo_openwaiters; /* 148 - Number of tasks waiting to open
 file because blocked
 by current deny-mode opens */
 unsigned int fo_internalopens; /* 14C - Number of internal
 opens on the file */
 unsigned int fo_readopens; /* 150 - Number of opens for
 read on the file */
 unsigned int fo_writeopens; /* 154 - Number of write opens */
 unsigned short fo_denyreads; /* 158 - Number of deny-read opens */
 unsigned short fo_denywrites; /* 15A - Number of deny-write opens */
 unsigned short fo_advdenyreads; /* 15C - Number of adv. deny read opens */
 unsigned short fo_advdenywrites;/* 15E - Number of adv. deny write opens */
 char fo_sysflags; /* 160 - Misc. information */
#define FO_SEQREAD 1 /* Object is a file that zFS determined
 is being read sequentially */

List File Information

Chapter 13. zFS application programming interface information 305

#define FO_SEQWRITE 2 /* Object is a file that zFS is
 being written sequentially */
#define FO_FSPVALID 4 /* System has security information
 cached for anode */
#define FO_ANODEVALID 8 /* System has posix attribute and
 disk location information cached */
#define FO_SYMLINKVALID 16 /* System has the symbolic link contents
 cached for the object */
#define FO_METAUPDATES 32 /* Client has sent metadata updates to the
 server, and cannot directly read without
 a server sync */
#define FO_REVOKE 64 /* Revoke in progress */
#define FO_THRASH 128 /* Object is considered sysplex-thrashing
 and thrash resolution is in
 effect for file */
 char fo_sysflags2; /* 161 - Misc. information 2 */
#define FO_OWNER 1 /* This system is the owner of
 the file system */
#define FO_BACKUP 2 /* There is an incremental backup in */
 /* progress on this system for this file */
 char fo_unused[2]; /* 162 - reserved */
 int fo_unscheduled; /* 164 - Number of dirty 4K pages in the
 user file cache that have not yet been
 written to disk */
 int fo_pending; /* 168 - Number of pending 4K pages
 in transit to disk */
 int fo_segments; /* 16C - Number of 64K segment structures
 in the user file cache for the file */
 int fo_dirtysegments; /* 170 - Number of 64K segment structures
 that have dirty pages in the
 user file cache */
 int fo_metaissued; /* 174 - Number of in-progress IOs to disk
 that will require a metadata
 update to reflect new data in the file*/
 int fo_metapending; /* 178 - Number of queued metadata updates
 for file, for IOs completed to new data
 for the file */
 int fo_rights; /* 17C - Token rights held for object */
 short fo_xmits; /* 180 - Number of in-progress
 transmissions from client to
 server for this file */
 short fo_fwd; /* 182 - Number of in-progress forwarded
 operations due to thrashing object */
 int fo_metabuffers; /* 184 - Number of buffers for file in the
 metadata cache - client only */
 int fo_dirtybuffers; /* 188 - Number of dirty metadata buffers
 in the metadata cache for
 object - server only */
 char fo_owner[9]; /* 18C - the name of the owner */
 char fo_localsys[9]; /* 195 - the name of the local system */
 char fo_pad; /* 19E - pad */
 char fo_backpct; /* 19F - The percentage complete of an */
 /* incremental backup, if one is in */
 /* progress, else 0 */
#define FO_SYSRES_NUM 9
 int fo_sysres[FO_SYSRES_NUM]; /* 1A0 - Reserved for future use */
} FOBJ_SYSINFO;

typedef struct fobj_info_t { /* HEX displacement into FOBJ_INFO */
 char fo_eye[4]; /* 000 - Eye catcher */
#define FO_EYE "FOIN"
 short fo_len; /* 004 - Length of this structure */
 char fo_ver; /* 006 - Version */
#define FO_VER_INITIAL 1 /* Initial version */
 char fo_inflags; /* 007 - Input flag bits indicating
 requested function */
#define FO_SYSINFO_ONLY 1 /* Only the in-memory system information
 is being requested */
 int fo_inode; /* 008 - Inode of the object */
 int fo_unique; /* 00C - Uniquifier of the object */
 hyper fo_length; /* 010 - Posix length of object in bytes */
 FOBJ_TIME fo_mtime; /* 018 - Modification time */
 FOBJ_TIME fo_atime; /* 028 - access time */
 FOBJ_TIME fo_ctime; /* 038 - change time */
 FOBJ_TIME fo_reftime; /* 048 - referenct time */
 FOBJ_TIME fo_create; /* 058 - creation time of object */
 char fo_allocation; /* 068 - How the object is stored on disk */
#define FO_INLINE 1 /* Object is stored inline */
#define FO_FRAGMENTED 2 /* Object is stored fragmented */
#define FO_BLOCKED 3 /* Object is stored in the blocked
 method, or is empty */
 char fo_owner_perms; /* 069 - Permissions for the owner

List File Information

306 z/OS: z/OS File System Administration

 of this file */
#define FO_READ 4 /* has read permission */
#define FO_WRITE 2 /* has write permission */
#define FO_EXEC 1 /* has execute permission */
 char fo_group_perms; /* 06A -Permissions for the group
 associated with this file */
 char fo_other_perms; /* 06B - Permissions for other.. */
 unsigned int fo_allocated; /* 06C - Number of allocated bytes to
 object, including internal control
 structures, in kilobyte units */
 union
 {
 struct {
 unsigned int fo_direct[8]; /* 070 - Physical location of first 8
 logical blocks of object */
 unsigned int fo_indirect[4]; /* 090 - Physical location of indirect
 tree roots, trees 0 - 3 */
#define FO_UNALLOCATED 0xFFFFFFFF /* This value means block is not
 allocated in fo_direct or
 fo_indirect slot */
 } fo_blockinfo;

 struct {
 unsigned int fo_block; /* 070 - Block that contains the
 object data */
 unsigned short fo_start; /* 074 - Start fragment in the block */
 unsigned short fo_len; /* 076 - Number of fragments
 in the block */
 } fo_fraginfo;
 } fo_locinfo; /* Location of objects data */

 int fo_uid; /* 0A0 - UID of the owner of object */
 int fo_gid; /* 0A4 - group id of owner of object */
 FOBJ_ACLINFO fo_access; /* 0A8 - ACL information for access
 acl of object */
 FOBJ_ACLINFO fo_dmodel; /* 0B0 - ACL information for directory
 model acl */
 FOBJ_ACLINFO fo_fmodel; /* 0B8 - ACL information for file
 model acl */
 FOBJ_AUDIT fo_user; /* 0C0 - User auditing information */
 FOBJ_AUDIT fo_auditor; /* 0C4 - Auditor auditing information*/
 char fo_permbits; /* 0C8 - Sticky and other bits */
#define FO_ISVTX 4 /* sticky bit on */
#define FO_ISUID 2 /* setuid */
#define FO_ISGID 1 /* setgid */
 int fo_txtflag : 1; /* 0C9 - contents are pure
 text indicator */
 int fo_defertag : 1; /* 0C9 - Defer tag set until
 first write */
 int fo_filefmt : 6; /* 0C9 - File format attribute */
 /* 0=NA 1=BIN 2=NL 3=CR 4= LF */
 /* 5=CRLF 6=LFCR 7=CRNL 8=REC */
 short fo_ccsid; /* 0CA - hex ccsid */
 char fo_seclabel[8]; /* 0CC - seclabel of the object */
 unsigned int fo_entrycount; /* 0D4 - Number of names in the
 directory, if this is a directory */
 unsigned int fo_linkcount; /* 0D8 - Posix linkcount for object */
 unsigned int fo_dataversion; /* 0DC - Data version for
 directory updates */
 unsigned int fo_genvalue; /* 0E0 - USS attribute flags
 of object */
 char fo_cver[8]; /* 0E4 - Creation verifier */
 char fo_majorminor[8]; /* 0EC - Major/minor number if object
 is a char special file */
 char fo_type; /* 0F4 - Object type */
#define FO_DIR 1 /* object is directory */
#define FO_FILE 2 /* object is a regular file */
#define FO_LINK 3 /* object is a symlink */
#define FO_FIFO 4 /* object is a fifo */
#define FO_CHARSPEC 5 /* object is a char special file */
 char fo_flags; /* 0F5 - Additional flag bits of
 object */
#define FO_VER5 1 /* Object is a directory stored in
 new-fast format */
#define FO_BROKEN 2 /* The tree structure of this new-fast
 format dir is broken */
#define FO_CONVERT_FAIL 4 /* Automatic conversion of the
 directory failed */
 short fo_offset; /* 0F6 - Offset into the physical block
 that contains the anode for object*/
 unsigned int fo_anodeblock; /* 0F8 - Physical block in aggregate
 that contains the anode */

List File Information

Chapter 13. zFS application programming interface information 307

 char fo_statuslevel; /* 0FC - directory status byte */
 char fo_res[3]; /* 0FD - reserved */
 int fo_res3[3]; /* 100 - For future use */
 unsigned int fo_CEprogress; /* 10C - Next logical block to process
 for encrypt/decrypt/compress/
 decompress */
 unsigned int fo_compBlocks; /* 110 - Number of 8K blocks saved
 based on compressions of file data*/
 char fo_CEFlag; /* 114 - Encrypt/compress indicator flags */
#define FOBJ_ENC_BITS 0x03
#define FOBJ_NOT_ENC 0x00
#define FOBJ_DECRYPTING 0x01
#define FOBJ_ENCRYPTING 0x02
#define FOBJ_ENCRYPTED 0x03
#define FOBJ_COMP_BITS 0x0C
#define FOBJ_NOT_COMP 0x00
#define FOBJ_DECOMPRESSING 0x04
#define FOBJ_COMPRESSING 0x08
#define FOBJ_COMPRESSED 0x0C
 char fo_res4[3]; /* 115 - For future use */
 int fo_res5[8]; /* 118 - For future use */
 FOBJ_SYSINFO fo_info; /* 138 - System based transient
 information */
} FOBJ_INFO; /* 1C4 total length */

int main(int argc, char **argv)
{
 int bpxrv;
 int bpxrc;
 int bpxrs;
 char parm_pathname[1024];
 char pathname[1024];
 char *pathp = NULL;
 FOBJ_INFO fobj;
 FOBJ_INFO *fo = &fobj;
 void *arg = (void *)fo;
 int arglen = sizeof(fobj);
 char buffer1[80];
 char buffer2[80];
 hyper bogusSignedTime;
 char *p;
 char *timep;
 char time1_string[30];
 char time2_string[30];
 char seclabel[9];
 char temp;

 if (argc < 2)
 {
 printf("Please specify a file or directory path name as a parameter\n");
 exit(1);
 }

 strncpy(parm_pathname, argv[1], sizeof(pathname));

 if (parm_pathname[0] == '/') /* if absolute pathname */
 pathp = parm_pathname; /* put ptr to pathname in pathp */
 else
 { /* if relative pathname */
 pathname[0] = 0;
 bpxrc = 0;
 bpxrv = 0;
 bpxrs = 0;

 /* get current working directory path */
 BPX1GCW(sizeof(pathname), pathname, &bpxrv, &bpxrc, &bpxrs);
 if (bpxrv == -1)
 {
 printf("BPX1GCW call failed rc %u rsn %8.8X\n", bpxrc, bpxrs);
 return bpxrc;
 }
 if ((strlen(pathname) + strlen(parm_pathname) + 1) > sizeof(pathname))
 { /* if name longer than maximum pathname */
 printf("directory path name too long - input name len "
 "%d plus cwd len %d for buffer size %d\n",
 strlen(parm_pathname), strlen(pathname), sizeof(pathname));
 return 121; /* EINVAL */
 }

 /* take the current working directory and append slash */
 strcat(pathname, "/");
 /* then append the input relative path name */

List File Information

308 z/OS: z/OS File System Administration

 strcat(pathname, parm_pathname);
 /* put ptr to result in pathp */
 pathp = pathname;
 }

 bpxrc = 0;
 bpxrv = 0;
 bpxrs = 0;

 memset((char *)&fobj, 0x00, sizeof(fobj));
 memcpy(&fobj.fo_eye, FO_EYE, 4);
 fobj.fo_len = sizeof(fobj);
 fobj.fo_ver = FO_VER_INITIAL;
 BPX1PIO(strlen(pathp), pathp, ZFSIOCTL_FILEINFO,
 arglen, arg, &bpxrv, &bpxrc, &bpxrs);

 if (bpxrv < 0)
 {
 printf("Error getting fileinfo for pathname %s\n", pathp);
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 return bpxrc;
 }
 else
 { /* Return from fileinfo was successful */
 printf(" Object path: %s\n", pathp);
 printf(" Inode is %lu\n", fo->fo_inode);
 printf(" Length is %llu\n", fo->fo_length);

 /* Some common object information */
 printf(" Object type is %s\n",
 fo->fo_type == FO_DIR ? "DIR" :
 fo->fo_type == FO_FILE ? "FILE" :
 fo->fo_type == FO_LINK ? "LINK" :
 fo->fo_type == FO_CHARSPEC ? "CHARSPEC" : "??");

 /* Some directory object information */
 if (fo->fo_type == FO_DIR)
 printf(" Directory version %u\n",
 fo->fo_flags & FO_VER5 ? 5 : 4);
 }
 printf("\n");
 return 0;
}

List File Information

Chapter 13. zFS application programming interface information 309

List File System Names (Version 1)

Purpose
Returns the names of the file systems contained in a specified aggregate on this system; the aggregate
must be attached.

IBM recommends that you should use the List Detailed File System Information API instead of List
Aggregate Status or List File System Status.

Format
syscall_parmlist
 opcode int 138 AGOP_LISTFSNAMES_PARMDATA
 parms[0] int offset to AGGR_ID
 parms[1] int buffer length or 0
 parms[2] int offset to buffer or 0
 parms[3] int offset to size
 parms[4] int 0
 parms[5] int 0
 parms[6] 0
AGGR_ID
 aid_eye char[4] "AGID"
 aid_len char sizeof(AGGR_ID)
 aid_ver char 1
 aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"
 aid_reserved char[33] 0
FS_ID[n] Array of FS_IDs (n can be zero)
 fsid_eye char[4] "FSID"
 fsid_len char sizeof(FS_ID)
 fsid_ver char 1
 fsid_res1 char 0
 fsid_res2 char 0
 fsid_id
 high unsigned int
 low unsigned int
 fsid_aggrname char[45]
 fsid_name char[45]
 fsid_reserved char[32]
 fsid_reserved2 char[2]
size int

Return_value 0 if request is successful, -1 if it is not successful

Return_code
 EINTR ZFS is shutting down
 EINVAL Invalid parameter list
 EMVSERR Internal error using an osi service
 ENOENT Aggregate is not attached
 E2BIG List is too big for buffer supplied
Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage notes
1. Reserved fields and undefined flags must be set to binary zeros.

Privilege required
None.

Related services
List Attached Aggregate Names
List Detailed File System Information
List File System Status

List File System Names (Version 1)

310 z/OS: z/OS File System Administration

Restrictions
None.

Examples

#pragma linkage(BPX1PCT, OS)
extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_LISTFSNAMES_PARMDATA 138
#define E2BIG 145

typedef struct syscall_parmlist_t {
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44
#define ZFS_MAX_FSYSNAME 44

typedef struct aggr_id_t {
 char aid_eye[4]; /* Eye Catcher */
#define AID_EYE "AGID"
 char aid_len; /* Length of this structure */
 char aid_ver; /* Version */
#define AID_VER_INITIAL 1 /* Initial version */
 char aid_name[ZFS_MAX_AGGRNAME+1]; /* aggr name, null terminated */
 char aid_reserved[33]; /* Reserved for the future */
} AGGR_ID;

typedef struct hyper { /* This is a 64 bit integer to zFS */
 unsigned int high;
 unsigned int low;
} hyper;

typedef struct fs_id_t {
 char fsid_eye[4]; /* Eye catcher */
#define FSID_EYE "FSID"
 char fsid_len; /* Length of this structure */
 char fsid_ver; /* Version */
 char fsid_res1; /* Reserved. */
 char fsid_res2; /* Reserved. */
 hyper fsid_id; /* Internal identifier */
#define FSID_VER_INITIAL 1 /* Initial version */
 char fsid_aggrname[ZFS_MAX_AGGRNAME+1]; /*Aggregate name,can be NULL string*/
 char fsid_name[ZFS_MAX_FSYSNAME+1]; /* Name, null terminated */
 char fsid_reserved[32]; /* Reserved for the future */
 char fsid_reserved2[2]; /* Reserved for the future */
} FS_ID;

struct parmstruct {
 syscall_parmlist myparms;
 AGGR_ID aggr_id;

 /* Real malloc'd structure will have an array of FS_IDs here */
 int size;
};

int main(int argc, char **argv)
{
 int bpxrv;
 int bpxrc;
 int bpxrs;
 struct parmstruct myparmstruct;
 AGGR_ID *aggPtr;
 FS_ID *fsPtr;

 int fsSize = sizeof(FS_ID);
 int buflen = sizeof(FS_ID);
 struct parmstruct *myp = &myparmstruct;
 int mypsize;
 int count_fs;
 int total_fs;
 char aggrname[45] = "PLEX.DCEIMGQX.FS";

List File System Names (Version 1)

Chapter 13. zFS application programming interface information 311

 /* Ensure reserved fields are 0 */
 memset(&myparmstruct.aggr_id, 0, sizeof(AGGR_ID));
 memcpy(&myparmstruct.aggr_id.aid_eye, AID_EYE, 4);
 myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);
 myparmstruct.aggr_id.aid_ver = AID_VER_INITIAL;
 strcpy(myparmstruct.aggr_id.aid_name, aggrname);

 myparmstruct.myparms.opcode = AGOP_LISTFSNAMES_PARMDATA;
 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
 myparmstruct.myparms.parms[1] = 0;
 myparmstruct.myparms.parms[2] = 0;
 myparmstruct.myparms.parms[3] = sizeof(syscall_parmlist) + sizeof(AGGR_ID);
 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;

 BPX1PCT("ZFS ",
 ZFSCALL_AGGR, /* Aggregate operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv < 0)
 {
 if (bpxrc == E2BIG)
 {
 buflen = myp->size; /* Get buffer size needed */
 mypsize = buflen +
 sizeof(syscall_parmlist) +
 sizeof(AGGR_ID) +
 sizeof(int);

 myp = (struct parmstruct *)malloc((int)mypsize);
 memset(myp, 0, mypsize);
 memcpy(myp->aggr_id.aid_eye, AID_EYE, 4);
 myp->aggr_id.aid_len = sizeof(AGGR_ID);
 myp->aggr_id.aid_ver = AID_VER_INITIAL;
 strcpy(myp->aggr_id.aid_name, aggrname);

 myp->myparms.opcode = AGOP_LISTFSNAMES_PARMDATA;
 myp->myparms.parms[0] = sizeof(syscall_parmlist);
 myp->myparms.parms[1] = buflen;
 myp->myparms.parms[2] = sizeof(syscall_parmlist) + sizeof(AGGR_ID);
 myp->myparms.parms[3] = sizeof(syscall_parmlist) +
 sizeof(AGGR_ID) +
 buflen;
 myp->myparms.parms[4] = 0;
 myp->myparms.parms[5] = 0;
 myp->myparms.parms[6] = 0;

 BPX1PCT("ZFS ",
 ZFSCALL_AGGR, /* Aggregate operation */
 mypsize, /* Length of Argument */
 (char *)myp, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv == 0)
 {
 total_fs = buflen / fsSize;
 printf("total file systems = %d\n", total_fs);

 count_fs = 1;
 for (fsPtr = (FS_ID *) & (myp->size);
 count_fs <= total_fs;
 fsPtr++, count_fs++)
 printf("%-64.64s\n", fsPtr->fsid_name);

 free(myp);
 }
 else
 { /* lsaggr names failed with large enough buffer */
 printf("Error on ls fs with large enough buffer\n");
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 free(myp);
 return bpxrc;
 }
 }

List File System Names (Version 1)

312 z/OS: z/OS File System Administration

 else
 { /* error was not E2BIG */
 printf("Error on ls fs trying to get required size\n");
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 free(myp);
 return bpxrc;
 }
 }
 else
 { /* asking for buffer size gave rv = 0; maybe there are no file systems */
 if (myparmstruct.size == 0)
 printf("No file systems\n");
 else /* No, there was some other problem with getting the size needed */
 printf("Error getting size required\n");
 }
 return 0;
}

List File System Names (Version 1)

Chapter 13. zFS application programming interface information 313

List File System Names (Version 2)

Purpose
An aggregate operation that returns the names of the zFS file systems that are contained in a specified
aggregate on this system and their corresponding z/OS UNIX file system names (if they are mounted). The
specified aggregate must be attached.

IBM recommends using the List Detailed File System Information API instead of List Aggregate Status or
List File System Status.

Format
syscall_parmlist
 opcode int 144 AGOP_LISTFSNAMES_PARMDATA2
 parms[0] int offset to AGGR_ID
 parms[1] int buffer length or 0
 parms[2] int offset to buffer or 0
 parms[3] int offset to size
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0
AGGR_ID
 aid_eye char[4] "AGID"
 aid_len char sizeof(AGGR_ID)
 aid_ver char 1
 aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"
 aid_reserved char[33] 0
FS_ID2[n] Array of FS_ID2s (n can be zero)
 fsid_eye char[4] "FSID"
 fsid_len char sizeof(FS_ID2)
 fsid_ver char 2
 fsid_res1 char 0
 fsid_res2 char 0
 fsid_id
 high unsigned int
 low unsigned int
 fsid_aggrname char[45]
 fsid_name char[45]
 fsid_mtname char[45]
 fsid_reserved char[49]
size int

Return_value 0 if request is successful, -1 if it is not successful

Return_code
 EINTR ZFS is shutting down
 EINVAL Invalid parameter list
 EMVSERR Internal error using an osi service
 ENOENT Aggregate is not attached
 E2BIG List is too big for buffer supplied

Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage notes
1. The version 2 List File System Names returns an array of FS_ID2s.
2. Reserved fields and undefined flags must be set to binary zeros.

Privilege required
None.

Related services
List Attached Aggregate Names

List File System Names (Version 2)

314 z/OS: z/OS File System Administration

List Detailed File System Information
List File System Status

Restrictions
When FS_ID2 is used, if you specify the z/OS UNIX file system name (fsid_mtname), you cannot specify
the zFS file system name (fsid_name) nor the aggregate name (fsid_aggrname).

Examples

#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_LISTFSNAMES_PARMDATA2 144
#define E2BIG 145

typedef struct syscall_parmlist_t {
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44
#define ZFS_MAX_FSYSNAME 44

typedef struct aggr_id_t {
 char aid_eye[4]; /* Eye Catcher */
#define AID_EYE "AGID"
 char aid_len; /* Length of this structure */
 char aid_ver; /* Version */
#define AID_VER_INITIAL 1
 char aid_name[ZFS_MAX_AGGRNAME+1]; /* aggr name,null terminated */
 char aid_reserved[33]; /* Reserved for the future */
} AGGR_ID;

typedef struct hyper { /* 64 bit integer to zFS */
 unsigned int high;
 unsigned int low;
} hyper;

typedef struct fs_id2_t {
 char fsid_eye[4]; /* Eye catcher */
#define FSID_EYE "FSID"
 char fsid_len; /* Length of this structure */
 char fsid_ver; /* Version */
 char fsid_res1; /* Reserved. */
 char fsid_res2; /* Reserved. */
 hyper fsid_id; /* Internal identifier */
#define FSID_VER_2 2
 char fsid_aggrname[ZFS_MAX_AGGRNAME+1]; /* Aggregate name, */
 /* can be NULL string */
 char fsid_name[ZFS_MAX_FSYSNAME+1]; /* Name, null terminated */
 char fsid_mtname[ZFS_MAX_FSYSNAME+1]; /* Mount name, */
 /* null terminated */
 char fsid_reserved[49]; /* Reserved for the future */
} FS_ID2;

struct parmstruct {
 syscall_parmlist myparms;
 AGGR_ID aggr_id;

 /* Real malloc'd structure will have an array of FS_ID2s here */
 int size;
};

int main(int argc, char **argv)
{
 int buffer_success = 0;
 int bpxrv;
 int bpxrc;
 int bpxrs;

List File System Names (Version 2)

Chapter 13. zFS application programming interface information 315

 int t;
 struct parmstruct myparmstruct;
 AGGR_ID *aggPtr;
 FS_ID2 *fsPtr;
 int fsSize = sizeof(FS_ID2);
 int buflen = sizeof(FS_ID2);
 struct parmstruct *myp = &myparmstruct;
 int mypsize;
 int count_fs, total_fs;

 char aggrname[45] = "PLEX.DCEIMGQX.FS";
 int *p;

 memset(&myparmstruct.aggr_id, 0, sizeof(AGGR_ID)); /* Ensure reserved */
 /* fields are 0 */
 memcpy(&myparmstruct.aggr_id.aid_eye, AID_EYE, 4);
 myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);
 myparmstruct.aggr_id.aid_ver = AID_VER_INITIAL;
 strcpy(myparmstruct.aggr_id.aid_name, aggrname);

 myparmstruct.myparms.opcode = AGOP_LISTFSNAMES_PARMDATA2;
 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
 myparmstruct.myparms.parms[1] = 0;
 myparmstruct.myparms.parms[2] = 0;
 myparmstruct.myparms.parms[3] = sizeof(syscall_parmlist) + sizeof(AGGR_ID);
 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;

 BPX1PCT("ZFS ",
 ZFSCALL_AGGR, /* Aggregate operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 for(t = 0; t < 1000 && buffer_success == 0; t++)
 {
 if (bpxrv < 0)
 {
 if (bpxrc == E2BIG)
 {
 buflen = myp->size; /* Get buffer size needed */
 mypsize = buflen +
 sizeof(syscall_parmlist) +
 sizeof(AGGR_ID) +
 sizeof(myparmstruct.size);

 free(myp);

 myp = (struct parmstruct *)malloc((int)mypsize);
 memset(myp, 0, mypsize);
 memcpy(myp->aggr_id.aid_eye, AID_EYE, 4);
 myp->aggr_id.aid_len = sizeof(AGGR_ID);
 myp->aggr_id.aid_ver = AID_VER_INITIAL;
 strcpy(myp->aggr_id.aid_name, aggrname);

 myp->myparms.opcode = AGOP_LISTFSNAMES_PARMDATA2;
 myp->myparms.parms[0] = sizeof(syscall_parmlist);
 myp->myparms.parms[1] = buflen;
 myp->myparms.parms[2] = sizeof(syscall_parmlist) + sizeof(AGGR_ID);
 myp->myparms.parms[3] = sizeof(syscall_parmlist) +
 sizeof(AGGR_ID) + buflen;
 myp->myparms.parms[4] = 0;
 myp->myparms.parms[5] = 0;
 myp->myparms.parms[6] = 0;

 BPX1PCT("ZFS ",
 ZFSCALL_AGGR, /* Aggregate operation */
 mypsize, /* Length of Argument */
 (char *)myp, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if(bpxrv != 0 && bpxrc == E2BIG)
 printf("E2BIG: %d times total\n", t++);
 else if(bpxrv == 0)
 {
 buffer_success = 1;
 total_fs = buflen / fsSize;

List File System Names (Version 2)

316 z/OS: z/OS File System Administration

 printf("total file systems = %d in aggregate %s\n",
 total_fs, aggrname);
 count_fs = 1;
 for (fsPtr = (FS_ID2*) & (myp->size);
 count_fs <= total_fs;
 fsPtr++, count_fs++)
 {
 printf("\n");
 printf("zFS file system name: [%s]\n", fsPtr->fsid_name);
 printf("UNIX file system name: [%s]\n", fsPtr->fsid_mtname);
 }
 free(myp);
 }
 else
 { /* lsaggr names failed with large enough buffer */
 printf("Error on ls fs with large enough buffer\n");
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 free(myp);
 return bpxrc;
 }
 }
 else
 { /* error was not E2BIG */
 printf("Error on ls fs trying to get required size\n");
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 free(myp);
 return bpxrc;
 }
 }
 else
 { /* asking for buffer size gave rv = 0; maybe there are no file systems */
 if (myparmstruct.size == 0)
 printf("No file systems\n");
 else /* No, there was some other problem with getting the size needed */
 printf("Error getting size required\n");

 free(myp);
 return bpxrc;
 }
 }

 if(t == 1000)
 printf("Number of failed buffer resizes exceeded.\n");

 free(myp);
 return 0;
}

List File System Names (Version 2)

Chapter 13. zFS application programming interface information 317

List File System Status

Purpose
Lists status information of a file system. As input, use an FS_ID or an FS_ID2, which specifies the z/OS
UNIX file system name (the mount name). For an FS_ID2, the file system must be mounted using that
z/OS UNIX file system name. The aggregate that contains the file system must be attached and the
aggregate cannot be quiesced.

IBM recommends that you should use the List Detailed File System Information API instead of List
Aggregate Status or List File System Status.

Format
syscall_parmlist
 opcode int 142 FSOP_GETSTAT_PARMDATA
 parms[0] int Offset to FS_ID
 parms[1] int Offset to FS_STATUS
 parms[2] int 0
 parms[3] int 0
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0
FS_ID or FS_ID2
 fsid_eye char[4] "FSID"
 fsid_len char sizeof(FS_ID)
 fsid_ver char 1
 fsid_res1 char Reserved
 fsid_res2 char Reserved
 fsid_id
 high unsigned int High portion of generated ID
 low unsigned int Low portion of generated ID
 fsid_aggrname char[45] Aggregate name
 fsid_name char[45] File system name
 fsid_reserved char[32] Reserved
 fsid_reserved2 char[2] Reserved
FS_ID2 or FS_ID
 fsid_eye char[4] "FSID"
 fsid_len char sizeof(FS_ID2)
 fsid_ver char 2
 fsid_res1 char Reserved
 fsid_res2 char Reserved
 fsid_id
 high unsigned int High portion of generated ID
 low unsigned int Low portion of generated ID
 fsid_aggrname char[45] Aggregate name
 fsid_name char[45] File system name
 fsid_mtname char[45] Name used when mounted
 fsid_reserved char[49] Reserved
FS_STATUS
 fs_eye char[4] "FSST"
 fs_len short sizeof(FS_STATUS)
 fs_ver char 1
 fs_res1 char Reserved
 fs_id
 high unsigned int High portion of generated ID
 low unsigned int Low portion of generated ID
 fs_cloneTime timeval Time file system cloned
 fs_createTime timeval Time file system created
 fs_updateTime timeval Time of last update
 fs_accessTime timeval Time of last access
 fs_allocLimit unsigned int Number of blocks available
 fs_allocUsage unsigned int Number of blocks in use
 fs_visQuotaLimit unsigned int Quota for file system
 fs_visQuotaUsage unsigned int Blocks used in file system
 fs_accError unsigned int Error for invalid operation
 fs_accStatus int Operations being performed
 fs_states int File system state
 fs_nodeMax int Maximum inode number
 fs_minQuota int Minimum inode number
 fs_type int Type of file system
 fs_threshold char FSFULL threshold monitoring
 fs_increment char FSFULL monitoring increment
 fs_mountstate char Mount status

List File System Status

318 z/OS: z/OS File System Administration

 0 - Not mounted
 1 - Mounted R/W
 2 - Mounted readonly
 fs_msglen char Length of status message
 fs_msg char[128] Status message
 fs_aggrname char[45] Aggregate name
 fs_reserved1 char[3] Reserved
 fs_reserved2 unsigned int[3] Reserved
 fs_InodeTbl unsigned int Size of Inode table
 fs_requests
 high unsigned int High portion of number of file
 system requests by applications
 low unsigned int Low portion of number of file
 system requests by applications
 fs_reserved3 unsigned int Reserved
 fs_reserved4 unsigned int Reserved
 fs_reserved5 unsigned int Reserved
 fs_diskFormatMajorVersion unsigned int Major version of disk format
 fs_diskFormatMinorVersion unsigned int Minor version of disk format
 fs_create64 long long Time file system created
 fs_update64 long long Time of last update
 fs_access64 long long Time of last access
 fs_reserved char[56] Reserved

- OR
-FS_STATUS2
 fs_eye char[4] "FSST"
 fs_len short sizeof(FS_STATUS)
 fs_ver char 2
 fs_res1 char Reserved
 fs_id
 high unsigned int High file system identifier
 low unsigned int Low file system identifier
 fs_cloneTime timeval Time file system cloned
 fs_createTime timeval Time file system created
 fs_updateTime timeval Time of last update
 fs_accessTime timeval Time of last access
 fs_allocLimit unsigned int Number of blocks available
 fs_allocUsage unsigned int Number of blocks in use
 fs_visQuotaLimit unsigned int Quota for file system
 fs_visQuotaUsage unsigned int Blocks used in file system
 fs_accError unsigned int Error for invalid operation
 fs_accStatus int Operations being performed
 fs_states int File system state
 fs_nodeMax int Maximum inode number
 fs_minQuota int Minimum inode number
 fs_type int Type of file system
 fs_threshold char FSFULL threshold monitoring
 fs_increment char FSFULL monitoring increment
 fs_mountstate char Mount status
 0 - Not mounted
 1 - Mounted R/W
 2 - Mounted readonly
 fs_msglen char Length of status message
 fs_msg char[128] Status message
 fs_aggrname char[45] Aggregate name
 fs_reserved1 char[3] Reserved
 fs_reserved2 unsigned int[3] Reserved
 fs_InodeTbl unsigned int Size of Inode table
 fs_requests
 high unsigned int High portion of number of file
 system requests by applications
 low unsigned int Low portion of number of file
 system requests by applications
 fs_reserved3 unsigned int Reserved
 fs_reserved4 unsigned int Reserved
 fs_reserved5 unsigned int Reserved
 fs_diskFormatMajorVersion unsigned int Major version of disk format
 fs_diskFormatMinorVersion unsigned int Minor version of disk format
 fs_allocLimit_hyper hyper Allocation limit for file system
 fs_allocUsage_hyper hyper Amount of allocation used
 fs_visQuotaLimit_hyper hyper Quota for file system
 fs_visQuotaUsage_hyper hyper Amount of quota used
 fs_create64 long long Time file system created
 fs_update64 long long Time of last update
 fs_access64 long long Time of last access
 fs_reserved char[20] Reserved

Return_value 0 if request is successful, -1 if it is not successful

Return_code

List File System Status

Chapter 13. zFS application programming interface information 319

 EBUSY Aggregate containing file system is quiesced
 EINTR ZFS is shutting down
 EINVAL Invalid parameter list
 EMVSERR Internal error using an osi service
 ENOENT Aggregate is not attached

Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage notes
1. The aggregate must be mounted or attached.
2. For an FS_STATUS, if a size is too large for 32 bits, 0xFFFFFFFF is returned. For an FS_STATUS2, sizes

are returned in both the normal fields and the hyper fields.
3. Reserved fields and undefined flags must be set to binary zeros.

Privilege required
None.

Related services
List Attached Aggregate Names
List Detailed File System Information

Restrictions
When FS_ID2 is used, if you specify the z/OS UNIX file system name (fsid_mtname), you cannot specify
the zFS file system name (fsid_name) nor the aggregate name (fsid_aggrname).

The following fields are internal use only and not intended for application use:

• fs_accError
• fs_accStatus
• fs_type

The fs_states field contains flag 0x00010000, indicating a read/write file system, and flag
0x00030000, indicating a backup file system. All other flags in this field are internal use only and are not
intended for application usage.

Examples

Example 1 uses an FS_ID; see Example 2 for an example that uses FS_ID2.

#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>
#include <time.h> /* ctime */

#define ZFSCALL_FILESYS 0x40000004
#define FSOP_GETSTAT_PARMDATA 142

typedef struct syscall_parmlist_t {
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

typedef struct hyper { /* This is a 64 bit integer to zFS */
 unsigned int high;
 unsigned int low;
} hyper;

List File System Status

320 z/OS: z/OS File System Administration

#define ZFS_MAX_AGGRNAME 44
#define ZFS_MAX_FSYSNAME 44

typedef struct fs_id_t {
 char fsid_eye[4]; /* Eye catcher */
#define FSID_EYE "FSID"
 char fsid_len; /* Length of this structure */
 char fsid_ver; /* Version */
 char fsid_res1; /* Reserved. */
 char fsid_res2; /* Reserved. */
 hyper fsid_id; /* Internal identifier */
#define FSID_VER_INITIAL 1 /* Initial version */
 char fsid_aggrname[ZFS_MAX_AGGRNAME+1]; /* Aggregate name,
 can be NULL string */
 char fsid_name[ZFS_MAX_FSYSNAME+1]; /* Name, null terminated */
 char fsid_reserved[32]; /* Reserved for the future */
 char fsid_reserved2[2]; /* Reserved for the future */
} FS_ID;

struct timeval {
 int tv_sec; /* seconds */
 int tv_usec; /* microseconds */
};

typedef _Packed struct fs_status_t {
 char fs_eye[4]; /* Eye catcher */
#define FS_EYE "FSST"
 short fs_len; /* Length of structure */
 char fs_ver;
#define FS_VER_INITIAL 1 /* Initial version */
 char fs_flags; /* Flags */
#define FS_PERFINFO 0x80 /*Performance information in output status*/
 hyper fs_id; /*Internal identifier */
 struct timeval fs_cloneTime; /*Time when this filesys made via
 clone or when last recloned */
 struct timeval fs_createTime; /*Time when this filesys was created */
 struct timeval fs_updateTime; /*Time when this filesys was last updates*/
 struct timeval fs_accessTime; /*Time when this filesys was last accessed*/
 unsigned int fs_allocLimit; /*Allocation limit for filesys in kilobytes*/
 unsigned int fs_allocUsage; /*Amount of allocation used in kilobytes*/
 unsigned int fs_visQuotaLimit; /*Visible filesystem quota in kilobytes*/
 unsigned int fs_visQuotaUsage; /*How much quota is used in kilobytes*/
 unsigned int fs_accError; /*error to return for incompatible vnode ops */
 int fs_accStatus; /*Operations currently being
 performed on file system */
 int fs_states; /*State bits*/
#define FS_TYPE_RW 0x10000 /* read/write (ordinary) */
#define FS_TYPE_BK 0x30000 /* ``.backup */
 int fs_nodeMax; /* Maximum inode number used */
 int fs_minQuota;
 int fs_type;
 char fs_threshold; /* Threshold for fsfull monitoring */
 char fs_increment; /* Increment for fsfull monitoring */
 char fs_mountstate; /* Aggregate flags */
#define FS_NOT_MOUNTED 0 /* Filesys not mounted */
#define FS_MOUNTED_RW 1 /* Filesys mounted RW */
#define FS_MOUNTED_RO 2 /* Filesys mounted RO */
 char fs_msglen; /* Length of status message */
 char fs_msg[128]; /* Status message for filesystem */
 char fs_aggrname[ZFS_MAX_AGGRNAME+1]; /* Name of aggregate I reside on */
 char fs_reserved1[3]; /* Reserved for future use/alignment */
 unsigned int fs_reserved2[3]; /* reserved */
 unsigned int fs_InodeTbl; /*Amount of k used for the Filesystem Inode table*/
 /* fs_InodeTbl is zero for all releases prior */
 /* to r7 and non zero in r7 and above */
 hyper fs_requests; /* Number of filesystem requests
 by users/applications */
 unsigned int fs_reserved3;
 unsigned int fs_reserved4;
 unsigned int fs_reserved5;
 int fs_pad1;
 unsigned int fs_diskFormatMajorVersion; /* disk format major version */
 unsigned int fs_diskFormatMinorVersion; /* disk format minor version */
 long long fs_create64; /*time since epoch file system created*/
 long long fs_update64; /*time since epoch file system last updated*/
 long long fs_access64; /*time since epoch file system last accessed*/
 char fs_reserved[56]; /* Reserved for future use */
} _Packed FS_STATUS;

struct parmstruct {
 syscall_parmlist myparms;
 FS_ID fs_id;

List File System Status

Chapter 13. zFS application programming interface information 321

 FS_STATUS fs_status;
};

int main(int argc, char **argv)
{
 int bpxrv;
 int bpxrc;
 int bpxrs;

 /* file system name to getstatus */
 char filesystemname[45] = "PLEX.DCEIMGQX.FS";

 struct parmstruct myparmstruct;
 FS_ID *idp = &(myparmstruct.fs_id);
 FS_STATUS *fsp = &(myparmstruct.fs_status);

 myparmstruct.myparms.opcode = FSOP_GETSTAT_PARMDATA;
 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
 myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(FS_ID);
 myparmstruct.myparms.parms[2] = 0;
 myparmstruct.myparms.parms[3] = 0;
 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;

 memset(idp, 0, sizeof(FS_ID)); /* Ensure reserved fields are 0 */
 memset(fsp, 0, sizeof(FS_STATUS)); /* Ensure reserved fields are 0 */
 memcpy(&myparmstruct.fs_status.fs_eye[0], FS_EYE, 4);
 myparmstruct.fs_status.fs_len = sizeof(FS_STATUS);
 myparmstruct.fs_status.fs_ver = FS_VER_INITIAL;
 memcpy(&myparmstruct.fs_id.fsid_eye, FSID_EYE, 4);
 myparmstruct.fs_id.fsid_len = sizeof(FS_ID);
 myparmstruct.fs_id.fsid_ver = FSID_VER_INITIAL;
 strcpy(myparmstruct.fs_id.fsid_name, filesystemname);

 BPX1PCT("ZFS ",
 ZFSCALL_FILESYS, /* File system operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv < 0)
 {
 printf("Error getstatus file system %s\n", filesystemname);
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 return bpxrc;
 }
 else
 { /* Return from getstatus was successful */
 printf("File system %s getstatus successful\n", filesystemname);
 printf("getstatus: fs_id=%d,,%d, clone_time=%s, "
 "create_time=%s, update_time=%s, access_time=%s\n",
 myparmstruct.fs_status.fs_id.high,
 myparmstruct.fs_status.fs_id.low,
 ctime((const long*) &myparmstruct.fs_status.fs_cloneTime.tv_sec),
 ctime64((const long long*) &myparmstruct.fs_status.fs_create64),
 ctime64((const long long*) &myparmstruct.fs_status.fs_update64),
 ctime64((const long long*) &myparmstruct.fs_status.fs_access64));

 printf("getstatus: alloc_limit=%u, alloc_usage=%u, quota_limit=%u\n",
 myparmstruct.fs_status.fs_allocLimit,
 myparmstruct.fs_status.fs_allocUsage,
 myparmstruct.fs_status.fs_visQuotaLimit);

 printf("getstatus: quota_usage=%u, accError=%u, accStatus=%x, states=%x\n",
 myparmstruct.fs_status.fs_visQuotaUsage,
 myparmstruct.fs_status.fs_accError,
 myparmstruct.fs_status.fs_accStatus,
 myparmstruct.fs_status.fs_states);

 printf("getstatus: max_inode=%d, min_quota=%d, "
 "type=%d, fsfull_threshold=%d\n",
 myparmstruct.fs_status.fs_nodeMax,
 myparmstruct.fs_status.fs_minQuota,
 myparmstruct.fs_status.fs_type,
 myparmstruct.fs_status.fs_threshold);

 printf("getstatus: fsfull_increment=%d, mount_state=%d, "
 "msg_len=%d, msg=%s\n",
 myparmstruct.fs_status.fs_increment,

List File System Status

322 z/OS: z/OS File System Administration

 myparmstruct.fs_status.fs_mountstate,
 myparmstruct.fs_status.fs_msglen,
 myparmstruct.fs_status.fs_msg);

 printf("getstatus: aggrname=%s\n", myparmstruct.fs_status.fs_aggrname);
 printf("getstatus: inode_table_k=%d, fs_requests=%d,,%d\n",
 myparmstruct.fs_status.fs_InodeTbl,
 myparmstruct.fs_status.fs_requests.high,
 myparmstruct.fs_status.fs_requests.low);

 printf("getstatus: version=%d.%d\n",
 myparmstruct.fs_status.fs_diskFormatMajorVersion,
 myparmstruct.fs_status.fs_diskFormatMinorVersion);
 }
 return 0;
}

The following example uses FS_ID2; see Example 1 for an example that uses FS_ID.

#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>
#include <time.h> /* ctime */

#define ZFSCALL_FILESYS 0x40000004
#define FSOP_GETSTAT_PARMDATA 142

typedef struct syscall_parmlist_t {
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

typedef struct hyper { /* This is a 64 bit integer to zFS */
 unsigned int high;
 unsigned int low;
} hyper;

#define ZFS_MAX_AGGRNAME 44
#define ZFS_MAX_FSYSNAME 44

typedef struct fs_id2_t {
 char fsid_eye[4]; /* Eye catcher */
#define FSID_EYE "FSID"
 char fsid_len; /* Length of this structure */
 char fsid_ver; /* Version */
 char fsid_res1; /* Reserved. */
 char fsid_res2; /* Reserved. */
 hyper fsid_id; /* Internal identifier */
#define FSID_VER_2 2 /* version for FS_ID2 */
 char fsid_aggrname[ZFS_MAX_AGGRNAME+1]; /* Aggregate name, can
 be NULL string */
 char fsid_name[ZFS_MAX_FSYSNAME+1]; /* Name, null terminated */
 char fsid_mtname[ZFS_MAX_FSYSNAME+1]; /* Mount name, null terminated */
 char fsid_reserved[49]; /* Reserved for the future*/
} FS_ID2;

struct timeval {
 int tv_sec; /* seconds */
 int tv_usec; /* microseconds */
};

typedef _Packed struct fs_status_t {
 char fs_eye[4]; /* Eye catcher */
#define FS_EYE "FSST"
 short fs_len; /* Length of structure */
 char fs_ver;
#define FS_VER_INITIAL 1 /* Initial version */
 char fs_flags; /* Flags */
#define FS_PERFINFO 0x80 /* Performance information in
 output status */
 hyper fs_id; /* Internal identifier */
 struct timeval fs_cloneTime; /* Time when this filesys made via
 clone or when last recloned */
 struct timeval fs_createTime; /* Time when this filesys
 was created */

List File System Status

Chapter 13. zFS application programming interface information 323

 struct timeval fs_updateTime; /* Time when this filesys
 was last updated */
 struct timeval fs_accessTime; /* Time when this filesys
 was last accessed */
 unsigned int fs_allocLimit; /* Allocation limit for filesys
 in kilobytes*/
 unsigned int fs_allocUsage; /* Amount of allocation used
 in kilobytes*/
 unsigned int fs_visQuotaLimit; /* Visible filesystem quota
 in kilobytes*/
 unsigned int fs_visQuotaUsage; /* How much quota is used in kilobytes*/
 unsigned int fs_accError; /* error to return for
 incompatible vnode ops */
 int fs_accStatus; /* Operations currently being
 performed on file system */
 int fs_states; /* State bits */
#define FS_TYPE_RW 0x10000 /* read/write (ordinary) */
#define FS_TYPE_BK 0x30000 /* ``.backup'' */
 int fs_nodeMax; /* Maximum inode number used */
 int fs_minQuota;
 int fs_type;
 char fs_threshold; /* Threshold for fsfull monitoring */
 char fs_increment; /* Increment for fsfull monitoring */
 char fs_mountstate; /* Aggregate flags */
#define FS_NOT_MOUNTED 0 /* Filesys not mounted */
#define FS_MOUNTED_RW 1 /* Filesys mounted RW */
#define FS_MOUNTED_RO 2 /* Filesys mounted RO */
 char fs_msglen; /* Length of status message */
 char fs_msg[128]; /* Status message for filesystem */
 char fs_aggrname[ZFS_MAX_AGGRNAME+1]; /* Name of aggregate
 I reside on */
 char fs_reserved1[3]; /* Reserved for future use/alignment */
 unsigned int fs_reserved2[3]; /* reserved */
 unsigned int fs_InodeTbl; /* Amount of k used for the
 Filesystem Inode table*/
 /* fs_InodeTbl is zero for all
 releases prior to */
 /* r7 and non zero in r7 and above */
 hyper fs_requests; /* Number of filesystem requests by
 users/applications */
 unsigned int fs_reserved3;
 unsigned int fs_reserved4;
 unsigned int fs_reserved5;
 int fs_pad1;
 unsigned int fs_diskFormatMajorVersion; /* disk format major version */
 unsigned int fs_diskFormatMinorVersion; /* disk format minor version */
 long long fs_create64; /*time since epoch file system created*/
 long long fs_update64; /*time since epoch file system last updated*/
 long long fs_access64; /*time since epoch file system last accessed*/
 char fs_reserved[56]; /* Reserved for future use */
} _Packed FS_STATUS;

struct parmstruct {
 syscall_parmlist myparms;
 FS_ID2 fs_id2;
 FS_STATUS fs_status;
};

int main(int argc, char **argv)
{
 int bpxrv;
 int bpxrc;
 int bpxrs;

 /* file system name to getstatus */
 char filesystemname[45] = "PLEX.DCEIMGQX.FS";

 struct parmstruct myparmstruct;
 FS_ID2 *idp = &(myparmstruct.fs_id2);
 FS_STATUS *fsp = &(myparmstruct.fs_status);

 myparmstruct.myparms.opcode = FSOP_GETSTAT_PARMDATA;
 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
 myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(FS_ID2);
 myparmstruct.myparms.parms[2] = 0;
 myparmstruct.myparms.parms[3] = 0;
 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;

 memset(idp, 0, sizeof(FS_ID2)); /* Ensure reserved fields are 0 */
 memset(fsp, 0, sizeof(FS_STATUS)); /* Ensure reserved fields are 0 */

List File System Status

324 z/OS: z/OS File System Administration

 memcpy(&myparmstruct.fs_status.fs_eye[0], FS_EYE, 4);

 myparmstruct.fs_status.fs_len = sizeof(FS_STATUS);
 myparmstruct.fs_status.fs_ver = FS_VER_INITIAL;
 memcpy(&myparmstruct.fs_id2.fsid_eye, FSID_EYE, 4);
 myparmstruct.fs_id2.fsid_len = sizeof(FS_ID2);
 myparmstruct.fs_id2.fsid_ver = FSID_VER_2;
 strcpy(myparmstruct.fs_id2.fsid_mtname, filesystemname);

 BPX1PCT("ZFS ",
 ZFSCALL_FILESYS, /* File system operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv < 0)
 {
 printf("Error getstatus file system %s\n", filesystemname);
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 return bpxrc;
 }
 else
 { /* Return from getstatus was successful */
 printf("File system %s getstatus successful\n", filesystemname);
 printf("getstatus: fs_id=%d,,%d, clone_time=%s, create_time=%s, "
 "update_time=%s, access_time=%s\n",
 myparmstruct.fs_status.fs_id.high,
 myparmstruct.fs_status.fs_id.low,
 ctime((const long*) &myparmstruct.fs_status.fs_cloneTime.tv_sec),
 ctime64((const long long*) &myparmstruct.fs_status.fs_create64),
 ctime64((const long long*) &myparmstruct.fs_status.fs_update64),
 ctime64((const long long*) &myparmstruct.fs_status.fs_access64));

 printf("getstatus: alloc_limit=%u, alloc_usage=%u, quota_limit=%u\n",
 myparmstruct.fs_status.fs_allocLimit,
 myparmstruct.fs_status.fs_allocUsage,
 myparmstruct.fs_status.fs_visQuotaLimit);

 printf("getstatus: quota_usage=%u, accError=%u, accStatus=%x, states=%x\n",
 myparmstruct.fs_status.fs_visQuotaUsage,
 myparmstruct.fs_status.fs_accError,
 myparmstruct.fs_status.fs_accStatus,
 myparmstruct.fs_status.fs_states);

 printf("getstatus: max_inode=%d, min_quota=%d, type=%d, "
 "fsfull_threshold=%d\n",
 myparmstruct.fs_status.fs_nodeMax,
 myparmstruct.fs_status.fs_minQuota,
 myparmstruct.fs_status.fs_type,
 myparmstruct.fs_status.fs_threshold);

 printf("getstatus: fsfull_increment=%d, mount_state=%d, "
 "msg_len=%d, msg=%s\n",
 myparmstruct.fs_status.fs_increment,
 myparmstruct.fs_status.fs_mountstate,
 myparmstruct.fs_status.fs_msglen,
 myparmstruct.fs_status.fs_msg);

 printf("getstatus: aggrname=%s\n", myparmstruct.fs_status.fs_aggrname);
 printf("getstatus: inode_table_k=%d, fs_requests=%d,,%d\n",
 myparmstruct.fs_status.fs_InodeTbl,
 myparmstruct.fs_status.fs_requests.high,
 myparmstruct.fs_status.fs_requests.low);

 printf("getstatus: version=%d.%d\n",
 myparmstruct.fs_status.fs_diskFormatMajorVersion,
 myparmstruct.fs_status.fs_diskFormatMinorVersion);
 }
 return 0;
}

List File System Status

Chapter 13. zFS application programming interface information 325

List Systems

Purpose
Retrieves the system names that are part of the zFS XCF group.

Format
syscall_parmlist
 opcode int 174 CFGOP_LSSYS
 parms[0] int size of buffer
 parms[1] int offset to buffer
 parms[2] int offset to bytes returned
 parms[3] int 0
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0
buffer char[]
bytes_returned int

Return_value 0 if request successful, -1 if it is not successful

Return_code
 E2BIG D Data to return is too large for buffer supplied
 EINTR ZFS is shutting down
 EMVSERR Internal error
 ERANGE No systems to return

Reason_code
 0xEFnnxxx See z/OS Distributed File Service Messages and Codes

Usage notes
1. Reserved fields and undefined flags must be set to binary zeros.
2. An array of char[9] fields is returned in buffer. Each element in the array contains a NULL-terminated

string with a system name.
3. Bytes_returned / 9 is the number of elements in the array.

Privilege required
None.

Related services
Query sysplex_state

Restrictions
None.

Examples

#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_CONFIG 0x40000006
#define CFGOP_LSSYS 174 /* List names of systems in the sysplex */
#define E2BIG 145 /* data to return is too big for buffer */
#define ERANGE 2 /* there were no systems to return */

typedef struct system_name_t {

List Systems

326 z/OS: z/OS File System Administration

 char sys_name[9]; /* 8 byte name, null terminated */
} SYSTEM_NAME;

typedef struct syscall_parmlist_t {
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

struct parmstruct {
 syscall_parmlist myparms;
 /* SYSTEM_NAME buffer[32]; */

 /* output buffer for sysnames */
 int size;
} myparmstruct;

int main(int argc, char **argv)
{
 int buffer_success = 0;
 int bpxrv;
 int bpxrc;
 int bpxrs;
 int i,t;
 struct parmstruct *myp = &myparmstruct;
 int mypsize,
 buflen;

 myparmstruct.myparms.opcode = CFGOP_LSSYS;
 myparmstruct.myparms.parms[0] = 0; /* size of buffer */
 myparmstruct.myparms.parms[1] = 0; /* offset to buffer */
 myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist); /*offset to size*/
 /*(required size)*/
 myparmstruct.myparms.parms[3] = 0;
 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;

 BPX1PCT("ZFS ",
 ZFSCALL_CONFIG, /* Config query operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 for(t = 0; t < 1000 && buffer_success == 0; t++)
 {
 if (bpxrv < 0)
 {
 if (bpxrc == E2BIG)
 {
 buflen = myparmstruct.size; /* Get buffer size needed */
 mypsize = sizeof(syscall_parmlist) +
 buflen +
 sizeof(myparmstruct.size);

 free(myp);

 myp = (struct parmstruct *)malloc((int)mypsize);
 memset(myp, 0, mypsize);

 myp->myparms.opcode = CFGOP_LSSYS;
 myp->myparms.parms[0] = buflen;
 myp->myparms.parms[1] = sizeof(syscall_parmlist);
 myp->myparms.parms[2] = sizeof(syscall_parmlist) + buflen;
 myp->myparms.parms[3] = 0;
 myp->myparms.parms[4] = 0;
 myp->myparms.parms[5] = 0;
 myp->myparms.parms[6] = 0;

 BPX1PCT("ZFS ",
 ZFSCALL_CONFIG, /* Config query operation */
 mypsize, /* Length of Argument */
 (char *)myp, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if(bpxrv != 0 && bpxrc == E2BIG)
 printf("E2BIG: %d times total\n", t++);

List Systems

Chapter 13. zFS application programming interface information 327

 else if(bpxrv == 0)
 {
 buffer_success = 1;
 int j, syscount;
 SYSTEM_NAME *syslist;
 int *sizep;

 sizep = (int *)((int)myp + sizeof(syscall_parmlist) + buflen);
 syslist = (SYSTEM_NAME *)((int)myp + sizeof(syscall_parmlist));
 syscount = (*sizep) / sizeof(SYSTEM_NAME);

 for (j = 1; j <= syscount; j++)
 {
 printf("%-8.8s\n", syslist->sys_name);
 syslist++;
 }
 free(myp);
 }
 else
 { /* lssys failed with large enough buffer */
 if (bpxrc == ERANGE)
 printf("No systems to display\n");
 else
 {
 printf("Error on lssys with large enough buffer\n");
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 }
 free(myp);
 return bpxrc;
 }
 }
 else
 { /* error was not E2BIG on the original BPX1PCT */
 if (bpxrc == ERANGE)
 printf("No systems to display from original BPX1PCT\n");
 else
 {
 printf("Error on lssys trying to get required size\n");
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 }
 free(myp);
 return bpxrc;
 }
 }
 else
 { /* asking for buffer size gave rv = 0; maybe there is no data */
 if (myparmstruct.size == 0)
 {
 printf("No data\n");
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 }
 else
 { /* No, there was some other problem with getting the size needed */
 printf("Error getting size required\n");
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 }
 free(myp);
 return bpxrc;
 }
 }

 if(t == 1000)
 printf("Number of failed buffer resizes exceeded.\n");

 free(myp);
 return 0;
}

List Systems

328 z/OS: z/OS File System Administration

Query Config Option

Purpose
A set of subcommand calls (configuration operations) that retrieve the current value for a particular
configuration setting. Each one returns the configuration setting as a character string in the co_string
field.

The Format section and Example 1 use the CFGOP_QUERY_ADM_THREADS subcommand. Example 2
shows an example to query the syslevel. The other query subcommands (see Table 19 on page 239)
operate in a similar manner.

Format
syscall_parmlist
 opcode int 180 CFGOP_QUERY_ADM_THREADS
 parms[0] int offset to CFG_OPTION
 parms[1] int offset to system name (optional)
 parms[2] int 0
 parms[3] int 0
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0
CFG_OPTION
 co_eye char[4] "CFOP"
 co_len short sizeof(CFG_OPTION)
 co_ver char 1
 co_string char[81] 0
 co_value_reserved int[4] reserved
co_reserved char[24] 0
systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful
Return_code
 EBUSY Aggregate could not be quiesced
 EINTR ZFS is shutting down
 EMVSERR Internal error using an osi service
 ENOENT Aggregate is not attached
 EPERM Permission denied to perform request
Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage notes
1. Reserved fields and undefined flags must be set to binary zeros.
2. The output is the null-terminated string that is returned in co_string.

Privilege required
None.

Related services
Set Config Option

Restrictions
None.

Examples

Example 1: The following example shows an API to query admin threads.

Query Config Option

Chapter 13. zFS application programming interface information 329

#pragma linkage(BPX1PCT, OS)
extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_CONFIG 0x40000006
#define CFGOP_QUERY_ADM_THREADS 180 /* query number of admin threads */

typedef struct syscall_parmlist_t {
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

typedef struct config_option_t {
 char co_eye[4]; /* Eye catcher */
#define CFGO_EYE "CFOP"
 short co_len; /* Length of structure */
 char co_ver; /* Version of structure */
#define CO_VER_INITIAL 1 /* Initial version */
#define CO_SLEN 80 /* Sizeof string */
 char co_string[CO_SLEN+1]; /* String value for option
 must be 0 terminated */
 int co_value[4]; /* Place for integer values */
 char co_reserved[24]; /* Reserved for future use */
} CFG_OPTION;

struct parmstruct {
 syscall_parmlist myparms;
 CFG_OPTION co;
 char system[9];
} myparmstruct;

int main(int argc, char **argv)
{
 int bpxrv;
 int bpxrc;
 int bpxrs;
 CFG_OPTION *coptr = &(myparmstruct.co);

 /* This next field should only be set if parms[1] is non-zero */

 /* strcpy(myparmstruct.system,"DCEIMGVN"); */ /* set system to query */
 myparmstruct.myparms.opcode = CFGOP_QUERY_ADM_THREADS;
 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
 myparmstruct.myparms.parms[1] = 0;

 /* Only specify a non-zero offset for the next field (parms[1]) if you are */
 /* z/OS 1.7 and above, and you want to configquery to a different system */

 /* myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + */
 /* sizeof(CFG_OPTION); */

 myparmstruct.myparms.parms[2] = 0;
 myparmstruct.myparms.parms[3] = 0;
 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;

 memset(coptr, 0, sizeof(CFG_OPTION));
 memcpy(coptr->co_eye, CFGO_EYE, 4);
 coptr->co_ver = CO_VER_INITIAL;
 coptr->co_len = (int)sizeof(CFG_OPTION);

 BPX1PCT("ZFS ",
 ZFSCALL_CONFIG, /* Config operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv < 0)
 {
 printf("Error querying config -adm_threads, "
 "BPXRV = %d BPXRC = %d BPXRS = %x\n",
 bpxrv, bpxrc, bpxrs);
 return bpxrc;
 }
 else

Query Config Option

330 z/OS: z/OS File System Administration

 {
 printf("Config query -adm_threads = %s\n", myparmstruct.co.co_string);
 }
 return 0;
}

Example 2: The following example shows an API to query the syslevel.

#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>
#include <string.h>

#define ZFSCALL_CONFIG 0x40000006
#define CFGOP_QUERY_SYSLEVEL 238 /* Query Config option - syslevel */

/* Not in a sysplex shared file system environment */
#define NO_SYSPLEX_SUPPORT 0
/* Admin level sysplex shared file system environment */
#define SYSPLEX_ADMIN_LEVEL 1
/* File level sysplex shared file system environment */
#define SYSPLEX_FILE_LEVEL 2
/* Sysplex-aware on a File system basis */
#define SYSPLEX_FILESYS_LEVEL 3

typedef struct syscall_parmlist_t {
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

typedef struct config_option_t {
 char co_eye[4]; /* Eye catcher */
#define CFGO_EYE "CFOP"
 short co_len; /* Length of structure */
 char co_ver; /* Version of structure */
#define CO_VER_INITIAL 1 /* Initial version */
#define CO_SLEN 80 /* Sizeof string */
 char co_string[CO_SLEN+1]; /* String value for option must */
 /* be 0 terminated */
 int co_value[4]; /* Place for integer vaalues */
 char co_reserved[24]; /* Reserved for future use */
} CFG_OPTION;

struct parmstruct {
 syscall_parmlist myparms;
 CFG_OPTION co;
 char system[9];
} myparmstruct;

int main(int argc, char **argv)
{
 int bpxrv;
 int bpxrc;
 int bpxrs;
 CFG_OPTION *coptr = &(myparmstruct.co);

 char *version,
 *service,
 *created,
 *sysplex,
 *interface,
 *rwshare_default,
 *rest;

 int sysplex_level;

 /* strcpy(myparmstruct.system,"DCEIMGVN"); */ /* set system to query */
 myparmstruct.myparms.opcode = CFGOP_QUERY_SYSLEVEL;
 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
 myparmstruct.myparms.parms[1] = 0;
 /* myparmstruct.myparms.parms[1] =sizeof(syscall_parmlist) + */
 /* sizeof(CFG_OPTION); */
 myparmstruct.myparms.parms[2] = 0;
 myparmstruct.myparms.parms[3] = 0;
 myparmstruct.myparms.parms[4] = 0;

Query Config Option

Chapter 13. zFS application programming interface information 331

 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;

 memset(coptr, 0, sizeof(CFG_OPTION));
 memcpy(coptr->co_eye, CFGO_EYE, 4);
 coptr->co_ver = CO_VER_INITIAL;
 coptr->co_len = (int)sizeof(CFG_OPTION);

 BPX1PCT("ZFS ",
 ZFSCALL_CONFIG, /* Config operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv < 0)
 {
 printf("Error querying config -syslevel, "
 "BPXRV = %d BPXRC = %d BPXRS = %x\n",
 bpxrv, bpxrc, bpxrs);
 return bpxrc;
 }
 else
 {
 /* Parse our configquery string */
 /* format is */
 /* "OSlevel\nServicelevel\ncreatetimestamp\" + */
 /* "nsysplex_state\ninterface_level\nrwshare_default\0" */

 version = myparmstruct.co.co_string;
 service = strchr(version, '\n'); /* find the end of the */
 /* version (for 2nd line) */
 service = '\0'; / ensure end of string for version string */
 service++; /* increment to next field (service) */

 created = strchr(service, '\n'); /* find the end of the */
 /*service (for 2nd line) */
 created = '\0'; / ensure end of string for service string */
 created++; /* increment to next field (creation) */

 sysplex = strchr(created, '\n'); /* find the end of the */
 /* creation timestamp */
 sysplex = '\0'; / ensure end of string for creation string */
 sysplex++; /* increment to next field (sysplex_state) */

 interface = strchr(sysplex, '\n'); /* find end of the sysplex_state */
 interface = '\0'; / ensure end of string for sysplex_state */
 interface++; /* increment to next field (interface level) */

 sysplex_level = atoi(sysplex);
 if (sysplex_level == NO_SYSPLEX_SUPPORT)
 {
 printf("zFS kernel: z/OS File System\nVersion %s "
 "Service Level %s.\n Created on %s.\n",
 version, service, created);
 }
 else
 {
 char buffer[80];

 /* find the end of the interface */
 rwshare_default = strchr(interface, '\n');
 if (rwshare_default != NULL)
 {
 *rwshare_default = '\0';
 rwshare_default++;
 }
 if (sysplex_level == SYSPLEX_ADMIN_LEVEL)
 sprintf(buffer, "sysplex(admin-only) interface(%s)", interface);
 else /* if sysplex_level is SYSPLEX_FILE_LEVEL */
 {
 if (sysplex_level == SYSPLEX_FILE_LEVEL)
 sprintf(buffer, "sysplex(file) interface(%s)", interface);
 else
 { /* if sysplex_level is SYSPLEX_FILESYS_LEVEL */
 if (sysplex_level == SYSPLEX_FILESYS_LEVEL)
 {
 /* find the end of rwshare_default */
 rest = strchr(rwshare_default, '\n');
 if (rest != NULL)
 *rest = '\0'; /*ensure that rwshare_default is null terminated*/

Query Config Option

332 z/OS: z/OS File System Administration

 sprintf(buffer, "sysplex(filesys,%s) interface(%s)",
 rwshare_default, interface);
 }
 else
 sprintf(buffer, "sysplex(%s) interface(%s)", sysplex, interface);
 }
 }
 printf("zFS kernel: z/OS File System\nVersion "
 "%s Service Level %s.\nCreated on %s.\n%s\n",
 version, service, created, buffer);
 }
 }
 return 0;
}

Query Config Option

Chapter 13. zFS application programming interface information 333

Quiesce Aggregate

Purpose
An aggregate operation that quiesces a compatibility mode aggregate. It quiesces activity on the
aggregate and its file system.

Format
syscall_parmlist
 opcode 132 AGOP_QUIESCE_PARMDATA
 parms[0] int offset to AGGR_ID
 parms[1] int offset to handle returned by quiesce
 parms[2] int 0
 parms[3] int 0
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0

 AGGR_ID
 aid_eye char[4] "AGID"
 aid_len char sizeof(AGGR_ID)
 aid_ver char 1
 aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"
 aid_reserved char[33] 0
quiesce_handle int

Return_value 0 if request is successful, -1 if it is not successful

Return_code
 EBUSY Aggregate could not be quiesced
 EINTR ZFS is shutting down
 EMVSERR Internal error using an osi service
 ENOENT Aggregate is not attached
 EPERM Permission denied to perform request
Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage notes
1. Quiesce Aggregate is used to suspend activity on an aggregate. All activity on the file system contained

in the aggregate that is mounted is also suspended. This subcommand is typically used before backing
up an aggregate. The aggregate must be attached to be quiesced. The quiesce operation returns a
quiesce handle that must be supplied on the unquiesce call.

2. Reserved fields and undefined flags must be set to binary zeros.

Privilege required
The issuer must be logged in as root or must have READ authority to the SUPERUSER.FILESYS.PFSCTL
resource in the z/OS UNIXPRIV class.

Related services
Unquiesce Aggregate

Restrictions
None.

Examples

#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

Quiesce Aggregate

334 z/OS: z/OS File System Administration

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_QUIESCE_PARMDATA 132

typedef struct syscall_parmlist_t {
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t {
 char aid_eye[4]; /* Eye catcher */
#define AID_EYE "AGID"
 char aid_len; /* Length of this structure */
 char aid_ver; /* Version */
#define AID_VER_INITIAL 1 /* Initial version */
 char aid_name[ZFS_MAX_AGGRNAME+1]; /* Name, null terminated */
 char aid_reserved[33]; /* Reserved for the future */
} AGGR_ID;

struct parmstruct {
 syscall_parmlist myparms;
 AGGR_ID aggr_id;
 int quiesce_handle;
};

int main(int argc, char **argv)
{
 int bpxrv;
 int bpxrc;
 int bpxrs;
 char aggrname[45] = "PLEX.DCEIMGQX.FS";
 int save_quiesce_handle;
 struct parmstruct myparmstruct;
 AGGR_ID *idp = &(myparmstruct.aggr_id);

 myparmstruct.myparms.opcode = AGOP_QUIESCE_PARMDATA;
 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
 myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(AGGR_ID);
 myparmstruct.myparms.parms[2] = 0;
 myparmstruct.myparms.parms[3] = 0;
 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;

 /* Ensure reserved fields are 0 */
 memset(&myparmstruct.aggr_id, 0, sizeof(AGGR_ID));
 memcpy(&myparmstruct.aggr_id, AID_EYE, 4);
 myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);
 myparmstruct.aggr_id.aid_ver = AID_VER_INITIAL;
 strcpy(myparmstruct.aggr_id.aid_name, aggrname);

 BPX1PCT("ZFS ",
 ZFSCALL_AGGR, /* Aggregate operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv < 0)
 {
 printf("Error quiescing aggregate %s\n", aggrname);
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 return bpxrc;
 }
 else
 { /* Return from quiesce was successful */
 printf("Aggregate %s quiesced successfully, quiescehandle=%d\n",
 aggrname, myparmstruct.quiesce_handle);
 save_quiesce_handle = myparmstruct.quiesce_handle;
 }
 return 0;
}

Quiesce Aggregate

Chapter 13. zFS application programming interface information 335

Reset Backup Flag

Purpose
Used by backup programs to reset the backup bit after completion of a backup. The backup program is
expected to quiesce the aggregate and save the quiesce handle before beginning the backup. After
completing the backup, the backup bit should be reset before unquiescing the aggregate.

Format
syscall_parmlist
 opcode int 157 AGOP_RESETFLAG_PARMDATA
 parms[0] int offset to AGGR_ID
 parms[1] int quiesce handle
 parms[2] int 0
 parms[3] int 0
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0
AGGR_ID
 aid_eye char[4] "AGID"
 aid_len char sizeof(AGGR_ID)
 aid_ver char 1
 aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"
 aid_reserved char[33] 0

Return_value 0 if request is successful, -1 if it is not successful

Return_code
 EINVAL Invalid input parameters
 ENOENT Aggregate not found
 ENOSYS Aggregate not locally owned
 EBUSY Aggregate is growing
 EMVSERR Internal error using an osi service

Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes
 EINVAL Invalid parameters

Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage notes
1. The backup bit must be reset while the aggregate is still quiesced for backup.
2. Reserved fields and undefined flags must be set to binary zeros.

Privilege required
The issuer must be logged in as root or must have READ authority to the SUPERUSER.FILESYS.PFSCTL
resource in the z/OS UNIXPRIV class.

Related services
Quiesce Aggregate
Unquiesce Aggregate

Restrictions
None.

Reset Backup Flag

336 z/OS: z/OS File System Administration

Examples

#pragma linkage(BPX1PCT, OS)
extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_RESETFLAG_PARMDATA 157

typedef struct syscall_parmlist_t
{
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[2]-parms[6] are currently unused*/
} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t
{
 char aid_eye[4]; /* Eye Catcher */
#define AID_EYE "AGID"
 char aid_len; /* Length of this structure */
 char aid_ver; /* Version */
#define AID_VER_INITIAL 1 /* Initial version */
 char aid_name[ZFS_MAX_AGGRNAME+1]; /* aggr name, null terminated */
 char aid_reserved[33]; /* Reserved for the future */
} AGGR_ID;

struct parmstruct {
 syscall_parmlist myparms;
 AGGR_ID aggr_id;
};

int main(int argc, char **argv)
{
 int bpxrv;
 int bpxrc;
 int bpxrs;

 /*Aggregate name to attach, aggregate must
 be quiesced for this API to run successfully */
 char aggrname[45] = "PLEX.DCEIMGQX.FS";

 struct parmstruct myparmstruct;
 AGGR_ID *idp = &(myparmstruct.aggr_id);

 /* This is the handle returned by zFS on a quiesce aggregate */
 /* Ensure that the quiesce_handle is set to the value returned */
 /* by the quiesce */
 int quiesce_handle = 1;

 myparmstruct.myparms.opcode = AGOP_RESETFLAG_PARMDATA;
 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
 myparmstruct.myparms.parms[1] = quiesce_handle;
 myparmstruct.myparms.parms[2] = 0;
 myparmstruct.myparms.parms[3] = 0;
 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;
 memset(idp, 0, sizeof(AGGR_ID)); /* Ensure reserved fields are 0 */

 memcpy(&myparmstruct.aggr_id.aid_eye, AID_EYE, 4);
 myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);
 myparmstruct.aggr_id.aid_ver = AID_VER_INITIAL;
 strcpy(myparmstruct.aggr_id.aid_name, aggrname);

 BPX1PCT("ZFS ",
 ZFSCALL_AGGR, /* Aggregate operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv < 0)
 {
 printf("Error resetting backup flag for aggregate %s\n", aggrname);
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);

Reset Backup Flag

Chapter 13. zFS application programming interface information 337

 return bpxrc;
 }
 else /* Return from reset was successful */
 printf("Successfully reset backup flag for aggregate %s\n", aggrname);
 return 0;
}

Reset Backup Flag

338 z/OS: z/OS File System Administration

Salvage Aggregate

Purpose
An aggregate operation that verifies or repairs a compatibility mode aggregate.

Format

 syscall_parmlist
 opcode int 155 AGOP_SALVAGE_PARMDATA
 parm[0] int offset to AGGR_ID
 parm[1] int 1 = verify only
 2 = verify and repair
 3 = cancel
 parm[2] int 0
 parm[3] int 0
 parm[4] int 0
 parm[5] int 0
 parm[6] int 0
 AGGR_ID
 aid_eye char[4] "AGID"
 aid_len char sizeof(AGGR_ID)
 aid_ver char 1
 aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"
 aid_reserved char[33] 0

 Return value 0 if request is successful
 -1 if request is not successful

 Return code
 EBUSY Aggregate not available or no long running thread available
 EINTR Operation interrupted
 EMVSERR Internal error
 ENOENT Aggregate is not mounted
 EPERM Permission denied to perform request

 Reason code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage notes for Salvage Aggregate
1. The aggregate can be mounted read-only if -verifyonly is specified. It must be mounted read/write

if -verifyonly is not specified and a repair is required. Before it can be repaired, it must be mounted
read/write.

2. Reserved fields and undefined flags must be set to binary zeros.
3. A long-running command foreground thread must be available.
4. A salvage operation can be interrupted by a shutdown, unmount with the force option, or a zfsadm
salvage command with the -cancel option specified or a Salvage Aggregate API call with
parm[1]=3.

5. Both the FSINFO command and the List Detailed File System Information service have progress
indicators that show the current step of the salvage operation. The progress indicators can be seen
when owner information is requested.

Privilege required
The issuer must be logged in as a root user (UID=0) or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Related services
List Detailed File System Information

Salvage Aggregate

Chapter 13. zFS application programming interface information 339

Restrictions
None.

Examples

#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_SALVAGE_PARMDATA 155 /* salvage aggregate */

typedef struct syscall_parmlist_
{
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t
{
 char aid_eye[4]; /* Eye Catcher */
 char aid_len; /* Length of this structure */
 char aid_ver; /* Version */
 char aid_name[ZFS_MAX_AGGRNAME+1]; /* aggr name, null terminated */
 char aid_reserved[33]; /* Reserved for the future */
} AGGR_ID;

struct parmstruct {
 syscall_parmlist myparms;
 AGGR_ID aggr_id;
};

int main(int argc, char **argv)
{
 int bpxrv;
 int bpxrc;
 int bpxrs;
 struct parmstruct myparmstruct;
 char aggrname[45] = "PLEX.DCEIMGQX.FS"; /* aggregate name to salvage */
 AGGR_ID *aidp = &(myparmstruct.aggr_id);
 myparmstruct.myparms.opcode = AGOP_SALVAGE_PARMDATA;
 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
 myparmstruct.myparms.parms[1] = 1; /* verify only */
 myparmstruct.myparms.parms[2] = 0;
 myparmstruct.myparms.parms[3] = 0;
 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;

 /* Ensure reserved fields are 0 */
 memset(&myparmstruct.aggr_id, 0, sizeof(AGGR_ID));

 /* Specify the name of the aggregate to salvage. */
 memcpy(&myparmstruct.aggr_id.aid_eye, "AGID", 4);
 myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);
 myparmstruct.aggr_id.aid_ver = 1;
 strcpy(myparmstruct.aggr_id.aid_name, aggrname);

 BPX1PCT("ZFS ", /* must be blank padded to length 8 */
 ZFSCALL_AGGR, /* Aggregate operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */
 if (bpxrv < 0)
 {
 printf("Errors found during salvage of aggregate %s.\n", aggrname);
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 return bpxrc;
 }

Salvage Aggregate

340 z/OS: z/OS File System Administration

 else /* Return from salvage was successful */
 printf("No errors found during salvage of aggregate %s.\n", aggrname);

 return 0;
}

Set Auditfid

Purpose
An aggregate operation that sets the current value of the auditfid. The aggregate whose auditfid is to be
changed must be attached.

Format
syscall_parmlist
 opcode int 149 AGOP_SETAUDITFID_PARMDATA
 parms[0] int offset to AGGR_ID
 parms[1] int 0=set new auditfid if current auditfid is 0
 1=set new auditfid regardless of current value
 (force)
 2=set new auditfid to 0 (old)
 parms[2] int 0
 parms[3] int 0
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0
AGGR_ID
 aid_eye char[4] "AGID"
 aid_len char sizeof(AGGR_ID)
 aid_ver char 1
 aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"
 aid_reserved char[33] 0

Return_value 0 if request is successful, -1 if it is not successful

Return_code
 EBUSY auditfid could not be set
 EINTR ZFS is shutting down
 EMVSERR Internal error using an osi service
 ENOENT Aggregate is not attached
 EPERM Permission denied to perform request

Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage notes
1. Reserved fields and undefined flags must be set to binary zeros.

Privilege required
The issuer must be logged in as a root user (UID=0) or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Related services
List Aggregate Status (Version 2)

Restrictions
The aggregate cannot be attached as read-only. The aggregate cannot be quiesced. The aggregate cannot
be in the process of being moved by zFS.

Set Auditfid

Chapter 13. zFS application programming interface information 341

Examples

#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_SETAUDITFID_PARMDATA 149 /* Set or reset auditfid */

typedef struct syscall_parmlist_t {
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t {
 char aid_eye[4]; /* Eye catcher */
#define AID_EYE "AGID"
 char aid_len; /* Length of this structure */
 char aid_ver; /* Version */
#define AID_VER_INITIAL 1 /* Initial version */
 char aid_name[ZFS_MAX_AGGRNAME+1]; /* Name, null terminated */
 char aid_reserved[33]; /* Reserved for the future */
} AGGR_ID;

struct parmstruct {
 syscall_parmlist myparms;
 AGGR_ID aggr_id;
};

int main(int argc, char **argv)
{
 int bpxrv;
 int bpxrc;
 int bpxrs;
 struct parmstruct myparmstruct;

 char aggrname[45] = "PLEX.DCEIMGQX.FS"; /* aggregate name to set auditfid*/
 AGGR_ID *idp = &(myparmstruct.aggr_id);

 myparmstruct.myparms.opcode = AGOP_SETAUDITFID_PARMDATA;
 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);

 /* Configure options by setting myparmstruct.myparms.parms[1] to: */
 /* 0 = set new auditfid if current auditfid is 0 */
 /* 1 = set new auditfid regardless of current value (force) */
 /* 2 = set new auditfid to 0 (pre-z/OS V1R9) */
 myparmstruct.myparms.parms[1] = 1;

 myparmstruct.myparms.parms[2] = 0;
 myparmstruct.myparms.parms[3] = 0;
 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;

 /* Ensure reserved fields are 0 */
 memset(&myparmstruct.aggr_id, 0, sizeof(AGGR_ID));
 memcpy(&myparmstruct.aggr_id, AID_EYE, 4);
 myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);
 myparmstruct.aggr_id.aid_ver = AID_VER_INITIAL;
 strcpy(myparmstruct.aggr_id.aid_name, aggrname);

 BPX1PCT("ZFS ",
 ZFSCALL_AGGR, /* Aggregate operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv < 0)
 {
 printf("Error setting auditfid for aggregate %s\n", aggrname);
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 return bpxrc;

Set Auditfid

342 z/OS: z/OS File System Administration

 }
 else /* Return from set auditfid was successful */
 printf("Aggregate %s set auditfid successfully\n", aggrname);
 return 0;
}

Set Auditfid

Chapter 13. zFS application programming interface information 343

Set Config Option

Purpose
A set of subcommand calls (that are configuration operations) that set the current value for a particular
configuration setting. Each one sets the configuration setting from input specified as a character string.

The following Format and Example use the CFGOP_ADM_THREADS subcommand. The other set
subcommands (see Table 19 on page 239) operate similarly. That is, each sets the configuration setting
from the character string in the co_string field.

Format
syscall_parmlist
 opcode int 150 CFGOP_ADM_THREADS
 parms[0] int offset to CFG_OPTION
 parms[1] int offset to system name (optional)
 parms[2] int 0
 parms[3] int 0
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0
CFG_OPTION
 co_eye char[4] "CFOP"
 co_len short sizeof(CFG_OPTION)
 co_ver char 1
 co_string char[81] "15" (New value for adm_threads)
 co_value_reserved int 4 (reserved)
 co_reserved char[24] 0
systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful

Return_code
 EBUSY Aggregate could not be quiesced
 EINTR ZFS is shutting down
 EMVSERR Internal error using an osi service
 ENOENT Aggregate is not attached
 EPERM Permission denied to perform request
Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage notes
1. Reserved fields and undefined flags must be set to binary zeros.
2. Specify the new value as a null terminated string in co_string.

Privilege required
The issuer must be logged in as a root user (UID=0) or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Related services
Query Config Option

Restrictions
None.

Examples

#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

Set Config Option

344 z/OS: z/OS File System Administration

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_CONFIG 0x40000006
#define CFGOP_ADM_THREADS 150 /* Set number of admin threads */

typedef struct syscall_parmlist_t {
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

typedef struct config_option_t {
 char co_eye[4]; /* Eye catcher */
#define CFGO_EYE "CFOP"
 short co_len; /* Length of structure */
 char co_ver; /* Version of structure */
#define CO_VER_INITIAL 1 /* Initial version */
#define CO_SLEN 80 /* Sizeof string */
 char co_string[CO_SLEN+1]; /* String value for option must be 0 terminated*/
 int co_value[4]; /* Place for integer values */
 char co_reserved[24]; /* Reserved for future use */
} CFG_OPTION;

struct parmstruct {
 syscall_parmlist myparms;
 CFG_OPTION co;
 char system[9];
} myparmstruct;

char new_adm_threads[CO_SLEN+1] = "20"; /* New adm_threads value */

int main(int argc, char **argv)
{
 int bpxrv;
 int bpxrc;
 int bpxrs;
 CFG_OPTION *coptr = &(myparmstruct.co);

 /* This next field should only be set if parms[1] is non-zero */
 /* strcpy(myparmstruct.system,"DCEIMGVN"); */ /* set system to change */

 myparmstruct.myparms.opcode = CFGOP_ADM_THREADS;
 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
 myparmstruct.myparms.parms[1] = 0;

 /* Only specify a non-zero offset for the next field (parms[1]) if */
 /* you are running z/OS 1.7 and above, and */
 /* you want to configquery to a different system */
 /* myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) */
 /* + sizeof(CFG_OPTION); */

 myparmstruct.myparms.parms[2] = 0;
 myparmstruct.myparms.parms[3] = 0;
 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;

 memset(coptr, 0, sizeof(CFG_OPTION));
 memcpy(coptr->co_eye, CFGO_EYE, 4);
 coptr->co_ver = CO_VER_INITIAL;
 coptr->co_len = (int)sizeof(CFG_OPTION);
 strcpy(coptr->co_string, new_adm_threads);/*set new adm_thread value*/

 BPX1PCT("ZFS ",
 ZFSCALL_CONFIG, /* Config operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv < 0)
 {
 printf("Error setting config -adm_threads, "
 "BPXRV = %d BPXRC = %d BPXRS = %x\n",
 bpxrv, bpxrc, bpxrs);
 return bpxrc;
 }

Set Config Option

Chapter 13. zFS application programming interface information 345

 else
 printf("Config -adm_threads = %s\n", myparmstruct.co.co_string);
 return 0;
}

Set Config Option

346 z/OS: z/OS File System Administration

Shrink Aggregate

Purpose
Reduces the physical size of a zFS aggregate.

Format
syscall_parmlist
 opcode int 266 AGOP_SHRINK_PARMDATA
 parms[0] int offset to SH_REQ
 parms[1] int 0
 parms[2] int 0
 parms[3] int 0
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0

SH_REQ
 sh_eye char[4] "SHRQ"
 sh_len short sizeof(SH_REQ)
 sh_ver char 1
 sh_flags char Shrink flags with values:
 0 - No options specified.
 1 - Active increase not allowed.
 2 - Do not wait for shrink
 completion.
 sh_length unsigned long long int New total size (in 1K units)
 sh_name char[45] Name of aggregate to shrink.
 sh_command char Shrink operation to perform:
 1 - Start a shrink.
 2 - Cancel an active shrink.
 sh_reserved char[66] Reserved.

Shrink API return codes:

 EPERM User does not have permission to perform shrink
 ENOENT No aggregate by this name is found
 EROFS Aggregate is mounted readonly
 EIO General errors processing the shrink operation
 EFBIG Aggregate size request does not make sense (bigger
 than existing aggregate or active increase gets back to original
 aggregate size)
 EMVSERR Internal error
 EBUSY Aggregate is busy or otherwise unavailable, or no
 long running threads available
 EINVAL Invalid parameters
 ENFILE Error releasing space from the data set
 ENOSYS zFS owner goes down before a shrink command completes
 EINTR Shrink command canceled

Usage notes for Shrink Aggregate
1. The aggregate must be mounted.
2. Reserved fields and undefined flags must be set to binary zeros.
3. A long-running command foreground thread must be available.
4. A shrink operation can be interrupted by a shutdown, unmount with the force option, or a zfsadm
shrink command with the -cancel option specified.

5. The difference between the new total size of the aggregate and the current size of the aggregate
cannot be larger than the free space in the aggregate.

6. Most of the shrink operation will allow other applications to access file and directory blocks during the
shrink operation, which might cause additional blocks to be allocated. If this allocation causes more
space to be needed in the aggregate than the new total size specified in -size, zFS will actively
increase the new total size by adding 1 M to the new total size. The shrink command will end with an
error if the size is actively increased back to the original size of the aggregate. You can prevent active

Shrink Aggregate

Chapter 13. zFS application programming interface information 347

increase by specifying -noai. If -noai is specified, and an active increase is needed, the shrink
command will end with an error.

7. Both the FSINFO command and the List Detailed File System Information service have progress
indicators that show the current step of the shrink operation. The progress indicators can be seen
when owner information is requested.

Privilege required
The user must have UPDATE authority to the VSAM linear data set.

Related services
Grow Aggregate
List Detailed File System Information

Restrictions
None.

Examples

#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_SHRINK_PARMDATA 266 /* shrink specified aggregate */

typedef struct syscall_parmlist_
{
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44
#define SHR_EYE "SHRQ"
#define SHR_VER_INITIAL 1
#define SHR_NO_ACTIVE_INCREASE 0x01 /* active increase should not be used */
#define SHR_ASYNC 0x02 /* do not wait for shrink to complete */
#define SHR_START_SHRINK 1 /* start a shrink operation if one */
 /* not already in progress */
#define SHR_STOP_SHRINK 2 /* stop a shrink operation that is */
 /* already in progress */
#define SHR_RESERVED_LEN 66

typedef struct shrink_req_t
{
 char sh_eye[4]; /* eyecatcher "SHRQ" */
 short sh_len; /* sizeof SH_REQ */
 char sh_ver; /* 1 */
 char sh_flags; /* 1=no active increase, 2=async */
 unsigned long long int sh_length; /* New length of aggregate */
 /* (in 1K units) */
 char sh_name[ZFS_MAX_AGGRNAME+1]; /* NULL terminated aggregate name */
 char sh_command; /* 1=start shrink 2=stop shrink */
 char sh_reserved[SHR_RESERVED_LEN]; /* reserved must be 0 */
} SH_REQ;

struct parmstruct {
 syscall_parmlist myparms;
 SH_REQ shreq;
};

int main(int argc, char **argv)
{
 int bpxrv;
 int bpxrc;
 int bpxrs;
 struct parmstruct myparmstruct;

Shrink Aggregate

348 z/OS: z/OS File System Administration

 char aggrname[45] = "ZFSAGGR.BIGZFS.DHH.FS1.EXTATTR";
 SH_REQ *reqp = &(myparmstruct.shreq);
 myparmstruct.myparms.opcode = AGOP_SHRINK_PARMDATA;
 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
 myparmstruct.myparms.parms[1] = 0;
 myparmstruct.myparms.parms[2] = 0;
 myparmstruct.myparms.parms[3] = 0;
 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;

 /* Ensure reserved fields are 0 */
 memset(&myparmstruct.shreq, 0, sizeof(SH_REQ));

 /* Set fields to shrink aggregate, and not wait for it to complete. */
 /* Since the aggregate is being used, we will allow active increase */
 /* so that running tasks will not run out of space if they need more */
 /* than originally anticipated. */
 memcpy(&myparmstruct.shreq.sh_eye, SHR_EYE, 4);
 myparmstruct.shreq.sh_len = sizeof(SH_REQ);
 myparmstruct.shreq.sh_ver = SHR_VER_INITIAL;
 strcpy(myparmstruct.shreq.sh_name, aggrname);
 myparmstruct.shreq.sh_flags = SHR_ASYNC;
 myparmstruct.shreq.sh_command = SHR_START_SHRINK;
 /* Using 1K units, 8388704 is just over an 8G aggregate as a new length. */
 myparmstruct.shreq.sh_length = 8388704;

 BPX1PCT("ZFS ", /* must be blank padded to length 8 */
 ZFSCALL_AGGR, /* Aggregate operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */
 if (bpxrv < 0)
 {
 printf("Error trying to shrink aggregate %s\n", aggrname);
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 return bpxrc;
 }
 else /* Return from change aggregate attributes was successful */
 printf("Shrink of aggregate %s started.\n", aggrname);

 return 0;
}

Shrink Aggregate

Chapter 13. zFS application programming interface information 349

Statistics Compression Information

Purpose
Displays compression statistics in order to monitor compression effectiveness and performance of zEDC
systems.

Format

syscall_parmlist
 opcode int 256 STATOP_COMPRESSION
 parms[0] int Offset of output following STAT_API
 parms[1] int Offset to system name (optional)
 parms[2] int 0
 parms[3] int 0
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0

STAT_API
 sa_eye char[4] "STAP"
 sa_len int Length of buffer that follows STAT_API
 sa_ver int 1
 sa_flags char[1] 0x80 for reset; 0x00 otherwise
 sa_fill char[3] Reserved
 sa_support_ver int Version of data returned
 sa_reserve int[3] Reserved
 posix_time_high unsigned int High order 32 bits since epoch
 posix_time_low unsigned int Low order 32 bits since epoch
 posix_useconds unsigned int Microseconds
 pad1 int Reserved

API_COMPRESSION_STATS
 comp_eye char[4] "COMP"
 comp_size short Size of the output structure
 comp_version char 1
 future1 char For future use
 comp_calls unsigned long long int Number of compression calls made
 comp_kbytesin unsigned long long int Number of kilobytes sent to the zEDC
 compression card by zFS
for compression calls
 comp_kbytesout unsigned long long int Number of kilobytes returned by the zEDC
 compression card from
compression calls
 comp_calltime unsigned long long int Average number of microseconds per
compression call
 decomp_calls unsigned long long int Number of decompression calls made
 decomp_kbytesin unsigned long long int Number of kilobytes sent to the zEDC cards
for
 decompression calls
 decomp_kbytesout unsigned long long int Number of kilobytes returned from zEDC
cards
 from decompression calls
 decomp_calltime unsigned long long int Average number of microseconds per
decompression call
 future2 int[16] For future use

Return_value 0 if request is successful, -1 if it is not successful

Return_code
 EINTR zFS is shutting down
 EINVAL Invalid parameter list
 EMVSERR Internal error occurred
 E2BIG Information too big for buffer supplied

Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Statistics Compression Information

350 z/OS: z/OS File System Administration

Usage notes for Statistics Compression Information
1. Reserved fields and undefined flags must be set to binary zeros.

Privilege required
None.

Related services
Encrypt (Decrypt, Compress, Decompress) Aggregate

Restrictions
None.

Examples

#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>
#include <errno.h>

#define ZFSCALL_STATS 0x40000007
#define STATOP_COMPRESSION 256
#define BUFFER_SIZE 1024 * 64

#define CONVERT_RATIO_TO_INTS(RATIO, INTEGER, DECIMAL) \
 { \
 INTEGER = (int)RATIO; \
 DECIMAL = (int)((RATIO - (double)INTEGER) * (double)1000.0); \
 }
#define zCOUNT_FIELD(COUNT, COUNT_STRING) \
 zCOUNT_FIELD_MAX(COUNT, COUNT_STRING, 10)

/* This macro takes a unsigned long long int, a pointer to an output */
/* string pointer and the max len of the output string. */
/* This macro assumes the format field for the string is %(MAXLEN)s */
#define zCOUNT_FIELD_MAX(COUNT, COUNT_STRING, MAXLEN) \
{ \
 unsigned long long int tcount = COUNT; \
 char suffixp[3] = {0, 0, 0}; \
 unsigned long long int max_val[11] = {0LL, 9LL, 99LL, 999LL, 9999LL, \
 99999LL, 999999LL, 9999999LL, 99999999LL, 999999999LL, 9999999999LL}; \
 unsigned long long int MAXVAL = max_val[MAXLEN-1]; \
 unsigned long long int maxval = MAXVAL; \
 unsigned long long int maxval2 = MAXVAL/10; \
 unsigned long long int maxval3 = maxval2/10; \
 if (tcount > max_val[MAXLEN]) \
 { \
 if (tcount > maxval) \
 { \
 tcount /= 1000ll; \
 suffixp[0] = 't'; \
 if (tcount > maxval2) \
 { \
 tcount /= 1000ll; \
 suffixp[0] = 'm'; \
 if (tcount > maxval2) \
 { \
 tcount /= 1000ll; \
 suffixp[0] = 'b'; \
 if (tcount > maxval3) \
 { \
 tcount /= 1000ll; \
 suffixp[0] = 't'; \
 suffixp[1] = 'r'; \
 } \
 } \
 } \
 } \

Statistics Compression Information

Chapter 13. zFS application programming interface information 351

 } \
 sprintf(COUNT_STRING, "%llu%s", tcount, suffixp); \
}

typedef struct syscall_parmlist_t {
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation */

} syscall_parmlist;

typedef struct reset_time {
 unsigned int posix_time_high;
 unsigned int posix_time_low;
 unsigned int posix_usecs;
 int pad1;
} RESET_TIME;

typedef struct stat_api_t {
#define SA_EYE "STAP"
 char sa_eye[4]; /* 4 byte identifier must be */
 int sa_len; /* length of the buffer to put data into */
 /* this buffer area follows this struct */
 int sa_ver; /* the version number currently always 1 */
#define SA_VER_INIT 0x01
 char sa_flags; /* command field must be x00 or x80, */
 /* x80 means reset statistics */
#define SA_RESET 0x80
 char sa_fill[3]; /* spare bytes */
 int sa_reserve[4]; /* Reserved */
 struct reset_time reset_time_info;
} STAT_API;

typedef struct API_COMPRESSION_STATS_t {
 char comp_eye[4]; /* Eye catcher */
#define COMP_EYE "COMP"
 short comp_size; /* Size of output structure */
 char comp_version; /* Version of statistics returned */
 char comp_future; /* Future use */
 unsigned long long int comp_calls;
 unsigned long long int comp_kbytesin;
 unsigned long long int comp_kbytesout;
 unsigned long long int comp_calltime;
 unsigned long long int decomp_calls;
 unsigned long long int decomp_kbytesin;
 unsigned long long int decomp_kbytesout;
 unsigned long long int decomp_calltime;
 int comp_future2[16];
} API_COMPRESSION_STATS;

int main(int argc, char** argv)
{
 int buff_fill_len = 0;
 int bpxrv, bpxrc, bpxrs;
 char sysname[9];
 STAT_API local_req;
 STAT_API *st_req = NULL;
 syscall_parmlist *parmp = NULL;
 API_COMPRESSION_STATS *statsp = NULL;
 char *buffp = NULL;
 double temp_ratio;
 int whole, decimal;
 char string1[16];
 char string2[16];
 char *p;
 unsigned long long int *temp;

 /* Initialize the local_req to 0s */
 st_req = &local_req;
 memset(st_req, 0x00, sizeof(STAT_API));

 strcpy(local_req.sa_eye, SA_EYE, sizeof(local_req.sa_eye));
 local_req.sa_len = sizeof(API_COMPRESSION_STATS);
 local_req.sa_ver = SA_VER_INIT;

 /* Allocate Buffer */
 buffp = (char*) malloc(BUFFER_SIZE);
 if(buffp == NULL)
 {
 printf("Malloc Error\n");
 return ENOMEM;
 }

Statistics Compression Information

352 z/OS: z/OS File System Administration

 memset(buffp, 0x00, sizeof(syscall_parmlist) + sizeof(STAT_API));

 /* Set the run parms */
 parmp = (syscall_parmlist*) &buffp[0];
 parmp->opcode = STATOP_COMPRESSION;
 parmp->parms[0] = buff_fill_len = sizeof(syscall_parmlist);
 parmp->parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);
 parmp->parms[2] = 0;
 parmp->parms[3] = 0;
 parmp->parms[4] = 0;
 parmp->parms[5] = 0;
 parmp->parms[6] = 0;

 st_req = (STAT_API*) &buffp[buff_fill_len];

 memcpy(st_req, &local_req, sizeof(STAT_API));
 buff_fill_len += sizeof(STAT_API);

 BPX1PCT("ZFS ",
 ZFSCALL_STATS, /* Aggregate operation */
 BUFFER_SIZE, /* Length of Argument */
 (char*) buffp, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if(bpxrv)
 {
 /* Bad Return code */
 printf("Error requesting info for compression stats\n");
 printf("Return Value: %d Return Code: %d Reason Code: %x\n",
 bpxrv, bpxrc, bpxrs);
 return bpxrc;
 }
 else
 {
 /* Success. Print the information in a table */
 statsp = (API_COMPRESSION_STATS *) &buffp[buff_fill_len];

 zCOUNT_FIELD(statsp->comp_calls, string1);
 temp_ratio = ((double)statsp->comp_calltime)/1000;
 temp = (unsigned long long int *)&statsp->comp_calltime;
 CONVERT_RATIO_TO_INTS(temp_ratio,whole, decimal);
 printf("%-20s %10s %-20s %10u.%3.3u \n",
 "Compression calls:", string1,
 "Avg. call time: ", whole, decimal);

 zCOUNT_FIELD(statsp->comp_kbytesin, string1);
 zCOUNT_FIELD(statsp->comp_kbytesout, string2);
 printf(" %-18s %10s %-18s %10s \n",
 "KB input", string1,
 "KB output", string2);

 zCOUNT_FIELD(statsp->decomp_calls, string1);
 temp_ratio = ((double)statsp->decomp_calltime)/1000;
 temp = (unsigned long long int *)&statsp->decomp_calltime;
 CONVERT_RATIO_TO_INTS(temp_ratio,whole, decimal);
 printf("%-20s %10s %-20s %10u.%3.3u \n",
 "Decompression calls:", string1,
 "Avg. call time: ", whole, decimal);

 zCOUNT_FIELD(statsp->decomp_kbytesin, string1);
 zCOUNT_FIELD(statsp->decomp_kbytesout, string2);
 printf(" %-18s %10s %-18s %10s \n",
 "KB input", string1,
 "KB output", string2);

 printf("\n");
 return 0;
 }
}

Statistics Compression Information

Chapter 13. zFS application programming interface information 353

Statistics Directory Cache Information

Purpose
Returns directory cache counters, including the number of requests, hits and discards from the directory
cache.

Note: As of z/OS V1R13, this subcommand is no longer used. All output from a call to statistics directory
cache information will be zeros.

Format
syscall_parmlist
 opcode int 249 STATOP_DIR_CACHE
 parms[0] int offset to STAT_API
 parms[1] int offset of output following STAT_API
 parms[2] int offset to system name (optional)
 parms[3] int 0
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0
STAT_API
 sa_eye char[4] "STAP"
 sa_len int length of buffer that follows STAT_API
 sa_ver int 1
 sa_flags char[1] 0x00
 SA_RESET 0x80 Reset statistics
 sa_fill char[3] 0
 sa_reserve int[4] 0
 posix_time_high unsigned int high order 32 bits since epoch
 posix_time_low unsigned int low order 32 bits since epoch
 posix_useconds unsigned int microseconds
 pad1 int
API_DIR_STATS
 ad_eye char[4] "ADIR"
 ad_size short size of output
 ad_version char version
 ad_reserved1 char reserved byte
 ad_reserved int always zero
 ad_buffers int number of buffers in the cache
 ad_buffersize int size of each buffer in K bytes
 ad_res1 int reserved
 ad_reserved int reserved
 ad_requests int requests to the cache
 ad_reserved int reserved
 ad_hits int hits in the cache
 ad_reserved int reserved
 ad_discards int discards of data from the cache
 ad_reserved2 int[10] reserved
systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful
Return_code
 EINTR zFS is shutting down
 EINVAL Invalid parameter list
 EMVSERR Internal error occurred
 E2BIG Information too big for buffer supplied
Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage notes
1. Reserved fields and undefined flags must be set to binary zeros.

Privilege required
None.

Statistics Directory Cache Information

354 z/OS: z/OS File System Administration

Related services
Statistics Vnode Cache Information
Statistics Metadata Cache Information

Restrictions
None.

Examples

#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>
#include <string.h>
#include <time.h>

#define ZFSCALL_STATS 0x40000007
#define STATOP_DIR_CACHE 249 /* Directory cache stats */
#define CONVERT_RATIO_TO_INTS(RATIO, INTEGER, DECIMAL) \
 { \
 INTEGER = (int)RATIO; \
 DECIMAL = (int)((RATIO - (double)INTEGER) * (double)1000.0); \
 }

typedef struct syscall_parmlist_t
{
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

typedef struct hyper {
 unsigned int high; /* unsigned int reserved */
 unsigned int low;
} hyper;

typedef struct API_DIR_STATS_t {
 char ad_eye[4]; /* Eye catcher = ADIR */
#define DS_EYE "ADIR"
 short ad_size; /* Size of output structure */
 char ad_version; /* Version of stats */
#define DS_VER_INITIAL 1 /* First version of log stats */
 char ad_reserved1; /* Reserved byte, 0 in version 1 */
 hyper ad_buffers; /* Number of buffers in cache */
 int ad_buffsize; /* Size of each buffer in K bytes */
 int ad_res1; /* Reserved for future use, zero
 in version 1 */
 hyper ad_requests; /* Requests to the cache */
 hyper ad_hits; /* Hits in the cache */
 hyper ad_discards; /* Discards of data from cache */
 int ad_reserved2[10]; /* Reserved for future use */
} API_DIR_STATS;

/* reset timestamp */
typedef struct reset_time {
 unsigned int posix_time_high; /* high order 32 bits since epoc */
 unsigned int posix_time_low; /* low order 32 bits since epoch */
 unsigned int posix_usecs; /* microseconds */
 int pad1;
} RESET_TIME;

/***/
/* The following structure is the api query control block */
/* It is used for all api query commands */
/***/
typedef struct stat_api_t
{
#define SA_EYE "STAP"
 char sa_eye[4]; /* 4 byte identifier must be */
 int sa_len; /* length of the buffer to put data into*/
 /* this buffer area follows this struct*/
 int sa_ver; /* the version number currently always 1*/

Statistics Directory Cache Information

Chapter 13. zFS application programming interface information 355

#define SA_VER_INITIAL 0x01
 char sa_flags; /* flags field must be x00 or x80,
 x80 means reset statistics*/
#define SA_RESET 0x80
 char sa_fill[3]; /* spare bytes */
 int sa_reserve[4]; /* Reserved */
 struct reset_time reset_time_info;
} STAT_API;

struct parmstruct {
 syscall_parmlist myparms;
 STAT_API myapi;
 API_DIR_STATS mystats;
 char systemname[9];
} myparmstruct;

int main(int argc, char **argv)
{
 int bpxrv;
 int bpxrc;
 int bpxrs;
 int i;
 double temp_ratio;
 int whole;
 int decimal;
 STAT_API *stapptr = &(myparmstruct.myapi);
 char buf[33];

 myparmstruct.myparms.opcode = STATOP_DIR_CACHE;
 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
 myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);
 myparmstruct.myparms.parms[2] = 0;

 /* Only specify a non-zero offset for the next field (parms[2]) if */
 /* you are running z/OS 1.7 and above, and you want to query the directory */
 /* cache statistics of a different system than this one */
 /* myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist) + */
 /* sizeof(STAT_API) + sizeof(API_DIR_STATS); */

 myparmstruct.myparms.parms[3] = 0;
 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;

 myparmstruct.myparms.parms[6] = 0;
 memset(stapptr, 0, sizeof(STAT_API));
 memcpy(stapptr->sa_eye, SA_EYE, 4);
 stapptr->sa_ver = SA_VER_INITIAL;
 stapptr->sa_len = (int)sizeof(API_DIR_STATS);

 /* This next field should only be set if parms[2] is non-zero */
 /* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

 BPX1PCT("ZFS ",
 ZFSCALL_STATS, /* Perf statistics operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv < 0)
 {
 printf("Error querying directory cache, "
 "BPXRV = %d BPXRC = %d BPXRS = %x\n",
 bpxrv, bpxrc, bpxrs);
 return bpxrc;
 }
 else
 {
 printf("\n%50s\n", "Directory Backing Caching Statistics");
 printf(" \n");
 printf("Buffers (K bytes) Requests Hits Ratio Discards \n");
 printf("---------- --------- ---------- ---------- ------ ---------- \n");

 if(myparmstruct.mystats.ad_requests.low == 0)
 temp_ratio = 0;
 else
 temp_ratio = ((double)myparmstruct.mystats.ad_hits.low) /
 myparmstruct.mystats.ad_requests.low;

 temp_ratio *= 100.0;
 CONVERT_RATIO_TO_INTS(temp_ratio, whole, decimal);

Statistics Directory Cache Information

356 z/OS: z/OS File System Administration

 decimal = decimal / 100; /* Just want tenths */
 printf("%10u %9u %10u %10u %3u.%1.1u%% %10u\n",
 myparmstruct.mystats.ad_buffers.low,
 myparmstruct.mystats.ad_buffers.low * myparmstruct.mystats.ad_buffsize,
 myparmstruct.mystats.ad_requests.low, myparmstruct.mystats.ad_hits.low,
 whole, decimal, myparmstruct.mystats.ad_discards.low);
 printf(" \n");

 if (0 == ctime_r((time_t*) & stapptr->reset_time_info.posix_time_low, buf))
 printf("Could not get timestamp.\n");
 else
 { /* Insert the microseconds into the displayable time value */
 strncpy(&(buf[27]), &(buf[20]), 6);
 sprintf(&(buf[20]), "%06d", stapptr->reset_time_info.posix_usecs);
 buf[26] = ' ';
 buf[19] = '.';
 printf("Last Reset Time: %s", buf);
 }
 }
 return 0;
}

Statistics Directory Cache Information

Chapter 13. zFS application programming interface information 357

Statistics Iobyaggr Information

Purpose
Displays information about the number of reads and writes (I/Os) and the amount of data in bytes that are
transferred for each aggregate.

Format
syscall_parmlist
 opcode int 244 STATOP_IOBYAGGR
 parms[0] int offset to STAT_API
 parms[1] int offset of output following STAT_API
 parms[2] int offset to system name (optional)
 parms[3] int 0
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0
STAT_API
 sa_eye char[4] "STAP"
 sa_len int Length of buffer that follows STAT_API
 sa_ver int 1
 sa_flags char[1] 0x80 - Reset statistics
 sa_reserve int[3] Reserved
 posix_time_high unsigned int High order 32 bits since epoch
 posix_time_low unsigned int Low order 32 bits since epoch
 posix_useconds unsigned int Microseconds
IO_REPORT2_2_GRAND_TOTALS
 io_count int Count of IO_REPORT2 lines
 grand_total_reads unsigned int Total reads
 grand_total_writes unsigned int Total writes
 grand_total_read_bytes unsigned int Total bytes read (in kilobytes)
 grand_total_write_bytes unsigned int Total bytes written (in kilobytes)
 grand_total_devices unsigned int Total number of aggregates
 total_number_waits_for_io unsigned int Total number of waits for I/O
 average_wait_time_for_io_whole unsigned int Average wait time (whole number),
 average wait time in milliseconds
 average_wait_time_for_io_decimal unsigned int Average wait time (decimal part)
 decimal part is in thousanths
 3 means .003 and 300 means .3
IO_REPORT2[io_count]
 volser char[8] DASD volser where aggregate resides
 pavios unsigned int Max number of concurrent I/Os that zFS will issue
 read_ind char[4] R/O or R/W (how aggregate is attached)
 temp_reads unsigned int Count of reads for this aggregate
 temp_read_bytes unsigned int Bytes read for this aggregate (in kilobytes)
 temp_writes unsigned int Count of writes for this aggregate
 temp_write_bytes unsigned int Bytes written for this aggregate (in kilobytes)
 allocation_dsname char[84] Data set name of aggregate
--or--
IO_REPORT2_GRAND_TOTALS2
 io_count int Count of IO_REPORT2 lines
 grand_total_reads unsigned long long Total reads
 grand_total_writes unsigned long long Total writes
 grand_total_read_bytes unsigned long long Total bytes read (in kilobytes)
 grand_total_write_bytes unsigned long long Total bytes written (in kilobytes)
 grand_total_devices unsigned long long Total number of aggregates
 total_number_waits_for_io unsigned long long Total number of waits for I/O
 average_wait_time_for_io_whole unsigned int Average wait time (whole number),
 average wait time in milliseconds
 average_wait_time_for_io_decimal unsigned int Average wait time (decimal part)
 decimal part is in thousanths
 3 means .003 and 300 means .3
IO_REPORT2_2[io_count]
 volser char[8] DASD volser where aggregate resides
 pavios unsigned int Max number of concurrent I/Os that zFS will issue
 read_ind char[4] R/O or R/W (how aggregate is attached)
 temp_reads unsigned long long Count of reads for this aggregate
 temp_read_bytes unsigned long long Bytes read for this aggregate (in kilobytes)
 temp_writes unsigned long long Count of writes for this aggregate
 temp_write_bytes unsigned long long Bytes written for this aggregate (in kilobytes)
 allocation_dsname char[84] Data set name of aggregate

systemname char[9]

Statistics iobyaggr Information

358 z/OS: z/OS File System Administration

Return_value 0 if request is successful, -1 if it is not successful
Return_code
 EINTR zFS is shutting down
 EINVAL Invalid parameter list
 EMVSERR Internal error occurred
 E2BIG Information too big for buffer supplied
Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage notes
1. Reserved fields and undefined flags must be set to binary zeros.
2. When sa_supported_ver is 0 or 1, output consists of IO_REPORT2_GRAND_TOTALS and

IO_REPORT2. When sa_supported_ver is 2, output consists of IO_REPORT2_GRAND_TOTALS2 and
IO_REPORT2_2.

Privilege required
None.

Related services
Statistics Iobydasd Information
Statistics Iocounts Information

Restrictions
None.

Examples

#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

#define ZFSCALL_STATS 0x40000007
#define STATOP_IOBYAGGR 244 /* Performance API queries */
#define E2BIG 145

typedef struct syscall_parmlist_t
{
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

typedef struct reset_time {
 unsigned int posix_time_high; /* high order 32 bits since epoc */
 unsigned int posix_time_low; /* low order 32 bits since epoch */
 unsigned int posix_usecs; /* microseconds */
 int pad1;
} RESET_TIME;

/***/
/* The following structure is the api query control block */
/* It is used for all api query commands */
/***/
typedef struct stat_api_t {
#define SA_EYE "STAP"

Statistics iobyaggr Information

Chapter 13. zFS application programming interface information 359

 char sa_eye[4]; /* 4 byte identifier must be */
 int sa_len; /* length of the buffer to put data into*/
 /* this buffer area follows this struct */
 int sa_ver; /* the version number currently always 1*/
#define SA_VER_2 0x02
#define SA_VER_INIT 0x01
 char sa_flags; /* flags field must be x00 or x80, */
 /* x80 means reset statistics */
#define SA_RESET 0x80
 char sa_fill[3]; /* spare bytes */
 int sa_supported_ver; /* version of data returned */
 int sa_reserve[3]; /* Reserved */
 struct reset_time reset_time_info;
} STAT_API;

typedef struct io_report2_2_t {
 char volser[8];
 unsigned int pavios;
 char read_ind[4];
 unsigned long long int temp_reads;
 unsigned long long int temp_read_bytes;
 unsigned long long int temp_writes;
 unsigned long long int temp_write_bytes;
 char allocation_dsname[84];
 char reserved[4];
} IO_REPORT2_2;

typedef struct io_report2_grand_totals_2_t {
 int io_count; /* number IO_REPORT2 structs in buffer */
 int pad;
 unsigned long long int grand_total_reads; /* Total # reads */
 unsigned long long int grand_total_writes; /* Total # writes */
 unsigned long long int grand_total_read_bytes; /* Total bytes read */
 unsigned long long int grand_total_write_bytes; /* Total bytes written*/
 unsigned long long int grand_total_devices; /* total # aggregates */
 unsigned long long int total_number_waits_for_io;
 unsigned int average_wait_time_for_io_whole;
 unsigned int average_wait_time_for_io_decimal;
} IO_REPORT2_GRAND_TOTALS_2;

/* Version 1 Output structures */
typedef struct io_report2_t {
 char volser[8];
 unsigned int pavios;
 char read_ind[4];
 unsigned int temp_reads;
 unsigned int temp_read_bytes;
 unsigned int temp_writes;
 unsigned int temp_write_bytes;
 char allocation_dsname[84];
} IO_REPORT2;

typedef struct io_report2_grand_totals_t {
 int io_count; /* number IO_REPORT2
 structs in buffer */
 unsigned int grand_total_reads; /* Total # reads */
 unsigned int grand_total_writes; /* Total # writes */
 unsigned int grand_total_read_bytes; /* Total bytes read */
 unsigned int grand_total_write_bytes; /* Total bytes written*/
 unsigned int grand_total_devices; /* total # aggregates */
 unsigned int total_number_waits_for_io;
 unsigned int average_wait_time_for_io_whole; /* in milliseconds */
 unsigned int average_wait_time_for_io_decimal; /* in thousandths */
 /* of milliseconds */
 /* for example, */
 /*3 means .003 and
 300 means .3 */
} IO_REPORT2_GRAND_TOTALS;

struct parmstruct {
 syscall_parmlist myparms;
 STAT_API myapi;

Statistics iobyaggr Information

360 z/OS: z/OS File System Administration

 /* output buffer IO_REPORT2_GRAND_TOTALS_2 + multiple IO_REPORT2_2s */
 char systemname[9];
} myparmstruct;

int print_iobyaggr_version1(IO_REPORT2_GRAND_TOTALS *stgt,
 IO_REPORT2 *str2);
int print_iobyaggr_version2(IO_REPORT2_GRAND_TOTALS_2 *stgt,
 IO_REPORT2_2 *str2);

int main(int argc, char **argv)
{
 int buffer_success = 0;
 int bpxrv;
 int bpxrc;
 int bpxrs;
 int i,t;
 IO_REPORT2_GRAND_TOTALS_2 *stgt;
 IO_REPORT2_2 *str2;
 char *stsy;
 char buf[33];
 struct parmstruct *myp = &myparmstruct;
 int mypsize;
 int buflen;
 STAT_API *stapptr = &(myparmstruct.myapi);

 myparmstruct.myparms.opcode = STATOP_IOBYAGGR;
 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
 myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);

 /* Only specify a non-zero offset for the next field (parms[2]) if */
 /* you are running z/OS 1.7 and above, and you want to query the */
 /* iobyaggr statistics of a different system than this one */
 /* myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist) */
 /* + sizeof(STAT_API); */

 myparmstruct.myparms.parms[2] = 0;
 myparmstruct.myparms.parms[3] = 0;
 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;

 memset(stapptr, 0, sizeof(STAT_API));
 memcpy(stapptr->sa_eye, SA_EYE, 4);
 stapptr->sa_ver = SA_VER_2;
 stapptr->sa_len = 0;

 /* This next field should only be set if parms[2] is non-zero */
 /* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

 BPX1PCT("ZFS ",
 ZFSCALL_STATS, /* Perf statistics operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 for(t = 0; t < 1000 && buffer_success == 0; t++)
 {
 if (bpxrv < 0)
 {
 if (bpxrc == E2BIG)
 {
 buflen = stapptr->sa_len; /* Get buffer size needed */
 mypsize = sizeof(syscall_parmlist) + sizeof(STAT_API) + buflen +
 sizeof(myparmstruct.systemname);

 free(myp);

 myp = (struct parmstruct *)malloc((int)mypsize);
 memset(myp, 0, mypsize);

Statistics iobyaggr Information

Chapter 13. zFS application programming interface information 361

 printf("Need buffer size of %d, for a total of %d\n\n\n",
 buflen, mypsize);
 myp->myparms.opcode = STATOP_IOBYAGGR;
 myp->myparms.parms[0] = sizeof(syscall_parmlist);
 myp->myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);
 myp->myparms.parms[2] = 0;

 /* Only specify a non-zero offset for the next field (parms[2]) if */
 /* you are running z/OS 1.7 and above, and you want to query the */
 /* iobyaggr statistics of a different system than this one */
 /* myp->myparms.parms[2] = sizeof(syscall_parmlist) */
 /* + sizeof(STAT_API) + buflen; */

 myp->myparms.parms[3] = 0;
 myp->myparms.parms[4] = 0;
 myp->myparms.parms[5] = 0;
 myp->myparms.parms[6] = 0;

 stapptr = (STAT_API *)((char *)myp + sizeof(syscall_parmlist));
 memcpy(stapptr->sa_eye, SA_EYE, 4);
 stapptr->sa_ver = SA_VER_2;
 stapptr->sa_len = buflen;
 stgt = (IO_REPORT2_GRAND_TOTALS_2 *)((char *)myp +
 sizeof(syscall_parmlist) +
 sizeof(STAT_API));

 str2 = (IO_REPORT2_2*) ((char*) stgt +
 sizeof(IO_REPORT2_GRAND_TOTALS_2));
 stsy = (char *)((char *)myp +
 sizeof(syscall_parmlist) +
 sizeof(STAT_API) + buflen);

 /* This next field should only be set if parms[2] is non-zero */
 /* strcpy(stsy,"DCEIMGVQ"); */

 BPX1PCT("ZFS ",
 ZFSCALL_STATS, /* Aggregate operation */
 mypsize, /* Length of Argument */
 (char *)myp, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if(bpxrv != 0 && bpxrc == E2BIG)
 printf("E2BIG: %d times total\n", t++);
 else if(bpxrv == 0)
 {
 buffer_success = 1;

 if (stapptr->sa_supported_ver == SA_VER_INIT)
 {
 IO_REPORT2_GRAND_TOTALS *stgt_v1;
 IO_REPORT2 *str2_v1;
 stgt_v1 = (IO_REPORT2_GRAND_TOTALS *)((char *)myp +
 sizeof(syscall_parmlist) +
 sizeof(STAT_API));

 str2_v1 = (IO_REPORT2 *) ((char*) stgt +
 sizeof(IO_REPORT2_GRAND_TOTALS));
 print_iobyaggr_version1(stgt_v1,str2_v1);
 }
 else
 print_iobyaggr_version2(stgt, str2);

 unsigned int ptl = stapptr->reset_time_info.posix_time_low;
 if (0 == ctime_r((time_t *) & ptl, buf))
 printf("Could not get timestamp.\n");
 else
 { /* Insert the microseconds into the displayable time value */
 strncpy(&(buf[27]), &(buf[20]), 6);
 sprintf(&(buf[20]), "%06d", stapptr->reset_time_info.posix_usecs);

Statistics iobyaggr Information

362 z/OS: z/OS File System Administration

 buf[26] = ' ';
 buf[19] = '.';
 printf("Last Reset Time: %s", buf);
 }
 free(myp);
 }
 else
 { /* iobyaggr failed with large enough buffer */
 printf("Error on iobyaggr with large enough buffer\n");
 printf("Error querying iobyaggr, BPXRV = %d BPXRC = %d BPXRS = %x\n",
 bpxrv, bpxrc, bpxrs);
 free(myp);
 return bpxrc;
 }
 }
 else
 { /* error was not E2BIG */
 printf("Error on iobyaggr trying to get required size\n");
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 free(myp);
 return bpxrc;
 }
 }
 else
 { /* asking for buffer size gave rv = 0; maybe there is no data */
 if (myparmstruct.myapi.sa_len == 0)
 {
 printf("No data\n");
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 }
 else
 { /* No, there was some other problem with getting the size needed */
 printf("Error getting size required\n");
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 }
 free(myp);
 return bpxrc;
 }
 }

 if(t == 1000)
 printf("Number of failed buffer resizes exceeded.\n");

 free(myp);
 return 0;
}

int print_iobyaggr_version2(IO_REPORT2_GRAND_TOTALS_2 *stgt,
 IO_REPORT2_2 *str2)
{
 int i;
 printf(" zFS I/O by Currently Attached Aggregate\n");
 printf("\n");
 printf("DASD PAV\n");
 printf("VOLSER IOs Mode Reads K bytes "
 "Writes K bytes Dataset Name\n");
 printf("------ --- ---- ---------- ---------- "
 "---------- ---------- ------------\n");

 for (i = 0; i < stgt->io_count; i++, str2++)
 {
 printf("%6.6s %3u %s %10llu %10llu %10llu %10llu %-44.44s\n",
 str2->volser,
 str2->pavios,
 str2->read_ind,
 str2->temp_reads,
 str2->temp_read_bytes,
 str2->temp_writes,
 str2->temp_write_bytes,
 str2->allocation_dsname);
 }
 printf("%6llu %10llu %10llu %10llu %10llu %-44.44s\n",

Statistics iobyaggr Information

Chapter 13. zFS application programming interface information 363

 stgt->grand_total_devices,
 stgt->grand_total_reads,
 stgt->grand_total_read_bytes,
 stgt->grand_total_writes,
 stgt->grand_total_write_bytes, "*TOTALS*");
 printf("\n");

 printf("Total number of waits for I/O: %10u\n",
 stgt->total_number_waits_for_io);
 printf("Average I/O wait time: %9u.%3.3u (msecs)\n",
 stgt->average_wait_time_for_io_whole,
 stgt->average_wait_time_for_io_decimal);
 printf("\n");
 return 1;
}

int print_iobyaggr_version1(IO_REPORT2_GRAND_TOTALS *stgt,
 IO_REPORT2 *str2)
{
 int i;
 printf("Version 1 output is being displayed\n");

 printf(" zFS I/O by Currently Attached Aggregate\n");
 printf("\n");
 printf("DASD PAV\n");
 printf("VOLSER IOs Mode Reads K bytes "
 "Writes K bytes Dataset Name\n");
 printf("------ --- ---- ---------- ---------- "
 "---------- ---------- ------------\n");

 for (i = 0; i < stgt->io_count; i++, str2++) {
 printf("%6.6s %3u %s %10u %10u %10u %10u %-44.44s\n",
 str2->volser,
 str2->pavios,
 str2->read_ind,
 str2->temp_reads,
 str2->temp_read_bytes,
 str2->temp_writes,
 str2->temp_write_bytes,
 str2->allocation_dsname);
 }
 printf("%6u %10u %10u %10u %10u %-44.44s\n",
 stgt->grand_total_devices,
 stgt->grand_total_reads,
 stgt->grand_total_read_bytes,
 stgt->grand_total_writes,
 stgt->grand_total_write_bytes, "*TOTALS*");
 printf("\n");

 printf("Total number of waits for I/O: %10u\n",
 stgt->total_number_waits_for_io);
 printf("Average I/O wait time: %9u.%3.3u (msecs)\n",
 stgt->average_wait_time_for_io_whole,
 stgt->average_wait_time_for_io_decimal);
 printf("\n");
}

Statistics iobyaggr Information

364 z/OS: z/OS File System Administration

Statistics Iobydasd Information

Purpose
Displays information about the number of reads and writes and the number of bytes transferred for each
DASD volume. The number of I/Os and the amount of data transferred is determined on a DASD basis.

Format
syscall_parmlist
 opcode int 245 STATOP_IOBYDASD
 parms[0] int offset to STAT_API
 parms[1] int offset of output following STAT_API
 parms[2] int offset to system name (optional)
 parms[3] int 0
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0
STAT_API
 sa_eye char[4] "STAP"
 sa_len int length of buffer that follows STAT_API
 sa_ver int 1 or 2
 sa_flags char[1] 0x00
 SA_RESET 0x80 Reset statistics
 sa_fill char[3] 0
 sa_supported_ver int version of data returned
 sa_reserve int[3] 0
 posix_time_high unsigned int high order 32 bits since epoch
 posix_time_low unsigned int low order 32 bits since epoch
 posix_useconds unsigned int microseconds
 pad1 int
 int
API_IOBYDASD_HDR
 number_of_lines int count of API_IOBYDASD_DATA lines
 pad int 0
 grand_total_waits hyper total waits
 average_wait_time_whole int average wait time (whole number)
 average wait time in milliseconds
 average_wait_time_decimal int average wait time (decimal part)
 decimal part is in thousanths
 3 means .003 and 300 means .3
API_IOBYDASD_DATA[number_of_lines]
 spare int 0
 volser char[6] DASD volser
 filler char[2] reserved
 pavios unsigned int max number of concurrent I/Os zFS will issue
 for this DASD
 reads unsigned int count of reads for this DASD
 read_bytes unsigned int bytes read for this DASD (in kilobytes)
 writes unsigned int count of writes for this DASD
 write_bytes unsigned int bytes written for this DASD (in kilobytes)
 waits unsigned int waits
 avg_wait_whole int average wait time (whole number)
 average wait time in milliseconds
 avg_wait_decimal int average wait time (decimal part)
 decimal part is in thousanths
 3 means .003 and 300 means .3
--or--
API_IOBYDASD_DATA2[number_of_lines]
 spare int 0
 volser char[6] DASD volser
 filler char[2] reserved
 unsigned int unsigned long long int max number of concurrent I/Os zFS
 will issue for this DASD
 reads unsigned long long int count of reads for this DASD
 read_bytes unsigned long long int bytes read for this DASD (in kilobytes)
 writes unsigned long long int count of writes for this DASD
 write_bytes unsigned long long int bytes written for this DASD (in kilobytes)
 waits unsigned long long int waits
 avg_wait_whole int average wait time (whole number)
 average wait time in milliseconds
 avg_wait_decimal int average wait time (decimal part)
 decimal part is in thousanths
 3 means .003 and 300 means .3
systemname char[9]

Statistics iobydasd Information

Chapter 13. zFS application programming interface information 365

Return_value 0 if request is successful, -1 if it is not successful

Return_code
 EINTR zFS is shutting down
 EINVAL Invalid parameter list
 EMVSERR Internal error occurred
 E2BIG Information too big for buffer supplied
Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage notes
1. Reserved fields and undefined flags must be set to binary zeros.
2. When sa_supported_ver is 0 or 1, the output consists of API_IOBYDASD_HDR and

API_IOBYDASD_DATA. When sa_supported_ver is 2, the output consists of API_IOBYDADD_HDR
and API_IOBYDASD_DATA2.

Privilege required
None.

Related services
Statistics Iobyaggr Information
Statistics Iocounts Information

Restrictions
None.

Examples

#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_STATS 0x40000007
#define STATOP_IOBYDASD 245 /* Performance API queries */
#define E2BIG 145
#define ENOMEM 132

typedef struct syscall_parmlist_t {
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

typedef struct reset_time {
 unsigned int posix_time_high; /* high order 32 bits since epoc */
 unsigned int posix_time_low; /* low order 32 bits since epoch */
 unsigned int posix_usecs; /* microseconds */
 int pad1;
} RESET_TIME;

typedef struct hyper_t {
 unsigned int high; /* unsigned int reserved */
 unsigned int low;
} hyper;

/***/
/* The following structure is the api query control block */
/* It is used for all api query commands */
/***/
typedef struct stat_api_t {
#define SA_EYE "STAP"
 char sa_eye[4]; /* 4 byte identifier must be */

Statistics iobydasd Information

366 z/OS: z/OS File System Administration

 int sa_len; /* length of the buffer to put data into*/
 /* this buffer area follows this struct */
 int sa_ver; /* the version number currently always 1*/
#define SA_VER_2 0x02
#define SA_VER_INIT 0x01
 char sa_flags; /* flags field must be x00 or x80, */
 /* x80 means reset statistics */
#define SA_RESET 0x80
 char sa_fill[3]; /* spare bytes */
 int sa_supported_ver; /* version of data returned */
 int sa_reserve[3]; /* Reserved */
 struct reset_time reset_time_info;
} STAT_API;

typedef struct api_iobydasd_hdr
{
 int number_of_lines;
 int pad;
 hyper grand_total_waits;
 int avg_wait_time_whole; /* in milliseconds */
 int avg_wait_time_decimal; /* in thousandths */
 /* of milliseconds */
 /* for example, 3 means .003 */
 /* and 300 means .3 */
} API_IOBYDASD_HDR;

typedef struct api_iobydasd_data_2
{
 int spare;
 char volser[6];
 char filler[2];
 unsigned int pavios;
 unsigned long long int reads;
 unsigned long long int read_bytes;
 unsigned long long int writes;
 unsigned long long int write_bytes;
 unsigned long long int waits;
 int avg_wait_whole;
 int avg_wait_decimal;
} API_IOBYDASD_DATA_2;

/* Version 1 output structure */
typedef struct api_iobydasd_data
{
 int spare;
 char volser[6];
 char filler[2];
 unsigned int pavios;
 unsigned int reads;
 unsigned int read_bytes;
 unsigned int writes;
 unsigned int write_bytes;
 unsigned int waits;
 int avg_wait_whole;
 int avg_wait_decimal;
} API_IOBYDASD_DATA;

struct parmstruct {
 syscall_parmlist myparms;
 STAT_API myapi;

 /* output buffer API_IOBYDASD_HDR + multiple API_IOBYDASD_DATA_2s */
 char systemname[9];
} myparmstruct;

int print_iobydasd_version1(API_IOBYDASD_HDR* stdh,
 API_IOBYDASD_DATA *stdd);
int print_iobydasd_version2(API_IOBYDASD_HDR* stdh,
 API_IOBYDASD_DATA_2 *stdd);

int main(int argc, char **argv)
{
 int buffer_success = 0;
 int bpxrv;
 int bpxrc;
 int bpxrs;
 int i,t;
 API_IOBYDASD_HDR *stdh;
 API_IOBYDASD_DATA_2 *stdd;
 char *stsy;
 char buf[33];
 struct parmstruct *myp = &myparmstruct;

Statistics iobydasd Information

Chapter 13. zFS application programming interface information 367

 int mypsize;
 int buflen;
 STAT_API *stapptr = &(myparmstruct.myapi);

 myparmstruct.myparms.opcode = STATOP_IOBYDASD;
 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
 myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);
 myparmstruct.myparms.parms[2] = 0;

 /* Only specify a non-zero offset for the next field (parms[2]) if */
 /* you are running z/OS 1.7 and above, and you want to query the */
 /* iobydasd statistics of a different system than this one */
 /* myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist) */
 /* + sizeof(STAT_API); */

 myparmstruct.myparms.parms[3] = 0;
 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;

 memset(stapptr, 0, sizeof(STAT_API));
 memcpy(stapptr->sa_eye, SA_EYE, 4);
 stapptr->sa_ver = SA_VER_2;
 stapptr->sa_len = 0;

 /* This next field should only be set if parms[2] is non-zero */
 /* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

 BPX1PCT("ZFS ",
 ZFSCALL_STATS, /* Perf statistics operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 for(t = 0; t < 1000 && buffer_success == 0; t++)
 {
 if (bpxrv < 0)
 {
 if (bpxrc == E2BIG)
 {
 buflen = stapptr->sa_len; /* Get buffer size needed */
 mypsize = sizeof(syscall_parmlist) + sizeof(STAT_API) + buflen +
 sizeof(myparmstruct.systemname);

 free(myp);
 myp = (struct parmstruct *)malloc((int)mypsize);
 memset(myp, 0, mypsize);

 printf("Need buffer size of %d, for a total of %d\n\n",
 buflen, mypsize);
 myp->myparms.opcode = STATOP_IOBYDASD;
 myp->myparms.parms[0] = sizeof(syscall_parmlist);
 myp->myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);
 myp->myparms.parms[2] = 0;

 /* Only specify a non-zero offset for the next field (parms[2]) if */
 /* you are running z/OS 1.7 and above, and you want to query the */
 /* iobydasd statistics of a different system than this one */
 /* myp->myparms.parms[2] = sizeof(syscall_parmlist) */
 /* + sizeof(STAT_API) + buflen; */

 myp->myparms.parms[3] = 0;
 myp->myparms.parms[4] = 0;
 myp->myparms.parms[5] = 0;
 myp->myparms.parms[6] = 0;

 stapptr = (STAT_API *)((char *)myp + sizeof(syscall_parmlist));
 memcpy(stapptr->sa_eye, SA_EYE, 4);
 stapptr->sa_ver = SA_VER_2;
 stapptr->sa_len = buflen;
 stdh = (API_IOBYDASD_HDR *)((char *)myp +
 sizeof(syscall_parmlist) + sizeof(STAT_API));
 stdd = (API_IOBYDASD_DATA_2*)((char*)stdh + sizeof(API_IOBYDASD_HDR));
 stsy = (char *)((char *)myp + sizeof(syscall_parmlist) +
 sizeof(STAT_API) + buflen);

 /* This next field should only be set if parms[2] is non-zero */
 /* strcpy(stsy,"DCEIMGVQ"); */

 BPX1PCT("ZFS ",

Statistics iobydasd Information

368 z/OS: z/OS File System Administration

 ZFSCALL_STATS, /* Perf stats operation */
 mypsize, /* Length of Argument */
 (char *)myp, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if(bpxrv != 0 && bpxrc == E2BIG)
 printf("E2BIG: %d times total\n", t++);
 else if(bpxrv == 0)
 {
 buffer_success = 1;

 if(stapptr->sa_supported_ver == SA_VER_INIT)
 {
 API_IOBYDASD_DATA *stdd_v1;
 stdd_v1 = (API_IOBYDASD_DATA *)((char *)stdh +
 sizeof(API_IOBYDASD_HDR));
 print_iobydasd_version1(stdh,stdd_v1);
 }
 else
 print_iobydasd_version2(stdh,stdd);

 unsigned int ptl = stapptr->reset_time_info.posix_time_low;
 if (0 == ctime_r((time_t *) & ptl, buf))
 printf("Could not get timestamp.\n");
 else
 { /* Insert the microseconds into the displayable time value */
 strncpy(&(buf[27]), &(buf[20]), 6);
 sprintf(&(buf[20]), "%06d", stapptr->reset_time_info.posix_usecs);
 buf[26] = ' ';
 buf[19] = '.';
 printf("Last Reset Time: %s", buf);
 }
 free(myp);
 }
 else
 { /* iobydasd failed with large enough buffer */
 printf("Error on iobydasd with large enough buffer\n");
 printf("Error querying iobydasd, "
 "BPXRV = %d BPXRC = %d BPXRS = %x\n",
 bpxrv, bpxrc, bpxrs);
 free(myp);
 return bpxrc;
 }
 }
 else
 { /* error was not E2BIG */
 printf("Error on iobydasd trying to get required size\n");
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 free(myp);
 return bpxrc;
 }
 }
 else
 { /* asking for buffer size gave rv = 0; maybe there is no data */
 if (myparmstruct.myapi.sa_len == 0)
 {
 printf("No data\n");
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 }
 else
 { /* No, there was some other problem with getting the size needed */
 printf("Error getting size required\n");
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 }
 free(myp);
 return bpxrc;
 }
 }
 if(t == 1000)
 printf("Number of failed buffer resizes exceeded.\n");

 free(myp);
 return 0;
}

int print_iobydasd_version2(API_IOBYDASD_HDR* stdh,
 API_IOBYDASD_DATA_2 *stdd)
{
 int i;

Statistics iobydasd Information

Chapter 13. zFS application programming interface information 369

 printf("%40czFS I/O by Currently Attached DASD/VOLs\n", ' ');
 printf("\n");
 printf("DASD PAV\n");
 printf("VOLSER IOs Reads K bytes "
 "Writes ");
 printf("K bytes Waits Average Wait\n");
 printf("------ --- -------------------- -------------------- "
 "-------------------- ");
 printf("-------------------- -------------------- ------------\n");

 for (i = 0; i < stdh->number_of_lines; i++, stdd++)
 {
 printf("%6.6s %3u %20llu %20llu %20llu %20llu %20llu %6u.%3.3u\n",
 stdd->volser,
 stdd->pavios,
 stdd->reads,
 stdd->read_bytes,
 stdd->writes,
 stdd->write_bytes,
 stdd->waits,
 stdd->avg_wait_whole,
 stdd->avg_wait_decimal);
 }
 printf("\n");
 printf("Total number of waits for I/O: %u,,%u\n",
 stdh->grand_total_waits.high, stdh->grand_total_waits.low);
 printf("Average I/O wait time: %9u.%3.3u (msecs)\n",
 stdh->avg_wait_time_whole,
 stdh->avg_wait_time_decimal);
 printf("\n");

 return 1;
}

int print_iobydasd_version1(API_IOBYDASD_HDR* stdh,
 API_IOBYDASD_DATA *stdd)
{
 int i;
 printf("Version 1 output is being displayed\n\n");
 printf("%15c zFS I/O by Currently Attached DASD/VOLs\n",' ');
 printf("\n");
 printf("DASD PAV\n");
 printf("VOLSER IOs Reads K bytes Writes "
 "K bytes Waits Average Wait\n");
 printf("------ --- ---------- ---------- ---------- "
 "---------- ---------- ------------\n");

 for (i = 0; i < stdh->number_of_lines; i++, stdd++)
 {
 printf("%6.6s %3u %10u %10u %10u %10u %10u %6u.%3.3u\n",
 stdd->volser,
 stdd->pavios,
 stdd->reads,
 stdd->read_bytes,
 stdd->writes,
 stdd->write_bytes,
 stdd->waits,
 stdd->avg_wait_whole,
 stdd->avg_wait_decimal);
 }
 printf("\n");
 printf("Total number of waits for I/O: %u,,%u\n",
 stdh->grand_total_waits.high, stdh->grand_total_waits.low);
 printf("Average I/O wait time: %9u.%3.3u (msecs)\n",
 stdh->avg_wait_time_whole,
 stdh->avg_wait_time_decimal);
 printf("\n");

 return 1;
}

Statistics iobydasd Information

370 z/OS: z/OS File System Administration

Statistics Iocounts Information

Purpose
Displays information about how often zFS performs I/O for various circumstances and how often it waits
on that I/O.

Format

syscall_parmlist
 opcode int 243 STATOP_IOCOUNTS
 parms[0] int Offset to STAT_API
 parms[1] int Offset of output following STAT_API
 parms[2] int Offset to system name (optional)
 parms[3] int 0
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0
STAT_API
 sa_eye char[4] "STAP"
 sa_len int Length of buffer following STAT_API
 sa_ver int 1 or 2
 sa_flags char[1] 0x80 - Reset statistics
 sa_fill char[3] Reserved
 sa_supported_ver int Version of data returned
 sa_reserve int[3] Reserved
 posix_time_high unsigned int High order 32 bits since epoch
 posix_time_low unsigned int Low order 32 bits since epoch
 posix_useconds unsigned int Microseconds
API_IO_BY_TYPE[3]
 number_of_lines unsigned int Count of API_IO_BY_TYPE lines (3)
 count unsigned int Count of I/Os for type
 waits unsigned int Number of waits for type
 cancels unsigned int Number of cancels for type
 merges unsigned int Number of merges for type
 type typechar[6] Reserved
 description char[54] Type description
API_IO_BY_CIRC[19]
 number_of_lines unsigned int Count of API_IO_BY_CIRC lines (19)
 count unsigned int count of I/Os for circumstance
 waits unsigned int Number of waits for circumstance
 cancels unsigned int Number of cancels for circumstance
 merges unsigned int Number of merges for circumstance
 type typechar[6] Reserved
 description char[54] Circumstance description
-- or --
API_IO_HDR
 number_of_type_lines unsigned int Number of API_IO_BY_TYPE2 lines (3)
 number_of_circ_lines unsigned int Number of API_IO_BY_CIRC2 lines (19)
 reserved[6] int Reserved
API_IO_BY_TYPE2[3]
 count unsigned long long Count of I/Os for type
 waits unsigned long long Number of waits for type
 cancels unsigned long long Number of cancels for type
 merges unsigned long long Number of merges for type
 type char[6] Reserved
 description char[54] Type description
 pad1 char[4] Pad bytes
API_IO_BY_CIRC2[19]
 count unsigned long long Count of I/Os for circumstance
 waits unsigned long long Number of waits for circumstance
 cancels unsigned long long Number of cancels for circumstance
 merges unsigned long long Number of merges for circumstance
 type char[6] Reserved
 description char[54] Circumstance description
 pad1 char[4] Pad bytes

systemname char[9]

Return_value 0 if request is successful, -1 if it is not successful

Return_code
 EINTR zFS is shutting down
 EINVAL Invalid parameter list
 EMVSERR Internal error occurred

Statistics iocounts Information

Chapter 13. zFS application programming interface information 371

 E2BIG Information too big for buffer supplied
Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage notes
1. Reserved fields and undefined flags must be set to binary zeros.
2. When sa_supported_ver is 0 or 1, the output consists of API_IO_BY_TYPE and

API_IO_BY_CIRC. When sa_supported_ver is 2, the output consists of API_IO_HDR,
API_IO_BY_TPYE2, and API_IO_BY_CIRC2

Privilege required
None.

Related services
Statistics Iobyaggr Information
Statistics Iobydasd Information

Restrictions
None.

Examples

#pragma linkage(BPX1PCT, OS)
extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_STATS 0x40000007
#define STATOP_IOCOUNTS 243 /* Performance API queries */
#define TOTAL_TYPES 3
#define TOTAL_CIRC 19
#define SA_VER_INIT 0x01

typedef struct syscall_parmlist_t
{
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

typedef struct reset_time {
 unsigned int posix_time_high; /*high order 32 bits since epoc*/
 unsigned int posix_time_low; /*low order 32 bits since epoch*/
 unsigned int posix_usecs; /*microseconds */
 int pad1;
} RESET_TIME;

/***/
/* The following structure is the api query control block */
/* It is used for all api query commands */
/***/
typedef struct stat_api_t {
#define SA_EYE "STAP"
 char sa_eye[4]; /* 4 byte identifier must be */
 int sa_len; /* length of the buffer to put data into*/
 /* this buffer area follows this struct */
 int sa_ver; /* the version number currently always 1*/
#define SA_VER_2 0x02
 char sa_flags; /* flags field must be x00 or x80, */
 /* x80 means reset statistics */
#define SA_RESET 0x80
 char sa_fill[3]; /* spare bytes */
 int sa_supported_ver; /* version of data returned */
 int sa_reserve[3]; /* Reserved */
 struct reset_time reset_time_info;
} STAT_API;

Statistics iocounts Information

372 z/OS: z/OS File System Administration

typedef struct api_iocount_hdr_2 {
 int number_of_type_lines;
 int number_of_circ_lines;
 int reserved[6];
} API_IOCOUNT_HDR_2;

typedef struct API_IO_BY_TYPE_2_t {
 unsigned long long int count;
 unsigned long long int waits;
 unsigned long long int cancels; /* Successful cancels of IO */
 unsigned long long int merges; /* Successful cancels of IO */
 char type[6];
 char description[54]; /*add 3 bytes for padding */
 char reserved[4];
} API_IO_BY_TYPE_2;

typedef struct API_IO_BY_CIRC_2_t {
 unsigned long long int count;
 unsigned long long int waits;
 unsigned long long int cancels;
 unsigned long long int merges;
 char type[6];
 char description[54]; /*add 3 bytes for padding */
 char reserved[4];
} API_IO_BY_CIRC_2;

/* Version 1 structures */
typedef struct API_IO_BY_TYPE_t
{
 unsigned int number_of_lines;
 unsigned int count;
 unsigned int waits;
 unsigned int cancels; /* Successful cancels of IO */
 unsigned int merges; /* Successful merges of IO */
 char reserved1[6];
 char description[51];
 char pad1[3];
} API_IO_BY_TYPE;

typedef struct API_IO_BY_CIRC_t
{
 unsigned int number_of_lines;
 unsigned int count;
 unsigned int waits;
 unsigned int cancels;
 unsigned int merges;
 char reserved1[6];
 char description[51];
 char pad1[3];
} API_IO_BY_CIRC;

/***/
/* The following structures are used to represent cfgop queries */
/* for iocounts */
/***/
struct parmstruct {
 syscall_parmlist myparms;
 STAT_API myapi;
 API_IOCOUNT_HDR_2 myiocounthdr;
 API_IO_BY_TYPE_2 mystatsbytype[TOTAL_TYPES];
 API_IO_BY_CIRC_2 mystatsbycirc[TOTAL_CIRC];
 char systemname[9];
} myparmstruct;

int print_iocounts_version1(STAT_API* stapptr);
int print_iocounts_version2(STAT_API *stapptr,
 API_IOCOUNT_HDR_2 *hdrptr,
 API_IO_BY_TYPE_2 *stiotptr,
 API_IO_BY_CIRC_2 *stiocptr);

int main(int argc, char **argv)
{
 int bpxrv;
 int bpxrc;
 int bpxrs;
 int i;

 STAT_API *stapptr = &(myparmstruct.myapi);
 API_IOCOUNT_HDR_2 *hdrptr = &(myparmstruct.myiocounthdr);
 API_IO_BY_TYPE_2 *stiotptr = &(myparmstruct.mystatsbytype[0]);
 API_IO_BY_CIRC_2 *stiocptr = &(myparmstruct.mystatsbycirc[0]);

Statistics iocounts Information

Chapter 13. zFS application programming interface information 373

 char buf[33];

 myparmstruct.myparms.opcode = STATOP_IOCOUNTS;
 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
 myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) +
 sizeof(STAT_API);
 myparmstruct.myparms.parms[2] = 0;

 /* Only specify a non-zero offset for the next field (parms[2]) if */
 /* you are running z/OS 1.7 and above, and you want to query the iocounts*/
 /* of a different system than this one */
 /* myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist) */
 /* + sizeof(STAT_API) */
 /* + (sizeof(API_IOCOUNT_HDR_2 */
 /* + (TOTAL_TYPES * sizeof(API_IO_BY_TYPE_2)) */
 /* + (TOTAL_CIRC * sizeof(API_IO_BY_CIRC_2)); */

 myparmstruct.myparms.parms[3] = 0;
 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;

 memset(stapptr, 0, sizeof(STAT_API));
 memcpy(stapptr->sa_eye, SA_EYE, 4);
 stapptr->sa_ver = SA_VER_2;
 stapptr->sa_len = (int)(sizeof(API_IOCOUNT_HDR_2)) +
 (TOTAL_TYPES * sizeof(API_IO_BY_TYPE_2)) +
 (TOTAL_CIRC * sizeof(API_IO_BY_CIRC_2));

 /* This next field should only be set if parms[2] is non-zero */
 /* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

 BPX1PCT("ZFS ",
 ZFSCALL_STATS, /* Perf statistics operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv < 0)
 {
 printf("Error querying iocounts, BPXRV = %d BPXRC = %d BPXRS = %x\n",
 bpxrv, bpxrc, bpxrs);
 return bpxrc;
 }
 else
 {
 /* Check the output that version that was returned */
 if (stapptr->sa_supported_ver == SA_VER_INIT)
 print_iocounts_version1(stapptr);
 else
 print_iocounts_version2(stapptr, hdrptr, stiotptr, stiocptr);

 unsigned int ptl = stapptr->reset_time_info.posix_time_low;
 if (0 == ctime_r((time_t *) & ptl, buf))
 printf("Could not get timestamp.\n");
 else
 { /* Insert the microseconds into the displayable time value */
 strncpy(&(buf[27]), &(buf[20]), 6);
 sprintf(&(buf[20]), "%06d", stapptr->reset_time_info.posix_usecs);
 buf[26] = ' ';
 buf[19] = '.';
 printf("Last Reset Time: %s", buf);
 }

 }
 return 0;
}

int print_iocounts_version1(STAT_API* stapptr)
{
 char *p = (char*) stapptr;
 p += sizeof(STAT_API);
 API_IO_BY_TYPE *stiotptr = (API_IO_BY_TYPE*) p;
 p += sizeof(API_IO_BY_TYPE) * TOTAL_TYPES;
 API_IO_BY_CIRC *stiocptr = (API_IO_BY_CIRC*) p;

 int i;
 printf("Displaying Version 1 Output\n");
 if (stiotptr->number_of_lines != TOTAL_TYPES)
 {

Statistics iocounts Information

374 z/OS: z/OS File System Administration

 printf("Unexpected number of IO Types, %d instead of TOTAL_TYPES\n",
 stiotptr->number_of_lines);
 return 1;
 }
 if (stiocptr->number_of_lines != TOTAL_CIRC)
 {
 printf("Unexpected number of IO Circumstances, %d instead of TOTAL_CIRC\n",
 stiocptr->number_of_lines);
 return 2;
 }
 printf("\n I/O Summary By Type\n");
 printf(" -------------------\n");
 printf("\n");
 printf("Count Waits Cancels Merges Type \n");
 printf("---------- ---------- ---------- ---------- ----------\n");

 for (i = 0; i < TOTAL_TYPES; i++)
 {
 printf("%10u %10u %10u %10u %s\n",
 stiotptr->count, stiotptr->waits,
 stiotptr->cancels, stiotptr->merges,
 stiotptr->description);
 stiotptr = stiotptr + 1;
 }

 printf("\n");
 printf(" I/O Summary By Circumstance\n");
 printf(" ---------------------------\n");
 printf("\n");
 printf("Count Waits Cancels Merges Circumstance\n");
 printf("---------- ---------- ---------- ---------- ------------\n");
 for (i = 0; i < TOTAL_CIRC; i++)
 {
 printf("%10u %10u %10u %10u %s\n",
 stiocptr->count, stiocptr->waits,
 stiocptr->cancels, stiocptr->merges,
 stiocptr->description);
 stiocptr = stiocptr + 1;
 printf("\n");
 }
 return 0;
}

int print_iocounts_version2(STAT_API *stapptr,
 API_IOCOUNT_HDR_2 *hdrptr,
 API_IO_BY_TYPE_2 *stiotptr,
 API_IO_BY_CIRC_2 *stiocptr)
{
 int i;
 if (hdrptr->number_of_type_lines != TOTAL_TYPES)
 {
 printf("Unexpected number of IO Types, %d instead of TOTAL_TYPES\n",
 hdrptr->number_of_type_lines);
 return 1;
 }
 if (hdrptr->number_of_circ_lines != TOTAL_CIRC)
 {
 printf("Unexpected number of IO Circumstances, %d instead of TOTAL_CIRC\n",
 hdrptr->number_of_circ_lines);
 return 2;
 }

 printf("\n I/O Summary By Type\n");
 printf(" -------------------\n");
 printf("\n");
 printf("Count Waits Cancels "
 "Merges Type \n");
 printf("-------------------- -------------------- -------------------- "
 "-------------------- ----------\n");

 for (i = 0; i < TOTAL_TYPES; i++)
 {
 printf("%20llu %20llu %20llu %20llu %s\n",
 stiotptr->count, stiotptr->waits,
 stiotptr->cancels, stiotptr->merges,
 stiotptr->description);
 stiotptr = stiotptr + 1;
 }

 printf("\n");
 printf(" I/O Summary By Circumstance\n");
 printf(" ---------------------------\n");

Statistics iocounts Information

Chapter 13. zFS application programming interface information 375

 printf("\n");
 printf("Count Waits Cancels "
 "Merges Circumstance\n");
 printf("-------------------- -------------------- -------------------- "
 "-------------------- ------------\n");

 for (i = 0; i < TOTAL_CIRC; i++)
 {
 printf("%20llu %20llu %20llu %20llu %s\n",
 stiocptr->count, stiocptr->waits,
 stiocptr->cancels, stiocptr->merges,
 stiocptr->description);
 stiocptr = stiocptr + 1;
 printf("\n");
 }

 return 0;
}

Statistics iocounts Information

376 z/OS: z/OS File System Administration

Statistics Kernel Information

Purpose
A performance statistics operation that returns kernel counters, including the number of kernel
operations and average time for the operation.

Format
syscall_parmlist
 opcode int 246 STATOP_KNPFS
 parms[0] int Offset to STAT_API
 parms[1] int offset of output following STAT_API
 parms[2] int Offset to system name (optional)
 parms[3] int 0
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0
STAT_API
 sa_eye char[4] "STAP"
 sa_len int Length of buffer following STAT_API
 sa_ver int 1 or 2
 sa_flags char[1] 0x80 - Reset statistics
 sa_fill char[3] Reserved
 sa_supported_ver int Version of data returned or 0
 sa_reserve int[3] Reserved
 posix_time_high unsigned int High order 32 bits since epoch
 posix_time_low unsigned int Low order 32 bits since epoch
 posix_useconds unsigned int Microseconds
 pad1 int Reserved
KERNEL_CALL_STATS
 kc_eye char[8] Reserved
 kc_version short Reserved
 kc_len short Reserved
 pad1 int Reserved
 KERNEL_LINE[40]
 kl_operation_name char[27] Operation name string
 kl_valid char Operation entry is valid (0x01)
 kl_count unsigned int Count of operations
 kl_time two_words High - integer part of average time
 Low - fractional part of average time
 kl_bytes hyper Bytes associated with read and write
 operations, 0 otherwise
 kl_reserved int[6] Reserved
 kc_totalops unsigned int Grand total operations
 pad2 int Reserved
 kc_totaltime hyper High=integer part of average
 wait time
 Low=fractional part of average
 wait time
 kc_valid_slots int Number of slots in above array that
 actually contains data
 kc_reserved int[10] Reserved
 pad3 int Reserved
-- or --
KERNEL_CALL_STATS2
 kc_eye char [8] "KCSTAT2"
 kc_version short 1
 kc_len short Size of KERNEL_CALL_STATS2
 pad1 int Reserved
 kc_kernel_line_count unsigned int Number of KERNEL_LINE2s
 for kernel
 kc_client_line_count unsigned int Number of KERNEL_LINE2s
 for clients
 kc_totalops unsigned long long Total operations
 kc_totalxcfops unsigned long long Total xcf operations
 kc_client_totalops unsigned long long Total operations for
 clients
 kc_client_totalxcfops unsigned long long Total xcf operations for
 clients
 kc_totaltime_whole unsigned int Whole portion of average
 total time
 kc_totaltime_decimal unsigned int Decimal portion of average
 total time
 kc_client_totaltime_whole unsigned int Whole portion of average

Statistics Kernel Information

Chapter 13. zFS application programming interface information 377

 client total time
 kc_client_totaltime_decimal unsigned int Decimal portion of average
 client total time
 kc_reserved[10] int Reserved
KERNEL_LINE2[n]
 kl_operation_name char[27] operation name string
 kl_valid char 1 - operation entry valid
 pad1 int Reserved
 kl_count unsigned long long Count of operations
 kl_xcfcount unsigned long long Count of xcf operations
 kl_time hyper High=integer part of
 average time
 Low=fractional part of
 average time
 kl_bytes unsigned long long Bytes in read and write
 operations, otherwise 0
 kl_reserved int[4] Reserved
systemname char[9] System to get stats from

Return_value 0 if request is successful, -1 if it is not successful

Return_code
 EINTR zFS is shutting down
 EINVAL Invalid parameter list
 EMVSERR Internal error occurred
 E2BIG Information too big for buffer supplied
Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage notes
1. Reserved fields and undefined flags must be set to binary zeros.
2. When a_supported_ver is 0 or 1, output consists of KERNEL_CALL_STATS and KERNEL_LINE. When
sa_supported_ver is 2, output consists of KERNEL_CALL_STATS2 and KERNEL_LINE2.

3. When a_supported_ver is 2, the KERNEL_LINE2 follows the KERNEL_CALL_STATS2 structure.
There are kc_kernel_line_count KERNEL_LINE2 structures to represent kernel lines of output.
These are followed by kc_client_line_count KERNEL_LINE2 structures of client output lines.

Privilege required
None.

Related services
Statistics Vnode Cache Information
Statistics Metadata Cache Information

Restrictions
None.

Examples

#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <time.h>

#define ZFSCALL_STATS 0x40000007
#define STATOP_KNPFS 246
#define BUFFER_SIZE 1024 * 64
#define SA_VER_INIT 0x01

typedef struct syscall_parmlist_t

Statistics Kernel Information

378 z/OS: z/OS File System Administration

{
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

typedef union {
 struct double_word_t {
 unsigned int first_word;
 unsigned int second_word;
 } double_word;

 double alignment_dummy;
} two_words;

#define MAX_KERNEL_LINES 40

typedef struct KERNEL_line_t2 {
 char kl_operation_name[27];
 char kl_valid;
 int pad1;
 unsigned long long kl_count;
 unsigned long long kl_xcfcount;
 two_words kl_time;
 uint64_t kl_bytes;
 int kl_reserved[4];
} KERNEL_LINE2;

typedef struct kernel_call_stats_t2 {
 char kc_eye[8]; /*eye catcher */
 short kc_version;
 short kc_len;
 int pad1;
 int kc_kernel_line_count;
 int kc_client_line_count;
 unsigned long long kc_totalops; /*Owner grand Total operations*/
 unsigned long long kc_totalxcfops; /*Owner grand Total xcf operations*/
 unsigned long long kc_client_totalops; /*Client grand Total operations*/
 unsigned long long kc_client_totalxcfops; /*Client grand Total operations*/
 two_words kc_totaltime; /*Owner Grand Total wait time*/
 two_words kc_client_totaltime; /*Client Grand Total wait time*/
 int kc_reserved[10];
} KERNEL_CALL_STATS2;

/* Version 1 Output Structures */
typedef struct KERNEL_line_t {
 char kl_operation_name[27];
 char kl_valid;
 unsigned int kl_count;
 two_words kl_time;
 int kl_reserved[6];
} KERNEL_LINE;

typedef struct kernel_call_stats_t {
 char kc_eye[8]; /*eye catcher */
 short kc_version;
 short kc_len;
 int pad1;
 KERNEL_LINE OUTPUT[MAX_KERNEL_LINES];
 unsigned int kc_totalops; /*Grand Total operations */
 int pad2;
 two_words kc_totaltime; /*Grand Total wait time*/
 int kc_valid_slots; /* Number of slots in the above array*/
 /* that actually contain data*/
 int kc_reserved[10];
 int pad3;
} KERNEL_CALL_STATS;

/* reset timestamp */
typedef struct reset_time {
 unsigned int posix_time_high; /*high order 32 bits since epoc*/
 unsigned int posix_time_low; /*low order 32 bits since epoch*/
 unsigned int posix_usecs; /*microseconds*/
 int pad1;
} RESET_TIME;

/***/
/* The following structure is the api query control block */
/* It is used for all api query commands */
/***/
typedef struct stat_api_t

Statistics Kernel Information

Chapter 13. zFS application programming interface information 379

{
#define SA_EYE "STAP"
 char sa_eye[4]; /* 4 byte identifier must be */
 int sa_len; /* length of the buffer to put data into*/
 /* this buffer area follows this struct*/
 int sa_ver; /* the version number currently always 1*/
#define SA_VER_2 0x02
 char sa_flags; /* flags field must be x00 or x80,
 x80 means reset statistics*/
#define SA_RESET 0x80
 char sa_fill[3]; /* spare bytes */
 int sa_supported_ver; /* version of data returned */
 int sa_reserve[3]; /* Reserved */
 struct reset_time reset_time_info;
} STAT_API;

struct parmstruct {
 syscall_parmlist myparms;
 STAT_API myapi;
 KERNEL_CALL_STATS2 mystats;
 KERNEL_LINE2 mykernline;
 char systemname[9];
} myparmstruct;

int print_stat_kern_version1(STAT_API* stapptr);

int main(int argc, char **argv)
{
 int bpxrv;
 int bpxrc;
 int bpxrs;
 int i,j;
 int processing_server_data = 1;
 int lines;
 int buff_fill_len;
 char itoaBuff[11];
 two_words totaltime;
 unsigned long long totalops;
 unsigned long long totalxcfops;

 STAT_API local_req;
 char* buffp = NULL;
 syscall_parmlist* parmp = NULL;
 STAT_API* stapptr = NULL;
 KERNEL_CALL_STATS2* kcp = NULL;
 KERNEL_LINE2* klp = NULL;
 char buf[33];

 stapptr = &local_req;
 memset(stapptr, 0x00, sizeof(STAT_API));
 memcpy(stapptr->sa_eye, SA_EYE, 4);

 stapptr->sa_ver = SA_VER_2;
 stapptr->sa_len = ((2 * MAX_KERNEL_LINES) * sizeof(KERNEL_LINE2)) +
 sizeof(KERNEL_CALL_STATS2);

 buffp = (char*) malloc(BUFFER_SIZE);
 if(buffp == NULL)
 {
 printf("Malloc Error\n");
 return 0;
 }
 memset(buffp, 0x00, sizeof(syscall_parmlist) + sizeof(STAT_API));

 parmp = (syscall_parmlist*) &buffp[0];
 parmp->opcode = STATOP_KNPFS;
 parmp->parms[0] = sizeof(syscall_parmlist);
 parmp->parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);
 parmp->parms[2] = 0;

 /* Only specify a non-zero offset for the next field (parms[2]) if */
 /* you are running z/OS 1.7 and above, and you want to query the kernel */
 /* statistics of a different system than this one */
 /* parmp->parms[2] = sizeof(syscall_parmlist) + sizeof(STAT_API) + */
 /* sizeof(KERNEL_CALL_STATS2); */

 parmp->parms[3] = 0;
 parmp->parms[4] = 0;
 parmp->parms[5] = 0;
 parmp->parms[6] = 0;

Statistics Kernel Information

380 z/OS: z/OS File System Administration

 buff_fill_len = sizeof(syscall_parmlist);
 stapptr = (STAT_API*) &buffp[buff_fill_len];
 memcpy(stapptr, &local_req, sizeof(STAT_API));
 buff_fill_len += sizeof(STAT_API);

 /* This next field should only be set if parms[2] is non-zero */
 /* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

 BPX1PCT("ZFS ",
 ZFSCALL_STATS, /* Perf statistics operation */
 BUFFER_SIZE, /* Length of Argument */
 (char *) buffp, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv < 0)
 {
 printf("Error querying kernel calls, "
 "BPXRV = %d BPXRC = %d BPXRS = %x\n",
 bpxrv, bpxrc, bpxrs);
 return bpxrc;
 }
 else
 {
 if (stapptr->sa_supported_ver == SA_VER_INIT)
 {
 print_stat_kern_version1(stapptr);
 }
 else
 {
 /* Get the pointers to the output structures */
 kcp = (KERNEL_CALL_STATS2*) &buffp[buff_fill_len];
 buff_fill_len += sizeof(KERNEL_CALL_STATS2);
 klp = (KERNEL_LINE2*) &buffp[buff_fill_len];

 lines = kcp->kc_kernel_line_count;
 totaltime = kcp->kc_totaltime;
 totalops = kcp->kc_totalops;
 totalxcfops = kcp->kc_totalxcfops;

 printf(" zFS Kernel PFS Calls\n");
 printf(" ---------------------\n\n");

 /* Do once if no client information, */
 /* otherwise loop again printing out client stats */
 int do_client = 1;
 while(do_client)
 {
 if(processing_server_data)
 printf("%15c On Owner \n", ' ');
 else
 printf("%15c On Client \n", ' ');

 printf(" ---------------------\n\n");

 printf("Operation Count XCF req "
 "Avg Time Bytes \n");
 printf("--------- ---------- ---------- "
 "--------- ----------\n");

 for (j = 0; j < lines; j++)
 {
 if (!(klp->kl_valid))
 break;

 sprintf(itoaBuff, "%d", klp->kl_bytes);

 printf("%13s %10llu %10llu %9u.%3.3u %10s\n",
 klp->kl_operation_name,
 klp->kl_count,
 klp->kl_xcfcount,
 klp->kl_time.double_word.first_word,
 klp->kl_time.double_word.second_word,
 klp->kl_bytes ? itoaBuff : "");
 klp++;
 }

 /* Print out the Totals */
 printf("------------ ---------- ---------- ----------\n");
 printf("%13s %10llu %10llu %9u.%3.3u\n\n\n",
 "TOTALS*",

Statistics Kernel Information

Chapter 13. zFS application programming interface information 381

 totalops,
 totalxcfops,
 totaltime.double_word.first_word,
 totaltime.double_word.second_word);

 /* If client data exists, and we have not already processed it */
 if ((processing_server_data) && (kcp->kc_client_line_count))
 {
 /* setup the client data */
 lines = kcp->kc_client_line_count;
 totaltime = kcp->kc_client_totaltime;
 totalops = kcp->kc_client_totalops;
 totalxcfops = kcp->kc_client_totalxcfops;
 processing_server_data = 0;
 do_client = 1;
 }
 else
 do_client = 0;
 }
 }

 if (0 == ctime_r((time_t*) & stapptr->reset_time_info.posix_time_low, buf))
 printf("Could not get timestamp.\n");
 else
 { /* Insert the microseconds into the displayable time value */
 strncpy(&(buf[27]), &(buf[20]), 6);
 sprintf(&(buf[20]), "%06d", stapptr->reset_time_info.posix_usecs);
 buf[26] = ' ';
 buf[19] = '.';
 printf("Last Reset Time: %s", buf);
 }
 }
 return 0;
}

int print_stat_kern_version1(STAT_API* stapptr)
{
 int i;
 char *p = (char*) stapptr;
 p += sizeof(STAT_API);
 KERNEL_CALL_STATS *stkcptr = (KERNEL_CALL_STATS*) p;

 printf("Displaying the Version 1 Stats\n");
 printf("\n%34s\n", "zFS Kernel PFS Calls");
 printf("%34s\n", "--------------------");
 printf("\n");
 printf("Operation Count Avg Time \n");
 printf("--------- ---------- ----------\n");

 i = 0;
 while (stkcptr->OUTPUT[i].kl_valid == 1)
 {
 printf("%13s %10u %9u.%3.3u\n",
 stkcptr->OUTPUT[i].kl_operation_name,
 stkcptr->OUTPUT[i].kl_count,
 stkcptr->OUTPUT[i].kl_time.double_word.first_word,
 stkcptr->OUTPUT[i].kl_time.double_word.second_word);
 i += 1;
 }
 printf("--------- ---------- ----------\n");
 printf("*TOTALS* %10u %9u.%3.3u\n",
 stkcptr->kc_totalops,
 stkcptr->kc_totaltime.double_word.first_word,
 stkcptr->kc_totaltime.double_word.second_word);
}

Statistics Kernel Information

382 z/OS: z/OS File System Administration

Statistics Locking Information

Purpose
A performance statistics operation that returns locking information. Requesting version 1 output returns
counters with 4-byte values. Requesting version 2 output returns counters with 8-byte values.

Format

syscall_parmlist
 opcode int 240 STATOP_LOCKING
 parm[0] int Offset to STAT_API
 parm[1] int Offset of output following
STAT_API
 parm[2] int Offset to system name
 parm[3] int 0
 parm[4] int 0
 parm[5] int 0
 parm[6] int 0

STAT_API
 sa_eye char[4] "STAP"
 sa_len int Length of buffer that
 follows STAT_API
 sa_ver int 1 or 2
 sa_flags char 0x80 for reset; 0 otherwise
 sa_fill char[3] 0
 sa_supported_ver int Version of data returned (0
 and 1 both mean version 1)
 sa_reserve int[3] 0
 posix_time_high unsigned int High order 32 bits since
 epoch
 posix_time_low unsigned int Low order 32 bits since
 epoch
 posix_useconds unsigned int Microseconds
 pad1 int Reserved
STAT_LOCKING
 reserved1 int Reserved
 stlk_untimed_sleeps unsigned int Number of untimed sleeps
 stlk_timed_sleeps unsigned int Number of timed sleeps
 stlk_wakeups unsigned int Number of wake ups
 stlk_total_wait_for_locks unsigned int total waits for locks
 pad1 int Reserved
 stlk_average_lock_wait_time double Average lock wait time

 stlk_avg_lock_wait_time_whole int Average lock wait time in
 msecs (left of the decimal)
 stlk_avg_lock_wait_time_decimal int Average lock wait time in
 msecs (decimal part in
 thousandths (3 means .003,
 300 means .3)
 stlk_total_monitored_sleeps unsigned int Total monitored sleeps
 pad2 int Reserved
 stlk_average_monitored_sleep_time double Average monitored sleep time
 stlk_avg_mon_sleep_time_whole int Average monitored sleep time
 in msecs (left of decimal)
 stlk_avg_mon_sleep_time_decimal int Average monitored sleep time
 in msecs. Decimal part is in
 thousandths (3 means .003,
 00 means .3)
 stlk_total_contentions unsigned int Total lock contention
 stlk_reserved_space char[48] Reserved for future use
 pad3 int Reserved
 LOCK_LINE[15] struct Lock_line[15] Lock data
 count int Number of waits for lock
 async int Asynchronous disposition
 spins int Number of attempts to get
 lock that did not resolve

Statistics Locking Information

Chapter 13. zFS application programming interface information 383

 immediately
 pad int Keep alignment boundaries
 percentage double
 percentage_whole int Percentage >= 1
 percentage_decimal int Percentage < 1. Decimal part
 is in thousandths (3 means
 .003 and 300 means .3)
 description char[84] Description of the lock
 pad2 int Reserved

 SLEEP_LINE[5] struct Sleep_line[5] Storage for sleep data
 sleepcount unsigned int Time spent sleeping
 pad int Keep alignment boundaries
 percentage double Percentage of time spent
 sleeping
 percentage_whole int Percentage >=1
 percentage_decimal int Percentage < 1. Decimal part
 is in thousandths (3 means
 .003 and 300 means .3)
 description char[84] Description of the thread
 pad int Keep alignment boundaries
 systemname char[9]
 -- or --
STAT_LOCKING2
 reserved1 int[2] int
 stlk_untimed_sleeps unsigned long long int Untimed sleeps
 stlk_timed_sleeps unsigned long long int Timed sleeps
 stlk_wakeups unsigned long long int Wake ups
 stlk_total_wait_for_locks unsigned long long int Total waits for
 locks
 stlk_average_lock_wait_time double Average lock wait time
 stlk_avg_lock_wait_time_whole int Average lock wait time
 in msecs (left of the
 decimal part)
 stlk_avg_lock_wait_time_decimal int Average lock wait time
 in msecs Decimal part
 is in thousandths (3
 means .003, 300 is .3)
 stlk_total_monitored_sleeps unsigned long long int Total monitored
 sleeps
 stlk_average_monitored_sleep_time double Average monitored sleep time
 stlk_avg_mon_sleep_time_whole int Average monitoredsleep time
 in msecs left of the decimal
 stlk_avg_mon_sleep_time_decimal int Average monitored
 sleep time in msecs.
 decimal part is in
 thousandths (3 means
 .003, 300 means .3)

 stlk_total_contentions unsigned long long int Total lock contention
 stlk_reserved_space char[48] Reserved for future
 stlk_lock_line_count int Number of lock lines
 stlk_sleep_line_count int Number of sleep lines

LOCK_LINE2[m]
 count unsigned long long int Number of thread waits for
 this lock
 async unsigned long long int Asynchronous disposition
 spins unsigned long long int Number of attempts to get
 lock that did not
 resolve immediately
 percentage double
 percentage_whole int Percentage >= 1
 percentage_decimal int Percentage < 1. Decimal part
 is in thousandths
 (3 means .003, 300 means .3)
 description char[84] Description of the lock
 pad int Fill space to align

SLEEP_LINE2[n]
 sleepcount unsigned long long int Time spent sleeping
 percentage double Percentage of time spent

Statistics Locking Information

384 z/OS: z/OS File System Administration

 sleeping
 percentage_whole int Percentage >=1
 percentage_decimal int Percentage < 1. decimal part
 is in thousandths
 (3 means .003, 300 means .3)
 description char[84] Description of the thread
 pad int Keep boundary alignment

Usage notes
1. When sa_supported_ver is 0 or 1, the output consists of STAT_LOCKING, followed by one or more

LOCK_LINE, followed by one for more SLEEP_LINE. When sa_supported_ver is 2, the output
consists of STAT_LOCKING2, followed by one or more LOCK_LINE2, followed by one for more
SLEEP_LINE2.

2. Reserved fields and undefined flags must be set to binary zeros.

Privilege required
None.

Related services
Statistics Storage Information
Statistics User Cache Information

Restrictions
None.

Examples

#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_STATS 0x40000007
#define STATOP_LOCKING 240 /* Performance API queries */
#define BUFFER_SIZE 1024 * 64
#define TOP15 15

typedef struct syscall_parmlist_t {
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

typedef struct Lock_line_2
{
 unsigned long long int count; /* Number of thread waits for this lock */
 unsigned long long int async; /* Asynchronous disposition */
 unsigned long long int spins; /* Number of attempts to get lock */
 /* that didnt resolve immediately*/
 double reserved;
 int percentage_whole; /* percentage >= 1*/
 int percentage_decimal;/* percentage < 1*/
 char description[84]; /* Description of the lock */
 int pad2;
} LOCK_LINE_2;

typedef struct Sleep_line_2
{
 unsigned long long int sleepcount; /* Time spent sleeping */
 double reserved;
 int percentage_whole; /* Percentage >=1 */
 int percentage_decimal; /* Percentage < 1 */

Statistics Locking Information

Chapter 13. zFS application programming interface information 385

 char description[84]; /*Description of the thread*/
 int pad2;
} SLEEP_LINE_2;

/*Version 1 Output Structures */
typedef struct Lock_line_t {
 int count; /* Number of thread waits for this lock */
 int async; /* Asynchronous disposition*/
 int spins; /* Number of attempts to get lock that
 did not resolve immediately*/
 int pad1;
 double percentage;
 int percentage_whole; /* percentage >= 1*/
 int percentage_decimal; /* percentage < 1*/
 /* in thousandths.*/
 /* For example, 3 means .003 and 300 means .3 */
 char description[84]; /* Description of the lock */
 int pad2;
} LOCK_LINE;

typedef struct Sleep_line_t {
 unsigned int sleepcount; /* Time spent sleeping */
 int pad1;
 double percentage; /* Percentage of time spent sleeping*/
 int percentage_whole; /* Percentage >=1 */
 int percentage_decimal; /* Percentage < 1 */
 /* in thousandths.*/
 /* For example, 3 means .003 and 300 means .3 */
 char description[84]; /* Description of the thread*/
 int pad2;
} SLEEP_LINE;

typedef struct stat_locking_t {
 int reserved1;
 unsigned int stlk_untimed_sleeps; /* Number of untimed sleeps */
 unsigned int stlk_timed_sleeps; /* Number of timed sleeps */
 unsigned int stlk_wakeups; /* Number of wake ups */
 unsigned int stlk_total_wait_for_locks; /* Total waits for locks */
 int pad1;
 double stlk_average_lock_wait_time; /*Average lock wait time */
 int stlk_avg_lock_wait_time_whole; /*Average lock wait time in msecs*/
 /*left of the decimal part */
 int stlk_avg_lock_wait_time_decimal; /*Average lock wait time in msecs*/
 /* decimal portion */
 /* in thousandths */
 /* for example, 3 means*/
 /* .003 and 300 means .3 */
 unsigned int stlk_total_monitored_sleeps; /* Total monitored sleeps */
 int pad2;
 double stlk_average_monitored_sleep_time; /* Average monitored sleep time */
 int stlk_avg_mon_sleep_time_whole; /* Average monitored sleep time */
 /* in msecs left of the */
 /* decimal part */
 int stlk_avg_mon_sleep_time_decimal; /* Average monitored sleep */
 /* time in msecs */
 /* decimal portion */
 /* in thousandths */
 /* for example, 3 means .003 */
 /* and 300 means .3 */
 unsigned int stlk_total_contentions; /*Total lock contention of all kinds*/
 char stlk_reserved_space[48]; /* reserved for future use */
 int pad3;
#define MAX_LOCKS 15 /* Maximum number of locks in this release*/
#define MAX_SLEEPS 5 /* Maximum number of sleeps in this release*/
 LOCK_LINE stlk_locks[MAX_LOCKS]; /* Storage for the lock data */
 SLEEP_LINE stlk_sleeps[MAX_SLEEPS]; /* Storage for the top 5 most */
 /* common sleep threads*/
} STAT_LOCKING;

/* reset timestamp */
typedef struct reset_time {
 unsigned int posix_time_high; /* high order 32 bits since epoc */
 unsigned int posix_time_low; /* low order 32 bits since epoch */
 unsigned int posix_usecs; /* microseconds */
 int pad1;
} RESET_TIME;

/***/
/* The following structure is the api query control block */
/* It is used for all api query commands */
/***/
typedef struct stat_api_t {

Statistics Locking Information

386 z/OS: z/OS File System Administration

#define SA_EYE "STAP"
 char sa_eye[4]; /* 4 byte identifier must be */
 int sa_len; /* length of the buffer to put data into*/
 /* this buffer area follows this struct */
 int sa_ver; /* the version number currently always 1*/
#define SA_VER_2 0x02
#define SA_VER_INIT 0x01
 char sa_flags; /* flags field must be x00 or x80, */
 /* x80 means reset statistics */
#define SA_RESET 0x80
 char sa_fill[3]; /* spare bytes */
 int sa_supported_ver; /* version of data returned */
 int sa_reserve[3]; /* Reserved */
 struct reset_time reset_time_info;
} STAT_API;

typedef struct api_lock_stats_2
{
 int pad1;
 int ls_total_bytes_of_data; /* Total bytes of data*/
 unsigned long long int ls_untimed_sleeps; /* Number of untimed sleeps*/
 unsigned long long int ls_timed_sleeps; /* Number of timed sleeps */
 unsigned long long int ls_wakeups; /* Number of wake ups */
 unsigned long long int ls_total_wait_for_locks; /* Total waits for locks */
 double ls_average_lock_wait_time; /*Average lock wait time */
 int ls_avg_lock_wait_time_whole; /*Average lock wait time in msecs left
 of the decimal part*/
 int ls_avg_lock_wait_time_decimal; /*Average lock wait time in
 msecs decimal portion */
 unsigned long long int ls_total_monitored_sleeps; /*Total monitored sleeps */
 double ls_average_monitored_sleep_time;/* Average monitored sleep time */
 int ls_avg_mon_sleep_time_whole; /*Average monitored sleep time in msecs
 left of the decimal part*/
 int ls_avg_mon_sleep_time_decimal; /*Average monitored sleep time in msecs
 decimal portion */
 unsigned long long int ls_total_contentions; /*Total lock contention
 of all kinds*/
 char ls_reserved_space[48]; /* reserved for future use */
#define MAX_LOCKS 15 /* Maximum number of locks in this release*/
#define MAX_SLEEPS 5 /* Maximum number of sleeps in this release*/
 int ls_lock_line_count; /* count of lock lines, currently 15 */
 int ls_sleep_line_count; /* count of sleep lines,currently 5 */
} API_LOCK_STATS_2;

int print_locking_version1(char *buffp,
 int buff_fill_len);
int print_locking_version2(char *buffp,
 int buff_fill_len);

int main(int argc, char **argv)
{
 int bpxrv;
 int bpxrc;
 int bpxrs;
 int i;
 int buff_fill_len;

 STAT_API local_req;
 char *buffp = NULL;
 syscall_parmlist *parmp = NULL;
 STAT_API *stapptr = NULL;

 stapptr = &local_req;
 memset(stapptr, 0x00, sizeof(STAT_API));
 memcpy(stapptr->sa_eye, SA_EYE, 4);

 stapptr->sa_ver = SA_VER_2;
 stapptr->sa_len = 2 * sizeof(API_LOCK_STATS_2) +
 (MAX_LOCKS * sizeof(LOCK_LINE_2)) +
 (MAX_SLEEPS * sizeof(SLEEP_LINE_2));

 buffp = (char*) malloc(BUFFER_SIZE);
 if(buffp == NULL)
 {
 printf("Malloc Error\n");
 return 0;
 }
 memset(buffp, 0x00, sizeof(syscall_parmlist) + sizeof(STAT_API));

 parmp = (syscall_parmlist*) &buffp[0];
 parmp->opcode = STATOP_LOCKING;

Statistics Locking Information

Chapter 13. zFS application programming interface information 387

 parmp->parms[0] = sizeof(syscall_parmlist);
 parmp->parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);
 parmp->parms[2] = 0;
 parmp->parms[3] = 0;
 parmp->parms[4] = 0;
 parmp->parms[5] = 0;
 parmp->parms[6] = 0;

 buff_fill_len = sizeof(syscall_parmlist);
 stapptr = (STAT_API*) &buffp[buff_fill_len];
 memcpy(stapptr, &local_req, sizeof(STAT_API));
 buff_fill_len += sizeof(STAT_API);

 BPX1PCT("ZFS ",
 ZFSCALL_STATS, /* Perf statistics operation */
 BUFFER_SIZE, /* Length of Argument */
 buffp, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv < 0)
 {
 printf("Error querying locking stats, BPXRV = %d BPXRC = %d BPXRS = %x\n",
 bpxrv, bpxrc, bpxrs);
 return bpxrc;
 }
 else
 {
 if(stapptr->sa_supported_ver == SA_VER_INIT)
 print_locking_version1(buffp, buff_fill_len);
 else
 print_locking_version2(buffp, buff_fill_len);
 }
 return 0;
}

int print_locking_version2(char *buffp,
 int buff_fill_len)
{
 int i;
 API_LOCK_STATS_2 *stlkptr = NULL;
 LOCK_LINE_2 *llp = NULL;
 SLEEP_LINE_2 *slp = NULL;

 /* Point at output structures located in the buffer */
 stlkptr = (API_LOCK_STATS_2*) &buffp[buff_fill_len];
 buff_fill_len += sizeof(API_LOCK_STATS_2);
 llp = (LOCK_LINE_2*) &buffp[buff_fill_len];
 buff_fill_len += sizeof(LOCK_LINE_2);

 /* Print out the locking statistics */
 printf("%55s\n","Locking Statistics\n\n");
 printf("Untimed sleeps: %20llu Timed Sleeps: "
 "%20llu Wakeups: %20llu\n\n",
 stlkptr->ls_untimed_sleeps,
 stlkptr->ls_timed_sleeps,
 stlkptr->ls_wakeups);

 printf("%-42s %20llu\n",
 "Total waits for locks:",
 stlkptr->ls_total_wait_for_locks);

 printf("%-42s %10u.%3.3u (msecs)\n\n",
 "Average lock wait time:",
 stlkptr->ls_avg_lock_wait_time_whole,
 stlkptr->ls_avg_lock_wait_time_decimal);

 printf("%-42s %10llu\n",
 "Total monitored sleeps:",
 stlkptr->ls_total_monitored_sleeps);

 printf("%-42s %10u.%3.3u (msecs)\n\n",
 "Average monitored sleep time:",
 stlkptr->ls_avg_mon_sleep_time_whole,
 stlkptr->ls_avg_mon_sleep_time_decimal);

 printf("%20c Top %u Most Highly Contended Locks\n", ' ', TOP15);
 printf(" Thread Async "
 "Spin \n");
 printf(" Wait Disp. "
 "Resol. Pct. Description \n");

Statistics Locking Information

388 z/OS: z/OS File System Administration

 printf("-------------------- -------------------- "
 "-------------------- ------ --------------\n");

 /* Iterate through all the LOCK_LINE_2 structures */
 for (i = 0; i < stlkptr->ls_lock_line_count; i++)
 {
 printf("%20llu %20llu %20llu %3u.%1.1u%% %.80s\n",
 llp->count, llp->async, llp->spins,
 llp->percentage_whole, llp->percentage_decimal,
 llp->description);
 llp++;
 }
 printf("\n");

 printf("Total lock contention of all kinds: %10llu\n\n",
 stlkptr->ls_total_contentions);
 printf(" Top 5 Most Common Thread Sleeps\n");
 printf("Thread Wait Pct. Description\n");
 printf("--------------------- ------- -----------\n");

 /* Point where the SLEEP_LINE_2 output structures begin in the buffer */
 slp = (SLEEP_LINE_2*) llp;
 for (i = 0; i < stlkptr->ls_sleep_line_count; i++)
 {
 printf(" %20llu %3u.%-3.1u%% %.80s\n\n",
 slp->sleepcount,
 slp->percentage_whole, slp->percentage_decimal,
 slp->description);
 slp++; /* point at next entry */
 }

 return 1;
}

int print_locking_version1(char *buffp,
 int buff_fill_len)
{
 int i;
 printf("Version 1 Output is being displayed\n\n");

 STAT_LOCKING *stlkptr;
 stlkptr = (STAT_LOCKING*) &buffp[buff_fill_len];

 printf("\n%50s\n\n", "Locking Statistics");

 printf("Untimed sleeps: %10u \n",stlkptr->stlk_untimed_sleeps);
 printf("Timed Sleeps: %10u \n",stlkptr->stlk_timed_sleeps);
 printf("Wakeups: %10u \n\n",stlkptr->stlk_wakeups);

 printf("Total waits for locks: %10u\n",
 stlkptr->stlk_total_wait_for_locks);
 printf("Average lock wait time: %6u.%3.3u (msecs)\n\n",
 stlkptr->stlk_avg_lock_wait_time_whole,
 stlkptr->stlk_avg_lock_wait_time_decimal);

 printf("Total monitored sleeps: %10u\n",
 stlkptr->stlk_total_monitored_sleeps);

 printf("Average monitored sleep time: %6u.%3.3u (msecs)\n",
 stlkptr->stlk_avg_mon_sleep_time_whole,
 stlkptr->stlk_avg_mon_sleep_time_decimal / 1000);

 printf("\n");
 printf(" Top %u Most Highly Contended Locks\n\n", MAX_LOCKS);
 printf(" Thread Async Spin \n");
 printf(" Wait Disp. Resol. Pct. Description \n");
 printf("---------- ---------- ---------- ----- --------------\n");

 for (i = 0; i < MAX_LOCKS; i++)
 {
 printf("%10u %10u %10u %3u.%1.1u%% %.80s\n",
 stlkptr->stlk_locks[i].count,
 stlkptr->stlk_locks[i].async,
 stlkptr->stlk_locks[i].spins,
 stlkptr->stlk_locks[i].percentage_whole,
 stlkptr->stlk_locks[i].percentage_decimal / 100,
 stlkptr->stlk_locks[i].description);
 }

 printf("\n");
 printf("Total lock contention of all kinds: u\n",
 stlkptr->stlk_total_contentions);

Statistics Locking Information

Chapter 13. zFS application programming interface information 389

 printf("\n");
 printf(" Top %u Most Common Thread Sleeps\n\n",
 MAX_SLEEPS);

 printf("Thread Wait Pct. Description\n");
 printf("----------- ----- -----------\n");

 for (i = 0; i < MAX_SLEEPS; i++)
 {
 printf(" %10u %3u.%1.1u%% %.80s\n",
 stlkptr->stlk_sleeps[i].sleepcount,
 stlkptr->stlk_sleeps[i].percentage_whole,
 stlkptr->stlk_sleeps[i].percentage_decimal / 100,
 stlkptr->stlk_sleeps[i].description);
 }

}

Statistics Locking Information

390 z/OS: z/OS File System Administration

Statistics Log Cache Information

Purpose
A performance statistics operation that returns log cache counters, such as the number of requests, hits,
and waits on the log buffer cache.

Beginning in z/OS V2R2, a new log caching facility is used. If version 1 output is requested, only the fields
al_buffers and al_writtenPages are filled in with actual data. All other fields are filled in with
zeroes. Statistics for the new log caching facility is returned when version 2 output is requested.

Format
syscall_parmlist
 opcode int 247 STATOP_LOG_CACHE
 parms[0] int Offset to STAT_API
 parms[1] int offset of output following STAT_API
 parms[2] int Offset to system name (optional)
 parms[3] int 0
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0
STAT_API
 sa_eye char[4] "STAP"
 sa_len int Length of buffer following STAT_API
 sa_ver int 1 or 2
 sa_flags char[1] 0x80 - Reset statistics
 sa_fill char[3] Reserved
 sa_supported_ver int Version returned in output buffer
 sa_reserve int[3] Reserved
 posix_time_high unsigned int High order 32 bits since epoch
 posix_time_low unsigned int Low order 32 bits since epoch
 posix_useconds unsigned int Microseconds
 pad1 int Reserved
API_LOG_STATS
 al_eye char[4] "ALOG"
 al_size short Size of output
 al_version char Version (1)
 al_reserved1 char Reserved byte
 al_buffers unsigned long long int Number of buffers used
 al_reserved2 int Reserved
 al_buffersize int Size of each buffer in
 K bytes
 al_lookups_reserved int Reserved
 al_lookups int Lookups/creates of item
 in log buffer cache
 al_hits_reserved int Reserved
 al_hits int Hits - number of items
 time item found in cache
 al_writtenPages unsigned long long int Number of log buffer pages
 written to disk
 al_fullWaits_reserved int Reserved
 al_fullWaits int Number of times new log
 buffer
 requires wait on prior log
 pages
 al nbsWaits_reserved int Reserved
 al nbsWaits int Number of times new log
 buffer requires wait on
 new block user I/O
 al_reserved3 int[10] Reserved
API_NL_STATS
 nl_eye char[4] "NLST"
 nl_sizE short Size of output structure
 nl_version char 2
 nl_future char Reesrved for future use
 nl_logs unsigned int Number of log files
 nl_reclaim_pct unsigned int Percentage of logs
 reclaimed at log-full time
 nl_blocks_per_pio unsigned int Max number of log file
 blocks to write per log IO
 nl_sched_pct unsigned int Inactive buffer schedule
 percentage (of log size)
 nl_cachesize unsigned int Number of pages in log

Statistics Log Cache Information

Chapter 13. zFS application programming interface information 391

 cache
 nl_fixed unsigned int Non-zero if cache
 permanently fixed in memory
 nl_freeitems unsigned int Number of unused pages in
 cache
 nl_ios unsigned int Number of I/Os in-progress
 nl_numblks unsigned int Number of dirty metadata
 blocks
 nl_future1 unsigned int Number of unused pages in
 cache
 nl_tran_started unsigned long long int Number of started
 transactions
 nl_act_schedules unsigned long long int Number of times active
 records scheduled to disk
 nl_comp_schedules unsigned long long int Numner of times complete
 records scheduled to disk
 nl_act_pages unsigned long long int Number of active pages
 scheduled to disk
 nl_comp_pages unsigned long long int Number of completed pages
 scheduled to disk
 nl_tran_merged unsigned long long int Number of merged
 transactions
 nl_act_recswrote unsigned long long int Number of active records
 written
 nl_comp_recswrote unsigned long long int Number of complete tran
 records written
 nl_comp_transize unsigned long long int Number of batched/merged
 transactions written
 nl_tran_active_force unsigned long long int Number of times an active
 tran forced
 nl_tran_complete_force unsigned long long int Number of times a complete
 tran forced
 nl_recoveries unsigned long long int Number of times log file
 recovery was run
 nl_bufupdates unsigned long long int Number of buffer updates
 nl_bufnew unsigned long long int Number of buffer updates
 creating new update record
 nl_bufavoid unsigned long long int Number of buffer updates
 avoided due to prior update
 nl_bufovlap unsigned long long int Number of buffer updates
 that had overlap
 nl_killavoid unsigned long long int Avoided metadata IOs due to
 kill-avoid
 nl_schedules unsigned long long int Number of times older
 buffers scheduled to disks
 nl_bufsched unsigned long long int Number of actual buffers
 schedules and also avg.
 quicksort size
 nl_endmerges unsigned long long int Number of times merged
 active records with
 previously completed active
 trans
 nl_endmgcnt unsigned long long int Number of records merged
 active records with
 previously completed active
 trans
 nl_endnew unsigned long long int Number of records merged
 that were new to prior
 completed tran records
 nl_endavoid unsigned long long int Number of records merged
 that could be skipped
 because prior completed
 record covered it
 nl_endovlap unsigned long long int Number of records merged
 that had overlap with
 previously written trans
 nl_nbswrites unsigned long long int Number of times we added
 NBS blocks to active tran
 nl_kills unsigned long long int Number of kill calls for
 buffers deallocated with
 tran
 nl_forcecomp unsigned long long int Number of times a forced
 write of buffer forces
 complete tran recods to
 log
 nl_forceact unsigned long long int Number of times a forced
 write of buffer forces
 active tran recods to log
 nl_forces unsigned long long int Number of force calls
 nl_forcewaits unsigned long long int Number of times a force has
 to wait for in-progress
 log pages

Statistics Log Cache Information

392 z/OS: z/OS File System Administration

 nl_hfact unsigned long long int Number of times a
 handle-full has to write
 active records
 nl_hfcomp unsigned long long int Number of times a
 handle-full has to write
 comp records
 nl_hf unsigned long long int Number of handle full calls
 nl_hfsched unsigned long long int Number of times a
 handle-full had to schedule
 buffers
 nl_hfsched_blocks unsigned long long int Number of times a
 handle-full scheduled
 buffers and hence quicksort
 blocks
 nl_sync unsigned long long int Number of times a log sync
 was requested
 nl_bufwaits unsigned long long int Number of times had to wait
 for a buffer
 nl_bufmallocs unsigned long long int Number of emergency mallocs
 to avoid deadlock
 nl_act_comp_copies unsigned long long int Number of times a write to
 active log had to copy
 completed tran bytes
 nl_future2 unsigned long long int[8] Future use
systemname char[9] System name to get stats from

Usage notes
1. Reserved fields and undefined flags must be set to binary zeros.
2. The output buffer contains an API_LOG_STATS structure when version 1 information is returned; for

example, when sa_supported_ver is 0 or 1. Otherwise, it contains an API_NL_STATS structure
when sa_supported_ver is 2.

3. As previously noted, when V2R2 returns version 1 data in API_LOG_STATS, only the al_buffers and
al_writtenPages fields are set.

Privilege required
None.

Related services
Statistics Vnode Cache Information
Statistics Metadata Cache Information

Restrictions
None.

Examples

#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_STATS 0x40000007
#define STATOP_LOG_CACHE 247 /* Performance API queries */
#define BUFFER_SIZE 1024 * 64

#define CONVERT_RATIO_TO_INTS(RATIO, INTEGER, DECIMAL) \
 { \
 INTEGER = (int)RATIO; \
 DECIMAL = (int)((RATIO - (double)INTEGER) * (double)1000.0); \
 }

typedef struct syscall_parmlist_t
{

Statistics Log Cache Information

Chapter 13. zFS application programming interface information 393

 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

typedef struct hyper {
 unsigned int high; /* unsigned int reserved */
 unsigned int low;
} hyper;

typedef struct API_NL_STATS_t {
 char nl_eye[4]; /* Eye catcher = AMET */
#define NL_EYE "NLST"
 short nl_size; /* Size of output structure */
 char nl_version; /* Version of statistics returned */
#define NL_VER_2 2
 char nl_future; /* Future use */
 unsigned int nl_logs; /* Number of log files */
 unsigned int nl_reclaim_pct; /* Pct. of log reclaimed at log-full time */
 unsigned int nl_blocks_per_pio; /* Max number of log file blocks to write
 per log IO */
 unsigned int nl_sched_pct; /*Inactive buffer schedule pct. (of log size)*/
 unsigned int nl_cachesize; /*Number of pages in cache*/
 unsigned int nl_fixed; /*Non-zero if cache permanently fixed in memory*/
 unsigned int nl_freeitems; /*Number of unused pages in cache*/
 unsigned int nl_ios; /*Number of IOs in-progress*/
 unsigned int nl_numblks; /*Number of dirty meta blocks*/
 unsigned int nl_future1; /*Number of unused pages in cache*/
 unsigned long long int nl_tran_started; /* Number of started
 transactions */
 unsigned long long int nl_act_schedules; /* Number of times active
 records scheduled to disk */
 unsigned long long int nl_comp_schedules; /* Numner of times complete
 records scheduled to disk */
 unsigned long long int nl_act_pages; /* Number of active pages
 scheduled to disk */
 unsigned long long int nl_comp_pages; /* Number of completed pages
 scheduled to disk */
 unsigned long long int nl_tran_merged; /* Number of merged
 transactions */
 unsigned long long int nl_act_recswrote; /* Number of active records
 written */
 unsigned long long int nl_comp_recswrote; /* Number of complete tran
 records written */
 unsigned long long int nl_comp_transize; /* Number of batched/merged
 transactions written */
 unsigned long long int nl_tran_active_force; /* Number of times an active
 tran forced */
 unsigned long long int nl_tran_complete_force;/* Number of times a complete
 tran forced */
 unsigned long long int nl_recoveries; /* Number of times log file
 recovery was run */
 unsigned long long int nl_bufupdates; /* Number of buffer updates */
 unsigned long long int nl_bufnew; /* Number of buffer updates
 creating new update record*/
 unsigned long long int nl_bufavoid; /* Number of buffer updates
 avoided due to prior
 update */
 unsigned long long int nl_bufovlap; /* Number of buffer updates
 that had overlap */
 unsigned long long int nl_killavoid; /* Avoided metadata IOs due to
 kill-avoid */
 unsigned long long int nl_schedules; /* Number of times older
 buffers scheduled to disks*/
 unsigned long long int nl_bufsched; /* Number of actual buffers
 schedules and also avg.
 quicksort size */
 unsigned long long int nl_endmerges; /* Number of times merged
 active records with
 previously completed active
 trans */
 unsigned long long int nl_endmgcnt; /* Number of records merged
 active records with
 previously completed active
 trans */
 unsigned long long int nl_endnew; /* Number of records merged
 that were new to prior
 completed tran records */
 unsigned long long int nl_endavoid; /* Number of records merged
 that could be skipped
 because prior completed

Statistics Log Cache Information

394 z/OS: z/OS File System Administration

 record covered it */
 unsigned long long int nl_endovlap; /* Number of records merged
 that had overlap with
 previously written trans */
 unsigned long long int nl_nbswrites; /* Number of times we added
 NBS blocks to active tran */
 unsigned long long int nl_kills; /* Number of kill calls for
 buffers deallocated with
 tran */
 unsigned long long int nl_forcecomp; /* Number of times a forced
 write of buffer forces
 complete tran recods to
 log */
 unsigned long long int nl_forceact; /* Number of times a forced
 write of buffer forces
 active tran recods to log */
 unsigned long long int nl_forces; /* Number of force calls */
 unsigned long long int nl_forcewaits; /* Number of times a force has
 to wait for in-progress
 log pages*/
 unsigned long long int nl_hfact; /* Number of times a
 handle-full has to write
 active records*/
 unsigned long long int nl_hfcomp; /* Number of times a
 handle-full has to write
 comp records*/
 unsigned long long int nl_hf; /* Number of handle full
 calls */
 unsigned long long int nl_hfsched; /* Number of times a
 handle-full had to schedule
 buffers */
 unsigned long long int nl_hfsched_blocks; /* Number of times a
 handle-full scheduled
 buffers and hence quicksort
 blocks */
 unsigned long long int nl_sync; /* Number of times a log sync
 was requested */
 unsigned long long int nl_bufwaits; /* Number of times had to wait
 for a buffer */
 unsigned long long int nl_bufmallocs; /* Number of emergency mallocs
 to avoid deadlock */
 unsigned long long int nl_act_comp_copies; /* Number of times a write to
 active log had to copy
 completed tran bytes */
 unsigned long long int nl_future2[8]; /* Stats for the future */
} API_NL_STATS;

/* Version 1 Output structure */
typedef struct API_LOG_STATS_t {
 char al_eye[4]; /* Eye catcher = ALOG */
#define LS_EYE "ALOG"
 short al_size; /* Size of output structure */
 char al_version; /* Version of stats */
#define LS_VER_INITIAL 1 /* First version of log stats */
 char al_reserved1; /* Reserved byte, 0 in version 1 */
 hyper al_buffers; /* Number of buffers used */
 int al_reserved2; /* Reserved for future use, 0 in version 1 */
 int al_buffsize; /* Size in kilobytes of one buffer */
 hyper al_lookups; /* Lookups/creates of item in log buffer cache */
 hyper al_hits; /* Hits, number of times item found in cache */
 hyper al_writtenPages; /* Number of log buffer pages written to disk */
 hyper al_fullWaits; /* Number of time new log buffer requires wait
 on prior log pages */
 hyper al_nbsWaits; /* Number of time new log buffer requires wait
 on new block user IO */
 int al_reserved3[10]; /* Reserved for future use */
} API_LOG_STATS;

/* reset timestamp */
typedef struct reset_time {
 unsigned int posix_time_high; /* high order 32 bits since epoc */
 unsigned int posix_time_low; /* low order 32 bits since epoch */
 unsigned int posix_usecs; /* microseconds */
 int pad1;
} RESET_TIME;

/***/
/* The following structure is the api query control block. */
/* It is used for all api query commands. */
/***/
typedef struct stat_api_t {

Statistics Log Cache Information

Chapter 13. zFS application programming interface information 395

#define SA_EYE "STAP"
 char sa_eye[4]; /* 4 byte identifier must be */
 int sa_len; /* length of the buffer to put data into*/
 /* this buffer area follows this struct */
 int sa_ver; /* the version number currently 1 or 2 */
#define SA_VER_2 0x02
#define SA_VER_INIT 0x01
 char sa_flags; /* flags field must be x00 or x80, */
 /* x80 means reset statistics */
#define SA_RESET 0x80
 char sa_fill[3]; /* spare bytes */
 int sa_supported_ver; /* version of data returned */
 int sa_reserve[3]; /* Reserved */
 struct reset_time reset_time_info;
} STAT_API;

int print_logcache_version1(char *buffp, int buff_fill_len);
int print_logcache_version2(char *buffp, int buff_fill_len);

int main(int argc, char **argv)
{
 int bpxrv;
 int bpxrc;
 int bpxrs;
 int i;
 double temp_ratio;
 int buff_fill_len;
 int whole, decimal;
 char buf[33];

 unsigned long long int temp_hits, temp_total;

 STAT_API local_req;
 char* buffp = NULL;
 syscall_parmlist* parmp = NULL;
 STAT_API* stapptr = NULL;
 API_NL_STATS* nlp = NULL;

 stapptr = &local_req;
 memset(stapptr, 0x00, sizeof(STAT_API));
 memcpy(stapptr->sa_eye, SA_EYE, 4);

 stapptr->sa_ver = NL_VER_2;
 stapptr->sa_len = sizeof(API_NL_STATS);

 buffp = (char*) malloc(BUFFER_SIZE);
 if(buffp == NULL)
 {
 printf("Malloc Error\n");
 return 0;
 }
 memset(buffp, 0x00, sizeof(syscall_parmlist) + sizeof(STAT_API));

 parmp = (syscall_parmlist*) &buffp[0];
 parmp->opcode = STATOP_LOG_CACHE;
 parmp->parms[0] = sizeof(syscall_parmlist);
 parmp->parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);
 parmp->parms[2] = 0;
 parmp->parms[3] = 0;
 parmp->parms[4] = 0;
 parmp->parms[5] = 0;
 parmp->parms[6] = 0;

 buff_fill_len = sizeof(syscall_parmlist);
 stapptr = (STAT_API*) &buffp[buff_fill_len];
 memcpy(stapptr, &local_req, sizeof(STAT_API));
 buff_fill_len += sizeof(STAT_API);

 BPX1PCT("ZFS ",
 ZFSCALL_STATS, /* Perf statistics operation */
 BUFFER_SIZE, /* Length of Argument */
 buffp, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv < 0)
 {
 printf("Error querying log cache, BPXRV = %d BPXRC = %d BPXRS = %x\n",
 bpxrv, bpxrc, bpxrs);
 return bpxrc;
 }

Statistics Log Cache Information

396 z/OS: z/OS File System Administration

 else
 {
 if(stapptr->sa_supported_ver == SA_VER_INIT)
 print_logcache_version1(buffp, buff_fill_len);
 else
 print_logcache_version2(buffp, buff_fill_len);

 if (0 == ctime_r((time_t*) & stapptr->reset_time_info.posix_time_low, buf))
 printf("Could not get timestamp.\n");
 else
 { /* Insert the microseconds into the displayable time value */
 strncpy(&(buf[27]), &(buf[20]), 6);
 sprintf(&(buf[20]), "%06d", stapptr->reset_time_info.posix_usecs);
 buf[26] = ' ';
 buf[19] = '.';
 printf("Last Reset Time: %s", buf);
 }
 }
 return 0;
}

int print_logcache_version2(char *buffp, int buff_fill_len)
{
 int i;
 int whole, decimal;
 double temp_ratio;
 unsigned long long int temp_hits, temp_total;
 API_NL_STATS *nlp = NULL;

 /* Set nlp pointer to the output structure in the buffer */
 nlp = (API_NL_STATS*) &buffp[buff_fill_len];
 printf("%52s\n","Log File Caching Statistics\n");
 printf("Logs\n");
 printf("--------\n");
 printf("%20u : Log files cached \n", nlp->nl_logs);
 printf("%20llu : Log files recoveries performed \n",nlp->nl_recoveries);
 printf("%20llu : Log file syncs (filesys quiesce)\n\n", nlp->nl_sync);
 printf("Policies\n");
 printf("--------\n");

 printf("%20u : Reclaim pct. (amount reclaimed at log-full time)\n",
 nlp->nl_reclaim_pct);
 printf("%20u : Maximuem log pages per IO\n",
 nlp->nl_blocks_per_pio);
 printf("%20u : Inactive buffer schedule pct. (of log size)\n\n",
 nlp->nl_sched_pct);

 printf("Storage\n");
 printf("--------\n");
 printf("%20u : Log Cache Size (in 4K pages, fixed=%s)\n",
 nlp->nl_cachesize, nlp->nl_fixed ? "YES" : "NO");

 temp_hits = nlp->nl_freeitems;
 temp_total = nlp->nl_cachesize;
 if(temp_hits > temp_total)
 temp_hits = temp_total;
 temp_ratio = ((double)temp_hits) / temp_total;
 temp_ratio *= 100.0;

 /* Convert the ratio to ints representing the whole and decimal parts */
 CONVERT_RATIO_TO_INTS(temp_ratio,whole, decimal);
 whole = 100 - whole;

 printf("%20u : Pct. of cache in-use\n", whole);
 printf("%20llu : Free page obtain waits\n", nlp->nl_bufwaits);
 printf("%20llu : Allocations to avoid deadlock\n\n",nlp->nl_bufmallocs);

 printf("Transactions\n");
 printf("------------\n");
 printf("%20llu : Transactions started\n", nlp->nl_tran_started);
 printf("%20llu : Transactions merged\n", nlp->nl_tran_merged);

 temp_total = nlp->nl_comp_schedules;
 temp_hits = nlp->nl_comp_transize;
 temp_ratio = (temp_total == 0) ? 0.0 : ((double)temp_hits) / temp_total;
 CONVERT_RATIO_TO_INTS(temp_ratio,whole, decimal);
 decimal = decimal / 100;

 printf("%18u.%1.1u : Average number of transactions batched together\n",
 whole, decimal);
 printf("%20llu : Sync calls to an active transaction\n",

Statistics Log Cache Information

Chapter 13. zFS application programming interface information 397

 nlp->nl_tran_active_force);
 printf("%20llu : Sync calls to a completed transaction\n\n",
 nlp->nl_tran_complete_force);

 printf("IOs and Blocks\n");
 printf("--------------\n");
 printf("%20u : Log IOs in progress \n", nlp->nl_ios);
 printf("%20u : Dirty metadata blocks\n", nlp->nl_numblks);
 printf("%20llu : Metadata block kill calls\n", nlp->nl_kills);
 printf("%20llu : Log File writes initiated\n", nlp->nl_comp_schedules);

 temp_total = nlp->nl_comp_schedules;
 temp_hits = nlp->nl_comp_pages;
 temp_ratio = (temp_total == 0) ? 0.0 : ((double)temp_hits) / temp_total;
 CONVERT_RATIO_TO_INTS(temp_ratio,whole, decimal);
 decimal = decimal / 100; /* Just want tenths */

 printf(" %13u.%1.1u : Average number of pages per log write\n",
 whole, decimal);
 printf("%20llu : Avoided IOs for metadata block due to deallocation\n",
 nlp->nl_killavoid);
 printf("%20llu : Scheduled not-recently-updated (NRU) metadata blocks\n",
 nlp->nl_schedules);

 temp_total = nlp->nl_schedules;
 temp_hits = nlp->nl_bufsched;
 temp_ratio = (temp_total == 0) ? 0.0 : ((double)temp_hits) / temp_total;
 CONVERT_RATIO_TO_INTS(temp_ratio,whole, decimal);
 decimal = decimal / 100; /* Just want tenths */

 printf(" %13u.%1.1u : Avergage number of blocks per NRU IO\n",
 whole, decimal);
 printf("%20llu : Metadata buffers forced to disk\n",
 nlp->nl_forces);

 temp_total = nlp->nl_forces;
 temp_hits = nlp->nl_forcecomp;
 temp_ratio = (temp_total == 0) ? 0.0 : ((double)temp_hits)/temp_total;
 CONVERT_RATIO_TO_INTS(temp_ratio,whole, decimal);
 decimal = decimal / 100; /* Just want tenths */

 printf(" %13u.%1.1u : Avg where metadata write forced write of log\n",
 whole, decimal);

 temp_hits = nlp->nl_forcewaits;
 temp_total = nlp->nl_forces;

 if(temp_hits > temp_total)
 temp_hits = temp_total;

 temp_ratio = (temp_total == 0) ? 0.0 : ((double)temp_hits)/temp_total;
 temp_ratio *= 100.0;
 CONVERT_RATIO_TO_INTS(temp_ratio,whole, decimal);

 printf("%18u.%1.1u : Pct. of metadata buffer forces waited on log IO\n",
 whole, decimal);
 printf("%20llu : Log-full processing calls\n", nlp->nl_hf);
 temp_total = nlp->nl_hf;
 temp_hits = nlp->nl_hfsched_blocks;
 temp_ratio = (temp_total == 0) ? 0.0 : ((double)temp_hits)/temp_total;
 CONVERT_RATIO_TO_INTS(temp_ratio,whole, decimal);
 decimal = decimal / 100; /* Just want tenths */

 printf("%18u.%1.1u : Avg number of metadata blocks "
 "written per log-full\n\n",
 whole, decimal);

 printf("Update Records\n");
 printf("--------------\n");
 temp_total = nlp->nl_comp_schedules;
 temp_hits = nlp->nl_comp_recswrote;
 temp_ratio = (temp_total == 0) ? 0.0 : ((double)temp_hits)/temp_total;
 CONVERT_RATIO_TO_INTS(temp_ratio,whole, decimal);
 decimal = decimal / 100; /* Just want tenths */

 printf(" %13u.%1.1u : Avg number of update records per log IO.\n",
 whole, decimal);
 printf("%20llu : Number of NBS records written \n", nlp->nl_nbswrites);
 printf("%20llu : Number of metadata buffer updates \n",
 nlp->nl_bufupdates);
 printf("%20llu : Number of updates requiring old-byte copying\n",
 nlp->nl_act_comp_copies);

Statistics Log Cache Information

398 z/OS: z/OS File System Administration

 printf("%20llu : Avoided buffer update records due to overlap\n",
 nlp->nl_bufavoid);
 printf("%20llu : Avoided merge update records due to overlap\n\n",
 nlp->nl_endavoid);
}

int print_logcache_version1(char *buffp, int buff_fill_len)
{
 double temp_ratio;
 int whole;
 int decimal;
 API_LOG_STATS *lgstptr = (API_LOG_STATS*) &buffp[buff_fill_len];

 printf("%52s\n", "Log File Caching Statistics");
 printf(" \n");
 printf("Buffers (K bytes) Requests Hits Ratio Written \n");
 printf("---------- --------- ---------- ---------- ------ ----------\n");

 temp_ratio = (lgstptr->al_lookups.low == 0) ? 0.0 :
 (((double)lgstptr->al_hits.low) /
 lgstptr->al_lookups.low);
 temp_ratio *= 100.0;
 CONVERT_RATIO_TO_INTS(temp_ratio, whole, decimal);
 decimal = decimal / 100; /* Just want tenths */

 printf("%10u %9u %10u %10u %3u.%1.1u%% %10u\n",
 lgstptr->al_buffers.low,
 lgstptr->al_buffers.low * lgstptr->al_buffsize,
 lgstptr->al_lookups.low, lgstptr->al_hits.low,
 whole, decimal, lgstptr->al_writtenPages.low);

 printf(" \n");
 printf("New buffer: log full waits %10u NBS IO waits %10u\n",
 lgstptr->al_fullWaits.low, lgstptr->al_nbsWaits.low);

 printf(" \n");
}

Statistics Log Cache Information

Chapter 13. zFS application programming interface information 399

Statistics Metadata Cache Information

Purpose
A performance statistics operation that returns metadata cache counters. It is used to determine the
number of requests, hits, and discards from the directory cache.

Format
syscall_parmlist
 opcode int 248 STATOP_META_CACHE
 parms[0] int Offset to STAT_API
 parms[1] int Offset of output following STAT_API
 parms[2] int Offset to system name (optional)
 parms[3] int 0
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0
STAT_API
 sa_eye char[4] "STAP"
 sa_len int length of buffer following STAT_API
 sa_ver int 1 or 2
 sa_flags char[1] 0x80 - Reset statistics
 sa_fill char[3] Reserved
 sa_supported_ver int Version of data returned
 sa_reserve int[3] Reserved
 posix_time_high unsigned int High order 32 bits since epoch
 posix_time_low unsigned int Low order 32 bits since epoch
 posix_useconds unsigned int Microseconds
 pad1 int Reserved
API_META_STATS
 am_eye char[4] "AMET"
 am_size short Size of output
 am_version char Version
 am_reserved1 char Reserved byte
 PRIMARY_STATS
 buffers unsigned long long int Number of buffers in the cache
 buffsize int Size of each buffer in K bytes
 amc_res1 int Reserved
 requests unsigned long long int Requests to the cache
 hits unsigned long long int Hits in the cache
 updates unsigned long long int Updates to buffers in the cache
 reserved int[10] Reserved

 BACK_STATS
 buffers hyper Number of buffers in the cache
 buffsize int Size of each buffer in K bytes
 amc_res1 int Reserved
 requests_reserved int Reserved
 requests int Requests to the cache
 hits_reserved int Reserved
 hits int Hits in the cache
 discards_reserved int Reserved
 discards int Discards of data from the cache
 reserved int[10] Reserved
 am_reserved3 int Reserved

--- or ---

API_META_STATS2
 am_eye char[4] "AMET"
 am_size short Size of output
 am_version char Version
 am_reserved1 char Reserved byte
 PRIMARY_STATS2
 buffers unsigned long long int Number of buffers in the cache
 buffsize int Size of each buffer in K bytes
 amc_res1 int Reserved
 requests unsigned long long int Requests to the cache
 hits unsigned long long int Hits in the cache
 updates unsigned long long int Updates to buffers in the cache
 partialwrites unsigned long long int Times only part of 8K block written
 reserved int[8] Reserved
 am_reserved3 int Reserved

Statistics Metadata Cache Information

400 z/OS: z/OS File System Administration

 systemname char[9] Name of system to get stats from

Usage notes
1. Reserved fields and undefined flags must be set to binary zeros.
2. When sa_supported_ver is 0 or 1, the output buffer contains an API_META_STATS structure. The

BACK_STATS structure contains zeros because there is no longer a metaback cache in V2R2. When
sa_supported_ver is 2, the output buffer contains an API_META_STATS2 structure.

Privilege required
None.

Related services
Statistics Vnode Cache Information
Statistics Metadata Cache Information

Restrictions
None.

Examples

#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_STATS 0x40000007
#define STATOP_META_CACHE 248 /* Metadata cache (and back cache) stats */
#define CONVERT_RATIO_TO_INTS(RATIO, INTEGER, DECIMAL) \
{ \
 INTEGER = (int)RATIO; \
 DECIMAL = (int)((RATIO - (double)INTEGER) * (double)1000.0); \
}

typedef struct syscall_parmlist_t
{
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

typedef struct hyper {
 unsigned int high; /* unsigned int reserved */
 unsigned int low;
} hyper;

/***/
/* META cache stats, including backing cache. */
/***/
typedef struct PRIMARY_STATS2_t
{
 unsigned long long int buffers; /* Number of buffers in cache */
 int buffsize; /* Size of each buffer in K bytes */
 int amc_res1; /* Reserved for future use, zero in version 1 */
 unsigned long long int requests; /* Requests to the cache */
 unsigned long long int hits; /* Hits in the cache */
 unsigned long long int updates; /* Updates to buffers in the cache */
 unsigned long long int partialwrites; /* Only part of 8K block written to
 reduce byte transfer. For version 1
 always set partialwrites to 0 */
 int reserved[8]; /* For future use */ /*@F18508S2*/
} PRIMARY_STATS2;

typedef struct API_META_STATS2_t

Statistics Metadata Cache Information

Chapter 13. zFS application programming interface information 401

{
 char am_eye[4]; /* Eye catcher = AMET */
#define MS_EYE "AMET"
 short am_size; /* Size of output structure */
 char am_version; /* Version of stats */
#define MS_VER_INITIAL 1 /* First version of log stats */
 char am_reserved1; /* Reserved byte, 0 in version 1 */
 PRIMARY_STATS2 am_primary; /* Primary space cache statistics */
 int am_reserved3[10]; /* Reserved for future use */
} API_META_STATS2;

/* reset timestamp */
typedef struct reset_time {
 unsigned int posix_time_high; /* high order 32 bits since epoc */
 unsigned int posix_time_low; /* low order 32 bits since epoch */
 unsigned int posix_usecs; /* microseconds */
 int pad1;
} RESET_TIME;

/* Version 1 Output Structures */
typedef struct PRIMARY_STATS_t {
 hyper buffers; /* Number of buffers in cache */
 int buffsize; /* Size of each buffer in K bytes */
 int amc_res1; /* Reserved for future use, zero in version 1 */
 int requests_reserved; /* Reserved */
 int requests; /* Requests to the cache */
 int hits_reserved; /* Reserved */
 int hits; /* Hits in the cache */
 int updates_reserved; /* Reserved */
 int updates; /* Updates to buffers in the cache */
 int reserved[10]; /* For future use */
} PRIMARY_STATS;

typedef struct BACK_STATS_t {
 hyper buffers; /* Number of buffers in cache */
 int buffsize; /* Size of each buffer in K bytes */
 int amc_res1; /* Reserved for future use, zero in version 1 */
 int requests_reserved; /* Reserved */
 int requests; /* Requests to the cache */
 int hits_reserved; /* Reserved */
 int hits; /* Hits in the cache */
 int discards_reserved; /* Reserved */
 int discards; /* Discards of data from backing cache */
 int reserved[10]; /* For future use */
} BACK_STATS;

typedef struct API_META_STATS_t {
 char am_eye[4]; /* Eye catcher = AMET */
#define MS_EYE "AMET"
 short am_size; /* Size of output structure */
 char am_version; /* Version of stats */
#define MS_VER_INITIAL 1 /* First version of log stats */
 char am_reserved1; /* Reserved byte, 0 in version 1 */
 PRIMARY_STATS am_primary; /* Primary space cache statistics */
 BACK_STATS am_back; /* Backing cache statistics */
 int am_reserved3[10]; /* Reserved for future use */
} API_META_STATS;

/***/
/* The following structure is the api query control block. */
/* It is used for all api query commands. */
/***/
typedef struct stat_api_t {
#define SA_EYE "STAP"
 char sa_eye[4]; /* 4 byte identifier must be */
 int sa_len; /* length of the buffer to put data into*/
 /* this buffer area follows this struct */
 int sa_ver; /* the version number (1 or 2) */
#define SA_VER_2 0x02
#define SA_VER_INIT 0x01
 char sa_flags; /* flags field must be x00 or x80, */
 /* x80 means reset statistics */
#define SA_RESET 0x80
 char sa_fill[3]; /* spare bytes */
 int sa_supported_ver; /* version of data returned */
 int sa_reserve[3]; /* Reserved */
 struct reset_time reset_time_info;
} STAT_API;

typedef struct parmstruct {
 syscall_parmlist myparms;
 STAT_API myapi;

Statistics Metadata Cache Information

402 z/OS: z/OS File System Administration

 API_META_STATS mystats;
 char systemname[9];
} myparmstruct;

int print_metadata_version1(API_META_STATS *metastptr);
int print_metadata_version2(API_META_STATS2 *metastptr);

int main(int argc, char **argv)
{
 int bpxrv;
 int bpxrc;
 int bpxrs;
 int i;
 double temp_ratio;
 int whole;
 int decimal;
 myparmstruct parmstruct;
 STAT_API *stapptr = &(parmstruct.myapi);
 char buf[33];

 parmstruct.myparms.opcode = STATOP_META_CACHE;
 parmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
 parmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);
 parmstruct.myparms.parms[2] = 0;

 /* Only specify a non-zero offset for the next field (parms[2]) if */
 /* you are running z/OS 1.7 and above, and you want to query the */
 /* metadata cache statistics of a different system than this one */
 /* parmstruct.myparms.parms[2] = sizeof(syscall_parmlist) + */
 /* sizeof(STAT_API) + */
 /* sizeof(API_META_STATS); */

 parmstruct.myparms.parms[3] = 0;
 parmstruct.myparms.parms[4] = 0;
 parmstruct.myparms.parms[5] = 0;
 parmstruct.myparms.parms[6] = 0;

 memset(stapptr, 0, sizeof(STAT_API));
 memcpy(stapptr->sa_eye, SA_EYE, 4);
 stapptr->sa_ver = SA_VER_2;
 stapptr->sa_len = (int)sizeof(API_META_STATS);

 /* This next field should only be set if parms[2] is non-zero */
 /* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

 BPX1PCT("ZFS ",
 ZFSCALL_STATS, /* Perf statistics operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&parmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv < 0)
 {
 printf("Error querying meta cache, BPXRV = %d BPXRC = %d BPXRS = %x\n",
 bpxrv, bpxrc, bpxrs);
 return bpxrc;
 }
 else
 {
 if(stapptr->sa_supported_ver == SA_VER_INIT)
 {
 API_META_STATS *metastptr1 = &(parmstruct.mystats);
 print_metadata_version1(metastptr1);
 }
 else
 {
 API_META_STATS2 *metastptr = (API_META_STATS2*)&(parmstruct.mystats);
 print_metadata_version2(metastptr);
 }

 if (0 == ctime_r((time_t*)&stapptr->reset_time_info.posix_time_low, buf))
 printf("Could not get timestamp.\n");
 else
 { /* Insert the microseconds into the displayable time value */
 strncpy(&(buf[27]), &(buf[20]), 6);
 sprintf(&(buf[20]), "%06d", stapptr->reset_time_info.posix_usecs);
 buf[26] = ' ';
 buf[19] = '.';
 printf("Last Reset Time: %s", buf);
 }

Statistics Metadata Cache Information

Chapter 13. zFS application programming interface information 403

 }
 return 0;
}

int print_metadata_version2(API_META_STATS2 *metastptr)
{
 double temp_ratio;
 int whole;
 int decimal;

 /* Primary cache */
 printf("\n%60s\n", "Metadata Caching Statistics");
 printf(" \n");
 printf("Buffers (K bytes) Requests ");
 printf("Hits Ratio Updates \n");
 printf("-------------------- ------------------- -------------------- ");
 printf("-------------------- ------ -------------------- \n");

 temp_ratio = (metastptr->am_primary.requests == 0) ? 0.0 :
 ((double)metastptr->am_primary.hits) /
 metastptr->am_primary.requests;
 temp_ratio *= 100.0;
 CONVERT_RATIO_TO_INTS(temp_ratio, whole, decimal);
 decimal = decimal / 100; /* Just want tenths */

 printf("%20llu %19llu %20llu %20llu %3u.%1.1u%% %20llu\n",
 metastptr->am_primary.buffers,
 metastptr->am_primary.buffers *
 metastptr->am_primary.buffsize,
 metastptr->am_primary.requests,
 metastptr->am_primary.hits,
 whole, decimal, metastptr->am_primary.updates);
 printf(" \n");
 return 1;
}

int print_metadata_version1(API_META_STATS *metastptr)
{
 double temp_ratio;
 int whole;
 int decimal;
 printf("Version 1 output is being displayed\n\n");

 /* Primary cache */
 printf("\n%44s\n", "Metadata Caching Statistics");
 printf(" \n");
 printf("Buffers (K bytes) Requests Hits Ratio Updates \n");
 printf("---------- --------- ---------- ---------- ------ ----------\n");

 temp_ratio = (metastptr->am_primary.requests == 0) ? 0.0 :
 ((double)metastptr->am_primary.hits) / metastptr->am_primary.requests;
 temp_ratio *= 100.0;
 CONVERT_RATIO_TO_INTS(temp_ratio, whole, decimal);
 decimal = decimal / 100; /* Just want tenths */

 printf("%10u %9u %10u %10u %3u.%1.1u%% %10u\n",
 metastptr->am_primary.buffers.low,
 metastptr->am_primary.buffers.low * metastptr->am_primary.buffsize,
 metastptr->am_primary.requests, metastptr->am_primary.hits,
 whole, decimal, metastptr->am_primary.updates);
 printf(" \n");

 /* Backing cache */
 printf("%48s\n", "Metadata Backing Caching Statistics");
 printf(" \n");
 printf("Buffers (K bytes) Requests Hits Ratio Discards \n");
 printf("---------- --------- ---------- ---------- ------ ----------\n");

 if(metastptr->am_back.requests == 0)
 temp_ratio = 0.0;
 else
 temp_ratio = 100 * (((double)metastptr->am_back.hits) /
 metastptr->am_back.requests);

 CONVERT_RATIO_TO_INTS(temp_ratio, whole, decimal);
 decimal = decimal / 100; /* Just want tenths */

 printf("%10u %9u %10u %10u %3u.%1.1u%% %10u\n",
 metastptr->am_back.buffers.low,
 metastptr->am_back.buffers.low * metastptr->am_back.buffsize,
 metastptr->am_back.requests, metastptr->am_back.hits,
 whole, decimal, metastptr->am_back.discards);

Statistics Metadata Cache Information

404 z/OS: z/OS File System Administration

 printf(" \n");
}

Statistics Metadata Cache Information

Chapter 13. zFS application programming interface information 405

Statistics Server Token Management Information

Purpose
Returns the server token manager statistics. These statistics can be used to monitor token-related activity
for all file systems that are owned on the local server system. It can also be used to monitor token related
activity between this local server system and each individual client system that is accessing the file
systems that are owned on the local server system.

Format
syscall_parmlist

 opcode int 252 STATOP_STKM
 parms[0] int offset to STAT_API
 parms[1] int Offset of output following STAT_API
 parms[2] int 0
 parms[3] int 0
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0

STAT_API
 sa_eye char[4] "STAP"
 sa_len int length of buffer that
 follows STAT_API
 sa_ver int 1
 sa_flags char[1] 0x00
 SA_RESET 0x80 Reset statistics
 sa_fill char[3] 0
 sa_reserve int[4] 0
 sa_supported_ver int version of data returned
 sa_reserved int[3] 0
 posix_time_high unsigned int high order 32 bits since epoch
 posix_time_low unsigned int low order 32 bits since epoch
 posix_useconds unsigned int microseconds
 pad1 int

STKM_API_STATS
 st_eye char[4] "STKM"
 st_len short size of STKM_API_STATS structure
 st_reserved1 char[2]
 st_maxtokens unsigned long long Max num of tokens allowed
 st_allocated unsigned long long Number of physically allocated
 tokens
 st_inuse unsigned long long Number of tokens in use
 st_files unsigned long long Number of file structures
 allocated
 st_obtains unsigned long long Number of tokens obtained
 st_returns unsigned long long Number of tokens returned
 st_revokes unsigned long long Number of tokens revoked
 st_asyncgrants unsigned long long Number of async grants requests
 st_gcs unsigned long long Number of token garbage collections
 st_reserved2 char[8]
 st_thrashing unsigned long long Number of thrashing files
 st_resolution unsigned long long Number of thrash resolutions
 st_reserved3 char[40]
 ss_sysinfo STKM_SYS_STATS[33]
 ss_eye char[4] "STSS"
 ss_len short size of STKM_SYS_STATS structure
 ss_reserved1 char[2]
 ss_name char[8] Sysname
 ss_token unsigned long long Number of tokens the
 system currently holds
 ss_obtains unsigned long long Number of token obtained
 ss_returns unsigned long long Number of token returned
 ss_revokes unsigned long long Number of token revokes
 ss_asyncgrant unsigned long long Number of asynchronously
 granted tokens
 ss_reserved2 char[16]

 ss_thrashing_objs STKM_THRASHING_FILES[64]
 inode unsigned int thrashing file inode
 unique unsigned int thrashing file uniqueifer

Statistics Server Token Management Information

406 z/OS: z/OS File System Administration

 name char[45] name of thrashing file
 reserved char[3]

 Return_value 0 if request is successful, -1 if it is not successful

 Return_code
 EINTR zFS is shutting down
 EINVAL Invalid parameter list
 EMVSERR Internal error using an osi service

 Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage notes
1. Users of the API supply as input a buffer that contains a syscall_parmlist followed by a STAT_API

structure. Output is placed in the buffer after the STAT_API structure.
2. The output consists of up to 33 STKM_SYS_STATS and up to 64 STKM_THRASHING_FILES structures.
3. Unused elements of the ss_sysinfo array have an ss_name field that consists of hex zeros.
4. Unused elements of the ss_thrashing_objs array have an inode field with the value 0.

Privilege required
None.

Related services
Query token_cache_size
Set token_cache_size
Statistics Sysplex Client Operations Information
Statistics Sysplex Owner Operations Information

Restrictions
None.

Example
#pragma linkage(BPX1PCT, OS)
extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include "stdio.h"

#define ZFSCALL_STATS 0x40000007
#define STATOP_STKM 252
#define BUFFER_SIZE 1024 * 64

typedef struct syscall_parmlist_t {
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */

} syscall_parmlist;

typedef struct reset_time {
 unsigned int posix_time_high;
 unsigned int posix_time_low;
 unsigned int posix_usecs;
 int pad1;
} RESET_TIME;

typedef struct stat_api_t {
#define SA_EYE "STAP"
 char sa_eye[4]; /* 4 byte identifier must be */
 int sa_len; /* length of the buffer to put data into*/
 /* this buffer area follows this struct*/
 int sa_ver; /* the version number currently always 1*/
#define SA_VER_INIT 0x01
 char sa_flags; /* command field must be x00 or x80, */

Statistics Server Token Management Information

Chapter 13. zFS application programming interface information 407

 /* x80 means reset statistics */
#define SA_RESET 0x80
 char sa_fill[3]; /* spare bytes */
 int sa_reserve[4]; /* Reserved */
 struct reset_time reset_time_info;
} STAT_API;

typedef struct stkm_sys_stats_t {
 char ss_eye[4]; /* eye catcher-"STSS" */
#define SS_EYE "STSS"
 short ss_len;
 char ss_reserved1[2];
 char ss_name[8]; /* Sysname */
 unsigned long long ss_token; /* Number of tokens the system */
 /* currently holds */
 unsigned long long ss_obtains; /* Number of token obtained */
 unsigned long long ss_returns; /* Number of token returned */
 unsigned long long ss_revokes; /* Number of token revokes */
 unsigned long long ss_asyncgrant; /* Number of asynchronously */
 /* granted tokens */
 char ss_reserved2[16];
} STKM_SYS_STATS;

typedef struct stkm_thrashing_files_t
{
 unsigned int inode;
 unsigned int unique;
 char name[45];
 char reserved[3];
} STKM_THRASHING_FILES;

#define MAX_THRASHING_FILES 64
#define SYS_MAX_SYSPLEX_SYSTEMS 32 /* Current max # sysplex images*/
typedef struct stkm_api_stats_t
{
 char st_eye[4]; /* eye catcher-"STKM" */
#define ST_EYE "STKM"
 short st_len;
 char st_reserved1[2];
 unsigned long long st_maxtokens; /* Max num of tokens allowed */
 unsigned long long st_allocated; /* Num. of physically allocated */
 /* tokens */
 unsigned long long st_inuse; /* Number of tokens in use */
 unsigned long long st_files; /* Number of file structures */
 /* allocated */
 unsigned long long st_obtains;
 unsigned long long st_returns;
 unsigned long long st_revokes;
 unsigned long long st_asyncgrants;
 unsigned long long st_gcs;
 char st_reserved2[8];
 unsigned long long st_thrashing;
 unsigned long long st_resolution;
 char st_reserved3[40];

 /* 32 sysplex-members + 1 zlc */
 STKM_SYS_STATS ss_sysinfo[SYS_MAX_SYSPLEX_SYSTEMS+1];
 STKM_THRASHING_FILES ss_thrashing_objs[MAX_THRASHING_FILES];
} STKM_API_STATS;

int main(int argc, char** argv)
{
 int buff_fill_len = 0;
 int bpxrv, bpxrc, bpxrs;
 char sysname[9];
 int title_done;

 STAT_API local_req;
 STAT_API *st_req = NULL;
 syscall_parmlist *parmp = NULL;
 STKM_API_STATS *st_stats = NULL;
 STKM_SYS_STATS *ss_stats = NULL;
 STKM_THRASHING_FILES *thrashingp = NULL;
 char *buffp = NULL;

 /* Initialize the local_req to 0s */
 st_req = &local_req;
 memset(st_req, 0x00, sizeof(STAT_API));

 strcpy(local_req.sa_eye, SA_EYE, sizeof(local_req.sa_eye));
 local_req.sa_len = sizeof(STKM_API_STATS);
 local_req.sa_ver = SA_VER_INIT;

Statistics Server Token Management Information

408 z/OS: z/OS File System Administration

 /* Allocate Buffer */
 buffp = (char*) malloc(BUFFER_SIZE);
 if(buffp == NULL)
 {
 printf("Malloc Error\n");
 return 0;
 }
 memset(buffp, 0x00, sizeof(syscall_parmlist) + sizeof(STAT_API));

 /* Set the run parms */
 parmp = (syscall_parmlist*) &buffp[0];
 parmp->opcode = STATOP_STKM;
 parmp->parms[0] = buff_fill_len = sizeof(syscall_parmlist);
 parmp->parms[1] = buff_fill_len + sizeof(STAT_API);
 parmp->parms[2] = 0;
 parmp->parms[3] = 0;
 parmp->parms[4] = 0;
 parmp->parms[5] = 0;
 parmp->parms[6] = 0;

 st_req = (STAT_API*) &buffp[buff_fill_len];

 memcpy(st_req, &local_req, sizeof(STAT_API));
 buff_fill_len += sizeof(STAT_API);

 BPX1PCT("ZFS ",
 ZFSCALL_STATS, /* Aggregate operation */
 BUFFER_SIZE, /* Length of Argument */
 (char*) buffp, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if(bpxrv)
 {
 /* Bad Return code */
 printf("Error requesting info for stkm stats\n");
 printf("Return Value: %d Return Code: %d Reason Code: %x\n",
 bpxrv, bpxrc, bpxrs);
 }
 else
 {
 /* Success. Print the information in a table */
 st_stats = (STKM_API_STATS*) &buffp[buff_fill_len];
 ss_stats = st_stats->ss_sysinfo;
 thrashingp = st_stats->ss_thrashing_objs;

 printf("%20c Server Token Manager (STKM) Statistics\n", ' ');
 printf("%20c --------------------------------------\n", ' ');
 printf("Maximum tokens: %20llu Allocated tokens: %20llu\n",
 st_stats->st_maxtokens, st_stats->st_allocated);
 printf("Tokens In Use: %20llu File structures: %20llu\n",
 st_stats->st_inuse, st_stats->st_files);
 printf("Token obtains: %20llu Token returns: %20llu\n",
 st_stats->st_obtains, st_stats->st_returns);
 printf("Token revokes: %20llu Async Grants: %20llu\n",
 st_stats->st_revokes, st_stats->st_asyncgrants);
 printf("Garbage Collects: %20llu Thrash Resolutions: %20llu\n",
 st_stats->st_gcs, st_stats->st_resolution);
 printf("Thrashing Files: %20llu\n\n", st_stats->st_thrashing);

 printf("%30c Usage Per System: \n", ' ');
 printf("System Tokens Obtains ");
 printf("Returns Revokes Async Grt\n");
 printf("-------- ------------------- --------------------");
 printf("-------------------- -------------------- ");
 printf("--------------------\n");

 for (int i = 0; i < (SYS_MAX_SYSPLEX_SYSTEMS+1); i++)
 {
 if (ss_stats[i].ss_name[0] == '\0')
 break;

 memcpy(&sysname, &ss_stats[i].ss_name, 8);
 sysname[8] = '\0';

 printf("%8.8s %20llu %20llu %20llu %20llu %20llu\n",
 sysname,
 ss_stats[i].ss_token,
 ss_stats[i].ss_obtains,
 ss_stats[i].ss_returns,

Statistics Server Token Management Information

Chapter 13. zFS application programming interface information 409

 ss_stats[i].ss_revokes,
 ss_stats[i].ss_asyncgrant);
 }
 printf("\n");

 title_done = 0;
 for (int j = 0; j < MAX_THRASHING_FILES; j++)
 {
 if (thrashingp[j].inode == 0)
 break;

 if (title_done == 0)
 {
 printf(" Thrashing Objects:\n");
 printf("Inode Uniquifier File system \n");
 printf("---------- ---------- --------------------\n");
 title_done = 1;
 }
 printf("%20u %20u %s\n", thrashingp[j].inode,
 thrashingp[j].unique,
 thrashingp[j].name);
 }
 if (title_done)
 printf("\n");
 }
 return 0;
}

Statistics Server Token Management Information

410 z/OS: z/OS File System Administration

Statistics Storage Information

Purpose
A performance statistics operation that returns storage information.

STATOP_STORAGE (241) returns below the 2 G bar information. STATOP_STORAGE (255) returns above
the 2 G bar information.

Format
syscall_parmlist
 opcode int 241 STATOP_STORAGE or
 255 STATOP_STORAGE_ABOVE
 parm[0] int Offset to STAT_API
 parm[1] int Offset of output following STAT_API
 following STAT_API
 parm[2] int Offset to system name
 (optional)
 parm[3] int 0
 parm[4] int 0
 parm[5] int 0
 parm[6] int 0
STAT_API
 sa_eye char[4] "STAP"
 sa_len int Length of buffer that follows
 the STAT_API
 sa_ver int 1 or 2 for STATOP_STORAGE
 1 for STATOP_STORAGE_ABOVE
 sa_flags char 0x80 for reset; 0x00 otherwise
 sa_fill char[3] Reserved
 sa_supported_ver int Version of data returned
 sa_reserve int[3] Reserved
 posix_time_high unsigned int High order 32 bits since epoch
 posix_time_low unsigned int Low order 32 bits since epoch
 posix_useconds unsigned int Microseconds
 pad1 int Reserved
API_STOR_STATS
 reserved1 int
 ss_total_bytes_allocated unsigned int Total bytes allocated
 ss_total_pieces_allocated unsigned int Total pieces allocated
 ss_total_allocation_requests unsigned int Total allocation requests
 ss_total_free_requests unsigned int Total free requests
 ss_number_of_comp_lines unsigned int Total number of component
 lines in buffer
 ss_reserved_space char[52] Reserved for future use
COMP_LINE[n]
 ss_comp_bytes_allocated int The number of bytes allocated
 by this component
 ss_comp_pieces int The number of pieces allocated
 ss_comp_allocations int Number of storage allocation
 requests done by this component
 ss_comp_frees int The number of storage frees
 done by this component
 ss_comp_description char[84] The component description
 ss_number_of_detail_lines int The number of detail lines
 following this component line

DETAIL_LINE[m]
 ss_detail_bytes_allocated int Number of bytes allocated
 ss_detail_pieces int Number of pieces allocated
 ss_detail_allocations int Number of allocation requests
 ss_detail_frees int Number of free requests
 ss_detail_description char[84] Description
-- or --
API_STOR_STATS2
 ss_total_bytes_of_data unsigned long long int
 Total storage allocated. May
 include storage used by other
 components in the address space.
 ss_ioefscm_allocated unsigned long long int
 0 for STATOP_STORAGE (241)
 Total bytes allocated by IOEFSCM
 for STATOP_STORAGE_ABOVE (255)
 ss_ioefscm_heap_allocated unsigned long long int

Statistics Storage Information

Chapter 13. zFS application programming interface information 411

 Total bytes allocated by the
 IOEFSCM heap.
 ss_ioefscm_heap_pieces unsigned long long int
 Total storage pieces in the
 IOEFSCM heap.
 ss_ioefscm_heap_allocations unsigned long long int
 Total allocation requests to
 IOEFSCM heap.
 ss_ioefscm_heap_frees unsigned long long int
 Total free requests to IOEFSCM
 heap.
 ss_ioefskn_allocated unsigned long long int
 0 for STATOP_STORAGE (241)
 Total bytes discarded for
 STATOP_STORAGE_ABOVE (255)
 ss_ioefskn_heap_allocated unsigned long long int
 Total bytes allocated by the
 IOEFSKN heap.
 ss_ioefskn_heap_pieces unsigned long long int
 Total storage pieces in the
 IOEFSKN heap.
 ss_ioefskn_heap_allocations unsigned long long int
 Total allocation requests to
 IOEFSKN heap.
 ss_ioefskn_heap_frees unsigned long long int
 Total free requests to IOEFSKN
 heap.
 ss_ioefskn_heap_discarded unsigned long long int
 0 for STATOP_STORAGE (241)
 ss_number_of_comp_lines unsigned int
 Total number of components
 lines in buffer
 pad int Reserved
 ss_reserved_space char[56] Reserved for future use
COMP_LINE2[n]
 ss_comp_bytes_allocated unsigned long long int
 The number of bytes allocated
 by this component
 ss_comp_pieces unsigned long long int
 The number of pieces allocated
 ss_comp_allocations unsigned long long int
 The number of storage
 allocations requests done by
 this component
 ss_comp_frees unsigned long long int
 The number of storage frees
 done by this component
 ss_comp_description char[84]
 The component description
 ss_number_of_detail_lines int
 The number of detail lines
 following this component line

DETAIL_LINE2[m]
 ss_detail_bytes_allocated unsigned long long int
 Number of bytes allocated
 ss_detail_pieces unsigned long long int
 Number of pieces allocated
 ss_detail_allocations unsigned long long int
 Number of allocation requests
 ss_detail_frees unsigned long long int
 Number of free requests
 ss_detail_description char[84] description
 ss_detail_reserved char[4] Reserved

systemname char[9] System name where the query is ran

Return value 0 if request is successful, -1 if it is not successful

Return code
 EINTR ZFS is shutting down
 EINVAL Invalid parameter list
 EMVSERR Internal error occurred
 E2BIG Information too big for buffer supplied
Reason code
 0xEFxxnnnn See z/OS Distributed File Service Messages and Codes

Statistics Storage Information

412 z/OS: z/OS File System Administration

Usage notes
1. You can specify a buffer that you think might be large enough or you can specify a buffer length of zero.

If you get a return code E2BIG, the required size for the buffer is contained in the sa_len field.
2. Reserved fields and undefined flags must be set to binary zeros.
3. When sa_supported_ver is 0 or 1, output consists of API_STOR_STATS, COMP_LINE and

DETAIL_LINE. When sa_supported_ver is 2, output consists of API_STOR_STATS2, COMP_LINE2
and DETAIL_LINE2.

4. For STATOP_STORAGE_ABOVE, sa_supported_ver is 1 and output consists of API_STOR_STATS2,
COMP_LINE2 and DETAIL_LINE2.

Privilege required
None.

Related services
Statistics Locking Information
Statistics User Cache Information

Restrictions
None.

Examples

#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_STATS 0x40000007
#define STATOP_STORAGE 241 /* below-bar storage stats */
#define STATOP_STORAGE_ABOVE 255
#define STATOP_LAST STATOP_STORAGE_ABOVE
#define E2BIG 145

typedef struct syscall_parmlist_t
{
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

typedef struct reset_time {
 unsigned int posix_time_high; /* high order 32 bits since epoc */
 unsigned int posix_time_low; /* low order 32 bits since epoch */
 unsigned int posix_usecs; /* microseconds */
 int pad1;
} RESET_TIME;

/***/
/* The following structure is the api query control block */
/* It is used for all api query commands */
/***/
typedef struct stat_api_t {
#define SA_EYE "STAP"
 char sa_eye[4]; /* 4 byte identifier must be */
 int sa_len; /* length of the buffer to put data into*/
 /* this buffer area follows this struct */
 int sa_ver; /* the version number currently always 1*/
#define SA_VER_2 0x02
#define SA_VER_INIT 0x01
 char sa_flags; /* flags field must be x00 or x80, */
 /* x80 means reset statistics */
#define SA_RESET 0x80
 char sa_fill[3]; /* spare bytes */

Statistics Storage Information

Chapter 13. zFS application programming interface information 413

 int sa_supported_ver; /* version of data returned */
 int sa_reserve[3]; /* Reserved */
 struct reset_time reset_time_info;
} STAT_API;

typedef struct comp_line_2
{
 unsigned long long int ss_comp_bytes_allocated; /* Number of bytes */
 /* allocated */
 /* by this component */
 unsigned long long int ss_comp_pieces; /* The number of pieces allocated */
 unsigned long long int ss_comp_allocations; /* the number of storage */
 /* allocations requests done */
 /* by this component */
 unsigned long long int ss_comp_frees; /* number of storage frees */
 /* done by this component */
 char ss_comp_description[84]; /* the component description */
 int ss_number_of_detail_lines; /* the number of detail lines */
 /* following this component line */
 /* before the next component line */
 /* or end of buffer */
} COMP_LINE_2;

typedef struct detail_line_2
{
 unsigned long long int ss_detail_bytes_allocated; /* number of bytes */
 /* allocated */
 unsigned long long int ss_detail_pieces; /*number of pieces allocated*/
 unsigned long long int ss_detail_allocations; /*number of allocation */
 /*requests */
 unsigned long long int ss_detail_frees; /*number of free requests*/
 char ss_detail_description[84]; /*description */
 char ss_reserved_pad[4];
} DETAIL_LINE_2;

typedef struct api_stor_stats_2
{
 /* Total storage allocated, this comes from OS data structures */
 /* and is via a query from OS and may include storage */
 /* used by other OS components in the address space */
 /* QUERY,STORAGE equivalent: */
 /* Total Storage Above/Below 2G Bar Allocated */
 unsigned long long int ss_total_bytes_of_data;

 /* Total number of bytes allocated by IOEFSCM */
 /* The number of bytes allocated via IARV64 by/for program IOEFSCM */
 /* This field valid only for an above-bar storage query */
 /* QUERY,STORAGE equivalent: */
 /* Total Bytes Allocated by IOEFSCM (Stack + Heap) */
 unsigned long long int ss_ioefscm_allocated;

 /* Total number of bytes allocated by IOEFSCM heap */
 /* The number of bytes allocated via calls to obtain storage for IOEFSCM */
 /* QUERY,STORAGE equivalent: */
 /* IOEFSCM Heap Bytes Allocated */
 unsigned long long int ss_ioefscm_heap_allocated;

 /* Total number of storage pieces in IOEFSCM heap */
 /* The number of pieces of allocated storage from calls to obtain storage */
 /* for IOEFSCM */
 /* QUERY,STORAGE equivalent: */
 /* IOEFSCM Heap Pieces Allocated */
 unsigned long long int ss_ioefscm_heap_pieces;

 /* Total number of allocation requests to IOEFSCM heap since
 /* last stats reset */
 /* QUERY,STORAGE equivalent: */
 /* IOEFSCM Heap Allocation Requests */
 unsigned long long int ss_ioefscm_heap_allocations;

 /* Total number of free requests for IOEFSCM heap since last stats reset */
 /* QUERY,STORAGE equivalent: */
 /* IOEFSCM Heap Free Requests */
 unsigned long long int ss_ioefscm_heap_frees;

 /* Total number of bytes allocated by IOEFSKN */
 /* The number of bytes allocated via IARV64 by/for program IOEFSKN */
 /* This field valid only for an above-bar storage query */
 /* QUERY,STORAGE equivalent: */
 /* Total Bytes Allocated by IOEFSKN (Stack + Heap) */
 unsigned long long int ss_ioefskn_allocated;

Statistics Storage Information

414 z/OS: z/OS File System Administration

 /* Total number of bytes allocated by IOEFSKN heap */
 /* The number of bytes allocated via calls to obtain storage for IOEFSKN */
 /* QUERY,STORAGE equivalent: */
 /* IOEFSKN Heap Bytes Allocated */
 unsigned long long int ss_ioefskn_heap_allocated;

 /* Total number of storage pieces in IOEFSKN heap */
 /* The number of pieces of allocated storage from calls to obtain */
 /* storage for IOEFSKN */
 /* QUERY,STORAGE equivalent: */
 /* IOEFSKN Heap Pieces Allocated */
 unsigned long long int ss_ioefskn_heap_pieces;

 /* Total number of allocation requests to IOEFSKN heap since */
 /* last stats reset */
 /* QUERY,STORAGE equivalent: */
 /* IOEFSKN Heap Allocation Requests */
 unsigned long long int ss_ioefskn_heap_allocations;

 /* Total number of free requests for IOEFSKN heap since last stats reset */
 /* QUERY,STORAGE equivalent: */
 /* IOEFSKN Heap Free Requests */
 unsigned long long int ss_ioefskn_heap_frees;

 /* Total number of bytes discarded via IARV64 DISCARD function */
 /* ... valid only for above-bar storage query. */
 /* QUERY,STORAGE equivalent: */
 /* Total Bytes Discarded (unbacked) by IOEFSKN */
 unsigned long long int ss_ioefskn_heap_discarded;

 /* Total number of components lines in buffer*/
 unsigned int ss_number_of_comp_lines;
 int pad;
 char ss_reserved_space[48]; /* reserved for future use */
 char ss_returned_data[1]; /* start of buffer to put data into */
 char ss_reserved_pad[7]; /* sizeof() will return size including */
 /* these 7 bytes */
} API_STOR_STATS_2;

/* Version 1 Output Structures */

typedef struct comp_line
{
 int ss_comp_bytes_allocated; /* The number of bytes
 allocated by this component */
 int ss_comp_pieces; /* The number of pieces allocated*/
 int ss_comp_allocations; /* the number of storage allocations
 requests done by this component */
 int ss_comp_frees; /* the number of storage frees
 done by this component */
 char ss_comp_description[84]; /* the component description */
 int ss_number_of_detail_lines; /* the number of detail lines
 following this component line before the
 next component line or end of buffer */
} COMP_LINE;

typedef struct detail_line
{
 int ss_detail_bytes_allocated; /*number of bytes allocated*/
 int ss_detail_pieces; /*number of pieces allocated*/
 int ss_detail_allocations; /*number of allocation requests*/
 int ss_detail_frees; /*number of free requests*/
 char ss_detail_description[84]; /*description */
} DETAIL_LINE;

typedef struct api_stor_stats
{
 int reserved1;
 unsigned int ss_total_bytes_allocated; /* Total bytes allocated*/
 unsigned int ss_total_pieces_allocated; /* Total pieces allocated*/
 unsigned int ss_total_allocation_requests; /*Total allocation requests*/
 unsigned int ss_total_free_requests; /*Total free requests*/
 unsigned int ss_number_of_comp_lines; /* Total number of
 components lines in buffer*/
 char ss_reserved_space[48]; /* reserved for future use */

 /***/
 /* The returned data can contain comp_lines and detail_lines ******/
 /* The first line is a component line ******/
 /* The number of component lines returned is in this structure ******/
 /* Each component line is followed by zero or more detail lines ******/
 /* The comp_line struct indicates how many detail lines follow ******/

Statistics Storage Information

Chapter 13. zFS application programming interface information 415

 /***/
} API_STOR_STATS;

struct parmstruct {
 syscall_parmlist myparms;
 STAT_API myapi;

 /* output buffer API_STOR_STATS_2 + COMP_LINE_2s and DETAIL_LINE_2s */
 char systemname[9];
} myparmstruct;

int print_storage_version1(struct parmstruct *buffp, int buflen);
int print_storage_version2(struct parmstruct *buffp,int buflen,int above_bar);

int main(int argc, char **argv)
{
 int buffer_success = 0;
 int above_bar = 0;
 int bpxrv;
 int bpxrc;
 int bpxrs;
 int i,j,t;

 char buf[33];
 struct parmstruct *myp = &myparmstruct;
 int mypsize;
 int buflen;

 STAT_API *stapptr = &(myparmstruct.myapi);

 myparmstruct.myparms.opcode = STATOP_STORAGE;
 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
 myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);
 myparmstruct.myparms.parms[2] = 0;

 /* Only specify a non-zero offset for the next field (parms[2]) if */
 /* you are running z/OS 1.7 and above, and you want to query the storage */
 /* statistics of a different system than this one: */
 /* myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist) */
 /* + sizeof(STAT_API); */

 myparmstruct.myparms.parms[3] = 0;
 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;

 memset(stapptr, 0, sizeof(STAT_API));
 memcpy(stapptr->sa_eye, SA_EYE, 4);
 stapptr->sa_ver = SA_VER_2;
 stapptr->sa_len = 0;

 /* This next field should only be set if parms[2] is non-zero */
 /* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

 BPX1PCT("ZFS ",
 ZFSCALL_STATS, /* Perf statistics operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 for(t = 0; t < 1000 && buffer_success == 0 && above_bar < 2; t++)
 {
 if (bpxrv < 0)
 {
 if (bpxrc == E2BIG)
 {
 buflen = stapptr->sa_len; /* Get buffer size needed */
 mypsize = sizeof(syscall_parmlist) + sizeof(STAT_API) + buflen +
 sizeof(myparmstruct.systemname);

 free(myp);
 myp = (struct parmstruct *)malloc((int)mypsize);
 memset(myp, 0, mypsize);
 printf("Need buffer size of %d, for a total of %d\n\n",
 buflen, mypsize);

 /* Base the opcode on the type of storage needed*/
 if(above_bar == 0)
 myp->myparms.opcode = STATOP_STORAGE;
 else

Statistics Storage Information

416 z/OS: z/OS File System Administration

 myp->myparms.opcode = STATOP_STORAGE_ABOVE;

 myp->myparms.parms[0] = sizeof(syscall_parmlist);
 myp->myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);
 myp->myparms.parms[2] = 0;

 /* Only specify a non-zero offset for the next field (parms[2]) if */
 /* you are running z/OS 1.7 and above, and you want to query the */
 /* storage statistics of a different system than this one: */
 /* myp->myparms.parms[2] = sizeof(syscall_parmlist) */
 /* + sizeof(STAT_API) + buflen; */

 myp->myparms.parms[3] = 0;
 myp->myparms.parms[4] = 0;
 myp->myparms.parms[5] = 0;
 myp->myparms.parms[6] = 0;

 stapptr = (STAT_API*) ((char *) myp + sizeof(syscall_parmlist));
 memcpy(stapptr->sa_eye, SA_EYE, 4);
 stapptr->sa_len = buflen;

 /* Above bar storage needs SA_VER_INIT*/
 stapptr->sa_ver = above_bar == 0 ? SA_VER_2 : SA_VER_INIT;

 BPX1PCT("ZFS ",
 ZFSCALL_STATS, /* Aggregate operation */
 mypsize, /* Length of Argument */
 (char *)myp, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if(bpxrv != 0 && bpxrc == E2BIG)
 printf("E2BIG: %d times total\n", t++);
 else if(bpxrv == 0)
 {
 buffer_success = 1;
 bpxrv = -1;

 /*If version 1, either above bar stats or downlevel system*/
 if(stapptr->sa_supported_ver == SA_VER_INIT)
 above_bar ? print_storage_version2(myp, buflen, above_bar) :
 print_storage_version1(myp, buflen);
 else if (stapptr->sa_supported_ver == SA_VER_2)
 {
 /* First pass get below the bar */
 print_storage_version2(myp, buflen, above_bar);
 buffer_success = 0;
 above_bar += 1;
 }

 unsigned int ptl = stapptr->reset_time_info.posix_time_low;
 if (0 == ctime_r((time_t *) & ptl, buf))
 printf("Could not get timestamp.\n");
 else
 { /* Insert the microseconds into the displayable time value */
 strncpy(&(buf[27]), &(buf[20]), 6);
 sprintf(&(buf[20]), "%06d", stapptr->reset_time_info.posix_usecs);
 buf[26] = ' ';
 buf[19] = '.';
 printf("Last Reset Time: %s", buf);
 }
 free(myp);
 }
 else
 { /* storage stats failed with large enough buffer */
 printf("Error on storage stats with large enough buffer\n");
 printf("Error querying storage stats, "
 "BPXRV = %d BPXRC = %d BPXRS = %x\n",
 bpxrv, bpxrc, bpxrs);
 free(myp);
 return bpxrc;
 }
 }
 else
 { /* error was not E2BIG */
 printf("Error on storage stats trying to get required size\n");
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 free(myp);
 return bpxrc;
 }
 }

Statistics Storage Information

Chapter 13. zFS application programming interface information 417

 else
 { /* asking for buffer size gave rv = 0; maybe there is no data */
 if (myparmstruct.myapi.sa_len == 0)
 {
 printf("No data\n");
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 }
 else
 { /* No, there was some other problem with getting the size needed */
 printf("Error getting size required\n");
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 }

 free(myp);
 return bpxrc;
 }
 }
 if(t == 1000)
 printf("Number of failed buffer resizes exceeded.\n");

 free(myp);
 return 0;
}

int print_storage_version2(struct parmstruct *buffp, int buflen, int above_bar)
{
 int i,j;
 API_STOR_STATS_2 *stst;
 COMP_LINE_2 *stcl;
 DETAIL_LINE_2 *stdl;
 char *stsy;

 stst = (API_STOR_STATS_2*) ((char *) buffp +
 sizeof(syscall_parmlist) + sizeof(STAT_API));
 stsy = (char *) ((char *) buffp +
 sizeof(syscall_parmlist) + sizeof(STAT_API) + buflen);

 if (above_bar)
 printf(" zFS Primary Address Space >2G Stge Usage\n");
 else
 printf(" zFS Primary Address Space <2G Stge Usage\n");
 printf(" --\n");
 printf(" \n");

 if (above_bar)
 printf("Total Storage Above 2G Bar Allocated: %12llu\n",
 stst->ss_total_bytes_of_data);
 else
 printf("Total Storage Below 2G Bar Allocated: %12llu\n\n",
 stst->ss_total_bytes_of_data);

 if (above_bar)
 printf("Total Bytes Allocated by IOEFSCM (Stack+Heap): %12llu\n",
 stst->ss_ioefscm_allocated);

 printf("IOEFSCM Heap Bytes Allocated: %12llu\n",
 stst->ss_ioefscm_heap_allocated);
 printf("IOEFSCM Heap Pieces Allocated: %12llu\n",
 stst->ss_ioefscm_heap_pieces);
 printf("IOEFSCM Heap Allocation Requests %12llu\n",
 stst->ss_ioefscm_heap_allocations);
 printf("IOEFSCM Heap Free Requests %12llu\n",
 stst->ss_ioefscm_heap_frees);
 printf("\n");

 if (above_bar)
 {
 printf("Total Bytes Allocated by IOEFSKN (Stack+Heap): %12llu\n",
 stst->ss_ioefskn_allocated);
 printf("Total Bytes Discarded (unbacked) by IOEFSKN: %12llu\n",
 stst->ss_ioefskn_heap_discarded);
 }
 printf("IOEFSKN Heap Bytes Allocated: %12llu\n",
 stst->ss_ioefskn_heap_allocated);
 printf("IOEFSKN Heap Pieces Allocated: %12llu\n",
 stst->ss_ioefskn_heap_pieces);
 printf("IOEFSKN Heap Allocation Requests %12llu\n",
 stst->ss_ioefskn_heap_allocations);
 printf("IOEFSKN Heap Free Requests %12llu\n",
 stst->ss_ioefskn_heap_frees);

 /* Point the comp_line to the ss_returned_data value */

Statistics Storage Information

418 z/OS: z/OS File System Administration

 /* instead of adding sizeof(API_STOR_STATS_2) */
 stcl = (COMP_LINE_2*) stst->ss_returned_data;

 for (i = 0; i < stst->ss_number_of_comp_lines; i++)
 {
 printf("\n");
 printf(" Storage Usage By Component\n");
 printf(" --------------------------\n");
 printf("Bytes No. of No. of \n");
 printf("Allocated Pieces Allocs Frees Component\n");
 printf("---------- ------ ------ ------ ---------\n");
 printf("\n");

 printf("%10llu %6llu %6llu %6llu %s\n",
 stcl->ss_comp_bytes_allocated,
 stcl->ss_comp_pieces,
 stcl->ss_comp_allocations,
 stcl->ss_comp_frees,
 stcl->ss_comp_description);

 stdl = (DETAIL_LINE_2 *)((char *)stcl + sizeof(COMP_LINE_2));
 for (j = 0; j < stcl->ss_number_of_detail_lines; j++, stdl++)
 {
 if (j == 0)
 {
 printf("\n");
 printf(" Storage Details by Component\n");
 printf(" ----------------------------\n");
 printf("\n");
 }
 printf("%10llu %6llu %6llu %6llu %s\n",
 stdl->ss_detail_bytes_allocated,
 stdl->ss_detail_pieces,
 stdl->ss_detail_allocations,
 stdl->ss_detail_frees,
 stdl->ss_detail_description);
 }
 stcl = (COMP_LINE_2 *) stdl;
 }
 printf("\n");

}

int print_storage_version1(struct parmstruct *buffp, int buflen)
{
 int i,j;
 COMP_LINE *stcl;
 DETAIL_LINE *stdl;
 char *stsy;
 API_STOR_STATS *stst;

 printf("Version 1 Output is being displayed\n\n");

 stst = (API_STOR_STATS *)((char *)buffp + sizeof(syscall_parmlist) +
 sizeof(STAT_API));
 stsy = (char *)((char *)buffp + sizeof(syscall_parmlist) +
 sizeof(STAT_API) + buflen);

 printf("%18czFS Primary Address Space Storage Usage\n", ' ');
 printf("%18c---------------------------------------\n", ' ');
 printf("\n");
 printf("Total Bytes Allocated: %u (%uK) (%uM)\n",
 stst->ss_total_bytes_allocated,
 stst->ss_total_bytes_allocated / 1024,
 stst->ss_total_bytes_allocated / (1024 * 1024));
 printf("Total Pieces Allocated: %u\n",
 stst->ss_total_pieces_allocated);
 printf("Total Allocation Requests: %u\n",
 stst->ss_total_allocation_requests);
 printf("Total Free Requests: %u, %u\n",
 stst->ss_total_free_requests,
 stst->ss_number_of_comp_lines);

 stcl = (COMP_LINE *)((char *)stst + sizeof(API_STOR_STATS));
 for (i = 0; i < stst->ss_number_of_comp_lines; i++)
 {
 printf("\n");
 printf(" Storage Usage By Component\n");
 printf(" --------------------------\n");
 printf("Bytes No. of No. of \n");
 printf("Allocated Pieces Allocs Frees Component\n");
 printf("---------- ------ ------ ------ ---------\n");

Statistics Storage Information

Chapter 13. zFS application programming interface information 419

 printf("\n");
 printf("%10u %6u %6u %6u %s\n",
 stcl->ss_comp_bytes_allocated,
 stcl->ss_comp_pieces,
 stcl->ss_comp_allocations,
 stcl->ss_comp_frees,
 stcl->ss_comp_description);

 stdl = (DETAIL_LINE *)((char *)stcl + sizeof(COMP_LINE));
 for (j = 0; j < stcl->ss_number_of_detail_lines; j++, stdl++)
 {
 if (j == 0)
 {
 printf("\n");
 printf(" Storage Details by Component\n");
 printf(" ----------------------------\n");
 printf("\n");
 }
 printf("%10u %6u %6u %6u %s\n",
 stdl->ss_detail_bytes_allocated,
 stdl->ss_detail_pieces,
 stdl->ss_detail_allocations,
 stdl->ss_detail_frees,
 stdl->ss_detail_description);
 }
 stcl = (COMP_LINE *)stdl;
 }
 printf("\n");

}

Statistics Storage Information

420 z/OS: z/OS File System Administration

Statistics Sysplex Client Operations Information

Purpose
Returns information about the number of local operations that required the sending of a message to
another system.

Format
syscall_parmlist
 opcode int 253 STATOP_CTKC
 parms[0] int offset to STAT_API
 parms[1] int Offset of output following STAT_API
 parms[2] int 0
 parms[3] int 0
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0

STAT_API

 sa_eye char[4] "STAP"
 sa_len int length of buffer that
 follows STAT_API
 sa_ver int 1
 sa_flags char[1] 0x00
 SA_RESET 0x80 Reset statistics
 sa_fill char[3] 0
 sa_supported_ver int version of data returned or reserved
 sa_reserve int[3] 0
 posix_time_high unsigned int high order 32 bits since epoch
 posix_time_low unsigned int low order 32 bits since epoch
 posix_useconds unsigned int microseconds
 pad1 int

CT_HEADER
 ct_eye char[4] "CTHD"
 ct_length short
 ct_version short
 number_of_ct_sys unsigned int
 number_of_ct_call unsigned int

CT_SYS_STATS[number_of_ct_sys]
 cs_eye char[4] "CTSY"
 cs_length short
 cs_version short
 cs_sysname char[9] Name of system. A value of 0
 means there is no information in
 this record and any subsequent
 record (end of list)
 reserved char[7]

CT_CALL_STATS[number_of_ct_call]
 cc_eye char[4] "CTCL"
 cc_length short Length of structure
 cc_version short Structure version
 cc_count unsigned long long Number of calls of that type
 since last statistics reset.
 cc_xcfreq unsigned long long Indicates if an XCF request
 was required to process the call.
 Always equal tocc_count.
 cc_qwait unsigned long long Number of times a request had
 to wait in queue before being
 dispatched to a processing
 task at the owner. Invalid for
 this report, will be equal to 0.
 cc_avg_wait_whole int Average time for system to
 process call in milliseconds.
 This will be round-trip call time
 (which includes XCF transmission
 time) This is the part before
 the decimal point.
 cc_avg_wait_decimal int The part after the decimal
 point for average wait time.
 This is microseconds.

Statistics Sysplex Client Operations Information

Chapter 13. zFS application programming interface information 421

 cc_name char[25]
 reserved char[7]

Return_value 0 if request is successful, -1 if it is not successful

Return_code
 EINTR zFS is shutting down
 EINVAL Invalid parameter list
 EMVSERR Internal error occurred
 E2BIG Information too big for buffer supplied
Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage notes
1. Users of the API supply as input a buffer that contains a syscall_parmlist, followed by a STAT_API

structure, followed by an output buffer.
2. The output consists of a CT_HEADER followed by an array of CT_SYS_STATS structures and an array of

CT_CALL_STATS structures. The number of elements in each array is returned in number_of_ct_sys
and number_of_ct_call respectively.

3. If the output buffer is not large enough to contain all of the output, E2BIG is returned and the required
size is placed in sa_len. The caller can then try the request again with a larger buffer.

4. A CT_SYS_STATS structure is returned only for systems that the local client system sent messages to
since the last statistics reset.

Privilege required
None.

Related services
Statistics Sysplex Owner Operations Information
Statistics Server Token Management Information

Restrictions
None.

Example
#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_STATS 0x40000007
#define STATOP_CTKC 253 /* outbound calls to remote owners */
#define E2BIG 145

typedef struct syscall_parmlist_t {
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */

} syscall_parmlist;

typedef struct reset_time {
 unsigned int posix_time_high;
 unsigned int posix_time_low;
 unsigned int posix_usecs;
 int pad1;
} RESET_TIME;

typedef struct stat_api_t {
#define SA_EYE "STAP"
 char sa_eye[4]; /* 4 byte identifier must be */

Statistics Sysplex Client Operations Information

422 z/OS: z/OS File System Administration

 int sa_len; /* length of the buffer to put data into*/
 /* this buffer area follows this struct*/
 int sa_ver; /* the version number currently always 1*/
#define SA_VER_INIT 0x01
 char sa_flags; /* command field must be x00 or x80, */
 /* x80 means reset statistics */
#define SA_RESET 0x80
 char sa_fill[3]; /* spare bytes */
 int sa_reserve[4]; /* Reserved */
 struct reset_time reset_time_info;
} STAT_API;

typedef struct CT_CALL_STATS_t {
 char cc_eye[4];
#define CC_EYE "CTCL"
 short cc_length;
 short cc_version;
#define CC_VER_INITIAL 1
 unsigned long long cc_count;
 unsigned long long cc_xcfreq;
 unsigned long long cc_qwait; /* number of waits */
 int cc_avg_wait_whole; /* average wait time for calls */
 /* of this type */
 int cc_avg_wait_decimal;
 char cc_name[25];
 char reserved[7];
} CT_CALL_STATS;

typedef struct CT_SYS_STATS_t {
 char cs_eye[4];
#define CS_EYE "CTSY"
 short cs_length;
 short cs_version;
#define CS_VER_INITIAL 1
 char cs_sysname[9];
 char reserved[7];
} CT_SYS_STATS;

typedef struct CT_HEADER_t {
 char ct_eye[4];
#define CT_EYE "CTHD"
 short ct_length;
 short ct_version;
#define CT_VER_INITIAL 1
 unsigned int number_of_ct_sys;
 unsigned int number_of_ct_call;
} CT_HEADER;

int main(int argc, char** argv)
{
 int buff_fill_len = 0;
 int buffer_success = 0;
 int bpxrv, bpxrc, bpxrs;
 char sysname[9];
 int num_systems;
 int num_calls;
 int entry_size;
 int mypsize;
 int buflen;
 int i,j,t;

 STAT_API local_req;
 STAT_API* st_req = NULL;
 syscall_parmlist* parmp = NULL;
 CT_HEADER* ct_p = NULL;
 CT_SYS_STATS* ct_sysp = NULL;
 CT_CALL_STATS* ct_callp = NULL;
 char* p = NULL;
 char* buffp = NULL;

 /* Initialize the local_req to 0s */
 st_req = &local_req;
 memset(st_req, 0x00, sizeof(STAT_API));

 strcpy(local_req.sa_eye, SA_EYE, sizeof(local_req.sa_eye));
 local_req.sa_len = 0;
 local_req.sa_ver = SA_VER_INIT;

 /* Allocate Buffer */
 buffp = (char*) malloc(sizeof(syscall_parmlist) + sizeof(STAT_API));
 if(buffp == NULL)
 {

Statistics Sysplex Client Operations Information

Chapter 13. zFS application programming interface information 423

 printf("Malloc Error\n");
 return 0;
 }
 memset(buffp, 0x00, sizeof(syscall_parmlist) + sizeof(STAT_API));

 /* Set the run parms */
 parmp = (syscall_parmlist*) &buffp[0];
 parmp->opcode = STATOP_CTKC;
 parmp->parms[0] = buff_fill_len = sizeof(syscall_parmlist);
 parmp->parms[1] = buff_fill_len + sizeof(STAT_API);
 parmp->parms[2] = 0;
 parmp->parms[3] = 0;
 parmp->parms[4] = 0;
 parmp->parms[5] = 0;
 parmp->parms[6] = 0;

 st_req = (STAT_API*) &buffp[buff_fill_len];
 memcpy(st_req, &local_req, sizeof(STAT_API));
 buff_fill_len += sizeof(STAT_API);

 BPX1PCT("ZFS ",
 ZFSCALL_STATS, /* Aggregate operation */
 buff_fill_len, /* Length of Argument */
 (char*) buffp, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 for(t = 0; t < 1000 && buffer_success == 0; t++)
 {
 if(bpxrv < 0)
 {
 /* Look for E2BIG to get the required file size back in the st_req */
 if(bpxrc == E2BIG)
 {
 buflen = st_req->sa_len;
 mypsize = sizeof(syscall_parmlist) + sizeof(STAT_API) + buflen;

 free(buffp);

 buffp = (char*) malloc(mypsize);
 if(buffp == NULL)
 {
 printf("Malloc Error\n");
 return 0;
 }
 memset(buffp, 0x00, mypsize);
 printf("Need buffer size of %d, for a total of %d\n",
 buflen, mypsize);

 /* Set the run parms */
 parmp = (syscall_parmlist*) &buffp[0];
 parmp->opcode = STATOP_CTKC;
 parmp->parms[0] = buff_fill_len = sizeof(syscall_parmlist);
 parmp->parms[1] = buff_fill_len + sizeof(STAT_API);
 parmp->parms[2] = 0;
 parmp->parms[3] = 0;
 parmp->parms[4] = 0;
 parmp->parms[5] = 0;
 parmp->parms[6] = 0;

 st_req = (STAT_API*) &buffp[buff_fill_len];
 memcpy(st_req->sa_eye, SA_EYE, 4);
 buff_fill_len += sizeof(STAT_API);
 st_req->sa_ver = SA_VER_INIT;
 st_req->sa_len = buflen;

 BPX1PCT("ZFS ",
 ZFSCALL_STATS, /* Aggregate operation */
 mypsize, /* Length of Argument */
 (char*) buffp, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if(bpxrv != 0 && bpxrc == E2BIG)
 printf("E2BIG: %d times total\n", t++);
 else if(bpxrv == 0)
 {
 buffer_success = 1;
 ct_p = (CT_HEADER*) &buffp[buff_fill_len];
 buff_fill_len += ct_p->ct_length;

Statistics Sysplex Client Operations Information

424 z/OS: z/OS File System Administration

 ct_sysp = (CT_SYS_STATS*) &buffp[buff_fill_len];
 buff_fill_len += ct_sysp->cs_length;
 ct_callp = (CT_CALL_STATS*) &buffp[buff_fill_len];

 /* Make sure there are systems */
 num_systems = ct_p->number_of_ct_sys;
 if(num_systems == 0)
 {
 printf("Ctkc completed successfully. "
 "There is no information to display\n");
 free(buffp);
 return 0;
 }
 num_calls = ct_p->number_of_ct_call;
 entry_size = ct_sysp->cs_length +
 (ct_callp->cc_length * num_calls);

 for (j = 0; j < num_systems; j++)
 {
 printf("CS");
 printf("%5c SVI Calls to System %s\n", ' ',
 ct_sysp->cs_sysname);
 printf(" ");
 printf("%15c----------------------------\n", ' ');
 printf("SVI Call Count"
 " Avg. Time\n");
 printf("-------------------- --------------------"
 " ----------\n");

 for (i = 0; i < num_calls-1; i++)
 {
 printf("%-25s %20llu %8u.%3.3u\n",
 ct_callp[i].cc_name,
 ct_callp[i].cc_count,
 ct_callp[i].cc_avg_wait_whole,
 ct_callp[i].cc_avg_wait_decimal);
 }

 /* Put out the Totals entry */
 printf("-------------------- --------------------"
 " ----------\n");
 printf("%-25s %20llu %8u.%3.3u\n",
 ct_callp[i].cc_name,
 ct_callp[i].cc_count,
 ct_callp[i].cc_avg_wait_whole,
 ct_callp[i].cc_avg_wait_decimal);

 printf("\n");

 /* Get the pointers to the next system entry */
 p = (char*) ct_sysp;
 p += entry_size;
 ct_sysp = (CT_SYS_STATS*) p;

 p += ct_sysp->cs_length;
 ct_callp = (CT_CALL_STATS*) p;
 }
 }
 else
 {
 /* Second API call failed */
 printf("Error on next request for ctkc stats\n");
 printf("Return Value: %d Return Code: %d Reason Code: %x\n",
 bpxrv, bpxrc, bpxrs);
 buffer_success = -1;
 }
 }
 else
 {
 /* Expecting E2BIG and it was a different error */
 printf("Error on storage stats trying to get required size\n");
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",
 bpxrv, bpxrc, bpxrs);
 buffer_success = -1;
 }
 }
 else
 {
 /* If rv is 0, most likely there was no data to get */
 if (st_req->sa_len == 0)
 {
 printf("No data\n");

Statistics Sysplex Client Operations Information

Chapter 13. zFS application programming interface information 425

 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",
 bpxrv, bpxrc, bpxrs);
 buffer_success = -1;
 }
 else
 { /* No, there was other problem with getting the size needed */
 printf("Error getting size required\n");
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",
 bpxrv, bpxrc, bpxrs);
 buffer_success = -1;
 }
 }
 }

 if(t == 1000)
 printf("Number of failed buffer resizes exceeded.\n");

 free(buffp);
 return 0;
}

Statistics Sysplex Client Operations Information

426 z/OS: z/OS File System Administration

Statistics Sysplex Owner Operations Information

Purpose
Returns information about the number of calls processed on the local system as a result of a message
sent from another system. Vnode operation statistics are returned for each client system that accessed a
file system owned on the local server.

Format
syscall_parmlist
 opcode int 253 STATOP_SVI
 parms[0] int offset to STAT_API
 parms[1] int Offset of output following STAT_API
 parms[2] int 0
 parms[3] int 0
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0

STAT_API

 sa_eye char[4] "STAP"
 sa_len int length of buffer that
 follows STAT_API
 sa_ver int 1
 sa_flags char[1] 0x00
 SA_RESET 0x80 Reset statistics
 sa_fill char[3] 0
 sa_supported_ver int version of data returned or reserved
 sa_reserve int[3] 0
 posix_time_high unsigned int high order 32 bits since epoch
 posix_time_low unsigned int low order 32 bits since epoch
 posix_useconds unsigned int microseconds
 pad1 int

CT_HEADER
 ct_eye char[4] "CTHD"
 ct_length short Length of the structure
 ct_version short Structure version
 number_of_ct_sys unsigned int Number of CT_SYS_STATS structures
 number_of_ct_call unsigned int Number of CT_CALL_STATS structures

CT_SYS_STATS[number_of_ct_sys]
 cs_eye char[4] "CTSY"
 cs_length short Length of the structure
 cs_version short Structure version
 cs_sysname char[9] Name of system. A value of 0
 means there is no information in
 this record and any subsequent
 record (end of list)
 reserved char[7]

CT_CALL_STATS[number_of_ct_call]
 cc_eye char[4] "CTCL"
 cc_length short Length of structure
 cc_version short Structure version
 cc_count unsigned long long Number of calls of that type
 since last statistics reset.
 cc_xcfreq unsigned long long Indicates if an XCF request
 was required to process the call.
 Number of XCF requests that were
 required to make callbacks to one
 or more clients to process
 the
requests.
 cc_qwait unsigned long long Number of times a request had
 to wait in queue before being
 dispatched to a processing
 task at the owner, valid only
 for SVI report
 cc_avg_wait_whole int Average time for system to
 process call in milliseconds.
 This will be average time for the
 owner to process the call for SVI

Statistics Sysplex Owner Operations Information

Chapter 13. zFS application programming interface information 427

 reports. This is the part
 before the decimal point.
 cc_avg_wait_decimal int The part after the decimal
 point for avg. waits time.
 This is microseconds.
 cc_name char[25]
 reserved char[7]

CT_CALL_STATS
 cc_eye char[4] "CTCL"
 cc_length short Length of structure
 cc_version short Structure version
 cc_count unsigned long long Number of calls of that type
 since last statistics reset.
 cc_xcfreq unsigned long long Indicates if an XCF request
 was required to process the call.
 Number of XCF requests that were
 required to make callbacks to one
 or more clients to process
 the
requests.
 cc_qwait unsigned long long Number of times a request had
 to wait in queue before being
 dispatched to a processing
 task at the owner, valid only
 for SVI report
 cc_avg_wait_whole int Average time for system to
 process call in milliseconds.
 This will be average time for the
 owner to process the call for SVI
 reports. This is the part
 before the decimal point.
 cc_avg_wait_decimal int The part after the decimal
 point for avg. waits time.
 This is microseconds.
 cc_name char[25]
 reserved char[7]

Return_value 0 if request is successful, -1 if it is not successful

Return_code
 EINTR ZFS is shutting down
 EINVAL Invalid parameter list
 EMVSERR Internal error using an osi service

Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage notes
1. Users of the API supply as input a buffer that contains a syscall_parmlist followed by a STAT_API

structure, followed by an output buffer.
2. Output consists of a CT_HEADER followed by an array of CT_SYS_STATS structures and an array of

CT_CALL_STATS structures. The number of elements in each array is returned in number_of_ct_sys
and number_of_ct_call respectively.

3. If the output buffer is not large enough to contain all of the output, E2BIG is returned and the required
size is placed in sa_len. The caller can then try the request again with a larger buffer.

4. A CT_SYS_STATS structure is returned only for client systems that sent the local server system
messages since the last statistics reset.

Privilege required
None.

Related services
Statistics Server Token Management Information
Statistics Sysplex Client Operations Information

Statistics Sysplex Owner Operations Information

428 z/OS: z/OS File System Administration

Restrictions
None.

Examples

#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_STATS 0x40000007
#define STATOP_SVI 254 /* inbound calls from remote clients */
#define E2BIG 145

typedef struct syscall_parmlist_t {
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */

} syscall_parmlist;

typedef struct reset_time {
 unsigned int posix_time_high;
 unsigned int posix_time_low;
 unsigned int posix_usecs;
 int pad1;
} RESET_TIME;

typedef struct stat_api_t {
#define SA_EYE "STAP"
 char sa_eye[4]; /* 4 byte identifier must be */
 int sa_len; /* length of the buffer to put data into*/
 /* this buffer area follows this struct*/
 int sa_ver; /* the version number currently always 1*/
#define SA_VER_INIT 0x01
 char sa_flags; /* command field must be x00 or x80, */
 /* x80 means reset statistics */
#define SA_RESET 0x80
 char sa_fill[3]; /* spare bytes */
 int sa_reserve[4]; /* Reserved */
 struct reset_time reset_time_info;
} STAT_API;

typedef struct CT_CALL_STATS_t {
 char cc_eye[4];
#define CC_EYE "CTCL"
 short cc_length;
 short cc_version;
#define CC_VER_INITIAL 1
 unsigned long long cc_count;
 unsigned long long cc_xcfreq;
 unsigned long long cc_qwait; /* number of waits */
 int cc_avg_wait_whole; /* average wait time for */
 /* calls of this type */
 int cc_avg_wait_decimal;
 char cc_name[25];
 char reserved[7];
} CT_CALL_STATS;

typedef struct CT_SYS_STATS_t {
 char cs_eye[4];
#define CS_EYE "CTSY"
 short cs_length;
 short cs_version;
#define CS_VER_INITIAL 1
 char cs_sysname[9];
 char reserved[7];
} CT_SYS_STATS;

typedef struct CT_HEADER_t {
 char ct_eye[4];
#define CT_EYE "CTHD"
 short ct_length;
 short ct_version;
#define CT_VER_INITIAL 1
 unsigned int number_of_ct_sys;
 unsigned int number_of_ct_call;

Statistics Sysplex Owner Operations Information

Chapter 13. zFS application programming interface information 429

} CT_HEADER;

int main(int argc, char** argv)
{
 int buff_fill_len = 0;
 int bpxrv, bpxrc, bpxrs;
 char sysname[9];
 int num_systems;
 int num_calls;
 int entry_size;
 int mypsize;
 int buflen;
 int i,j,t;
 int buffer_success = 0;

 STAT_API local_req;
 STAT_API* st_req = NULL;
 syscall_parmlist* parmp = NULL;
 CT_HEADER* ct_p = NULL;
 CT_SYS_STATS* ct_sysp = NULL;
 CT_CALL_STATS* ct_callp = NULL;
 char* p = NULL;
 char* buffp = NULL;

 /* Initialize the local_req to 0s */
 st_req = &local_req;
 memset(st_req, 0x00, sizeof(STAT_API));

 strcpy(local_req.sa_eye, SA_EYE, sizeof(local_req.sa_eye));
 local_req.sa_len = 0;
 local_req.sa_ver = SA_VER_INIT;

 /* Allocate Buffer */
 buffp = (char*) malloc(sizeof(syscall_parmlist) + sizeof(STAT_API));
 if(buffp == NULL)
 {
 printf("Malloc Error\n");
 return 0;
 }
 memset(buffp, 0x00, sizeof(syscall_parmlist) + sizeof(STAT_API));

 /* Set the run parms */
 parmp = (syscall_parmlist*) &buffp[0];
 parmp->opcode = STATOP_SVI;
 parmp->parms[0] = buff_fill_len = sizeof(syscall_parmlist);
 parmp->parms[1] = buff_fill_len + sizeof(STAT_API);
 parmp->parms[2] = 0;
 parmp->parms[3] = 0;
 parmp->parms[4] = 0;
 parmp->parms[5] = 0;
 parmp->parms[6] = 0;

 st_req = (STAT_API*) &buffp[buff_fill_len];
 memcpy(st_req, &local_req, sizeof(STAT_API));
 buff_fill_len += sizeof(STAT_API);

 BPX1PCT("ZFS ",
 ZFSCALL_STATS, /* Aggregate operation */
 buff_fill_len, /* Length of Argument */
 (char*) buffp, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 printf("bpxrv %d\n", bpxrv);

 for(t = 0; t < 1000 && buffer_success == 0; t++)
 {
 if(bpxrv < 0)
 {
 /* Look for E2BIG to get required file size back in the st_req */
 if(bpxrc == E2BIG)
 {
 buflen = st_req->sa_len;
 mypsize = sizeof(syscall_parmlist) +
 sizeof(STAT_API) + buflen;

 free(buffp);

 buffp = (char*) malloc(mypsize);
 if(buffp == NULL)
 {

Statistics Sysplex Owner Operations Information

430 z/OS: z/OS File System Administration

 printf("Malloc Error\n");
 return 0;
 }
 memset(buffp, 0x00, mypsize);
 printf("Need buffer size of %d, for a total of %d\n",
 buflen, mypsize);

 /* Set the run parms */
 parmp = (syscall_parmlist*) &buffp[0];
 parmp->opcode = STATOP_SVI;
 parmp->parms[0] = buff_fill_len = sizeof(syscall_parmlist);
 parmp->parms[1] = buff_fill_len + sizeof(STAT_API);
 parmp->parms[2] = 0;
 parmp->parms[3] = 0;
 parmp->parms[4] = 0;
 parmp->parms[5] = 0;
 parmp->parms[6] = 0;

 st_req = (STAT_API*) &buffp[buff_fill_len];
 memcpy(st_req->sa_eye, SA_EYE, 4);
 buff_fill_len += sizeof(STAT_API);
 st_req->sa_ver = SA_VER_INIT;
 st_req->sa_len = buflen;

 BPX1PCT("ZFS ",
 ZFSCALL_STATS, /* Aggregate operation */
 mypsize, /* Length of Argument */
 (char*) buffp, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if(bpxrv != 0 && bpxrc == E2BIG)
 printf("E2BIG: %d times total\n", t);
 else if(bpxrv == 0)
 {
 buffer_success = 1;
 ct_p = (CT_HEADER*) &buffp[buff_fill_len];
 buff_fill_len += ct_p->ct_length;
 ct_sysp = (CT_SYS_STATS*) &buffp[buff_fill_len];
 buff_fill_len += ct_sysp->cs_length;
 ct_callp = (CT_CALL_STATS*) &buffp[buff_fill_len];

 /* Make sure there are systems */
 num_systems = ct_p->number_of_ct_sys;
 if(num_systems == 0)
 {
 printf("Svi stats completed successfully. "
 "There is no information to display\n");
 free(buffp);
 return 0;
 }
 num_calls = ct_p->number_of_ct_call;
 entry_size = ct_sysp->cs_length +
 (ct_callp->cc_length * num_calls);

 for (j = 0; j < num_systems; j++)
 {
 printf("SV");
 printf("%30cSVI Calls from System %s\n", ' ',
 ct_sysp->cs_sysname);
 printf(" ");
 printf("%30c------------------------------\n", ' ');
 printf("SVI Call "
 "Count "
 "Qwait "
 "XCF Req. "
 "Avg. Time\n");
 printf("-------------------- "
 "-------------------- "
 "---------------- ---------------- "
 "----------\n");

 for (i = 0; i < num_calls-1; i++)
 {
 printf("%-25s%20llu %16llu %16llu%8u.%3.3u\n",
 ct_callp[i].cc_name,
 ct_callp[i].cc_count,
 ct_callp[i].cc_qwait,
 ct_callp[i].cc_xcfreq,
 ct_callp[i].cc_avg_wait_whole,
 ct_callp[i].cc_avg_wait_decimal);

Statistics Sysplex Owner Operations Information

Chapter 13. zFS application programming interface information 431

 }

 /* Put out the Totals entry */
 printf("-------------------- "
 "-------------------- "
 "---------------- ---------------- "
 "----------\n");
 printf("%-25s%20llu %16llu %16llu%8u.%3.3u\n",
 ct_callp[i].cc_name,
 ct_callp[i].cc_count,
 ct_callp[i].cc_qwait,
 ct_callp[i].cc_xcfreq,
 ct_callp[i].cc_avg_wait_whole,
 ct_callp[i].cc_avg_wait_decimal);

 printf("\n");

 /* Get the pointers to the next system entry */
 p = (char*) ct_sysp;
 p += entry_size;
 ct_sysp = (CT_SYS_STATS*) p;

 p += ct_sysp->cs_length;
 ct_callp = (CT_CALL_STATS*) p;
 }
 }
 else
 {
 /* Second API call failed */
 printf("Error on next request for svi stats\n");
 printf("Return Value: %d "
 "Return Code: %d "
 "Reason Code: %x\n",
 bpxrv, bpxrc, bpxrs);
 buffer_success = -1;
 }
 }
 else
 {
 /* Expecting E2BIG and it was a different error */
 printf("Error on storage stats trying to get required size\n");
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",
 bpxrv, bpxrc, bpxrs);
 buffer_success = -1;
 }
 }
 else
 {
 /* If rv is 0, most likely there was no data to get */
 if (st_req->sa_len == 0)
 {
 printf("No data\n");
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",
 bpxrv, bpxrc, bpxrs);
 }
 else
 { /* There was some other problem with getting required size */
 printf("Error getting size required\n");
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n",
 bpxrv, bpxrc, bpxrs);
 }
 buffer_success = -1;
 }
 }

 if(t == 1000)
 printf("Number of failed buffer resizes exceeded.\n");

 free(buffp);
 return 0;
}

Statistics Sysplex Owner Operations Information

432 z/OS: z/OS File System Administration

Statistics Transaction Cache Information

Purpose
A performance statistics operation that returns transaction cache counters. It determines the number of
transactions in the transaction cache.

As of z/OS V2R2, this subcommand is no longer used. All output fields from a call to statistics transaction
cache information will be filled in with zeros.

Format
syscall_parmlist
 opcode int 250 STATOP_TRAN_CACHE
 parms[0] int Offset to STAT_API
 parms[1] int Offset of output following STAT_API
 parms[2] int Offset to system name (optional)
 parms[3] int 0
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0
STAT_API
 sa_eye char[4] "STAP"
 sa_len int Length of buffer following STAT_API
 sa_ver int 1
 sa_flags char[1] 0x80 - Reset statistics
 sa_fill char[3] Reserved
 sa_reserve int[4] Reserved
 posix_time_high unsigned int High order 32 bits since epoch
 posix_time_low unsigned int Low order 32 bits since epoch
 posix_useconds unsigned int Microseconds
 pad1 int Reserved
STAT_TRAN_CACHE
 sttr_started_high unsigned int Transactions started high 32 bits
 sttr_started unsigned int Transactions started
 sttr_lookups_high unsigned int Lookups on transaction high 32
 bits
 sttr_lookups unsigned int Lookups on transaction
 sttr_ec_merges_high unsigned int Equivalence class merges high 32
 bits
 sttr_ec_merges unsigned int Equivalence class merges
 sttr_alloc_trans_high unsigned int Allocated transactions high 32
 bits
 sttr_alloc_trans unsigned int Allocated transactions
 sttr_trans_act_high unsigned int Transactions active high 32 bits
 sttr_trans_act unsigned int Transactions active
 sttr_trans_pend_high unsigned int Transactions pending high 32 bits
 sttr_trans_pend unsigned int Transactions pending
 sttr_trans_comp_high unsigned int Transactions completed high 32
 bits
 sttr_trans_comp unsigned int Transactions completed
 sttr_trans_free_high unsigned int Free transactions high 32 bits
 sttr_trans_free unsigned int Free transactions
 reserved char[60] Reserved
systemname char[9] System name to get stas from

Return_value 0 if request is successful, -1 if it is not successful

Return_code
 EINTR zFS is shutting down
 EINVAL Invalid parameter list
 EMVSERR Internal error occurred
 E2BIG Information too big for buffer supplied

Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage notes
1. Reserved fields and undefined flags must be set to binary zeros.

Statistics Transaction Cache Information

Chapter 13. zFS application programming interface information 433

Privilege required
None.

Related services
Statistics Vnode Cache Information
Statistics Metadata Cache Information

Restrictions
None.

Examples

#pragma linkage(BPX1PCT, OS)
extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

/* #include <stdlib.h> */
#include <stdio.h>

#define ZFSCALL_STATS 0x40000007
#define STATOP_TRAN_CACHE 250 /* Performance API queries */

typedef struct syscall_parmlist_t
{
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

typedef struct stat_tran_cache_t
{
 unsigned int sttr_started_high;
 unsigned int sttr_started;
 unsigned int sttr_lookups_high;
 unsigned int sttr_lookups;
 unsigned int sttr_ec_merges_high;
 unsigned int sttr_ec_merges;
 unsigned int sttr_alloc_trans_high;
 unsigned int sttr_alloc_trans;
 unsigned int sttr_trans_act_high;
 unsigned int sttr_trans_act;
 unsigned int sttr_trans_pend_high;
 unsigned int sttr_trans_pend;
 unsigned int sttr_trans_comp_high;
 unsigned int sttr_trans_comp;
 unsigned int sttr_trans_free_high;
 unsigned int sttr_trans_free;
 char reserved[60];
} STAT_TRAN_CACHE;

/* reset timestamp */
typedef struct reset_time {
 unsigned int posix_time_high; /* high order 32 bits since epoc */
 unsigned int posix_time_low; /* low order 32 bits since epoch */
 unsigned int posix_usecs; /* microseconds */
 int pad1;
} RESET_TIME;

/***/
/* The following structure is the api query control block. */

Statistics Transaction Cache Information

434 z/OS: z/OS File System Administration

/* It is used for all api query commands. */
/***/
typedef struct stat_api_t
{
#define SA_EYE "STAP"
 char sa_eye[4]; /* 4 byte identifier must be */
 int sa_len; /* length of the buffer to put data
into*/
 /* this buffer area follows this
struct*/
 int sa_ver; /* the version number currently always
1*/
#define SA_VER_INITIAL 0x01
 char sa_flags; /* flags field must be x00 or x80,
 x80 means reset statistics*/
#define SA_RESET 0x80
 char sa_fill[3]; /* spare bytes */
 int sa_reserve[4]; /* Reserved */
 struct reset_time reset_time_info;
} STAT_API;

struct parmstruct {
 syscall_parmlist myparms;
 STAT_API myapi;
 STAT_TRAN_CACHE mystats;
 char systemname[9];
} myparmstruct;

int main(int argc, char **argv)
{
 int bpxrv;
 int bpxrc;
 int bpxrs;
 int i;

 STAT_API *stapptr = &(myparmstruct.myapi);
 STAT_TRAN_CACHE *sttcptr = &(myparmstruct.mystats);
 char buf[33];

 myparmstruct.myparms.opcode = STATOP_TRAN_CACHE;
 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
 myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist)
+sizeof(STAT_API);
 myparmstruct.myparms.parms[2] = 0;

 /* Only specify a non-zero offset for the next field (parms[2]) if */
 /* you want to query the tran cache statistics of another system. */
 /* myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist) + */
 /* sizeof(STAT_API) + */
 /* sizeof(STAT_TRAN_CACHE); */

 myparmstruct.myparms.parms[3] = 0;
 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;

 memset(stapptr, 0, sizeof(STAT_API));
 memcpy(stapptr->sa_eye, SA_EYE, 4);
 stapptr->sa_ver = SA_VER_INITIAL;
 stapptr->sa_len = (int) sizeof(STAT_TRAN_CACHE);

 /* This next field should only be set if parms[2] is non-zero */
 /* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

 BPX1PCT("ZFS ",

Statistics Transaction Cache Information

Chapter 13. zFS application programming interface information 435

 ZFSCALL_STATS, /* Perf statistics operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv < 0)
 {
 printf("Error querying tran cache, BPXRV = %d BPXRC = %d BPXRS = %x
\n",
 bpxrv, bpxrc, bpxrs);
 return bpxrc;
 }
 else
 {
 printf("\n%52s\n", "Transaction Cache Statistics");
 printf("%52s\n", "----------------------------");
 printf("Trans started: %8u Lookups on Tran: %8u EC Merges: %8u\n",
 myparmstruct.mystats.sttr_started,
 myparmstruct.mystats.sttr_lookups,
 myparmstruct.mystats.sttr_ec_merges);

 printf("Allocated Trans: %8u \n(Act= %7u, Pend= %7u, ",
 myparmstruct.mystats.sttr_alloc_trans,
 myparmstruct.mystats.sttr_trans_act,
 myparmstruct.mystats.sttr_trans_pend);

 printf("Comp=%7u, Free= %7u)\n",
 myparmstruct.mystats.sttr_trans_comp,
 myparmstruct.mystats.sttr_trans_free);

 if (0 == ctime_r((time_t *)&stapptr->reset_time_info.posix_time_low,
 buf))
 printf("Could not get timestamp.\n");
 else
 { /* Insert the microseconds into the displayable time value */
 strncpy(&(buf[27]), &(buf[20]), 6);
 sprintf(&(buf[20]), "%06d", stapptr-
>reset_time_info.posix_usecs);
 buf[26] = ' ';
 buf[19] = '.';
 printf("Last Reset Time: %s\n", buf);
 }
 }
 return 0;
}

Statistics Transaction Cache Information

436 z/OS: z/OS File System Administration

Statistics User Cache Information

Purpose
A performance statistics operation that returns user cache information.

Prior to V2R3, the user data was kept in data spaces. In V2R3, the data is kept in chunks of memory called
cache spaces.

Format
syscall_parmlist
 opcode int 242 STATOP_USER_CACHE
 parm[0] int Offset to STAT_API
 parm[1] int Offset of output following STAT_API
 parm[2] int Offset to system name (optional)
 parm[3] int 0
 parm[4] int 0
 parm[5] int 0
 parm[6] int 0
STAT_API
 sa_eye char[4] "STAP"
 sa_len int Length of buffer that follows STAT_API
 sa_ver int 1 or 2
 sa_flags char[1] 0x80 for reset; 0x00 otherwise
 sa_fill char[3] Reserved
 sa_supported_ver int Version of data returned when sa_ver
 is 2
 sa_reserve int[3] Reserved
 posix_time_high unsigned int High order 32 bits since epoch
 posix_time_low unsigned int Low order 32 bits since epoch
 posix_useconds unsigned int Microseconds
 pad1 int Reserved

STAT_USER_CACHE[2]
 VM_STATS[2]
 vm_schedules unsigned int Number of I/O requests
 vm_setattrs unsigned int Number of setattr requests
 vm_fsyncs unsigned int Number of fsync operations
 vm_unmaps unsigned int Number of file deletions
 vm_reads unsigned int Number of read operations
 vm_readasyncs unsigned int Number of readaheads
 vm_writes unsigned int Number of write operations
 vm_getattrs unsigned int Number of getattr requests
 vm_flushes unsigned int Number of cache flushes
 vm_scheduled_deletes unsigned int Number of times an I/O is canceled
 because the file was deleted
 vm_reads_faulted unsigned int Number of times I/O needed to satisfy
 read operation (data was not in cache)
 vm_writes_faulted unsigned int Number of times I/O needed to read data
 before data can be written to cache
 vm_read_ios unsigned int Total number of file system reads for any reason
 vm_scheduled_writes unsigned int Number of data write I/Os issued
 vm_error_writes unsigned int Number of data writes done when flushign a file
 from the cache after an I/O error or canceled user

 vm_reclaim_writes unsigned int Number of data writes during
 space reclaim
 vm_read_waits unsigned int Number of times a read had to wait for pending I/O
 vm_write_waits unsigned int Number of waits for pending I/O so that new data
 could be written to the file
 vm_fsync_waits unsigned int Number of waits for pending I/O fsync operations did
 vm_error_waits unsigned int Number of waits when flushing a file from the cache
 cache after an I/O error or canceled user
 vm_reclaim_waits unsigned int Number of waits done during reclaim processing for I/O
 vm_reclaim_steal unsigned int Number of pages stolen during space reclaim processing
 vm_waits_for_reclaim unsigned int Number of waits for reclaim processing to complete
 vm_reserved int[10] Reserved
 suc dataspaces int Number of dataspaces in user data cache
 suc pages_per_dataspace int Number of pages per dataspace
 suc seg_size_local int Local segment size (in K)
 suc seg_size_remote int Remote segment size (in K)
 suc page_size int Page size (in K)
 suc cache_pages int Number of pages in user cache
 suc total_free int Number of free pages

Statistics User Cache Information

Chapter 13. zFS application programming interface information 437

 suc segment_cachesize int Number of segments
 stuc_reserved int[5] Reserved
 DS_ENTRY[32]
 ds_name char[9] Dataspace name
 pad1 char[3] Reserved
 ds_alloc_segs int Number of used (allocated)
 segments in the dataspace
 ds_free_pages int Number of free dataspace pages
 ds_reserved int[5] Reserved
STAT_USER_CACHE2
 VM_STATS2
 vm_schedules unsigned long long int Number of I/O requests
 vm_setattrs unsigned long long int Number of setattrs
 vm_fsyncs unsigned long long int Number of fysnc operations
 vm_unmaps unsigned long long int Number of file deletions
 vm_reads unsigned long long int Number of read operations
 vm_readasyncs unsigned long long int Number of readaheads
 vm_writes unsigned long long int Number of write operations
 vm_getattrs unsigned long long int Number of getattrs
 vm_flushes unsigned long long int Number of times the user cache was flushed

 vm_scheduled_deletes unsigned long long int Number of times an I/O is canceled
 because the file was deleted
 vm_reads_faulted unsigned long long int Number of times I/O needed to satisify
 read operation (data was not in cache)
 vm_writes_faulted unsigned long long int Number of times I/O needed to read
 data before data can be written to cache
 vm_read_ios unsigned long long int Total number of file system reads for any
 reason
 vm_scheduled_writes unsigned long long int Number of data write I/Os issued
 vm_error_writes unsigned long long int Number of data writes when flushing a file
 from the cache after an I/O error or a
 canceled user

 vm_reclaim_writes unsigned long long int Number of data writes during space reclaim
 vm_read_waits unsigned long long int Number of times a read had to wait for pending I/O
 vm_write_waits unsigned long long int Number of waits for a pending I/O so that new
 data could be written to the file
 vm_fsync_waits unsigned long long int Number of waits for pending I/O fsync
 operations did
 vm_error_waits unsigned long long int Number of waits in user cache error processing
 vm_reclaim_waits unsigned long long int Number of waits done during the reclaim
 processing for I/O
 vm_reclaim_steal unsigned long long int Number of user cache pages stolen during
 reclaim processing
 vm_waits_for_reclaim unsigned long long int Number of waits for space reclaim process
 to complete
 vm_reserved unsigned long long int[10] Reserved
 suc dataspaces int Number of dataspaces in user data cache
 suc pages_per_dataspace int Number of pages per dataspace
 suc seg_size_local int Local segment size (in K)
 suc seg_size_remote int Remote segment size (in K)
 suc page_size int Page size (in K)
 suc cache_pages int Number of pages in cache
 suc total_free int Number of free pages
 suc segment_cachesize int Number of segments
 stuc_reserved int[5] Reserved
 DS_ENTRY[32]
 ds_name char[9] Dataspace name
 pad1 char[2] Reserved
 ds_fixtype char Indicates if cache space is
 one of the following:
 0 - cache space is not fixed
 1 - cache space fixed via IARV64
 2 - cache space fixed via FPZ4RMR
 ds_alloc_segs int Number of used segments in dataspace
 ds_free_pages int Number of free pages in dataspace
 ds_total_pages int Number of 8K pages in the cache space
 ds_addr hyper Number of cache space in zFS memory
 ds_reserved int[2] Reserved
 systemname char[9] Name of system to get statistics from

Return value 0 if request is successful, -1 if it is not successful

Return code
 EINTR ZFS is shutting down
 EINVAL Invalid parameter list
 EMVSERR Internal error occurred

Reason code

Statistics User Cache Information

438 z/OS: z/OS File System Administration

 0xEFxxnnnn See z/OS Distributed File Service Messages and Codes

Usage notes
1. Reserved fields and undefined flags must be set to binary zeros.
2. When sa_supported_ver is 0 or 1, the output consists of STAT_USER_CACHE[2] and DS_ENTRY.
3. When sa_supported_ver is 2 the output consists of STAT_USER_CACHE2 and DS_ENTRY.

Privilege required
None.

Related services
Statistics Locking Information
Statistics Storage Information

Restrictions
None.

Examples

#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>

#define ZFSCALL_STATS 0x40000007
#define STATOP_USER_CACHE 242 /* Performance API queries */
#define NUM_DATASPACES 32
#define REMOTE 1
#define LOCAL 0

typedef struct hyper { /* This is a 64 bit integer to zFS */
 unsigned int high;
 unsigned int low;
} hyper;

typedef struct syscall_parmlist_t
{
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

typedef struct ds_entry
{
 char ds_name[9];
 char pad1[3];
 int ds_alloc_segs;
 int ds_free_pages;
 int ds_reserved[5]; /*reserved for future use*/
} DS_ENTRY;

typedef struct ds_entry2
{
 char ds_name[9];
 char pad2[2];
 char ds_fixtype; /* Fix type of the cache space, one of the
 following:
 0 - cache space is not fixed
 1 - cache space is fixed via the IARV64
 page fix services
 2 - cache space is fixed via the zEDC
 FPZ4RMR page fix services */
 int ds_alloc_segs;

Statistics User Cache Information

Chapter 13. zFS application programming interface information 439

 int ds_free_pages;
 int ds_total_pages; /* Total number of pages in the cache space */
 hyper ds_addr; /* Address of cache space region */
 int ds_reserved[2]; /*reserved for future use*/
} DS_ENTRY2;

typedef struct reset_time {
 unsigned int posix_time_high; /* high order 32 bits since epoc */
 unsigned int posix_time_low; /* low order 32 bits since epoch */
 unsigned int posix_usecs; /* microseconds */
 int pad1;
} RESET_TIME;

/***/
/* The following structure is the user data cache statistics */
/***/
typedef struct vm_stats_2_t
{
 /**/
 /* First set of counters are for external requests to the VM system. */
 /**/
 unsigned long long int vm_schedules;
 unsigned long long int vm_setattrs;
 unsigned long long int vm_fsyncs;
 unsigned long long int vm_unmaps;
 unsigned long long int vm_reads;
 unsigned long long int vm_readasyncs;
 unsigned long long int vm_writes;
 unsigned long long int vm_getattrs;
 unsigned long long int vm_flushes;
 unsigned long long int vm_scheduled_deletes;

 /**/
 /* Next two are fault counters, they measure number of read or write */
 /* requests requiring a fault to read in data, this synchronizes */
 /* an operation to a DASD read, we want these counters as small as */
 /* possible. (These are read I/O counters). */
 /**/
 unsigned long long int vm_reads_faulted;
 unsigned long long int vm_writes_faulted;
 unsigned long long int vm_read_ios;

 /**/
 /* Next counters are write counters. They measure number of times */
 /* we scheduled and waited for write I/Os. */
 /**/
 unsigned long long int vm_scheduled_writes;
 unsigned long long int vm_error_writes;
 unsigned long long int vm_reclaim_writes; /* Wrote dirty data for reclaim */

 /**/
 /* Next counters are I/O wait counters. They count the number of */
 /* times we had to wait for a write I/O and under what conditions. */
 /**/
 unsigned long long int vm_read_waits;
 unsigned long long int vm_write_waits;
 unsigned long long int vm_fsync_waits;
 unsigned long long int vm_error_waits;
 unsigned long long int vm_reclaim_waits; /* Waited for pending
 I/O for reclaim */

 /**/
 /* Final set are memory management counters. */
 /**/
 unsigned long long int vm_reclaim_steal; /* Number of times steal from
 others function invoked */
 unsigned long long int vm_waits_for_reclaim; /* Waits for reclaim thread */
 unsigned long long int vm_reserved[10]; /*reserved for future use*/
} VM_STATS_2;

typedef struct stat_user_cache_2_t
{
 /*Various statistics for both LOCAL and REMOTE systems */
 VM_STATS_2 stuc;

 int stuc_dataspaces; /* Number of dataspaces in user data cache */
 int stuc_pages_per_ds; /* Pages per dataspace */
 int stuc_seg_size_loc; /* Local Segment Size (in K) */
 int stuc_seg_size_rmt; /* Remote Segment Size (in K) */
 int stuc_page_size; /* Page Size (in K) */
 int stuc_cache_pages; /* Total number of pages */
 int stuc_total_free; /* Total number of free pages */

Statistics User Cache Information

440 z/OS: z/OS File System Administration

 int stuc_vmSegTable_cachesize; /* Number of segments */
 int stuc_reserved[5]; /*reserved for future use*/
 DS_ENTRY2 stuc_ds_entry[NUM_DATASPACES]; /* Array of dataspace entries */
 char reserved[4];
} STAT_USER_CACHE_2;

/* Version 1 Output Structures */

/***/
/* The following structure is the user data cache statistics */
/***/
typedef struct vm_stats_t {

 /**/
 /* First set of counters are for external requests to the VM system. */
 /**/
 unsigned int vm_schedules;
 unsigned int vm_setattrs;
 unsigned int vm_fsyncs;
 unsigned int vm_unmaps;
 unsigned int vm_reads;
 unsigned int vm_readasyncs;
 unsigned int vm_writes;
 unsigned int vm_getattrs;
 unsigned int vm_flushes;
 unsigned int vm_scheduled_deletes;
 /**/
 /* Next two are fault counters, they measure number of read or write */
 /* requests requiring a fault to read in data, this synchronizes */
 /* an operation to a DASD read, we want these counters as small as */
 /* possible. (These are read I/O counters). */
 /**/
 unsigned int vm_reads_faulted;
 unsigned int vm_writes_faulted;
 unsigned int vm_read_ios;
 /**/
 /* Next counters are write counters. They measure number of times */
 /* we scheduled and waited for write I/Os. */
 /**/
 unsigned int vm_scheduled_writes;
 unsigned int vm_error_writes;
 unsigned int vm_reclaim_writes; /* Wrote dirty data for reclaim */
 /**/
 /* Next counters are I/O wait counters. They count the number of */
 /* times we had to wait for a write I/O and under what conditions. */
 /**/
 unsigned int vm_read_waits;
 unsigned int vm_write_waits;
 unsigned int vm_fsync_waits;
 unsigned int vm_error_waits;
 unsigned int vm_reclaim_waits; /* Waited for pending
 I/O for reclaim */

 /**/
 /* Final set are memory management counters. */
 /**/
 unsigned int vm_reclaim_steal; /* Number of times steal from
 others function invoked */
 unsigned int vm_waits_for_reclaim; /* Waits for reclaim thread */
 unsigned int vm_reserved[10]; /*reserved for future use*/
} VM_STATS;

typedef struct stat_user_cache_t {
 VM_STATS stuc[2]; /* Various statistics for both
 LOCAL and REMOTE systems*/
 int stuc_dataspaces; /* Number of dataspaces
 in user data cache */
 int stuc_pages_per_ds; /* Pages per dataspace */
 int stuc_seg_size_loc; /* Local Segment Size (in K) */
 int stuc_seg_size_rmt; /* Remote Segment Size (in K) */
 int stuc_page_size; /* Page Size (in K) */
 int stuc_cache_pages; /* Total number of pages */
 int stuc_total_free; /* Total number of free pages */
 int stuc_vmSegTable_cachesize; /* Number of segments */
 int stuc_reserved[5]; /* reserved */
 DS_ENTRY stuc_ds_entry[32]; /* Array of dataspace entries */
} STAT_USER_CACHE;

/***/
/* The following structure is the api query control block */
/* It is used for all api query commands */
/***/

Statistics User Cache Information

Chapter 13. zFS application programming interface information 441

typedef struct stat_api_t {
#define SA_EYE "STAP"
 char sa_eye[4]; /* 4 byte identifier must be */
 int sa_len; /* length of the buffer to put data into*/
 /* this buffer area follows this struct */
 int sa_ver; /* the version number currently always 1*/
#define SA_VER_2 0x02
#define SA_VER_INIT 0x01
 char sa_flags; /* flags field must be x00 or x80, */
 /* x80 means reset statistics */
#define SA_RESET 0x80
 char sa_fill[3]; /* spare bytes */
 int sa_supported_ver; /* version of data returned */
 int sa_reserve[3]; /* Reserved */
 struct reset_time reset_time_info;
} STAT_API;

struct parmstruct {
 syscall_parmlist myparms;
 STAT_API myapi;
 STAT_USER_CACHE_2 mystats;
 char systemname[9];
} myparmstruct;

int print_user_cache_version1(STAT_USER_CACHE *stcacheptr);
int print_user_cache_version2(STAT_USER_CACHE_2 *stcacheptr);

int main(int argc, char **argv)
{
 int bpxrv;
 int bpxrc;
 int bpxrs;
 int i,j;
 char buf[33];

 STAT_API *stapptr = &(myparmstruct.myapi);

 myparmstruct.myparms.opcode = STATOP_USER_CACHE;
 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
 myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);
 myparmstruct.myparms.parms[2] = 0;

 /* Only specify a non-zero offset for the next field (parms[2]) if */
 /* you are running z/OS 1.7 and above, and you want to query the user cache
 statistics of a different system than this one */
 /* myparmstruct.myparms.parms[2] = sizeof(syscall_parmlist) +
 sizeof(STAT_API) + */
 /* sizeof(STAT_USER_CACHE_2); */

 myparmstruct.myparms.parms[3] = 0;
 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;

 memset(stapptr, 0, sizeof(STAT_API));
 memcpy(stapptr->sa_eye, SA_EYE, 4);
 stapptr->sa_ver = SA_VER_2;
 stapptr->sa_len = (int) sizeof(STAT_USER_CACHE_2);

 /* This next field should only be set if parms[2] is non-zero */
 /* strcpy(myparmstruct.systemname,"DCEIMGVQ"); */

 BPX1PCT("ZFS ",
 ZFSCALL_STATS, /* Perf statistics operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv < 0)
 {
 printf("Error querying user cache stats, "
 "BPXRV = %d BPXRC = %d BPXRS = %x\n",
 bpxrv, bpxrc, bpxrs);
 return bpxrc;
 }
 else
 {
 if(stapptr->sa_supported_ver == SA_VER_INIT)
 {
 STAT_USER_CACHE *stcacheptr_v1;

Statistics User Cache Information

442 z/OS: z/OS File System Administration

 stcacheptr_v1 = (STAT_USER_CACHE*) &(myparmstruct.mystats);
 print_user_cache_version1(stcacheptr_v1);
 }
 else
 {
 STAT_USER_CACHE_2 *stcacheptr = &(myparmstruct.mystats);
 print_user_cache_version2(stcacheptr);
 }

 if (0 == ctime_r((time_t*) & stapptr->reset_time_info.posix_time_low, buf))
 printf("Could not get timestamp.\n");
 else
 { /* Insert the microseconds into the displayable time value */
 strncpy(&(buf[27]), &(buf[20]), 6);
 sprintf(&(buf[20]), "%06d", stapptr->reset_time_info.posix_usecs);
 buf[26] = ' ';
 buf[19] = '.';
 printf("Last Reset Time: %s", buf);
 }
 }
 return 0;
}

int print_user_cache_version2(STAT_USER_CACHE_2* stcacheptr)
{
 int i;
 double ratio1, ratio2, ratio3, ratio4;
 printf(" User File (VM) Caching System Statistics\n");
 printf(" --\n");
 printf("\n");

 printf(" Direct Statistics\n");
 printf(" -----------------\n\n");

 printf("External Requests:\n");
 printf("------------------\n");
 printf("%-9s %20llu %-9s %20llu %-9s %20llu\n",
 "Reads" , stcacheptr->stuc.vm_reads,
 "Fsyncs" , stcacheptr->stuc.vm_fsyncs,
 "Schedules", stcacheptr->stuc.vm_schedules);
 printf("%-9s %20llu %-9s %20llu %-9s %20llu\n",
 "Writes" , stcacheptr->stuc.vm_writes,
 "Setattrs" , stcacheptr->stuc.vm_setattrs,
 "Unmaps" , stcacheptr->stuc.vm_unmaps);
 printf("%-9s %20llu %-9s %20llu %-9s %20llu\n",
 "Asy Reads", stcacheptr->stuc.vm_readasyncs,
 "Getattrs" , stcacheptr->stuc.vm_getattrs,
 "Flushes" , stcacheptr->stuc.vm_flushes);
 printf("\n");

 printf("File System Reads:\n");
 printf("------------------\n");

 ratio1 = ratio2 = ratio3 = ratio4 = 0.0;

 if (stcacheptr->stuc.vm_reads > 0)
 {
 ratio1 = 100 * (((double)stcacheptr->stuc.vm_reads_faulted)
 / ((double)stcacheptr->stuc.vm_reads));
 }
 if (stcacheptr->stuc.vm_writes > 0)
 {
 ratio2 = 100 * (((double)stcacheptr->stuc.vm_writes_faulted)
 / ((double)stcacheptr->stuc.vm_writes));
 }
 if (stcacheptr->stuc.vm_reads > 0)
 {
 ratio3 = 100 * (((double)stcacheptr->stuc.vm_read_waits)
 / ((double)stcacheptr->stuc.vm_reads));
 }

 printf("%-14s %20llu (%s Ratio %.2f%%)\n",
 "Reads Faulted", stcacheptr->stuc.vm_reads_faulted,
 "Fault", ratio1);

 printf("%-14s %20llu (%s Ratio %.2f%%)\n",
 "Writes Faulted", stcacheptr->stuc.vm_writes_faulted,
 "Fault", ratio2);

 printf("%-14s %20llu (%s Ratio %.2f%%)\n",
 "Read Waits", stcacheptr->stuc.vm_read_ios,
 "Wait", ratio3);

Statistics User Cache Information

Chapter 13. zFS application programming interface information 443

 printf("\n");
 printf("File System Writes:\n");
 printf("-------------------\n");
 printf("%-19s %20llu %-13s %20llu\n",
 "Scheduled Writes" ,stcacheptr->stuc.vm_scheduled_writes,
 "Sync Waits" ,stcacheptr->stuc.vm_fsync_waits);

 printf("%-19s %20llu %-13s %20llu\n",
 "Error Writes" ,stcacheptr->stuc.vm_error_writes,
 "Error Waits" ,stcacheptr->stuc.vm_error_waits);

 printf("%-19s %20llu %-13s %20llu\n",
 "Page Reclaim Writes", stcacheptr->stuc.vm_reclaim_writes,
 "Reclaim Waits" , stcacheptr->stuc.vm_reclaim_waits);

 if (stcacheptr->stuc.vm_writes > 0)
 {
 ratio4 = 100 * (((double)stcacheptr->stuc.vm_write_waits)
 / ((double)stcacheptr->stuc.vm_writes));
 }
 printf("%-19s %20llu (Wait Ratio %.2f%%)\n",
 "Write Waits", stcacheptr->stuc.vm_write_waits,
 ratio4);

 printf("\n");
 printf("Page Management (Segment Size = (%dK Local %dK Remote)) "
 "(Page Size = %dK)\n",
 stcacheptr->stuc_seg_size_loc,
 stcacheptr->stuc_seg_size_rmt,
 stcacheptr->stuc_page_size);
 printf("--"
 "---------------------------------\n");

 printf("Total Pages %10u Free %10u\n",
 stcacheptr->stuc_cache_pages,
 stcacheptr->stuc_total_free);
 printf("Segments %10u\n",
 stcacheptr->stuc_vmSegTable_cachesize);
 printf("Steal Invocations %20llu Waits for Reclaim %21llu\n\n",
 stcacheptr->stuc.vm_reclaim_steal,
 stcacheptr->stuc.vm_waits_for_reclaim);

 printf("Number of dataspaces used: %5d ",
 stcacheptr->stuc_dataspaces);
 printf("Pages per dataspace: %11d\n",
 stcacheptr->stuc_pages_per_ds);
 printf("\n");

 printf("Space Total 8K Free Assigned\n");
 printf("Address Pages Pages Segments Fix Type\n");
 printf("---------- ---------- ---------- ---------- --------\n");
 for (i = 0; i < stcacheptr->stuc_dataspaces; i++)
 {
 char fixtype[10];
 if (stcacheptr->stuc_ds_entry[i].ds_fixtype == 0)
 strcpy(fixtype, "Not Fixed");
 else if (stcacheptr->stuc_ds_entry[i].ds_fixtype == 1)
 strcpy(fixtype, "IARV64");
 else
 strcpy(fixtype, "FPZ4RMR");
 printf("%2.2X%8.8X %10u %10u %10u %s\n",
 stcacheptr->stuc_ds_entry[i].ds_addr.high,
 stcacheptr->stuc_ds_entry[i].ds_addr.low,
 stcacheptr->stuc_ds_entry[i].ds_total_pages,
 stcacheptr->stuc_ds_entry[i].ds_free_pages,
 stcacheptr->stuc_ds_entry[i].ds_alloc_segs,
 fixtype);
 }

 return 0;
}

int print_user_cache_version1(STAT_USER_CACHE *stcacheptr)
{
 int i;
 double ratio1, ratio2, ratio3, ratio4;
 printf("Version 1 Output is being displayed\n\n");

 printf(" User File (VM) Caching System Statistics\n");
 printf(" --\n");

Statistics User Cache Information

444 z/OS: z/OS File System Administration

 printf("\n");

 for (i = 0; i <= REMOTE; i++)
 {
 if (i == 0)
 {
 printf(" Direct Statistics\n");
 printf(" -----------------\n\n");
 }
 else
 {
 printf("\n Client Statistics\n");
 printf(" -----------------\n\n");
 }

 printf("External Requests:\n");
 printf("------------------\n");
 printf("%-9s %10u %-9s %10u %-9s %10u\n",
 "Reads" , stcacheptr->stuc[i].vm_reads,
 "Fsyncs" , stcacheptr->stuc[i].vm_fsyncs,
 "Schedules", stcacheptr->stuc[i].vm_schedules);
 printf("%-9s %10u %-9s %10u %-9s %10u\n",
 "Writes" , stcacheptr->stuc[i].vm_writes,
 "Setattrs" , stcacheptr->stuc[i].vm_setattrs,
 "Unmaps" , stcacheptr->stuc[i].vm_unmaps);
 printf("%-9s %10u %-9s %10u %-9s %10u\n",
 "Asy Reads", stcacheptr->stuc[i].vm_readasyncs,
 "Getattrs" , stcacheptr->stuc[i].vm_getattrs,
 "Flushes" , stcacheptr->stuc[i].vm_flushes);
 printf("\n");

 printf("File System Reads:\n");
 printf("------------------\n");

 ratio1 = ratio2 = ratio3 = ratio4 = 0.0;

 if (stcacheptr->stuc[i].vm_reads > 0)
 {
 ratio1 = 100 * (((double)stcacheptr->stuc[i].vm_reads_faulted)
 / ((double)stcacheptr->stuc[i].vm_reads));
 }
 if (stcacheptr->stuc[i].vm_writes > 0)
 {
 ratio2 = 100 * (((double)stcacheptr->stuc[i].vm_writes_faulted)
 / ((double)stcacheptr->stuc[i].vm_writes));
 }
 if (stcacheptr->stuc[i].vm_reads > 0)
 {
 ratio3 = 100 * (((double)stcacheptr->stuc[i].vm_read_waits)
 / ((double)stcacheptr->stuc[i].vm_reads));
 }

 printf("%-14s %10u (%s Ratio %.2f%%)\n",
 "Reads Faulted", stcacheptr->stuc[i].vm_reads_faulted,
 "Fault", ratio1);

 printf("%-14s %10u (%s Ratio %.2f%%)\n",
 "Writes Faulted", stcacheptr->stuc[i].vm_writes_faulted,
 "Fault", ratio2);

 printf("%-14s %10u (%s Ratio %.2f%%)\n",
 "Read Waits", stcacheptr->stuc[i].vm_read_ios,
 "Wait", ratio3);

 printf("\n");
 printf("File System Writes:\n");
 printf("-------------------\n");
 printf("%-19s %10u %-13s %10u\n",
 "Scheduled Writes" , stcacheptr->stuc[i].vm_scheduled_writes,
 "Sync Waits" , stcacheptr->stuc[i].vm_fsync_waits);

 printf("%-19s %10u %-13s %10u\n",
 "Error Writes" , stcacheptr->stuc[i].vm_error_writes,
 "Error Waits" , stcacheptr->stuc[i].vm_error_waits);

 printf("%-19s %10u %-13s %10u\n",
 "Page Reclaim Writes", stcacheptr->stuc[i].vm_reclaim_writes,
 "Reclaim Waits" , stcacheptr->stuc[i].vm_reclaim_waits);

 if (stcacheptr->stuc[i].vm_writes > 0)
 {
 ratio4 = 100 * (((double)stcacheptr->stuc[i].vm_write_waits)

Statistics User Cache Information

Chapter 13. zFS application programming interface information 445

 / ((double)stcacheptr->stuc[i].vm_writes));
 }
 printf("%-19s %10u (Wait Ratio %.2f%%)\n",
 "Write Waits", stcacheptr->stuc[i].vm_write_waits,
 ratio4);
 }

 printf("\n");
 printf("Page Management (Segment Size = (%dK Local %dK Remote)) "
 "(Page Size = %dK)\n",
 stcacheptr->stuc_seg_size_loc,
 stcacheptr->stuc_seg_size_rmt,
 stcacheptr->stuc_page_size);
 printf("--------------------------------------"
 "-----------------------------------\n");

 printf("Total Pages %10u Free %10u\n",
 stcacheptr->stuc_cache_pages,stcacheptr->stuc_total_free);
 printf("Segments %10u\n",
 stcacheptr->stuc_vmSegTable_cachesize);
 printf("Steal Invocations %10u Waits for Reclaim %11u\n\n",
 stcacheptr->stuc[0].vm_reclaim_steal,
 stcacheptr->stuc[0].vm_waits_for_reclaim);

 printf("Number of dataspaces used: %5d ", stcacheptr->stuc_dataspaces);
 printf("Pages per dataspace: %11d\n", stcacheptr->stuc_pages_per_ds);
 printf("\n");
 printf("Dataspace Allocated Free\n");
 printf("Name Segments Pages\n");
 printf("-------- ---------- ----------\n");

 for (i = 0; i < stcacheptr->stuc_dataspaces; i++)
 {
 printf("%8s %10u %10u\n\n",
 stcacheptr->stuc_ds_entry[i].ds_name,
 stcacheptr->stuc_ds_entry[i].ds_alloc_segs,
 stcacheptr->stuc_ds_entry[i].ds_free_pages);
 }
 return 0;
}

Statistics User Cache Information

446 z/OS: z/OS File System Administration

Statistics Vnode Cache Information

Purpose
A performance statistics operation that returns vnode cache counters. It determines the number of
requests, hits, and discards from the vnode cache.

Format
syscall_parmlist
 opcode int 251 STATOP_VNODE_CACHE
 parms[0] int Offset to STAT_API
 parms[1] int Offset of output following STAT_API
 parms[2] int Offset to system name (optional)
 parms[3] int 0
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0
STAT_API
 sa_eye char[4] "STAP"
 sa_len int Length of buffer that follows
 the STAT_API
 sa_ver int 1 or 2
 sa_flags char[1] 0x80 - Reset statistics
 sa_fill char[3] Reserved
 sa_supported_ver int Version of data returned
 sa_reserve int[3] Reserved
 posix_time_high unsigned int High order 32 bits since epoch
 posix_time_low unsigned int Low order 32 bits since epoch
 posix_useconds unsigned int Microseconds
 pad1 int Reserved
STAT_VNODE_CACHE
 VNM_STATS_API_STRUCT
 reserved unsigned int Reserved
 Vnodes unsigned int Number of vnodes
 Requests unsigned int Number of requests
 Hits unsigned int Number of hits
 RatioWhole hyper Ratio of hits to requests
 (whole number part)
 RatioDecimal hyper Ratio of hits to requests
 (decimal part). Decimal part is
 in thousanths (3 means .003 and
 300 means .3)
 Allocates hyper Allocates
 Deletes hyper Deletes
 VnodeStructSize hyper Base vnode structure size
 ExtendedVnodes hyper Number of extended vnodes
 extensionSize hyper Size of vnode extension
 USSHeldVnodes hyper Number of held vnodes
 USSHeldVnodesHi hyper Held vnodes high water mark
 OpenVnodes hyper Number of open vnodes
 OpenVnodesHi hyper Open vnodes high water mark
 OpenVnodesReuse hyper Number vnodes that can be reused
 reserved2 hyper[12] Reserved
 EFS_STATS_API_STRUCT
 reserved hyper Reserved
 grand_total_vnodes hyper Total count of vnode ops
 total_ops hyper Number of vnode op counts
 convert_namecount unsigned int Count of names processed during
 conversion
 reserved int Reserved
 reserved1 hyper[11] Reserved
 ZFSVNODEOPCOUNTS[50]
 opname char[26] vnode operation name
 pad1 char[2] reserved
 opcount hyper count of vnode op requests
 reserved hyper[2] reserved
 reserved hyper[10] reserved

-- or --
STAT_VNODE_CACHE2
 VNM_STATS_API_STRUCT2
 reserved unsigned long long int Reserved
 Vnodes unsigned long long int Number of vnodes
 Requests unsigned long long int Number of requests

Statistics Vnode Cache Information

Chapter 13. zFS application programming interface information 447

 Hits unsigned long long int Number of hits
 RatioWhole hyper Ratio of hits to requests
 (whole number part)
 RatioDecimal hyper Ratio of hits to requests
 (decimal part). Decimal
 part is in thousandths
 (3 means .003, 300 is .3)
 Allocates unsigned long long int Allocates
 Deletes unsigned long long int Deletes
 VnodeStructSize unsigned long long int Base vnode structure size
 ExtendedVnodes unsigned long long int Number of extended vnodes
 extensionSize unsigned long long int Size of vnode extension
 USSHeldVnodes unsigned long long int Number of held vnodes
 USSHeldVnodesHi unsigned long long int Held vnode high water mark
 OpenVnodes unsigned long long int Number of open vnodes
 OpenVnodesHi unsigned long long int Open vnode high water mark
 OpenVnodesReuse unsigned long long int Number of vnodes that can
 be reused
 extCleans unsigned long long int Number of vnodes extensions
 that were cleaned
 reserved2 hyper[11] Reserved
 EFS_STATS_API_STRUCT2
 reserved unsigned long long int Reserved
 grand_total_vnodes unsigned long long int Total count of vnode ops
 total_ops unsigned long long int Number of vnode op counts
 convert_namecount unsigned long long int Count of names processed
 during auto conversion for
 version 2, reserved for
 version 1.
 v2dir_splits unsigned long long int V5 directory bucket splits
 v2dir_merges unsigned long long int V5 directory bucket merges
 reserved1 hyper[9] Reserved
 _Packed ZFSVNODEOPCOUNTS[50]
 opname char[26] Vnode operation name
 pad1 char[2] Reserved
 opcount unsigned long long int Count of vnode op requests
 reserved hyper[2] Reserved
 reserved hyper[10] Reserved
systemname char[9] Name of system to get stats

Return_value 0 if request is successful, -1 if it is not successful

Return_code
 EINTR zFS is shutting down
 EINVAL Invalid parameter list
 EMVSERR Internal error occurred
 E2BIG Information too big for buffer supplied

Reason_code
 0xEFnnxxxx See z/OS Distributed File Service Messages and Codes

Usage notes
1. Reserved fields and undefined flags must be set to binary zeros.
2. Version 1 provided 8-byte counters but only used the low order 4-bytes. Version 2 uses full 8-byte

counters.
3. Same named fields in version 1 and 2 that are not reserved start at the same offset.

Privilege required
None.

Related services
Statistics Metadata Cache Information

Restrictions
None.

Statistics Vnode Cache Information

448 z/OS: z/OS File System Administration

Examples

#pragma linkage(BPX1PCT, OS)
extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

/* #include <stdlib.h> */
#include <stdio.h>

#define ZFSCALL_STATS 0x40000007
#define STATOP_VNODE_CACHE 251 /* vnode cache stats */
#define CONVERT_RATIO_TO_INTS(RATIO, INTEGER, DECIMAL) \
{ \
 INTEGER = (int)RATIO; \
 DECIMAL = (int)((RATIO - (double)INTEGER) * (double)1000.0); \
}

typedef struct syscall_parmlist_t {
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

typedef struct hyper {
 unsigned int high; /* unsigned int reserved */
 unsigned int low;
} hyper;

/* reset timestamp */
typedef struct reset_time {
 unsigned int posix_time_high; /* high order 32 bits since epoc */
 unsigned int posix_time_low; /* low order 32 bits since epoch */
 unsigned int posix_usecs; /* microseconds */
 int pad1;
} RESET_TIME;

/* API STATOP_VNODE_CACHE storage structures */
typedef struct VNM_STATS_API_STRUCT_T
{
 hyper reserved;
 hyper Vnodes;
 hyper Requests;
 hyper Hits;
 hyper RatioWhole;
 hyper RatioDecimal; /* decimal part is in thousandths */
 /* 3 means .003 and 300 means .3 */
 hyper Allocates;
 hyper Deletes;
 hyper VnodeStructSize;
 hyper ExtendedVnodes;
 hyper extensionSize; /* (minimum) in bytes */
 hyper USSHeldVnodes;
 hyper USSHeldVnodesHi;
 hyper OpenVnodes;
 hyper OpenVnodesHi;
 hyper OpenVnodesReuse;
 int reserved1[3];
 int pad1;
 hyper reserved2[10];
} VNM_STATS_API_STRUCT;

typedef struct ZFSVNODEOPCOUNTS_T {
 char opname[26]; /* Operation being counted */
 char pad1[2];
 hyper opcount; /* Number of operations performed */
 hyper reserved[2]; /* reserved for future use */
} ZFSVNODEOPCOUNTS;

typedef struct EFS_STATS_API_STRUCT_T
{
 hyper reserved;
 hyper grand_total_vnodes;

Statistics Vnode Cache Information

Chapter 13. zFS application programming interface information 449

 hyper total_ops;
 int convert_namecount;
 int reserved1[3];
 hyper reserved2[10];
 ZFSVNODEOPCOUNTS zFSOpCounts[50];
} EFS_STATS_API_STRUCT;

typedef struct stat_vnode_cache_t
{
 VNM_STATS_API_STRUCT vnm_stats_info;
 EFS_STATS_API_STRUCT efs_stats_info;
 hyper reserved[10];
} STAT_VNODE_CACHE;

typedef struct VNM_STATS_API_STRUCT2_T
{
 unsigned long long int reserved;
 unsigned long long int Vnodes;
 unsigned long long int Requests;
 unsigned long long int Hits;
 hyper RatioWhole;
 hyper RatioDecimal; /* decimal part is in thousandths */
 /* 3 means .003 and 300 means .3 */
 unsigned long long int Allocates;
 unsigned long long int Deletes;
 unsigned long long int VnodeStructSize;
 unsigned long long int ExtendedVnodes;
 unsigned long long int extensionSize; /* (minimum) in bytes */
 unsigned long long int USSHeldVnodes;
 unsigned long long int USSHeldVnodesHi;
 unsigned long long int OpenVnodes;
 unsigned long long int OpenVnodesHi;
 unsigned long long int OpenVnodesReuse;
 unsigned long long int extCleans;
 int reserved1[2];
 hyper reserved2[10];
} VNM_STATS_API_STRUCT2;

typedef _Packed struct zFSVnodeOpCounts_t {
 char opname[26]; /* Operation being counted */
 char pad1[2];
 unsigned long long int opcount; /* Number of operations performed */
 hyper reserved[2]; /* reserved for future use */
} _Packed zFSVnodeOpCounts;

typedef struct EFS_STATS_API_STRUCT2_T
{
 unsigned long long int reserved;
 unsigned long long int grand_total_vnodes;
 unsigned long long int total_ops;
 unsigned long long int convert_namecount;
 unsigned long long int v5dir_splits;
 unsigned long long int v5dir_merges;
 hyper reserved2[9];
 _Packed zFSVnodeOpCounts zFSOpCounts[50];
} EFS_STATS_API_STRUCT2;

typedef struct stat_vnode_cache2_t
{
 VNM_STATS_API_STRUCT2 vnm_stats_info;
 EFS_STATS_API_STRUCT2 efs_stats_info;
 hyper reserved[10];
} STAT_VNODE_CACHE2;

/***/
/* The following structure is the api query control block */
/* It is used for all api query commands */
/***/
typedef struct stat_api_t {
#define SA_EYE "STAP"
 char sa_eye[4]; /* 4 byte identifier must be */
 int sa_len; /* length of the buffer to put data into */

Statistics Vnode Cache Information

450 z/OS: z/OS File System Administration

 /* this buffer area follows this struct. */
 int sa_ver; /* the version number currently always 1 */
#define SA_VER_INITIAL 0x01
#define SA_VER_2 0x02
 char sa_flags; /* flags field, x80 means reset stats */
#define SA_RESET 0x80
 char sa_fill[3]; /* spare bytes */
 int sa_supported_ver; /* version of data returned */
 int sa_reserve[3]; /* Reserved */
 struct reset_time reset_time_info;
} STAT_API;

struct parmstruct {
 syscall_parmlist myparms;
 STAT_API myapi;
 STAT_VNODE_CACHE2 mystats;
 char systemname[9];
} myparmstruct;

int main(int argc, char **argv)
{
 int bpxrv;
 int bpxrc;
 int bpxrs;
 int i;
 double temp_ratio;
 int whole;
 int decimal;
 STAT_API *stapptr = &(myparmstruct.myapi);
 char buf[33];

 myparmstruct.myparms.opcode = STATOP_VNODE_CACHE;
 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
 myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist)+sizeof(STAT_API);
 myparmstruct.myparms.parms[2] = 0;
 myparmstruct.myparms.parms[3] = 0;
 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;

 memset(stapptr, 0, sizeof(STAT_API));
 memcpy(stapptr->sa_eye, SA_EYE, 4);
 stapptr->sa_ver = SA_VER_2;
 stapptr->sa_len = (int)sizeof(STAT_VNODE_CACHE2);

 BPX1PCT("ZFS ",
 ZFSCALL_STATS, /* Perf statistics operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv < 0)
 {
 printf("Error querying vnode cache, BPXRV = %d BPXRC = %d BPXRS = %x\n",
 bpxrv, bpxrc, bpxrs);
 return bpxrc;
 }
 else
 {
 if (stapptr->sa_supported_ver == SA_VER_INITIAL)
 {
 /* Print the version 1 ouput */
 STAT_VNODE_CACHE *mystatsp = (STAT_VNODE_CACHE *)&myparmstruct.mystats;
 i = 0;
 printf("%50s\n", "zFS Vnode Op Counts");
 printf(" \n");
 printf("Vnode Op Count "
 "Vnode Op Count \n");
 printf("------------------------ ---------- "
 "------------------------ ---------- \n");

Statistics Vnode Cache Information

Chapter 13. zFS application programming interface information 451

 while (i < mystatsp->efs_stats_info.total_ops.low)
 {
 printf("%-25s %10u ",
 mystatsp->efs_stats_info.zFSOpCounts[i].opname,
 mystatsp->efs_stats_info.zFSOpCounts[i++].opcount.low);
 if (i < mystatsp->efs_stats_info.total_ops.low)
 {
 printf("%-25s %10u\n",
 mystatsp->efs_stats_info.zFSOpCounts[i].opname,
 mystatsp->efs_stats_info.zFSOpCounts[i++].opcount.low);
 }
 }
 printf("\nTotal zFS Vnode Ops %10u\n\n",
 mystatsp->efs_stats_info.grand_total_vnodes.low);
 printf("%52s\n", "zFS Vnode Cache Statistics");
 printf(" \n");
 printf(" Vnodes Requests Hits Ratio "
 "Allocates Deletes\n");
 printf(" ---------- ---------- ---------- ------- "
 "---------- ----------\n");
 printf("%10u %10u %10u %3u.%1.1u%% %10u %10u\n",
 mystatsp->vnm_stats_info.Vnodes.low,
 mystatsp->vnm_stats_info.Requests.low,
 mystatsp->vnm_stats_info.Hits.low,
 mystatsp->vnm_stats_info.RatioWhole.low,
 mystatsp->vnm_stats_info.RatioDecimal.low,
 mystatsp->vnm_stats_info.Allocates.low,
 mystatsp->vnm_stats_info.Deletes.low);

 printf(" \n");
 printf("zFS Vnode structure size: %u bytes\n",
 mystatsp->vnm_stats_info.VnodeStructSize.low);

 printf("zFS extended vnodes: %u, extension size %u bytes (minimum)\n",
 mystatsp->vnm_stats_info.ExtendedVnodes.low,
 mystatsp->vnm_stats_info.extensionSize.low);

 printf("Held zFS vnodes: %10u (high %10u) \nOpen zFS vnodes: %10u "
 "(high %10u) Reusable: %u\n",
 mystatsp->vnm_stats_info.USSHeldVnodes.low,
 mystatsp->vnm_stats_info.USSHeldVnodesHi.low,
 mystatsp->vnm_stats_info.OpenVnodes.low,
 mystatsp->vnm_stats_info.OpenVnodesHi.low,
 mystatsp->vnm_stats_info.OpenVnodesReuse.low);
 printf(" \n");

 if (0 == ctime_r((time_t *)&stapptr->reset_time_info.posix_time_low,
 buf))
 printf("Could not get timestamp.\n");
 else
 { /* Insert the microseconds into the displayable time value */
 strncpy(&(buf[27]), &(buf[20]), 6);
 sprintf(&(buf[20]), "%06d", stapptr->reset_time_info.posix_usecs);
 buf[26] = ' ';
 buf[19] = '.';
 printf("Last Reset Time: %s", buf);
 }
 }
 else
 {
 /* Print the version 2 ouput */
 STAT_VNODE_CACHE2 *mystatsp = &myparmstruct.mystats;
 i = 0;
 printf("%50s\n", "zFS Vnode Op Counts");
 printf(" \n");
 printf("Vnode Op Count "
 "Vnode Op Count \n");
 printf("------------------------ ---------- "
 "------------------------ ---------- \n");

 while (i < mystatsp->efs_stats_info.total_ops)

Statistics Vnode Cache Information

452 z/OS: z/OS File System Administration

 {
 printf("%-25s %10llu ",
 mystatsp->efs_stats_info.zFSOpCounts[i].opname,
 mystatsp->efs_stats_info.zFSOpCounts[i++].opcount);
 if (i < mystatsp->efs_stats_info.total_ops)
 {
 printf("%-25s %10llu\n",
 mystatsp->efs_stats_info.zFSOpCounts[i].opname,
 mystatsp->efs_stats_info.zFSOpCounts[i++].opcount);
 }
 }
 printf("\nTotal zFS Vnode Ops %10llu\n\n",
 mystatsp->efs_stats_info.grand_total_vnodes);
 printf("%52s\n", "zFS Vnode Cache Statistics");
 printf(" \n");
 printf(" Vnodes Requests Hits Ratio "
 "Allocates Deletes\n");
 printf(" ---------- ---------- ---------- ------- "
 "---------- ----------\n");
 printf("%10llu %10llu %10llu %3llu.%1.1llu%% %10llu %10llu\n",
 mystatsp->vnm_stats_info.Vnodes,
 mystatsp->vnm_stats_info.Requests,
 mystatsp->vnm_stats_info.Hits,
 mystatsp->vnm_stats_info.RatioWhole,
 mystatsp->vnm_stats_info.RatioDecimal,
 mystatsp->vnm_stats_info.Allocates,
 mystatsp->vnm_stats_info.Deletes);

 printf(" \n");
 printf("zFS Vnode structure size: %llu bytes\n",
 mystatsp->vnm_stats_info.VnodeStructSize);

 printf("zFS extended vnodes: %llu, extension size %llu "
 "bytes (minimum)\n",
 mystatsp->vnm_stats_info.ExtendedVnodes,
 mystatsp->vnm_stats_info.extensionSize);

 printf("Held zFS vnodes: %10llu (high %10llu) \nOpen zFS vnodes: "
 "%10llu (high %10llu) Reusable: %llu\n",
 mystatsp->vnm_stats_info.USSHeldVnodes,
 mystatsp->vnm_stats_info.USSHeldVnodesHi,
 mystatsp->vnm_stats_info.OpenVnodes,
 mystatsp->vnm_stats_info.OpenVnodesHi,
 mystatsp->vnm_stats_info.OpenVnodesReuse);
 printf(" \n");

 if (0 == ctime_r((time_t *)&stapptr->reset_time_info.posix_time_low,
 buf))
 printf("Could not get timestamp.\n");
 else
 { /* Insert the microseconds into the displayable time value */
 strncpy(&(buf[27]), &(buf[20]), 6);
 sprintf(&(buf[20]), "%06d", stapptr->reset_time_info.posix_usecs);
 buf[26] = ' ';
 buf[19] = '.';
 printf("Last Reset Time: %s", buf);
 }
 }
 }
 return 0;
}

Statistics Vnode Cache Information

Chapter 13. zFS application programming interface information 453

Unquiesce Aggregate

Purpose
An aggregate operation that unquiesces a zFS compatibility mode aggregate on a system. This
subcommand call allows activity on the aggregate and its file system to resume.

Format
syscall_parmlist
 opcode int 133 AGOP_UNQUIESCE_PARMDATA
 parms[0] int offset to AGGR_ID
 parms[1] int quiesce handle
 parms[2] int 0
 parms[3] int 0
 parms[4] int 0
 parms[5] int 0
 parms[6] int 0
AGGR_ID
 aid_eye char[4] "AGID"
 aid_len char sizeof(AGGR_ID)
 aid_ver char 1
 aid_name char[45] "OMVS.PRV.AGGR001.LDS0001"
 aid_reserved char[33] 0

Return_value 0 if request is successful, -1 if it is not successful

Return_code
 EINTR ZFS is shutting down
 EMVSERR Internal error using an osi service
 ENOENT Aggregate is not attached
 EPERM Permission denied to perform request

Reason_code
 0xEFnnxxxx See z/OS File System Messages and Codes

Usage notes
1. The unquiesce call must supply the quiesce handle that was returned by the quiesce call. The

aggregate is typically quiesced before backing up the aggregate. After the backup is complete, the
aggregate can be unquiesced.

2. Reserved fields and undefined flags must be set to binary zeros.
3. Automatic directory conversions that occurred because the CONVERTTOV5 attribute was ON will be

disabled.

Privilege required
The issuer must be logged in as a root user (UID=0) or have READ authority to the
SUPERUSER.FILESYS.PFSCTL resource in the z/OS UNIXPRIV class.

Related services
Quiesce Aggregate

Restrictions
None.

Examples

#pragma linkage(BPX1PCT, OS)
#pragma LANGLVL(EXTENDED)

Unquiesce Aggregate

454 z/OS: z/OS File System Administration

extern void BPX1PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>
#include <stdlib.h>

#define ZFSCALL_AGGR 0x40000005
#define AGOP_UNQUIESCE_PARMDATA 133

typedef struct syscall_parmlist_t {
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

#define ZFS_MAX_AGGRNAME 44

typedef struct aggr_id_t {
 char aid_eye[4]; /* Eye catcher */
#define AID_EYE "AGID"
 char aid_len; /* Length of this structure */
 char aid_ver; /* Version */
#define AID_VER_INITIAL 1 /* Initial version */
 char aid_name[ZFS_MAX_AGGRNAME+1]; /* Name, null terminated */
 char aid_reserved[33]; /* Reserved for the future */
} AGGR_ID;

struct parmstruct {
 syscall_parmlist myparms;
 AGGR_ID aggr_id;
};

int main(int argc, char **argv)
{
 int bpxrv;
 int bpxrc;
 int bpxrs;
 char aggrname[45] = "PLEX.DCEIMGQX.FS";
 int save_quiesce_handle;
 struct parmstruct myparmstruct;

 if (argc != 2)
 {
 printf("This unquiesce program requires a quiesce handle"
 "from the quiesce program as a parameter\n");
 return 1;
 }

 save_quiesce_handle = atoi(argv[1]);

 myparmstruct.myparms.opcode = AGOP_UNQUIESCE_PARMDATA;
 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
 myparmstruct.myparms.parms[1] = save_quiesce_handle;
 myparmstruct.myparms.parms[2] = 0;
 myparmstruct.myparms.parms[3] = 0;
 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;

 /* Ensure reserved fields are 0 */
 memset(&myparmstruct.aggr_id, 0, sizeof(AGGR_ID));
 memcpy(&myparmstruct.aggr_id.aid_eye, AID_EYE, 4);
 myparmstruct.aggr_id.aid_len = sizeof(AGGR_ID);
 myparmstruct.aggr_id.aid_ver = AID_VER_INITIAL;
 strcpy(myparmstruct.aggr_id.aid_name, aggrname);

 BPX1PCT("ZFS ",
 ZFSCALL_AGGR, /* Aggregate operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *)&myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */

 if (bpxrv < 0)
 {
 printf("Error unquiescing aggregate %s\n", aggrname);
 printf("BPXRV = %d BPXRC = %d BPXRS = %x\n", bpxrv, bpxrc, bpxrs);
 return bpxrc;
 }
 else
 { /* Return from unquiesce was successful */

Unquiesce Aggregate

Chapter 13. zFS application programming interface information 455

 printf("Aggregate %s unquiesced successfully\n", aggrname);
 }
 return 0;
}

Unquiesce Aggregate

456 z/OS: z/OS File System Administration

Appendix A. Running the zFS pfsctl APIs in 64-bit
mode

The pfsctl (BPX1PCT) application programming interface can be invoked in a 64-bit environment. To do
this, you must take the following steps:

1. Replace the BPX1PCT with BPX4PCT
2. Replace the #pragma linkage(BPX1PCT, OS) statement with #pragma linkage(BPX4PCT,
OS64_NOSTACK)

3. Ensure that there are appropriate includes for function calls
4. Ensure all functions that require 64-bit parameters are passing 64-bit numbers (for example, ctime_r).

The remaining code is, or can remain, unchanged. “Statistics Iocounts Information (64-bit mode)” on
page 457 shows example code that were updated to be invoked in a 64-bit environment.

Statistics Iocounts Information (64-bit mode)

Examples

#pragma linkage(BPX4PCT, OS64_NOSTACK)
extern void BPX4PCT(char *, int, int, char *, int *, int *, int *);

#include <stdio.h>
#include <time.h>

#define ZFSCALL_STATS 0x40000007
#define STATOP_IOCOUNTS 243 /* Performance API queries */

#define TOTAL_TYPES 3
#define TOTAL_CIRC 19

#define u_int unsigned int

typedef struct syscall_parmlist_t
{
 int opcode; /* Operation code to perform */
 int parms[7]; /* Specific to type of operation, */
 /* provides access to the parms */
 /* parms[4]-parms[6] are currently unused*/
} syscall_parmlist;

typedef struct reset_time {
 u_int posix_time_high; /* high order 32 bits since epoc */
 u_int posix_time_low; /* low order 32 bits since epoch */
 u_int posix_usecs; /* microseconds */
 int pad1;
 } RESET_TIME;

/***/
/* The following structure is the api query control block */
/* It is used for all api query commands */
/***/

typedef struct stat_api_t
{
#define SA_EYE "STAP"
 char sa_eye[4]; /* 4 byte identifier must be */
 int sa_len; /* length of the buffer to put data into*/
 /* this buffer area follows this struct*/
 int sa_ver; /* the version number currently always 1*/
#define SA_VER_INITIAL 0x01
 char sa_flags; /* flags field must be x00 or x80, x80 means reset statistics*/
#define SA_RESET 0x80
 char sa_fill[3]; /* spare bytes */
 int sa_reserve[4]; /* Reserved */
 struct reset_time reset_time_info;
} STAT_API;

Statistics iocounts information (64-bit) mode

© Copyright IBM Corp. 2001, 2021 457

typedef struct API_IO_BY_TYPE_t
{
 unsigned int number_of_lines;
 unsigned int count;
 unsigned int waits;
 unsigned int cancels; /* Successful cancels of IO */
 unsigned int merges; /* Successful merges of IO */
 char reserved1[6];
 char description[51];
 char pad1[3];
} API_IO_BY_TYPE;

typedef struct API_IO_BY_CIRC_t
{
 unsigned int number_of_lines;
 unsigned int count;
 unsigned int waits;
 unsigned int cancels;
 unsigned int merges;
 char reserved1[6];
 char description[51];
 char pad1[3];
} API_IO_BY_CIRC;

/***/
/* The following structures are used to represent cfgop queries */
/* for iocounts */
/***/

struct parmstruct
{
 syscall_parmlist myparms;
 STAT_API myapi;
 API_IO_BY_TYPE mystatsbytype[TOTAL_TYPES];
 API_IO_BY_CIRC mystatsbycirc[TOTAL_CIRC];
} myparmstruct;

int main(int argc, char **argv)
{
 int bpxrv;
 int bpxrc;
 int bpxrs;
 int i;

 STAT_API *stapptr = &(myparmstruct.myapi);
 API_IO_BY_TYPE *stiotptr = &(myparmstruct.mystatsbytype[0]);
 API_IO_BY_CIRC *stiocptr = &(myparmstruct.mystatsbycirc[0]);

 char buf[33];

 myparmstruct.myparms.opcode = STATOP_IOCOUNTS;
 myparmstruct.myparms.parms[0] = sizeof(syscall_parmlist);
 myparmstruct.myparms.parms[1] = sizeof(syscall_parmlist) + sizeof(STAT_API);
 myparmstruct.myparms.parms[2] = 0;
 myparmstruct.myparms.parms[3] = 0;
 myparmstruct.myparms.parms[4] = 0;
 myparmstruct.myparms.parms[5] = 0;
 myparmstruct.myparms.parms[6] = 0;

 memset(stapptr,0,sizeof(STAT_API));
 memcpy(stapptr->sa_eye,SA_EYE,4);
 stapptr->sa_ver=SA_VER_INITIAL;
 stapptr->sa_len=(int) (TOTAL_TYPES * sizeof(API_IO_BY_TYPE))
 + (TOTAL_CIRC * sizeof(API_IO_BY_CIRC));

 BPX4PCT("ZFS ",
 ZFSCALL_STATS, /* Perf statistics operation */
 sizeof(myparmstruct), /* Length of Argument */
 (char *) &myparmstruct, /* Pointer to Argument */
 &bpxrv, /* Pointer to Return_value */
 &bpxrc, /* Pointer to Return_code */
 &bpxrs); /* Pointer to Reason_code */
 if(bpxrv < 0)
 {
 printf("Error querying iocounts, BPXRV = %d BPXRC = %d BPXRS = %x\n",bpxrv,bpxrc,bpxrs);
 return bpxrc;
 }
 else
 {
 if(stiotptr->number_of_lines != TOTAL_TYPES)
 {

Statistics iocounts information (64-bit) mode

458 z/OS: z/OS File System Administration

 printf("Unexpected number of IO Types, %d instead of TOTAL_TYPES\n",
 stiotptr->number_of_lines);
 return 1;
 }
 if(stiocptr->number_of_lines != TOTAL_CIRC)
 {
 printf("Unexpected number of IO Circumstances, %d instead of TOTAL_CIRC\n",
 stiocptr->number_of_lines);
 return 2;
 }
 printf(" I/O Summary By Type\n");
 printf(" -------------------\n");
 printf("\n");
 printf("Count Waits Cancels Merges Type\n");
 printf("---------- ---------- ---------- ---------- ----------\n");
 for(i=0; i<TOTAL_TYPES; i++)
 {
 printf("%10u %10u %10u %10u %s\n",
 stiotptr->count, stiotptr->waits,
 stiotptr->cancels, stiotptr->merges,
 stiotptr->description);
 stiotptr = stiotptr + 1;
 }
 printf("\n");
 printf(" I/O Summary By Circumstance\n");
 printf(" ---------------------------\n");
 printf("\n");
 printf("Count Waits Cancels Merges Circumstance\n");
 printf("---------- ---------- ---------- ---------- ------------\n");
 for(i=0; i<TOTAL_CIRC; i++)
 {
 printf("%10u %10u %10u %10u %s\n",
 stiocptr->count, stiocptr->waits,
 stiocptr->cancels, stiocptr->merges,
 stiocptr->description);
 stiocptr = stiocptr +1;
 printf("\n");
 }
 if (0==ctime_r((time_t *) &stapptr->reset_time_info, buf))
 {
 printf("Could not get timestamp.\n");
 }
 else
 { /* Insert the microseconds into the displayable time value */
 strncpy(&(buf[27]),&(buf[20]),6);
 sprintf(&(buf[20]),"%06d",stapptr->reset_time_info.posix_usecs);
 buf[26]=' ';
 buf[19]='.';
 printf("Last Reset Time: %s",buf);
 }
 }
 return 0;
}

Statistics iocounts information (64-bit) mode

Appendix A. Running the zFS pfsctl APIs in 64-bit mode 459

Statistics iocounts information (64-bit) mode

460 z/OS: z/OS File System Administration

Appendix B. Accessibility

Accessible publications for this product are offered through IBM Documentation (www.ibm.com/docs/en/
zos).

If you experience difficulty with the accessibility of any z/OS information, send a detailed message to the
Contact the z/OS team web page (www.ibm.com/systems/campaignmail/z/zos/contact_z) or use the
following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted mobility or limited vision
use software products successfully. The accessibility features in z/OS can help users do the following
tasks:

• Run assistive technology such as screen readers and screen magnifier software.
• Operate specific or equivalent features by using the keyboard.
• Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user interfaces found in z/OS.
Consult the product information for the specific assistive technology product that is used to access z/OS
interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following information describes how to use
TSO/E and ISPF, including the use of keyboard shortcuts and function keys (PF keys). Each guide includes
the default settings for the PF keys.

• z/OS TSO/E Primer
• z/OS TSO/E User's Guide
• z/OS ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM Documentation with a
screen reader. In dotted decimal format, each syntax element is written on a separate line. If two or more
syntax elements are always present together (or always absent together), they can appear on the same
line because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To hear these numbers
correctly, make sure that the screen reader is set to read out punctuation. All the syntax elements that
have the same dotted decimal number (for example, all the syntax elements that have the number 3.1)

© Copyright IBM Corp. 2001, 2021 461

https://www.ibm.com/docs/en/zos
https://www.ibm.com/docs/en/zos
http://www.ibm.com/systems/campaignmail/z/zos/contact_z

are mutually exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax
can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a syntax element with
dotted decimal number 3 is followed by a series of syntax elements with dotted decimal number 3.1, all
the syntax elements numbered 3.1 are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add information about the
syntax elements. Occasionally, these words and symbols might occur at the beginning of the element
itself. For ease of identification, if the word or symbol is a part of the syntax element, it is preceded by the
backslash (\) character. The * symbol is placed next to a dotted decimal number to indicate that the
syntax element repeats. For example, syntax element *FILE with dotted decimal number 3 is given the
format 3 * FILE. Format 3* FILE indicates that syntax element FILE repeats. Format 3* * FILE
indicates that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax elements, are shown in the
syntax just before the items they separate. These characters can appear on the same line as each item, or
on a separate line with the same dotted decimal number as the relevant items. The line can also show
another symbol to provide information about the syntax elements. For example, the lines 5.1*, 5.1
LASTRUN, and 5.1 DELETE mean that if you use more than one of the LASTRUN and DELETE syntax
elements, the elements must be separated by a comma. If no separator is given, assume that you use a
blank to separate each syntax element.

If a syntax element is preceded by the % symbol, it indicates a reference that is defined elsewhere. The
string that follows the % symbol is the name of a syntax fragment rather than a literal. For example, the
line 2.1 %OP1 means that you must refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.
? indicates an optional syntax element

The question mark (?) symbol indicates an optional syntax element. A dotted decimal number
followed by the question mark symbol (?) indicates that all the syntax elements with a corresponding
dotted decimal number, and any subordinate syntax elements, are optional. If there is only one syntax
element with a dotted decimal number, the ? symbol is displayed on the same line as the syntax
element, (for example 5? NOTIFY). If there is more than one syntax element with a dotted decimal
number, the ? symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the
syntax elements NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted decimal number
followed by the ! symbol and a syntax element indicate that the syntax element is the default option
for all syntax elements that share the same dotted decimal number. Only one of the syntax elements
that share the dotted decimal number can specify the ! symbol. For example, if you hear the lines 2?
FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the default option for the
FILE keyword. In the example, if you include the FILE keyword, but do not specify an option, the
default option KEEP is applied. A default option also applies to the next higher dotted decimal
number. In this example, if the FILE keyword is omitted, the default FILE(KEEP) is used. However, if
you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1 (DELETE), the default option
KEEP applies only to the next higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax element can be used zero
or more times; that is, it is optional and can be repeated. For example, if you hear the line 5.1* data
area, you know that you can include one data area, more than one data area, or no data area. If you
hear the lines 3* , 3 HOST, 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Notes:

462 z/OS: z/OS File System Administration

1. If a dotted decimal number has an asterisk (*) next to it and there is only one item with that dotted
decimal number, you can repeat that same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items have that dotted decimal
number, you can use more than one item from the list, but you cannot use the items more than
once each. In the previous example, you can write HOST STATE, but you cannot write HOST HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least once. A dotted decimal
number followed by the + symbol indicates that the syntax element must be included one or more
times. That is, it must be included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines 2+, 2 HOST, and
2 STATE, you know that you must include HOST, STATE, or both. Similar to the * symbol, the +
symbol can repeat a particular item if it is the only item with that dotted decimal number. The +
symbol, like the * symbol, is equivalent to a loopback line in a railroad syntax diagram.

Appendix B. Accessibility 463

464 z/OS: z/OS File System Administration

Notices

This information was developed for products and services that are offered in the USA or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

This information could include missing, incorrect, or broken hyperlinks. Hyperlinks are maintained in only
the HTML plug-in output for IBM Documentation. Use of hyperlinks in other output formats of this
information is at your own risk.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Site Counsel
2455 South Road

© Copyright IBM Corp. 2001, 2021 465

Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided that
all proprietary notices are preserved. You may not make derivative works of these publications, or

466 z/OS: z/OS File System Administration

reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies that collect
each user’s name, email address, phone number, or other personally identifiable information for purposes
of enhanced user usability and single sign-on configuration. These cookies can be disabled, but disabling
them will also eliminate the functionality they enable.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at ibm.com/privacy and IBM’s Online Privacy Statement at ibm.com/privacy/details in
the section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM Software Products
and Software-as-a-Service Privacy Statement” at ibm.com/software/info/product-privacy.

Policy for unsupported hardware
Various z/OS elements, such as DFSMSdfp, JES2, JES3, and MVS™, contain code that supports specific
hardware servers or devices. In some cases, this device-related element support remains in the product
even after the hardware devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported hardware devices. Software
problems related to these devices will not be accepted for service, and current service activity will cease if
a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be
issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS announcements can subsequently
change when service for particular servers or devices is withdrawn. Likewise, the levels of other software
products supported on a particular release of z/OS are subject to the service support lifecycle of those

Notices 467

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

products. Therefore, z/OS and its product publications (for example, panels, samples, messages, and
product documentation) can include references to hardware and software that is no longer supported.

• For information about software support lifecycle, see: IBM Lifecycle Support for z/OS (www.ibm.com/
software/support/systemsz/lifecycle)

• For information about currently-supported IBM hardware, contact your IBM representative.

Programming Interface Information
This information, z/OS File System Administration, primarily documents information that is NOT intended
to be used as Programming Interfaces of the Distributed File Service.

z/OS File System Administration also documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of the Distributed File Service. This information is
identified where it occurs by an introductory statement to a chapter or section or by the following
marking.

[--- NOT Programming Interface information ---]
[--- End of NOT Programming Interface information ---]

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and Trademark information (www.ibm.com/legal/copytrade.shtml).

UNIX is a registered trademark of The Open Group in the United States and other countries.

468 z/OS: z/OS File System Administration

http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/legal/copytrade.shtml

Glossary

This glossary includes terms and definitions for Distributed File Service z/OS File System. The following
cross-references are used in this glossary:

1. See refers the reader from a term to a preferred synonym, or from an acronym or abbreviation to the
defined full form.

2. See also refers the reader to a related or contrasting term.

aggregate
A structured collection of data objects that form a data type.

attach
In z/OS, to create a task that can execute concurrently with the attaching code.

audit identifier
In zFS, a 16-byte value associated with each z/OS UNIX file or directory that provides identity in an
SMF audit record or in certain authorization failure messages.

bitmap
In zFS, a file listing the blocks that are free on disk. The file size is dependent on the size of the
aggregate.

catch-up mount
A local mount that z/OS UNIX automatically issues to every other system’s physical file system that is
running sysplex-aware for that mode (read-write or read-only) when a sysplex-aware file system
mount is successful on a system in a shared file system environment.

compatibility mode aggregate
A Virtual Storage Access Method linear data set (VSAM LDS) that contains a single read-write zFS file
system.

EAV
See extended address volume.

extended address volume (EAV)
DASD storage that can contain more than 65,521 cylinders per volume.

file handle
A number that is used by the client and server sides of the Network File System (NFS) to specify a
particular file or prefix.

file system owner
In z/OS, the system that coordinates sysplex activity for a particular file system.

function shipping
The process of requesting function from to the owning file system and returning the response to the
requester through XCF communications.

global resource serialization
A component of z/OS that serializes the use of system resources and converts hardware reserves on
direct access storage device (DASD) volumes to data set enqueues.

global resource serialization complex
A group of systems that use global resource serialization to serialize access to shared resources such
as data sets on shared direct access storage device (DASD) volumes.

hang
To become unresponsive to user commands and to stop or appear to stop processing.

i-node
The internal structure that describes the individual files in the UNIX file system. An i-node contains
the node, type, owner, and location of a file.

local mount
A mount that is known to the physical file system.

© Copyright IBM Corp. 2001, 2021 469

metadata
Data that describes the characteristics of data; descriptive data.

non-sysplex aware
A mounted file system that has file requests handled by remotely function shipping requests through
z/OS UNIX

root file system
The basic file system onto which all other file systems can be mounted. The root file system contains
the operating system files that run the rest of the system.

thrashing
A condition, caused by a high level of memory over-commitment, in which the system is spending all
of its time writing out virtual-memory pages and reading them back in. The application programs
make no progress because their pages don't stay in memory long enough to be used. Memory load
control is intended to avoid or stop thrashing.

salvager
In zFS, a program that examines a zFS aggregate to determine if there are any inconsistencies in the
structure of the aggregate.

sysplex
A set of z/OS systems that communicate with each other through certain multisystem hardware
components and software services.

sysplex-aware
A mounted file system that has file requests handled locally instead of function shipping requests
through z/OS UNIX.

version file system
See root file system.

zFS
See z/OS file system.

zFS aggregate
A Virtual Storage Access Method Linear Data Set (VSAM LDS) that contains a zFS file system.

z/OS File System (zFS)
A type of file system that resides in a Virtual Storage Access Method (VSAM) linear data set (LDS) and
has a hierarchical organization of files and directories with a root directory.

470 z/OS: z/OS File System Administration

Index

Special Characters
\ (backslash) xiii
(pound sign) xiii

A
abort command 90, 98
accessibility

contact IBM 461
features 461

ACL (access control lists) 3
active file system 18
active increase 38
address space

determining usage 79
OMVS 5
zFS 6

aggregate
adding volumes 26
back up 57
converting

from v4 to v5 23
to version 1.5 22

copying files and directories to a larger data set 27
corruption 90
creating

version 1.5 21
decreasing size of 37
determining state 96
diagnosing disabled 99
handling disabled 99
increasing size of 27
movement 3
restore 58
version 1.5 21

AGGRFULL
MOUNT 137

allocation
blocked 42
fragmented 42
inline 42

anode 122
APAR OA39466 10
APAR OA40530 10
APAR OA56145 7, 14, 53
APAR OA57058 7
APAR OA57508 14
APAR OA59145 40
APARS 14
application programming interface (API)

Attach Aggregate 244
BPX1PCT (pfsctl) 237, 238
Change Aggregate Attributes 247
Define Aggregate 250, 254
Encrypt (Decrypt, Compress, or Decompress) Aggregate
256

application programming interface (API) (continued)
File Snapshot 259
Format Aggregate 264
Grow Aggregate 268
List Aggregate Status (Version 1) 271
List Aggregate Status (Version 2) 274
List Attached Aggregate Names (Version 1) 281
List Attached Aggregate Names (Version 2) 284
List Detailed File System Information 288
List File Information 302
List File System Names (Version 1) 310
List File System Names (Version 2) 314
List File System Status 318
List Systems 326
Query Config Option 329
Quiesce Aggregate 334
Reset Backup Flag 336
Salvage Aggregate 339
Set Auditfid 341
Set Config Option 344
Shrink Aggregate 347
Statistics Compression Information 350
Statistics Directory Cache Information 354
Statistics Iobyaggr Information 358
Statistics Iobydasd Information 365
Statistics Iocounts Information 371
Statistics Kernel Information 377
Statistics Locking Information 383
Statistics Log Cache Information 391
Statistics Metadata Cache Information 400
Statistics Server Token Management Information 406
Statistics Storage Information 411
Statistics Sysplex Client Operations Information 421
Statistics Sysplex Owner Operations Information 427
Statistics Transaction Cache Information 433
Statistics User Cache Information 437
Statistics Vnode Cache Information 447
Unquiesce Aggregate 454

applying required, for 2.4 14
ASID, determining 95
assistive technologies 461
attach

definition of 4
Attach Aggregate 244
attributes, changing 39
auditfid

converting 102
function 101
set subcommand 341

auditid
contents 102
enabling 102
overview 101

B
back up

Index 471

back up (continued)
how to 57
restore 58
using DFSMSdss logical dump 57
zFS aggregate 57

backup change activity flag 59
balancing I/O 65
block zero wait 40
blocked file allocation 42
BPX1PCT (pfsctl) 237, 238
bpxmtext 115
bpxwmigf command 61

C
cache

debugging 79
log file 65
metadata 64
user file 64
vnode 64

cache report
VM 83

cache size
IOEFSPRM 63
storage shortage 98
total 63

cache space 83, 437
catch-up mount

definition of 4
Change Aggregate Attributes

set subcommand 247
checking zFS storage 79
command suite, zfsadm 140
commands

bpxmtext 115
ioeagfmt 116
ioeagslv 120
ioefsutl converttov4 126
ioefsutl converttov5 127
ioefsutl format 129
ioefsutl salvage 133
man 115
MODIFY ZFS PROCESS 106
mount 21
MOUNT 137
SETOMVS RESET 113
z/OS system 105
zfsadm 149
zfsadm aggrinfo 24, 144
zfsadm apropos 147
zfsadm chaggr 152
zfsadm compress 156
zfsadm config 158
zfsadm configquery 163
zfsadm convert 167
zfsadm decompress 170
zfsadm decrypt 172
zfsadm define 174
zfsadm delete 177
zfsadm detach 179
zfsadm encrypt 181
zfsadm fileinfo 184
zfsadm format 190

commands (continued)
zfsadm fsinfo 193
zfsadm grow 24, 203
zfsadm help 204
zfsadm lsaggr 206
zfsadm lsfs 208
zfsadm lssys 210
zfsadm query 211
zfsadm quiesce 214
zfsadm salvage 218
zfsadm setauditfid 216
zfsadm shrink 220
zfsadm unquiesce 223

compatibility mode aggregate
adding volumes 26
changing attributes 39
creating 25
decreasing size of 37
deleting 38
disabled 99
dynamically growing 24
growing 24
increasing size of 27
renaming 38
size 44

compatibility mode file system
maximum size 44
minimum size 44
mounting 21

compressing file system data
always compressed 35
displaying status 36
existing 35
explanation 30
monitoring status 36
process 34

concepts 4
configuring

zFS (z/OS File System) 11
contact

z/OS 461
contention, lock 77
converting

existing aggregate to version 1.5 22
guidelines for v4 to v5 conversion 23
to extended (v5) directory 23

converting auditfids 102
correction, namespace 93
creating

compatibility mode aggregate 19
compatibility mode file system 19
encrypted file systems 32
zFS file system 19

CTKC report 67

D
data sets

IOEFSPRM 225
data space 83, 437
DATASET report 68
debugging

storage 79
storage shortage 98

472 z/OS: z/OS File System Administration

debugging zFS 89
Define Aggregate 250
definitions

anode 122
attach 4
catch-up mount 4
definition of 5
file system ownership 4
function shipping 5
local mount 5
non-sysplex aware 5
OMVS address space

definition of 5
read-only file system 5
read-write file system 6
shared file system environment 6
sysplex 6
sysplex-aware 6
sysplex-aware file system 6
sysplex-aware PFS 6
z/OS UNIX file system owner 5
zFS address space 6
zFS aggregate 6
zFS file system owner 4
zFS physical file system 6, 7
ZFS PROC 7

delays
in a shared file system environment 94
troubleshooting 93

Detach Aggregate 254
DFSMSdss logical dump

using for backup 57
DFSMSdss logical restore 58
directory

creating 13
determining size 45
extended (v5) 21
size 45

directory space
how to reclaim 45

disabled aggregates
compatibility mode aggregate 99
handling 99

disk space allocation
understanding 40

dumps
obtaining 91
understanding 91

dynamic movement 52
dynamically growing compatibility mode aggregates 24

E
Encrypt (Decrypt, Compress, or Decompress) Aggregate 256
encrypting file system data

defining new file systems 35
displaying status 34
existing 33
explanation 30
formatting an encryption-eligible VSAM data set 32
monitoring status 34
new file system that's always encrypted on DASD 31, 32
process 31

ENQs, displaying 93

extended (v5) aggregate
converting to version 1.5 22

extended (v5) directories 21
extended director XCF communications protocol 92

F
Fast Response Cache Accelerator restriction 14
features

zFS 3
feedback xv
file allocation

blocked 42
fragmented 42
inline 42

FILE report 68
File Snapshot 259
file system

active 18
corruption 90
definition of zFS file system 6
determining owner 50
dynamic movement 52
maximum size 44
minimum size 44
ownership 50, 51
read-only sysplex-aware 47
read/write with different levels of sysplex-awareness 48
status 18
sysplex-aware 6
z/OS UNIX owner 51

file system information
usage notes for displaying 110

file system owner
z/OS UNIX 49
zFS 49

file system ownership
definition of 4

files
IOEFSPRM 225

fixed storage 65
Format Aggregate 264
fragmented file allocation 42
FSFULL

MOUNT 138
function shipping

definition of 5

G
Grow Aggregate 268

H
hang detector 93
hangs

in a shared file system environment 94
steps for resolving 94
troubleshooting 93

high availability option
using the, for read/write sysplex-aware file systems 55

Index 473

I
I/O

balancing 65
statistics 69

initialization messages, saving in a data set 92
inline file allocation 42
installing

zFS (z/OS File System) 11
internal restart 90, 98
IOBYDASD

related subcommand 365
report 69

ioeagfmt
creating a compatibility mode aggregate 19

ioeagslv
understanding the utility 90

IOEFSPRM
processing options 226
sharing 54
total cache size 63

ioefsutl converttov4 126
ioefsutl converttov5 127
ioefsutl format 129
ioefsutl salvage

command 133
understanding the utility 90

ioefsutl utility
introduction to suite 125

IOEPRMxx
processing options 226

IOEZADM module 143

K
keyboard

navigation 461
PF keys 461
shortcut keys 461

KN report 70

L
large directory 46
LFS report 71
List Aggregate Status (Version 1) 271
List Aggregate Status (Version 2) 274
List Attached Aggregate Names (Version 1) 281
List Attached Aggregate Names (Version 2) 284
List Detailed File System Information 288
List File Information 302
List File System Names (Version 1) 310
List File System Names (Version 2) 314
List File System Status 318
List Systems 326
local mount

definition of 5
LOCK report 77
log file cache 65
log files 65
LOG report 77
long-running operations

progress indicators

long-running operations (continued)
progress indicators (continued)

zfsadm fsinfo 193
zfsadm compress 156
zfsadm decompress 170
zfsadm decrypt 172
zfsadm encrypt 181
zfsadm salvage 218
zfsadm shrink 220

M
man pages

enabling 115
example of command 115

managing
processes 17
zFS file system 19

maximum size
for file system 44

messages
Japanese 234

messages, initialization, saving in a data set 92
metadata cache 64
migrating

from HFS to zFS 61
using the z/OS HFS to zFS migration tool 61

minimum size
for file system 44

MODIFY ZFS PROCESS command 106
monitoring performance periods 67
mount command 21
MOUNT command 137
mount, local 5
mounting

compatibility mode file system 21
msg_output_dsn option of IOEFSPRM 92
multilevel security 3

N
namespace validation 92
navigation

keyboard 461
NBS (New Block Security) 149
New Block Security (NBS) 149
non-sysplex aware

definition of 5
NORWSHARE

zfsadm config 160

O
objects

maximum number 44
OMVS address space 5, 16
owner of file system 49

P
path entry 139
performance considerations

monitoring 65

474 z/OS: z/OS File System Administration

performance considerations (continued)
number of file names 45

PFS (physical file system)
definition of 7
state 18
sysplex-aware 6

pfsctl (BPX1PCT) 237, 238
Policy Agent Server (Pagent) restriction 14
postinstallation processing 11

Q
Query Config Option 329
QUERY,KN report 70
QUERY,STOR report 79
Quiesce Aggregate 334
quota 20

R
read-only file system

definition of 5
read/write file system

definition of 6
reason codes, using bpxmtext 115
Reset Backup Flag 336
resetting performance data 67
restart 3
restart, internal 98
root, large directory 46
running in 16
RWSHARE

zfsadm config 160

S
Salvage Aggregate 339
salvage utility

running 100
salvager

definition of 120
salvager utility

understanding the 90
scrubbing unused areas in file system 182
security label 3
sending to IBM

reader comments xv
service level, determining 92
Set Auditfid 341
Set Config Option 344
SETOMVS RESET command 113
shared file system

overview 47
shared file system environment

definition of 6
hangs and delays 94
z/OS UNIX consideration 54

sharing zfs data between systems 44
shortcut keys 461
Shrink Aggregate 347
SMF record

auditid 101
Statistics Compression Information 350

Statistics Directory Cache Information 354
Statistics Iobyaggr Information 358
Statistics Iobydasd Information 365
Statistics Iocounts Information 371
Statistics Iocounts Information (64-bit mode)

examples 457
Statistics Kernel Information 377
Statistics Locking Information 383
Statistics Log Cache Information 391
Statistics Metadata Cache Information 400
Statistics Server Token Management information 406
Statistics Storage Information 411
Statistics Sysplex Client Operations Information 421
Statistics Sysplex Owner Operations Information 427
Statistics Transaction Cache Information 433
Statistics User Cache Information 437
Statistics Vnode Cache Information 447
STKM report 78
STOR report 79
storage

shortage 98
striped VSAM linear data set 20
summary of changes

z/OS File System (zFS) xvii
zFS

V2R2 xxiii
V2R3 xix

SVI report 82
sysplex

considerations 47
definition of 6
z/OS UNIX consideration 54

sysplex-aware
changing, of a mounted zFS read/write file system 15
definition of 6
file system 6, 47
file system, with different levels of sysplex-awareness
48
overview 47
PFS 6
specifying 14
using read/write 14
zFS-enhanced 49

system commands
MODIFY ZFS PROCESS 106
SETOMVS RESET 113

system management facilities (SMF)
obtaining data 87
record type 92 87

SYSZIOEZ 93

T
terminology 4
thrashing

definition of 79
token manager statistics 78
total cache size 63
trace options 89
tracing zFS

steps for 89
trademarks 468
type 30 SMF record

support for 43

Index 475

typographic conventions xiii

U
unquiesce

operator command 110
Unquiesce Aggregate 454
user file cache 64
user interface

ISPF 461
TSO/E 461

V
v4 directory

considerations 45
converting to extended (v5) 23
guidelines for v4 to v5 conversion 23

v5 directory
converting from v4 23
guidelines for v4 to v5 conversion 23

valid characters in aggregate name 116
version 1.4 aggregates

maximum size 44
version 1.5 aggregates

creating 21
maximum size 44

VM cache report 83
vnode cache 64
volume

adding to an aggregate 26
VSAM linear data set

defining, with key label 31
formatting 116
restriction 6
striped 20

W
what's new in V2R1 8
what's new in V2R2 8
what's new in V2R3 7
what's new in V2R4 7

X
XCF protocol interface level, determining 92

Z
z/OS

system commands 105
z/OS File System (zFS)

content, changed xviii
content, new xvii
content, no longer included xix
summary of changes xvii

z/OS UNIX address space 16
z/OS UNIX file system owner

definition of 5
z/OS UNIX owner 51
zEDC Express

used in compressing files 34

zFS
summary of changes for V2R2 xxiii
summary of changes for V2R3 xix

zFS (z/OS File System)
back up 57
determining status 18
disk space allocation 41
installing 11
managing processes 17
overview 3
starting 17
stopping 17
what's new in V2R1 8
what's new in V2R2 8
what's new in V2R3 7
what's new in V2R4 7

zFS address space
definition of 6

zFS aggregate
backing up 57
definition of 6, 193

zFS file system
definition of 6

zFS file system owner
definition of 4

zFS file systems
creating 19
managing 19
specifying as sysplex-aware 14
unmounting 40

ZFS PROC
definition of 7

zFS QUERY reports
list of sample reports 67

zFS reason codes 115
zfsadm aggrinfo command 24, 144
zfsadm apropos command 147
zfsadm attach command 149
zfsadm chaggr 152
zfsadm commands 140
zfsadm compress 156
zfsadm config command 158
zfsadm configquery command 163
zfsadm convert command 167
zfsadm decompress 170
zfsadm decrypt 172
zfsadm define command 174
zfsadm delete command 177
zfsadm detach command 179
zfsadm encrypt 181
zfsadm fileinfo command 184
zfsadm format command 190
zfsadm fsinfo command 193
zfsadm grow command 24, 203
zfsadm help command 204
zfsadm lsaggr command 206
zfsadm lsfs command 208
zfsadm lssys command 210
zfsadm query command 211
zfsadm quiesce command 214
zfsadm salvage 218
zfsadm setauditfid command 216
zfsadm shrink command

decreasing size of compatibility mode aggregates 37

476 z/OS: z/OS File System Administration

zfsadm unquiesce command 223

Index 477

478 z/OS: z/OS File System Administration

IBM®

Product Number: 5650-ZOS

SC23-6887-40

	Contents
	Figures
	Tables
	About this document
	How this document is organized
	Conventions used in this document
	z/OS information

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Summary of changes for zFS for z/OS Version 2 Release 4 (V2R4)
	Summary of changes for zFS for z/OS Version 2 Release 3 (V2R3)
	Summary of changes for zFS for z/OS Version 2 Release 2 (V2R2)

	Part 1. zFS administration guide
	Chapter 1. Overview of the zFS File System
	Features
	Terminology and concepts
	What's new or changed for zFS in z/OS V2R4
	What's new or changed for zFS in z/OS V2R3
	What's new or changed for zFS in z/OS V2R2
	What's new or changed for zFS in z/OS V2R1

	Chapter 2. Installing and configuring zFS
	zFS installation and configuration steps
	Applying required APARs for z/OS V2R4
	Specifying zFS file systems as sysplex-aware
	Using zFS read/write sysplex-aware file systems
	Changing the sysplex-awareness of a mounted zFS read/write file system

	zFS running in the z/OS UNIX address space

	Chapter 3. Managing zFS processes
	Starting zFS
	Stopping zFS
	Determining zFS status

	Chapter 4. Creating and managing zFS file systems using compatibility mode aggregates
	Creating a compatibility mode aggregate
	Using version 1.5 aggregates and extended (v5) directories
	Creating a version 1.5 aggregate
	Converting an existing aggregate to version 1.5
	Converting an existing v4 directory to an extended (v5) directory
	Guidelines for v4 to v5 conversion

	Growing a compatibility mode aggregate
	Dynamically growing a compatibility mode aggregate
	Creating a multi-volume compatibility mode aggregate
	Adding volumes to a compatibility mode aggregate
	Increasing the size of a compatibility mode aggregate
	Copying each file and directory of the aggregate to a larger data set
	Copying the physical blocks of the aggregate to a larger data set

	Encrypting and compressing zFS file system data
	The encryption process
	Creating a new file system that is always encrypted on DASD
	Defining a VSAM linear data set that has a key label
	Formatting an encryption-eligible VSAM linear data set and creating a zFS file system that is always encrypted on disk

	Encrypting existing file system data
	Monitoring and displaying the encryption status

	The compression process
	Defining a new file system that is always compressed
	Compressing existing file system data
	Monitoring and displaying the compression status

	Decreasing the size of a compatibility mode aggregate
	Renaming or deleting a compatibility mode aggregate
	Changing zFS attributes on a mounted zFS compatibility mode file system
	Unmounting zFS file systems before copying or moving
	Understanding zFS disk space allocation
	How data is stored on systems before z/OS V1R13
	Support for type 30 SMF record

	Sharing zFS data in a non-shared file system sysplex
	Minimum and maximum file system sizes
	Version 1.5 aggregates
	Version 1.4 aggregates
	v4 directory considerations

	Chapter 5. Using zFS in a shared file system environment
	Overview of the shared file system environment
	Read-only mounted file systems
	zFS support for read/write file systems with different levels of sysplex-awareness
	zFS-enhanced sysplex-aware support
	zFS ownership versus z/OS UNIX ownership of file systems
	Determining the file system owner

	When is the z/OS UNIX owner important?
	Dynamic movement of the zFS owner
	Considerations when using zFS in a shared file system environment
	Specifying the high availability option for read/write sysplex-aware file systems

	Chapter 6. Copying or performing a backup of a zFS
	Backing up a zFS aggregate
	Restoring an aggregate with DFSMSdss logical restore

	Chapter 7. Migrating data from HFS or zFS to zFS
	Chapter 8. Performance and debugging
	Performance tuning
	Total cache size
	Metadata cache
	Vnode cache
	User file cache
	Log files
	Log file cache
	Fixed storage
	I/O balancing

	Monitoring zFS performance
	Resetting performance monitoring data
	Sample zFS QUERY reports
	CTKC
	DATASET
	FILE
	IOBYDASD
	KN
	LFS
	LOCK
	LOG
	STKM
	STOR
	SVI
	VM

	Using SMF records to report on activities
	SMF record type 92

	Debugging aids for zFS
	Steps for tracing on zFS
	Understanding the salvager utility
	Understanding zFS dumps
	Determining the XCF protocol interface level
	Saving initialization messages in a data set
	Determining service levels
	Understanding namespace validation and correction
	Understanding delays and hangs in zFS using the zFS hang detector
	Hangs and delays in shared file system environment
	Steps for diagnosing and resolving a zFS hang
	Identifying storage shortages in zFS

	Diagnosing disabled aggregates
	Handling disabled aggregates
	Running the salvage utility

	Chapter 9. Overview of the zFS audit identifier
	Enabling the zFS auditid

	Part 2. zFS administration reference
	Chapter 10. z/OS system commands
	MODIFY ZFS PROCESS
	SETOMVS RESET

	Chapter 11. zFS commands
	ioeagfmt
	ioeagslv
	ioefsutl
	ioefsutl converttov4
	ioefsutl converttov5
	ioefsutl format
	ioefsutl salvage
	MOUNT
	zfsadm
	zfsadm aggrinfo
	zfsadm apropos
	zfsadm attach
	zfsadm chaggr
	zfsadm compress
	zfsadm config
	zfsadm configquery
	zfsadm convert
	zfsadm decompress
	zfsadm decrypt
	zfsadm define
	zfsadm delete
	zfsadm detach
	zfsadm encrypt
	zfsadm fileinfo
	zfsadm format
	zfsadm fsinfo
	zfsadm grow
	zfsadm help
	zfsadm lsaggr
	zfsadm lsfs
	zfsadm lssys
	zfsadm query
	zfsadm quiesce
	zfsadm setauditfid
	zfsadm salvage
	zfsadm shrink
	zfsadm unquiesce

	Chapter 12. The zFS configuration options file (IOEPRMxx or IOEFSPRM)
	IOEFSPRM

	Chapter 13. zFS application programming interface information
	pfsctl (BPX1PCT)
	Attach Aggregate
	Change Aggregate Attributes
	Define Aggregate
	Detach Aggregate
	Encrypt (Decrypt, Compress, or Decompress) Aggregate
	File Snapshot
	Format Aggregate
	Grow Aggregate
	List Aggregate Status (Version 1)
	List Aggregate Status (Version 2)
	List Attached Aggregate Names (Version 1)
	List Attached Aggregate Names (Version 2)
	List Detailed File System Information
	List File Information
	List File System Names (Version 1)
	List File System Names (Version 2)
	List File System Status
	List Systems
	Query Config Option
	Quiesce Aggregate
	Reset Backup Flag
	Salvage Aggregate
	Set Auditfid
	Set Config Option
	Shrink Aggregate
	Statistics Compression Information
	Statistics Directory Cache Information
	Statistics Iobyaggr Information
	Statistics Iobydasd Information
	Statistics Iocounts Information
	Statistics Kernel Information
	Statistics Locking Information
	Statistics Log Cache Information
	Statistics Metadata Cache Information
	Statistics Server Token Management Information
	Statistics Storage Information
	Statistics Sysplex Client Operations Information
	Statistics Sysplex Owner Operations Information
	Statistics Transaction Cache Information
	Statistics User Cache Information
	Statistics Vnode Cache Information
	Unquiesce Aggregate

	Appendix A. Running the zFS pfsctl APIs in 64-bit mode
	Statistics Iocounts Information (64-bit mode)

	Appendix B. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Terms and conditions for product documentation
	IBM Online Privacy Statement
	Policy for unsupported hardware
	Minimum supported hardware
	Programming Interface Information
	Trademarks

	Glossary
	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

